
1 1 Part - Partie 1 of - de 2
See Part 2 for Clauses and Conditions

Voir Partie 2 pour Clauses et Conditions

Public Works and Government Services
Canada

Travaux publics et Services
gouvernementaux Canada

RETURN BIDS TO:
RETOURNER LES SOUMISSIONS À:
Bid Receiving Public Works and Government
Services Canada/Réception des soumissions Travaux
publics et Services gouvernementaux Canada
1713 Bedford Row
Halifax, N.S./Halifax, (N.É.)
B3J 1T3
Bid Fax: (902) 496-5016

CCC No./N° CCC - FMS No./N° VME

SOLICITATION AMENDMENT
Time Zone

MODIFICATION DE L'INVITATION
02:00 PM
2013-02-26

Fuseau horaire
Atlantic Standard Time
AST

Destination: Other-Autre:

FAX No. - N° de FAX
(902) 496-5016

Issuing Office - Bureau de distribution

Acquisitions
1713 Bedford Row
Halifax, N.S./Halifax, (N.É.)
B3J 3C9

indicated, all other terms and conditions of the Solicitation
The referenced document is hereby revised; unless otherwise

remain the same.

les modalités de l'invitation demeurent les mêmes.
Ce document est par la présente révisé; sauf indication contraire,

Instructions: Voir aux présentes

Instructions: See Herein

Delivery Required - Livraison exigée Delivery Offered - Livraison proposée

Vendor/Firm Name and Address

Comments - Commentaires

Raison sociale et adresse du
fournisseur/de l'entrepreneur

Title - Sujet
PROGRAMMING WORK
Solicitation No. - N° de l'invitation
W7707-135657/A

Client Reference No. - N° de référence du client

W7707-13-5657
GETS Reference No. - N° de référence de SEAG

PW-$HAL-220-8906

File No. - N° de dossier

HAL-2-69336 (220)

Solicitation Closes - L'invitation prend fin
at - à
on - le
F.O.B. - F.A.B.

Plant-Usine:

Address Enquiries to: - Adresser toutes questions à:

Dunphy, Nancy
Telephone No. - N° de téléphone

(902) 496-5481 ()

Destination - of Goods, Services, and Construction:
Destination - des biens, services et construction:

hal220
Buyer Id - Id de l'acheteur

Vendor/Firm Name and Address
Raison sociale et adresse du fournisseur/de l'entrepreneur

Facsimile No. - N° de télécopieur
Telephone No. - N° de téléphone

Name and title of person authorized to sign on behalf of Vendor/Firm
(type or print)
Nom et titre de la personne autorisée à signer au nom du fournisseur/
de l'entrepreneur (taper ou écrire en caractères d'imprimerie)

Signature Date

2013-02-21
Date
002
Amendment No. - N° modif.

Page 1 of - de 1Canada

Cet amendement 002 est soulevée à ajouter la version préliminaire du

Voir ci-joint.

Ce document provient d'une tierce partie et n'est pas availble si le français..

Solicitation No. - N° de l'invitation Amd. No. - N° de la modif. Buyer ID - Id de l'acheteur

W7707-135657/A 002 hal220

Client Ref. No. - N° de réf. du client File No. - N° du dossier CCC No./N° CCC - FMS No/ N° VME

W7707-13-5657 HAL-2-69336

Part - Partie 2 of - de 2 / Page 1 of - de 1

(DRAFT)

(DRAFT)

A Toolkit for Building RTI Independent HLA
Interfaces for Simulations

Allan D. Gillis
Senior Scientific Programmer / Analyst
Virtual Combat Systems Group
Maritime Information and Combat Systems
Defence R&D Canada - Atlantic

Glenn P. Franck
Scientific Programmer / Analyst
Virtual Combat Systems Group
Maritime Information and Combat Systems
Defence R&D Canada - Atlantic

Defence R&D Canada – Atlantic
Technical Memorandum
DRDC Atlantic TM [enter number only: 9999-999]
March 2009

(DRAFT)

(DRAFT)

Principal Author

Original signed by Allan D. Gillis

Allan D. Gillis

Senior Scientific Programmer / Analyst

Approved by

Original signed by [Approved By Name]

[Approved By Name]

[Approved By Position/Title]

Approved for release by

Original signed by [Released By Name]

[Released By Name]

[Released By Position/Title]

[Include the sponsor of the work or a reference to a thrust or work unit, when deemed appropriate
by author or CSA; relevant patent number(s), relating to protected intellectual property, should be
noted. If there is no relevant information for this document, delete this text.]

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2009

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2009

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] i

(DRAFT)

Abstract ……..

[Enter text: English]

Résumé ….....

[Enter text: French]

(DRAFT)

ii DRDC Atlantic TM [enter number only: 9999-999]

(DRAFT)

This page intentionally left blank.

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] iii

(DRAFT)

Executive summary

A Toolkit for Building RTI Independant HLA Interfaces for
Simulations:

Allan D. Gillis, Glenn P. Franck; DRDC Atlantic TM [enter number only: 9999-
999]; Defence R&D Canada – Atlantic; March 2009.

Introduction or background: [Enter text: English]

Results: [Enter text: English]

Significance: [Enter text: English]

Future plans: [Enter text: English]

(DRAFT)

iv DRDC Atlantic TM [enter number only: 9999-999]

(DRAFT)

Sommaire

A Toolkit for Building RTI Independant HLA Interfaces for
Simulations:

Allan D. Gillis, Glenn P. FranckAllan D. Gillis; DRDC Atlantic TM [enter number
only: 9999-999]; R & D pour la défense Canada – Atlantique; Mars 2009.

Introduction ou contexte: [Enter text: French]

Résultats: [Enter text: French]

Importance: [Enter text: French]

Perspectives: [Enter text: French]

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] v

(DRAFT)

This page intentionally left blank.

(DRAFT)

vi DRDC Atlantic TM [enter number only: 9999-999]

(DRAFT)

Table of contents

Abstract …….. ... i
Résumé …..... ... i
Executive summary .. iii
Sommaire iv
Table of contents .. vi
List of figures .. viii
List of tables .. ix
Acknowledgements .. x
1 Introduction ... 1
2 Overall Design Concept .. 3

2.1 Maintenance .. 4
2.1.1 RTI Vendor and HLA Abstraction Layers .. 4
2.1.2 Federation Layer ... 5
2.1.3 Simulation Layer ... 5

2.2 Multi-thread / process safety ... 5
3 HLA Abstraction Layer .. 6

3.1 The Base API ... 6
3.2 Converting and Adapting .. 6

4 Federation Encapsulation Layer ... 9
4.1 Structure .. 9
4.2 Module duties .. 9
4.3 Layer API .. 9
4.4 Module developer guidance... 10

5 Simulation Layer .. 11
6 FOM Library Requirements.. 12

6.1 Encoding and Decoding Support ... 12
6.2 FOM Object and Interaction Classes ... 12
6.3 Developer Productivity .. 12
6.4 Strong Typing .. 13
6.5 Allowing Developer Extensions .. 13
6.6 Code Generation .. 14

7 Library Design .. 15
7.1 Data types .. 15
7.2 FOM objects and interactions .. 16

7.2.1 HLA object classes .. 16

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] vii

(DRAFT)

7.2.2 HLA interaction classes .. 18
7.2.3 Design of the library.. 18
7.2.4 What about FOM interactions? ... 23

7.3 Java packages .. 23
References 26
Annex A[Enter Annex Level 1 heading here] ... 28

A.1[Enter Annex Level 2 heading here] ... 28
A.1.1[Enter Annex Level 3 heading here] ... 28

Bibliography ... 30
List of symbols/abbreviations/acronyms/initialisms .. 31
Glossary 32
Index ……............ ... 33
Distribution list ... 34

(DRAFT)

viii DRDC Atlantic TM [enter number only: 9999-999]

(DRAFT)

List of figures

Figure 1, overall architecture. .. 3

Figure 2, how the HLA Abstraction Layer hides vendor implementations. 6

Figure 3, adapting vendor libraries to the HLA Abstraction Layer. .. 7

Figure 4, VendorAdaptor interface. ... 7

Figure 5, sample federation modules in the encapsulation layer. .. 9

Figure 6, object class structure in HLA FOMs. ... 16

Figure 7, example hierarchy from the RPR 2.0 Draft 18 FOM. .. 17

Figure 8, example interaction hierarchy from the RPR 2.0 Draft 18 FOM. 18

Figure 9, one possible method that combines interfaces with inheritance. 19

Figure 10, FOM Object class diagram showing the behaviour interface. 20

Figure 11, an example showing the Behaviour and FOMClass inheritance for a RPR 2 based
FOM library. ... 22

Figure 12, generic package structure of a FOM library... 24

Figure 13, example package diagram for the RPR2 Draft 18 FOM showing all packages. 25

Figure A-14: This is the caption for the figure shown above. ... 28

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] ix

(DRAFT)

List of tables

No table of figures entries found.

(DRAFT)

x DRDC Atlantic TM [enter number only: 9999-999]

(DRAFT)

Acknowledgements

[Enter Acknowledgements here if applicable. If not, delete the page.]

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] xi

(DRAFT)

This page intentionally left blank.

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] 1

(DRAFT)

1 Introduction

The High Level Architecture (HLA) for connecting distributed simulations has been in use since
XXX and has evolved significantly over the years to better support the needs of the simulation
community.

While HLA concepts are relatively easy to understand, there are significant challenges for any
developer working on an HLA federate. First one must understand the fundamental concepts of
the architecture, next the intricacies of the Application Programming Interface (API) defined in
the various standards must be mastered. It is only after a developer has a firm grasp of the basics
of HLA programming that the real problems arise.

The first hurdle is that there are two commonly used versions of HLA, and a third on the way.
The only standards-based version of HLA is IEEE 1516 with its various amendments, including
the Simulation Interoperability Standards Organisation (SISO) Dynamic Link Compatible (DLC)
API standard [3]. Previous to IEEE 1516 there were many variations of HLA all derived from the
DMSO versions and collectively referred to as the “1.3” version of HLA. Unfortunately while
these various RTI’s are referred to collectively they are by no means interchangeable as the API
varies from vendor-to-vendor. A federate developer often needs to maintain versions of his
federate that are compatible with multiple RTIs.

The second big challenge for a federate developer is the glue that binds all of the simulations
together in an HLA distributed simulation (called a federation) together; the Federation Object
Model (FOM). The FOM defines the data that can be shared amongst the individual simulations
(or “federates” in HLA parlance). This includes basic data representations (16, 32, and 64 bit
integers for example) as well as data structures, and the objects which are defined in terms of this
data.

The developer, therefore, in addition to writing a simulation and understanding multiple versions
of the HLA, must also handle all of the objects, interaction, attributes, parameters, and data types
that are defined in the FOM. This usually means writing classes to handle the HLA aspects, and
the internal simulation aspects of everything in the FOM that is subscribed to, or published, by
the federate being developed.

If two federates use the same FOM and RTI then a lot of code would be duplicated between them.
Also, it has been our experience in the MC2CD group and also of others[1] that encoding and
decoding the values of attributes/parameters is both tedious and error-prone.

Even though there is much commonality of code there is still a lot that must be different between
federates. For example, one simulation may require that it’s ships have a “goToFlankSpeed()”
method, while another may need to add a “SniperDetectionSystem” field to an armoured vehicle
class. It is also quite possible that the problem domain of the simulation will lead to an object
structure that has little in common with the FOM (or multiple FOMs) that will be used to
participate in HLA federations.

(DRAFT)

2 DRDC Atlantic TM [enter number only: 9999-999]

(DRAFT)

Clearly there is a need for tools to help the developer meet the twin challenges of multiple RTI
versions and FOMs while allowing her to work within the problem domain of the system being
simulated.

This document describes the design of a set of libraries and tools that will help software
developers meet these challenges.

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] 3

(DRAFT)

2 Overall Design Concept

The general solution presented in this paper is a framework supported by tools to accomplish
three main goals for developers:

1. Eliminate the need to deal with RTI versions and vendor specific quirks at the lowest
level.

2. Encapsulate the handling of all FOM and federation agreement specific processing for
reuse.

3. Separate the simulation itself from the intricacies of HLA and the specifics of a FOM.

We see the transition from vendor specific RTI libraries to the simulation as a multi-layered
architecture, as shown in Figure 1 below.

Figure 1, overall architecture.

At the very bottom we have the RTI layer. This layer consists of all the code required to interface
with a particular vendor’s RTI. The RTI itself may be IEEE 1516 compatible, DMSO 1,3 based,
or be compatible with the upcoming HLA Evolved standard when it is available. The problem at
this level is that there are differences between the APIs of the various HLA standards (1516 vs

(DRAFT)

4 DRDC Atlantic TM [enter number only: 9999-999]

(DRAFT)

DMSO 1.3 vs MaK 1.3) as well as quirks between vendor implementations of the IEEE 1516
standard (or even between versions from a single vendor).

To alleviate these problems our design inserts an HLA layer between the vendor code and any
other part of the system. The HLA layer has a consistent API, so developers working on
components for the next layer up don’t have to worry about which vendor’s RTI will be used.

One layer up is the Federation Layer. This layer contains the compnents needed to actually join a
federation using a particular FOM and federation agreement (all the details about how things shall
be done that isn’t in the FOM). Potentially there will be a separate federation layer component
for every FOM / federation agreement combination. For example, the Real Time Platform
Reference FOM version 1 would have it’s own set of Federation Layer Components, as would the
Real Time Platform Reference FOM 2.0.

On top of the Federation Layer is the Simulation Layer. This piece is responsible for adapting
any particular simulation to the federation layer underneath. This layer acts as a façade to the
more complicated systems below, and converts FOM data to simulation domain data, and vice
versa.

2.1 Maintenance

Before moving on to discuss the details of how all these layers will work together it is important
to consider the maintenance implications of this approach. In particular, when will a given layer
need to be touched by a developer, and what will the consequences be for other layers.

2.1.1 RTI Vendor and HLA Abstraction Layers

Of all the layers the RTI vendor layer is the most likely to change, and is one we have no control
over. Vendors will do what they do regardless of what we would like. Changes in the RTI layer
may or may not mean changes to the HLA layer, and should have no impact above that (with one
notable exception).

First it is worth mentioning that while the RTI layer includes every conceivable RTI version from
every possible vendor, there is no obligation upon us to support any given product. New RTI
versions or whole new products that we will not use will have no impact on maintainability at all;
we shall simply not support them.

A second possible case is a new RTI version that eliminates the quirks of a previous version, or
introduces new ones. In this case (always assuming we wish to support the particular version) the
HLA layer will require work. For these cases the HLA layer components will be updated by a
minor version number (for example 1.0 to 1.1) and the supporting documentation updated. For
these types of changes there should be no need to alter layers above.

The third possibility is that an entirely new version of HLA is introduced, or we decide to support
something besides HLA (say DIS or TENA). If the new addition to the Vendor Layer
significantly alters the core functionality it will become necessary to alter the basic API of the

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] 5

(DRAFT)

HLA layer. If (when) this happens the HLA Layer will be updated by a major version (for
example 1.2 to 2.0) and compatibility with the federation layer may be lost.

2.1.2 Federation Layer

This layer is not a single entity the way the HLA Abstraction layer is. It is better to think of it as
a collection of FOM/Federation Agreement specific modules that provide services to a developer
writing a Simulation Façade. Since each module fully encapsulates a particular FOM/Federation
Agreement a separate module must be written for each of these.

In theory this may lead to an explosion of Federation Layer modules, but in practice they are
likely to be limited in number. In the MC2CD group we really only use VMSA and RPR2 based
FOMs meaning we may only need two basic modules that can be derived from for variations
required for a specific experiment.

Beyond the need for changes due to alterations in a FOM or Federation agreement, this layer will
not need to change. The simulation layer will communicate with this layer through a well defined
mechanism that will not alter significantly between versions, and only major changes in
functionality in the HLA Layer will break compatibility.

2.1.3 Simulation Layer

Finally there is the Simulation Layer at the top. At this level any changes required will be due to
needs of the simulation itself and it’s usage. For example, if every single layer below has
undergone an update that breaks compatibility it will have no effect on the Simulation Layer
unless the particular simulation is required to use that new functionality.

While the simulation layer will have to be altered if additional FOM support is required, this is
once again driven by the needs of the simulation developer and not the framework.

2.2 Multi-thread / process safety

One of the most common needs in HLA programming is to bridge two federations using different
FOMs to one another, or to join to a simulation that, while “HLA compatible”, may not be fully
compatible with a larger HLA federation. In these cases, as well as many others, it may be
necessary to run multiple instances of the HLA Abstraction Layer within a single application
(separate threads), or communicating between separate applications (separate processes).

In order to make the framework inherently multi-thread safe, while still keeping the programming
overhead simple, all communication between layers shall occur through a messaging mechanism.
In the Java implementation this message system shall utilise the LinkedBlockingQueue [7] found
in java.util.concurrent. C++ implementations shall utilise a cross platform open source library
that includes a similar capability (ACE [8] for example).

(DRAFT)

6 DRDC Atlantic TM [enter number only: 9999-999]

(DRAFT)

3 HLA Abstraction Layer

As outlined in section2.1.1, this layer of the framework is responsible for removing HLA and RTI
version dependency from your federates. The intention is that developers should be able to
programme against the HLA Abstraction Layer API and then use any version of any vendor’s
RTI, and with some limitations, any version of HLA. The basic idea is show in Figure 2.

Figure 2, how the HLA Abstraction Layer hides vendor implementations.

In Figure 2, 5 different vendor libraries are show, all hidden by the HLA Abstraction Layer.
These libraries are a mixture of HLA versions and vendor implementations, each with their own
quirks. The HLA Abstraction Layer removes the need for a developer to deal with the quirks of
vendor libraries and the differences in HLA standards.

3.1 The Base API

Our intention is for the HLA Abstraction Layer to appear to be a Dynamic Link Compatible [3],
IEEE 1516 standard [5] HLA library. This means the HLA Abstraction layer must implement the
entire IEEE 1516 standard correctly, and account for quirks in the vendor implementations as
well as be able to convert calls to IEEE 1516 to the various versions of HLA 1.3, or any other
standard we decided to support.

Since the API is well described in the IEEE standards, that part of the design will not be discussed
any farther here. The developers of this layer shall adhere to the IEEE standards, as well as the
SISO DLC standard, including all of the normative and descriptive comments found in those
documents.

At run time it will be possible to switch which HLA API is used so that a federate using the HLA
Abstraction Layer can connect to any supported vendor’s RTI.

3.2 Converting and Adapting

To work with all those differing vendor implementations and standards, every vendor library will
require an adaptor. This is shown in Figure 3.

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] 7

(DRAFT)

Figure 3, adapting vendor libraries to the HLA Abstraction Layer.

All of these adaptors shall conform to a common interface, as shown in Figure 4.

Figure 4, VendorAdaptor interface.

Since the HLA Abstraction Layer is essentially IEEE 1516 + SISO DLC, when using a 1516 RTI,
most calls should be simply passed-through to the underlying RTI. When using a non-1516 RTI,
say DMSO 1.3NGv4, the vendor adaptor will be responsible for converting the 1516 call into the
correct call for the DMSO 1.3NGv4 API.

This will not necessarily be simple, and it is quite possible that some operations available in 1516
will have no equivalent in a different API. In these cases the vendor adaptor should throw
exceptions that are fine-grained enough to allow the HLA Abstraction Layer code to deal with
problems.

(DRAFT)

8 DRDC Atlantic TM [enter number only: 9999-999]

(DRAFT)

How the HLA version shall be specified has not yet been determined. It could be set via an API
call, or included as part of a constructor call for a concrete adaptor, or both. There are advantages
to both, and this detail need to be worked out before implementation begins.

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] 9

(DRAFT)

4 Federation Encapsulation Layer

As mentioned in section 2 this layer encapsulates a federation, which is a combination of a FOM
and a federation agreement. The Simulation Façade makes use of this layer, sending information
to it, and receiving information from it.

4.1 Structure

This layer is not monolithic, instead it is composed of federation specific modules that are
independent of each other (except via inheritance where appropriate). A Simulation Façade
developer chooses which modules to use to provide federation compliance for her simulation; see
Figure 5.

Figure 5, sample federation modules in the encapsulation layer.

4.2 Module duties

The primary duty of any module in this layer is to act as an all-purpose federate for the particular
FOM and federation agreement combination it supports. These modules should (ideally) fully
support any given FOM with it’s

4.3 Layer API

Module developers require an API to make compatible modules. The API is provided as one tool
in the total system. While the API includes base classes for developing modules, it will also grow
to include reference implementations of common modules that may be extended or otherwise
altered to meet the needs of a particular federation.

For example, Figure 5 shows the “Virtual Battle Experiment – Echo” module as a version of the
VMSA 3.2.2 module. The API allows this and it is strongly encouraged.

(DRAFT)

10 DRDC Atlantic TM [enter number only: 9999-999]

(DRAFT)

4.4 Module developer guidance

A best practice guide for developers is also provided.

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] 11

(DRAFT)

5 Simulation Layer

TODO

(DRAFT)

12 DRDC Atlantic TM [enter number only: 9999-999]

(DRAFT)

6 FOM Library Requirements

The requirements explained in this section have come out of the experience of the Maritime
Command and Control Concept Development (MC2CD) group at DRDC Atlantic.

6.1 Encoding and Decoding Support

The process of encoding attribute and parameter values to prepare to send them over an RTI, and
the reverse process of decoding values that have been received are two of the most tedious and
error prone aspects of federate development [1]. A FOM specific library must provide a means to
make encoding and decoding as simple as possible for the developer while staying the in the
problem domain of the simulation as much as possible. This will make the federate code easy to
understand by a domain expert, and eliminate multiple implementations of encoding and
decoding within federates that use the library.

The importance of using tried-and-tested encoding and decoding helpers is well covered in [1].
An important development in the HLA standards was the inclusion in the SISO Dynamic Link
Compatible HLA API standard [3] of a requirement for RTI vendors to include encoding and
decoding helpers with their implementation. This standard will be referred to as the “DLC” or
“JLC” standard throughout this document.

With these points in mind, the code library must both remove the burden of encoding and
decoding and make use of the encoding helpers provided with the RTI as per the DLC standard.

6.2 FOM Object and Interaction Classes

Handling HLA object and interaction classes requires two basic services:

1. Aggregation of attributes (for HLA object classes) and parameters (for HLA interaction
classes) with methods for getting, setting, encoding, and decoding;

2. A facility for managing HLA handles for classes, attributes, parameters and object instances
as well as relevance flags etc.

Since HLA objects are organised in an inheritance hierarchy, the code library should mimic this
(true for HLA interactions as well). Modern object oriented “best practice” dictates that
whenever possible designs should be oriented around interfaces (Java) or abstract classes (C++).

6.3 Developer Productivity

Developer productivity is a function of many variables, even after the personality and work habits
of the individual are eliminated from the equation. Apart from these personality issues
productivity is affected by training, experience, tools, the complexity of the libraries used, and the
level of abstraction from the problem domain. Of these factors, the design of the library can only
factor into the last three. That is, tools, library complexity, and abstraction.

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] 13

(DRAFT)

The library should not abstract the developer’s code too far from the underlying HLA and
simulation domain concepts. We have some experience within the VCS Group with the
consequences of doing this, both with our own framework for federates (Polka), and with code
frameworks from third parties.

The problem with abstracting too far from HLA is that it becomes very difficult for new federate
developers to understand how the framework relates to the actual HLA calls. Since HLA is not
particularly hard to understand on its own the added complication of abstraction has not proved to
be a benefit in our federate projects. The problem is particularly compounded when the
framework API resembles the HLA API, or uses a mixture of framework and HLA API calls.

Problem domain abstraction can also be a significant problem. Generally a federate developer
will be working with simulation concepts that are easily mapped into the federation’s FOM. If
the library hides the FOM in an abstraction layer then it increases the developer’s learning curve
and makes debugging of simulation issues more difficult.

Therefore the library should expose both the HLA services and FOM classes to the developer
rather than hiding them in abstraction layers. In the case of a FOM library there may be little
direct need to address the HLA services, but federates that implement these should try to adhere
to the same principles.

Developer productivity is also enhanced when a library is IDE friendly. For example, when
strong typing is used the code completion features of modern IDEs can eliminate the need for a
lot of typing and the inevitable typos that come with it.

6.4 Strong Typing

More important than facilitating the use of code completion, strong typing helps avoid run-time
errors and will clearly help make the library more useful. In addition to strong typing the library
should minimize the need for explicit casts to data types whenever possible to reduce the amount
of typing required, to help with code completion, and to avoid run-time type mismatches and
casting problems.

6.5 Allowing Developer Extensions

In all but the most trivial cases, a federate that subscribes to, or publishes objects and interactions
in the federation will need to add data and behaviour to those objects and interactions for internal
use. For example, a simulation may need to publish a ship object in the federation for a FOM that
only has state information about the ship (position, speed, orientation), but need that ship to have
methods like “flank speed”, “full right rudder” and so on for it’s internal simulation. It could also
be the case that new data fields will be needed to extend the basic FOM object and interaction
classes, for example the FOM may not include the heat signature of our ship, but the federate’s
internal simulation requires it.

The library must allow a developer to easily add functions and data to an object or interaction
without breaking the inheritance chain, or requiring copy-paste duplication of code. Code that is

(DRAFT)

14 DRDC Atlantic TM [enter number only: 9999-999]

(DRAFT)

generally applicable to all federates should be rolled-into the library itself and a new version
created.

6.6 Code Generation

Unlike the older Distributed Interactive Simulation (DIS) standard [4] the data that is shared in an
HLA federation is not part of the standard, only how that data is described and communicated.
The up side is this makes HLA much more flexible than DIS; the down side is that every
federation has the potential to be a “special case” with no commonality with any other.

The data definition for HLA is contained in the Federation Object Model (FOM), the format of
which is part of the IEEE 1516 standard [5]. Fortunately the standard specifies an Extensible
Mark-up Language (XML) schema that must be used for exchanging FOM data, and the FOM
xml files can be used as the input to a code generator.

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] 15

(DRAFT)

7 Library Design

This section describes the design that generated code libraries will conform to. While the design
is not FOM specific, examples are included from the Real Time Platform Reference FOM version
2 (RPR2) and the Virtual Marine Systems Architecture (VMSA) FOM.

An HLA FOM consists of three basic types of information:

1. The data types that are used,

2. The object classes that can exist,

3. The interaction classes that can be sent.

There is a lot of information in a FOM, but those are the three main things that the FOM exists to
describe, and are the things that a federate developer is most concerned with.

Note: “Object classes” in HLA-speak refers to entities that exist in the federated simulation, not
to instantiated classes that are part of a running application.

7.1 Data types

The data types defined in the FOM are critical to defining the attributes of object classes and the
parameters of interaction classes. There are several data type tables in any FOM (the tables and
some of their content are specified by the IEEE standard [5]), specifically:

1. Basic data representation,

2. Simple datatype table,

3. Enumerated datatype table,

4. Array datatype table,

5. Fixed record datatype table,

6. and Variant record datatype table

Note: the misspelling of “datatype” is part of the IEEE standard and will be used in this document
when referring specifically to the IEEE standard rather than the concept of a “data type”.

(DRAFT)

16 DRDC Atlantic TM [enter number only: 9999-999]

(DRAFT)

7.2 FOM objects and interactions

Before discussing the how the library design, it is worth taking a look at how FOMs handle object
and interaction hierarchies.

7.2.1 HLA object classes

HLA FOMs describe objects that may appear in a federation in a simple inheritance hierarchy,
shown in Figure 6 below.

Figure 6, object class structure in HLA FOMs.

While the object classes are organised in a hierarchy, and their attributes are inherited, this is not
true inheritance as a software developer understands it. Object classes do not have methods (i.e.
no behaviour) and there is no polymorphism whatsoever.

Before talking about the implications for the FOM library design, it is worth looking at a concrete
example. Figure 7, below, shows part of the RPR 2 Draft-18 object class hierarchy. The
“Platform” class has all of the attributes of the BaseEntity class and the PhysicalEntity class as
well as it’s own “InteriorLightsOn” attribute.

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] 17

(DRAFT)

The FOM library should mirror this hierarchy in order to keep the solution in the problem domain
of the FOM. Unlike the FOM the library classes will have real inheritance, and provide methods
for dealing with the attributes that belong to them.

Figure 7, example hierarchy from the RPR 2.0 Draft 18 FOM.

In addition to the attributes described in the FOM, the library should also provide functionality
that helps the developer work with particular instances of the FOM objects at run time. FOM
objects that have been instantiated in a federation all have unique instance handles, and the
federate developer will also need to know about the attribute handles and class handles that the
RTI uses to indicate the “type” of object and what the data sent in an attribute update actually
contains.

(DRAFT)

18 DRDC Atlantic TM [enter number only: 9999-999]

(DRAFT)

7.2.2 HLA interaction classes

The object and interaction hierarchies described in a FOM are very similar. In fact, as
descriptions of data there is really nothing to choose between them; it is how they are handled
during a federation execution that differs. FOM objects are persistent and their attributes may be
updated over the course of the simulation. Interactions are transient, and any particular instance
of an interaction is delivered only once to a federate.

Figure 8, example interaction hierarchy from the RPR 2.0 Draft 18 FOM. shows an piece of the
RPR 2 Draft 18 FOM to illustrate the similarity between the FOM object and interaction
hierarchies.

Figure 8, example interaction hierarchy from the RPR 2.0 Draft 18 FOM.

7.2.3 Design of the library

Despite the differences between objects and interactions, much of the code the library needs to
deal with them is common. For example, both have a relevance flag. Because there is a need for
some common functionality, both objects and interactions have a common super-class in the
library design.

While it it generally good practice to “design to interfaces” in object oriented (OO) designs, in
this case there is a lot of common code that would have to be replaced if the design was strictly
interface based, so inheritance is a better choice. Many OO designs try to do both inheritance and
interfaces along the lines of Figure 9.

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] 19

(DRAFT)

Figure 9, one possible method that combines interfaces with inheritance.

(DRAFT)

20 DRDC Atlantic TM [enter number only: 9999-999]

(DRAFT)

While this approach is widely used, and has it’s applications, it really doesn’t help us in the
context of a FOM library. The addition of the inheritance tree of implementations does give us
the shared behaviour that we need, but the interfaces don’t really help. While it is almost certain
that a federate developer would need to add federate-specific code to at least one implementation
class, in doing so he would break the inheritance chain of the implementations and be forced to
implement everything from his replacement class down.

To avoid breaking inheritance and still allow a developer to add functionality to the library
classes, the library design uses a variation on the “Strategy Pattern”. This design pattern
encapsulates algorithms that can be added to other classes through aggregation. The general
arrangement is shown in Figure 10.

Figure 10, FOM Object class diagram showing the behaviour interface.

The “Behaviour” interface has a single method that must be implemented by concrete classes,
“setOwner”. The owner is the FOMClass object instance that will use the behaviour object (these
are Java classes, not FOM object instance). The FOMClass includes a Behaviour variable, as
well as methods to set/get the behaviour object.

Now, a developer can attach custom behaviour to a library class instance at run-time simply by
creating an instance of a class that implements “Behaviour” and then calling “setBehaviour” on
the library instance. The behaviour, implemented by the developer, can use the public interface
of it’s owner to get/set data as required. It is up to the federate developer to create these

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] 21

(DRAFT)

behaviour classes and give them the functions his federate needs. For example a federate might
need to simulate fighter weapons so the developer would create a “FighterWeaponBehaviour”
class with “dropBomb()” and “fireMissile()” methods.

A code fragment showing how this works is shown below:

FighterAircraft fighter = new Fighter();
Behaviour forFighter = new FighterBehaviour();
fighter.setBehaviour(forFighter);
fighter.dropBomb();
fighter.fireMissile();

All library classes inherit the “setBehaviour” method of FOMClass which handles attaching the
behaviour to the FOMClass object. FOMClass also sets the owner for the attached behaviour by
calling it’s “setOwner” method.

The “Behaviour” interface allows us to plug any object we want into a library FOMClass
instance. Of course this too has it’s problems, for example, in the RPR 2.0 FOM, life forms
(humans, plants, whales) and fighter aircraft have a common ancestor, “PhysicalEntity”. This
could lead to issues where a behaviour meant for a fighter aircraft object is inadvertently attached
to a whale. While bomb-dropping, missile-firing whales are a neat concept it’s probably not a
good idea for the library to allow this.

The library avoids this pitfall but providing an interface for every subclass of FOMObjectClass,
so the “Behaviour” interface is now the top level of an inheritance hierarchy of it’s own that
follows the FOM object hierarchy. An example for RPR 2 Draft 18 is shown in Figure 11.

The “dropBomb()” and “fireMissile()” methods have been added to the “Air” class in the library.
Of course in this example there is nothing to stop you adding this behaviour to an airliner (which
is also an Air object in RPR 2) but this is a limitation of the RPR 2 FOM design.

A developer would probably want to create a class hierarchy of behaviour classes that inherit
from one another as well to avoid code duplication in the behaviours, but this isn’t required.

(DRAFT)

22 DRDC Atlantic TM [enter number only: 9999-999]

(DRAFT)

Figure 11, an example showing the Behaviour and FOMClass inheritance for a RPR 2 based

FOM library.

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] 23

(DRAFT)

Of course Figure 11 also shows one remaining problem with this design. Remember that this
design is meant to be used to generate code libraries for a FOM that can then be reused to create
any number of federates. A code generator wouldn’t know that we needed “dropBomb()” and
“fireMissile” methods for any particular federate project. In fact, the base library will be
generated with no methods in the Behaviour interface tree other than “setOwner”.

In one way this isn’t really a problem. A developer just needs to create a behaviour class that
implements the correct interface and then add any methods she wants to that class. The fact that
an Air FOMObjectClass requires an AirBehaviour will keep her from inadvertently attaching a
different type of behaviour, and she can have “dropBomb” and “fireMissile” methods in her class.

The problem comes when she want to use the methods in her behaviour. It would be nice if code
completion in her IDE worked, but it won’t with how things now stand. The only way code
completion will work is if the AirBehaviour interface included all the methods we will need to
call. To get around this problem the developer can create her own AirBehaviour interface (with
the same package signature as the library) that includes the methods and then append it to the
class path before the FOM library. By doing that her interface will be the one that is picked-up
by the IDE so code completion will work. This also means her jar file must come before the
library jar file when the federate is deployed, or the calls to her interface will cause run-time
exceptions.

Replacing the library interfaces is not required in a federate that uses a FOM library based on this
design, but is recommended.

7.2.4 What about FOM interactions?

The design discussion above concentrated on the FOM Object hierarchy, but everything said
there applies equally to the interactions table of the FOM. In fact, this is why the Behaviour
interface is used by the FOMClass rather than the FOMObjectClass in the previous figures. By
placing it there the Behaviour is inherited by FOMInteractionClass and all of it’s subclasses.

The library final library design is shown in XXX.

7.3 Java packages

For Java libraries the package structure helps organize code and plays a role in encapsulation
rules. The library design attempts to keep classes well encapsulated, so organization and sensible
code completion are the primary drivers of the package structure.

A generic Java package structure is shown in Figure 12 below, “root name” and “fom name” are
meant to be parameters passed to a code generation tool. For example, if the VCS group was
generating a library for the VMSA 3.2.0 FOM the full name for the “simple” package would be:

 vcs.vmsa_322.dataTypes.simple

(DRAFT)

24 DRDC Atlantic TM [enter number only: 9999-999]

(DRAFT)

Figure 13 Shows a complete example of the library package structure for a VCS group library for
the RPR 2 Draft 18 FOM. You can see from the diagram that the FOM objects and interactions
also have their own packages as do library specific exceptions.

Figure 12, generic package structure of a FOM library.

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] 25

(DRAFT)

Figure 13, example package diagram for the RPR2 Draft 18 FOM showing all packages.

(DRAFT)

26 DRDC Atlantic TM [enter number only: 9999-999]

(DRAFT)

References

[Enter non-numbered references here]

[1] Björn Möller, Mikael Karlsson, and Björn Löfstrand, “Reducing Integration Time and Risk with the
HLA Evolved Encoding Helpers”, Proceedings of the 2006 Simulation Interoperability Workshop, siw-
06s-042.pdf

[2] Allan Gillis, “Design of a Code Generator for HLA FOM libraries”, …todo

[3] “Dynamic Link Compatible HLA API Standard for the HLA Interface Spcification (IEEE 1516.1
Version)”, Simulation Interoperability Standards Organization, SISO-STD-004.1-2004, December
2004.

[4] “IEEE Standard for Distributed Interactive Simulation”, IEEE 1278.1, 1278.1a, 1278.2, The Institute
of Electrical and Electronics Engineers Inc., 345 East 47th Street, New York, NY 10017-2394, 1995-
1998.

[5] “IEEE Standard for Modelling and Simulation (M&S) High Level Architecture (HLA) – Object Model
Template (OMT) Specification”, IEEE 1516.2-2000, Electrical and Electronics Engineers Inc., 345 East
47th Street, New York, NY 10017-2394.

[6] Eric Freeman, Elisabeth Freeman, Kathy Sierra, and Bert Bates “Head First Design Patterns”, O’Reilly
Media Inc, Sebastapol California, USA, 2004. ISBN 978-0-596-00712-6.

[7] “LinkedBlockingQueue”, Java SE 1.6 API Documentation, Oracle Systems,
http://download.oracle.com/javase/6/docs/api/

[8] “The Adaptive Communication Environment (ACE)”,
http://www.cs.wustl.edu/~schmidt/ACE.html

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] 27

(DRAFT)

This page intentionally left blank.

(DRAFT)

28 DRDC Atlantic TM [enter number only: 9999-999]

(DRAFT)

Annex A [Enter Annex Level 1 heading here]

A.1 [Enter Annex Level 2 heading here]

This is an example of a paragraph. The paragraph does not say anything important, but does
provide a visual of what a paragraph looks like. Below is a sample of an annex equation that has
been inserted using the DRDC toolbar:

���

�

��

� dxe x2

(A.1)

A.1.1 [Enter Annex Level 3 heading here]

This is an example of a paragraph. The paragraph does not say anything important, but does
provide a visual of what a paragraph looks like.

0

20

40

60

80

100

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East
West
South
North

Figure A-14: This is the caption for the figure shown above.

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] 29

(DRAFT)

This page intentionally left blank.

(DRAFT)

30 DRDC Atlantic TM [enter number only: 9999-999]

(DRAFT)

Bibliography

[Enter bibliography here if applicable. If not, delete the page.]

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] 31

(DRAFT)

List of symbols/abbreviations/acronyms/initialisms

[Enter list here, if applicable. If not, delete the page.]

API Application Programming Interface

DLC Dynamic Link Compatible

DND Department of National Defence

DRDC Defence Research & Development Canada

DRDKIM Director Research and Development Knowledge and Information
Management

R&D Research & Development

SISO Simulation Interoperability Standards Organisation

(DRAFT)

32 DRDC Atlantic TM [enter number only: 9999-999]

(DRAFT)

Glossary

[Enter Technical terms and explanation of terms here, if applicable. If not, delete the page.]

Sample of a Glossary Term

The formatting of the glossary is at the discretion of the author, however this is an example of
a format that is often used.

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] 33

(DRAFT)

Index ……............

[Enter index here if applicable. If not, delete the page.]

The formatting of the index is at the discretion of the author, however below is an example of a
format that is often used.

V
Verso (opposite side) of title page, 28, 29, 34-35

format, 51, 54

(DRAFT)

34 DRDC Atlantic TM [enter number only: 9999-999]

(DRAFT)

Distribution list

Document No.: DRDC Atlantic TM [enter number only: 9999-999]

 LIST PART 1: Internal Distribution by Centre

0 TOTAL LIST PART 1

 LIST PART 2: External Distribution by DRDKIM
1 Library and Archives Canada

1 TOTAL LIST PART 2

1 TOTAL COPIES REQUIRED

(DRAFT)

DRDC Atlantic TM [enter number only: 9999-999] 35

(DRAFT)

This page intentionally left blank.

(DRAFT)

(DRAFT)

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

 1. ORIGINATOR (The name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Centre sponsoring a
contractor's report, or tasking agency, are entered in section 8.)

Defence R&D Canada – Atlantic
9 Grove Street
P.O. Box 1012
Dartmouth, Nova Scotia B2Y 3Z7

 2. SECURITY CLASSIFICATION
(Overall security classification of the document
including special warning terms if applicable.)

UNCLASSIFIED

 3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U)
in parentheses after the title.)

A Toolkit for Building RTI Independent HLA Interfaces for Simulations:

 4. AUTHORS (last name, followed by initials – ranks, titles, etc. not to be used)

[Allen, J.; Lewis, A.; Smith, J.W.; von Braun, A.]

 5. DATE OF PUBLICATION
(Month and year of publication of document.)

March 2009

 6a. NO. OF PAGES
(Total containing information,
including Annexes, Appendices,
etc.)

41

 6b. NO. OF REFS
(Total cited in document.)

8
 7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,

e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Technical Memorandum

 8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development – include address.)

Defence R&D Canada – Atlantic
9 Grove Street
P.O. Box 1012
Dartmouth, Nova Scotia B2Y 3Z7

 9a. PROJECT OR GRANT NO. (If appropriate, the applicable research
and development project or grant number under which the document
was written. Please specify whether project or grant.)

 9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

 10a. ORIGINATOR'S DOCUMENT NUMBER (The official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

DRDC Atlantic TM [enter number only: 9999-
999]

 10b. OTHER DOCUMENT NO(s). (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

 11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.)

 12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the
Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement
audience may be selected.))

(DRAFT)

(DRAFT)

 13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable
that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification
of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include
here abstracts in both official languages unless the text is bilingual.)

[Enter text: English]

[Enter text: French]

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select
indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

[Keywords, Descriptors or Identifiers]

