1.1 SUMMARY

- .1 Section Includes.
 - .1 Methods and procedures for start-up, verification and commissioning, for building Energy Monitoring and Control System (EMCS) and includes:
 - .1 Start-up testing and verification of systems.
 - .2 Check out demonstration or proper operation of components.
 - .3 On-site operational tests.

1.2 DEFINITIONS

- .1 For additional acronyms and definitions refer to Section 25 05 01 EMCS: General Requirements.
- .2 AEL: ratio between total test period less any system downtime accumulated within that period and test period.

.3 Downtime: results whenever EMCS is unable to fulfill required functions due to malfunction of equipment defined under responsibility of EMCS contractor. Downtime is measured by duration, in time, between time that Contractor is notified of failure and time system is restored to proper operating condition. Downtime not to include following:

- .1 Outage of main power supply in excess of back-up power sources, provided that:
 - .1 Automatic initiation of back-up was accomplished.
 - .2 Automatic shut-down and re-start of components was as specified.
- .2 Failure of communications link, provided that:
 - .1 Controller automatically and correctly operated in stand-alone mode.
 - .2 Failure was not due to failure of any specified EMCS equipment.
- .3 Functional failure resulting from individual sensor inputs or output devices, provided that:
 - .1 System recorded said fault.
 - .2 Equipment defaulted to fail-safe mode.
 - .3 AEL of total of all input sensors and output devices is at least 99% during test period.

1.3 DESIGN REQUIREMENTS

- .1 Confirm with Departmental Representative that Design Criteria and Design Intents are still applicable.
- .2 Commissioning personnel to be fully aware of and qualified to interpret Design Criteria and Design Intents.

1.4 SUBMITTALS

- .1 Submittals in accordance with Section 01330 Submittal Procedures.
- .2 Final Report: submit report to Departmental Representative.
 - .1 Include measurements, final settings and certified test results.
 - .2 Bear signature of commissioning technician and supervisor
 - .3 Report format to be approved by Departmental Representative before commissioning is started.

- .4 Revise "as-built" documentation, commissioning reports to reflect changes, adjustments and modifications to EMCS as set during commissioning and submit to Departmental Representative in accordance with Section 01 78 00 Closeout Submittals.
- .5 Recommend additional changes and/or modifications deemed advisable in order to improve performance, environmental conditions or energy consumption.

1.5 CLOSEOUT SUBMITTALS

.1 Provide documentation, O&M Manuals, and training of O&M personnel for review of Departmental Representative before interim acceptance in accordance with Section 01 78 00 - Closeout Submittals.

1.6 COMMISSIONING

- .1 Carry out commissioning under direction of Departmental Representative and in presence of Departmental Representative.
- .2 Inform, and obtain approval from, Departmental Representative in writing at least 14 days prior to commissioning or each test. Indicate:
 - .1 Location and part of system to be tested or commissioned.
 - .2 Testing/commissioning procedures, anticipated results.
 - .3 Names of testing/commissioning personnel.
- .3 Correct deficiencies, re-test in presence of Departmental Representative until satisfactory performance is obtained.
- .4 Acceptance of tests will not relieve Contractor from responsibility for ensuring that complete systems meet every requirement of Contract.
- .5 Load system with project software.
- .6 Perform tests as required.

1.7 COMPLETION OF COMMISSIONING

.1 Commissioning to be considered as satisfactorily completed when objectives of commissioning have been achieved and reviewed by Departmental Representative.

1.8 ISSUANCE OF FINAL CERTIFICATE OF COMPLETION

.1 Final Certificate of Completion will not be issued until receipt of written approval indicating successful completion of specified commissioning activities including receipt of commissioning documentation.

Part 2 Products

2.1 EQUIPMENT

.1 Provide sufficient instrumentation to verify and commission the installed system. Provide two-way radios.

- .2 Instrumentation accuracy tolerances : higher order of magnitude than equipment or system being tested.
- .3 Independent testing laboratory to certify test equipment as accurate to within approved tolerances no more than 2 months prior to tests.
- .4 Locations to be approved, readily accessible and readable.
- .5 Application: to conform to normal industry standards.

Part 3 Execution

3.1 PROCEDURES

- .1 Test each system independently and then in unison with other related systems.
- .2 Controls Contractor to calibrate all sensors and complete point-to-point verification on entire EMCS (i.e. from operator screen to on-site device) and document on standard form.
- .3 Verify every sequence of operation.
- .4 Debug system software.
- .5 Optimize operation and performance of systems by fine-tuning PID values and modifying CDLs as required.
- .6 Test full scale emergency evacuation and life safety procedures including operation and integrity of smoke management systems under normal and emergency power conditions as applicable.
- .7 Retest in presence of Departmental Representative once system passes Controls Contractor's verification.

3.2 FIELD QUALITY CONTROL

- .1 Pre-Installation Testing.
 - .1 General: consists of field tests of equipment just prior to installation.
 - .2 Testing may be on site or at Contractor's premises as approved by Departmental Representative.
 - .3 Configure major components to be tested in same architecture as designed system. Include BECC equipment and 2 sets of Building Controller's including MCU's, LCU's, and TCU's.
 - .4 Equip each Building Controller with sensor and controlled device of each type (AI, AO, DI, DO).
 - .5 Additional instruments to include:
 - .1 DP transmitters.
 - .2 VAV supply duct SP transmitters.
 - .3 DP switches used for dirty filter indication and fan status.
 - .6 In addition to test equipment, provide inclined manometer, digital micro-manometer, milli-amp meter, source of air pressure infinitely adjustable between 0 and 500 Pa, to hold steady at any setting and with direct output to milli-amp meter at source and to BECC.

- .7 After setting, test zero and span in 10 % increments through entire range while both increasing and decreasing pressure.
- .8 Contractor to mark instruments tracking within 0.5% in both directions as "approved for installation".
- .9 Transmitters above 0.5% error will be rejected.
- .10 DP switches to open and close within 2% of setpoint.
- .11 Be prepared to re-test as Departmental Representative witnesses.
- .2 Completion Testing.
 - .1 General: test after installation of each part of system and after completion of mechanical and electrical hook-ups, to verify correct installation and functioning.
 - .2 Include following activities:
 - .1 Test and calibrate field hardware including stand-alone capability of each controller.
 - .2 Verify each A-to-D convertor.
 - .3 Test and calibrate each AI using calibrated digital instruments.
 - .4 Test each DI to ensure proper settings and switching contacts.
 - .5 Test each DO to ensure proper operation and lag time.
 - .6 Test each AO to ensure proper operation of controlled devices. Verify tight closure and signals.
 - .7 Test operating software.
 - .8 Test application software and provide samples of logs and commands.
 - .9 Verify each CDL including energy optimization programs.
 - .10 Debug software.
 - .11 Blow out flow measuring and static pressure stations with high pressure air at 700 kPa.
 - .12 Provide point verification list in table format including point identifier, point identifier expansion, point type and address, low and high limits and engineering units. Include space on commissioning technician and Departmental Representative. This document will be used in final startup testing.
 - .3 Final Startup Testing: Upon satisfactory completion of tests, perform system tests under direction of Departmental Representative and provide:
 - .1 Technical personnel capable of re-calibrating field hardware and modifying software.
 - .2 Detailed daily schedule showing items to be tested and personnel available.
 - .3 Departmental Representative's acceptance signature to be on executive and applications programs.
 - .4 Commissioning to commence during final startup testing.
 - .5 O&M personnel to assist in commissioning procedures as part of training.
 - .6 Commissioning to be supervised by qualified supervisory personnel and Departmental Representative.
 - .7 Commission systems considered as life safety systems before affected parts of the facility are occupied.
 - .8 Operate systems as long as necessary to commission entire project.
 - .9 Monitor progress and keep detailed records of activities and results.
 - .4 Final Operational Testing: to demonstrate that EMCS functions in accordance with contract requirements.
 - .1 Prior to beginning of 30 day test demonstrate that operating parameters (setpoints, alarm limits, operating control software, sequences of operation, trends, graphics and CDL's) have been implemented to ensure proper operation and operator notification in event of off-normal operation.

- .1 Repetitive alarm conditions to be resolved to minimize reporting of nuisance conditions.
- Test to last at least 30 consecutive 24 hour days.
- .2 Test to last at leas .3 Tests to include:
 - .1 Demonstration of correct operation of monitored and controlled points.
 - .2 Operation and capabilities of sequences, reports, special control algorithms, diagnostics, software.
- .4 System will be accepted when:
 - .1 EMCS equipment operates to meet overall performance requirements. Downtime as defined in this Section must not exceed allowable time calculated for this site.
 - .2 Requirements of Contract have been met.
- .5 In event of failure to attain specified AEL during test period, extend test period on day-to-day basis until specified AEL is attained for test period.
- .6 Correct defects when they occur and before resuming tests.
- .5 Departmental Representative to verify reported results.

3.3 ADJUSTING

.1 Final adjusting: upon completion of commissioning as reviewed by Departmental Representative, set and lock devices in final position and permanently mark settings.

3.4 DEMONSTRATION

.1 Demonstrate to Departmental Representative operation of systems including sequence of operations in regular and emergency modes, under normal and emergency conditions, startup, shut-down interlocks and lock-outs in accordance with Section 01 79 00 - Demonstration and Training.

1.1 SUMMARY

- .1 Section Includes.
 - .1 Requirements and procedures for training program, instructors and training materials, for building Energy Monitoring and Control System (EMCS) Work.

1.2 DEFINITIONS

- .1 CDL Control Description Logic.
- .2 For additional acronyms and definitions refer to Section 25 05 01 EMCS: General Requirements.

1.3 SUBMITTALS

- .1 Submittals in accordance with Section 01 33 00 Submittal Procedures, supplemented and modified by requirements of this Section.
- .2 Submit training proposal complete with hour-by-hour schedule including brief overview of content of each segment to Departmental Representative 30 days prior to anticipated date of beginning of training.
 - .1 List name of trainer, and type of visual and audio aids to be used.
 - .2 Show co-ordinated interface with other EMCS mechanical and electrical training programs.
- .3 Submit reports within one week after completion of training program that training has been satisfactorily completed.
- .4 Provide documentation signed by Owners representative that training was sufficient.

1.4 QUALITY ASSURANCE

- .1 Provide competent instructors thoroughly familiar with aspects of EMCS installed in facility.
- .2 Departmental Representative reserves right to approve instructors.

1.5 INSTRUCTIONS

- .1 Provide instruction to designated personnel in adjustment, operation, maintenance and pertinent safety requirements of EMCS installed.
- .2 Training to be project-specific.

1.6 TIME FOR INSTRUCTION

.1 Instruction time to be as specified under Section 21 05 01 - Common Work Results -Mechanical.

1.7 TRAINING MATERIALS

- .1 Provide equipment, visual and audio aids, and materials for training at workstation.
- .2 Supply manual for each trainee, describing in detail data included in each training program.
 - .1 Review contents of manual in detail to explain aspects of operation and maintenance (O&M).

1.8 TRAINING PROGRAM

- .1 Time and sessions to be as specified in Section 21 05 01 Common Work Results Mechanical.
- .2 Sessions to begin before 30 day test period at time mutually agreeable to Contractor and Departmental Representative.
 - .1 Train O&M personnel in functional operations and procedures to be employed for system operation.
 - .2 Supplement with on-the-job training during 30 day test period.
 - .3 Include overview of system architecture, communications, operation of computer and peripherals, report generation.
 - .4 Include detailed training on operator interface functions for control of mechanical systems, CDL's for each system, and elementary preventive maintenance.
 - .5 Provide complete training on Sequence of Operations.

1.9 ADDITIONAL TRAINING

.1 List courses offered by name, duration and approximate cost per person per week. Note courses recommended for training supervisory personnel.

Part 2 Products

2.1 NOT USED

.1 Not Used.

Part 3 Execution

3.1 NOT USED

.1 Not Used.

1.1 SUMMARY

- .1 Section Includes:
 - .1 General requirements for building Energy Monitoring and Control System (EMCS) that are common to NMS EMCS Sections.
 - .2 Sustainable requirements for construction and verification.

1.2 REFERENCES

- .1 American National Standards Institute (ANSI)/The Instrumentation, Systems and Automation Society (ISA).
 - .1 ANSI/ISA 5.5-1985, Graphic Symbols for Process Displays.
- .2 American National Standards Institute (ANSI)/ Institute of Electrical and Electronics Engineers (IEEE).
 - .1 ANSI/IEEE 260.1-1993, American National Standard Letter Symbols Units of Measurement (SI Units, Customary Inch-Pound Units, and Certain Other Units).
- .3 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE).
 - .1 ASHRAE STD 135-R2001, BACNET Data Communication Protocol for Building Automation and Control Network.
- .4 Canadian Standards Association (CSA International). .1 CAN/CSA-Z234.1-89(R1995), Canadian Metric Practice Guide.
- .5 Consumer Electronics Association (CEA).
 - .1 CEA-709.1-B-2002, Control Network Protocol Specification.
- .6 Department of Justice Canada (Jus).
 - .1 Canadian Environmental Assessment Act (CEAA), 1995, c. 37.
 - .2 Canadian Environmental Protection Act (CEPA), 1999, c. 33.
- .7 Electrical and Electronic Manufacturers Association (EEMAC). .1 EEMAC 2Y-1-1958, Light Gray Colour for Indoor Switch Gear.
- .8 Health Canada/Workplace Hazardous Materials Information System (WHMIS). .1 Material Safety Data Sheets (MSDS).
- .9 Transport Canada (TC).
 - .1 Transportation of Dangerous Goods Act (TDGA), 1992, c. 34.

1.3 ACRONYMS AND ABBREVIATIONS

- .1 Acronyms used in EMCS:
 - .1 AEL Average Effectiveness Level.
 - .2 AI Analog Input.
 - .3 AIT Agreement on International Trade.

- .4 AO Analog Output.
- .5 BACnet Building Automation and Control Network.
- .6 BC(s) Building Controller(s).
- .7 BECC Building Environmental Control Center.
- .8 CAD Computer Aided Design.
- .9 CDL Control Description Logic.
- .10 CDS Control Design Schematic.
- .11 COSV Change of State or Value.
- .12 CPU Central Processing Unit.
- .13 DI Digital Input.
- .14 DO Digital Output.
- .15 DP Differential Pressure.
- .16 ECU Equipment Control Unit.
- .17 EMCS Energy Monitoring and Control System.
- .18 HVAC Heating, Ventilation, Air Conditioning.
- .19 IDE Interface Device Equipment.
- .20 I/O Input/Output.
- .21 ISA Industry Standard Architecture.
- .22 LAN Local Area Network.
- .23 LCU Local Control Unit.
- .24 MCU Master Control Unit.
- .25 NAFTA North American Free Trade Agreement.
- .26 NC Normally Closed.
- .27 NO Normally Open.
- .28 OS Operating System.
- .29 O&M Operation and Maintenance.
- .30 OWS Operator Work Station.
- .31 PC Personal Computer.
- .32 PCI Peripheral Control Interface.
- .33 PCMCIA Personal Computer Micro-Card Interface Adapter.
- .34 PID Proportional, Integral and Derivative.
- .35 RAM Random Access Memory.
- .36 SP Static Pressure.
- .37 ROM Read Only Memory.
- .38 TCU Terminal Control Unit.
- .39 USB Universal Serial Bus.
- .40 UPS Uninterruptible Power Supply.
- .41 VAV Variable Air Volume.

1.4 **DEFINITIONS**

- .1 Point: may be logical or physical.
 - .1 Logical points: values calculated by system such as setpoints, totals, counts, derived corrections and may include, but not limited to result of and statements in CDL's.
 - .2 Physical points: inputs or outputs which have hardware wired to controllers which are measuring physical properties, or providing status conditions of contacts or relays which provide interaction with related equipment (stop, start) and valve or damper actuators.

- .2 Point Name: composed of two parts, point identifier and point expansion.
 - .1 Point identifier: comprised of three descriptors, "area" descriptor, "system" descriptor and "point" descriptor, for which database to provide 25 character field for each point identifier. "System" is system that point is located on.
 - .1 Area descriptor: building or part of building where point is located.
 - .2 System descriptor: system that point is located on.
 - .3 Point descriptor: physical or logical point description. For point identifier "area", "system" and "point" will be shortforms or acronyms. Database must provide 25 character field for each point identifier.
 - .2 Point expansion : comprised of three fields, one for each descriptor. Expanded form of shortform or acronym used in "area", "system" and "point" descriptors is placed into appropriate point expansion field. Database must provide 32 character field for each point expansion.
 - .3 Bilingual systems to include additional point identifier expansion fields of equal capacity for each point name for second language.
 - .1 System to support use of numbers and readable characters including blanks, periods or underscores to enhance user readability for each of the above strings.
- .3 Point Object Type: points fall into following object types:
 - .1 AI (analog input).
 - .2 AO (analog output).
 - .3 DI (digital input).
 - .4 DO (digital output).
 - .5 Pulse inputs.
- .4 Symbols and engineering unit abbreviations utilized in displays: to ANSI/ISA S5.5.
 - .1 Printouts: to ANSI/IEEE 260.1.
 - .2 Refer also to Section 25 05 54- EMCS: Identification.

1.5 SYSTEM DESCRIPTION

- .1 To be expansion of existing Andover or Honeywell Front End System, by Andover or Honeywell only.
- .2 Work covered by sections referred to above consists of fully operational EMCS, including, but not limited to, following:
 - .1 Building Controllers.
 - .2 Control devices as listed in I/O point summary tables.
 - .3 OWS(s).
 - .4 Data communications equipment necessary to effect EMCS data transmission system.
 - .5 Field control devices.
 - .6 Software/Hardware complete with full documentation.
 - .7 Complete operating and maintenance manuals.
 - .8 Training of personnel.
 - .9 Acceptance tests, technical support during commissioning, full documentation.
 - .10 Wiring interface co-ordination of equipment supplied by others.
 - .11 Miscellaneous work as specified in these sections and as indicated.

.3 Design Requirements:

- .1 Design and provide conduit and wiring linking elements of system.
- .2 Supply sufficient programmable controllers of types to meet project requirements. Quantity and points contents as reviewed by Departmental Representative prior to installation.
- .3 Location of controllers as reviewed by Departmental Representative prior to installation.
- .4 Provide utility power to EMCS where available.
- .5 Metric references: in accordance with CAN/CSA Z234.1.
- .4 Language Operating Requirements:
 - .1 Provide English operator selectable access codes.
 - .2 Use non-linguistic symbols for displays on graphic terminals wherever possible. Other information to be in English.
 - .3 Operating system executive: provide primary hardware-to-software interface specified as part of hardware purchase with associated documentation to be in English.
 - .4 System manager software: include in English system definition point database, additions, deletions or modifications, control loop statements, use of high level programming languages, report generator utility and other OS utilities used for maintaining optimal operating efficiency.
 - .5 Include, in English:
 - .1 Input and output commands and messages from operator-initiated functions, field related changes and alarms as defined in CDL's or assigned limits (i.e. commands relating to day-to-day operating functions and not related to system modifications, additions, or logic re-definements).
 - .2 Graphic "display" functions, point commands to turn systems on or off, manually override automatic control of specified hardware points. To be in English at specified OWS.
 - .3 Reporting function such as trend log, trend graphics, alarm report logs, energy report logs, maintenance generated logs.
- .5 Existing Components:
 - .1 The existing Andover network in B-block not affected by the scope of work indicated shall remain in operation.
 - .2 The existing connections between the fire alarm and the Andover system shall be maintained.
 - .3 The existing Ventilation unit controls shall be maintained.
 - .4 All existing controls and sensors associated with the Plant Steam shall be maintained.

1.6 COORDINATION

.1 Mechanical Contractor shall mount all motorized dampers supplied by Controls Contractor in their respective locations in the ductwork. The Mechanical Contractor shall also be responsible for distribution of dampers to the various locations on the job site.

- .2 All electrical low-voltage control wiring, including interlock wiring, required for the equipment supplied by Mechanical, except where otherwise noted, shall be supplied and installed by the Control Supplier.
- .3 All mechanical control wiring 50 volts or more shall be a minimum of #14 gauge wire. All mechanical control wiring less than 50 volts shall be minimum #18 gauge wire.
- .4 All mechanical control wiring installed by the control supplier shall conform with the requirements of the local electrical authority and the Division 26 Electrical specifications.
- .5 Electrical Contractor: Electrical shall provide the following:
 - .1 All power wiring to equipment.
 - .2 One 15 amp, 120V/60/1 phase fused power supply to each DDC control panel (minimum 12 circuits located throughout the facility). Electrical Contractor shall coordinate location and number with the controls contractor.
 - .3 Wiring of inline control devices on 120 Vac as indicated on drawings (remote solid state speed controllers for fan operation).

1.7 SUBMITTALS

- .1 Make submittals in accordance with Section 01 33 00 Submittal Procedures and 25 05 02 EMCS: Shop Drawings, Product Data and Review Process.
- .2 Quality Control:
 - .1 Provide equipment and material from manufacturer's regular production, CSA certified, manufactured to standard quoted plus additional specified requirements.
 - .2 Where CSA certified equipment is not available submit such equipment to inspection authorities for special inspection and approval before delivery to site.
 - .3 Submit proof of compliance to specified standards with shop drawings and product data in accordance with Section 25 05 02 EMCS: Shop Drawings, Product Data and Review Process. Label or listing of specified organization is acceptable evidence.
 - .4 In lieu of such evidence, submit certificate from testing organization, approved by Departmental Representative, certifying that item was tested in accordance with their test methods and that item conforms to their standard/code.
 - .5 For materials whose compliance with organizational standards/codes/specifications is not regulated by organization using its own listing or label as proof of compliance, furnish certificate stating that material complies with applicable referenced standard or specification.
 - .6 Permits and fees: in accordance with general conditions of contract.
 - .7 Existing devices intended for re-use: submit test report.

1.8 QUALITY ASSURANCE

.1 Have local office within Province staffed by trained personnel capable of providing instruction, routine maintenance and emergency service on systems,

- .2 Have access to local supplies of essential parts and provide 7 year guarantee of availability of spare parts after obsolescence.
- .3 Ensure qualified supervisory personnel continuously direct and monitor Work and attend site meetings.
- .4 Health and Safety:
 - .1 Do construction occupational health and safety in accordance with Section 01 35 30 Health and Safety Requirements.

1.9 EXISTING CONDITIONS - CONTROL COMPONENTS

- .1 Utilize existing control wiring and piping where possible.
- .2 Inspect and test existing devices intended for re-use within 30 days of award of contract, and prior to installation of new devices.
 - .1 Furnish test report within 40 days of award of contract listing each component to be re-used and indicating whether it is in good order or requires repair.
 - .2 Failure to produce test report will constitute acceptance of existing devices by Contractor.
- .3 Non-functioning items:
 - .1 Provide with report specification sheets or written functional requirements to support findings.
 - .2 Departmental Representative will repair or replace existing items judged defective yet deemed necessary for EMCS.
- .4 Submit written request for permission to disconnect controls and to obtain equipment downtime before proceeding with Work.
- .5 Assume responsibility for controls to be incorporated into EMCS after written receipt of approval from Departmental Representative.
 - .1 Be responsible for items repaired or replaced by Departmental Representative.
 - .2 Be responsible for repair costs due to negligence or abuse of equipment.
 - .3 Responsibility for existing devices terminates upon final acceptance of EMCS.
- .6 Remove existing controls not re-used or not required. Place in approved storage for disposition as directed.

Part 2 Products

2.1 EQUIPMENT

- .1 Control Network Protocol and Data Communication Protocol: to CEA 709.1 ASHRAE STD 135.
- .2 Complete list of equipment and materials to be used on project and forming part of tender documents by adding manufacturer's name, model number and details of materials, and submit for approval.

2.2 ADAPTORS

.1 Provide adaptors between metric and imperial components.

Part 3 Execution

3.1 MANUFACTURER'S RECOMMENDATIONS

.1 Installation: to manufacturer's recommendations.

3.2 PAINTING

- .1 Painting: in accordance with Section 09 91 23 Interior Painting, supplemented as follows:
 - .1 Clean and touch up marred or scratched surfaces of factory finished equipment to match original finish.
 - .2 Restore to new condition, finished surfaces too extensively damaged to be primed and touched up to make good.
 - .3 Clean and prime exposed hangers, racks, fastenings, and other support components.
 - .4 Paint unfinished equipment installed indoors to EEMAC 2Y-1.

1.1 SUMMARY

- .1 Section Includes.
 - .1 Methods and procedures for shop drawings submittals, preliminary and detailed review process including review meetings, for building Energy Monitoring and Control System (EMCS).

1.2 DEFINITIONS

.1 Acronyms and definitions: refer to Section 25 05 01 - EMCS: General Requirements.

1.3 DESIGN REQUIREMENTS

- .1 Preliminary Design Review: to contain following contractor and systems information.
 - .1 Location of local office.
 - .2 Description and location of installing and servicing technical staff.
 - .3 Location and qualifications of programming design and programming support staff.
 - .4 List of spare parts.
 - .5 Location of spare parts stock.
 - .6 Names of sub-contractors and site-specific key personnel.
 - .7 Sketch of site-specific system architecture.
 - .8 Specification sheets for each item including memory provided, programming language, speed, type of data transmission.
 - .9 Descriptive brochures.
 - .10 Sample CDL and graphics (systems schematics).
 - .11 Response time for each type of command and report.
 - .12 Item-by-item statement of compliance.
 - .13 Proof of demonstrated ability of system to communicate utilizing Proprietary Communications Protocol, BACnet or Lontalk.

1.4 SUBMITTALS

- .1 Submittals in accordance with Section 01 33 00 Submittal Procedures and coordinate with requirements in this Section.
- .2 Submit preliminary design document within 30 working days after tender closing and before contract award, for review by Departmental Representative.
- .3 Shop Drawings to consist of one digital copy of design documents, shop drawings, product data and software.
- .4 Hard copy to be completely indexed and coordinated package to assure compliance with contract requirements and arranged in same sequence as specification and cross-referenced to specification section and paragraph number.

1.5 PRELIMINARY SHOP DRAWING REVIEW

- .1 Submit preliminary shop drawings within 30 working days of award of contract and include following:
 - .1 Specification sheets for each item. To include manufacturer's descriptive literature, manufacturer's installation recommendations, specifications, drawings, diagrams, performance and characteristic curves, catalogue cuts, manufacturer's name, trade name, catalogue or model number, nameplate data, size, layout, dimensions, capacity, other data to establish compliance.
 - .2 Detailed system architecture showing all points associated with each controller including, signal levels, pressures where new EMCS ties into existing control equipment.
 - .3 Spare point capacity of each controller by number and type.
 - .4 Controller locations.
 - .5 Auxiliary control cabinet locations.
 - .6 Single line diagrams showing cable routings, conduit sizes, spare conduit capacity between control centre, field controllers and systems being controlled.
 - .7 Valves: complete schedule listing including following information: designation, service, manufacturer, model, point ID, design flow rate, design pressure drop, required Cv, Valve size, actual Cv, spring range, pilot range, required torque, actual torque and close off pressure (required and actual).
 - .8 Dampers: sketches showing module assembly, interconnecting hardware, operator locations, operator spring range, pilot range, required torque, actual torque.
 - .9 Flow measuring stations: complete schedule listing designation, service, point ID, manufacturer, model, size, velocity at design flow rate, manufacturer, model and range of velocity transmitter.

1.6 DETAIL SHOP DRAWING REVIEW

- .1 Submit detailed shop drawings within 60 working days after award of contract and before start of installation and include following:
 - .1 Corrected and updated versions (hard copy only) of submissions made during preliminary review.
 - .2 Wiring diagrams.
 - .3 Piping diagrams and hook-ups.
 - .4 Interface wiring diagrams showing termination connections and signal levels for equipment to be supplied by others.
 - .5 Shop drawings for each input/output point, sensors, transmitters, showing information associated with each particular point including:
 - .1 Sensing element type and location.
 - .2 Transmitter type and range.
 - .3 Associated field wiring schematics, schedules and terminations.
 - .4 Complete Point Name Lists.
 - .5 Setpoints, curves or graphs and alarm limits (high and low, 3 types critical, cautionary and maintenance), signal range.
 - .6 Software and programming details associated with each point.
 - .7 Manufacturer's recommended installation instructions and procedures.
 - .8 Input and output signal levels or pressures where new system ties into existing control equipment.

- .6 Control schematics, narrative description, CDL's fully showing and describing automatic and manual procedure required to achieve proper operation of project, including under complete failure of EMCS.
- .7 Graphic system schematic displays of air and water systems with point identifiers and textual description of system, and typical floor plans as specified.
- .8 Complete system CDL's including companion English language explanations on same sheet but with different font and italics. CDL's to contain specified energy optimization programs.
- .9 Listing and example of specified reports.
- .10 Listing of time of day schedules.
- .11 Type and size of memory with statement of spare memory capacity.
- .12 Full description of software programs provided.
- .13 Sample of "Operating Instructions Manual" to be used for training purposes.
- .14 Outline of proposed start-up and verification procedures. Refer to Section 25 01 11 EMCS: Start-up, Verification and Commissioning.

1.7 QUALITY ASSURANCE

- .1 Preliminary Design Review Meeting: Convene meeting within 45 working days of award of contract to:
 - .1 Undertake functional review of preliminary design documents, resolve inconsistencies.
 - .2 Resolve conflicts between contract document requirements and actual items (e.g.: points list inconsistencies).
 - .3 Review interface requirements of materials supplied by others.
 - .4 Review "Sequence of Operations".
- .2 Contractor's programmer to attend meeting.
- .3 Departmental Representative retains right to revise sequence or subsequent CDL prior to software finalization without cost to Departmental Representative.

Part 2 Products

2.1 NOT USED

.1 Not Used.

Part 3 Execution

3.1 NOT USED

.1 Not Used.

1.1 SUMMARY

- .1 Section Includes.
 - .1 Requirements and procedures for final control diagrams and operation and maintenance (O&M) manual, for building Energy Monitoring and Control System (EMCS) Work.

1.2 DEFINITIONS

- .1 BECC Building Environmental Control Centre.
- .2 OWS Operator Work Station.
- .3 For additional acryonyms and definitions refer to Section 25 05 01 EMCS: General Requirements.

1.3 SUBMITTALS

- .1 Submittals in accordance with Section 01 78 00 Closeout Procedures, supplemented and modified by requirements of this Section.
- .2 Submit Record Documents, As-built drawings, and Operation and Maintenance Manual to Departmental Representative in English.
- .3 Provide soft copies and hard copies in hard-back, 50 mm 3 ring, D-ring binders.
 - .1 Binders to be 2/3 maximum full.
 - .2 Provide index to full volume in each binder.
 - .3 Identify contents of each manual on cover and spine.
 - .4 Provide Table of Contents in each manual.
 - .5 Assemble each manual to conform to Table of Contents with tab sheets placed before instructions covering subject.

1.4 AS-BUILTS

- .1 Provide 2 copies of detailed shop drawings generated in Section 25 05 02 EMCS: Submittals and Review Process and include:
 - .1 Changes to contract documents as well as addenda and contract extras.
 - .2 Changes to interface wiring.
 - .3 Routing of conduit, wiring and control air lines associated with EMCS installation.
 - .4 Locations of all devices to be indicated on drawings.
 - .5 Listing of alarm messages.
 - .6 Panel/circuit breaker number for sources of normal/emergency power.
 - .7 Names, addresses, telephone numbers of each sub-contractor having installed equipment, local representative for each item of equipment, each system.
 - .8 Test procedures and reports: provide records of start-up procedures, test procedures, checkout tests and final commissioning reports as specified in Section 25 01 11 EMCS: Start-up, Verification and Commissioning.
 - .9 Basic system design and full documentation on system configuration.
 - .10 Update sequence of operations for all equipment as required to match exact site conditions and operation.

- .2 Submit for final review by Departmental Representative.
- .3 Provide before acceptance six (6) copies of all as-built documentation for inclusion in Mechanical Operating and Maintenance Manuals. Final copies shall incorporate all changes made during final review.

1.5 OPERATION AND MAINTENANCE MANUALS

- .1 Custom design O&M Manuals (both hard and soft copy) to contain material pertinent to this project only, and to provide full and complete coverage of subjects referred to in this Section.
- .2 Provide 2 complete sets of hard and soft copies prior to system or equipment tests
- .3 Include complete coverage in concise language, readily understood by operating personnel using common terminology of functional and operational requirements of system. Do not presume knowledge of computers, electronics or in-depth control theory.
- .4 Functional description to include:
 - .1 Functional description of theory of operation.
 - .2 Design philosophy.
 - .3 Specific functions of design philosophy and system.
 - .4 Full details of data communications, including data types and formats, data processing and disposition data link components, interfaces and operator tests or self-test of data link integrity.
 - .5 Explicit description of hardware and software functions, interfaces and requirements for components in functions and operating modes.
 - .6 Description of person-machine interactions required to supplement system description, known or established constraints on system operation, operating procedures currently implemented or planned for implementation in automatic mode.
- .5 System operation to include:
 - .1 Complete step-by-step procedures for operation of system including required actions at each OWS.
 - .2 Operation of computer peripherals, input and output formats.
 - .3 Emergency, alarm and failure recovery.
 - .4 Step-by-step instructions for start-up, back-up equipment operation, execution of systems functions and operating modes, including key strokes for each command so that operator need only refer to these pages for keystroke entries required to call up display or to input command.
- .6 Software to include:
 - .1 Documentation of theory, design, interface requirements, functions, including test and verification procedures.
 - .2 Detailed descriptions of program requirements and capabilities.
 - .3 Data necessary to permit modification, relocation, reprogramming and to permit new and existing software modules to respond to changing system functional requirements without disrupting normal operation.
 - .4 Software modules, fully annotated source code listings, error free object code files ready for loading via peripheral device.

- .5 Complete program cross reference plus linking requirements, data exchange requirements, necessary subroutine lists, data file requirements, other information necessary for proper loading, integration, interfacing, program execution.
- .6 Software for each Controller and single section referencing Controller common parameters and functions.
- .7 Maintenance: document maintenance procedures including inspection, periodic preventive maintenance, fault diagnosis, repair or replacement of defective components, including calibration, maintenance, repair of sensors, transmitters, transducers, controller and interface firmware's, plus diagnostics and repair/replacement of system hardware.
- .8 System configuration document:
 - .1 Provisions and procedures for planning, implementing and recording hardware and software modifications required during operating lifetime of system.
 - .2 Information to ensure co-ordination of hardware and software changes, data link or message format/content changes, sensor or control changes in event that system modifications are required.
- .9 Programmer control panel documentation: provide where panels are independently interfaced with BECC, including interfacing schematics, signal identification, timing diagrams, fully commented source listing of applicable driver/handler.
- .10 Provide copies (hard and soft, each) of final Controls Operation and Maintenance manuals for inclusion in Mechanical Operation and Maintenance Manuals, refer to 21 05 01 for count. Final copies shall incorporate all changes made during final review and during construction.

1.6 SOFTWARE

- .1 Provide back-up for source code following any and all modifications and/or corrections implemented throughout the verification and commissioning of EMCS.
- .2 Provide one copy of back-up for source code in each of the six Mechanical Operation and Maintenance Manuals.

Part 2 Products

2.1 NOT USED

.1 Not Used.

Part 3 Execution

3.1 NOT USED

.1 Not Used.

1.1 SUMMARY

- .1 Section Includes.
 - .1 Requirements and procedures for identification of devices, sensors, wiring tubing, conduit and equipment, for building Energy Monitoring and Control System (EMCS) Work and nameplates materials, colours and lettering sizes.

1.2 REFERENCES

- .1 Canadian Standards Association (CSA International).
 - .1 CSA C22.1-02, The Canadian Electrical Code, Part I (19th Edition), Safety Standard for Electrical Installations.

1.3 DEFINITIONS

.1 For acronyms and definitions refer to Section 25 05 01 - EMCS: General Requirements.

1.4 SYSTEM DESCRIPTION

.1 Language Operating Requirements: provide identification for control items in English.

1.5 SUBMITTALS

- .1 Submittals in accordance with Section 01 33 00 Submittal Procedures supplemented and modified by requirements of this Section.
- .2 Submit to Departmental Representative for approval samples of nameplates, identification tags and list of proposed wording.

Part 2 Products

2.1 NAMEPLATES FOR PANELS

- .1 Identify by Plastic laminate, 3 mm thick, matt white finish, black core, square corners, lettering accurately aligned and engraved into core.
- .2 Sizes: 25 x 67 mm minimum.
- .3 Lettering: minimum 7 mm high, black.
- .4 Inscriptions: machine engraved to identify function.

2.2 NAMEPLATES FOR FIELD DEVICES

- .1 Identify by plastic encased cards attached by chain or plastic tie.
- .2 Sizes: 50 x 100 mm minimum.
- .3 Lettering: minimum 5 mm high produced from laser printer in black.
- .4 Data to include: point name, point type, point address, associated controller, and description of service.

.5 Companion cabinet: identify interior components using plastic enclosed cards with point name and point address.

2.3 NAMEPLATES FOR ROOM SENSORS

- .1 Identify by lamicoids using point identifier.
- .2 Location: on sensor cover.
- .3 Letter size: to suit, clearly legible.

2.4 WARNING SIGNS

- .1 Equipment includingmotors, starters under remote automatic control: supply and install orange coloured signs warning of automatic starting under control of EMCS.
- .2 Sign to read: "Caution: This equipment is under automatic remote control of EMCS".

2.5 WIRING

- .1 Supply and install numbered tape markings on wiring at panels, junction boxes, splitters, cabinets and outlet boxes.
- .2 Colour coding: to CSA C22.1. Use colour coded wiring in communications cables, matched throughout system.
- .3 Power wiring: identify circuit breaker panel/circuit breaker number inside each EMCS panel.

2.6 CONDUIT

- .1 Colour code EMCS conduit.
- .2 Pre-paint box covers and conduit fittings.
- .3 Coding: use fluorescent orange paint.

Part 3 Execution

3.1 NAMEPLATES AND LABELS

- .1 Ensure that manufacturer's nameplates, CSA labels and identification nameplates are visible and legible at all times.
- .2 All labelling to follow RCMP site standards and the Signage Drawings for room names and numbers. Note that the signage drawings will match room labelling to be utilized in space but do not match the room numbering utilized for the construction set.

3.2 EXISTING PANELS

.1 Correct existing nameplates and legends to reflect changes made during Work. Label all existing to specified standard.

1.1 SUMMARY

- .1 Section Includes.
 - .1 Requirements and procedures for warranty and activities during warranty period and service contracts, for building Energy Monitoring and Control System (EMCS).

.2 References.

- .1 Canada Labour Code (R.S. 1985, c. L-2)/Part I Industrial Relations.
- .2 Canadian Standards Association (CSA International).
 - CSA Z204-94(R1999), Guidelines for Managing Indoor Air Quality in Office Buildings.

1.2 DEFINITIONS

.1 BC(s) - Building Controller(s).

.1

- .2 OWS Operator Work Station.
- .3 For additional acronyms and definitions refer to Section 25 05 01 EMCS: General Requirements.

1.3 SUBMITTALS

- .1 Submittals in accordance with Section 01 33 00 Submittal Procedures.
- .2 Submit detailed preventative maintenance schedule for system components to Departmental Representative.
- .3 Submit detailed inspection reports to Departmental Representative.
- .4 Submit dated, maintenance task lists to Departmental Representative and include the following sensor and output point detail, as proof of system verification:
 - .1 Point name and location.
 - .2 Device type and range.
 - .3 Measured value.
 - .4 System displayed value.
 - .5 Calibration detail
 - .6 Indication if adjustment required,
 - .7 Other action taken or recommended.
- .5 Submit network analysis report showing results with detailed recommendations to correct problems found.
- .6 Records and logs: in accordance with Section 01 78 00 Closeout Submittals.
 - .1 Maintain records and logs of each maintenance task on site.
 - .2 Organize cumulative records for each major component and for entire EMCS chronologically.
 - .3 Submit records to Departmental Representative, after inspection indicating that planned and systematic maintenance have been accomplished.

.7 Revise and submit to Departmental Representative in accordance with Section 01 78 00 -Closeout Submittals "As-built drawings" documentation and commissioning reports to reflect changes, adjustments and modifications to EMCS made during warranty period.

1.4 MAINTENANCE SERVICE DURING WARRANTY PERIOD

- .1 Provide services, materials, and equipment to maintain EMCS for specified warranty period. Provide detailed preventative maintenance schedule for system components as described in Submittal article.
- .2 Emergency Service Calls:
 - .1 Initiate service calls when EMCS is not functioning correctly.
 - .2 Qualified control personnel to be available during warranty period to provide service to "CRITICAL" components whenever required at no extra cost.
 - .3 Furnish Departmental Representative with telephone number where service personnel may be reached at any time.
 - .4 Service personnel to be on site ready to service EMCS within 2 hours after receiving request for service.
 - .5 Perform Work continuously until EMCS restored to reliable operating condition.
- .3 Operation: foregoing and other servicing to provide proper sequencing of equipment and satisfactory operation of EMCS based on original design conditions and as recommended by manufacturer.
- .4 Work requests: record each service call request, when received separately on approved form and include:
 - .1 Serial number identifying component involved.
 - .2 Location, date and time call received.
 - .3 Nature of trouble.
 - .4 Names of personnel assigned.
 - .5 Instructions of work to be done.
 - .6 Amount and nature of materials used.
 - .7 Time and date work started.
 - .8 Time and date of completion.
- .5 Provide system modifications in writing.
 - .1 No system modification, including operating parameters and control settings, to be made without prior written approval of Departmental Representative.
- .6 Back-up software.

Part 2 Products

- 2.1 NOT USED
 - .1 Not Used.

Part 3 Execution

3.1 FIELD QUALITY CONTROL

- .1 Perform as minimum two major inspections (more often if required by manufacturer) per year; one at start of heating season and one at start of cooling season. Provide detailed written report to Departmental Representative as described in Submittal article.
- .2 Perform inspections during regular working hours, 0800 to 1630 h, Monday through Friday, excluding statutory holidays.
- .3 Following inspections are minimum requirements and should not be interpreted to mean satisfactory performance:
 - .1 Perform calibrations using test equipment having traceable, certifiable accuracy at minimum 50% greater than accuracy of system displaying or logging value.
 - .2 Check and Calibrate each field input/output device in accordance with Canada Labour Code Part I and CSA Z204.
 - .3 Provide dated, maintenance task lists, as described in Submittal article, as proof of execution of complete system verification.
- .4 Minor inspections to include, but not limited to:
 - .1 Perform visual, operational checks to BC's, peripheral equipment, interface equipment and other panels.
 - .2 Check equipment cooling fans as required.
 - .3 Review system performance with Departmental Representative to discuss suggested or required changes.
- .5 Major inspections to include, but not limited to:
 - .1 Minor inspection.
 - .2 Clean OWS(s) peripheral equipment, BC(s), interface and other panels, micro-processor interior and exterior surfaces.
 - .3 Check signal, voltage and system isolation of BC(s), peripherals, interface and other panels.
 - .4 Verify calibration/accuracy of each input and output device and recalibrate or replace as required.
 - .5 Run system software diagnostics as required.
 - .6 Install software and firmware enhancements to ensure components are operating at most current revision for maximum capability and reliability.
 - .1 Perform network analysis and provide report as described in Submittal article.
- .6 Rectify deficiencies revealed by maintenance inspections and environmental checks.
- .7 Continue system debugging and optimization.
- .8 Testing/verification of occupancy and seasonal-sensitive systems to take place during four (4) consecutive seasons, after facility has been accepted, taken over and fully occupied.
 - .1 Test weather-sensitive systems twice: first at near winter design conditions and secondly under near summer design conditions.

1.1 SUMMARY

- .1 Section Includes:
 - .1 System requirements for Local Area Network (LAN) for Building Energy Monitoring and Control System (EMCS).

1.2 REFERENCES

- .1 Canadian Standards Association (CSA International).
 - .1 CSA T529-95(R2000), Telecommunications Cabling Systems in Commercial Buildings (Adopted ANSI/TIA/EIA-568-A with modifications).
 - .2 CSA T530-99(R2004), Commercial Building Standard for Telecommunications Pathways and Spaces (Adopted ANSI/TIA/EIA-569-A with modifications).
- .2 Institute of Electrical and Electronics Engineers (IEEE)/Standard for Information technology Telecommunications and information exchange between systems Local and metropolitan area networks Specific requirements.
 - .1 IEEE Std 802.3TM-2002, Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications.
- .3 Telecommunications Industries Association (TIA)/Electronic Industries Alliance (EIA)
 - .1 TIA/EIA-568-March 2004, Commercial Building Telecommunications Cabling Standards Set, Part 1 General Requirements Part 2 Balanced Twisted-Pair Cabling Components Part 3 Optical Fiber Cabling Components Standard.
 - .2 TIA/EIA-569-A-December 2001, Commercial Building Standard for Telecommunications Pathways and Spaces.
- .4 Treasury Board Information Technology Standard (TBITS).
 - .1 TBITS 6.9-2000, Profile for the Telecommunications Wiring System in Government Owned and Leased Buildings Technical Specifications.

1.3 DEFINITIONS

.1 Acronyms and definitions: refer to Section 25 05 01 - EMCS - General Requirements.

1.4 SYSTEM DESCRIPTION

- .1 Data communication network to link Operator Workstations and Master Control Units (MCU) in accordance with CSA T529, TIA/EIA-568, CSA T530, TIA/EIA-569-A and TBITS 6.9.
 - .1 Provide reliable and secure connectivity of adequate performance between different sections (segments) of network.
 - .2 Allow for future expansion of network, with selection of networking technology and communication protocols.
- .2 Data communication network to include, but not limited to:
 - .1 EMCS-LAN.
 - .2 Network interface cards.

- .3 Network management hardware and software.
- .4 Network components necessary for complete network.

1.5 DESIGN REQUIREMENTS

- .1 EMCS Local Area Network (EMCS-LAN).
 - .1 High speed, high performance, local area network over which MCUs and OWSs communicate with each other directly on peer to peer basis in accordance with IEEE 802.3/Ethernet Standard.
 - .2 EMCS-LAN to: Proprietary Protocol.
 - .3 Each EMCS-LAN to be capable of supporting at least 50 devices.
 - .4 Support of combination of MCUs and OWSs directly connected to EMCS-LAN.
 - .5 High speed data transfer rates for alarm reporting, quick report generation from multiple controllers, upload/download information between network devices. Bit rate to be 10 Megabits per second minimum.
 - .6 Detection and accommodation of single or multiple failures of either OWSs, MCUs or network media. Operational equipment to continue to perform designated functions effectively in event of single or multiple failures.
 - .7 Commonly available, multiple sourced, networking components and protocols to allow system to co-exist with other networking applications including office automation.
- .2 Dynamic Data Access.
 - .1 LAN to provide capabilities for OWSs, either network resident or connected remotely, to access point status and application report data or execute control functions for other devices via LAN.
 - .2 Access to data to be based upon logical identification of building equipment.
- .3 Network Medium.
 - .1 Network medium: shielded twisted cable, or fibre optic cable compatible with network protocol to be used within buildings.

Part 2 Products

2.1 NOT USED

.1 Not Used.

Part 3 Execution

3.1 NOT USED

.1 Not Used.

1.1 SUMMARY

- .1 Section Includes:
 - .1 Hardware and software requirements for an Operator Work Station (OWS) in a Building Energy Monitoring and Control System (EMCS), including primary, secondary, portable and remote OWS's.

1.2 DEFINITIONS

- .1 Acronyms and definitions: refer to Section 25 05 01 EMCS: General Requirements.
- .2 Secondary OWS: serves as backup to primary OWS, is storage and retrieval facility of soft copy of as-built contractor supplied data as described in Section 25 05 03 EMCS: Project Record Documents.
- .3 Portable OWS: used as remote dial-up OWS with same capabilities as primary OWS including graphic display.
- .4 Remote Auxiliary OWS: performs identical user interface functions as primary OWS.

1.3 OWS SYSTEM DESCRIPTION

.1 Use existing OWS located in heating plant compatible with new controls being installed (Andover or Honeywell).

1.4 SUBMITTALS

.1 Make submittals in accordance with Section 25 05 02 - EMCS: Shop Drawings, Product Data and Review Process.

Part 2 Products

2.1 OWS CONTROL SOFTWARE

- .1 OWS is not to form part of real-time control functions either directly or indirectly or as part of communication link. Real-time control functions to reside in MCUs, LCUs, and TCUs with peer to peer communication occurring at MCU to MCU device level.
- .2 Time Synchronization Module.
 - .1 System to provide Time Synchronization of real-time clocks in controllers.
 - .2 System to perform this feature on regular scheduled basis and on operator request.
- .3 User Display Interface Module.
 - .1 OWS software to support "Point Names" as defined in Section 25 05 01 EMCS: General Requirements.
 - .2 Upon operator's request in either text, graphic or table mode, system to present condition of single point, system, area, or connected points on system to OWS. Display analog values digitally to 1 place of decimal with negative sign as required. Update displayed analog values and status when new values received. Flag points in alarm by blinking, reverse video, different colour, bracketed or other means to differentiate from points not in alarm. For systems supporting COSV, refresh rate

of screen data not to exceed 5 seconds from time of field change and system is to execute supervisory background scan every 20 seconds to verify point data value. For other systems refresh rate not to exceed 5 seconds for points displayed. Initial display of new system graphic display (with up to 30 active points), including presentation of associated dynamic data not to exceed 8 seconds.

- .4 General Event Log Module: to record system activities occurring at OWS or elsewhere in system including:
 - .1 Operator Log-in from user interface device.
 - .2 Communication messages: errors, failures and recovery.
 - .3 Event notifications and alarms by category.
 - .4 Record of operator initiated commands.
- .5 General Event Log:
 - .1 Hold minimum of 4 months information and be readily accessible to operator.
 - .2 Able to be archived as necessary to prevent loss of information.

.6 Operator Control Software Module: to support entry of information into system from keyboard and mouse, disk, or from another network device. Display of information to user; dynamic displays, textual displays, and graphic displays to display logging and trending of system information and following tasks:

- .1 Automatic logging of digital alarms and change of status messages.
- .2 Automatic logging of analog alarms.
- .3 System changes: alarm limits, set-points, alarm lockouts.
- .4 Display specific point values, states as selected.
- .5 Provide reports as requested and on scheduled basis when required.
- .6 Display graphics as requested, and on alarm receptions (user's option).
- .7 Display list of points within system.
- .8 Display list of systems within building.
- .9 Direct output of information to selected peripheral device.
- .10 On-line changes:
 - .1 Alarm limits.
 - .2 Setpoints.
 - .3 Deadbands.
 - .4 Control and change of state changes.
 - .5 Time, day, month, year.
 - .6 Control loop configuration changes for controller-based CDLs.
 - .7 Control loop tuning changes.
 - .8 Schedule changes.
 - .9 Changes, additions, or deletions, of points, graphics, for installed and future systems.
- .11 According to assigned user privileges (password definition) following functions are to be supported:
 - .1 Permit operator to terminate automatic (logic based) control and set value of field point to operator selected value. These values or settings to remain in effect until returned to automatic (logic based) control by operator.
 - .2 Requests for status, analog values, graphic displays, logs and controls to be through user interface screens.
- .12 Software and tools utilized to generate, modify and configure building controllers to be installed and operational on the OWS.

- .7 Message Handling Module and Error Messages: to provide message handling for following conditions:
 - .1 Message and alarm buffering to prevent loss of information.
 - .2 Error detection correction and retransmission to guarantee data integrity.
 - .3 Informative messages to operator for data error occurrences, errors in keyboard entry, failure of equipment to respond to requests or commands and failure of communications between EMCS devices.
 - .4 Default device definition to be implemented to ensure alarms are reported as quickly as possible in event of faulty designated OWS.
- .8 Access Control Module.
 - .1 Minimum 5 levels of password access protection to limit control, display, or data base manipulation capabilities. Following is preferred format of progression of password levels:
 - .1 Guest: no password data access and display only.
 - .2 Operator Level: full operational commands including automatic override.
 - .3 Technician: data base modifications.
 - .4 Programmer: data base generation.
 - .5 Highest Level : system administration password assignment addition, modification.
 - .2 User-definable, automatic log-off timers from 1 to 60 min. to prevent operators leaving devices on-line inadvertently. Default setting = 3 minutes.
- .9 Trend Data Module: includes historical data collection utility, trend data utility, control loop plot utility. Each utility to permit operator to add trend point, delete trend point, set scan rate.
 - .1 Historical data collection utility: collect concurrently operator selected real or calculated point values at operator selectable rate 30-480 minutes. Samples to include for each time interval (time-stamped), minimum present value, maximum present value, and average present value for point selected. Rate to be individually selectable for each point. Data collection to be continuous operation, stored in temporary storage until removed from historical data list by operator. Temporary storage to have at least 6 month capacity.
 - .2 Trend data utility: continuously collect point object data variables for variables from building controllers as selected by operator, including at minimum; present value of following point object types DI, DO, AI, AO set points value, calculated values. Trend data utility to have capacity to trend concurrently points at operator-selectable rate of 05 seconds to 3600 seconds, individually selectable for selected value, or use of COSV detection. Collected trend data to be stored on minimum 96 h basis in temporary storage until removed from trend data list by operator. Option to archive data before overwriting to be available.
 - .3 Control loop plot utility: for AO Points provide for concurrent plotting of Measured value input present value, present value of output, and AO setpoint. Operator selectable sampling interval to be selectable between 1 second to 20 seconds. Plotting utility to scroll to left as plot reaches right side of display window. Systems not supporting control loop plot as separate function must provide predefined groups of values. Each group to include values for one control loop display.

- .4 Trend data Module to include display of historical or trend data to OWS screen in X Y plot presentation. Plot utility to display minimum of 6 historical points or 6 trend points concurrently or 1 Control Loop Plot. For display output of real time trend data, display to automatically index to left when window becomes full. Provide plotting capabilities to display collected data based on range of selected value for (Y) component against time/date stamp of collected data for (X) component.
- .5 Provide separate reports for each trend utility. Provide operator feature to specify report type, by point name and for output device. Reports to include time, day, month, year, report title, and operator's initials. Implement reports using report module. Ensure trend data is exportable to third party spreadsheet or database applications for PCs.
- .10 Report Module: reports for energy management programs, function totalization, analog/pulse totalization and event totalization features available at MCU level. Refer also to Section 25 30 01 EMCS: Building Controllers.
 - .1 Reports to include time, day, month, year, report title, operator's initials.
 - .2 Software to provide capability to:
 - .1 Generate and format reports for graphical and numerical display from real time and stored data.
 - .2 Print and store reports as selected by operator.
 - .3 Select and assign points used in such reports.
 - .4 Sort output by area, system, as minimum.
 - .3 Periodic/automatic report:
 - .1 Generate specified report(s) automatically including options of start time and date, interval between reports (hourly, daily, weekly, monthly), output device. Software to permit modifying periodic/automatic reporting profile at any time.
 - .2 Reports to include:
 - .1 Power demand and duty cycle summary: see application program for same.
 - .2 Disabled "Locked-out" point summary: include point name, whether disabled by system or by operator.
 - .3 Run time summary: summary of accumulated running time of selected equipment. Include point name, run time to date, alarm limit setting. Run time to accumulate until reset individually by operator.
 - .4 Summary of run time alarms: include point name, run time to date, alarm limit.
 - .5 Summary of start/stop schedules: include start/stop times and days, point name.
 - .6 Motor status summary.
 - .4 Report types:
 - .1 Dynamic reports: system to printout or display of point object data value requested by operator. System to indicate status at time of request, when displayed, updated at operator selected time interval. Provide option for operator selection of report type, by point name, and/or output device. Ensure reports are available for following point value combinations:
 - .2 Points in accessible from this OWS (total connected for this location), multiple "areas".
 - .3 Area (points and systems in Area).
 - .4 Area, system (points in system).
 - .5 System (points by system type).

- .6 System point (points by system and point object type).
- .7 Area point (points by system and point object type).
- .8 Point (points by point object type).
- .5 Summary report: printout or display of point objet data value selected by operator. Report header to indicate status at time of request. Ensure reports are available on same basis as dynamic reports. Provide option as to report type, point name, output device.
- .6 Include preformatted reports as listed in Event/Alarm Module.
- .11 Graphics Display Module: graphics software utility to permit user to create, modify, delete, file, and recall graphics required by Section 25 90 01 EMCS: Site Requirements, Applications and Systems Sequences of Operation.
 - .1 Provide capacity for 100% expansion of system graphics. Graphic interface to provide user with multiple layered diagrams for site, building in plan view, floor furniture plan view and building systems, overlayed with dynamic data appropriately placed and permitting direct operator interaction. Graphic interface to permit operator to start and stop equipment, change set points, modify alarm limits, override system functions and points from graphic system displays by use of mouse or similar pointing device.
 - .2 Display specific system graphics: provide for manual and/or automatic activation (on occurrence of an alarm). Include capability to call up and cancel display of graphic picture.
 - .3 Library of pre-engineered screens and symbols depicting standard air handling components (fans, coils, filters, dampers, VAV), complete mechanical system components (chillers, boilers, pumps), electrical symbols.
 - .4 Graphic development, creation, modification package to use mouse and drawing utility to permit user to:
 - .1 Modify portion of graphic picture/schematic background.
 - .2 Delete graphic picture.
 - .3 Call up and cancel display of graphic picture.
 - .4 Define symbols.
 - .5 Position and size symbols.
 - .6 Define background screens.
 - .7 Define connecting lines, curves.
 - .8 Locate, orient, size descriptive text.
 - .9 Define, display colours of elements.
 - .10 Establish co-relation between symbols or text and associated system points or other graphic displays.
 - .5 User to be able to build graphic displays showing on-line point data from multiple MCU panels. Graphic displays to represent logical grouping of system points or calculated data based upon building function, mechanical system, building layout, other logical grouping of points which aids operator in analysis of facility operation. Data to be refreshed on screen as "changed data" without redrawing of entire screen or row on screen.
 - .6 Dynamic data (temperature, humidity, flow, status) to be shown in actual schematic locations, to be automatically updated to show current values without operator intervention.
 - .7 Windowing environment to allow user to view several graphics simultaneously to permit analysis of building operation, system performance, display of graphic associated with alarm to be viewed without interrupting work in progress. If interface is unable to display several different types of display at same time, provide at minimum 2 OWS's.

- .8 Utilize graphics package to generate system schematic diagrams as required in Section 25 90 01 - EMCS: Site Requirements, Applications and System Sequences of Operation, and as directed by Departmental Representative. In addition provide graphics for schematic depicted on mechanical plan flow diagrams, point lists and system graphics. Provide graphic for floor depicting room sensors and control devices located in their actual location. For floor graphic include secondary diagram to show TCU-VAV box actuator and , flow sensor. Diagram to be single line schematic of ductwork as well as associated heating coil or radiation valve. Departmental Representative to provide CAD floor layouts. Provide display of TCU -VAV's in table form, include following values as minimum; space temp, setpoint, mode, actual flow, min flow setpoint, max flow setpoint, cooling signal value, and heating signal value. Organize table by rooms and floor groupings.
- .9 Provide complete directory of system graphics, including other pertinent system information. Utilize mouse or pointing device to "point and click" to activate selected graphic.
- .10 Provide unique sequence of operation graphic or pop-up window for each graphic that is depicted on OWS. Provide access to sequence of operation graphic by link button on each system graphic. Provide translation of sequence of operation, a concise explanation of systems operation, from control descriptive logic into plain English language.
- .12 Event/Alarm Module : displays in window alarms as received and stored in General Event Log.
 - .1 Classify alarms as "critical", "cautionary", "maintenance". Alarms and alarm classifications to be designated by personnel requiring password level.
 - .2 Presentation of alarms to include features identified under applicable report definitions of Report Module paragraph.
 - .3 Alarm reports.

.6

- .1 Summary of points in critical, cautionary or maintenance alarm. Include at least point name, alarm type, current value, limit exceeded.
- .2 Analog alarm limit summary: include point name, alarm limits, deviation limits.
- .3 Summary of alarm messages: include associated point name, alarm description.
- .4 Software to notify operator of each occurrence of alarm conditions. Each point to have its own secondary alarm message.
- .5 EMCS to notify operator of occurrence of alarms originating at field device within following time periods of detection:
 - .1 Critical 5 seconds.
 - .2 Cautionary 10 seconds.
 - .3 Maintenance 10 seconds.
 - Display alarm messages in English.
- .7 Primary alarm message to include as minimum: point identifier, alarm classification, time of occurrence, type of alarm. Provide for initial message to be automatically presented to operator whenever associated alarm is reported. Assignment of secondary messages to point to be operator-editable function. Provide secondary messages giving further information (telephone lists, maintenance functions) on per point basis.
- .8 System reaction to alarms: provide alarm annunciation by dedicated window (activated to foreground on receipt of new alarm or event) of OWS with visual and audible hardware indication. Acknowledgement of alarm to change visual indicator from flashing to steady state and to silence audible device. Acknowledgment of alarm to be time, date and operator stamped and stored in General Event Log.

Steady state visual indicator to remain until alarm condition is corrected but must not impede reporting of new alarm conditions. Notification of alarm not to impede notification of subsequent alarms or function of Controller's/CDL. Do not allow random occurrence of alarms to cause loss of alarm or over-burden system. Do not allow acknowledgment of one alarm as acknowledgement of other alarms.

- .9 Controller network alarms: system supervision of controllers and communications lines to provide following alarms as minimum:
 - .1 Controller not responding where possible delineate between controller and communication line failure.
 - .2 Controller responding return to normal.
 - .3 Controller communications bad high error rate or loss of communication.
 - .4 Controller communications normal return to normal.
- .10 Digital alarm status to be interrogated every 2 seconds as minimum or be direct interrupting non-polling type (COV). Annunciate each non-expected status with alarm message.
- .13 Archiving and Restoration Module.
 - .1 Primary OWS to include services to store back-up copies of controller databases. Perform complete backup of OWS software and data files at time of system installation and at time of final acceptance. Provide backup copies before and after Controller's revisions or major modifications.
 - .2 Provide continuous integrity supervision of controller data bases. When controller encounters database integrity problems with its data base, system to notify operator of need to download copy data base to restore proper operation.
 - .3 Ensure data base back-up and downloading occurs over LAN without specialized operator technical knowledge. Provide operator with ability to manually download entire controller data base, or parts thereof as required.
- .14 CDL Generator and Modifier Module.
 - .1 CDL Generator module to permit generation and modification of CDLs.
 - .2 Provide standard reference modules for text based systems module that will permit modification to suit site specific applications. Module to include cut, paste, search and compare utilities to permit easy CDL modification and verification.
 - .3 Provide full library of symbols used by manufacturer for system product installed accessible to operators for systems using graphical environment for creation of CDLs Module to include graphic tools required to generate and create new object code for downloading to building controllers.
 - .4 Module to permit testing of code before downloading to building controllers.

Part 3 Execution

- 3.1 NOT USED
 - .1 Not Used.

1.1 SUMMARY

- .1 Section Includes:
 - .1 Materials and installation for building automation controllers including:
 - .1 Master Control Unit (MCU).
 - .2 Local Control Unit (LCU).
 - .3 Equipment Control Unit (ECU).
 - .4 Terminal Control Unit (TCU).

1.2 REFERENCES

.1 American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc. (ASHRAE).

.1 ASHRAE 2003, Applications Handbook, SI Edition.

- .2 Canadian Standards Association (CSA International).
 - .1 C22.2 No.205-M1983(R1999), Signal Equipment.
- .3 Institute of Electrical and Electronics Engineers (IEEE).
 - .1 IEEE C37.90.1-02, Surge Withstand Capabilities (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus.
- .4 Public Works and Government Services Canada (PWGSC)/Real Property Branch/Architectural and Engineering Services.
 - .1 MD13800-September 2000, Energy Management and Control Systems (EMCS) Design Manual. English: ftp://ftp.pwgsc.gc.ca/rps/docentre/mechanical/me214-e.pdf

1.3 DEFINITIONS

.1 Acronyms and definitions: refer to Section 25 05 01 - EMCS: General Requirements.

1.4 SYSTEM DESCRIPTION

- .1 General: Network of controllers comprising of MCU('s), LCU('s), ECU('s) or TCU('s) to be provided as indicated in System Architecture Diagram to support building systems and associated sequence(s) of operations as detailed in these specifications.
 - .1 Provide sufficient controllers to meet intents and requirements of this section.
 - .2 Controller quantity, and point contents to be approved by Departmental Representative at time of preliminary design review.
- .2 Controllers: stand-alone intelligent Control Units.
 - .1 Incorporate programmable microprocessor, non-volatile program memory, RAM, power supplies, as required to perform specified functions.
 - .2 Incorporate communication interface ports for communication to LANs to exchange information with other Controllers.
 - .3 Capable of interfacing with operator interface device.

- .4 Execute its logic and control using primary inputs and outputs connected directly to its onboard input/output field terminations or slave devices, and without need to interact with other controller. Secondary input used for reset such as outdoor air temperature may be located in other Controller(s).
 - .1 Secondary input used for reset such as outdoor air temperature may be located in other Controller(s).

1.5 DESIGN REQUIREMENTS

.1 To include:

- .1 Scanning of AI and DI connected inputs for detection of change of value and processing detection of alarm conditions.
- .2 Perform On-Off digital control of connected points, including resulting required states generated through programmable logic output.
- .3 Perform Analog control using programmable logic, (including PID) with adjustable dead bands and deviation alarms.
- .4 Control of systems as described in sequence of operations.
- .5 Execution of optimization routines as listed in this section.
- .2 Total spare capacity for MCUs and LCUs: at least 25 % of each point type distributed throughout the MCUs and LCUs, including all existing points.
- .3 Field Termination and Interface Devices:
 - .1 To: CSA C22.2 No.205.
 - .2 Electronically interface sensors and control devices to processor unit.
 - .3 Include, but not be limited to, following:
 - .1 Programmed firmware or logic circuits to meet functional and technical requirements.
 - .2 Power supplies for operation of logics devices and associated field equipment.
 - .3 Lockable wall cabinet.
 - .4 Required communications equipment and wiring (if remote units).
 - .5 Leave controlled system in "fail-safe" mode in event of loss of communication with, or failure of, processor unit.
 - .6 Input Output interface to accept as minimum AI, AO, DI, DO functions as specified.
 - .7 Wiring terminations: use conveniently located screw type or spade lug terminals.
 - .4 AI interface equipment to:
 - .1 Convert analog signals to digital format with 10 bit analog-to-digital resolution.
 - .2 Provide for following input signal types and ranges:
 - .1 4 20 mA;
 - .2 0 10 V DC;
 - .3 100/1000 ohm RTD input.
 - .3 Meet IEEE C37.90.1 surge withstand capability.
 - .4 Have common mode signal rejection greater than 60 dB to 60 Hz.
 - .5 Where required, dropping resistors to be certified precision devices which complement accuracy of sensor and transmitter range specified.
 - .5 AO interface equipment:
 - .1 Convert digital data from controller processor to acceptable analog output signals using 8 bit digital-to-analog resolution.

- .2 Provide for following output signal types and ranges:
 - .1 4 20 mA.
 - .2 0 10 V DC.
 - Meet IEEE C37.90.1 surge withstand capability.
- .6 DI interface equipment:

.3

- .1 Able to reliably detect contact change of sensed field contact and transmit condition to controller.
- .2 Meet IEEE C37.90.1 surge withstand capability.
- .3 Accept pulsed inputs up to 2 kHz.
- .7 DO interface equipment:
 - .1 Respond to controller processor output, switch respective outputs. Each DO hardware to be capable of switching up to 0.5 amps at 24 V AC.
 - .2 Switch up to 5 amps at 220 V AC using optional interface relay.
- .4 Controllers and associated hardware and software: operate in conditions of 0 degrees C to 44 degrees C and 20 % to 90 % non-condensing RH.
- .5 Controllers (MCU, LCU): mount in wall mounted cabinet with hinged, keyed-alike locked door.
 - .1 Provide for conduit entrance from top, bottom or sides of panel.
 - .2 ECUs and TCUs to be mounted in equipment enclosures or separate enclosures.
 - .3 Mounting details as approved by Departmental Representative for ceiling mounting.
- .6 Cabinets to provide protection from water dripping from above, while allowing sufficient airflow to prevent internal overheating.
- .7 Provide surge and low voltage protection for interconnecting wiring connections.

1.6 SUBMITTALS

- .1 Make submittals in accordance with Section 01 33 00 Submittal Procedures and Section 25 05 02 EMCS: Shop Drawings, Product Data and Review Process.
 - .1 Submit product data sheets for each product item proposed for this project.

1.7 MAINTENANCE PROCEDURES

.1 Provide manufacturers recommended maintenance procedures for insertion in Section 25 05 03 - EMCS: Project Record Documents.

Part 2 Products

2.1 MASTER CONTROL UNIT (MCU)

- .1 General: primary function of MCU is to provide co-ordination and supervision of subordinate devices in execution of optimization routines such as demand limiting or enthalpy control.
- .2 Include high speed communication LAN Port for Peer to Peer communications with OWS(s) and other MCU level devices.
 - .1 MCU must support Proprietary Protocol, BACnet.
- .3 MCU local I/O capacity as follows:
 - .1 MCU I/O points as allocated in I/O Summary Table referenced in MD13800.

- .2 LCUs may be added to support system functions.
- .4 Central Processing Unit (CPU).
 - .1 Processor to consist of minimum 16 bit microprocessor capable of supporting software to meet specified requirements.
 - .2 CPU idle time to be more than 30% when system configured to maximum input and output with worst case program use.
 - .3 Minimum addressable memory to be at manufacturer's discretion but to support at least performance and technical specifications to include but not limited to:
 - .1 Non-volatile EEPROM to contain operating system, executive, application, sub-routine, other configurations definition software. Tape media not acceptable.
 - .2 Battery backed (72 hour minimum capacity) RAM (to reduce the need to reload operating data in event of power failure) to contain CDLs, application parameters, operating data or software that is required to be modifiable from operational standpoint such as schedules, setpoints, alarm limits, PID constants and CDL and hence modifiable on-line through operator panel or remote operator's interface. RAM to be downline loadable from OWS.
 - .4 Include uninterruptible clock accurate to plus or minus 5 secs/month, capable of deriving year/month/day/hour/minute/second, with rechargeable batteries for minimum 72 hour operation in event of power failure.
- .5 Local Operator Terminal (OT): Provide OT for each MCU unless otherwise specified in Section 25 90 01 EMCS: Site Requirements, Applications and System Sequences of Operation.
 - .1 Mount access/display panel in MCU or in suitable enclosure beside MCU as approved by Departmental Representative.
 - .2 Support operator's terminal for local command entry, instantaneous and historical data display, programs, additions and modifications.
 - .3 Display simultaneously minimum of 16 point identifiers allow operator to view single screen dynamic displays depicting entire mechanical systems. Point identifiers to be in English.
 - .4 Functions to include, but not be limited to, following:
 - .1 Start and stop points.
 - .2 Modify setpoints.
 - .3 Modify PID loop parameters.
 - .4 Override PID control.
 - .5 Change time/date.
 - .6 Add/modify/start/stop weekly scheduling.
 - .7 Add/modify setpoint weekly scheduling.
 - .8 Enter temporary override schedules.
 - .9 Define holiday schedules.
 - .10 View analog limits.
 - .11 Enter/modify analog warning limits.
 - .12 Enter/modify analog alarm limits.
 - .13 Enter/modify analog differentials.
 - .5 Provide access to real and calculated points in controller to which it is connected or to other controller in network. This capability not to be restricted to subset of predefined "global points" but to provide totally open exchange of data between OT and other controller in network.
 - .6 Operator access to OTs: same as OWS user password and password changes to automatically be downloaded to controllers on network.

- .7 Provide prompting to eliminate need for user to remember command format or point names. Prompting to be consistent with user's password clearance and types of points displayed to eliminate possibility of operator error.
- .8 Identity of real or calculated points to be consistent with network devices. Use same point identifier as at OWS's for access of points at OT to eliminate cross-reference or look-up tables.

2.2 LOCAL CONTROL UNIT (LCU)

- .1 Provide multiple control functions for typical built-up and package HVAC systems, hydronic systems and electrical systems.
- .2 Minimum of 16 I/O points of which minimum be 4 AOs, 4 AIs, 4 DIs, 4 DOs.
- .3 Points integral to one Building System to be resident on only one controller.
- .4 Microprocessor capable of supporting necessary software and hardware to meet specified requirements as listed in previous MCU article with following additions:
 - .1 Include minimum 2 interface ports for connection of local computer terminal.
 - .2 Design so that shorts, opens or grounds on input or output will not interfere with other input or output signals.
 - .3 Physically separate line voltage (70V and over) circuits from DC logic circuits to permit maintenance on either circuit with minimum hazards to technician and equipment.
 - .4 Include power supplies for operation of LCU and associated field equipment.
 - .5 In event of loss of communications with, or failure of, MCU, LCU to continue to perform control. Controllers that use defaults or fail to open or close positions not acceptable.
 - .6 Provide conveniently located screw type or spade lug terminals for field wiring.

2.3 TERMINAL/EQUIPMENT CONTROL UNIT (TCU/ECU)

- .1 Microprocessor capable of supporting necessary software and hardware to meet TCU/ECU functional specifications.
 - .1 TCU/ECU definition to be consistent with those defined in ASHRAE HVAC Applications Handbook section 45.
- .2 Controller to communicate directly with EMCS through EMCS LAN and provide access from EMCS OWS for setting occupied and unoccupied space temperature setpoints, flow setpoints, and associated alarm values, permit reading of sensor values, field control values (% open) and transmit alarm conditions to EMCS OWS.

2.4 SOFTWARE

- .1 General.
 - .1 Include as minimum: operating system executive, communications, application programs, operator interface, and systems sequence of operation CDL's.
 - .2 Include "firmware" or instructions which are programmed into ROM, EPROM, EEPROM or other non-volatile memory.
 - .3 Include initial programming of Controllers, for entire system.

- .2 Program and data storage.
 - .1 Store executive programs and site configuration data in ROM, EEPROM or other non-volatile memory.
 - .2 Maintain CDL and operating data including setpoints, operating constants, alarm limits in battery-backed RAM or EEPROM for display and modification by operator.
- .3 Programming languages.
 - .1 Program Control Description Logic software (CDL) using English like or graphical, high level, general control language.
 - .2 Structure software in modular fashion to permit simple restructuring of program modules if future software additions or modifications are required. GO TO constructs not allowed unless approved by Departmental Representative.
- .4 Operator Terminal interface.
 - .1 Operating and control functions include:
 - .1 Multi-level password access protection to allow user/manager to limit workstation control.
 - .2 Alarm management: processing and messages.
 - .3 Operator commands.
 - .4 Reports.
 - .5 Displays.
 - .6 Point identification.
- .5 Pseudo or calculated points.
 - .1 Software to provide access to value or status in controller or other networked controller in order to define and calculate pseudo point. When current pseudo point value is derived, normal alarm checks must be performed or value used to totalize.
 - .2 Inputs and outputs for process: include data from controllers to permit development of network-wide control strategies. Processes also to permit operator to use results of one process as input to number of other processes (e.g. cascading).
- .6 Control Description Logic (CDL):
 - .1 Capable of generating on-line project-specific CDLs which are software based, programmed into RAM or EEPROM and backed up to OWS. Owner must have access to these algorithms for modification or to be able to create new ones and to integrate these into CDLs on BC(s) from OWS.
 - .2 Write CDL in high level language that allows algorithms and interlocking programs to be written simply and clearly. Use parameters entered into system (e.g. setpoints) to determine operation of algorithm. Operator to be able to alter operating parameters on-line from OWS and BC(s) to tune control loops.
 - .3 Perform changes to CDL on-line.
 - .4 Control logic to have access to values or status of points available to controller including global or common values, allowing cascading or inter-locking control.
 - .5 Energy optimization routines including enthalpy control, supply temperature reset, to be LCU or MCU resident functions and form part of CDL.
 - .6 MCU to be able to perform following pre-tested control algorithms:
 - .1 Two position control.
 - .2 Proportional Integral and Derivative (PID) control.
 - .7 Control software to provide ability to define time between successive starts for each piece of equipment to reduce cycling of motors.

- .8 Provide protection against excessive electrical-demand situations during start-up periods by automatically introducing time delays between successive start commands to heavy electrical loads.
- .9 Power Fail Restart: upon detection of power failure system to verify availability of Emergency Power as determined by emergency power transfer switches and analyze controlled equipment to determine its appropriate status under Emergency power conditions and start or stop equipment as defined by I/O Summary. Upon resumption of normal power as determined by emergency power transfer switches, MCU to analyze status of controlled equipment, compare with normal occupancy scheduling, turn equipment on or off as necessary to resume normal operation.
- .7 Event and Alarm management: use management by exception concept for Alarm Reporting. This is system wide requirement. This approach will insure that only principal alarms are reported to OWS. Events which occur as direct result of primary event to be suppressed by system and only events which fail to occur to be reported. Such event sequence to be identified in I/O Summary and sequence of operation. Examples of above are, operational temperature alarms limits which are exceeded when main air handler is stopped, or General Fire condition shuts air handlers down, only Fire alarm status shall be reported. Exception is, when air handler which is supposed to stop or start fails to do so under event condition.
- .8 Energy management programs: include specific summarizing reports, with date stamp indicating sensor details which activated and or terminated feature.
 - MCU in coordination with subordinate LCU, TCU, ECU to provide for the following energy management routines:
 - .1 Time of day scheduling.
 - .2 Calendar based scheduling.
 - .3 Holiday scheduling.
 - .4 Temporary schedule overrides.
 - .5 Optimal start stop.

.1

- .6 Night setback control.
- .7 Enthalpy (economizer) switchover.
- .8 Peak demand limiting.
- .9 Temperature compensated load rolling.
- .10 Fan speed/flow rate control.
- .11 Cold deck reset.
- .12 Hot deck reset.
- .13 Hot water reset.
- .14 Chilled water reset.
- .15 Condenser water reset.
- .16 Chiller sequencing.
- .17 Night purge.
- .2 Programs to be executed automatically without need for operator intervention and be flexible enough to allow customization.
- .3 Apply programs to equipment and systems as specified or requested by the Departmental Representative.
- .9 Function/Event Totalization: features to provide predefined reports which show daily, weekly, and monthly accumulating totals and which include high rate (time stamped) and low rate (time stamped) and accumulation to date for month.
 - .1 MCUs to accumulate and store automatically run-time for binary input and output points.
 - .2 MCU to automatically sample, calculate and store consumption totals on daily, weekly or monthly basis for user-selected analog or binary pulse input-type points.

- .3 MCU to automatically count events (number of times pump is cycled off and on) daily, weekly or monthly basis.
- .4 Totalization routine to have sampling resolution of 1 min or less for analog inputs.
- .5 Totalization to provide calculations and storage of accumulations up to 99,999.9 units (eg. kWH, litres, tonnes, etc.).
- .6 Store event totalization records with minimum of 9,999,999 events before reset.
- .7 User to be able to define warning limit and generate user-specified messages when limit reached.

2.5 LEVELS OF ADDRESS

- .1 Upon operator's request, EMCS to present status of any single 'point', 'system' or point group, entire 'area', or entire network on printer or OWS as selected by operator.
 - .1 Display analog values digitally to 1 place of decimals with negative sign as required.
 - .2 Update displayed analog values and status when new values received.
 - .3 Flag points in alarm by blinking, reverse video, different colour, bracketed or other means to differentiate from points not in alarm.
 - .4 Updates to be change-of-value (COV)-driven or if polled not exceeding 2 second intervals.

2.6 POINT NAME SUPPORT

.1 Controllers (MCU, LCU) to support PWGSC point naming convention as defined in Section 25 05 01 - EMCS: General Requirements.

Part 3 Execution

3.1 LOCATION

.1 Location of Controllers to be approved by Departmental Representative.

3.2 INSTALLATION

- .1 Install Controllers in secure locking enclosures as indicated and as directed by Departmental Representative.
- .2 Provide necessary power from local 120 V branch circuit panel for equipment.
- .3 Install tamper locks on breakers of circuit breaker panel.
- .4 Use uninterruptible Power Supply (UPS) and emergency power when equipment must operate in emergency and co-ordinating mode.

1.1 SUMMARY

- .1 Section Includes:
 - .1 Control devices integral to the Building Energy Monitoring and Control System (EMCS): transmitters, sensors, controls, meters, switches, transducers, dampers, damper operators, valves, valve actuators, and low voltage current transformers.

1.2 REFERENCES

- .1 American National Standards Institute (ANSI).
 - .1 ANSI C12.7-1993(R1999), Requirements for Watthour Meter Sockets.
 - .2 ANSI/IEEE C57.13-1993, Standard Requirements for Instrument Transformers.
- .2 American Society for Testing and Materials International, (ASTM). .1 ASTM B148-97(03), Standard Specification for Aluminum-Bronze Sand Castings.
- .3 National Electrical Manufacturer's Association (NEMA).
 - .1 NEMA 250-03, Enclosures for Electrical Equipment (1000 Volts Maximum).
- .4 Air Movement and Control Association, Inc. (AMCA).
 - .1 AMCA Standard 500-D-98, Laboratory Method of Testing Dampers For Rating.
- .5 Canadian Standards Association (CSA International).
 - .1 CSA-C22.1-02, Canadian Electrical Code, Part 1 (19th Edition), Safety Standard for Electrical Installations.

1.3 DEFINITIONS

.1 Acronyms and Definitions: refer to Section 25 05 01 - EMCS: General Requirements.

1.4 SUBMITTALS

- .1 Submit shop drawings and manufacturer's installation instructions in accordance with Section 25 05 02 EMCS: Submittals and Review Process.
- .2 Pre-Installation Tests.
 - .1 Submit samples at random from equipment shipped, as requested by Departmental Representative, for testing before installation. Replace devices not meeting specified performance and accuracy.
- .3 Manufacturer's Instructions:
 - .1 Submit manufacturer's installation instructions for specified equipment and devices.

1.5 EXISTING CONDITIONS

- .1 Cutting and Patching: in accordance with Section 01 73 03 Execution Requirements supplemented as specified herein.
- .2 Repair surfaces damaged during execution of Work.

.3 Turn over to Departmental Representative existing materials removed from Work not identified for re-use.

Part 2 Products

2.1 GENERAL

- .1 Control devices of each category to be of same type and manufacturer.
- .2 External trim materials to be corrosion resistant. Internal parts to be assembled in watertight, assembly.
- .3 Operating conditions: 0 32 degrees C with 10 90% RH (non-condensing) unless otherwise specified.
- .4 Terminations: use standard conduit box with slot screwdriver compression connector block unless otherwise specified.
- .5 Transmitters and sensors to be unaffected by external transmitters including walkie talkies.
- .6 Account for hysteresis, relaxation time, maximum and minimum limits in applications of sensors and controls.
- .7 Outdoor installations: use weatherproof construction in NEMA 4 enclosures.
- .8 Devices installed in user occupied space not exceed Noise Criteria (NC) of 35. Noise generated by any device must not be detectable above space ambient conditions.
- .9 Range: including temperature, humidity, pressure, as indicated in I/O summary in Section 25 90 01 EMCS: Site Requirements, Applications and System Sequences of Operation.

2.2 TEMPERATURE SENSORS

- .1 General: except for room sensors to be resistance or thermocouple type to following requirements:
 - .1 RTD's: 100 or 1000 ohm at 0 degrees C (plus or minus 0.2 ohms) platinum element with strain minimizing construction, 3 integral anchored leadwires. Coefficient of resistivity: 0.00385 ohms/ohm degrees C.
 - .2 Sensing element: hermetically sealed.
 - .3 Stem and tip construction: copper or type 304 stainless steel.
 - .4 Time constant response: less than 3 seconds to temperature change of 10 degrees C.
 - .5 Immersion wells: NPS 1/2, stainless steel spring loaded construction, with heat transfer compound compatible with sensor. Insertion length as indicated.
- .2 Room temperature sensors and display wall modules.
 - .1 Temperature sensing and display wall module.
 - .1 LCD display to show space temperature and temperature setpoint.
 - .2 Buttons for occupant selection of temperature setpoint and occupied/unoccupied mode.
 - .3 Jack connection for plugging in laptop personal computer contractor supplied zone terminal unit and/or contractor supplied palm compatible handheld device for access to zone bus.

- .4 Integral thermistor sensing element 10,000 ohm at 24 degrees.
- .5 Accuracy 0.2 degrees C over range of 0 to 70 degrees C.
- .6 Stability 0.02 degrees C drift per year.
- .7 Separate mounting base for ease of installation.
- .3 Duct temperature sensors:
 - .1 General purpose duct type: suitable for insertion into ducts at various orientations, insertion length 460 mm or as indicated.
 - .2 Averaging duct type: incorporates numerous sensors inside assembly which are averaged to provide one reading. Minimum insertion length 6000 mm. Bend probe at field installation time to 100 mm radius at point along probe without degradation of performance.
- .4 Outdoor air temperature sensors:
 - .1 Use existing.

2.3 TEMPERATURE TRANSMITTERS

- .1 Requirements:
 - .1 Input circuit: to accept 3-lead, 100 or 1000 ohm at 0 degrees C, platinum resistance detector type sensors.
 - .2 Power supply: 24 V DC into load of 575 ohms. Power supply effect less than 0.01 degrees C per volt change.
 - .3 Output signal: 4 20 mA into 500 ohm maximum load.
 - .4 Input and output short circuit and open circuit protection.
 - .5 Output variation: less than 0.2% of full scale for supply voltage variation of plus or minus 10 %.
 - .6 Combined non-linearity, repeatability, hysteresis effects: not to exceed plus or minus 0.5% of full scale output.
 - .7 Maximum current to 100 or 1000 ohm RTD sensor: not to exceed 25 mA.
 - .8 Integral zero and span adjustments.
 - .9 Temperature effects: not to exceed plus or minus 1.0% of full scale/50 degrees C.
 - .10 Long term output drift: not to exceed 0.25 % of full scale/6 months.
 - Transmitter ranges: select narrowest range to suit application from following:
 - .1 Minus 50 degrees C to plus 50 degrees C, plus or minus 0.5 degrees C.
 - .2 0 to 100 degrees C, plus or minus 0.5 degrees C.
 - .3 0 to 50 degrees C, plus or minus 0.25 degrees C.
 - .4 0 to 25 degrees C, plus or minus 0.1 degrees C.
 - .5 10 to 35 degrees C, plus or minus 0.25 degrees C.

2.4 HUMIDITY SENSORS

.11

- .1 Room and Duct Requirements:
 - .1 Range: 5 90 % RH minimum.
 - .2 Operating temperature range: 0 60 degrees C.
 - .3 Absolute accuracy:
 - .1 Duct sensors: plus or minus 3 %.
 - .2 Room sensors: plus or minus 2 %.
 - .4 Sheath: stainless steel with integral shroud for specified operation in air streams of up to 10 m/s.
 - .5 Maximum sensor non-linearity: plus or minus 2% RH with defined curves.
 - .6 Room sensors: locate in air stream near RA grille or wall mounted as indicated.
 - .7 Duct mounted sensors: locate so that sensing element is in air flow in duct.

- .2 Outdoor Humidity Requirements:
 - .1 Range: 0 100 % RH minimum.
 - .2 Operating temperature range: -40 50 degrees C.
 - .3 Absolute accuracy: plus or minus 2%.
 - .4 Temperature coefficient: plus or minus 0.03%RH/degrees C over 0 to 50 deg C.
 - .5 Must be unaffected by condensation or 100% saturation.
 - .6 No routine maintenance or calibration is required.

2.5 HUMIDITY TRANSMITTERS

- .1 Requirements:
 - .1 Input signal: from RH sensor.
 - .2 Output signal: 4 20 mA onto 500 ohm maximum load.
 - .3 Input and output short circuit and open circuit protection.
 - .4 Output variations: not to exceed 0.2 % of full scale output for supply voltage variations of plus or minus 10%.
 - .5 Output linearity error: plus or minus 1.0% maximum of full scale output.
 - .6 Integral zero and span adjustment.
 - .7 Temperature effect: plus or minus 1.0 % full scale/6 months.
 - .8 Long term output drift: not to exceed 0.25 % of full scale output/6 months.

2.6 PRESSURE TRANSDUCERS

- .1 Requirements:
 - .1 Combined sensor and transmitter measuring pressure.
 - .1 Internal materials: suitable for continuous contact with industrial standard instrument air, compressed air, water, steam, as applicable.
 - .2 Output signal: 4 20 mA into 500 ohm maximum load.
 - .3 Output variations: less than 0.2 % full scale for supply voltage variations of plus or minus 10 %.
 - .4 Combined non-linearity, repeatability, and hysteresis effects: not to exceed plus or minus 0.5 % of full scale output over entire range.
 - .5 Temperature effects: not to exceed plus or minus 1.5 % full scale/ 50 degrees C.
 - .6 Over-pressure input protection to at least twice rated input pressure.
 - .7 Output short circuit and open circuit protection.
 - .8 Accuracy: plus or minus 1% of Full Scale.

2.7 DIFFERENTIAL PRESSURE TRANSMITTERS

- .1 Requirements:
 - .1 Internal materials: suitable for continuous contact with industrial standard instrument air, compressed air, water, steam, as applicable.
 - .2 Output signal: 4 20 mA into 500 ohm maximum load.
 - .3 Output variations: less than 0.2 % full scale for supply voltage variations of plus or minus 10 %.
 - .4 Combined non-linearity, repeatability, and hysteresis effects: not to exceed plus or minus 0.5 % of full scale output over entire range.
 - .5 Integral zero and span adjustment.
 - .6 Temperature effects: not to exceed plus or minus 1.5 % full scale/ 50 degrees C.
 - .7 Over-pressure input protection to at least twice rated input pressure.
 - .8 Output short circuit and open circuit protection.
 - .9 Unit to have 12.5 mm N.P.T. conduit connection. Enclosure to be integral part of unit.

2.8 STATIC PRESSURE SENSORS

- .1 Requirements:
 - .1 Multipoint element with self-averaging manifold.
 - .1 Maximum pressure loss: 160 Pa at 10 m/s. (Air stream manifold).
 - .2 Accuracy: plus or minus 1 % of actual duct static pressure.

2.9 STATIC PRESSURE TRANSMITTERS

- .1 Requirements:
 - .1 Output signal: 4 20 mA linear into 500 ohm maximum load.
 - .2 Calibrated span: not to exceed 150 % of duct static pressure at maximum flow.
 - .3 Accuracy: 0.4% of span.
 - .4 Repeatability: within 0.5 % of output.
 - .5 Linearity: within 1.5 % of span.
 - .6 Deadband or hysteresis: 0.1% of span.
 - .7 External exposed zero and span adjustment.
 - .8 Unit to have 12.5 mm N.P.T. conduit connection. Enclosure to be integral part of unit

2.10 VELOCITY PRESSURE SENSORS

- .1 Requirements:
 - .1 Multipoint static and total pressure sensing element with self-averaging manifold with integral air equalizer and straightener section.
 - .2 Maximum pressure loss: 37 Pa at 1000 m/s.
 - .3 Accuracy: plus or minus 1 % of actual duct velocity.

2.11 VELOCITY PRESSURE TRANSMITTERS

- .1 Requirements:
 - .1 Output signal: 4 20 mA linear into 500 ohm maximum load.
 - .2 Calibrated span: not to exceed 125% of duct velocity pressure at maximum flow.
 - .3 Accuracy: 0.4 % of span.
 - .4 Repeatability: within 0.1 % of output.
 - .5 Linearity: within 0.5 % of span.
 - .6 Deadband or hysteresis: 0.1% of span.
 - .7 External exposed zero and span adjustment.
 - .8 Unit to have 12.5 mm N.P.T. conduit connection. Enclosure to be integral part of unit.

2.12 PRESSURE AND DIFFERENTIAL PRESSURE SWITCHES

- .1 Requirements:
 - .1 Internal materials: suitable for continuous contact with compressed air, water, steam, etc., as applicable.
 - .2 Adjustable setpoint and differential.
 - .3 Switch: snap action type, rated at 120V, 15 amps AC or 24 V DC.
 - .4 Switch assembly: to operate automatically and reset automatically when conditions return to normal. Over-pressure input protection to at least twice rated input pressure.
 - .5 Accuracy: within 2% repetitive switching.

- .6 Provide switches with isolation valve and snubber, where code allows, between sensor and pressure source.
- .7 Switches on steam and high temperature hot water service: provide pigtail syphon.

2.13 TEMPERATURE SWITCHES

.1 Requirements:

.1

- Operate automatically. Reset automatically, except as follows:
 - .1 Low temperature detection: manual reset.
 - .2 High temperature detection: manual reset.
- .2 Adjustable setpoint and differential.
- .3 Accuracy: plus or minus 1 degrees C.
- .4 Snap action rating: 120V, 15 amps or 24V DC as required. Switch to be DPST for hardwire and EMCS connections.
- .5 Type as follows:
 - .1 Room: for wall mounting on standard electrical box [with] [without] protective guard as indicated.
 - .2 Duct, general purpose: insertion length = 460 mm.
 - .3 Thermowell: stainless steel, with compression fitting for NPS 3/4 thermowell. Immersion length: 100 mm.
 - .4 Low temperature detection: continuous element with 6000 mm insertion length, duct mounting, to detect coldest temperature in any 30 mm length.
 - .5 Strap-on: with helical screw stainless steel clamp.

2.14 TANK LEVEL SWITCHES - CONDENSATE

- .1 Requirements:
 - .1 Indicate high/low water level and to alarm.
 - .2 For mounting on top of tank.
 - .3 Maximum operating temperature: 120 degrees C.
 - .4 Snap action contacts rated 15 amp at 120 V.
 - .5 Adjustable setpoint and differential.

2.15 SUMP LEVEL SWITCHES

- .1 Requirements:
 - .1 Liquid level activated switch sealed in waterproof and shockproof enclosure.
 - .2 Complete with float, flexible cord, weight. Instrument casing to be suitable for immersion in measured liquid.
 - .3 N.O./N.C. Contacts rated at 15 amps at 120V AC. CSA approval for up to 250 volt 10 amps AC.

2.16 ELECTROMECHANICAL RELAYS

- .1 Requirements:
 - .1 Double voltage, DPDT, plug-in type with termination base.
 - .2 Coils: rated for 120V AC or 24V DC. Other voltage: provide transformer.
 - .3 Contacts: rated at 5 amps at 120 V AC.
 - .4 Relay to have visual status indication.

2.17 SOLID STATE RELAYS

- .1 General:
 - .1 Relays to be socket or rail mounted.
 - .2 Relays to have LED Indicator
 - .3 Input and output Barrier Strips to accept 14 to 28 AWG wire.
 - .4 Operating temperature range to be -20 degrees C to 70 degrees C.
 - .5 Relays to be CSA Certified.
 - .6 Input/output Isolation Voltage to be 4000 VAC at 25 degrees C for 1 second maximum duration.
 - .7 Operational frequency range, 45 to 65 HZ.
- .2 Input:
 - .1 Control voltage, 3 to 32 VDC.
 - .2 Drop out voltage, 1.2 VDC.
 - .3 Maximum input current to match AO (Analog Output) board.
- .3 Output.
 - .1 AC or DC Output Model to suit application.

2.18 CURRENT TRANSDUCERS

- .1 Requirements:
- .2 Purpose: combined sensor/transducer, to measure line current and produce proportional signal in one of following ranges:
 - .1 4-20 mA DC.
 - .2 0-1 volt DC.
 - .3 0-10 volts DC.
 - .4 0-20 volts DC.
- .3 Frequency insensitive from 10 80 hz.
- .4 Accuracy to 0.5% full scale.
- .5 Zero and span adjustments. Field adjustable range to suit motor applications.
- .6 Adjustable mounting bracket to allow for secure/safe mounting inside MCC.

2.19 CURRENT SENSING RELAYS

- .1 Requirements:
 - .1 Suitable to detect belt loss or motor failure.
 - .2 Trip point adjustment, output status LED.
 - .3 Split core for easy mounting.
 - .4 Induced sensor power.
 - .5 Relay contacts: capable of handling 0.5 amps at 30 VAC / DC. Output to be NO solid state.
 - .6 Suitable for single or 3 phase monitoring. For 3-Phase applications: provide for discrimination between phases.
 - .7 Adjustable latch level.

2.20 CONTROL DAMPERS

- .1 Refer to Section 23 33 15 operating Dampers for construction, materials and performance of Control Dampers
- .2 Arrangements: dampers mixing warm and cold air to be parallel blade, mounted at right angles to each other, with blades opening to mix air stream.
- .3 Jack shafts:
 - .1 25 mm diameter solid shaft, constructed of corrosion resistant metal complete with required number of pillow block bearings to support jack shaft and operate dampers throughout their range.
 - .2 Include corrosion resistant connecting hardware to accommodate connection to damper actuating device.
 - .3 Install using manufacturers installation guidelines.
 - .4 Use same manufacturer as damper sections.

2.21 ELECTRONIC CONTROL DAMPER ACTUATORS

- .1 Requirements:
 - .1 Direct mount proportional type as indicated.
 - .2 Spring return for "fail-safe" in Normally Open or Normally Closed position as indicated.
 - .3 Operator: size to control dampers against maximum pressure and dynamic closing/opening pressure, whichever is greater.
 - .4 Power requirements: 5 VA maximum at 24 V AC.
 - .5 Operating range: 0 10 V DC or 4 20 mA DC.
 - .6 For VAV box applications floating control type actuators may be used.
 - .7 Damper actuator to drive damper from full open to full closed in less than 120 seconds.

2.22 CONTROL VALVES

- .1 Body: globe style, characterized ball.
 - .1 Flow characteristic as indicated on control valve schedule: linear, equal percentage.
 - .2 Flow factor (KV) to be based on 15% of total system pressure drop but not to exceed 10' of head across valve.
 - .3 Normally open or normally closed, as indicated.
 - .4 Two or three port, as indicated.
 - .5 Leakage rate ANSI class IV, 0.01% of full open valve capacity.
 - .6 Packing easily replaceable.
 - .7 Stem, stainless steel.
 - .8 Plug and seat, stainless steel, brass.
 - .9 Disc, replaceable, material to suit application.
 - .10 NPS 2 and under:
 - .1 Screwed National Pipe Thread (NPT) tapered female connections.
 - .2 Valves to ANSI Class 250, valves to bear ANSI mark.
 - .3 Rangeability 50:1 minimum.
 - .11 NPS $2\frac{1}{2}$ and larger:
 - .1 Flanged connections.
 - .2 Valves to ANSI Class 250 as indicated, valves to bear ANSI mark.
 - .3 Rangeability 100:1 minimum.

- .2 Butterfly Valves NPS 2 and larger:
 - .1 Body: for chilled water ANSI Class 300 cast iron lugged body and wafer body installed in locations as indicated. For steam and heating water ANSI Class 300 carbon steel lugged body and wafer body.
 - .2 End connections to suit flanges that are ANSI Class 300.
 - .3 Extended stem neck to provide adequate clearance for flanges and insulation.
 - .4 Pressure limit: bubble tight sealing to 170 kilopascals.
 - .5 Disc/vane: 316 stainless steel.
 - .6 Seat: for service on chilled water PTFE (polytetrafluoroethylene), or EPDM (ethylene propylene diene monomer). For service on steam and heating water PTFE, or RTFE (reinforced PTFE).
 - .7 Stem: 316 stainless steel.
 - .8 Flow factor (KV) to be based on 15% of total system pressure drop but not to exceed 10' of head across valve.
 - .9 Flow characteristic linear.
 - .10 Maximum flow requirement as indicated on control valve schedule.
 - .11 Maximum pressure drop as indicated on control valve schedule: pressure drop not to exceed one half of inlet pressure.
 - .12 Normally open or normally closed, as indicated.
 - .13 Valves are to be provided complete with mounting plate for installation of actuators.

2.23 ELECTRONIC / ELECTRIC VALVE ACTUATORS

- .1 Requirements:
 - .1 Construction: steel, cast iron, aluminum.
 - .2 Control signal: 0-10V DC or 4-20 mA DC.
 - .3 Positioning time: to suit application. 90 sec maximum.
 - .4 Fail to normal position as indicated.
 - .5 Scale or dial indication of actual control valve position.
 - .6 Size actuator to meet requirements and performance of control valve specifications.
 - .7 For interior and perimeter terminal heating and cooling applications floating control actuators are acceptable.
 - .8 Minimum shut-off pressure: refer to control valve schedule.

2.24 PANELS

- .1 Free-standing or wall mounted enamelled steel cabinets with hinged and key-locked front door.
- .2 Multiple panels as required to handle requirements with additional space to accommodate 25% additional capacity as required by Departmental Representative without adding additional cabinets.
- .3 Panels to be lockable with same key.

2.25 WIRING

- .1 In accordance with Divisions 26 Specifications.
- .2 For wiring under 70 volts use FT6 rated wiring where wiring is not run in conduit. Other cases use FT4 wiring.
- .3 Wiring must be continuous without joints.

- .4 Sizes:
 - .1 Field wiring to digital device: #18AWG stranded twisted pair.
 - .2 Analog input and output: shielded #18 stranded twisted pair.

Part 3 Execution

3.1 INSTALLATION

- .1 Install equipment, components so that manufacturer's and CSA labels are visible and legible after commissioning is complete.
- .2 Install field control devices in accordance with manufacturers recommended methods, procedures and instructions.
- .3 Temperature transmitters, humidity transmitters, current-to-pneumatic transducers, solenoid air valves, controllers, relays: install in NEMA I enclosure or as required for specific applications. Provide for electrolytic isolation in cases when dissimilar metals make contact.
- .4 Support field-mounted panels, transmitters and sensors on pipe stands or channel brackets.
- .5 Fire stopping: provide space for fire stopping in accordance with Section 07 84 00 Firestopping. Maintain fire rating integrity.
- .6 Electrical:
 - .1 Complete installation in accordance with Division 26..
 - .2 Modify existing starters to provide for EMCS as indicated in I/O Summaries and as indicated.
 - .3 Trace existing control wiring installation and provide updated wiring schematics including additions, deletions to control circuits for review by Departmental Representative before beginning Work.
 - .4 Terminate wires with screw terminal type connectors suitable for wire size, and number of terminations.
 - .5 Install communication wiring in conduit.
 - .1 Provide complete conduit system to link Building Controllers, field panels and OWS(s).
 - .2 Conduit sizes to suit wiring requirements and to allow for future expansion capabilities specified for systems.
 - .3 Maximum conduit fill not to exceed 40%.
 - .4 Design drawings do not show conduit layout.
 - .6 Do not run exposed conduits in normally occupied spaces unless otherwise indicated or unless impossible to do otherwise. Departmental Representative to review before starting Work. Wiring in mechanical rooms, wiring in service rooms and exposed wiring must be in conduit.
- .7 Pneumatic: provide Pneumatic tubing, valves and fittings for field control devices in accordance with Section 23 09 43 Pneumatic Control System for HVAC.
- .8 Mechanical: supply and install in accordance with Section 23 09 43 Pneumatic Control System for HVAC.
 - .1 Pipe Taps.
 - .2 Wells and Control Valves.
 - .3 Air flow stations, dampers, and other devices.

3.2 TEMPERATURE AND HUMIDITY SENSORS

- .1 Stabilize to ensure minimum field adjustments or calibrations.
- .2 Readily accessible and adaptable to each type of application to allow for quick easy replacement and servicing without special tools or skills.
- .3 Outdoor installation:
 - .1 Protect from solar radiation and wind effects by non-corroding shields.
 - .2 Install in NEMA 4 enclosures.
- .4 Duct installations:
 - .1 Do not mount in dead air space.
 - .2 Locate within sensor vibration and velocity limits.
 - .3 Securely mount extended surface sensor used to sense average temperature.
 - .4 Thermally isolate elements from brackets and supports to respond to air temperature only.
 - .5 Support sensor element separately from coils, filter racks.
- .5 Averaging duct type temperature sensors.
 - .1 Install averaging element horizontally across the ductwork starting 300 mm from top of ductwork. Each additional horizontal run to be no more than 300 mm from one above it. Continue until complete cross sectional area of ductwork is covered. Use multiple sensors where single sensor does not meet required coverage.
 - .2 Wire multiple sensors in series for low temperature protection applications.
 - .3 Wire multiple sensors separately for temperature measurement.
 - .4 Use software averaging algorithm to derive overall average for control purposes.
- .6 Thermowells: install for piping installations.
 - .1 Locate well in elbow where pipe diameter is less than well insertion length.
 - .2 Thermowell to restrict flow by less than 30%.
 - .3 Use thermal conducting paste inside wells.

3.3 PANELS

- .1 Arrange for conduit and tubing entry from top, bottom or either side.
- .2 Wiring and tubing within panels: locate in trays or individually clipped to back of panel.
- .3 Identify wiring and conduit clearly.

3.4 MAGNEHELIC PRESSURE INDICATORS

- .1 Install adjacent to fan system static pressure sensor and duct system velocity pressure sensor as reviewed by Departmental Representative.
- .2 Locations: as indicated.

3.5 PRESSURE AND DIFFERENTIAL PRESSURE SWITCHES AND SENSORS

- .1 Install isolation valve and snubber on sensors between sensor and pressure source where code allows.
 - .1 Protect sensing elements on steam and high temperature hot water service with pigtail syphon between valve and sensor.

3.6 **IDENTIFICATION**

.1 Identify field devices in accordance with Section 25 05 54 - EMCS: Identification.

3.7 TESTING AND COMMISSIONING

.1 Calibrate and test field devices for accuracy and performance in accordance with Section 25 01 11 - EMCS: Start-up, Verification and Commissioning.

1.1 SUMMARY

- .1 Section Includes:
 - .1 At minimum detailed narrative description of Sequence of Operation of each system including ramping periods and reset schedules.
 - .1 Control Description Logic (CDL) for each system.
 - .2 Input/Output Point Summary Tables for each system.
 - .3 System Diagrams consisting of the following; EMCS System architectural diagram, Control Design Schematic for each system (as viewed on OWS), System flow diagram for each system with electrical ladder diagram for MCC starter interface.

1.2 REFERENCES

- .1 Public Works and Government Services Canada (PWGSC) / Real Property Branch / Architectural and Engineering Services.
 - .1 MD13800-September 2000, Energy Management and Control Systems (EMCS) Design Manual. English: ftp://ftp.pwgsc.gc.ca/rps/docentre/mechanical/me214e.pdf

1.3 SEQUENCING

.1 Present sequencing of operations for systems, in accordance with MD13800 - Energy Management and Control Systems (EMCS) Design Manual.

1.4 GRAPHICS IDENTIFICATION

.1 Contractor shall utilize signage drawings for all graphics and identification. The signage drawings indicate the room numbering to be utilized in the building, which does not match the room numbering utilized for the construction drawings.

Part 2 Products

2.1 NOT USED

.1 Not Used.

Part 3 Execution

3.1 SEQUENCE OF OPERATION

- 1. The Energy Management Routines stated as a requirement of the EMCS under Section 25 30 01 EMCS: Building Controls, Item 2.4.8 shall be incorporated under each and every Sequence of Operation to which they apply. Controls Contractor shall write energy management routines into Sequence of Operation submitted for review. This includes, but is not limited to, the following:
 - .1 Optimal Start/Stop: To be incorporated for each and every system being scheduled through the EMCS.
 - .2 Night Setback Control: To be incorporated for each and every comfort heating and cooling systems that are operational through unoccupied periods.
 - .3 Chilled Water Reset: Chilled water loop to be reset based on ambient conditions and space demand (indoor/outdoor reset and demand reset).
 - .4 Flow Rate Control: EMCS to control and optimize variable flow rate systems based on demand reset.
- .2 Chilled Water Fan Coil Loop Pumps:
 - .1 EMCS control algorithm shall provide lead/lag and alternator sequencing of the Chilled Water Fan Coil Loop Pumps P-1a and P-1b.
 - .2 Pumps shall energize on a call for cooling during occupied schedule. EMCS shall include a seasonal flag to disable pumps at conclusion of cooling season.
 - .3 The EMCS shall monitor each pump discharge pressure and alarm on high pressure (set to slightly less than a dead head condition of the pump and site verified). Note that this is not permitted to control pump speed.
 - .4 Pump speed is controlled directly from pump VFD.
 - .5 The Facility Management System shall monitor and address all points required to meet sequence of operation, including but not limited to, the following:
 - pump status on/off/alarm (P-1a and P-1b)
 - discharge pressure (P-1a and P-1b)
 - discharge pressure high limit setpoint (P-1a and P-1b)
 - pump run times
 - lead/lag switch over time
- .3 Chilled Water Heat Exchanger:
 - .1 EMCS shall modulate three-way valve to maintain the chilled water supply temperature for the fan coil loop based on demand reset and indoor/outdoor reset. Valve shall by-pass heat exchanger when Chilled Water Fan Coil Loop Pumps are off.
 - .2 The Facility Management System shall monitor and address all points required to meet sequence of operation, including but not limited to the following:
 - HX-1 cooling enable (based on Fan Coil Pumps)
 - HX-1 control valve position
 - HX-1 intake glycol water temperature (plant side)
 - HX-1 discharge glycol water temperature (plant side)
 - HX-1 intake water temperature (fan coil loop side)
 - HX-1 discharge water temperature (fan coil loop side)

- .4 Glycol Chilled Water Plant Interface:
 - .1 The EMCS shall send a signal to the glycol chilled water plant on a call from cooling on the fan coil loop.
 - .2 The EMCS shall monitor the glycol chilled water supply and return water temperature for the B-Block Loop.
 - .3 The Facility Management System shall monitor and address all points required to meet sequence of operation, including but not limited to the following:
 - chiller plant status on/off/alarm
 - cooling demand from b-block
 - B-Block glycol chilled water supply temperature
 - B-block glycol chilled water return temperature
- .5 Elevator Room Exhaust Fan:
 - .1 The EMCS shall control the operation of the fan.
 - .2 The EMCS shall start the fan based on the space temperature. When the space is above setpoint, damper shall open and fan shall start . When the space is below setpoint, the fan shall be off and the damper closed. When energized, fan shall operate for a minimum adjustable time period.
 - .3 EMCS shall alarm on space high temperature.
 - .4 The Facility Management System shall monitor and address all points required to meet sequence of operation, including but not limited to the following:
 - Fan, on/off/alarm (EF-4)
 - Space Temperature
 - Space Temperature Setpoint
 - High space temperature limit alarm (initially set to 28 Deg.C.)
 - damper position
 - minimum run time (initially 30 minutes)
- .6 Dedicated Air Conditioning Units (AC-1 to AC-4):
 - .1 Each dedicated air conditioning unit shall operate from a local programmable thermostat matched to the air conditioning unit.
 - .2 Install and wire controls associated with AC unit.
 - .3 The EMCS shall monitor space temperature from stainless steel sensor (separate from ACU temperature sensor) and alarm on high limit.
 - .4 The Facility Management System shall monitor and address all points required to meet sequence of operation, including but not limited to the following:
 - Space temperature
 - Space temperature high limit (initially set to 26 Deg.C.)
- .7 Zone Control (adjust sequence according to equipment operating in each zone):
 - .1 EMCS shall control new zones as identified by thermostat locations including a combination of fan coils and steam radiation.
 - .2 Each zone system shall be complete with an operator adjustable occupancy schedule. During occupied mode, fan coil shall be on unless overridden.

.3 Adjustable space temperature sensor complete with occupancy override shall have a midpoint setpoint with a space adjustable slider to increase and decrease setpoint by an operator adjustable amount, initially set to 1.5 deg.C. The midpoint shall reset between an adjustable summer setpoint, initially set to 24 deg.C. and an adjustable winter setpoint, initially set to 22 deg.C. Reset shall be based on the following:

Outdoor Temperature	Setpoint
25 deg.C. and above	Summer Setpoint (24 deg. C.)
10 deg.C. and below	Winter Setpoint (21 deg.C.)
	1.1 1.11 .1 0

- .4 During the occupied mode a control algorithm shall sequence the 2-way or three way (refer to drawings) modulating cooling coil, fan coil fan speeds (low, medium, high), and 2-way modulating radiation heating valve to meet the space setpoint.
- .5 On a call for cooling, the control valve (two-way or three-way, refer to drawings) shall modulate to maintain space setpoint. Any associated heating valves shall be closed. EMCS shall increase fan coil air speed from minimum to maximum as required to suit cooling. EMCS shall ensure air temperature does not fall below low limit.
- .6 On a call for heating, radiation heating valves shall modulate to maintain the space temperature. The chilled water control valve shall be closed. EMCS shall maintain fan coil fan speed at lowest setting.
- .7 The EMCS shall monitor occupancy override, override shall shut down the fan coil for an adjustable period (initially set to 30 minutes). If occupant disengages override, fan coil shall operate as normal.
- .8 During scheduled unoccupied periods, the fan coil shall be off and chilled water valve closed.
- .9 The Facility Management System shall monitor and address all points required to meet sequence of operation, including, but not limited to, the following:
 - occupied/unoccupied (schedule)
 - override condition

_

- fan coil status on/off/alarm
- space low temperature alarm (initially set to 10 Deg.C.)
- fan coil discharge air temperature
- fan coil speed (low, medium, high)
- space temperature
- space temperature setpoint
- space temperature slider adjustment range
- cooling coil valve position (flow through coil)
- steam radiation valve signal (EMCS shall indicate number of valves controlled in each zone)
- discharge air temperature low limit setpoint (initially 12.7 deg.C)

- .8 Medium Security Exhaust:
 - .1 The EMCS shall control the operation of the fan from local low voltage switch/button.
 - .2 When system is energized from local start, damper shall open and fan shall start and run for an adjustable period of time.
 - .3 When fan is off, damper shall be closed.
 - .4 The Facility Management System shall monitor and address all points required to meet sequence of operation, including but not limited to the following:
 - fan, on/off/alarm (EF-1)
 - local fan start button
 - operating time (initially set to 45 minutes)
 - damper Position
- .9 Chilled Water System Fill
 - .1 A pressure switch sensing the pressure in the total system return section line of each system shall start the feed pump when it senses a pressure below its setpoint. Set differential pressure to 35 kPa. A flow switch at the pump discharge shall disable the pump when it senses a no flow condition in the piping. Wire the flow switch to the automatic side of the pump starter. A level control in the fill tank shall disable the feed pump on both hand and automatic setting of the starter. Interlock the algorithm to the feed pump. Provide for manual operation of agitator. System fill shall alarm to EMCS.