# Environment Canada Water Science and Technology Directorate

Direction générale des sciences et de la technologie, eau Environnement Canada

> Benthic Conditions in the Jackfish Bay Area of Concern 2008

**Danielle Milani and Lee Grapentine** 

WSTD Contribution No. 09-541

Benthic Conditions in the Jackfish Bay Area of Concern 2008

September 2009

**Danielle Milani and Lee Grapentine** 

**Environment Canada** 

Water Science and Technology Directorate

867 Lakeshore Road, Burlington, Ontario L7R 4A6

WSTD Contribution No. 09-541

# **EXECUTIVE SUMMARY**

To evaluate benthic conditions in the Jackfish Bay Area of Concern (AOC) and whether they continue to improve over time, four lines of evidence were examined: 1) sediment contaminant concentrations, 2) toxicity, 3) benthic invertebrate communities, and 4) benthic invertebrate contaminant tissue concentrations. These conditions were assessed for spatial differences between contaminated and reference sediments, and temporal differences before and after 2003, when a similar assessment was conducted by Environment Canada. The decision-making framework for sediment assessment, developed under the Canada-Ontario Agreement respecting the Great Lakes Basin Ecosystem, was applied to this study.

In October 2008, overlying water, sediment and 3 benthic invertebrate taxa (oligochaetes, chironomids and amphipods) were sampled at 15 locations in Jackfish Bay (8 in Moberly Bay, 4 in central Jackfish Bay, 2 in lower Jackfish Bay and 1 in Tunnel Bay (AOC reference site)). Regional reference sites, located along the north shore of Lake Superior, were also sampled to provide background sediment and tissue contaminant concentrations. Invertebrates and surficial sediment were analyzed for dioxin and furan concentrations and a series of physicochemical variables were measured in the sediment and overlying water. The benthic invertebrate community and toxicological response of four benthic invertebrates in laboratory toxicity test sites were compared to biological criteria developed for the Laurentian Great Lakes using multivariate analysis (ordination).

Sediment dioxins and furan concentrations, expressed in toxic equivalents (TEQs), were elevated above the Probable Effect Level in Moberly Bay (western arm of Jackfish Bay) and in lower Jackfish Bay; TEQs in Jackfish Bay were on average 6.4 to 9.6 times higher than those for Lake Superior reference sites. Moberly Bay is an organically enriched area with total organic carbon on average ~2 times higher than the average across all the other sites in Jackfish Bay. Metal exceedences of sediment quality guidelines (provincial Lowest Effect Levels) occurred throughout Jackfish Bay (5 to 7 metals).

Benthic communities were categorized as *very different* or *different* from Great Lakes reference conditions at all sites in Moberly Bay as well as one site in central Jackfish Bay. Tubificid worms increased in abundance in Moberly Bay (up to 121,000 per m<sup>2</sup>) and a predominant reference group amphipod taxon (Pontoporeiidae) was absent or in very low abundance.

Increased total organic carbon was correlated with Moberly Bay site positions (in ordination space). Altered benthic communities, mainly in Moberly Bay, generally appear to reflect a response to organic enrichment. These results were consistent with those found in 2003 and with historical data from Moberly Bay with some slight improvement in sediment quality since 1987, indicated by the presence of previously absent amphipods. Outside of Moberly Bay, benthic communities were more similar to reference, with much lower tubificid densities and higher densities of amphipods.

Toxicity was restricted to Moberly Bay with low survival and growth of the amphipod *Hyalella* and the mayfly *Hexagenia*; one site was severely toxic and two sites were potentially toxic. In the 2003 study, evidence of toxicity was observed in Moberly Bay as well as central and lower Jackfish Bay and Tunnel Bay.

Dioxin and furan TEQs in the benthos were elevated above both the Tissue Residue Guideline (TRG) and reference maximums in Moberly Bay, central Jackfish Bay and Tunnel Bay. TEQs across all Jackfish Bay sites exceeded the Lake Superior reference maximum by 1.2 to 4.5 times. Dioxin-like PCBs in benthos contributed very little to the overall TEQ and TEQs for PCBs were well below the TRG.

Based on the decision framework, *management actions required* was selected for a single site in Moberly Bay due to elevated sediment contaminants, toxicity and altered benthic community. *No further actions needed* was indicated for 5 sites (1 in Moberly Bay, 2 in central Jackfish Bay and 2 in lower Jackfish Bay) while remaining sites indicated that further assessment was required to determine definitively if sediments pose an environmental risk. The assessment outcome was less severe in 2008 than 2003 as a result of the decreased sediment toxicity observed in 2008. It is recommended that all lines of evidence should be used to continue monitoring throughout the bay for changes in the future.

# RÉSUMÉ

En vue d'évaluer les conditions benthiques dans le secteur préoccupant (SP) de la baie Jackfish et de vérifier que celles-ci continuent de s'améliorer au fil du temps, on a examiné les quatre sources de données suivantes : 1) les concentrations de contaminants dans les sédiments; 2) la toxicité; 3) les communautés d'invertébrés benthiques; 4) les concentrations de contaminants dans les tissus des invertébrés benthiques. On a évalué les différences spatiales de ces conditions entre les sédiments contaminés et les sédiments de référence de même que les différences temporelles entre la période précédant 2003 et la période suivant 2003, année durant laquelle Environnement Canada a effectué une évaluation semblable. Pour la présente étude, on a utilisé le cadre décisionnel relatif à l'évaluation des sédiments élaboré dans le contexte de l'Accord Canada-Ontario concernant l'écosystème du bassin des Grands Lacs.

En octobre 2008, on a échantillonné les eaux sus-jacentes, les sédiments et trois taxa d'invertébrés benthiques (oligochètes, chironomidés et amphipodes) à 15 emplacements de la baie Jackfish (huit dans la baie Moberly, quatre au centre de la baie Jackfish, deux dans la partie inférieure de la baie Jackfish et un dans la baie Tunnel [site de référence du SP]). Les sites de référence régionaux, situés le long de la rive nord du lac Supérieur, ont aussi fait l'objet d'un échantillonnage en vue de l'obtention des concentrations de fond des contaminants présents dans les sédiments et les tissus. On a analysé des invertébrés et des sédiments superficiels pour déterminer les concentrations de dioxines et de furanes, puis mesuré une série de variables physicochimiques dans les sédiments et dans l'eau sus-jacente. Par l'analyse multivariable (ordination), on a comparé aux critères biologiques élaborés pour les Grands Lacs laurentiens la communauté d'invertébrés benthiques et la réaction toxicologique de quatre invertébrés benthiques obtenue lors d'essais de toxicité réalisés en laboratoire.

Dans la baie Moberly (bras ouest de la baie Jackfish) et dans la partie inférieure de la baie Jackfish, les concentrations de dioxines et de furanes dans les sédiments, exprimées en équivalents toxiques (TEQ), dépassaient la concentration produisant un effet probable. Dans la baie Jackfish, les TEQ obtenus étaient en moyenne de 6,4 à 9,6 fois plus élevés que ceux des sites de référence du lac Supérieur. La zone de la baie Moberly a fait l'objet d'un enrichissement organique avec un carbone organique total en moyenne ~ 2 fois plus important que la moyenne trouvée dans tous les autres sites de la baie Jackfish. Dans l'ensemble de la baie Jackfish, on a relevé des quantités de métaux (5 à 7 métaux) qui dépassent les recommandations relatives à la qualité des sédiments (limites provinciales de concentrations minimales entraînant un effet).

À tous les sites de la baie Moberly, ainsi qu'à un site du centre de la baie Jackfish, on a classé les communautés benthiques comme *très différentes* ou *différentes* par rapport aux conditions de référence des Grands Lacs. L'abondance des vers tubificides a augmenté dans la baie Moberly (jusqu'à 121 000/m<sup>2</sup>), et un taxon d'amphipode (*Pontoporeiidae*) prédominant dans le groupe de référence était complètement absent ou en très faible nombre. On a établi une corrélation entre l'augmentation des teneurs en carbone organique total et les positions des sites de la baie Moberly (dans l'espace d'ordination). La modification des communautés benthiques, principalement dans la baie Moberly, semble généralement indiquer une réaction à l'enrichissement organique. Ces résultats correspondent à ceux obtenus en 2003 ainsi qu'aux données antérieures sur la baie Moberly, avec une légère amélioration de la qualité des sédiments depuis 1987, indiquée par la présence d'amphipodes, qui étaient absents dans le passé. À l'extérieur de la baie Moberly, les communautés benthiques ressemblaient davantage aux communautés de référence, avec des densités de tubificidés beaucoup plus faibles et des densités d'amphipodes plus élevées.

En raison des faibles taux de survie et de croissance des amphipodes du genre *Hyalella* et des éphémères du genre *Hexagenia*, la toxicité se limitait à la baie Moberly; un des sites était extrêmement toxique, et deux sites, potentiellement toxiques. Dans le cadre de l'étude de 2003, on a constaté des signes de toxicité dans la baie Moberly, dans le centre et la partie inférieure de la baie Jackfish et dans la baie Tunnel.

Dans la baie Moberly, dans le centre de la baie Jackfish ainsi que dans la baie Tunnel, les TEQ des dioxines et des furanes dans le benthos étaient supérieurs aux directives visant les résidus de tissus (DRT) et aux limites de référence maximales. Les TEQ de l'ensemble des sites de la baie Jackfish dépassaient de 1,2 à 4,5 fois la limite de référence maximale du lac Supérieur. Les PCB analogues aux dioxines dans le benthos ont très peu contribué au TEQ global, et les TEQ pour les PCB étaient bien inférieurs aux DRT.

Conformément au cadre décisionnel, un site de la baie Moberly nécessitait la prise de mesures de gestion, en raison de la grande quantité de contaminants dans les sédiments, de la toxicité et des modifications de la communauté benthique. Pour cinq autres sites (un dans la baie

Moberly, deux au centre de la baie Jackfish et deux dans la partie inférieure de la baie Jackfish), aucune autre mesure n'était requise. Il fallait évaluer de manière plus approfondie les sites restants afin de déterminer de façon définitive si les sédiments posaient un risque pour l'environnement. Les résultats de l'évaluation étaient moins critiques en 2008 qu'en 2003 en raison de la diminution de la toxicité des sédiments observée en 2008. On recommande d'utiliser toutes les sources de données afin de suivre les changements dans l'ensemble de la baie.

# ACKNOWLEDGEMENTS

The technical support of Sherri Thompson, Jesse Baillargeon, Jennifer Webber, and Bruce Gray, Charlie Talbot and Andreanne Barnes of the Technical Operations Division and the Canadian Coast Guard are acknowledged.

The authors also thank Agnes Blukacz-Richards and Kate Taillon for providing comments on this report.

Procrustes Analysis was performed and interpreted by Agnes Blukacz-Richards.

Funding for this project was provided by the Great Lakes Action Plan 4. Support was provided by the Ontario Ministry of the Environment and EcoSuperior Environmental Programs.

# TABLE OF CONTENTS

| EXECUTIVE SUMMARY                                          | i    |  |
|------------------------------------------------------------|------|--|
| RÉSUMÉiii                                                  |      |  |
| ACKNOWLEDGEMENTSvi                                         |      |  |
| TABLE OF CONTENTS                                          | vii  |  |
| LIST OF FIGURES                                            | viii |  |
| LIST OF TABLES                                             | .ix  |  |
| 1 INTRODUCTION                                             | 1    |  |
| 1.1 Background                                             | 1    |  |
| 1.2 Purpose of Study                                       | 1    |  |
| 2 STUDY AREA                                               | 2    |  |
| 3 EXPERIMENTAL DESIGN                                      | 2    |  |
| 4 METHODS                                                  | 3    |  |
| 4.1 Sample Collection and Handling                         | 3    |  |
| 4.2 Sediment and Water Physico-Chemical Analyses           | 4    |  |
| 4.3 Benthic Invertebrate Tissue Residue                    | 5    |  |
| 4.4 Benthic Invertebrate Identification and Enumeration    | 5    |  |
| 4.5 Sediment Toxicity Tests                                | 5    |  |
| 5 DATA ANALYSES AND INTERPRETATION                         | 6    |  |
| 6 QUALITY ASSURANCE/QUALITY CONTROL                        | 8    |  |
| 7 RESULTS AND DISCUSSION                                   | 9    |  |
| 7.1 Quality Assurance/Quality Control                      | 9    |  |
| 7.2 Sediment and Water Physico-Chemical Properties         | 11   |  |
| 7.2.1 Overlying Water                                      | 11   |  |
| 7.2.2 Sediment Particle Size                               | 12   |  |
| 7.2.3 Sediment Nutrients and Trace Metals                  | 12   |  |
| 7.2.4 BTEX and Petroleum Hydrocarbons                      | 13   |  |
| 7.2.5 PAHs                                                 | 15   |  |
| 7.2.6 Oil and Grease                                       | 15   |  |
| 7.2.7 PCBs                                                 | 15   |  |
| 7.2.8 Dioxins and Furans                                   | 16   |  |
| 7.3 Bioaccumulation of Contaminants in Benthos             | 17   |  |
| 7.3.1 Dioxins and Furans                                   | 17   |  |
| 7.3.2 Dioxin-like PCBs                                     | 19   |  |
| 7.4 Benthic Invertebrate Community                         | 20   |  |
| 7.5 Sediment Toxicity                                      | 23   |  |
| 7.6 Integration of Lines of Evidence                       | 24   |  |
| 8 CONCLUSIONS                                              | 26   |  |
| 9 REFERENCES                                               | 29   |  |
| Figures                                                    | 31   |  |
| Tables                                                     | 42   |  |
| Appendix A – QA/QC                                         |      |  |
| Appendix B – Supplementary Chemical Data                   | 65   |  |
| Appendix C – Benthic Counts73                              |      |  |
| Appendix D - BEAST Benthic Community Structure Ordinations |      |  |
| Appendix E - BEAST Toxicity Ordinations                    | 81   |  |

# LIST OF FIGURES

| Figure 1  | Invertebrate, sediment and overlying water sampling locations in 2003.                            |
|-----------|---------------------------------------------------------------------------------------------------|
| Figure 2a | Invertebrate, sediment and overlying water sampling locations in 2008.                            |
| Figure 2b | Moberly Bay sampling locations in 2008 (enlarged).                                                |
| Figure 3  | Cumulative particle size distributions for Jackfish Bay sediment.                                 |
| Figure 4  | Total organic carbon in sediment.                                                                 |
| Figure 5  | Petroleum hydrocarbons (F3 fraction) in sediment.                                                 |
| Figure 6  | Dioxin and furan homologue group totals in sediment.                                              |
| Figure 7  | Dioxin and furan toxic equivalent concentrations in sediment.                                     |
| Figure 8  | Benthic invertebrate toxic equivalent concentrations for dioxins and furans and dioxin-like PCBs. |
| Figure 9  | Mean relative abundance of predominant benthic macroinvertebrate taxa in Jackfish Bay.            |

# LIST OF TABLES

- Table 1Jackfish Bay and Lake Superior reference sampling site positions, depth and<br/>sediment description (2008).
- Table 2Environmental variables measured at each site.
- Table 3Characteristics of sampling site overlying water.
- Table 4Trace metal and nutrient concentrations in sediment.
- Table 5Total petroleum hydrocarbon, PAH, oil and grease and PCB concentrations in<br/>sediment.
- Table 6Dioxin and furan concentrations in sediment.
- Table 7Dioxin and furan concentrations in benthic invertebrates.
- Table 8Probabilities of test sites belonging to Great Lakes faunal groups.
- Table 9
   Mean abundance of predominant macroinvertebrate families and taxon diversity.
- Table 10Site assessment summary for benthic community data and comparison to 2003<br/>results.
- Table 11Mean percent survival, growth and reproduction per individual in sediment<br/>toxicity tests.
- Table 12Site assessment summary for toxicity and comparison to 2003 results.
- Table 13Comparison of 2008 and 2003 Hyalella and Hexagenia endpoint results for<br/>sites in similar locations.

- Table 14Decision matrix for weight-of-evidence categorization of 2008 Jackfish Bay sites<br/>based on three or four lines of evidence.
- Table 15Comparison of 2008 and 2003 decision matrices for sites in similar locations.

# **1** INTRODUCTION

## 1.1 Background

An assessment of sediment quality in the Jackfish Bay Area of Concern in 2003 (see Figure 1 for 15 sampling sites) revealed that conditions in Moberly Bay (the western arm of Jackfish Bay) indicated a polluted environment, characterized by elevated sediment contaminant concentrations, toxicity and the absence of pollution sensitive benthos (Milani and Grapentine 2007). Several sediment metal and organic contaminants (e.g., PCBs, dioxins and furans) were slightly elevated above Sediment Quality Guidelines in Moberly Bay and were elevated compared to the other areas of the AOC. Benthic communities in Moberly Bay as well as south of Moberly Bay (central Jackfish Bay) were different from those from Great Lakes reference sites while other areas in Jackfish Bay were more similar to reference. Results were consistent with historical data from Moberly Bay with some slight improvement in sediment quality since 1987, indicated by the presence of previously absent amphipods. Toxicity was evident throughout the bay.

# 1.2 Purpose of Study

The purpose of this study was to contrast 2008 conditions (i.e., sediment contaminant concentrations, toxicity, benthic invertebrate communities, benthic invertebrate tissue dioxin/furan and dioxin-like PCB residues) in Jackfish Bay with reference locations and to focus on sampling efforts in Moberly Bay. The overall goals were to determine if the benthic conditions in Jackfish Bay are improving over time (5 year monitoring cycle) and to further delineate the extent of impacted area in Moberly Bay. The assessment of Jackfish Bay performed in 2003 (Milani and Grapentine 2007) offered the most recently completed data against which changes in benthic conditions through time could be compared.

Currently there are sport fish consumption restrictions due to dioxins/furans for Jackfish Bay (MOE 2009). While these contaminants were measured in the sediment in the 2003 study, data on dioxin/furan as well as dioxin-like PCB concentrations in the resident benthos were lacking. Quantifying these contaminants in resident benthic tissues will provide a measure of bioavailability which can be used to assess biomagnification risk to higher trophic levels as well as provide information to assess against the beneficial use impairment identified for the AOC (degradation of benthos – body burdens of benthos) (Jackfish Bay RAP Team 1998).

1

# 2 STUDY AREA

Background information on environmental conditions in the Jackfish Bay AOC is provided in the Stage 1 and 2 RAP documents (Jackfish Bay RAP Team 1991, 1998). Sampling took place in depositional areas in the bay. Sites sampled in 2003 (Milani and Grapentine 2007) are shown in Figure 1, and those sampled in the current 2008 study are shown in Figure 2a, b. Some sites sampled in 2003 were revisited in 2008. New sites were added in Moberly Bay and south of Moberly Bay (central Jackfish Bay) to provide a better examination of the areas with the greatest contamination impact as defined by the 2003 study. One site in Tunnel Bay, identified as the most appropriate reference area within Jackfish Bay in a previous study (Stantec 2004), and reference sites along the north shore of Lake Superior (not mapped) were also sampled to provide data on background contamination.

## 3 EXPERIMENTAL DESIGN

## **Sampling Design**

The 2003 design of Milani and Grapentine (2007) was followed. The 4 sites in Moberly Bay were sampled and single sites were sampled south of Moberly Bay (central Jackfish Bay), Jackfish Bay (lower Jackfish Bay) and Tunnel Bay. Other sites sampled in 2003 were dropped. To better characterize the spatial extend of contaminants in Moberly Bay, additional sites were added which included three previous Environment Effects Monitoring (EEM) Program sites (Stantec 2004), one site previously sampled by Biberhofer (pers. comm.) and one new site. Two new sites were also added in central Jackfish Bay and 1 in lower Jackfish Bay for a total of 15 sites. This sampling design allowed analyses of both spatial patterns and temporal trends in benthic conditions. Eight Lake Superior reference sites were also sampled to provide background levels of sediment and benthic invertebrate tissue contaminant concentrations. Sampling site positions and depth, as well as a description of sediments, are provided in Table 1.

#### **Measurement Endpoints**

At each site, sediment, water and benthic invertebrates were collected for (a) chemical and physical analysis of sediment and overlying water, (b) analysis of benthic invertebrate community structure, and (c) whole sediment toxicity tests. Sediment was obtained from the top

0 - 10 cm layer of lake bed. At a subset of 6 of the 15 Jackfish Bay sites and 5 of the 8 Lake Superior reference sites, benthic invertebrate tissue was collected for measurement of dioxin/furan and dioxin-like PCB concentrations. (All sites could not be sampled for benthic tissue due to time constraints.) Environmental variables measured are shown in Table 2.

The benthic invertebrate community structure (taxonomic composition and relative abundances) was described based on identifications of macroinvertebrates to lowest practical level. Sediment toxicity was quantified based on acute and chronic responses of 4 invertebrate taxa (10 endpoints in total) in laboratory tests. For assessment of contaminant bioaccumulation and biomagnification potential, 2 - 3 invertebrate taxa (oligochaetes, chironomids and amphipods) were collected from Jackfish Bay and Lake Superior reference locations.

# 4 METHODS

# 4.1 Sample Collection and Handling

Methods for the collection of invertebrate samples (for benthic community structure evaluation), sediment samples (for toxicity testing and physico-chemical analyses excluding dioxin/furan and dioxin-like PCBs analysis) and overlying water samples are provided in Milani and Grapentine (2007).

Benthic invertebrate tissue and sediment samples were collected from six Jackfish Bay sites (3 in Moberly Bay, 1 in central Jackfish Bay, 1 in lower Jackfish Bay and 1 in Tunnel Bay) and five Lake Superior reference sites for the analysis of dioxin/furans and dioxin-like PCBs. At each site, between 30 and 40 sediment grabs were collected with a petite ponar sampler to fill two 68 litre tubs. From each grab, a representative sediment sample was taken and placed in a glass tray and the remaining sediment from the grab was placed in the tubs. When the tubs were full, the pooled sediment in the glass tray was homogenized and subsampled to provide a composite sediment sample of all grabs for sediment dioxin/furan analysis. Sediment samples were frozen at -20°C. Invertebrates were removed from the sediment in the tubs by wet sieving with lake water using 12" stainless steel sieves (500-µm mesh). Invertebrates collected on the sieve were sorted into separate taxa in glass trays using stainless steel instruments. Oligochaetes were collected from all Jackfish Bay and reference sites. While chironomids were present at all sites, they were limited in abundance, and therefore sufficient sample size could

only be obtained at two Jackfish Bay sites and one Lake Superior reference site. Amphipods were collected at all Lake Superior reference sites but were absent at 3 of the 6 Jackfish Bay sites. Analysis of dioxins/furans and dioxin-like PCBs was performed on samples composited from organisms within each taxon (i.e., taxa were analyzed separately). Gut clearing was not performed. Due to tissue requirements for these types of analyses (minimum of 2-3 g of tissue per sample), only one pooled tissue sample (for each taxon group) could be analyzed per site.

Invertebrates were rinsed with deionized water and placed separately in pre-weighed and precleaned (20% HCL) 5 -mL scintillation vials, weighed, and frozen on site (-20°C). A layer of parafilm was placed between vial and cap. Invertebrates were later freeze-dried and reweighed. The wet:dry ratios was used for converting dioxin/furan concentrations from a dry weight to wet weight basis. Stainless steel sieves and instruments were detergent-washed between sites. If organic matter remained on the sieve after the detergent wash (on visual inspection), a more aggressive cleaning solution was implemented (caustic ethanol). Homogenizing and sorting trays and scoops were detergent washed, rinsed in 20% HCl, and hexane rinsed between sites.

# 4.2 Sediment and Water Physico-Chemical Analyses

Analyses of alkalinity, total phosphorus, nitrate+nitrite-N, ammonia-N and total Kjeldahl N in overlying water samples were performed by procedures equivalent to those of the Environment Canada's National Laboratory for Environmental Testing (NLET) (Burlington, ON) as described in Cancilla (1994) and Environment Canada (2008).

Sediments were analysed for total mercury, 29 trace elements, major oxides, loss on ignition, total organic carbon (TOC), total phosphorus, and total Kjeldahl nitrogen (TKN) using standard techniques outlined by the USEPA/CE (1981) or by in-house laboratory (Caduceon Environmental Laboratories, Ottawa, ON) procedures. Particle size analysis was performed in house in the Sedimentology laboratory (Burlington, ON) following the procedures of Duncan and LaHaie (1979).

Sediments were analyzed for dioxins/furans, petroleum hydrocarbons (PHCs), total polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and oil and grease by ALS Environmental Laboratories (Mississauga and Burlington, ON). PHCs were analyzed by

GC/FIC based on CCME Canada-Wide Standards (CCME 2008). Oil and grease was determined by gravimetric extraction based on EPA method 8015 (USEPA 1992). Dioxins/furans were analyzed by HRMS based on EPA method 1613B and PAHs and PCBs (Aroclors 1242, 1248, 1254, 1260) were analyzed by GC/MS based on EPA SW846 8270 (USEPA 1992). Total PCBs was determined by the sum of the 4 Aroclors and total PAHs by the sum of 20 individual PAHs.

# 4.3 Benthic Invertebrate Tissue Residue

Benthic invertebrate tissue (oligochaetes, chironomids, amphipods) was analyzed for dioxin/furans and dioxin-like PCBs by HRMS (EPA method 1613B; USEPA 1992) by ALS Environmental Laboratories (Burlington, ON).

# 4.4 Benthic Invertebrate Identification and Enumeration

Benthic invertebrate community samples were identified and enumerated by EcoAnalysts, Inc. (Moscow, ID, USA). Certain taxa and microinvertebrates (e.g., poriferans, nematodes, copepods, and cladocerans) were excluded. Material was sorted under a dissecting microscope (minimum magnification = 10 x), and organisms enumerated and placed in vials for identification to lowest practical level by certified taxonomists.

# 4.5 Sediment Toxicity Tests

Four toxicity tests (bioassays) were performed at the Ecotoxicology Laboratory (Burlington, ON): 1) *Chironomus riparius* 10-day survival and growth test, 2) *Hyalella azteca* 28-day survival and growth test, 3) *Hexagenia* spp. 21-day survival and growth test, and 4) *Tubifex tubifex* 28-day reproduction test. Toxicity test methods are described in Milani and Grapentine (2007). Sediments were sieved through a 250  $\mu$ m mesh screen prior to testing to remove indigenous organisms. All tests passed acceptability criteria for their data to be used in the site assessments. The criteria are based on percent control survival in a reference sediment (Long Point Marsh, Lake Erie): i.e.,  $\geq$  80% for *H. azteca* and  $\geq$ 70% for *C. riparius*;  $\geq$ 80% for *Hexagenia* spp., and  $\geq$ 75% for *T. tubifex* (Reynoldson et al. 1998).

## 5 DATA ANALYSES AND INTERPRETATION

### **Benthic Community Composition and Sediment Toxicity**

Procedures used in these analyses (BEAST approach) are described in detail in Reynoldson et al. (1995; 2000). Briefly, the methodology involves the assessment of sediment quality based on multivariate techniques using data on the physical and chemical attributes of the sediment and overlying water, benthic community structure (the type and number of taxa present), and the functional responses (survival, growth and reproduction) of laboratory organisms in toxicity tests. Data from test sites were compared with Environment Canada's biological guidelines, which were developed from responses of both field and laboratory benthic invertebrates to reference site sediments. Multiple discriminant analysis was used to predict each Jackfish Bay site to one of five Great Lakes reference community groups (38-family bioassessment) using five habitat descriptors (latitude, longitude, depth, TOC and alkalinity). To describe the dominant patterns of variability (structure) among benthic communities, the community data for the Jackfish Bay sites were then merged with the reference site invertebrate data of the matched reference group (group to which the test site has the highest probability of belonging) only and ordinated using hybrid multidimensional scaling (HMDS, Belbin 1993) applied to a Bray-Curtis distance matrix. Assessments were conducted at the family level of taxonomic identification as this has been shown to be sensitive for the determination of stress (Reynoldson et al. 2000). Toxicological responses (bioassay endpoint data) were summarized using HMDS applied to a Euclidean distance matrix of range-standardized data. For each of benthic invertebrate community and toxicity evaluations, Jackfish Bay sites were assessed by comparison to confidence bands of appropriate Great Lakes reference sites (Reynoldson et al. 2000). Principal axis correlation (Belbin 1993) was used to identify relationships between habitat attributes and community data or toxicity descriptors. Invertebrate families, toxicity endpoints, and environmental attributes important in accounting for the overall structure in the data were identified using Monte-Carlo permutation tests (Manly 1991). Test data were analysed in subsets, with the number of test sites analyzed in any ordination numbering  $\leq 10\%$ reference sites (i.e., if there are 100 reference sites, then a subset of  $\leq$  10 test sites was ordinated at one time). Multiple discriminant analysis and the confidence bands (probability ellipses) were produced using SYSTAT (Systat Software, Inc. 2007) and HMDS was performed using PATN (Blatant Fabrications Pty Ltd. 2001).

To test the degree of similarity between the benthic invertebrate communities from 2003 and 2008, the data matrices (the ordination (HMDS) solutions for each dimension) were compared using a Procrustean randomization test (PROTEST) (Jackson 1995; Jackson and Harvey 1993; Peres-Neto and Jackson 2001). Procrustes Analysis is a superimposition approach in which the raw data matrices, or their ordination solutions, are rotated, translated and scaled, to minimize the sum of squared residuals between the matrices (Jackson 1995). The sum of the squared deviations (m<sup>2</sup> statistic) can be used as a metric of association; the lower the m<sup>2</sup> value, the greater the similarity of the multivariate configurations from the datasets (Jackson and Harvey 1993).

## **Contaminant Distribution in Sediment and Biota**

Sites in which concentrations of dioxins/furans (D/F) in sediment ([D/F]<sub>sed</sub>) and D/F and dioxinlike (DL) PCBs in invertebrates ([D/F]<sub>inv</sub>; [DL PCB]<sub>inv</sub>) were significantly elevated above reference levels were identified by comparing [D/F]<sub>sed</sub>, [D/F]<sub>inv</sub> and [DL PCB]<sub>inv</sub> for Jackfish Bay sites to the 99<sup>th</sup> percentile value (~ maximum) for the Lake Superior reference sites.

D/F concentrations in sediment and D/F and DL PCB concentrations in invertebrates were also expressed as toxic equivalents (TEQs). Using toxic equivalency factors (TEFs) determined by the World Health Organization (WHO), the toxicity of D/Fs and DL PCBs relative to the toxicity of 2,3,7,8-TCDD was calculated using the following equation:

TEQ=  $\sum_{i=1}^{n}$  ([D/F or DL PCB]<sub>i</sub> × TEF<sub>i</sub>)<sub>n</sub>

Each of the 7 dioxin and 10 furan congener concentrations and 12 DL PCB congener concentrations were multiplied by its respective TEF and all products were summed to give the TEQ value. For sediments, the WHO fish TEFs were used in the calculation; for invertebrates, the avian TEFs were used (Van den Berg et al. 1998). For values that were below method detection limits, the calculation of the TEQs was performed two ways: 1) assigning a value of zero to the value (lower bound TEQ), and 2) using the method detection limit itself (upper bound TEQ). Therefore, the actual TEQ would be bounded by the two values. For sediments, the TEQs were compared to the CCME Probable Effect Level (PEL) for dioxins/furans of 21.5 ng TEQ/kg (CCME 2001a). For invertebrates, the TEQ was compared to the avian Tissue Residue Guideline (TRG) of 4.57 ng TEQ/kg ww for D/Fs and 2.4 ng TEQ/kg ww for DL PCBs (CCME 2001b).

# 6 QUALITY ASSURANCE/QUALITY CONTROL

## Field

Two sites (1 Jackfish Bay and 1 Lake Superior reference) were randomly chosen as QA/QC sites. At these sites, triplicate sediment, water, and benthic community samples were collected for determination of within-site and among-sample variability. Coefficients of variation (CV = standard deviation  $\div$  mean x 100) were examined for the analytical data. Variability in invertebrate assemblages between box core samples for the Jackfish Bay QA/QC site was examined by comparing the position of sites in the ordination plots (e.g., the closer the sites are in ordination space, the more similar they are).

# Laboratory

Each laboratory employed procedures such as analyses of sample duplicates and repeats, matrix spikes and certified or standard reference materials, as well as evaluations of sample recoveries.

## Caduceon Environmental Laboratories

Quality control (QC) procedures involved control charting of influences, standards, and blanks. Reference materials and standards were used in each analytical run. Calibration standards were run before and after each run. Run blanks and reference standards were run 1 in 20 samples. Precision was assessed by the analyses of laboratory duplicates. The relative percent difference  $(RPD = [(x_1 - x_2)/(x_1 + x_2)/2) \times 100]$  was calculated to determine differences in two or more measurements. Sample duplicates were analyzed once every 16 samples.

#### ALS Laboratory Group

QC procedures involved control charts established for specific samples and control limits (e.g., the Lowest Quantification Limit or Method Detection Limit). A RPD was calculated to determine differences in two or more sample measurements. Duplicates were analyzed at a minimum frequency of 1 in 20 samples or 1 per batch. Samples were pre-screened by analyzing on a less sensitive instrument prior to the final analysis to eliminate the need for running blanks between high samples; however, if this was not possible, then blanks were run between samples.

To determine accuracy, the degree of agreement between an observed value and the accepted reference or true value was assessed by analysis of blank spikes, matrix spikes, QC check samples, surrogate compound spikes, and standard reference material analysis. Method blanks, a control verification standard, a laboratory control sample and duplicates were performed for 1 in every 20 samples. Matrix spikes and surrogates were analyzed with every batch of samples.

# **Benthic Invertebrate Identification and Enumeration**

EcoAnalysts, Inc. followed several steps to ensure standards were met for sample sorting efficiency, taxonomic identification and data entry (EcoAnalysts, pers. comm.). A 95% sorting efficiency level was achieved and approximately 20-25% of every sample was re-sorted to achieve the 95% level. At least one specimen of each taxon encountered was kept in a separate vial to comprise a project reference collection. Internal quality assurance of the identifications involved examination of the reference collection by a second taxonomist to verify accuracy of all taxa identified. Additionally, 10% of samples were randomly selected and reidentification and number of specimens in each taxon and the data was entered directly on a computer database.

# 7 RESULTS AND DISCUSSION

# 7.1 Quality Assurance/Quality Control

# **Field Replication**

Among-site variability in a measured analyte can be broken down into three sources: natural within-site heterogeneity in the distribution of the analyte in sediment or water, differences in handling among samples, and laboratory measurement error. Among-site variability indicates the overall "error" associated with conditions at a site based on a single sample.

Variability among field-replicated sites, expressed as the CV, is provided in Appendix A; Tables A1 to A3. The CVs for trace metal and nutrient analysis ranged from 0 to 22% (median 1.7%), quite low for field-replicated samples (Appendix A, Table A1). The CVs for organic contaminant measurements (e.g., PAHs, PHCs, oil and grease) were also generally low, ranging from 0 to

43% (median 13%) (Appendix A, Table A2). CVs for PCDD/F measurements were slightly higher, ranging from 5 to 58% (median 15%) (Appendix A, Table A3) but this is typical given the low concentration at which these contaminants are present. Most CVs were below 20%, indicating homogeneous conditions within a site that that a box-core sample is a good representation of chemical conditions of a site.

# **Caducean Environmental Laboratory**

Laboratory duplicate measurements for sediment variables are provided in Appendix A, Table A1. Sample duplicates were performed for two sites (2M4 and reference site 5105). The RPDs were low overall, ranging from 0 to 74% (overall median 2.5%), and most RPD (90%) were <15%. This indicates good agreement between sample duplicates and that a high level of precision was achieved for sample measurements.

Analyses and recoveries for reference materials or standards (LKSD-3 (trace metals), STSD-2 (Hg), WH89-1 (major oxides), D053-542 (nutrients), and TOC QC (TOC) are provided in Appendix A, Table A4. Recoveries were mostly high, ranging from 36 to 113% (median 97%). While the recovery was low for Molybdenum (35%), it was within the control limits (0 to 260) for this variable. Recoveries for all other variables were well within the control limits for each parameter.

# **ALS Laboratory Group**

Laboratory sample duplicate measurements for two sites (1M2, JFB002) are provided in Appendix A, Table A3. The RPDs were low, ranging from 0.1 to 27% overall (median 3.7%), and most RPDs (91%) were <10% indicating that a high level of precision was achieved for these sample measurements.

To test the effects of the matrix and precision of the laboratories sample preparation, surrogate spikes were performed. Prior to sample preparation, samples were spiked with the surrogate. The percent recovery for surrogate concentrations in the final sample extracts is provided in Appendix A, Table A5. Recoveries ranged from 85 to 136% (median 109%) for the BTEX surrogate (2,5-dibromotoluene), from 67 to 113% (median 82%) for the PHC surrogate (octacosane), from 96 to 181% (median 117%) for the PAH surrogates (2-fluorobiphenyl, p-

Terphenyl d14) and from 95 to 145% (median 113%) for the PCB surrogate (d14-Terphenyl). Recoveries were generally high, indicating a good ability of the laboratory to analyze organic compounds.

For invertebrate tissue samples, percent recoveries for labeled internal standards were generally good for most standards, ranging from 17 to 103% (median: 66%) for dioxins/furans and DL PCB congeners for Jackfish Bay (Appendix A, Table A6), and from 45 to 94% (median 64%) for Lake Superior reference samples (Appendix A, Table A7). Recoveries were within QC limits with the exception of four samples, which were just slightly below limits (i.e., site 1M3 (chironomid and oligochaete samples), site M701 (chironomid sample) and site 1M1 (chironomid sample)) (Appendix A, Table A6). The low recoveries observed for 1M3 (chironomid sample), which was observed for several congeners is reflected in the slightly higher EDLs for this sample (Table 7). However, overall there is likely little compromise to the actual data. The low recoveries were for OCDF mainly for 3 of the 4 samples, which contribute very little to the TEQ. Low recoveries were also observed for DL PCBs for site 1M3 (chironomid sample); however, DL PCBs also contributed very little to the total TEQ.

## **Benthic Community Variability**

The replicate sites of 1M2 (1M200, 1M201 and 1M202) were in very close proximity to each other in ordination space, indicating good agreement in benthic community composition for the field replicates (Appendix A, Figure A1). All three replicates of 1M2 fell in Band 4. These results indicated that the benthic invertebrate community within a site was well represented by the box core sample.

## 7.2 Sediment and Water Physico-Chemical Properties

## 7.2.1 Overlying Water

Variables measured in the overlying water (0.5 m above the sediment) are provided in Table 3. Variables were similar among sites located outside of Moberly Bay, suggesting homogeneity in water mass across these sampling sites. Outside of Moberly Bay, the average differences across sites were 8 mg/L for alkalinity, 26  $\mu$ S/cm for conductivity, 2.4 mg/L for dissolved oxygen, 0.03 mg/L for NO<sub>3</sub>/NO<sub>2</sub>, 0.05 mg/L for NH<sub>3</sub>, 0.5 for pH, 6.5°C for temperature, 0.4 mg/L for total Kjeldahl nitrogen, and 7.7  $\mu$ g/L for total phosphorus. Sites in Moberly Bay were dissimilar to the

rest of the sites, with higher alkalinity, conductivity, NO<sub>3</sub>/NO<sub>2</sub>, temperature (sites were shallower), TKN and total phosphorus (Table 3). Total phosphorus in Moberly Bay (range: 14 to 51  $\mu$ g/L) was elevated above the interim Provincial Water Quality Objective of 20  $\mu$ g/L at 5 of the 9 sites. These results were similar to those found in 2003, where total phosphorus in Moberly Bay ranged from 23 to 41  $\mu$ g/L (Milani and Grapentine 2007). Total phosphorus at sites outside of Moberly Bay ranged from 3 to 11  $\mu$ g/L in the current study. Overlying water variables were compared to the 2008 Lake Superior reference sites as well as to Lake Superior site data collected over a 3-year period (n=31, Unpublished data, Environment Canada 2006). Test site variables that were outside of the upper range observed at the Lake Superior reference sites were mostly observed in Moberly Bay and included (for the 9 Moberly Bay sites only): alkalinity (8 sites), conductivity (all 9 sites), NH<sub>3</sub> (1 site), NO<sub>3</sub>/NO<sub>2</sub> (4 sites), TKN (8 sites), and total phosphorus (4 sites) (Table 3).

## 7.2.2 Sediment Particle Size

Sediments were comprised mainly of silt, except for two sites in Moberly Bay (M701 and EEM8) (Figure 3; Appendix B, Table B1). Silt ranged from 17 to 79% (median 72%), and clay ranged from 13 to 78% (median 25%). Moberly Bay site M701 (located closest to the mouth of Blackbird Creek) was mostly sand (95%) with a minor amount of clay while site EEM8 sediment consisted of silty sand (sand: 63%; silt: 23%). Site 4M3 had a greater amount of clay (78%) than the other sites. These values are consistent with the 2003 study (Milani and Grapentine 2007). Particle size data for the Lake Superior reference sites are also provided in Appendix B, table B1. The reference sites consisted of a higher percentage of clay and less silt overall compared to Jackfish Bay sites; median values for sand, silt, and clay were 21%, 46% and 37%, respectively.

#### 7.2.3 Sediment Nutrients and Trace Metals

Sediment nutrient concentrations are provided in Table 4 and TOC is shown graphically in Figure 4. TOC decreased overall with distance from Moberly Bay, ranging from 0.8 to 6.7% (median 6.0%) in Moberly Bay and from 0.4 to 4.0% (median 3.0%) in central and lower Jackfish Bay. TOC in Tunnel Bay (2.8%) was similar to that seen in central and lower Jackfish Bay. Lake Superior reference site TOC was mostly lower than Jackfish Bay sites, ranging from 0.1 to 2.3% (median 1.1%) (Figure 4, Appendix B, Table B2). TOC in Moberly Bay was on

average 5 times higher than that found at Lake Superior reference sites, while sites outside of Moberly Bay were on average 3 times higher than reference. Total Kjeldahl nitrogen (TKN) ranged from 551 to 4723  $\mu$ g/g (median 2610  $\mu$ g/g) and total phosphorus from 550 to 1270  $\mu$ g/g (median 963  $\mu$ g/g) at Jackfish Bay sites. TKN was also overall highest in Moberly Bay with concentrations decreasing with distance from Moberly Bay. There were no exceedences of the provincial Sediment Quality Guidelines (PSQG) Severe Effect Level (SEL) for any nutrients at any site. Similar results were found in 2003. Sediment TKN and total phosphorus from 321 to 3480  $\mu$ g/g (median 1455  $\mu$ g/g) and from 479 to 1380  $\mu$ g/g (median 741  $\mu$ g/g), respectively (Appendix B, Table B2).

Trace metal concentrations for Jackfish Bay sites are provided in Table 4. With the exception of lead and mercury, there were exceedences of the PSQG Lowest Effect Level (LEL) for all metals. The number of LEL exceedences was between 5 to 7 per site with the exception of Moberly Bay sites M701 and EEM (sites with a high percentage of sand), where there were none. The SEL was exceeded for manganese only at the Tunnel Bay site. There were also metal exceedences of the LEL at all Lake Superior reference sites, for 3 to 8 metals per site (Appendix B, Table B2).

## 7.2.4 BTEX and Petroleum Hydrocarbons

BTEX (Benzene, Toluene, Ethylbenzene and Xylene) and petroleum hydrocarbons (PHC) concentrations in Jackfish Bay and Lake Superior sediments are provided in Table 5 and Appendix B, Table B3, respectively. The BTEX and F1 (C6-C10 hydrocarbons) PHC compounds were below method detection limits (MDLs, values preceded by "<") at all Jackfish Bay and reference sites. (MDLs for BTEX and PHCs are provided in Appendix B, Table B4.) The F2 (C10-C16 hydrocarbons) PHCs were detected at 10 of the 15 Jackfish Bay sites in fairly low concentrations, ranging from 21 to 110  $\mu$ g/g; concentrations at Lake Superior reference sites were below detection. The F3 (C16-C34 hydrocarbons) PHCs were detected at all Jackfish Bay sites except 4M3 (lower Jackfish Bay), and ranged from 230 to 3427  $\mu$ g/g (Table 5). The F3 PHC fraction was highest in Moberly Bay and showed a decreasing gradient from Moberly Bay (Figure 5). Reference site F3 concentrations were below detection except one site 5100 (130 mg/kg) (Appendix B, Table B3). The F4 fraction (C34-C50 hydrocarbons) was

detected at all sites except 2 (Tunnel Bay site 3M2 and 4M3); concentrations ranged from 62 to 733 µg/g and were highest in Moberly Bay with an overall decrease in concentration with increased distance from Moberly Bay. Total PHCs (sum of C6 to C50) followed the same pattern as the F3 and F4 fractions, with a decreasing gradient from Moberly Bay. The gravimetric heavy hydrocarbons (F4G: ~C24-C50+), which typically include the very heavy hydrocarbons (e.g., heavy lubrication oils) were detected at all Jackfish Bay sites. The chromatogram did not reach baseline at C50 (i.e., there were PHC with carbon chain lengths >50) at 8 of the 9 Moberly Bay sites, 1 site in central Jackfish Bay and 1 site in lower Jackfish Bay, indicating the presence of very heavy hydrocarbons. The concentration of the F4G fraction ranged from 100 to 2800 µg/g at Jackfish Bay sites and followed the same pattern as that observed for total PHCs and the F3 PHCs. Reference sites F4G concentrations were low or below detection and the chromatogram reached baseline at C50 at all sites (Appendix B, Table B3). PHCs were not measured in the 2003 study; therefore, comparisons could not be made.

Sediment PHC concentrations were compared to the PHC Canada-wide standard (CWS), which is a remedial standard for contaminated soil and subsoil occurring in different land use categories (industrial, residential, commercial, agricultural) and soil textures (coarse=median grain size > 75  $\mu$ m; fine=median grain size <75  $\mu$ m) (CCME 2008). (PHC concentrations were compared to these soil remedial standards since no such standards exist for sediments.) In cases where both the F4 and F4G results are reported (as for this study), the greater of the two was compared to the F4 guideline. PHC concentrations in Moberly Bay were compared to the numerical levels for the industrial land use category since Moberly Bay received mill effluent from Terrace Bay via Blackbird Creek; however, it should be noted that there are no land uses within the watershed of the AOC (RAP Stage 1). The CWS for each PHC fraction are provided in Table 5.

With the exception of M701 and EEM8 (Moberly Bay), all sites had a mean grain size of < 75  $\mu$ m (Appendix B, Table B1) and therefore were considered fine textured; sites M701 and EEM8 were coarse textured (particle size means of 280 and 96  $\mu$ m, respectively). The F1 fraction (not detected at any site) and F2 fraction (range of 21 to 110  $\mu$ g/g) were below the CWS levels at all sites. Concentration of the F3 PHC fraction exceeded the CWS level of 2500  $\mu$ g/g (for fine textured) at three Moberly Bay sites: EEM4 (2560  $\mu$ g/g), 1M3 (2600  $\mu$ g/g) and 1M2 (3427  $\mu$ g/g) (Figure 5; Table 5). Both the F4 (range of 50 to 733  $\mu$ g/g) and F4G fractions (range of 100 to

2800  $\mu$ g/g) were below CWS levels at all sites. PHC concentrations at reference sites were below the CWS levels (Appendix B, Table B3).

## 7.2.5 PAHs

Sediment PAH concentrations are provided in Table 5. Concentrations were below MDLs (see Appendix B, Table B4) at all sites for most PAHs with the exception of a few sites in Moberly Bay; [PAH]s that were just slightly above LELs included anthracene (1 site), chrysene (2 sites) and pyrene (1 site). Total PAHs were low throughout the bay, ranging from 0.3 to 3.0 mg/kg in Moberly Bay and from 0.3 to 0.8 mg/kg outside of Moberly Bay (Table 5), all below the LEL (4  $\mu$ g/g). Concentrations were similar to those found in 2003 (Milani and Grapentine 2007). All PAHs were below detection at reference sites (Appendix B, Table B3).

## 7.2.6 Oil and Grease

Oil and grease concentrations are provided in Table 5. Concentrations were highest in Moberly Bay ranging from 300 to 1400 mg/kg, and decreased with increasing distance from Moberly Bay to 200 to 600 mg/kg in central Jackfish Bay and 100 to 400 mg/kg in lower Jackfish Bay. Tunnel Bay (local reference site) had the lowest concentration (along with site 4M3 in lower Jackfish bay) at 100 mg/kg. (Oil and grease was not measured at Lake Superior reference sites.) Concentrations were less than those reported for in 2003 for solvent extractables. In 2003, mean concentrations for Moberly Bay, south of Moberly bay (central Jackfish Bay) and Tunnel Bay were 4875, 1600 and 600 mg/kg, respectively (Milani and Grapentine 2007). Concentrations in lower Jackfish Bay were similar in 2003 (mean 94 mg/kg). However, these analyses were performed by different laboratories and variation in the steps of analytical protocols cannot be discounted.

#### 7.2.7 PCBs

Total PCBs (sum of Aroclors 1242, 1248, 1254 and 1260) are provided in Table 5 for Jackfish Bay sites and Appendix B, Table B3 for Lake Superior reference sites. Concentrations were below MDLs at sites. In 2003, [PCB]s were below detection limits at 8 of the 15 sites; highest concentrations were in Moberly Bay (41 to 150 ng/g) with 3 of the 4 sites above the LEL (70 ng/g) (Milani and Grapentine 2007).

## 7.2.8 Dioxins and Furans

Concentrations of dioxins and furans in Jackfish Bay and Lake Superior reference sediment are provided in Table 6 and Appendix B, Table B5, respectively. Homologue group totals for dioxins and furans are shown in Figure 6a and 6b, respectively. (For estimated detection limits (EDL) see Appendix B, Table B6.) Generally, dioxin concentrations increased with increasing chlorine atoms from the hexachlorodioxins (HxCDD) to the octachlorodioxins (OCDD) and [OCDD]s were highest at all Jackfish Bay sites (range: 9 to 212 pg/g; Table 6). While OCDD concentrations were overall highest in Moberly Bay (EEM4 and 1M3), some of the lowest concentrations were also observed in Moberly Bay (M701 and EEM8) (Figure 6a). The most toxic dioxin, 2,3,7,8-TCDD, was above detection limits at all sites except one (M701); concentrations ranged from <1.2 to 17.3 pg/g in Moberly Bay and from 0.2 to 10.8 pg/g outside of Moberly Bay (Table 6). Similar patterns were observed at the reference sites, but with generally increasing concentrations with increasing chlorine atoms from the pentachlorodioxins (PeCDD) to OCDD (at Jackfish Bay sites, [TCDD]s tended to be higher than the [PeCDD]s) (Figure 6a). Concentrations of 2,3,7,8-TCDD were lower at reference sites compared to test sites and were below detection limits at all sites except 5103 (Appendix B, Table B5).

Total tetrachlorofuran (TCDF) concentrations were generally the highest of the furan homologue groups at both test (range of 4 to 572 pg/g; Table 6) and reference sites (range: ~2 to 32 pg/g; Appendix B, Table B5). [TCDF]s were overall highest in Moberly Bay (EEM4 - also where the highest dioxins were found), but low concentrations of all furan homologue groups were found at Moberly Bay sites M701 and EEM8 (same as that found for the dioxin groups).

# **Toxic Equivalent Concentrations (TEQs)**

Dioxin and furan congeners as well as several dioxin-like (DL) PCBs have been reported to cause a number of toxic responses similar to the most toxic dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDD) (Van den Berg et al., 1998). The TEQ takes into consideration the unique concentrations and toxicities of the individual components within the dioxin or furan mixture.

TEQs (upper and lower bound) for test and reference sediments are shown in Figure 7 and are provided for Jackfish Bay and reference sediments in Table 6 and Appendix B, Table B5,

respectively. Sites in Moberly Bay had the highest dioxin and furan TEQs overall (DL PCBs were not measured in the sediments), ranging from 1.1 to 37.3 (both lower and upper bound values taken into consideration). The TEQs at 2 sites in Moberly Bay exceeded the PEL by 1.1 to 1.7 times (22.7 to 37.3 pg TEQ/g) (Table 6, Figure 7). The TEQ for 1 site in lower Jackfish Bay also just marginally exceeded the PEL (2M5 – 25.1 ng TEQ/kg). Where TEQs were above the PEL, congeners that contributed most to the TEQ were 2,3,7,8 TCDD (27 to 49 %) followed by 2,3,7,8 TCDF (14 to 34%). While [OCDD]s were highest at all sites, they contributed very little to the TEQ at sites that were above the PEL (0.06 to 0.08%). Reference site TEQs were below the PEL (0.1 to 5.2 ng TEQ/kg; Appendix B, Table B5). The TEQs for Jackfish Bay were similar to those reported in 2003, where exceedences of the PEL occurred in Moberly Bay (28 to 57 ng TEQ/kg) as well marginal exceedences south of Moberly Bay (central Jackfish Bay) (Milani and Grapentine 2007).

# 7.3 Bioaccumulation of Contaminants in Benthos

## 7.3.1 Dioxins and Furans

Dioxin and furan concentrations in resident Jackfish Bay benthos (oligochaetes, chironomids, amphipods) are provided in Table 7. The lower chlorinated PCDD/Fs dominated in the benthos, specifically the TCDFs, which were detected at all sites in most taxa. [TCDF]s ranged from 41 to 467 pg/g (median 184 pg/g) and 2,3,7,8-TCDF comprised from ~8 to 63 % of the total TCDF. [TCDF]s were overall highest in Moberly Bay (site 1M1) (Table 7). A significant (p < 0.05) correlation was observed between sediment and oligochaete [TCDF] (n=11;  $r^2 = 0.43$ ). (Oligochaetes were the only taxa that were collected from all test and reference sites). Normalization of sediments and oligochaetes to organic carbon and lipids, respectively, did not strengthen the correlation. The PentaCDF homologue group were the next highest furan group in the benthos, detected at all sites in at least one taxon group, ranging from 2 to 70 pg/g (median 22.5 pg/g) (Table 7), but there was no significant correlation between sediment and oligochaete concentrations. The higher chlorinated furan groups, HexaCDFs, HeptaCDFs and OCDFs, had median concentrations in benthos of 12.9, 7.9 and 29.4 pg/g, respectively, which were similar to those at Lake Superior reference sites (median of 20.5, 9.7, and 23.9 pg/g, respectively) (Appendix B, Table B7).

For dioxins, [OCDD]s were overall highest in the benthos, ranging from 11.7 to 190 pg/g dw (median 71 pg/g), followed by the HeptaCDD, which ranged from 8.6 to 48 pg/g (median 22.5

pg/g), following a similar pattern as sediment concentrations. The lower chlorinated PCDDs (TCDD to HexaCDDs) were mostly below detection limits (Table 7). Total [TCDD]s were below detection limits for the benthos at all sites except 1M1 and 1M3 (Moberly Bay), where [TCDD] ranged from 6 to 24 pg/g, and 2,3,7,8-TCDD comprised from 68 to 100% of the total TCDD. [OCDD]s were higher in benthos collected from reference site 5102 (range:146 to 224 pg/g) than Jackfish Bay sites, but remaining reference site concentrations were generally lower (median = 29 pg/g) than Jackfish Bay sites (Appendix B, Table B7). The HeptaCDDs were lower at reference sites, ranging from 5 to 28 pg/g (median 14 pg/g)

## **Toxic Equivalent Concentrations (TEQs)**

TEQs for the benthos were compared to the CCME avian Tissue Residue Guideline (TRG), since an avian receptor (e.g., diving duck) could feed directly on benthic invertebrates. The avian TRG for dioxins/furans, derived by Environment Canada, is 4.75 ng TEQ·kg<sup>-1</sup> diet ww (CCME 2001b). The mammalian TRG of 0.79 ng TEQ·kg<sup>-1</sup> diet ww, while lower, was not used in this case as there would not be a direct feeding relationship between benthic invertebrates and a mammalian receptor. The TEQs for Jackfish Bay and Lake Superior reference sites are provided in Figure 8a and in Table 7 (Jackfish Bay) and Appendix B, Table B7 (Lake Superior reference).

All 3 Moberly Bay sites (M701, 1M3, 1M1) had both upper and lower bound TEQs above the avian TRG for all taxa collected (Figure 8a). The TEQs exceeded the TRG by 2.3 to ~8 fold in Moberly Bay. The overall highest TEQ was in central Jackfish Bay (2M1), with the upper bound value exceeding the TRG by 9.8 times for the amphipod (Figure 8a). In lower Jackfish Bay (4M3), only the upper bound TEQs were above the TRG for both taxa. In Tunnel Bay (3M2), 1 of the 3 taxa (amphipods) had both upper and lower bound TEQs above the TRG (the other 2 taxa had only the upper bound TEQ above the TRG). The upper bound TEQs for 4 of the 5 reference sites were also above the TRG for at least one taxon while no lower bound TEQs were above the TRG (Figure 8a). The 99<sup>th</sup> percentile for Lake Superior reference site TEQs (upper bound) was 10.43 ng TEQ/kg, ~2 times higher than the TRG (Figure 8a). All Jackfish Bay site TEQs exceeded the 99<sup>th</sup> percentile for Lake Superior reference with the exception of 4M3 (lower Jackfish Bay); exceedences ranged from 1.2 to 4.5 times.

Dioxins and furans contributed most to the total TEQ (sum of dioxin/furan and DL PCB TEQs) for Jackfish Bay sites, ranging from 87 to 98% using the upper bound values (dioxin-like PCBs contributed very little) (Table 7). PCDD/F congeners that contributed most to the TEQ were 2,3,7,8-TCDF (3 to 100%; median 86%), 2,3,4,7,8-pentachlorofuran (0 to 96%; median 4%), and 2,3,7,8-TCDD (0 to 33%; median 6%). However, concentrations of these congeners were below MDLs in several cases (Table 7); therefore, results should be interpreted with caution as there is greater uncertainty with values below the MDL.

Invertebrate tissue was not collected in 2003; therefore, comparisons could not be made to the earlier study.

# 7.3.2 Dioxin-like PCBs

Dioxin-like PCB concentrations in invertebrate tissue is provided in Table 7 for Jackfish Bay sites and in Appendix B, Table B7 for Lake Superior reference sites. With the exception of PCB 81 and PCB 169, most congeners were detected at all sites. PCB 118 (range 379 to 4130 pg/g dw), PCB 105 (range 134 to 1390 pg/g) and PCB 156 (range 59 to 900 pg/g) were the dominant congeners. [DL PCB]s were slightly lower at reference sites, ranging from 423 to 3090 pg/g and from 166 to 1150 pg/g for PCB 118 and PCB 105, respectively (Appendix B, Table B7). The more toxic congeners, PCB 77 and PCB 126, ranged from 17 to 94 pg/g and from 3 to 33 pg/g, respectively, at Jackfish Bay sites. Concentrations of PCB 77 and 126 were similar at reference sites, ranging from 18 to 100 pg/g and from 7 to 37 pg/g, respectively (Appendix B, Table B7).

# **Toxic Equivalent Concentrations (TEQs)**

Invertebrate tissue [DL PCB]s, expressed in TEQs, are also provided in Table 7. The avian TRG for DL PCBs, derived by Environment Canada, is 2.4 ng TEQ·kg<sup>-1</sup> diet ww (CCME 2001b). PCB congeners 77 and 126 contributed most to the TEQ, from 38 to 98%; (median 63%) and from 0 to 53% (median 22%), respectively. However, overall the DL PCBs contributed little to the total TEQ. Figure 8b shows the upper and lower bound TEQs for Jackfish Bay and Lake Superior reference sites. The TRG for DL PCBs was not exceeded at any site.

## 7.4 Benthic Invertebrate Community

All 15 Jackfish Bay sites had the highest probability of belonging to Great Lakes (GL) Reference Group 5, based on the BEAST 38-family bioassessment model and five habitat attributes (alkalinity, depth, total organic carbon, latitude and longitude) (Table 8). The probabilities of test sites belonging to Group 5 were very high, ranging from 84.2 to 99.6% (mean 93%). Results were similar to that found in 2003, where sites were also had the highest probability (mean 95%) of belonging to Group 5 (Milani and Grapentine 2007).

GL Reference Group 5 has a total of 75 sites from Lake Superior (30), as well as Georgian Bay (19), the North Channel (12), Lake Michigan (7), Lake Ontario (5) and Lake Huron (2). This group is characterized by the amphipod family Pontoporeiidae (44.3% occurrence in Group 5), followed by the Tubificidae (oligochaete worm -16.6% occurrence), Sphaeriidae (fingernail clam - 11.5% occurrence) and Chironomidae (midge - 9.9% occurrence). To a lesser degree, Group 5 also consists of Lumbriculidae, Enchytraeidae, and Naididae (oligochaete worms - 1.9 to 6.8% occurrence). Asellidae (isopod), Valvatidae (snail) and Gammaridae (amphipod) have minor occurrences (0.6 to 1.5%). These 10 families make up 99% of the total benthos found in Reference Group 5. Table 9 shows the mean abundance and taxon diversity (per 33  $\text{cm}^2$  – the area of the sampling core tube) of these 10 families for Jackfish Bay sites. Complete invertebrate identifications and counts at family level and lowest practical level are provided in Appendix C, Table C1 and Table C2, respectively. In total, 15 families were identified (10 of which are shown in Table 9) (Appendix C. Table C1) and 43 taxa (Appendix C, Table C2). Samples consisted predominantly of chironomids (15 taxa) and oligochaete worms (mainly unidentifiable tubificids with and without cap setae and 13 identifiable taxa). Tubificids, sphaeriids and chironomids were present at all sites (Table 9). In Moberly Bay, tubificid densities were high, ranging from 38 to 401 per 33 cm<sup>2</sup> (11,467 to 121,000 per m<sup>2</sup>; mean: 83,736/m<sup>2</sup>), compared to sites in central Jackfish Bay, which ranged from 1026 to 1509/m<sup>2</sup>, lower Jackfish Bay, which ranged from 6 to 966/m<sup>2</sup> and Tunnel Bay at 1207/m<sup>2</sup>. Average tubificid densities in Moberly Bay exceeded the GL reference average (1358/m<sup>2</sup>) by 62 fold while densities across other sites in Jackfish Bay were similar to GL reference sites. Similar results were found in 2003, where tubificid densities ranged from 15,000 to 124,000 per m<sup>2</sup> in Moberly Bay (Milani and Grapentine 2007). In the current study, densities of the unidentifiable tubificids with cap setae dominated most samples in Moberly Bay (47 to 88% of total abundances; Appendix C, Table C2); identifiable dominant worms in included Limnodrilus

*hoffmeisteri* and *Aulodrilus pluriseta*, again very similar to the 2003 study. Outside of Moberly bay, *Limnodrilus* and *Aulodrilus* were mostly absent and the deepest sites located in lower Jackfish Bay (i.e., 4M3), was more indicative of oligotrophic conditions with worms such as Enchytraeidae and Lumbriculidae more prevalent. Pontoporeiid amphipods (predominant GL Group 5 taxa) were absent at 8 of the 9 sites in Moberly Bay; gammarid amphipods were present at 2 sites in very similar abundance to the GL reference site mean (Table 9). Outside of Moberly Bay, pontoporeiids were present at all sites (0.6 to 4.6 per 33 cm<sup>2</sup>). Family diversity was generally similar or lower than the GL reference mean of 6 taxa throughout the bay; taxa ranged from 3 to 9 in Moberly Bay and from 3 to 7 outside of Moberly Bay (Table 9).

The mean relative abundances of the predominant macroinvertebrate taxa (tubificids, chironomids, sphaeriids and amphipods) are shown in Figure 9. In Moberly Bay, tubificids almost completely dominated, comprising 82 to 99.6% (mean 94%) of the macroinvertebrate community. Remaining taxa comprised on average from 0.03 (amphipods) to 3.6% (chironomids). These results are very similar to that found in 2003 (Milani and Grapentine 2007). Benthic communities in Moberly Bay were most dissimilar to mean GL reference (Group 5) communities, which are provided in Figure 9 for comparison. In central Jackfish Bay, some improvement was evident. Tubificids still dominated, but to a lesser degree, comprising 39 to 57% of the community (mean 50%) and the relative abundances of amphipods (17.9%). sphaeriids (8.7%), and chironomids (23.4%) were higher than those in Moberly Bay (0.03, 0.6 and 3.6%, respectively). In lower Jackfish Bay, the relative abundance of chironomids (mean 23.2%) was very similar to that in central Jackfish Bay and there was a decrease in sphaeriids in lower part of the bay (mean 5%) compared to the central bay (mean 8.7%). In Tunnel Bay (AOC reference), amphipods and chironomids dominated; comprising on average 39 and 31% of community, respectively, followed by tubificids, which comprised 18.6% of the community. Community composition in lower Jackfish Bay and Tunnel Bay were most similar to that at GL reference sites.

The results of the BEAST multivariate assessment of Jackfish Bay sites are summarized in Table 10. Ordination plots are provided in Appendix D, Figures D1 to D4 with each figure representing a subset of test data (3 to 5 site data). Three axes adequately described the variation in data. Stress, which is a measure of the goodness of fit between the distances among points in ordination space and the matrix input distances, is indicated in Table 10. The

larger the disparity the larger the stress and generally stress > 0.20 is poor (Belbin 1993). The stress for all site assessments was between 0.12 and 0.16, which is good to fair. Sites in Moberly Bay sites were categorized as *very different* (Band 4) or *different* (Band 3) from reference; 8 of the 9 sites fell in Band 4 and 1 site fell in Band 3 (Table 10). Movement of these sites outside of reference was associated with increased abundance of tubificid worms as indicated in the ordination plot by the shift of these sites away from the reference centroid in the same direction as the Tubificidae vector (Appendix D, Figures D1 and D2). Tubificidae was the most highly correlated family in the assessment of Moberly Bay sites ( $r^2 = 0.624$  to 0.757). Outside of Moberly Bay, benthic communities were more similar to reference. Two of the three sites (2M4, JFB021) in central Jackfish Bay were categorized as *possibly different* (Band 2) and one site (2M1) was *different*. Both sites in lower Jackfish Bay (2M5, 4M3) were *possibly different* than reference and the Tunnel Bay AOC reference site (3M2) was *equivalent* to reference (Band 1) (Table 10). The movement of sites outside of reference was likely due to decreased abundances of several taxa; no one taxon appears to have driven the ordination (Appendix D, Figures D3 and D4).

The relationship between the benthic community response and habitat variables was examined by correlation of the ordination of the community data and the habitat information (excluding organic contaminants). Between 3 and 13 variables were significantly correlated (p<0.05) to the ordination axes scores; the most highly correlated are shown in Appendix D, Figures D1 to D4. Increased total organic carbon (TOC,  $r^2$ =0.25) was associated with the separation of some Moberly Bay sites in ordination space (TOC is oriented with the position of the sites) (Appendix D, Figure D1). Some Jackfish Bay sites (i.e., 2M5 and 4M3) are deeper than most of the reference sites and this is indicated by the orientation of the depth vector (Appendix D, Figure D4).

#### Comparison to 2003 Study

Overall BEAST results from the current (2008) study were compared to those from the 2003 study of Milani and Grapentine (2007). Table 10 shows this comparison, which was made for 4 sites in Moberly Bay, 1 site in central Jackfish Bay, 1 site in lower Jackfish Bay and 1 site in Tunnel Bay. The assessment results were very similar. In Moberly Bay, 3 of the 4 sites fell in the same band (Band 4) while 1 site (1M3) moved from Band 3 to Band 4 in 2008, likely due to the increased tubificids at this site (15,088 worms/m<sup>2</sup> in 2003 vs. 83,283 worms/m<sup>2</sup> in 2008). Pontoporeiidae (amphipod) were present at the 3 of the 4 sites that were sampled in Moberly

Bay in 2003 (30 to 60 per m<sup>2</sup>), but were absent at these 3 sites in 2008. There were, however, amphipods present in Moberly Bay at 3 sites in 2008: sites 1M4 and NF5 had gammarid amphipods present (63 to 69/m<sup>2</sup>) and site EEM8 had pontoporeiid amphipods present (18/m<sup>2</sup>). These three sites were not sampled in 2003 so comparisons could not be made. Regardless, the strong evidence of different communities in Moberly Bay was consistent between years. The sites in central and lower Jackfish Bay both fell in the same bands in both years (Bands 3 and 2, respectively). Benthic communities in Tunnel Bay (3M2) were *possibly different* (Band 2) than reference in 2003 while *equivalent* to reference (Band 1) in 2008; abundances of key taxa were very similar between years and the taxon diversity identical. Overall, conditions in 2008 were quite similar to those in 2003.

Using Procrustes analysis, the HMDS solutions from 2008 and 2003 were also compared. The summary is provided below:

Residual sum of squares:0.1702m²:0.1629Probability of Rejection:0.0001

The resultant m<sup>2</sup> value of 0.16 was low, indicating that multivariate configurations from the two datasets were very similar.

# 7.5 Sediment Toxicity

Mean species survival, growth and reproduction in toxicity tests is shown in Table 11. The results of the BEAST multivariate assessment are summarized in Table 12. Three axes adequately described the variation in data. Ordinations are provided in Appendix E, Figures E1 and E2. Each figure represents a subset of Jackfish Bay test data (6 to 9 site data) summarized on two axes; Figure E1 represents the Moberly Bay sites (n=9) and Figure E2 represents sites that are outside of Moberly Bay (n=6). Stress was  $\leq 0.116$ , indicating that resultant three axes represented the original 10-dimensional among-site resemblances well.

Toxicity was evident in Moberly Bay (Table 11; Appendix E, Figure E1). Site 1M2 was categorized as *severely toxic* (Band 4), and sites M701 and JFB002 as *potentially toxic* (Band 2) (Table 12). The remaining 12 test sites were categorized as *non-toxic* (Band 1) (Figure E2).
Site 1M2 was associated with low *Hyalella* survival, as indicated in the ordination plot by the shift of this site away from the reference centroid in the opposite direction as this vector (appendix E, Figure E1). *Hyalella* survival was highly correlated to axes scores ( $r^2$ =0.914) and survival at site 1M2 was quite low (20%, Table 11). Site 1M2 was also associated with low *Hexagenia* growth, but this endpoint was weakly correlated to axes scores ( $r^2$ =0.155). The relationship between integrated toxicological response and habitat variables was examined by correlation of the ordination of the toxicity data and the habitat information (excluding organic contaminants). Eight variables (Hg, TKN (sediment), temperature, Co, TOC, total phosphorus (sediment), nickel and Al<sub>2</sub>O<sub>3</sub>) were correlated ( $p \le 0.05$ ) to the ordination axes scores for the assessment of Moberly Bay sites, although correlations were very weak ( $r^2$ = 0.05 to 0.14). No variables appeared to be associated with site positions in ordination space (Appendix E, Figure E1).

#### **Comparison to 2003 Study**

Overall BEAST results from the current (2008) study were compared to those from the 2003 study of Milani and Grapentine (2007). Table 12 shows this comparison, which was made for the 7 sites (indicated above in Section 7.4). Table 13 shows the individual endpoint comparison for *Hyalella* and *Hexagenia* for these sites. Overall, toxicity in Moberly Bay (n=4), lower Jackfish Bay (n=1) and Tunnel Bay (n=1) in 2008 was less severe than that observed in 2003. Two sites (1M3 and 1M1) that were categorized as *severely toxic* (Band 4) in 2003 were *non-toxic* (Band 1) in 2008 (Table 12). Results for site 1M2 were consistent between years (Band 4). Sites outside of Moberly Bay such as 4M3 (lower Jackfish Bay) and 3M2 (Tunnel Bay) were *severely toxic* in 2003 and *non-toxic* in 2008; site 2M1 (central Jackfish Bay) was *non-toxic* in both years. Looking at individual endpoints, acute toxicity to *Hyalella* was evident at 3 of the 4 Moberly Bay sites in 2003 (13.3 to 32% survival) while in 2008, acute toxicity was observed at 1 site (20%). In lower Jackfish and Tunnel Bays, mean amphipod survival was 8 and 44%, respectively, in 2003 and 77 and 79%, respectively, in 2008. The more severe toxicity noted in 2003 could reflect small scale heterogeneity.

#### 7.6 Integration of Lines of Evidence

Based on the data from four lines of evidence (sediment chemistry, toxicity, benthic invertebrate community structure and contaminant biomagnification potential), a decision matrix was

developed (Table 14). The information obtained allowed for the assessment of three possibilities (EC/MOE 2007):

- 1. the contaminated sediments pose an environmental risk;
- 2. the contaminated sediments may pose an environmental risk, but further assessment is required before a definitive decision can be made;
- 3. the contaminated sediments pose a negligible environmental risk.

Interpretation of the overall assessment considered the degree of degradation for each line of evidence. For the sediment chemistry column, sites with exceedences of the Probable Effect Level (PEL) are indicated by "■"; sites with exceedences of the Lowest Effect Level (LEL) or the Canada Wide Standards (CWS) for PHCs by "■". For the toxicity and benthos alteration columns, sites determined from the BEAST analysis as *toxic/severely toxic* or *different/very different* from reference, respectively, were indicated by "■"; sites determined as *potentially toxic* or *possibly different* from reference by "■". For the contaminant (dioxin/furan and DL PCBs) biomagnification potential column, sites where the TEQ (upper and lower bound) exceeded both the TRG and the 99<sup>th</sup> percentile for the reference sites were indicated by "■". Sites with no SQG exceedences, no sediment toxicity, benthic communities that were equivalent to reference conditions and no contaminant biomagnification potential were indicated by "□".

Based on the framework, *management actions required* was indicated at 1 site in Moberly Bay (1M2), due to elevated contaminants above guidelines (metals and F3 fraction petroleum hydrocarbons), severe toxicity and benthic community impairment (information on biomagnification potential was not available for this site). Five sites indicated *no further actions needed*: 1 in Moberly Bay (EEM8), 2 in central Jackfish Bay (2M4, JFB021) and 2 in lower Jackfish Bay (2M5, 4M3). Although these five sites fell in either of Band 2 or 3 based on the BEAST benthic community structure assessment, they were not recommended for further action relating to this line of evidence because these sites did not have the enriched tubificid community apparent in Moberly Bay, and were not overly dissimilar to the local AOC reference site (Tunnel Bay). While Site EEM4 in Moberly Bay showed increased diversity (7 taxa) compared to the GL reference mean, this site nonetheless was greatly enriched with tubificid worms (and also increased chironomid abundance), more indicative of a polluted environment.

The remaining 9 sites indicated that further work may be required. All 7 sites in Moberly Bay indicated *determine reason(s)* for benthos alteration and 3 of these 7 sites also indicated *fully* assess the risk of biomagnification. Fully assess the risk of biomagnification was also indicated in central Jackfish Bay at 1 site (2M1) and at the site in Tunnel Bay (3M2). With respect to benthos alteration, conditions in Moberly Bay generally reflect a response to organic enrichment, and therefore benthic communities should continue to be monitored for changes over time.

The framework was also applied to the 2003 study (Milani and Grapentine 2007). Table 15 shows the decision matrix for 7 sites that were sampled in both 2003 and 2008 (sites in similar locations). Note: contaminant biomagnification potential was not assessed in 2003 at any site and was not assessed in 2008 at site 1M2. Based on the sediment chemistry, toxicity and benthic community, assessment outcome results for 2008 suggests some slight improvements from 2003 due to lower toxicity (e.g., sites 1M3, 1M1, 4M3 and 3M2). In 2003, 3 Moberly Bay sites indicated *management actions required* while 1 site had this outcome in 2008.

#### 8 CONCLUSIONS

#### **Sediment Chemistry**

- Organic contaminants such as PAHs and PCBs were low throughout the bay.
- Dioxins and Furans, expressed as TEQ, were not overly high. The PEL was exceeded in Moberly Bay (1 site) and in lower Jackfish Bay (1 site) by 1.2 to 1.7 times.
- Petroleum hydrocarbons were not very high. The F3 fraction exceeded numerical standards (for soil) in Moberly Bay (3 sites) by up to 1.4 times.
- Metals (5 to 7) were above the LEL throughout the bay. (Metals were also elevated above the LEL at Lake Superior reference sites.)
- Total organic carbon was generally high in Moberly Bay compared to the other areas of Jackfish Bay and Lake Superior reference sites. TOC decreased overall with distance from Moberly Bay.

#### **Benthic Invertebrate Community**

- Benthic communities in Moberly Bay were indicative of a polluted environment as evidenced by very high tubificid densities and amphipods absent or in very low abundance compared to reference.
- Increased total organic carbon was correlated to position of Moberly Bay sites (in ordination space).
- Benthic communities outside of Moberly Bay were more similar to reference, with reduced tubificid densities and increased amphipod densities.
- Results were very similar to those found in 2003, and there appears to be little or no change from 2003. Altered benthic communities, mainly in Moberly Bay, generally appear to reflect a response to organic enrichment. Additional analyses (Procrustean analysis) confirmed that the 2008 and 2003 datasets were very similar.

#### **Sediment toxicity**

- Toxicity was evident in Moberly Bay with low amphipod survival and growth and low mayfly growth.
- Toxicity was evident at fewer sites in 2008 than in 2003. In 2003, toxicity was evident in Moberly Bay as well as central and lower Jackfish Bays, and Tunnel Bay.
- The cause of toxicity was unclear as toxicological response was weakly correlated to environmental variables (excluding organic variables).

#### **Bioaccumulation of Contaminants in Benthos**

- Dioxin and furan toxic equivalent concentrations (TEQs) in resident benthos (oligochaetes, chironomids, amphipods) were above the Tissue Residue Guideline (TRG) in Moberly Bay (up to 8 fold higher), central Jackfish Bay (up to 9.8 fold higher), lower Jackfish Bay (up to 1.6 fold higher) and Tunnel Bay (up to 2.9 fold higher).
- The 99<sup>th</sup> percentile for the Lake Superior reference site TEQs was also higher than the TRG (~2 times higher).
- TEQs for sites in Moberly Bay, central Jackfish Bay and Tunnel Bay exceeded both the TRG and the 99<sup>th</sup> percentile for reference site TEQs; exceedences ranged from 1.2 to 4.5 fold higher.

• TEQs for dioxin-like PCBs were well below the TRG.

#### Decision-making framework for sediment contamination

- *Management action required* was indicated for 1 site in Moberly Bay due to elevated sediment contaminants and benthos alteration and sediment toxicity.
- *No further action needed* was indicated at 5 sites: 1 in Moberly Bay and 4 in central or lower Jackfish Bay.
- Seven sites in Moberly Bay indicated that further investigations were required to
  determine reasons for altered benthic communities, toxicity and to fully assess
  dioxin/furan biomagnification potential. Since benthic communities in Moberly Bay
  generally reflect a response to organic enrichment, the cause of alteration likely does not
  have to be further investigated.
- One site in each of central Jackfish Bay and Tunnel Bay indicated that further investigations were required to fully assess dioxin/furan biomagnification potential.
- There was some improvement from 2003 results due to reduced sediment toxicity compared to reference in Moberly Bay, lower Jackfish Bay and Tunnel Bay.

#### Recommendations

• Benthic conditions (four lines of evidence) should continue to be monitored throughout the bay for changes over time.

#### 9 **REFERENCES**

Belbin, L. 1993. PATN, pattern analysis package. Division of Wildlife and Ecology, CSIRO, Canberra, Australia.

Blatant Fabrications Pty Ltd. 2001. PATN Version 3.03. December 2, 2004.

Cancilla, D. (ed.) 1994. Manual of analytical methods. Vol. 1. National Laboratory for Environmental Testing, Canada Centre for Inland Waters, Environment Canada, Burlington, Ontario.

CCME. 2001a. Canadian Environmental Quality Guidelines. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. Updated. In: Canadian Environmental Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg.

CCME. 2001b. Canadian tissue residue guidelines for the protection of wildlife consumers of aquatic biota: Introduction. Updated. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg.

CCME. 2008. Canada-wide standards for petroleum hydrocarbons (PHCs) in soil. Endorsed by CCME Council of Ministers, April 30-May 1, 2001, Winnipeg, MN. Table 1 Revised January 2008. 8 pp. <u>http://www.ccme.ca/ourwork/soil.html?category\_id=43</u>

Duncan, G.A., and G.G. LaHaie. 1979. Size analysis procedures used in the Sedimentology laboratory. Unpublished Report, Hydraulics Division, National Water Research Institute, Burlington, Ontario, Canada, unpublished data.

EC/MOE (Environment Canada/Ministry of the Environment). 2007. Canada-Ontario decisionmaking framework for assessment of Great Lakes contaminated sediment. Prepared by P. Chapman with the COA Sediment Task Group on behalf of Environment Canada and the Ontario Ministry of the Environment. June 2007. ISBN 978-0-662-46147-0.

Environment Canada. 2008. 2008-09 NLET (National Laboratory for Environmental Testing) Schedule of Services. Environment Canada, Burlington, Ontario.

Jackfish Bay RAP Team. 1991. Jackfish Bay Area of Concern. Stage 1 – Environmental conditions and problem definition. September, 1991.

Jackfish Bay RAP Team. 1998. Jackfish Bay Remedial Action Plan. Stage 2 – Remedial strategies for ecosystem restoration. February 1998.

Jackson, D.A. 1995. PROTEST: A PROcrustean Randomization TEST of community environment concordance. Ecoscience 2 (3): 297-303.

Jackson, D.A. and Harvey, H.H. 1993. Fish and benthic invertebrates: community concordance and community-environment relationships. Canadian Journal of Fisheries and Aquatic Sciences 50: 2641-2651.

Manly BFJ. 1991. Randomization and Monte Carlo methods in biology. Chapman & Hall, London. 281 p. <u>In:</u> Belbin L. 1993. PATN, pattern analysis package. Division of Wildlife and Ecology, CSIRO, Canberra, Australia.

Milani, D, and L. Grapentine. 2007. The application of BEAST sediment quality guidelines to the Jackfish Bay Area of Concern. WSTD Contribution No. 07-504.

MOE (Ministry of the Environment). 2009. The 2009-10 Guide to Eating Ontario Sport Fish. Ontario Ministry of the Environment: Toronto, Ontario, Canada, 2009.

Peres-Neto, P.R. and Jackson, D.A. 2001. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129: 169-178.

Reynoldson T. B., R.C. Bailey, K.E. Day and R.H. Norris. 1995. Biological guidelines for freshwater sediment based on benthic assessment of sediment (the BEAST) using a multivariate approach for predicting biological state. Aust. J. Ecol. 20: 198-219.

Reynoldson T.B., and K.E. Day. 1998. Biological guidelines for the assessment of sediment quality in the Laurentian Great Lakes. National Water Research Institute, Burlington, ON, Canada. NWRI Report No. 98-232.

Reynoldson T.B., C. Logan, D. Milani, T. Pascoe, and S.P. Thompson. 1998. Methods Manual IV: Sediment toxicity testing, field and laboratory methods and data management. NWRI Report No. 99-212.

Reynoldson, T.B., K.E. Day, and T. Pascoe. 2000. The development of the BEAST: a predictive approach for assessing sediment quality in the North American Great Lakes. Pp. 165 – 180 in Wright, J.F., D.W. Sutcliffe, and M.T. Furse (eds.), Assessing the biological quality of fresh waters: RIVPACS and other techniques. Freshwater Biological Association, UK.

Stantec (Stantec Consulting Ltd.) 2004. Cycle 3 Environmental Effects Monitoring report for the Kimberly-Clark Inc., Terrace Bay Mill. Report prepared by Stantec Consulting Ltd. Report submitted to Environment Canada by: Kimberly-Clark Inc. Terrace Bay, Ontario. Ref. 631 22256. March 2004.

Systat Software, Inc. 2007. SYSTAT 12 for Windows. Version 12.02.

USEPA/CE (United States Environmental Protection Agency/Corps of Engineers). 1981. Procedures for handling and chemical analysis of sediment and water samples. Environmental laboratory, US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, pp 3-118. EPA/CE-81-1.

USEPA. 1992. Test methods for evaluating solid waste, SW-846, US EPA Office of Solid Waste, 3<sup>rd</sup> Edition. <u>http://www.epa.gov/epawaste/hazard/testmethods/sw846/index.htm</u>

Van den Berg, M., L. Birnbaum, A.T.C. Bosveld., B. Brunström, P. Cook, M. Feeley, J.P. Giesy, A. Hanberg, R. Hasegawa, S.W. Kennedy, T. Kubiak, J.C. Larsen, F.X. Rolaf van Leeuwen, A.K.D. Liem, C. Nolt, R.E. Peterson, L. Poellinger, S. Safe, D. Schrenk, D. Tillitt, M. Tysklind, M. Younes, F. Waern, and T. Zacharewski. 1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ. Health Perspect. 106(12):775–792.

Figures



**Figure 1.** Invertebrate, sediment and overlying water sampling locations in 2003 (Milani and Grapentine 2007).



Figure 2a. Invertebrate, sediment and overlying water sampling locations in 2008.



Figure 2b. Moberly Bay sampling locations in 2008 (enlarged).



**Figure 3.** Cumulative particle size distributions for Jackfish Bay sediment. The vertical dotted lines separate Moberly Bay, central and lower Jackfish Bay and Tunnel Bay sites.



Site

**Figure 4**. Total organic carbon (%) in sediment. The vertical dotted lines separate Moberly Bay, central and lower Jackfish Bay, Tunnel Bay and Lake Superior reference sites.



**Figure 5.** The F3 petroleum hydrocarbon (PHC) fraction in Jackfish Bay sediment. The horizontal red lines represent the Canada-Wide Standard for petroleum hydrocarbons for the F3 fraction (1300 and 2500 mg/kg for coarse and fine textured, respectively). The vertical dotted lines separate Moberly Bay, central and lower Jackfish Bay and Tunnel Bay sites.



**Figure 6.** Dioxin (A) and furan (B) homologue group totals in Jackfish Bay and reference sediment. The vertical dotted lines separate Moberly Bay, central and lower Jackfish Bay, Tunnel Bay and Lake Superior reference sites.



Site

**Figure 7.** Sediment dioxin and furan (PCDD/Fs) toxic equivalent (TEQ) concentrations. For congener values that were below method detection limits, the method detection limit itself was used in the calculation of the Upper TEQ and values were assigned a zero for the Lower TEQ. The red solid line represents the Probable Effect Level (PEL) for dioxins/furans (21.5 ngTEQ/kg). The vertical dotted lines separate Moberly Bay, central and lower Jackfish Bay, Tunnel Bay and Lake Superior reference sites.



Site/Taxa

**Figure 8.** Benthic invertebrate toxic equivalent (TEQ) concentrations for (A) dioxins and furans (PCDD/F) and (B) dioxin-like PCBs. For congener values that were below method detection limits, the method detection limit itself was used in the calculation of the Upper TEQ and values were assigned a zero for the Lower TEQ. The red solid lines represent the Tissue Residue Guideline for an avian receptor for PCDD/F (4.75 ngTEQ/kg diet ww) (A) and dioxin-like PCBs (2.4 ng TEQ/kg diet ww) (B). The solid green line in (A) represents the 99<sup>th</sup> percentile for the upper bound reference TEQ for the reference sites (10.4 pg TEQ/g). The vertical dotted lines separate Moberly Bay, central and lower Jackfish Bay, Tunnel Bay and Lake Superior reference sites.



**Figure 9.** Mean relative abundance of predominant benthic macroinvertebrate taxa in areas within the Jackfish Bay Area of Concern. Relative abundance for Great Lakes reference sites (n=75) are shown for comparison.

Tables

**Table 1.** Jackfish Bay and Lake Superior reference sampling site positions, depth and sediment description (2008).

| Location                | Site                | Sampling<br>Device | Description                                                                                                      | Latitude    | Longitude   | Depth<br>(m) |
|-------------------------|---------------------|--------------------|------------------------------------------------------------------------------------------------------------------|-------------|-------------|--------------|
|                         | M701                | Ponar              | Very sandy with lots of rotting leaves. Very foul smelling.                                                      | 48.8105545  | 87.0019455  | 10.9         |
| Moberly Bay             | 1M4                 | Mini-box Core      | Brown silty mud with striations of<br>black over darker mud. Foul<br>smelling.                                   | 48.80944443 | 87.00111389 | 15.5         |
|                         | EEM4 <sup>a</sup>   | Mini-box Core      | Very soft silty brown mud over<br>black mud and organic matter.<br>Rotten smelling, with a bit of oily<br>sheen. | 48.80861282 | 87.00250244 | 15.2         |
|                         | 1M3                 | Mini-box Core      | Dark brown, silty mud throughout.<br>Very foul smelling sediment.                                                | 48.80749893 | 86.99944305 | 18.9         |
|                         | 1M2                 | Mini-box Core      | 2-3cm lighter brown over darker<br>mud. Foul smelling.                                                           | 48.80722046 | 86.99972534 | 19.3         |
|                         | JFB002 <sup>b</sup> | Mini-box Core      | Soft brown speckled mud over<br>darker, almost black mud. Foul<br>smelling.                                      | 48.80638885 | 87.00111389 | 17.4         |
|                         | 1M1                 | Mini-box Core      | 2-3 cm lighter brown over grey silty mud. Smelly sediment.                                                       | 48.80527878 | 86.9991684  | 20.4         |
|                         | NF5 <sup>a</sup>    | Mini-box Core      | 2-3 cm lighter brown silt y mud<br>over very dark mud. Foul<br>smelling.                                         | 48.80472183 | 87.0019455  | 16.1         |
|                         | EEM8 <sup>a</sup>   | Ponar              | 3-4 cm light brown sandy mud<br>over top 5+cm black sandy mud.<br>No odour.                                      | 48.80389023 | 86.99666595 | 15.8         |
| Central Jackfish<br>Bay | 2M1                 | Mini-box Core      | 2-3 cm light brown over darker silty mud. Oily smell.                                                            | 48.79583359 | 86.99194336 | 41.1         |
| -                       | 2M4                 | Mini-box Core      | 2-3 cm light brown silty mud over soft fine mud with fine sand.                                                  | 48.79527664 | 86.99694824 | 35.3         |
|                         | JFB021 <sup>b</sup> | Mini-box Core      | 2-3 cm light brown silt over darker mud. No odour.                                                               | 48.75111008 | 87.29528046 | 42.9         |
| Lower<br>Jackfish Bay   | 2M5                 | Mini-box Core      | 2-3 cm light brown silt over soft<br>brown/greyish mud with some very<br>fine sand. No odour.                    | 48.78694534 | 86.98666382 | 37.7         |
|                         | 4M3                 | Ponar              | 2-3 cm fine silt over clay. No<br>odour.                                                                         | 48.77944565 | 86.98027802 | 40.0         |
| Tunnel Bay              | 3M2                 | Mini-box Core      | A few mm light brown silt over darker silty mud. No odour.                                                       | 48.81111145 | 86.96083069 | 31.9         |
| Lake Superior           | 5100                | Mini-box Core      | Very fine silty brown mud                                                                                        | 48.74139    | 87.9397     | 49.0         |
| Reference               | 5101                | Mini-box Core      | Soft greyish brown silty mud.                                                                                    | 48.83556    | 87.7501     | 50.6         |
|                         | 5102                | Ponar              | 2-3 cm fine brown silty mud over grey clay and fine sand.                                                        | 48.77444    | 87.7269     | 27.0         |
|                         | 5103                | Mini-box Core      | Very fine silty brown mud                                                                                        | 48.80472    | 87.7494     | 16.8         |
|                         | 5104                | Mini-box Core      | Grey/brown hardish clay w/ fine gritty sand                                                                      | 48.72028    | 87.9244     | 38.4         |
|                         | 5105                | Mini-box Core      | Very fine silty brown mud                                                                                        | 48.60695    | 88.1869     | 41.7         |
|                         | 5106                | Mini-box Core      | 2-3 cm brown silt over clay and fine sand. Some small stones.                                                    | 48.50361    | 88.43       | 25.5         |
|                         | 2512                | Ponar              | Grey clay with lots of pebbles, stones.                                                                          | 48.85       | 87.6081     | 6.8          |

<sup>a</sup>EEM site (Stantec 2004); <sup>b</sup>Biberhofer (pers. comm.)

| Field                             | Water                                                                                                                                                | Sediment                                                                                                                                                                                    | Benthos            |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Northing<br>Easting<br>Site Depth | Alkalinity<br>Conductivity<br>Dissolved Oxygen<br>pH<br>Temperature<br>Nitrate+Nitrite-N<br>Ammonia-N<br>Total Phosphorus<br>Total Kjeldahl Nitrogen | Trace metals<br>Total Phosphorus<br>Total Kjeldahl Nitrogen<br>Total Organic Carbon<br>Loss on Ignition<br>%sand silt clay gravel<br>Petroleum Hydrocarbons<br>PAHs<br>PCBs<br>Oil & grease | Dioxins and Furans |
|                                   |                                                                                                                                                      | Dioxins and Furans                                                                                                                                                                          |                    |

 Table 2.
 Environmental variables measured at each site.

**Table 3.** Characteristics of sampling site overlying water. Values are in mg/L unless otherwise noted.

| Location                               | Site              | Alkalinity     | Conductivity<br>(µS/cm) | Dissolved<br>O <sub>2</sub> | NH <sub>3</sub> | NO <sub>3</sub> /NO <sub>2</sub> | TKN         | рН      | Temp<br>(°C) | Total P<br>μg/L |
|----------------------------------------|-------------------|----------------|-------------------------|-----------------------------|-----------------|----------------------------------|-------------|---------|--------------|-----------------|
| Moberly Bay                            | M701              | 52             | 188                     | 10.3                        | 0.172           | 0.315                            | 0.371       | 7.18    | 12.9         | 13.5            |
|                                        | 1M4               | 54             | 177                     | 10.2                        | 0.075           | 0.314                            | 0.269       | 7.11    | 12.9         | 16.2            |
|                                        | EEM4              | 56             | 201                     | 10.3                        | 0.014           | 0.422                            | 0.399       | 7.22    | 12.8         | 17.8            |
|                                        | 1M3               | 73             | 252                     | 9.4                         | 0.006           | 0.454                            | 0.521       | 7.61    | 12.4         | 34.8            |
|                                        | 1M2 <sup>a</sup>  | 72             | 286                     | 9.3                         | 0.184           | 0.33                             | 0.653       | 7.5     | 12.5         | 50.9            |
|                                        | JFB002            | 72             | 277                     | 9.6                         | 0.113           | 0.365                            | 0.267       | 7.05    | 12.6         | 34.6            |
|                                        | 1M1               | 66             | 215                     | 9.4                         | 0.010           | 0.477                            | 0.572       | 7.61    | 10.8         | 45.9            |
|                                        | NF5               | 59             | 220                     | 10.0                        | 0.011           | 0.419                            | 0.510       | 7.66    | 12.7         | 22.4            |
|                                        | EEM8              | 57             | 252                     | 9.9                         | 0.083           | 0.331                            | 0.189       | 7.51    | 12.9         | 19.5            |
| Central                                | 2M1               | 42             | 109                     | 11.6                        | 0.038           | 0.366                            | 0.203       | 7.63    | 7.0          | 4.4             |
| Jackfish<br>Bav                        | 2M4               | _ <sup>b</sup> | 133                     | 10.1                        | 0.043           | 0.376                            | 0.227       | 7.56    | 12.4         | 10.7            |
| Бау                                    | JFB021            | 37             | 107                     | 11.7                        | 0.005           | 0.368                            | 0.114       | 7.55    | 6.7          | 5.1             |
| Lower                                  | 2M5               | 43             | 111                     | 10.8                        | 0.054           | 0.362                            | 0.464       | 7.6     | 11.3         | 3.9             |
| Jackfish Bay                           | 4M3               | 42             | 109                     | 12.5                        | 0.003           | 0.358                            | 0.110       | 7.75    | 6.1          | 3.0             |
| Tunnel Bay                             | 3M2               | 45             | 116                     | 10.6                        | 0.007           | 0.389                            | 0.116       | 7.29    | 6.0          | 6.4             |
| Lake Superior                          | 5100              | 43             | 105                     | 11.6                        | 0.008           | 0.377                            | 0.095       | 7.6     | 7.1          | 4.1             |
| Reference                              | 5101              | 47             | 108                     | 10.3                        | 0.006           | 0.327                            | 0.157       | 8.0     | 14.3         | 7.4             |
|                                        | 5102              | 46             | 167                     | 10.3                        | 0.003           | 0.282                            | 0.145       | 7.9     | 13.6         | 3.9             |
|                                        | 5103 <sup>a</sup> | 49             | 123                     | 10.1                        | 0.017           | 0.254                            | 0.167       | 7.9     | 13.8         | 5.7             |
|                                        | 5104              | 44             | 110                     | 10.6                        | 0.033           | 0.324                            | 0.188       | 7.9     | 13.5         | 5.2             |
|                                        | 5105              | 45             | 106                     | 10.7                        | 0.006           | 0.289                            | 0.135       | 7.9     | 11.6         | 3.6             |
|                                        | 5106              | 43             | 103                     | 10.4                        | 0.015           | 0.305                            | 0.146       | 7.9     | 13.4         | 4.0             |
|                                        | 2512              | 43             | 98                      | 10.6                        | 0.006           | 0.315                            | 0.141       | 7.1     | 13.4         | 3.6             |
| Lake Superior I<br>(n=31) <sup>c</sup> | Reference         | 39-53          |                         | 10.3-15.0                   |                 | 0.24-0.36                        | 0.031-0.226 | 7.5-7.9 | 5-20         | 3.6-28          |

<sup>a</sup> Mean of 3 field replicates; <sup>b</sup> no data; <sup>c</sup> Unpublished data, Environment Canada 2006

### **Table 4.** Sediment trace metal and nutrient concentrations (dry weight). Values greater than the Provincial Sediment Quality Guidelines Severe Effect Level (SEL) are indicated in red.

|                         |               |        |           |       |       |       |       |            | Ν           | loberly B        | ау         |       |       |             | Centr       | al Jackfis       | h Bay  | Lower J | lackfish Bay | Tunnel Bay |
|-------------------------|---------------|--------|-----------|-------|-------|-------|-------|------------|-------------|------------------|------------|-------|-------|-------------|-------------|------------------|--------|---------|--------------|------------|
|                         |               |        | Reference |       |       |       |       |            |             |                  |            |       |       |             |             |                  |        |         |              |            |
| Parameter               | Units         | M.D.L. | Method    | LEL   | SEL   | M701  | 1M4   | EEM4       | 1M3         | 1M2 <sup>1</sup> | JFB002     | 1M1   | NF5   | EEM8        | 2M1         | 2M4 <sup>2</sup> | JFB021 | 2M5     | 4M3          | 3M2        |
| Aluminum                | µg/g          | 10     | EPA 6010  |       |       | 4180  | 6840  | 6680       | 7860        | 8310             | 8260       | 7210  | 8360  | 4170        | 9830        | 8315             | 10300  | 9960    | 13600        | 10600      |
| Antimony                | µg/g          | 5      | EPA 6010  |       |       | < 5   | < 5   | < 5        | < 5         | < 5              | < 5        | < 5   | < 5   | < 5         | < 5         | < 5              | < 5    | < 5     | < 5          | < 5        |
| Arsenic                 | µg/g          | 5      | EPA 6010  | 6     | 33    | < 5   | < 5   | < 5        | < 5         | < 5              | < 5        | < 5   | < 5   | < 5         | < 5         | < 5              | 7      | 7       | < 5          | 10         |
| Barium                  | µg/g          | 1      | EPA 6010  |       |       | 25    | 54    | 55         | 66          | 71               | 68         | 56    | 69    | 22          | 97          | 57               | 87     | 81      | 110          | 106        |
| Beryllium               | µg/g          | 0.2    | EPA 6010  |       |       | < 0.2 | 0.3   | 0.2        | 0.3         | 0.3              | 0.3        | 0.3   | 0.3   | < 0.2       | 0.4         | 0.35             | 0.5    | 0.5     | 0.7          | 0.5        |
| Bismuth                 | µg/g          | 5      | EPA 6010  |       |       | < 5   | < 5   | < 5        | < 5         | < 5              | < 5        | < 5   | < 5   | < 5         | < 5         | < 5              | < 5    | < 5     | < 5          | < 5        |
| Cadmium                 | µg/g          | 0.5    | EPA 6010  | 0.6   | 10    | < 0.5 | 0.9   | 0.9        | 1.4         | 1.5              | 1.4        | 1.0   | 1.2   | < 0.5       | 1.0         | 0.85             | 0.9    | 1.1     | < 0.5        | 1.0        |
| Calcium                 | µg/g          | 10     | EPA 6010  |       |       | 3660  | 11100 | 12100      | 15400       | 17633.3          | 18200      | 12900 | 14000 | 4090        | 7810        | 7740             | 6450   | 6350    | 80800        | 7640       |
| Chromium                | µg/g          | 1      | EPA 6010  | 26    | 110   | 21    | 41    | 41         | 52          | 48               | 45         | 46    | 45    | 22          | 50          | 41               | 47     | 46      | 51           | 44         |
| Cobalt                  | µg/g          | 1      | EPA 6010  |       |       | 5     | 7     | 7          | 7           | 8                | 8          | 7     | 8     | 5           | 10          | 8                | 11     | 10      | 15           | 11         |
| Copper                  | µg/g          | 1      | EPA 6010  | 16    | 110   | 7     | 22    | 26         | 34          | 35               | 32         | 30    | 31    | 7           | 52          | 39.5             | 53     | 56      | 32           | 54         |
| Iron                    | µg/g          | 10     | EPA 6010  | 20000 | 40000 | 9690  | 13700 | 13500      | 14500       | 15100            | 15000      | 14900 | 15600 | 10700       | 20600       | 17800            | 23300  | 21200   | 27400        | 25600      |
| Lead                    | µg/g          | 5      | EPA 6010  | 31    | 250   | < 5   | 7     | 11         | 8           | 9                | 8          | 10    | 9     | < 5         | 21          | 20               | 23     | 29      | 14           | 29         |
| Magnesium               | µg/g          | 10     | EPA 6010  |       |       | 3790  | 7970  | 8390       | 10700       | 12133.3          | 12400      | 9240  | 10000 | 3780        | 7940        | 7255             | 7820   | 7290    | 21400        | 8000       |
| Manganese               | µg/g          | 1      | EPA 6010  | 460   | 1100  | 161   | 326   | 341        | 309         | 342              | 346        | 292   | 445   | 199         | 1080        | 581.5            | 966    | 996     | 568          | 1680       |
| Mercury                 | µg/g          | 0.005  | EPA 7471A | 0.2   | 2     | 0.023 | 0.053 | 0.062      | 0.068       | 0.068            | 0.064      | 0.110 | 0.064 | 0.027       | 0.084       | 0.1125           | 0.082  | 0.125   | 0.022        | 0.107      |
| Molybdenum              | µg/g          | 1      | EPA 6010  |       |       | < 1   | < 1   | < 1        | < 1         | < 1              | < 1        | < 1   | < 1   | < 1         | < 1         | < 1              | < 1    | < 1     | < 1          | < 1        |
| Nickel                  | µg/g          | 1      | EPA 6010  | 16    | 75    | 14    | 21    | 20         | 23          | 25               | 23         | 21    | 23    | 12          | 28          | 22.5             | 29     | 27      | 36           | 29         |
| Phosphorus              | hð\ð          | 5      | EPA 6010  |       |       | 680   | 947   | 969        | 964         | 1003             | 1020       | 972   | 1070  | 901         | 1080        | 1020             | 1180   | 1070    | 648          | 1350       |
| Potassium               | hð\ð          | 30     | EPA 6010  |       |       | 300   | 850   | 840        | 1180        | 1277             | 1240       | 980   | 1240  | 310         | 1540        | 1100             | 1590   | 1510    | 4000         | 1620       |
| Silicon                 | hð\ð          | 1      | EPA 6010  |       |       | 209   | 362   | 250        | 236         | 232              | 343        | 197   | 250   | 186         | 256         | 276              | 163    | 2/1     | 249          | 281        |
| Silver                  | µg/g          | 0.2    | EPA 6010  |       |       | < 0.2 | 0.4   | 0.6        | 0.8         | 0.7              | 0.6        | 0.7   | 0.6   | < 0.2       | 0.6         | 0.4              | 0.4    | 0.5     | 0.2          | 0.3        |
| Sodium                  | µg/g          | 20     | EPA 6010  |       |       | 610   | 810   | 790        | //0         | 730              | 900        | 760   | 920   | 620         | 730         | 730              | 730    | 660     | 830          | 740        |
| Strontium               | µg/g          | 1      | EPA 6010  |       |       | 11    | 17    | 18         | 19          | 20               | 21         | 18    | 20    | 12          | 19          | 17.5             | 20     | 18      | 60           | 20         |
| Tite nium               | µg/g          | 10     | EPA 6010  |       |       | < 10  | < 10  | < 10       | < 10<br>612 | < 10             | < 10       | < 10  | < 10  | < 10<br>500 | < 10<br>000 | < 10<br>700 F    | < 10   | < 10    | < 10         | < 10       |
|                         | µg/g          | 1      | EPA 6010  |       |       | 523   | 003   | 031        | 013         | 031              | 003        | 000   | 745   | 230         | 022         | 790.5            | 954    | 794     | 1220         | 637        |
| Variaulum               | µg/g          | 1      | EPA 6010  |       |       | 19    | 29    | 50         | 30          | 51               | 51         | 29    | 33    | 22          | 40          | 30               | 44     | 40      | 49           | 43         |
| Tunum                   | µg/g          | 0.5    | EPA 6010  | 100   | 000   | 3.4   | 0.0   | 0.1<br>425 | 5.4         | 5.5              | 5.7<br>100 | 5.0   | 0.0   | 4.0         | 1.1         | 0.95             | 0.4    | 0.0     | 10.6         | 0.0        |
| Zinc                    | µg/g          | 0.1    | EPA 6010  | 120   | 620   | 2.1   | 2.4   | 2.1        | 21          | 2.3              | 2.4        | 27    | 2.4   | 2.0         | 2.4         | 2 15             | 2.8    | 2.0     | 24.8         | 103        |
|                         | μ <u>9</u> /9 | 0.1    |           |       |       | 13.7  | 12.4  | 13.4       | 11.0        | 2.5              | 12.4       | 12.7  | 11.6  | 2.0         | 13.0        | 13.35            | 2.0    | 2.0     | 13.7         | 1.5        |
| Rarium (RaO)            | 70<br>0/_     | 0.01   |           |       |       | 0.001 | 0.078 | 0.001      | 0.078       | 0.078            | 0.078      | 0.078 | 0.078 | 0.079       | 0.052       | 0.052            | 0.079  | 0.052   | 0.001        | 0.078      |
| Calcium (CaO)           | 70<br>0/_     | 0.001  |           |       |       | 2.97  | 2.97  | 2.82       | 3.43        | 0.070            | 4.02       | 4.24  | 4.60  | 2.50        | 7.02        | 7.60             | 2.08   | 3.20    | 2.01         | 14.5       |
| Chromium (Cr2O3)        | 70<br>0/      | 0.01   |           |       |       | 2.07  | 2.07  | 2.02       | 0.01        | 4.40             | 4.02       | 4.24  | 4.09  | 2.30        | 0.01        | 0.01             | 2.90   | 0.01    | 2.91         | 0.01       |
| Iron (Fe2O3)            | /0<br>%       | 0.05   |           |       |       | 5.65  | 3.70  | 5.23       | 4.02        | 4.03             | 4.06       | 4 10  | 3.86  | 3 55        | 5.84        | 5.035            | 3.17   | 3.41    | 6.10         | 6.80       |
| Magnesium (MgO)         | %             | 0.03   | IN-HOUSE  |       |       | 2.39  | 2.22  | 2 20       | 2.85        | 3.04             | 2.68       | 2.46  | 3.05  | 1.53        | 6.12        | 6.42             | 1.61   | 2.52    | 2.24         | 5.02       |
| Magnesian (MgC)         | %             | 0.01   | IN-HOUSE  |       |       | 0.18  | 0.08  | 0.18       | 0.08        | 0.04             | 0.10       | 0.08  | 0.00  | 0.06        | 0.12        | 0.13             | 0.06   | 0.06    | 0.27         | 0.02       |
| Phosphorus (P2O5)       | %             | 0.03   | IN-HOUSE  |       |       | 0.06  | 0.00  | 0.10       | 0.00        | 0.00             | 0.10       | 0.00  | 0.00  | 0.32        | 0.39        | 0.175            | 0.00   | 0.00    | < 0.04       | < 0.10     |
| Potasium (K20)          | %             | 0.01   | IN-HOUSE  |       |       | 2.33  | 2.25  | 2 43       | 2.35        | 1.99             | 2.07       | 2 17  | 2.16  | 2.31        | 2.08        | 2.33             | 1.88   | 2.08    | 2.54         | 2.81       |
| Silica (SiO2)           | %             | 0.01   | IN-HOUSE  |       |       | 58.8  | 58.1  | 58.1       | 55.5        | 53.6             | 55.7       | 57.0  | 54.0  | 70          | 48.4        | 49.9             | 62.9   | 50.7    | 57.9         | 41.6       |
| Sodium (Na2O)           | %             | 0.01   | IN-HOUSE  |       |       | 3 16  | 5 25  | 3 12       | 4 72        | 2 77             | 2.94       | 3.21  | 2.91  | 6.23        | 2 48        | 3 045            | 4.34   | 4 19    | 3.05         | 1 78       |
| Titanium (TiO2)         | %             | 0.01   | IN-HOUSE  |       |       | 0.74  | 0.61  | 0.74       | 0.65        | 0.62             | 0.65       | 0.68  | 0.62  | 0.69        | 0.74        | 0.73             | 0.56   | 0.56    | 0.74         | 0.78       |
| Loss on Ignition        | %             | 0.05   | IN-HOUSE  |       |       | 5.75  | 15.9  | 18.5       | 21.0        | 22.4             | 21.6       | 17.1  | 19.1  | 3.18        | 14.3        | 11.8             | 13.3   | 12.2    | 19.9         | 11.4       |
| Whole Rock Total        | %             |        | IN-HOUSE  | 1     |       | 95.7  | 104   | 107        | 107         | 105              | 106        | 103   | 102   | 105         | 101         | 101.5            | 104    | 90.3    | 109          | 99.6       |
| Total Organic Carbon    | % by wt       | 0.1    | LECO      | 1     | 10    | 2.8   | 5.2   | 6.1        | 6.5         | 6.7              | 6.5        | 5.4   | 6     | 0.8         | 4.0         | 3.05             | 2.7    | 3.4     | 0.4          | 2.8        |
| Total Kjeldahl Nitrogen | μα/α          | 0.05   | EPA 351.2 | 550   | 4800  | 1050  | 2830  | 3270       | 4370        | 4723             | 4270       | 2610  | 3910  | 585         | 3190        | 1960             | 2430   | 2470    | 551          | 2330       |
| Phosphorus-Total        | µg/g          | 0.01   | EPA 365.4 | 600   | 2000  | 550   | 804   | 894        | 1000        | 991              | 963        | 812   | 913   | 793         | 1160        | 962.5            | 1160   | 1040    | 618          | 1270       |

<sup>1</sup> mean of 3 field replicates; <sup>2</sup> mean of laboratory duplicates

**Table 5.** Sediment petroleum hydrocarbon, PAH, oil and grease and PCB concentrations (mg/kg dw) in Jackfish Bay sediment. Values below method detection limits are indicated by "<". [Method detection limits are provided in Appendix B, Table B4]. Values exceeding Provincial Sediment Quality Guideline Lowest Effect Levels (LEL) or Canada-Wide standards (CWS) are indicated in red.

|                                  | Guideline | e Moberly Bay |             |             |        |              |             | Cent         | ral Jackfi   | sh Bay | Lower Ja    | ackfish Bay | Tunnel Bay |              |             |             |
|----------------------------------|-----------|---------------|-------------|-------------|--------|--------------|-------------|--------------|--------------|--------|-------------|-------------|------------|--------------|-------------|-------------|
| Analyte                          | mg/kg     | M701          | 1M4         | EEM4        | 1M3    | 1M2a         | JFB002      | 1M1          | NF5          | EEM8   | 2M1         | 2M4         | JFB021     | 2M5          | 4M3         | 3M2         |
| BTEX                             |           |               |             |             |        |              |             |              |              |        |             |             |            |              |             |             |
| Benzene                          |           | <0.05         | <0.05       | <0.05       | <0.05  | <0.05        | <0.05       | <0.05        | <0.05        | <0.05  | <0.05       | <0.05       | <0.05      | <0.05        | <0.05       | <0.05       |
| Ethyl Benzene                    |           | <0.05         | <0.05       | <0.05       | < 0.05 | <0.05        | <0.05       | <0.05        | < 0.05       | <0.05  | < 0.05      | < 0.05      | <0.05      | <0.05        | <0.05       | <0.05       |
| m+p-Xylenes                      |           | <0.1          | <0.1        | <0.1        | <0.1   | <0.1         | <0.1        | <0.1         | <0.1         | <0.1   | <0.1        | <0.1        | <0.1       | <0.1         | <0.1        | <0.1        |
| o-Xylene                         |           | <0.05         | <0.05       | <0.05       | <0.05  | <0.05        | <0.05       | <0.05        | <0.05        | <0.05  | < 0.05      | <0.05       | <0.05      | <0.05        | <0.05       | <0.05       |
| Toluene                          |           | <0.05         | <0.05       | <0.05       | 0.08   | 0.1          | <0.05       | 0.06         | < 0.05       | <0.05  | < 0.05      | <0.05       | <0.05      | <0.05        | <0.05       | <0.05       |
| Xylene, (total)                  |           | <0.15         | <0.15       | <0.15       | <0.15  | <0.15        | <0.15       | <0.15        | <0.15        | <0.15  | <0.15       | <0.15       | <0.15      | <0.15        | <0.15       | <0.15       |
| ,                                |           |               |             |             |        |              |             |              |              |        |             |             |            |              |             |             |
| CCME HYDROCARBONS                | CWS⁵      |               |             |             |        |              |             |              |              |        |             |             |            |              |             |             |
| F1 (C6-C10)                      | 320       | <5            | <5          | <5          | <5     | <5           | <5          | <5           | <5           | <5     | <5          | <5          | <5         | <5           | <5          | <5          |
| F1-BTEX                          |           | <5            | <5          | <5          | <5     | <5           | <5          | <5           | <5           | <5     | <5          | <5          | <5         | <5           | <5          | <5          |
| F2 (C10-C16)                     | 260       | 72            | 27          | 110         | 64     | 90           | 23          | 52           | 36           | <10    | 21          | <20         | <20        | 23           | <10         | <20         |
| F2-Naphth                        |           | 72            | 27          | 110         | 64     | 90           | 23          | 52           | 36           | <10    | 21          | <20         | <20        | 23           | <10         | <20         |
| F3 (C16-C34)                     | 2500      | 1090          | 1250        | 2560        | 2600   | 3427         | 1360        | 1570         | 1790         | 294    | 580         | 730         | 620        | 840          | <50         | 230         |
| F3-PAH                           |           | 1090          | 1250        | 2560        | 2600   | 3427         | 1360        | 1570         | 1790         | 294    | 580         | 730         | 620        | 840          | <50         | 230         |
| F4 (C34-C50)                     |           | 330           | 310         | 640         | 550    | 733          | 270         | 320          | 410          | 62     | 170         | 210         | 140        | 210          | <50         | <100        |
| F4G-SG (GHH-Silica)              | 6600      | 1400          | 1200        | 2700        | 2100   | 2800         | 1300        | 1200         | 1700         | 600    | 800         | 900         | 600        | 700          | 100         | 300         |
| Total Hydrocarbons (C6-C50)      | 0000      | 1490          | 1590        | 3310        | 3210   | 4253         | 1650        | 1940         | 2240         | 356    | 770         | 940         | 760        | 1070         | <50         | 230         |
| Chromatogram to baseline at nC50 |           | no            | no          | no          | no     | no           | no          | no 10        | no           | ves    | Ves         | no          | Ves        | no           | Ves         | Ves         |
|                                  |           | 110           | 110         | 110         | 110    | no           | no          | 110          | 110          | ,00    | ,00         | 110         | yee        | 110          | ,00         | ,00         |
| CCME PAHs                        | I FI      |               |             |             |        |              |             |              |              |        |             |             |            |              |             |             |
| 1-Methylnanbthalene              |           | <0.1          | <0.1        | <0.1        | <0.1   | <0.1         | <0.1        | <0.1         | <0.1         | <0.05  | <0.1        | <0.1        | <0.1       | <0.1         | <0.1        | <0.1        |
| 2-Methylnaphthalene              |           | <0.1          | <0.1        | <0.1        | <0.1   | <0.1         | <0.1        | <0.1         | <0.1         | <0.00  | <0.1        | <0.1        | <0.1       | <0.1         | <0.1        | <0.1        |
|                                  |           | <0.1          | <0.1        | <0.1        | <0.1   | <0.1         | <0.1        | <0.1         | <0.1         | <0.00  | <0.1        | <0.1        | <0.1       | <0.1         | <0.1        | <0.1        |
|                                  |           | <0.1          | <0.1        | <0.1        | <0.1   | <0.1         | <0.1        | <0.1         | <0.1         | <0.00  | <0.1        | <0.1        | <0.1       | <0.1         | <0.1        | <0.1        |
| Accridine                        |           | <2            | <2          | <2          | <2     | <2           | <2          | <2           | <2           | <0.00  | <2          | <2          | <2         | <2           | <2          | <2          |
| Anthracene                       | 0.22      | <01           | <0.1        | <0.1        | 04     | 04           | 0.2         | 0.1          | 01           | <0.0   | <0.1        | <0.1        | <01        | <01          | <0.1        | <01         |
| Ronzo(a)anthracono               | 0.22      | <0.1          | <0.1        | -0.1        | 0.7    | 0.1          | <0.2        | <0.1         | 0.1          | <0.05  | <0.1        | <0.1        | <0.1       | <0.1         | <0.1        | <0.1        |
| Benzo(a)pyrepe                   | 0.32      | <0.1          | <0.1        | 0.2         | 0.2    | 0.1          | <0.1        | <0.1<br>0.07 | ~0.1<br>0.04 | <0.00  | 0.07        | 0.06        | <0.1       | 0.05         | <0.1        | 0.06        |
| Benzo(b)fluoranthene             | 0.57      | <0.04         | <0.04       | 0.15        | 0.13   | 0.1          | <0.04       | <0.07        | <0.04        | <0.02  | <0.07       | <0.00       | <0.04      | <0.00        | <0.04       | <0.00       |
| Benzo(a h i)pen/lene             |           | <0.1          | <0.1        | <0.2        | 0.2    | <0.1         | <0.1        | <0.1         | <0.1         | <0.05  | <0.1        | <0.1        | <0.1       | <0.1         | <0.1        | <0.1        |
| Benzo(k)fluoranthene             | 0 24      | <0.1          | <0.1        | <0.1        | <0.1   | <0.1         | <0.1        | <0.1         | <0.1         | <0.00  | <0.1        | <0.1        | <0.1       | <0.1         | <0.1        | <0.1        |
| Chrysene                         | 0.24      | <0.1          | 0.1         | 0.1         | 0.1    | 03           | <0.1        | 0.1          | <0.1         | <0.05  | 0.1         | 0.1         | <0.1       | 0.1          | <0.1        | <0.1        |
| Dibenzo(ab)anthracene            | 0.06      | <0.1          | <0.1        | <0.0        | <0.0   | <0.0         | <0.1        | <0.2         | <0.1         | <0.00  | <0.2        | <0.1        | <0.1       | <0.1         | <0.1        | <0.1        |
| Eluoranthene                     | 0.00      | <0.1          | 0.1         | 0.1         | 0.1    | 0.1          | 0.1         | 0.1          | 0.1          | <0.05  | 0.1         | 0.1         | <0.1       | 0.1          | <0.1        | 0.1         |
| Fluorene                         | 0.75      | <0.1          | <0.1        | <0.0        | <0.0   | <0.0         | <0.1        | <0.0         | <0.1         | <0.05  | <0.2        | <0.1        | <0.1       | <0.1         | <0.1        | <0.1        |
| Indono(1,2,2, od)pyropo          | 0.13      | <0.1          | <0.1        | ~0.1        | ~0.1   | ~0.1         | <0.1        | <0.1         | <0.1         | <0.05  | <0.1        | <0.1        | <0.1       | <0.1         | <0.1        | <0.1        |
| Nanhthalene                      | 0.20      | <0.1          | <0.1        | <0.1        | <0.1   | <0.1         | <0.1        | <0.1         | <0.1         | <0.05  | <0.1        | <0.1        | <0.1       | <0.1         | <0.1        | <0.1        |
| Phenanthrene                     | 0.56      | <0.1          | <0.1        | ~0.1<br>0.4 | 0.1    | 0.1          | <0.1        | ~0.1         | <0.1         | <0.05  | ~0.1        | <0.1        | <0.1       | <0.1         | <0.1        | <0.1        |
| Prienanuliene                    | 0.00      | <0.1          | ~0.1        | 0.4         | 0.4    | 0.3          | ~0.1        | 0.2          | ~0.1         | <0.05  | 0.1         | ~0.1        | <0.1       | 0.1          | <0.1        | 0.1         |
| Cuincling                        | 0.49      | <0.1          | 0.1<br>∠0.1 | <0.1        | 0.4    | 0.3<br><0.1  | 0.1<br><0.1 | 0.2<br>∠0.1  | 0.1<br><0.1  | <0.05  | 0_1         | 0.1<br><0.1 | <0.1       | 0.1<br><0.1  | <0.1        | 0.1<br><0.1 |
|                                  | 4         | <b>NO.1</b>   | <0.1<br>0.2 | NU.1        | 2.0    | >0.1<br>2 1  | <0.1        | <0.1<br>1 1  | <0.1<br>0.2  | <0.05  | <0.1<br>0.0 | <0.1        | NU.1       | <b>~</b> 0.1 | <b>NO.1</b> | ~0.1        |
| FARS, TOTAL                      | 4         |               | 0.5         | 2.1         | 3.0    | 2.1          | 0.4         | 1.1          | 0.5          |        | 0.0         | 0.4         |            | 0.4          |             | 0.5         |
| Individual Analytaa              |           |               |             |             |        |              |             |              |              |        |             |             |            |              |             |             |
|                                  |           | 447           | <u> </u>    | CC 1        | 70.0   | 74.0         | 66          | <u> </u>     | 05.4         | 20.2   | 00.4        | F0 4        | co 0       | 64           | 20.0        | 50.7        |
| % Moisture                       |           | 44.7          | 600         | 500. I      | 72.0   | / 1.0<br>900 | 500         | 600          | 60.1<br>E00  | 200    | 600.1       | 400         | 200        | 400          | 100         | 100         |
| On and Grease, Total             |           | 1400          | 000         | 500         | 000    | 000          | 500         | 000          | 500          | 300    | 000         | 400         | 200        | 400          | 100         | 100         |
|                                  |           |               |             |             |        |              |             |              |              |        |             |             |            |              |             |             |
| PCBs                             | LEL       | 10.07         | -C -1       |             |        |              |             |              | .c. t        | -0.05  |             |             |            |              | .0.04       |             |
| Aroclor 1242                     | -         | < 0.05        | <0.1        | <0.1        | <0.2   | <0.2         | <0.1        | <0.1         | <0.1         | <0.05  | <0.1        | <0.1        | < 0.1      | <0.1         | <0.04       | <0.1        |
| Arocior 1248                     | 0.03      | <0.05         | <0.1        | <0.1        | <0.1   | <0.1         | <0.1        | <0.1         | <0.1         | <0.05  | <0.1        | <0.1        | <0.1       | <0.1         | <0.04       | <0.1        |
| Aroclor 1254                     | 0.06      | < 0.05        | <0.1        | <0.1        | <0.1   | <0.1         | <0.1        | <0.1         | <0.1         | < 0.05 | <0.1        | <0.1        | <0.1       | <0.1         | < 0.04      | <0.1        |
| Aroclor 1260                     | 0.005     | < 0.05        | <0.1        | <0.1        | <0.1   | <0.1         | <0.1        | <0.1         | <0.1         | < 0.05 | <0.1        | <0.1        | <0.1       | <0.1         | <0.04       | <0.1        |
| I otal PCBs                      | 0.07      | <0.05         | <0.1        | <0.1        | <0.2   | <0.2         | <0.1        | <0.1         | <0.1         | <0.05  | <0.1        | <0.1        | <0.1       | <0.1         | <0.04       | <0.1        |

<sup>a</sup> Field replicate average; <sup>b</sup> For fine textured, industrial land use category (CCME 2008); <sup>c</sup> MOE (1993)

**Table 6.** Sediment dioxin and furan concentrations (pg/g dw) and toxic equivalents (TEQ) for Jackfish Bay sites. TEQs exceeding the probable effect level are indicated in red. A "<" Indicates that the compound was not detected above the method detection limit or that the target analyte was detected below the Lowest Quantitation Limit (see text). [Estimated Detection Limits = Method detection limits are provided in Appendix B, Table B6].

| Location                            |        | Moberly bay |       |       |                  |        | Centra | al Jackfish | Bay    | Lower Jack | cfish Bay | Tunnel Bay |       |        |       |
|-------------------------------------|--------|-------------|-------|-------|------------------|--------|--------|-------------|--------|------------|-----------|------------|-------|--------|-------|
| Site                                | M701   | 1M4         | EEM4  | 1M3   | 1M2 <sup>a</sup> | JFB002 | 1M1    | NF5         | EEM8   | 2M1        | 2M4       | JFB021     | 2M5   | 4M3    | 3M2   |
| Analytes                            | pg∕g   | pg∕g        | pg∕g  | pg∕g  | pg∕g             | pg∕g   | pg∕g   | pg∕g        | pg∕g   | pg∕g       | pg∕g      | pg∕g       | pg∕g  | pg∕g   | pg∕g  |
| 2,3,7,8-TCDD                        | <1.2   | 6.63        | 17.3  | 10.2  | 5.52             | 5.87   | 7.7    | 8.04        | 1.15   | 8.72       | 9.03      | 5.92       | 10.8  | 0.232  | 3.94  |
| 1,2,3,7,8-PeCDD                     | <0.10  | <0.51       | <1.6  | <0.93 | <0.86            | <1.0   | 1.12   | <1.2        | <0.16  | 1.37       | 1.44      | <1.1       | 1.9   | <0.31  | <1.3  |
| 1,2,3,4,7,8-HxCDD                   | <0.11  | 0.55        | <0.43 | <0.62 | <6.7             | <0.60  | <0.56  | <1.7        | <0.30  | 1.18       | 0.732     | 1.06       | 1.73  | <0.14  | 1.22  |
| 1,2,3,6,7,8-HxCDD                   | <0.11  | <1.0        | <1.9  | 1.66  | <6.8             | 1.34   | 1.17   | <1.7        | <0.28  | 1.95       | 1.98      | 1.82       | 2.99  | 0.542  | <2.5  |
| 1,2,3,7,8,9-HxCDD                   | <0.11  | 1.2         | 2.15  | 2.08  | <6.8             | 1.21   | 1.12   | <1.7        | <0.29  | 3.06       | 2.45      | 2.43       | 3.58  | <0.45  | 3.75  |
| 1,2,3,4,6,7,8-HpCDD                 | <2.4   | 18.9        | 38.2  | 24.7  | 21.1             | 19.8   | 17.4   | 22.1        | <2.5   | 26.7       | 24.9      | 24.9       | 32.8  | 3.01   | 29.9  |
| OCDD                                | 12     | 117         | 212   | 175   | 132.7            | 110    | 99.3   | 149         | 9.4    | 141        | 119       | 115        | 163   | 11.5   | 155   |
| 2,3,7,8-TCDF                        | 13.5   | 80.2        | 239   | 126   | 61.9             | 67.5   | 96.1   | 93.7        | 10.2   | 100        | 103       | 62.5       | 129   | 0.423  | 42    |
| 1,2,3,7,8-PeCDF                     | 0.603  | 3.65        | 6.36  | 5.61  | 4.1              | 4.22   | 3.46   | 4.92        | <0.41  | 5.22       | 3.61      | 3.1        | 6.18  | 0.314  | 2.84  |
| 2,3,4,7,8-PeCDF                     | 0.712  | 4.38        | 10.6  | 8.08  | 4.4              | 4.96   | 4.57   | 6.54        | <0.65  | 6.56       | 5.15      | 4.05       | 7.75  | <0.11  | 3.45  |
| 1,2,3,4,7,8-HxCDF                   | 0.258  | 1.39        | 2.05  | <2.3  | <6.4             | 2.42   | <1.4   | <1.5        | 0.368  | 3.28       | 2.12      | 2.28       | 3.88  | 0.783  | 3.4   |
| 1,2,3,6,7,8-HxCDF                   | <0.072 | 0.451       | <0.59 | 0.932 | <6.3             | <0.81  | <0.66  | <1.3        | <0.089 | 1.42       | 0.977     | 1.19       | 1.54  | 0.395  | 1.62  |
| 2,3,4,6,7,8-HxCDF                   | <0.067 | <0.32       | 0.648 | <0.55 | <6.5             | 0.788  | <0.56  | <1.2        | <0.098 | 0.801      | 0.774     | 0.931      | 1.27  | <0.14  | <1.2  |
| 1,2,3,7,8,9-HxCDF                   | <0.082 | <0.25       | <0.64 | <0.72 | <8.0             | <0.67  | <0.73  | <1.5        | <0.12  | <0.37      | <0.21     | <0.24      | <0.40 | <0.040 | <0.54 |
| 1,2,3,4,6,7,8-HpCDF                 | 1.1    | 6.11        | 13.1  | 6.72  | 6.6              | 5.88   | 6.06   | 6.19        | <0.71  | 7.56       | 7.08      | 7.16       | 8.8   | 3.24   | 8.25  |
| 1,2,3,4,7,8,9-HpCDF                 | <0.15  | 0.765       | <0.83 | <0.88 | <9.1             | <0.81  | <0.88  | <2.1        | <0.13  | 0.742      | <0.70     | 0.744      | <1.1  | <0.10  | <1.0  |
| OCDF                                | 2.27   | 30.2        | 60.5  | 23.2  | 24.3             | 21.9   | 27.1   | 22.1        | <1.6   | 14.9       | 13.9      | 8.84       | 14    | 0.415  | 10.1  |
| Homologue Group Totals              | pg∕g   | pg∕g        | pg∕g  | pg∕g  | pg∕g             | pg∕g   | pg∕g   | pg∕g        | pg∕g   | pg∕g       | pg∕g      | pg∕g       | pg∕g  | pg∕g   | pg∕g  |
| Total-TCDD                          | <0.076 | 9.56        | 20.5  | 14.1  | 6.0              | 9.99   | 8.39   | 8.04        | 1.58   | 15.3       | 12.3      | 10.8       | 19.3  | 7.13   | 7.05  |
| Total-PeCDD                         | 0.186  | 3.21        | 5.81  | 3.44  | 2.4              | 2.77   | 2.02   | 2.90        | 0.297  | 10.7       | 7.30      | 6.46       | 17.0  | 4.16   | 9.66  |
| Total-HxCDD                         | 0.682  | 7.28        | 12.8  | 16.1  | 5.3              | 6.21   | 11.8   | 8.84        | 0.567  | 27.5       | 23.4      | 21.8       | 38.3  | 7.08   | 22.5  |
| Total-HpCDD                         | 2.27   | 37.1        | 77.3  | 52.4  | 34.6             | 40.3   | 34.8   | 46.5        | <0.20  | 61.7       | 55.7      | 57.7       | 74.5  | 6.78   | 84.4  |
| Total-TCDF                          | 34.0   | 189         | 572   | 304   | 143.7            | 169    | 222    | 237         | 24.6   | 257        | 255       | 177        | 322   | 4.30   | 118   |
| Total-PeCDF                         | 1.80   | 19.7        | 43.1  | 36.4  | 19.5             | 17.8   | 23     | 11.5        | 0.419  | 34.3       | 30.5      | 23.7       | 46.7  | 4.76   | 26.7  |
| Total-HxCDF                         | 1.71   | 6.54        | 13.5  | 10.3  | 4.9              | 11.1   | 4.84   | 5.25        | 1.07   | 15.2       | 12.3      | 14.2       | 18.4  | 4.26   | 12.8  |
| Total-HpCDF                         | 3.10   | 22.5        | 47.7  | 20.0  | 14.9             | 18     | 19.6   | 18.5        | <0.13  | 16.8       | 16.0      | 12.3       | 16.2  | 3.40   | 14.3  |
| Lower Bound <sup>1</sup> PCDD/F TEO | 1 1    | 13.6        | 35.4  | 21 1  | 10.3             | 12.4   | 16.2   | 16.3        | 17     | 19.9       | 19.3      | 12 4       | 25.1  | 04     | 9.2   |
| Upper Bound <sup>2</sup> PCDD/F TFO | 2.5    | 14.2        | 37.3  | 22.7  | 16.0             | 13.8   | 16.8   | 19.0        | 24     | 20.0       | 19.3      | 13.5       | 25.1  | 0.4    | 10.7  |
|                                     | 2.0    | 17.2        | 0110  |       | 10.1             | 10.0   | 10.0   | 10.0        | 2.7    | 20.0       | 10.0      | 10.0       | 2011  | 5.5    | 10.7  |

<sup>a</sup> Field replicate average; 1 values below detection limit were assigned a zero; <sup>2</sup> values below detection limit non-detects assigned a one

**Table 7.** Benthic invertebrate dioxin and furan and dioxin-like PCB concentrations (pg/g dry weight) and toxic equivalents (TEQ) (pg TEQ/g wet weight) for Jackfish Bay sites. A "<"indicates that a target analyte was either not detected above the provided estimated detection limit (EDL) or that the value was below the calibrated range but above the estimated detection limit (EDL).

| Location                                                                                                                                                                                                              | Moberly Bay                                                                                                 |                                                                                               |                                                                                                                            |                                                                           | Sout                                                                                                                          | h of Mo                                                                | berly Bay                                                                                                                                                                |                                                               | Jac                                                                                                                      | ckfish Ba                                                                        | зу                                                                                                            |                                                             |                                                                                              |                                                                         | Tunnel Bay                                                                            |                                                                      |                                                                                                                                                                       |                                                                        |                                                                                         |                                                                              |                                                                                |                                                                |                                                                                        |                                                                                |                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site                                                                                                                                                                                                                  |                                                                                                             | M70                                                                                           | 01                                                                                                                         |                                                                           |                                                                                                                               | 1M3                                                                    | 3                                                                                                                                                                        |                                                               |                                                                                                                          | 1M1                                                                              | ĺ                                                                                                             |                                                             |                                                                                              | 2M                                                                      | 1                                                                                     |                                                                      |                                                                                                                                                                       | 4M3                                                                    |                                                                                         |                                                                              |                                                                                |                                                                | 3M2                                                                                    |                                                                                |                                                                                                                                                                  |
| Organism                                                                                                                                                                                                              | chironomid                                                                                                  | EDL                                                                                           | oligochaete                                                                                                                | EDL                                                                       | chironomid                                                                                                                    | EDL                                                                    | oligochaete I                                                                                                                                                            | EDL                                                           | chironomid                                                                                                               | EDL                                                                              | oligochaete                                                                                                   | EDL                                                         | oligochaete                                                                                  | EDL                                                                     | amphipod                                                                              | EDL                                                                  | oligochaete I                                                                                                                                                         | EDL a                                                                  | amphipod                                                                                | EDL                                                                          | chironomid E                                                                   | DL                                                             | oligochaete                                                                            | EDL                                                                            | amphipod EDL                                                                                                                                                     |
| Target Analytes                                                                                                                                                                                                       | pg∕g                                                                                                        |                                                                                               | pg∕g                                                                                                                       | i                                                                         | pg∕g                                                                                                                          |                                                                        | pg∕g                                                                                                                                                                     | i                                                             | pg∕g                                                                                                                     |                                                                                  | pg∕g                                                                                                          |                                                             | pg∕g                                                                                         |                                                                         | pg∕g                                                                                  |                                                                      | pg∕g                                                                                                                                                                  |                                                                        | pg∕g                                                                                    |                                                                              | pg∕g                                                                           |                                                                | pg∕g                                                                                   |                                                                                | pg∕g                                                                                                                                                             |
| 2,3,7,8-TCDD<br>1,2,3,7,8-PeCDD<br>1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>1,2,3,4,6,7,8-HpCDD<br>0,0CDD                                                                                       | <4.5<br><1.1<br><1.8<br><1.8<br><1.8<br><6.3<br><23                                                         | 1.7<br>1.1<br>1.8<br>1.8<br>1.8<br>3.4<br>9.6                                                 | <4.7<br><0.56<br><0.55<br><0.56<br><0.55<br><4.2<br>40.3                                                                   | 0.7<br>0.6<br>0.6<br>0.6<br>1.4<br>2.5                                    | 18.3<br><11<br><6.3<br><6.6<br><6.4<br>47.8<br>190                                                                            | 15<br>11<br>6.3<br>6.6<br>6.4<br>13<br>25                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     | .7<br>.7<br>.6<br>.7<br>.6<br>.8<br>.8                        | 16.4<br><4.3<br><7.2<br><7.6<br><6.9<br>34.3<br>70.6                                                                     | 3.2<br>4.3<br>7.2<br>7.6<br>6.9<br>9.7<br>28                                     | 5.86<br><1.8<br><1.9<br><2.0<br><1.9<br>7.67<br>35.1                                                          | 3.1<br>1.8<br>1.9<br>1.9<br>3.5<br>6.9                      | <7.6<br><1.2<br><2.4<br><2.5<br><2.3<br><4.8<br>11.7                                         | 2.2<br>1.2<br>2.4<br>2.5<br>2.3<br>2.8<br>4.6                           | <40<br><26<br><29<br><29<br><28<br><43<br>98.1                                        | 40<br>26<br>29<br>29<br>28<br>43<br>35                               | <15<br><7.5<br><10<br><11<br><9.7<br>9<br><17<br><44                                                                                                                  | 15<br>7.5<br>10<br>11<br>9.7<br>12<br>18                               | <14<br><6.7<br><9.7<br><10<br>22.3<br>53.8                                              | 14<br>6.7<br>9.7<br>9.7<br>10<br>11<br>23                                    | <5.0<br><2.7 2<br><4.6 1<br><5.2 2<br><2.3 2<br>22.6 4<br><70 6                | 5<br>.7<br>.4<br>.3<br>.3                                      | <6.0<br><3.9<br><4.3<br><4.3<br><4.5<br>13.9<br><40                                    | 6<br>3.9<br>4.3<br>4.3<br>4.5<br>4.5<br>10                                     | $\begin{array}{cccccc} < 4.3 & 4.3 \\ 3.61 & 1.4 \\ < 2.3 & 1.8 \\ < 3.7 & 1.9 \\ < 2.7 & 1.7 \\ 14.2 & 2.8 \\ 125 & 6.0 \end{array}$                            |
| 2,3,7,8-TCDF<br>1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>0,2000 | 75.4<br>2.34<br><0.89<br><0.91<br><1.0<br><1.4<br><2.1<br><3.9<br><6.3                                      | $\begin{array}{c} 1 \\ 0.9 \\ 0.8 \\ 0.9 \\ 0.9 \\ 1 \\ 1.4 \\ 2.1 \\ 3.9 \\ 6.3 \end{array}$ | $\begin{array}{c} 81.0 \\ < 0.84 \\ < 2.1 \\ < 0.55 \\ < 0.57 \\ < 0.62 \\ < 0.86 \\ < 0.95 \\ < 1.1 \\ < 2.7 \end{array}$ | 0.4<br>0.4<br>0.6<br>0.6<br>0.6<br>0.9<br>0.6<br>1.1<br>2.7               | 210<br><9.8<br><10<br><7.0<br><7.1<br><7.5<br><9.3<br><10<br><18<br><23                                                       | 10<br>9.8<br>8.9<br>7.1<br>7.5<br>9.3<br>10<br>18<br>23                | $\begin{array}{c} 138\\<1.8\\3.48\\<1.1\\1\\<1.0\\<1.1\\1\\<1.6\\1\\<1.7\\1\\<3.2\\3\\<5.7\\4\end{array}$                                                                | 1<br>1<br>.1<br>.1<br>.6<br>.6<br>.2                          | 223<br><2.6<br>10.6<br><3.0<br><3.3<br><4.5<br><6.1<br><11<br>27.1                                                       | 3.2<br>2.6<br>2.3<br>3.3<br>4.5<br>6.1<br>11<br>20                               | 76.7<br><1.2<br>3.87<br><1.6<br><1.6<br><1.7<br><2.4<br><1.5<br><2.7<br><7.2                                  | 1.4<br>1.2<br>1.6<br>1.6<br>1.7<br>2.4<br>1.5<br>2.7<br>7.2 | $108 \\ 3.23 \\ <7.3 \\ 1.61 \\ 2.99 \\ <1.3 \\ <1.6 \\ <2.4 \\ <3.4 \\ 5.71 \\ \end{cases}$ | 2.6<br>1.4<br>1.3<br>1.1<br>1.1<br>1.3<br>1.6<br>1.9<br>3.4<br>3.6      | $191 \\ 23.7 \\ 46.5 \\ <12 \\ <12 \\ <14 \\ <17 \\ <20 \\ <35 \\ <54 \\ \end{cases}$ | 24<br>14<br>12<br>12<br>14<br>17<br>20<br>35<br>49                   | $\begin{array}{ccccccc} < 8.4 & 8 \\ < 5.6 & 5 \\ < 9.0 & 5 \\ < 6.7 & 6 \\ < 6.6 & 6 \\ < 7.4 & 7 \\ < 8.7 & 8 \\ < 6.9 & 6 \\ < 11 & 31.9 \end{array}$              | 8.4<br>5.6<br>5.7<br>5.6<br>7.4<br>8.7<br>5.5<br>11<br>12              | <12<br><4.9<br>13.5<br><5.2<br><8.5<br>5.65<br><7.1<br><8.3<br><10<br>43.3              | 12<br>4.9<br>4.4<br>5.2<br>5.1<br>5.6<br>7.1<br>6.3<br>10<br>11              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                           | .3<br>.2<br>.3<br>.7<br>.2<br>.3<br>.7<br>.2<br>.3<br>.4<br>.8 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                   | 3.2<br>2.2<br>2.9<br>2.9<br>3.1<br>4.1<br>3.6<br>5.8<br>9.2                    | $\begin{array}{ccccc} 74.7 & 2.2 \\ <4.0 & 1.3 \\ 9.64 & 1.2 \\ 5.62 & 1.7 \\ <2.0 & 2.0 \\ <2.5 & 2.5 \\ <6.5 & 1.9 \\ <3.4 & 3.4 \\ \\ 51.3 & 4.4 \end{array}$ |
| PCB-81<br>PCB-77<br>PCB-123<br>PCB-118<br>PCB-114<br>PCB-105<br>PCB-126<br>PCB-126<br>PCB-167<br>PCB-157<br>PCB-169<br>PCB-169<br>PCB-189                                                                             | $\begin{array}{c} <1.3\\ 27.1\\ 15.2\\ 748\\ <16\\ 308\\ 3.34\\ 46.6\\ 102\\ <14\\ <0.58\\ 14.0\end{array}$ | 1.3<br>1.2<br>3<br>2.8<br>3.9<br>2.5<br>1.3<br>1.5<br>1.3<br>1.5<br>1.3<br>1.0.6<br>1.4       | $\begin{array}{c} 0.837\\ 21.2\\ 12.6\\ 698\\ 17.5\\ 289\\ 3.02\\ 34.0\\ 76.9\\ 14.0\\ <0.25\\ 9.07\\ \end{array}$         | 0.4<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3 | $\begin{array}{c} < 6.5 \\ 63.8 \\ < 31 \\ 2580 \\ 48.3 \\ 986 \\ < 9.8 \\ < 120 \\ 325 \\ 60.6 \\ < 1.8 \\ 46.6 \end{array}$ | 6.5<br>6.8<br>9.5<br>9.4<br>10<br>9.8<br>2.7<br>2.5<br>2.3<br>1.8<br>7 | $\begin{array}{cccc} 1.32 & 0 \\ 47.8 & 0 \\ <22 \\ 1610 \\ 31.6 & 1 \\ 565 \\ 5.68 & 0 \\ 53.5 & 0 \\ 109 & 0 \\ 22.6 \\ 0.53 & 0 \\ <0.53 & 0 \\ 14.0 & 0 \end{array}$ | ).7<br>).8<br>1<br>.2<br>1<br>).9<br>).9<br>).5<br>).5<br>).9 | $\begin{array}{c} 3.98 \\ 74.0 \\ <45 \\ 3520 \\ 65.9 \\ 1150 \\ 16.5 \\ 236 \\ 516 \\ 76.7 \\ <2.4 \\ 87.5 \end{array}$ | 3.4<br>3.6<br>5.4<br>5.3<br>6.3<br>6.4<br>5.9<br>3.5<br>2.9<br>2.7<br>2.4<br>3.3 | $< 1.3 \\ 35.7 \\ 21.1 \\ 1370 \\ 26.0 \\ 432 \\ 3.00 \\ 61.7 \\ 135 \\ < 17 \\ < 0.80 \\ 20.1 \end{aligned}$ | 1.3<br>1.4<br>1.8<br>1.9<br>1.8<br>1.3<br>1.1<br>0.8<br>1.1 | <1.6<br>31.2<br>31.7<br>1980<br>25.6<br>620<br>12.3<br>249<br>439<br>91.2<br>2.84<br>96.9    | 1.6<br>1.7<br>2.6<br>2.5<br>2.7<br>2.9<br>2.6<br>1.5<br>1.3<br>1.2<br>1 | <18<br>94.4<br><24<br>4130<br><25<br>1390<br><22<br>457<br>900<br><160<br><11<br>169  | 18<br>18<br>24<br>23<br>25<br>26<br>22<br>17<br>14<br>14<br>11<br>13 | $\begin{array}{ccccc} < 5.6 & 5\\ 21.0 & 5\\ < 9.1 & 5\\ \\ 379 & 8\\ < 11 & 7\\ 134 & 9\\ < 8.1 & 8\\ 36.9 & 6\\ 58.5 & 5\\ 15.6 & 5\\ < 4.2 & 4\\ < 14 \end{array}$ | 5.6<br>5.9<br>9.1<br>11<br>9.3<br>8.1<br>5.6<br>5.7<br>5.1<br>4.2<br>4 | <3.8<br>86.6<br>43.1<br>1550<br><36<br>589<br>28.0<br>171<br>264<br>59.6<br><13<br>58.3 | 3.8<br>3.9<br>9.8<br>9.5<br>10<br>11<br>9.6<br>4.1<br>3.2<br>3<br>2.7<br>4.4 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                           | .2<br>.4<br>.5<br>.7<br>.7<br>.1<br>.1<br>.1<br>.2             | <1.8<br>17.3<br>15.8<br>827<br>19.1<br>286<br><11<br>192<br>299<br>74.4<br><4.5<br>102 | 1.8<br>1.9<br>5.3<br>5.1<br>5.7<br>6<br>5.5<br>1.3<br>1.1<br>1.1<br>0.9<br>1.8 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                             |
| Homologue Group Totals                                                                                                                                                                                                | pg∕g                                                                                                        |                                                                                               | pg∕g                                                                                                                       | i                                                                         | pg∕g                                                                                                                          |                                                                        | pg∕g                                                                                                                                                                     |                                                               | pg∕g                                                                                                                     |                                                                                  | pg∕g                                                                                                          |                                                             | pg∕g                                                                                         |                                                                         | pg∕g                                                                                  |                                                                      | pg∕g                                                                                                                                                                  |                                                                        | pg∕g                                                                                    |                                                                              | pg∕g                                                                           |                                                                | pg∕g                                                                                   |                                                                                | pg∕g                                                                                                                                                             |
| Total-TCDD<br>Total-PeCDD<br>Total-HxCDD<br>Total-HpCDD<br>Total-HpCDD<br>Total-PeCDF<br>Total-HxCDF<br>Total-HxCDF<br>Total-HxCDF                                                                                    | <1.7<br><1.1<br>3.52<br><3.4<br>147<br>12.4<br>2.93<br><3.9                                                 | 1.7<br>1.1<br>1.8<br>3.4<br>1<br>0.9<br>1.4<br>3.9                                            | <0.68<br><0.56<br><0.56<br><1.4<br>145<br>2.04<br>1.18<br><1.1                                                             | 0.7<br>0.6<br>0.6<br>1.4<br>0.4<br>0.4<br>0.9<br>1.1                      | 18.3<br><11<br><6.6<br>47.8<br>356<br><9.8<br><9.3<br><18                                                                     | 15<br>11<br>6.6<br>13<br>10<br>9.8<br>9.3<br>18                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     | .7<br>.7<br>.7<br>.8<br>1<br>.6<br>3.2                        | 24.0<br>13.7<br><7.6<br>34.3<br>467<br>31.7<br>12.1<br><11                                                               | 3.2<br>4.3<br>7.6<br>9.7<br>3.2<br>2.6<br>4.5<br>11                              | 5.86<br><1.8<br><2.0<br>8.61<br>125<br>3.87<br><2.4<br><2.7                                                   | 3.1<br>1.8<br>2<br>3.5<br>1.4<br>1.2<br>2.4<br>2.7          | <pre>&lt;2.2 3.56 &lt;2.5 &lt;2.8 221 22.5 5.10 &lt;3.4</pre>                                | 2.2<br>1.2<br>2.5<br>2.8<br>2.6<br>1.4<br>1.6<br>3.4                    | <40<br><26<br><29<br><43<br>302<br>70.2<br><17<br><35                                 | 40<br>26<br>29<br>43<br>24<br>14<br>17<br>35                         | <15<br><7.5<br><11<br><12<br><8.4<br><5.6<br>5<br><8.7<br>8<br><11                                                                                                    | 15<br>7.5<br>11<br>12<br>8.4<br>5.6<br>8.7<br>11                       | <14<br><6.7<br><10<br>22.3<br>78.0<br>39.8<br>25.1<br><10                               | 14<br>6.7<br>10<br>11<br>12<br>4.9<br>7.1<br>10                              | <5.0<br>18.8 2.<br><2.4 2.<br>22.6 4.<br>40.8 3.<br>48.9 2.<br>34.9 3.<br>9.51 | 5<br>.7<br>.3<br>.2<br>.2<br>4                                 | <6.0<br><3.9<br><4.5<br>13.9<br>53.4<br>10.2<br>13.7<br><5.8                           | 6<br>3.9<br>4.5<br>3.2<br>2.2<br>4.1<br>5.8                                    | $\begin{array}{ccccccc} < 4.3 & 4.3 \\ 19.7 & 1.4 \\ < 1.9 & 1.9 \\ 14.2 & 2.8 \\ 225 & 2.2 \\ 54.1 & 1.3 \\ 33.3 & 2.5 \\ 6.30 & 3.4 \end{array}$               |
| Toxic Equivalency WHO (1998)                                                                                                                                                                                          | P9/9                                                                                                        |                                                                                               | Pg/g                                                                                                                       | i                                                                         | pg/g                                                                                                                          |                                                                        | pg/g                                                                                                                                                                     | i i                                                           | pg/g                                                                                                                     |                                                                                  | P9/9                                                                                                          |                                                             | pg/g                                                                                         |                                                                         | pg/g                                                                                  |                                                                      | pg/g                                                                                                                                                                  |                                                                        | pg/g                                                                                    |                                                                              | pg/g                                                                           |                                                                | pg/g                                                                                   |                                                                                | pg/g                                                                                                                                                             |
| Lower Bound TEQ - PCDD/F<br>Upper Bound TEQ - PCDD/F                                                                                                                                                                  | 11.1<br>12.6                                                                                                |                                                                                               | 11.9<br>13.1                                                                                                               | İ                                                                         | 33.6<br>37.5                                                                                                                  |                                                                        | 22.3                                                                                                                                                                     | Ì                                                             | 36.8<br>37.8                                                                                                             |                                                                                  | 12.7<br>13.2                                                                                                  |                                                             | 16.0<br>18.5                                                                                 |                                                                         | 35.3<br>46.5                                                                          |                                                                      | 0.0<br>6.6                                                                                                                                                            |                                                                        | 2.1<br>7.5                                                                              |                                                                              | 3.6<br>5.6                                                                     |                                                                | 5.0<br>6.7                                                                             |                                                                                | 13.1<br>13.9                                                                                                                                                     |
| Lower Bound TEQ - PCB<br>Upper Bound TEQ - PCB                                                                                                                                                                        | 0.26<br>0.28                                                                                                |                                                                                               | 0.22<br>0.22                                                                                                               | ļ                                                                         | 0.49<br>0.73                                                                                                                  |                                                                        | 0.47<br>0.47                                                                                                                                                             |                                                               | $0.88 \\ 0.88$                                                                                                           |                                                                                  | 0.32<br>0.34                                                                                                  |                                                             | 0.43<br>0.45                                                                                 |                                                                         | 0.73<br>1.33                                                                          |                                                                      | 0.16<br>0.36                                                                                                                                                          |                                                                        | 1.06<br>1.12                                                                            |                                                                              | 0.39<br>0.42                                                                   |                                                                | 0.14<br>0.33                                                                           |                                                                                | 0.93<br>0.93                                                                                                                                                     |
| Lower Bound TEQ - TOTAL<br>Upper Bound TEQ - TOTAL                                                                                                                                                                    | 11.4<br>12.8                                                                                                |                                                                                               | 12.1<br>13.3                                                                                                               |                                                                           | 34.1<br>38.2                                                                                                                  |                                                                        | 22.8<br>23.1                                                                                                                                                             |                                                               | 37.6<br>38.7                                                                                                             |                                                                                  | 13.0<br>13.5                                                                                                  |                                                             | 16.4<br>18.9                                                                                 |                                                                         | 36.0<br>47.9                                                                          |                                                                      | 0.2<br>7.0                                                                                                                                                            |                                                                        | 3.1<br>8.6                                                                              |                                                                              | 4.0<br>6.1                                                                     |                                                                | 5.1<br>7.1                                                                             |                                                                                | 14.0<br>14.9                                                                                                                                                     |
| % of D/Fs to total TEQ (Lower)                                                                                                                                                                                        | 97.8                                                                                                        |                                                                                               | 98.2                                                                                                                       | i                                                                         | 98.6                                                                                                                          |                                                                        | 97.9                                                                                                                                                                     | i                                                             | 97.7                                                                                                                     |                                                                                  | 97.6                                                                                                          |                                                             | 97.4                                                                                         |                                                                         | 98.0                                                                                  |                                                                      | 0.3                                                                                                                                                                   |                                                                        | 66.1                                                                                    |                                                                              | 90.3                                                                           |                                                                | 97.3                                                                                   |                                                                                | 93.4                                                                                                                                                             |
| % of D/Fs to total TEQ (Upper)                                                                                                                                                                                        | 97.9                                                                                                        |                                                                                               | 98.3                                                                                                                       |                                                                           | 98.1                                                                                                                          |                                                                        | 98.0                                                                                                                                                                     |                                                               | 97.7                                                                                                                     |                                                                                  | 97.5                                                                                                          |                                                             | 97.6                                                                                         |                                                                         | 97.2                                                                                  |                                                                      | 94.9                                                                                                                                                                  |                                                                        | 87.0                                                                                    |                                                                              | 93.0                                                                           |                                                                | 95.4                                                                                   |                                                                                | 93.8                                                                                                                                                             |

<sup>1</sup> non-detects assigned a zero; <sup>2</sup> non-detects assigned a one

|                  |        |         | Proba   | bility of Membe | ership  |         |
|------------------|--------|---------|---------|-----------------|---------|---------|
| Location         | Site   | Group 1 | Group 2 | Group 3         | Group 4 | Group 5 |
| Moberly Bay      | M701   | 0.153   | 0.002   | 0.000           | 0.000   | 0.845   |
|                  | 1M4    | 0.134   | 0.001   | 0.000           | 0.000   | 0.865   |
|                  | EEM4   | 0.157   | 0.001   | 0.000           | 0.000   | 0.842   |
|                  | 1M3    | 0.083   | 0.001   | 0.000           | 0.001   | 0.915   |
|                  | 1M2*   | 0.083   | 0.001   | 0.000           | 0.001   | 0.915   |
|                  | JFB002 | 0.100   | 0.001   | 0.000           | 0.001   | 0.898   |
|                  | 1M1    | 0.064   | 0.001   | 0.000           | 0.000   | 0.935   |
|                  | NF5    | 0.133   | 0.001   | 0.000           | 0.000   | 0.866   |
|                  | EEM8   | 0.056   | 0.002   | 0.000           | 0.000   | 0.941   |
| Central Jackfish | 2M1    | 0.006   | 0.000   | 0.000           | 0.000   | 0.994   |
| Bay              | 2M4    | 0.011   | 0.000   | 0.000           | 0.000   | 0.989   |
|                  | JFB021 | 0.004   | 0.000   | 0.000           | 0.000   | 0.996   |
| Lower Jackfish   | 2M5    | 0.008   | 0.000   | 0.000           | 0.000   | 0.991   |
| Bay              | 4M3    | 0.004   | 0.000   | 0.000           | 0.000   | 0.996   |
| Tunnel Bay       | 3M2    | 0.014   | 0.000   | 0.000           | 0.000   | 0.985   |

**Table 8.** Probabilities of test sites belonging to Great Lakes faunal groups 1-5.

# **Table 9.** Mean abundance of the predominant Great Lakes Reference Group 5 macroinvertebrate families (per 33 cm<sup>2</sup>) present in Jackfish Bay and taxon diversity (based on 38-family Great Lakes bioassessment model). Families expected to be present at Jackfish that are absent are highlighted yellow.

|                          | Group 5   | Occurrence        |        |        |        | Μ      | oberly B         | ay     |        |        |       |
|--------------------------|-----------|-------------------|--------|--------|--------|--------|------------------|--------|--------|--------|-------|
| Family                   | Mean      | in Group 5<br>(%) | M701   | 1M4    | EEM4   | 1M3    | 1M2 <sup>a</sup> | JFB002 | 1M1    | NF5    | EEM8  |
| No. Taxa (± 2 SD)        | 6 (2 – 9) | -                 | 5      | 6      | 7      | 4      | 3                | 3      | 3      | 5      | 9     |
| Pontoporeiidae           | 12.1      | 44.3              | 0.00   | 0.00   | 0.00   | 0.00   | 0.00             | 0.00   | 0.00   | 0.00   | 0.06  |
| Tubificidae <sup>b</sup> | 4.5       | 16.6              | 401.24 | 336.44 | 309.60 | 275.83 | 277.22           | 320.56 | 237.40 | 301.93 | 37.67 |
| Sphaeriidae              | 3.1       | 11.5              | 1.81   | 3.67   | 3.78   | 0.43   | 0.50             | 1.56   | 0.80   | 4.22   | 0.13  |
| Chironomidae             | 2.7       | 9.9               | 31.34  | 23.03  | 25.34  | 0.43   | 1.20             | 4.13   | 1.00   | 11.91  | 2.68  |
| Lumbriculidae            | 1.8       | 6.8               | 1.93   | 0.00   | 0.00   | 0.00   | 0.00             | 0.00   | 0.00   | 0.00   | 0.69  |
| Enchytraeidae            | 1.4       | 5.3               | 0.00   | 0.00   | 0.20   | 0.00   | 0.00             | 0.00   | 0.00   | 0.00   | 0.04  |
| Naididae                 | 0.5       | 1.9               | 0.00   | 0.20   | 1.35   | 0.20   | 0.00             | 0.00   | 0.00   | 0.47   | 4.07  |
| Asellidae                | 0.4       | 1.5               | 2.96   | 0.94   | 0.20   | 0.00   | 0.00             | 0.00   | 0.00   | 0.00   | 0.67  |
| Valvatidae               | 0.2       | 0.7               | 0.00   | 0.00   | 0.00   | 0.00   | 0.00             | 0.00   | 0.00   | 0.00   | 0.00  |
| Gammaridae               | 0.2       | 0.6               | 0.00   | 0.21   | 0.00   | 0.00   | 0.00             | 0.00   | 0.00   | 0.23   | 0.00  |

|                   | Group 5   | Occurrence        | Cer  | ntral Jackfish | Bay    | Lower Jac | ckfish Bay | Tunnel bay |
|-------------------|-----------|-------------------|------|----------------|--------|-----------|------------|------------|
| Family            | Mean      | in Group 5<br>(%) | 2M1  | 2M4            | JFB021 | 2M5       | 4M3        | 3M2        |
| No. Taxa (± 2 SD) | 6 (2 – 9) | -                 | 4    | 4              | 4      | 4         | 7          | 4          |
| Pontoporeiidae    | 12.1      | 44.3              | 0.60 | 0.80           | 3.20   | 1.80      | 1.21       | 4.60       |
| Tubificidae⁵      | 4.5       | 16.6              | 4.00 | 5.00           | 3.40   | 3.20      | 0.02       | 4.00       |
| Sphaeriidae       | 3.1       | 11.5              | 1.20 | 0.40           | 0.40   | 0.20      | 0.33       | 1.20       |
| Chironomidae      | 2.7       | 9.9               | 1.20 | 3.00           | 1.80   | 1.40      | 1.17       | 3.60       |
| Lumbriculidae     | 1.8       | 6.8               | 0.00 | 0.00           | 0.00   | 0.00      | 0.88       | 0.00       |
| Enchytraeidae     | 1.4       | 5.3               | 0.00 | 0.00           | 0.00   | 0.00      | 0.82       | 0.00       |
| Naididae          | 0.5       | 1.9               | 0.00 | 0.00           | 0.00   | 0.00      | 0.23       | 0.00       |
| Asellidae         | 0.4       | 1.5               | 0.00 | 0.00           | 0.00   | 0.00      | 0.00       | 0.00       |
| Valvatidae        | 0.2       | 0.7               | 0.00 | 0.00           | 0.00   | 0.00      | 0.00       | 0.00       |
| Gammaridae        | 0.2       | 0.6               | 0.00 | 0.00           | 0.00   | 0.00      | 0.00       | 0.00       |

<sup>a</sup> QA/QC site; value represent the mean of three field replicates; <sup>b</sup> includes immatures with and without chaetal hairs

**Table 10.** Site assessment summary for Jackfish Bay benthic community data and comparison to 2003 results. Overall site categorizations are colour-coded for ease of comparison.

| Site   | Location           | Stress <sup>a</sup> | Vector 1 vs. 2     | Vector 1 vs. 3     | Vector 2 vs. 3     | Overall            | Overall            |
|--------|--------------------|---------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|        |                    |                     |                    |                    |                    | 2007               | 2003 <sup>b</sup>  |
| M701   | Moberly Bay        | 0.12                | Very different     |
| 1M4    | Moberly Bay        | 0.12                | Very different     | Very different     | Very different     | Very different     | -                  |
| EEM4   | Moberly Bay        | 0.12                | Very different     | Very different     | Very different     | Very different     | -                  |
| 1M3    | Moberly Bay        | 0.12                | Very different     | Very different     | Very different     | Very different     | Different          |
| 1M2    | Moberly Bay        | 0.12                | Very different     |
| JFB002 | Moberly Bay        | 0.14                | Very different     | Equivalent         | Very different     | Very different     | -                  |
| 1M1    | Moberly Bay        | 0.14                | Very different     | Equivalent         | Very different     | Very different     | Very different     |
| NF5    | Moberly Bay        | 0.14                | Very different     | Equivalent         | Very different     | Very different     | -                  |
| EEM8   | Moberly Bay        | 0.14                | Different          | Equivalent         | Different          | Different          | -                  |
| 2M1    | Central Jack. Bay  | 0.15                | Possibly different | Different          | Equivalent         | Different          | Different          |
| 2M4    | Central Jack. Bay  | 0.15                | Possibly different | Possibly different | Equivalent         | Possibly different | -                  |
| JFB021 | Central Jack. Bay  | 0.15                | Possibly different | Possibly different | Equivalent         | Possibly different | -                  |
| 2M5    | Lower Jackfish Bay | 0.16                | Equivalent         | Equivalent         | Possibly different | Possibly different | -                  |
| 4M3    | Lower Jackfish Bay | 0.16                | Equivalent         | Possibly different | Equivalent         | Possibly different | Possibly different |
| 3M2    | Tunnel Bay         | 0.16                | Equivalent         | Equivalent         | Equivalent         | Equivalent         | Possibly different |

<sup>a</sup> HMDS of a subset of 3-5 sites with Great Lakes reference group 5 sites (n=75); <sup>b</sup> Milani and Grapentine (2007)

|                        | C. rip     | oarius    | Н. а         | zteca      | Hexage    | <i>nia</i> spp. |           | T. tu        | bifex     |            |
|------------------------|------------|-----------|--------------|------------|-----------|-----------------|-----------|--------------|-----------|------------|
| Sito                   | % survival | growth    | %            | growth     | %         | growth          | %         | No. cocoons/ | %         | No. young/ |
| Site                   |            |           | survival     |            | survival  |                 | survival  | adult        | hatch     | adult      |
| GL Reference<br>Meanª  | 87.1       | 0.35      | 85.6         | 0.50       | 96.2      | 3.03            | 97.9      | 9.9          | 57.0      | 29.0       |
| M701                   | 78.7       | 0.361     | 72.0         | 0.210      | 76        | 1.856           | 100       | 12.0         | 59.0      | 35.6       |
| 1M4                    | 88.0       | 0.263     | 72.0         | 0.206      | 98        | 0.520           | 100       | 10.4         | 56.3      | 18.1       |
| EEM4                   | 92.0       | 0.235     | 69.3         | 0.212      | 100       | 0.924           | 100       | 10.7         | 58.6      | 26.8       |
| 1M3                    | 81.7       | 0.231     | 70.7         | 0.260      | 100       | 0.544           | 100       | 10.9         | 58.1      | 17.5       |
| 1M2                    | 70.7       | 0.183     | 20.0         | 0.137      | 100       | 0.266           | 100       | 10.9         | 55.8      | 27.7       |
| JFB002                 | 97.3       | 0.249     | <b>64</b> .0 | 0.132      | 100       | 0.196           | 100       | 10.3         | 59.4      | 20.9       |
| 1M1                    | 81.3       | 0.291     | 82.7         | 0.273      | 100       | 2.170           | 100       | 11.0         | 58.2      | 26.9       |
| NF5                    | 98.7       | 0.228     | 88.0         | 0.199      | 96        | 0.504           | 100       | 11.5         | 58.6      | 24.7       |
| EEM8                   | 88.0       | 0.383     | 78.7         | 0.208      | 100       | 3.292           | 100       | 8.8          | 56.6      | 25.5       |
| 2M1                    | 92.0       | 0.377     | 71.7         | 0.142      | 100       | 2.624           | 100       | 9.9          | 61.5      | 20.3       |
| 2M4                    | 98.3       | 0.344     | 86.7         | 0.192      | 100       | 2.628           | 100       | 10.3         | 61.1      | 26.4       |
| JFB021                 | 100        | 0.377     | 72.0         | 0.635      | 100       | 3.120           | 100       | 12.4         | 58.5      | 36.0       |
| 2M5                    | 97.3       | 0.324     | 93.3         | 0.410      | 100       | 3.052           | 100       | 9.9          | 53.1      | 24.5       |
| 4M3                    | 86.7       | 0.383     | 77.3         | 0.466      | 100       | 2.550           | 100       | 9.6          | 62.5      | 28.8       |
| 3M2                    | 97.3       | 0.363     | 78.7         | 0.595      | 100       | 3.126           | 100       | 10.3         | 59.8      | 31.8       |
| Non-toxic <sup>b</sup> | ≥67.7      | 0.49-0.21 | ≥67.0        | 0.75- 0.23 | ≥85.5     | 5.0 - 0.9       | ≥88.9     | 12.4 – 7.2   | 78.1-38.1 | 46.3 - 9.9 |
| Pot. toxic             | 67.6-58.8  | 0.20-0.14 | 66.9-57.1    | 0.22-0.10  | 85.4-80.3 | 0.89 – 0        | 88.8-84.2 | 7.1 – 5.9    | 38.0-28.1 | 9.8 – 0.8  |
| Toxic                  | < 58.8     | < 0.14    | < 57.1       | < 0.10     | < 80.3    | negative        | < 84.2    | < 5.9        | < 28.1    | < 0.8      |

**Table 11.** Mean percent survival, growth (mg dry weight) and reproduction per individual in sediment toxicity tests. Toxicity, based on numerical guidelines (Reynoldson and Day 1998), is highlighted in red and potential toxicity in blue.

<sup>a</sup> Environment Canada, unpublished data; <sup>b</sup> The upper limit for non-toxic category is set using 2 × standard deviation of the mean and indicates excessive growth or reproduction (Reynoldson and Day 1998)

**Table 12.** Site assessment summary for toxicity data and comparison to 2003 results. Overall site categorizations are colour-coded for ease of comparison.

| Site   | Location           | Stress <sup>a</sup> | Vector 1 vs. 2    | Vector 1 vs. 3      | Vector 2 vs. 3      | Overall           | Overall        |
|--------|--------------------|---------------------|-------------------|---------------------|---------------------|-------------------|----------------|
|        |                    |                     |                   |                     |                     | 2007              | 2003*          |
| M701   | Moberly Bay        | 0.11                | Potentially toxic | Potentially toxic   | Non-toxic           | Potentially toxic | Non-toxic      |
| 1M4    | Moberly Bay        | 0.11                | Non-toxic         | Non-toxic Non-toxic |                     | Non-toxic         | -              |
| EEM4   | Moberly Bay        | 0.11                | Non-toxic         | Non-toxic Non-toxic |                     | Non-toxic         | -              |
| 1M3    | Moberly Bay        | 0.11                | Non-toxic         | Non-toxic           | Non-toxic Non-toxic |                   | Severely toxic |
| 1M2    | Moberly Bay        | 0.11                | Potentially toxic | Severely toxic      | Severely toxic      | Severely toxic    | Severely toxic |
| JFB002 | Moberly Bay        | 0.11                | Non-toxic         | Non-toxic           | Potentially toxic   | Potentially toxic | -              |
| 1M1    | Moberly Bay        | 0.11                | Non-toxic         | Non-toxic           | Non-toxic           | Non-toxic         | Severely toxic |
| NF5    | Moberly Bay        | 0.11                | Non-toxic         | Non-toxic           | Non-toxic           | Non-toxic         | -              |
| EEM8   | Moberly Bay        | 0.11                | Non-toxic         | Non-toxic           | Non-toxic           | Non-toxic         | -              |
| 2M1    | Central Jack. Bay  | 0.12                | Non-toxic         | Non-toxic           | Non-toxic           | Non-toxic         | Non-toxic      |
| 2M4    | Central Jack. Bay  | 0.12                | Non-toxic         | Non-toxic           | Non-toxic           | Non-toxic         | -              |
| JFB021 | Central Jack. Bay  | 0.12                | Non-toxic         | Non-toxic           | Non-toxic           | Non-toxic         | -              |
| 2M5    | Lower Jackfish Bay | 0.12                | Non-toxic         | Non-toxic           | Non-toxic           | Non-toxic         | -              |
| 4M3    | Lower Jackfish Bay | 0.12                | Non-toxic         | Non-toxic           | Non-toxic           | Non-toxic         | Severely toxic |
| 3M2    | Tunnel Bay         | 0.12                | Non-toxic         | Non-toxic           | Non-toxic           | Non-toxic         | Severely toxic |

<sup>a</sup> HMDS of a subset of 6-9 sites with Great Lakes reference sites (n=136); <sup>b</sup> Milani and Grapentine (2007)

**Table 13**. Comparison of 2008 and 2003 Hyalella and Hexagenia endpoint results for sites in similarlocations. The greatest differences between years are highlighted.

|            |      | <i>H. azteca</i><br>% survival |      | H. a   | zteca | Hexage | <i>nia</i> spp. | Hexagenia spp. |      |  |
|------------|------|--------------------------------|------|--------|-------|--------|-----------------|----------------|------|--|
| Location   | Site |                                |      | growth |       | % su   | rvival          | growth         |      |  |
|            |      | 2003                           | 2008 | 2003   | 2008  | 2003   | 2008            | 2003           | 2008 |  |
| MB         | M701 | 90.7                           | 72.0 | 0.38   | 0.21  | 100    | 76              | 2.51           | 1.86 |  |
| MB         | 1M3  | 32.0                           | 70.7 | 0.27   | 0.26  | 98     | 100             | 0.59           | 0.54 |  |
| MB         | 1M2  | 32.0                           | 20.0 | 0.06   | 0.14  | 100    | 100             | 0.07           | 0.27 |  |
| MB         | 1M1  | 13.3                           | 82.7 | 0.27   | 0.27  | 100    | 100             | 0.81           | 2.17 |  |
| Central JB | 2M1  | 90.0                           | 71.7 | 0.71   | 0.14  | 100    | 100             | 2.29           | 2.62 |  |
| Lower JB   | 4M3  | 8.0                            | 77.3 | 0.07   | 0.47  | 98     | 100             | 1.09           | 2.55 |  |
| TB         | 3M2  | 44.0                           | 78.7 | 0.58   | 0.60  | 100    | 100             | 2.54           | 3.13 |  |

<sup>a</sup> Milani and Grapentine (2007)

**Table 14.** Decision matrix for weight-of-evidence categorization of 2008 Jackfish Bay sites based on three or four lines of evidence. For the sediment chemistry column, sites with exceedences of the Probable Effect Level (PEL) are indicated by "■"; sites with exceedences of the Lowest Effect Level (LEL) or the Canada Wide Standards (CWS) for PHCs by "■". For the toxicity and benthos alteration column, sites determined from BEAST analyses as *different/very different* or *toxic/severely* toxic are indicated by "■"; sites determined as *possibly different* or *potentially toxic* by "■". Sites with no sediment quality guideline exceedences, benthic communities equivalent to reference conditions, and non-toxic sediments are indicated by "□".

| Location   | Site   | Sediment  | Toxicity | Benthos        | Biomag.   | >LEL, PEL | Assessment                            |
|------------|--------|-----------|----------|----------------|-----------|-----------|---------------------------------------|
|            |        | Chemistry |          | Alteration     | Potential | or CWS    |                                       |
| Moberly    | M701   |           |          |                |           | -         | Determine reason(s) for benthos       |
| Bay        |        |           |          |                |           |           | alteration and sediment toxicity and  |
|            |        |           |          |                |           |           | fully assess risk of biomagnification |
|            | 1M4    |           |          |                | ND        | Metals    | Determine reason(s) for benthos       |
|            |        |           |          |                |           |           | alteration                            |
|            | EEM4   |           |          |                | ND        | F3 PHC,   | Determine reason(s) for benthos       |
|            |        |           |          |                |           | D/Fs      | alteration                            |
|            | 1M3    |           |          |                |           | F3 PHC,   | Determine reason(s) for benthos       |
|            |        |           |          |                |           | D/Fs      | alteration and fully assess risk of   |
|            |        |           |          |                |           |           | biomagnification                      |
|            | 1M2    |           |          |                | ND        | F3 PHC,   | Management actions required           |
|            |        |           |          |                |           | Metals    |                                       |
|            | JFB002 |           |          |                | ND        | Metals    | Determine reason(s) for benthos       |
|            |        |           |          |                |           |           | alteration and sediment toxicity      |
|            | 1M1    |           |          |                |           | Metals    | Determine reason(s) for benthos       |
|            |        |           |          |                |           |           | alteration and fully assess risk of   |
|            |        |           |          |                |           |           | biomagnification                      |
|            | -      |           |          |                | ND        | Metals    | Determine reason(s) for benthos       |
|            | NF5    |           |          |                |           |           | alteration                            |
|            | EEM8   |           |          | a              | ND        | -         | No further actions needed             |
| Central    | 2M1    |           |          | a              |           | Metals    | Fully assess risk of biomagnification |
| Jackfish   | 2M4    |           |          | ∎ <sup>a</sup> | ND        | Metals    | No further actions needed             |
| Вау        | JFB021 |           |          | ∎ <sup>a</sup> | ND        | Metals    | No further actions needed             |
|            |        |           |          |                |           |           |                                       |
| Lower      | 2M5    |           |          | ∎ <sup>a</sup> | ND        | D/Fs      | No further actions needed             |
| Jackfish   | 4M3    |           |          | ∎ª             |           | Metals    | No further actions needed             |
| Вау        |        |           |          |                |           |           |                                       |
|            |        |           |          |                |           |           |                                       |
| Tunnel Bay | 3M2    |           |          |                | 0         | Metals    | Fully assess risk of biomagnification |
|            |        |           |          |                |           |           |                                       |

<sup>a</sup>Benthos not considered degraded based on abundance and/or taxa richness; ND=not determined

| Site | Year | Sediment  | Toxicity | Benthos        | Biomag.   | >LEL, PEL | Assessment                                                           |
|------|------|-----------|----------|----------------|-----------|-----------|----------------------------------------------------------------------|
|      |      | Chemistry |          | Alteration     | Potential | or CWS    |                                                                      |
| M701 | 2008 |           |          |                |           | -         | Determine reason(s) for benthos alteration and sediment toxicity and |
|      |      |           |          |                |           |           | fully assess risk of biomagnification                                |
| M701 | 2003 |           |          |                | ND        | Metals    | Determine reason(s) for benthos alteration                           |
|      |      |           |          |                |           |           |                                                                      |
| 1M3  | 2008 |           |          |                |           | F3 PHC,   | Determine reason(s) for benthos alteration and fully assess risk of  |
|      |      |           |          |                |           | D/Fs      | biomagnification                                                     |
| 1M3  | 2003 | ••••••    | ▮        |                | ND        | D/Fs,     | Management actions required                                          |
|      |      |           |          |                |           | Metals    |                                                                      |
| 1M2  | 2008 |           |          |                | ND        | F3 PHC,   | Management actions required                                          |
|      |      |           |          |                |           | Metals    |                                                                      |
| 1M2  | 2003 | •••••     |          |                | ND        | D/Fs,     | Management actions required                                          |
|      |      |           |          |                |           | Metals    |                                                                      |
| 1M1  | 2008 |           |          |                |           | Metals    | Determine reason(s) for benthos alteration and fully assess risk of  |
|      |      |           |          |                |           |           | biomagnification                                                     |
|      | 2003 | •••••     |          |                | ND        | D/Fs,     | Management actions required                                          |
| 1M1  |      |           |          |                |           | Metals    |                                                                      |
| 2M1  | 2008 |           |          |                |           | Metals    | Determine reason(s) for benthos alteration and fully assess risk of  |
|      |      |           |          |                |           |           | biomagnification                                                     |
| 2M1  | 2003 | •••••     |          |                | ND        | D/Fs,     | Determine reason(s) for benthos alteration                           |
|      |      |           |          |                |           | Metals    |                                                                      |
| 4M3  | 2008 |           |          | ∎ <sup>a</sup> |           | Metals    | No further actions needed                                            |
| 4M3  | 2003 | •••••     | ■        |                | ND        | Metals    | Determine reason(s) for sediment toxicity                            |
| 3M2  | 2008 |           |          |                |           | Metals    | Fully assess risk of biomagnification                                |
| 3M2  | 2003 |           | •        | ∎ <sup>a</sup> | ND        | Metals    | Determine reason(s) for sediment toxicity                            |

| Table 15. | Comparison | of 2008 | and 2003 | decision | matrices | for site | s in similar | locations. |
|-----------|------------|---------|----------|----------|----------|----------|--------------|------------|
|-----------|------------|---------|----------|----------|----------|----------|--------------|------------|

<sup>a</sup>Benthos not considered degraded based on abundance and taxa richness; ND = not determined

Appendix A – QA/QC

Table A1. Coefficient of variation (CV) for trace metals and nutrients in field-replicated samples and relative percent difference (RPD) for laboratory duplicates (Caduceon Environmental Laboratory).

|                                             |          |        |       |       |       |           |        |      | •     |         |        |       |          |        |
|---------------------------------------------|----------|--------|-------|-------|-------|-----------|--------|------|-------|---------|--------|-------|----------|--------|
| Parameter                                   | Units    | M.D.L. | 1M200 | 1M201 | 1M202 | 1M2 avg   | SD     | cv   | 2M4   | 2M4 Dup | R.P.D. | 5105  | 5105 Dup | R.P.D. |
| Aluminum                                    | µg/g     | 10     | 8430  | 8170  | 8330  | 8310      | 131.1  | 1.6  | 8480  | 8150    | 4.0    | 14200 | 14300    | 0.7    |
| Antimony                                    | µg/g     | 5      | < 5   | < 5   | < 5   | < 5       | -      | -    | < 5   | < 5     | 0.0    | < 5   | < 5      | 0.0    |
| Arsenic                                     | µg/g     | 5      | < 5   | < 5   | < 5   | < 5       | -      | -    | < 5   | < 5     | 0.0    | 6     | 9        | 40.0   |
| Barium                                      | µg/g     | 1      | 71    | 71    | 72    | 71        | 0.6    | 0.8  | 58    | 56      | 3.5    | 138   | 141      | 2.2    |
| Beryllium                                   | µg/g     | 0.2    | 0.3   | 0.3   | 0.3   | 0.3       | 0.0    | 0.0  | 0.4   | 0.3     | 28.6   | 0.7   | 0.7      | 0.0    |
| Bismuth                                     | µg/g     | 5      | < 5   | < 5   | < 5   | < 5       | -      | -    | < 5   | < 5     | 0.0    | < 5   | < 5      | 0.0    |
| Cadmium                                     | µg/g     | 0.5    | 1.5   | 1.5   | 1.6   | 1.5       | 0.1    | 3.8  | 0.8   | 0.9     | 11.8   | 0.5   | 0.6      | 18.2   |
| Calcium                                     | µg/g     | 10     | 17200 | 17900 | 17800 | 17633.333 | 378.6  | 2.1  | 7810  | 7670    | 1.8    | 8910  | 9040     | 1.4    |
| Chromium                                    | µg/g     | 1      | 53    | 47    | 45    | 48        | 4.2    | 8.6  | 42    | 40      | 4.9    | 47    | 47       | 0.0    |
| Cobalt                                      | µg/g     | 1      | 8     | 8     | 8     | 8         | 0.0    | 0.0  | 8     | 8       | 0.0    | 17    | 18       | 5.7    |
| Copper                                      | µg/g     | 1      | 35    | 35    | 36    | 35        | 0.6    | 1.6  | 40    | 39      | 2.5    | 60    | 60       | 0.0    |
| Iron                                        | µg/g     | 10     | 15400 | 14900 | 15000 | 15100     | 264.6  | 1.8  | 18200 | 17400   | 4.5    | 34300 | 34400    | 0.3    |
| Lead                                        | µg/g     | 5      | 9     | 9     | 9     | 9         | 0.0    | 0.0  | 20    | 20      | 0.0    | 22    | 24       | 8.7    |
| Magnesium                                   | µg/g     | 10     | 12000 | 12200 | 12200 | 12133.333 | 115.5  | 1.0  | 7400  | 7110    | 4.0    | 11100 | 11200    | 0.9    |
| Manganese                                   | µg/g     | 1      | 341   | 331   | 355   | 342       | 12.1   | 3.5  | 585   | 578     | 1.2    | 810   | 810      | 0.0    |
| Mercury                                     | µg/g     | 0.005  | 0.065 | 0.063 | 0.076 | 0.068     | 0.0    | 10.3 | 0.113 | 0.112   | 0.9    | 0.049 | 0.049    | 0.0    |
| Molybdenum                                  | µg/g     | 1      | < 1   | < 1   | < 1   | < 1       | -      | -    | < 1   | < 1     | 0.0    | < 1   | < 1      | 0.0    |
| Nickel                                      | µg/g     | 1      | 25    | 24    | 25    | 25        | 0.6    | 2.3  | 23    | 22      | 4.4    | 38    | 38       | 0.0    |
| Phosphorus                                  | µg/g     | 5      | 1010  | 979   | 1020  | 1003      | 21.4   | 2.1  | 1020  | 1020    | 0.0    | 923   | 924      | 0.1    |
| Potassium                                   | µg/g     | 30     | 1290  | 1260  | 1280  | 1277      | 15.3   | 1.2  | 1140  | 1060    | 7.3    | 2430  | 2490     | 2.4    |
| Silicon                                     | µg/g     | 1      | 184   | 282   | 230   | 232       | 49.0   | 21.1 | 323   | 229     | 34.1   | 466   | 421      | 10.1   |
| Silver                                      | µg/g     | 0.2    | 0.7   | 0.7   | 0.6   | 0.7       | 0.1    | 8.7  | 0.4   | 0.4     | 0.0    | < 0.2 | < 0.2    | 0.0    |
| Sodium                                      | ua/a     | 20     | 770   | 720   | 700   | 730       | 36.1   | 4.9  | 750   | 710     | 5.5    | 930   | 1040     | 11.2   |
| Strontium                                   | ua/a     | 1      | 20    | 20    | 20    | 20        | 0.0    | 0.0  | 18    | 17      | 5.7    | 47    | 47       | 0.0    |
| Tin                                         | ua/a     | 10     | < 10  | < 10  | < 10  | < 10      | -      | -    | < 10  | < 10    | 0.0    | < 10  | < 10     | 0.0    |
| Titanium                                    | ua/a     | 1      | 623   | 635   | 634   | 631       | 6.7    | 1.1  | 826   | 767     | 7.4    | 1970  | 2050     | 4.0    |
| Vanadium                                    | ua/a     | 1      | 32    | 31    | 31    | 31        | 0.6    | 1.8  | 37    | 35      | 5.6    | 88    | 88       | 0.0    |
| Yttrium                                     | ua/a     | 0.5    | 5.6   | 5.5   | 5.5   | 5.5       | 0.1    | 1.0  | 7.1   | 6.8     | 4.3    | 12.1  | 12.2     | 0.8    |
| Zinc                                        | ua/a     | 1      | 191   | 191   | 195   | 192       | 2.3    | 1.2  | 100   | 102     | 2.0    | 110   | 110      | 0.0    |
| Zirconium                                   | ua/a     | 0.1    | 2.3   | 2.2   | 2.5   | 2.3       | 0.2    | 6.5  | 2.3   | 2.0     | 14.0   | 8.4   | 8.4      | 0.0    |
| Aluminum (Al <sub>2</sub> O <sub>2</sub> )  | %        | 0.01   | 11.7  | 11.4  | 11.4  | 11.5      | 0.2    | 1.5  | 13.2  | 13.5    | 2.2    | 13.9  | 14.2     | 2.1    |
| Calcium (CaO)                               | %        | 0.01   | 4.34  | 4.50  | 4.55  | 4.46      | 0.1    | 2.5  | 7.92  | 7.46    | 6.0    | 2.60  | 3.80     | 37.5   |
| Iron (Fe <sub>2</sub> O <sub>2</sub> )      | %        | 0.05   | 3.98  | 4.11  | 3.99  | 4.03      | 0.1    | 1.8  | 5.98  | 5.89    | 1.5    | 7.62  | 7.86     | 3.1    |
| Magnesium (MgQ)                             | %        | 0.01   | 2.98  | 3 11  | 3.04  | 3.04      | 0.1    | 2.1  | 6 16  | 6.68    | 8.1    | 33    | 3.51     | 6.2    |
| Manganese (MnQ)                             | %        | 0.01   | 0.08  | 0.08  | 0.08  | 0.08      | 0.0    | 0.0  | 0.13  | 0.13    | 0.0    | 0.16  | 0.01     | 6.1    |
| Phosphorus (P <sub>2</sub> O <sub>2</sub> ) | %        | 0.03   | 0.14  | 0.21  | 0.21  | 0.19      | 0.0    | 21.7 | 0.14  | 0.21    | 40.0   | 0.18  | 0.39     | 73.7   |
| Potasium (K20)                              | %        | 0.01   | 2 12  | 1.83  | 2 01  | 1 99      | 0.1    | 7.4  | 2 20  | 2 46    | 11.2   | 2.37  | 2.37     | 0.0    |
| Silica (SiO-)                               | %        | 0.01   | 53.8  | 53.4  | 53.6  | 53.6      | 0.2    | 0.4  | 49.9  | 49.9    | 0.0    | 50.5  | 52.9     | 4.6    |
| Sodium (Na2O)                               | %        | 0.01   | 2.76  | 2.73  | 2.81  | 2 77      | 0.0    | 1.5  | 2.48  | 3.61    | 37.1   | 4.67  | 3.78     | 21.1   |
| Titanium (TiO_)                             | %        | 0.01   | 0.62  | 0.62  | 0.62  | 0.62      | 0.0    | 0.0  | 0.75  | 0.01    | 5.5    | 1 10  | 1 10     | 0.0    |
| Loss on Ignition                            | 0%       | 0.05   | 22.3  | 22.3  | 22.5  | 22.4      | 0.0    | 0.5  | 11.2  | 12.4    | 10.2   | 8.02  | 8.02     | 0.0    |
| Whole Rock Total                            | 0/6      | 0.00   | 105   | 104   | 105   | 105       | 0.1    | 0.5  | 100   | 103     | 2.0    | 0.52  | 0.02     | 2.0    |
| Total Organia Carbon                        | % by yet | 0.1    | 6.6   | 69    | 6.0   | 67        | 0.0    | 1 7  | 2.1   | 2.0     | 2.0    | 1.2   | 1.2      | 0.0    |
| Total Kieldehl Nitresen                     | 70 Dy WL | 0.1    | 4620  | 4000  | 4560  | 4722      | 222.0  | 4.0  | 1090  | 1040    | 2.0    | 1060  | 2160     | 0.0    |
| Phoenborus Total                            | µg/g     | 0.05   | 4020  | 4990  | 4000  | 4/23      | 232.9  | 4.9  | 042   | 1940    | 2.0    | 1900  | 2100     | 9.7    |
| r nosphorus-rotai                           | µg/g     | 0.01   | 909   | 1000  | 940   | 991       | 00.7   | 0.1  | 942   | 900     | 4.5    | 900   | 1040     | 1.2    |
|                                             |          |        |       |       |       |           | mer    | 0.0  |       |         | 40.0   |       |          | 0.0    |
|                                             |          |        |       |       |       |           | XBIII  | 21.7 |       |         | 40.0   |       |          | 13.1   |
|                                             |          |        |       |       |       |           | median | 1./  |       |         | 4.0    |       |          | 0.9    |

Table A2. Coefficients of variation (CV) for organic contaminants in field-replicated sample (1M2) (ALS Laboratory Group - Mississauga). "<" = below method detection limit.

| Parameter                   | Units | 1M200 | 1M201 | 1M202 | Mean | SD   | CV   |
|-----------------------------|-------|-------|-------|-------|------|------|------|
| BTEX                        | 1 1   |       |       |       |      |      |      |
| Toluene                     | ma/ka | 0.08  | 0.11  | 0.11  | 0.1  | 0.02 | 17.3 |
|                             |       |       |       |       |      |      |      |
|                             |       |       |       |       |      |      |      |
| CCME Total Hydrocarbons     |       |       |       |       |      |      |      |
| F1 (C6-C10)                 | mg/kg | <5    | <5    | <5    | -    | -    | -    |
| F1-BTEX                     | mg/kg | <5    | <5    | <5    | -    | -    | -    |
| F2 (C10-C16)                | mg/kg | 96    | 97    | 77    | 90   | 11   | 13   |
| F2-Naphth                   | mg/kg | 96    | 97    | 77    | 90   | 11   | 13   |
| F3 (C16-C34)                | mg/kg | 3560  | 3440  | 3280  | 3427 | 140  | 4    |
| F3-PAH                      | mg/kg | 3560  | 3440  | 3280  | 3427 | 140  | 4    |
| F4 (C34-C50)                | mg/kg | 760   | 710   | 730   | 733  | 25   | 3    |
| F4G-SG (GHH-Silica)         | mg/kg | 2300  | 3100  | 3000  | 2800 | 436  | 16   |
| Total Hydrocarbons (C6-C50) | mg/kg | 4420  | 4250  | 4090  | 4253 | 165  | 4    |
|                             |       |       |       |       |      |      |      |
|                             |       |       |       |       |      |      |      |
| CCME PAHs                   |       |       |       |       |      |      |      |
| 1-Methylnaphthalene         | mg/kg | <0.1  | <0.1  | <0.1  | -    | -    | -    |
| 2-Methylnaphthalene         | mg/kg | <0.1  | <0.1  | <0.1  | -    | -    | -    |
| Acenaphthene                | mg/kg | <0.1  | <0.1  | <0.1  | -    | -    | -    |
| Acenaphthylene              | mg/kg | <0.1  | <0.1  | <0.1  | -    | -    | -    |
| Acridine                    | mg/kg | <2    | <2    | <2    | -    | -    | -    |
| Anthracene                  | mg/kg | 0.4   | 0.5   | 0.4   | 0.4  | 0.1  | 13.3 |
| Benzo(a)anthracene          | mg/kg | 0.1   | 0.1   | 0.1   | 0.1  | 0.0  | 0    |
| Benzo(a)pyrene              | mg/kg | 0.08  | 0.11  | 0.1   | 0.1  | 0.0  | 15.8 |
| Benzo(b)fluoranthene        | mg/kg | 0.1   | 0.2   | 0.1   | 0.1  | 0.1  | 43.3 |
| Benzo(g,h,i)perylene        | mg/kg | <0.1  | <0.1  | <0.1  | -    | -    | -    |
| Benzo(k)fluoranthene        | mg/kg | <0.1  | <0.1  | <0.1  | -    | -    | -    |
| Chrysene                    | mg/kg | 0.3   | 0.3   | 0.3   | 0.3  | 0    | 0    |
| Dibenzo(ah)anthracene       | mg/kg | <0.1  | <0.1  | <0.1  | -    | -    | -    |
| Fluoranthene                | mg/kg | 0.3   | 0.4   | 0.3   | 0.3  | 0.1  | 17.3 |
| Fluorene                    | mg/kg | <0.1  | <0.1  | <0.1  | -    | -    | -    |
| Indeno(1,2,3-cd)pyrene      | mg/kg | <0.1  | 0.1   | <0.1  | 0.1  | -    | -    |
| Naphthalene                 | mg/kg | <0.1  | <0.1  | <0.1  | -    | -    | -    |
| Phenanthrene                | mg/kg | 0.3   | 0.3   | 0.3   | 0.3  | 0    | 0    |
| Pyrene                      | mg/kg | 0.2   | 0.3   | 0.3   | 0.3  | 0.1  | 21.7 |
| Quinoline                   | mg/kg | <0.1  | <0.1  | <0.1  | -    | -    | -    |
|                             |       |       |       |       |      |      |      |
|                             |       |       |       |       |      |      |      |
| Individual Analytes         |       |       |       |       |      |      |      |
| Oil and Grease, Total       | mg/kg | 700   | 1100  | 600   | 800  | 265  | 33   |

| min    | 0.0  |
|--------|------|
| max    | 43.3 |
| median | 12.5 |

median

| Sample Name            | Method<br>Blank | 1M1      | 1M1 Dup | RPD  | 1M200    | 1M201    | 1M202    | cv   | Method<br>Blank | JFB002   | JFB002<br>Dup | RPD  | Method<br>Blank |
|------------------------|-----------------|----------|---------|------|----------|----------|----------|------|-----------------|----------|---------------|------|-----------------|
| Matrix                 | QC              | SEDIMENT | QC      |      | SEDIMENT | SEDIMENT | SEDIMENT |      | QC              | SEDIMENT | QC            |      | QC              |
| Target Analytes        | pg/g            | pg∕g     | pg∕g    |      | pg/g     | pg∕g     | pg∕g     |      | pg∕g            | pg∕g     | pg∕g          |      | pg∕g            |
| 2,3,7,8-TCDD           | <0.14           | 7.7      | 7.45    | 0.8  | 5.75     | 6.47     | 4.34     | 19.6 | <0.20           | 5.87     | 6.78          | 3.6  | <0.48           |
| 1,2,3,7,8-PeCDD        | <0.19           | 1.12     | <0.76   | -    | <0.76    | <5.3     | <0.86    | -    | < 0.42          | <1.0     | <1.2          | -    | <0.77           |
| 1,2,3,4,7,8-HxCDD      | <0.30           | <0.56    | <0.19   | -    | <0.45    | <6.7     | <1.2     | -    | <0.18           | <0.60    | <1.6          | -    | <0.48           |
| 1,2,3,6,7,8-HxCDD      | <0.27           | 1.17     | 1.15    | 0.4  | <1.3     | <6.8     | <1.3     | -    | <0.22           | 1.34     | <1.7          | -    | <0.47           |
| 1,2,3,7,8,9-HxCDD      | <0.28           | 1.12     | 1.28    | 3.3  | <1.4     | <6.8     | <1.2     | -    | <0.20           | 1.21     | <1.6          | -    | <0.47           |
| 1,2,3,4,6,7,8-HpCDD    | 0.254           | 17.4     | 21      | 4.7  | 19.8     | 24.1     | 19.3     | 12.5 | 0.446           | 19.8     | 20.6          | 1.0  | <0.49           |
| OCDD                   | <1.8            | 99.3     | 115     | 3.7  | 114      | 142      | 142      | 12.2 | 2.41            | 110      | 134           | 4.9  | <1.8            |
| 2.3.7.8-TCDF           | < 0.46          | 96.1     | 91.6    | 1.2  | 66.2     | 68.2     | 51.3     | 14.9 | < 0.42          | 67.5     | 67.9          | 0.1  | < 0.41          |
| 1,2,3,7,8-PeCDF        | < 0.11          | 3.46     | 3.11    | 2.7  | 4.51     | <3.7     | 3.67     | 14.5 | < 0.14          | 4.22     | 5.35          | 5.9  | < 0.27          |
| 2,3,4,7,8-PeCDF        | < 0.18          | 4.57     | 4.7     | 0.7  | 4.51     | <4.9     | 4.2      | 5.0  | 0.15            | 4.96     | 4.95          | 0.1  | <0.26           |
| 1,2,3,4,7,8-HxCDF      | <0.16           | <1.4     | 1.58    | -    | <1.1     | <6.4     | <1.0     | -    | <0.25           | 2.42     | 1.88          | 6.3  | < 0.31          |
| 1,2,3,6,7,8-HxCDF      | < 0.15          | <0.66    | < 0.51  | -    | < 0.44   | < 6.3    | <1.1     | -    | <0.17           | <0.81    | <1.5          | -    | < 0.30          |
| 2,3,4,6,7,8-HxCDF      | <0.11           | <0.56    | 0.462   | -    | <0.53    | <6.5     | <1.0     | -    | <0.13           | 0.788    | <1.4          | -    | <0.32           |
| 1,2,3,7,8,9-HxCDF      | <0.14           | <0.73    | <0.23   | -    | <0.50    | <8.0     | <1.3     | -    | <0.17           | <0.67    | <1.6          | -    | <0.45           |
| 1,2,3,4,6,7,8-HpCDF    | 0.253           | 6.06     | 7.44    | 5.1  | 6.37     | <7.6     | 6.89     | 5.5  | <0.34           | 5.88     | 5.4           | 2.1  | <0.31           |
| 1,2,3,4,7,8,9-HpCDF    | <0.14           | <0.88    | 0.629   | -    | < 0.93   | < 9.1    | <1.3     | -    | <0.41           | <0.81    | <1.9          | -    | <0.50           |
| OCDF                   | <1.2            | 27.1     | 33.9    | 5.6  | 21.3     | 35       | 16.5     | 39.6 | <1.2            | 21.9     | 28.2          | 6.3  | <0.63           |
| Homologue Group Totals | pg/g            | pg∕g     | pg∕g    |      | pg∕g     | pg∕g     | pg∕g     |      | pg∕g            | pg∕g     | pg∕g          |      | pg∕g            |
| Total-TCDD             | 0.356           | 8.39     | 9.81    | 3.9  | 5.75     | 6.47     | 5.85     | 6.5  | <0.20           | 9.99     | 9.37          | 1.6  | <0.48           |
| Total-PeCDD            | <0.19           | 2.02     | 2.84    | 8.4  | 1.54     | <5.3     | 3.33     | 52.0 | <0.42           | 2.77     | 1.88          | 9.6  | <0.77           |
| Total-HxCDD            | <0.30           | 11.8     | 11.7    | 0.2  | 6.38     | <6.8     | 4.21     | 29.0 | 1.2             | 6.21     | 7.44          | 4.5  | <0.48           |
| Total-HpCDD            | 0.56            | 34.8     | 42.8    | 5.2  | 41.1     | 24.1     | 38.5     | 26.5 | 0.446           | 40.3     | 44.6          | 2.5  | <0.49           |
| Total-TCDF             | <0.096          | 222      | 221     | 0.1  | 153      | 151      | 127      | 10.1 | <0.11           | 169      | 169           | 0.0  | <0.41           |
| Total-PeCDF            | <0.11           | 23       | 18.6    | 5.3  | 18.2     | <3.7     | 20.8     | 9.4  | 0.15            | 17.8     | 16.7          | 1.6  | < 0.27          |
| Total-HxCDF            | <0.16           | 4.84     | 10      | 17.4 | 6.83     | <8.0     | 2.87     | 57.7 | 0.193           | 11.1     | 4.8           | 19.8 | < 0.45          |
| Total-HpCDF            | 0.253           | 19.6     | 26.3    | 7.3  | 18.4     | 11.7     | 14.6     | 22.6 | <0.087          | 18       | 5.4           | 26.9 | <0.50           |
|                        |                 |          | min     | 0.1  |          |          |          | 5.0  |                 |          |               | 0.0  |                 |
|                        |                 |          | max     | 17.4 |          |          |          | 57.7 |                 |          |               | 26.9 |                 |

14.7

median 3.8

## **Table A3.** Coefficients of variation (CV) in field-replicated sample (1M2) and relative percent difference (RPD) for laboratory duplicates (ALS Laboratory Group - Burlington).

59

3.6
## **Table A4.** Sample recoveries for laboratory standards and reference material (Caduceon Environmental Laboratories).

| QC I.D.:        | Various   | CLIENT:        | Environment Canada, Can. Ctr. For Inland Waters |
|-----------------|-----------|----------------|-------------------------------------------------|
| SAMPLE MATRIX:  | Sediment  | BATCH NUMBER:  | B09-00757                                       |
| DATE SUBMITTED: | 9-Jan-09  | DATE ANALYZED: | Various                                         |
| DATE REPORTED:  | 30-Jan-09 | REPORT TO:     | Danielle Milani                                 |

CADUCEON ENVIRONMENTAL LABORATORIES, 2378 HOLLY LANE, OTTAWA, ONTARIO, K1V 7P1

| PARAMETERS              |           | QC Samp         | e Recovery Calcula | tion       |                |
|-------------------------|-----------|-----------------|--------------------|------------|----------------|
|                         |           | Raw Data (µq/q) |                    | QC Sam     | ole Recoverv   |
| LKSD-3 (15-Jan-09)      | QC Result | Reference Value | Lab Mean           | % Recovery | Control Limits |
| Silver                  | 2.7       | 2.4             | 2.3                | 113        | 50 - 117       |
| Arsenic                 | 24.6      | 23              | 23.0               | 107        | 83 - 121       |
| Barium                  | 169       | N/A             | 169                | 100        | 81 - 118       |
| Beryllium               | 0.5       | N/A             | 0.5                | 100        | 47 - 153       |
| Cadmium                 | 0.6       | 0.6             | 0.6                | 100        | 83 - 114       |
| Cobalt                  | 29.2      | 30              | 28.9               | 97         | 51 - 114       |
| Chromium                | 49.1      | 51              | 48.4               | 96         | 54 - 125       |
| Copper                  | 35.1      | 34              | 33.8               | 103        | 79 - 116       |
| Iron                    | 30063     | 35000           | 29815              | 86         | 74 - 102       |
| Manganese               | 1319      | 1220            | 1247               | 108        | 76 - 124       |
| Molybdenum              | 0.712     | 2               | 1.0                | 36         | 0 - 260        |
| Nickel                  | 43.9      | 44.0            | 42.4               | 100        | 75 - 125       |
| Lead                    | 25        | 26              | 24.9               | 96         | 72 - 107       |
| Strontium               | 24        | N/A             | 25.4               | 94         | 76 - 124       |
| Titanium                | 1058      | N/A             | 980                | 108        | 49 - 151       |
| Vanadium                | 48        | 55              | 48.5               | 87         | 63 - 113       |
| Zinc                    | 137       | 139             | 136                | 99         | 76 - 124       |
| STSD-2 (15-Jan-09)      |           |                 |                    |            |                |
| Mercury                 | 0.138     | 0.160           | 0.144              | 86         | 77 - 122       |
| WH89-1 (26-Jan-08)      |           |                 |                    |            | -              |
| Aluminum (Al2O3)        | 13.7      | 12.1            | 11.6               | 113        | 75 - 125       |
| Barium (BaO)            | 0.29      | 0.29            | 0.28               | 100        | 75 - 125       |
| Calcium (CaO)           | 5.29      | 5.9             | 5.7                | 90         | 75 - 125       |
| Chromium (Cr2O3)        | 0.03      | 0.03            | 0.03               | 100        | 50 - 150       |
| Iron (Fe2O3)            | 7.45      | 6.9             | 6.62               | 108        | 75 - 125       |
| Magnesium (MgO)         | 3.15      | 3.5             | 3.4                | 90         | 75 - 125       |
| Manganese (MnO)         | 1.17      | 1.38            | 1.34               | 85         | 75 - 125       |
| Phosphorus (P2O5)       | 2.10      | 2.48            | 2.43               | 85         | 75 - 125       |
| Potasium (K20)          | 3.62      | 4.51            | 4.43               | 80         | 75 - 125       |
| Silica (SiO2)           | 59.60     | 60.5            | 59                 | 99         | 75 - 125       |
| Sodium (Na2O)           | 3.51      | 4.0             | 4.09               | 88         | 75 - 125       |
| Titanium (TiO2)         | 2.15      | 2.57            | 2.47               | 84         | 75 - 125       |
| D053-542 (19-Jan-09)    |           |                 |                    |            | -              |
| Total Kjeldahl Nitrogen | 1280      | 1300            | 1372               | 93         | 57 - 143       |
| Phosphorus-Total        | 875       | 811             | 939                | 93         | 53 - 147       |
| TOC QC (22-Jan-09)      |           |                 |                    | -          | _              |
| TOC                     | 4.69      | 4.84            |                    | 97         | 91 - 109       |

min 35.6 max 113 median 96.9 **Table A5.** Percent recoveries in surrogate spikes – sediment samples (ALS LaboratoryGroup).

|        | BTEX               | CCME Total Hydrocarbons | CCME             | PAHs            | PCBs          |
|--------|--------------------|-------------------------|------------------|-----------------|---------------|
| Site   | 2,5-Dibromotoluene | Octacosane              | 2-Fluorobiphenyl | p-Terphenyl d14 | d14-Terphenyl |
| 1M1    | 131                | 84                      | 116              | 116             | 109           |
| 1M200  | 122                | 94                      | 114              | 106             | 103           |
| 1M201  | 130                | 113                     | 114              | 116             | 109           |
| 1M202  | 135                | 93                      | 110              | 105             | 104           |
| 1M3    | 136                | 82                      | 111              | 107             | 111           |
| 1M4    | 127                | 81                      | 117              | 118             | 113           |
| 2M1    | 129                | 67                      | 115              | 115             | 105           |
| 2M4    | 128                | 73                      | 120              | 125             | 119           |
| 2M5    | 113                | 79                      | 123              | 131             | 119           |
| JFB021 | 109                | 86                      | 121              | 127             | 110           |
| JFB002 | 107                | 78                      | 111              | 113             | 111           |
| 3M2    | 108                | 82                      | 136              | 144             | 132           |
| 4M3    | 101                | 83                      | 96               | 114             | 95            |
| NF5    | 113                | 94                      | 114              | 117             | 97            |
| M701   | 109                | 102                     | 111              | 115             | 104           |
| EEM4   | 118                | 97                      | 113              | 120             | 110           |
| EEM8   | 115                | 84                      | 112              | 119             | 113           |
| 5100   | 89                 | 86                      | 107              | 112             | 128           |
| 5101   | 92                 | 67                      | 131              | 146             | 145           |
| 5102   | 88                 | 71                      | 140              | 161             | 133           |
| 510300 | 89                 | 73                      | 129              | 157             | 124           |
| 510301 | 91                 | 80                      | 140              | 181             | 114           |
| 510302 | 88                 | 76                      | 149              | 181             | 137           |
| 5104   | 92                 | 82                      | 107              | 125             | 128           |
| 5105   | 86                 | 70                      | 106              | 128             | 122           |
| 5106   | 85                 | 79                      | 102              | 118             | 130           |
| 2512   | 90                 | 88                      | 97               | 121             | 124           |
| min    | 85                 | 67                      | 96               | 105             | 95            |
| max    | 136                | 113                     | 149              | 181             | 145           |
| median | 109                | 82                      | 114              | 119             | 113           |

## **Table A6.** Extraction standard recoveries for benthic invertebrate samples – Jackfish Bay sites (ALS Laboratory Group). Recoveries outside the quality control (QC) limits are highlighted.

| Location                  | ion Moberly Bay |             |            |             |            | South of M  | Noberly     | Jackfish | n Bay       | 1        | unnel Bay  |             | QC       |        |
|---------------------------|-----------------|-------------|------------|-------------|------------|-------------|-------------|----------|-------------|----------|------------|-------------|----------|--------|
| Site                      | M7              | 01          | 1M         | 13          | 11         | 11          | 2M          | 1        | 4M          | 3        |            | 3M2         |          | Limits |
| Organism                  | chironomid      | oligochaete | chironomid | oligochaete | chironomid | oligochaete | oligochaete | amphipod | oligochaete | amphipod | chironomid | oligochaete | amphipod |        |
| Extraction Standards      |                 |             |            |             |            |             |             |          |             |          |            |             |          |        |
| 13C12-2,3,7,8-TCDD        | 84              | 91          | 28         | 79          | 70         | 73          | 83          | 63       | 66          | 59       | 78         | 67          | 87       | 25-164 |
| 13C12-1,2,3,7,8-PeCDD     | 69              | 68          | 25         | 55          | 64         | 74          | 86          | 70       | 74          | 64       | 75         | 69          | 77       | 25-181 |
| 13C12-1,2,3,4,7,8-HxCDD   | 71              | 71          | 32         | 59          | 60         | 79          | 91          | 76       | 85          | 64       | 86         | 73          | 80       | 32-141 |
| 13C12-1,2,3,6,7,8-HxCDD   | 60              | 62          | 28         | 53          | 49         | 66          | 81          | 69       | 71          | 62       | 71         | 61          | 67       | 28-130 |
| 13C12-1,2,3,7,8,9-HxCDD   | 73              | 76          | 34         | 62          | 64         | 81          | 102         | 85       | 96          | 65       | 90         | 71          | 92       | 23-140 |
| 13C12-1,2,3,4,6,7,8-HpCDD | 44              | 48          | 29         | 40          | 40         | 57          | 83          | 78       | 80          | 59       | 81         | 58          | 70       | 17-157 |
| 13C12-0CDD                | 27              | 30          | 20         | 24          | 24         | 41          | 61          | 65       | 70          | 51       | 67         | 45          | 52       | 17-157 |
|                           |                 |             |            |             |            |             |             |          |             |          |            |             |          |        |
| 13C12-2,3,7,8-TCDF        | 78              | 87          | 27         | 78          | 69         | 73          | 74          | 57       | 57          | 55       | 69         | 65          | 74       | 24-169 |
| 13C12-1,2,3,7,8-PeCDF     | 63              | 68          | 23         | 61          | 62         | 67          | 84          | 67       | 71          | 60       | 76         | 67          | 76       | 24-169 |
| 13C12-2,3,4,7,8-PeCDF     | 63              | 62          | 23         | 56          | 62         | 69          | 83          | 68       | 69          | 60       | 70         | 66          | 73       | 24-169 |
| 13C12-1,2,3,4,7,8-HxCDF   | 70              | 71          | 30         | 57          | 58         | 75          | 93          | 77       | 78          | 60       | 81         | 64          | 78       | 24-169 |
| 13C12-1,2,3,6,7,8-HxCDF   | 62              | 63          | 28         | 54          | 54         | 67          | 84          | 71       | 72          | 55       | 77         | 60          | 73       | 24-169 |
| 13C12-2,3,4,6,7,8-HxCDF   | 57              | 61          | 27         | 51          | 49         | 63          | 74          | 62       | 65          | 53       | 63         | 57          | 64       | 24-169 |
| 13C12-1,2,3,7,8,9-HxCDF   | 55              | 57          | 29         | 47          | 47         | 61          | 79          | 66       | 74          | 53       | 71         | 57          | 69       | 24-169 |
| 13C12-1,2,3,4,6,7,8-HpCDF | 46              | 53          | 30         | 45          | 43         | 66          | 90          | 83       | 84          | 60       | 88         | 60          | 76       | 24-169 |
| 13C12-1,2,3,4,7,8,9-HpCDF | 34              | 39          | 23         | 31          | 32         | 49          | 67          | 63       | 68          | 52       | 67         | 51          | 59       | 24-169 |
| 13C12-0CDF                | 22              | 27          | 17         | 21          | 22         | 37          | 56          | 59       | 65          | 48       | 61         | 41          | 48       | 24-169 |
|                           |                 |             |            |             |            |             |             |          |             |          |            |             |          |        |
| 13C12-PCB-81              | 64              | 73          | 24         | 67          | 66         | 59          | 70          | 49       | 51          | 46       | 64         | 60          | 66       | 25-150 |
| 13C12-PCB-77              | 73              | 73          | 24         | 68          | 67         | 60          | 71          | 51       | 52          | 47       | 64         | 61          | 68       | 25-150 |
| 13C12-PCB-123             | 29              | 74          | 24         | 56          | 65         | 61          | 74          | 55       | 53          | 53       | 69         | 63          | 72       | 25-150 |
| 13C12-PCB-118             | 30              | 74          | 23         | 58          | 64         | 62          | 74          | 55       | 54          | 53       | 69         | 64          | 71       | 25-150 |
| 13C12-PCB-114             | 24              | 77          | 24         | 50          | 59         | 63          | 75          | 55       | 49          | 53       | 70         | 63          | 72       | 25-150 |
| 13C12-PCB-105             | 40              | 78          | 25         | 67          | 64         | 66          | 76          | 60       | 61          | 57       | 75         | 66          | 77       | 25-150 |
| 13C12-PCB-126             | 82              | 92          | 28         | 78          | 73         | 77          | 90          | 72       | 73          | 66       | 92         | 74          | 92       | 25-150 |
| 13C12-PCB-167             | 39              | 78          | 25         | 62          | 67         | 69          | 90          | 73       | 73          | 65       | 86         | 72          | 86       | 25-150 |
| 13C12-PCB-156             | 37              | 73          | 23         | 59          | 66         | 70          | 87          | 70       | 71          | 67       | 81         | 72          | 80       | 25-150 |
| 13C12-PCB-157             | 46              | 75          | 23         | 63          | 69         | 75          | 90          | 72       | 77          | 68       | 83         | 74          | 82       | 25-150 |
| 13C12-PCB-169             | 69              | 68          | 25         | 56          | 66         | 76          | 90          | 73       | 79          | 69       | 81         | 72          | 81       | 25-150 |
| 13C12-PCB-189             | 52              | 78          | 31         | 61          | 71         | 90          | 103         | 88       | 94          | 74       | 98         | 79          | 96       | 25-150 |
|                           |                 |             |            |             |            |             |             |          |             |          |            |             |          |        |

overall min 17 overall max 103 median 66

| Site                      |            | 5102        |          | 510         | )3       |            | 5105        |          |            | 5106        |          |            | 2512        |          | QC     |
|---------------------------|------------|-------------|----------|-------------|----------|------------|-------------|----------|------------|-------------|----------|------------|-------------|----------|--------|
| Organism                  | chironomid | oligochaete | amphipod | oligochaete | amphipod | chironomid | oligochaete | amphipod | chironomid | oligochaete | amphipod | chironomid | oligochaete | amphipod | Limits |
| Extraction Standards      |            |             |          |             |          |            |             |          |            |             |          |            |             |          |        |
| 13C12-2,3,7,8-TCDD        | 66         | 70          | 75       | 80          | 69       | 72         | 68          | 73       | 70         | 65          | 70       | 77         | 69          | 70       | 25-164 |
| 13C12-1,2,3,7,8-PeCDD     | 60         | 58          | 62       | 66          | 59       | 63         | 62          | 64       | 62         | 61          | 60       | 69         | 57          | 58       | 25-181 |
| 13C12-1,2,3,4,7,8-HxCDD   | 68         | 72          | 83       | 70          | 61       | 85         | 76          | 82       | 75         | 82          | 66       | 88         | 71          | 67       | 32-141 |
| 13C12-1,2,3,6,7,8-HxCDD   | 67         | 66          | 75       | 72          | 64       | 70         | 69          | 69       | 75         | 71          | 64       | 86         | 63          | 68       | 28-130 |
| 13C12-1,2,3,7,8,9-HxCDD   | 79         | 76          | 85       | 82          | 73       | 81         | 75          | 82       | 81         | 79          | 71       | 94         | 74          | 74       | 23-140 |
| 13C12-1,2,3,4,6,7,8-HpCDD | 74         | 68          | 86       | 73          | 63       | 81         | 75          | 74       | 78         | 75          | 66       | 90         | 72          | 71       | 17-157 |
| 13C12-OCDD                | 66         | 58          | 71       | 58          | 51       | 69         | 60          | 64       | 70         | 58          | 55       | 79         | 61          | 63       | 17-157 |
|                           |            |             |          |             |          |            |             |          |            |             |          |            |             |          |        |
| 13C12-2,3,7,8-TCDF        | 62         | 63          | 67       | 72          | 64       | 65         | 62          | 68       | 65         | 63          | 66       | 71         | 61          | 61       | 24-169 |
| 13C12-1,2,3,7,8-PeCDF     | 59         | 57          | 59       | 64          | 56       | 59         | 60          | 61       | 59         | 58          | 60       | 67         | 56          | 55       | 24-169 |
| 13C12-2,3,4,7,8-PeCDF     | 55         | 55          | 61       | 61          | 56       | 60         | 57          | 60       | 59         | 58          | 57       | 66         | 53          | 54       | 24-169 |
| 13C12-1,2,3,4,7,8-HxCDF   | 63         | 63          | 71       | 66          | 59       | 66         | 65          | 68       | 67         | 63          | 63       | 71         | 63          | 60       | 24-169 |
| 13C12-1,2,3,6,7,8-HxCDF   | 58         | 58          | 67       | 63          | 57       | 63         | 60          | 60       | 64         | 56          | 60       | 67         | 59          | 58       | 24-169 |
| 13C12-2,3,4,6,7,8-HxCDF   | 58         | 55          | 64       | 61          | 54       | 67         | 56          | 61       | 64         | 64          | 57       | 76         | 57          | 56       | 24-169 |
| 13C12-1,2,3,7,8,9-HxCDF   | 72         | 66          | 76       | 73          | 64       | 74         | 68          | 70       | 72         | 68          | 66       | 81         | 68          | 67       | 24-169 |
| 13C12-1,2,3,4,6,7,8-HpCDF | 77         | 73          | 89       | 77          | 70       | 82         | 78          | 79       | 82         | 77          | 70       | 90         | 75          | 75       | 24-169 |
| 13C12-1,2,3,4,7,8,9-HpCDF | 64         | 58          | 72       | 61          | 54       | 68         | 62          | 65       | 68         | 68          | 59       | 77         | 62          | 63       | 24-169 |
| 13C12-OCDF                | 58         | 51          | 63       | 51          | 45       | 61         | 53          | 57       | 63         | 52          | 49       | 72         | 53          | 56       | 24-169 |
|                           |            |             |          |             |          |            |             |          |            |             |          |            |             |          |        |
| 13C12-PCB-81              | 50         | 53          | 55       | 63          | 56       | 51         | 53          | 57       | 51         | 54          | 56       | 55         | 52          | 52       | 25-150 |
| 13C12-PCB-77              | 52         | 55          | 56       | 65          | 58       | 53         | 54          | 59       | 55         | 55          | 58       | 57         | 53          | 53       | 25-150 |
| 13C12-PCB-123             | 54         | 56          | 59       | 66          | 58       | 56         | 57          | 62       | 57         | 56          | 60       | 61         | 52          | 55       | 25-150 |
| 13C12-PCB-118             | 54         | 57          | 58       | 67          | 59       | 57         | 57          | 61       | 59         | 57          | 61       | 62         | 53          | 55       | 25-150 |
| 13C12-PCB-114             | 54         | 59          | 60       | 67          | 59       | 57         | 59          | 62       | 59         | 59          | 61       | 66         | 49          | 60       | 25-150 |
| 13C12-PCB-105             | 61         | 61          | 67       | 72          | 66       | 64         | 64          | 67       | 64         | 62          | 67       | 68         | 60          | 60       | 25-150 |
| 13C12-PCB-126             | 74         | 74          | 84       | 88          | 80       | 81         | 81          | 85       | 79         | 77          | 78       | 85         | 76          | 75       | 25-150 |
| 13C12-PCB-167             | 66         | 65          | 75       | 77          | 68       | 73         | 71          | 72       | 70         | 64          | 67       | 75         | 67          | 65       | 25-150 |
| 13C12-PCB-156             | 63         | 60          | 66       | 69          | 63       | 64         | 64          | 67       | 65         | 64          | 64       | 71         | 61          | 60       | 25-150 |
| 13C12-PCB-157             | 66         | 63          | 67       | 71          | 64       | 66         | 66          | 68       | 66         | 64          | 65       | 74         | 62          | 61       | 25-150 |
| 13C12-PCB-169             | 63         | 61          | 65       | 68          | 61       | 64         | 64          | 65       | 64         | 62          | 62       | 71         | 59          | 59       | 25-150 |
| 13C12-PCB-189             | 72         | 70          | 79       | 78          | 70       | 73         | 72          | 78       | 78         | 70          | 71       | 85         | 69          | 69       | 25-150 |
| " .                       |            |             |          |             |          |            |             |          |            |             |          |            |             |          |        |

## Table A7. Extraction recoveries for benthic invertebrate samples – Lake Superior reference sites (ALS Laboratory Group).

45 94 64 overall min overall max median



**Figure A1.** Assessment of field-replicated QA/QC site 1M2 (Moberly Bay). Three separate box cores were taken at the site, indicated by 1M200, 1M201 and 1M202.

Appendix B – Supplementary Chemical Data

| Location         | Site   | % Sand | % Silt | % Clay | % Gravel | Particle Size<br>Mean -µm |
|------------------|--------|--------|--------|--------|----------|---------------------------|
| Moberly Bay      | M701   | 95.2   | 0.0    | 4.8    | 0        | 279.5                     |
|                  | 1M4    | 6.7    | 72.2   | 21.1   | 0        | 24.6                      |
|                  | EEM4   | 8.0    | 79.4   | 12.5   | 0        | 24.7                      |
|                  | 1M3    | 3.4    | 71.8   | 24.8   | 0        | 17.2                      |
|                  | 1M2*   | 1.0    | 75.8   | 23.1   | 0        | 17.0                      |
|                  | JFB002 | 1.0    | 77.7   | 21.2   | 0        | 18.9                      |
|                  | 1M1    | 3.5    | 70.9   | 25.6   | 0        | 17.2                      |
|                  | NF5    | 2.4    | 71.8   | 25.9   | 0        | 18.9                      |
|                  | EEM8   | 63.0   | 22.8   | 14.3   | 0        | 96.0                      |
| Central Jackfish | 2M1    | 1.9    | 74.9   | 23.2   | 0        | 16.7                      |
| Bay              | 2M4    | 6.8    | 73.6   | 19.6   | 0        | 20.9                      |
|                  | JFB021 | 3.0    | 64.5   | 32.5   | 0        | 14.8                      |
| Lower Jackfish   | 2M5    | 2.0    | 69.2   | 28.8   | 0        | 15.0                      |
| Bay              | 4M3    | 5.6    | 17.0   | 77.5   | 0        | 3.5                       |
| Tunnel Bay       | 3M2    | 2.6    | 71.1   | 26.3   | 0        | 14.3                      |
| Lake Superior    | 5100   | 1.1    | 64.2   | 34.8   | 0        | 12.9                      |
| Reference        | 5101   | 1.9    | 42.4   | 55.7   | 0        | 5.8                       |
|                  | 5102   | 62.5   | 20.5   | 17.0   | 0        | 83.8                      |
|                  | 5103   | 2.1    | 58.6   | 39.3   | 0        | 9.5                       |
|                  | 5104   | 24.2   | 10.8   | 64.5   | 0.6      | 11.3                      |
|                  | 5105   | 17.1   | 51.1   | 31.8   | 0        | 19.8                      |
|                  | 5106   | 28.4   | 50.1   | 21.5   | 0        | 35.6                      |
|                  | 2512   | 34.7   | 16.4   | 41.4   | 7.5      | 64.6                      |

 Table B1. Physical characteristics of Jackfish Bay and Lake Superior sediment (top 10 cm).

| Table B2.     | Sediment trace metal and nutrient concentrations in Lake Superior reference |
|---------------|-----------------------------------------------------------------------------|
| sediment (dry | weight).                                                                    |

|                         |         |        | Reference |       |       |        |        |        |        |       |       |       |       |
|-------------------------|---------|--------|-----------|-------|-------|--------|--------|--------|--------|-------|-------|-------|-------|
| Parameter               | Units   | M.D.L. | Method    | 5100  | 5101  | 5102   | 510300 | 510301 | 510302 | 5104  | 5105  | 5106  | 2512  |
| Aluminum                | µg/g    | 10     | EPA 6010  | 14700 | 16100 | 12200  | 15900  | 16300  | 16100  | 13400 | 14200 | 11700 | 12100 |
| Antimony                | µg/g    | 5      | EPA 6010  | < 5   | < 5   | < 5    | < 5    | < 5    | < 5    | < 5   | < 5   | < 5   | < 5   |
| Arsenic                 | µg/g    | 5      | EPA 6010  | 16    | < 5   | < 5    | 12     | 12     | 13     | < 5   | 6     | 8     | < 5   |
| Barium                  | µg/g    | 1      | EPA 6010  | 128   | 144   | 59     | 120    | 125    | 121    | 108   | 138   | 73    | 112   |
| Beryllium               | µg/g    | 0.2    | EPA 6010  | 1.0   | 0.8   | 0.4    | 0.7    | 0.8    | 0.7    | 0.7   | 0.7   | 0.4   | 0.5   |
| Bismuth                 | µg/g    | 5      | EPA 6010  | < 5   | < 5   | < 5    | < 5    | < 5    | < 5    | < 5   | < 5   | < 5   | < 5   |
| Cadmium                 | µg/g    | 0.5    | EPA 6010  | 0.9   | 0.6   | < 0.5  | 0.8    | 0.9    | 0.9    | < 0.5 | 0.5   | 0.8   | < 0.5 |
| Calcium                 | µg/g    | 10     | EPA 6010  | 7240  | 9880  | 9470   | 9330   | 9470   | 9460   | 58300 | 8910  | 9090  | 54600 |
| Chromium                | µg/g    | 1      | EPA 6010  | 53    | 63    | 32     | 58     | 64     | 59     | 47    | 47    | 35    | 47    |
| Cobalt                  | µg/g    | 1      | EPA 6010  | 17    | 18    | 13     | 19     | 19     | 19     | 14    | 17    | 14    | 12    |
| Copper                  | µg/g    | 1      | EPA 6010  | 89    | 48    | 33     | 62     | 63     | 62     | 33    | 60    | 47    | 32    |
| Iron                    | µg/g    | 10     | EPA 6010  | 35800 | 33900 | 24900  | 35600  | 35800  | 35800  | 28800 | 34300 | 26400 | 23800 |
| Lead                    | µg/g    | 5      | EPA 6010  | 37    | 23    | 18     | 28     | 30     | 28     | 15    | 22    | 20    | 8     |
| Magnesium               | µg/g    | 10     | EPA 6010  | 10800 | 15000 | 6550   | 13000  | 13300  | 13100  | 15400 | 11100 | 7980  | 20700 |
| Manganese               | µg/g    | 1      | EPA 6010  | 1070  | 1620  | 361    | 1430   | 1220   | 1370   | 585   | 810   | 769   | 586   |
| Mercury                 | µg/g    | 0.005  | EPA 7471A | 0.068 | 0.065 | 0.029  | 0.072  | 0.071  | 0.072  | 0.021 | 0.049 | 0.033 | 0.018 |
| Molybdenum              | µg/g    | 1      | EPA 6010  | < 1   | < 1   | < 1    | < 1    | < 1    | < 1    | < 1   | < 1   | < 1   | < 1   |
| Nickel                  | µg/g    | 1      | EPA 6010  | 41    | 43    | 23     | 43     | 44     | 42     | 33    | 38    | 34    | 28    |
| Phosphorus              | µg/g    | 5      | EPA 6010  | 1260  | 847   | 636    | 873    | 844    | 887    | 546   | 923   | 677   | 550   |
| Potassium               | µg/g    | 30     | EPA 6010  | 2950  | 3890  | 1470   | 3370   | 3700   | 3510   | 3490  | 2430  | 1500  | 2730  |
| Silicon                 | µg/g    | 1      | EPA 6010  | 258   | 529   | 1360   | 242    | 672    | 768    | 862   | 466   | 387   | 211   |
| Silver                  | µg/g    | 0.2    | EPA 6010  | 0.2   | 0.2   | < 0.2  | 0.3    | 0.2    | 0.2    | < 0.2 | < 0.2 | < 0.2 | < 0.2 |
| Sodium                  | µg/g    | 20     | EPA 6010  | 990   | 1000  | 830    | 910    | 980    | 990    | 920   | 930   | 1260  | 1460  |
| Strontium               | µg/g    | 1      | EPA 6010  | 23    | 24    | 27     | 26     | 27     | 27     | 48    | 47    | 21    | 40    |
| Tin                     | µg/g    | 10     | EPA 6010  | < 10  | < 10  | < 10   | < 10   | < 10   | < 10   | < 10  | < 10  | < 10  | < 10  |
| Titanium                | µg/g    | 1      | EPA 6010  | 1430  | 1640  | 2600   | 1970   | 1990   | 2070   | 1740  | 1970  | 2330  | 1140  |
| Vanadium                | µg/g    | 1      | EPA 6010  | 73    | 61    | 76     | 71     | 72     | 72     | 72    | 88    | 85    | 44    |
| Yttrium                 | µg/g    | 0.5    | EPA 6010  | 13.2  | 12.2  | 9.2    | 13.2   | 13.3   | 13.3   | 10.1  | 12.1  | 9.1   | 8.1   |
| Zinc                    | µg/g    | 1      | EPA 6010  | 137   | 113   | 77     | 130    | 131    | 130    | 76    | 110   | 89    | 55    |
| Zirconium               | µg/g    | 0.1    | EPA 6010  | 4.7   | 8.7   | 15.7   | 9.8    | 10.1   | 10.3   | 19.9  | 8.4   | 9.8   | 16.2  |
| Aluminum (Al2O3)        | %       | 0.01   | IN-HOUSE  | 15.1  | 16.1  | 13.0   | 15.6   | 15.9   | 15.4   | 13.0  | 13.9  | 14.0  | 11.5  |
| Barium (BaO)            | %       | 0.001  | IN-HOUSE  | 0.078 | 0.091 | 0.052  | 0.078  | 0.078  | 0.078  | 0.078 | 0.078 | 0.078 | 0.052 |
| Calcium (CaO)           | %       | 0.01   | IN-HOUSE  | 2.05  | 2.14  | 3.22   | 2.51   | 2.51   | 2.52   | 2.52  | 2.60  | 7.16  | 9.24  |
| Chromium (Cr2O3)        | %       | 0.01   | IN-HOUSE  | 0.01  | 0.01  | 0.01   | 0.04   | 0.01   | 0.04   | 0.01  | 0.01  | 0.04  | 0.01  |
| Iron (Fe2O3)            | %       | 0.05   | IN-HOUSE  | 8.48  | 7.84  | 6.49   | 8.55   | 8.62   | 8.52   | 7.36  | 7.62  | 8.13  | 5.13  |
| Magnesium (MgO)         | %       | 0.01   | IN-HOUSE  | 3.08  | 4.09  | 2.39   | 3.87   | 3.94   | 3.90   | 3.05  | 3.3   | 4.33  | 4.63  |
| Manganese (MnO)         | %       | 0.01   | IN-HOUSE  | 0.20  | 0.27  | 0.1    | 0.25   | 0.22   | 0.23   | 0.16  | 0.16  | 0.18  | 0.08  |
| Phosphorus (P2O5)       | %       | 0.03   | IN-HOUSE  | 0.18  | 0.21  | < 0.04 | 0.06   | 0.18   | 0.14   | 0.06  | 0.18  | 1.30  | 0.10  |
| Potasium (K20)          | %       | 0.01   | IN-HOUSE  | 2.99  | 3.12  | 2.08   | 2.92   | 3.02   | 2.89   | 2.24  | 2.37  | 1.68  | 2.3   |
| Silica (SiO2)           | %       | 0.01   | IN-HOUSE  | 58.3  | 58.8  | 64.8   | 58.1   | 58.6   | 56.6   | 49.0  | 50.5  | 55.7  | 45.1  |
| Sodium (Na2O)           | %       | 0.01   | IN-HOUSE  | 4.33  | 4.37  | 4.68   | 4.39   | 4.13   | 4.15   | 4.54  | 4.67  | 4.07  | 3.31  |
| Titanium (TiO2)         | %       | 0.01   | IN-HOUSE  | 1.00  | 0.95  | 0.04   | 1.10   | 1.10   | 1.10   | 1.10  | 1.10  | 1.30  | 0.55  |
| Loss on Ignition        | %       | 0.05   | IN-HOUSE  | 13.3  | 9.02  | 4.72   | 11.0   | 11.0   | 10.6   | 13.3  | 8.92  | 5.65  | 12.5  |
| Whole Rock Total        | %       |        | IN-HOUSE  | 109   | 107   | 102.0  | 108    | 109    | 106    | 96.4  | 95.4  | 104   | 94.6  |
| Total Organic Carbon    | % by wt | 0.1    | LECO      | 2.3   | 1.1   | 0.6    | 1.7    | 1.7    | 1.6    | 0.3   | 1.3   | 1.1   | < 0.1 |
| Total Kjeldahl Nitrogen | µg/g    | 0.05   | EPA 351.2 | 3480  | 1580  | 954    | 2310   | 2410   | 2190   | 487   | 1960  | 1330  | 321   |
| Phosphorus-Total        | µg/g    | 0.01   | EPA 365.4 | 1380  | 823   | 620    | 879    | 861    | 849    | 576   | 968   | 658   | 479   |

**Table B3**. Sediment petroleum hydrocarbon, PAHS, oil and grease and PCB concentrations (mg/kg dry weight) in Lake Superior reference sediment. Values below method detection limits are indicated by "<". [Method detection limits are provided in Appendix B, Table B4].

| Analyte                          | 5100       | 5101       | 5102       | 510300 | 510301 | 510302     | 5104       | 5105       | 5106         | 2512       |
|----------------------------------|------------|------------|------------|--------|--------|------------|------------|------------|--------------|------------|
| BTEX                             |            |            |            |        |        |            |            |            |              |            |
| Benzene                          | <0.05      | <0.05      | <0.05      | <0.05  | <0.05  | <0.05      | <0.05      | <0.05      | <0.05        | <0.05      |
| Ethyl Benzene                    | <0.05      | <0.05      | <0.05      | <0.05  | <0.05  | <0.05      | <0.05      | <0.05      | <0.05        | <0.05      |
| m+p-Xylenes                      | <0.1       | <0.1       | <0.1       | <0.1   | <0.1   | <0.1       | <0.1       | <0.1       | <0.1         | <0.1       |
| o-Xylene                         | <0.05      | <0.05      | <0.05      | <0.05  | <0.05  | <0.05      | <0.05      | <0.05      | <0.05        | <0.05      |
| Toluene                          | < 0.05     | < 0.05     | < 0.05     | <0.05  | < 0.05 | <0.05      | < 0.05     | < 0.05     | < 0.05       | < 0.05     |
| Xvlene. (total)                  | < 0.15     | < 0.15     | <0.15      | <0.15  | <0.15  | <0.15      | < 0.15     | <0.15      | <0.15        | < 0.15     |
|                                  |            |            |            |        |        |            |            |            |              |            |
| CCME Total Hydrocarbons          |            |            |            |        |        |            |            |            |              |            |
| F1 (C6-C10)                      | <5         | <5         | <5         | <5     | <5     | <5         | <5         | <5         | <5           | <5         |
| F1-BTEX                          | <5         | <5         | <5         | <5     | <5     | <5         | <5         | <5         | <5           | <5         |
| F2 (C10-C16)                     | <20        | <20        | <20        | <20    | <20    | <20        | <20        | <20        | <20          | <20        |
| F2-Naphth                        | <20        | <20        | <20        | <20    | <20    | <20        | <20        | <20        | <20          | <20        |
| F3 (C16-C34)                     | 130        | <100       | <100       | <100   | <100   | <100       | <100       | <100       | <100         | <100       |
| F3-PAH                           | 130        | <100       | <100       | <100   | <100   | <100       | <100       | <100       | <100         | <100       |
| F4 (C34-C50)                     | <100       | <100       | <100       | <100   | <100   | <100       | <100       | <100       | <100         | <100       |
| F4G-SG (GHH-Silica)              | 300        | 100        | 200        | 100    | <100   | <100       | <100       | 100        | <100         | <100       |
| Total Hydrocarbons (C6-C50)      | 130        | <100       | <100       | <100   | <100   | <100       | <100       | <100       | <100         | <100       |
| Chromatogram to baseline at nC50 | yes        | yes        | yes        | yes    | yes    | yes        | yes        | yes        | yes          | yes        |
|                                  |            |            |            |        |        |            |            |            |              |            |
| CCME PAHs                        |            |            |            |        |        |            |            |            |              |            |
| 1-Methylnaphthalene              | <0.2       | <0.1       | <0.1       | <0.2   | <0.2   | <0.2       | <0.1       | <0.1       | <0.1         | <0.1       |
| 2-Methylnaphthalene              | <0.2       | <0.1       | <0.1       | <0.2   | <0.2   | <0.2       | <0.1       | <0.1       | <0.1         | <0.1       |
| Acenaphthene                     | <0.2       | <0.1       | <0.1       | <0.2   | <0.2   | <0.2       | <0.1       | <0.1       | <0.1         | <0.1       |
| Acenaphthylene                   | <0.2       | <0.1       | <0.1       | <0.2   | <0.2   | <0.2       | <0.1       | <0.1       | <0.1         | <0.1       |
| Acridine                         | <3         | <2         | <2         | <3     | <3     | <3         | <2         | <2         | <2           | <2         |
| Anthracene                       | <0.2       | <0.1       | <0.1       | <0.2   | <0.2   | <0.2       | <0.1       | <0.1       | <0.1         | <0.1       |
| Benzo(a)anthracene               | <0.2       | <0.1       | <0.1       | <0.2   | <0.2   | <0.2       | <0.1       | <0.1       | <0.1         | <0.1       |
| Benzo(a)pyrene                   | <0.08      | <0.04      | <0.04      | <0.08  | <0.08  | <0.08      | <0.04      | <0.04      | <0.04        | <0.04      |
| Benzo(b)fluoranthene             | <0.2       | <0.1       | <0.1       | <0.2   | <0.2   | <0.2       | <0.1       | <0.1       | <0.1         | <0.1       |
| Benzo(g,h,i)perylene             | <0.2       | <0.1       | <0.1       | <0.2   | <0.2   | <0.2       | <0.1       | <0.1       | <0.1         | <0.1       |
| Benzo(k)fluoranthene             | <0.2       | <0.1       | <0.1       | <0.2   | <0.2   | <0.2       | <0.1       | <0.1       | <0.1         | <0.1       |
| Chrysene                         | <0.2       | <0.1       | <0.1       | <0.2   | <0.2   | <0.2       | <0.1       | <0.1       | <0.1         | <0.1       |
| Dibenzo(ah)anthracene            | <0.2       | <0.1       | <0.1       | <0.2   | <0.2   | <0.2       | <0.1       | <0.1       | <0.1         | <0.1       |
| Fluoranthene                     | <0.2       | <0.1       | <0.1       | <0.2   | <0.2   | <0.2       | <0.1       | <0.1       | <0.1         | <0.1       |
| Fluorene                         | <0.2       | <0.1       | <0.1       | <0.2   | <0.2   | <0.2       | <0.1       | <0.1       | <0.1         | <0.1       |
| Indeno(1,2,3-cd)pyrene           | <0.2       | <0.1       | <0.1       | <0.2   | <0.2   | <0.2       | <0.1       | <0.1       | <0.1         | <0.1       |
| Naphthalene                      | <0.2       | <0.1       | <0.1       | <0.2   | <0.2   | <0.2       | <0.1       | <0.1       | <0.1         | <0.1       |
| Phenanthrene                     | <0.2       | <0.1       | <0.1       | <0.2   | <0.2   | <0.2       | <0.1       | <0.1       | <0.1         | <0.1       |
| Pyrene                           | <0.2       | <0.1       | <0.1       | <0.2   | <0.2   | <0.2       | <0.1       | <0.1       | <0.1         | <0.1       |
| Quinoline                        | <0.2       | <0.1       | <0.1       | <0.2   | <0.2   | <0.2       | <0.1       | <0.1       | <0.1         | <0.1       |
|                                  |            |            |            |        |        |            |            |            |              |            |
| Individual Analytee              |            |            |            |        |        |            |            |            |              |            |
|                                  | 65.0       | 56 7       | 51 E       | 61 7   | 60     | 64 6       | 11 1       | 50 F       | <b>5</b> 2.2 | 36.3       |
|                                  | 00.9<br>NM | 50.7<br>NM | 04.0<br>NM |        |        | 04.0<br>NM | 41.4<br>NM | 09.0<br>NM | 00.0<br>NM   | 50.5<br>NM |
| Un and Grease, 10tal             | INIVI      | INIVI      | INIVI      | INIVI  | INIVI  | INIVI      | INIVI      | INIVI      | INIVI        | INIVI      |
| PCBs                             |            |            |            |        |        |            |            |            |              |            |
| Aroclor 1242                     | <0 1       | <0.05      | <0.1       | <0 1   | <0 1   | <0.1       | <0.05      | <0.1       | <0.05        | <0.05      |
| Aroclor 1248                     | <0.1       | <0.05      | <0.1       | <0.1   | <0.1   | <0.1       | <0.05      | <0.1       | <0.05        | < 0.05     |
| Aroclor 1254                     | <0.1       | <0.05      | < 0.1      | <0.1   | <0.1   | <0.1       | <0.05      | <0.1       | <0.05        | < 0.05     |
| Aroclor 1260                     | <0.1       | < 0.05     | <0.1       | <0.1   | <0.1   | <0.1       | < 0.05     | <0.1       | < 0.05       | < 0.05     |
| Total PCBs                       | <0.1       | <0.05      | <0.1       | <0.1   | <0.1   | <0.1       | < 0.05     | <0.1       | <0.05        | < 0.05     |

NM=not measured

| Sample ID                           | 1M1      | 1M200    | 1M201    | 1M202    | 1M3      | 1M4      | 2M1      | 2M4      | 2M5      | JFB021   | JFB002   | 3M2      | 4M3      | NF5      | M701     | EEM4     | EEM8     | 5100     | 5101     | 5102     | 510300   | 510300   | 510300   | 5104     | 5105     | 5106     | 2512    |
|-------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------|
| BTEX                                | SEDIMENT | SEDIMEN |
| Benzene mg/kg                       | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05    |
| Ethyl Benzene mg/kg                 | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05    |
| m+p-Xylenes mg/kg                   | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1     |
| o-Xylene mg/kg                      | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05    |
| Toluene mg/kg                       | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05    |
| Xylene, (total) mg/kg               | 0.15     | 0.15     | 0.15     | 0.15     | 0.15     | 0.15     | 0.15     | 0.15     | 0.15     | 0.15     | 0.15     | 0.15     | 0.15     | 0.15     | 0.15     | 0.15     | 0.15     | 0.15     | 0.15     | 0.15     | 0.15     | 0.15     | 0.15     | 0.15     | 0.15     | 0.15     | 0.15    |
| COME Total Hydrogerbone             |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |         |
| F1 (C6-C10) mg/kg                   | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5       |
| F1-BTEX mg/kg                       | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5        | 5       |
| F2 (C10-C16) mg/kg                  | 20       | 20       | 20       | 20       | 20       | 20       | 20       | 20       | 20       | 20       | 20       | 20       | 10       | 20       | 20       | 20       | 10       | 20       | 20       | 20       | 20       | 20       | 20       | 20       | 20       | 20       | 20      |
| F2-Naphth mg/kg                     | 20       | 20       | 20       | 20       | 20       | 20       | 20       | 20       | 20       | 20       | 20       | 20       | 10       | 20       | 20       | 20       | 10       | 20       | 20       | 20       | 20       | 20       | 20       | 20       | 20       | 20       | 20      |
| F3 (C16-C34) mg/kg                  | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 50       | 100      | 100      | 100      | 50       | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100     |
| F3-PAH mg/kg                        | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 50       | 100      | 100      | 100      | 50       | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100     |
| E4 (C34-C50) mg/kg                  | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 50       | 100      | 100      | 100      | 50       | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100     |
| F4G-SG (GHH-Silica) mg/kg           | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100     |
| Total Hydrocarbons (C6-C50) mg/kg   | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 50       | 100      | 100      | 100      | 50       | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100     |
| Total Hydrocarbons (00-000) Highlig | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 50       | 100      | 100      | 100      | 50       | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100     |
| CCME PAHs                           |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |         |
| 1-Methylnaphthalene mg/kg           | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.2      | 0.1      | 0.1      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1     |
| 2-Methylnaphthalene mg/kg           | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.2      | 0.1      | 0.1      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1     |
| Acenaphthene mg/kg                  | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.2      | 0.1      | 0.1      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1     |
| Acenaphthylene mg/kg                | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.2      | 0.1      | 0.1      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1     |
| Acridine mg/kg                      | 1.6      | 1.6      | 1.6      | 1.6      | 1.6      | 1.6      | 1.6      | 1.6      | 1.6      | 1.6      | 1.6      | 1.6      | 1.6      | 1.6      | 1.6      | 1.6      | 0.8      | 3.2      | 1.6      | 1.6      | 3.2      | 3.2      | 3.2      | 1.6      | 1.6      | 1.6      | 1.6     |
| Anthracene mg/kg                    | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.2      | 0.1      | 0.1      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1     |
| Benzo(a)anthracene mg/kg            | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.2      | 0.1      | 0.1      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1     |
| Benzo(a)pyrene mg/kg                | 0.04     | 0.04     | 0.04     | 0.04     | 0.04     | 0.04     | 0.04     | 0.04     | 0.04     | 0.04     | 0.04     | 0.04     | 0.04     | 0.04     | 0.04     | 0.04     | 0.02     | 0.08     | 0.04     | 0.04     | 0.08     | 0.08     | 0.08     | 0.04     | 0.04     | 0.04     | 0.04    |
| Benzo(b)fluoranthene mg/kg          | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.2      | 0.1      | 0.1      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1     |
| Benzo(g,h,i)perylene mg/kg          | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.2      | 0.1      | 0.1      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1     |
| Benzo(k)fluoranthene mg/kg          | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.2      | 0.1      | 0.1      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1     |
| Chrysene mg/kg                      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.2      | 0.1      | 0.1      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1     |
| Dibenzo(ah)anthracene mg/kg         | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.2      | 0.1      | 0.1      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1     |
| Fluoranthene mg/kg                  | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.2      | 0.1      | 0.1      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1     |
| Fluorene mg/kg                      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.2      | 0.1      | 0.1      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1     |
| Indeno(1,2,3-cd)pyrene mg/kg        | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.2      | 0.1      | 0.1      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1     |
| Naphthalene mg/kg                   | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.2      | 0.1      | 0.1      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1     |
| Phenanthrene mg/kg                  | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.2      | 0.1      | 0.1      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1     |
| Pyrene mg/kg                        | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.2      | 0.1      | 0.1      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1     |
| Quinoline mg/kg                     | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.2      | 0.1      | 0.1      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1     |
| PCBs                                |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |         |
| Aroclor 1242 ma/ka                  | 0.1      | 0.2      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.04     | 0.1      | 0.05     | 0.1      | 0.05     | 0.1      | 0.05     | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.1      | 0.05     | 0.05    |
| Aroclor 1248 ma/ka                  | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.04     | 0.1      | 0.05     | 0.1      | 0.05     | 0.1      | 0.05     | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.1      | 0.05     | 0.05    |
| Aroclor 1254 ma/ka                  | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.04     | 0.1      | 0.05     | 0.1      | 0.05     | 0.1      | 0.05     | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.1      | 0.05     | 0.05    |
| Aroclor 1260 ma/ka                  | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.04     | 0.1      | 0.05     | 0.1      | 0.05     | 0.1      | 0.05     | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.1      | 0.05     | 0.05    |
| Total PCBs mg/kg                    | 0.1      | 0.2      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.04     | 0.1      | 0.05     | 0.1      | 0.05     | 0.1      | 0.05     | 0.1      | 0.1      | 0.1      | 0.1      | 0.05     | 0.1      | 0.05     | 0.05    |
|                                     |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |         |

**Table B5.** Sediment dioxin and furan concentrations (pg/g dw) and toxic equivalents (TEQ) for Lake Superior reference sites. TEQs exceeding the probable effect level are indicated in red. A "<" Indicates that the compound was not detected above the method detection limit or that the target analyte was detected below the Lowest Quantitation Limit (see text). [Estimated Detection Limits = Method detection limits are provided in Appendix B, Table B3].

| Site                         | 5100  | 5101  | 5102   | 510300 | 510301 | 510302 | 5104   | 5106  | 2512          | 5105  |
|------------------------------|-------|-------|--------|--------|--------|--------|--------|-------|---------------|-------|
| Target Analytes              | pg/g  | pg/g  | pg/g   | pg/g   | pg/g   | pg/g   | pg/g   | pg/g  | pg∕g          | pg/g  |
| 2,3,7,8-TCDD                 | <0.67 | <0.48 | <0.20  | <0.49  | 0.421  | <1.3   | <0.15  | <0.32 | <0.12         | <0.53 |
| 1,2,3,7,8-PeCDD              | 1.56  | 1.11  | <0.48  | <0.89  | 0.989  | <0.95  | <0.19  | <0.58 | 0.115         | <0.57 |
| 1,2,3,4,7,8-HxCDD            | 1.73  | 0.897 | 0.562  | 0.858  | 1.11   | 1.53   | <0.25  | 0.780 | <0.066        | <0.50 |
| 1,2,3,6,7,8-HxCDD            | 2.73  | 1.94  | <0.95  | 1.89   | 2.03   | 2.41   | 0.505  | 1.69  | <0.066        | 1.24  |
| 1,2,3,7,8,9-HxCDD            | 4.96  | 2.81  | 1.38   | 2.41   | 3.33   | 3.34   | 0.543  | <1.9  | 0.196         | <1.3  |
| 1,2,3,4,6,7,8-HpCDD          | 37.7  | 24.9  | 12.3   | 23.0   | 23.2   | 26.5   | 3.83   | 17.9  | 0.977         | 20.3  |
| OCDD                         | 176   | 113   | 61.9   | 111    | 106    | 135    | 19.6   | 93.9  | 4.42          | 110   |
| 2,3,7,8-TCDF                 | 2.91  | 1.89  | <1.5   | 1.94   | 1.87   | 2.83   | <1.1   | 2.23  | <0.22         | 1.44  |
| 1,2,3,7,8-PeCDF              | 1.56  | 1.42  | 0.467  | 0.976  | 1.06   | <1.1   | 0.253  | 0.640 | <0.15         | <0.43 |
| 2,3,4,7,8-PeCDF              | 1.92  | 0.961 | 0.659  | <1.0   | 1.20   | 1.06   | <0.19  | 0.845 | <0.078        | <0.67 |
| 1,2,3,4,7,8-HxCDF            | 3.00  | <1.6  | <0.73  | 3.55   | 1.74   | 2.87   | <0.81  | 1.96  | <0.71         | <1.3  |
| 1,2,3,6,7,8-HxCDF            | 1.77  | 1.18  | 0.576  | <1.0   | 1.22   | 1.73   | <0.26  | 1.01  | <0.11         | <0.58 |
| 2,3,4,6,7,8-HxCDF            | 1.71  | 0.786 | 0.596  | 0.934  | <0.92  | 1.20   | 0.228  | <0.83 | 0.0836        | 0.588 |
| 1,2,3,7,8,9-HxCDF            | <0.43 | <0.26 | <0.19  | <0.20  | <0.28  | <0.85  | <0.090 | <0.18 | <0.064        | <0.26 |
| 1,2,3,4,6,7,8-HpCDF          | 10.4  | 8.65  | 4.14   | 7.18   | 7.53   | 8.55   | 2.92   | 5.80  | 1.06          | 4.98  |
| 1,2,3,4,7,8,9-HpCDF          | 1.07  | 0.413 | <0.041 | <0.45  | 0.449  | <0.48  | <0.059 | <0.42 | <0.054        | <0.17 |
| OCDF                         | 9.23  | 4.73  | 2.91   | 5.03   | 6.25   | 7.35   | 0.644  | 4.71  | <0.19         | <4.2  |
|                              |       |       |        |        |        |        |        |       |               |       |
| Homologue Group Totals       | pg/g  | pg/g  | pg/g   | pg/g   | pg/g   | pg/g   | pg/g   | pg/g  | pg/g          | pg/g  |
| Total-TCDD                   | 4.65  | 8.29  | 1.44   | 5.24   | 3.47   | <1.3   | 2.57   | 3.95  | 0.621         | 2.08  |
| Total-PeCDD                  | 15.2  | 11.3  | 3.08   | 6.64   | 8.91   | 4.61   | 2.86   | 4.89  | 1.73          | 8.24  |
| Total-HxCDD                  | 50.5  | 29.5  | 8.86   | 16.9   | 33.4   | 23.2   | 4.91   | 20.1  | 0.851         | 4.61  |
| Total-HpCDD                  | 88.9  | 54.7  | 26.8   | 52.8   | 50.1   | 62.3   | 8.67   | 39.2  | 0.977         | 41.6  |
| Total-TCDF                   | 31.7  | 17.9  | 11.7   | 12.7   | 21.2   | 20.3   | 1.98   | 9.65  | 1.79          | 10.5  |
| Total-PeCDF                  | 19.6  | 12.5  | 6.81   | 7.79   | 13.2   | 5.77   | 4.20   | 8.40  | 1.37          | 3.17  |
| Total-HxCDF                  | 17.0  | 11.0  | 4.61   | 11.5   | 11.1   | 13.0   | 3.78   | 7.40  | 1.01          | 4.57  |
| Total-HpCDF                  | 12.8  | 12.3  | 5.59   | 11.1   | 11.4   | 13.0   | 2.92   | 5.80  | 1.06          | 4.98  |
| Toxic Equivalency WHO (1998) |       |       |        |        |        |        |        |       |               |       |
| Lower Bound PCDD/F TEO       | 4 50  | 2 58  | 0.83   | 1 17   | 3 18   | 2 20   | 0.08   | 1 36  | 0 14          | 0.22  |
| Lipper Bound PCDD/F TEO      | 5.22  | 3 24  | 1.68   | 3 18   | 3.30   | 4 60   | 0.81   | 2.38  | 0.44          | 2 16  |
|                              | 0.22  | V.L-T | 1.50   | 0.10   | 0.00   | 1.50   | 0.01   | 2.50  | <b>U</b> . 14 | 2.10  |

**Table B6.** Estimated Detection Limits (EDL) (= method detection limit) for sediment dioxin and furan and dioxin-like PCB analysis

 (ALS Laboratory Group).

|                        |      | 1M1  |       |       |       |      |       |      |      |      |        |        | JFB002 |       |      |       |      |       |
|------------------------|------|------|-------|-------|-------|------|-------|------|------|------|--------|--------|--------|-------|------|-------|------|-------|
|                        | 1M1  | DUP  | 1M200 | 1M101 | 1M202 | 1M3  | 1M4   | 2M1  | 2M4  | 2M5  | JFB021 | JFB002 | DUP    | 4M3   | NF5  | M701  | EEM4 | EEM8  |
| Target Analytes        | pg∕g | pg∕g | pg∕g  | pg∕g  | pg∕g  | pg∕g | pg∕g  | pg∕g | pg∕g | pg∕g | pg∕g   | pg∕g   | pg∕g   | pg∕g  | pg∕g | pg∕g  | pg∕g | pg∕g  |
| 2,3,7,8-TCDD           | 1    | 0.44 | 0.66  | 3.4   | 0.53  | 0.44 | 0.098 | 0.4  | 0.37 | 0.5  | 0.5    | 0.55   | 0.91   | 0.1   | 1.1  | 0.076 | 0.39 | 0.34  |
| 1,2,3,7,8-PeCDD        | 0.6  | 0.39 | 0.55  | 5.3   | 0.86  | 0.58 | 0.17  | 0.42 | 0.19 | 0.41 | 0.27   | 0.37   | 1.2    | 0.076 | 1.2  | 0.1   | 0.53 | 0.16  |
| 1,2,3,4,7,8-HxCDD      | 0.56 | 0.19 | 0.45  | 6.7   | 1.2   | 0.62 | 0.2   | 0.35 | 0.28 | 0.45 | 0.18   | 0.6    | 1.6    | 0.029 | 1.7  | 0.11  | 0.43 | 0.3   |
| 1,2,3,6,7,8-HxCDD      | 0.57 | 0.19 | 0.47  | 6.8   | 1.3   | 0.63 | 0.21  | 0.37 | 0.27 | 0.46 | 0.18   | 0.62   | 1.7    | 0.027 | 1.7  | 0.11  | 0.46 | 0.28  |
| 1,2,3,7,8,9-HxCDD      | 0.57 | 0.19 | 0.46  | 6.8   | 1.2   | 0.62 | 0.2   | 0.36 | 0.28 | 0.46 | 0.18   | 0.61   | 1.6    | 0.028 | 1.7  | 0.11  | 0.45 | 0.29  |
| 1,2,3,4,6,7,8-HpCDD    | 0.87 | 0.33 | 0.75  | 6.2   | 1.1   | 0.82 | 0.31  | 0.54 | 0.21 | 0.65 | 0.36   | 0.66   | 1.8    | 0.044 | 1.9  | 0.14  | 0.87 | 0.2   |
| OCDD                   | 0.84 | 0.68 | 0.77  | 12    | 2     | 1.8  | 0.61  | 0.43 | 0.6  | 0.68 | 0.55   | 1.1    | 2.2    | 0.17  | 2    | 0.25  | 1    | 0.26  |
| 2,3,7,8-TCDF           | 0.38 | 0.26 | 0.62  | 3.1   | 0.52  | 0.39 | 0.17  | 0.2  | 0.22 | 0.31 | 0.18   | 0.38   | 0.77   | 0.053 | 1.2  | 0.089 | 0.49 | 0.2   |
| 1,2,3,7,8-PeCDF        | 0.44 | 0.28 | 0.35  | 3.7   | 0.7   | 0.52 | 0.16  | 0.29 | 0.24 | 0.4  | 0.16   | 0.36   | 0.97   | 0.05  | 1.1  | 0.069 | 0.5  | 0.12  |
| 2,3,4,7,8-PeCDF        | 0.4  | 0.25 | 0.33  | 3.3   | 0.68  | 0.5  | 0.15  | 0.29 | 0.22 | 0.38 | 0.17   | 0.35   | 0.89   | 0.045 | 0.97 | 0.064 | 0.49 | 0.12  |
| 1,2,3,4,7,8-HxCDF      | 0.63 | 0.2  | 1.1   | 6.4   | 1     | 0.64 | 0.4   | 0.37 | 0.25 | 0.34 | 0.36   | 0.92   | 1.5    | 0.061 | 1.3  | 0.14  | 0.7  | 0.092 |
| 1,2,3,6,7,8-HxCDF      | 0.66 | 0.18 | 0.44  | 6.3   | 1.1   | 0.61 | 0.21  | 0.31 | 0.17 | 0.33 | 0.19   | 0.59   | 1.5    | 0.032 | 1.3  | 0.072 | 0.59 | 0.089 |
| 2,3,4,6,7,8-HxCDF      | 0.56 | 0.18 | 0.37  | 6.5   | 1     | 0.55 | 0.18  | 0.29 | 0.16 | 0.31 | 0.2    | 0.51   | 1.4    | 0.03  | 1.2  | 0.067 | 0.49 | 0.098 |
| 1,2,3,7,8,9-HxCDF      | 0.73 | 0.23 | 0.5   | 8     | 1.3   | 0.72 | 0.25  | 0.37 | 0.21 | 0.4  | 0.24   | 0.67   | 1.6    | 0.04  | 1.5  | 0.082 | 0.64 | 0.12  |
| 1,2,3,4,6,7,8-HpCDF    | 0.77 | 0.36 | 0.73  | 7.6   | 1.2   | 0.73 | 0.24  | 0.41 | 0.28 | 0.47 | 0.2    | 0.71   | 1.6    | 0.078 | 1.7  | 0.11  | 0.68 | 0.089 |
| 1,2,3,4,7,8,9-HpCDF    | 0.88 | 0.46 | 0.93  | 9.1   | 1.3   | 0.88 | 0.32  | 0.51 | 0.37 | 0.58 | 0.25   | 0.81   | 1.9    | 0.1   | 2.1  | 0.15  | 0.83 | 0.13  |
| OCDF                   | 0.77 | 0.33 | 0.54  | 9.2   | 1.5   | 0.77 | 0.32  | 0.5  | 0.36 | 0.51 | 0.26   | 0.68   | 2.7    | 0.082 | 1.9  | 0.17  | 0.84 | 0.28  |
| Homologue Group Totals | pg∕g | pg∕g | pg∕g  | pg∕g  | pg∕g  | pg∕g | pg∕g  | pg∕g | pg∕g | pg∕g | pg∕g   | pg∕g   | pg∕g   | pg∕g  | pg∕g | pg∕g  | pg∕g | pg∕g  |
| Total-TCDD             | 1.0  | 0.44 | 0.66  | 3.4   | 0.53  | 0.44 | 0.098 | 0.4  | 0.37 | 0.5  | 0.5    | 0.55   | 0.91   | 0.1   | 1.1  | 0.076 | 0.39 | 0.34  |
| Total-PeCDD            | 0.6  | 0.39 | 0.55  | 5.3   | 0.86  | 0.58 | 0.17  | 0.42 | 0.19 | 0.41 | 0.27   | 0.37   | 1.2    | 0.076 | 1.2  | 0.1   | 0.53 | 0.16  |
| Total-HxCDD            | 0.57 | 0.19 | 0.47  | 6.8   | 1.3   | 0.63 | 0.21  | 0.37 | 0.28 | 0.46 | 0.18   | 0.62   | 1.7    | 0.029 | 1.7  | 0.11  | 0.46 | 0.3   |
| Total-HpCDD            | 0.87 | 0.33 | 0.75  | 6.2   | 1.1   | 0.82 | 0.31  | 0.54 | 0.21 | 0.65 | 0.36   | 0.66   | 1.8    | 0.044 | 1.9  | 0.14  | 0.87 | 0.2   |
| Total-TCDF             | 0.38 | 0.26 | 0.62  | 3.1   | 0.52  | 0.39 | 0.17  | 0.2  | 0.22 | 0.31 | 0.18   | 0.38   | 0.77   | 0.053 | 1.2  | 0.089 | 0.49 | 0.2   |
| Total-PeCDF            | 0.44 | 0.28 | 0.35  | 3.7   | 0.7   | 0.52 | 0.16  | 0.29 | 0.24 | 0.4  | 0.17   | 0.36   | 0.97   | 0.05  | 1.1  | 0.069 | 0.5  | 0.12  |
| Total-HxCDF            | 0.73 | 0.23 | 1.1   | 8.0   | 1.3   | 0.72 | 0.4   | 0.37 | 0.25 | 0.4  | 0.36   | 0.92   | 1.6    | 0.061 | 1.5  | 0.14  | 0.7  | 0.12  |
| Total-HpCDF            | 0.88 | 0.46 | 0.93  | 9.1   | 1.3   | 0.88 | 0.32  | 0.51 | 0.37 | 0.58 | 0.25   | 0.81   | 1.9    | 0.1   | 2.1  | 0.15  | 0.83 | 0.13  |

**Table B7.** Benthic invertebrate PCDD/F and DL PCB concentrations (pg/g dry weight) and toxic equivalent (TEQ) concentrations (pg TEQ/g wet weight) for Lake Superior reference sites. A "<"indicates that a target analyte was either not detected above the provided estimated detection limit (EDL) or that the value was below the calibrated range but above the estimated detection limit (EDL).

| Site                         | te 5102    |             |          | 510         | 3        |            | 5105        |          |            | 5106        |          | 2512       |             |          |  |
|------------------------------|------------|-------------|----------|-------------|----------|------------|-------------|----------|------------|-------------|----------|------------|-------------|----------|--|
| Organism                     | chironomid | oligochaete | amphipod | oligochaete | amphipod | chironomid | oligochaete | amphipod | chironomid | oligochaete | amphipod | chironomid | oligochaete | amphipod |  |
| Target Analytes              | pg∕g       | pg∕g        | pg∕g     | pg∕g        | pg∕g     | pg∕g       | pg∕g        | pg∕g     | pg∕g       | pg∕g        | pg∕g     | pg∕g       | pg∕g        | pg∕g     |  |
| 2,3,7,8-TCDD                 | <26        | <17         | <2.3     | <4.0        | <1.9     | <2.9       | <10         | <3.1     | <13        | <4.0        | <1.8     | <11        | <10         | <22      |  |
| 1,2,3,7,8-PeCDD              | <14        | <11         | <2.7     | <2.4        | <2.8     | <1.8       | <8.6        | <2.6     | <13        | <4.2        | <1.7     | <14        | <9.2        | <14      |  |
| 1,2,3,4,7,8-HxCDD            | <13        | <13         | <2.5     | <1.7        | <1.6     | <3.5       | <4.9        | <2.2     | <8.0       | <3.0        | < 0.75   | <12        | <8.7        | <14      |  |
| 1,2,3,6,7,8-HxCDD            | <13        | <12         | 4.87     | <1.7        | 3.90     | <4.1       | < 5.0       | 4.37     | <8.4       | <3.1        | 2.58     | <12        | <8.4        | <14      |  |
| 1,2,3,7,8,9-HxCDD            | <13        | <14         | <3.2     | <1.8        | <1.9     | <2.6       | <5.5        | <2.7     | <8.8       | <3.3        | <2.2     | <12        | <9.0        | <15      |  |
| 1,2,3,4,6,7,8-HpCDD          | <61        | 27.5        | <2.0     | 10.0        | <7.6     | 21.2       | <12         | <7.4     | 17.7       | 10.1        | 5.19     | <13        | 13.6        | <21      |  |
| OCDD                         | 199        | 224         | 146      | 13.2        | 10.4     | 45.4       | <16         | <4.4     | <21        | 12.4        | 7.04     | <40        | <14         | <27      |  |
| 2,3,7,8-TCDF                 | <13        | <11         | 10.2     | <2.0        | 10.1     | <2.1       | <7.4        | <1.9     | <11        | 21.3        | 7.37     | <7.8       | 10.7        | <12      |  |
| 1,2,3,7,8-PeCDF              | <9.5       | <7.8        | 3.00     | <2.2        | 1.99     | <1.9       | <5.8        | <2.5     | <7.3       | <2.8        | < 0.79   | <6.4       | <5.7        | <11      |  |
| 2,3,4,7,8-PeCDF              | <8.9       | <11         | 5.94     | <2.1        | <3.8     | 4.08       | <5.4        | <5.2     | < 6.8      | <2.9        | <3.4     | < 6.0      | <5.7        | <9.8     |  |
| 1,2,3,4,7,8-HxCDF            | 23.5       | <7.7        | <5.0     | <2.2        | <2.6     | <2.7       | <4.7        | <2.5     | <6.2       | <2.8        | 2.91     | <7.5       | <1.9        | <8.9     |  |
| 1,2,3,6,7,8-HxCDF            | <14        | <7.7        | <1.6     | <2.1        | 8.09     | <4.4       | <4.6        | <2.5     | < 6.0      | <2.9        | 5.79     | <7.2       | <1.8        | <8.7     |  |
| 2,3,4,6,7,8-HxCDF            | <12        | <8.2        | <2.3     | <2.2        | <1.4     | <2.4       | <5.3        | <2.6     | <6.1       | <2.7        | <1.6     | <6.7       | <2.0        | <9.1     |  |
| 1,2,3,7,8,9-HxCDF            | <13        | <9.1        | 2.96     | <2.4        | <1.6     | <2.8       | <5.7        | <3.0     | <7.1       | <3.3        | <1.8     | <7.9       | <2.1        | <9.9     |  |
| 1,2,3,4,6,7,8-HpCDF          | <30        | <16         | <8.3     | <3.1        | <3.0     | <4.0       | <5.5        | <2.2     | <9.2       | <4.4        | <1.8     | <10        | <5.1        | <11      |  |
| 1,2,3,4,7,8,9-HpCDF          | <24        | <15         | <3.8     | <3.5        | <3.0     | <4.5       | <9.4        | <3.1     | <15        | <7.0        | <2.0     | <17        | <8.5        | <18      |  |
| OCDF                         | 98.4       | 122         | 85.5     | 9.56        | <4.1     | 6.41       | <12         | <3.5     | 17.8       | <7.6        | <2.3     | 28.6       | 19.1        | <29      |  |
| PCB-81                       | <9.7       | <7.6        | 4.09     | <1.5        | 4.08     | <1.9       | <4.0        | 3.48     | <6.5       | 3.65        | 2.91     | <7.6       | <5.5        | <8.5     |  |
| PCB-77                       | 99.6       | 55.5        | 52.5     | 17.9        | 60.4     | 18.6       | 30.1        | 49.4     | 78.6       | 27.8        | 38.5     | 92.3       | 65.3        | 70.6     |  |
| PCB-123                      | <7.7       | <17         | 62.8     | 13.0        | 65.7     | 24.3       | <7.4        | 61.4     | <20        | 12.5        | 54.0     | <21        | <14         | <14      |  |
| PCB-118                      | 1300       | 691         | 2660     | 611         | 3090     | 1200       | 891         | 2750     | 1270       | 503         | 2250     | 619        | 423         | 934      |  |
| PCB-114                      | <8.2       | <20         | 55.8     | <13         | 65.6     | 20.2       | <18         | 57.1     | <21        | 12.8        | 48.2     | <21        | <16         | <13      |  |
| PCB-105                      | 536        | 298         | 1010     | 238         | 1150     | 441        | 346         | 982      | 484        | 197         | 791      | 245        | 166         | 279      |  |
| PCB-126                      | <6.9       | <15         | 32.8     | 6.52        | 32.8     | 9.27       | <6.1        | 36.7     | <17        | <4.2        | 29.8     | <18        | <12         | <12      |  |
| PCB-167                      | 121        | 59.0        | 244      | 58.1        | 256      | 122        | 89.3        | 257      | 120        | 45.8        | 217      | <8.2       | 28.1        | <8.0     |  |
| PCB-156                      | 197        | <110        | 395      | 110         | 406      | 202        | 171         | 413      | 216        | 79.3        | 320      | 62.1       | 40.1        | <48      |  |
| PCB-157                      | <48        | <21         | 101      | 24.4        | 112      | 52.4       | 37.8        | 107      | 56.1       | 19.3        | 86.4     | <6.4       | <12         | <6.6     |  |
| PCB-169                      | <4.0       | 5.53        | 11.4     | <2.3        | 12.9     | <3.0       | <5.5        | 13.9     | 5.77       | <2.3        | 12.2     | <5.7       | <3.3        | <5.8     |  |
| PCB-189                      | 40.3       | 24.1        | 71.8     | 19.0        | 70.0     | 36.3       | 29.3        | 63.9     | 41.7       | 14.9        | 61.4     | 6.26       | <8.2        | <7.6     |  |
| Homologue Group Totals       | pg∕g       | pg∕g        | pg∕g     | pg∕g        | pg∕g     | pg∕g       | pg∕g        | pg∕g     | pg∕g       | pg∕g        | pg∕g     | pg∕g       | pg∕g        | pg∕g     |  |
| Total-TCDD                   | <26        | <17         | <2.3     | <4.0        | 19.9     | 5.16       | <10         | <3.1     | <13        | <4.0        | 10.7     | <11        | <10         | <22      |  |
| Total-PeCDD                  | <14        | <11         | 3.19     | <2.4        | 34.0     | <1.8       | <8.6        | 30.4     | <13        | <4.2        | 21.3     | <14        | <9.2        | <14      |  |
| Total-HxCDD                  | <13        | <14         | 14.6     | <1.8        | 16.2     | 12.2       | <5.5        | 4.37     | <8.8       | <3.3        | 2.58     | <12        | <9.0        | <15      |  |
| Total-HpCDD                  | <23        | 27.5        | 14.1     | 10.0        | <1.7     | 21.2       | <9.6        | <2.6     | 17.7       | 10.1        | 5.19     | <13        | 13.6        | <21      |  |
| Total-TCDF                   | 49.4       | <11         | 61.8     | <2.0        | 93.3     | <2.1       | <7.4        | 63.4     | <11        | 179         | 49.5     | <7.8       | 10.7        | <12      |  |
| Total-PeCDF                  | <9.5       | 10.9        | 37.5     | 6.75        | 49.3     | 4.08       | <5.8        | 22.7     | <7.3       | 6.69        | 34.2     | <6.4       | 8.18        | <11      |  |
| Total-HxCDF                  | 43.0       | <9.1        | 17.6     | 10.8        | 52.3     | 20.5       | 11.1        | 30.1     | <7.1       | 9.43        | 27.1     | <7.9       | <2.1        | <9.9     |  |
| Total-HpCDF                  | <24        | <15         | 9.73     | 7.44        | 9.66     | 16.0       | 11.0        | <3.1     | <15        | <7.0        | 6.32     | <17        | <8.5        | <18      |  |
| Toxic Equivalency WHO (2005) | pg∕g       | pg∕g        | pg∕g     | pg∕g        | pg∕g     | pg∕g       | pg∕g        | pg∕g     | pg∕g       | pg∕g        | pg∕g     | pg∕g       | pg∕g        | pg∕g     |  |
| Lower Bound TEO - PCDD /F    | 0.35       | 0.01        | 2 47     | 0.00        | 1.64     | 0.60       | 0.00        | 0.01     | 0.00       | 3 13        | 1 22     | 0.00       | 1 58        | 0.00     |  |
| Lipper Bound TEO - PCDD/F    | 10.55      | 8 32        | 2.47     | 1.76        | 3.02     | 1 90       | 5.15        | 2 15     | 7.16       | 5.15        | 2 34     | 6.56       | 5.66        | 0.00     |  |
|                              | 10.50      | 0.52        | 5.42     | 1.70        | 5.02     | 1.90       | 5.15        | 2.15     | 7.10       | 5.07        | 2.34     | 0.50       | 5.00        | 2.53     |  |
| Lower Bound TEQ - DLPCB      | 0.75       | 0.41        | 0.96     | 0.23        | 1.02     | 0.29       | 0.23        | 0.98     | 0.59       | 0.26        | 0.79     | 0.68       | 0.48        | 0.52     |  |
| Upper Bound TEQ - DLPCB      | 0.99       | 0.75        | 0.96     | 0.26        | 1.02     | 0.31       | 0.38        | 0.98     | 0.94       | 0.33        | 0.79     | 1.06       | 0.74        | 0.83     |  |
| Lower Bound TEQ - TOTAL      | 1.10       | 0.42        | 3,43     | 0.24        | 2.66     | 0.89       | 0.23        | 0.99     | 0.59       | 3.40        | 2.00     | 0,68       | 2.06        | 0.52     |  |
| Upper Bound TEQ - TOTAL      | 11.55      | 9.07        | 4.38     | 2.02        | 4.04     | 2.21       | 5.53        | 3.13     | 8.10       | 5.40        | 3.12     | 7.62       | 6.41        | 10.42    |  |

Appendix C – Benthic Counts

|                  |        |        |        | ľ      | loberly B        | ay     | Central | Jackfish | n Bay | Lower Ja | Tunnel Bay |       |      |      |      |
|------------------|--------|--------|--------|--------|------------------|--------|---------|----------|-------|----------|------------|-------|------|------|------|
| Family           | M701   | 1M4    | EEM4   | 1M3    | 1M2 <sup>a</sup> | JFB002 | 1M1     | NF5      | EEM8  | 2M1      | 2M4 J      | FB021 | 2M5  | 4M3  | 3M2  |
| Asellidae        | 2.96   | 0.94   | 0.20   | 0.00   | 0.00             | 0.00   | 0.00    | 0.00     | 0.67  | 0.00     | 0.00       | 0.00  | 0.00 | 0.00 | 0.00 |
| Baetidae         | 0.00   | 0.00   | 0.00   | 0.00   | 0.13             | 0.00   | 0.00    | 0.00     | 0.00  | 0.00     | 0.00       | 0.00  | 0.00 | 0.00 | 0.00 |
| Ceratopogonidae  | 0.00   | 0.00   | 0.22   | 0.00   | 0.00             | 0.00   | 0.00    | 0.00     | 0.08  | 0.00     | 0.00       | 0.00  | 0.00 | 0.00 | 0.00 |
| Chironomidae     | 31.34  | 23.03  | 25.34  | 0.43   | 1.20             | 4.13   | 1.00    | 11.91    | 2.68  | 1.20     | 3.00       | 1.80  | 1.40 | 1.17 | 3.60 |
| Elmidae          | 0.00   | 0.00   | 0.00   | 0.00   | 0.15             | 0.00   | 0.20    | 0.00     | 0.00  | 0.00     | 0.00       | 0.00  | 0.00 | 0.00 | 0.00 |
| Enchytraeidae    | 0.00   | 0.00   | 0.20   | 0.00   | 0.00             | 0.00   | 0.00    | 0.00     | 0.04  | 0.00     | 0.00       | 0.00  | 0.00 | 0.82 | 0.00 |
| Gammaridae       | 0.00   | 0.21   | 0.00   | 0.00   | 0.00             | 0.00   | 0.00    | 0.23     | 0.00  | 0.00     | 0.00       | 0.00  | 0.00 | 0.00 | 0.00 |
| Hydropsychidae   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00             | 0.00   | 0.20    | 0.00     | 0.00  | 0.00     | 0.00       | 0.00  | 0.00 | 0.00 | 0.00 |
| Lebertiidae      | 0.00   | 0.00   | 0.00   | 0.00   | 0.00             | 0.00   | 0.00    | 0.00     | 0.04  | 0.00     | 0.00       | 0.00  | 0.00 | 0.00 | 0.00 |
| Lepidostomatidae | 0.00   | 0.00   | 0.00   | 0.00   | 0.13             | 0.00   | 0.40    | 0.00     | 0.00  | 0.00     | 0.00       | 0.00  | 0.00 | 0.00 | 0.00 |
| Lumbriculidae    | 1.93   | 0.00   | 0.00   | 0.00   | 0.00             | 0.00   | 0.00    | 0.00     | 0.69  | 0.00     | 0.00       | 0.00  | 0.00 | 0.88 | 0.00 |
| Naididae         | 0.00   | 0.20   | 1.35   | 0.20   | 0.00             | 0.00   | 0.00    | 0.47     | 4.07  | 0.00     | 0.00       | 0.00  | 0.00 | 0.23 | 0.00 |
| Sphaeriidae      | 1.81   | 3.67   | 3.78   | 0.43   | 0.50             | 1.56   | 0.80    | 4.22     | 0.13  | 1.20     | 0.40       | 0.40  | 0.20 | 0.33 | 1.40 |
| Tubificidae      | 401.24 | 336.44 | 309.60 | 275.83 | 277.22           | 320.56 | 237.40  | 301.93   | 37.67 | 4.00     | 5.00       | 3.40  | 3.20 | 0.02 | 2.20 |
| Pontoporeiidae   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00             | 0.00   | 0.00    | 0.00     | 0.06  | 0.60     | 0.80       | 3.20  | 1.80 | 1.21 | 4.60 |

 Table C1. Family identification and enumeration at Jackfish Bay sites (number per 33 cm<sup>2</sup>).

<sup>a</sup> Mean of three field replicates

| <b>Table C2.</b> Lowest level identification and enumeration for Jackfish Bay sites (number per 33 cm <sup>2</sup> ). |  |
|-----------------------------------------------------------------------------------------------------------------------|--|
|-----------------------------------------------------------------------------------------------------------------------|--|

.

|                      |                                      | Moberly Bay |        |               |        |               |        |        |               |        | Central Jackfish Ba |              | Bay  | ay Lower Jackfish Bay |             | Tunnel Bay |            |      |
|----------------------|--------------------------------------|-------------|--------|---------------|--------|---------------|--------|--------|---------------|--------|---------------------|--------------|------|-----------------------|-------------|------------|------------|------|
|                      |                                      | M701        | 1M4    | EEM4          | 1M3    | 1M200         | 1M201  | 1M202  | JFB002        | 1M1    | NF5                 | EEM8         | 2M1  | 2M4 J                 | FB021       | 2M5        | 4M3        | 3M2  |
| Ephemeroptera        | (Genus) Baetis                       |             |        |               |        | 0.4           |        |        |               |        |                     |              |      |                       |             |            |            |      |
| Coleoptera           | (Genus) Optioservus                  |             |        |               |        | 0.45          |        |        |               | 0.2    |                     |              |      |                       |             |            |            |      |
| Diptera-Chironomidae | (Genus) Chironomus                   | 13.04       | 8.674  | 8.1           |        | 0.542         |        | 0.4    | 0.7           | 0.2    | 2.5                 | 0.10         |      |                       |             | 0.2        |            |      |
|                      | (Genus) Cladotanytarsus              | 0.22        |        |               |        |               |        |        |               |        |                     |              |      |                       |             |            |            |      |
|                      | (Genus) Harnischia                   | 0.34        |        |               |        |               |        |        |               |        |                     |              |      |                       |             |            |            |      |
|                      | (Species) Heterotrissocladius        |             |        |               |        |               |        |        |               |        |                     | 0.08         |      | 0.2                   |             |            |            |      |
|                      | Heterotrissocladius marcidus gr.     |             |        |               |        |               |        |        |               |        |                     | 0.80         | 0.2  |                       |             |            |            |      |
|                      | Heterotrissocladius subpilosus gr.   |             |        |               |        |               |        |        |               |        |                     | 0.58         | 1.2  | 2.4                   | 0.8         | 1          | 0.39       | 3.2  |
|                      | (Genus) Larsia                       |             |        |               |        |               |        |        |               |        |                     | 0.04         |      |                       |             |            |            |      |
|                      | (Genus) Micropsectra                 | 0.34        |        |               |        |               |        |        |               |        |                     |              |      |                       |             |            | 0.70       |      |
|                      | (Species) Microtendipes pedellus gr. |             |        |               |        | 0.2           |        |        |               |        |                     |              |      |                       |             |            |            |      |
|                      | (Genus) Paracladopelma               |             |        |               |        |               |        |        |               |        |                     |              |      |                       |             |            | 0.04       |      |
|                      | (Genus) Pentaneurini                 |             |        |               | 0.232  |               |        |        |               |        |                     |              |      |                       |             |            |            |      |
|                      | (Species) Polypedilum scalaenum gr.  |             |        |               |        |               |        |        |               |        |                     | 0.09         |      | 0.2                   | 0.2         |            |            |      |
|                      | (Genus) Procladius                   | 15.92       | 14.35  | 17.25         | 0.2    | 0.84          | 0.4    | 0.82   | 3.48          | 0.8    | 9.182               | 1.98         |      |                       |             |            |            | 0.2  |
|                      | (Genus) Protanypus                   |             |        |               |        |               |        |        |               |        |                     | 0.00         |      | 0.2                   | 0.8         |            | 0.04       | 0.2  |
|                      | (Genus) Stictochironomus             |             |        |               |        |               |        | 0.2    |               |        |                     | 0.04         |      |                       |             |            |            |      |
|                      | (Genus) Tanytarsus                   | 1.13        |        |               |        |               | 0.2    |        |               |        |                     | 0.04         |      |                       |             | 0.2        |            |      |
| Diptera              | (Genus) Ceratopogoninae              | 0.34        |        |               |        |               |        |        |               |        | 0.228               | 0.24         |      |                       |             |            |            |      |
|                      | (Genus) Probezzia                    |             |        | 0.224         |        |               |        |        |               |        |                     | 0.08         |      |                       |             |            |            |      |
| Trichoptera          | (Genus) Hydropsyche                  |             |        |               |        |               |        |        |               | 0.2    |                     |              |      |                       |             |            |            |      |
|                      | (Genus) Lepidostoma                  |             |        |               |        | 0.4           |        |        |               | 0.4    |                     |              |      |                       |             |            |            |      |
| Bivalvia             | (Genus) Pisidium                     | 1.81        | 3.67   | 3.784         | 0.43   | 0.69          | 0.20   | 0.62   | 1.56          | 0.80   | 4.216               | 0.13         | 1.20 | 0.40                  | 0.4         | 0.20       | 0.33       | 1.40 |
| Annelida             | (Species) Arcteonais Iomondi         |             | 0.2    | 0.86          | 0.2    |               |        |        |               |        |                     | 0.10         |      |                       |             |            |            |      |
|                      | (Species) Aulodrilus limnobius       |             |        |               |        |               |        |        |               |        |                     | 0.04         |      |                       |             |            |            |      |
|                      | (Species) Aulodrilus pluriseta       | 8.98        | 27.752 | 58.644        | 3.096  | 2.188         | 0.8    | 2.24   | 7.154         | 0.4    | 28.99               | 2.90         |      |                       |             |            |            |      |
|                      | (Family) Enchytraeidae               |             |        | 0.2           |        |               |        |        |               |        |                     | 0.04         |      |                       |             |            | 0.82       |      |
|                      | (Species) Limnodrilus hoffmeis       | 35.07       | 34.93  | 30.6          | 12.328 | 49.444        | 17.2   | 23.9   | 70.736        | 20.6   |                     | 5.93         |      |                       |             | 0.6        |            |      |
|                      | (Species) Limnodrilus udekemia       |             |        |               |        | 8.2           |        |        |               |        |                     |              |      |                       |             |            |            |      |
|                      | (Family) Lumbriculidae               | 1.93        |        |               |        |               |        |        |               |        |                     | 0.69         |      |                       |             |            | 0.88       |      |
|                      | (Family) Naididae                    |             |        |               |        |               |        |        |               |        |                     | 0.98         |      |                       |             |            | 0.02       |      |
|                      | (Genus) Nais                         |             |        |               |        |               |        |        |               |        |                     | 0.16         |      |                       |             |            |            |      |
|                      | (Genus) Piguetiella                  |             |        |               |        |               |        |        |               |        |                     | 2.84         |      |                       |             |            |            |      |
|                      | (Species) Spirosperma ferox          | 20.92       | 0.42   | 2.04          | 0.20   | 0.42          |        | 0.22   |               | 0.20   | 0.27                | 4.34         |      |                       |             |            |            |      |
|                      | Tubificidae Immatures w/ cap setae   | 291.65      | 219.44 | 159.23        | 244.41 | 288.27        | 200.60 | 184.10 | 165.03        | 205.20 | 239.02              | 22.53        | 4.00 | 5.00                  | 3.20        | 2.20       | 0.02       | 2.20 |
|                      | Tubificidae Immatures w/o cap setae  | 44.64       | 53.90  | 59.08         | 15.80  | 8.46          | 18.00  | 27.60  | 77.65         | 11.00  | 33.65               | 1.93         |      |                       | 0.20        | 0.40       |            |      |
|                      | (Species) Vejdovskyella comata       |             |        | 0.24          |        |               |        |        |               |        |                     |              |      |                       |             |            |            |      |
|                      | (Species) Vejdovskyella intermedia   |             |        | 0.24          |        |               |        |        |               |        | 0.47                |              |      |                       |             |            | 0.21       |      |
| Acari                | Acari                                |             |        |               |        | 0.2           |        | 0.2    |               |        | 0.27                |              |      |                       |             |            |            |      |
|                      | (Genus) Lebertia                     |             |        |               |        |               |        |        |               |        |                     | 0.04         |      |                       |             |            |            |      |
| Crustacea            | (Genus) Caecidotea                   | 2.96        | 0.94   | 0.20          |        |               |        |        |               |        | 0.00                | 0.67         |      |                       |             |            |            |      |
|                      | (Genus) Gammarus                     |             | 0.21   |               |        |               |        |        |               |        | 0.23                | 0.00         | 0.0  | 0.0                   | 0.00        | 1.0        | 4.04       |      |
|                      | Diporeia sp.                         | 420.0       | 264 5  | 240 7         | 076.0  | 260 7         | 007 A  | 240.0  | 200.0         | 240.0  | 240.0               | 0.06         | 0.6  | 8.0                   | 3.20        | 1.8        | 1.21       | 4.6  |
|                      | I Utal ADUNDANCE                     | 439.3       | 5 60 2 | 340.7<br>46 7 | 2/0.9  | 30U.7<br>79 Q | 237.4  | 240.3  | 320.3<br>50.6 | 240.0  | 319.U<br>74 0       | 47.5<br>47.5 | 7.Z  | 9.2<br>54.3           | 0.8<br>36.4 | 33.3       | 4.7<br>0.4 | 11.8 |
|                      | / minature tubilicius w/ cap selde   | 00.4        | 00.2   | +0.7          | 00.3   | 19.9          | 04.0   | 10.0   | 50.0          | 00.0   | 14.3                | +1.J         | 55.0 | J <del>1</del> .J     | 30.4        | 00.0       | 0.4        | 10.0 |

Appendix D - BEAST Benthic Community Structure Ordinations



**Figure D1.** Assessment of subset of Moberly Bay sites summarized on axes 1 and 3. Stress = 0.123.



**Figure D2.** Assessment of subset of Moberly Bay sites summarized on axes 1 and 2. Stress = 0.139.



**Figure D3.** Assessment of sites in central Jackfish Bay summarized on axes 1 and 3. Stress = 0.155.



**Figure D4.** Assessment of Jackfish and Tunnel Bay sites for axes 1 vs. 3 (A) and axes 2 vs. 3 (B). Stress = 0.158.

Appendix E - BEAST Toxicity Ordinations



**Figure E1.** Assessment of Moberly Bay sites summarized on axes 1 vs. 3. Stress = 0.110. Note: Site JB002 falls in Band 2 on alternate axes (axes 2 vs. 3).



**Figure E2.** Assessment of sites in central and lower Jackfish Bay and Tunnel Bay summarized on axes 1 vs. 2. Stress = 0.116.



Canada Centre for Inland Waters P.O. Box 5050 867 Lakeshore Road Burlington, Ontario L7R 4A6 Canada

National Hydrology Research Centre 11 Innovation Boulevard

Saskatoon, Saskatchewan S7N 3H5 Canada

**St. Lawrence Centre** 105 McGill Street Montreal, Quebec H2Y 2E7 Canada

**Place Vincent Massey** 

351 St. Joseph Boulevard Gatineau, Quebec K1A OH3 Canada Centre canadien des eaux intérieures Case postale 5050 867, chemin Lakeshore Burlington (Ontario) L7R 4A6 Canada

Centre national de recherche en hydrologie

11, boul. Innovation Saskatoon (Saskatchewan) S7N 3H5 Canada

> Centre Saint-Laurent 105, rue McGill Montréal (Québec) H2Y 2E7 Canada

Place Vincent-Massey 351 boul. St-Joseph Gatineau (Québec) K1A 0H3 Canada