APPENDIX 5 TUNDRA WATER TREATMENT REPORTS

WASTEWATER TREATMENT PLANT SEASONAL REPORT 2011

PHASE 2 REMEDIATION TUNDRA MINE SITE, NT

Prepared for:

Aboriginal Engineering 100 Archibald Street Yellowknife, NT X1A 2N1

Prepared by:

WESA Technologies Inc.

The Tower, The Woolen Mill 4 Cataraqui Street Kingston, ON K7K 127

WESAtech Project#: W-T8603

December 2011

TABLE OF CONTENTS

1.0	CORPORATE PROFILE
2.0	INTRODUCTION
3.0	WASTEWATER TREATMENT PLANT CHEMICAL PROCESS DESIGN
3.1.	COAGULATION
3.2	. PH ADJUSTMENT
3.3	FLOCCULATION
3.4	. Solids Removal
4.0	PLANT DESIGN AND CONSTRUCTION
4.1.	Platform Construction
4.2	CHEMICAL REACTION TANKS
4.3	. Influent Distribution
4.4	PH CONTROL
4.5	CHEMICAL AGITATION AND FLOW
4.6	CHEMICAL DOSAGE PUMPS
4.7	. GEOTUBE LAYDOWN AREA
4.8	Design Upgrade Deviences
5.0	CHEMICAL FORMULATION
5.1.	Arsenic Removal
5.2	. Lead and Zinc Removal Sodium Metabisulphite
6.0	COMMISSIONING OF THE WWTP9
6.1.	
6.2	DRY STARTUP
6.3	. Wet Startup10
6.4	. GEOTUBE COMMISSIONING
7.0	OPERATION SUMMARY
7.1.	Discharge Scenarios
7.2	. AANDC DISCHARGE APPROVAL
7.3	
8.0	MAINTENANCE CHALLENGES AND RECOMMENDATIONS
8.1.	Ball Check Valves
8.2	. Influent Feed Lines
8.3	LIME CHEMICAL ADDITION
8.4	. Plant Lighting
8.5	
8.6	. Hydraulic Considerations
8.7	. GEOTUBE RELAXATION

9.0	DISCHARGE MONITORING AND QUALITY CONTROL PROGRAM	16
9.1.	Documentation and Records	16
9.2.	Sampling	17
9.3.	Correlation Survey	18
9.4.	Monitoring Plan	19
9.5.	QUALITY ASSURANCE AND QUALITY CONTROL	20
10.0	CONCLUSION	21

LIST OF TABLES

Table 1:	Discharge criteria as found PWGSC's original tender document	2
Table 2:	Summary of Lower Pond's contaminant concentrations during the	
	2010 Tundra Mine project season	7
Table 3:	Influent 2011 Average Feed Wastewater Characteristics	8
Table 4:	Chronology of Plant Commissioning	.10
Table 5:	Summary of both on-site and off-site sampling during the correlation survey	17
Table 6:	Summary of both on-site and off-site sampling during the monitoring plan	18
Table 7:	Effluent 2011 Average Wastewater Characteristics	.20

LIST OF TABLES

(at end of text)

Table 8: 2011 Off-site Influent Wastewater Characteristics

Table 9: 2011 Off-site Effluent Wastewater Characteristics

LIST OF FIGURES

(at end of text)

- Figure 1: Summary of off-site arsenic concentration measurements for the 2011 project season
- Figure 2: Summary of off-site copper concentration measurements for the 2011 project season
- Figure 3: Summary of off-site lead concentration measurements for the 2011 project season
- Figure 4: Summary of off-site nickel concentration measurements for the 2011 project season
- Figure 5: Summary of off-site zinc concentration measurements for the 2011 project season
- Figure 6: Summary of off-site ammonia concentration measurements for the 2011 project season
- Figure 7: Summary of off-site nitrate concentration measurements for the 2011 project season
- Figure 8: Summary of off-site nitrite concentration measurements for the 2011 project season
- Figure 9: Summary of off-site TSS concentration measurements for the 2011 project season

- Figure 10: Summary of off-site pH measurements for the 2011 project season
- Figure 11: Plant Winterizing Phase Frost Fighter
- Figure 12: Plant Winterizing Phase Tanks Freezing
- Figure 13: Chemical Pump and Fitting Storage (Seacan)
- Figure 14: Chemical Mixer Storage (Seacan)
- Figure 15: Ferric Onion Tank Storage (Platform)
- Figure 16: Lime Onion Tank Storage (Platform)
- Figure 17: Polymer and Sodium Metabisulfite Tank Storage (Platform)
- Figure 18: Chemical Makeup Blower Storage (Platform)
- Figure 19: Process Onion Tank Storage (Platform)
- Figure 20: Flow Meter Storage (Seacan)
- Figure 21: Transmitter and pH Sensor Storage (Storage Room)
- Figure 22: Miscellaneous Fitting and Flow Alarm Storage (Storage Room)
- Figure 23: Electrical Control Panel Storage (Platform)
- Figure 24: Electrical Control Panel Plywood Enclosure (Platform)

1.0 CORPORATE PROFILE

WESA Group Inc. is an employee-owned consulting firm specializing in the fields of contaminant and water supply hydrogeology, engineering, earth sciences, industrial hygiene and occupational health & safety. WESA Group Inc. (WGI) is composed of WESA Inc. (WESA), WESA Technologies Inc. (WESAtech), and OEL.

- WESAtech provides water and wastewater treatment expertise, which includes design, build, and operation services, culminating in training owner representatives.
- WESA provides expertise in environmental engineering and assessment, project management, contract management, health and safety and quality controls.
- OEL provides knowledge in hydroelectric systems, design, tendering and project construction management including environmental assessments and associated components.

The company has a staff of over 140 highly qualified scientists, engineers, industrial hygienists, environmental auditors, project managers, environmental risk specialists, financial specialists and support personnel. Most of the members of the senior management team have worked for WESA for more than 10 years. The company work ethic is focussed on service, innovation and integrity. This is reflected in the company's broad client base; many clients have relied on WGI's services for over two decades.

2.0 INTRODUCTION

WESAtech was retained by Aboriginal Engineering Ltd. (AEL) to design, build, and operate a wastewater treatment plant (WWTP) capable of removing contaminants from water contained in the Tailings Containment Area (TCA) at the Tundra Mine site, Northwest Territories.

The WWTP was designed to remove arsenic and associated metals, described in **Table 1**, through chemical precipitation. The precipitation of the metals was executed using ferric sulfate $(Fe_2(SO_4)_3)$ and hydrated lime $(Ca(OH)_2)$, at a minimum iron to arsenic ratio of five to one by weight. A flocculent (floc) is then formed by adding a polymer flocculating agent (flocculent) to trap the precipitated metals in a filterable particle. The particle is then removed from the water using Geotube® geocontainment technology.

Parameter	Unit	Maximum allowable concentration				
Metals						
Total arsenic	mg/L	0.2				
Total copper	mg/L	0.01				
Total lead	mg/L	0.01				
Total nickel	mg/L	0.05				
Total zinc	mg/L	0.02				
Anio	Anions					
Nitrate as nitrogen	mg/L	5				
Nitrite as nitrogen	mg/L	0.4				
Conventional Parameters						
Total ammonia as nitrogen	mg/L	5				
Total suspended solids (TSS)	mg/L	15				
рН	-	6 – 9				

Table 1: Discharge criteria as found PWGSC's original tender document

3.0 WASTEWATER TREATMENT PLANT CHEMICAL PROCESS DESIGN

The design of the WWTP relies on the principles of the physical-chemical entrapment of metals, by converting them from an aqueous dissolved state to a solid state. The treatment process is comprised of four steps which are coagulation, pH adjustment, flocculation and solid entrapment.

3.1. COAGULATION

The first step in the arsenic removal process, coagulation, was performed in the first reactor by the injection of a $Fe_2(SO_4)_3$ solution at a minimum ratio by weight of five to one $Fe_2(SO_4)_3$ to arsenic. In this process, soluble arsenic reacts with the coagulant to form a precipitate.

The removal of lead and zinc below the water license discharge criteria was attained by targeting the suspended solids; a strong linear correlation was found between the total suspended solids (TSS) concentration, and the total concentrations of both lead and zinc. The removal of these metal particulates was facilitated by the agglomeration of the suspended and colloidal solids with the chemically induced flocs formed during the coagulation and flocculation steps. These flocs are physically removed from the water by entrapping them in the Geotubes[®]. When an increase in

the soluble fractions of lead and zinc were observed, the injection of a sodium metabisulfite (SMBS) solution was used to assist in the precipitation of these elements as metal sulfides.

3.2. PH ADJUSTMENT

The optimum removal of soluble arsenic (as a hydroxide precipitate), as well as lead and zinc (as sulfide precipitates) is achieved at a pH of 8.5; this is the point at which the solubility of these chemically induced precipitates are at their lowest. For this reason, a $Ca(OH)_2$ solution was injected into the second reactor in the treatment process in order to increase the pH to 8.5 following the addition of the Fe₂(SO₄)₃, to optimize metals removal.

3.3. FLOCCULATION

To aggregate the metal precipitate colloids and the particulates into a heavy and suspended floc, a polymer flocculent solution was injected into in the third rector of the treatment process. This polymer, which has a high molecular weight, allowed the colloids to aggregate together into flocs which results in a high removal efficiency of solids.

3.4. SOLIDS REMOVAL

The flocs containing both metal precipitate and suspended solids was removed as the wastewater with the addition of chemicals passes through the Geotube® geocontainment bags; the Geotubes® acted as filter. The flocs were captured in the matrix of the Geotubes®, while the filtrate, free of metal solids, was pumped to Hambone Lake for environmental discharge.

4.0 PLANT DESIGN AND CONSTRUCTION

The 2011 Tundra Mine WWTP was designed based upon existing knowledge, and past operational experiences encountered in the previous two project seasons. The WWTP built and operated during the 2010 project season underwent an extensive review, and deviances from the proposed design upgrades at the end of the 2010 project season are discussed in Section 4.8. The 2011 treatment facility was designed to operate as a triple train system, with each train capable of operating at a maximum capacity of 150 m³/hr. The PWGSC water license issued by the MVLWB dictates that the plant can discharge to Hambone Lake at a maximum daily average of 275 m³/hr. The chemically treated water exiting the WWTP was sent to a set of six Geotubes® contained within a bermed and lined area. The discharge from the Geotubes® was collected in a discharge sump prior to being pumped to the final discharge location, which is directly into Hambone Lake as per the Crown request. This is a change from the previous 2009 and 2010 seasons, where discharge was performed in Hambone lake wetlands area.

4.1. PLATFORM CONSTRUCTION

WESAtech arrived at Tundra Mine site on the 27 April to begin the construction of the WWTP. The treatment system was erected on a site-assembled plywood platform, approximately 27 m by 45 m, and is located entirely within the containment area of the Upper Pond. The platform was divided into three steps, each successive step decreased in elevation by approximately 150 mm; the changes in elevation were introduced to provide enough hydraulic head to achieve the target treatment flow rate. Any overflow or spills from the WWTP flowed by gravity into Upper Pond. The site was powered using a fuel powered generator designated to solely provide power to the WWTP. The frame work used to support the WWTP equipment was a "Sikla" system is made from hot dip galvanized steel for outside use, and can remain in place. The Sikla steel framing system was lagged into the plywood platform. Throughout the construction phase, delays were encountered due to material shortages and civil construction limitations.

4.2. CHEMICAL REACTION TANKS

The 37.85 m³ Onion tanks were installed in series for each of the three trains. These HDPE tanks were placed on protective lay down mats. The piping for air agitation, process flow, and chemical injection was installed in each tank as required. The tanks were connected to each other with 305 mm schedule 80 PVC pipes, and flow between the tanks was controlled using 305mm wafer butterfly valves. Individual tank levels were controlled by adjusting valve between tanks.

4.3. INFLUENT DISTRIBUTION

The influent distribution header of the plant was made of schedule 80 PVC pipes and provisions had been implemented to control flow to the header using two 150mm butterfly valves. Flow to each train was controlled using two 200mm butterfly valves. A flow meter was mounted on each treatment train to enable the operator to balance the flow between the trains, and totalize the total amount of water entering the WWTP. The influent flow to the plant was supplied using two 150 mm diesel powered Godwin pumps, located in the Southwest corner of Lower Pond except near the end of the season when one of the intake pump was moved into Upper Pond. The untreated water was transferred from the pumps to the plant using two 150 mm layflat hoses. In the event that one of the pumps was taken offline, the influent header was designed such that one pump could supply a reduced flow rate to all treatment trains.

4.4. PH CONTROL

The process piping exiting the first and second process tanks, where $Fe_2(SO_4)_3$ and $Ca(OH)_2$ were added respectively, had online pH monitoring to observe individual tank performance. The pH meter following the $Fe_2(SO_4)_3$ was installed as a method to indirectly monitor the $Fe_2(SO_4)_3$

dosage between calibrations of the $Fe_2(SO_4)_3$ dosing pumps; this was evaluated by ensuring the pH exiting the ferric tank was between 4.5 and 6. The pH meter following the Ca(OH)₂ addition was used to ensure the target pH of 8.5 was maintained to meet discharge criteria and to achieve the correct solubility of the metal fractions.

4.5. CHEMICAL AGITATION AND FLOW

All chemical solution makeup tanks were installed on the West end of the platform, and were plumbbed such that chemicals could be dosed to each of the treatment trains. Mixing in the Fe₂(SO₄)₃ and Ca(OH)₂ makeup tanks was achieved using a combination of both air and two mechanical agitators per tank. The air was provided by two 5 Hp positive displacement blowers. Each of the three polymer makeup tanks were agitated using one VFD controled mixer. The first and second process tanks were agitated with air supplied by two 10 Hp positive displacement blowers mounted between the treatment trains. Each of the blowers were complete with environmental enclosures, inlet filter, and discharge silencers. Air from the blowers was directed into a valved control manifold that can direct and control air flow individually to each diffuser drop in the appropriate process tanks or the chemical makeup tanks. Each drop is fitted with a neoprene capped durlin body hydro check diffuser, to allow forward air flow and then to close to prevent reverse flow into the drop to prevent clogging. The third and final process tank, where polymer was dosed, was agitated using two mechanical agitators.

4.6. CHEMICAL DOSAGE PUMPS

The chemical dosing pumps were mounted in close proximity to the appropriate chemical makeup tank they pumped from. One pump for each of the Fe₂(SO₄)₃, Ca(OH)₂, and polymer makeup tanks was dedicated to each train; a secondary pump for the dosing of the Ca(OH)₂ was also installed. The pumps were selected such that the target dosing rate fell in the middle of its maximum pumping capacity. The pumping rate for each pump could be manipulated by adjusting its stroke length and frequency.

4.7. GEOTUBE LAYDOWN AREA

The Geotubes® were installed in a bermed containment area that was lined with a 15 mm thick polyethelene liner. The area was constructed with a slope from end to end to allow the water to drain from the tubes and flow to the central collection point. The geotubes sat on a filtration layer to allow better drainage at the bottom of the tubes. The Geotubes® were anchored to the earth outside of the berm using buried steel pipe for anchors; this prevented the Geotubes® from moving during the initial filling process. The two model GT500's for each treatment train were located adjacent to each other.

Discharge from each treatment train flowed through a manifold directing the flow into four 150mm layflat lines, which were installed into the first two inlet ports closest to the plant of each Geotubes[®]. During the beginning of the project season only Trains 2 and 3 were commissioned due to civil works in Upper Pond. The commissioning of Train 1 was not completed until 27 July. The construction of the three treatment trains was completed before the commissioning of Trains 2 and 3 began.

4.8. DESIGN UPGRADE DEVIENCES

The following recommendations that were outlined in the 2010 end of season report were not adopted, or require alterations for the 2012 project season:

- Tailings disturbance at the intake pumps
- Floating intake lines to avoid tailings in the treatment system
- Silt curtain to reduce tailings capture
- Pump failure alarms
- Communal sump
- Effective weirs between laydown area and sump
- Discharge intake not floating

Each of these items will be reviewed for future design considerations for the 2012 project season.

5.0 CHEMICAL FORMULATION

Before the on-site work at the Tundra Mine could begin for the 2011 project season, the quantities of the chemicals required were calculated, purchased and delivered to the site. These calculations were based on the contaminant concentrations of the water contained in Lower Pond during the 2010 project season. It was assumed that the contaminant concentrations of Lower Pond's water during the 2011 project season would comparable. A summary of the untreated wastewater contaminant concentrations from 2010 is presented in Table 2.

project season				
	Feed Wastewater			
Substances	Concentration			
	(mg/L)			
Total Arsenic	1.99			
Total Copper	0.0023			
Total Lead	0.0007			
Total Nickel	0.0013			
Total Zinc	0.0114			
Total Ammonia (as	<0.01			
N)	<0.01			
Nitrate (as N)	0.29			
Nitrite (as N)	0.03			
TSS	8			
рН	8.25			

Table 2: Summary of Lower Pond's contaminant concentrations during the 2010 Tundra Mine

On 22 June, on-site testing of the raw contaminated wastewater began. The purpose of this testing was to characterize the raw wastewater and compare it to the 2010 data. Both on-site and off-site testing were performed¹. Most of the contaminants meet discharge criteria with the exception of: arsenic, zinc, lead and TSS; this data is presented in **Table 3**. Laboratory results gathered prior to the plant start-up have shown significant variability in its quality; sudden increases in both the suspended solids and metal concentrations were observed. Raw data is presented in **Appendix A**. The most significant differences between the wastewater data from the 2010 season to the 2011 project season are the higher concentrations of lead, zinc, and TSS. The average zinc concentration in 2011 appears comparable to that of 2010; however, consideration of the standard deviation statistically indicates that the zinc concentration can periodically exceed discharge criteria.

It was also demonstrate that the rise of zinc and lead is attributed to the increase of suspended solids in wastewater. Indeed, sudden increases of zinc and lead in raw water can be directly correlated to the rise in suspended solids with a correlation coefficient of 61.4 % and 79% respectively. When the concentrations of suspended solids are lessened, the total zinc and lead concentrations are also lowered and consistently below discharge criteria. The soluble fraction of these metals are therefore well below discharge criteria and thus, lead and zinc can be removed to discharge level by targeting the removal of suspended solids. While this is not the only contributing factor the TSS is the most targetable component of the influent water. Thus by removing TSS it allows for the control of these metal concentrations.

¹ Comparison between on-site and off-site testing discussed in the *Correlation Survey* Report.

Parameter	Units	Average Feed Wastewater Concentration	Standard Deviation	Number of samples tested (n)
Total Arsenic	mg/L	1.54	0.17	52
Total Copper	mg/L	0.0028	0.0013	49
Total Lead	mg/L	0.0081	0.0062	50
Total Nickel	mg/L	0.0052	0.0016	49
Total Zinc	mg/L	0.0097	0.0075	50
Total Ammonia (as N)	mg/L	<0.05	-	41
Nitrate (as N)	mg/L	<0.05	-	44
Nitrite (as N)	mg/L	<0.05	-	44
TSS	mg/L	30.1	40.8	49
рН	-	8.29	0.10	45

* Analytical results that are below the method detection limit (MDL) were considered to be half of the MDL value.

As part of the on-site testing program wastewater from Lower Pond was used to perform small scale experiments in the field laboratory by WESAtech's environmental monitor, with the support of a Geotube® representative. This was done to confirm the required chemistry for both the conditioning phase of the Geotubes® and normal operation.

5.1. ARSENIC REMOVAL

The dosage of $Fe_2(SO_4)_3$ and polymer during normal operation of the first two project seasons was 75 mg/L and 0.5 mg/L, respectively. Ca(OH)₂ was added as necessary to achieve a pH of 8.5. The dosage rates for the $Fe_2(SO_4)_3$ and polymer were optimized and yielded good results. This year's small scale experiments were first performed using the historical dosage of $Fe_2(SO_4)_3$, and polymer. The results obtained were satisfactory yielding uniform flocs, and a reduction in the turbidity. However, the size of the floc appeared smaller than previous years; this result was attributed to the higher TSS concentration that was observed. The higher observed TSS decreased the stability of the floc and prevented the formation of larger floc particles. The active sites of both the coagulant and polymer were being consumed by the suspended solids, as opposed to the dissolved metals in the wastewater.

Additional experiments were performed by using a polymer dosage range between 0.5 mg/L and 3.0 mg/L Even though good flocs were obtained at an historical average concentration of 0.5 mg/L, the best dosage to overcome the increase in suspended solids was obtained at 1.5 mg/L

with great floc formation in size, uniformity and strength as well as little residual turbidity. Polymer dosage concentrations between 1.5 mg/L and 3.0 mg/L also proved to be adequate, but residual unbounded polymer was observed. However, a polymer dosing rate of 3.0 mg/L was used during the commissioning phase of the Geotubes®, as recommended by their expert, to adequately coat the interior membrane and minimize bleed through of the solid material.

To verify the $Fe_2(SO_4)_3$ dosing rate, on-site experimentation included varying the $Fe_2(SO_4)_3$ dosage from 45 mg/L to 150 mg/L. The results of the small scale laboratory experiments indicated that a $Fe_2(SO_4)_3$ dosage rate of 75 mg/L yielded the best arsenic removal, with a residual concentration of 0.03 mg/L. It was found that a higher dosage of $Fe_2(SO_4)_3$ produced similar floc formation matters as the 75 mg/L dosage; however, lower $Fe_2(SO_4)_3$ dosages yielded fair to insufficient arsenic removal, along with smaller and less stable floc.

The lime dosing rate depended on the calco-carbonic equilibrium of the wastewater. Jar tests revealed that the required lime dosage rate varied from 32 mg/L and 45 mg/L. On rare occasions did the required lime dosage increase to 50 mg/L.

5.2. LEAD AND ZINC REMOVAL SODIUM METABISULPHITE

Even thought the zinc and lead residual concentrations were consistently below discharge criteria during the commissioning period, jar tests were nonetheless performed with the injection of sodium metabisulphite (SMBS). Small scale experiments were conducted to determine the optimal dosage rate for SMBS for the purposes of removing both lead and zinc. It was determined that the best injection point for the SMSB was the coagulation tank; this yielded good floc formation and little residual turbidity. It was found that an SMBS dosing rate of 30 mg/L to 60 mg/L yielded good removal efficiencies of both lead and zinc. Residual concentrations of these contaminants were typically less than $1 \mu g/L$.

6.0 COMMISSIONING OF THE WWTP

6.1. CHRONOLOGY OF PLANT COMMISSIONING

The commissioning of the WWTP was initiated late June by WESAtech representatives, and required that the following steps be completed: dry start-up, wet start-up, and Geotube® commissioning. **Table 4** presents the chronology of the plant commissioning. The treatment trains were brought online throughout the season as soon as it was feasible.

Initiation Date of Commissioning Step	Train 1	Train 2	Train 3
Dry start-up	27 June	27 June	27 June
Wet start-up	6 August	6 July	28 June
Geotube Conditioning	6 August	7 July	30 June
Discharge to Hambone Lake	24 August	12 July	12 July

Table 4: Chronology of plant commissioning

6.2. DRY STARTUP

Dry start-up was conducted using untreated water. All electrical components were checked for rotation where necessary, and all others were checked for function. Tanks were filled with water to check for leaks, and air was introduced to ensure diffusers operated properly. Chemical pumps were primed using water and mixers were energized to ensure proper action. All mixing devices and tanks were operational and in line with the design.

6.3. WET STARTUP

As part of wet start-up, the chemical conditioning of the reaction tanks was first initiated over a period of a few days. During this step, the Geotubes® were bypassed and the chemically conditioned water exiting the flocculation tanks was sent directly into the individual discharge sumps. This water with containing flocs was not discharged to Hambone Lake, but rather pumped back to Lower Pond. Chemicals were added to condition each tank and build up a floc mass in the flocculation reactors. The chemical dosages were then optimized to confirm that the scale up from the jar tests to the plant would meet all requirements in terms of metal removal, as well as floc size, strength, and stability.

The ferric dosing concentration was initiated first at 75 mg/L. Increasing the concentration of the coagulant proved to be necessary during scale up in the field due to the flow continuum and the sudden variations in the turbidity and TSS concentrations of the wastewater. The concentrations varied from 105 mg/L to 150 mg/L as per the operator observations required to maintain great floc formation. Please note that the dosing always exceeded 75 mg/L. The lime was dosed according to the pH requirement of 8.5. The dosing rates varied considerably considering that the characteristics of the tailings wastewater varied as well. The polymer dosage varied between 1.5 and 3 mg/L upon floc requirements. The agitation of the tanks was optimized based on the tank configuration and on the positioning of the mixers/diffusers. The flocs were then consistently uniform, stronger, larger and the turbidity was considerably lower.

Further, the quality of the wastewater deteriorated as the project season progressed; gradual increases in the arsenic, lead, zinc, TSS concentrations were observed. Due to the elevation of contaminates in the influent the process water used for batching chemicals represented a secondary source of elevated contaminates. By using the wastewater to formulate the $Fe_2(SO_4)_3$ solution, some of the iron needed to precipitate metals from solution in the WWTPs influent water is being consumed before it is added. Similarly, the wastewater is being used to formulate the $Ca(OH)_2$ solution. The dosing of the $Ca(OH)_2$ effectively introduced an additional stream of untreated water, which was compensated for by increasing the $Fe_2(SO_4)_3$ dosing rate.

6.4. GEOTUBE COMMISSIONING

The plant flow was initiated and entered the Geotubes® upon the completion of the chemical balance in the treatment plant. Before intiating Geotube® comissioning, flow to the plant was turned off and the sump areas were inspected and cleaned of any residual floc to ensure compliance. Once completed the chemical dosage was increased to 3 mg/L as recommended by the Geotube® expert and developed during the small scale experiments. The water exited the Geotubes® and flowed over the weir and into the individual sump areas. Due to a lack of laydown space within the containment area, the Geotube® communal sump was not built. Treated water from sumps 2 and 3 overflowed into sump 1. From there, the water would overflow into Upperpond, or was pumped with an 200 mm diesel powered Godwin pump to the final discharge locaton at Hambone Lake. Prior to reaching the final discharge location, the treated water passes through a 254 mm flowmeter that displays the flowrate and records the total volume of treated water being discharged. This flowmeter was powered by a portable diesel powered light plant. Once commissioning was complete samples were taken for discharge approval by WESAtech. Upon submission of the laboratory results, AEL applied for discharge approval through the AANDC Water Inspector. Once granted, discharge began to Hambone Lake.

7.0 OPERATION SUMMARY

Overall the WWTP operated for a total of 92 days discharging into Hambone Lake 527,222 m³ of water during the 2011 season. On October, 10th 2011 the decision was made to shutdown the WWTP due to inclement weather causing plant components to freeze. Performance in regard to compliance of the water license will be discussed in Section 9.0.

7.1. DISCHARGE SCENARIOS

Prior to the commencement of the 2011 Tundra Mine remediation project season, there were discussions with regards to two potential scenarios in which water may be discharged to the

environment after treatment. Water was only discharged to Hambone Lake after written approval was received from the AANDC Water Inspector, formerly INAC, on 9 July.

The proposed Discharge Scenario A outlined that after commissioning of both the WWTP and the Geotubes® was complete, and environmental discharge approval was granted, the treated water exiting the Geotubes® would be transferred by pump, or overflow into Upper Pond. This was also provided that all civil works removing tailings from Upper Pond were completed. The proposed discharge scenario was such that the plant could be operated at its full capacity of 450 m³/h, and all of the treated water would have been transferred to Upper Pond; its capacity is approximately 200,000 m³. This would have offered both holding and buffering capacity, and allowed treated water to be discharged after the WWTP is shut down for the season into Hambone Lake. For Upper Pond to be converted into and effluent holding pond, all contaminated material had to be removed and baffles installed to increase its hydraulic retention time. Due to various delays, the removal of tailings from Upper Pond was not completed until 9 September. At this time, untreated water was pumped from Lower Pond into Upper Pond filling it by the end of the project season. For this reason Discharge Scenario B was implemented.

The proposed Discharge Scenario B outlined that if Upper Pond was not ready to be used as a treated water communal sump, Upper Pond would be bypassed and the treated water would be pumped from the Geotube® sump directly to Hambone Lake. Discharge Scenario B was implemented from 9 July, until 6 September; the WWTP treated water from Lower Pond at a rate of 275 m³/h. 275 m³/h of treated water was pumped from the Geotube® communal sump to Hambone Lake. On 6 September Discharge Scenario B was modified. The East end of Upper Pond had been cleaned of contaminated material, and an overflow weir from Geotube® Sump 1 was constructed and reinforced to minimize the effect of erosion. From 6 September until 12 October, the WWTP treated tailings water at a rate between of 280 m³/h and 320 m³/h. Treated water was pumped from the Geotube® communal sump at a rate of 275 m³/h to Hambone Lake for environmental discharge, while excess water overflowed into Upper Pond.

7.2. AANDC DISCHARGE APPROVAL

Discrete combined effluent samples from Trains 2 and 3 were collected on 9 and 10 July during the commissioning period, and flown to Yellowknife for analysis at an accredited laboratory. The analytical results demonstrated that the two treatment trains successfully met discharge criteria with an average of 5.9 ± 2.2 mg/L suspended solids, $73.1 \pm 8.6 \mu$ g/L total arsenic, $6.6 \pm 4.2 \mu$ g/L total zinc, as well as $0.86 \pm 0.04 \mu$ g/L total lead.

When conditioning of the Train 1 Geotubes® was completed, discrete effluent samples were collected on 14 to 16 August, and sent for anlaysis. The analytical results demonstrated that the treatment train successfully met discharge criteria with an average of $3.8 \pm 2 \text{ mg/L}$ suspended

solids, an average of 29.6 \pm 10.4 μ g/L total arsenic, as well as non detectable levels of lead and zinc.

After each event, submissions to the AANDC Water Inspector was performed by Aboriginal Engineering Ltd. to gain approval to discharge to Hambone Lake.

7.3 PLANT WINTERIZING

The operators noticed the plant freezing on Oct 10th 2011 and therefore had to shut it down. Train 1 was officially shut down for the season on Oct 10th 2011 at which time the teardown/winterization began. The tear down/winterization of the other two (2) trains began the following day, on Oct. 11th 2011.

Start-up of the WWTP in the spring of 2012 will be much quicker and easier than in previous years. Rather than undertaking a major deconstruction/reconstruction of the plant, it was decided this year that any equipment that could be safely left in position without damage was to be left in place over the winter months. Only the equipment that must be stored indoors was removed from the plant platform. This equipment will simply have to be reconnected for the 2012 operating season.

Pictures of the WWTP winterizing phase and storage of equipment are presented at the end of text from Figure 11 to Figure 24.

Chemical Tank Makeup Area

At the end of the season, some chemical injection lines had frozen. During teardown/winterizing, these lines were drained as best as possible and left in place. Chemical pumps and other equipment that had frozen were thawed out using "Frost Fighter" heaters and then drained, cleaned and dried prior to final storage. Chemical pumps and fittings, such as foot valves, etc. were placed on pallets and stored in the Seacan located next to the WWTP. Mixer motors were removed from the framing, and placed in the Seacan as well. All valves that remained in place on the platform were placed in the open position to prevent cracking over the winter.

The ferric onion tanks were drained, rolled up, wrapped up with their laydown mats and left in place on the WWTP platform where as the lime makeup onion tanks were drained and left in place on the deck.

The polymer and sodium metabisulfite makeup tanks were drained, flipped upside down and secured to the WWTP platform using lag screws. The lids were stored in the Seacan.

The chemical makeup blowers were serviced, covered with tarps and left in place on the WWTP platform. The "Sikla" framing was left mounted on the platform, ready for reuse next season.

Treatment Trains Area

All process onion tanks were drained within 6"-8" (150-200 mm) of being empty. A 30' x 100' (9m x 30m) tarp was placed over each of the (3) three rows of onion tanks. This tarp was then strapped down to the deck with wood strapping and nails. All 12"(305mm) pvc piping was disconnected. This piping was placed on top of the Ferric make-up tanks.

All valves were thawed, cleaned and dried. They were then stored in the storage room next to the operators shack. Influent flow meters were removed, thawed, cleaned and dried prior to storage in the Seacan. Transmitters and pH sensors were removed and shelved in the storage room as well as all miscellaneous fittings such as but not limited to backpressure valves, flow alarms, injection & sample port valves, etc.

All mixers, process air diffuser drops, were disconnected, removed and placed in the Seacan where as the process blowers were serviced, wrapped in tarps and left in place on the deck. The electrical control panels were left intact on the WWTP platform. A plywood enclosure was constructed around all 3 panels. The roof of this enclosure was wrapped with tarp. The discharge flow meter was removed and brought to the WWTP to be stored within the Seacan.

A complete inventory of the equipment and its location was performed by WESA personnel and submitted to AEL prior to closing up and WESA leaving the Tundra Mine site.

8.0 MAINTENANCE CHALLENGES AND RECOMMENDATIONS

8.1. BALL CHECK VALVES

During the course of the 2011 project season, one ongoing issue was the plugging of ball check valves of chemical dosing pumps. Attempts to mitigate this problem were made during the season by placing screens, or loose mesh fabrics over the suction end of the foot valves. This prevented the accumulation of grit in the ball check valves, but resulted in the complete plugging of fabric or screen stopping all flow. If the removal of suspended solids prior to entering the chemical tanks is not possible, check valves will need to be removed once per shift as regular maintenance.

8.2. INFLUENT FEED LINES

During the 2011 project season, when one of the influent feed lines to the WWTP developed a large leak, the water entering the WWTP from an influent line that was intact would short circuit

the WWTP and return down the blown line. To prevent this from happening, it is recommended that check valves be installed on the inlet pipes to the WWTP.

8.3. LIME CHEMICAL ADDITION

It is also recommended that the dosing of the $Ca(OH)_2$ solution into the WWTP be automated. This would not eliminate the requirement of checking the pH entering the flocculation tank, but would minimize the amount of manipulation of the $Ca(OH)_2$ dosing pump and potential operator error.

8.4. PLANT LIGHTING

At the beginning and end of the project season, when it is dark during the night shift, it was very difficult to see into the flocculation tanks and assess the quality of the floc, even with the use of headlamps and flashlights. For this reason, it is recommended that halogen flood lights be installed over the flocculation tanks.

8.5. ELECTRICAL

In the middle of the project season, an electrical problem within the panel arose. The 60 amp breaker on blower B-2000 became very sensitive, and should be replaced. The generator used to supply power to the plant had a series of maintenance and mechanical issues in the latter half of the season. Repair or replacement should be considered.

8.6. HYDRAULIC CONSIDERATIONS

After the commissioning of Train 1 of the WWTP, it was found that its influent flow rate could not be increased beyond 125 m³/h without overflowing the process tanks. After approximately 1.5 months of operation, the influent flow rate of Train 1 could not exceed 100 m³/h without overflowing the process tanks. The restriction of the influent flow rate and the deterioration of the hydraulic performance of Train 1 are attributed to the slope that developed along the North side of the platform, as well as the use of rubber discharge hose to feed the Geotube® inlets from the Train 1 Geotube header. The unlevelled platform allowed for the accumulation of sludge and floc in half of the tank, which effectively reduces the size of the tank. Solids also accumulated around the tank outlet restricting its flow. Further, the rubber discharge hose did not expand fully while the treated wastewater flowed through it, adding another flow restriction to the process. It is recommended that the WWTP be repaired and levelled, and that the rubber discharge hose be replaced with rigid green suction hose.

8.7. GEOTUBE RELAXATION

As the project season progressed, it was noted that the relaxation of the Geotubes became more and more difficult to relax even after the frequency with which the Geotubes® were relaxed was increased. This may be mitigated by increasing the number of inlets to the Geotubes®. Under its current configuration, green rigid suction hoses are being used to connect the hose from the Geotube® header to the Geotube® inlet. This rigid suction hose extends three feet into the Geotube® and is often sitting on the bottom of the Geotube®. It is suspected that this configuration does not allow for dispersion of the floc allowing it to accumulate at the inlet. It is recommended that PVC connections be used in lieu of the rigid suction hose in order to keep the inlet off the bottom of the Geotube® to promote better dispersion.

9.0 DISCHARGE MONITORING AND QUALITY CONTROL PROGRAM

The Discharge Monitoring and Quality Control Program (DMQCP) was developed to ensure that the performance of the WWTP assessed and recorded properly, during the course of the environmental remediation project at the Tundra Mine, NWT. The DMQCP was implemented to ensure that all on-site practices and procedures, execution of the chain of custody, and off-site laboratory analyses adhere to quality assurance and quality control (QA/QC) policies, relevant territorial and federal regulations and standards, and the quality objectives for the project procedure and deliverables.

9.1. DOCUMENTATION AND RECORDS

For the duration of the on-site work at the Tundra Mine, the documentation requirements, as outlined in the DMQCP, were followed. These tasks include:

- Storing all electronic documents and data (field data, off-site laboratory results, daily and weekly reports, etc.) on both the on-site computer's hard drive and external hard drive;
- All electronic data was periodically archived throughout the project season on CD-ROMs;
- All samples that were collected in the field were labelled with the project number, sampling location, time and date of collection, and sample number, and recorded in both field notebooks and electronic databases;
- All off-site laboratory data was stored and filed, and transcribed to the appropriate electronic database;
- The QA/QC data received for both duplicate analyses and inter-laboratory comparisons were stored and filed, and transcribed to the appropriate electronic database;
- Electronic charts were updated and reviewed regularly, to monitor both the WWTP's influent and effluent water quality;

- Deviations from approved protocols and standard operating procedures (SOPs) were documented in field notebooks;
- Completed chain of custody (COC) forms for all sample shipments were filed, stored and transcribed to the appropriate electronic database.

9.2. SAMPLING

For the duration of the 2011 project season, Discharge Scenario B was employed. For this reason, compliant samples were taken from a sample port installed in the influent pipe feeding the WWTP, and a sample port on the discharge line sending treated water to Hambone Lake. The Geotube® communal sump was considered equivalent to the sample port on the discharge line. Samples from the individual Geotube® sumps were taken as necessary throughout the 2011 project season. For each sampling event, all samples were taken in triplicate; one sample was analyzed on-site, while the remaining two samples were sent to an off-site accredited laboratory for analysis.

As outlined in the DMQCP, compliant effluent samples were taken every six hours per 24 hour period. The sampling frequency for the WWTP's effluent stream was increased as necessary during the project season. One compliant influent sample was taken for every 24 hour period. However, the frequency of the influent sampling increased to as much as every hour as required during the project season.

During the 2011 project season, two different phases in the DMQCP were outlined as the *Correlation Survey* and the *Monitoring Plan*. For both phases, the number of sampling events and the on-site analyses remained the same; however, the number of samples that were analyzed off-site decreased.

Sampling location	Samples collected per day	Analyses	On-site analysis per day	Off-site analysis per day
Plant inlet	1	As, TSS, pH Pb, Zn, Cu, Ni, NO ₂ -1, NO ₃ -1, NH ₃	1	1
Discharge port	4	As, TSS, pH Pb, Zn, Cu, Ni, NO ₂ -1, NO ₃ -1, NH ₃	4	4

Table 5: Summary of both on-site and off-site sampling during the correlation survey

Sampling location	Samples collected per	Analyses	On-site analysis per	Off-site analysis per
	day		day	day
		As, TSS, pH	1	Once per
Plant inlet	1	73, 133, pri		week
Plant Inter		Pb, Zn, Cu, Ni, NO ₂ -1, NO ₃ -1,	1	Once per
		NH₃		week
		As, TSS, pH	4	4
Discharge	4	Pb, Zn	1	4
port	4	Cu, Ni, NO ₂ -1, NO ₃ -1, NH ₃	1	Once per
				week

Table 6: Summary of both on-site and off-site sampling during the monitoring plan

9.3. CORRELATION SURVEY

As outlined in the DMQCP, a correlation survey was performed for the purposes of developing a correlation between the on-site field instruments, and off-site results from accredited laboratories. This correlation survey began at the start of the commissioning phase of the WWTP on the June 25th, and continued until August 6th. During this time, an intensive sampling and monitoring program was executed. A correlation survey report was submitted to AEL August 17th. Comments in response to the correlation survey from PWGSC, dated September 2nd, were received by WESAtech September 4th. A response to PWGSC's comments was submitted September 11th to their satisfaction; no additional comments in response were received.

For the analysis of arsenic on-site, *Orebecco Arsenic Test Strips* were used. This method was originally to be used as verification of the *PDV6000 plus*, but was used as the primary analytical method due to problems with the *PDV6000 plus*. The field analyses using the test strips were conducted in duplicate. During the correlation survey, the average on-site and off-site arsenic concentrations were measured to be 51.5 μ g/L and 46.8 μ g/L, respectively. The correlation coefficient that was calculated using both the on-site and off-site arsenic concentration data sets was 0.98, which indicates there was a strong positive linear correlation. Further, the relative percent difference (RPD) was, on average, ±6%. This indicates that there was a small variance between the two data sets.

Due to the detection limits of the *Hach DR2700* spectrophotometer, it was not able to measure accurately the lead and zinc concentrations in the effluent water. The standard operating procedures (SOPs) of the *DR2700* published by the manufacturer were adhered to judiciously, and the instrument itself was operating properly. However, the lead and zinc concentrations in the effluent water were too low for the instrument to measure. For this reason, a correlation

could not be developed using the on-site and off-site lead and zinc concentration data. However, it was found that the correlation coefficient between the off-site TSS and lead measurements was 0.79, indicating that there was a strong positive linear correlation between the data sets. Further, the correlation coefficient between the off-site TSS and zinc measurements was 0.614, indicating that there was a good positive linear correlation between the data sets. The on-site TSS data was plotted against the off-site TSS data. A linear regression was performed by setting the y-intercept as zero. The resulting linear function had a slope of 1.21 which indicates that the on-site TSS measurements were higher, or more conservative, than the off-site results. The correlation coefficient was calculated to be 0.93 for the off-site and on-site TSS data; this indicates there is a strong positive linear correlation between the two data sets. From the empirical data that was collected and analyzed, it was concluded that it is adequate to infer the total lead and zinc concentrations using the on-site TSS measurements.

A *PDV6000 plus* metal detector, which employs anodic stripping voltammetry, was introduced at the beginning of the DMQCP for the purposes of measuring arsenic, lead, and zinc in trace concentrations. The *PDV6000 plus* was expected to be the primary instrument for on-site field analyses; however, it was brought offline to overcome variability in its analytical signals. For this reason, the methods originally listed as secondary verification in the DMQCP, were used as the primary field analytical methods. Furthermore, as a complementary arsenic monitoring tool, the arsenic test strips were part of the DMQCP (monitoring plan) and were therefore used as the main arsenic testing tool in lieu of the PDV 6000 plus. This initiative was taken with the approval of all parties involved. Duplicate analyses were performed to introduce QA for the technique as described below. With the support of the manufacturer, the "standard operating procedures" were optimized and the electrodes were revitalized which allowed the instrument to measure, with good precision, the lead, zinc and arsenic concentrations of the effluent when the instrument was brought back on-site September 22th. In conclusion, the PDV 6000 plus metal detector proves to be very accurate when measuring trace levels of heavy metals as a field screening tool.

A memorandum regarding the redeployment of the *PDV6000 plus* dated October 11th was issued. A response by AECOM was issued October 14th for which WESAtech presented an additional memo November 15th.

9.4. MONITORING PLAN

The on-site monitoring plan, as outlined in the DMQCP, began August 6th and ended at the conclusion of the project season October 10th. The outlined monitoring plan was adhered with the exception of the late redeployment of the *PDV6000 plus*, as discussed in the previous section.

Throughout the monitoring program, there was no parameter that exceeded the contractual discharge limits. The plant effluent was consistently below the discharge limits.

A summary of the average effluent concentrations of parameters that were monitored as part of the contractual requirements that were measured at the off-site laboratories is presented in **Table 7**. Figures 1 to 10 represent the trending daily results over the course of the 2011 discharge season. Please note that the results that are below detection limit are represented to be at detection limit. However, when calculating the average concentration and standard deviation, results below detection limit were assumed to be half of the MDL value as it is standard practice.

Parameter	Unit	Average effluent concentration	Standard deviation	Number of samples tested (n)
Total arsenic	mg/L	0.0431	0.0142	178
Total copper	mg/L	0.0022	0.0012	62
Total lead	mg/L	0.0004	0.0002	112
Total nickel	mg/L	0.0029	0.0005	59
Total zinc	mg/L	0.0037	0.0018	110
Total ammonia (as N)	mg/L	<0.05	-	54
Nitrate (as N)	mg/L	0.05	0.05	53
Nitrite (as N)	mg/L	<0.05	-	53
TSS	mg/L	3.0	2.3	89
рН	-	8.21	0.17	96

Table 7: Effluent 2011 Average Wastewater Characteristics*

* Analytical results that are below the method detection limit (MDL) were considered to be half of the MDL value.

9.5. QUALITY ASSURANCE AND QUALITY CONTROL

The DMQCP outlined a number of quality assurance and quality control (QA/QC) requirements in order to ensure the sampling procedure and handling is executed properly to mitigate the risk of sample corruption, and to ensure that both on-site and off-site laboratory results are accurate.

As described above, all sampling events were conducted in triplicate; one sample was kept on-site for field analyses, and two samples were sent to the off-site laboratory. In the event of an anomalous result, the other two samples collected during the same sampling event could be analyzed by the off-site laboratory. During this season a sample collected September 27th at 8:00 was measured at Taiga to have an elevated zinc concentration of 17.3 μ g/L, as demonstrated in **Figure 5**. The off-site duplicate sample was shipped from the Taiga lab in Yellowknife to ALS

Laboratories in Edmonton. The off-site duplicate sample was collected at the same time, and in the same fashion as the primary off-site sample. The duplicate sample was measured to have a zinc concentration of 6.9 μ g/L, which indicates that the primary off-site sample was corrupted.

Further, the QA/QC requirements outlined in the DMQCP include the analysis of travel blanks, duplicates, equipment rinses, and inter-laboratory samples. Travel blanks were sent with every shipment, and were used to determine if there was any background contamination during the transport and handling of the samples from the site to the laboratory. Sample bottles were filled with deionised water on site.

Duplicate off-site samples were sent to the laboratory each time; they were only analyzed periodically as per the DMQCP. The collection of duplicate samples provides a measure of precision of the sampling procedure and analytical technique, the heterogeneity of the sample, and was representative of the sampling event and location. As outlined in the DMQCP, 10% of all samples analyzed were to be analyzed in duplicate; 10.4% of samples analyzed were analyzed in duplicate exceeding the QA/QC requirements. The remaining duplicate samples were archived in the off-site laboratory for further analysis when required. All but one set of duplicate samples were within control limits.

Equipment rinses were sent for off-site analysis to verify that all field sampling and analytical equipment was cleaned properly. Cleaned equipment and glassware was rinsed with deionised water; the resulting rinse water was sent off-site for analysis. As outlined in the DMQCP, one equipment rinse will be analyzed for every 20 samples analyzed. During the 2011 project season, approximately one equipment rinse was analyzed every 15 samples, exceeding the QA/QC requirements.

During the 2011 project season, both Taiga Laboratory and ALS Laboratories Edmonton were retained to analyze off-site samples. Inter-laboratory samples involve sending samples to both laboratories from the same sampling event to verify their respective results. As outlined in the DMQCP, 2% of all samples analyzed were to be analyzed at the secondary laboratory; inter-laboratory samples were analyzed at a rate of 2.6%, exceeding the QA/QC requirements. All inter-laboratory analyses returned results that were within acceptable control limits.

10.0 CONCLUSION

The observations, results and design recommendations were based on the conditions encountered during the operation of the Wastewater Treatment Plant during the 2011 discharge period. The implementation of the recommendations provided for the operation and design of the WWTP will allow for a reduced risk of producing water out of compliance, and addresses the past years maintenance issues.

WESAtech has used its professional judgment in analyzing this information and formulating its conclusions. No other warranty or representation, expressed or implied, as to the accuracy of the information or recommendations is included or intended in this report. This report has been prepared for the exclusive use of the Aboriginal Engineering Limited. No other party may use or rely upon this report without the express written permission of WESAtech.

Respectfully submitted,

Wayne Ingham, HED, Ph.D. Vice-President, Business Development Principal and Senior Consultant WESA Inc.

Corinne Proux, M.Eng, Eng Chemical Engineer WESA Inc.

TABLES

Table 8:2011 Off-site Influent Wastewater CharacteristicsTable 9:2011 Off-site Effluent Wastewater Characteristics

Sample ID nomenclature:

Location	Purpose	Date	Totalizer Number
A: Influent	ON: On-site	(dd/mm/hh)	xxx
B1-B2-B3: Flocculation Tanks	OFF: Off-site	НН	
C1-C2-C3: Individual Sumps	INT: Inter-lab comparison	8AM: 08	
D: Communal Sump	DOF: Off-site Duplicate	2PM: 14	
E1-E2: Upper Pond	EQ: Equipment Rinse Blank	8PM: 20	
F: Effluent Discharge Port	TR: Travel Blank	2AM: 02	

					Parameter	er				
Sample ID	As (total),	Pb (total),	Zn (total),	Cu (total),	Ni (total),	TAN,	Nitrite,	Nitrate,	TSS,	ב ז
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L as N	mg/L as N	mg/L as N	mg/L	Ľd
A-ON/OFF-18-06-1130-02	1.25	0.00301	0.0058	0.0017	0.00598	-		-	10	,
A-ON/OFF-18-06-1130-03	1.24	0.00296	0.006	0.0018	0.00592	-	1		7	
A-ON/OFF-18-06-1130-04	1.24	0.00302	0.0064	0.0018	0.00592	-			6	
A-ON/OFF-18-06-1130-05	1.23	0.00301	0.0067	0.0018	0.00585	ł	ı	1	8	ı
A-OFF-23-06-14-07	1.47	0.00729	0.013	0.0025	0.00571	-	<0.05	<0.05	16	8.25
A-OFF-23-06-14-10	2.16	0.0365	0.0518	0.0085	0.0125	-	<0.05	0.095	166	8.17
A-OFF-24-06-1120-14	1.41	0.00512	0.0118	0.0019	0.00511	I	<0.05	<0.05	7	8.22
A-OFF-25-06-08-18	1.43	0.00862	0.0112	0.0024	0.00556	<0.05	<0.05	0.087	13	8.18
A-OFF-26-06-09-21	1.48	0.0109	0.0123	0.0027	0.00611	<0.05	<0.05	<0.05	30	8.23
A-OFF-26-06-09-24	1.54	0.0128	0.0139	0.003	0.00639	<0.05	<0.05	<0.05	43	8.21
A-OFF-29-06-11-28	1.49	0.0117	0.013	0.0028	0.00587	<0.05	<0.05	<0.05	27	8.2
A-OFF-30-06-18-31	1.52	0.017	0.0164	0.0028	0.00595	<0.05	<0.05	<0.05	69	8.26
A-OFF-01-07-14-35	1.46	0.0143	0.0126	0.0024	0.00548	<0.05	<0.05	<0.05	66	8.27
A-OFF-07-07-02-61	1.37	0.00627	0.0061	0.002	0.00439	<0.05	<0.05	<0.05	14	8.33
A-OFF-09-07-23-93	1.44	0.00496	0.0056	0.002	0.00442	<0.05	<0.05	<0.05	12	8.26
A-OFF-10-07-20-108	1.63	0.0221	0.0189	0.0038	0.00718	<0.05	<0.05	<0.05	134	8.38
A-OFF-11-07-20-125	1.38	0.00408	0.0051	0.002	0.00419	<0.05	<0.05	<0.05	<3	8.33
A-OFF-12-07-20-137	1.39	0.00585	0.0072	0.0023	0.0046	<0.05	<0.05	<0.05	18	8.34
A-OFF-13-07-20-157	1.4	0.00463	0.0054	0.0021	0.00432	<0.05	<0.05	<0.05	8	8.33
A-OFF-14-07-20-174	1.42	0.00499	0.0054	0.0021	0.00445	<0.05	<0.05	<0.05	14	8.35
A-OFF-15-07-20-196	1.72	0.0176	0.0166	0.0041	0.00685	<0.05	<0.05	<0.05	183	8.28
A-OFF-16-07-20-215	1.47	ı	1	ı	ı	I	I	1	I	ı
A-OFF-18-07-20-258	1.54	0.00472	0.0061	0.0022	0.0044	<0.05	<0.05	<0.05	11	8.31
A-OFF-19-07-20-284	1.68	I	ı	ı		ı		1	I	ı
A-OFF-20-07-20-308	1.63	0.0112	0.0149	0.0034	0.00568	<0.05	<0.05	<0.05	38	8.43
A-OFF-21-07-20-329	1.55	0.00724	0.0086	0.0026	0.00461	ł			ł	ı
A-OFF-22-07-02-336	1.5	0.00661	0.0028	0.0045	0.00464	<0.05	<0.05	<0.05	14	8.36
A-OFF-23-07-02-354	1.45	0.00584	0.0051	0.0065	0.00468	<0.05	<0.05	<0.05	6	8.37
A-OFF-24-07-02-375	1.5	0.00474	0.0058	0.0021	0.00394	<0.05	<0.05	<0.05	6	8.39
A-OFF-25-07-02-395	1.62	0.00456	0.006	0.0023	0.00423	<0.05	<0.05	<0.05	7	8.3
A-OFF-26-07-02-412	1.54	0.00349	0.0079	0.0031	0.00441	<0.05	<0.05	<0.05	5	8.35
A-OFF-27-07-02-432	1.6	0.00598	0.0108	0.0034	0.00496	<0.05	<0.05	<0.05	18	8.37
A-OFF-28-07-02-451	1.65	0.00473	0.0063	0.0023	0.00439	<0.05	<0.05	<0.05	10	8.38

Table 8 : 2011 Off-site Influent Wastewater Characteristics

					Parameter	it				
Sample ID	As (total), mg/L	Pb (total), mg/L	Zn (total), mg/L	Cu (total), mg/L	Ni (total), mg/L	TAN, mg/L as N	Nitrite, mg/L as N	Nitrate, mg/L as N	TSS, mg/L	Hq
A-OFF-29-07-02-468	1.62	0.00392	0.0048	0.0022	0.00429	<0.05	<0.05	<0.05	ŝ	8.4
A-OFF-30-07-02-485	1.69	0.00549	0.0077	0.0024	0.00448	<0.05	<0.05	<0.05	13	8.4
A-OFF-31-07-02-503	1.69	0.00479	0.0081	0.0023	0.00435	<0.05	<0.05	<0.05	6	8.41
A-OFF-01-08-02-521	1.7	0.00392	0.0048	0.002	0.00411	<0.05	<0.05	<0.05	5	8.39
A-OFF-02-08-02-540	1.69	0.005	0.0057	0.0021	0.005	<0.05	<0.05	<0.05	10	8.35
A-OFF-03-08-02-558	1.63	0.00403	0.0055	0.0023	0.00435	<0.05	<0.05	<0.05	16	8.38
A-OFF-04-08-02-577	1.65	0.00456	0.0065	0.0021	0.00418	<0.05	<0.05	<0.05	12	8.36
A-OFF-05-08-02-596	1.66	0.00339	0.0044	0.0019	0.00369	<0.05	<0.05	<0.05	4	8.4
A-OFF-06-08-02-614	1.7	0.00324	0.0044	0.0019	0.00386	<0.05	<0.05	<0.05	5	8.43
A-OFF-13-08-02-748	1.72	0.0042	0.0025	0.0021	0.0037	0.01	<0.01	0.13	8	8.25
A-OFF-20-08-02-957	1.73	0.0067	0.008	0.0025	0.0039	< 0.01	<0.01	0.12	38	8.14
A-OFF-26-08-02-1105	1.65	l	0.007	0.0028	0.0038	<0.01	<0.01	0.11	16	8.15
A-OFF-03-09-02-1290	1.65	0.007	0.007	0.0025	0.0036	0.01	<0.01	0.12	22	8.2
A-OFF-10-09-02-1514	1.8	0.0082	0.0073	0.0023	0.0036	0.01	<0.01	0.11	22	8.2
A-OFF-16-09-20-1736	1.75	0.012	0.014	0.004	0.0047	<0.01	<0.01	0.12	36	8.16
A-OFF-22-09-16-1943	1.53	0.0192	0.022	0.006	0.0098	0.18	<0.01	0.09	90	8.1
A-OFF-26-09-0730-2069	1.36	0.0128	0.014	•	1			-	108	8.09
A-OFF-27-09-14-2112	1.34	0.0125	0.014	0.0044	0.0076	0.15	<0.01	0.16	48	8.06
A-OFF-04-10-08-2366	1.29	0.0111	0.014	0.0041	0.007	0.14	<0.01	0.19	42	

					Parameter					
Sample ID	As (total),	Pb (total),	Zn (total),	Cu (total),	Ni (total),	TAN, mg/L as	Nitrite,	Nitrate,	TSS,	
	mg/L	mg/L	mg/L	mg/L	mg/L	z	mg/L as N	mg/L as N	mg/L	Ľ d
F-OFF-09-07-18-85	0.088	0.00097	0.0072	0.0016	0.00309	<0.05	<0.05	<0.05	7	8.22
F-OFF-09-07-23-90	0.0753	0.0015	0.0116	0.0061	0.00295	<0.05	<0.05	<0.05	7	8.21
F-OFF-10-07-04-96	0.0696	0.00105	0.0058	0.002	0.00298	<0.05	<0.05	<0.05	5	8.25
F-OFF-10-07-09-99	0.0619	0.00038	<0.004	0.0012	0.00269	<0.05	<0.05	<0.05	~	8.29
F-OFF-10-07-13-102	0.0752	0.00036	0.0052	0.0011	0.00283	<0.05	<0.05	<0.05	8	8.28
F-OFF-10-07-20-105	0.0864	0.00059	0.0059	0.0032	0.00287	<0.05	<0.05	<0.05	S	8.32
F-OFF-11-07-02-113	0.0852		1	ı	,	ı				
F-OFF-11-07-08-116	0.0765	-	ı	ı		,	•	-	-	
F-OFF-11-07-14-119	0.0557	-	ı	ı	ı	ı	•	-		
F-OFF-11-07-20-122	0.0441	0.00052	0.0047	0.0017	0.00259	<0.05	<0.05	<0.05		8.22
F-OFF-12-07-02-128	0.0497	-	ı	ı	ı	ı		-		
F-OFF-12-07-08-131	0.0515	-	ı	1		1	-	-		
F-OFF-12-07-14-134	0.0535	-	ı	1	ı	ı		-		
F-OFF-12-07-02-140	0.0525	0.00088	0.0051	0.0022	0.00236	<0.05	<0.05	<0.05		8.31
F-OFF-13-07-02-143	0.0494	•	ı	1	1	1	-			
F-OFF-13-07-08-146	0.0561		ı	1	ı	1		•		
F-OFF-13-07-14-151	0.054	•	ı	I	ı	I	-	•		ı
F-OFF-13-07-20-154	0.0526	0.00042	<0.004	0.0015	0.00239	<0.05	<0.05	<0.05		8.29
F-OFF-14-07-02-160	0.0478	-	ı	1		1	-	-		
F-OFF-14-07-08-163	0.0846	-	ı	ł	ı	ı		-		ı
F-OFF-14-07-14-167	0.0454	0.0004	0.0079	0.0012	0.00256	<0.05	<0.05	<0.05		8.28
F-OFF-14-07-20-171	0.0369		ı	1	ı	1	-	•		
F-OFF-15-07-02-177	0.0366	-	ı	ł	ı	ı		-		ı
F-OFF-15-07-08-180	0.0414	0.00038	<0.004	0.0012	0.00252	<0.05	<0.05	<0.05		8.23
F-OFF-15-07-15-189	0.0313	·	ı	ı		ı	ı	ı		ı
F-OFF-15-07-20-193	0.0317	0.0004	<0.004	0.0012	0.00282	<0.05	<0.05	<0.05		8.2

Table 9: 2011 Off-site Effluent Wastewater Characteristics

					Parameter					
	:		:	:	5					
sample IU	As (total),	Pb (total),	Zn (total),	Cu (total),	Ni (total),	TAN, mg/L as	Nitrite,	Nitrate,	TSS,	Ţ
	mg/L	mg/L	mg/L	mg/L	mg/L	z	mg/L as N	mg/L as N	mg/L	
F-OFF-16-07-02-199	0.0338	-	•	-	-	-	-	-	-	
F-OFF-16-07-08-203	0.0438	-	ı		-		-	•		•
F-OFF-16-07-14-209	0.0479	0.00046	,	0.0014	0.00303	<0.05	<0.05	<0.05	5	8.21
F-OFF-16-07-20-212	0.0323									
F-OFF-17-07-02-219	0.032	0.00046	<0.004	0.0015	0.0025	<0.05	<0.05	<0.05	<3	8.32
F-OFF-17-07-08-224	0.039	,		ı		ı	-			,
F-OFF-17-07-14-229	0.0391	0.00037	<0.004	0.0016	0.0024	<0.05	<0.05	<0.05	<3	8.39
F-OFF-18-07-08-244	0.0672	0.0003	<0.004	0.0012	0.0025	<0.05	<0.05	<0.05	3	8.39
F-OFF-18-07-14-249	0.0599	0.00034	<0.004	0.0014	0.0029	<0.05	<0.05	<0.05	4	8.31
F-OFF-19-07-03-262	0.0615		ı			ı	•			
F-OFF-19-07-08-267	0.0682	-	ı		-	ı	-	•		•
F-OFF-19-07-14-275	0.0526	-	ı	ı	-	ı	-			
F-OFF-19-07-20-281	0.0474	-	ı		-	ı	-	•		•
F-OFF-20-07-02-291	0.0501	-	ı	ı	-	ı	-	-		
F-OFF-20-07-08-296	0.0569	0.00038	<0.004	0.0013	0.0029	<0.05	<0.05	<0.05	4	8.34
F-OFF-20-07-14-301	0.0478	0.00036	<0.004	0.0013	0.00262	<0.05	<0.05	<0.05	<3	8.34
F-OFF-20-07-20-305	0.0419	1		1		ł		-	ı	
F-OFF-21-07-02-312	0.041	1	-		1	ł	ł		ł	
F-OFF-21-07-08-316	0.0365		-	-	ı	ı		-	,	ı
F-OFF-21-07-16-322	0.0407	1	-		ı	I		-	,	
F-OFF-21-07-20-326	0.0436	0.00088	0.0055	0.0024	0.00291	<0.05	<0.05	<0.05	4	8.3
F-OFF-22-07-02-333	0.0464	0.00045	0.0041	0.0017	0.00275	<0.05	<0.05	<0.05	<3	8.38
F-OFF-22-07-08-340	0.0592	1		1		ł		-	ı	
F-OFF-22-07-1330-345	0.0479	-	I	I	-	I	-	•		
F-OFF-22-07-20-349	0.0508		1	I	ı	I	•			
F-OFF-23-07-02-357	0.0551	1	-			ł		-	ı	
F-OFF-23-07-08-360	0.0567	0.00031	<0.004	0.0012	0.0024	<0.05	<0.05	<0.05	<3	8.33

					Daramotor					
Sample ID	As (total),	Pb (total),	Zn (total),	Cu (total),	Ni (total),	TAN, mg/L as	Nitrite,	Nitrate,	TSS,	Ţ
	mg/L	mg/L	mg/L	mg/L	mg/L	z	mg/L as N	mg/L as N	mg/L	-
F-OFF-23-07-14-364	0.0704	-		-	-	1	-	-	-	
F-OFF-23-07-20-371	0.0428	0.00043	0.0056	0.0018	0.00227	<0.05	<0.05	<0.05	<3	8.34
F-OFF-24-07-02-378	0.0375	0.00054	0.0064	0.0026	0.00221	<0.05	<0.05	<0.05	3	8.41
F-OFF-24-07-08-381	0.0339	0.00029	<0.004	0.0015	0.00221	<0.05	<0.05	<0.05	<3	8.41
F-OFF-24-07-14-387	0.0382	-	ı	-	-	ı	-	-		
F-OFF-24-07-20-391	0.0463	0.00039	0.0051	0.0023	0.00232	<0.05	<0.05	<0.05	<3	8.25
F-OFF-25-07-02-398	0.0464	-	1	-	-	ı	-	-		
F-OFF-25-07-08-401	0.0343	-	ı	1	-	1	-	-	-	
F-OFF-25-07-14-404	0.0391	-	ı	-	-	ı	-	-	-	,
F-OFF-25-07-20-408	0.047	0.00038	0.005	0.0019	0.00268	<0.05	<0.05	<0.05	<3	8.25
F-OFF-26-07-02-415	0.0459	-	ı	-	-	ı	-	-	-	,
F-OFF-26-07-08-420	0.0466	,	·	ı	ľ	ı				,
F-OFF-26-07-25-424	0.0404	-	ı	-	-	ı	-	-	-	,
F-OFF-26-07-20-428	0.0512	0.00064	0.0078	0.005	0.00229	<0.05	<0.05	<0.05	5	8.29
F-OFF-27-07-02-435	0.042	ı	ı	ı	ı	-			-	1
F-OFF-27-07-08-438	0.0365		ı	1	1			-	-	
F-OFF-27-07-15-443	0.0302	-	ı	ı	I	-		-	-	•
F-OFF-27-07-20-447	0.0241	0.0004	0.0043	0.0027	0.00189	<0.05	<0.05	<0.05	<3	8.31
F-OFF-28-07-02-454	0.0266	1	ı	ı	ı	-	1		-	8.16
F-OFF-28-07-08-457	0.0278		ı	ı	ı	-			-	
F-OFF-28-07-14-462	0.0396	0.00036	<0.004	0.0015	0.00233	<0.05	<0.05	<0.05	<3	8.36
F-OFF-28-07-20-466	0.046	0.00041	0.0068	0.0037	0.00259	<0.05	<0.05	<0.05	8	8.35
F-OFF-29-07-02-471	0.0329	-	ı	ı	I	-		-	-	•
F-OFF-29-07-08-474	0.0309		ı	ı	1	-		-		•
F-OFF-29-07-14-477	0.0388	-	ı	ı	ı	ı	-	-		,
F-OFF-29-07-20-481	0.0482	0.00053	0.0068	0.004	0.00267	<0.05	<0.05	<0.05	<3	8.31
F-OFF-30-07-02-488	0.0383	•	•	•	•	•	·	ł	ł	

					c					
					Parameter					
Sample ID	As (total),	Pb (total),	Zn (total),	Cu (total),	Ni (total),	TAN, mg/L as	Nitrite,	Nitrate,	TSS,	ב זי
	mg/L	mg/L	mg/L	mg/L	mg/L	z	mg/L as N	mg/L as N	mg/L	E d
F-OFF-30-07-08-491	0.0369	-	-	-	-	-	-	-	-	
F-OFF-30-07-14-495	0.0399	-	ı	-	-	ı	-		,	
F-OFF-30-07-20-499	0.0428	0.00052	0.0058	0.0048	0.00266	<0.05	<0.05	<0.05	<3	8.37
F-OFF-31-07-02-506	0.0344		,				-			
F-OFF-31-07-08-509	0.0294		,				-		•	
F-OFF-31-07-20-517	0.0431	0.00057	0.0054	0.0031	0.00286	<0.05	<0.05	<0.05	<3	8.35
F-OFF-01-08-02-524	0.048		,				-		•	
F-OFF-01-08-08-527	0.0394	-	ı	-	-	ı	-	-	•	,
F-OFF-01-08-14-532	0.033		,				-			
F-OFF-02-08-02-543	0.0369	0.00032	0.0043	0.0015	0.00292	<0.05	<0.05	<0.05	3	8.3
F-OFF-02-08-08-546	0.0464	-	ı	-	-		-	•	•	•
F-OFF-02-08-14-549	0.0527	-	ı	-	-	ı	-		•	
F-OFF-02-08-20-553	0.039	0.00044	0.0057	0.0039	0.00336	<0.05	<0.05	<0.05	<3	8.32
F-OFF-03-08-02-561	0.0364		-	ł	-			-	-	
F-OFF-03-08-08-564	0.0336		-	ı	-	a A		-		
F-OFF-03-08-14-567	0.0325	-	I	-	-	ı	-	•		,
F-OFF-03-08-20-570	0.0287	0.00029	<0.004	0.0017	0.00301	<0.05	<0.05	<0.05	<3	8.32
F-OFF-04-08-02-574	0.0284		-	ı	-	a A		-		
F-OFF-04-08-08-582	0.0379			1	-	I				
F-OFF-04-08-14-585	0.0354	0.00033	<0.004	0.0016	0.00296			-	-	
F-OFF-04-08-20-588	0.0412	0.00031	<0.004	0.0015	0.00334	<0.05	<0.05	<0.05	4	8.32
F-OFF-05-08-02-593	0.0374	ı	-	ı	ı			-	-	ı
F-OFF-05-08-08-599	0.055		-	ı	-	1	1	-		•
F-OFF-05-08-14-603	0.06	•	I	-	-	ı	•	•	ŀ	,
F-OFF-05-08-20-608	0.0629	0.00039	<0.004	0.0024	0.00298	<0.05	<0.05	<0.05	4	8.37
F-OFF-06-08-02-611	0.0788		-	ł	-			-	-	
F-OFF-06-08-20-625	0.0481	0.00032	<0.004	0.0017	0.00278	•	•	ł	5	8.33

					Parameter					
Sample ID	As (total),	Pb (total),	Zn (total),	Cu (total),	Ni (total),	TAN, mg/L as	Nitrite,	Nitrate,	TSS,	-
	mg/L	mg/L	mg/L	mg/L	mg/L	z	mg/L as N	mg/L as N	mg/L	Цd
F-OFF-07-08-20-643	0.0576	0.00025	<0.004	0.0012	0.00262		•		<3	8.36
F-OFF-08-08-15-656	0.0485	0.00039	0.0064	0.0019	0.00378	ı	•		<3	8.25
F-OFF-09-08-20-686	0.036	0.00015	<0.004	0.0011	0.00312	ı			<3	8.28
F-OFF-10-08-02-695	0.0483	0.0004	<0.005	ı		ı	•		,	
F-OFF-11-08-02-710	0.0419	0.0007	<0.005	ı	ı	ı	-		,	
F-OFF-12-08-02-727	0.0391	0.0002	<0.005	ı		ı	-		1	,
F-OFF-13-08-02-745	0.0591	0.0007	<0.005	0.0021	0.003	0.02	<0.01	0.13	<3	8.29
F-OFF-14-08-02-772	0.0419	0.0002	<0.005	I	1	I			ı	
F-OFF-15-08-02-800	0.0362	0.0003	<0.005	ı	ı	ı	-		ı	,
F-OFF-16-08-02-831	0.0375	0.0003	<0.005	I	ı	I	-		1	
F-OFF-17-08-02-863	0.0506	0.0004	<0.005	ı	ı	ı	-		,	
F-OFF-18-08-02-893	0.0418	0.0003	<0.005	ł	ı	ł			,	
F-OFF-19-08-20-947	0.0236	0.0002	<0.005	0.0014	0.0029	<0.01	<0.01	0.13	<3	8.11
F-OFF-20-08-20-979	0.0342	0.0002	<0.005	I	1	I			ı	
F-OFF-21-08-20-1010	0.0397	0.0002	<0.005	ł	ł	ł			1	ı
F-OFF-22-08-20-1040	0.0339	0.0002	0.0027	I	ı	1			1	
F-OFF-23-08-20-1062	0.0313	0.0002	0.002	I	ł	1			ı	ı
F-OFF-25-08-20-1098	0.0302	0.0002	<0.005	ł	ł	ł			1	ı
F-OFF-26-08-08-1108	0.034	0.0002	<0.005	ı	-	ı			ı	
F-OFF-27-08-02-1120	0.0472	0.0004	<0.005	0.0023	0.0028	<0.01	<0.01	0.1	<3	8.11
F-OFF-28-08-20-1138	0.0533	0.0005	0.0045	ł	ł	ł			1	ı
F-OFF-29-08-02-1156	0.0357	0.0003	0.0028	I	ı	I	-		1	
F-OFF-29-08-20-1171	0.0687	0.0005	<0.005	I	ł	1			<3	8.17
F-OFF-30-08-08-1181	0.0399	0.0003	<0.005	ł	ł	ł			4	8.30
F-OFF-31-08-18-1222	0.0219	0.0004	0.007	ı		ı	1		4	8.15
F-OFF-01-09-20-1263	0.0448	0.001	<0.005	I	-	I			<3	8.2
F-OFF-02-09-20-1285	0.0493	0.0006	<0.005	0.0024	0.0029	0.01	•	•	<3	8.36

					Parameter					
Sample ID	As (total),	Pb (total),	Zn (total),	Cu (total),	Ni (total),	TAN, mg/L as	Nitrite,	Nitrate,	TSS,	
	mg/L	mg/L	mg/L	mg/L	mg/L	z	mg/L as N	mg/L as N	mg/L	Ľd
F-OFF-03-09-08-1298	0.0341	0.0004	<0.005	0.0026	0.003	0.02	<0.01	0.11	4	8.21
F-OFF-03-09-20-1311	0.0392	0.0013	0.0033	ı	-	ı	-		12	8.32
F-OFF-04-09-20-1331	0.041	0.001	0.0032	ı	-	ı	-		<3	8.39
F-OFF-05-09-20-1355	0.0343	0.0008	0.0033	ı	-	ı	-		<3	8.36
F-OFF-06-09-20-1417	0.0389	0.0005	0.0042	ı	-	ı	-		<3	8.22
F-OFF-07-09-08-1433	0.0376	0.0004	0.0028	0.0017	0.0023	<0.01	<0.01	0.17	<3	8.38
F-OFF-08-09-02-1461	0.031	0.0004	0.004	0.0024	-		-		<3	8.12
F-OFF-08-09-20-1484	0.0253	0.0004	0.0034	0.0024	-	ı	-		<3	8.11
F-OFF-09-09-20-1508	0.0481	0.0004	0.0038	0.002	0.0033	<0.01	<0.01	0.11	<3	8.18
F-OFF-11-09-20-1579	0.0355	0.0005	<0.005	0.0019	-	ı	-		<3	8.06
F-OFF-12-09-10-1603	0.079	0.0006	0.0045	0.0021	0.0041	<0.01	<0.01	0.13	4	8.02
F-OFF-12-09-10-1607	0.0767	0.00043	<0.004	0.0013	0.00416	<0.05	<0.05	<0.05	<3	8.12
F-OFF-12-09-20-1624	0.0487	0.0004	0.0038	ı	-	ı	-		4	8.06
F-OFF-13-09-20-1655	0.0686	0.0006	0.0064						8	8.04
F-OFF-14-09-22-1670	0.0394	0.0004	0.0035	a A	-	a A			6	8.01
F-OFF-15-09-20-1703	0.0279	0.0002	0.0033	1	-				<3	8.19
F-OFF-17-09-08-1751	0.0292	0.0003	0.0024	0.0014	0.0029	<0.01	<0.01	0.09	<3	8.25
F-OFF-17-09-20-1773	0.0232	0.0004	0.0027		1		ł		3	8.15
F-OFF-18-09-20-1809	0.0376	0.0005	0.004		ı		1		<3	7.97
F-OFF-20-09-02-1857	0.0302	0.0004	0.002		-				<3	8.13
F-OFF-20-09-20-1879	0.029	0.0004	0.0025	a A	-	a A			<3	8.3
F-OFF-21-09-20-1913	0.0231	0.0002	0.0023	1	ı	1	ı		6	8.19
F-OFF-22-9-20-1948	0.0224	0.0002	0.0034	1	-	1		•	4	8.24
F-OFF-23-09-08-1967	0.0243	0.0005	0.0035	0.002	0.0029	<0.01	<0.01	0.12	8	8.13
F-OFF-23-09-20-1984	0.0273	0.0003	0.0027	r I	ı	r I	1		8	7.65
F-OFF-24-09-14-2013	0.0278	0.0005	0.0043	-	ı	-			8	8.23
F-OFF-25-09-14-2051	0.0263	0.0002	0.0041			•			6	8.03

Sample IDAs (notal), mg/LPb (notal), mg/LCu (notal), mg/LN (notal), mg/LN (notal), mg/L andN (Parameter	L				
mg/L mg/L </th <th>Sample ID</th> <th>As (total),</th> <th>Pb (total),</th> <th>Zn (total).</th> <th>Cu (total),</th> <th>Ni (total).</th> <th>TAN, mg/L as</th> <th>Nitrite,</th> <th>Nitrate,</th> <th>TSS,</th> <th>2</th>	Sample ID	As (total),	Pb (total),	Zn (total).	Cu (total),	Ni (total).	TAN, mg/L as	Nitrite,	Nitrate,	TSS,	2
0.0212 0.0004 0.0057 ··<		mg/L	mg/L	mg/L	mg/L	mg/L	z	mg/L as N	mg/L as N	mg/L	E d
0.0304 0.0073 0.00143 0.0014 0.00143 0.0014 0.011 0.011 0.012 0.013 0 0.0244 0.0004 0.0041 0.0041 0.0041 0.014 0.01	F-OFF-26-09-20-2083	0.0212	0.0004	0.0057	-	-	-		-	<3	7.99
0.021 0.004 0.0031 0.0024 0.0034 0.0034 0.0034 0.0038 0.0034 0.003 0.003 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0031 0.0041 0.012 0.0141 0.012 0.0141 0.012 0.0141 0.012 0.0141 0.012 0.013	F-OFF-27-09-08-2104	0.0304	0.0003	0.0173 (0.0069)	0.0014	0.0039	0.11	<0.01	0.15	6	7.27
0.0237 0.0004 0.0038 ··· ··· ··· <th< td=""><td>F-OFF-27-09-20-2126</td><td>0.021</td><td>0.0004</td><td>0.0031</td><td>0.0024</td><td>0.0037</td><td>0.11</td><td><0.01</td><td>0.15</td><td><3</td><td>8.07</td></th<>	F-OFF-27-09-20-2126	0.021	0.0004	0.0031	0.0024	0.0037	0.11	<0.01	0.15	<3	8.07
0 0.0254 0.0002 0.0087 ··	F-OFF-28-09-08-2144	0.0237	0.0004	0.0038	-	-	1		-	<3	8.16
0.0278 0.0001 0.0041 ··	F-OFF-29-09-0830-2180	0.0254	0.0002	0.0087 (0.0087)	1	,	1	ı	ı	<3	7.62
0.0404 0.0047 0.047 0	F-OFF-30-09-0815-2216	0.0278	0.0002	0.0041	-	-	ı		-	<3	8.14
(*)0.02890.0003<0.005·· </td <td>F-OFF-01-10-0920-2259</td> <td>0.0404</td> <td>0.0004</td> <td>0.0047</td> <td>ı</td> <td>,</td> <td>ı</td> <td></td> <td></td> <td>° V</td> <td>7.97</td>	F-OFF-01-10-0920-2259	0.0404	0.0004	0.0047	ı	,	ı			° V	7.97
(1) (0.0318) (0.0032) (0.0033) (0.0033) (0.0034) (0.0035) (0.0035) (0.0015) (0.0047) (0.11) (0.11) (0.13) (3) (3) (1) (0.0335) (0.0046) (0.0015) (0.0047) (0.011) (0.011) (0.11) (0.11) (3) (3) (1) (0.0236) (0.0046) (0.0015) (0.0047) (0.11) (0.01) (0.18) (3) (3) (1) (0.0236) (0.0024) (0.0015) (0.0047) (0.0047) (0.11) (0.11) (0.11) (3) (3) (1) (0.0326) (0.0042)	F-OFF-02-10-0830-2297	0.0289	0.0003	<0.005	1	-	ı		-	<3	8.1
0 0.0402 0.0004 0.0059 ·	F-OFF-03-10-0830-2334	0.0318	0.0002	0.0033	ı	,	ı			° V	8.18
0.0395 0.0003 0.0046 0.0015 0.0047 0.11 <0.01 0.18 <3 1 0.0251 <0.0004	F-OFF-04-10-0930-2370	0.0402	0.0004	0.0059	1	,	1			ŝ	7.93
0.0251 <0.0004 ·	F-OFF-04-10-15-2378	0.0395	0.0003	0.0046	0.0015	0.0047	0.11	<0.01	0.18	<3	8.08
(1) (1) <td>F-OFF-05-10-09-2410</td> <td>0.0251</td> <td><0.0004</td> <td>ı</td> <td>-</td> <td>-</td> <td>ı</td> <td></td> <td>-</td> <td><3</td> <td>8.14</td>	F-OFF-05-10-09-2410	0.0251	<0.0004	ı	-	-	ı		-	<3	8.14
0.0306 0.0002 0.0035 - - - - - < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	F-OFF-06-10-0830-2444	0.0298	0.0002	0.0029	-	-	ı		-	<3	8.21
0.0326 0.0004 0.0044 - - - - - < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	F-OFF-07-10-0830-2481	0.0306	0.0002	0.0035	1	-	1		-	<3	8.09
0.0386 0.0005 0.005 - - - 4 0.0323 0.0014) 0.011 0.0077 0.0042 0.1 <0.19	F-OFF-08-10-0830-2517	0.0326	0.0004	0.0044	-	-	-		-	<3	8.11
0.0323 0.0022 0.011 0.0077 0.0042 0.1	F-OFF-09-10-09-2552	0.0386	0.0005	0.005	-	-	1		-	4	8.26
	F-OFF-10-10-0830-2585	0.0323	0.0022 (0.00014)	0.011 (0.0045)	0.0077	0.0042	0.1	<0.01	0.19	ŝ	8.42

* () samples that were reanalyzed because considered anomalous laboratory results; the values used for the average and standard deviation calculations were those in ().

FIGURES

- Figure 1: Summary of off-site arsenic concentration measurements for the 2011 project season
- Figure 2: Summary of off-site copper concentration measurements for the 2011 project season
- Figure 3: Summary of off-site lead concentration measurements for the 2011 project season
- Figure 4: Summary of off-site nickel concentration measurements for the 2011 project season
- Figure 5: Summary of off-site zinc concentration measurements for the 2011 project season
- Figure 6: Summary of off-site ammonia concentration measurements for the 2011 project season
- Figure 7: Summary of off-site nitrate concentration measurements for the 2011 project season
- Figure 8: Summary of off-site nitrite concentration measurements for the 2011 project season
- Figure 9: Summary of off-site TSS concentration measurements for the 2011 project season
- Figure 10: Summary of off-site pH measurements for the 2011 project season
- Figure 11: Plant Winterizing Phase Frost Fighter
- Figure 12: Plant Winterizing Phase Tanks Freezing
- Figure 13: Chemical Pump and Fitting Storage (Seacan)
- Figure 14: Chemical Mixer Storage (Seacan)
- Figure 15: Ferric Onion Tank Storage (Platform)
- Figure 16: Lime Onion Tank Storage (Platform)
- Figure 17: Polymer and Sodium Metabisulfite Tank Storage (Platform)
- Figure 18: Chemical Makeup Blower Storage (Platform)
- Figure 19: Process Onion Tank Storage (Platform)
- Figure 20: Flow Meter Storage (Seacan)
- Figure 21: Transmitter and pH Sensor Storage (Storage Room)
- Figure 22: Miscellaneous Fitting and Flow Alarm Storage (Storage Room)
- Figure 23: Electrical Control Panel Storage (Platform)
- Figure 24: Electrical Control Panel Plywood Enclosure (Platform)

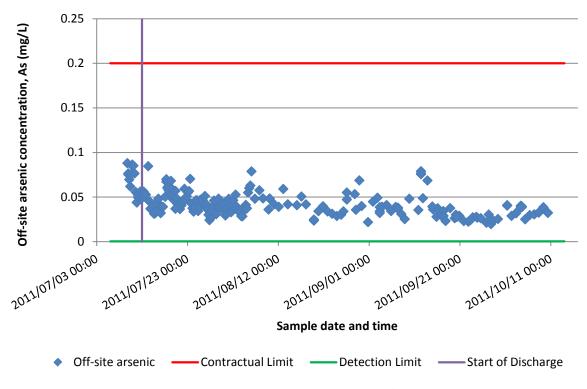


Figure 1: Summary of off-site arsenic concentration measurements for the 2011 project season

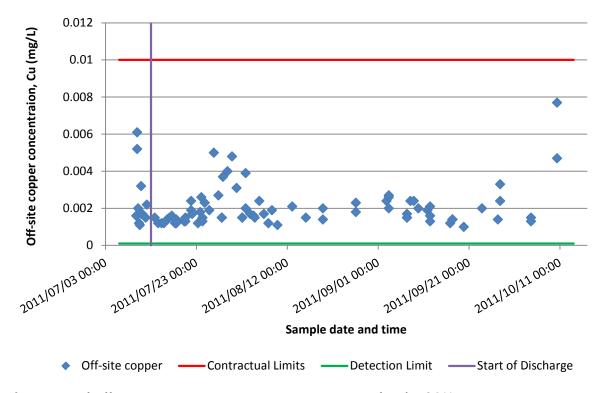


Figure 2: Summary of off-site copper concentration measurements for the 2011 project season

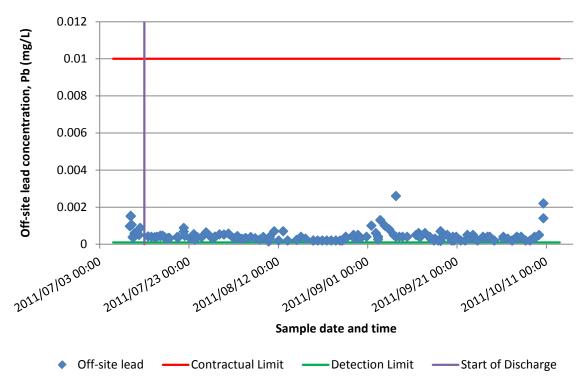


Figure 3: Summary of off-site lead concentration measurements for the 2011 project season

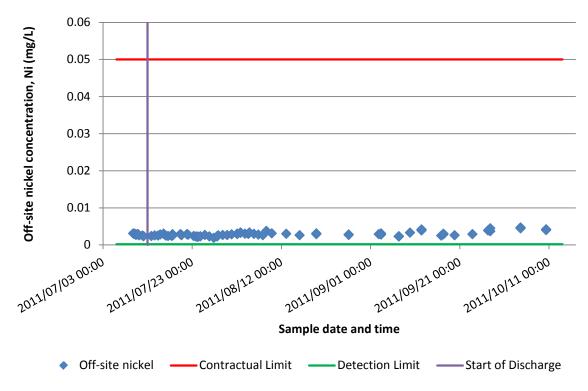


Figure 4: Summary of off-site nickel concentration measurements for the 2011 project season

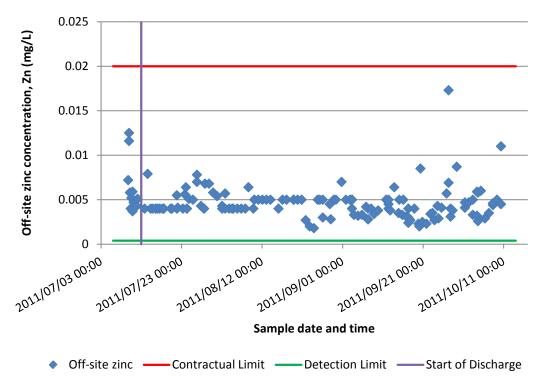


Figure 5: Summary of off-site zinc concentration measurements for the 2011 project season

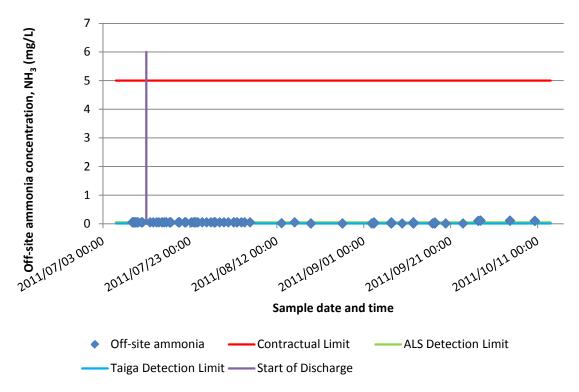


Figure 6: Summary of off-site ammonia concentration measurements for the 2011 project season

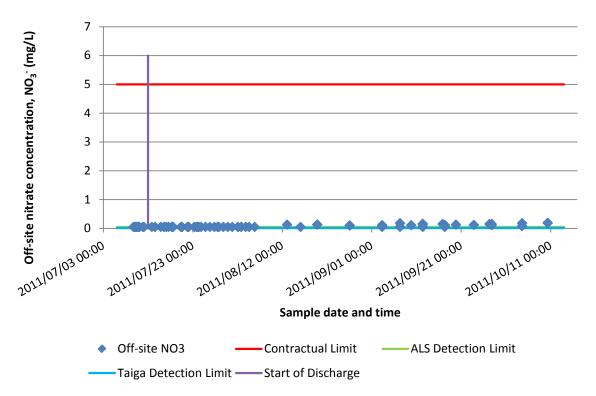


Figure 7: Summary of off-site nitrate concentration measurements for the 2011 project season

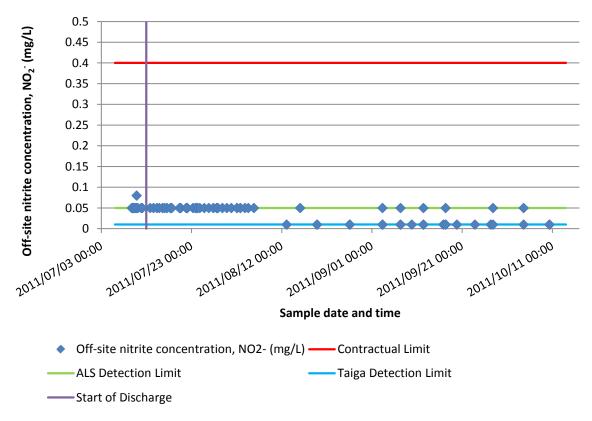


Figure 8: Summary of off-site nitrite concentration measurements for the 2011 project season

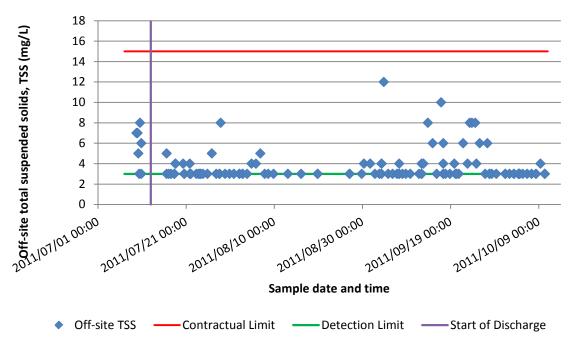


Figure 9: Summary of off-site TSS concentration measurements for the 2011 project season

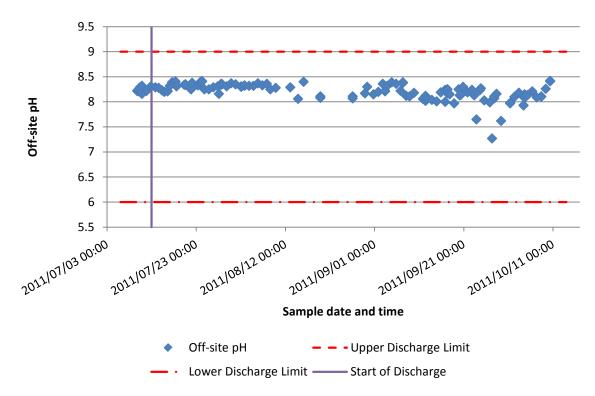


Figure 10: Summary of off-site pH measurements for the 2011 project season

Figure 11: Plant Winterizing Phase – Frost Fighter

Figure 12: Plant Winterizing Phase – Tanks Freezing

Figure 13: Chemical Pump and Fitting Storage (Seacan)

Figure 14: Chemical Mixer Storage (Seacan)

Figure 15: Ferric Onion Tank Storage (Platform)

Figure 16: Lime Onion Tank Storage (Platform)

Figure 17: Polymer and Sodium Metabisulfite Tank Storage (Platform)

Figure 18: Chemical Makeup Blower Storage (Platform)

Figure 19: Process Onion Tank Storage (Platform)

Figure 21: Transmitter and pH Sensor Storage (Storage Room)

Figure 22: Miscellaneous Fitting and Flow Alarm Storage (Storage Room)

Figure 23: Electrical Control Panel Storage (Platform)

Figure 24: Electrical Control Panel Plywood Enclosure (Platform)

Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

2012 End of Season Closeout Treatment Report Tundra Water Treatment Facility

prepared by

pure elements environmental solutions

Prepared by: **pure elements** environmental solutions

RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca Reviewed and approved by: Justin Bunz, CET AEL Engineering Ltd.

Page 1 of 53

Table of Contents

Si	ign-off a	and Acknowledgement	4
Ρ	urpose		5
1	Exe	cutive Summary	6
2	Intr	oduction	7
	2.1	Facility Operators	7
3	Trea	atment Regime	8
	3.1	Treatment Schematic Overview	9
4	Cha	nges to Treatment / Testing Regime	10
	4.1	Directional Flow Distribution Header	10
	4.2	Ferric Sulphate Make-Up Changes	10
	4.3	Changes to Chemical Dosage	10
	4.4	Reduction of Flocculation Rates in Stage 3	11
	4.5	Changes to Onsite Testing Regime	11
5	Safe	ety	12
6	Оре	erating Procedures	13
7	Vol	umes of Water Treated	14
8	Che	mical Usage	15
9	On	and Off-site Analysis of Contaminants of Concern	17
	9.1	Regulated Contaminants of Concern – Treated Water	17
	9.2	Total Arsenic Analysis'	18
	9.3	Total Arsenic Analysis – Discharged Water	19
	9.4	Total Copper Analysis'	20
	9.5	Total Lead Analysis'	21
	9.6	Total Nickel Analysis'	22
	9.7	Total Zinc Analysis'	23
	9.8	Total Nitrate Analysis'	24
	9.9	Total Nitrite Analysis'	25
	9.10	Total Ammonia Analysis'	26
	9.11	Total Suspended Solids Analysis'	27
	9.12	pH Analysis	28
1	0 Fue	I Consumption	29
1	1 Ove	rall System Operation and Performance	30
	11.1	Commissioning	30
	11.2	Process Changes	30
	11.3	Raw Water Intake	30
	11.4	Performance - Water Treatment Plant	30
	11.5	Safety	30
	11.6	Preventative Maintenance	31
	11.7	Winterization	31
	11.8	Compliance - Total Water Treated and Discharged	31
	11.9	Compliance - Discharge Water Quality Meeting Contract Specifications	31
	11.10	Field Sampling/Laboratory Error First Day of Discharge Operations	32
	11.11	Mitigation of Field Sampling Errors	33

Prepared by:

pure elements environmental solutions

RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca

Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

12 Sys	tem Upsets, Corrective Actions and Maintenance Performed	34
12.1	June	34
12.2	July	34
12.3	August	35
12.4	September	36
13 Dov	wnstream Effects	37
13.1	Comparative Analysis – Discharge vs Hambone Lake/Outlet vs Powder Mag Lake/Outlet	37
13.2	Observations – Downstream Effects	38
14 Rec	commendations for the 2013 Treatment Season	39
14.1	Quality Control and Quality Assurance	39
14.2	Operations	41
14.3	Environmental	42
15 List	of Appendices	43
15.1	Appendix A – Tundra 2011 – End of Season Tailings Water Treatment Report WESA	44
15.2	Appendix B – Analysis of Treatment Chemicals	45
15.3	Appendix C – Removing and Stabilizing Arsenic in Acid Mine Water	46
15.4	Appendix D – 2012 SNP Results – Tundra Mine Remediation	47
15.5	Appendix E – 2010 Tundra Aquatic Ecology Baseline & Construction Monitoring Report	48
15.6	Appendix F – 2012 Off-site Test Results	49
15.7	Appendix G – 2012 On-site Test Results	50
15.8	Appendix H – Onsite Testing Methods	51
15.9	Appendix I – Daily Discharge Volumes and Chemical Usage Data	52
15.10	Appendix J – Downstream Effects	53

RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca

Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

SIGN-OFF AND ACKNOWLEDGEMENT

I have reviewed and endorse the 2012 End of Season Treatment Report for the Tundra Water Treatment Facility as prepared by Pure Elements Environmental Solutions.

Justin Bunz, Technician, TLICHO Representative Aboriginal Engineering Ltd.

Date: December 5, 2012

December 5, 2012

Trina Comartin, P.Eng. Supervising Operator – Level III Certified Pure Elements Environmental Solutions

821951 Albe	PRMIT TO PRACTICE Inta Ltd. o/a Pure Elements Environmental Solutions
Date	December 5, 2012
NWT	RMIT NUMBER: P 655 NU Association of Professional Engineers and Geoscientists

This document was prepared by 821951 Alberta Ltd. o/a Pure Elements Environmental Solutions (Pure Elements and represents Pure Elements' best judgement in light of the resources and information made available to it at the time of preparation. Any use which a third party makes of this Report, or reliance on or decisions made based upon it are the responsibilities of such third parties and Pure Elements accepts no responsibility for any damages suffered by any party as a result of decisions made or actions based upon this Report.

Prepared by:

DURE elements RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 environmental solutions Tel: 1-866.995.2474 • www.pure-elements.ca

Reviewed and approved by: Justin Bunz, CET AEL Engineering Ltd.

Page 4 of 53

PURPOSE

This Report constitutes the requirements for the end-of-season Closeout Submittal, as outlined in Public Works and Government Services Canada Project No: R.014137 Phase 2 Remediation, Tundra mine Site, NWT para 1.3.1, Section 44 41 13, "Commercial Water Treatment Plants."

This report provides the reader with a summary of treatment operations for the 2012 treatment season, together with a set of recommendations for the 2013 season. For those readers who are unfamiliar with the project, the 2011 report has been provided in Appendix A, which will provide the reader a greater understanding of the season-to-season treatment setup, treatment facility photographs, and changes thereto.

There are a number of other pertinent reports and documents attached in the Appendices which will provide the reader additional detailed information regarding treatment and discharge monitoring at the Tundra Mine site as well as background information.

This Report intends to not only serve as the requirement for the closeout submittal but serve as a valuable summary document that will allow the reader to quickly review and understand the objectives met during the 2012 treatment season, as well as to quickly gain an understanding for changes proposed for the 2013 treatment season.

Prepared by: **pure elements** environmental solutions

RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca

Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

1 **Executive Summary**

Tundra Mine is a former underground gold mine located approximately 240 km northeast of Yellowknife in the Northwest Territories. The mine site is accessed by a shared airstrip, located approximately 5 kilometres from the Tundra Mine Site. The site has been under the Care and maintenance of Indian and Northern Affairs Canada (INAC), Contaminants and Remediation Division (CARD), since 1998. Phase 1 remediation was completed previously and Phase 2 remediation activities are indended to address remaining environmental concerns. This report deals specifically with water treatment of remaining Tundra Mine site tailing ponds.

2012 water treatment initiatives at Tundra Mine were undertaken and completed by Pure Elements Environmental Solutions on behalf of Aboriginal Engineering Services Ltd. A total of 784,000 cubic metres of water was treated throughout the June - September treatment season, with 669,000 cubic metres of water meeting contract specifications being discharged to Hambone Lake.

Both onsite and offsite testing programs were undertaken, with offsite testing conducted by Taiga Labs, Yellowknife, a CALA accredited laboratory, confirming water quality. Because remedial activities proposed by INAC were expected to have a potential impact in the aquatic environment of the former Tundra Mine site, a monitoring plan was developed. Baseline aquatic resource studies were undertaken and completed by others. Please refer to Appendices D and E for more information regarding these additional studies.

Onsite and offsite monitored parameters of concern were:

- Total Arsenic
- Total Copper
- Total Lead
- Total Nickel
- Total Zinc
- Nitrate as Nitrogen
- Nitrite as Nitrogen
- Total Ammonia as Nitrogen
- Total Suspended Solids; and
- M pH.

There were several changes to process in 2012 from the previous treatment season resulting in improvements to overall treatment process, water quality and ease of operations over the prior treatment season (refer to Section 4 for additional details).

Challenges to overcome for the 2013 treatment season include improving quality control and quality assurance methods for onsite testing including lower detection limits for onsite analysis and verification of third party testing. Operational challenges to overcome include equipment redundancy and backup procedures in the event of primary equipment failure, and primary clarification of the remainder of the tailings water in order to reduce total suspended solids. Environmental issues to address prior to the 2013 treatment season include pilot testing and development of sludge handling program in order to properly dewater and dispose of sludge remaining in Geotubes and the development of a plan for removal and decommissioning of the water treatment plant and equipment.

Prepared by: environmental solutions

DUCE Elements RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca

2 Introduction

2.1 Facility Operators

Pure Elements Environmental Solutions was selected as the facility operators for the 2012 treatment season for Tundra Mine Water Treatment Operations.

Pure Elements' parent company is incorporated in the Northwest Territories and holds Permits to Practice Engineering in Northwest Territories, Alberta and Nunavut. Pure Elements operates and maintains approximately 15 municipal water and waste water treatment facilities throughout these areas and has been operating in the North for approximately four years.

Pure Elements retains a staff of Certified Operators, Equipment Operators and Civil and Mechanical Engineers.

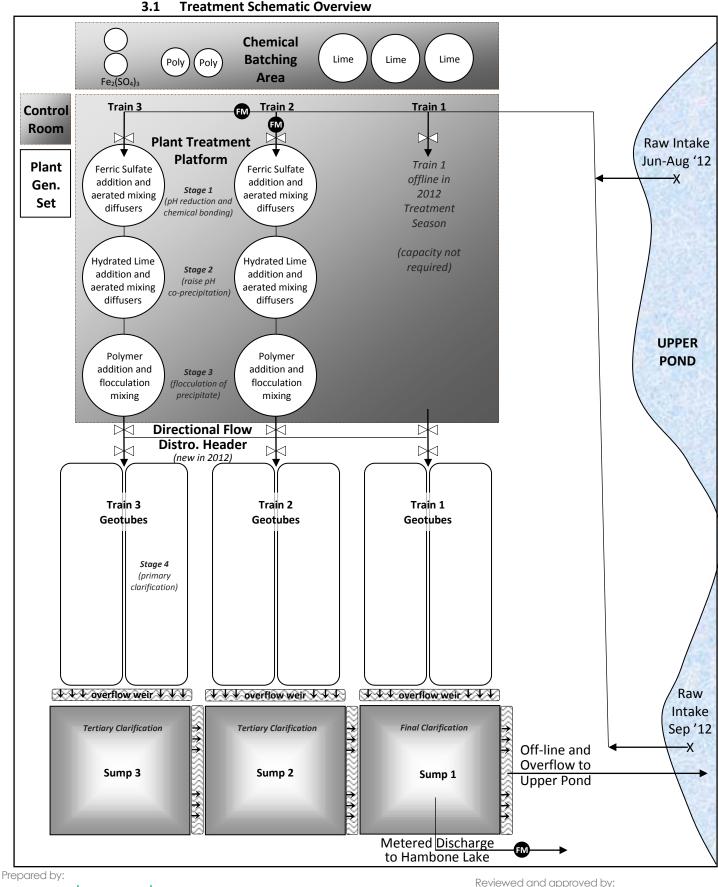
Prepared by: **DUTE Elements** environmental solutions

RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca

3 **Treatment Regime**

Pure Elements re-constructed the existing water treatment similar to 2011. A total of two complete treatment trains were utilized throughout the season (being Train 2 and Train 3), and a minimum of two Geotube trains at any given time. Upon startup, Geotubes for Train 2 and 3 were seeded with polymer and halfway through the season, Geotubes for Train 1 were re-commissioned.

The treatment regime consisted of the following process:


- Chemical injection of ferric sulphate into Reactor stage 1 under aerated mixing conditions;
- Chemical injection of lime into Reactor stage 2, under aerated mixing conditions;
- Chemical injection of polymer prior to Reactor stage 3;
- Ongoing flocculation in Reactor stage 3;
- Solids separation within six trains of Geotubes; and
- A minimum of two stage final clarification to a maximum of four stage final clarification, prior to pumping to Hambone Lake.

A process overview schematic is provided in the next section for additional clarification.

Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

environmental solutions

DURE elements RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca

Reviewed and approved by: Justin Bunz, CET

AEL Engineering Ltd.

Page 9 of 53

4 Changes to Treatment / Testing Regime

Several changes to the treatment regime from 2011 were implemented in order for system optimization and efficiency:

4.1 Directional Flow Distribution Header

A 10" header with three municipal gate valves was installed in order to enlist the ability flow process water from any or all of the reactor trains to any or all sets of solids separation and primary clarification Geotubes. This allowed for further optimization of treatment trains and available processes.

4.2 Ferric Sulphate Make-Up Changes

It was noted that in 2011, there were substantial issues with clogging of injection equipment, and settling of ferric sulphate in the chemical make-up tanks. Aeration of ferric sulphate in this manner would tend to cause the ferric to oxidize, and further precipitate as a solid. Therefore it was decided to remove aeration from the batching stage of ferric sulphate.

As well, the ferric sulphate had been batched 50 bags at a time in 2011. The 2000 gallon batching tanks utilized in the 2011 season were in poor shape as a result of a reaction between the metal bulkheads and the acidic ferric chemical. In order to gain more control over the dosage and the mixing of the ferric sulphate, and overcome the wearing and failure of the metal fittings, a total of two 400 gallon plastic batch reactors were selected for chemical batching of ferric sulphate. No air was added while mixing the ferric sulphate chemical in the batching area. The chemical was mixed consistently for a minimum of one hour to a uniform dosing solution. It was very easy to make changes up or down to the primary ferric dosage simply by changing the number of bags added to the 400 gallon batching tank (from a minimum of 4 bags per batch to a maximum of 6 bags per batch).

4.3 Changes to Chemical Dosage

Some modifications were made to chemical dosage from 2011 in order for process optimization. The scientific basis for modifications to dosages were supported by the following:

- Several sets of jar testing;
- a chemical analysis of treatment chemicals indicating exact weights of elemental chemical available for the co-precipitation process (Appendix B);
- a chemical analysis of the raw water upon start-up, as well as ongoing raw water chemical analysis';
- consultation with our Professional Chemist, Ron Connell, P.Chem., who has been working in mine remediation for 30-plus years and specifically with arsenic and heavy metal co-precipitation;
- <u>Removing and Stabilizing As in Acid Mine Water</u>, co-authors R.W. Lawrence and T.W. Higgs (Appendix C);

- on site pH optimization using online pH meters, with two methods of onsite verification for each of the three stages of the treatment process (range-targeted pH test strips and the Hach HQ 11d calibrated weekly); and
- settling tests post Reactor stage 3 (refer to schematic in previous section for description treatment stages) which allowed for visible measurement of floc size, shape as well as settled floc volume and settling time.

4.4 Reduction of Flocculation Rates in Stage 3

Mixing rates in Stage 3 flocculation stage 3 (refer to schematic in previous section for description treatment stages) was reduced to 10 Hertz in 2012 from 30 Hertz in 2011. This allowed for a larger size of floc and maximum amount of precipitate as indicated by the onsite settling tests conducted post stage 3.

4.5 Changes to Onsite Testing Regime

New onsite testing methods were requested for the 2012 treatment season due to challenges with the onsite test methods and equipment utilized in 2011.

As a result the Appendix H – Onsite Testing methods were selected and implemented for the 2012 treatment season.

5 Safety

Safety for water treatment operations was met by adherence to the overall site safety plan as prepared and implemented by Aboriginal Engineering Ltd.

Daily onsite safety meetings for both day shift and night shift were held in the water treatment plant office. Topics were consistent with site safety, as well as tasks specific to water facility operations or in the event a particular type of work was to take place. If work was to be performed during a shift or shifts, different from the routine work normally performed, a separate Job Hazard Analysis was completed, and signed by all workers and supervisors.

The most extreme safety hazard presented by water facility operations involved exposure to chemical dust. All water plant operators and supervisors were properly fitted and supplied with NIOSH breathing apparatus which was required to be worn when handling chemicals. There were no chemical exposure incidents.

There were a couple of minor incidents with workers slipping off of the Geotubes. As a result, there were two precautions implemented immediately: first, operators were re-trained in order to avoid over-filling the Geotubes (when the Geotubes reach their maximum design operating height of 11', they are more difficult to negotiate). Secondly ramps were placed between the Geotubes so workers did not have to jump between the tubes. This resulted in zero additional incidents.

Prepared by: **pure elements** environmental solutions

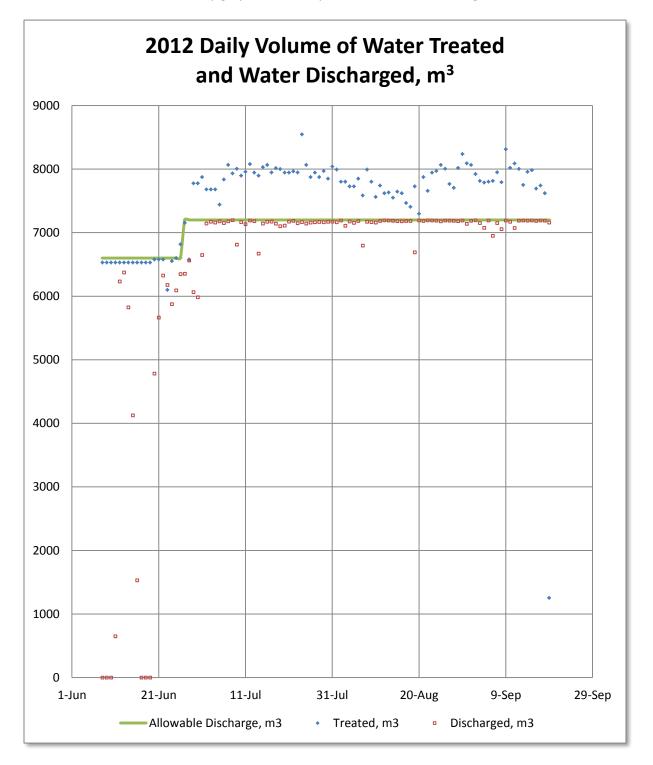
RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca

Operating Procedures 6

A number of water treatment specific procedures were developed by Supervisors which outlined the specific procedures for facility operations.

These were retained at site and include:

- Plant start up procedures;
- Plant shut down procedures;
- Plant routine operations procedures; and
- Procedures to take in the event water produced did not meet criteria.



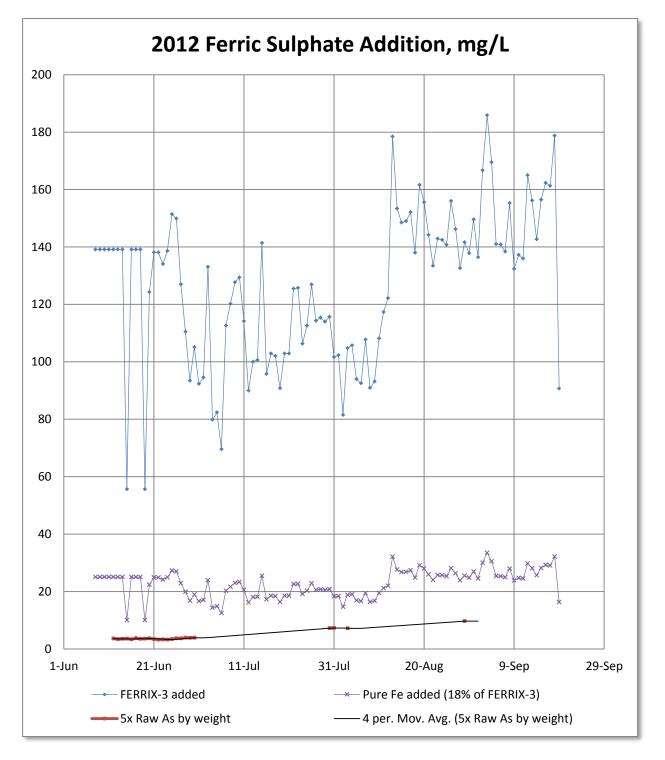
Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

7 Volumes of Water Treated

The Water License outlined the maximum allowable treated water volumes that could be discharged to Hambone Lake. The daily discharge volume varied, always within the allowable levels as outlined by the License. Below is a summary graph of the daily volume of water discharged to Hambone Lake.

Prepared by: **DUTE elements** environmental solutions

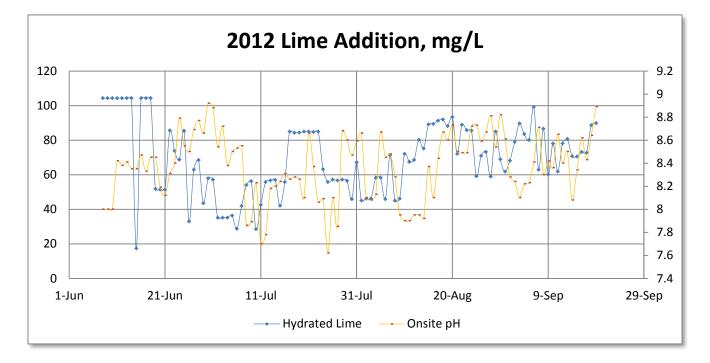
RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca



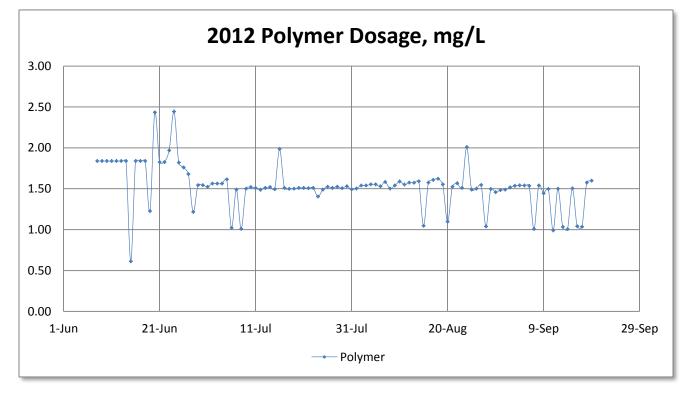
8 Chemical Usage

Three chemicals were added to the treatment process:

Ferric Sulphate (18% ferric by weight as confirmed by 3rd party chemical analysis – Appendix B), mixed and added to the raw water to reduce pH to allow for co-precipitation of +2 metals;


Prepared by:

pure elements environmental solutions RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca



Hydrated Lime (approximately 50% calcium by weight) added to rapidly increase the pH and complete the co-precipitation process; followed by

A polymer to assist with floc development, solids separation and settling of ferric-arsenate.

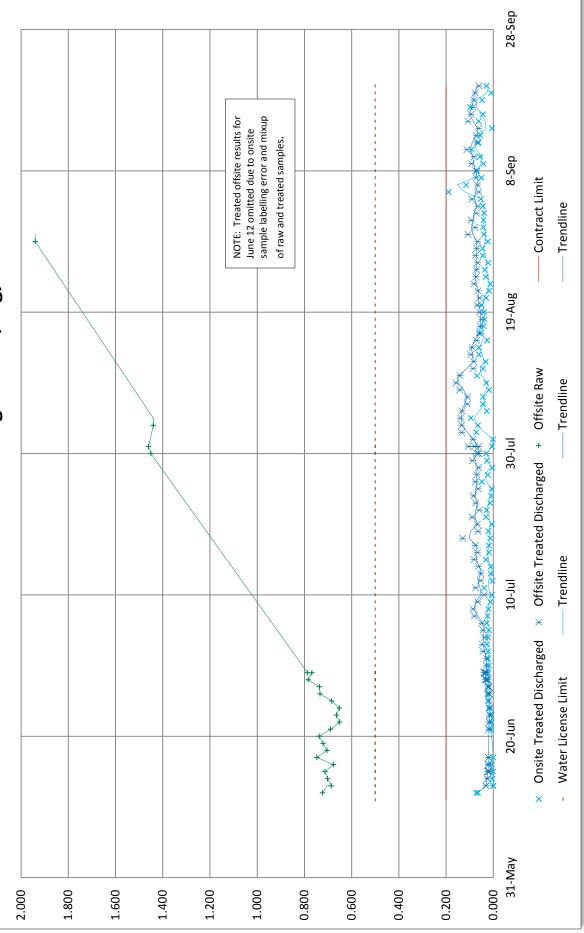
Prepared by:

pure elements environmental solutions RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca

9 On and Off-site Analysis of Contaminants of Concern

9.1 Regulated Contaminants of Concern – Treated Water

Parameter	Unit	Maximum Daily Average Concentration (contract)	Onsite Lower Detection Limit
Total Arsenic	mg/L	.200	0
Total Copper	mg/L	.010	0.001
Total Lead	mg/L	.010	0.003
Total Nickel	mg/L	.050	0.006
Total Zinc	mg/L	.020	0.010
Nitrate as nitrogen	mg/L	5	0.23
Nitrite as nitrogen	mg/L	0.400	0.015
Total Ammonia as nitrogen	mg/L	5	2
Total Suspended Solids	mg/L	15	5
рН	-	6 to 9	



Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

9.2 Total Arsenic Analysis'

Total Arsenic Monitoring Results, mg/L

Prepared by: **DUFC CICMENTS** RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 environmental solutions Tel: 1-866.995.2474 • www.pure-elements.ca

Reviewed and approved by: Justin Bunz, CET

Page 18 of 53

AEL Engineering Ltd.

Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

9.3 Total Arsenic Analysis – Discharged Water

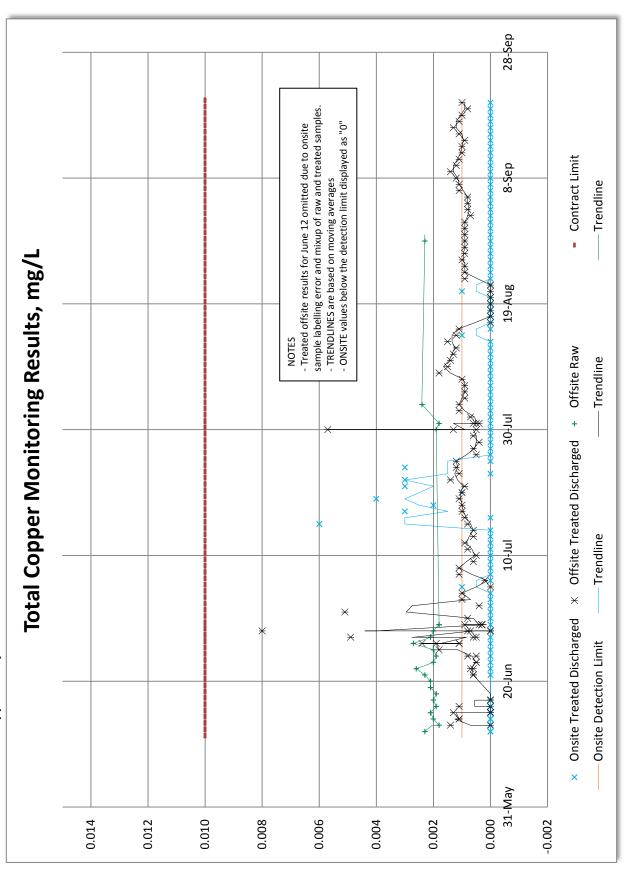
Total Arsenic - Discharge Water Monitoring Results, mg/L

				1	1	1	1]	28-Sep	
1			NOTE: Treated offsite results for June 12 omitted due to onsite sample labelling error	nd treated samples.	0.189	*	*	× × × × × ×		Trendline — Trendline
19			NOTE: Treated offsi omitted due to onsi	and mixup of raw and treated samples.	×	*	***********	××××××××××××××××××××××××××××××××××××××	g 8-Sep	Water License Limit Trer
0					C S	OCTTO	××××××××××××××××××××××××××××××××××××××	× × × × × ×	19-Aug	- Contract Limit - Water Li
						* 0.129	**************************************	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	30-Jul	
							* * *	× × × × × × × × × × × × × × × × × × ×	10-Jul	 M Offsite Treated Discharged
							××		20-Jun	Onsite Treated Discharged
				0.22.0	0.200	0.150		00000	31-May	× Onsite

RR#1, Site 1, Box 77, Dewinton, ABTOL 0X0Reviewed and approved by:
Justin Bunz, CETTel: 1-866.995.2474 • www.pure-elements.caAEL Engineering Ltd.

Page 19 of 53

Prepared by: pure elements


environmental solutions

Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

9.4 Total Copper Analysis'

Prepared by: **DUFC CICMENTS** RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 environmental solutions Tel: 1-866.995.2474 • www.pure-elements.ca

Reviewed and approved by: Justin Bunz, CET

Page 20 of 53

AEL Engineering Ltd.

Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

9.5 Total Lead Analysis'

Total Lead Monitoring Results, mg/L

Offsite treated spikes to 19, however no discharg spikes were not detecte	Offsite treated spikes to 0.127 on June 18 and 0.070 on June 19, however no discharge occurred during those days. These spikes were not detected in onsite samples which could be		
attributed to inaccuracy which was used onsite u	attributed to inaccuracy of the Exact QuickCheck method which was used onsite up until June 26.		
*	×	L	
> 			mitted due to onsite sample
	× *	 labelling error and mixup of raw and treated samples. Treated results for June 18 - 20 omitted due to zero discharge Lead spike in raw and offsite treated occurred during June 18 20 which was not accurately detected with onsite test methods. The Hach Dithizone method 8033 was not commenced until June 	treated samples. itted due to zero discharge d occurred during June 18 - d with onsite test methods. is not commenced until June
×	×		eu. iverages
;			
*	×		
+ + 0.0014		+	" " _w 0.0012
	X X X X X X X X X X X X X X X X X X X	XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	× * * * * *
20-Jun	Jul 30-Jul	19-Åug 8-9	ep 28-Sep

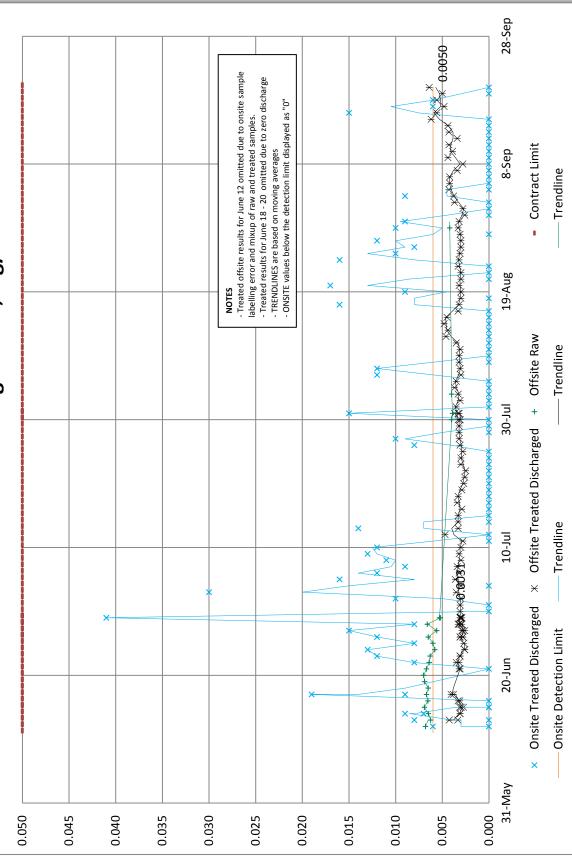
 RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0
 Justin Bunz, CET

 Tel: 1-866.995.2474 • www.pure-elements.ca
 AEL Engineering Ltd.

Page 21 of 53

Prepared by: **DUTE Elements** RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0

environmental solutions



2012 End of Season Treatment Report **Tundra Water Treatment Facility**

Issued by: T. Comartin, P.Eng Issued: December 5, 2012 Revision No. 0

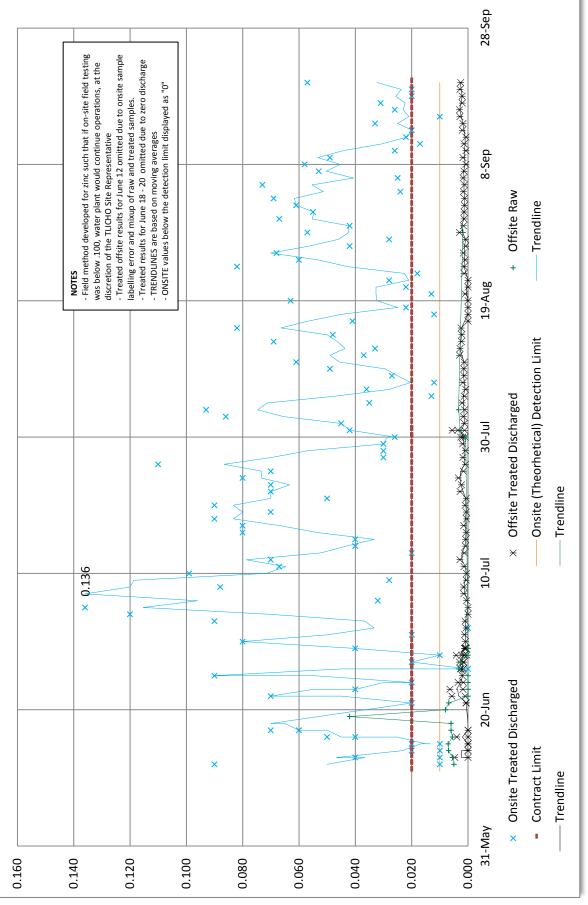
TUN 2012

Total Nickel Analysis' 9.6 Total Nickel Monitoring Results, mg/L

AEL Engineering Ltd. RR#1, Site 1, Box 77, Dewinton, AB T0L 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca pure elements environmental solutions Prepared by:

Reviewed and approved by: Justin Bunz, CET

Page 22 of 53


Tundra Water Treatment Facility 2012 End of Season Treatment Report

Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

9.7 Total Zinc Analysis'

Total Zinc Monitoring Results, mg/L

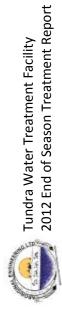
Prepared by: **DUTE Elements** RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 environmental solutions Tel: 1-866.995.2474 • www.pure-elements.ca

Tundra Water Treatment Facility 2012 End of Season Treatment Report

Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

9.8 Total Nitrate Analysis'

mg,
—
4
<u> </u>
•
~
-
—
—
5
~
Ð
Result
علال
00
~
rin
•
<u> </u>
\frown
<u> </u>
nitor
•=
Ξ
0
Ě
<
7
_
S
as
(U
_
Ð
ũ
—
<u>i</u> u
<u> </u>
trate
•—
7
2


							28-Sep	
	NOTES - Treated offsite results for June 12 omitted due to onsite sample	labelling error and mixup of raw and treated samples. - No onsite testing occurred from July 3 - August 3 as a result of no available onsite reagents. This was noted in the monthly reports - Treated results for June 18 - 20 omitted due to zero discharge - TRENDLINES are based on moving averages - ONSITE values below the detection limit displayed as "0"			× <		30-Jul 19-Aug 8-Sep	Discharged × Offsite Treated Discharged - Contract Limit n Limit
						XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20-Jun	 Onsite Treated Discharged Onsite Detection Limit
5.000 4.500	4.000	3.000	2.500	1.500	1.000	0.000	31-May	

Prepared by: DUTE Elements RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 environmental solutions Tel: 1-866.995.2474 • www.pure-elements.ca

Reviewed and approved by: Justin Bunz, CET

Page 24 of 53

AEL Engineering Ltd.

9.9 Total Nitrite Analysis'

Nitrite as N Monitoring Results, mg/L

									28-Sep	
			due to onsite sample i samples. the monthly reports the to zero discharge	s played as "0"	×			**** ****		ine —— Trendline
			NOTES - Treated offsite results for June 12 omitted due to onsite sample abelling error and mixup of raw and treated samples. - No onsite testing occurred from July 3 - August 3 as a result of no available onsite reagents. This was noted in the monthly reports - Treated results for June 18 - 20 omitted due to zero discharge	- TRENDLINES are based on moving averages - ONSITE values below the detection limit displayed as "0"				× × ×	8-Sep	ion Limit —— Trendline
5			NOTES NOTES - Treated offi labelling error - No onsite fres - Treated res	- TRENDLINE: - ONSITE valu			×		19-Aug	nit —— Onsite Detection Limit
)									30-Jul	ed - Contract Limit
									10-Jul	* Offsite Treated Discharged
								× × ****		× Onsite Treated Discharged
	0.200	0.400	0.350		0.250	0.200			31-May	

Prepared by: DUTE Elements RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 environmental solutions Tel: 1-866.995.2474 • www.pure-elements.ca

Reviewed and approved by: Justin Bunz, CET

Page 25 of 53

AEL Engineering Ltd.

Tundra Water Treatment Facility 2012 End of Season Treatment Report

Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

9.10 Total Ammonia Analysis'

Ammonia as N Monitoring Results, mg/L

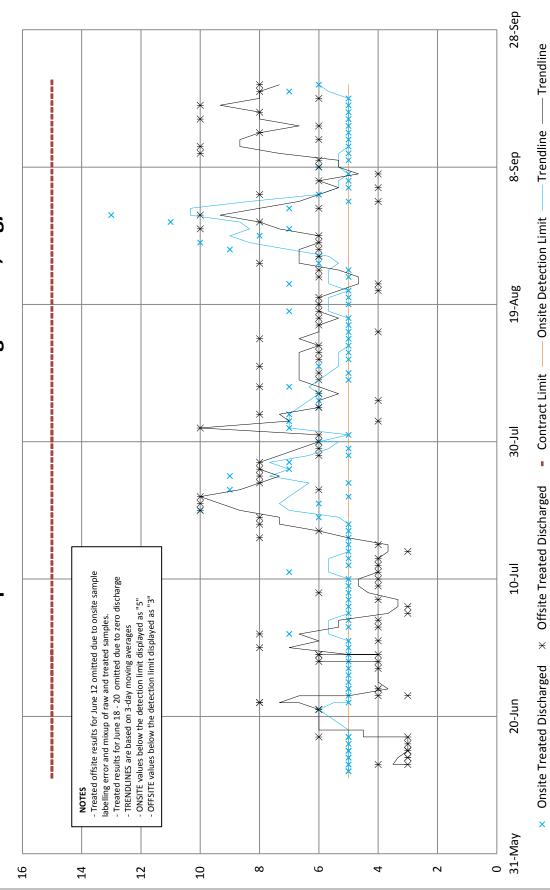
		28-Sep	
	Image: Section of the section of t	8-Sep	
5	NOTES	19-Aug	 Contract Limit Trendline
)		30-Jul	Offsite Treated Discharged Trendline
		10-Jul	×
		20-Jun	 Onsite Treated Discharged Onsite Detection Limit
	3.500 4.000 3.500 3.500 1.500 1.500 0.500 0.500	31-May	

Prepared by: DUTE Elements RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 environmental solutions Tel: 1-866.995.2474 • www.pure-elements.ca

Reviewed and approved by: **Justin Bunz, CET**

Page 26 of 53

AEL Engineering Ltd.


2012 End of Season Treatment Report **Tundra Water Treatment Facility**

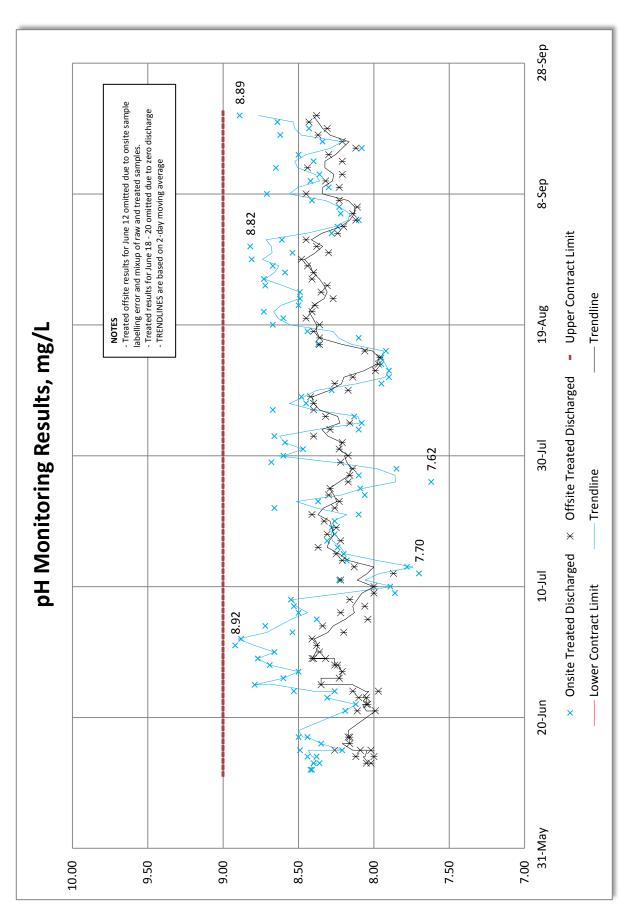
Issued by: T. Comartin, P.Eng Issued: December 5, 2012 Revision No. 0

Total Suspended Solids Analysis' 9.11

Total Suspended Solids Monitoring Results, mg/L

AEL Engineering Ltd. RR#1, Site 1, Box 77, Dewinton, AB T0L 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca pure elements environmental solutions Prepared by:

Reviewed and approved by: Justin Bunz, CET Page 27 of 53



Tundra Water Treatment Facility 2012 End of Season Treatment Report

Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

9.12 pH Analysis

Prepared by: DUTE Elements RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 environmental solutions Tel: 1-866.995.2474 • www.pure-elements.ca

Page 28 of 53

Justin Bunz, CET AEL Engineering Ltd.

Reviewed and approved by:

Tundra Water Treatment Facility 2012 End of Season Treatment Report Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

10 Fuel Consumption

Fuel usage for water treatment plant operations consists of that utilized by the main water plant generator, two raw supply pumps, a discharge pump and light towers.

Total fuel consumed by this treatment equipment is estimated at 80,000 litres for the 2012 treatment season. This includes all the days the plant was producing water, whether or not discharge was occurring.

Prepared by: **DURE Elements** environmental solutions

RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca

11 Overall System Operation and Performance

The overall plant operations were smooth, but not without a few incidents, mostly involving sampling errors and internal plant shut downs due to inability to accurately test to low enough detection levels. The sampling errors and the internal shut down are described in further detail in the sections below.

11.1 Commissioning

Commissioning occurred from May 29th – June 11th, and discharge approval was granted on June 12th. Discharge commenced on June 12th, with a minor amount of water being discharged from June 12th, which was added to the totals reported for June 13th by the TLICHO Site Representative. Therefore, due to the way the discharge volumes were recorded, the weekly report may indicate a water license exceedance over the initial allowable 6600 m³ per day, however no actual exceedance occurred.

11.2 Process Changes

Process changes were made for plant optimization as described in this document (see Section 4 – Changes to Treatment Regime).

11.3 Raw Water Intake

Raw water was supplied by two diesel powered end suction centrifugal pumps, maintained by the onsite mechanical team. There were minimal supply problems. The intake was moved late in the year due to the lowering of Upper Pond as a result of treatment operations. Please refer to the schematic in Section 3 for intake location/s.

11.4 Performance - Water Treatment Plant

The plant treated water continuously from June 11th through to September 20th with the exception of June 10th, June 11th and June 12th when a self-imposed shut down occurred as a result of high onsite zinc values. During this shut down period, offsite values indicated a high treated lead exceedance, as well as an increase in raw zinc to double the discharge limit. No water was being released from June 10 – 12th therefore there was no contravention of the License or water released exceeding contract limits.

Minor shutdowns occurred throughout the treatment season to allow for ongoing repairs or maintenance as necessary. These are as noted in Sectio12 – System Upsets, Corrective Actions and Maintenance Performed.

The plant performed satisfactorily and as anticipated during all ongoing treatment operations.

11.5 Safety

Please refer to Section 5 – Safety for a summary of onsite safety at the water treatment plant.

Prepared by: **PUTE Elements** environmental solutions RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca

11.6 Preventative Maintenance

Please refer to Section 12 – System Upsets, Corrective Actions and Maintenance Performed for a summary of preventative maintenance performed over the course of the treatment season

11.7 Winterization

The plant was shut down on September 20th and winterization occurred from September 20th through to September 26th.

11.8 Compliance - Total Water Treated and Discharged

The water treatment plant at Tundra Mine treated 784,000 cubic metres of water in the 2012 treatment year, of which 669,000 m³ was discharged into Hambone Lake. The balance of the water was re-circulated back to Upper Pond. The treatment volume includes approximately 24,000 cubic metres of water treated from June 9 through June 12, during the commissioning period of May 29 through June 12, 2012. Please refer to Appendix I - Daily Discharge Volumes and Chemical Usage Data for exact volumes.

Regardless of two treatment trains (instead of all three) being utilized in the 2012 treatment season, targeted discharge volumes were easily met by the treatment plant.

11.9 Compliance - Discharge Water Quality Meeting Contract Specifications

All water discharged into Hambone Lake met contract specifications confirmed by third-party offsite results with the exception of 649 m³ on June 12, 2012, the first day of discharge, for which the offsite samples indicated an arsenic level around 0.7 mg/L. Please refer to Section 9 – Onsite and Offsite Analysis of Contaminants of Concern together with Appendices F and G containing of Offsite and Onsite testing results for the parameters of concern.

Testing results from the first day of discharge operations was also the first day of onsite collection of samples to be air-shipped to Taiga in Yellowknife, and was completed very quickly. The onsite sampling program and notations for the samples themselves had not been formally launched. Nor had the laboratory program with Taiga been officially established.

Pure Elements and Aboriginal Engineering are confident the water released this particular day was also well within the contract limits. This statement is supported in the following section:

Prepared by: **PURE Elements** environmental solutions

RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca

11.10 Field Sampling/Laboratory Error First Day of Discharge Operations

Offsite results for June 12 Total Arsenic results for treated water of 0.725 and 0.705 respectively, mg/L is attributed to the following set of conditions leading to the reporting errors:

- with 8 sets of sample bottles, and multiple labels, the site monitor placed raw water into the bottles later labelled treated; or
- a laboratory error whereby raw sample/s were analyzed as 'treated.'

The 649 m³ discharged June 12 into Hambone Lake on the first day of discharge was most likely, well within the contract limits for the following reasons:

- Two separate sets of off-site samples taken June 13 indicate a treated water Total Arsenic level of 0.013 mg/L;
- Onsite samples indicate total arsenic levels as well within the contract limits prior to, during, and after the first day of discharge (Please refer to Appendices F and G, Off-site and On-site Test Results);
- The sample did not turn a dark brown colour during the onsite testing. The onsite test range is 0 0.200 mg/L. Attempting to test for arsenic levels higher than 0.200 mg/L results in a very dark brown colour which falls outside of the range of samples able to be read with the testing method used (see Appendix H – Onsite Testing Methods for complete onsite test methods.) This is why all raw samples required dilution prior to testing. Because the onsite test was even *able to be conducted*, evidences the total arsenic to be within the limits of the test range;
- Effluent results collected by the, TLICHO Site Representative post the two treatment trains being utilized, indicates results below the discharge limits, as much as a week prior to discharge commencement, confirming the treatment process was working correctly. After Train 2, the water goes through two additional settling stages and post Train 3, there are three additional settling stages, therefore the water quality can only improve with respect to Total Arsenic (refer to schematic in Section 3). It is not at all likely the plant worked well on June 5 & 6 (see results below) and then the treatment process stopped working during onsite treated sampling June 12 while 649 m³ of water was discharged, and then resumed proper operations on June 13;

Date	Sample Location	Lab	Sample ID	Туре	Total As
5-Jun-12	Train #3 Effluent	ALS	L1157516-1	Treated	< 0.20
6-Jun-12	Train #2 Effluent	ALS	L1158652-1	Treated	0.014

- The offsite raw results for June 12 indicated a raw Total Arsenic level of 0.723 mg/L. While, for the same day, the offsite results reported for treated water were 0.725 and 0.705 respectively for Composite Sample A and duplicate Composite Sample B. Offsite raw and treated values are within 97.5% to 99.7% of each other, and are therefore highly suspect; and
- The overall impact of a release of 649 m³ of water with average 0.724 mg/L Total Arsenic on June 12 & 13 operations would be a resultant average discharge of 0.096 mg/L Total Arsenic (less than half of the allowable contract limit)

DURE Elements RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca

Tundra Water Treatment Facility 2012 End of Season Treatment Report Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

11.11 Mitigation of Field Sampling Errors

The steps taken to mitigate this type of potential sampling error was to sample separately for raw and treated water, and to keep the raw samples segregated from treated samples.

This mistake did not re-occur, though there was an additional onsite sampling error whereby the nitric and sulfuric acid preservatives were accidentally switched, which had the effect of inaccurate Nitrate/Nitrite and pH results. (July 11, see Note 6, Appendix F of this document). This error occurred partially as a result of confusion surrounding a variety of different preservatives being supplied for onsite preservation, due to an offsite laboratory shortage of preservatives. The duplicate sample was well within the contract limits.

12 System Upsets, Corrective Actions and Maintenance Performed

Outlined below is a summary of process and operations upsets and the corrective actions taken to resume operations, as well as system maintenance.

12.1 June

- June 15th, 2012. A tear in the liner developed in sump #1. The collected water from Geotubes and the composite samplers was re-routed to sump #2. Treated water from sump #2 was discharged pumped back into upper pond.
- June 16th, 2012 Repairs were made to sump #1, and permission was granted to resume discharge to Hambone Lake.
- June 18-20th, 2012 Plant shut down due to lab inability to produce repeatable results on the Zinc test. Offsite lead detected in raw and treated samples which were not detected onsite.
- June 21st, 2012 All plumbing completed on 1st set of Geo-tubes.
- June 26th, 2012 As a result of high winds, required repairs were made to the Sump #1 liner.
- June As required, cleaned and calibrated all pH probes

12.2 July

System maintenance performed on the water treatment equipment for the month of July was as follows:

- July 5^{th,} 2012 Rebuilt all Ferric Pumps, replaced all check valves and diaphragms as required.
- July 6th, 2012 Installation of plant discharge header to allow water to be diverted from trains two and three, to all three sets of Geo-tubes.
- July 10th, 2012 Servicing of intake and discharge pumps.
- July 22nd, 2012 Cleaned lime pump injectors.
- July 28th, 2012 Cleaned and repaired lime check valves and injectors.
- July As required, cleaned and calibrated all pH probes

Prepared by: **PURE Elements** environmental solutions

RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca

12.3 August

System maintenance performed on water treatment equipment for the month of August was as follows:

- August 1st, 2012 Repaired the floc mixer on train #3.
- August 4th, 2012 Removed, overhauled and replaced parts as required on all chemical feed equipment and injectors.
- August 6th, 2012 Repaired and secured top of liner on sump #1. Installed diffusers for discharge hoses into upper pond, from lower pond.
- August 7th, 2012 Repaired liner on sump #1, with another layer of sandbags to help divert water from sump #2 to sump #1.
- August 11th, 2012 Lime tank diffusers repaired.
- August 15th, 2012 Installed screens on ferric tank pump foot valves, to reduce imposing sediment.
- August 20th, 2012 Power lost for a short period of time to discharge flow meter overnight. New procedures implemented for all personnel to monitor light towers as indicators of flow meter working.
- August 22nd, 2012 Lime pumps down due to source electrical issue. Repaired and returned to normal operation.
- August 28th, 2012 Intake pump shut down due to low oil. Serviced and returned to normal operation.
- August 29th, 2012 Repaired train 3 floc mixer. Shaft was shortened and re-machined to fit properly
- August 30th, 2012 Over-hauled all backup chemical feed equipment.
- August As required, cleaned and calibrated all pH probes

12.4 September

System maintenance performed on water treatment equipment for the month of September was as follows:

September 7th, 2012 Plant generator was shutting down due to over-temperature- resolution by on-site mechanics.
 September 13th, 2012 Discharge pump shutting down intermittently, no trouble codes evident however operator suspects pump is using more oil.
 September 20th, 2012 Raw TSS on rise and intake pumps are sucking mud with high raw TSS. Decision made by TLICHO Site Representative to cease water treatment operations and commence winterization.
 September As required, cleaned and calibrated all pH probes

13 Downstream Effects

Impact on the water quality and the environment as a result of release of treated water through Hambone Lake has and is being evaluated on an ongoing basis by others.

Attached are the following appendices which support the aforementioned studies:

- Appendix D: 2012 SNP Results Tundra Mine Remediation; and
- Appendix E: 2010 Tundra Aquatic Ecology Baseline and Construction Monitoring Report.

The entire treatment regime, discharge parameters and monitoring programs have been designed around minimizing downstream impact. Since all of the target treatment objectives have been met in the discharge water during the 2012 treatment season, it is logical to assume that downstream effects of the water facility operations and treatment program have met objectives of minimizing downstream effects. Without review of the 2012 Tundra Aquatic Ecology Baseline and Construction Monitoring Report, and complete evaluation of downstream water quality and other parameters, it is difficult, if not impossible, to accurately quantify downstream effects of water treatment operations occurring at the Tundra Mine remediation site.

We have provided a comparative analysis of the contaminants of concern and these are laid out on the following page. Data has been taken from Appendix D to produce monthly averages for these contaminants of concern. Appendix E data has not been included due to the availability of only a single data point, being July 23, 2012.

13.1 Comparative Analysis – Discharge vs Hambone Lake/Outlet vs Powder Mag Lake/Outlet

Data captured from Appendix E has been presented in Appendix J – Downstream Effects for comparative analysis together with observations outlined in the next section. Please refer to Appendix J while reviewing the observations in the following section.

Prepared by: **DUTE Elements** environmental solutions

RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca

13.2 Observations – Downstream Effects

Qualifications: The comments provided herein serve as observations only, specific to the contaminants of concern as outlined in the contract document, as well as a few parameters specific to treatment chemicals. No additional analysis' of results prior to the 2012 monitoring season have been evaluated. Additional review of prior sampling together with future sampling is required prior to further evaluation and comment. No evaluation of groundwater monitoring wells was considered. Monthly averages from the SNC report for the 2012 treatment season has been considered and presented. No data prior to June 2012 was considered. Precipitation and wind has not been considered as the overall stormwater and water basins have not been evaluated.

Total Arsenic in Hambone Lake appears to have been slightly increased, potentially as a result of discharge operations in 2012. This is almost negligible and the effect dissipates and is not noticeable by the time the water reaches Powder Mag Lake.

Total Copper, Lead, Nickel and Zinc in Hambone and Powder Mag Lakes appears unaffected due to 2012 discharge operations.

Though suspended solids from discharge operations positively relates to increases in Hambone Lake, this gradual increase is likely a result of August and September wind and precipitation events.

Discharge operations appears to have slightly impacted pH in Hambone Lake, but the effect has diminished by the time the discharge flows through Powder Mag Lake.

Calcium, iron and sulphate concentrations have increased, most likely affected by discharge operations. Key components of chemicals used in the treatment process are calcium hydroxide and ferric sulphate. These have long been treatment chemicals of choice for arsenic removal and were approved treatment chemicals for Tundra site remediation.

Prepared by: **DUTE elements** environmental solutions

RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca

14 Recommendations for the 2013 Treatment Season

Recommendations for the 2013 treatment season fall into three main categories:

- Quality Control and Quality Assurance;
- Operational; and
- Environmental recommendations.

A thorough evaluation of these recommendations will ensure smooth operations for the 2013 treatment season and will allow onsite water treatment operations to proceed smoothly, with minimal interruption. It will also allow for the proper preparation of contaminants for final disposal and/or de-commissioning, such that there is minimal, if any, environmental impact.

14.1 **Quality Control and Quality Assurance**

New Method for Onsite Analysis:

The onsite method utilized for zinc in the 2012 treatment season was not able to adequately meet the lower limit of .010 mg/L outlined by the Hach test method (see Appendix H – Onsite Testing Methods).

There was a third party lead exceedance detected in the water during a period when the plant was off-line. The plant had previously shut down due to the inability to produce repeatable, accurate results for zinc. The lead exceedance was not detected with the onsite testing regime and more information regarding this exceedance is outlined in the following section.

Additionally there were challenges with the arsenic test, in that there are so many steps to the test, it was difficult to achieve onsite repeatability of the test. The onsite arsenic results were also significantly lower, in most cases, than the off-site results however this was not always by a consistent amount.

The correlation study provided for the 2012 season left some questions unanswered. In order for onsite accuracy and repeatability, a new onsite testing method is recommended for the upcoming and for what is anticipated as the final treatment season.

Prepared by: environmental solutions

DURE Elements RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca

Verification of Third Party Results and Improved Delivery Times

2012 operations relied heavily on results from third party laboratories for confirmation of results as well as for discharge authorization. It is possible that field operations from 2012, in fact, relied *too* heavily on third party laboratory results. There was no third party QA-QC program performed on the laboratory used, and in some cases the laboratory provided results that did not seem logical.

This heavy reliance should instead be replaced by a QA-QC check to verify the degree of accuracy of the third party results, especially if results exceeding the contract limits, or fall outside of the range of those normally anticipated.

Issues with delivery times from the lab was a problem and this could be easily remedied by spending time with the lab to develop an understanding of timelines required for the Tundra Mine site project.

In addition, there were several sets of results returned from the laboratory that were confirmed as errors, as well as a few sets of results that were left unchallenged because field personnel did not have any reason to suspect a laboratory error:

- On July 19, a third party result of 30 mg/L for TSS was received and upon request for a re-test this result was changed by the laboratory to a value of 8 mg/L;
- An August 5 raw sample taken from Lower Pond was accidentally labelled as a treated sample by the laboratory;
- June 12 (first day of discharge) the third party laboratory reported treated results of .725 and .705 mg/L total arsenic. This was initially thought to be an error in labelling and is more fully detailed in Sections 11.9 and 11.10 of this report; and
- June 18 and June 19: Third party high raw and treated lead results were received (Raw = 2.00 mg/L, Treated = .059 and .070 respectively for June 19th in fact the plant was shut down during this period due to concerns over adequate onsite detection of zinc), however SNP results from Appendix D outline June 19th lead results in raw water of .0019 mg/L and lead in treated water end of discharge pipe as .0007 mg/L, both well within the discharge limits. At the time, onsite operations believed a 'lead anomaly' had occurred and only upon review of information provided in the SNC reports does it point to the possibility of a laboratory error; and

Communication and Sharing of Third Party Resutls

Only upon review of the Seasonal SNP reports did some of the questions relating to third party laboratory analysis come to light. If, in fact, the SNP results and other public results of water analysis' can be shared upon receipt with field operations' at the Tundra Mine site, this could serve as partial third party QA-QC and quickly help confirm validity of laboratory results.

Prepared by: **DURE Elements** environmental solutions

RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca

14.2 Operations

System Failure Preparation Plan (system redundancy) :

Ensuring a back-up plan is in place in the event of primary equipment failure, specifically for raw intake supply and discharge pumps will allow for smooth process operations and unnecessary or unexpected shutdowns. This would involve evaluating the "what-if's" for the various operational issues and also should include emergency operations and procedures to take in the event of process or equipment failure; and

Primary TSS Reduction:

The remainder of the water to be treated from the tailings ponds is high in TSS. In fact near the end of the 2012 treatment season the raw supply TSS exceeded 300 mg/L and it was decided to shut down the process. There are low volumes of outlying shallow water which will need to be pumped from a variety of locations for treatment. It would alleviate the possibility of TSS contract exceedances if this water was pumped to one holding location, and then delivered through a minimum one day retention clarification stage to the water treatment plant intake (by gravity, if possible). This will effectively reduce the TSS to a level where it can be treated further to ensure it remains within contract discharge limits. Another (and probably less expensive) option to primary settling is the introduction of high throughput filters which can be combined in a header to provide the suspended solids reduction desired. These filters are disposable and can be changed as required. They are a low capital cost item with a small footprint which could be easily introduced on the raw supply end, (and also on the discharge end, if deemed necessary) in order to overcome this challenge.

Prepared by: **DUTE elements** environmental solutions

RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca

14.3 Environmental

Sludge Handling Program:

Perhaps the largest challenge for water treatment operations is what is left behind when all the water is treated, combined with limited timelines introduced by seasonal constraints and equipment availability.

Once the tailings water is treated, there will be approximately 1.5 million kilograms of sludge to dispose of. We suggest that in order to safely, efficiently and effectively dispose of this sludge, pilot testing and development of a sludge handling program be developed as soon as possible to allow for the proper de-watering and disposal of the sludge remaining in Geotubes. There are many ways of dealing with the sludge however it will be challenging to find a method that is easy, safe, effective and efficient; and

Water Plant De-Commissioning Plan:

Like the remainder of the sludge in the Geotubes, there will also be remaining sludge and chemical in the reactor and batch tanks to deal with. Simple shut-down and winterization during the final treatment season will not be possible. A plan should be developed that can easily and effectively be carried out onsite for the proper removal, disposal and/or decommissioning of the water treatment plant and associated components and chemicals. An advance plan that all parties have agreed with and approved will ensure smooth onsite future operations while minimizing any elements of surprise and/or unnecessary project costs or delays.

RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca

- 15 List of Appendices
 - 15.1 Appendix A Tundra 2011 End of Season Tailings Water Treatment Report WESA
 - 15.2 Appendix B Analysis of Treatment Chemicals
 - 15.3 Appendix C Removing and Stabilizing Arsenic in Acid Mine Water
 - 15.4 Appendix D 2012 SNP Results Tundra Mine Remediation
 - 15.5 Appendix E 2010 Tundra Aquatic Ecology Baseline & Construction Monitoring Report
 - 15.6 Appendix F 2012 Off-site Test Results
 - 15.7 Appendix G 2012 On-site Test Results
 - 15.8 Appendix H Onsite Testing Methods
 - 15.9 Appendix I Daily Discharge Volumes and Chemical Usage Data
 - 15.10 Appendix J Downstream Effects

15.1 Appendix A – Tundra 2011 – End of Season Tailings Water Treatment Report WESA

Appendix A

Tundra Mine 2011 Tailings Water Treatment Report

WESA

Prepared by: **pure elements** environmental solutions

RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca

WASTEWATER TREATMENT PLANT SEASONAL REPORT 2011

PHASE 2 REMEDIATION TUNDRA MINE SITE, NT

Prepared for:

Aboriginal Engineering 100 Archibald Street Yellowknife, NT X1A 2N1

Prepared by:

WESA Technologies Inc.

The Tower, The Woolen Mill 4 Cataraqui Street Kingston, ON K7K 127

WESAtech Project#: W-T8603

December 2011

TABLE OF CONTENTS

1.0	CORPORATE PROFILE1
2.0	INTRODUCTION1
3.0	WASTEWATER TREATMENT PLANT CHEMICAL PROCESS DESIGN
3.1.	COAGULATION
3.2	. PH ADJUSTMENT
3.3	FLOCCULATION
3.4	. Solids Removal
4.0	PLANT DESIGN AND CONSTRUCTION
4.1.	Platform Construction
4.2	. Снемісаl Reaction Tanks
4.3	. Influent Distribution
4.4	. PH CONTROL
4.5	CHEMICAL AGITATION AND FLOW
4.6	CHEMICAL DOSAGE PUMPS
4.7	. Geotube Laydown Area
4.8	Design Upgrade Deviences
5.0	CHEMICAL FORMULATION
5.1.	Arsenic Removal
5.2	. Lead and Zinc Removal Sodium Metabisulphite
6.0	COMMISSIONING OF THE WWTP9
6.1.	CHRONOLOGY OF PLANT COMMISSIONING
6.2	. Dry Startup
6.3	. Wet Startup10
6.4	. GEOTUBE COMMISSIONING
7.0	OPERATION SUMMARY
7.1.	Discharge Scenarios11
7.2	. AANDC DISCHARGE APPROVAL
7.3	
8.0	MAINTENANCE CHALLENGES AND RECOMMENDATIONS
8.1.	Ball Check Valves
8.2	. Influent Feed Lines
8.3	. LIME CHEMICAL ADDITION
8.4	. Plant Lighting
8.5	. Electrical
8.6	. Hydraulic Considerations15
8.7	. GEOTUBE RELAXATION

9.0	DISCHARGE MONITORING AND QUALITY CONTROL PROGRAM	16
9.1.	Documentation and Records	16
9.2.	Sampling	17
9.3.	Correlation Survey	18
9.4.	Monitoring Plan	19
9.5.	QUALITY ASSURANCE AND QUALITY CONTROL	20
10.0	CONCLUSION	21

LIST OF TABLES

Table 1:	Discharge criteria as found PWGSC's original tender document	2
Table 2:	Summary of Lower Pond's contaminant concentrations during the	
	2010 Tundra Mine project season	7
Table 3:	Influent 2011 Average Feed Wastewater Characteristics	8
Table 4:	Chronology of Plant Commissioning	.10
Table 5:	Summary of both on-site and off-site sampling during the correlation survey	17
Table 6:	Summary of both on-site and off-site sampling during the monitoring plan	18
Table 7:	Effluent 2011 Average Wastewater Characteristics	.20

LIST OF TABLES

(at end of text)

Table 8: 2011 Off-site Influent Wastewater Characteristics

Table 9: 2011 Off-site Effluent Wastewater Characteristics

LIST OF FIGURES

(at end of text)

- Figure 1: Summary of off-site arsenic concentration measurements for the 2011 project season
- Figure 2: Summary of off-site copper concentration measurements for the 2011 project season
- Figure 3: Summary of off-site lead concentration measurements for the 2011 project season
- Figure 4: Summary of off-site nickel concentration measurements for the 2011 project season
- Figure 5: Summary of off-site zinc concentration measurements for the 2011 project season
- Figure 6: Summary of off-site ammonia concentration measurements for the 2011 project season
- Figure 7: Summary of off-site nitrate concentration measurements for the 2011 project season
- Figure 8: Summary of off-site nitrite concentration measurements for the 2011 project season
- Figure 9: Summary of off-site TSS concentration measurements for the 2011 project season

- Figure 10: Summary of off-site pH measurements for the 2011 project season
- Figure 11: Plant Winterizing Phase Frost Fighter
- Figure 12: Plant Winterizing Phase Tanks Freezing
- Figure 13: Chemical Pump and Fitting Storage (Seacan)
- Figure 14: Chemical Mixer Storage (Seacan)
- Figure 15: Ferric Onion Tank Storage (Platform)
- Figure 16: Lime Onion Tank Storage (Platform)
- Figure 17: Polymer and Sodium Metabisulfite Tank Storage (Platform)
- Figure 18: Chemical Makeup Blower Storage (Platform)
- Figure 19: Process Onion Tank Storage (Platform)
- Figure 20: Flow Meter Storage (Seacan)
- Figure 21: Transmitter and pH Sensor Storage (Storage Room)
- Figure 22: Miscellaneous Fitting and Flow Alarm Storage (Storage Room)
- Figure 23: Electrical Control Panel Storage (Platform)
- Figure 24: Electrical Control Panel Plywood Enclosure (Platform)

1.0 CORPORATE PROFILE

WESA Group Inc. is an employee-owned consulting firm specializing in the fields of contaminant and water supply hydrogeology, engineering, earth sciences, industrial hygiene and occupational health & safety. WESA Group Inc. (WGI) is composed of WESA Inc. (WESA), WESA Technologies Inc. (WESAtech), and OEL.

- WESAtech provides water and wastewater treatment expertise, which includes design, build, and operation services, culminating in training owner representatives.
- WESA provides expertise in environmental engineering and assessment, project management, contract management, health and safety and quality controls.
- OEL provides knowledge in hydroelectric systems, design, tendering and project construction management including environmental assessments and associated components.

The company has a staff of over 140 highly qualified scientists, engineers, industrial hygienists, environmental auditors, project managers, environmental risk specialists, financial specialists and support personnel. Most of the members of the senior management team have worked for WESA for more than 10 years. The company work ethic is focussed on service, innovation and integrity. This is reflected in the company's broad client base; many clients have relied on WGI's services for over two decades.

2.0 INTRODUCTION

WESAtech was retained by Aboriginal Engineering Ltd. (AEL) to design, build, and operate a wastewater treatment plant (WWTP) capable of removing contaminants from water contained in the Tailings Containment Area (TCA) at the Tundra Mine site, Northwest Territories.

The WWTP was designed to remove arsenic and associated metals, described in **Table 1**, through chemical precipitation. The precipitation of the metals was executed using ferric sulfate $(Fe_2(SO_4)_3)$ and hydrated lime $(Ca(OH)_2)$, at a minimum iron to arsenic ratio of five to one by weight. A flocculent (floc) is then formed by adding a polymer flocculating agent (flocculent) to trap the precipitated metals in a filterable particle. The particle is then removed from the water using Geotube® geocontainment technology.

Parameter	Unit	Maximum allowable concentration				
Metals						
Total arsenic	mg/L	0.2				
Total copper	mg/L	0.01				
Total lead	mg/L	0.01				
Total nickel	mg/L	0.05				
Total zinc	mg/L	0.02				
Anio	ns					
Nitrate as nitrogen	mg/L	5				
Nitrite as nitrogen	mg/L	0.4				
Conventional	Conventional Parameters					
Total ammonia as nitrogen	mg/L	5				
Total suspended solids (TSS)	mg/L	15				
рН	-	6 – 9				

Table 1: Discharge criteria as found PWGSC's original tender document

3.0 WASTEWATER TREATMENT PLANT CHEMICAL PROCESS DESIGN

The design of the WWTP relies on the principles of the physical-chemical entrapment of metals, by converting them from an aqueous dissolved state to a solid state. The treatment process is comprised of four steps which are coagulation, pH adjustment, flocculation and solid entrapment.

3.1. COAGULATION

The first step in the arsenic removal process, coagulation, was performed in the first reactor by the injection of a $Fe_2(SO_4)_3$ solution at a minimum ratio by weight of five to one $Fe_2(SO_4)_3$ to arsenic. In this process, soluble arsenic reacts with the coagulant to form a precipitate.

The removal of lead and zinc below the water license discharge criteria was attained by targeting the suspended solids; a strong linear correlation was found between the total suspended solids (TSS) concentration, and the total concentrations of both lead and zinc. The removal of these metal particulates was facilitated by the agglomeration of the suspended and colloidal solids with the chemically induced flocs formed during the coagulation and flocculation steps. These flocs are physically removed from the water by entrapping them in the Geotubes[®]. When an increase in

the soluble fractions of lead and zinc were observed, the injection of a sodium metabisulfite (SMBS) solution was used to assist in the precipitation of these elements as metal sulfides.

3.2. PH ADJUSTMENT

The optimum removal of soluble arsenic (as a hydroxide precipitate), as well as lead and zinc (as sulfide precipitates) is achieved at a pH of 8.5; this is the point at which the solubility of these chemically induced precipitates are at their lowest. For this reason, a $Ca(OH)_2$ solution was injected into the second reactor in the treatment process in order to increase the pH to 8.5 following the addition of the Fe₂(SO₄)₃, to optimize metals removal.

3.3. FLOCCULATION

To aggregate the metal precipitate colloids and the particulates into a heavy and suspended floc, a polymer flocculent solution was injected into in the third rector of the treatment process. This polymer, which has a high molecular weight, allowed the colloids to aggregate together into flocs which results in a high removal efficiency of solids.

3.4. SOLIDS REMOVAL

The flocs containing both metal precipitate and suspended solids was removed as the wastewater with the addition of chemicals passes through the Geotube® geocontainment bags; the Geotubes® acted as filter. The flocs were captured in the matrix of the Geotubes®, while the filtrate, free of metal solids, was pumped to Hambone Lake for environmental discharge.

4.0 PLANT DESIGN AND CONSTRUCTION

The 2011 Tundra Mine WWTP was designed based upon existing knowledge, and past operational experiences encountered in the previous two project seasons. The WWTP built and operated during the 2010 project season underwent an extensive review, and deviances from the proposed design upgrades at the end of the 2010 project season are discussed in Section 4.8. The 2011 treatment facility was designed to operate as a triple train system, with each train capable of operating at a maximum capacity of 150 m³/hr. The PWGSC water license issued by the MVLWB dictates that the plant can discharge to Hambone Lake at a maximum daily average of 275 m³/hr. The chemically treated water exiting the WWTP was sent to a set of six Geotubes® contained within a bermed and lined area. The discharge from the Geotubes® was collected in a discharge sump prior to being pumped to the final discharge location, which is directly into Hambone Lake as per the Crown request. This is a change from the previous 2009 and 2010 seasons, where discharge was performed in Hambone lake wetlands area.

4.1. PLATFORM CONSTRUCTION

WESAtech arrived at Tundra Mine site on the 27 April to begin the construction of the WWTP. The treatment system was erected on a site-assembled plywood platform, approximately 27 m by 45 m, and is located entirely within the containment area of the Upper Pond. The platform was divided into three steps, each successive step decreased in elevation by approximately 150 mm; the changes in elevation were introduced to provide enough hydraulic head to achieve the target treatment flow rate. Any overflow or spills from the WWTP flowed by gravity into Upper Pond. The site was powered using a fuel powered generator designated to solely provide power to the WWTP. The frame work used to support the WWTP equipment was a "Sikla" system is made from hot dip galvanized steel for outside use, and can remain in place. The Sikla steel framing system was lagged into the plywood platform. Throughout the construction phase, delays were encountered due to material shortages and civil construction limitations.

4.2. CHEMICAL REACTION TANKS

The 37.85 m³ Onion tanks were installed in series for each of the three trains. These HDPE tanks were placed on protective lay down mats. The piping for air agitation, process flow, and chemical injection was installed in each tank as required. The tanks were connected to each other with 305 mm schedule 80 PVC pipes, and flow between the tanks was controlled using 305mm wafer butterfly valves. Individual tank levels were controlled by adjusting valve between tanks.

4.3. INFLUENT DISTRIBUTION

The influent distribution header of the plant was made of schedule 80 PVC pipes and provisions had been implemented to control flow to the header using two 150mm butterfly valves. Flow to each train was controlled using two 200mm butterfly valves. A flow meter was mounted on each treatment train to enable the operator to balance the flow between the trains, and totalize the total amount of water entering the WWTP. The influent flow to the plant was supplied using two 150 mm diesel powered Godwin pumps, located in the Southwest corner of Lower Pond except near the end of the season when one of the intake pump was moved into Upper Pond. The untreated water was transferred from the pumps to the plant using two 150 mm layflat hoses. In the event that one of the pumps was taken offline, the influent header was designed such that one pump could supply a reduced flow rate to all treatment trains.

4.4. PH CONTROL

The process piping exiting the first and second process tanks, where $Fe_2(SO_4)_3$ and $Ca(OH)_2$ were added respectively, had online pH monitoring to observe individual tank performance. The pH meter following the $Fe_2(SO_4)_3$ was installed as a method to indirectly monitor the $Fe_2(SO_4)_3$

dosage between calibrations of the $Fe_2(SO_4)_3$ dosing pumps; this was evaluated by ensuring the pH exiting the ferric tank was between 4.5 and 6. The pH meter following the Ca(OH)₂ addition was used to ensure the target pH of 8.5 was maintained to meet discharge criteria and to achieve the correct solubility of the metal fractions.

4.5. CHEMICAL AGITATION AND FLOW

All chemical solution makeup tanks were installed on the West end of the platform, and were plumbbed such that chemicals could be dosed to each of the treatment trains. Mixing in the Fe₂(SO₄)₃ and Ca(OH)₂ makeup tanks was achieved using a combination of both air and two mechanical agitators per tank. The air was provided by two 5 Hp positive displacement blowers. Each of the three polymer makeup tanks were agitated using one VFD controled mixer. The first and second process tanks were agitated with air supplied by two 10 Hp positive displacement blowers mounted between the treatment trains. Each of the blowers were complete with environmental enclosures, inlet filter, and discharge silencers. Air from the blowers was directed into a valved control manifold that can direct and control air flow individually to each diffuser drop in the appropriate process tanks or the chemical makeup tanks. Each drop is fitted with a neoprene capped durlin body hydro check diffuser, to allow forward air flow and then to close to prevent reverse flow into the drop to prevent clogging. The third and final process tank, where polymer was dosed, was agitated using two mechanical agitators.

4.6. CHEMICAL DOSAGE PUMPS

The chemical dosing pumps were mounted in close proximity to the appropriate chemical makeup tank they pumped from. One pump for each of the Fe₂(SO₄)₃, Ca(OH)₂, and polymer makeup tanks was dedicated to each train; a secondary pump for the dosing of the Ca(OH)₂ was also installed. The pumps were selected such that the target dosing rate fell in the middle of its maximum pumping capacity. The pumping rate for each pump could be manipulated by adjusting its stroke length and frequency.

4.7. GEOTUBE LAYDOWN AREA

The Geotubes® were installed in a bermed containment area that was lined with a 15 mm thick polyethelene liner. The area was constructed with a slope from end to end to allow the water to drain from the tubes and flow to the central collection point. The geotubes sat on a filtration layer to allow better drainage at the bottom of the tubes. The Geotubes® were anchored to the earth outside of the berm using buried steel pipe for anchors; this prevented the Geotubes® from moving during the initial filling process. The two model GT500's for each treatment train were located adjacent to each other.

Discharge from each treatment train flowed through a manifold directing the flow into four 150mm layflat lines, which were installed into the first two inlet ports closest to the plant of each Geotubes[®]. During the beginning of the project season only Trains 2 and 3 were commissioned due to civil works in Upper Pond. The commissioning of Train 1 was not completed until 27 July. The construction of the three treatment trains was completed before the commissioning of Trains 2 and 3 began.

4.8. DESIGN UPGRADE DEVIENCES

The following recommendations that were outlined in the 2010 end of season report were not adopted, or require alterations for the 2012 project season:

- Tailings disturbance at the intake pumps
- Floating intake lines to avoid tailings in the treatment system
- Silt curtain to reduce tailings capture
- Pump failure alarms
- Communal sump
- Effective weirs between laydown area and sump
- Discharge intake not floating

Each of these items will be reviewed for future design considerations for the 2012 project season.

5.0 CHEMICAL FORMULATION

Before the on-site work at the Tundra Mine could begin for the 2011 project season, the quantities of the chemicals required were calculated, purchased and delivered to the site. These calculations were based on the contaminant concentrations of the water contained in Lower Pond during the 2010 project season. It was assumed that the contaminant concentrations of Lower Pond's water during the 2011 project season would comparable. A summary of the untreated wastewater contaminant concentrations from 2010 is presented in Table 2.

project season					
	Feed Wastewater				
Substances	Concentration				
	(mg/L)				
Total Arsenic	1.99				
Total Copper	0.0023				
Total Lead	0.0007				
Total Nickel	0.0013				
Total Zinc	0.0114				
Total Ammonia (as	<0.01				
N)	<0.01				
Nitrate (as N)	0.29				
Nitrite (as N)	0.03				
TSS	8				
рН	8.25				

Table 2: Summary of Lower Pond's contaminant concentrations during the 2010 Tundra Mine

On 22 June, on-site testing of the raw contaminated wastewater began. The purpose of this testing was to characterize the raw wastewater and compare it to the 2010 data. Both on-site and off-site testing were performed¹. Most of the contaminants meet discharge criteria with the exception of: arsenic, zinc, lead and TSS; this data is presented in **Table 3**. Laboratory results gathered prior to the plant start-up have shown significant variability in its quality; sudden increases in both the suspended solids and metal concentrations were observed. Raw data is presented in **Appendix A**. The most significant differences between the wastewater data from the 2010 season to the 2011 project season are the higher concentrations of lead, zinc, and TSS. The average zinc concentration in 2011 appears comparable to that of 2010; however, consideration of the standard deviation statistically indicates that the zinc concentration can periodically exceed discharge criteria.

It was also demonstrate that the rise of zinc and lead is attributed to the increase of suspended solids in wastewater. Indeed, sudden increases of zinc and lead in raw water can be directly correlated to the rise in suspended solids with a correlation coefficient of 61.4 % and 79% respectively. When the concentrations of suspended solids are lessened, the total zinc and lead concentrations are also lowered and consistently below discharge criteria. The soluble fraction of these metals are therefore well below discharge criteria and thus, lead and zinc can be removed to discharge level by targeting the removal of suspended solids. While this is not the only contributing factor the TSS is the most targetable component of the influent water. Thus by removing TSS it allows for the control of these metal concentrations.

¹ Comparison between on-site and off-site testing discussed in the *Correlation Survey* Report.

Parameter	Units	Average Feed Wastewater Concentration	Standard Deviation	Number of samples tested (n)
Total Arsenic	mg/L	1.54	0.17	52
Total Copper	mg/L	0.0028	0.0013	49
Total Lead	mg/L	0.0081	0.0062	50
Total Nickel	mg/L	0.0052	0.0016	49
Total Zinc	mg/L	0.0097	0.0075	50
Total Ammonia (as N)	mg/L	<0.05	-	41
Nitrate (as N)	mg/L	<0.05	-	44
Nitrite (as N)	mg/L	<0.05	-	44
TSS	mg/L	30.1	40.8	49
рН	-	8.29	0.10	45

Table 3: Influent 2011 Average Feed Wastewater Characteristics*

* Analytical results that are below the method detection limit (MDL) were considered to be half of the MDL value.

As part of the on-site testing program wastewater from Lower Pond was used to perform small scale experiments in the field laboratory by WESAtech's environmental monitor, with the support of a Geotube® representative. This was done to confirm the required chemistry for both the conditioning phase of the Geotubes® and normal operation.

5.1. ARSENIC REMOVAL

The dosage of $Fe_2(SO_4)_3$ and polymer during normal operation of the first two project seasons was 75 mg/L and 0.5 mg/L, respectively. Ca(OH)₂ was added as necessary to achieve a pH of 8.5. The dosage rates for the $Fe_2(SO_4)_3$ and polymer were optimized and yielded good results. This year's small scale experiments were first performed using the historical dosage of $Fe_2(SO_4)_3$, and polymer. The results obtained were satisfactory yielding uniform flocs, and a reduction in the turbidity. However, the size of the floc appeared smaller than previous years; this result was attributed to the higher TSS concentration that was observed. The higher observed TSS decreased the stability of the floc and prevented the formation of larger floc particles. The active sites of both the coagulant and polymer were being consumed by the suspended solids, as opposed to the dissolved metals in the wastewater.

Additional experiments were performed by using a polymer dosage range between 0.5 mg/L and 3.0 mg/L Even though good flocs were obtained at an historical average concentration of 0.5 mg/L, the best dosage to overcome the increase in suspended solids was obtained at 1.5 mg/L

with great floc formation in size, uniformity and strength as well as little residual turbidity. Polymer dosage concentrations between 1.5 mg/L and 3.0 mg/L also proved to be adequate, but residual unbounded polymer was observed. However, a polymer dosing rate of 3.0 mg/L was used during the commissioning phase of the Geotubes®, as recommended by their expert, to adequately coat the interior membrane and minimize bleed through of the solid material.

To verify the $Fe_2(SO_4)_3$ dosing rate, on-site experimentation included varying the $Fe_2(SO_4)_3$ dosage from 45 mg/L to 150 mg/L. The results of the small scale laboratory experiments indicated that a $Fe_2(SO_4)_3$ dosage rate of 75 mg/L yielded the best arsenic removal, with a residual concentration of 0.03 mg/L. It was found that a higher dosage of $Fe_2(SO_4)_3$ produced similar floc formation matters as the 75 mg/L dosage; however, lower $Fe_2(SO_4)_3$ dosages yielded fair to insufficient arsenic removal, along with smaller and less stable floc.

The lime dosing rate depended on the calco-carbonic equilibrium of the wastewater. Jar tests revealed that the required lime dosage rate varied from 32 mg/L and 45 mg/L. On rare occasions did the required lime dosage increase to 50 mg/L.

5.2. LEAD AND ZINC REMOVAL SODIUM METABISULPHITE

Even thought the zinc and lead residual concentrations were consistently below discharge criteria during the commissioning period, jar tests were nonetheless performed with the injection of sodium metabisulphite (SMBS). Small scale experiments were conducted to determine the optimal dosage rate for SMBS for the purposes of removing both lead and zinc. It was determined that the best injection point for the SMSB was the coagulation tank; this yielded good floc formation and little residual turbidity. It was found that an SMBS dosing rate of 30 mg/L to 60 mg/L yielded good removal efficiencies of both lead and zinc. Residual concentrations of these contaminants were typically less than $1 \mu g/L$.

6.0 COMMISSIONING OF THE WWTP

6.1. CHRONOLOGY OF PLANT COMMISSIONING

The commissioning of the WWTP was initiated late June by WESAtech representatives, and required that the following steps be completed: dry start-up, wet start-up, and Geotube® commissioning. **Table 4** presents the chronology of the plant commissioning. The treatment trains were brought online throughout the season as soon as it was feasible.

Initiation Date of Commissioning Step	Train 1	Train 2	Train 3
Dry start-up	27 June	27 June	27 June
Wet start-up	6 August	6 July	28 June
Geotube Conditioning	6 August	7 July	30 June
Discharge to Hambone Lake	24 August	12 July	12 July

Table 4: Chronology of plant commissioning

6.2. DRY STARTUP

Dry start-up was conducted using untreated water. All electrical components were checked for rotation where necessary, and all others were checked for function. Tanks were filled with water to check for leaks, and air was introduced to ensure diffusers operated properly. Chemical pumps were primed using water and mixers were energized to ensure proper action. All mixing devices and tanks were operational and in line with the design.

6.3. WET STARTUP

As part of wet start-up, the chemical conditioning of the reaction tanks was first initiated over a period of a few days. During this step, the Geotubes® were bypassed and the chemically conditioned water exiting the flocculation tanks was sent directly into the individual discharge sumps. This water with containing flocs was not discharged to Hambone Lake, but rather pumped back to Lower Pond. Chemicals were added to condition each tank and build up a floc mass in the flocculation reactors. The chemical dosages were then optimized to confirm that the scale up from the jar tests to the plant would meet all requirements in terms of metal removal, as well as floc size, strength, and stability.

The ferric dosing concentration was initiated first at 75 mg/L. Increasing the concentration of the coagulant proved to be necessary during scale up in the field due to the flow continuum and the sudden variations in the turbidity and TSS concentrations of the wastewater. The concentrations varied from 105 mg/L to 150 mg/L as per the operator observations required to maintain great floc formation. Please note that the dosing always exceeded 75 mg/L. The lime was dosed according to the pH requirement of 8.5. The dosing rates varied considerably considering that the characteristics of the tailings wastewater varied as well. The polymer dosage varied between 1.5 and 3 mg/L upon floc requirements. The agitation of the tanks was optimized based on the tank configuration and on the positioning of the mixers/diffusers. The flocs were then consistently uniform, stronger, larger and the turbidity was considerably lower.

Further, the quality of the wastewater deteriorated as the project season progressed; gradual increases in the arsenic, lead, zinc, TSS concentrations were observed. Due to the elevation of contaminates in the influent the process water used for batching chemicals represented a secondary source of elevated contaminates. By using the wastewater to formulate the $Fe_2(SO_4)_3$ solution, some of the iron needed to precipitate metals from solution in the WWTPs influent water is being consumed before it is added. Similarly, the wastewater is being used to formulate the $Ca(OH)_2$ solution. The dosing of the $Ca(OH)_2$ effectively introduced an additional stream of untreated water, which was compensated for by increasing the $Fe_2(SO_4)_3$ dosing rate.

6.4. GEOTUBE COMMISSIONING

The plant flow was initiated and entered the Geotubes® upon the completion of the chemical balance in the treatment plant. Before intiating Geotube® comissioning, flow to the plant was turned off and the sump areas were inspected and cleaned of any residual floc to ensure compliance. Once completed the chemical dosage was increased to 3 mg/L as recommended by the Geotube® expert and developed during the small scale experiments. The water exited the Geotubes[®] and flowed over the weir and into the individual sump areas. Due to a lack of laydown space within the containment area, the Geotube® communal sump was not built. Treated water from sumps 2 and 3 overflowed into sump 1. From there, the water would overflow into Upperpond, or was pumped with an 200 mm diesel powered Godwin pump to the final discharge locaton at Hambone Lake. Prior to reaching the final discharge location, the treated water passes through a 254 mm flowmeter that displays the flowrate and records the total volume of treated water being discharged. This flowmeter was powered by a portable diesel powered light plant. Once commissioning was complete samples were taken for discharge approval by WESAtech. Upon submission of the laboratory results, AEL applied for discharge approval through the AANDC Water Inspector. Once granted, discharge began to Hambone Lake.

7.0 OPERATION SUMMARY

Overall the WWTP operated for a total of 92 days discharging into Hambone Lake 527,222 m³ of water during the 2011 season. On October, 10th 2011 the decision was made to shutdown the WWTP due to inclement weather causing plant components to freeze. Performance in regard to compliance of the water license will be discussed in Section 9.0.

7.1. DISCHARGE SCENARIOS

Prior to the commencement of the 2011 Tundra Mine remediation project season, there were discussions with regards to two potential scenarios in which water may be discharged to the

environment after treatment. Water was only discharged to Hambone Lake after written approval was received from the AANDC Water Inspector, formerly INAC, on 9 July.

The proposed Discharge Scenario A outlined that after commissioning of both the WWTP and the Geotubes® was complete, and environmental discharge approval was granted, the treated water exiting the Geotubes® would be transferred by pump, or overflow into Upper Pond. This was also provided that all civil works removing tailings from Upper Pond were completed. The proposed discharge scenario was such that the plant could be operated at its full capacity of 450 m³/h, and all of the treated water would have been transferred to Upper Pond; its capacity is approximately 200,000 m³. This would have offered both holding and buffering capacity, and allowed treated water to be discharged after the WWTP is shut down for the season into Hambone Lake. For Upper Pond to be converted into and effluent holding pond, all contaminated material had to be removed and baffles installed to increase its hydraulic retention time. Due to various delays, the removal of tailings from Upper Pond was not completed until 9 September. At this time, untreated water was pumped from Lower Pond into Upper Pond filling it by the end of the project season. For this reason Discharge Scenario B was implemented.

The proposed Discharge Scenario B outlined that if Upper Pond was not ready to be used as a treated water communal sump, Upper Pond would be bypassed and the treated water would be pumped from the Geotube® sump directly to Hambone Lake. Discharge Scenario B was implemented from 9 July, until 6 September; the WWTP treated water from Lower Pond at a rate of 275 m³/h. 275 m³/h of treated water was pumped from the Geotube® communal sump to Hambone Lake. On 6 September Discharge Scenario B was modified. The East end of Upper Pond had been cleaned of contaminated material, and an overflow weir from Geotube® Sump 1 was constructed and reinforced to minimize the effect of erosion. From 6 September until 12 October, the WWTP treated tailings water at a rate between of 280 m³/h and 320 m³/h. Treated water was pumped from the Geotube® communal sump at a rate of 275 m³/h to Hambone Lake for environmental discharge, while excess water overflowed into Upper Pond.

7.2. AANDC DISCHARGE APPROVAL

Discrete combined effluent samples from Trains 2 and 3 were collected on 9 and 10 July during the commissioning period, and flown to Yellowknife for analysis at an accredited laboratory. The analytical results demonstrated that the two treatment trains successfully met discharge criteria with an average of 5.9 \pm 2.2 mg/L suspended solids, 73.1 \pm 8.6 μ g/L total arsenic, 6.6 \pm 4.2 μ g/L total zinc, as well as 0.86 \pm 0.04 μ g/L total lead.

When conditioning of the Train 1 Geotubes® was completed, discrete effluent samples were collected on 14 to 16 August, and sent for anlaysis. The analytical results demonstrated that the treatment train successfully met discharge criteria with an average of $3.8 \pm 2 \text{ mg/L}$ suspended

solids, an average of 29.6 \pm 10.4 μ g/L total arsenic, as well as non detectable levels of lead and zinc.

After each event, submissions to the AANDC Water Inspector was performed by Aboriginal Engineering Ltd. to gain approval to discharge to Hambone Lake.

7.3 PLANT WINTERIZING

The operators noticed the plant freezing on Oct 10th 2011 and therefore had to shut it down. Train 1 was officially shut down for the season on Oct 10th 2011 at which time the teardown/winterization began. The tear down/winterization of the other two (2) trains began the following day, on Oct. 11th 2011.

Start-up of the WWTP in the spring of 2012 will be much quicker and easier than in previous years. Rather than undertaking a major deconstruction/reconstruction of the plant, it was decided this year that any equipment that could be safely left in position without damage was to be left in place over the winter months. Only the equipment that must be stored indoors was removed from the plant platform. This equipment will simply have to be reconnected for the 2012 operating season.

Pictures of the WWTP winterizing phase and storage of equipment are presented at the end of text from Figure 11 to Figure 24.

Chemical Tank Makeup Area

At the end of the season, some chemical injection lines had frozen. During teardown/winterizing, these lines were drained as best as possible and left in place. Chemical pumps and other equipment that had frozen were thawed out using "Frost Fighter" heaters and then drained, cleaned and dried prior to final storage. Chemical pumps and fittings, such as foot valves, etc. were placed on pallets and stored in the Seacan located next to the WWTP. Mixer motors were removed from the framing, and placed in the Seacan as well. All valves that remained in place on the platform were placed in the open position to prevent cracking over the winter.

The ferric onion tanks were drained, rolled up, wrapped up with their laydown mats and left in place on the WWTP platform where as the lime makeup onion tanks were drained and left in place on the deck.

The polymer and sodium metabisulfite makeup tanks were drained, flipped upside down and secured to the WWTP platform using lag screws. The lids were stored in the Seacan.

The chemical makeup blowers were serviced, covered with tarps and left in place on the WWTP platform. The "Sikla" framing was left mounted on the platform, ready for reuse next season.

Treatment Trains Area

All process onion tanks were drained within 6"-8" (150-200 mm) of being empty. A 30' x 100' (9m x 30m) tarp was placed over each of the (3) three rows of onion tanks. This tarp was then strapped down to the deck with wood strapping and nails. All 12"(305mm) pvc piping was disconnected. This piping was placed on top of the Ferric make-up tanks.

All valves were thawed, cleaned and dried. They were then stored in the storage room next to the operators shack. Influent flow meters were removed, thawed, cleaned and dried prior to storage in the Seacan. Transmitters and pH sensors were removed and shelved in the storage room as well as all miscellaneous fittings such as but not limited to backpressure valves, flow alarms, injection & sample port valves, etc.

All mixers, process air diffuser drops, were disconnected, removed and placed in the Seacan where as the process blowers were serviced, wrapped in tarps and left in place on the deck. The electrical control panels were left intact on the WWTP platform. A plywood enclosure was constructed around all 3 panels. The roof of this enclosure was wrapped with tarp. The discharge flow meter was removed and brought to the WWTP to be stored within the Seacan.

A complete inventory of the equipment and its location was performed by WESA personnel and submitted to AEL prior to closing up and WESA leaving the Tundra Mine site.

8.0 MAINTENANCE CHALLENGES AND RECOMMENDATIONS

8.1. BALL CHECK VALVES

During the course of the 2011 project season, one ongoing issue was the plugging of ball check valves of chemical dosing pumps. Attempts to mitigate this problem were made during the season by placing screens, or loose mesh fabrics over the suction end of the foot valves. This prevented the accumulation of grit in the ball check valves, but resulted in the complete plugging of fabric or screen stopping all flow. If the removal of suspended solids prior to entering the chemical tanks is not possible, check valves will need to be removed once per shift as regular maintenance.

8.2. INFLUENT FEED LINES

During the 2011 project season, when one of the influent feed lines to the WWTP developed a large leak, the water entering the WWTP from an influent line that was intact would short circuit

the WWTP and return down the blown line. To prevent this from happening, it is recommended that check valves be installed on the inlet pipes to the WWTP.

8.3. LIME CHEMICAL ADDITION

It is also recommended that the dosing of the $Ca(OH)_2$ solution into the WWTP be automated. This would not eliminate the requirement of checking the pH entering the flocculation tank, but would minimize the amount of manipulation of the $Ca(OH)_2$ dosing pump and potential operator error.

8.4. PLANT LIGHTING

At the beginning and end of the project season, when it is dark during the night shift, it was very difficult to see into the flocculation tanks and assess the quality of the floc, even with the use of headlamps and flashlights. For this reason, it is recommended that halogen flood lights be installed over the flocculation tanks.

8.5. ELECTRICAL

In the middle of the project season, an electrical problem within the panel arose. The 60 amp breaker on blower B-2000 became very sensitive, and should be replaced. The generator used to supply power to the plant had a series of maintenance and mechanical issues in the latter half of the season. Repair or replacement should be considered.

8.6. HYDRAULIC CONSIDERATIONS

After the commissioning of Train 1 of the WWTP, it was found that its influent flow rate could not be increased beyond 125 m³/h without overflowing the process tanks. After approximately 1.5 months of operation, the influent flow rate of Train 1 could not exceed 100 m³/h without overflowing the process tanks. The restriction of the influent flow rate and the deterioration of the hydraulic performance of Train 1 are attributed to the slope that developed along the North side of the platform, as well as the use of rubber discharge hose to feed the Geotube® inlets from the Train 1 Geotube header. The unlevelled platform allowed for the accumulation of sludge and floc in half of the tank, which effectively reduces the size of the tank. Solids also accumulated around the tank outlet restricting its flow. Further, the rubber discharge hose did not expand fully while the treated wastewater flowed through it, adding another flow restriction to the process. It is recommended that the WWTP be repaired and levelled, and that the rubber discharge hose be replaced with rigid green suction hose.

8.7. GEOTUBE RELAXATION

As the project season progressed, it was noted that the relaxation of the Geotubes became more and more difficult to relax even after the frequency with which the Geotubes® were relaxed was increased. This may be mitigated by increasing the number of inlets to the Geotubes®. Under its current configuration, green rigid suction hoses are being used to connect the hose from the Geotube® header to the Geotube® inlet. This rigid suction hose extends three feet into the Geotube® and is often sitting on the bottom of the Geotube®. It is suspected that this configuration does not allow for dispersion of the floc allowing it to accumulate at the inlet. It is recommended that PVC connections be used in lieu of the rigid suction hose in order to keep the inlet off the bottom of the Geotube® to promote better dispersion.

9.0 DISCHARGE MONITORING AND QUALITY CONTROL PROGRAM

The Discharge Monitoring and Quality Control Program (DMQCP) was developed to ensure that the performance of the WWTP assessed and recorded properly, during the course of the environmental remediation project at the Tundra Mine, NWT. The DMQCP was implemented to ensure that all on-site practices and procedures, execution of the chain of custody, and off-site laboratory analyses adhere to quality assurance and quality control (QA/QC) policies, relevant territorial and federal regulations and standards, and the quality objectives for the project procedure and deliverables.

9.1. DOCUMENTATION AND RECORDS

For the duration of the on-site work at the Tundra Mine, the documentation requirements, as outlined in the DMQCP, were followed. These tasks include:

- Storing all electronic documents and data (field data, off-site laboratory results, daily and weekly reports, etc.) on both the on-site computer's hard drive and external hard drive;
- All electronic data was periodically archived throughout the project season on CD-ROMs;
- All samples that were collected in the field were labelled with the project number, sampling location, time and date of collection, and sample number, and recorded in both field notebooks and electronic databases;
- All off-site laboratory data was stored and filed, and transcribed to the appropriate electronic database;
- The QA/QC data received for both duplicate analyses and inter-laboratory comparisons were stored and filed, and transcribed to the appropriate electronic database;
- Electronic charts were updated and reviewed regularly, to monitor both the WWTP's influent and effluent water quality;

- Deviations from approved protocols and standard operating procedures (SOPs) were documented in field notebooks;
- Completed chain of custody (COC) forms for all sample shipments were filed, stored and transcribed to the appropriate electronic database.

9.2. SAMPLING

For the duration of the 2011 project season, Discharge Scenario B was employed. For this reason, compliant samples were taken from a sample port installed in the influent pipe feeding the WWTP, and a sample port on the discharge line sending treated water to Hambone Lake. The Geotube® communal sump was considered equivalent to the sample port on the discharge line. Samples from the individual Geotube® sumps were taken as necessary throughout the 2011 project season. For each sampling event, all samples were taken in triplicate; one sample was analyzed on-site, while the remaining two samples were sent to an off-site accredited laboratory for analysis.

As outlined in the DMQCP, compliant effluent samples were taken every six hours per 24 hour period. The sampling frequency for the WWTP's effluent stream was increased as necessary during the project season. One compliant influent sample was taken for every 24 hour period. However, the frequency of the influent sampling increased to as much as every hour as required during the project season.

During the 2011 project season, two different phases in the DMQCP were outlined as the *Correlation Survey* and the *Monitoring Plan*. For both phases, the number of sampling events and the on-site analyses remained the same; however, the number of samples that were analyzed off-site decreased.

Sampling location	Samples collected per day	Analyses	On-site analysis per day	Off-site analysis per day
Plant inlet	1	As, TSS, pH Pb, Zn, Cu, Ni, NO ₂ -1, NO ₃ -1, NH ₃	1	1
Discharge port	4	As, TSS, pH Pb, Zn, Cu, Ni, NO ₂ -1, NO ₃ -1, NH ₃	4	4

Table 5: Summary of both on-site and off-site sampling during the correlation survey

Sampling location	Samples collected per day	Analyses	On-site analysis per day	Off-site analysis per day
Plant inlet	1	As, TSS, pH	1	Once per week
	1	Pb, Zn, Cu, Ni, NO ₂ -1, NO ₃ -1, NH ₃	1	Once per week
		As, TSS, pH	4	4
Discharge	4	Pb, Zn	1	4
port	7	Cu, Ni, NO ₂ -1, NO ₃ -1, NH ₃	1	Once per week

Table 6: Summary of both on-site and off-site sampling during the monitoring plan

9.3. CORRELATION SURVEY

As outlined in the DMQCP, a correlation survey was performed for the purposes of developing a correlation between the on-site field instruments, and off-site results from accredited laboratories. This correlation survey began at the start of the commissioning phase of the WWTP on the June 25th, and continued until August 6th. During this time, an intensive sampling and monitoring program was executed. A correlation survey report was submitted to AEL August 17th. Comments in response to the correlation survey from PWGSC, dated September 2nd, were received by WESAtech September 4th. A response to PWGSC's comments was submitted September 11th to their satisfaction; no additional comments in response were received.

For the analysis of arsenic on-site, *Orebecco Arsenic Test Strips* were used. This method was originally to be used as verification of the *PDV6000 plus*, but was used as the primary analytical method due to problems with the *PDV6000 plus*. The field analyses using the test strips were conducted in duplicate. During the correlation survey, the average on-site and off-site arsenic concentrations were measured to be 51.5 μ g/L and 46.8 μ g/L, respectively. The correlation coefficient that was calculated using both the on-site and off-site arsenic concentration data sets was 0.98, which indicates there was a strong positive linear correlation. Further, the relative percent difference (RPD) was, on average, ±6%. This indicates that there was a small variance between the two data sets.

Due to the detection limits of the *Hach DR2700* spectrophotometer, it was not able to measure accurately the lead and zinc concentrations in the effluent water. The standard operating procedures (SOPs) of the *DR2700* published by the manufacturer were adhered to judiciously, and the instrument itself was operating properly. However, the lead and zinc concentrations in the effluent water were too low for the instrument to measure. For this reason, a correlation

could not be developed using the on-site and off-site lead and zinc concentration data. However, it was found that the correlation coefficient between the off-site TSS and lead measurements was 0.79, indicating that there was a strong positive linear correlation between the data sets. Further, the correlation coefficient between the off-site TSS and zinc measurements was 0.614, indicating that there was a good positive linear correlation between the data sets. The on-site TSS data was plotted against the off-site TSS data. A linear regression was performed by setting the y-intercept as zero. The resulting linear function had a slope of 1.21 which indicates that the on-site TSS measurements were higher, or more conservative, than the off-site results. The correlation coefficient was calculated to be 0.93 for the off-site and on-site TSS data; this indicates there is a strong positive linear correlation between the two data sets. From the empirical data that was collected and analyzed, it was concluded that it is adequate to infer the total lead and zinc concentrations using the on-site TSS measurements.

A *PDV6000 plus* metal detector, which employs anodic stripping voltammetry, was introduced at the beginning of the DMQCP for the purposes of measuring arsenic, lead, and zinc in trace concentrations. The *PDV6000 plus* was expected to be the primary instrument for on-site field analyses; however, it was brought offline to overcome variability in its analytical signals. For this reason, the methods originally listed as secondary verification in the DMQCP, were used as the primary field analytical methods. Furthermore, as a complementary arsenic monitoring tool, the arsenic test strips were part of the DMQCP (monitoring plan) and were therefore used as the main arsenic testing tool in lieu of the PDV 6000 plus. This initiative was taken with the approval of all parties involved. Duplicate analyses were performed to introduce QA for the technique as described below. With the support of the manufacturer, the "standard operating procedures" were optimized and the electrodes were revitalized which allowed the instrument to measure, with good precision, the lead, zinc and arsenic concentrations of the effluent when the instrument was brought back on-site September 22th. In conclusion, the PDV 6000 plus metal detector proves to be very accurate when measuring trace levels of heavy metals as a field screening tool.

A memorandum regarding the redeployment of the *PDV6000 plus* dated October 11th was issued. A response by AECOM was issued October 14th for which WESAtech presented an additional memo November 15th.

9.4. MONITORING PLAN

The on-site monitoring plan, as outlined in the DMQCP, began August 6th and ended at the conclusion of the project season October 10th. The outlined monitoring plan was adhered with the exception of the late redeployment of the *PDV6000 plus*, as discussed in the previous section.

Throughout the monitoring program, there was no parameter that exceeded the contractual discharge limits. The plant effluent was consistently below the discharge limits.

A summary of the average effluent concentrations of parameters that were monitored as part of the contractual requirements that were measured at the off-site laboratories is presented in **Table 7**. Figures 1 to 10 represent the trending daily results over the course of the 2011 discharge season. Please note that the results that are below detection limit are represented to be at detection limit. However, when calculating the average concentration and standard deviation, results below detection limit were assumed to be half of the MDL value as it is standard practice.

Parameter	Unit	Average effluent concentration	Standard deviation	Number of samples tested (n)
Total arsenic	mg/L	0.0431	0.0142	178
Total copper	mg/L	0.0022	0.0012	62
Total lead	mg/L	0.0004	0.0002	112
Total nickel	mg/L	0.0029	0.0005	59
Total zinc	mg/L	0.0037	0.0018	110
Total ammonia (as N)	mg/L	<0.05	-	54
Nitrate (as N)	mg/L	0.05	0.05	53
Nitrite (as N)	mg/L	<0.05	-	53
TSS	mg/L	3.0	2.3	89
рН	-	8.21	0.17	96

Table 7: Effluent 2011 Average Wastewater Characteristics*

* Analytical results that are below the method detection limit (MDL) were considered to be half of the MDL value.

9.5. QUALITY ASSURANCE AND QUALITY CONTROL

The DMQCP outlined a number of quality assurance and quality control (QA/QC) requirements in order to ensure the sampling procedure and handling is executed properly to mitigate the risk of sample corruption, and to ensure that both on-site and off-site laboratory results are accurate.

As described above, all sampling events were conducted in triplicate; one sample was kept on-site for field analyses, and two samples were sent to the off-site laboratory. In the event of an anomalous result, the other two samples collected during the same sampling event could be analyzed by the off-site laboratory. During this season a sample collected September 27th at 8:00 was measured at Taiga to have an elevated zinc concentration of 17.3 μ g/L, as demonstrated in **Figure 5**. The off-site duplicate sample was shipped from the Taiga lab in Yellowknife to ALS

Laboratories in Edmonton. The off-site duplicate sample was collected at the same time, and in the same fashion as the primary off-site sample. The duplicate sample was measured to have a zinc concentration of 6.9 μ g/L, which indicates that the primary off-site sample was corrupted.

Further, the QA/QC requirements outlined in the DMQCP include the analysis of travel blanks, duplicates, equipment rinses, and inter-laboratory samples. Travel blanks were sent with every shipment, and were used to determine if there was any background contamination during the transport and handling of the samples from the site to the laboratory. Sample bottles were filled with deionised water on site.

Duplicate off-site samples were sent to the laboratory each time; they were only analyzed periodically as per the DMQCP. The collection of duplicate samples provides a measure of precision of the sampling procedure and analytical technique, the heterogeneity of the sample, and was representative of the sampling event and location. As outlined in the DMQCP, 10% of all samples analyzed were to be analyzed in duplicate; 10.4% of samples analyzed were analyzed in duplicate exceeding the QA/QC requirements. The remaining duplicate samples were archived in the off-site laboratory for further analysis when required. All but one set of duplicate samples were within control limits.

Equipment rinses were sent for off-site analysis to verify that all field sampling and analytical equipment was cleaned properly. Cleaned equipment and glassware was rinsed with deionised water; the resulting rinse water was sent off-site for analysis. As outlined in the DMQCP, one equipment rinse will be analyzed for every 20 samples analyzed. During the 2011 project season, approximately one equipment rinse was analyzed every 15 samples, exceeding the QA/QC requirements.

During the 2011 project season, both Taiga Laboratory and ALS Laboratories Edmonton were retained to analyze off-site samples. Inter-laboratory samples involve sending samples to both laboratories from the same sampling event to verify their respective results. As outlined in the DMQCP, 2% of all samples analyzed were to be analyzed at the secondary laboratory; inter-laboratory samples were analyzed at a rate of 2.6%, exceeding the QA/QC requirements. All inter-laboratory analyses returned results that were within acceptable control limits.

10.0 CONCLUSION

The observations, results and design recommendations were based on the conditions encountered during the operation of the Wastewater Treatment Plant during the 2011 discharge period. The implementation of the recommendations provided for the operation and design of the WWTP will allow for a reduced risk of producing water out of compliance, and addresses the past years maintenance issues.

WESAtech has used its professional judgment in analyzing this information and formulating its conclusions. No other warranty or representation, expressed or implied, as to the accuracy of the information or recommendations is included or intended in this report. This report has been prepared for the exclusive use of the Aboriginal Engineering Limited. No other party may use or rely upon this report without the express written permission of WESAtech.

Respectfully submitted,

Wayne Ingham, HED, Ph.D. Vice-President, Business Development Principal and Senior Consultant WESA Inc.

Corinne Proux, M.Eng, Eng Chemical Engineer WESA Inc.

TABLES

Table 8:2011 Off-site Influent Wastewater CharacteristicsTable 9:2011 Off-site Effluent Wastewater Characteristics

Sample ID nomenclature:

Location	Purpose	Date	Totalizer Number
A: Influent	ON: On-site	(dd/mm/hh)	xxx
B1-B2-B3: Flocculation Tanks	OFF: Off-site	НН	
C1-C2-C3: Individual Sumps	INT: Inter-lab comparison	8AM: 08	
D: Communal Sump	DOF: Off-site Duplicate	2PM: 14	
E1-E2: Upper Pond	EQ: Equipment Rinse Blank	8PM: 20	
F: Effluent Discharge Port	TR: Travel Blank	2AM: 02	

					Parameter	er				
Sample ID	As (total),	Pb (total),	Zn (total),	Cu (total),	Ni (total),	TAN,	Nitrite,	Nitrate,	TSS,	ב ז
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L as N	mg/L as N	mg/L as N	mg/L	End
A-ON/OFF-18-06-1130-02	1.25	0.00301	0.0058	0.0017	0.00598		,	,	10	
A-ON/OFF-18-06-1130-03	1.24	0.00296	0.006	0.0018	0.00592	-			7	
A-ON/OFF-18-06-1130-04	1.24	0.00302	0.0064	0.0018	0.00592	-	1	1	9	
A-ON/OFF-18-06-1130-05	1.23	0.00301	0.0067	0.0018	0.00585	-	1		8	1
A-OFF-23-06-14-07	1.47	0.00729	0.013	0.0025	0.00571	-	<0.05	<0.05	16	8.25
A-OFF-23-06-14-10	2.16	0.0365	0.0518	0.0085	0.0125	-	<0.05	0.095	166	8.17
A-OFF-24-06-1120-14	1.41	0.00512	0.0118	0.0019	0.00511	I	<0.05	<0.05	7	8.22
A-OFF-25-06-08-18	1.43	0.00862	0.0112	0.0024	0.00556	<0.05	<0.05	0.087	13	8.18
A-OFF-26-06-09-21	1.48	0.0109	0.0123	0.0027	0.00611	<0.05	<0.05	<0.05	30	8.23
A-OFF-26-06-09-24	1.54	0.0128	0.0139	0.003	0.00639	<0.05	<0.05	<0.05	43	8.21
A-OFF-29-06-11-28	1.49	0.0117	0.013	0.0028	0.00587	<0.05	<0.05	<0.05	27	8.2
A-OFF-30-06-18-31	1.52	0.017	0.0164	0.0028	0.00595	<0.05	<0.05	<0.05	69	8.26
A-OFF-01-07-14-35	1.46	0.0143	0.0126	0.0024	0.00548	<0.05	<0.05	<0.05	66	8.27
A-OFF-07-07-02-61	1.37	0.00627	0.0061	0.002	0.00439	<0.05	<0.05	<0.05	14	8.33
A-OFF-09-07-23-93	1.44	0.00496	0.0056	0.002	0.00442	<0.05	<0.05	<0.05	12	8.26
A-OFF-10-07-20-108	1.63	0.0221	0.0189	0.0038	0.00718	<0.05	<0.05	<0.05	134	8.38
A-OFF-11-07-20-125	1.38	0.00408	0.0051	0.002	0.00419	<0.05	<0.05	<0.05	<3	8.33
A-OFF-12-07-20-137	1.39	0.00585	0.0072	0.0023	0.0046	<0.05	<0.05	<0.05	18	8.34
A-OFF-13-07-20-157	1.4	0.00463	0.0054	0.0021	0.00432	<0.05	<0.05	<0.05	8	8.33
A-OFF-14-07-20-174	1.42	0.00499	0.0054	0.0021	0.00445	<0.05	<0.05	<0.05	14	8.35
A-OFF-15-07-20-196	1.72	0.0176	0.0166	0.0041	0.00685	<0.05	<0.05	<0.05	183	8.28
A-OFF-16-07-20-215	1.47	I	1	ı	ı	I	1	ı	I	ı
A-OFF-18-07-20-258	1.54	0.00472	0.0061	0.0022	0.0044	<0.05	<0.05	<0.05	11	8.31
A-OFF-19-07-20-284	1.68	I	ı	ı		ı	I	ı	ı	ı
A-OFF-20-07-20-308	1.63	0.0112	0.0149	0.0034	0.00568	<0.05	<0.05	<0.05	38	8.43
A-OFF-21-07-20-329	1.55	0.00724	0.0086	0.0026	0.00461	ı	I	ı	ı	ı
A-OFF-22-07-02-336	1.5	0.00661	0.0028	0.0045	0.00464	<0.05	<0.05	<0.05	14	8.36
A-OFF-23-07-02-354	1.45	0.00584	0.0051	0.0065	0.00468	<0.05	<0.05	<0.05	6	8.37
A-OFF-24-07-02-375	1.5	0.00474	0.0058	0.0021	0.00394	<0.05	<0.05	<0.05	6	8.39
A-OFF-25-07-02-395	1.62	0.00456	0.006	0.0023	0.00423	<0.05	<0.05	<0.05	7	8.3
A-OFF-26-07-02-412	1.54	0.00349	0.0079	0.0031	0.00441	<0.05	<0.05	<0.05	5	8.35
A-OFF-27-07-02-432	1.6	0.00598	0.0108	0.0034	0.00496	<0.05	<0.05	<0.05	18	8.37
A-OFF-28-07-02-451	1.65	0.00473	0.0063	0.0023	0.00439	<0.05	<0.05	<0.05	10	8.38

Table 8 : 2011 Off-site Influent Wastewater Characteristics

					raramener	-				
Sample ID	As (total), mg/L	Pb (total). mg/L	Zn (total), mg/L	Cu (total), mg/L	Ni (total), mg/L	TAN, mg/L as N	Nitrite, mg/L as N	Nitrate, mg/L as N	TSS, mg/L	Hq
A-OFF-29-07-02-468	1.62	0.00392	0.0048	0.0022	0.00429	<0.05	<0.05	<0.05	ŝ	8.4
A-OFF-30-07-02-485	1.69	0.00549	0.0077	0.0024	0.00448	<0.05	<0.05	<0.05	13	8.4
A-OFF-31-07-02-503	1.69	0.00479	0.0081	0.0023	0.00435	<0.05	<0.05	<0.05	6	8.41
A-OFF-01-08-02-521	1.7	0.00392	0.0048	0.002	0.00411	<0.05	<0.05	<0.05	5	8.39
A-OFF-02-08-02-540	1.69	0.005	0.0057	0.0021	0.005	<0.05	<0.05	<0.05	10	8.35
A-OFF-03-08-02-558	1.63	0.00403	0.0055	0.0023	0.00435	<0.05	<0.05	<0.05	16	8.38
A-OFF-04-08-02-577	1.65	0.00456	0.0065	0.0021	0.00418	<0.05	<0.05	<0.05	12	8.36
A-OFF-05-08-02-596	1.66	0.00339	0.0044	0.0019	0.00369	<0.05	<0.05	<0.05	4	8.4
A-OFF-06-08-02-614	1.7	0.00324	0.0044	0.0019	0.00386	<0.05	<0.05	<0.05	5	8.43
A-OFF-13-08-02-748	1.72	0.0042	0.0025	0.0021	0.0037	0.01	<0.01	0.13	8	8.25
A-OFF-20-08-02-957	1.73	0.0067	0.008	0.0025	0.0039	< 0.01	<0.01	0.12	38	8.14
A-OFF-26-08-02-1105	1.65	ı	0.007	0.0028	0.0038	<0.01	<0.01	0.11	16	8.15
A-OFF-03-09-02-1290	1.65	0.007	0.007	0.0025	0.0036	0.01	<0.01	0.12	22	8.2
A-OFF-10-09-02-1514	1.8	0.0082	0.0073	0.0023	0.0036	0.01	<0.01	0.11	22	8.2
A-OFF-16-09-20-1736	1.75	0.012	0.014	0.004	0.0047	<0.01	<0.01	0.12	36	8.16
A-OFF-22-09-16-1943	1.53	0.0192	0.022	0.006	0.0098	0.18	<0.01	0.09	90	8.1
A-OFF-26-09-0730-2069	1.36	0.0128	0.014	ı		•	•	-	108	8.09
A-OFF-27-09-14-2112	1.34	0.0125	0.014	0.0044	0.0076	0.15	<0.01	0.16	48	8.06
A-OFF-04-10-08-2366	1.29	0.0111	0.014	0.0041	0.007	0.14	<0.01	0.19	42	

					Parameter					
Sample ID	As (total).	Pb (total),	Zn (total),	Cu (total),	Ni (total),	TAN, mg/L as	Nitrite,	Nitrate,	TSS,	-
	mg/L	mg/L	mg/L	mg/L	mg/L	z	mg/L as N	mg/L as N	mg/L	Ηd
F-OFF-09-07-18-85	0.088	0.00097	0.0072	0.0016	0.00309	<0.05	<0.05	<0.05	7	8.22
F-OFF-09-07-23-90	0.0753	0.0015	0.0116	0.0061	0.00295	<0.05	<0.05	<0.05	7	8.21
F-OFF-10-07-04-96	0.0696	0.00105	0.0058	0.002	0.00298	<0.05	<0.05	<0.05	5	8.25
F-OFF-10-07-09-99	0.0619	0.00038	<0.004	0.0012	0.00269	<0.05	<0.05	<0.05	<3	8.29
F-OFF-10-07-13-102	0.0752	0.00036	0.0052	0.0011	0.00283	<0.05	<0.05	<0.05	8	8.28
F-OFF-10-07-20-105	0.0864	0.00059	0.0059	0.0032	0.00287	<0.05	<0.05	<0.05	ŝ	8.32
F-OFF-11-07-02-113	0.0852		1	ı		ı				
F-OFF-11-07-08-116	0.0765	-	ı	ı	-	-	-	-		
F-OFF-11-07-14-119	0.0557	-	ı	ı	-	-	-	-		
F-OFF-11-07-20-122	0.0441	0.00052	0.0047	0.0017	0.00259	<0.05	<0.05	<0.05		8.22
F-OFF-12-07-02-128	0.0497		ı	ı	-	I	-	-	,	1
F-OFF-12-07-08-131	0.0515	-	1	I	-	-	-	-		
F-OFF-12-07-14-134	0.0535		ı	ı	-	I	-	-		ı
F-OFF-12-07-02-140	0.0525	0.00088	0.0051	0.0022	0.00236	<0.05	<0.05	<0.05		8.31
F-OFF-13-07-02-143	0.0494	-	1	1	-	-	-	-		
F-OFF-13-07-08-146	0.0561		1	I	-	ı	-	-		
F-OFF-13-07-14-151	0.054		I	I	ı	I	-			ı
F-OFF-13-07-20-154	0.0526	0.00042	<0.004	0.0015	0.00239	<0.05	<0.05	<0.05		8.29
F-OFF-14-07-02-160	0.0478	-	1	I	-	-	-	-		
F-OFF-14-07-08-163	0.0846	-	ı	ı	1	I	-	-	,	1
F-OFF-14-07-14-167	0.0454	0.0004	0.0079	0.0012	0.00256	<0.05	<0.05	<0.05		8.28
F-OFF-14-07-20-171	0.0369		1	I	-	ı	-	•		
F-OFF-15-07-02-177	0.0366		ı	ı	-	I	-	-	,	1
F-OFF-15-07-08-180	0.0414	0.00038	<0.004	0.0012	0.00252	<0.05	<0.05	<0.05	-	8.23
F-OFF-15-07-15-189	0.0313		ı	ı	ı	ı	ı	ı		ı
F-OFF-15-07-20-193	0.0317	0.0004	<0.004	0.0012	0.00282	<0.05	<0.05	<0.05	ı	8.2

Table 9: 2011 Off-site Effluent Wastewater Characteristics

					Parameter					
Cample ID			- - - -							
	As (total),	Pb (total),	Zn (total),	Cu (total),	Ni (total),	TAN, mg/L as	Nitrite,	Nitrate,	TSS,	На
	mg/L	mg/L	mg/L	mg/L	mg/L	Z	mg/L as N	mg/L as N	mg/L	
F-OFF-16-07-02-199	0.0338	-	ı	-	-	-	-	-		-
F-OFF-16-07-08-203	0.0438	-	ı	-	-	-	-			1
F-OFF-16-07-14-209	0.0479	0.00046	1	0.0014	0.00303	<0.05	<0.05	<0.05	5	8.21
F-OFF-16-07-20-212	0.0323		ı	1	,	'				
F-OFF-17-07-02-219	0.032	0.00046	<0.004	0.0015	0.0025	<0.05	<0.05	<0.05	<3	8.32
F-OFF-17-07-08-224	0.039		ı	1	,	,		,	,	,
F-OFF-17-07-14-229	0.0391	0.00037	<0.004	0.0016	0.0024	<0.05	<0.05	<0.05	<3	8.39
F-OFF-18-07-08-244	0.0672	0.0003	<0.004	0.0012	0.0025	<0.05	<0.05	<0.05	3	8.39
F-OFF-18-07-14-249	0.0599	0.00034	<0.004	0.0014	0.0029	<0.05	<0.05	<0.05	4	8.31
F-OFF-19-07-03-262	0.0615		ı		1	,			,	
F-OFF-19-07-08-267	0.0682	-	1	-	-	-	-		,	1
F-OFF-19-07-14-275	0.0526		ı	-	-	-			,	1
F-OFF-19-07-20-281	0.0474	-	ı	-	-	-	-	-		,
F-OFF-20-07-02-291	0.0501		1	-	۲	-	-	-		1
F-OFF-20-07-08-296	0.0569	0.00038	<0.004	0.0013	0.0029	<0.05	<0.05	<0.05	4	8.34
F-OFF-20-07-14-301	0.0478	0.00036	<0.004	0.0013	0.00262	<0.05	<0.05	<0.05	<3	8.34
F-OFF-20-07-20-305	0.0419		1			-	-	-		•
F-OFF-21-07-02-312	0.041	-	1	-		-	-	-		-
F-OFF-21-07-08-316	0.0365		1	ı	ı					1
F-OFF-21-07-16-322	0.0407		ı	ı	,	-		•	,	1
F-OFF-21-07-20-326	0.0436	0.00088	0.0055	0.0024	0.00291	<0.05	<0.05	<0.05	4	8.3
F-OFF-22-07-02-333	0.0464	0.00045	0.0041	0.0017	0.00275	<0.05	<0.05	<0.05	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8.38
F-OFF-22-07-08-340	0.0592	-	1	1	-	-	-	-		
F-OFF-22-07-1330-345	0.0479	1	I			-	-	•		ı
F-OFF-22-07-20-349	0.0508		1	ı	ı	,	-	•		ı
F-OFF-23-07-02-357	0.0551	ı	I		ı					ı
F-OFF-23-07-08-360	0.0567	0.00031	<0.004	0.0012	0.0024	<0.05	<0.05	<0.05	<3	8.33

					Parameter					
					5			•		
Sample ID	As (total),	Pb (total),	Zn (total),	Cu (total),	Ni (total),	TAN, mg/L as	Nitrite,	Nitrate,	TSS,	Ц
	mg/L	mg/L	mg/L	mg/L	mg/L	z	mg/L as N	mg/L as N	mg/L	-
F-OFF-23-07-14-364	0.0704	-	-	-		1	-	-	-	
F-OFF-23-07-20-371	0.0428	0.00043	0.0056	0.0018	0.00227	<0.05	<0.05	<0.05	<3	8.34
F-OFF-24-07-02-378	0.0375	0.00054	0.0064	0.0026	0.00221	<0.05	<0.05	<0.05	ŝ	8.41
F-OFF-24-07-08-381	0.0339	0.00029	<0.004	0.0015	0.00221	<0.05	<0.05	<0.05	<3	8.41
F-OFF-24-07-14-387	0.0382	-	I	-	ı	ı	•			
F-OFF-24-07-20-391	0.0463	0.00039	0.0051	0.0023	0.00232	<0.05	<0.05	<0.05	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8.25
F-OFF-25-07-02-398	0.0464	-	I	-	ı	I	-		-	
F-OFF-25-07-08-401	0.0343	-	-	-	ı	I	-	-	-	
F-OFF-25-07-14-404	0.0391	-	1	-	ı	ı	•			
F-OFF-25-07-20-408	0.047	0.00038	0.005	0.0019	0.00268	<0.05	<0.05	<0.05	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8.25
F-OFF-26-07-02-415	0.0459	-	1	-	ı	ı	•	-	-	
F-OFF-26-07-08-420	0.0466	-		-	I	I				
F-OFF-26-07-25-424	0.0404			ı	ı	I	-			
F-OFF-26-07-20-428	0.0512	0.00064	0.0078	0.005	0.00229	<0.05	<0.05	<0.05	5	8.29
F-OFF-27-07-02-435	0.042		-	ł	ł		-	-		
F-OFF-27-07-08-438	0.0365		-	ı	1	1	-	-		
F-OFF-27-07-15-443	0.0302		-	ł	ł		-	-	1	
F-OFF-27-07-20-447	0.0241	0.0004	0.0043	0.0027	0.00189	<0.05	<0.05	<0.05	<3	8.31
F-OFF-28-07-02-454	0.0266	ı	-	ı	ı	-	-		1	8.16
F-OFF-28-07-08-457	0.0278	ı	-	I	I		-	-		
F-OFF-28-07-14-462	0.0396	0.00036	<0.004	0.0015	0.00233	<0.05	<0.05	<0.05	<3	8.36
F-OFF-28-07-20-466	0.046	0.00041	0.0068	0.0037	0.00259	<0.05	<0.05	<0.05	8	8.35
F-OFF-29-07-02-471	0.0329		-	ł	1		-	-	1	
F-OFF-29-07-08-474	0.0309		-	•	ı	-	-	-	ı	
F-OFF-29-07-14-477	0.0388		-	I	I	-	-	-		
F-OFF-29-07-20-481	0.0482	0.00053	0.0068	0.004	0.00267	<0.05	<0.05	<0.05	<3	8.31
F-OFF-30-07-02-488	0.0383			•		•		•	ı	

!					rarameter					
Sample ID	As (total),	Pb (total),	Zn (total),	Cu (total),	Ni (total),	TAN, mg/L as	Nitrite,	Nitrate,	TSS,	ב ז
	mg/L	mg/L	mg/L	mg/L	mg/L	z	mg/L as N	mg/L as N	mg/L	En.
F-OFF-30-07-08-491	0.0369		•	•			•	•		·
F-OFF-30-07-14-495	0.0399	-	ı		-		-	•		
F-OFF-30-07-20-499	0.0428	0.00052	0.0058	0.0048	0.00266	<0.05	<0.05	<0.05	° S	8.37
F-OFF-31-07-02-506	0.0344		ı	·	1		•			
F-OFF-31-07-08-509	0.0294		,				•			
F-OFF-31-07-20-517	0.0431	0.00057	0.0054	0.0031	0.00286	<0.05	<0.05	<0.05	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8.35
F-OFF-01-08-02-524	0.048	-	1	ı	-	ı	-		-	
F-OFF-01-08-08-527	0.0394	-	ı	ı	-	ı	-	-		,
F-OFF-01-08-14-532	0.033	-	ı	ı	-	ı	-			
F-OFF-02-08-02-543	0.0369	0.00032	0.0043	0.0015	0.00292	<0.05	<0.05	<0.05	3	8.3
F-OFF-02-08-08-546	0.0464	-	ı	ı	-	1	-	-		
F-OFF-02-08-14-549	0.0527	-	ı	ı	-	ı	-			
F-OFF-02-08-20-553	0.039	0.00044	0.0057	0.0039	0.00336	<0.05	<0.05	<0.05	<3	8.32
F-OFF-03-08-02-561	0.0364		-		-		•			
F-OFF-03-08-08-564	0.0336		-			a A			ı	
F-OFF-03-08-14-567	0.0325	-	I	ı	-	ı	•			
F-OFF-03-08-20-570	0.0287	0.00029	<0.004	0.0017	0.00301	<0.05	<0.05	<0.05	<3	8.32
F-OFF-04-08-02-574	0.0284		-	-	ı	-	ı		ı	
F-OFF-04-08-08-582	0.0379		-	I	ı	I				
F-OFF-04-08-14-585	0.0354	0.00033	<0.004	0.0016	0.00296			-		ı
F-OFF-04-08-20-588	0.0412	0.00031	<0.004	0.0015	0.00334	<0.05	<0.05	<0.05	4	8.32
F-OFF-05-08-02-593	0.0374	ı	-	-	ı	-	•		ı	
F-OFF-05-08-08-599	0.055		-	1	ı	1	1	-	ı	ı
F-OFF-05-08-14-603	0.06		-	a A		a A		-	ı	ı
F-OFF-05-08-20-608	0.0629	0.00039	<0.004	0.0024	0.00298	<0.05	<0.05	<0.05	4	8.37
F-OFF-06-08-02-611	0.0788		-		-		•	-		
F-OFF-06-08-20-625	0.0481	0.00032	<0.004	0.0017	0.00278	ı	•	ł	5	8.33

					Parameter					
Sample ID	As (total),	Pb (total),	Zn (total),	Cu (total),	Ni (total),	TAN, mg/L as	Nitrite,	Nitrate,	TSS,	-
	mg/L	mg/L	mg/L	mg/L	mg/L	z	mg/L as N	mg/L as N	mg/L	Цd
F-OFF-07-08-20-643	0.0576	0.00025	<0.004	0.0012	0.00262		•		° °	8.36
F-OFF-08-08-15-656	0.0485	0.00039	0.0064	0.0019	0.00378	1	-	-	<3	8.25
F-OFF-09-08-20-686	0.036	0.00015	<0.004	0.0011	0.00312	ı			° S	8.28
F-OFF-10-08-02-695	0.0483	0.0004	<0.005	ı	ı	·	•			
F-OFF-11-08-02-710	0.0419	0.0007	<0.005	ı	-	ı	-	-		
F-OFF-12-08-02-727	0.0391	0.0002	<0.005	ı	ı	ı			,	,
F-OFF-13-08-02-745	0.0591	0.0007	<0.005	0.0021	0.003	0.02	<0.01	0.13	<3	8.29
F-OFF-14-08-02-772	0.0419	0.0002	<0.005	ı	-	1	-	-		,
F-OFF-15-08-02-800	0.0362	0.0003	<0.005	ı	-	1	-	-		
F-OFF-16-08-02-831	0.0375	0.0003	<0.005	ı	I	-	-			
F-OFF-17-08-02-863	0.0506	0.0004	<0.005	ı	-	ı	-	-		
F-OFF-18-08-02-893	0.0418	0.0003	<0.005	ı	-	1	-	-		
F-OFF-19-08-20-947	0.0236	0.0002	<0.005	0.0014	0.0029	<0.01	<0.01	0.13	<3	8.11
F-OFF-20-08-20-979	0.0342	0.0002	<0.005	I	ł	-		-		
F-OFF-21-08-20-1010	0.0397	0.0002	<0.005	ł	ł			-	1	
F-OFF-22-08-20-1040	0.0339	0.0002	0.0027	ł	ł		ı		ı	
F-OFF-23-08-20-1062	0.0313	0.0002	0.002	I	ı			-	ı	
F-OFF-25-08-20-1098	0.0302	0.0002	<0.005	ł	ı	-	ı		ı	1
F-OFF-26-08-08-1108	0.034	0.0002	<0.005	ı	ı	-				
F-OFF-27-08-02-1120	0.0472	0.0004	<0.005	0.0023	0.0028	<0.01	<0.01	0.1	<3	8.11
F-OFF-28-08-20-1138	0.0533	0.0005	0.0045	ı	-	1	-	-		
F-OFF-29-08-02-1156	0.0357	0.0003	0.0028	I	-	-	-	-		
F-OFF-29-08-20-1171	0.0687	0.0005	<0.005	I	ı			-	<3	8.17
F-OFF-30-08-08-1181	0.0399	0.0003	<0.005	ł	ı			-	4	8.30
F-OFF-31-08-18-1222	0.0219	0.0004	0.007	ı	ı	-			4	8.15
F-OFF-01-09-20-1263	0.0448	0.001	<0.005	ı	ı	-			<3	8.2
F-OFF-02-09-20-1285	0.0493	0.0006	<0.005	0.0024	0.0029	0.01	•	•	<3	8.36

					Parameter					
Sample ID	As (total),	Pb (total),	Zn (total),	Cu (total),	Ni (total),	TAN, mg/L as	Nitrite,	Nitrate,	TSS,	3
	mg/L	mg/L	mg/L	mg/L	mg/L	Z	mg/L as N	mg/L as N	mg/L	Ľ d
F-OFF-03-09-08-1298	0.0341	0.0004	<0.005	0.0026	0.003	0.02	<0.01	0.11	4	8.21
F-OFF-03-09-20-1311	0.0392	0.0013	0.0033	ı	ı	ı	-		12	8.32
F-OFF-04-09-20-1331	0.041	0.001	0.0032	ł	,	ı			<3	8.39
F-OFF-05-09-20-1355	0.0343	0.0008	0.0033	I	1	-	-	-	<3	8.36
F-OFF-06-09-20-1417	0.0389	0.0005	0.0042	ı	ı	-	-		<3	8.22
F-OFF-07-09-08-1433	0.0376	0.0004	0.0028	0.0017	0.0023	<0.01	<0.01	0.17	<3	8.38
F-OFF-08-09-02-1461	0.031	0.0004	0.004	0.0024	ı	-	-	-	<3	8.12
F-OFF-08-09-20-1484	0.0253	0.0004	0.0034	0.0024					<3	8.11
F-OFF-09-09-20-1508	0.0481	0.0004	0.0038	0.002	0.0033	<0.01	<0.01	0.11	<3	8.18
F-OFF-11-09-20-1579	0.0355	0.0005	<0.005	0.0019	1	-	-		<3	8.06
F-OFF-12-09-10-1603	0.079	0.0006	0.0045	0.0021	0.0041	<0.01	<0.01	0.13	4	8.02
F-OFF-12-09-10-1607	0.0767	0.00043	<0.004	0.0013	0.00416	<0.05	<0.05	<0.05	<3	8.12
F-OFF-12-09-20-1624	0.0487	0.0004	0.0038	I		-	-	-	4	8.06
F-OFF-13-09-20-1655	0.0686	0.0006	0.0064		ı	ł	-		8	8.04
F-OFF-14-09-22-1670	0.0394	0.0004	0.0035	I	I		-		9	8.01
F-OFF-15-09-20-1703	0.0279	0.0002	0.0033	I	ı	ł	-		<3	8.19
F-OFF-17-09-08-1751	0.0292	0.0003	0.0024	0.0014	0.0029	<0.01	<0.01	0.09	<3	8.25
F-OFF-17-09-20-1773	0.0232	0.0004	0.0027		ı	ı	ł		3	8.15
F-OFF-18-09-20-1809	0.0376	0.0005	0.004	I	ı	ı	-		<3	7.97
F-OFF-20-09-02-1857	0.0302	0.0004	0.002		ı	ł	-		<3	8.13
F-OFF-20-09-20-1879	0.029	0.0004	0.0025	1	ı	ł			<3	8.3
F-OFF-21-09-20-1913	0.0231	0.0002	0.0023	1	ı	ı	ı		6	8.19
F-OFF-22-9-20-1948	0.0224	0.0002	0.0034	1	ł	ł			4	8.24
F-OFF-23-09-08-1967	0.0243	0.0005	0.0035	0.002	0.0029	<0.01	<0.01	0.12	8	8.13
F-OFF-23-09-20-1984	0.0273	0.0003	0.0027	I	ı	1	-		8	7.65
F-OFF-24-09-14-2013	0.0278	0.0005	0.0043		I	ł	-		8	8.23
F-OFF-25-09-14-2051	0.0263	0.0002	0.0041	ł	•	•	ł	•	6	8.03

						Parameter	5				
mg/lmg/lmg/lmg/lmg/lmg/lmg/lNmg/l as Nmg/l as N00.00210.00040.0057 \cdot <	Sample ID	As (total),	Pb (total),	Zn (total),	Cu (total),	Ni (total),	TAN, mg/L as	Nitrite,	Nitrate,	TSS,	2
0.0212 0.0004 0.0057 ·		mg/L	mg/L	mg/L	mg/L	mg/L	Z	mg/L as N	mg/L as N	mg/L	Ľd.
0.0304 0.0033 0.0173 0.0014 0.0039 0.11 <0.01 0.15 0.021 0.0024 0.0031 0.0037 0.0037 0.011 <0.01	F-OFF-26-09-20-2083	0.0212	0.0004	0.0057		-	-			<3	7.99
0.021 0.004 0.0031 0.0024 0.0037 0.011 0.015 0.11 0.15 0.15 0 0.0237 0.0004 0.0038 ···	F-OFF-27-09-08-2104	0.0304	0.0003	0.0173 (0.0069)	0.0014	6£00'0	0.11	<0.01	0.15	9	7.27
0.0237 0.0004 0.0038 ··	F-OFF-27-09-20-2126	0.021	0.0004	0.0031	0.0024	2 200.0	0.11	<0.01	0.15	<3	8.07
80 0.0254 0.0002 0.0087 .	F-OFF-28-09-08-2144	0.0237	0.0004	0.0038	ı	-	1		•	<3	8.16
16 0.0278 0.0001 0.0041 .	F-OFF-29-09-0830-2180	0.0254	0.0002	0.0087 (0.0087)	1	-	1	1	1	<3	7.62
59 0.0404 0.0004 0.0047 -	F-OFF-30-09-0815-2216	0.0278	0.0002	0.0041	ı	-	1		•	<3	8.14
77 0.0289 0.0003	F-OFF-01-10-0920-2259	0.0404	0.0004	0.0047	ı	-	1		•	<3	7.97
34 0.0318 0.0002 0.0033 ·	F-OFF-02-10-0830-2297	0.0289	0.0003	<0.005	ı	-	1			<3	8.1
70 0.0402 0.0004 0.0059 ·	F-OFF-03-10-0830-2334	0.0318	0.0002	0.0033	·	·	,			ŝ	8.18
0.0395 0.0046 0.0015 0.0047 0.11 <0.01 0.18 44 0.0251 <0.0004	F-OFF-04-10-0930-2370	0.0402	0.0004	0.0059						Ŷ	7.93
0.0251 <0.0004 - <t< td=""><td>F-OFF-04-10-15-2378</td><td>0.0395</td><td>0.0003</td><td>0.0046</td><td>0.0015</td><td>0.0047</td><td>0.11</td><td><0.01</td><td>0.18</td><td><3</td><td>8.08</td></t<>	F-OFF-04-10-15-2378	0.0395	0.0003	0.0046	0.0015	0.0047	0.11	<0.01	0.18	<3	8.08
· 0.0298 0.0002 0.0029 ·	F-OFF-05-10-09-2410	0.0251	<0.0004	ı	ı	-	1		•	<3	8.14
0.0306 0.0002 0.0035 -	F-OFF-06-10-0830-2444	0.0298	0.0002	0.0029	I	-	1		•	<3	8.21
0.0326 0.0004 0.0044 -	F-OFF-07-10-0830-2481	0.0306	0.0002	0.0035	1	-	ı	ı	1	<3	8.09
0.0386 0.0005 0.005 -	F-OFF-08-10-0830-2517	0.0326	0.0004	0.0044	I	-	1		•	<3	8.11
0.0323 0.0022 0.011 0.0077 0.0042 0.1 <0.19 0.19	F-OFF-09-10-09-2552	0.0386	0.0005	0.005	-	ı	ı	ı	•	4	8.26
_	F-OFF-10-10-0830-2585	0.0323	0.0022 (0.00014)	0.011 (0.0045)	0.0077	0.0042	0.1	<0.01	0.19	<3	8.42

* () samples that were reanalyzed because considered anomalous laboratory results; the values used for the average and standard deviation calculations were those in ().

FIGURES

- Figure 1: Summary of off-site arsenic concentration measurements for the 2011 project season
- Figure 2: Summary of off-site copper concentration measurements for the 2011 project season
- Figure 3: Summary of off-site lead concentration measurements for the 2011 project season
- Figure 4: Summary of off-site nickel concentration measurements for the 2011 project season
- Figure 5: Summary of off-site zinc concentration measurements for the 2011 project season
- Figure 6: Summary of off-site ammonia concentration measurements for the 2011 project season
- Figure 7: Summary of off-site nitrate concentration measurements for the 2011 project season
- Figure 8: Summary of off-site nitrite concentration measurements for the 2011 project season
- Figure 9: Summary of off-site TSS concentration measurements for the 2011 project season
- Figure 10: Summary of off-site pH measurements for the 2011 project season
- Figure 11: Plant Winterizing Phase Frost Fighter
- Figure 12: Plant Winterizing Phase Tanks Freezing
- Figure 13: Chemical Pump and Fitting Storage (Seacan)
- Figure 14: Chemical Mixer Storage (Seacan)
- Figure 15: Ferric Onion Tank Storage (Platform)
- Figure 16: Lime Onion Tank Storage (Platform)
- Figure 17: Polymer and Sodium Metabisulfite Tank Storage (Platform)
- Figure 18: Chemical Makeup Blower Storage (Platform)
- Figure 19: Process Onion Tank Storage (Platform)
- Figure 20: Flow Meter Storage (Seacan)
- Figure 21: Transmitter and pH Sensor Storage (Storage Room)
- Figure 22: Miscellaneous Fitting and Flow Alarm Storage (Storage Room)
- Figure 23: Electrical Control Panel Storage (Platform)
- Figure 24: Electrical Control Panel Plywood Enclosure (Platform)

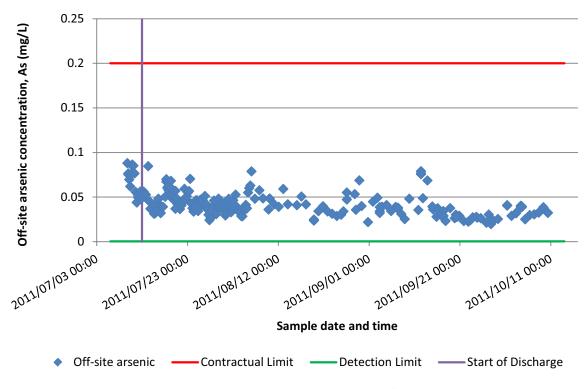


Figure 1: Summary of off-site arsenic concentration measurements for the 2011 project season

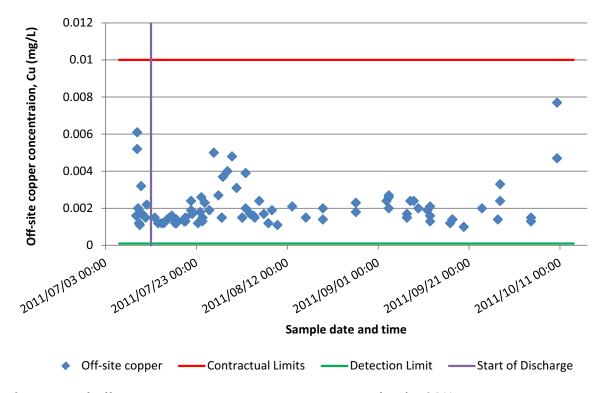


Figure 2: Summary of off-site copper concentration measurements for the 2011 project season

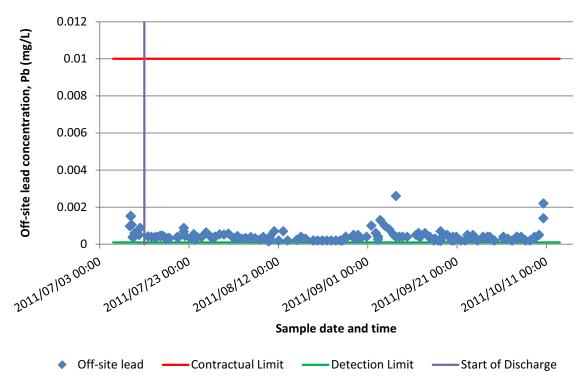


Figure 3: Summary of off-site lead concentration measurements for the 2011 project season

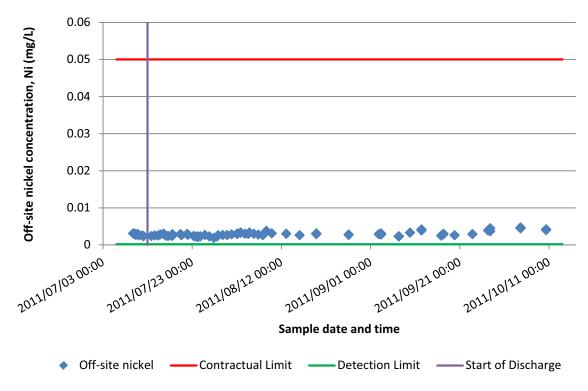


Figure 4: Summary of off-site nickel concentration measurements for the 2011 project season

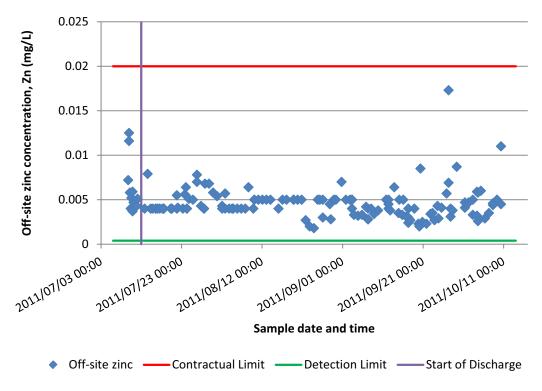


Figure 5: Summary of off-site zinc concentration measurements for the 2011 project season

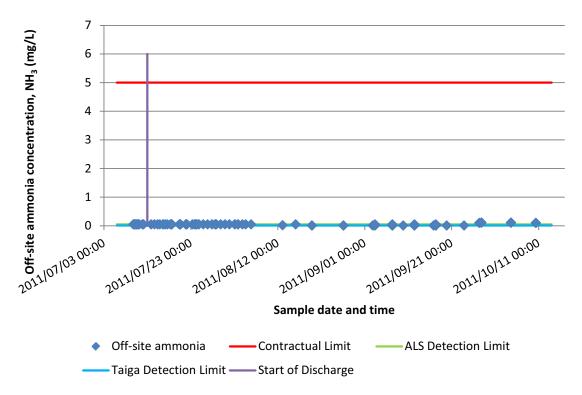


Figure 6: Summary of off-site ammonia concentration measurements for the 2011 project season

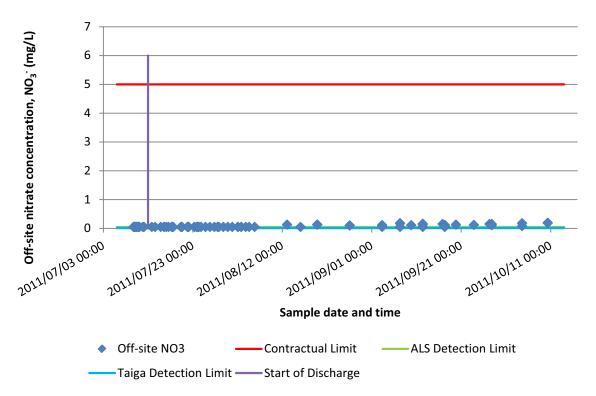


Figure 7: Summary of off-site nitrate concentration measurements for the 2011 project season

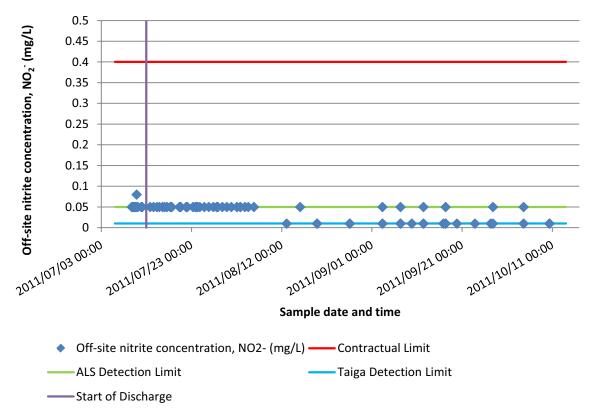


Figure 8: Summary of off-site nitrite concentration measurements for the 2011 project season

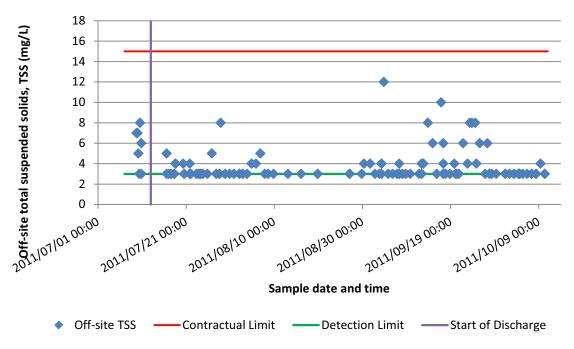


Figure 9: Summary of off-site TSS concentration measurements for the 2011 project season

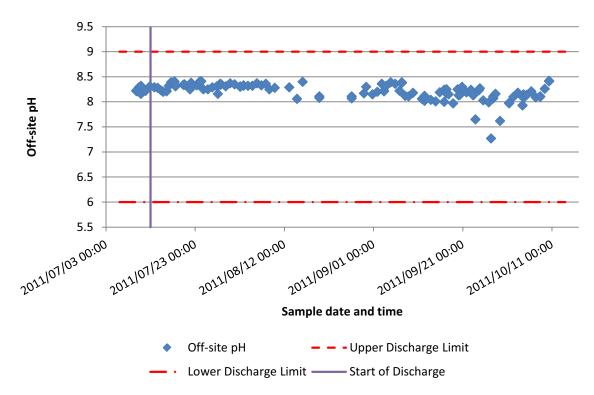


Figure 10: Summary of off-site pH measurements for the 2011 project season

Figure 11: Plant Winterizing Phase – Frost Fighter

Figure 12: Plant Winterizing Phase – Tanks Freezing

Figure 13: Chemical Pump and Fitting Storage (Seacan)

Figure 14: Chemical Mixer Storage (Seacan)

Figure 15: Ferric Onion Tank Storage (Platform)

Figure 16: Lime Onion Tank Storage (Platform)

Figure 17: Polymer and Sodium Metabisulfite Tank Storage (Platform)

Figure 18: Chemical Makeup Blower Storage (Platform)

Figure 19: Process Onion Tank Storage (Platform)

Figure 21: Transmitter and pH Sensor Storage (Storage Room)

Figure 22: Miscellaneous Fitting and Flow Alarm Storage (Storage Room)

Figure 23: Electrical Control Panel Storage (Platform)

Figure 24: Electrical Control Panel Plywood Enclosure (Platform)

Tundra Water Treatment Facility 2012 End of Season Treatment Report Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

15.2 Appendix B – Analysis of Treatment Chemicals

Appendix B

Tundra Mine 2012 Analysis' of Treatment Chemicals

pure elements environmental solutions

Prepared by: **pure elements** environmental solutions

RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca Reviewed and approved by: Justin Bunz, CET AEL Engineering Ltd.

Page 45 of 53

TESTING OF LIME PRODUCTS

for Level of Trace Metals

Samples collected on: January 28, 2009

CHEMICAL LIME LANGLEY PLANT

Analysis Report by: CANTEST Ltd.

	Group No.:	902160193		
C	anTest ID:	#100216072]	
		Hydrate [Ca(OH) ₂]		Detection Limit
Element:		(micro-g./g) ppm		(micro-g./g) ppm
Aluminum	Al	478		10
Antimony	Sb	<		10
Arsenic	As	<		30
Barium	Ba	2.1		0.1
Beryllium	Be	<		1
Boron	В	<		1
Cadmium	Cd	<		3
Calcium	Ca	536,300	*	1
Chromium	Cr	<		2
Cobalt	Co	<		1
Copper	Cu	<		1
Iron	Fe	482		2
Lead	Pb	<		1
Magnesium	Mg	3,910		1
Manganese	Mn	40.1		0.2
Mercury	Hg	<		0.001
Molybdenum	Mo	<		2
Nickel	Ni	<		2
Phosphorus	Р	75.0		20
Potassium	к	63		15
Silicon	Si	1,050		1
Silver	Ag	<		2
Sodium	Na	49		5
Strontium	Sr	1,050		1
Suphur	S	0.06%		0.01%
Tin	Sn	<		5
Titanium	Ti	24		1
Vanadium	V	8		1
Zinc	Zn	2		1
Zirconium	Zr	<		1

< = Less than detection limit

* = an approximate values calculated (the Ca concentration is too high for a trace analysis)

micro-gram / gram = ppm micro-gram = 1×10^{-6} gram = 1×10^{-9} kg ppm = grams / mt = grams / 1×10^{6} grams

TESTING OF LIME PRODUCTS

for Level of Trace Metals

Samples collected on: February 07, 2008

CHEMICAL LIME LANGLEY PLANT

Analysis Report by: CANTEST Ltd.

C	Froup No.:	90214011		
Ca	anTest ID:	#802140019		
		Hydrate [Ca(OH) ₂]		Detection Limit
Element:		(micro-g./g) ppm		(micro-g./g) ppm
Aluminum	AI	440		10
Antimony	Sb	<		10
Arsenic	As	<		30
Barium	Ba	1.8		0.1
Beryllium	Be	<		1
Boron	В	<		1
Cadmium	Cd	<		3
Calcium	Ca	510,000	*	1
Chromium	Cr	<		2
Cobalt	Co	<		1
Copper	Cu	<		1
Iron	Fe	437		2
Lead	Pb	<		4
Magnesium	Mg	2,220		1
Manganese	Mn	32.2		0.2
Mercury	Hg	<		0.01
Molybdenum	Mo	<		2
Nickel	Ni	<		2
Phosphorus	Р	59		20
Potassium	к	202		15
Silicon	Si	957		1
Silver	Ag	<		2
Sodium	Na	106		5
Strontium	Sr	1,260		1
Suphur	S	0.09%		0.01%
Tin	Sn	<		5
Titanium	Ti	25		1
Vanadium	v	9		1
Zinc	Zn	2		1
Zirconium	Zr	1		1

< = Less than detection limit

* = approximate values for the Ca (too high concentration for a trace analysis)

micro-gram / gram = ppm micro-gram = 1×10^{-6} gram = 1×10^{-9} kg ppm = grams / mt = grams / 1×10^{6} grams

TESTING OF LIME PRODUCTS

for Level of Trace Metals

CHEMICAL LIME LANGLEY PLANT

Samples collected on: February 14, 2007

Analysis Report by: CANTEST Ltd.

G	Group No.:	80216006	
Ca	anTest ID:	#702160012	
		Hydrate [Ca(OH) ₂]	Detection Limit
Element:		(micro-g./g) ppm	(micro-g./g) ppm
Aluminum	AI	335	10
Antimony	Sb	<	10
Arsenic	As	<	30
Barium	Ba	1.6	0.1
Beryllium	Ве	<	1
Boron	в	<	1
Cadmium	Cd	<	3
Calcium	Ca	532,000	* 1
Chromium	Cr	<	2
Cobalt	Co	<	1
Copper	Cu	<	1
Iron	Fe	531	2
Lead	Pb	<	4
Magnesium	Mg	2,410	1
Manganese	Mn	62.7	0.2
Mercury	Hg	<	0.001
Molybdenum	Мо	<	2
Nickel	Ni	<	2
Phosphorus	P	99	20
Potassium	К	49	15
Silicon	Si	720	1
Silver	Ag	<	2
Sodium	Na	16	5
Strontium	Sr	1,220	1
Suphur	S	0.02%	0.01%
Tin	Sn	<	5
Titanium	Ti	15	1
Vanadium	V	11	1
Zinc	Zn	7	1
Zirconium	Zr	<	1

< = Less than detection limit

* = approximate values for the Ca

micro-gram / gram = ppm micro-gram = 1×10^{-6} gram = 1×10^{-9} kg ppm = grams / mt = grams / 1×10^{6} grams

T: +1 (780) 438-5522 F: +1 (780) 438-0396 E: Edmonton@exova.com W: www.exova.com

Analytical Report

Report To: Attn:	Pure Elements Environmental Pure Elements Environmental Box 77 RR1 Site 1 DeWinton, AB, Canada TOL 0X0 Trina Comartin	Project: ID: Name: Location: LSD: P.O.: Acct code:	Tundra2	Lot ID: Control Number: Date Received: Date Reported: Report Number:	Jun 19, 2012
Sampled By: Company:					

		Reference Number Sample Date Sample Time Sample Location	876492-1 June 18, 2012 NA			
		Sample Description	DI Water / 23.	1°C		
		Sample Matrix	Water	Neminal Datastian	Quidalina	Quidalina
Analyte		Units	Result	Nominal Detection Limit	Guideline Limit	Guideline Comments
Metals Total						
Aluminum	Total	mg/L	<0.02	0.02		
Calcium	Total	mg/L	<0.2	0.2		
Iron	Total	mg/L	<0.05	0.05		
Magnesium	Total	mg/L	<0.1	0.1		
Manganese	Total	mg/L	<0.005	0.005		
Potassium	Total	mg/L	<0.4	0.4		
Silicon	Total	mg/L	<0.05	0.05		
Sodium	Total	mg/L	<0.4	0.4		
Sulfur	Total	mg/L	<0.3	0.3		
Antimony	Total	mg/L	<0.0002	0.0002		
Arsenic	Total	mg/L	<0.0002	0.0002		
Barium	Total	mg/L	<0.001	0.001		
Beryllium	Total	mg/L	<0.0001	0.0001		
Bismuth	Total	mg/L	<0.0005	0.0005		
Boron	Total	mg/L	<0.002	0.002		
Cadmium	Total	mg/L	<0.00001	0.00001		
Chromium	Total	mg/L	<0.0005	0.0005		
Cobalt	Total	mg/L	<0.0001	0.0001		
Copper	Total	mg/L	<0.001	0.001		
Lead	Total	mg/L	<0.0001	0.0001		
Lithium	Total	mg/L	<0.001	0.001		
Molybdenum	Total	mg/L	<0.001	0.001		
Nickel	Total	mg/L	<0.0005	0.0005		
Selenium	Total	mg/L	<0.0002	0.0002		
Silver	Total	mg/L	<0.00001	0.00001		
Strontium	Total	mg/L	<0.001	0.001		
Thallium	Total	mg/L	<0.00005	0.00005		
Tin	Total	mg/L	<0.001	0.001		
Titanium	Total	mg/L	<0.0005	0.0005		
Uranium	Total	mg/L	<0.0005	0.0005		
Vanadium	Total	mg/L	<0.0001	0.0001		
Zinc	Total	mg/L	<0.001	0.001		
Zirconium	Total	mg/L	<0.001	0.001		

T: +1 (780) 438-5522 F: +1 (780) 438-0396 E: Edmonton@exova.com W: www.exova.com

Analytical Report

Bill To: Report To:	Pure Elements Environmenta Pure Elements Environmenta Box 77 RR1 Site 1 DeWinton, AB, Canada		Tundra2	Date Re	Number: eceived:	876492 Jun 18, 2012 Jun 19, 2012 1744963	
A	TOL 0X0	P.O.:					
Attn: Sampled By: Company:		Acct code:					
		Reference Number	876492-2				
		Sample Date	June 18, 2012				
		Sample Time Sample Location	NA				
		Sample Description Sample Matrix	Texlime / 23.1° Water	С			
Analyte		Units	Result	Nominal Detection Limit	Guideli Limit		Guideline Comments
Metals Total							
Aluminum	Total	mg/L	0.28	0.02			
Calcium	Total	mg/L	487	0.2			
Iron	Total	mg/L	0.29	0.05			
Magnesium	Total	mg/L	2.8	0.1			
Manganese	Total	mg/L	0.066	0.005			

Metals Total				
Aluminum	Total	mg/L	0.28	0.02
Calcium	Total	mg/L	487	0.2
Iron	Total	mg/L	0.29	0.05
Magnesium	Total	mg/L	2.8	0.1
Manganese	Total	mg/L	0.066	0.005
Potassium	Total	mg/L	<0.4	0.4
Silicon	Total	mg/L	0.72	0.05
Sodium	Total	mg/L	<0.4	0.4
Sulfur	Total	mg/L	<0.3	0.3
Antimony	Total	mg/L	0.0004	0.0002
Arsenic	Total	mg/L	0.0032	0.0002
Barium	Total	mg/L	0.002	0.001
Beryllium	Total	mg/L	<0.0001	0.0001
Bismuth	Total	mg/L	<0.0005	0.0005
Boron	Total	mg/L	<0.002	0.002
Cadmium	Total	mg/L	0.00003	0.00001
Chromium	Total	mg/L	0.0006	0.0005
Cobalt	Total	mg/L	<0.0001	0.0001
Copper	Total	mg/L	<0.001	0.001
Lead	Total	mg/L	0.0026	0.0001
Lithium	Total	mg/L	<0.001	0.001
Molybdenum	Total	mg/L	<0.001	0.001
Nickel	Total	mg/L	<0.0005	0.0005
Selenium	Total	mg/L	0.0004	0.0002
Silver	Total	mg/L	<0.00001	0.00001
Strontium	Total	mg/L	1.27	0.001
Thallium	Total	mg/L	<0.00005	0.00005
Tin	Total	mg/L	<0.001	0.001
Titanium	Total	mg/L	0.0054	0.0005
Uranium	Total	mg/L	0.0021	0.0005
Vanadium	Total	mg/L	0.0137	0.0001
Zinc	Total	mg/L	0.008	0.001
Zirconium	Total	mg/L	<0.001	0.001

T: +1 (780) 438-5522 F: +1 (780) 438-0396 E: Edmonton@exova.com W: www.exova.com

Analytical Report

Bill To: Report To: Attn: Sampled By: Company:		Project: ID: Name: Location: LSD: P.O.: Acct code:	Tundra2	Lot ID: Control Number: Date Received: Date Reported: Report Number:	Jun 19, 2012
	F	Reference Number Sample Date Sample Time Sample Location	876492-3 June 18, 2012 NA		

Ferix-3 / 23.1°C

Sample Description

		Sample Matrix	Water			
				Nominal Detection	Guideline	Guideline
Analyte		Units	Result	Limit	Limit	Comments
Metals Total						
Aluminum	Total	mg/L	<0.02	0.02		
Calcium	Total	mg/L	<0.2	0.2		
Iron	Total	mg/L	188	0.05		
Magnesium	Total	mg/L	6.8	0.1		
Manganese	Total	mg/L	0.657	0.005		
Potassium	Total	mg/L	<0.4	0.4		
Silicon	Total	mg/L	<0.05	0.05		
Sodium	Total	mg/L	<0.4	0.4		
Sulfur	Total	mg/L	170	0.3		
Antimony	Total	mg/L	<0.0002	0.0002		
Arsenic	Total	mg/L	<0.0002	0.0002		
Barium	Total	mg/L	<0.001	0.001		
Beryllium	Total	mg/L	<0.0001	0.0001		
Bismuth	Total	mg/L	<0.0005	0.0005		
Boron	Total	mg/L	<0.002	0.002		
Cadmium	Total	mg/L	<0.00001	0.00001		
Chromium	Total	mg/L	0.0048	0.0005		
Cobalt	Total	mg/L	0.0388	0.0001		
Copper	Total	mg/L	0.001	0.001		
Lead	Total	mg/L	<0.0001	0.0001		
Lithium	Total	mg/L	<0.001	0.001		
Molybdenum	Total	mg/L	<0.001	0.001		
Nickel	Total	mg/L	0.0461	0.0005		
Selenium	Total	mg/L	<0.0002	0.0002		
Silver	Total	mg/L	<0.00001	0.00001		
Strontium	Total	mg/L	0.001	0.001		
Thallium	Total	mg/L	<0.00005	0.00005		
Tin	Total	mg/L	<0.001	0.001		
Titanium	Total	mg/L	0.993	0.0005		
Uranium	Total	mg/L	<0.0005	0.0005		
Vanadium	Total	mg/L	0.0070	0.0001		
Zinc	Total	mg/L	0.064	0.001		
Zirconium	Total	mg/L	<0.001	0.001		

T: +1 (780) 438-5522 F: +1 (780) 438-0396 E: Edmonton@exova.com W: www.exova.com

Analytical Report

Bill To:	Pure Elements Environmental	Project:		Lot
Report To:	Pure Elements Environmental Box 77	ID: Name:	Tundra2	Control Numb
	RR1 Site 1	Location:	- dirai al	Date Receive Date Reporte
	DeWinton, AB, Canada T0L 0X0	LSD: P.O.:		Report Numb
Attn: Sampled By: Company:	Trina Comartin	Acct code:		

t ID: 876492

Control Number: Date Received: Jun 18, 2012 Date Reported: Jun 19, 2012 Report Number: 1744963

Anthony Weuman

Approved by: Anthony Neumann, MSc Laboratory Operations Manager

Exova
 1. +1 (700) 436-3522

 7217 Roper Road NW

 Edmonton, Alberta

 E: Edmonton@exova.com
 T6B 3J4, Canada

T: +1 (780) 438-5522 W: www.exova.com

Methodology and Notes

	Pure Elements Environmental	Project:		Lot ID:	876492
Report To:	Pure Elements Environmental Box 77	ID: Name:	Tundra2	Control Number:	
	RR1 Site 1	Location:	Tunuraz	Date Received: Date Reported:	*
	DeWinton, AB, Canada	LSD:		Report Number:	*
4#21	T0L 0X0 Trina Comartin	P.O.:			
Attn: Sampled By: Company:	mna Comarún	Acct code:			

Method of Analysis

Method Name	Reference	Method	Date Analysis Started	Location
Metals ICP-MS (Total) in water	APHA/USEPA	 Metals By Inductively Coupled Plasma/Mass Spectrometry, APHA 3125 B / USEPA 200.8 	19-Jun-12	Exova Edmonton
Metals Trace (Total) in water	APHA	 Inductively Coupled Plasma (ICP) Method, 3120 B 	19-Jun-12	Exova Edmonton
		* Reference Method Modified		
References				

References

APHA	Standard Methods for the Examination of Water and Wastewater
US EPA	US Environmental Protection Agency Test Methods

Comments:

15.3 Appendix C – Removing and Stabilizing Arsenic in Acid Mine Water

Appendix C

Removing and Stabilizing Arsenic in Acid Mine Water

R. W. Lawrence and T. W. Higgs September, 1999 - Journal of Mining

Prepared by: **pure elements** environmental solutions

RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca Reviewed and approved by: Justin Bunz, CET AEL Engineering Ltd. Overview

Removing and Stabilizing As in Acid Mine Water

R.W. Lawrence and T.W. Higgs

Arsenic is often present in a variety of forms in sulfide mineral deposits and can become a soluble constituent of mine drainage due to oxidation reactions taking place in mine workings and waste deposits. Its removal from solution must be carried out to meet water-quality discharge criteria, and it must be fixed in a solid form that is environmentally stable. The preferred form of arsenic for disposal is as a basic ferric arsenate, $FeAsO_4 \cdot xFe(OH)_{3'}$, which can be readily produced by coprecipitation with iron in a highdensity sludge process. High-density sludge plants are simple to operate and can be designed to meet stringent water-quality specifications and produce stable sludges over long periods of continuous operation.

INTRODUCTION

Mine water and the drainage from waste rock piles and tailings impoundments at mines exploiting sulfide ore deposits are often contaminated with metals due to the oxidation of residual sulfides. The minerals pyrite, FeS₂, and pyrrhotite, $Fe_{1-x}S$, are the sulfides most commonly present in waste rock, tailings, and the mine workings due to their common association with base-metal sulfides and their relative abundance. The oxidation of these minerals produces acidity as well as ferrous and ferric ions, which can promote the oxidation and dissolution of other sulfide minerals. Mine water and drainages that contain the products of oxidation are usually referred to as acid rock drainage (ARD). The environmental impacts caused by

ARD are the most significant environmental concern at many mine sites.

Arsenic is frequently found in many types of mineral deposits. It can occur in a large number of sulfides, sulfosalts, oxides, arsenites, and arsenates and is most commonly associated with sulfidic base metal and gold ores. Arsenic is, therefore, often present in small or large concentrations in the waste rock and tailings produced by mining and milling operations and is a common constituent of ARD. Removing arsenic and other contaminants to low residual dissolved concentrations is often necessary

to meet water-quality discharge criteria.

One of the most critical aspects of arsenic removal from ARD is its fixation in an environmentally stable form to allow safe, long-term disposal. Precipitation of metals from ARD using lime is widely used, but in the absence of competing cations, the formation of calcium arsenate, $Ca_3(AsO_4)_2$, is favored. This compound, however, has a minimum stability at a high pH (>12), and its longterm stability has been shown to be unsatisfactory due to its interaction with carbon dioxide in air.1,2 It is now generally accepted that precipitation of arsenic as a basic ferric arsenate, FeAsO₄·xFe(OH)₃, formed by coprecipitation with ferricion is preferred. While simple ferric arsenate, FeAsO₄, formed with a 1:1 Fe/As molar ratio, is relatively soluble at neutral pH, basic ferric arsenates with Fe/As ratios of three or more are stable in a wide pH range.3-5

Many processes have been proposed to remove arsenic and other metals from contaminated mine waters, although coprecipitation with iron combined with lime neutralization remains the process of choice for most operations to produce satisfactory effluent and to form stable sludges for disposal. While theoretical considerations of arsenic removal and the stability of the precipitates produced are an important aspect of process design, treatment plants need to be designed to provide simple yet reliable, low-cost performance. Operational experience at a large number of plants has

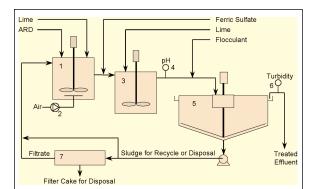


Figure 1. A treatment system for ARD containing arsenic. 1– reactor for partial neutralization; 2–air blower; 3–reactor to complete precipitation; 4–pH measurement and control; 5– clarifier; 6–turbidity measurement; 7–filter press.

shown that the high-density sludge (HDS) process is the best available technology to meet these design objectives and satisfy environmental criteria.

REMOVING ARSENIC FROM ARD

Removing arsenic from ARD and other process streams in the mining and metallurgical industries has been investigated using a wide range of processes.7 Processes that have been used and proposed include precipitation with lime; coprecipitation using ferric ion, copper, zinc, lead, and other metals; precipitation at high temperature and pressure; adsorption with ferric hydroxide, aluminum hydroxide, carbon, and other absorbents; electrolysis; hydrogen reduction; ion exchange; solvent extraction; membrane separations; precipitate flotation; ion flotation; and various passive and active biological processes. Of all the processes evaluated, coprecipitation with ferric ion using ferric sulfate or ferric chloride as a reagent is the process of choice for most applications based on cost, relatively simple engineering and control, reliable performance, and production of environmentally satisfactory effluent and solid residue (sludge).

Lime, CaO, which is usually converted to slaked lime Ca(OH)₂ as part of the treatment process, is the most widely used neutralizing agent due to its rapid kinetics and ability to raise the pH to high values. Other reagents can be used and might be preferred in specific cases,

including sodium hydroxide, which has the advantage of not forming gypsum, CaSO₄·2H₂O, as is the case with lime. Gypsum formation can, in some cases, cause scaling problems in treatment-plant equipment. Avoidance of gypsum formation also reduces the volume of sludge for disposal. However, sodium hydroxide is much more costly than lime. Limestone is usually available at a low cost, but has relatively low reactivity and can not be used to increase pH above 5.0 without excessive reagent consumption and subsequent sludge disposal problems. Its use might be applicable where the feed

streams are very acidic and where sludge disposal is available at a low cost, but it can only function in combination with another reagent, such as lime or caustic soda, to achieve the final pH needed to precipitate all metals to achieve regulatory compliance.

The addition of slaked lime and ferric ion to ARD precipitates the contained arsenic as ferric arsenate (Equation 1). The ferric ion is precipitated as ferric hydroxide (Equation 2).

$$2H_{3}AsO_{4} + Fe_{2}(SO_{4})_{3} + 3Ca(OH)_{2}$$

$$\rightarrow 2FeAsO_{4}\cdot 2H_{2}O + 3CaSO_{4}\cdot 2H_{2}O \quad (1)$$

$$Fe_{2}(SO_{4})_{3} + 3Ca(OH)_{2} + 6H_{2}O$$

$$\rightarrow 2Fe(OH)_{2} + 3CaSO_{2}\cdot 2H_{2}O \quad (2)$$

It has been shown¹⁰ that with Fe/As molar ratios greater than one, the coprecipitation of As(V) and Fe(III) does not produce a mixture of ferric arsenate and ferric hydroxide, but forms chemical compounds termed basic ferric arsenates, FeAsO₄·xFe(OH)₃. The binding of arsenic by absorption on amorphous ferric hydroxide has also been reported to be an effective mechanism of arsenic removal.11 It should be noted that the presence of other cations, such as copper, zinc, or aluminum, in ARD can assist in the fixation of arsenic in the precipitates due to the formation of corresponding basic-metal arsenates.¹¹

¹ Arsenic can also precipitate with lime to form calcium arsenate (Equation 3), but this reaction should be avoided due to the instability of the precipitate.¹

$$2 H_3 AsO_4 + 3 Ca(OH)_2$$

$$\rightarrow Ca_3 (AsO_4)_2 + 6 H_2O$$
(3)

THE HDS PROCESS

Conventional practice for the removal of arsenic from ARD involves ferric-ar-

senate precipitation followed by flocculation and solids removal. This is carried out in a lime treatment plant in which part of the sludge produced by precipitation is recycled to the process to increase sludge density, which, in turn, increases the efficiency of metal removal and reduces the volume of the sludge produced; this configuration is called a HDS process. Apart from the importance of efficiently removing metals to meet water-quality discharge criteria, the reduction of sludge volumes can have significant economic implications as the cost of sludge storage and maintenance can often exceed the initial capital cost of the treatment plant in the long term.

A hypothetical process flow sheet for a treatment plant for ARD containing arsenic is presented in Figure 1. In this case, two reactors are provided, as it is assumed that the concentration of arsenic in the feed is high (>50 mg/l), but the required concentrations of other metals necessary to precipitate arsenic, particularly iron, are low. If arsenic concentrations are low, a single reactor is usually adequate.

In the flow sheet, ARD is fed to the first reactor, where partial neutralization with lime is carried out to enhance the formation of ferric arsenate. Aeration is provided to oxidize any ferrous iron present. The pH of the first reactor is controlled between 4.5 and 6.5, depending on the feed characteristics. If the feed is deficient in iron (or other metals, such as copper), it might be necessary to add ferric sulfate to the first reactor. Additional ferric sulfate can be added to the overflow launder of the first reactor and lime can be added to the second reactor to adjust the pH to 7–8 to complete the coprecipitation of ferric arsenate with ferric hydroxide. Selection of the final pH will be dependent on the requirements to remove other metals.

Polyelectrolyte (flocculant) is added as a very dilute solution to promote improved settling of the precipitates. It can be added directly to the discharge launder from the second reactor or to a flocculating feed-well of the clarifier. Figure 1 shows the use of a conventional clarifier, in which flocculated precipitates and other suspended solids settle to produce a sludge and the treated effluent overflows for discharge. An arsenic effluent concentration of <0.05 mg/l can be achieved in most well designed plants. If the feed concentration of arsenic is high, however, particulate carryover with the treated effluent can result in exceedance of discharge criteria with respect to total (soluble + dissolved) arsenic. In this case, a final filtration step could be required. Alternatively, a highefficiency clarification device, such as a lamella clarifier, can produce the required effluent quality, but at a higher capital cost than the cost of a conventional clarifier.

The thickened sludge from the clarifier is recycled back to the first reactor. Sludge recycle promotes and maintains a high sludge density and creates a higher surface area to assist in the removal of colloidal metal. A portion of the recycled sludge is removed periodically for disposal to maintain a constant sludge inventory. A filtration stage allows the removal of sludge from the system as a filter cake. This is an optional step, and its inclusion will depend on factors such as the disposal site characteristics and local regulatory requirements. The density of sludges discharged without filtering will typically be in the range of 20% to 45% solids. Final settled sludge densities in the sludge impoundment can reach 55% solids.

Factors that affect arsenic removal and

SOURCES AND CHEMISTRY OF ARSENIC

Arsenic is widely distributed in nature and occurs in a large number of minerals either as a primary constituent of the crystal structure or in small amounts in arsenic-carrier minerals. More than 300 arsenic and arsenic-carrier minerals are known.⁶ Arsenopyrite, FeAsS, is the most abundant arsenic mineral associated with sulfidic mineral deposits. Other prominent arsenic minerals include enargite, Cu_3As_4 , realgar, AsS; orpiment, As_2S_3 ; tennantite, $(Cu,Fe)_{12}As_4S_{13}$; niccolite, NiAs; and cobaltite, CoAsS.

Natural background concentrations of arsenic in groundwater and surface water are generally very low. Acidic drainage from mines, waste rock, and tailings, however, can contain significant concentrations of arsenic if the sulfides and other minerals that contain arsenic are present. The oxidation of these minerals can release arsenic into solution. Arsenic may also be present in mine waste as an oxide mineral such as scorodite, FeAsO₄:2H₂O, or olivenite, Cu₂(AsO₄)OH. Since waste rock may contain mixtures of oxides and sulfides, arsenic mobilization may also occur when acid generated by sulfide oxidation contacts the oxide minerals.

Arsenic is a Group V_A element and has a chemical behavior considerably different than the heavy metals, such as zinc and copper, with which it is commonly associated in ARD. It chemically resembles phosphorous and, in fact, competes with phosphorous for chemical-binding sites. The chemistry of arsenic is also quite similar to that of antimony, and the same treatment processes are used for removing both metals. Arsenic can be present as a soluble anion or a colloidal particle in ARD and requires separate attention in the design of ARD treatment processes.

The aqueous chemistry of arsenic related to hydrometallurgical processes has been well reviewed.^{7,8} In ARD, both arsenic (III) and arsenic (V) can exist, with the relative proportions of each dependent on the source of the dissolved arsenic and on the characteristics of the ARD, particularly with respect to the iron concentration and its valency state [i.e., Fe(II) of Fe(III)].

Equations A–E illustrate reactions that can occur. Iron is usually the principal cation present in ARD due to the oxidation of pyrite, FeS_{2n} and/or pyrrhotite, Fe_{1-x} . The initial oxidation products of these iron sulfides are acidity (H⁺) and Fe(II) (Equation A), which can be oxidized to Fe(III) (Equation B) in the neutral pH range, if solutions are well aerated, or under acidic conditions by chemoautotrophic bacteria that use Fe(II) as an energy source. The ferric ions produced will promote the further oxidation of pyrite (Equation C), pyrrhotite, and other sulfide minerals producing additional acidity, causing the dissolution of the contained metals and Fe(II), which can then be re-oxidized as shown in Equation B.

$$FeS_2 + 3.5O_2 + H_2O \rightarrow Fe^{2+} + 2SO_4^{2-} + 2H^+$$
 (A)

$$Fe^{2+} + 0.25O_2 + H^+ \rightarrow Fe^{3+} + 0.5H_2O$$
 (B)

$$FeS_2 + Fe^{3+} + 8H_2O \rightarrow 15Fe^{2+} + 2SO_4^{2-} + 16H^+ (C)$$

Using arsenopyrite, FeAsS, as an example, the oxidation of arsenic minerals can initially result in the appearance of As (III) in solution (Equation D). In acidic conditions, As (III) is not oxidized to As (V) by air (oxygen) except under pressure and elevated temperatures.⁹ Fe (III), if present in ARD, can, however, oxidize As (III) (Equation E).

$$HAsO_{2} + 2Fe^{3+} + 2H_{2}O$$

$$\rightarrow H_{3}AsO_{4} + 2Fe^{2+} + 2H^{+}$$
(E)

sludge stability include the oxidation state of iron and arsenic, the Fe/As ratios, pH, polyelectrolytes, sludge recycle and solids inventory, and process and plant considerations.

Oxidation State of Iron and Arsenic

Iron is usually present in mine drainage or other effluents as both Fe(II) and Fe(III). The oxidation of Fe(II) is essential to maximize the Fe(III) content for As(III) oxidation and ferric-arsenate precipitation and to prevent the formation of ferrous arsenate, which is more soluble than basic ferric arsenate. In addition, the precipitation of ferrous hydroxide should be avoided as lime consumption is much higher and the resulting sludge is less stable and more difficult to handle and de-water than ferric hydroxide. The use of air in the arsenic precipitation reactor will ensure that all ferrous iron is oxidized to ferric iron. It should be noted that commercial-grade ferric sulfate added to the process often contains a significant percentage of iron as Fe(II).

As discussed, arsenic should be present as As(V), since the precipitated arsenate compounds generally have a lower solubility than the equivalent As(III) form. If As(III) is high, oxidation using oxidizing agents, such as hydrogen peroxide, might be necessary.

Fe/As Ratios

Operating experience in a large number of plants has shown that the ferricsulfate addition rate should be set to maintain the Fe/As molar ratio greater than 5:1. This ratio maximizes removal efficiency and ensures that the resultant sludge will be stable. This minimum ratio might be higher than actually required to produce a stable sludge, but the incremental cost of over-addition of the reagent is more than offset by operational simplicity and the elimination of the monitoring costs that would be incurred to demonstrate that the lower ratio is meeting objectives for sludge stability.

pН

The flow sheet in Figure 1 illustrates the neutralization of the arsenic-containing feed in two reactors. Performing neutralization in steps can benefit the precipitation of arsenic by ensuring that ferric arsenate, and not calcium arsenate, is formed. Since calcium-arsenate formation is favored under alkaline conditions, maintaining the pH of the first reactor between 4.5 and 6.5 will favor ferric-arsenate formation. In the second step, neutralization to pH7-8 takes place over a range where ferric hydroxide has a minimum solubility, and the coprecipitation of ferric arsenate is optimal.

In cases where the arsenic content of the feed is very high, a two-stage arsenic

Polyelectrolyte

Proper polyelectrolyte feed is essential in meeting stringent effluent specifications. A number of factors influence the selection and effectiveness of polyelectrolyte addition, including type, charge, charge densities, feed-solution concentration, dosage, air entrainment, and floc shear and dosage.

Solids Inventory

Maintaining a high-solids inventory using recycle and controlled sludge removal can produce low dissolved arsenic and suspended-solids concentrations if coupled with an effective flocculant. Recycled sludge yields maximum settling rates and sludge densities. These factors, in turn, improve overall process stability and result in lower total arsenic concentrations in the effluent. Although ferric-hydroxide floc has a low density, the recycle of ferric hydroxide builds density by incorporating inert components, such as gypsum, into the sludge. In addition, ferric-arsenate precipitates can be colloidal and sludge recycle will provide a high surface area to aid in the removal of these colloids from suspension.

Process and Plant Design

Process and plant design are site specific and depend on a number of factors, including feed volume and composition, effluent discharge criteria, selected neutralizing reagent, storage capacity for the ARD feed, and the sludge disposal method. In all cases, the process fundamentals, with respect to oxidation, precipitation, and sludge stability, must be considered in design, but the plant must also have low capital and operating costs, be simple to operate, and mechanically reliable. Designs should be practical and take into account the selection of construction materials and plant equipment, and the need to supply system back-ups in the event of mechanical and control system failures. Back-up equipment is especially important if the feed-storage capacity is limited.

Although the plant is designed to carry out chemical reactions, it is the physical set-up of the plant that will determine its reliability over long periods of continuous operation and provide assurance that the effluents and sludges will meet the required chemical specifications. The operating conditions of the plant, particularly with respect to reagent dosage, should be selected to allow the plant to produce effluent with significant lower concentrations than the discharge standard. This will reduce the need for costly monitoring and analyses required to check that the plant discharge is in compliance.

SLUDGE STABILITY AND DISPOSAL

In addition to the ferric and other metal arsenates formed in an ARD treatment plant, treatment sludges will contain mixtures of gypsum, heavy-metal hydroxides, heavy-metal carbonates, antimonates, and heavy-metal basic sulfates. The impact of exposure to water and air on the chemical nature of the sludge components and how this might affect their stability must be considered.

The evaluation of ARD sludge stability requires a comprehensive understanding of the physical and chemical behavior of these compounds. The physical characteristics are influenced by the unit processes involved in the treatment-specifically, neutralization, oxidation, and precipitation. The long-term chemical stability of these sludges also depends on a number of factors, including process design and control in the water-treatment process; disposal-site physical characteristics; in-place permeability; particle-size distribution; and the presence of oxygen, sulfides, and complexing agents, such as cyanide, chloride, or naturally occurring organic ions.

Sludge-disposal options include deposition in tailings ponds, separate sludge ponds, marine and lake disposal, and landfills. Although careful selection of the disposal site is essential, HDS sludges are typically stable under neutral leaching conditions and usually contain significant excess residual alkalinity to prevent acidification and resolubilization under most site conditions. As previously discussed, basic ferric arsenates are stable over a wide pH range.

References

1. R.G. Robins and K. Tozawa, CIM Bull., 75 (1982), pp. 171-

Frendrix, and F.S. Queneau (Warrendale, PA: 1MS, 1988), pp. 77–98.
G.B. Harris and S. Monette, in Ref. 2, pp. 469–488.
N. Papassiopi, M. Stefanakis, and A. Kontopoulos, in Ref. 2, pp. 321–334.
E. Krause and V.A. Ettel, *Hydrometallurgy*, 22 (1989), pp. 211–237.

311–337. 6. V.L. Escobar Gonzales and A.J. Monhemius, in Ref. 2, pp. 405–453.

405–453.
7. R.G. Robins, in Ref. 2, pp. 215–247.
8. R.G. Robins, Impurity Control and Disposal (Montreal, Canada: CIM, 1985), pp. 1.1–1.26.
9. G. Neira Arenas and A.J. Monhemius, Environment and Imnovation in Mining and Mineral Technology. Proc. IV International Conference on Clean Technologies for the Mining Industry, ed. M.A. Sánchez, F. Vergara, and S.H. Castro (Chile: University of Concepción, 1998), pp. 835–849.
10. E. Krause and V.A. Ettel, Impurity Control and Disposal (Montreal, Canada: CIM, 1985), pp. 51–5.20.
11. R. G. Robins, in Ref. 2, pp. 99–112.

R.W. Lawrence is with Simons Perú, S.A. T.W. Higgs is with H.A. Simons Ltd.

For more information, contact R.W. Lawrence, Simons Perú, S.A., Aramburú 166, Piso 5, Miraflores, Lima 18, Perú; telephone 51-1-221-3130; fax 51-1-221-3143; e-mail rwlawrence@ ibm.net.

Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

15.4 Appendix D – 2012 SNP Results – Tundra Mine Remediation

Appendix D

Tundra Mine 2012 Seasonal SNP Reports

Robin Staples, Aquatic Quality Specialist Water Resources Division, AANDC

Aboriginal Affairs and Northern Development Canada

NOTE: This document is too large to be included within this report and therefore it is attached as a separate, stand-alone .pdf document.

Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

15.5 Appendix E – 2010 Tundra Aquatic Ecology Baseline & Construction Monitoring Report

Appendix E

Tundra Mine 2010 Aquatic Ecology Baseline Studies and Construction Activity Monitoring Program

Rescan™ Environmental Services Ltd.

NOTE: This document is too large to be included within this report and therefore it is attached as a separate, stand-alone .pdf document.

Prepared by: **DUTE Elements** environmental solutions

RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca Reviewed and approved by: Justin Bunz, CET AEL Engineering Ltd.

Tundra Water Treatment Facility 2012 End of Season Treatment Report Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

15.6 Appendix F – 2012 Off-site Test Results

Appendix F

Tundra Mine 2012 Off-site Test Results

pure elements environmental solutions

Prepared by: **pure elements** environmental solutions

RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca Reviewed and approved by: Justin Bunz, CET AEL Engineering Ltd.

Page 49 of 53

NOTES										Note 1														Note 2		Note 3	Note 3	Note 4	Note 4												Note 5		Note 5	c aton						
sampled by			R Comartin	T Comartin		T Comartin	T Compatin		T Comartin	T Comartin	T Comartin	T Comartin	J Bunz	J Bunz	R Comartin	P Comartin	R Comartin	R Comartin	R Comartin	R Comartin	R Comartin	R Comartin	R Comartin	R Comartin	R Comartin	K Comartin	R Comartin		T Comartin	T Comartin	T Comartin	T Comartin																		
Ηd		6 to 9																								8.09	8.1	8.12	8.14	8.05	8.02	8.12	8 00 0	60.0	8.26	8.16		8.16	8.17		8.18	8.17	8.13	8.08	11.8	CT.0	8.11	8.04	8.05	8.05
TSS	mg/L	15																								< 3.0	8	9	8	< 3.0	4	< 3.0	< 3.0	0 0 1	< 3.0	< 3.0		< 3.0	9		9	m '	• و	4	4	t 4	9	∞	8	4
Nitrite (as N)	J/Bm	0.4																								< 0.050	< 0.050	0.21	0.21	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050	< 0.050		< 0.050	< 0.050		< 0.01	< 0.01	< 0.01	10.0 >	10.0 >		10.0 >	< 0.01	< 0.01	< 0.01
Nitrate (as N)	mg/L	5																								0.08	0.099	0.21	0.21	0.26	0.268	0.272	0.252	0.754	0.284	0.256		0.262	0.26		0.23	0.23	0.23 6.23	0.23	0.22	27.0 22.0	0.24	0.24	0.23	0.23
Ammonia (as N)	mg/L	5																								0.37	0.279	0.1	0.1	0.1	0.12	0.136	0.068	con.u	0.103	0.126		0.126	0.131		0.08	0.08	0.08	0.08	60.0	50 0	0.08	0.08	0.06	0.08
Zinc	mg/L	0.02	0.005	0.0055	0.0069	0.007	0.0055	0.006	0.006	0.042	0.008	0.0068	< 0.005	< 0.005	< 0.005	< 0.005	0.0034	0.002/	<00.0 >		<000.0 >	80000	0.0023	0.066	0.0018	< 0.0040	< 0.0040	0.005	0.005	< 0.0040	0.0047	< 0.0040	< 0.0040	< 0.0040	< 0.0040	0.004	< 0.0040	< 0.0040	< 0.0040	< 0.005	0.0063	0.0017	0.0029	0.0022	0.0006		0.0006	0.0057	0.001	0.0064
Nickel	mg/L	0.05	0.0068	0.00624	0.00649	0.00692	0.00654	0.0067	0.0065	0.0069	0.007	0.0067	0.0064	0.0063	0.0058	0.006	0.0065	0.0056	0.0066	0.0012	0.003	0.004		0.0132	0.0042	0.0025	< 0.0020	0.0069	0.0066	0.00426	0.00333	0.0031	0.0031	0.0007	0.00312	0.00331	0.00312	0.00406	0.00382	0.0033	0.0032	0.0031	0.0032	0.0031	6700.0		0.0032	0.0035	0.0032	0.0031
Lead	mg/L	0.01	0.0014	0.00124	0.00129	0.00162	0.00124	0.0014	0.0081	2	0.0021	0.0019	0.0013	0.0011	0.0009	0.0011	0.0015	1100.0	0.0012	11000	100.0	0.000.0	0.0005	0.0357	0.0013	< 0.0050	< 0.0050	0.0014	0.0013	0.00012	0.00019	0.00025	0.00025		< 0.0001	< 0.0001	0.0001	0.00011	0.00012	< 0.001	0.127	0.0028	0.059	0.0704	0.0004		< 0.0010	< 0.0010	< 0.0010	< 0.0010
Copper	mg/L	0.01	0.0023	0.0018	0.002	0.0021	0.0019	0.002	0.0019	0.0021	0.0021	0.0023	0.0026	0.002	0.0019	0.002	0.0027	1200.0	0.002	0T00.0	0.0018	6100.0		0.021	0.0023	< 0.0010	< 0.0010	0.0023	0.0022	< 0.0010	0.0014	0.0011	0.0011	CTUUN 0 /	< 0.0010	< 0.0010	0.0011	< 0.0010	< 0.0010	0.0012	0.0005	0.0006	0.0005	2000.0	0.0005		0.0006	0.0007	0.0006	0.0005
Arsenic	mg/L	0.5	0.723	0.686	0.702	0.713	0.677	0.747	0.704	0.721	0.737	0.689	0.651	0.664	0.652	0.684	0.734	0./36	0.759	00/.0	1.18/	1.45U	1 AAO	3,100	1.940	< 0.20	0.014	0.725	0.705	0.031	0.031	0.025	0.026	0.016	0.021	0.020	0.022	0.020	0.020	0.023	0.021	0.021	0.020	170.0	0.01 /	0100	0.020	0.017	0.017	0.015
Sample Type	nco Critorio	אמופו בונפוונפ כווופוומ	Raw	Kaw	Raw	MPL	Kav	Raw	Raw	lower Pond	Raw	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Trooted	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	I reated	Treated	Trootod	Treated	Treated	Treated	Treated														
Lab ID	Motor lies		120338-001	L1164270-1	L1164270-4	L1164270-7	L1164270-11	120379-001	120379-004	120379-007	120379-010	120404-002	120404-005	120404-008	120404-011	120402-001	120410-001	120410-005	120434-006	120424-012	120434-020	120608-002	120608-007	120648-006	120756-008	L1157516-1	L1158652-1	120338-002	120338-003	L1164270-2	L1164270-3	L1164270-5	L1164270-6	L1164270-0	L1164270-10	L1164270-12	L1164270-13	L1164270-15	L1164270-16	120357-001	120379-002	120379-003	120379-005	1203/9-006	120379-008	600-6/507t	120404-003	120404-006	120404-007	120404-009
Lab			Taiga	ALS	ALS	ALS	ALS	Taiga	Taiga 	l aiga	Taiga	Toiga	Taiga	Taiga	Taiga	Taiga	Taiga	ALS	ALS	Taiga	Taiga	ALS	ALS	ALS	ALS		ALS	ALS	ALS	ALS	ALS	Taiga	Taiga	Taiga	Taiga	l alga	T aiga	Taiga	Taiga	Taiga	Taiga	Taiga								
Sample ID	over WL criteria	within 20% of limit	Raw - Upper Pond	Kaw - Upper Pond	Raw - Upper Pond		Kaw - Upper Pond	Baur Upper Pond	Raw - Upper Porid	Raw - Lower Pond	Raw - Upper Pond	Train #3 Effluent	Train #2 Effluent	Comp A	Comp B	Comp A	Comp B	Comp A	Comp B	Comp A	Sump 2	Comp A	Sump 1	Comp A	Comp B	Comp A Sump 1	Comp A	Comp B	Comp A	Comp B	Comp A		Comp B	Comp A	Comp B	Comp A														
Date	NO Discharge	Min. Discharge	12-Jun-12	13-Jun-12	14-Jun-12	15-Jun-12	16-Jun-12	17-Jun-12	18-Jun-12	19-Jun-12	20-Jun-12	21-Jun-12	22-Jun-12	23-Jun-12	24-Jun-12	25-Jun-12	26-Jun-12	71-unr-77	21-un-82		21-1112	21-101-05	3-Aug-12	5-Aug-12	29-Aug-12	5-Jun-12	6-Jun-12	12-Jun-12	12-Jun-12	13-Jun-12	13-Jun-12	14-Jun-12	14-Jun-12	21-JUU-CT	15-Jun-12	16-Jun-12	16-Jun-12	17-Jun-12	17-Jun-12	18-Jun-12	18-Jun-12	18-Jun-12	19-Jun-12	ZI-UNL-EI	21-unf-02	21-lint-02	21-Jun-12	22-Jun-12	22-Jun-12	23-Jun-12

NOTES													T																													Note 6				T		
sampled by			T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin		T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	R Comartin	R Comartin	R Comartin	R Comartin	R Comartin R Comartin	R Comartin	R Comartin
рН		6 to 9	8.1	7.97	8.14	0 75	o.50		8.23			8.21				8.24				8.26			8.4					CC 0	8.32	8.41	8.36	8.38	8.41	8.2	8.34 8.04	8.22	8.06	8.16	8	8	8.22	1.73	7.87	8.13	8.21 0.25	62.8 8.37	8.22	8.31
TSS	mg/L	15	< 3.0	4	4							4				4				9		,	9						4	9	∞	4	8	4	4 6	° ∾	4	9	4	4	4	4	4	4	₩,	8	9	8
Nitrite (as N)	mg/L	0.4	< 0.01	< 0.01	< 0.01	2007	TO'O >		< 0.01			< 0.01				< 0.01				< 0.01			< 0.01					10.01	T0'0 >	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Nitrate (as N)	mg/L	5	0.22	0.22	0.23	ç	0.2		0.2			0.18				0.18				0.17			0.17					0.16	9T.U	0.17	0.16	0.15	0.12	0.1	0.0	0.06	0.07	0.05	0.05	0.04	0.03	466	0.03	0.02	< 0.01	0.02 < 0.01	< 0.01	< 0.01
Ammonia (as N)	mg/L	5	0.09	0.07	0.08	0.01	c0.0		0.05			0.04					0.04			0.04				0.02					0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.03	0.03	0.02	0.02	0.02	0.03	0.02
Zinc	mg/L	0.02	0.0018	0.0035	0.0017	0.002	0 0024	0.0017		0.0027	0.0017	0.0015	0.003	/100.0	10000	10000		0.0022	0.0042	0.0013	0.0007	0.0006			0.0008	0.0013	0.0012	0.000		0.0008	6000.0	0.0012	0.0007	0.001	< 0.0004	0.0005	0.0015	0.0015	0.0006	0.0005	0.0014	0.0029	0.0029	0.0013	60000	0.0006	0.0015	0.0005
Nickel	mg/L	0.05	0.0031	0.0026	0.0026	0.0027	0 0031	0.0028		0.0031	0.0028	0.0026	0.0029	0.0028	0.0032	10000		0.0032	0.003	0.0033	0.0029	0.003			0.003	0.0031	0.003	TCOO'O		0.003	0.0031	0.0031	0.003	0.0035	0.003	0.0032	0.0034	0.003	0.0032	0.003	0.0028	0.0047	0.0047	0.0033	0.0033	0.0029	0.0034	0.0033
Lead	mg/L	0.01	< 0.0010	0.0003	< 0.0010	0.0001	0 0002	0.0001		0.0002	0.0001	< 0.0010	0.0003	0.0002	< 0.001	100000 1		0.0002	0.0005	< 0.0001	0.0001	< 0.0001			0.0001	0.0001	0.0001	TODOO		0.0001	0.0014	0.0003	< 0.0001	0.0002	< 0.0001	< 0.0001	0.0002	0.0002	< 0.0001	< 0.0001	0.0001	0.0002	0.0002	0.0002	0.0001	10000 >	0.0001	< 0.0001
Copper	mg/L	0.01	0.0005	0.0008	0.0005	0.0018	0.0019	0.0011		0.0024	0.0011	0.0006	0.0049	2000.0	< 0.000	100000		0.0008	0.008	< 0.0002	0.0003	0.0003			0.0003	0.0003	0.0003	6000.0		0.0004	0.0008	0.0051	0.0004	0.001	0.001	0.0002	0.0011	0.0011	0.0006	0.0005	0.0008	0.0009	0.000	0.0006	0.0006	8000.0	0.001	0.001
Arsenic	mg/L	0.5	0.015	0.014	0.014	0.020	0.019	0.017		0.017	0.018	0.018	0.020	0.023	0.030	0000		0.030	0.034	0.030	0.036	0.030			0.032	0.039	0.038	0000		0.030	0:030	0.030	0.043	0.047	0.037	0.049	0.080	0.085	0.066	0.038	0.075	0.054	0.054	0.053	0.062	0.067	0.076	0.129
Sample Type	and Cuitouic	water Licence Uriteria	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Trootod	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated
Lab ID	14/otor	water Lice	120404-010	120404-012	120404-013	120403-001	120402-002	120403-003	120402-003	120410-002	120410-003	120410-006	120410-009	120434-001 120434-002	120434-002	120434-004	120434-005	120434-007	120434-008	120437-001	120434-009	120434-010	120434-011	120434-012	120434-014	120434-015	120434-016	120434 010	120434-018 120434-019	120437-002	120437-003	120447-001	120447-002	120447-003	120447-004 120467-001	120467-002	120491-001	120491-002	120491-003	120491-004	120491-005	120513-001	120552-001	120513-003	120513-004	120513-002 120532-001	120532-002	120532-003
Lab			Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga 	Taiga	Taiga	Taiga	Taiga
Sample ID	over WL criteria	within 20% of limit	Comp B	Comp A	Comp B	B-OFF-0625-1945-P	B-OFF-0625-1345-P R-OFF-0626-0145-P	B-OFF-0626-0745-P	B-OFF-0626-0745-P	B-OFF-0626-1345-P	B-OFF-0626-1945-P	B-OFF-0627-0745-P	B-OFF-0627-0745-P	B-OFF-062/-1945-P B-OFF-0628-0116-D	B-OFF-0628-0845-P	B-OFF-0628-0845	B-OFF-0628-0845	B-OFF-0628-1345	B-OFF-0628-1945-P	B-OFF-0628-0845-dup	B-OFF-0629-0145-P	B-OFF-0629-0745-P	B-OFF-0629-0745-P	B-OFF-0629-0745	B-OFF-0629-1345-P	B-OFF-0629-1945-P	B-OFF-0630-0145-P		B-OFF-0630-0745 B-OFF-0630-0745	B-OFF-0629-0745-dup	B-OFF-0630-0745-dup	B-OFF-0701-0745-dup	B-OFF-0702-0745-dup	B-OFF-0703-0745-dup	B-OFF-0704-0745-dup B-OEE-0705-0745-dup	B-OFF-0706-0745-dup	B-OFF-0707-0745-dup	B-OFF-0708-0745-dup	B-OFF-0709-0745-dup	B-OFF-0710-0745-dup	B-OFF-0711-0745-dup	B-OFF-0712-0745-dup	B-OFF-0712-0745	B-OFF-0713-0745-dup	B-OFF-0714-0745-dup	B-OFF-0/15-0/45-040 B-OFF-0716-0845	B-OFF-0717-0745	B-OFF-0718-0745
Date	NO Discharge	Min. Discharge	23-Jun-12	24-Jun-12	24-Jun-12	25-Jun-12	25-Jun-12 26-Jun-12	26-Jun-12	26-Jun-12	26-Jun-12	26-Jun-12	27-Jun-12	27-Jun-12	27-Jun-12 28-Iun-12	28-Jun-12 28-Jun-12	28-Jun-12	28-Jun-12	28-Jun-12	28-Jun-12	28-Jun-12	29-Jun-12	29-Jun-12	29-Jun-12	29-Jun-12	29-Jun-12	29-Jun-12	29-Jun-12	20 Jun 12	29-Jun-12 29-Jun-12	29-Jun-12	30-Jun-12	1-Jul-12	2-Jul-12	3-Jul-12	4-Jul-12 5-11-1-2	5 Jul-12	7-Jul-12	8-Jul-12	9-Jul-12	10-Jul-12	11-Jul-12	12-Jul-12	12-Jul-12	13-Jul-12	14-Jul-12	16-Jul-12	17-Jul-12	18-Jul-12

NOTES			Note 7																																														T	
sampled by			R Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	I Ricketts	R Comartin	K Comartin	R Comartin R Comartin	R Comartin	R Comartin	R Comartin	R Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin	T Comartin																	
Hd		6 to 9	8.25	8.33	8.41	8.26	8.23 2.2	8.3	8.29	8.17	8.16	8.14	8.22	8.17				8.23				8.21	8.4	8.29	8.16	8.32	8.4	8.4	8.42	8.1/	8.14	1 00	7.97	7.96	8.06	8.36	8.36	8.4	8.36	8.45	8.41 0.20	8.27	8.35	8.31	8.41	8.4	8.44	8.48	8.3	8.38
TSS	mg/L	15	8	10	10	10	9	∞	∞	∞	8	6	9	9				9				10	4	8	9	4	9	∞	9 0	ہ ہ	x v	ی د	9	8	4	9	9	9	9	• •	4 4	t u	9	∞	9	9	9	9	10	∞
Nitrite (as N)	mg/L	0.4	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01				< 0.01				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	10.0 >	10.0 >	10.0 >	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	10.0 2	10.0 >	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Nitrate (as N)	mg/L	ο Δ	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01				< 0.01				0.04	< 0.01	0.35	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	0.02	< 0.01	< 0.01	< 0.01	10.0 >	< 0.01	< 0.01	0.13	< 0.01	< 0.01	< 0.01	< 0.01	0.05	0.03
Ammonia (as N)	mg/L	δ Ω	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	< 0.01				0.01				< 0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	< 0.01	10.0 >	10.0 2	0.01	0.02	0.02	0.02	0.01	0.01	< 0.01	< 0.01	TU:U	0.02	0.01	0.02	0.01	0.02	0.01	0.01	0.02	0.02
Zinc	mg/L	0.02	0.0006	0.001	0.0006	0.0028	0.0023	0.0034	0.0016	6000.0	0.0018	0.0009	0.0019		0.0019	0.001	0.0026		0.0056	0.0036	0.0012	0.0013	0.0016	0.0012	0.0021	0.0013	0.0008	0.0018	0.0014	C100.0	0.0013	80000	0.0023	0.0022	0.0024	< 0.0004	< 0.0004	< 0.0004	< 0.0004	0.001	< 0.0004	0.0014	0.0014	0.001	0.0016	0.0008	0.0009	0.003	0.0016	0.0014
Nickel	mg/L	0.05	0.0029	0.0027	0.0026	0.0025	0.003	0.003	0.0028	0.0031	0.0032	0.0032	0.0032		0.0033	0.0031	0.0031		0.0033	0.0032	0.0037	0.0035	0.0031	0.0033	0.0037	0.0035	0.003	0.0031	0.0032	0.0032	0.0035	0.0046	0.0040	0.0048	0.0045	0.0033	0.0032	0.003	0.003	0.0032	0.003	0.0033	0.0032	0.0031	0.003	0.003	0.0031	0.0033	0.0032	0.0026
Lead	mg/L	0.01	< 0.0001	< 0.0001	< 0.0001	0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.0003	< 0.0001	0.0001		0.0003	< 0.0001	< 0.0001		0.0002	< 0.0001	< 0.0001	0.0002	< 0.0001	< 0.0001	< 0.0001	0.0004	< 0.0001	0.0001	< 0.0001	1000.0 >	TUUUU U	0.0002	0.0002	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	T0000 /	10000	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	< 0.0001	< 0.0001
Copper	mg/L	0.01	0.0011	0.001	0.0009	0.0014	0.0011	0.0012	0.0012	0.0005	0.0006	0.0004	0.0006		0.0057	0.0005	0.0013		0.0005	0.0006	0.0004	0.0007	0.0011	0.0011	0.0009	0.0009	0.0009	0.001	0.0018	C100.0	0.0013	0.0017	0.0015	0.0012	0.0011	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0000 <	0.000	6000.0	0.0009	0.001	0.0009	0.0009	0.0009	0.0009	0.0009
Arsenic	mg/L	0.5	0.065	0.068	0.089	0.059	0.074	0.084	0.063	0.076	0.070	0.063	0.088		0.071	0.064	0.063		0.106	0.062	0.078	0.086	0.134	0.134	0.139	0.133	0.110	0.110	0.142	0.158	0.141	0.083	0.096	0.089	0.070	0.053	0.056	0.050	0.058	0.068	250.0	0.081	0.073	0.071	0.067	0.075	0.071	0.066	0.107	0.078
Sample Type		Water Licence Criteria	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	T reated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Troated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated												
Lab ID		Water Lice	120551-001	120551-002	120551-003	120576-001	120576-002	120576-003	120576-004	120607-001	120607-002	120607-003	120607-004	120607-005	120608-001	120608-003	120608-004	120607-006	120608-006	120608-005	120608-008	120617-001	120631-001	120631-002	120648-001	120648-002	120648-003	120648-004	120648-005	120664-001	120664-002 120664-003	1200664-004	120664-005	120681-001	120681-002	120719-006	120719-007	120719-008	120719-001	120719-002	120719-003	120756-001	120756-002	120756-003	120756-004	120756-005	120756-006	120756-007	120782-001	120782-002
Lab			Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	T alga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga	Taiga												
Sample ID	over WL criteria	20% of li	B-OFF-0719-0745-DUP	B-OFF-0720-0745-DUP	B-OFF-0721-0745-DUP	B-OFF-0722-0745-DUP	B-OFF-0723-0745-DUP	B-OFF-0724-0745-DUP	B-OFF-0725-0745-DUP	B-OFF-0726-0745-DUP	B-OFF-0727-0745-DUP	B-OFF-0728-0745-DUP	B-OFF-0729-0745-DUP	B-OFF-0730-0745-DUP	B-OFF-0730-0745-DUP	B-OFF-0730-1345	B-OFF-0730-1945	B-OFF-0731-0745-DUP	B-OFF-0731-0745-DUP	B-OFF-0731-0145	B-OFF-0731-1345	B-OFF-0801-0745-DUP	B-OFF-0802-0745-DUP	B-OFF-0803-0745-DUP	B-OFF-0804-0745-DUP	B-OFF-0805-0745-DUP	B-OFF-0806-0745-DUP	B-OFF-0807-0745-DUP	B-OFF-0808-0745-DUP	B-UFF-0809-0/45-DUP	B-OFF-0810-0/45-DUP B-OFF-0811-0745-DUP	B-OFF-0812-0745-DUP	B-OFF-0813-0745-DUP	B-OFF-0814-0745-DUP	B-OFF-0815-0745-DUP	B-OFF-0816-0745-DUP	B-OFF-0817-0745-DUP	B-OFF-0818-0745-DUP	B-OFF-0819-0745-DUP	B-OFF-0820-0745-DUP	B-UFF-U821-U/45-UUP P-OEE-0922-07AE-DUP	B-OFF-0823-0745-DUP	B-OFF-0824-0745-DUP	B-OFF-0825-0745-DUP	B-OFF-0826-0745-DUP	B-OFF-0827-0745-DUP	B-OFF-0828-0745-DUP	B-OFF-0829-0745-DUP	B-OFF-0830-0745-DUP	B-OFF-0831-0745-DUP
Date	NO Discharge	Min. Discharge	19-Jul-12	20-Jul-12	21-Jul-12	22-Jul-12	23-Jul-12	24-Jul-12	25-Jul-12	26-Jul-12	27-Jul-12	28-Jul-12	29-Jul-12	30-Jul-12	30-Jul-12	30-Jul-12	30-Jul-12	31-Jul-12	31-Jul-12	31-Jul-12	31-Jul-12	1-Aug-12	2-Aug-12	3-Aug-12	4-Aug-12	5-Aug-12	6-Aug-12	7-Aug-12	8-Aug-12	9-Aug-12	11-Aug-12 11-Aug-12	12-Aug-12	13-Aug-12	14-Aug-12	15-Aug-12	16-Aug-12	17-Aug-12	18-Aug-12	19-Aug-12	20-Aug-12	21-804-12	22-AU5-12 23-AU6-12	24-Aug-12	25-Aug-12	26-Aug-12	27-Aug-12	28-Aug-12	29-Aug-12	30-Aug-12	31-Aug-12

pc over WL criteria within 20% of limit. with 20% of li	Date	Sample ID	Lab	Lab ID	Sample Type	Arsenic	Copper	Lead	Nickel	Zinc	Ammonia (as N)	Nitrate (as N)	Nitrite (as N)	TSS	Hd	sampled by	NOTES
Within 20% of limit Water Letter 0.5 0.01 0.05 0.02 5 5 B-OFF-0901-0745-DUP Taiga 120782-003 Treated 0.093 0.0001 0.0028 0.0014 0.02 0.002 B-OFF-0901-0745-DUP Taiga 120782-003 Treated 0.072 0.0003 0.0012 0.002 0.002 B-OFF-0903-0745-DUP Taiga 120782-005 Treated 0.015 0.0001 0.0033 0.0012 0.02 B-OFF-0905-0745-DUP Taiga 120782-005 Treated 0.015 0.0011 0.0033 0.0012 0.02 B-OFF-0905-0745-DUP Taiga 120819-003 Treated 0.075 0.0011 0.0023 0.0012 0.002 0.002 B-OFF-0907-0745-DUP Taiga 120819-003 Treated 0.012 0.0013 0.0014 0.015 0.015 B-OFF-0910-0745-DUP Taiga 120819-003 Treated 0.011 0.0002 0.0014 0.005 0.005 0.005 0.005	<mark>Discharge</mark>	over WL criteria		11/10 Lot of V	a a Cuitaria	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L			
B-OFF-0901-0745-DUPTaiga120782-003Treated0.0030.00010.00280.00140.02B-OFF-0902-0745-DUPTaiga120782-004Treated0.07120.00120.0020.002B-OFF-0903-0745-DUPTaiga120782-005Treated0.0010.00010.00120.0020.002B-OFF-0903-0745-DUPTaiga120782-005Treated0.0010.00010.00120.0020.002B-OFF-0905-0745-DUPTaiga120782-005Treated0.0010.00020.00120.0020.002B-OFF-0905-0745-DUPTaiga120819-003Treated0.0170.00120.00120.0020.002B-OFF-0905-0745-DUPTaiga120819-003Treated0.0170.00120.00120.0020.002B-OFF-0905-0745-DUPTaiga120819-003Treated0.0750.00110.0020.0040.015B-OFF-0905-0745-DUPTaiga120819-003Treated0.0120.00120.00120.0020.0012B-OFF-0905-0745-DUPTaiga120819-003Treated0.0120.00120.00260.0020.0025B-OFF-0905-0745-DUPTaiga120819-003Treated0.0120.00120.00240.0025B-OFF-0910-0745-DUPTaiga120819-003Treated0.0120.00120.00240.0026B-OFF-0910-0745-DUPTaiga120819-003Treated0.0120.00130.00260.0026B-OFF-0910-0745-DUP <td< th=""><th>Discharge</th><th>within 20% of limit</th><th></th><th>ע מופר בונכב</th><th></th><th>0.5</th><th>0.01</th><th>0.01</th><th>0.05</th><th>0.02</th><th>5</th><th>5</th><th>0.4</th><th>15</th><th>6 to 9</th><th></th><th></th></td<>	Discharge	within 20% of limit		ע מופר בונכב		0.5	0.01	0.01	0.05	0.02	5	5	0.4	15	6 to 9		
B - 0FF - 0902 - 0745 - DUPTaiga $120782 - 004$ Treated 0.072 0.0071 0.0012 0.002	Sep-12		Taiga		Treated	0.093	0.0009	0.0001	0.0028	0.0014	0.02	0.02	< 0.01	10	8.45	T Comartin	
B-OFF-0903-0745-DUP Taiga 120782-005 Treated 0.066 0.0001 0.0012 0.002 0.002 B-OFF-0904-0745-DUP Taiga 120782-006 Treated 0.091 0.0001 0.0043 0.0016 0.002 B-OFF-0905-0745-DUP Taiga 120782-007 Treated 0.056 0.0011 0.0042 0.0012 0.002 0.002 B-OFF-0905-0745-DUP Taiga 120819-002 Treated 0.072 0.0011 0.0024 0.0012 0.012 0.025 B-OFF-0905-0745-DUP Taiga 120819-003 Treated 0.072 0.0011 0.0024 0.002 0.002 B-OFF-0905-0745-DUP Taiga 120819-003 Treated 0.012 0.0012 0.0014 0.005 B-OFF-0910-0745-DUP Taiga 120819-003 Treated 0.012 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0015 0.0014 0.0015 0.0015 0.0014 0.0015 0.0015 0.0014 0.0014	-Sep-12	B-OFF-0902-0745-DUP	Taiga		Treated	0.072	0.0007	< 0.0001	0.0037	0.0012	0.02	0.02	< 0.01	9	8.24	T Comartin	
B-OFF-0904-0745-DUP Taige 120782-006 Treated 0.001 0.0016 0.0016 0.002 0.0015 0.0016 0.002 0.0015	-Sep-12	B-OFF-0903-0745-DUP	Taiga		Treated	0.066	0.0008	< 0.0001	0.0038	0.0012	0.02	0.02	< 0.01	4	8.2	T Comartin	
B-OFF-0905-0745-DUP Taiga 120782-007 Treated 0.067 0.0001 0.0012 0.0012 0.002 0.0013 0.0013 0.002 B-OFF-0906-0745-DUP Taiga 120819-001 Treated 0.067 0.0011 0.0002 0.0014 0.013 0.013 0.013 0.013 0.0128 0.0015 0.015 <	-Sep-12	B-OFF-0904-0745-DUP	Taiga		Treated	0.091	0.0008	< 0.0001	0.0043	0.0016	0.02	0.02	< 0.01	8	8.12	T Comartin	
B-OFF-0906-0745-DUP Taiga 120819-001 Treated 0.067 0.0011 0.0002 0.0014 0.013 0.128 B-OFF-0907-0745-DUP Taiga 120819-003 Treated 0.072 0.0014 0.0014 0.075 0.013 B-OFF-0908-0745-DUP Taiga 120819-003 Treated 0.075 0.0011 0.0002 0.0014 0.075 0.015 B-OFF-0908-0745-DUP Taiga 120819-003 Treated 0.013 0.0014 0.0014 0.005 0.0017 0.005 0.005 0.0015 0.005 0.005 0.0015 0.005<	-Sep-12		Taiga		Treated	0.062	0.0008	< 0.0001	0.0042	0.0012	0.02	0.05	< 0.01	4	8.14	I Ricketts	
B-OFF-0907-0745-DUP Taiga 120819-002 Treated 0.072 0.0011 0.0022 0.0014 0.075 0.075 B-OFF-0908-0745-DUP Taiga 120819-003 Treated 0.075 0.0012 0.0028 0.0017 0.025 0.005 B-OFF-0908-0745-DUP Taiga 120819-004 Treated 0.033 0.0014 0.0018 0.005 0.0056 0.005 0.0056 <td< td=""><td>-Sep-12</td><td>B-OFF-0906-0745-DUP</td><td>Taiga</td><td></td><td>Treated</td><td>0.067</td><td>0.0011</td><td>0.0002</td><td>0.0042</td><td>0.0017</td><td>0.128</td><td>0.03</td><td>< 0.01</td><td>9</td><td>8.11</td><td>R Comartin</td><td></td></td<>	-Sep-12	B-OFF-0906-0745-DUP	Taiga		Treated	0.067	0.0011	0.0002	0.0042	0.0017	0.128	0.03	< 0.01	9	8.11	R Comartin	
B-OFF-0908-0745-DUP Taiga 120819-003 Treated 0.075 0.0012 0.0002 0.0007 0.025 0.0015 B-OFF-0909-0745-DUP Taiga 120819-004 Treated 0.093 0.0014 0.0028 0.0018 0.036 0.036 B-OFF-0910-0745-DUP Taiga 120819-005 Treated 0.032 0.0014 0.0039 0.0017 0.036 0.036 B-OFF-0911-0745-DUP Taiga 120819-007 Treated 0.011 0.0001 0.0033 0.0017 0.036 0.036 B-OFF-0911-0745-DUP Taiga 120812-007 Treated 0.011 0.0001 0.0033 0.0017 0.005 B-OFF-0911-0745-DUP Taiga 12082-001 Treated 0.011 0.0018 0.0014 0.016 0.005 0.0015 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	-Sep-12	B-OFF-0907-0745-DUP	Taiga		Treated	0.072	0.0011	0.0002	0.0034	0.0014	0.075	0.03	< 0.01	4	8.23	R Comartin	
B-OFF-0909-0745-DUP Taiga 120819-004 Treated 0.033 0.0014 0.0018 0.036 0.036 B-OFF-0910-0745-DUP Taiga 120819-005 Treated 0.082 0.0011 0.0003 0.0013 0.0016 0.036 0	8-Sep-12	B-OFF-0908-0745-DUP	Taiga		Treated	0.075	0.0012	0.0002	0.0028	0.0007	0.025	0.02	< 0.01	9	8.45	R Comartin	
B-OFF-0910-0745-DUP Taiga 120819-005 Treated 0.082 0.0012 0.0001 0.0039 0.0007 0.096 N B-OFF-0911-0745-DUP Taiga 120819-006 Treated 0.112 0.0011 0.0002 0.0033 0.0014 0.201 0.095 N B-OFF-0911-0745-DUP Taiga 120812-007 Treated 0.112 0.0011 0.0002 0.0034 0.0017 0.095 N B-OFF-0913-0745-DUP Taiga 120862-001 Treated 0.071 0.0014 0.0017 0.005 0.0017 0.005 0.0015 0.005 N 0.005 0.005 N 0.005 N 0.005 N 0.005 N 0.005 N <t< td=""><td>-Sep-12</td><td></td><td>Taiga</td><td></td><td>Treated</td><td>0.093</td><td>0.0014</td><td>0.0002</td><td>0.0044</td><td>0.0018</td><td>0.036</td><td>0.1</td><td>< 0.01</td><td>6</td><td>8.23</td><td>R Comartin</td><td></td></t<>	-Sep-12		Taiga		Treated	0.093	0.0014	0.0002	0.0044	0.0018	0.036	0.1	< 0.01	6	8.23	R Comartin	
B-OFF-0911-0745-DUP Taiga 120819-006 Treated 0.112 0.0011 0.0002 0.0013 0.0014 0.201 B-OFF-0912-0745-DUP Taiga 120819-007 Treated 0.068 0.0011 0.0003 0.0013 0.0015 0.095 B-OFF-0913-0745-DUP Taiga 120862-001 Treated 0.071 0.001 0.0034 0.002 0.0055 0.005 B-OFF-0913-0745-DUP Taiga 120862-002 Treated 0.071 0.0014 0.0013 0.002 0.0056 0.0055 0.005 0.0055 0.005 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.005 0.0056)-Sep-12	B-OFF-0910-0745-DUP	Taiga		Treated	0.082	0.0012	0.0001	0.0039	0.0007	0.096	0.03	< 0.01	10	8.32	R Comartin	
B-OFF-0912-0745-DUP Taiga 120819-007 Treated 0.068 0.001 0.00034 0.0007 0.095 N B-OFF-0913-0745-DUP Taiga 120862-001 Treated 0.071 0.001 0.0034 0.002 0.005 </td <td>Sep-12</td> <td></td> <td>Taiga</td> <td></td> <td>Treated</td> <td>0.112</td> <td>0.0011</td> <td>0.0002</td> <td>0.0043</td> <td>0.0014</td> <td>0.201</td> <td>0.09</td> <td>< 0.01</td> <td>10</td> <td>8.21</td> <td>R Comartin</td> <td></td>	Sep-12		Taiga		Treated	0.112	0.0011	0.0002	0.0043	0.0014	0.201	0.09	< 0.01	10	8.21	R Comartin	
B-OFF-0913-0745-DUP Taiga 120862-001 Treated 0.071 0.001 0.0068 0.0043 0.002 <0.005 0.005 0.005 0.005 0.005 0.0016 0.005 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0015 0.0015 0.0016 <t< td=""><td>-Sep-12</td><td>B-OFF-0912-0745-DUP</td><td>Taiga</td><td></td><td>Treated</td><td>0.068</td><td>0.001</td><td>0.0001</td><td>0.0034</td><td>0.0007</td><td>0.095</td><td>0.02</td><td>< 0.01</td><td>6</td><td>8.44</td><td>R Comartin</td><td></td></t<>	-Sep-12	B-OFF-0912-0745-DUP	Taiga		Treated	0.068	0.001	0.0001	0.0034	0.0007	0.095	0.02	< 0.01	6	8.44	R Comartin	
B-OFF-0914-0745-DUP Taiga 120862-002 Treated 0.062 0.0006 0.0004 0.0018 0.016 0.016 B-OFF-0915-0745-DUP Taiga 120862-003 Treated 0.107 0.0011 0.0008 0.0052 0.0029 <0.005	-Sep-12	B-OFF-0913-0745-DUP	Taiga		Treated	0.071	0.001	0.0008	0.0043	0.002	< 0.005	0.02	< 0.01	8	8.21	R Comartin	
B-OFF-0915-0745-DUP Taiga 120862-003 Treated 0.107 0.0011 0.0008 0.0062 0.0029 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	-Sep-12	B-OFF-0914-0745-DUP	Taiga		Treated	0.062	0.0009	0.0006	0.0044	0.0018	0.016	0.02	< 0.01	6	8.3	R Comartin	
B-OFF-0916-0745-DUP Taiga 120862-004 Treated 0.094 0.0013 0.0005 0.003 <0.003 <0.003 <0.005 <0.003 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	-Sep-12	B-OFF-0915-0745-DUP	Taiga		Treated	0.107	0.0011	0.0008	0.0062	0.0029	< 0.005	0.04	< 0.01	10	8.12	R Comartin	
B-OFF-0917-0745-DUP Taiga 120862-005 Treated 0.087 0.0011 0.0008 0.0048 0.002 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.003 <0.005 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.033 <0.033 <0.033 <0.033 <0.0034 <0.0036 <0.033 <0.033 <0.033 <0.033 <0.0034 <0.0035 <0.0036 <0.033 <0.033 <0.0034 <0.0035 <0.033 <0.033 <0.0034 <0.0035 <0.033 <0.0034 <0.0035 <0.033 <0.0034 <0.0035 <0.033 <0.0034 <0.0035 <0.033 <0.0034 <0.0035 <0.0035 <0.0035 <0.0035 <0.033 <0.0034 <0.0035 <0.0035 <0.0035 <0.0035 <0.0035 <0	-Sep-12	B-OFF-0916-0745-DUP	Taiga		Treated	0.094	0.0013	0.0009	0.0056	0.003	< 0.005	0.03	< 0.01	8	8.21	R Comartin	
B-OFF-0918-0745-DUP Taiga 120862-006 Treated 0.082 0.001 0.0011 0.0056 0.0021 <0.005 B-OFF-0919-0745-DUP Taiga 120862-007 Treated 0.076 0.0008 0.0012 0.0028 0.033 B-OFF-0920-0745-DUP Taiga 120881-001 Treated 0.061 0.001 0.0033 0.033	'-Sep-12	B-OFF-0917-0745-DUP	Taiga		Treated	0.087	0.0011	0.0008	0.0048	0.002	< 0.005	0.04	< 0.01	10	8.37	R Comartin	
B-OFF-0919-0745-DUP Taiga 120862-007 Treated 0.076 0.0008 0.0012 0.0028 0.033 B-OFF-0920-0745-D1P Taipa 170881-001 Treated 0.061 0.001 0.0034 0.076 0.13	-Sep-12		Taiga		Treated	0.082	0.001	0.0011	0.0056	0.0021	< 0.005	0.04	< 0.01	9	8.31	R Comartin	
B-OFE-0920-0745-DIJP Taiga 120881-001 Treated 0.061 0.001 0.0003 0.0064 0.0026 0.1)-Sep-12	B-OFF-0919-0745-DUP	Taiga		Treated	0.076	0.0008	0.0012	0.005	0.0028	0.033	0.03	< 0.01	8	8.43	R Comartin	
	20-Sep-12	B-OFF-0920-0745-DUP	Taiga	120881-001	Treated	0.061	0.001	0.0003	0.0064	0.0026	0.1	0.07	< 0.01	8	8.38	T Comartin	

EXPLANATION OF NOTATIONS

NOTE 1: Lead and Zinc anamoly in raw/treated water from undetermined source. Treated samples have not been included in graphical presentation because no discharge occurred these days.

NOTE 2 Labelled incorrectly by the lab, this is water sample of lower pond water taken from lower pond pump. Have not asked lab to re-label this one. Sample has not been included in graphical presentation because it is not indicative of the raw water at the water treatment plant intake.

NOTE 3 Samples are from ends of treatment trains and have not been included in graphical presentation since this water was not directly discharged. These results are prior to final clarification.

NOTE 4 High treated arsenic attributed to a mix up with sample labelling. This was the first day of discharge and samples were being labelled too quickly, pending take-off of an unexpected airplane. These are actually RAW values and therefore these results for June 12 have been excluded from the graphical data presentation as a result of the error.

NOTE 5 See Note 1 **NOTE 6** Nitric acid preservative and sulfuric acid preservative were accidentally added to the wrong sample bottles during sampling therefore the alternate sample was tested. NOTE 7 Results from sample ID B-OFF-0712-0745-dup have been excluded from the graphical presentation as a result of the error.

Report amended by Taiga outlining TSS = 8mg/L after a re-test was requested. Original report outlined a TSS = 30 mg/L

Tundra Water Treatment Facility 2012 End of Season Treatment Report Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

15.7 Appendix G – 2012 On-site Test Results

Appendix G

Tundra Mine 2012 On-site Test Results

pure elements environmental solutions

Prepared by: **pure elements** environmental solutions

RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca Reviewed and approved by: Justin Bunz, CET AEL Engineering Ltd.

Page 50 of 53

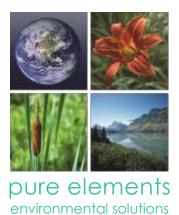
NOTES			vv													** Internal	Shut down	due to high	onsite zinc	results	VV **				^Retested	Retest results	^ Retested	Retest results			^Retested	Retest results						* *	* *		*				
analysed by	Rob	Trina	Rob	Rob	Rob	Rob	Rob/Trina	Rob/Trina	Trina	Trina	Trina	Trina	Trina	Trina	Trina	Trina	Trina	Trina	Trina	Trina	Trina	Trina C.																							
Hd		6 to 9		8.41	8.42	8.40	8.36	8.44	8.38	8.49	8.21	8.35		8.44	8.50	8.25	8.40	8.38	8.51	8.41	8.49	8.19	8.12	8.31	8.26	8.53	8.79		8.60	8.50	8.69		8.77	8.66	8.92	8.88	8.54	8.72	8.38	8.50	8.53	8.55	7.86	7.89	8.23
TSS	mg/L	15		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	6	< 5	< 5	< 5	< 5	< 5		< 5	< 5	< 5		< 5	< 5	5	7	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	~
*Nitrite (as N)	mg/L	0.4		< .015	0.016	0.015	< .015	0.019	0.032	0.025	0.031	< .015		0.023	0.043	0.039	0.078	0.053	0.065	0.035	0.041	0.017	0.022	0.015	0.020		0.020		0.017	0.022	0.020		< .015	0.016	0.024	0.018	no reagents								
*Nitrate (as N)	mg/L	ы		<.23	<.23	<.23	<.23	0.331	0.330	<.23	<.23	<.23		0.292	0.263	0.397	0.285	<.23	<.23	<.23	<.23	0.460	0.354	0.284	<.23		<.23		<.23	<.23	0.401		<.23	<.23	0.241	<0.23	no reagents								
Ammonia (as N)	mg/L	ы		< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2		< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2		< 2		< 2	< 2	< 2		< 2	< 2	<2	<2	<2	<2	⊲2	⊲2	⊲2	<2	₽	₽,	₽
**Zinc	mg/L	0.02		0.010	0.090	0.010	0.040	0.020	0.010	0.020	0.010	0.040	0.050	0.060	0.070	0.190	0.220	0.140	0.180	0.480	0.320	0.020	0.070	0.040	0.020		0.090		0.000	0.020	0.010		0.040	0.080	0.020	<0.01	0.090	0.120	0.136	0.032	0.240	0.088	0.028	0.099	0.067
Nickel	mg/L	0.05	0.013	<.006	0.006	<.006	0.008	0.009	0.007	<.006	<.006	<.006		0.019	0.009	<.006	<.006	0.016	<.006	<.006	<.006	<.006	0.008	0.012	0.013		0.008		0.012	0.015	0.008		0.041	<.006	<.006	0.010	0.030	<.006	0.016	0.012	0.009	0.011	0.013	0.012	<.006
Lead	mg/L	0.01	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003		<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	0.004	0.004	0.005	0.011	<.003	0.003	0.009	0.015	<.003	0.008	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	0.006
Copper	mg/L	0.01	0.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001		<.001	<.001	<.001	<.001	<.001	<.001	0.002	0.002	<.001	<.001	<.001	0.011	<.001	<.001		<.001	<.001	<.001		<.001	<.001	<.001	<.001	<.001	<.001	0.001	<.001	<.001	<.001	<.001	<.001	<.001
Arsenic	mg/L	0.5	0.073	0.072	0.065	0.000	0.000	0.004		0.001		0.007		0.000		0.024		0.007		0.002		0.009	0.008	0.008	0.019		0.021		0.025	0.022	0.024		0.021	0.018	0.022	0.021	0.026	0.022	0.019	0.028	0.024	0.020	0.012	0.006	0.038
Sample Type	: (e Criteria	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated	Treated													
Lab		Water Licence Criteria	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite	Onsite													
Sample ID	over WL criteria	within 20% of limit	Comp A	Comp A	Comp B	Comp A	Comp B	Comp A	Comp B	Comp A	Comp B	Comp A	Comp A	Comp A	Comp A	Comp B	B-ON-0625-0745-DUP	B-ON-0625-0745-DUP	B-ON-0626-0745-DUP	B-ON-0627-0745-DUP	B-ON-0628-0745-DUP	B-ON-0628-0745-DUP	B-ON-0629-0745-DUP	B-ON-0630-0745-DUP	B-ON-0701-0745-DUP	B-ON-0702-0745-DUP	B-ON-0703-0745-DUP	B-ON-0704-0745-DUP	B-ON-0705-0745-DUP	B-ON-0706-0745-DUP	B-ON-0707-0745-DUP	B-ON-0708-0745-DUP	B-ON-0709-0745-DUP	B-ON-0710-0745-DUP	B-ON-0711-0745-DUP										
Date	No Discharge	Min. Discharge	11-Jun-12	12-Jun-12	12-Jun-12	13-Jun-12	13-Jun-12	14-Jun-12	14-Jun-12	15-Jun-12	15-Jun-12	16-Jun-12	16-Jun-12	17-Jun-12	17-Jun-12	18-Jun-12	18-Jun-12	19-Jun-12	19-Jun-12	20-Jun-12	20-Jun-12	21-Jun-12	22-Jun-12	23-Jun-12	24-Jun-12	24-Jun-12	25-Jun-12	25-Jun-12	26-Jun-12	27-Jun-12	28-Jun-12	28-Jun-12	29-Jun-12	30-Jun-12	1-Jul-12	2-Jul-12	3-Jul-12	4-Jul-12	5-Jul-12	6-Jul-12	7-Jul-12	8-Jul-12	9-Jul-12	10-Jul-12	11-Jul-12

Trina Rob C.
15 6 to 9 <5 7.7
0.4 no reagents
5 5 5 C
<.006 0.070
1 <.001 0.007
Treated 0.01 Treated 0.011
B-ON-0713-0745-DUP Onsite Treated B-ON 0714-0745-DUP Onsite Treated
Min. Discharge within 20% of limit 12-Jul-12 B-ON-0712-0745-DUP

NOTES																															
analysed	by	Rob	Trina	Trina C.	Rob C.	Rob C.	Rob C.	Rob C.	Rob C.	Rob C.	Rob C.	Rob C.	Rob C.	Rob C.	Rob C.	Rob C.	Rob C.	Rob C.	Rob C.	Trina C.											
На	2		6 to 9	8.49	8.72	8.73	8.59	8.67	8.81	8.54	8.82	8.61	8.28	8.24	8.10	8.22	8.23	8.41	8.71	8.30	8.42	8.36	8.65	8.40	8.50	8.08	8.34	8.62	8.43	8.64	8.89
TSS	22-	mg/L	15	5	6	6	9	10	8	7	11	13	7	5	6	< 5	5	5	9	< 5	< 5	< 5	< 5	< 5	< 5	< 5	5	< 5	< 5	7	9
*Nitrite	(as N)	mg/L	0.4	<.015	<.015	<.015	<.015	<.015	<.015	<.015	<.015	<.015	<.015	<.015	0.017	<.015	0.027	<.015	0.025	0.023	0.023	0.017	0.022	0.025	0.039	0.222	0.023	0.027	0.024	0.019	0.017
*Nitrate	(as N)	mg/L	5	<0.23	<0.23	<0.23	<0.23	<0.23	<0.23	<0.23	<0.23	<0.23	<0.23	<0.23	<0.23	<0.23	<0.23	<0.23	<0.23	<0.23	<0.23	<0.23	<0.23	<0.23	<0.23	<0.23	<0.23	0.378	0.231	<0.23	<0.23
Ammonia	(as N)	mg/L	5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
**Zinc	2	mg/L	0.02	0.082	0.060	0.068	0.042	0.028	0.057	0.042	0.067	0.055	0.061	0.069	0.024	0.073	0.025	0.053	0.058	0.049	0.026	0.017	0.022	0.020	0.033	0.010	0.026	0.031	0.020	0.020	0.057
Nickel		mg/L	0.05	0.016	0.010	0.008	0.012	<.006	0.01	0.009	<.006	<.006	<.006	0.009	<.006	<.006	<.006	<.006	<.006	<.006	<.006	<.006	<.006	<.006	<.006	<.006	0.015	0.006	0.006	<.006	<.006
lead	222	mg/L	0.01	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003
Conner	nddon	mg/L	0.01	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001
Arsenic		mg/L	0.5	0.031	0.035	0.021	0.044	0.045	0.023	0.039	0.042	0.041	0.038	0.044	0.053	0.189	0.115	0.050	0.070	0.042	0.056	0.091	0.063	0.055	0.006	0.062	0.043	0.098	0.047	0.009	0.029
Sample	Type	co Critorio	ורה כו ורהו ומ	Treated																											
	Lab	Water Licence Criteria	א מופו דורפו	Onsite																											
	Sample ID	over WL criteria	within 20% of limit	B-ON-0824-0745-DUP	B-ON-0825-0745-DUP	B-ON-0826-0745-DUP	B-ON-0827-0745-DUP	B-ON-0828-0745-DUP	B-ON-0829-0745-DUP	B-ON-0830-0745-DUP	B-ON-0831-0745-DUP	B-ON-0901-0745-DUP	B-ON-0902-0745-DUP	B-ON-0903-0745-DUP	B-ON-0904-0745-DUP	B-ON-0905-0745-DUP	B-ON-0906-0745-DUP	B-ON-0907-0745-DUP	B-ON-0908-0745-DUP	B-ON-0909-0745-DUP	B-ON-0910-0745-DUP	B-ON-0911-0745-DUP	B-ON-0912-0745-DUP	B-ON-0913-0745-DUP	B-ON-0914-0745-DUP	B-ON-0915-0745-DUP	B-ON-0916-0745-DUP	B-ON-0917-0745-DUP	B-ON-0918-0745-DUP	B-ON-0919-0745-DUP	B-ON-0920-0745-DUP
	Date	No Discharge	Min. Discharge	24-Aug-12	25-Aug-12	26-Aug-12	27-Aug-12	28-Aug-12	29-Aug-12	30-Aug-12	31-Aug-12	1-Sep-12	2-Sep-12	3-Sep-12	4-Sep-12	5-Sep-12	6-Sep-12	7-Sep-12	8-Sep-12	9-Sep-12	10-Sep-12	11-Sep-12	12-Sep-12	13-Sep-12	14-Sep-12	15-Sep-12	16-Sep-12	17-Sep-12	18-Sep-12	19-Sep-12	20-Sep-12

EXPLANATION OF NOTES

*Nitrite and Nitrate reagents on back-order at this time. Field Engineer reported this information new delivery date was accepted. **Field method for zinc developed such that if on-site field testing for zinc fell below a certain threshold, the water plant would continue operations, at the discretion of the Field Engineer. The threshold was set at 0.100 mg/L for onsite results. ^ARetest results included in graphical presentation. Paramaters re-tested for have not been included in graphical presentation. ^{AA}No discharge these days therefore results not included in graphiccal presentation since water not discharged.


Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

15.8 Appendix H – Onsite Testing Methods

Appendix H

Tundra Mine 2012 On-site Testing Methods

Prepared by: **pure elements** environmental solutions

RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca Reviewed and approved by: Justin Bunz, CET AEL Engineering Ltd.

Page 51 of 53

Nitrogen, Ammonia

Salicylate Method

HR (2 to 47 mg/L NH₃-N)

Method 10205

TNTplus[™] 832

Scope and Application: For surface waters, municipal and industrial wastewaters.

Test preparation

How to use instrument-specific information

The *Instrument-specific information* table displays requirements that may vary between instruments. To use this table, select an instrument then read across to find the corresponding information required to perform this test.

Table 1 Instrument-specific information

Instrument	Light shield	
DR 3900	LZV849	
DR 3800, DR 2800	LZV646	

Before starting the test:

DR 3900, DR 3800, DR 2800: Install the light shield in Cell Compartment #2 before performing this test.

Please read Safety Advice and Expiration Date on the reagent package.

Recommended sample pH is 4-8.

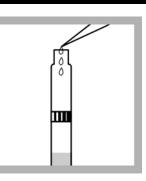
Recommended sample and reagent temperature is 20–23 °C (68–73.4 °F). Incorrect results may be obtained if test is not performed at the recommended temperature.

Recommended reagent storage is 2–8 °C (35.6–46.4 °F).

Analyze samples as soon as possible for best results.

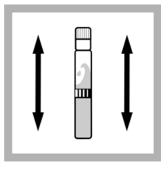
TNTplus methods are activated from the Main Menu screen when the sample vial is inserted into the sample cell holder.

Collect the following items:


Description	Quantity
Ammonia, HR TNT832 Reagent Set	1 vial
Light Shield (see Instrument-specific information)	1
Pipet for 0.2 mL sample	1
Pipet Tip	varies

See Consumables and replacement items for reorder information.

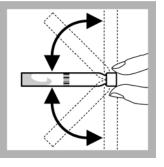
Salicylate method, TNTplus 832


1. Carefully remove the protective foil lid from the DosiCap[™] *Zip*. Unscrew the cap from the vial.

2. Carefully pipet 0.2 mL $(200 \ \mu L)$ of sample into the vial. Immediately proceed to step 3.

	>
1111	

3. Flip the DosiCap **Zip** over so that the reagent side faces the vial. Screw the cap tightly onto the vial.



4. Shake the capped vial 2–3 times to dissolve the reagent in the cap.

Verify that the reagent has dissolved by looking down through the open end of the DosiCap **Zip**.

5. Wait 15 minutes.



6. After 15 minutes, invert the sample an additional 2–3 times to mix.

The color remains constant for an additional 15 minutes after the timer expires.

7. Thoroughly clean the outside of the vial.

8. Insert the prepared vial into the cell holder. The instrument reads the barcode, then selects and performs the correct test. Results are in mg/L NH_3 –N.

Reagent blanks

A reagent blank can be measured and the value subtracted from the results of each test performed in same reagent lot. Use deionized water in place of sample in the *Salicylate method, TNTplus 832* test.

To subtract the value of the blank from a series of measurements:

- 1. Measure the blank per step 8.
- 2. Turn on the reagent blank option.
- 3. The measured value of the blank should be displayed in the highlighted box. Accept this value.

The reagent blank value will now be subtracted from all results until the function is turned off or a different method is selected. Alternately, the blank can be recorded and entered at any later time by pressing the highlighted box and using the keypad to enter the value.

Sample blanks

Colored or turbid samples can cause high results. To compensate for color or turbidity the procedure is repeated without the addition of the color forming reagent that is present in the DosiCap *Zip*.

To determine the sample blank:

- 1. Run the Salicylate method, TNTplus 832 test, but do not remove the foil from the DosiCap Zip in step 1.
- 2. Replace the cap in its original position in step 3.
- **3.** Subtract the value obtained in step 8 from the value obtained on the original sample to give the corrected sample concentration.

Alternatively, samples that contain turbidity only may be first filtered through a membrane filter and then analyzed. Samples without color or turbidity do not require sample blanks.

Interferences

The ions listed in the *Interfering substances* table have been individually tested up to the given concentrations and do not cause interference. The cumulative effects of these ions or the influence of other ions have not been determined.

Primary amines are determined and cause high-bias results. A 10,000-fold excess of urea does not interfere. All reducing agents interfere and cause low-bias results.

Important Note: An analyte concentration greatly in excess of the stated range will adversely affect color formation, resulting in a false reading within the method range.

Measurement results can be verified using sample dilutions or standard additions.

Samples with severe interferences require distillation. Perform the distillation procedure using the Hach General Purpose Distillation Set.

Interfering substance	Interference level
CI-, SO ₄ 2-	1000 mg/L
K ⁺ , Na ⁺ , Ca ²⁺	500 mg/L
CO ₃ ^{2–} , NO ₃ [–] , Fe ³⁺ , Cr ³⁺ , Cr ⁶⁺ , Zn ²⁺ , Cu ²⁺ , Co ²⁺ , Ni ²⁺ , Hg ²⁺	50 mg/L
Fe ²⁺	25 mg/L
Sn ²⁺	10 mg/L
Pb ²⁺	5 mg/L
Ag ⁺	2 mg/L

Table 2 Interfering substances

Sample collection, preservation and storage

- Collect samples in clean plastic or glass bottles. Best results are obtained with immediate analysis.
- Preserve the samples by reducing the pH to 2 or less with at least 2 mL of Hydrochloric Acid.
- Store at 4 °C (39 °F) or less.
- Preserved samples may be stored up to 28 days.
- Before analysis, warm stored samples to 20–23 °C (68–73.4 °F) and neutralize to pH 7.0 with 5.0 N Sodium Hydroxide.
- Correct the test result for volume additions.

Accuracy check

Standard solution method

Note: Refer to the instrument user manual for specific software navigation instructions.

• Use 0.2 mL of a 10-mg/L ammonia nitrogen standard in place of the sample in step 2 of the Salicylate method, TNTplus 832 procedure.

OR

 Use 0.2 mL of a Wastewater Influent Mixed Parameters Inorganics Standard in place of the sample in step 2 of the Salicylate method, TNTplus 832 procedure. This standard contains 15 mg/L ammonia nitrogen in the presence of other ions such as nitrate, phosphate and sulfate.

Summary of method

Ammonium ions react at pH 12.6 with hypochlorite ions and salicylate ions in the presence of sodium nitroprusside as a catalyst to form indophenol. The amount of color formed is directly proportional to the ammonia nitrogen present in the sample. Test results are measured at 690 nm.

Consumables and replacement items

Required reagents

Description	Quantity/Test	Unit	Catalog number
Ammonia, HR TNT832 Reagent Set	1	25 tests	TNT832

Required apparatus

Description	Quantity	Unit	Catalog number
Pipettor, 0.2–1.0 mL	1	each	BBP078
Pipettor Tips, for BBP078 pipettor	1	100/pkg	BBP079

Recommended standards and apparatus

Description	Unit	Catalog number
Nitrogen Ammonia Standard Solution, 10 mg/L NH ₃ –N	500 mL	15349
Nitrogen Ammonia Standard Solution, 100 mg/L NH ₃ –N	500 mL	2406549
Wastewater, Influent Inorganics Standard, for NH ₃ –N, NO ₃ –N, PO ₄ , COD, SO ₄ , TOC	500 mL	2833149
Water, deionized	4 L	27256

Optional reagents and apparatus

Description	Unit	Catalog number
Bottle, sampling, low density poly, w/cap, 500 mL, 12/pkg	12/pkg	2087079
Distillation Set, general purpose	each	2265300
Filter Holder, glass for vacuum filtration	each	234000
Filter membrane, 47-mm, 0.45-micron	each	2894700
Flask, filtering, glass, 1000-mL	each	54653
Heater and Support Apparatus, 115 VAC, 60 Hz	each	2274400
Heater and Support Apparatus, 230 VAC, 50 Hz	each	2274402
Hydrochloric Acid Standard Solution, 1 N	1 L	2321353
Hydrochloric Acid, concentrated ACS	500 mL	13449
Sodium Hydroxide Standard Solution, 1 N	100 mL MDB	104532
Sodium Hydroxide Standard Solution, 5.0 N	50 mL SCDB	245026
Stopper, No. 7, one hole	6/pkg	211907
Test Tube Rack for 13-mm vial	each	2497900
Tubing, rubber	12-ft	56019

FOR TECHNICAL ASSISTANCE, PRICE INFORMATION AND ORDERING: In the U.S.A. – Call toll-free 800-227-4224 Outside the U.S.A. – Contact the HACH office or distributor serving you. On the Worldwide Web – www.hach.com; E-mail – techhelp@hach.com

FOR TECHNICAL ASSISTANCE, PRICE INFORMATION AND ORDERING: In the U.S.A. – Call toll-free 800-227-4224 Outside the U.S.A. – Contact the HACH office or distributor serving you. On the Worldwide Web – www.hach.com; E-mail – techhelp@hach.com

Arsenic

DOC316.53.01005

Silver Diethyldithiocarbamate Method¹

Method 8013

(0 to 0.200 mg/L As)

Scope and Application: For water, wastewater, and seawater; distillation is required; USEPA accepted² for reporting for drinking and wastewater analysis (distillation required)

¹ Adapted from Standard Methods for the Examination of Water and Wastewater.

² Procedure is equivalent to Standard Method 3500-As for drinking water analysis.

Test preparation

How to use instrument-specific information

The *Instrument-specific information* table displays requirements that may vary between instruments. To use this table, select an instrument then read across to find the corresponding DR 3800, DR 2800, DR 2700information required to perform this test.

Table 1 Instrument-specific information

Instrument	Sample cell	Cell orientation
DR 5000	2612602	Fill line faces user
DR 3900	2612602	Fill line faces user
DR 3800, DR 2800, DR 2700	2612602	Fill line faces right

Before starting the test:

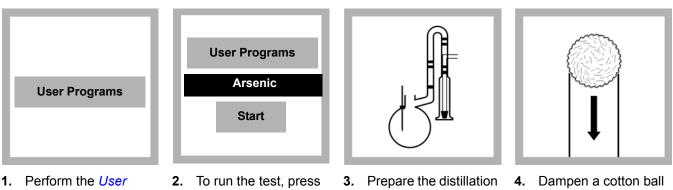
Create a user-entered program for arsenic. See step 1 and User programming.

Prepare the arsenic absorber solution as directed in *Reagent preparation*.

Perform a user-entered calibration for each new lot of arsenic absorber solution. See the *Calibration* section. Some variations of the calibration procedure are possible.

In bright light conditions (e.g. direct sunlight) it may be necessary to close the cell compartment with the protective cover during measurements.

Do not use the Pour-Thru Cell with this test.


The arsenic absorber in this test is a silver solution in pyridine. Both silver (D011) and pyridine (D038) are regulated by the Federal RCRA as hazardous waste. In addition, the cotton ball soaked in lead acetate (D008) solution is a hazardous waste. These materials should not be poured down the drain. Refer to a current MSDS sheet for proper disposal.

Collect the following items :

Description	Quantity
Apparatus (see Required apparatus)	—
Arsenic Standard Solution, 1000-mg/L As	varies
Hydrochloric Acid, ACS	25 mL
Lead Acetate Solution, 10%	1 mL
Potassium Iodide Solution, 20%	3 mL
Pyridine, ACS	50 mL
Sample Cells (see Instrument-specific information)	2
Silver Diethyldithiocarbamate	1 g
Stannous Chloride Solution	1 mL
Water, deionized	varies
Zinc, 20-mesh, ACS	6 g

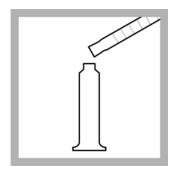
See Consumables and replacement items for reorder information.

Silver Diethyldithiocarbamate

1. Perform the User programming procedure. Make note of the program number.

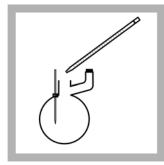
2. To run the test, press USER PROGRAMS.

Select the test.

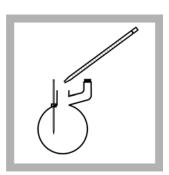

Insert an adapter if required (Table 1). Refer to the user manual for orientation. 3. Prepare the distillation apparatus for arsenic recovery. See the *Distillation Manual* for assembly instructions. Do not connect to the aspirator.

Place the distillation apparatus under a fume hood to vent toxic fumes. **4.** Dampen a cotton ball with 10% Lead Acetate Solution. Insert it in the gas scrubber. Be certain that the cotton seals against the glass.

Silver Diethyldithiocarbamate


6.

flask.

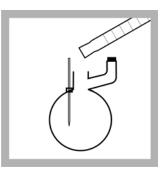


5. Using a graduated cylinder, pour 25-mL of prepared arsenic absorber solution (*Reagent preparation*) into the cylinder/gas bubbler assembly.

Attach it to the distillation apparatus.

9. Use a serological pipet to add 1 mL of Stannous Chloride Solution to the flask.

Using a graduated


sample into the distillation

cylinder, pour 250 mL of

10. Use a serological pipet to add 3 mL of Potassium lodide Solution to the flask. Cap.

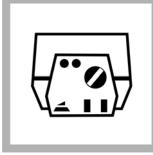
7. Turn on the power switch. Set the stir control to 5. Set the heat control to 0.

8. Using a graduated cylinder, add 25 mL of Hydrochloric Acid, ACS, to the distillation flask.

11. Start the instrument timer.

A 15-minute reaction period will begin.

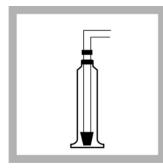
12. When the timer expires, weigh and add 6.0 g of 20-mesh zinc to the flask. **Cap immediately.**

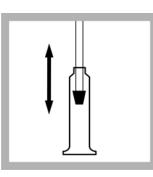


13. Set the heat control to 3.

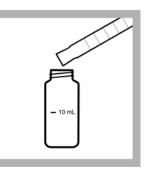
14. Start the instrument timer.

A second 15-minute reaction period will begin.


15. When the timer expires, set the heat control to 1.


16. Start the instrument timer.

A third 15-minute reaction period will begin.

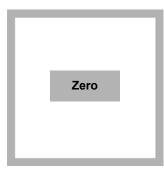

Silver Diethyldithiocarbamate

17. When the timer expires, turn off the heater. Remove the cylinder/gas bubbler assembly as a unit.

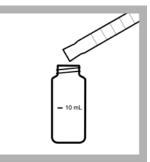
18. Rinse the gas bubbler by moving it up and down in the arsenic absorber solution.

19. Blank Preparation: Fill a dry, 10-mL sample cell with untreated arsenic absorber solution. Stopper.

23. Wipe the prepared


the cell holder.

READ the results.


sample and insert it into

20. Wipe the blank and insert it into the cell holder.

21. ZERO the instrument. The display will show the intercept as calculated from the user-entered calibration curve. This will probably be a non-zero intercept.

22. Prepared Sample: Pour the reacted arsenic absorber sample into a sample cell.

Close the sample cell.

Interferences

Table 2 Interfering substances

Interfering substance	Interference level
Antimony Salts	May interfere with color development.

Sample collection, preservation and storage

Collect samples in acid washed glass or plastic bottles. Adjust the pH to 2 or less with sulfuric acid (about 2 mL per liter)^{*}. Preserved samples may be stored up to six months at room temperature. Correct the test result for volume additions.

^{*} See Optional reagents and apparatus.

Reagent preparation

Prepare the arsenic absorber solution as follows:

- 1. Weigh 1.00 g of silver diethyldithiocarbamate on an analytical balance.
- Transfer the powder to a 200-mL volumetric flask. Dilute to volume with pyridine. Use pyridine only in a fume hood and wear chemical resistant gloves. Read the MSDS before using pyridine.
- **3.** Mix well to dissolve. Store the reagent, tightly sealed, in an amber bottle. The reagent is stable for one month if stored in this manner. Larger volumes of reagent can be prepared if the reagent is used within one month.

Calibration

Standard preparation

Perform a new calibration for each lot of arsenic absorber solution.

- **1.** Prepare a 10.0-mg/L arsenic working standard by pipetting 10.0 mL of Arsenic Standard Solution, 1000 mg/L As into a 1000-mL volumetric flask.
- 2. Dilute to volume with deionized water.
- **3.** Into three different 500-mL volumetric flasks, pipet 1.0, 2.0, and 10.0 mL of the 10.0 mg/L As stock solution using Class A glassware.
- **4.** Dilute to the mark with deionized water and mix thoroughly. These standards have concentrations of 0.02, 0.04 and 0.20 mg/L As.

Note: Distill standards before making the calibration curve.

User programming

- 1. Press USER PROGRAMS on the main menu.
- 2. Press **PROGRAM OPTIONS** and **NEW**. Key any available program number (950–999) to use for arsenic testing. Press **OK**.
- **3.** Fill in the appropriate fields using the touch screen when the field is highlighted. Use the alphanumeric keys to name the User Program **ARSENIC**. Press **NEXT** to move to the next screen. Set up the rest of the parameters as follows:

 Program Type: Single Wavelength 	 Chemical Form: As
•Units: mg/L	•Wavelength: 520 nm
 Concentration Resolution: 0.001 	 Calibration: Read Standards

4. After entering Read Standards, press NEXT>EXIT. Fill in the appropriate fields for each of the following. Use the touch screen to activate the parameter and press EDIT to enter the data entry screen. Set up the rest of the parameters as follows:

•Timer1: 15 minutes	 Upper Limit: 0.220 mg/L
•Timer2: 15 minutes	 Lower Limit: –0.020 mg/L
•Timer3: 15 minutes	

5. Press CALIBRATION: C = A + BA. Press EDIT.

- **6.** The Read Standards will be indicated. Enter the standard concentration values to be used to perform the calibration: 0.00, 0.02, 0.04, and 0.20. To enter the concentration values press + and enter the value followed by **OK** for each concentration value.
- **7.** After the values are entered, press the **UP** arrow four times to move the cursor to the 0.00 concentration line.
- 8. Insert the 25-mL sample cell containing only unreacted arsenic absorber solution into the cell holder. Press **ZERO**.
- **9.** Press the **DOWN** arrow once to move to the next concentration. Insert the prepared sample in the cell holder. Press **READ** to accept the absorbance value. Repeat steps for each standard.

Note: Standards must be distilled before absorbance values are measured.

- 10. Press GRAPH. Make sure FORCE ZERO is off.
- 11. If the graph is acceptable press DONE>EXIT.

12. "Store Program?" will appear on the display. Press YES.

The program is ready for use.

Some variations of the calibration procedure are possible. See the user manual for details.

Summary of method

Arsenic is reduced to arsine gas by a mixture of zinc, stannous chloride, potassium iodide, and hydrochloric acid in a specially equipped distillation apparatus. The arsine is passed through a scrubber containing cotton saturated with lead acetate for sulfide removal, and then into an absorber tube containing silver diethyldithiocarbamate in pyridine. The arsenic reacts to form a red complex which is read colorimetrically. This procedure requires a manual calibration. Test results are measured at 520 nm.

Consumables and replacement items

Required reagents

Description	Quantity/Test	Unit	Catalog number
Arsenic Standard Solution, 1000-mg/L As	varies	100 mL	1457142
Hydrochloric Acid, ACS	25 mL	500 mL	13449
Lead Acetate Solution, 10%	1 mL	100 mL	1458042
Potassium Iodide Solution, 20%	3 mL	100 mL	1456842
Pyridine, ACS	50 mL	500 mL	1446949
Silver Diethyldithiocarbamate	1 g	25 g	1447624
Stannous Chloride Solution	1 mL	100 mL	1456942
Water, deionized	varies	4 liters	27256
Zinc, 20-mesh, ACS	6 g	454 g	79501

Required apparatus

Description	Quantity	Unit	Catalog number
Balance, analytical, Zeta series, 80-g capacity	1	each	2936701
Balls, cotton	1	100/pkg	257201
Boat, weighing, 8.9-cm square	2	500/pkg	2179000

Required apparatus (continued)

Description	Quantity	Unit	Catalog number
Bottle, amber, 237-mL, glass	1	6/pkg	714441
Cap, polypropylene, for amber bottle	1	6/pkg	2166706
Cylinder, graduated, 25-mL	2	each	50840
Cylinder, graduated, 250-mL	1	each	50846
Distillation Apparatus, arsenic accessories	1	set	2265400
Distillation Apparatus, general purpose accessories	1	set	2265300
Flask, volumetric, Class A, 1000-mL, with glass stopper	1	each	1457453
Flask, volumetric, Class A, 200-mL	1	each	1457445
Flask, volumetric, Class A, 500-mL	6	each	1457449
Pipet Filler, safety bulb	1	each	1465100
Pipet, serological, 5-mL	2	each	53237
Pipet, volumetric, Class A, 1.00-mL	2	each	1451535
Pipet, volumetric, Class A, 2.00-mL	1	each	1451536
Pipet, volumetric, Class A, 4.00-mL	1	each	1451504
Pipet, volumetric, Class A, 6.00-mL	1	each	1451506
Pipet, volumetric, Class A, 8.00-mL	1	each	1451508
Pipet, volumetric, Class A, 10.00-mL	1	each	1451538
Select one based on available voltage:			
Distillation Apparatus Heater, 115 VAC, 60 Hz	1	each	2274400
Distillation Apparatus Heater, 230 VAC, 50 Hz	1	each	2274402

Optional reagents and apparatus

Description	Unit	Catalog number
Cylinder, mixing, 25-mL	each	189640
Sulfuric Acid, 1.00 N	100 mL	127032
Gloves, chemical resistant, size 91	pair	2410104

¹ Other sizes available.

FOR TECHNICAL ASSISTANCE, PRICE INFORMATION AND ORDERING: In the U.S.A. – Call toll-free 800-227-4224 Outside the U.S.A. – Contact the HACH office or distributor serving you. On the Worldwide Web – www.hach.com; E-mail – techhelp@hach.com

Copper

DOC316.53.01038

Porphyrin Method¹

LR (1 to 210 µg/L)

Scope and Application: For water, wastewater and sea water

¹ Adapted from Ishii and Koh, Bunseki Kagaku, 28 (473), 1979

Test preparation

How to use instrument-specific information

The *Instrument-specific information* table displays requirements that may vary between instruments. To use this table, select an instrument then read across to find the corresponding information required to perform this test.

Table 1 Instrument-specific information

Instrument	Sample cell	Cell orientation
DR 5000	2495402	Fill line faces user
DR 3900	2495402	Fill line faces user
DR 3800, DR 2800, DR 2700	2495402	Fill line faces right

Before starting the test:

Digestion is required for determining total copper.

For more accurate results, determine a reagent blank value for each new lot of reagent. Follow the procedure using deionized water instead of the sample. Subtract the reagent blank value from the final results or perform a reagent blank adjust.

Wash all glassware with detergent. Rinse with tap water. Rinse again with 1:1 Nitric Acid Solution. Rinse a third time with copper-free, deionized water.

If samples contain high levels of metals, a slight metallic deposit or yellow buildup may form in the sample cell. Wash the cell as described above.

Collect the following items:

Description	Quantity
Copper Masking Reagent Powder Pillows	1
Porphyrin 1 Reagent Powder Pillows	2
Porphyrin 2 Reagent Powder Pillows	2
Nitric Acid Solution, 1:1	varies
Sample Cells (Instrument-specific information)	2

See Consumables and replacement items for reorder information.

Method 8143

Porphyrin method

1. Select the test. Insert an adapter if required (*Instrument-specific information*).

Refer to the user manual

for orientation.

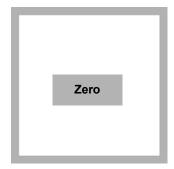
2. FIII two sample cells with 10 mL of sample.

3. Blank Preparation: Add the contents of one Copper Masking Reagent powder pillow to one of the sample cells to create the blank. Swirl to dissolve.

4. Add the contents of one Porphyrin 1 Reagent powder pillow to each sample cell.

Swirl to dissolve.

5. Add the contents of one Porphyrin 2 Reagent powder pillow to each sample cell.


- 6. Swirl to dissolve.
- If copper is present the sample will briefly turn blue, then return to yellow.

7. Start the instrument timer. A three-minute reaction period will begin.

8. When the timer expires insert the blank into the cell holder.

9. ZERO the instrument. The display will show:

0 µg/L Cu

10. Insert the prepared sample into the cell holder.

Read

11. READ the results in $\mu g/L$ Cu.

Interferences

Interfering substance	Interference levels and treatments
Aluminum, Al ³⁺	60 mg/L
Cadmium, Cd ²⁺	10 mg/L
Calcium, Ca ²⁺	1500 mg/L
Chelating agents	Interfere at all levels unless either the Digesdahl or vigorous digestion is performed
Chloride, Cl-	90,000 mg/L
Chromium, Cr ⁶⁺	110 mg/L
Cobalt, Co ²⁺	100 mg/L
Fluoride, F-	30,000 mg/L
Iron, Fe ²⁺	6 mg/L
Lead, Pb ²⁺	3 mg/L
Magnesium	10,000 mg/L
Manganese	140 mg/L
Mercury, Hg ²⁺	3 mg/L
Molybdenum	11 mg/L
Nickel, Ni ²⁺	60 mg/L
Potassium, K ⁺	60,000 mg/L
Sodium, Na+	90,000 mg/L
Zinc, Zn ²⁺	9 mg/L
Highly buffered samples or extreme sample pH	May exceed the buffering capacity of the reagents and require sample pretreatment.

Table 2 Interfering substances and levels

Sample collection, preservation and storage

- Collect samples in acid-washed plastic bottles.
- To preserve, adjust the pH to 2 or less with nitric acid (about 5 mL per liter).
- Store preserved samples up to six months at room temperature.
- Before testing, adjust the pH of the preserved sample to between 2 and 6. If the sample is too acidic, adjust the pH with 5.0 N Sodium Hydroxide Standard Solution*.
- Correct test results for volume additions.

Accuracy check

Required for accuracy check:

- Copper Standard Solution, 4 mg/L Cu Pour-Rite Ampules
- TenSette Pipet and Pipet Tips

^{*} See Optional reagents and apparatus.

Standard additions method (sample spike)

- 1. After reading test results, leave the sample cell (unspiked sample) in the instrument.
- 2. Select Options>More>Standard additions from the instrument menu.
- **3.** Default values for standard concentration, sample volume and spike volumes can be accepted or edited. After values are accepted, the unspiked sample reading will appear in the top row. See the user manual for more information.
- **4.** Fill eight sample cells with 10 mL of sample. Use the TenSette[®] Pipet to add 0.1 mL from a 4-mg/L Pour-Rite Ampule, to two of the sample cells. Then pipet 0.2 mL of the standard solution into two more cells. Finally, pipet 0.3 mL of the standard solution into two more cells.
- Analyze each standard addition sample as described in the procedure above, using one of the two spiked samples in each set as the blank. Accept each standard additions reading by pressing READ. The copper concentration reading should reflect approximately 100% recovery.
- 6. After completing the sequence, press **GRAPH** to view the best-fit line through the standard additions data points, accounting for the matrix interferences. Press **IDEAL LINE** to view the relationship between the sample spikes and the "Ideal Line" of 100% recovery.

Standard solution method

Note: Refer to the instrument user manual for specific software navigation instructions.

- To assure the accuracy of the test, prepare a 150-μg/L copper standard by pipetting 15.00 mL of Copper Standard Solution, 10.0-mg/L Cu, into a 1000-mL volumetric flask.
- 2. Dilute to the mark with copper-free, reagent-grade water. Prepare this solution daily. Perform the copper procedure as described above.
- **3.** To adjust the calibration curve using the reading obtained with the 150-µg/L Standard Solution, select Options>More>Standard Adjust from the instrument menu.
- **4.** Turn on the Standard Adjust feature and accept the displayed concentration. If an alternate concentration is used, enter the concentration and adjust the curve to that value.

Method performance

Program	Standard	Precision 95% Confidence Limits of Distribution	Sensitivity Concentration change per 0.010 Abs change
145	50 µg/L Cu	47–53 μg/L Cu	1 µg/L Cu

Summary of method

The porphyrin method is very sensitive to trace amounts of free copper. The method is free from most interferences and does not require any sample extraction or concentration before analysis. Interferences from other metals are eliminated by the copper masking reagent. The porphyrin indicator forms an intense, yellow-colored complex with any free copper present in sample. Test results are measured at 425 nm.

Consumables and replacement items

Required reagents and apparatus

Description	Quantity/Test	Unit	Catalog number
Copper Reagent Set (100 tests), includes:	—	_	2603300
(1) Copper Masking Reagent Powder Pillows	1	100/pkg	2603449
(2) Porphyin 1 Reagent Powder Pillows	2	100/pkg	2603549
(2) Porphyrin 2 Reagent Powder Pillows	2	100/pkg	2603649
Nitric Acid Solution, 1:1	varies	500 mL	254049
Sample cell, 10 mL square, matched pair	2	2/pkg	2495402

Recommended standards

Description	Unit	Catalog number
Copper Standard Solution, 4 mg/L, 2 mL Pour-Rite Ampules	20/pkg	2605720
Copper Standard Solution, 10-mg/L Cu	100 mL	12932
Water, deionized	4 L	27256

Optional reagents and apparatus

Description	Unit	Catalog number
Sodium Hydroxide Standard Solution, 5.0 N MDB	100 mL	245032
Tensette Pipet, 0.1–1.0	each	1970001
Tips for Tensette Pipet	50/pkg	2185696
Pipet, Volumetric, Class A, 15 mL	each	1451539
Flask, Volumetric, Class A, 1000 mL	each	1457453
Pipet Filler, Safety Bulb	each	1465100
Sample Cells, 1" square matched set	8/pkg	2495408
pH paper	100/pkg	2601300

FOR TECHNICAL ASSISTANCE, PRICE INFORMATION AND ORDERING: In the U.S.A. – Call toll-free 800-227-4224 Outside the U.S.A. – Contact the HACH office or distributor serving you. On the Worldwide Web – www.hach.com; E-mail – techhelp@hach.com

Iron, TNTplus

Phenanthroline Method¹

(0.2 to 6.0 mg/L Fe)

Scope and Application: For drinking water and wastewater. Digestion may be required for determining total iron.

¹ Adapted from Standard Methods for the Examination of Water and Wastewater.

☐ Test preparation

How to use instrument-specific information

The *Instrument-specific information* table displays requirements that may vary between instruments. To use this table, select an instrument then read across to find the corresponding information required to perform this test.

Table 1 Instrument-specific information

Instrument	Light shield	
DR 3900	LZV849	
DR 3800, DR 2800	LZV646	

Before starting the test:

Install the light shield if applicable (see *Instrument-specific information*). Read the safety information and expiration date on the package label. Color or turbidity in the sample can cause incorrect results. To correct for color or turbidity, measure a *Sample blank*. Perform this test at 15–25 °C (59–77 °F) and store reagents at 2–8 °C (35–46 °F) for best results. The recommended sample pH is 3–10.

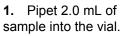
A sample digestion may be necessary to measure undissolved iron or iron bound in complexes. The digestion can be performed with the Metals Prep Set TNT890 or by the USEPA mild or vigorous digestion procedure.

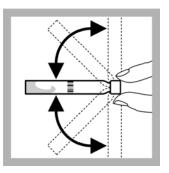
TNTplus methods are activated from the Main Menu when a vial is inserted into the sample cell holder.

Collect the following items:

Description	Quantity
Light Shield (see Instrument-specific information)	1
Iron TNT858 Reagent Set	1
Pipette, variable volume, 1-5 mL	1
Pipette Tips for 1-5 mL Pipette	1
Disposable wipes	1

See Consumables and replacement items for reorder information.


DOC316.53.01249


Method 10229

TNTplus[™] 858

Iron TNTplus method

- **2.** Cap and invert the vial until the contents are completely dissolved.
- 3. Wait 15 minutes.

00: 15:00

HRS MIN SEC

4. After the timer expires, wipe the sample vial and insert it into the cell holder.

The instrument reads the barcode, selects the method and makes the measurement. No zero is necessary.

Results are in mg/L Fe.

Interferences

lons that do not cause an interference up to the concentrations that were tested are shown in Table 2. Combinations of ions were not tested.

Table 2	Interfering	substances	and	levels
---------	-------------	------------	-----	--------

Interfering substance	Interference levels and treatments
Cadmium, Cd ²⁺	No effect at 70 mg/L.
Calcium, Ca ²⁺	No effect at 500 mg/L.
Carbonate, CO ₃ ²⁻	No effect at 50 mg/L.
Chloride, CI ⁻	No effect at 1000 mg/L.
Chromium, Cr ³⁺ , Cr ⁶⁺	No effect at 50 mg/L.
Cobalt, Co ²⁺	No effect at 50 mg/L.
Color	Can cause high results. To make a correction for the interference, measure a Sample blank.
Copper, Cu ²⁺	No effect at 10 mg/L. Higher concentrations cause high results.
Lead, Pb ²⁺	No effect at 50 mg/L.
Mercury, Hg ²⁺	No effect at 50 mg/L.
Nickel, Ni ²⁺	No effect at 25 mg/L. Higher concentrations cause high results.
Nitrate, NO ³⁻	No effect at 50 mg/L.
Potassium, K ⁺	No effect at 500 mg/L.
Sodium, Na ⁺	No effect at 500 mg/L.
Silver, Ag+	No effect at 100 mg/L.
Sulfate, SO ₄ ²⁻	No effect at 1000 mg/L.
Tin, Sn ²⁺	No effect at 5 mg/L. Higher concentrations cause high results.
Turbidity	Can cause high results. To make a correction for the interference, measure a Sample blank.

Table 2 Interfering substances and levels (continued)

Interfering substance	Interference levels and treatments
Zinc, Zn ²⁺	No effect at 50 mg/L.

Sample blank

If the sample has color or turbidity, measure a sample blank to correct the test result for the interference.

Required:

• TNTplus 919 sample blank vial

Procedure

- 1. Complete the test procedure for iron.
- 2. Pipet 2.0 mL of fresh sample into a TNTplus 919 sample blank vial.
- **3.** Wipe the vial and insert it into the cell holder. The instrument will read the barcode of the sample blank vial and subtract the value from the original test result.

Sample collection, preservation and storage

- Collect samples in acid-cleaned glass or plastic containers. No acid addition is necessary if analyzing the sample immediately.
- To preserve samples, adjust the pH to 2 or less with concentrated nitric acid (about 2 mL per liter). Preserved samples may be stored up to six months at room temperature.
- Before analysis, adjust the pH to between 3 and 5 with 5.0 N Sodium Hydroxide Standard Solution. Correct the test result for volume additions.
- If only dissolved iron is to be determined, filter the sample before acid addition.

Accuracy check

To validate the method, use a standard solution in place of the sample. The standard solution must be prepared by dilution.

Required for accuracy check*:

- Iron Standard Solution, 100 mg/L Fe
- Volumetric Flask, 100-mL glass
- Pipet, variable volume
- Pipet tip
- Deionized water

Standard solution method

- 1. Prepare a 2.00-mg/L Fe standard solution as follows:
 - a. Use a pipet to add 2.0 mL of the 100-mg/L standard solution into the volumetric flask.
 - b. Dilute to the mark with deionized water. Stopper and mix well. Prepare this solution daily.
- 2. Follow the test procedure to measure the concentration of the diluted standard (refer to the *lron TNTplus method*). Use the diluted standard solution in place of the sample.

^{*} See Optional reagents and apparatus.

3. Compare the measured concentration to the expected concentration. Acceptable results are typically within 10% of the expected.

Summary of method

Ferrous iron (Fe²⁺) forms an orange-red complex with the 1,10-phenanthroline indicator in the reagent. Any ferric iron (Fe³⁺) present in the water sample is reduced to ferrous iron (Fe²⁺) by ascorbic acid before the complex is formed. Test results are measured at 510 nm.

Consumables and replacement items

Required reagents

Description	Quantity/Test	Unit	Catalog number
Iron TNT 858 Reagent Set	1	25/pkg	TNT858

Required apparatus

Description	Unit	Catalog number
Light Shield (DR2800)	each	LZV646
Pipet, variable volume, 1.0–5.0 mL	each	BBP065
Pipet Tips, for variable volume pipet	75/pkg	BBP068
Wipes, disposable, 11 x 22 cm	280/pkg	2097000

Recommended standards and apparatus

Description	Unit	Catalog number
Iron Standard Solution, 100 mg/L	100 mL	1417542
Iron Standard Solution, 1 mg/L	500 mL	13949
Water, deionized	4L	27256

Optional reagents and apparatus

Description	Unit	Catalog number
Flask, volumetric, Class A, glass, 100 mL, w/ stopper	each	1457442
Nitric Acid, ACS	500 mL	254049
Sodium Hydroxide, 5.0 N	100 mL	245032
TNT 890 Metals Prep Set for digestions	50/pkg	TNT890
TNTplus 919 sample blank vials	5/pkg	TNT919

FOR TECHNICAL ASSISTANCE, PRICE INFORMATION AND ORDERING: In the U.S.A. – Call toll-free 800-227-4224 Outside the U.S.A. – Contact the HACH office or distributor serving you. On the Worldwide Web – www.hach.com; E-mail – techhelp@hach.com

Lead

DOC316.53.01055

Method 8033

Powder Pillows

USEPA¹ Dithizone Method²

3 to 300 µg/L

Scope and Application: For water and wastewater

¹ USEPA accepted for reporting for wastewater analysis (digestion is required)

² Procedure is equivalent to Standard Method 3500-Pb D for wastewater analysis.

Test preparation

How to use instrument-specific information

The *Instrument-specific information* table displays requirements that may vary between instruments. To use this table, select an instrument then read across to find the corresponding information required to perform this test.

Table 1 Instrument-specific information

Instrument	Sample cell	Cell orientation
DR 5000	2612602	Fill line faces user
DR 3900	2612602	Fill line faces user
DR 3800, DR 2800, DR 2700	2612602	Fill line faces right

Before starting the test:

For more accurate results, determine a reagent blank value for each new lot of reagent. Follow the procedure using deionized water instead of the sample.

Clean all glassware with a 1:1 Nitric Acid Solution. Rinse with deionized water.

Cloudy and turbid samples may require filtering before running the test. Report results as µg/L soluble lead. Use glass membrane type filter to avoid loss of lead by adsorption onto the filter paper.

If samples cannot be analyzed immediately, see Sample collection, preservation and storage. Adjust the pH of preserved samples before analysis.

For more accurate results, adjust the sample to pH 11.0–11.5 using a pH meter in step 11. Omit the five additional drops of Sodium Hydroxide Standard Solution in step 12

The DithiVer powder will not completely dissolve in the chloroform. For further notes see DithiVer solution preparation, storage and reagent blank.

Read the MSDS before testing. Spilled reagent will affect test accuracy and is hazardous to skin and other materials.

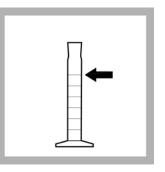
In bright light conditions (e.g. direct sunlight) it may be necessary to close the cell compartment with the protective cover during measurements.

Digestion is required to for determine the total lead for EPA reporting purposes. Use mild or vigorous digestion.

Collect the following items:

Description	Quantity
Citrate Buffer Powder Pillows	1
Chloroform	50 mL
DithiVer Metals Reagent Powder Pillows	1
Potassium Cyanide	2 g
Sodium Hydroxide Standard Solution, 5.0 N	varies
Cotton Balls	1
Clippers	1
Cylinder, 50 mL graduated mixing	1
Cylinder, 5 mL graduated	1
Cylinder, 50 mL graduated	1
Cylinder, 250 mL graduated	1
Funnel, 500 mL separatory	1
Sample Cells (see Instrument-specific information)	2
Spoon, measuring, 1.0 g	1
Support Ring (4 inch) and Stand (5 x 8 inch base)	1

See Consumables and replacement items for reorder information.

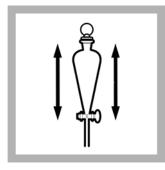

Dithizone method for powder pillows

1 Select the test.

Insert an adapter if required (see *Instrument-specific information*).

Refer to the user manual for orientation.

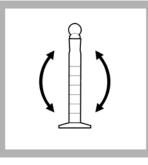
2 Fill a 250 mL graduated cylinder to the 250 mL mark with sample.



3 Transfer the sample into 500 mL separatory funnel.

4 Add the contents of one Buffer Powder Pillow, citrate type.

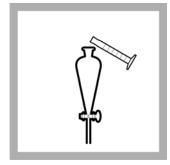
Dithizone method for powder pillows (continued)



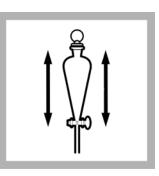
5 Insert the stopper into the funnel and shake to dissolve.

6 DithiVer Solution preparation:

Add 50 mL of chloroform to a 50-mL mixing graduated cylinder. Add the contents of one DithiVer Metals Reagent Powder Pillow.



7 Stopper the cylinder. Invert several times to mix.



8 Measure 30 mL of the prepared dithizone solution with a second graduated cylinder and add to the separatory funnel.

Insert the stopper and invert to mix. Open stopcock to vent. Close the stopcock.

9 Add 5 mL of 5.0 N Sodium Hydroxide Standard Solution.

10 Stopper. Invert. Open stopcock to vent. Close the stopcock and shake the funnel once or twice and vent again.

If the solution turns orange after shaking, the pH is too high. Add a few drops of 5.25 N Sulfuric Acid to the solution to decrease the pH.

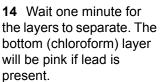
The blue-green color will reappear (alternatively, to avoid higher blanks, repeat on new sample and use less sodium hydroxide in step 9).

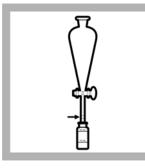
11 Continue adding 5.0 N Sodium Hydroxide Standard Solution dropwise and shaking the funnel after every few drops until the color of the solution being shaken changes from blue-green to orange.

Large amounts of zinc cause the color transition at the end point to be indistinct.

12 Add 5 more drops of 5.0 N Sodium Hydroxide Standard Solution.

A pink color in the bottom (chloroform) layer at this point does not necessarily indicate lead is present. Only after adding the potassium cyanide in the next step will the presence of lead be confirmed by a pink color.


Dithizone method for powder pillows (continued)



13 Add 2 heaping 1.0 g scoops of potassium cyanide to the funnel. Stopper.

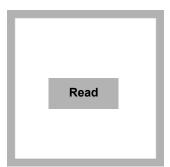
Shake vigorously until the potassium cyanide is all dissolved (about 15 seconds).

15 Prepared sample: Insert a cotton plug the size of a pea into the delivery tube of the funnel and slowly drain the bottom (chloroform) layer into a dry sample cell. Insert the stopper.

The lead-dithizone complex is stable for at least thirty minutes if the sample cell is kept tightly capped and out of direct sunlight.

16 Blank preparation: Measure 10 mL of chloroform into another sample cell.

Insert the stopper.


17 Insert the blank into the cell holder.

Zero	

18 ZERO the instrument. The display will show: 0 μg/L Pb²⁺

19 Insert the prepared sample into the cell holder

20 READ the results in $\mu g/L Pb^{2+}$.

Interferences

Table 2 Substances that do not interfere

Non-interfering substance	Non-interfering substance
Aluminum	Lead
Antimony	Magnesium
Arsenic	Manganese
Calcium	Nickel
Chromium	Tin
Cobalt	Zina
Iron	Zinc

Interference from the metals in the *Interfering substances* table can be eliminated by inserting the *Interference treatment for metals* procedure after step 6 of the *Dithizone method for powder pillows* procedure.

Interfering substance	Interference level	
Highly buffered samples or extreme sample pH	All levels. See Interference treatment for metals.	
Bismuth	All levels. See Interference treatment for metals.	
Copper	All levels. See Interference treatment for metals.	
Mercury	All levels. See Interference treatment for metals.	
Silver	All levels. See Interference treatment for metals.	
Tin	All levels. See Interference treatment for metals.	

Table 3 Interfering substances

Interference treatment for metals

- 1 Measure about 5 mL of the DithiVer solution into the separatory funnel. Stopper the funnel, invert and open the stopcock to vent. Close the stopcock and shake the solution vigorously for 15 seconds. Allow the funnel to stand undisturbed until the layers separate (about 30 seconds). A yellow, red or bronze color in the bottom (chloroform) layer confirms the presence of interfering metals. Draw off and collect the bottom (chloroform) layer for proper disposal.
- 2 Repeat extraction with fresh 5 mL portions of prepared dithizone solution (collecting the bottom layer each time in appropriate waste collection vessel) until the bottom layer shows a pure dark green color for three successive extracts. Extractions can be repeated a number of times without appreciably affecting the amount of lead in the sample.
- **3** Extract the solution with several 2 or 3 mL portions of pure chloroform to remove any remaining dithizone, again collecting the bottom layer each time for proper disposal.
- 4 Continue the procedure, substituting 28.5 mL of prepared dithizone solution for the 30 mL in step 8.

DithiVer solution preparation, storage and reagent blank

- Store DithiVer Powder Pillows away from light and heat.
- A convenient way to prepare this solution is to add the contents of 10 DithiVer Metals Reagent Powder Pillows to a 500 mL bottle of chloroform.
- Invert several times until well mixed (carrier powder may not dissolve).
- Store dithizone solution in an amber glass bottle. This solution is stable for 24 hours.
- Carry out a reagent blank using deionized water through the entire method to obtain the most accurate results.

Sample collection, preservation and storage

- Collect samples in an acid-washed glass or plastic containers.
- Adjust the pH to 2 or less with nitric acid (about 2 mL per liter).
- Store preserved samples up to six months at room temperature.
- Adjust the pH to 2.5 with 5.0 N sodium hydroxide before analysis.
- Correct the test result for volume additions.

Accuracy check

Standard additions method (sample spike)

Required for accuracy check:

- Lead Voluette Ampule Standard, 50 mg/L Pb
- Ampule breaker
- TenSette Pipet and Pipet Tips
- 1 After reading test results, leave the sample cell (unspiked sample) in the instrument. Verify that units are in µg/L.
- 2 Select Options>More>Standard Additions from the instrument menu.
- 3 Accept the default values for standard concentration, sample volume and spike volumes. After the values are accepted, the unspiked sample reading will appear in the top row. See the user manual for more information.
- 4 Open the standard solution ampule.
- **5** Use the TenSette Pipet to prepare spiked samples: add 0.1 mL, 0.2 mL and 0.3 mL of standard to three 250 mL portions of fresh sample.
- 6 Follow the *Dithizone method for powder pillows* test procedure for each of the spiked samples starting with the 0.1 mL sample spike. Measure each of the spiked samples in the instrument.
- 7 Select **GRAPH** to view the results. Select **IDEAL LINE** (or best-fit) to compare the standard addition results to the theoretical 100% recovery.

Standard solution method

Note: Refer to the instrument user manual for specific software navigation instructions.

Required for accuracy check:

- Lead Standard Solution, 100 mg/L
- Deionized water
- 100 mL Class A volumetric flask

- Class A volumetric pipet, 10 mL
- Pipet filler
- 1 Prepare a 10 mg/L lead standard solution as follows:
 - a Pipet 10.00 mL of Lead Standard, 100 mg/L, into a 100 mL volumetric flask.
 - **b** Dilute to the mark with deionized water. Mix well.
- 2 Prepare a 200 µg/L lead standard solution as follows:

Use a graduated cylinder to measure 245 mL of deionized water into the 500 mL separatory funnel (step 3 of the *Dithizone method for powder pillows* test). Pipet 5.00 mL of the 10.0 mg/L Lead standard into the funnel.

- 3 Follow the Dithizone method for powder pillows test procedure.
- **4** To adjust the calibration curve using the reading obtained with the 200 μg/L Standard Solution, select Options>More>Standard Adjust from the instrument menu.
- **5** Turn on the Standard Adjust feature and accept the displayed concentration. If an alternate concentration is used, enter the concentration and adjust the curve to that value.

Method performance

Program	Standard	Precision 95% Confidence Limits of Distribution	Sensitivity Concentration change per 0 010 Abs change
280	150 µg/L Pb	140–160 μg/L Pb	2.3 μg/L

Summary of method

The dithizone method is designed for the determination of lead in water and wastewater. The DithiVer Metals Reagent is a stable powder form of dithizone. Lead ions in basic solution react with dithizone to form a pink to red lead-dithizonate complex, which is extracted with chloroform. Test results are measured at 515 nm.

Consumables and replacement items

Required reagents

Description	Quantity/Test	Unit	Catalog number
Lead Reagent Set (100 Tests)	_	—	2243100
Includes: (1) 1420299, (2) 1445817, (1) 1261699, (2) 76714, (1) 24	5053, (2) 245026		
Buffer Powder Pillows, citrate	1	100/pkg	1420299
Chloroform, ACS	30 mL	4 L	1445817
DithiVer Metals Reagent Powder Pillows	1	100/pkg	1261699
Potassium Cyanide	0.1 g	125 g	76714
Sodium Hydroxide Solution, 5.0 N	5 mL	1000 mL	245053
Sodium Hydroxide Standard Solution, 5.0 N	varies	59 mL DB	245026

Required apparatus

Description	Quantity	Unit	Catalog number
Clippers, for opening powder pillows	1	each	96800
Cotton Balls, absorbent	1	100/pkg	257201
Cylinder, graduated, 5 mL	1	each	50837
Cylinder, graduated, 50 mL	1	each	50841
Cylinder, graduated, 250 mL	1	each	50846
Cylinder, graduated, mixing, 50 mL	1	each	189641
Funnel, separatory, 500 mL	1	each	52049
pH Meter, sens <i>ion</i> ™1, portable, with electrode	1	each	5170010
Spoon, measuring,1 g	1	each	51000
Support Ring, 4"	1	each	58001
Support Ring Stand, 5" x 8" base	1	each	56300
Sample Cell, 1-inch square, w/stopper, matched pair	2	2/pkg	2612602

Recommended standards

Description	Unit	Catalog number
Lead Standard Solution, 100 mg/L Pb	100 mL	1261742
Lead Standard Solution, 10 mL Voluette Ampules, 50 mg/L Pb	16/pkg	1426210

Optional reagents and apparatus

Description	Unit	Catalog number
Ampule Breaker Kit	each	2196800
Chloroform, ACS	500 mL	1445849
Filter Discs, glass, 47 mm	100/pkg	253000
Filter Holder, glass, for 47-mm filter	each	234000
Flask, Erlenmeyer, 500 mL	each	50549
Flask, filtering, 500 mL	each	54649
Flask, volumetric, Class A, 100 mL	each	1457442
Nitric Acid Solution, 1:1	500 mL	254049
Nitric Acid, ACS	500 mL	15249
pH Paper, pH 1.0 to 11.0	5 rolls/pkg	39133
Pipet, serological, 2 mL	each	53236
Pipet, TenSette [®] , 0.1 to 1.0 mL	each	1970001
Pipet Tips, for TenSette Pipet 1970001	50/pkg	2185696
Pipet, volumetric, 5.00 mL, Class A	each	1451537
Pipet, volumetric, 10.00 mL, Class A	each	1451538
Pipet Filler, safety bulb	each	1465100
Sulfuric Acid, 5.25 N	100 mL MDB	244932
Water, deionized	4 L	27256

FOR TECHNICAL ASSISTANCE, PRICE INFORMATION AND ORDERING: In the U.S.A. – Call toll-free 800-227-4224 Outside the U.S.A. – Contact the HACH office or distributor serving you. On the Worldwide Web – www.hach.com; E-mail – techhelp@hach.com HACH COMPANY WORLD HEADQUARTERS Telephone: (970) 669-3050 FAX: (970) 669-2932

Nickel

DOC316.53.01063

Method 8150

Powder Pillows

1-(2 Pyridylazo)-2-Napthol (PAN) Method¹

0.006 to 1.000 mg/L Ni

Scope and Application: For water and wastewater; digestion is required for determining total nickel

¹ Adapted from Watanabe, H., *Talanta*, 21 295 (1974)

Test preparation

How to use instrument-specific information

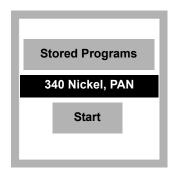
The *Instrument-specific information* table displays requirements that may vary between instruments. To use this table, select an instrument then read across to find the corresponding information required to perform this test.

Table 1 Instrument-specific information

Instrument	Sample cell	Cell orientation
DR 5000	2495402	Fill line faces user
DR 3900	2495402	Fill line faces user
DR 3800, DR 2800, DR 2700	2495402	Fill line faces right

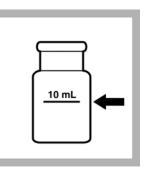
Before starting the test:

Cobalt concentration can be determined with the same sample by using Program Number 110.

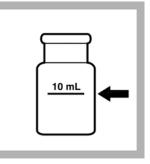

If the sample is less than 10 °C (50 °F), warm to room temperature before analysis. Adjust the pH of acidified stored samples.

Collect the following items:

Description	Quantity
EDTA Powder Pillow	2
Phthalate-Phosphate Reagent Powder Pillow	2
PAN Indicator Solution, 0.3%	1 mL
Deionized Water	25 mL
Sample Cells (see Instrument-specific information)	2
Stoppers	2


See Consumables and replacement items for reorder information.

PAN method for powder pillows



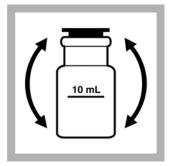
1. Select the test. Insert an adapter if required (see *Instrument-specific information*).

Refer to the user manual for orientation.

2. Prepared Sample: Fill a sample cell to the 10-mL mark with sample.

3. Blank Preparation: Fill a second sample cell to the 10-mL mark with deionized water.

4. Add the contents of one Phthalate-Phosphate Reagent Powder Pillow to each cell.

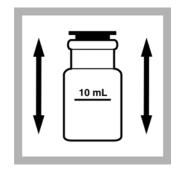


5. Stopper the cells. Immediately shake to dissolve.

If the sample contains iron, make sure that all the powder is dissolved before proceeding to step 6.

6. Using the plastic dropper provided, add 0.5 mL of 0.3% PAN Indicator Solution to each cell.

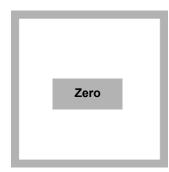
7. Insert stoppers into the cells. Invert several times to mix.


8. Start the instrument timer.

A 15-minute reaction period will begin.

During color development, the sample solution color may vary from yellowishorange to dark red, depending on the chemical makeup of the sample. The blank should be yellow.

PAN method for powder pillows (continued)



- **9.** When the timer expires, add the contents of one EDTA Reagent Powder Pillow to each cell.
- **10.** Stopper the cells and shake to dissolve.

11. Wipe the blank and insert it into the cell holder

12. ZERO the instrument.
The display will show:
0.00 mg/L Ni
The instrument will zero at
560 and 620 nm.

13. Wipe the sample cell and insert it into the cell holder.

14. READ the results in mg/L Ni and Co.

Interferences

Table 2 Interfering substances

Interfering substance	Interference level
AI3+	32 mg/L
Ca ²⁺	1000 mg/L as (CaCO ₃)
Cd ²⁺	20 mg/L
CI-	8000 mg/L
Chelating agents (e.g., EDTA)	Interfere at all levels. Use either the Digesdahl or vigorous digestion to eliminate this interference.
Cr ³⁺	20 mg/L
Cr ⁶⁺	40 mg/L
Cu ²⁺	15 mg/L
F-	20 mg/L
Fe ³⁺	10 mg/L

Interfering substance	Interference level	
Fe ²⁺	Interferes directly and must not be present.	
K+	500 mg/L	
Mg ²⁺	400 mg/L	
Mn ²⁺	25 mg/L	
Mo ⁶⁺	60 mg/L	
Na+	5000 mg/L	
Pb ²⁺	20 mg/L	
Zn ²⁺	30 mg/L	
Highly buffered samples or extreme sample pH	May exceed the buffering capacity of the reagents and require sample pretreatment.	

Table 2 Interfering substances (continued)

Sample collection, preservation and storage

- Collect samples in acid-washed plastic bottles.
- Adjust the sample pH to 2 or less with Nitric Acid^{*}, about 5 mL per liter. Preserved samples can be stored up to six months at room temperature.
- Before analysis, adjust the sample pH to between 3 and 8 with 5.0 N Sodium Hydroxide Standard Solution*. Do not exceed pH 8 as this may cause some loss of nickel as a precipitate.
- If the sample is less than 10 °C, warm it to room temperature.
- Correct test results for volume additions.

Accuracy check

Standard additions method (sample spike)

Required for accuracy check:

- Nickel Standard solution, 1000-mg/L Ni
- 25 mL mixing cylinders (3)
- 5-mL Volumetric Pipet, Class A
- TenSette Pipet and Pipet Tips
- 100 mL Volumetric Flask
- Pipet Filler
- Deionized Water
- 1. Prepare a 50 mg/L Nickel standard by pipetting 5.00 mL of 1000 mg/L Ni standard solution into a 100 mL volumetric flask. Dilute the solution to the required volume and mix well.
- 2. After reading test results, leave the sample cell (unspiked sample) in the instrument.
- 3. Select Options>More>Standard Additions from the instrument menu.
- **4.** Accept the default values for standard concentration, sample volume and spike volumes. After the values are accepted, the unspiked sample reading will appear in the top row. See the user manual for more information.

^{*} See Optional reagents and apparatus.

- 5. Use the TenSette Pipet to prepare spiked samples: add 0.1 mL, 0.2 mL and 0.3 mL of standard to three 25-mL portions of fresh sample. Mix well.
- **6.** Transfer 10-mL of each solution into sample cells. Follow the *PAN method for powder pillows* test procedure for each of the spiked samples using the powder pillows, starting with the 0.1 mL sample spike. Measure each of the spiked samples in the instrument.
- 7. Select **GRAPH** to view the results. Select **IDEAL LINE** (or best-fit) to compare the standard addition results to the theoretical 100% recovery.

Standard solution method

Note: Refer to the instrument user manual for specific software navigation instructions.

Required for accuracy check:

- Nickel Standard Solution, 1000-mg/L as Ni
- Deionized water
- 1-L volumetric flask, Class A
- 100-mL Volumetric flask
- Volumetric pipets, 5 mL and 10 mL
- Pipet filler
- 1. Prepare a 5.00 mg/L nickel stock solution as follows:
 - **a.** Pipet 5.00 mL of Nickel Standard Solution, 1000-mg/L as Ni, into a 1000-mL (1 liter) volumetric flask.
 - b. Dilute to the mark with deionized water. Mix well. Prepare this solution daily.
- 2. Prepare a 0.5 mg/L nickel working solution as follows:
 - a. 10.0 mL of the 5.00-mg/L nickel stock solution into a 100-mL volumetric flask.
 - **b.** Dilute to the mark with deionized water. Mix well. Prepare this solution daily.
- **3.** Use the working solution in place of the sample. Follow the *PAN method for powder pillows* test procedure.
- 4. To adjust the calibration curve using the reading obtained with the standard solution, select **Options>More>Standard Adjust** from the instrument menu.
- **5.** Turn on the Standard Adjust feature and accept the displayed concentration. If an alternate concentration is used, enter the concentration and adjust the curve to that value.

Method performance

Program	Standard	Precision 95% Confidence Limits of Distribution	Sensitivity Concentration change per 0.010 Abs change
340	0.500 mg/L Ni	0.492–0.508 mg.L Ni	0.006 mg/L Ni

Summary of method

After buffering the sample and masking any Fe³⁺ with pyrophosphate, the nickel is reacted with 1-(2-Pyridylazo)-2-Naphthol indicator. The indicator forms complexes with most metals present. After color development, EDTA is added to destroy all metal-PAN complexes except nickel and cobalt. The instrument automatically adjusts for cobalt interference by measuring the absorbance of the sample at both 560 nm and 620 nm. This method is unique because both nickel and cobalt can be determined on the same sample when using a spectrophotometer.

Consumables and replacement items

Required reagents

Description	Quantity/Test	Unit	Catalog number
Nickel Reagent Set (100 Tests), includes:		—	2651600
(2) EDTA Reagent Powder Pillows	2	100/pkg	700599
(2) Phthalate-Phosphate Reagent Powder Pillows	2	100/pkg	2615199
(1) PAN Indicator Solution, 0.3%	1 mL	100 mL MDB	2150232
Water, deionized	25 mL	4 L	27256

Required apparatus

Description	Quantity	Unit	Catalog number
Sample cell, 10 mL square, matched pair	2	2/pkg	2495402
Stoppers	2	6/pkg	173106

Recommended standards

Description	Unit	Catalog number
Nickel Standard Solution, 1000-mg/L Ni (NIST)	100 mL	1417642

Optional reagents and apparatus

Description	Unit	Catalog number
Cylinder, mixing, 25 mL	each	189640
Flask, Volumetric, Class A, 100 mL	each	1457442
Pipet, Volumetric, Class A, 5 mL	each	1451537
Pipet Filler, Safety Bulb	each	1465100
Pipet, volumetric, Class A, 10 mL	each	1451538
Flask, volumetric, Class A, 1000 mL	each	1457453
Water, deionized	4 L	27256
Nitric Acid 1:1	500 mL	254049
Sodium Hydroxide Standard Solution, 5.0 N	100 mL MDB	245032

FOR TECHNICAL ASSISTANCE, PRICE INFORMATION AND ORDERING: In the U.S.A. – Call toll-free 800-227-4224 Outside the U.S.A. – Contact the HACH office or distributor serving you. On the Worldwide Web – www.hach.com; E-mail – techhelp@hach.com

Nitrate

DOC316.53.01070

Dimethylphenol Method

LR (0.23 to 13.50 mg/L NO₃--N or 1.00 to 60.00 mg/L NO₃)

Method 10206

TNTplus 835

Scope and Application: For wastewater, drinking water, surface water and process water

Test preparation

How to use instrument-specific information

The *Instrument-specific information* table displays requirements that may vary between instruments. To use this table, select an instrument then read across to find the corresponding information required to perform this test.

Table 1 Instrument-specific information

Instrument	Light shield
DR 3900	LZV849
DR 3800, DR 2800	LZV646

Before starting the test:

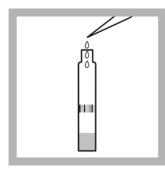
Install the light shield if applicable (see Instrument-specific information).

Always read the Safety Advice and Expiration Date on package.

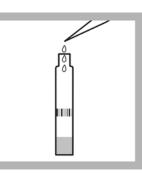
Perform this test at the recommended temperature to avoid an incorrect result. Recommended sample and reagent temperature is 20–23 °C (68–73.4 °F). Analyze samples as soon as possible.

Recommended sample pH is 3-10.

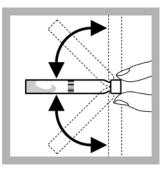
Recommended reagent storage is 15–25 °C (59–77 °F).


TNTplus methods are activated from the Main Menu when the sample vial is inserted into the sample cell holder.

Collect the following items:


Description	Quantity
Light Shield (see Instrument-specific information)	1
Nitrate LR TNT 835 Reagent Set	1
Pipet, variable, 0.2–1.0 mL	1
Pipet Tip, for 0.2–1.0 mL pipet	2

See Consumables and replacement items for reorder information.


Dimethylphenol method

1. Pipet 1.0 mL of sample into the reagent vial.

2. Pipet 0.2 mL of Solution A into the vial.

3. Cap and invert the reaction tube 2–3 times until no more streaks can be seen in the reaction tube solution.

4. Wait 15 minutes.

5. After the timer expires wipe the vial and insert the prepared vial into the cell holder. The instrument reads the barcode, then selects and performs the correct test.

No Zero is required. Results are in mg/L NO₃–N

Interferences

The items listed in the *Interfering substances* table have been individually checked up to the given concentrations and do not cause interference. The cumulative effects and influence of other ions have not been determined. High loads of oxidizable organic substances (COD) cause the reagent to change color and to give high-bias results. The test can thus only be used for wastewater analyses if the COD is less than 500 mg/L. Measurement results can be verified using sample dilutions or standard additions.

Nitrite concentrations of more than 2.0 mg/L interfere (high-bias results). Add 50 mg of sulfamic acid (amidosulfonic acid) to 5.0 mL of sample, dissolve and wait for 10 minutes. Analyze the prepared sample as described in the procedure above.

Interfering substance	Interference level	Interfering substance	Interference level
Ag+	100 mg/L	Cu ²⁺	50 mg/L
CI-	500 mg/L	Ca ²⁺	50 mg/L
Fe ³⁺	50 mg/L	NO ₂ -	2 mg/L
K ⁺	500 mg/L	Cd ²⁺	50 mg/L
Na ⁺	500 mg/L	Sn ²⁺	50 mg/L
Ni ²⁺	50 mg/L	Cr ⁶⁺	5 mg/L
Pb ²⁺	50 mg/L	Fe ²⁺	10 mg/L
Zn ²⁺	50 mg/L	Co ²⁺	10 mg/L

Table 2 Interfering substances

Reagent blanks

A reagent blank can be measured and the value subtracted from the results of each test performed using the same reagent lot number. Use deionized water in place of sample and run the *Dimethylphenol method* procedure as described.

To subtract the value of the blank from a series of measurements:

- 1. Measure the blank per step 5.
- **2.** Turn on the reagent blank function. The measured value of the blank should be displayed in the highlighted box.
- **3.** Accept the blank value. The reagent blank value will be subtracted from all results until the function is turned off or a different method is selected.

Alternately, the blank can be recorded and entered at any later time by pressing the highlighted reagent blank box and using the keypad to enter the value.

Sample blanks

Colored or turbid samples can cause high results. To compensate for color or turbidity, the procedure is repeated and the color forming reagent that is present in Solution A is not added.

To determine the sample blank:

- 1. Perform the *Dimethylphenol method* with 0.2 mL of deionized water in place of the 0.2 mL of Solution A in step 2. Use the original cap to cap the sample vial.
- 2. Subtract the value obtained in step 5 from the value obtained on the original sample to give the corrected sample concentration.

Alternatively, samples that contain only turbidity may be first filtered through a membrane filter and then analyzed.

Samples without color or turbidity do not require sample blanks.

Sample collection, preservation and storage

- Collect samples in clean plastic or glass bottles.
- Analyze samples as soon as possible to prevent bacterial degradation of the nitrate. If
 immediate analysis is not possible, store at 4 °C (39 °F) or lower if the sample is to be
 analyzed within 24 to 48 hours. For longer storage periods (up to 14 days), adjust sample pH
 to 2 or less with Sulfuric Acid, ACS^{*} (about 2 mL per liter). Sample refrigeration is still required.
- Before testing the stored sample, warm to 20–23 °C and neutralize with 5.0 N Sodium Hydroxide Standard Solution*. Do not use mercury compounds as preservatives.
- Correct the test result for volume additions.

Accuracy check

Standard solution method

Note: Refer to the instrument user manual for specific software navigation instructions.

Required for accuracy check:

Nitrate Nitrogen Standard, 10 mg/L, NO₃–N

or

- Wastewater Influent Mixed Parameters Inorganics Standard
- 1. Use 1.0 mL of Nitrate nitrogen standard, 10 mg/L in place of the sample in step 1.

or

- 1. Use 1.0 mL of Wastewater Influent Mixed Parameters Inorganics Standard in place of the sample in step 1. This standard contains 10 mg/L nitrate nitrogen combined with ammonia, phosphate, sulfate and organic material.
- 2. Follow the Dimethylphenol method test procedure.

Summary of method

Nitrate ions in solutions containing sulfuric and phosphoric acids react with 2,6-dimethylphenol to form 4-nitro-2,6-dimethylphenol. Test results are measured at the wavelengths in the *Test wavelengths* table.

Table 3 Test wavelengths

Instrument	Wavelength
DR 5000	370 nm
DR 3900, DR 3800, DR 2800	345 nm

^{*} See Optional reagents and apparatus.

Consumables and replacement items

Required reagents

Description	Quantity/Test	Unit	Catalog number
Nitrate TNTplus, LR TNT 835	1	25/pkg	TNT835

Required apparatus

Description	Quantity	Unit	Catalog number
Pipet, variable volume, 0.2–1.0 mL	1	each	BBP078
Pipet Tips, for BBP078 pipet	2	100/pkg	BBP079

Recommended standards

Description	Unit	Catalog number
Nitrate Nitrogen Standard Solution, 10-mg/L	500 mL	30749
Nitrate Nitrogen Standard Solution, 1000 mg/L	500 mL	1279249
Wastewater Influent Inorganics Standard for NH ₃ –N, NO ₃ –N, PO ₄ , COD, SO ₄ , TOC	500 mL	2833149
Water, deionized	4 L	27256

Optional reagents and apparatus

Description	Unit	Catalog number
Balance, AccuLab VI–Series, 120 g capacity	each	2694700
Bottle, sampling, low density poly, w/cap, 500 mL, 12/pkg	12/pkg	2087079
Filter Holder, glass, for vacuum filtration	each	234000
Filter, membrane, 47 mm; 0.45-micron	each	2894700
Flask, filtering, glass	1000 mL	54653
Sodium Hydroxide, 5.0 N	50 mL SCDB	245026
Sulfamic Acid	454 g	234401
Sulfuric Acid ACS, concentrated	500 mL	97949
Test Tube Rack for 13-mm vials	each	2497900
Tubing, rubber	12-ft	56019
Aspirator	each	213100

FOR TECHNICAL ASSISTANCE, PRICE INFORMATION AND ORDERING: In the U.S.A. – Call toll-free 800-227-4224 Outside the U.S.A. – Contact the HACH office or distributor serving you. On the Worldwide Web – www.hach.com; E-mail – techhelp@hach.com

Nitrite

DOC316.53.01076

USEPA¹ Diazotization Method

LR (0.015 to 0.600 mg/L NO2^{--N} or 0.05 to 2.00 mg/L NO2)

Scope and Application: For wastewater. drinking water, surface water and mineral water

¹ Approved

Test preparation

How to use instrument-specific information

The *Instrument-specific information* table displays requirements that may vary between instruments. To use this table, select an instrument then read across to find the corresponding information required to perform this test.

Table 1 Instrument-specific information

Instrument	Light shield	
DR 3900	LZV849	
DR 3800, DR 2800,	LZV646	

Before starting the test:

DR 3900, DR 3800, DR 2800: Install the light shield in Cell Compartment #2 before performing this test.

Please read Safety Advice and Expiration Date on the reagent package.

Recommended sample and reagent temperature is 15-25 °C (59-77 °F).

Recommended sample pH is between 3–10.

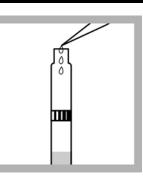
Recommended reagent storage temperature is 15–25°C (59–77 °F).

TNTplus methods are activated directly from the Main Menu when the sample vial is inserted into the sample cell holder.

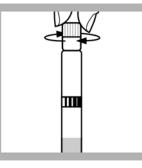
Collect the following items:

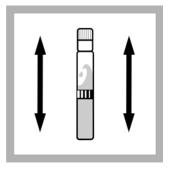
Description	Quantity
TNT 839 Reagent Set	1
Light Shield (see Instrument-specific information)	1
Pipet for 2.0 mL Sample	1
Pipet Tip	1

See Consumables and replacement items for reorder information.


Method 10207

TNTplus™ 839


Diazotization method, TNTplus 839


1. Carefully remove the protective foil lid from the DosiCap[™] *Zip*. Unscrew the cap from the vial.

2. Carefully pipet 2.0 mL of sample into the vial. Immediately proceed to step 3.

3. Flip the DosiCap *Zip* over so that the reagent side faces the vial. Screw the cap tightly onto the vial.

4. Shake the capped vial 2–3 times to dissolve the reagent in the cap.


Verify that the reagent has dissolved by looking down through the open end of the DosiCap **Zip**.

5. Wait 10 minutes.

6. After 10 minutes, thoroughly clean the outside of the vial.

7. Insert the prepared vial into the cell holder. The instrument reads the barcode, then selects and performs the correct test. Results are in $mg/L NO_2^{-}-N$.

Refer to the user manual to show the results in the alternate chemical form.

Reagent blanks

A reagent blank can be measured and the value subtracted from the results of each test performed in same reagent lot. Use deionized water in place of sample in the *Diazotization method*, *TNTplus 839* test.

To subtract the value of the blank from a series of measurements:

- 1. Measure the blank per step 7.
- **2.** Turn on the reagent blank option.
- 3. The measured value of the blank should be displayed in the highlighted box. Accept this value.

The reagent blank value will now be subtracted from all results until the function is turned off or a different method is selected. Alternately, the blank can be recorded and entered at any later time by pressing the highlighted box and using the keypad to enter the value.

Sample blanks

Color or turbid samples can cause high results. To compensate for color or turbidity the procedure is repeated without the addition of the color forming reagent that is present in the DosiCap **Zip**.

To determine the sample blank:

- 1. Run the *Diazotization method, TNTplus 839* test, but do not remove the foil from the DosiCap *Zip* in step 1.
- 2. Replace the cap in its original position in step 3.
- **3.** Subtract the value obtained in step 7 from the value obtained on the original sample to give the corrected sample concentration.

Samples without color or turbidity do not require sample blanks.

Interferences

The ions listed in the *Interfering substances* table have been individually tested up to the given concentrations and do not cause interference. The cumulative effects of these ions or the influence of other ions have not been determined.

Interfering substance	Interference level
CI-, SO ₄ 2-	2000 mg/L
K+, NO ₃ -	1000 mg/L
NH ₄ ⁺ , PO ₄ ^{3–} , Ca ²⁺	500 mg/L
Mg ²⁺	100 mg/L
Cr ³⁺	50 mg/L
Co ²⁺ , Zn ²⁺ , Cd ²⁺ , Mn ²⁺ , Hg ²⁺	25 mg/L
Ni ²⁺	12 mg/L
Ag ⁺ , Fe ²⁺	10 mg/L
Sn ⁴⁺ , Fe ³⁺	5 mg/L
Cu ²⁺	< 1 mg/L

Table 2 Interfering substances

Sample collection, preservation and storage

- Collect samples in clean plastic or glass bottles.
- Store at 4 °C (39 °F) or lower if the sample is to be analyzed within 24 to 48 hours.
- Warm to 15–25 °C (59–77 °F) before running the test.
- Do not use acid preservatives.

Accuracy check

Standard solution method

Note: Refer to the instrument user manual for specific software navigation instructions.

- Preparing nitrite standards is difficult. Use the standard preparation instructions in *Standard Methods for the Examination of Water and Wastewater*, Method 4500—NO₂-B. Prepare a 0.30-mg/L NO₂--N standard.
- 2. Use the 0.30-mg/L solution in place of the sample. Follow the *Diazotization method, TNTplus* 839 test procedure.

Summary of method

Nitrite in the sample reacts with a primary aromatic amine in acidic solution to form a diazonium salt. This couples with an aromatic compound to form a colored complex that is directly proportional to the amount of nitrite present. Test results are measured at 515 nm.

Consumables and replacement items

Required reagents

Description	Quantity/Test	Unit	Catalog number
Nitrite, TNT 839 TNTplus™ Reagent Set	1	25/pkg	TNT839
Required apparatus			

Pipet, variable volume, 1–5 mL	1	each	BBP065
Pipet Tips, for BBP065 Pipet	1	75/pkg	BBP068

Recommended standards and apparatus

Description	Unit	Catalog number
Balance, analytical, 80 g capacity	each	2936701
Handbook, Standard Methods for the Examination of Water and Wastewater	each	2270800
Sodium Nitrite, ACS	454 g	245201
Water, deionized	4 L	27256

Optional reagents and apparatus

Description	Unit	Catalog number
Bottle, sampling, low density poly, w/cap, 500 mL	12/pkg	2087079
Test Tube Rack for 13-mm vials	each	2497900

FOR TECHNICAL ASSISTANCE, PRICE INFORMATION AND ORDERING: In the U.S.A. – Call toll-free 800-227-4224 Outside the U.S.A. – Contact the HACH office or distributor serving you. On the Worldwide Web – www.hach.com; E-mail – techhelp@hach.com

Nitrite

Diazotization Method¹

HR (0.6 to 6.0 mg/L NO₂-N or 2.0 to 20.0 mg/L NO₂-)

Scope and Application: For wastewater, drinking water, surface water and process water.

¹ Adapted from Standard Methods for the Examination of Water and Wastewater.

Test preparation

How to use instrument-specific information

The *Instrument-specific information* table displays requirements that may vary from instrument to instrument. To use this table, select an instrument then read across to find the corresponding information required to perform this test.

Table 1 Instrument-specific information

Instrument	Light shield	Adapter
DR 5000	—	—
DR 2800	LZV646	—

Before starting the test:

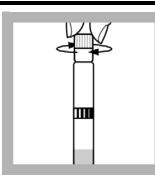
DR 2800 only: Install the light shield in cell compartment #2 before performing this test.
Read the safety advice and expiration date on the reagent package.
The recommended sample and reagent temperature is 15 to 25 °C (59 to 77 °F).
The recommended reagent storage temperature is 15 to 25 °C (59 to 77 °F).
The recommended sample pH is 3 to 10.
TNTplus methods are activated from the main menu when the sample vial is inserted into the sample cell holder.

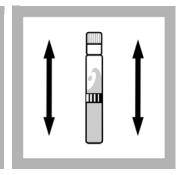
Collect the following items:

Description	Quantity
TNT840 HR nitrite reagent set	1
Light shield (Instrument-specific information)	1
Pipette for 0.2 mL sample	1
Pipette tips	varies

Refer to Consumables and replacement items on page 4 for reorder information.

Method 10237 TNTplus™ 840


Diazotization Method, TNTplus™ 840

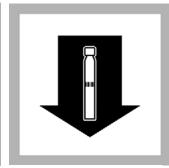


1. Carefully remove the protective foil lid from the DosiCap[™] *Zip*. Unscrew the cap from the vial.

2. Carefully pipet 0.2 mL of sample into the vial. Immediately proceed to step 3.

3. Flip the DosiCap *Zip* over so that the reagent side faces the vial. Screw the cap tightly on the vial.

4. Shake the capped vial 2 to 3 times to dissolve the reagent in the cap.


Verify that the reagent has dissolved by looking down through the open end of the DosiCap **Zip**.

5. Wait 10 minutes.

6. After 10 minutes, thoroughly clean the outside of the vial.

7. Insert the prepared vial into the cell holder. The instrument reads the barcode, then selects and performs the correct test. Results are in mg/L NO₂-N.

Reagent blanks

A reagent blank can be measured and the value subtracted from the results of each test performed with the same reagent lot. Use nitrite-free deionized water in place of sample in the *Diazotization Method, TNTplus*[™] 840 procedure.

To subtract the value of the blank from a series of measurements:

- 1. Measure the blank as described in step 7.
- 2. Turn on the reagent blank option.
- 3. The measured value of the blank should be displayed in the highlighted box. Accept the value.

The reagent blank value will now be subtracted from all results until the function is turned off or a different method is selected. Alternately, the blank can be recorded and entered at any later time by pressing the highlighted box and using the keypad to enter the value.

Sample blanks

Colored or turbid samples can cause high results. To compensate for color or turbidity the procedure is repeated without the addition of the color forming reagent that is present in the DosiCap *Zip*. Samples without color or turbidity do not require sample blanks.

To determine the sample blank:

- 1. Perform the *Diazotization Method, TNTplus*[™] 840 procedure on page 2, but do not remove the foil from the DosiCap *Zip* in step 1.
- 2. Replace the cap in its original position in step 3.
- **3.** Subtract the value obtained in step 7 from the value obtained on the original sample to give the corrected sample concentration.

Interferences

The ions listed in *Interfering substances and levels* have been individually tested up to the given concentrations and do not cause interference. The cumulative effects of these ions or the influence of other ions have not been determined.

Chromium (VI) ions interfere with the determination. Copper (II) ions interfere with the determination even at concentrations below 1 mg/L.

Interfering substance	Interference level
Tin (Sn ⁴⁺)	10 mg/L
Iron (Fe ²⁺ , Fe ³⁺), Nickel (Ni ²⁺), Silver (Ag ⁺)	20 mg/L
Cobalt (Co ²⁺), Zinc (Zn ²⁺), Cadmium (Cd ²⁺), Manganese (Mn ²⁺)	50 mg/L
Chromium (Cr ³⁺), Mercury (Hg ²⁺)	100 mg/L
Magnesium (Mg ²⁺)	200 mg/L
Ammonium (NH ₄ ⁺), Phosphate (PO ₄ ³⁻)	1000 mg/L
Potassium (K ⁺), Nitrate (NO ₃ ⁻), Calcium (Ca ²⁺), Chloride (Cl ⁻)	2000 mg/L
Sulfate (SO ₄ ²⁻)	4000 mg/L

Table 2 Interfering substances and levels

Sample collection, preservation and storage

- Collect samples in clean plastic or glass bottles.
- Store at 4 °C (39 °F) or lower if the sample is to be analyzed within 24 to 48 hours.
- Warm to 15 to 25 °C (59 to 77 °F) before running the test.
- Do not use acid preservatives.

Accuracy check

Standard solution method

Preparing a nitrite standard is difficult. Use the standard preparation instructions in *Standard Methods for the Examination of Water and Wastewater*, Method 4500-NO₂⁻ B. Prepare a 3.0 mg/L NO₂-N standard.

Use the 3.0 mg/L solution in place of the sample. Perform the *Diazotization Method, TNTplus*[™] 840 procedure.

Method performance

Instrument	Standard	Precision 95%Confidence Limits of Distribution	Sensitivity Concentration change per 0.010 Abs change
DR 5000	10.0 mg/L NO ₂ -	9.8 - 10.2 mg/L NO ₂ -	0.05 mg/L NO ₂ -
DR 2800	10.0 mg/L NO ₂ -	9.8 - 10.2 mg/L NO ₂ -	0.05 mg/L NO ₂ -

Summary of method

Nitrite in the sample reacts with a primary aromatic amine in acidic solution to form a diazonium salt. This couples with an aromatic compound to form a colored complex that is directly proportional to the amount of nitrite present. Test results are measured at 515 nm.

Consumables and replacement items

Required reagents

Description	Quantity/Test	Unit	Catalog number
Nitrite, HR TNT840 reagent set	1	25/pkg	TNT840

Required apparatus

Description	Quantity/Test	Unit	Catalog number
Light shield (DR 2800 only)	1	each	LZV646
Pipette, variable volume, 0.2 to 1.0 mL	1	each	BBP078
Pipette tips, for BBP078 pipette	varies	100/pkg	BBP079

Recommended standards and apparatus

Description	Unit	Catalog number
Balance, analytical	each	2936701
Handbook, Standard Methods for the Examination of Water and Wastewater	each	2270800
Sodium nitrite, ACS	454 g	245201
Water, deionized	4 L	27256

Optional reagents and apparatus

Description	Unit	Catalog number
Bottle, sampling, low density poly, w/cap, 500 mL	12/pkg	2087079
Test tube rack for 13 mm vials	each	2497900

FOR TECHNICAL ASSISTANCE, PRICE INFORMATION AND ORDERING: In the U.S.A. – Call toll-free 800-227-4224 Outside the U.S.A. – Contact the HACH office or distributor serving you. On the Worldwide Web – www.hach.com; E-mail – techhelp@hach.com

Suspended Solids

Photometric Method¹

(5 to 750 mg/L)

Scope and Application: For water and wastewater.

¹ Adapted from Sewage and Industrial Wastes, 31, 1159 (1959).

Test preparation

How to use instrument-specific information

The*Instrument-specific information* table displays information that may vary from instrument to instrument. Select your spectrophotometer from the instrument column on the left. Read across to find the corresponding sample cells and adapters required to perform this test on your spectrophotometer.

Table 1 Instrument-specific information

Instrument	Sample cell	Cell orientation
DR 5000	2495402	Fill line faces user
DR 3900	2495402	Fill line faces user
DR 3800, DR 2800, DR 2700	2495402	Fill line faces right

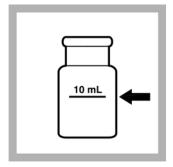
Before starting the test:

The Pour-Thru Cell cannot be used with this procedure.


Collect the following items:

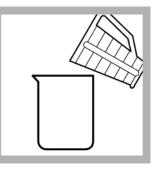
Description	Quantity
Beaker, 600-mL, polypropylene	1
Blender	1
Cylinder, 500-mL polypropylene, graduated	1
Sample Cells (see the Instrument-specific information table)	2

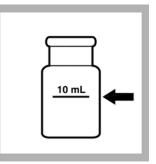
See Consumables and replacement items for reorder information.


Method 8006

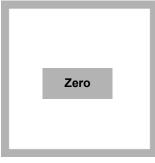
Photometric Method

Select the test. 1. Insert an adapter if required (see the Instrument-specific information table).


Refer to the user manual for orientation.


5. Blank Preparation: Fill a second sample cell with 10 mL of tap water or deionized water.

2. Blend 500 mL of sample in a blender at high speed for exactly two minutes.


3. Pour the blended sample into a 600-mL beaker.


4. Prepared Sample: Stir the sample and immediately pour 10 mL of the blended sample into a sample cell.

6. Wipe and insert the blank into the cell holder.

7. ZERO the instrument. The display will show: 0 mg/L TSS

8. Swirl the prepared sample to remove any gas bubbles and uniformly suspend any residue.

9. Wipe and insert the prepared sample into the cell holder.

10. READ the results in mg/L TSS.

Interferences

Samples that absorb strongly at 810 nm, such as blue dyes, may give false, high-bias readings. A user-entered calibration is advised for these samples.

Sample collection, preservation and storage

Collect samples in clean plastic or glass bottles. Analyze samples as soon as possible after collection. The sample may be stored for seven days by cooling to 4 $^{\circ}$ C (39 $^{\circ}$ F).

Accuracy check

Calibration for this test is based on parallel samples using the gravimetric technique on sewage samples from a municipal sewage plant. For most samples, this calibration will provide satisfactory results. When higher accuracy is required, run parallel spectrophotometric and gravimetric determinations with portions of the same sample. Make the new calibration on the particular sample using a gravimetric technique as a basis.

Summary of method

This method of determining suspended solids is a simple, direct measurement which does not require the filtration or ignition/weighing steps that gravimetric procedures do. The USEPA specifies the gravimetric method for solids determinations, while this method is often used for checking in-plant processes. Test results as mg/L total suspended solids (TSS) are measured at 810 nm.

Consumables and replacement items

Required apparatus

Description	Quantity	Unit	Catalog number
Beaker, 600-mL, polypropylene	1	each	108052
Blender, 1.2-L, 120 VAC	1	each	2616100
Blender, 1.2 L, 240 VAC	1	each	2616102
Cylinder, 500-mL graduated, polypropylene	1	each	108149

FOR TECHNICAL ASSISTANCE, PRICE INFORMATION AND ORDERING: In the U.S.A. – Call toll-free 800-227-4224 Outside the U.S.A. – Contact the HACH office or distributor serving you. On the Worldwide Web – www.hach.com; E-mail – techhelp@hach.com

Zinc

DOC316.53.01145

Method 8009

Powder Pillows

USEPA¹ Zincon Method²

(0.01 to 3.00 mg/L)

Scope and Application: For water and wastewater. Digestion is required for a total zinc analysis (see *Digestion*).

¹ USEPA approved for wastewater analyses 3500 Zn B: Federal Register, 45(105) 36166 (May 29, 1980).

² Adapted from Standard Methods for the Examination of Water and Wastewater.

☐ Test preparation

How to use instrument-specific information

The *Instrument-specific information* table displays information that may vary from instrument to instrument. Select the spectrophotometer from the instrument column on the left. Read across to find the corresponding sample cells and adapters required to perform this test on the spectrophotometer.

Table 1 Instrument-specific information

Instrument	Powde	er pillows
instrument	Sample cell Cell orientation	
DR 5000	2495402	Fill line faces user
DR 3900	2495402	Fill line faces user
DR 3800, DR 2800, DR 2700	2495402	Fill line faces right

Before starting the test:

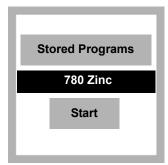
Use only glass-stoppered mixing cylinders in this procedure.

Wash glassware with 1:1 HCl^1 and rinse with deionized water before use.

Use a plastic dropper in step 6 of this procedure. Droppers with rubber bulbs may contaminate the reagent.

ZincoVer[®] 5 reagent contains potassium cyanide. Cyanide solutions are regulated as hazardous waste by the Federal RCRA. Cyanide should be collected for disposal as a reactive (D003) waste. Be sure that cyanide solutions are stored in a caustic solution with pH >11 to prevent release of hydrogen cyanide gas. Refer to the current MSDS for handling and disposal information.

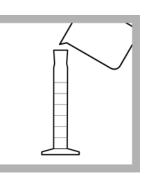
The Pour-Thru Cell cannot be used with this test.

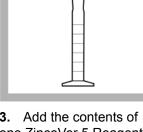

¹ See Optional reagents and apparatus.

Collect the following items:

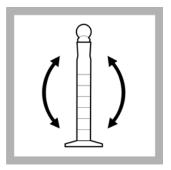
Description	Quantity
Cyclohexanone	0.5 mL
ZincoVer 5 Reagent Powder Pillow	1
Cylinder, graduated mixing, 25-mL	1

See Consumables and replacement items for reorder information.


Zincon method

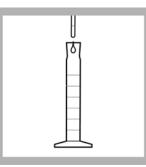

1. Select the test.

Insert an adapter if required (the *Instrument-specific information* table).


Refer to the user manual for orientation.

2. Fill a 25-mL graduated mixing cylinder with 20 mL of sample.

3. Add the contents of one ZincoVer 5 Reagent Powder Pillow to the mixing cylinder. Stopper.



4. Invert several times to dissolve the powder completely. Inconsistent readings may result if all the particles are not dissolved.

The sample should be orange. If the sample is brown or blue, the zinc concentration is too high or an interfering metal is present. Dilute the sample and repeat the test.

5. Blank preparation: Pour 10 mL of the solution into a sample cell.

6. Prepared sample: Use a plastic dropper to add 0.5 mL of cyclohexanone to the remaining solution in the mixing cylinder.

7. Start the instrument timer. A 30-second reaction period will begin.

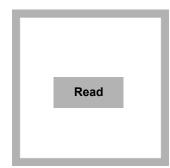
During the reaction period, stopper the mixing cylinder and vigorously shake the prepared sample.

The sample will be reddish-orange, brown, or blue, depending on the zinc concentration.

8. Start the instrument timer.

A three-minute reaction period will begin. During this reaction period, complete step **9**.

Zincon method


9. Pour the prepared sample solution from the mixing cylinder into a second sample cell.

10. When the timer expires, wipe the blank and insert it into the cell holder.

Zero	

ZERO the instrument.
 The display will show:
 0.00 mg/L Zn

12. Wipe the prepared sample and insert it into the cell holder.

READ the results in mg/L Zn.

Interferences

Table 2 Interfering substances

Interfering substance	Interference level
Aluminum	Greater than 6 mg/L
Cadmium	Greater than 0.5 mg/L
Copper	Greater than 5 mg/L
Iron (ferric)	Greater than 7 mg/L
Manganese	Greater than 5 mg/L
Nickel	Greater than 5 mg/L
Organic Material	Large amounts may interfere. Pretreat the sample with a mild digestion.
Highly buffered or extreme sample pH	May exceed the buffering capacity of the reagents and require sample pretreatment. Adjust pH to 4–5.
Amino-tri(methylene phosphonic acid) (AMP)	Samples containing AMP cause a negative interference. Digest the sample to eliminate this interference (follow the total phosphorus hot plate digestion, Method 8190). Important Note: Be sure to adjust the pH of the sample after the digestion to pH 4–5 with sodium hydroxide before the zinc analysis. Correct the pH level for volume changes.

Sample collection, preservation and storage

Collect samples in acid-cleaned plastic or glass bottles. If prompt analysis is impossible, preserve the sample by adjusting to pH 2 or less with nitric acid (about 2 mL per liter). Preserved samples may be stored up to six months at room temperature.

Before analysis, adjust the pH to 4–5 with 5.0 N Sodium Hydroxide. Do not exceed pH 5 as zinc may precipitate. Correct the test result for volume additions.

Accuracy check

Standard additions method (sample spike) Required for accuracy check:

- Zinc Voluette[®] Ampule Standard, 25 mg/L Zn
- Ampule breaker
- TenSette Pipet 0.1 1.0 mL and tips
- 25-mL mixing cylinders
- 1. After reading test results, leave the sample cell (unspiked sample) in the instrument.
- 2. Select OPTIONS>MORE>STANDARD ADDITIONS from the instrument menu.
- **3.** Press **OK** to accept the default values for standard concentration, sample volume, and spike volumes. Press **EDIT** to change these values. After values are accepted, the unspiked sample reading will appear in the top row.
- 4. Open one Voluette ampule standard.
- 5. Use the TenSette Pipet to prepare spiked samples: add 0.1 mL, 0.2 mL, and 0.3 mL of standard to three 20-mL portions of fresh sample.
- **6.** Follow the test procedure for each of the spiked samples starting with the 0.1 mL sample spike. Measure each of the spiked samples in the instrument.
- 7. Select **GRAPH** to view the results. Select **IDEAL LINE** (or best-fit) to compare the standard addition results to the theoretical 100% recovery.

Standard solution method

Note: Refer to the instrument user manual for specific software navigation instructions.

Required for accuracy check:

- 100 mg/L zinc standard solution
- 10.00 mL Class A pipet
- 1000-mL Class A volumetric flask
- Prepare a 1.00-mg/L zinc standard solution as follows. Pipet 10.00 mL of Zinc Standard Solution, 100-mg/L, into a 1000-mL volumetric flask. Dilute to the mark with deionized water. Prepare this solution daily.
- 2. Follow the zinc procedure.
- **3.** To adjust the calibration curve using the reading obtained with the 1.00-mg/L standard solution, navigate to Standard Adjust in the software (**OPTIONS**>(**MORE**)>**STANDARD ADJUST**).
- **4.** Turn on the Standard Adjust feature and accept the displayed concentration. If an alternate concentration is used, enter the concentration and adjust the curve to that value.

Digestion

A sample digestion is required before an analysis for total zinc can be started. A digestion will make sure that all zinc compounds in the sample are in a chemical form that will be measured. Complete the following steps to digest the sample.

Note: The following procedure is the USEPA mild digestion. See the Water Analysis Guide for more digestion procedures.

- 1. If nitric acid has not been added to the sample previously, add 5 mL of concentrated nitric acid to one liter of sample (use a glass serological pipet and pipet filler). If the sample was acidified at collection, add 3 mL of nitric acid to one liter of sample.
- 2. Transfer 100 mL of acidified sample to a 250-mL Erlenmeyer flask.

- **3.** Add 5 mL of 1:1 hydrochloric acid^{*}.
- **4.** Heat the sample on a hot plate* at 95 °C (203 °F) until 15-20 mL remain. Make sure the sample does not boil.
- 5. Filter the cooled sample with $0.45 \,\mu m$ filter to remove any insoluble material.
- **6.** Adjust the pH of the digested sample to pH 4–5 with 5.0 N sodium hydroxide. See *Sample collection, preservation and storage* for instructions.
- 7. Quantitatively transfer the sample to a 100-mL volumetric flask and dilute to the mark with deionized water.

Method performance

Program	Standard	Precision 95% Confidence Limits of Distribution	Sensitivity Concentration change per 0.010 Abs change
780	1.00 mg/L Zn	0.97–1.03 mg/L Zn	0.013 mg/L Zn

Summary of method

Zinc and other metals in the sample are complexed with cyanide. Adding cyclohexanone causes a selective release of zinc. The zinc reacts with 2-carboxy-2'-hydroxy-5'-sulfoformazyl benzene (zincon) indicator to form a blue-colored species. The blue color is masked by the brown color from the excess indicator. The intensity of the blue color is proportional to the amount of zinc present. Test results are measured at 620 nm.

^{*} See Optional reagents and apparatus.

Consumables and replacement items

Required reagents

Description	Quantity/Test	Unit	Catalog number
Zinc Reagent Set, 20-mL sample size, includes:		—	2429300
Cyclohexanone	0.5 mL	100 mL MDB	1403332
ZincoVer [®] 5 Reagent Powder Pillows	1	100/pkg	2106669

Required apparatus

Description	Quantity	Unit	Catalog number
Cylinder, graduated, mixing, 25-mL	1	each	2088640
Sample cell, 10 mL, square, matched pair	2	2/pkg	2495402

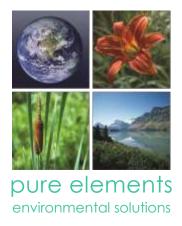
Recommended standards

Description	Unit	Catalog number
Water, deionized	4 L	27256
Zinc Standard Solution, 100-mg/L	100 mL	237842
Zinc Standard Solution, 10-mg/L Voluette® Ampule, 25-mL as Zn	16/pkg	1424610
Zinc Standard Solution, 1000-mg/L	100 mL	1417742

Optional reagents and apparatus

Description	Unit	Catalog number
Flask, Erlenmeyer, 250 mL	each	50546
Hot Plate, 120 V	each	1206701
Hydrochloric Acid 6.0 N, 1:1	500 mL	88449
Nitric Acid, concentrated, ACS	500 mL	15249
Sodium Hydroxide 5.0 N	50 mL SCDB	245026
Tensette Pipet, 0.1–1.0	each	1970001
Tips for Tensette Pipet 1970001	50/pkg	2185696
Ampule Breaker	each	2196800
Pipet, volumetric, Class A, 10 mL	each	1451538
Pipet, Filter, Safety bulb	each	1465100
Flask, volumetric, Class A, 1000 mL	each	1457453
Filter paper 0.45 µm	100/pkg	1353000
pH paper test strips, 3.0–5.5 pH range	15' roll	37333
Filtration apparatus, glass	each	234000

FOR TECHNICAL ASSISTANCE, PRICE INFORMATION AND ORDERING: In the U.S.A. – Call toll-free 800-227-4224 Outside the U.S.A. – Contact the HACH office or distributor serving you. On the Worldwide Web – www.hach.com; E-mail – techhelp@hach.com


Tundra Water Treatment Facility 2012 End of Season Treatment Report Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

15.9 Appendix I – Daily Discharge Volumes and Chemical Usage Data

Appendix I

Tundra Mine 2012 Daily Discharge Volumes and Chemical Usage Data

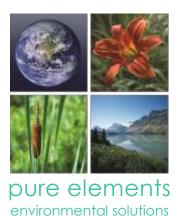
Prepared by: **pure elements** environmental solutions

RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca Reviewed and approved by: Justin Bunz, CET AEL Engineering Ltd.

Page 52 of 53

				License	CHEMI		AGE, kg	CHEMICA		GE, mg/L	18% Ferric
Day	Date	Treated	Discharged	Limit	Ferric	Lime	Poly	Ferix-3	Lime	Poly	Component
1	9-Jun	6528	0	6600	908	681	12	139	104	1.84	25
2	10-Jun	6528	0	6600	908	681	12	139	104	1.84	25
3	11-Jun	6528	0	6600	908	681	12	139	104	1.84	25
4	12-Jun	6528	649	6600	908	681	12	139	104	1.84	25
5	13-Jun	6528	6232	6600	908	681	12	139	104	1.84	25
6	14-Jun	6528	6372	6600	908	681	12	139	104	1.84	25
7	15-Jun	6528	5824	6600	908	681	12	139	104	1.84	25
8	16-Jun	6528	4124	6600	363.2	113	4	56	17	0.61	10
9	17-Jun	6528	1530	6600	908	681	12	139	104	1.84	25
10	18-Jun	6528	0	6600	908	681	12	139	104	1.84	25
11	19-Jun	6528	0	6600	908	681	12	139	104	1.84	25
12 13	20-Jun	6528 6576	0 4782	6600 6600	363.2 817.2	338	8	56	52 51	1.23 2.43	10 22
13	21-Jun 22-Jun	6576	4782 5664	6600	908	338 338	16 12	124 138	51	1.82	22
14	22-Jun 23-Jun	6576	6324	6600	908 908	563	12	138	86	1.82	25
16	23-Jun 24-Jun	6098	6177	6600	817.2	450	12	134	74	1.97	23
17	25-Jun	6552	5874	6600	908	450	16	139	69	2.44	25
18	26-Jun	6600	6090	6600	999	563	12	151	85	1.82	27
19	27-Jun	6816	6349	6600	1021.5	225	12	150	33	1.76	27
20	28-Jun	7152	6353	7200	908	450	12	127	63	1.68	23
21	29-Jun	6576	6561	7200	726.4	450	8	110	68	1.22	20
22	30-Jun	7776	6063	7200	726.4	338	12	93	43	1.54	17
23	1-Jul	7776	5982	7200	817.2	450	12	105	58	1.54	19
24	2-Jul	7872	6647	7200	726.4	450	12	92	57	1.52	17
25	3-Jul	7680	7143	7200	726	270	12	95	35	1.56	17
26	4-Jul	7680	7170	7200	1021.5	270	12	133	35	1.56	24
27	5-Jul	7680	7158	7200	612.9	270	12	80	35	1.56	14
28	6-Jul	7440	7178	7200	612.9	2790	12	82	375	1.61	15
29	7-Jul	7836	7150	7200	545	225	8	70	29	1.02	13
30	8-Jul	8064	7178	7200	908	338	12	113	42	1.49	20
31	9-Jul	7932	7197	7200	953	428	8	120	54	1.01	22
32	10-Jul	8004	6810	7200	1022	450	12	128	56	1.50	23
33	11-Jul	7896	7165	7200	1021.5	225	12	129	28	1.52	23
34	12-Jul	7956	7133	7200	908	338	12	114	42	1.51	21
35	13-Jul	8076	7190	7200	726.4	450	12	90	56	1.49	16
36	14-Jul	7944	7180	7200	794.5	450	12	100	57	1.51	18
37	15-Jul	7896	6671	7200	794.5	450	12	101	57	1.52	18
38 39	16-Jul 17-Jul	8028 8064	7142 7171	7200 7200	1135 772	338 450	12 16	141 96	42 56	1.49 1.98	25 17
39 40	17-Jul 18-Jul	7945	7173	7200	817.2	430 675	10	103	85	1.50	19
41	19-Jul	8013	7140	7200	817.2	675	12	103	84	1.51	18
42	20-Jul	7999	7101	7200	726.4	675	12	91	84	1.50	16
43	20 Jul 21-Jul	7944	7110	7200	817.2	675	12	103	85	1.51	19
44	22-Jul	7944	7174	7200	817.2	675	12	103	85	1.51	19
45	23-Jul	7964	7187	7200	999	675	12	125	85	1.51	23
46	24-Jul	7946	7147	7200	999	675	12	126	85	1.51	23
47	25-Jul	8544	7165	7200	908	540	12	106	63	1.40	19
48	26-Jul	8064	7143	7200	908	450	12	113	56	1.49	20
49	27-Jul	7872	7158	7200	998.8	450	12	127	57	1.52	23
50	28-Jul	7944	7164	7200	908	450	12	114	57	1.51	21
51	29-Jul	7872	7167	7200	908	450	12	115	57	1.52	21
52	30-Jul	7968	7163	7200	908	450	12	114	56	1.51	21
53	31-Jul	7848	7171	7200	908	360	12	116	46	1.53	21
54	1-Aug	8040	7173	7200	817.2	540	12	102	67	1.49	18
55	2-Aug	7992	7163	7200	817.2	360	12	102	45	1.50	18
56	3-Aug	7800	7190	7200	635.6	360	12	81	46	1.54	15
57	4-Aug	7800	7107	7200	817.2	360	12	105	46	1.54	19
58	5-Aug	7728	7177	7200	817.2	450	12	106	58	1.55	19
59 60	6-Aug	7728	7154	7200	726.4	450	12	94 02	58	1.55	17
60 61	7-Aug 8-Aug	7848 7584	7184 6796	7200 7200	726 817.2	360 540	12 12	93 108	46 71	1.53 1.58	17 19
01	o-Aug	7 304	0790	/200	01/.2	540	12	100	/1	1.30	19

				License	CHEMI		GE, kg	CHEMICA	L DOSA	GE, mg/L	18% Ferric
Day	Date	Treated	Discharged	Limit	Ferric	Lime	Poly	Ferix-3	Lime	Poly	Component
62	9-Aug	7992	7171	7200	726.4	360	12	91	45	1.50	16
63	10-Aug	7800	7165	7200	726.4	360	12	93	46	1.54	17
64	11-Aug	7560	7159	7200	817.2	544.8	12	108	72	1.59	19
65	12-Aug	7740	7183	7200	908	522.1	12	117	67	1.55	21
66	13-Aug	7620	7193	7200	930.7	522.1	12	122	69	1.57	22
67	14-Aug	7632	7190	7200	1362	6132	12	178	803	1.57	32
68	15-Aug	7548	7185	7200	1157.7	567.5	12	153	75	1.59	28
69	16-Aug	7644	7181	7200	1135	681	8	148	89	1.05	27
70	17-Aug	7620	7179	7200	1135	681	12	149	89	1.57	27
71	18-Aug	7464	7183	7200	1135	681	12	152	91	1.61	27
72	19-Aug	7404	7184	7200	1021.5	681	12	138	92	1.62	25
73	20-Aug	7728	6690	7200	1248.5	681	12	162	88	1.55	29
74	21-Aug	7296	7190	7200	1135	681	8	156	93	1.10	28
75	22-Aug	7872	7183	7200	1135	567.5	12	144	72	1.52	26
76	23-Aug	7656	7193	7200	1021.5	681	12	133	89	1.57	24
77	24-Aug	7944	7190	7200	1135	681	12	143	86	1.51	26
78	25-Aug	7968	7188	7200	1135	681	16	142	85	2.01	26
79	26-Aug	8064	7179	7200	1135	476.7	12	141	59	1.49	25
80	27-Aug	8004	7190	7200	1248.5	567.5	12	156	71	1.50	28
81	28-Aug	7764	7189	7200	1135	568	12	146	73	1.55	26
82	29-Aug	7704	7187	7200	1021.5	454	8	133	59	1.04	24
83	30-Aug	8016	7182	7200	1135	681	12	142	85	1.50	25
84	31-Aug	8236	7192	7200	1135	567.5	12	138	69	1.46	25
85	1-Sep	8090	7139	7200	1210	500	12	150	62	1.48	27
86	2-Sep	8064	7187	7200	1100	550	12	136	68	1.49	25
87	3-Sep	7920	7194	7200	1320	625	12	167	79	1.52	30
88	4-Sep	7812	7151	7200	1452	700	12	186	90	1.54	33
89	5-Sep	7788	7075	7200	1320	650	12	169	83	1.54	31
90	6-Sep	7800	7191	7200	1100	625	12	141	80	1.54	25
91	7-Sep	7812	6950	7200	1100	775	12	141	99	1.54	25
92	8-Sep	7949	7150	7200	1100	500	8	138	63	1.01	25
93	9-Sep	7793	7055	7200	1210	675	12	155	87	1.54	28
94	10-Sep	8312	7192	7200	1100	500	12	132	60	1.44	24
95	11-Sep	8018	7170	7200	1100	625	12	137	78	1.50	25
96	12-Sep	8088	7073	7200	1100	500	8	136	62	0.99	24
97	13-Sep	8002	7189	7200	1320	625	12	165	78	1.50	30
98	14-Sep	7750	7191	7200	1210	625	8	156	81	1.03	28
99	15-Sep	7956	7188	7200	1135	562.5	8	143	71	1.01	26
100	16-Sep	7980	7190	7200	1248.5	562.5	12	156	70	1.50	28
101	17-Sep	7692	7183	7200	1248.5	562.5	8	162	73	1.04	29
102	18-Sep	7740	7191	7200	1248.5	562.5	8	161	73	1.03	29
103	19-Sep	7620	7189	7200	1362	675	12	179	89	1.57	32
104	20-Sep	1252	7158	7200	113.5	112.5	4	91	90	3.19	16


Tundra Water Treatment Facility 2012 End of Season Treatment Report Revision No. 0 Issued: December 5, 2012 Issued by: T. Comartin, P.Eng

15.10 Appendix J – Downstream Effects

Appendix J

Tundra Mine 2012 Downstream Effects

Prepared by: **DUTE Elements** environmental solutions

RR#1, Site 1, Box 77, Dewinton, AB TOL 0X0 Tel: 1-866.995.2474 • www.pure-elements.ca Reviewed and approved by: Justin Bunz, CET AEL Engineering Ltd.

Page 53 of 53

-	2012 Offsi	2012 Offsite Monthly Average Results, mg/l	Average Res	ults, mg/L						i
	Total	Total Arsenic	Total	Total Copper	Total	Lead	Total	Total Nickel	Tota	Total Zinc
	WTP TTD	SNC Report	WTP TTD	SNC Report	WTP TTD	SNC Report	WTP TTD	SNC Report	WTP TTD	SNC Report
Month	Discharged	Hambone	Discharged	Hambone	Discharged	Hambone	Discharged	Hambone	Discharged	Hambone
Jun.	0.0240	0.03135	0.0012	0.00115	0.0000	<.0001	0.0031	0.00335	0.0020	<.0004
Jul.	0.0670	0.03200	0.0011	0.00070	0.0000	<.0001	0.0032	0.00260	0.0016	0.0004
Aug.	0.0910	0.03900	0.0011	0.00070	0.0000	<.0001	0.0034	0.00250	0.0016	0.008
Sep.	0.0800	0.03360	0.0010	0.00080	0.0000	<.0001	0.0044	0.00290	0.0017	<.0004
		Powder Mag		Powder Mag		Powder Mag		Powder Mag		Powder Mag
Jun.	0.0240	0.00830	0.0012	0.00210	0.0000	<.0001	0.0031	0.00470	0.0020	0.0004
Jul.	0.0670	0.01030	0.0011	0.00100	0.0000	<.0001	0.0032	0.00350	0.0016	<.0004
Aug.	0.0910	0.01320	0.0011	0.00060	0.0000	<.0001	0.0034	0.00210	0.0016	0.0006
Sep.	0.0800	0.00970	0.0010	0.00070	0.0000	<.0001	0.0044	0.00250	0.0017	<.0004
	Total Suspe	Total Suspended Solids	PH (Field	pH (Field Results)	Calo	Calcium	L.	Iron	Sulp	Sulphate
	WTP TTD	SNC Report	WTP TTD	SNC Report	WTP TTD	SNC Report	WTP TTD	SNC Report	WTP TTD	SNC Report
Month	Discharged	Hambone	Discharged	Hambone	Discharged	Hambone	Discharged	Hambone	Discharged	Hambone
Jun.	5.4	6.0	8.16	7.81	not available	57.2	not available	0.227	not available	153
Jul.	6.1	3.0	8.01	7.83	not available	76.0	not available	0.223	not available	199
Aug.	6.3	3.0	8.30	8.08	not available	82.0	not available	0.262	not available	211
Sep.	7.2	5.5	8.27	7.87	not available	92.5	not available	0.363	not available	230
		Powder Mag		Powder Mag		Powder Mag		Powder Mag		Powder Mag
Jun.	5.4	50.0	8.16	7.66	not available	71.5	not available	0.141	not available	61
Jul.	6.1	<3	8.01	7.51	not available	41.5	not available	0.134	not available	105
Aug.	6. <mark>3</mark>	<3	8.30	8.08	not available	57.9	not available	0.048	not available	149
Sep.	7.2	5.0	8.27	7.55	not available	69. <mark>8</mark>	not available	0.089	not available	180

Items bolded and blue noted by author as being re-analyzed by the laboratory. September monthly results include samples taken August 29 and August 30. Hambone' refers to both "Hambone Lake" or "Hambone Lake Outlet" sampling. 'Powder Mag' refers to both "Powder Mag Lake" or "Powder Mag Lake Outlet" sampling NOTE:

REPORT

2013 SEASONAL REPORT

TUNDRA PHASE II REMEDIATION ACTIVITIES WATER TREATMENT OPERATION

Submitted to:

TLICHO Engineering & Environmental Services

88 Archibald Street P.O. Box 133 Yellowknife, NT

Submitted by:

WESA, a division of BluMetric Environmental Inc. 4901 – 48 Street Ground Floor Yellowknife, NT X1A 2P9

February 2014

Project Number: Y-B11192-13-00

2013 SEASONAL REPORT

TUNDRA PHASE II REMEDIATION ACTIVITIES WATER TREATMENT OPERATION

Submitted to:

TLICHO Engineering & Environmental Services 88 Archibald Street P.O. Box 133 Yellowknife, NT

Prepared by:

WESA, a division of BluMetric Environmental Inc. 4901 – 48 Street Ground Floor Yellowknife, NT X1A 2P9

February 2014

Project Number: Y-B11192-13-00

TABLE OF CONTENTS

1. 2.	INTRODUCTION
2.1	Work Chronology
3.	TREATMENT PROCESS
3.1 3.2 3.3 3.4 3.5 3.6	COAGULATION5PH ADJUSTMENT.6FLOCCULATION.6SOLIDS REMOVAL6TREATMENT REGIME.6CHANGES TO TREATMENT REGIME OR SET-UP.9
4.	VOLUME TREATED AND REAGENTS USED
4.1 4.2	Volume Treated
5.	LABORATORY ANALYSIS
5.1 5.2 5.3	Upper Pond Sampling Events
6.	UPSETS, ISSUES AND CORRECTIVE ACTIONS
6.1 6.2	Operational Upsets and Issues at the Treatment Plant
7. 8. 9.	FUEL CONSUMPTION29SYSTEM OVERALL PERFORMANCE AND DOWNSTREAM EFFECTS29CLOSURE30

LIST OF TABLES

Discharge Criteria as per the Contract Specifications and Water Licence Criteria2
Treatment Steps and the Corresponding Volume Treated and Discharged4
Raw Untreated Water Quality in Lower and Upper Pond8
Total Volume Discharged9
Total Chemical Reagents Used
Analytical Results – Sampling Event # 1 held July 3rd, 201312
Analytical Results – Sampling Event # 2 held July 28th, 2013
Analytical Results – Sampling Event # 3 held August 6th, 201314
Analytical Results - Discharge Event # 1 held July 10th to July 20th 201316
Analytical Results – Discharge Event # 2 held August 2 nd to 7 th 201317
Analytical Results – Discharge Event # 3 held August 12th to 20th 201318
Effluent Field Screening Results During Discharge Event (Held July 10th to
July 20 th , 2013)
Effluent Field Screening Results During Discharge Event (Held August 2^{nd} to
August 7 th , 2013)21
Effluent Field Screening Results During Discharge Event (Held August 12 th to
August 20th, 2013)
Environmental Spills
H&S Incidents

LIST OF FIGURES

(Appendix A)

- Figure 1: Process Flow Diagram
- Figure 2: Platform Layout
- Figure 3: Treatment of Lower Pond Process Schematic
- Figure 4: Treatment of Upper Pond Process Schematic
- Figure 5: Discharge Phase Sampling Locations

LIST OF APPENDICES

Appendix A: Figures

- Appendix B: Accredited Laboratory Certificate of Analysis Untreated Upper and Lower Ponds
- Appendix C: Accredited Laboratory Certificate of Analysis Sampling Events
- Appendix D: Accredited Laboratory Certificate of Analysis Discharge Events
- Appendix E: Environmental Spill Reports

Appendix F: H&S Incident Reports

1. INTRODUCTION

The aim of this treatment season was to build and operate a primary water treatment facility capable of removing contaminants from water drawn from lower pond at the Tundra Mine site, Northwest Territories. The final stages of construction in the Tailings Containment Area (TCA) can occur once all the water has been removed.

The plant is designed to produce treated water for discharge with a time weighted daily average concentration of less than 0.2 mg/L of total arsenic. The tailing effluent must also comply with all the terms and conditions of the Contract Specifications and Water Licence Criteria which include the additional discharge criteria presented in **Table 1**.

The plant is designed, as shown in **Figure 1**, to precipitate arsenic from solution by chemical reaction with ferric sulphate and lime using a minimum ratio of iron to arsenic (by weight) of five (5) to one (1). Arsenic and other heavy metals will precipitate as metal hydroxide and adsorb on flocs. In the event that additional polishing treatment of zinc and lead is required when degraded influent quality is encountered, the injection of a sulphure compound in the solution will be used to assist in the precipitation of those elements as metal sulphides which display lower solubilites. The precipitate and other solids are then separated from the water by dewatering using geotubes contained within a bermed and lined area. The discharge from the geotubes was then collected in a discharge sump prior to being recirculated back into Upper Pond until treatment is completed and validated with offsite analysis such that discharge is subsequently granted to Hambone Lake.

The treatment of the contaminated wastewater was first initiated in 2009 with a small scale treatment system. Phase 2 remediation work continued the following years with the design, construction and operation of a system that could reach a treatment capacity of up to 450 m³ per hour. The original design of the treatment facility consisted of a triple train system with each train capable of operating at a maximum of 150 m³/hr. However, as shown in **Figure 2**, only two (2) of the three (3) trains were in operation. As such, the current treatment capacity of the system was equal to 300 m³/hr.

			Effluent Criteria	
		Contract	Water License	Water Licence
Parameter	Unit	Specifications:	Criteria:	Criteria:
runneter	01111	Maximum Daily	Monthly Average	Maximum
		Average	Concentration	Concentration of Any
		Concentration		Grab Sample
Metals				
Total arsenic	mg/L	0.20	0.50	1.00
Total copper	mg/L	0.01	0.01	0.02
Total lead	mg/L	0.01	0.01	0.02
Total nickel	mg/L	0.05	0.05	0.10
Total zinc	mg/L	0.02	0.02	0.04
Anions				
Nitrate (as N)	mg/L	5.00	5.00	10.0
Nitrite (as N)	mg/L	0.40	0.40	0.80
Conventional Parameters				
Total ammonia nitrogen	mg/L	5.00	5.00	10.00
Total suspended solids	mg/L	15.0	15.0	30.0
рН	-	6 - 9	6 - 9	6 - 9

Table 1: Discharge Criteria as per the Contract Specifications and Water Licence Criteria

2. 2013 TREATMENT STRATEGY

The 2013 project objective was to treat and compliantly discharge water from upper and lower ponds; hence, the project objective was met.

In previous years, water contained within lower and upper ponds was treated and subsequently discharged into Hambone Lake in one continuous motion. This year's *modus operandi* was different; water from both ponds was treated in batch mode. As such, instead of pumping the effluent directly into Hambone Lake, treated water was recirculated back into upper pond which acted as a holding reservoir as shown on **Figures 3** and **4**. This strategy allowed for the water contained within upper and lower ponds to be treated in multiple batches in a closed loop until sufficient treatment is performed and effluent discharge criteria are met.

It was planned at the beginning of the season that water contained within lower pond would be transferred into upper pond such that only a single volume of water needs to be treated. However, due to the limited holding capacity of upper pond, all of the water contained in lower pond was not transfer immediately. The remaining water in lower pond was transferred into upper pond after the first batch was discharged.

Three (3) sampling events occurred during the 2013 treatment season. During approval of each treated batch, samples were grabbed at different depths and locations of upper pond as sown on **Figure 5**. Samples will be sent offsite to a CALA accredited external laboratory for analysis. When results were conclusive, discharge permission was granted and site conditions fulfilled, the delineated treated water contained within Upper Pond was then being discharged from the sump area into Hambone Lake, at the authorized flow rate 300 m3/hr, averaged over 24 hours for continuous discharge.

2.1 WORK CHRONOLOGY

The 2013 treatment chronology is detailed below and is summarized in Table 2.

- Step1: WWTP construction held from May 29th to June 4th. Only two (2) out of three (3) treatment trains were commissioned.
- Step2: The raw water contained within upper pond was treated in a recirculation loop. The effluent was always redirected into the southern portion of upper pond.
- Step3: Water contained in upper and lower ponds was treated separately. One treatment train was dedicated to upper pond while the second train was dedicated to lower pond. Chemical dosages were therefore adjusted depending on the water quality of each source. The treated water was recirculated back to upper pond. As the water level of upper pond was rising, treatment of lower pond was interrupted when the maximum holding capacity of upper pond was reached.

By targeting the treatment of lower pond prior to discharge into upper pond, this allowed to reduce its metal concentrations before it was mixed with water from upper pond which had lowered concentrations. This way, no new contaminants were introduced into upper pond, contributing to the rapid decrease of residual concentrations in this pond.

- Step4: A first sampling event of upper pond was performed on July 3rd.
- Step5: While awaiting the analytical results, water contained in upper pond was continued to be treated in a recirculation loop.
- Step6: The AANDC water inspector gave the authorization to discharge a first batch into Hambone Lake corresponding to 50,000 m³.
- Step7: Compliant water was pumped from upper pond and sent once more through the WTP for a final polishing prior to discharge into Hambone Lake. This polishing step ensured that all contaminants of concern are well below the contract specifications and the water license criteria.
- Step8: When discharge of the first batch was completed, treatment was resumed. Both trains were treating water from lower pond until it was emptied. Since the water from

lower pond was heavily contaminated, both trains were used for treatment in order to have a lower flow rate in each train and thus ensure a more efficient treatment.

- Step9: A second sampling event of upper pond was performed on July 28th.
- Step10: While awaiting the analytical results, water contained in upper pond was treated within a recirculation loop.
- Step11: The AANDC water inspector gave the authorization to discharge a second batch into Hambone Lake corresponding to 29,000 m³.
- Step12: Compliant water was pumped from upper pond and sent once more through the WWTP for a final polishing prior to discharge into Hambone Lake. This polishing step ensured that all contaminants of concern are well below the contract specifications and the water license criteria.
- Step13: A third sampling event of upper pond was performed on August 6th.
- Step14: While awaiting the analytical results, water contained in upper pond was treated within a recirculation loop.
- Step15: The AANDC water inspector gave the authorization to discharge a third batch into Hambone Lake corresponding to a volume of 29,000 m³ with a variance of 2,000 m³. The actual volume treated was measured to be 28,352 m³.
- Step16: Compliant water was pumped from upper pond and sent once more through the WTP for a final polishing prior to discharge into Hambone Lake. A very stringent onsite monitoring was applied (TSS field screening every hour instead of every six hours) to quickly detect a potential increase in TSS as upper pond water level decreased. Water treatment was completed on August 20th.
- Step17: WWTP decommissioning from August 18th to 24th.
- Step18: WWTP pad demolition from September 18th to 24th.

Summarized in **Table 2** are the water treatment steps and the corresponding volume treated and discharged at each step. Note that the volume treated does not correspond to the volume discharged as the water was treated in a recirculation loop.

Step	Description	Starting Date	End date	Volume Treated (m³)	Volume Discharged (m ³)
1	WTP construction	2013-05-29	2013-06-04	0	0
2	Water treatment: UP* to UP	2013-06-05	2013-06-10	134130	0
3	Water treatment: UP&LP** to UP	2013-06-10	2013-07-01	137192	0
4	First sampling event of UP	2013-0	07-03	137192	0
5	Water treatment: UP to UP	2013-07-04	2013-07-10	181264	0
6	Authorization to discharge	2013-	07-10	181264	0

 Table 2:
 Treatment Steps and the Corresponding Volume Treated and Discharged

Step	Description	Starting Date	End date	Volume Treated (m³)	Volume Discharged (m ³)
7	Water treatment : UP to Hambone Lake (1st batch discharge)***	2013-07-10	2013-07-20	242359	50000
8	Water treatment: LP to UP	2013-07-20	2013-07-28	263682	50000
9	Second sampling event of UP	2013-0	07-28	263682	50000
10	Water treatment: UP to UP	2013-07-28	2013-08-02	298295	50000
11	Authorization to discharge	2013-0	08-02	298295	50000
12	Water treatment : UP to Hambone Lake (2 nd batch discharge)***	2013-08-02	2013-08-07	328821	79000
13	Third sampling event of UP	2013-0	08-06	328821	79000
14	Water treatment: UP to UP	2013-08-07	2013-08-12	348619	79000
15	Authorization to discharge	2013-	08-12	348619	79000
16	Water treatment : UP to Hambone Lake (3 rd batch discharge) ***	2013-08-12	2013-08-20	379537	107352
17	WTP decommissioning	2013-08-18	2013-08-24	379537	107352
18	WTP pad demolition	2013-09-18	2013-09-24	379537	107352

* UP : upper pond

** LP: lower pond

*** A sampling event of upper pond was performed to seek approval for batch discharge.

3. TREATMENT PROCESS

The design of the WWTP relies on the principles of the physical-chemical entrapment of metals, by converting them from an aqueous dissolved state to a solid state. The treatment process is comprised of four steps which are coagulation, pH adjustment, flocculation and solid entrapment.

3.1 COAGULATION

The first step in the arsenic removal process, coagulation, was performed in the first reactor by the injection of a $Fe_2(SO_4)_3$ solution at a minimum ratio of iron to arsenic (by weight) of five (5) to one (1). In this process, soluble arsenic reacts with the coagulant to form a precipitate.

The removal of lead and zinc below the water license discharge criteria was attained by targeting the suspended solids. The removal of these metal particulates was facilitated by the agglomeration of the suspended and colloidal solids with the chemically induced flocs formed during the coagulation and flocculation steps. These flocs are physically removed from the water by entrapment in the geotubes. To avoid an increase in the soluble fractions of lead and zinc, the

injection of a sulphide compound (SMBS) solution was used to assist in the precipitation of these elements as metal sulfides.

3.2 PH ADJUSTMENT

The optimum removal of metal hydroxides and metal sulphide is achieved at a pH of 8.5; this is the point at which the solubility of these chemically induced precipitates are at their lowest. For this reason, a $Ca(OH)_2$ solution was injected into the second reactor in the treatment process in order to increase the pH to approximately 8.5 following the addition of the Fe₂(SO₄)₃.

3.3 FLOCCULATION

To aggregate the metal precipitate colloids and the particulates into a heavy and suspended floc, a polymer flocculent solution was injected in the third rector of the treatment process. This polymer, which has a high molecular weight, allowed the colloids to aggregate together into flocs which results in a higher removal efficiency of solids.

3.4 SOLIDS REMOVAL

The flocs containing both metal precipitates and suspended solids were removed as the conditioned water passes through the geotube geocontainment bags; the geotubes acted as filter. The flocs were captured in the matrix of the geotubes, while the filtrate, free of metal solids, was pumped to Hambone Lake for environmental discharge.

3.5 TREATMENT REGIME

Before the beginning of the treatment season, the quantities of chemicals required were calculated, purchased and delivered to the site. These calculations were based on treatment regime applied in previous years and also on the contaminant concentrations of the water contained in both lower and upper ponds. Prior to the commissioning of the treatment plant, a sampling event was performed in the ponds to determine the concentration of the raw untreated water. The summary results are tabulated in **Table 3** and the certificate of analysis is included in **Appendix B**.

The dissolved metal concentrations of copper, nickel, zinc and lead are below the discharge criteria whereas the dissolved arsenic concentration is a little above 1 mg/L. Arsenic must therefore be precipitated using chemical conditioning. While it is true that the total metal concentrations are higher than their dissolved counterpart values, the treatment mechanism at play for the metal removal consists at the agglomeration of the suspended and colloidal solids

with the chemically induced flocs formed during the coagulation and flocculation steps. These flocs are physically removed from the water by entrapment in the geotubes.

Assuming a concentration of 1.2 mg/L of As and based on an applied ratio of iron to arsenic (by weight) of five (5) to one (1), the minimum ferric sulphate dosing concentration was estimated to be around 22 mg/L. Based on experience, it is required to have higher dosage to build a sizeable floc for adsorption and solid entrapment purposes; the actual dosing concentration was at least three (3) times higher.

As such, ferric sulphate dosing concentration started at 75 mg/L and was increased up to 125 mg/L at times, with an average of 84 mg/L throughout the season. Considering that the targeted mechanism is to build a good settleable floc, increasing the ferric dosing range above 75 mg/L was left to the operator to evaluate based on his visual appreciation of the floc maturation in the flocculation tank. When required, the operator increased the strokes of the chemical pumps in increments of 10 to 15 strokes every hour until they were satisfied with the floc size in the last reaction tank.

The other chemicals were also adjusted when ferric dosage was changed. Lime was dosed to maintain a pH around 8.5. The polymer dosage was set at 1.5 mg/L but could be increased up to 3.2 mg/L with an average concentration of 1.5 mg/L throughout the season. The average dosing rate of the sulphide compound (SMBS) was estimated to range from 30 to 50 mg/L throughout the season.

February 2014

,	•		•							
Sample ID	Dissolved arsenic	Dissolved Dissolved arsenic copper	Dissolved Dissolved Dissolved lead nickel zinc	Dissolved nickel	Dissolved zinc	Nitrate (as N)	Nitrite (as N)	Ammonia	TSS	Hd
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	1
LPSS	0.917	0.0058	< 0.0001	0.0066	0.0041	0.24	0.04	0.792	74	•
TPSN	0.928	0.0060	< 0.0001	0.0068	0.0042	0.32	0.05	0.791	64	,
LPIM	1.110	0.0050	0.0002	0.0074	0.0037	0.35	0.11	0.542	10,400	1
UPSS	0.148	0.0010	0.0001	0.0059	0.0009	0.19	0.01	0.168	22	•
NSN	0.170	0.0008	0.0001	0.0044	0.0006	0.17	0.01	0.171	14	,
UP3M	0.170	0.0010	0.0002	0.0040	< 0.0004	0.18	0.02	0.177	364	,

Table 3: Raw Untreated Water Quality in Lower and Upper Pond

3.6 CHANGES TO TREATMENT REGIME OR SET-UP

One (1) significant change was done to the treatment regime of the plant over the course of the season. The sulphide compounds (SMBS) was injected when the influent TSS concentration was equal or above 50 mg/L. However, to avoid any sudden rise in heavy metal concentration, it was decided by mid-June that SMBS would be injected on a continuous basis.

One (1) set up change was done on July 7th were a second set of brand new geotubes were installed and commissioned. This set of geotubes was working alongside the existing set of geotubes dated since 2011.

4. VOLUME TREATED AND REAGENTS USED

4.1 VOLUME TREATED

Based on the flowmeter readings at the end of the season, a total of **107,352 cubic meters** of water contained in both upper and lower ponds was successfully **discharged** in Hambone Lake. At the end of the season when the treatment plant was brought to a stop, both ponds had been largely emptied with the exception of a few pockets of water, from which it was difficult to pump considering the small volumes. Since then, there was a recharge of groundwater in lower pond. When including snow and rain precipitation over the course of the last seasons, it is expected that the volume of water will accumulate to approximately 75,000 cubic meters in 2014. On three (3) different occasions, permission for discharge was granted by the water inspector for specific volume of water, which are summarized in **Table 4**.

Discharge Event	Period	Discharged Volume
1 st discharge	July 10 th to July 20 th 2013	50,000 m ³
2 nd discharge	August 2 nd to 7 th 2013	29,000 m ³
3 rd discharge	August 12 th to 20 th 2013	28,352 m ³
Total Volume D	ischarged	107,352 m³

Table 4:Total Volume Discharged

It is important to note that the volume treated does not correspond to the volume discharged as the water was treated in a recirculation loop. A total of **379,537 cubic meters** of water was **treated** which correspond to a recirculation ratio of 3.5. It was originally estimated that 2.5 to 3 treatment loops would be required, which does not include the polishing step.

4.2 REAGENTS USED

The wastewater treatment plant requires the injection of four (4) different chemical reagents: ferric sulphate, lime, SMBS and polymer. The amount of reagents used this season is presented in **Table 5**.

	0	
Reagents	Number of Bags	Total Weight
Ferric Sulphate	1,400	31,780 kg
Lime	770	19,250 kg
Sodium Metabisulfite	450	10,215 kg
Polymer	21	477 kg

Table 5:Total Chemical Reagents Used

5. LABORATORY ANALYSIS

5.1 UPPER POND SAMPLING EVENTS

As aforementioned, water contained within upper pond was treated in a closed loop until the effluent discharge criteria were met. Sampling events occurred at different depths and locations of the pond to demonstrate that concentrations in the water were below the contract specifications and water license criteria, after which discharge was granted for specific volumes of water at a time.

On three (3) different occasions, permission for discharge was granted by the water inspector for specific volume of water:

- Sampling event # 1: held July 3rd, 2013
- Sampling event # 2: held July 28th, 2013
- Sampling event # 3: held August 6th, 2013

The analytical results, for each sampling event, are summarized in **Tables 6, 7** and **8**. The accredited laboratory COAs (certificates of analysis), for all three sampling events, are compiled in **Appendix C**.

All three (3) sampling events confirm that the water contained within upper pond met the regulatory requirements from the water license with concentrations well below criteria. All contract specifications are also met at the exception of arsenic, for all 3 sampling events. To ensure all contaminants, and more specifically arsenic concentrations, are well below contractual specifications during discharge to Hambone Lake, it was proposed to add a polishing treatment step.

5.2 DISCHARGE EVENTS

When discharge permission was granted for each batch, compliant water was pumped from upper pond into the geotubes with the chemical dosing system being active as a polishing step to reduce the arsenic concentration furthermore. The effluent was then pumped from the sump area of the geotubes into Hambone Lake's pipeline. Field screening influent and effluent TSS, arsenic and pH measurements were performed on a regular basis to ensure the concentrations were consistently low as presented in **Section 5.3**.

To demonstrate the efficiency of the treatment system, four (4) daily duplicate effluent samples were collected when possible during each discharge events. Only one (1) sample was analyzed for all parameters and the results were used to demonstrate the effluent water quality continues to meet contractual and regulatory requirements. The other three (3) daily samples were stored at the laboratory facility and were available when validation of offsite results was required.

Table 6: Analytical Results – Sampling Event # 1 held July 3rd, 2013

Table 6: Analytical Results – Sampling Event # 1 held July 3^{rd} , 2013	oling Even	it # 1 held	l July 3rd,	2013						
Cample ID	Total	Total	Total	Total	Total	Nitrate	Nitrite	Ammonia	ткс	Ц
	arsenic	copper	lead	nickel	zinc	(as N)	(as N)		<u>6</u>	гıd
Discharge	rge criteria (Contract Spo	criteria Contract Specifications (CS) and Water License Criteria (WLC)	(CS) and Wa	ater License	Criteria (W	(C)			
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	1
CS: Maximum Daily Average Concentration	0.20	0.01	0.01	0.05	0.02	5.00	0.40	5.00	15.00	6-9
WLC: Monthly Average Concentration	0.50	0.01	0.01	0.05	0.02	5.00	0.40	5.00	15.00	6-9
WLC: Maximum Conc. of Any Grab Sample	1.00	0.02	0.02	0.10	0.04	10.00	0.80	10.00	30.00	6-9
			Analytical results	results						
UP1-5-OFF	0.197	0.00275	0.000828	0.00656	0.0039	0.293	<0.050	0.166	3.0	8.04
UP1-5-DOF	0.192	0.00269	0.000832	0.0065	0.0042	0.296	<0.050	0.169	5.0	8.06
UP1-M-OFF	0.199	0.003	0.000837	6900.0	0.0046	0.293	<0.050	0.168	8.0	8.06
UP2-5-OFF	0.199	0.003	0.000866	0.00666	0.0088	0.296	<0.050	0.171	< 3.0	8.06
UP2-M-OFF	0.198	0.00305	0.000816	0.00669	0.0045	0.298	<0.050	0.169	5.0	8.07
UP3-5-OFF	0.208	0.00314	0.000871	0.00682	0.0043	0.304	<0.050	0.169	6.0	8.07
UP3-M-OFF	0.202	0.00317	0.000895	0.00663	0.0053	0.309	<0.050	0.169	< 3.0	8.06
UP3-5-DOF	0.208	0.0036	0.000882	0.00663	0.0047	0.301	<0.050	0.167	4.0	8.03
UP4-5-OFF	0.206	0.0028	0.000933	0.00658	0.0051	0.303	<0.050	0.166	5.0	8.07
UP4-M-OFF	0.202	0.00294	0.000904	0.00687	0.0053	0.305	<0.050	0.173	< 3.0	8.06
UP5-S-OFF	0.204	0.00296	0.0009	0.00664	0.004	0.302	<0.050	0.172	7.0	8.06
UP5-M-OFF	0.209	0.00301	0.000917	0.00681	0.0052	0.305	<0.050	0.17	5.0	8.06
UP6-5-OFF	0.213	0.00286	0.000926	0.00657	0.0045	0.308	<0.050	0.168	5.0	8.05
UP6-M-OFF	0.212	0.00285	0.000922	0.00653	0.0043	0.303	<0.050	0.166	5.0	8.06
Average Concentrations	0.204	0.0030	0.0009	0.0067	0.0049	0.301	<0.050	0.169	4.5	8.06
Legend										

Parameter does not pass the CS criteria Parameter does not pass the WL criteria

WESA

Table 7: Analytical Results – Sampling Event # 2 held July 28th, 2013

			/	(
Sample ID	Total arsenic	Total copper	Total lead	Total nickel	Total zinc	Nitrate (as N)	Nitrite (as N)	Ammonia	TSS	Hd
Discharge	rge criteria (contract Spe	cifications ((CS) and Wa	criteria Contract Specifications (CS) and Water License Criteria (WLC)	Criteria (W	'LC)			
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	1
CS: Maximum Daily Average Concentration	0.20	0.01	0.01	0.05	0.02	5.00	0.40	5.00	15.00	6-9
WLC: Monthly Average Concentration	0.50	0.01	0.01	0.05	0.02	5.00	0.40	5.00	15.00	6-9
WLC: Maximum Conc. of Any Grab Sample	1.00	0.02	0.02	0.10	0.04	10.00	0.80	10.00	30.00	6-9
	[Analytical results	results						
S-IqU	0.227	0.00187	0.000472	0.00741	0.0043	0.148	<0.050	0.102	6.0	7.83
NP1-M	0.235	0.00213	0.000514	0.00827	0.0058	0.153	<0.050	0.08	<3.0	7.84
UP1-B	0.268	0.00223	0.000849	0.00806	0.0056	0.130	<0.050	0.073	7.0	7.83
UP2-S	0.235	0.00191	0.000511	0.00745	0.0421	0.166	<0.050	0.12	5.0	7.84
UP2-M	0.24	0.00199	0.000525	0.00796	0.0061	0.151	<0.050	0.066	3.0	7.85
UP2-B	0.227	0.00185	0.000483	0.00769	0.0048	0.154	<0.050	0.104	4.0	7.84
UP3-S	0.249	0.00198	0.000511	0.00757	0.0046	0.146	<0.050	0.075	8.0	7.85
M-Equ	0.257	0.00226	0.000559	0.00842	0.0052	0.153	<0.050	0.085	6.0	7.85
NP3-B	0.243	0.0022	0.000514	0.00759	0.0048	0.159	<0.050	0.109	3.0	7.86
UP4-S	0.244	0.00189	0.000507	0.00755	0.0046	0.164	<0.050	0.092	8.0	7.86
UP4-M	0.237	0.00194	0.000532	0.00744	0.0058	0.154	<0.050	0.088	6.0	7.86
UP4-B	0.247	0.002	0.000536	0.00829	0.0054	0.149	<0.050	0.078	4.0	7.86
S-2dU	0.275	0.00203	0.000578	0.0081	0.0063	0.150	<0.050	0.066	6.0	7.85
UP5-M	0.268	0.00201	0.000594	0.00796	0.0048	0.146	<0.050	<0.050	7.0	7.85
UP5-B	0.269	0.00201	0.000594	0.00781	0.0049	0.142	<0.050	<0.050	6.0	7.86
S-9dN	0.273	0.00192	0.00064	0.00758	0.0051	0.167	<0.050	<0.050	4.0	7.85
UP6-M	0.276	0.00198	0.000597	0.00816	0.0049	0.157	<0.050	0.07	9.0	7.85
Average Concentrations	0.251	0.00201	0.00056	0.00784	0.0074	0.152	<0.050	0.086	5.5	7.85
Legend Parameter does not pass the CS criteria Parameter does not pass the WL criteria										

Ð

Table 8: Analytical Results – Sampling Event # 3 held August 6th, 2013

I able 8: Analytical Kesults – Sampling Event # 3 held August 6 ^m , 2013	oling Even	t# 3 heig	I August t	^m , 2013						
Sample ID	Total	Total	Total	Total	Total	Nitrate	Nitrite	Ammonia	SST	На
	arsenic	copper	lead	nickel	zinc	(as N)	(as N)			
Discharge	rge criteria C	Contract Spe	cifications (criteria Contract Specifications (CS) and Water License Criteria (WLC)	iter License	Criteria (W	LC)			
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
CS: Maximum Daily Average Concentration	0.20	0.01	0.01	0.05	0.02	5.00	0.40	5.00	15.00	6-9
WLC: Monthly Average Concentration	0.50	0.01	0.01	0.05	0.02	5.00	0.40	5.00	15.00	6-9
WLC: Maximum Conc. of Any Grab Sample	1.00	0.02	0.02	0.10	0.04	10.00	0.80	10.00	30.00	6-9
			Analytical results	results						
0P1-S	0.180	0.00184	0.00039	0.00782	<0.015	0.100	<0.050	<0.050	< 3.0	7.72
UP1-B	0.185	0.00205	0.00053	0.00936	<0.015	0.105	<0.050	<0.050	3.0	7.86
UP2-S	0.187	0.00180	0.00037	0.00862	<0.015	0.104	<0.050	<0.050	< 3.0	7.87
UP2-B	0.179	0.00185	0.00038	0.00891	<0.015	0.100	<0.050	0.078	< 3.0	7.88
UP3-S	0.224	06100.0	0.00045	0.00818	<0.015	0.096	<0.050	0.063	< 3.0	7.88
UP3-B	0.219	0.00179	0.00045	0.00837	<0.015	0.095	<0.050	<0.050	< 3.0	7.88
UP4-S	0.179	0.00176	0.00034	0.00859	<0.015	0.104	<0.050	<0.050	< 3.0	7.86
UP4-B	0.177	0.00181	0.00037	0.00856	<0.015	0.102	<0.050	<0.050	3.0	7.86
UP5-S	0.246	0.00192	0.00048	0.00792	<0.015	0.098	<0.050	<0.050	< 3.0	7.87
UP5-B	0.252	0.00195	0.00050	0.00817	<0.015	0.091	<0.050	<0.050	< 3.0	7.87
UP6-S	0.276	0.00202	0.00052	0.00827	<0.015	0.088	<0.050	<0.050	< 3.0	7.86
UP6-B	0.264	0.00195	0.00052	0.00845	< 0.015	0.086	<0.050	<0.050	< 3.0	7.86
Average Concentrations	0.214	0.00189	0.00044	0.00844	<0.015	0.097	<0.050	<0.050	<3.0	7.86
Legend										
Parameter does not pass the CS criteria										
Parameter does not pass the WL criteria										

On three (3) different occasions, permission for discharge was granted by the water inspector for specific volume of water:

- Discharge event # 1: held July 10th to July 20th 2013
- Discharge event # 2: held August 2nd to 7th 2013
- Discharge event # 3: held August 12th to 20th 2013

All three (3) discharge events confirmed that the average daily concentrations of the effluent met the regulatory requirements for both the contract specifications and the water license with concentrations below criteria. The analytical results, for each discharge event, are presented in **Tables 9, 10** and **11**. The accredited laboratory COAs (certificates of analysis), for all three discharge events, are compiled in **Appendix D**.

Tundra Mine II Remediation Activities – 2013 Seasonal Report TLICHO Engineering and Environmental Services Ltd Y-B11192-13-00

February 2014

13
200
5 N
Jul
5
ģ
Jul
eld.
۲ ۲
1t #
Evel
<u></u>
ğ
charge
Discharge
lts – Discharge Event # 1 held July 10th to July 20th 2013
kesults – Discharge
al Results – Discharge:
lytical Results – Discharge
Analytical Results – Discharge
Analytical Results – Discharge
Analytical Results
Table 9: Analytical Results – Discharge

I aure 7: Analylical Results - Uischarge			ובות זמוא	reciti # 1 item and 10 to and 20 to 2013	17 07 Å						
	40	Total	Total	Total	Total	Total	Nitrate	Nitrite	A mmonie	۲ در	ב
sample ID	Uate	arsenic	copper	lead	nickel	zinc	(as N)	(as N)	Ammonia	cc1	ц
Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	1
CS: Maximum Daily Average Concentration		0.20	10.0	0.01	0.05	0.02	5.00	0.40	5.00	15.00	6-9
WLC: Monthly Average Concentration		0:50	10'0	0.01	0.05	0.02	5.00	0.40	5.00	15.00	6-9
WLC: Maximum Conc. of Any Grab Sample		1.00	0.02	0.02	0.10	0.04	10.00	0.80	10.00	30.00	6-9
EFF86	01-10	0.0270	0.0015	0.0001	0.0039	0.0038	0.360	0.02	0.100	6.0	7.87
EFF87	07-11	0.0352	0.0018	0.0001	0.0038	0.0033	0.340	0.02	0.103	16.0	8.17
EFF89	07-11	0.0237	0.0028	0.0002	0.0041	0.0039	0.350	0.02	0.107	8.0	7.87
EFF91	07-12	0.0336	0.0059	0.0004	0.0055	0.0047	0.310	0.02	0.106	10.0	7.65
EFF93	07-13	0.0268	0.0008	<0.0001	0.0070	0.0063	0.340	0.02	0.108	8.0	7.37
EFF96	07-14	0.0265	0.0048	0.0002	0.0047	0.0069	0.360	0.02	0.107	8.0	7.88
EFF100	07-15	0.0264	8600'0	0.0004	0.0076	<0.015	0.261	<0.050	0.151	5.0	7.63
EFF104	07-16	0.0311	0900.0	<0.00025	0.0091	<0.015	0.267	<0.050	0.143	6.0	7.18
EFF108	07-17	0.0344	0.0059	0.0003	0.0069	<0.015	0.264	<0.050	0.089	9.0	7.66
EFF112	07-18	0.0345	0.0010	0.0001	0.0049	0.0031	0.330	0.02	0.940	12.0	8.06
EFF116	01-10	0.0366	0.0004	0.0002	0.0058	0.0037	0.340	0.02	0.970	12.0	7.70
EFF120	07-20	0.0403	0.0041	0.0002	0.0061	0.006	0.330	0.02	,	12.0	7.70
Legend											

Legena Parameter does not pass the CS criteria Parameter does not pass the WL criteria

WESA

Analytical Results – Discharge Event # 2 held August 2nd to 7th 2013 Table 10:

	040 C	Total	Total	Total	Total	Total	Nitrate	Nitrite	Amonio	725	ב
	המופ	arsenic	copper	lead	nickel	zinc	(as N)	(as N)	AIIIIIOIIII	cc 1	глd
Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ı
CS: Maximum Daily Average Concentration		0.20	0.01	0.01	0.05	0.02	5.00	0.40	5.00	15.00	6-9
WLC: Monthly Average Concentration		0.50	10.0	0.01	0.05	0.02	5.00	0.40	5.00	15.00	6-9
WLC: Maximum Conc. of Any Grab Sample		1.00	0.02	0.02	0.10	0.04	10.00	0.80	10.00	30.00	6-9
EFF154	08-02	0.0306	0.00372	0.000213	0.00676	0.0082	0.143	<0.050	0.089	4	7.68
EFF156	08-03	0.0212	0.00396	0.000207	0.00546	0.0064	0.133	<0.050	0.088	<3.0	7.80
EFF158	08-04	·	0.00116	,	,	,	,	,	,	,	
EFF159	08-04	0.0210	0.0112	0.000585	0.00630	0.0088	0.125	<0.050	0.089	4.0	7.73
EFF160	08-04	·	0.00367	,	,	,	,	,	,	,	
EFF161	08-04	ı	0.00174	,		,	,	,	,	,	,
EFF163	08-05	0.0208	0.00127	0.000071	0.00571	0.0043	0.118	<0.050	0.091	6.0	7.60
EFF167	90-80	0.0223	0.00183	<0.00025	0.00559	<0.015	0.110	<0.050	0.114	<3.0	16.7
EFF171	08-07	0.0257	0.00092	<0.00025 0.00575	0.00575	<0.015	060.0	<0.050	0.066	<3.0	7.92
Legend											

Parameter does not pass the CS criteria Parameter does not pass the WL criteria

Analytical Results – Discharge Event # 3 held August 12th to 20th 2013 Table 11:

ו מטוב וו. אוומואנוכמו אבאטונא – שוארוומו אב		כוור ש ס ו	ובות העצו	LVEIIL # J IIEIU AUGUST 12" IU 20" 2010		0					
	Dato	Total	Total	Total	Total	Total	Nitrate	Nitrite	Amonia	τcc	ц С
	עמוב	arsenic	copper	lead	nickel	zinc	(as N)	(as N)		<u>cc</u> 1	цц
Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	1
CS: Maximum Daily Average Concentration		0.20	0.01	0.01	0.05	0.02	5.00	0.40	5.00	15.00	6-9
WLC: Monthly Average Concentration		0.50	10.0	0.01	0.05	0.02	5.00	0.40	5.00	15.00	6-9
WLC: Maximum Conc. of Any Grab Sample		1.00	0.02	0.02	0.10	0.04	10.00	0.80	10.00	30.00	6-9
EFF178	08-12	0.0692	0.00201	<0.00025	0.00699	<0.015	<0.050	<0.050	0.105	7.0	7.89
EFF196	08-13	0.0247	0.00158	<0.00025	0.00587	<0.015	<0.050	<0.050	0.077	5.0	7.88
EFF214	08-14	0.0305	0.00139	<0.00025	0.00600	<0.015	0.053	<0.050	0.081	5.0	7.92
EFF229	08-15	•	ı	1	1	ı	ı			<3.0	1
EFF234	08-15	0.0546	0.00177	<0.00025	0.00657	<0.015	<0.050	<0.050	0.082	21.0	8.01
EFF239	08-15	•	,	,	,	,	,	,	ı	6.0	,
EFF242	08-15		,	1	1	1	,	,	,	<3.0	1
EFF253	91-80	0.0464	0.00152	<0.00025	0.00682	<0.015	<0.050	<0.050	0.094	7.0	7.97
EFF272	21-80	0.0510	0.00142	< 0.00025	0.00650	<0.015	<0.050	<0.050	0.095	7.0	8.02
EFF278	21-80	0.0471	0.00130	<0.00025	0.00658	<0.015	<0.050	<0.050	0.103	6.0	8.03
EFF289	08-18	0.0324	0.00119	<0.00025	0.00622	<0.015	<0.050	<0.050	0.156	10.0	8.00
EFF303	61-80	0.0220	0.00096	<0.00025	0.00907	<0.015	<0.050	<0.050	0.269	8.0	7.72
EFF305	08-20	0.0162	<0.0005	< 0.00025	0.00845	<0.015	<0.050	<0.050	0.564	6.0	7.97
Legend											

Ø

Parameter does not pass the CS criteria Parameter does not pass the WL criteria

5.3 FIELD RESULTS

In order to monitor the degree of treatment of the water and adjust chemicals accordingly, screening tests were performed onsite by using field analytical instruments. Screening tests were also performed during the discharge phases. These tests were for internal quality control of the water treatment plant only and not for regulatory compliance.

For the first two discharge events, the plant monitor was required to do field screening of the water by following this schedule:

- 1. Field measurements of TSS concentration every 6 hours at both influent and effluent using either the Hach spectrophotometer DR2700 or filtration apparatus;
- 2. Field measurement of arsenic concentration range every 6 hours at the effluent using arsenic test strips;
- 3. Field measurement of pH every 6 hours at the effluent using the Thermo Scientific Orion 5-start handheld multi-meter or equivalent;

This schedule applied unless results did not meet criteria in which case, more samples were collected and tested. Lead and zinc test were also performed onsite by the operator, at the beginning of the season using the PDV 6000 Heavy Metal Analyzer.

For the third discharge event, the plant monitor was required to do field screening of the water by following this schedule:

- 1. Field measurement of TSS concentration hourly at both the influent and effluent using either the Hach spectrophotometer DR2700 or filtration apparatus;
- 2. Field measurement of arsenic concentration range every 6 hours at the effluent using arsenic test strips;
- 3. Field measurement of pH every 6 hours at the effluent using the Thermo Scientific Orion 5-start handheld multi-meter or equivalent;

As third discharge drew closer to the end, it was decided on August 16th that arsenic, pH and TSS were being analyzed every hour. The field results, for each discharge event, are summarized in **Tables 12, 13** and **14**.

Table 12:	Effluent (Held July 10	Field th to J	Scree July 20 th , 2	-	Results	During	Disch	narge	Event
	Sample ID		Date	Total arsenic	TSS	pН	Total lead	Total zinc	
	Units			mg/L	mg/L	mg/L	mg/L	mg/L	1
	EFF85		07-10	0,01	6,4	8,33	-	-	7
	EFF86		07-10	0,01	3,0	8,19	0,001	0,008	
	EFF87		07-11	0,03	5,2	8,26	0	0,005	
	EFF88		07-11	0,1	17,3	8,48	0	0,024	
	EFF89		07-11	0,03	5,7	8,17	0	0,006	
	EFF90		07-11	0,03	1,6	7,28	-	-	
	EFF91		07-12	0,03	4,0	7,31	-	-	
	EFF92		07-12	0,09	1,2	7,42	-	-	
	EFF93		07-13	0,03	5,9	7,09	-	-	
	EFF94		07-13	0,03	6,8	6,66	-	-	1
	EFF95		07-13	0,02	4,0	7,14	-	-	
	EFF96		07-14	0,03	4,8	7,71	-	-	
	EFF97		07-14	0,05	5,7	7,05	-	-	
	EFF98		07-14	0,03	3,1	6,92	-	-	
	EFF99		07-14	0,02	4,8	7,22	-	-	
	EFF100		07-15	0,01	5,6	7,36	-	-	1
	EFF101		07-15	0,05		6,95	-	-	
	EFF102		07-15	0,04	6,8	6,77	-	-	
	EFF103		07-16	0,04	8,0	6,78	-	-	
	EFF104		07-16	0,05	8,0	7,20	-	-	
	EFF105		07-16	0,03	4,3	7,47	0,001	0,008	
	EFF106		07-16	0,03	4,0	7,56	0	0,009	
	EFF107		07-17	0,03	4,8	7,04	0	0,012	
	EFF108		07-17	0,05	6,0	7,60	0	0,01	
	EFF109		07-17	0,03	3,7	7,99	0	0,008	
	EFF110		07-17	0,05	6,8	7,51	0	0,007	
	EFF111		07-18	0,03	8.0	7,33	0	0,008	
	EFF112		07-18	0,03	6,4	7,96	0	0,011	
	EFF113		07-18	0,03	3,4	7,45	0	0,006	
	EFF114		07-18	0,04	8,4	7,37	0	0,009	
	EFF115		07-19	0,02	6,0	7,57	0	0,01	
	EFF116		07-19	0,05	8,4	7,96	0	0,008	
	EFF117		07-19	0,03	6,9	7,51	0	0,008	

Legend

TSS result above TSS-Threshold-Value

February 2014

Table 13:	Effluent Field		ening	Results	During	Disch	arge	Event
	(Held August 2 nd t	o August	7 th , 2013)	r			r	
	Sample ID	Date	Total arsenic	TSS	рН	Total lead	Total zinc	
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	
	EFF154	08-02	0,03	5,5	7,85	-	-	
	EFF155	08-03	0,07	10,1	7,91	-	-	
	EFF156	08-03	0,07	5,7	7,80	-	-	
	EFF157	08-03	0,05	5,3	7,76	-	-	
	EFF158	08-04	0,05	3,4	7,77	-	-	
	EFF159	08-04	0,07	7,2	7,84	-	-	
	EFF160	08-04	0,07	1,7	3,02	-	-	
	EFF161	08-04	0,07	4,2	7,82	-	-	
	EFF162	08-05	0,07	4,8	7,84	-	-	
	EFF163	08-05	0,05	3,7	8,03	-	-	
	EFF164	08-05	0,05	3,4	7,93	-	-	
	EFF165	08-05	0,05	5,7	7,90	-	-	
	EFF166	08-06	0,07	4,8	8,01	-	-	
	EFF167	08-06	0,07	5,7	8,06	-	-	
	EFF168	08-06	0,01	8,4	8,04	-	-	
	EFF169	08-06	0,05	5,8	7,98	-	-	
	EFF170	08-07	0,03	7,0	8,27	-	-	
	EFF171	08-07	0,03	6,9	8,11	-	-	
	EFF172	08-07	0,03	4,6	8,21	-	-	

One TSS result above TSS-Threshold-Value

Table 14:	Effluent Field (Held August 12 th		•	Results 3)	During	Disch	arge	Event
	Sample ID	Date	Total arsenic	TSS	рН	Total lead	Total zinc	
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	
	EFF178	08-12	0,07	4,8	8,05	-	-	
	EFF179	08-12	-	10,5	-	-	-	
	EFF180	08-12	-	9,0	-	-	-	
	EFF181	08-13	-	8,9	-	-	-	
	EFF182	08-13	-	13,6	-	-	-	
	EFF183	08-13	-	4,5	-	-	-	
	EFF184	08-13	0,03	9,7	8,07	-	-	
	EFF185	08-13	-	9,5	-	-	-	
	EFF186	08-13	-	6,8	-	-	-	
	EFF187	08-13	-	6,8	-	-	-	
	EFF188	08-13	-	2,9	-	-	-	
	EFF189	08-13	-	6,4	-	-	-	
	EFF190	08-13	0,03	7,3	7,83	-	-	
	EFF191	08-13	-	4,0	-	-	-	
	EFF192	08-13	-	7,2	-	-	-	
	EFF193	08-13	-	5,1	-	-	-	
	EFF194	08-13	-	6,9	-	-	-	
	EFF195	08-13	-	5,5	-	-	-	
	EFF196	08-13	0,03	6,8	7,99	-	-	
	EFF197	08-13	-	5,5	-	-	-	
	EFF198	08-13	-	7,0	-	-	-	
	EFF199	08-13	-	5,6	-	-	-	
	EFF200	08-13	-	5,1	-	-	-	
	EFF201	08-13	-	3,4	-	-	-	
	EFF202	08-13	0,03	2,5	8,24	-	-	
	EFF203	08-13	-	2,9	-	-	-	
	EFF204	08-13	-	4,8	-	-	-	
	EFF205	08-14	-	5,2	-	-	-	
	EFF206	08-14	-	6,1	-	-	-	
	EFF207	08-14	-	5,1	-	-	-	
	EFF208	08-14	0,03	4,3	8,11	-	-	
	EFF209	08-14	-	5,4	-	-	-	
	EFF210	08-14	-	2,8	-	-	-	

One TSS result above TSS-Threshold-Value

Cont'd Table 14: Effluent Field Screening Results During Discharge Event										
Held August 12 th to August 20 th , 2013										
Sample ID Date Total Total Total Total										

Sample ID	Date	Total arsenic			Total lead	Total zinc
Units		mg/L	mg/L	mg/L	mg/L	mg/L
EFF211	08-14	-	4,2	-	-	-
EFF212	08-14	-	3,3	-	-	-
EFF213	08-14	-	5,4	-	-	-
EFF214	08-14	-	4,3	8,19	-	-
EFF215	08-14	-	7,6	-	-	-
EFF216	08-14	-	10,0	-	-	-
EFF217	08-14	-	5,0	-	-	-
EFF218	08-14	-	6,2	-	-	-
EFF219	08-14	-	11,7	-	-	-
EFF220	08-14	0,07	11.3	8,24	-	-
EFF221	08-14	-	5,6	-	-	-
EFF222	08-14	-	3,2	-	-	-
EFF223	08-14	-	6,5	-	-	-
EFF224	08-14	0,07	6,9	8,18	-	-
EFF225	08-14	-	6,6	-	-	-
EFF226	08-15	-	6,8	-	-	-
EFF227	08-15	-	7,0	-	-	-
EFF228	08-15	-	5,9	-	-	-
EFF229	08-15	0,03	5,8	8,35	-	-
EFF230	08-15	-	6,8	-	-	-
EFF231	08-15	-	6,6	-	-	-
EFF232	08-15	-	9,1	-	-	-
EFF233	08-15	-	6,9	-	-	-
EFF234	08-15	-	8,2	8,33	-	-
EFF235	08-15	0,03	9,3	-	-	-
EFF236	08-15	-	6,8	-	-	-
EFF237	08-15	-	4,9	-	-	-
EFF238	08-15	-	6,6	-	-	-
EFF239	08-15	-	6,3	8,22	-	-
EFF240	08-15	0,05	10,1	-	-	-
EFF241	08-15	-	6,8	-	-	-
EFF242	08-15	-	5,3	8,20	-	-
EFF243	08-15	0,05	-	-	-	-

One TSS result above TSS-Threshold-Value

Cont'd Table 14: Effluent Field Screening Results During Discharge Event	
Held August 12 th to August 20 th , 2013	

		Date Total TSS			Total	Total
Sample ID	Date	arsenic	135	pН	lead	zinc
Units		mg/L	mg/L	mg/L	mg/L	mg/L
EFF244	08-16	-	6,3	-	-	-
EFF245	08-16	-	5,9	-	-	-
EFF246	08-16	-	7,2	-	-	-
EFF247	08-16	-	5,4	8,21	-	-
EFF248	08-16	0,03	6,8	-	-	-
EFF249	08-16	-	8,6	-	-	-
EFF250	08-16	-	7,5	-	-	-
EFF251	08-16	-	4,7	-	-	-
EFF252	08-16	-	4,9	-	-	-
EFF253	08-16	-	7,8	8,16	-	-
EFF254	08-16	0,07	8,7	-	-	-
EFF255	08-16	-	6,9	8,11	-	-
EFF256	08-16	0,05	6,1	8.24	-	-
EFF257	08-16	0,03	5,5	8,22	-	-
EFF258	08-16	0,03	7,4	8,22	-	-
EFF259	08-16	0,03	5,8	8,16	-	-
EFF260	08-16	0,03	5,9	8,23	-	-
EFF261	08-16	0,03	6,7	8,23	-	-
EFF262	08-16	0,03	5,6	8,23	-	-
EFF263	08-17	0,03	4,1	8,24	-	-
EFF264	08-17	0,03	5,8	8,16	-	-
EFF265	08-17	0,03	5,8	8,19	-	-
EFF266	08-17	0,03	8,6	8,27	-	-
EFF267	08-17	0,03	6,2	8,21	-	-
EFF268	08-17	-	7,4	-	-	-
EFF269	08-17	-	5,7	-	-	-
EFF270	08-17	0,05	6,8	-	-	-
EFF271	08-17	0,03	6,3	8,27	-	-
EFF272	08-17	0,03	7,8	8,28	-	-
EFF273	08-17	0,05	8,6	8,22	-	-
EFF274	08-17	0,07	5,9	8,21	-	-
EFF275	08-17	0,07	12,1	8,26	-	-
EFF276	08-17	0,03	10,1	8,23	-	-

One TSS result above TSS-Threshold-Value

Sample ID	Date	Total arsenic	TSS	pН	Total lead	Total zinc
Units		mg/L	mg/L	mg/L	mg/L	mg/L
EFF277	08-17	0,07	6,0	8,25	-	-
EFF278	08-17	0,03	4,1	8,28	-	-
EFF279	08-17	0,07	4,7	8,24	-	-
EFF280	08-17	0,05	6,8	8,19	-	-
EFF281	08-17	0,05	6,1	8,19	-	-
EFF282	08-17	0,03	7,0	8,13	-	-
EFF283	08-18	0,04	5,6	8,12	-	-
EFF284	08-18	0,04	7,1	8,10	-	-
EFF285	08-18	0,03	6,1	8,10	-	-
EFF286	08-18	0,03	4,5	8,12	-	-
EFF287	08-18	0,01	6,8	8,12	-	-
EFF288	08-18	0,03	6,0	8,16	-	-
EFF289	08-18	0,05	6,2	8,20	-	-
EFF290	08-18	0,05	6,3	8,19	-	-
EFF291	08-18	0,05	2,0	8,27	-	-
EFF292	08-18	0,03	4,4	8,23	-	-
EFF293	08-18	0,04	7,1	8,27	-	-
EFF294	08-18	0,03	8,8	8,18	-	-
EFF295	08-18	0,03	5,4	8,17	-	-
EFF296	08-18	0,04	5,9	8,10	-	-
EFF297	08-19	0,03	5,5	8,11	-	-
EFF298	08-19	0,05	6,6	8,05	-	-
EFF299	08-19	-	6,6	7,87	-	-
EFF300	08-19	0,03	5,8	7,71	-	-
EFF301	08-19	0,03	8,3	7,86	-	-
EFF302	08-19	0,07	10,6	-	-	-
EFF303	08-19	-	5,8	7,71	-	-

Cont'd Table 14: Effluent Field Screening Results During Discharge Event Held August 12th to August 20th, 2013

Legend

One TSS result above TSS-Threshold-Value

During all discharge events, a corrective action plan was put in place in order to have a fast and accurate response from onsite staff should field screening had demonstrated TSS measurements higher than the *TSS-discharge-threshold* (10 mg/L) in the sump area.

When two (2) consecutive field screen sample results were higher than the *TSS-dischargethreshold*, the corrective action plan was executed which consisted mainly to immediately stop discharge to Hambone Lake and communicate the situation to the relevant parties. The treatment was to continue in a recirculation mode while the source of the TSS rise was investigated. The detailed corrective action plan is presented in the *2013 Discharge and Monitoring Plan*.

The corrective action plan was enforced on two (2) occasions during the 2013 season: on August 14th and August 17th. On both occasion, discharge to Hambone Lake was immediately ceased. The treatment system was put in a recirculation loop and the process flow was decreased while the chemical dosages were maintained.

After investigation, the TSS exceedances on August 14th were believed to be a laboratory error and therefore false positives. The electronic balance was moved while running which had affected its measuring accuracy.

On August 17th, the poor quality of water coming in the plant was believed to be the cause. All consecutive samples taken after the recirculation mode was initiated, demonstrated that the water treatment efficiency was back to steady state with effluent TSS concentrations well below TSS-Threshold-Value.

6. UPSETS, ISSUES AND CORRECTIVE ACTIONS

6.1 OPERATIONAL UPSETS AND ISSUES AT THE TREATMENT PLANT

The operation of the wastewater treatment plant was overall good during the discharge events at the exception of a few upsets and issues which are described in the following sections.

Discharge was interrupted on a few occasions during the three (3) discharge events. Onsite field screening showed high TSS results on two (2) occasions as mentioned in the previous section. As such, the corrective action plan as described in the *2013 Discharge and Monitoring Plan* was executed which consisted in stopping discharge into Hambone Lake, putting the system in recirculation mode, slowing the process flow and increasing the ferric dosage, until the TSS effluent concentrations were under the TSS-threshold value of 10 mg/L.

Reasons for interruptions to discharge also included a few preventative maintenance shut downs on the discharge pump. These were short interruptions and discharge to Hambone Lake was ceased for less than one hour on each occurrence. Other reasons for interruptions during discharge to Hambone Lake included maintenance of intake pumps (repair fuel leak and flat tire) and moving the influent and effluent pumps as the level of water in the pond lowered. Low levels of water in the sump did also come up as an issue on a few occasions. As a precautionary action, discharge was stopped to allow water to come up in the sump and avoid the intake of the discharge pump to touch the bottom of the sump.

The bottom liner of the sump was also problematic and caused the interruption of discharge on a few occurrences. An increase in the flow of water coming from the geotubes most probably caused the bottom liner to lift and release settled flocs in the sump. Discharge was immediately stopped and the liner was put back in place using sand bags as anchors. Once onsite screening tests showed acceptable results, the discharge pump was turned back on.

6.2 ENVIRONMENTAL SPILLS

Over the course of the season, two (2) events of environmental spills were recorded on site as presented in **Table 15**. The first environmental spill was documented on June 9th, 2013. An onion tank overflowed, spilling between 1,500 and 3,000 litres of untreated water. The second spill occurred on July 15th, 2013 and was caused by a leak in the treated water discharge pipe. A patch had been placed at that particular location approximately two (2) weeks prior to the spill event, but did not hold in place. Between 800 and 1,000 litres of treated water was spilled. The spilled treated water was drained back into upper pond.

			<u> </u>				
SR Number	Date of SR	Env.	Brief Description	NWT Spill Report Required?	Risk Matrix Probability	Risk Matrix Consequence	Risk Matrix Risk Ratir
SR-2014-02	June 9, 2013	Env.	Onion tanks over flowed spilling between 1,500- 3,000 liters	Yes	2-Unlikely	B-Minor First Aid/Damage	Low
SR-2014-09	July 15, 2013	Env.	Treated water leaked out of treated water 8" discharge pipe approx. 800 – 1,000 litres.	No	3-Possible	A-Couldn't cause injury/damage	Low

Table 15: Environmental Spills

The environmental spill reports are included in Appendix E.

Health and Safety Incidents

Four (4) incident reports were filled during the treatment season as shown in Table 16.

Table 16:		laents				
IR Number	Date of IR	Injury/Damage/Los s of Process/Near Miss/Non- Conformance	Brief Description	Risk Matrix Probability	Risk Matrix Consequence	Risk Matrix Risk Ratinş
IR-2014-09	June 15, 2013	Equipment Damage	Mixer fell into onion skin tank-WTP	3-Possible	B-Minor First Aid/Damage	Moderate
IR-2014-14	July 1, 2013	First Aid	Minor thumb injury-bent back	3-Possible	B-Minor First Aid/Damage	Moderate
IR-2014-16	July 12, 2013	Equipment Damage	Mixer fell into onion skin tank-WTP	2-Unlikely	B-Minor First Aid/Damage	Low
IR-2014-19	July 12, 2013	First Aid	Minor right knee injury	3-Possible	B-Minor First Aid/Damage	Moderate

Table 16. H&S Incidents

On two (2) different occasions, the wastewater treatment site experienced similar equipment damaged. The wastewater treatment plant had issues with a mixer falling into an onion skin tank. On the first occurrence, the mixer's wires had been pulled out as it fell; hence the plant operator tripped the breaker to prevent the wires from being electrified. Other mixers from that train were shut off as well while the fallen mixer was fished out of the onion tank using a plastic pole with a built in plastic hook. Since maintenance a week prior to the first incident, the mixer shaft had been wobbling putting stress on the bracket holding the mixer. The incident was most probably due to the failure of the bracket holding the mixer in place. The mixer was repaired and put back in place.

The mixer involved in the first incident fell a second time in an onion skin tank and caused a 16 inch rip at the bottom of the tank. Power was shut off completely on train # 3 to allow the removal of the mixer. A submersible pump was used to drain water from the tank to the other tank on train # 2 to avoid a potential spill. Once again, a piece of equipment holding the mixer in place, more specifically the bolt holding the mixer to the clamp, had broken which caused the incident. After the second incident, all mixers in operation in the WTP were secured to the support beams to prevent other incidents of the sort. Ongoing inspections of the equipment were required.

Two (2) minor injuries requiring first aid were reported at the wastewater treatment plant. The first one was a knee injury and was caused by a fall on a slippery surface while trying to move a replacement tank. Due to the rainy weather, the worker was rushing his task which might have contributed to the incident. The worker was spoken to about the importance of not rushing a task and about reporting near misses and incidents promptly so that the issues can be dealt with appropriately. The second event was a thumb injury which happened when the worker tried to lift a wooden hose support when it broke apart and a piece of the structure landed on his thumb. The worker was instructed to ask for help to lift unstable objects.

The H&S Incident Reports are included in **Appendix F**.

7. FUEL CONSUMPTION

The wastewater treatment plant was in operation from June 5th to August 20th, 2013.

The plant was equipped with two (2) Isuzu diesel generators, one being in standby/backup while the other was running. The generators were switched back and forth for maintenance or operation purposes. Considering that the engine has a fuel consumption rate of 7 LPH at half load and that the wastewater treatment was running almost constantly, the 2013 fuel consumption is estimated to be approximately of 3,420 USG of diesel.

8. SYSTEM OVERALL PERFORMANCE AND DOWNSTREAM EFFECTS

During the 2013 treatment season, the treatment system operated within its range, with an effluent always meeting both the contract specifications and the water license criteria with concentrations below criteria.

The discharge and monitoring plan put in place help guide the operation of the treatment plant with surveillance mechanisms and a corrective action plan that allowed for a fast and accurate response from the onsite staff to avoid any spills into the environment.

The system operation and maintenance was flexible and effective. The wastewater treatment plant proved effective within its design capabilities. Its overall performance was satisfactory compared upon the contract specifications and water license criteria. As such, no downstream effects in Hambone Lake have been observed, measured or estimated as a result of the wastewater treatment plant activities.

Given that the 2014 Discharge and Monitoring Plan, which includes all recommendations for next season, is currently being submitted for review, recommendations were therefore not recorded in this report.

9. CLOSURE

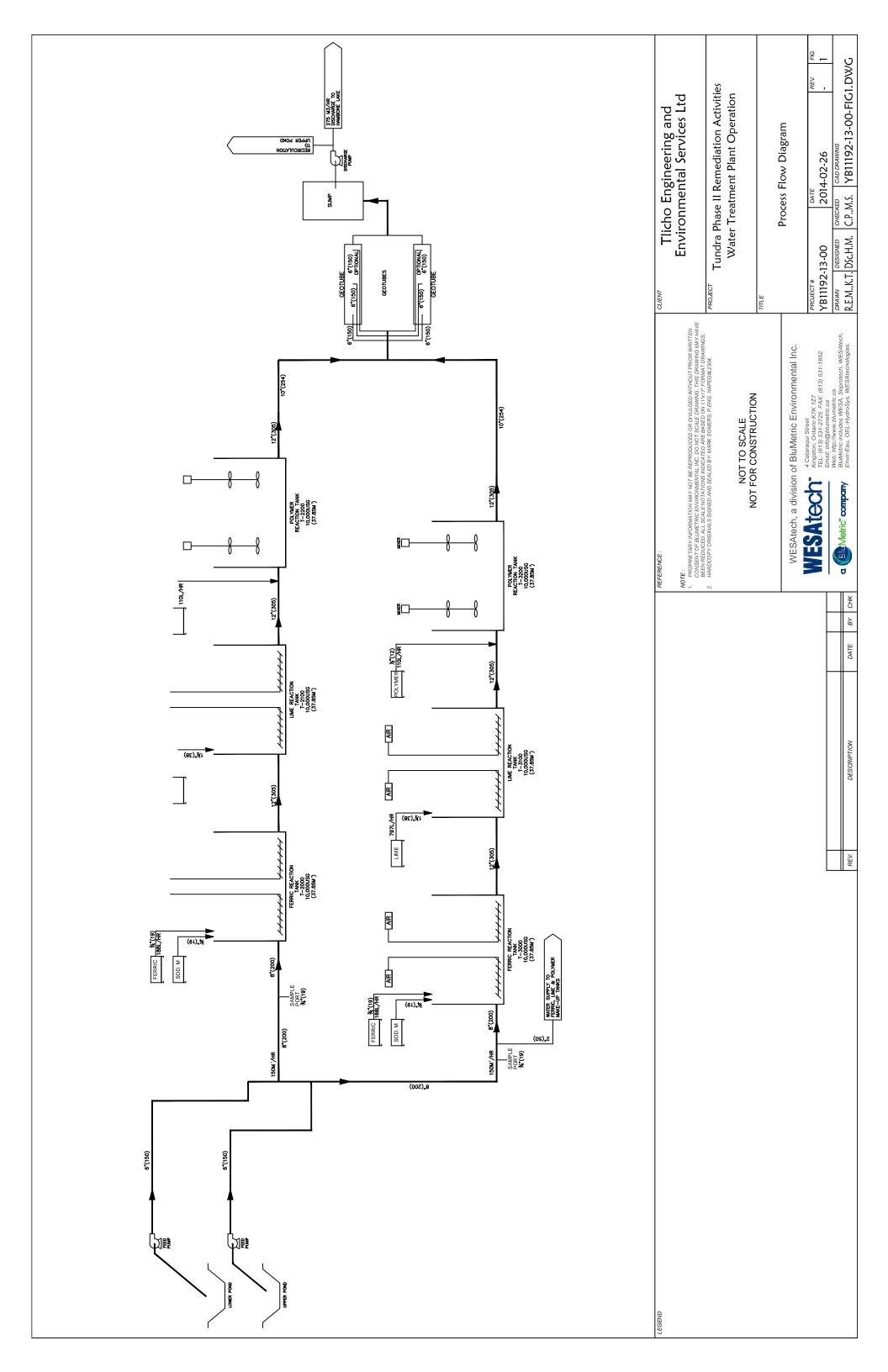
WESAtech has used its professional judgment in analyzing this information and formulating its conclusions. No other warranty or representation, expressed or implied, as to the accuracy of the information or recommendations is included or intended in this report. This report has been prepared for the use of the TLICHO Engineering and Environmental Services Ltd.

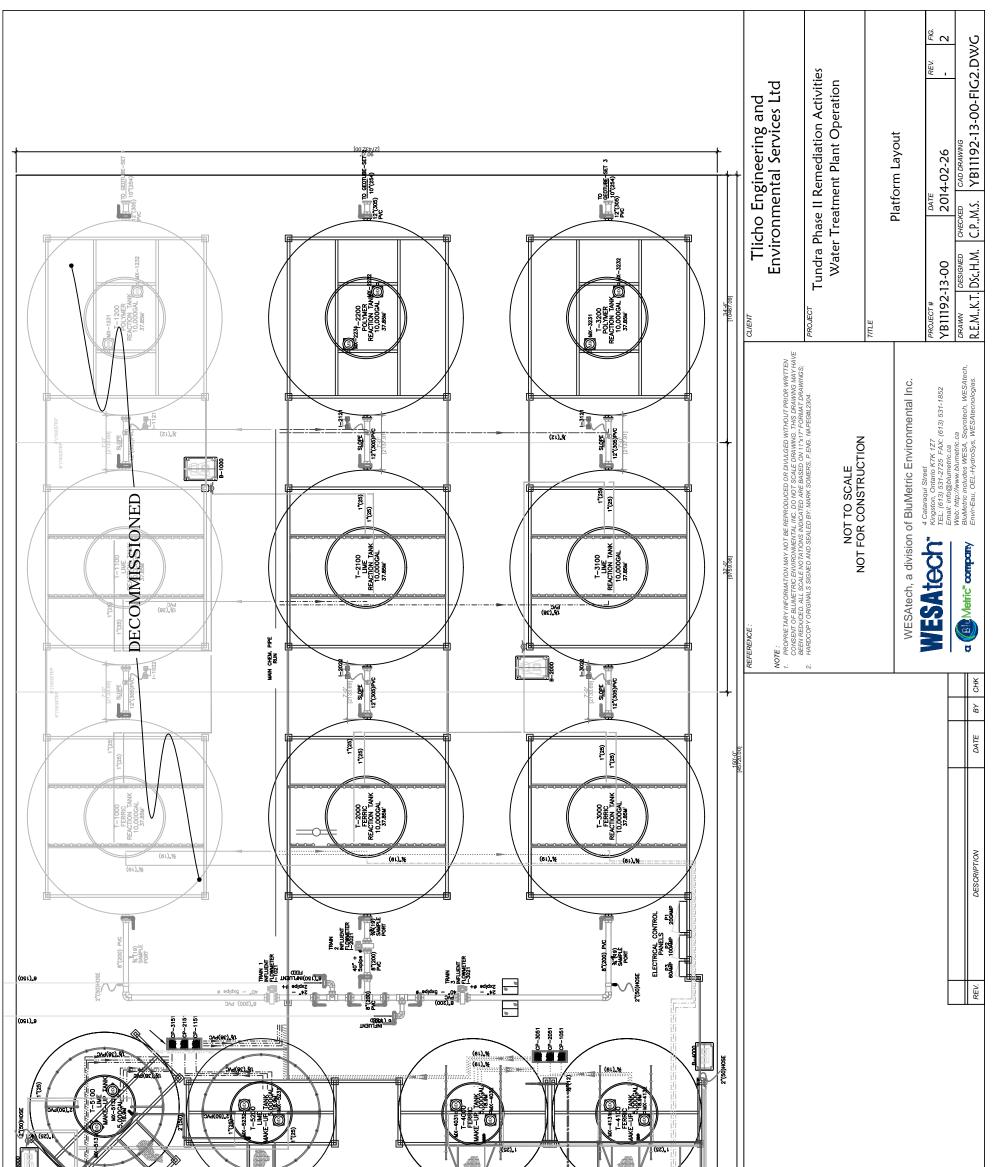
Should you have any questions regarding this report, please feel free to contact the undersigned.

Respectfully submitted, WESA, a division of BluMetric Environmental Inc.

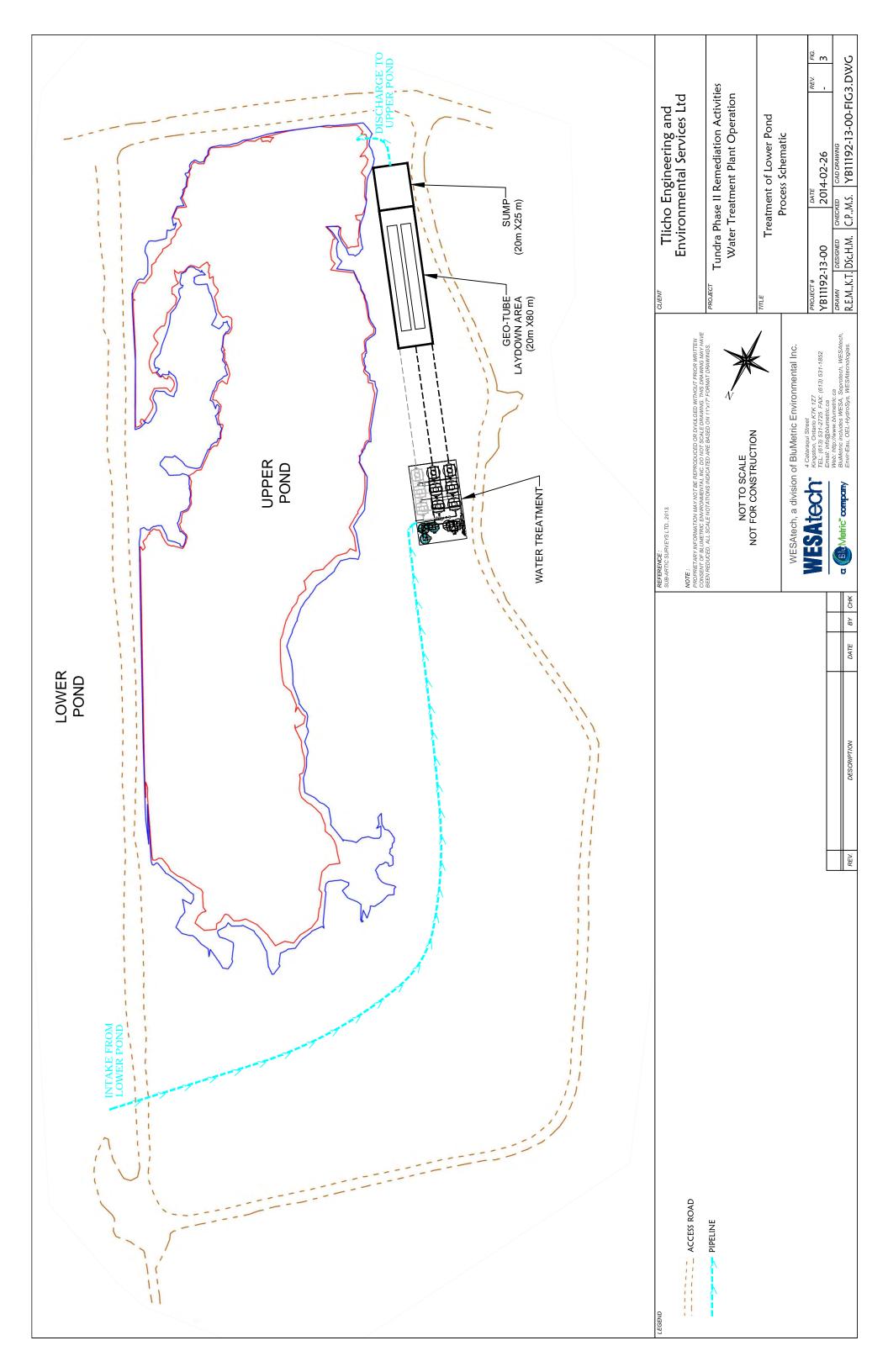
Corinne Proux, Ing., M.Sc. Water Treatment Specialist

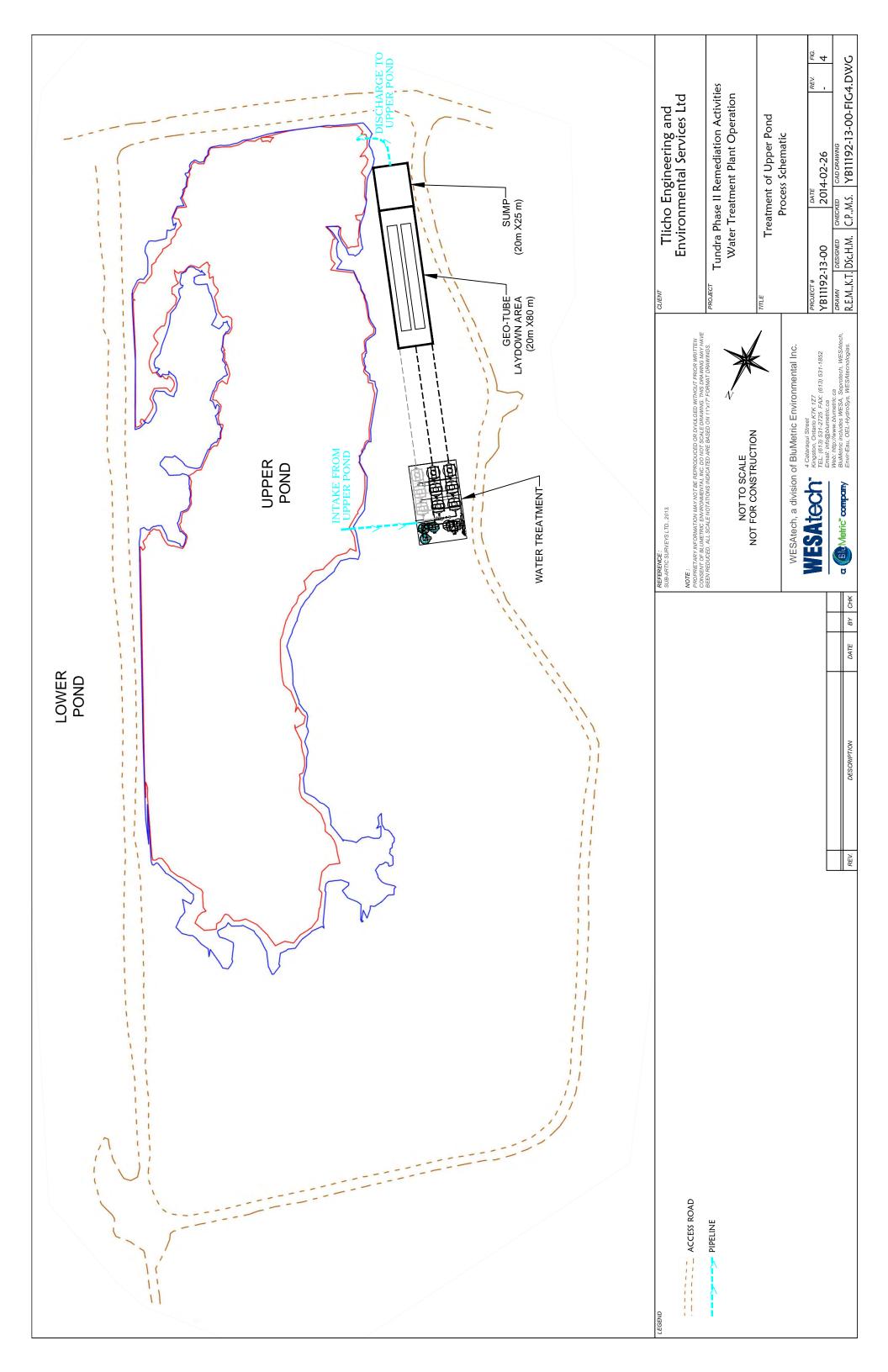
T. Beekenhan

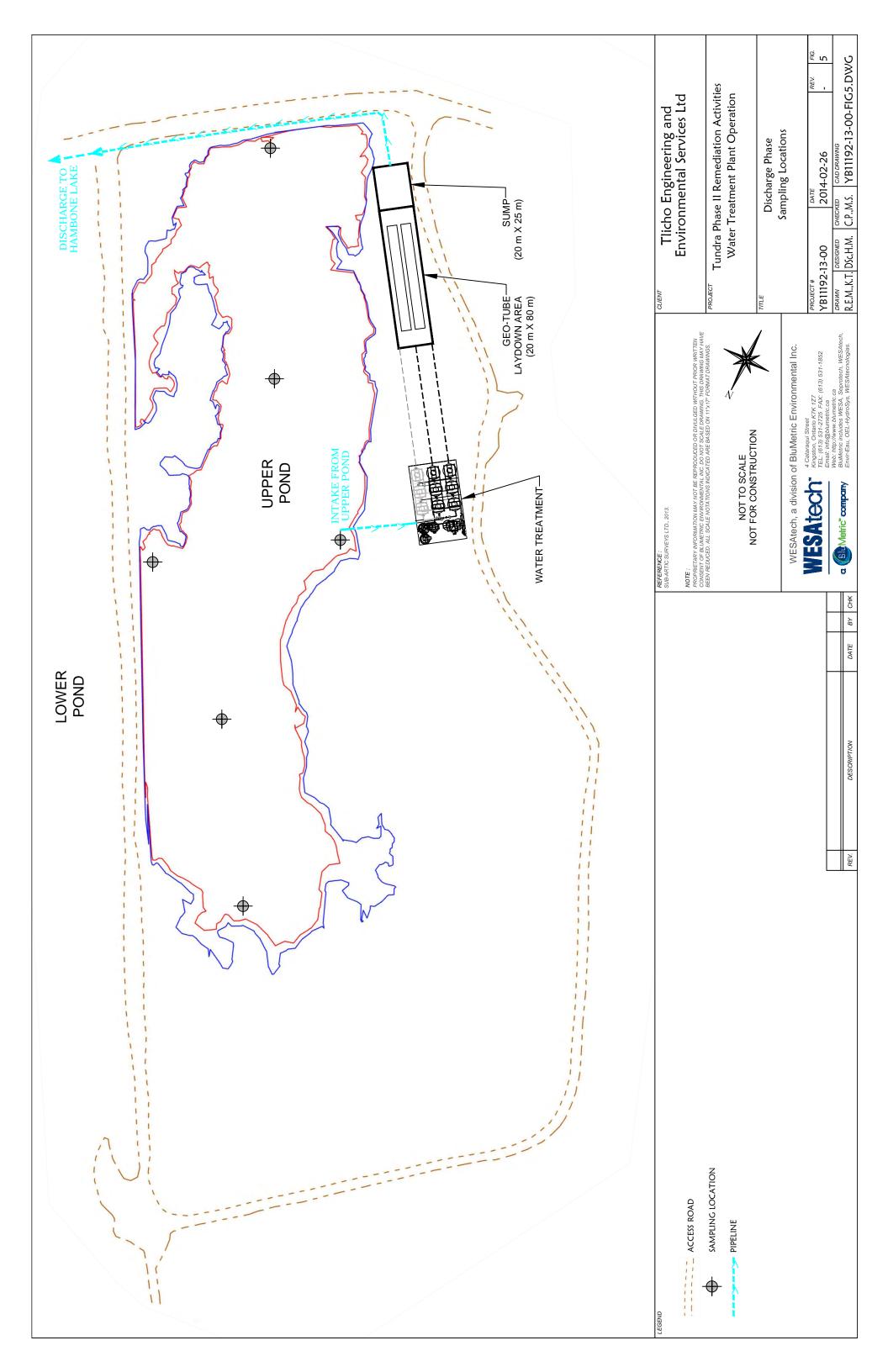

Tim Beckenham, B.Env. Mgmt (Hons) Senior Consultant/Northern Project Manager



APPENDIX A


Figures





OTTINE OF PLATFORM	CP-128 CP-128					
	SSSOR ABOND		FERRIC PIPING LIME PIPING	POLYMER PIPING	SOD. M PIPING	
		LEGEND				

APPENDIX B

Accredited Laboratory Certificate of Analysis – Untreated Upper and Lower Ponds

Taiga Batch No.: 130349

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- FINAL REPORT -

Prepared For: WESA

 Address:
 4901 - 48 Street

 P.O. Box 11086
 Yellowknife, NT

 X1A 3X7

Attn: Tim Beckenham

Facsimile: (867) 873-3499

Final report has been reviewed and approved by:

Helene Harper Manager

NOTES:

- Test methods and data are validated by the laboratory's Quality Assurance Program. Taiga Environmental Laboratory is accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) as a testing laboratory for specific tests registered with CALA.
- > Routine methods are based on recognized procedures from sources such as
 - o Standard Methods for the Examination of Water and Wastewater APHA AWWA WEF;
 - o Environment Canada
 - o USEPA
- Samples shall be kept for thirty (30) days after the final report is issued. All microbiological samples shall be disposed of immediately upon completion of analysis to minimize biohazardous risks to laboratory personnel. Please contact the laboratory if you have any special requirements.
- Final results are based on the specific tests at the time of analysis and do not represent the conditions during sampling.

Taiga Batch No.: 130349

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

Taiga Sample ID: 001

- CERTIFICATE OF ANALYSIS -

Client Sample ID: LPSS

Client Project:Tundra 2013Sample Type:Surface WaterReceived Date:06-Jun-13Sampling Date:05-Jun-13Sampling Time:Image: Complex State

Location: Tundra Mine Site

Report Status: Final

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
рН			pH units	06-Jun-13	SM4500-H:B	85
Solids, Total Suspended	74	3	mg/L	06-Jun-13	SM2540:D	
Inorganics - Nutrients						
Ammonia as Nitrogen	0.792	0.005	mg/L	10-Jun-13	SM4500-NH3:	
<u>Major Ions</u>						
Nitrate as Nitrogen	0.24	0.01	mg/L	07-Jun-13	SM4110:B	
Nitrite as Nitrogen	0.04	0.01	mg/L	07-Jun-13	SM4110:B	
Trace Metals, Dissolved						
Arsenic	917	0.2	µg/L	06-Jun-13	EPA200.8	
Copper	5.8	0.2	μg/L	06-Jun-13	EPA200.8	
Lead	< 0.1	0.1	µg/L	06-Jun-13	EPA200.8	
Nickel	6.6	0.1	μg/L	06-Jun-13	EPA200.8	
Zinc	4.1	0.4	µg/L	06-Jun-13	EPA200.8	
Trace Metals, Total						

Taiga Batch No.: 130349

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- CERTIFICATE OF ANALYSIS -

Client Sample ID: LPSS			Taiga	a Sample ID: 001
Arsenic	1460	0.2	μg/L	06-Jun-13 EPA200.8
Copper	37.8	0.2	μg/L	06-Jun-13 EPA200.8
Lead	23.6	0.1	μg/L	06-Jun-13 EPA200.8
Nickel	16.2	0.1	μg/L	06-Jun-13 EPA200.8
Zinc	137	5	μg/L	06-Jun-13 EPA200.8

ReportDate:Wednesday, June 12, 2013Print Date:Wednesday, June 12, 2013

Taiga Batch No.: 130349

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- CERTIFICATE OF ANALYSIS -

Client Sample ID: LPSN

Taiga Sample ID: 002

Client Project: Tundra 2013 Sample Type: Surface Water Received Date: 06-Jun-13 Sampling Date: 05-Jun-13 Sampling Time:

Location: Tundra Mine Site

Report Status: Final

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
рН			pH units	06-Jun-13	SM4500-H:B	85
Solids, Total Suspended	64	3	mg/L	06-Jun-13	SM2540:D	
Inorganics - Nutrients						
Ammonia as Nitrogen	0.791	0.005	mg/L	10-Jun-13	SM4500-NH3:	
Major Ions						
Nitrate as Nitrogen	0.32	0.01	mg/L	07-Jun-13	SM4110:B	
Nitrite as Nitrogen	0.05	0.01	mg/L	07-Jun-13	SM4110:B	
Trace Metals, Dissolved						
Arsenic	928	0.2	µg/L	06-Jun-13	EPA200.8	
Copper	6.0	0.2	μg/L	06-Jun-13	EPA200.8	
Lead	< 0.1	0.1	µg/L	06-Jun-13	EPA200.8	
Nickel	6.8	0.1	µg/L	06-Jun-13	EPA200.8	
Zinc	4.2	0.4	µg∕L	06-Jun-13	EPA200.8	
Trace Metals, Total						

ReportDate:Wednesday, June 12, 2013Print Date:Wednesday, June 12, 2013

Page 4 of 14

Taiga Batch No.: 130349

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- CERTIFICATE OF ANALYSIS -

Client Sample ID: LPSN			Taig	a Sample ID: 002
Arsenic	1460	0.2	μg/L	06-Jun-13 EPA200.8
Copper	36.8	0.2	μg/L	06-Jun-13 EPA200.8
Lead	22.7	0.1	μg/L	06-Jun-13 EPA200.8
Nickel	15.4	0.1	μg/L	06-Jun-13 EPA200.8
Zinc	130	5	μg/L	06-Jun-13 EPA200.8

Taiga Batch No.: 130349

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- CERTIFICATE OF ANALYSIS -

Client Sample ID: LPIM

Taiga Sample ID: 003

Client Project: Tundra 2013 Sample Type: Surface Water Received Date: 06-Jun-13 Sampling Date: 05-Jun-13 Sampling Time:

Location: Tundra Mine Site

Report Status: Final

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
рН			pH units	06-Jun-13	SM4500-H:B	85
Solids, Total Suspended	10400	3	mg/L	06-Jun-13	SM2540:D	
Inorganics - Nutrients						
Ammonia as Nitrogen	0.542	0.005	mg/L	10-Jun-13	SM4500-NH3:	
Major Ions						
Nitrate as Nitrogen	0.35	0.01	mg/L	07-Jun-13	SM4110:B	
Nitrite as Nitrogen	0.11	0.01	mg/L	07-Jun-13	SM4110:B	
Trace Metals, Dissolved						
Arsenic	1110	0.2	μg/L	06-Jun-13	EPA200.8	
Copper	5.0	0.2	μg/L	06-Jun-13	EPA200.8	
Lead	0.2	0.1	μg/L	06-Jun-13	EPA200.8	
Nickel	7.4	0.1	μg/L	06-Jun-13	EPA200.8	
Zinc	3.7	0.4	μg/L	06-Jun-13	EPA200.8	
Trace Metals, Total						

Taiga Batch No.: 130349

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- CERTIFICATE OF ANALYSIS -

Client Sample ID: LPIM	Taiga Sample ID: 003				
Arsenic	47300	0.2	µg/L	06-Jun-13 EPA200.8	
Copper	652	0.2	µg/L	06-Jun-13 EPA200.8	
Lead	964	0.1	µg/L	06-Jun-13 EPA200.8	
Nickel	413	0.1	µg/L	06-Jun-13 EPA200.8	
Zinc	2310	5	μg/L	06-Jun-13 EPA200.8	

Taiga Batch No.: 130349

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- CERTIFICATE OF ANALYSIS -

Client Sample ID: UPSS

Taiga Sample ID: 004

Client Project: Tundra 2013 Sample Type: Surface Water Received Date: 06-Jun-13 Sampling Date: 05-Jun-13 Sampling Time:

Location: Tundra Mine Site

Report Status: Final

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
рН			pH units	06-Jun-13	SM4500-H:B	85
Solids, Total Suspended	22	3	mg/L	06-Jun-13	SM2540:D	
Inorganics - Nutrients						
Ammonia as Nitrogen	0.168	0.005	mg/L	10-Jun-13	SM4500-NH3:	
<u>Major Ions</u>						
Nitrate as Nitrogen	0.19	0.01	mg/L	07-Jun-13	SM4110:B	
Nitrite as Nitrogen	0.01	0.01	mg/L	07-Jun-13	SM4110:B	
Trace Metals, Dissolved						
Arsenic	148	0.2	µg/L	06-Jun-13	EPA200.8	
Copper	1.0	0.2	μg/L	06-Jun-13	EPA200.8	
Lead	0.1	0.1	µg/L	06-Jun-13	EPA200.8	
Nickel	5.9	0.1	µg/L	06-Jun-13	EPA200.8	
Zinc	0.9	0.4	µg/L	06-Jun-13	EPA200.8	
Trace Metals, Total						

Taiga Batch No.: 130349

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- CERTIFICATE OF ANALYSIS -

Client Sample ID: UPSS			Taiga	a Sample ID: 004
Arsenic	336	0.2	μg/L	06-Jun-13 EPA200.8
Copper	3.5	0.2	µg/L	06-Jun-13 EPA200.8
Lead	4.1	0.1	µg/L	06-Jun-13 EPA200.8
Nickel	7.5	0.1	µg/L	06-Jun-13 EPA200.8
Zinc	8.6	5	μg/L	06-Jun-13 EPA200.8

ReportDate:Wednesday, June 12, 2013Print Date:Wednesday, June 12, 2013

Taiga Batch No.: 130349

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- CERTIFICATE OF ANALYSIS -

Client Sample ID: UPSN

Taiga Sample ID: 005

Client Project: Tundra 2013 Sample Type: Surface Water Received Date: 06-Jun-13 Sampling Date: 05-Jun-13 Sampling Time: Location: Tundra Mine Site

Location: Tundra Mine S

Report Status: Final

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
pН			pH units	06-Jun-13	SM4500-H:B	85
Solids, Total Suspended	14	3	mg/L	06-Jun-13	SM2540:D	
Inorganics - Nutrients						
Ammonia as Nitrogen	0.171	0.005	mg/L	10-Jun-13	SM4500-NH3:	
<u>Major Ions</u>						
Nitrate as Nitrogen	0.17	0.01	mg/L	07-Jun-13	SM4110:B	
Nitrite as Nitrogen	0.01	0.01	mg/L	07-Jun-13	SM4110:B	
Trace Metals, Dissolved						
Arsenic	170	0.2	μg/L	06-Jun-13	EPA200.8	
Copper	0.8	0.2	μg/L	06-Jun-13	EPA200.8	
Lead	0.1	0.1	μg/L	06-Jun-13	EPA200.8	
Nickel	4.4	0.1	μg/L	06-Jun-13	EPA200.8	
Zinc	0.6	0.4	μg/L	06-Jun-13	EPA200.8	
Trace Metals, Total						

Taiga Batch No.: 130349

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- CERTIFICATE OF ANALYSIS -

Client Sample ID: UPSN			Tai	ga Sample ID: 005
Arsenic	319	0.2	μg/L	06-Jun-13 EPA200.8
Copper	2.6	0.2	μg/L	06-Jun-13 EPA200.8
Lead	3.3	0.1	μg/L	06-Jun-13 EPA200.8
Nickel	6.0	0.1	μg/L	06-Jun-13 EPA200.8
Zinc	5.9	5	μg/L	06-Jun-13 EPA200.8

ReportDate:Wednesday, June 12, 2013Print Date:Wednesday, June 12, 2013

Taiga Batch No.: 130349

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- CERTIFICATE OF ANALYSIS -

Client Sample ID: UP3M

Taiga Sample ID: 006

Client Project: Tundra 2013 Sample Type: Surface Water Received Date: 06-Jun-13 Sampling Date: 05-Jun-13 Sampling Time:

Location: Tundra Mine Site

Report Status: Final

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
рН			pH units	06-Jun-13	SM4500-H:B	85
Solids, Total Suspended	364	3	mg/L	06-Jun-13	SM2540:D	
Inorganics - Nutrients						
Ammonia as Nitrogen	0.177	0.005	mg/L	10-Jun-13	SM4500-NH3:	
<u>Major Ions</u>						
Nitrate as Nitrogen	0.18	0.01	mg/L	07-Jun-13	SM4110:B	
Nitrite as Nitrogen	0.02	0.01	mg/L	07-Jun-13	SM4110:B	
Trace Metals, Dissolved						
Arsenic	170	0.2	μg/L	06-Jun-13	EPA200.8	
Copper	1.0	0.2	μg/L	06-Jun-13	EPA200.8	
Lead	0.2	0.1	μg/L	06-Jun-13	EPA200.8	
Nickel	4.0	0.1	μg/L	06-Jun-13	EPA200.8	
Zinc	< 0.4	0.4	μg/L	06-Jun-13	EPA200.8	
<u>Trace Metals, Total</u>						

Taiga Batch No.: 130349

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- CERTIFICATE OF ANALYSIS -

Client Sample ID: UP3M			Taig	a Sample ID: 006
Arsenic	750	0.2	μg/L	06-Jun-13 EPA200.8
Copper	11.0	0.2	µg/L	06-Jun-13 EPA200.8
Lead	17.2	0.1	µg/L	06-Jun-13 EPA200.8
Nickel	15.3	0.1	µg/L	06-Jun-13 EPA200.8
Zinc	38.3	5	μg/L	06-Jun-13 EPA200.8

ReportDate:Wednesday, June 12, 2013Print Date:Wednesday, June 12, 2013

Taiga Batch No.: 130349

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- CERTIFICATE OF ANALYSIS -

Client Sample ID: UP3M

Taiga Sample ID: 006

- DATA QUALIFERS -

Data Qualifier Descriptions:85Equipment/supply failure, insufficient sample to repeat measurement.

- * Taiga analytical methods are based on the following standard analytical methods
 - SM Standard Methods for the Examination of Water and Wastewater

EPA - United States Environmental Protection Agency

ReportDate:Wednesday, June 12, 2013Print Date:Wednesday, June 12, 2013

APPENDIX C

Accredited Laboratory Certificate of Analysis – Sampling Events

WESA Inc. ATTN: Tim Beckenham/Melanie St-Jean 4901-48 St. Ground Floor Yellowknife NT X1A 2P9 Date Received: 04-JUL-13 Report Date: 07-JUL-13 17:07 (MT) Version: FINAL

Client Phone: 867-446-2346

Certificate of Analysis

Lab Work Order #: L1327443

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED YB11192-00-00 1, 2

Catherine Evaristo-Cordero Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 9936-67 Avenue, Edmonton, AB T6E 0P5 Canada | Phone: +1 780 413 5227 | Fax: +1 780 437 2311 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1327443-1 UP1 - S - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 09:00							
Matrix: Surface Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	0.166		0.050	mg/L		06-JUL-13	R2644431
Color, True	7.2		2.0	C.U.		06-JUL-13	R2644496
Total Suspended Solids	3.0		3.0	mg/L		06-JUL-13	R2644442
Turbidity	3.54		0.10	NTU		06-JUL-13	R2644448
pH	8.04		0.10	pH		06-JUL-13	R2644445
Total Metals in Water by CRC ICPMS	0.04		0.10	pri		00-302-13	K2044445
Aluminum (Al)-Total	0.0592		0.0030	mg/L		07-JUL-13	R2644484
Antimony (Sb)-Total	0.00073		0.00010	mg/L		07-JUL-13	R2644484
Arsenic (As)-Total	0.197		0.00010	mg/L		07-JUL-13	R2644484
Barium (Ba)-Total	0.0154		0.000050	mg/L		07-JUL-13	R2644484
Beryllium (Be)-Total	<0.00050		0.00050	mg/L		07-JUL-13	R2644484
Bismuth (Bi)-Total	0.000073		0.000050	mg/L		07-JUL-13	R2644484
Boron (B)-Total	0.032		0.010	mg/L		07-JUL-13	R2644484
Cadmium (Cd)-Total	0.000011		0.000010	mg/L		07-JUL-13	R2644484
Calcium (Ca)-Total	105		0.020	mg/L		07-JUL-13	R2644484
Chromium (Cr)-Total	0.00031		0.00010	mg/L		07-JUL-13	R2644484
Cobalt (Co)-Total	0.00292		0.00010	mg/L		07-JUL-13	R2644484
Copper (Cu)-Total	0.00275		0.00010	mg/L		07-JUL-13	R2644484
Iron (Fe)-Total	0.714		0.010	mg/L		07-JUL-13	R2644484
Lead (Pb)-Total	0.000828		0.000050	mg/L		07-JUL-13	R2644484
Lithium (Li)-Total	<0.0050		0.0050	mg/L		07-JUL-13	R2644484
Magnesium (Mg)-Total	7.31		0.0050	mg/L		07-JUL-13	R2644484
Manganese (Mn)-Total	0.135		0.000050	mg/L		07-JUL-13	R2644484
Molybdenum (Mo)-Total	0.00227		0.000050	mg/L		07-JUL-13	R2644484
Nickel (Ni)-Total	0.00656		0.00010	mg/L		07-JUL-13	R2644484
Phosphorus (P)-Total	<0.30		0.30	mg/L		07-JUL-13	R2644484
Potassium (K)-Total	6.42		0.050	mg/L		07-JUL-13	R2644484
Selenium (Se)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Silicon (Si)-Total Silver (Ag)-Total	0.822		0.050	mg/L		07-JUL-13 07-JUL-13	R2644484
Solium (Na)-Total	24.8		0.000010 0.050	mg/L mg/L		07-JUL-13	R2644484 R2644484
Strontium (Sr)-Total	0.172		0.00010	mg/L		07-JUL-13	R2644484
Thallium (TI)-Total	<0.000050		0.000010	mg/L		07-JUL-13	R2644484
Tin (Sn)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Titanium (Ti)-Total	0.00325		0.00030	mg/L		07-JUL-13	R2644484
Uranium (U)-Total	0.000265		0.000010	mg/L		07-JUL-13	R2644484
Vanadium (V)-Total	0.00039		0.00010	mg/L		07-JUL-13	R2644484
Zinc (Zn)-Total	0.0039		0.0030	mg/L		07-JUL-13	R2644484
Dissolved Metals in Water by CRC ICPMS				0			
Aluminum (Al)-Dissolved	0.0237		0.0010	mg/L		06-JUL-13	R2644492
Antimony (Sb)-Dissolved	0.00067		0.00010	mg/L		06-JUL-13	R2644492
Arsenic (As)-Dissolved	0.102		0.00010	mg/L		06-JUL-13	R2644492
Barium (Ba)-Dissolved	0.0151		0.000050	mg/L		06-JUL-13	R2644492
Beryllium (Be)-Dissolved	<0.00050		0.00050	mg/L		06-JUL-13	R2644492
Bismuth (Bi)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Boron (B)-Dissolved	0.029		0.010	mg/L		06-JUL-13	R2644492
Cadmium (Cd)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Calcium (Ca)-Dissolved	104		0.020	mg/L		06-JUL-13	R2644492
Chromium (Cr)-Dissolved	0.00013		0.00010	mg/L		06-JUL-13	R2644492
Cobalt (Co)-Dissolved	0.00218		0.00010	mg/L		06-JUL-13	R2644492
Copper (Cu)-Dissolved	0.00115		0.00010	mg/L		06-JUL-13	R2644492

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1327443-1 UP1 - S - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 09:00							
Matrix: Surface Water							
Dissolved Metals in Water by CRC ICPMS							
Iron (Fe)-Dissolved	0.054		0.010	mg/L		06-JUL-13	R2644492
Lead (Pb)-Dissolved	0.000095		0.000050	mg/L		06-JUL-13	R2644492
Lithium (Li)-Dissolved	<0.0030		0.0030	mg/L		06-JUL-13	R2644492
Magnesium (Mg)-Dissolved	7.01		0.0050	mg/L		06-JUL-13	R2644492
Manganese (Mn)-Dissolved	0.101		0.000050	mg/L		06-JUL-13	R2644492
Molybdenum (Mo)-Dissolved	0.00203		0.000050	mg/L		06-JUL-13	R2644492
Nickel (Ni)-Dissolved	0.00530		0.00010	mg/L		06-JUL-13	R2644492
Phosphorus (P)-Dissolved	<0.30		0.30	mg/L		06-JUL-13	R2644492
Potassium (K)-Dissolved	5.89		0.050	mg/L		06-JUL-13	R2644492
Selenium (Se)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Silicon (Si)-Dissolved	0.755		0.050	mg/L		06-JUL-13	R2644492
Silver (Ag)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Sodium (Na)-Dissolved	21.5		0.050	mg/L		06-JUL-13	R2644492
Strontium (Sr)-Dissolved	0.166		0.00010	mg/L		06-JUL-13	R2644492
Thallium (TI)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Titanium (Ti)-Dissolved	0.00030		0.00030	mg/L		06-JUL-13	R2644492
Tin (Sn)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Uranium (U)-Dissolved	0.000240		0.000010	mg/L		06-JUL-13	R2644492
Vanadium (V)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Zinc (Zn)-Dissolved	0.0023		0.0010	mg/L		06-JUL-13	R2644492
NO2, NO3, & (NO2+NO3) in Water							
Nitrate as N by IC Nitrate (as N)	0.293		0.050	mg/L		06-JUL-13	R2644651
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	0.293		0.071	mg/L		07-JUL-13	
Nitrite as N by IC Nitrite (as N)	<0.050		0.050	mg/L		06-JUL-13	R2644651
L1327443-2 UP1 - S - DOF				_			
Sampled By: M. St. Jean on 03-JUL-13 @ 09:00							
Matrix: Surface Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	0.169		0.050	mg/L		06-JUL-13	R2644431
Color, True				•		06-JUL-13	
Total Suspended Solids	7.9		2.0	C.U.		06-JUL-13 06-JUL-13	R2644496
	5.0		3.0	mg/L			R2644442 R2644448
Turbidity	3.51		0.10	NTU		06-JUL-13	
pH Total Matala in Watar by CRC ICRMS	8.06		0.10	рН		06-JUL-13	R2644445
Total Metals in Water by CRC ICPMS Aluminum (Al)-Total	0.0570		0.0030	mg/L		07-JUL-13	R2644484
Antimony (Sb)-Total	0.0570		0.0030	mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
Arsenic (As)-Total	0.192		0.00010	mg/L		07-JUL-13	R2644484 R2644484
Barium (Ba)-Total	0.0155		0.000010	mg/L		07-JUL-13	R2644484
Beryllium (Be)-Total	< 0.00050		0.000050	mg/L		07-JUL-13	R2644484
Bismuth (Bi)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Boron (B)-Total	0.032		0.000000	mg/L		07-JUL-13	R2644484
Cadmium (Cd)-Total	<0.00010		0.000010	mg/L		07-JUL-13	R2644484
Calcium (Ca)-Total	106		0.020	mg/L		07-JUL-13	R2644484
Chromium (Cr)-Total	0.00039		0.00010	mg/L		07-JUL-13	R2644484
Cobalt (Co)-Total	0.00293		0.00010	mg/L		07-JUL-13	R2644484
Copper (Cu)-Total	0.00269		0.00010	mg/L		07-JUL-13	R2644484
Iron (Fe)-Total	0.708		0.010	mg/L		07-JUL-13	R2644484
Lead (Pb)-Total	0.000832		0.000050	mg/L		07-JUL-13	R2644484

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1327443-2 UP1 - S - DOF							
Sampled By: M. St. Jean on 03-JUL-13 @ 09:00							
Matrix: Surface Water							
Total Metals in Water by CRC ICPMS Lithium (Li)-Total	<0.0050		0.0050	mg/L		07-JUL-13	R2644484
Magnesium (Mg)-Total	<0.0050		0.0050	mg/L		07-JUL-13	R2644484
Magnese (Mn)-Total	0.132		0.00050	mg/L		07-JUL-13	R2644484
Molybdenum (Mo)-Total	0.00226		0.000050	mg/L		07-JUL-13	R2644484
Nickel (Ni)-Total	0.00228		0.000050	mg/L		07-JUL-13	R2644484
Phosphorus (P)-Total	<0.30		0.00010	mg/L		07-JUL-13	R2644484
Potassium (K)-Total	6.32			-		07-JUL-13	R2644484
Selenium (Se)-Total	0.00010		0.050 0.00010	mg/L		07-JUL-13	R2644484 R2644484
Silicon (Si)-Total				mg/L			
Silver (Ag)-Total	0.819		0.050	mg/L		07-JUL-13 07-JUL-13	R2644484
Sodium (Na)-Total	<0.000010		0.000010	mg/L		07-JUL-13 07-JUL-13	R2644484
Strontium (Sr)-Total	24.2 0.172		0.050	mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
Thallium (TI)-Total			0.00010	mg/L		07-JUL-13	
Tin (Sn)-Total	<0.000050		0.000050	mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
Titanium (Ti)-Total	< 0.00010		0.00010	mg/L		07-JUL-13 07-JUL-13	
Uranium (U)-Total	0.00340		0.00030	mg/L		07-JUL-13 07-JUL-13	R2644484
Vanadium (V)-Total	0.000266		0.000010	mg/L		07-JUL-13 07-JUL-13	R2644484
	0.00040		0.00010	mg/L			R2644484
Zinc (Zn)-Total	0.0042		0.0030	mg/L		07-JUL-13	R2644484
Dissolved Metals in Water by CRC ICPMS	0.0000		0.004.0			06 11 12	D0044400
Aluminum (AI)-Dissolved	0.0228		0.0010	mg/L		06-JUL-13	R2644492
Antimony (Sb)-Dissolved	0.00068		0.00010	mg/L		06-JUL-13	R2644492
Arsenic (As)-Dissolved	0.102		0.00010	mg/L		06-JUL-13	R2644492
Barium (Ba)-Dissolved Beryllium (Be)-Dissolved	0.0148		0.000050	mg/L		06-JUL-13 06-JUL-13	R2644492
	< 0.00050		0.00050	mg/L			R2644492
Bismuth (Bi)-Dissolved Boron (B)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13 06-JUL-13	R2644492
Cadmium (Cd)-Dissolved	0.030		0.010	mg/L		06-JUL-13 06-JUL-13	R2644492
Calcium (Ca)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Chromium (Cr)-Dissolved	105		0.020	mg/L		06-JUL-13 06-JUL-13	R2644492
Cobalt (Co)-Dissolved	0.00014 0.00222		0.00010	mg/L		06-JUL-13 06-JUL-13	R2644492 R2644492
Copper (Cu)-Dissolved			0.00010	mg/L		06-JUL-13 06-JUL-13	
Iron (Fe)-Dissolved	0.00129		0.00010	mg/L		06-JUL-13 06-JUL-13	R2644492 R2644492
Lead (Pb)-Dissolved	0.050		0.010	mg/L			
Lithium (Li)-Dissolved	0.000093		0.000050	mg/L		06-JUL-13	R2644492
	< 0.0030		0.0030	mg/L		06-JUL-13	R2644492
Magnesium (Mg)-Dissolved Manganese (Mn)-Dissolved	7.27		0.0050	mg/L		06-JUL-13 06-JUL-13	R2644492
Molybdenum (Mo)-Dissolved	0.101		0.000050	mg/L			R2644492
Nickel (Ni)-Dissolved	0.00207		0.000050	mg/L		06-JUL-13 06-JUL-13	R2644492
Phosphorus (P)-Dissolved	0.00522		0.00010	mg/L			R2644492
Potassium (K)-Dissolved	< 0.30		0.30	mg/L		06-JUL-13	R2644492
	6.18		0.050	mg/L		06-JUL-13	R2644492
Selenium (Se)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Silicon (Si)-Dissolved	0.753		0.050	mg/L		06-JUL-13	R2644492
Silver (Ag)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Sodium (Na)-Dissolved	21.7		0.050	mg/L		06-JUL-13	R2644492
Strontium (Sr)-Dissolved	0.165		0.00010	mg/L		06-JUL-13	R2644492
Thallium (TI)-Dissolved	< 0.000050		0.000050	mg/L		06-JUL-13	R2644492
Titanium (Ti)-Dissolved	<0.00030		0.00030	mg/L		06-JUL-13	R2644492
Tin (Sn)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Uranium (U)-Dissolved	0.000248		0.000010	mg/L		06-JUL-13	R2644492
Vanadium (V)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Zinc (Zn)-Dissolved	0.0036		0.0010	mg/L		06-JUL-13	R2644492
NO2, NO3, & (NO2+NO3) in Water							

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1327443-2 UP1 - S - DOF							
Sampled By: M. St. Jean on 03-JUL-13 @ 09:00							
Matrix: Surface Water							
Nitrate as N by IC							
Nitrate (as N)	0.296		0.050	mg/L		06-JUL-13	R2644651
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	0.296		0.071	mg/L		07-JUL-13	
Nitrite as N by IC	-0.050		0.050	ma/l		06-JUL-13	D0644654
Nitrite (as N)	<0.050		0.050	mg/L		00-301-13	R2644651
L1327443-3 UP1 - M - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 09:00							
Matrix: Surface Water Miscellaneous Parameters							
Ammonia, Total (as N)	0.168		0.050	mg/L		06-JUL-13	R2644431
Color, True	6.5		2.0	C.U.		06-JUL-13	R2644496
Total Suspended Solids	8.0		3.0	mg/L		06-JUL-13	R2644442
Turbidity	2.82		0.10	NTU		06-JUL-13	R2644448
pH	8.06		0.10	pH		06-JUL-13	R2644445
Total Metals in Water by CRC ICPMS	0.00		0.10	P''			· _077740
Aluminum (Al)-Total	0.0622		0.0030	mg/L		07-JUL-13	R2644484
Antimony (Sb)-Total	0.00076		0.00010	mg/L		07-JUL-13	R2644484
Arsenic (As)-Total	0.199		0.00010	mg/L		07-JUL-13	R2644484
Barium (Ba)-Total	0.0158		0.000050	mg/L		07-JUL-13	R2644484
Beryllium (Be)-Total	<0.00050		0.00050	mg/L		07-JUL-13	R2644484
Bismuth (Bi)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Boron (B)-Total	0.033		0.010	mg/L		07-JUL-13	R2644484
Cadmium (Cd)-Total	0.000011		0.000010	mg/L		07-JUL-13	R2644484
Calcium (Ca)-Total	110		0.020	mg/L		07-JUL-13	R2644484
Chromium (Cr)-Total Cobalt (Co)-Total	0.00050		0.00010	mg/L		07-JUL-13 07-JUL-13	R2644484
Copper (Cu)-Total	0.00297 0.00300		0.00010 0.00010	mg/L mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
Iron (Fe)-Total	0.709		0.00010	mg/L		07-JUL-13	R2644484
Lead (Pb)-Total	0.000837		0.000050	mg/L		07-JUL-13	R2644484
Lithium (Li)-Total	< 0.0050		0.0050	mg/L		07-JUL-13	R2644484
Magnesium (Mg)-Total	7.63		0.0050	mg/L		07-JUL-13	R2644484
Manganese (Mn)-Total	0.135		0.000050	mg/L		07-JUL-13	R2644484
Molybdenum (Mo)-Total	0.00238		0.000050	mg/L		07-JUL-13	R2644484
Nickel (Ni)-Total	0.00690		0.00010	mg/L		07-JUL-13	R2644484
Phosphorus (P)-Total	<0.30		0.30	mg/L		07-JUL-13	R2644484
Potassium (K)-Total	6.43		0.050	mg/L		07-JUL-13	R2644484
Selenium (Se)-Total	0.00010		0.00010	mg/L		07-JUL-13	R2644484
Silicon (Si)-Total Silver (Ag)-Total	0.839		0.050	mg/L		07-JUL-13 07-JUL-13	R2644484
Sodium (Na)-Total	<0.000010 24.8		0.000010 0.050	mg/L mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
Strontium (Sr)-Total	0.176		0.00010	mg/L		07-JUL-13	R2644484
Thallium (TI)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Tin (Sn)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Titanium (Ti)-Total	0.00374		0.00030	mg/L		07-JUL-13	R2644484
Uranium (U)-Total	0.000275		0.000010	mg/L		07-JUL-13	R2644484
Vanadium (V)-Total	0.00040		0.00010	mg/L		07-JUL-13	R2644484
Zinc (Zn)-Total	0.0046		0.0030	mg/L		07-JUL-13	R2644484
Dissolved Metals in Water by CRC ICPMS							
Aluminum (Al)-Dissolved	0.0227		0.0010	mg/L		06-JUL-13	R2644492
Antimony (Sb)-Dissolved	0.00065		0.00010	mg/L		06-JUL-13	R2644492
Arsenic (As)-Dissolved	0.102		0.00010	mg/L		06-JUL-13	R2644492

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1327443-3 UP1 - M - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 09:00							
Matrix: Surface Water							
Dissolved Metals in Water by CRC ICPMS							
Barium (Ba)-Dissolved	0.0149		0.000050	mg/L		06-JUL-13	R2644492
Beryllium (Be)-Dissolved	<0.00050		0.00050	mg/L		06-JUL-13	R2644492
Bismuth (Bi)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Boron (B)-Dissolved	0.029		0.010	mg/L		06-JUL-13	R2644492
Cadmium (Cd)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Calcium (Ca)-Dissolved	101		0.020	mg/L		06-JUL-13	R2644492
Chromium (Cr)-Dissolved	0.00014		0.00010	mg/L		06-JUL-13	R2644492
Cobalt (Co)-Dissolved	0.00216		0.00010	mg/L		06-JUL-13	R2644492
Copper (Cu)-Dissolved	0.00135		0.00010	mg/L		06-JUL-13	R2644492
Iron (Fe)-Dissolved	0.041		0.010	mg/L		06-JUL-13	R2644492
Lead (Pb)-Dissolved	0.000070		0.000050	mg/L		06-JUL-13	R2644492
Lithium (Li)-Dissolved	<0.0030		0.0030	mg/L		06-JUL-13	R2644492
Magnesium (Mg)-Dissolved	6.94		0.0050	mg/L		06-JUL-13	R2644492
Manganese (Mn)-Dissolved	0.101		0.000050	mg/L		06-JUL-13	R2644492
Molybdenum (Mo)-Dissolved	0.00200		0.000050	mg/L		06-JUL-13	R2644492
Nickel (Ni)-Dissolved	0.00543		0.00010	mg/L		06-JUL-13	R2644492
Phosphorus (P)-Dissolved	<0.30		0.30	mg/L		06-JUL-13	R2644492
Potassium (K)-Dissolved	6.06		0.050	mg/L		06-JUL-13	R2644492
Selenium (Se)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Silicon (Si)-Dissolved	0.756		0.050	mg/L		06-JUL-13	R2644492
Silver (Ag)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Sodium (Na)-Dissolved	22.2		0.050	mg/L		06-JUL-13	R2644492
Strontium (Sr)-Dissolved	0.161		0.00010	mg/L		06-JUL-13	R2644492
Thallium (TI)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Titanium (Ti)-Dissolved	< 0.00030		0.00030	mg/L		06-JUL-13	R2644492
Tin (Sn)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Uranium (U)-Dissolved	0.000243		0.000010	mg/L		06-JUL-13	R2644492
Vanadium (V)-Dissolved Zinc (Zn)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13 06-JUL-13	R2644492 R2644492
	0.0027		0.0010	mg/L		06-JUL-13	R2644492
NO2, NO3, & (NO2+NO3) in Water							
Nitrate as N by IC Nitrate (as N)	0.293		0.050	mg/L		06-JUL-13	R2644651
Nitrate+Nitrite	0.235		0.050	iiig/L		00 002 10	112044031
Nitrate and Nitrite (as N)	0.293		0.071	mg/L		07-JUL-13	
Nitrite as N by IC	0.200		0.071	y , L			
Nitrite (as N)	<0.050		0.050	mg/L		06-JUL-13	R2644651
L1327443-4 UP2 - S - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 09:30							
Matrix: Surface Water							
Matrix: Surface water Miscellaneous Parameters							
Ammonia, Total (as N)	0.171		0.050	mg/L		06-JUL-13	R2644431
Color, True	7.2		2.0	C.U.		06-JUL-13	R2644496
Total Suspended Solids	<3.0		2.0 3.0	mg/L		06-JUL-13	R2644442
Turbidity	3.56		0.10	NTU		06-JUL-13	R2644442 R2644448
pH							
	8.06		0.10	рН		06-JUL-13	R2644445
Total Metals in Water by CRC ICPMS Aluminum (Al)-Total	0.0607		0.0030	mg/L		07-JUL-13	R2644484
Antimony (Sb)-Total	0.00073		0.0030	mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
Artificity (35)-Total	0.199		0.00010	mg/L		07-JUL-13	R2644484 R2644484
Barium (Ba)-Total	0.0161		0.000010	mg/L		07-JUL-13	R2644484 R2644484
Beryllium (Be)-Total	< 0.00050		0.000050	mg/L		07-JUL-13	R2644484
	LOU000		0.00050	ilig/L		01-301-13	12044404

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1327443-4 UP2 - S - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 09:30							
Matrix: Surface Water							
Total Metals in Water by CRC ICPMS Bismuth (Bi)-Total	-0.000050		0.000050	ma/l		07-JUL-13	D2644494
Boron (B)-Total	<0.000050 0.034		0.000050	mg/L		07-JUL-13	R2644484 R2644484
Cadmium (Cd)-Total	0.034		0.010	mg/L		07-JUL-13	R2644484
Calcium (Ca)-Total			0.000010	mg/L		07-JUL-13	
Chromium (Cr)-Total	112		0.020	mg/L		07-JUL-13 07-JUL-13	R2644484
Cobalt (Co)-Total	0.00067		0.00010	mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
	0.00293		0.00010	mg/L		07-JUL-13 07-JUL-13	
Copper (Cu)-Total Iron (Fe)-Total	0.00300		0.00010	mg/L			R2644484
Lead (Pb)-Total	0.733		0.010	mg/L		07-JUL-13	R2644484
Lithium (Li)-Total	0.000866		0.000050	mg/L		07-JUL-13 07-JUL-13	R2644484
	< 0.0050		0.0050	mg/L			R2644484
Magnesium (Mg)-Total Manganese (Mn)-Total	7.80		0.0050	mg/L		07-JUL-13	R2644484
5 ()	0.136		0.000050	mg/L		07-JUL-13	R2644484
Molybdenum (Mo)-Total	0.00239		0.000050	mg/L		07-JUL-13	R2644484
Nickel (Ni)-Total	0.00666		0.00010	mg/L		07-JUL-13	R2644484
Phosphorus (P)-Total	< 0.30		0.30	mg/L		07-JUL-13	R2644484
Potassium (K)-Total	6.57		0.050	mg/L		07-JUL-13	R2644484
Selenium (Se)-Total	0.00010		0.00010	mg/L		07-JUL-13	R2644484
Silicon (Si)-Total	0.848		0.050	mg/L		07-JUL-13	R2644484
Silver (Ag)-Total	<0.000010		0.000010	mg/L		07-JUL-13	R2644484
Sodium (Na)-Total	25.0		0.050	mg/L		07-JUL-13	R2644484
Strontium (Sr)-Total	0.181		0.00010	mg/L		07-JUL-13	R2644484
Thallium (TI)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Tin (Sn)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Titanium (Ti)-Total	0.00352		0.00030	mg/L		07-JUL-13	R2644484
Uranium (U)-Total	0.000279		0.000010	mg/L		07-JUL-13	R2644484
Vanadium (V)-Total	0.00041		0.00010	mg/L		07-JUL-13	R2644484
Zinc (Zn)-Total	0.0088		0.0030	mg/L		07-JUL-13	R2644484
Dissolved Metals in Water by CRC ICPMS							
Aluminum (AI)-Dissolved	0.0245		0.0010	mg/L		06-JUL-13	R2644492
Antimony (Sb)-Dissolved	0.00066		0.00010	mg/L		06-JUL-13	R2644492
Arsenic (As)-Dissolved	0.102		0.00010	mg/L		06-JUL-13	R2644492
Barium (Ba)-Dissolved	0.0149		0.000050	mg/L		06-JUL-13	R2644492
Beryllium (Be)-Dissolved	<0.00050		0.00050	mg/L		06-JUL-13	R2644492
Bismuth (Bi)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Boron (B)-Dissolved	0.030		0.010	mg/L		06-JUL-13	R2644492
Cadmium (Cd)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Calcium (Ca)-Dissolved	105		0.020	mg/L		06-JUL-13	R2644492
Chromium (Cr)-Dissolved	0.00014		0.00010	mg/L		06-JUL-13	R2644492
Cobalt (Co)-Dissolved	0.00221		0.00010	mg/L		06-JUL-13	R2644492
Copper (Cu)-Dissolved	0.00141		0.00010	mg/L		06-JUL-13	R2644492
Iron (Fe)-Dissolved	0.062		0.010	mg/L		06-JUL-13	R2644492
Lead (Pb)-Dissolved	0.000122		0.000050	mg/L		06-JUL-13	R2644492
Lithium (Li)-Dissolved	<0.0030		0.0030	mg/L		06-JUL-13	R2644492
Magnesium (Mg)-Dissolved	7.22		0.0050	mg/L		06-JUL-13	R2644492
Manganese (Mn)-Dissolved	0.102		0.000050	mg/L		06-JUL-13	R2644492
Molybdenum (Mo)-Dissolved	0.00201		0.000050	mg/L		06-JUL-13	R2644492
Nickel (Ni)-Dissolved	0.00529		0.00010	mg/L		06-JUL-13	R2644492
Phosphorus (P)-Dissolved	<0.30		0.30	mg/L		06-JUL-13	R2644492
Potassium (K)-Dissolved	6.00		0.050	mg/L		06-JUL-13	R2644492
Selenium (Se)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Silicon (Si)-Dissolved	0.746		0.050	mg/L		06-JUL-13	R2644492
				-			

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1327443-4 UP2 - S - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 09:30							
Matrix: Surface Water							
Dissolved Metals in Water by CRC ICPMS							
Silver (Ag)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Sodium (Na)-Dissolved	21.9		0.050	mg/L		06-JUL-13	R2644492
Strontium (Sr)-Dissolved	0.163		0.00010	mg/L		06-JUL-13	R2644492
Thallium (TI)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Titanium (Ti)-Dissolved	0.00341		0.00030	mg/L		06-JUL-13	R2644492
Tin (Sn)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Uranium (U)-Dissolved	0.000250		0.000010	mg/L		06-JUL-13	R2644492
Vanadium (V)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Zinc (Zn)-Dissolved	0.0041		0.0010	mg/L		06-JUL-13	R2644492
NO2, NO3, & (NO2+NO3) in Water							
Nitrate as N by IC Nitrate (as N)	0.296		0.050	mg/L		06-JUL-13	R2644651
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	0.296		0.071	mg/L		07-JUL-13	
Nitrite as N by IC Nitrite (as N)	<0.050		0.050	mg/L		06-JUL-13	R2644651
_1327443-5 UP2 - M - OFF			0.000				
Sampled By: M. St. Jean on 03-JUL-13 @ 09:30							
Matrix: Surface Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	0.169		0.050	mg/L		06-JUL-13	R2644431
Color, True	8.0		2.0	C.U.		06-JUL-13	R2644496
Total Suspended Solids	5.0		3.0	mg/L		06-JUL-13	R2644442
Turbidity	3.29		0.10	NTU		06-JUL-13	R2644448
PH	8.07		0.10	pH		06-JUL-13	R2644445
Total Metals in Water by CRC ICPMS	0.07		0.10	pri		0000210	112044445
Aluminum (Al)-Total	0.0539		0.0030	mg/L		07-JUL-13	R2644484
Antimony (Sb)-Total	0.00076		0.00010	mg/L		07-JUL-13	R2644484
Arsenic (As)-Total	0.198		0.00010	mg/L		07-JUL-13	R2644484
Barium (Ba)-Total	0.0156		0.000050	mg/L		07-JUL-13	R2644484
Beryllium (Be)-Total	<0.00050		0.00050	mg/L		07-JUL-13	R2644484
Bismuth (Bi)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Boron (B)-Total	0.033		0.010	mg/L		07-JUL-13	R2644484
Cadmium (Cd)-Total	0.000011		0.000010	mg/L		07-JUL-13	R2644484
Calcium (Ca)-Total	109		0.020	mg/L		07-JUL-13	R2644484
Chromium (Cr)-Total	0.00043		0.00010	mg/L		07-JUL-13	R2644484
Cobalt (Co)-Total	0.00293		0.00010	mg/L		07-JUL-13	R2644484
Copper (Cu)-Total	0.00305		0.00010	mg/L		07-JUL-13	R2644484
Iron (Fe)-Total	0.702		0.010	mg/L		07-JUL-13	R2644484
Lead (Pb)-Total	0.000816		0.000050	mg/L		07-JUL-13	R2644484
Lithium (Li)-Total	< 0.0050		0.0050	mg/L		07-JUL-13	R2644484
Magnesium (Mg)-Total	7.43		0.0050	mg/L		07-JUL-13	R2644484
Manganese (Mn)-Total Molybdenum (Mo)-Total	0.134		0.000050	mg/L		07-JUL-13	R2644484
Nickel (Ni)-Total	0.00232		0.000050	mg/L		07-JUL-13 07-JUL-13	R2644484
Phosphorus (P)-Total	0.00669		0.00010	mg/L		07-JUL-13 07-JUL-13	R2644484
Potassium (K)-Total	<0.30 6.29		0.30 0.050	mg/L mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
Selenium (Se)-Total	<0.00010		0.050	mg/L mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
Silicon (Si)-Total	<0.00010		0.00010	mg/L mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
Silver (Ag)-Total	<0.00010		0.050	mg/L mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
	<0.000010	1	0.000010	ilig/L	1	U1-JUL-13	r∠0444ŏ4

Thallium (TI)-Total<0.0	175 00050 0017 0483 00267 0042 0045 0243 0066 101 0148 00050 00050 00050 029	0.00010 0.000050 0.00010 0.00030 0.00010 0.00010 0.0030 0.0010 0.00010 0.00010 0.00010 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 06-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484
Sampled By:M. St. Jean on 03-JUL-13 @ 09:30Matrix:Surface WaterTotal Metals in Water by CRC ICPMSStrontium (Sr)-Total0.0Thallium (TI)-Total<0.0	000050 0017 0483 00267 0042 0045 0045 0045 0045 0066 101 0148 00050 00050 00050 029	0.000050 0.00010 0.00030 0.000010 0.00010 0.0030 0.0010 0.00010 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484
Matrix:Surface WaterTotal Metals in Water by CRC ICPMSStrontium (Sr)-Total0.Thallium (TI)-Total<0.0	000050 0017 0483 00267 0042 0045 0045 0045 0045 0066 101 0148 00050 00050 00050 029	0.000050 0.00010 0.00030 0.000010 0.00010 0.0030 0.0010 0.00010 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484
Total Metals in Water by CRC ICPMSStrontium (Sr)-Total0.Thallium (TI)-Total<0.0	000050 0017 0483 00267 0042 0045 0045 0045 0045 0066 101 0148 00050 00050 00050 029	0.000050 0.00010 0.00030 0.000010 0.00010 0.0030 0.0010 0.00010 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484
Strontium (Sr)-Total0.Thallium (TI)-Total<0.0	000050 0017 0483 00267 0042 0045 0045 0045 0045 0066 101 0148 00050 00050 00050 029	0.000050 0.00010 0.00030 0.000010 0.00010 0.0030 0.0010 0.00010 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484
Thallium (TI)-Total<0.0Tin (Sn)-Total0.0Titanium (Ti)-Total0.0Uranium (U)-Total0.0Vanadium (V)-Total0.0Zinc (Zn)-Total0.0Dissolved Metals in Water by CRC ICPMSAluminum (Al)-Dissolved0.0Antimony (Sb)-Dissolved0.0Arsenic (As)-Dissolved0.0Barium (Ba)-Dissolved0.0Beryllium (Be)-Dissolved0.0Boron (B)-Dissolved0.0Cadmium (Cd)-Dissolved0.0Calcium (Ca)-Dissolved0.0Cobalt (Co)-Dissolved0.0Iron (Fe)-Dissolved0.0Lead (Pb)-Dissolved0.0Lithium (Li)-Dissolved0.0Magnesium (Mg)-Dissolved0.0Manganese (Mn)-Dissolved0.0Molybdenum (Mo)-Dissolved0.0Molybdenum (Mo)-Dissolved0.0Manganese (Mn)-Dissolved0.0Manganese (Mn)-Dissolved0.0	000050 0017 0483 00267 0042 0045 0045 0045 0045 0066 101 0148 00050 00050 00050 029	0.000050 0.00010 0.00030 0.000010 0.00010 0.0030 0.0010 0.00010 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484
Tin (Sn)-Total0.0Titanium (Ti)-Total0.0Uranium (U)-Total0.0Vanadium (V)-Total0.0Zinc (Zn)-Total0.0Dissolved Metals in Water by CRC ICPMSAluminum (Al)-Dissolved0.0Antimony (Sb)-Dissolved0.0Arsenic (As)-Dissolved0.0Barium (Ba)-Dissolved0.0Beryllium (Be)-Dissolved0.0Boron (B)-Dissolved0.0Cadmium (Cd)-Dissolved0.0Cadmium (Cd)-Dissolved0.0Cobalt (Co)-Dissolved0.0Copper (Cu)-Dissolved0.0Lead (Pb)-Dissolved0.0Lithium (Li)-Dissolved0.0Magnesium (Mg)-Dissolved0.0Manganese (Mn)-Dissolved0.0Molybdenum (Mo)-Dissolved0.0O0.0Manganese (Mn)-Dissolved0.0O0.0Manganese (Mn)-Dissolved0.0O0.0Manganese (Mn)-Dissolved0.0Manganese (Mn)-Dissolved0.0Manganene (Mn)-Dissolved0.0Ma	0017 0483 00267 0042 0045 0243 0066 101 0148 00050 00050 00050 029	0.00010 0.00030 0.000010 0.00010 0.0030 0.0010 0.00010 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 06-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484
Titanium (Ti)-Total0.0Uranium (U)-Total0.00Vanadium (V)-Total0.0Zinc (Zn)-Total0.0Dissolved Metals in Water by CRC ICPMS0.0Aluminum (Al)-Dissolved0.0Antimony (Sb)-Dissolved0.0Arsenic (As)-Dissolved0.0Barium (Ba)-Dissolved0.0Bismuth (Bi)-Dissolved0.0Boron (B)-Dissolved0.0Cadmium (Cd)-Dissolved0.0Cadmium (Cd)-Dissolved0.0Cobalt (Co)-Dissolved0.0Copper (Cu)-Dissolved0.0Lead (Pb)-Dissolved0.0Lithium (Li)-Dissolved0.0Magnesium (Mg)-Dissolved7Manganese (Mn)-Dissolved0.0Molybdenum (Mo)-Dissolved0.0Output0.0Output0.0Cobalt (Mo)-Dissolved0.0Output0.0Copper (Cu)-Dissolved0.0Output0.0Copper (Mn)-Dissolved0.0Copper (Mn)-Dissolved0.0Output0.0Copper (Mn)-Dissolved0.0Copper (Mn)-Dissolved0.0 <t< td=""><td>0483 00267 0042 0045 0243 0066 101 0148 00050 00050 029</td><td>0.00030 0.00010 0.00010 0.0030 0.0010 0.00010 0.00010</td><td>mg/L mg/L mg/L mg/L mg/L mg/L</td><td>07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 06-JUL-13</td><td>R2644484 R2644484 R2644484 R2644484</td></t<>	0483 00267 0042 0045 0243 0066 101 0148 00050 00050 029	0.00030 0.00010 0.00010 0.0030 0.0010 0.00010 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 06-JUL-13	R2644484 R2644484 R2644484 R2644484
Uranium (U)-Total0.00Vanadium (V)-Total0.00Zinc (Zn)-Total0.00Dissolved Metals in Water by CRC ICPMS0.00Aluminum (Al)-Dissolved0.00Antimony (Sb)-Dissolved0.00Arsenic (As)-Dissolved0.00Barium (Ba)-Dissolved0.00Bismuth (Bi)-Dissolved0.00Boron (B)-Dissolved0.00Cadmium (Cd)-Dissolved0.00Cadmium (Cd)-Dissolved0.00Cobalt (Co)-Dissolved0.00Copper (Cu)-Dissolved0.00Lead (Pb)-Dissolved0.00Lithium (Li)-Dissolved0.00Magnesium (Mg)-Dissolved0.00Manganese (Mn)-Dissolved0.00Molybdenum (Mo)-Dissolved0.00Output0.00Coll0.00Coll0.00Coll0.00Coll0.00Copper (Cu)-Dissolved0.00Copper (Cu)-Dissolved0.00Coll <td>00267 0042 0045 0243 0066 101 0148 00050 00050 00050 029</td> <td>0.000010 0.00010 0.0030 0.0010 0.00010 0.00010</td> <td>mg/L mg/L mg/L mg/L mg/L mg/L</td> <td>07-JUL-13 07-JUL-13 07-JUL-13 06-JUL-13</td> <td>R2644484 R2644484 R2644484</td>	00267 0042 0045 0243 0066 101 0148 00050 00050 00050 029	0.000010 0.00010 0.0030 0.0010 0.00010 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 06-JUL-13	R2644484 R2644484 R2644484
Vanadium (V)-Total0.0Zinc (Zn)-Total0.0Dissolved Metals in Water by CRC ICPMS0.0Aluminum (Al)-Dissolved0.0Antimony (Sb)-Dissolved0.0Arsenic (As)-Dissolved0.0Barium (Ba)-Dissolved0.0Beryllium (Be)-Dissolved<0.0	0042 0045 0243 0066 101 0148 00050 00050 00050 029	0.00010 0.0030 0.0010 0.00010 0.00010	mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 06-JUL-13	R2644484 R2644484
Zinc (Zn)-Total0.0Dissolved Metals in Water by CRC ICPMSAluminum (Al)-Dissolved0.0Antimony (Sb)-Dissolved0.0Arsenic (As)-Dissolved0.0Barium (Ba)-Dissolved0.0Beryllium (Be)-Dissolved<0.0	0045 0243 0066 101 0148 00050 00050 029	0.0030 0.0010 0.00010 0.00010	mg/L mg/L mg/L mg/L	07-JUL-13 06-JUL-13	R2644484
Dissolved Metals in Water by CRC ICPMSAluminum (Al)-Dissolved0.0Antimony (Sb)-Dissolved0.0Arsenic (As)-Dissolved0.0Barium (Ba)-Dissolved0.0Beryllium (Be)-Dissolved<0.0	0243 0066 101 0148 00050 00050 029	0.0010 0.00010 0.00010	mg/L mg/L mg/L	06-JUL-13	
Aluminum (Al)-Dissolved0.0Antimony (Sb)-Dissolved0.0Arsenic (As)-Dissolved0.0Barium (Ba)-Dissolved0.0Beryllium (Be)-Dissolved<0.0	0066 101 0148 00050 00050 029	0.00010 0.00010	mg/L mg/L		R2644492
Antimony (Sb)-Dissolved0.0Arsenic (As)-Dissolved0.0Barium (Ba)-Dissolved0.0Beryllium (Be)-Dissolved<0.0	0066 101 0148 00050 00050 029	0.00010 0.00010	mg/L mg/L		
Arsenic (As)-Dissolved0.Barium (Ba)-Dissolved0.0Beryllium (Be)-Dissolved<0.0	101 0148 00050 00050 029	0.00010	mg/L	06-JUL-13	R2644492
Barium (Ba)-Dissolved0.0Beryllium (Be)-Dissolved<0.0	0148 00050 00050 029		-	06-JUL-13	R2644492
Beryllium (Be)-Dissolved<0.0Bismuth (Bi)-Dissolved<0.0	00050 00050 029	0.000000	mg/L	06-JUL-13	R2644492
Bismuth (Bi)-Dissolved<0.0Boron (B)-Dissolved0.0Cadmium (Cd)-Dissolved<0.0	00050 029	0.00050	mg/L	06-JUL-13	R2644492
Boron (B)-Dissolved0.Cadmium (Cd)-Dissolved<0.0	029	0.000050	mg/L	06-JUL-13	R2644492
Cadmium (Cd)-Dissolved<0.0Calcium (Ca)-Dissolved1Chromium (Cr)-Dissolved0.0Cobalt (Co)-Dissolved0.0Copper (Cu)-Dissolved0.0Iron (Fe)-Dissolved0.0Lead (Pb)-Dissolved0.0Lithium (Li)-Dissolved<0.0		0.010	mg/L	06-JUL-13	R2644492
Calcium (Ca)-Dissolved1Chromium (Cr)-Dissolved0.0Cobalt (Co)-Dissolved0.0Copper (Cu)-Dissolved0.0Iron (Fe)-Dissolved0.0Lead (Pb)-Dissolved0.00Lithium (Li)-Dissolved<0.0	00010	0.000010	mg/L	06-JUL-13	R2644492
Chromium (Cr)-Dissolved0.0Cobalt (Co)-Dissolved0.0Copper (Cu)-Dissolved0.0Iron (Fe)-Dissolved0.0Lead (Pb)-Dissolved0.00Lithium (Li)-Dissolved<0.0	02	0.020	mg/L	06-JUL-13	R2644492
Cobalt (Co)-Dissolved0.0Copper (Cu)-Dissolved0.0Iron (Fe)-Dissolved0.0Lead (Pb)-Dissolved0.00Lithium (Li)-Dissolved<0.0	0014	0.00010	mg/L	06-JUL-13	R2644492
Copper (Cu)-Dissolved0.0Iron (Fe)-Dissolved0.0Lead (Pb)-Dissolved0.00Lithium (Li)-Dissolved<0.0	0218	0.00010	mg/L	06-JUL-13	R2644492
Iron (Fe)-Dissolved0.Lead (Pb)-Dissolved0.00Lithium (Li)-Dissolved<0.	0138	0.00010	mg/L	06-JUL-13	R2644492
Lithium (Li)-Dissolved<0.Magnesium (Mg)-Dissolved7Manganese (Mn)-Dissolved0.0Molybdenum (Mo)-Dissolved0.0	050	0.010	mg/L	06-JUL-13	R2644492
Magnesium (Mg)-Dissolved7Manganese (Mn)-Dissolved0.0Molybdenum (Mo)-Dissolved0.0	00099	0.000050	mg/L	06-JUL-13	R2644492
Manganese (Mn)-Dissolved0.0Molybdenum (Mo)-Dissolved0.0	0030	0.0030	mg/L	06-JUL-13	R2644492
Molybdenum (Mo)-Dissolved 0.0	.12	0.0050	mg/L	06-JUL-13	R2644492
	998	0.000050	mg/L	06-JUL-13	R2644492
Nickel (Ni)-Dissolved	0195	0.000050	mg/L	06-JUL-13	R2644492
	0530	0.00010	mg/L	06-JUL-13	R2644492
Phosphorus (P)-Dissolved <	0.30	0.30	mg/L	06-JUL-13	R2644492
Potassium (K)-Dissolved 6	.06	0.050	mg/L	06-JUL-13	R2644492
Selenium (Se)-Dissolved <0.0	00010	0.00010	mg/L	06-JUL-13	R2644492
Silicon (Si)-Dissolved 0.	731	0.050	mg/L	06-JUL-13	R2644492
Silver (Ag)-Dissolved <0.0	00010	0.000010	mg/L	06-JUL-13	R2644492
Sodium (Na)-Dissolved 2	1.7	0.050	mg/L	06-JUL-13	R2644492
Strontium (Sr)-Dissolved 0.	161	0.00010	mg/L	06-JUL-13	R2644492
Thallium (TI)-Dissolved <0.0	00050	0.000050	mg/L	06-JUL-13	R2644492
Titanium (Ti)-Dissolved 0.0	0031	0.00030	mg/L	06-JUL-13	R2644492
Tin (Sn)-Dissolved <0.0	00010	0.00010	mg/L	06-JUL-13	R2644492
Uranium (U)-Dissolved 0.00	0242	0.000010	mg/L	06-JUL-13	R2644492
Vanadium (V)-Dissolved <0.0	00010	0.00010	mg/L	06-JUL-13	R2644492
	0026	0.0010	mg/L	06-JUL-13	R2644492
NO2, NO3, & (NO2+NO3) in Water					
Nitrate as N by IC					
Nitrate (as N) 0.	298	0.050	mg/L	06-JUL-13	R2644651
Nitrate+Nitrite					
	298	0.071	mg/L	07-JUL-13	
Nitrite as N by ICNitrite (as N)<0	.050	0.050	mg/L	06-JUL-13	R2644651
L1327443-6 UP3 - S - OFF					
Sampled By: M. St. Jean on 03-JUL-13 @ 07:00					
Matrix: Surface Water					
Miscellaneous Parameters					

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1327443-6 UP3 - S - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 07:00							
Matrix: Surface Water							
Ammonia, Total (as N)	0.169		0.050	mg/L		06-JUL-13	R2644431
Color, True	8.5		2.0	C.U.		06-JUL-13	R2644496
Total Suspended Solids	6.0		2.0 3.0	mg/L		06-JUL-13	R2644490 R2644442
Turbidity	3.65		0.10	NTU		06-JUL-13	R2644442
pH				-			
•	8.07		0.10	рН		06-JUL-13	R2644445
Total Metals in Water by CRC ICPMS Aluminum (AI)-Total	0.0655		0.0030	mg/L		07-JUL-13	R2644484
Antimony (Sb)-Total	0.00077		0.00010	mg/L		07-JUL-13	R2644484
Arsenic (As)-Total	0.208		0.00010	mg/L		07-JUL-13	R2644484
Barium (Ba)-Total	0.200		0.000050	mg/L		07-JUL-13	R2644484
Beryllium (Be)-Total	< 0.00050		0.00050	mg/L		07-JUL-13	R2644484
Bismuth (Bi)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Boron (B)-Total	0.033		0.010	mg/L		07-JUL-13	R2644484
Cadmium (Cd)-Total	0.000011		0.000010	mg/L		07-JUL-13	R2644484
Calcium (Ca)-Total	112		0.020	mg/L		07-JUL-13	R2644484
Chromium (Cr)-Total	0.00035		0.00010	mg/L		07-JUL-13	R2644484
Cobalt (Co)-Total	0.00299		0.00010	mg/L		07-JUL-13	R2644484
Copper (Cu)-Total	0.00314		0.00010	mg/L		07-JUL-13	R2644484
Iron (Fe)-Total	0.722		0.010	mg/L		07-JUL-13	R2644484
Lead (Pb)-Total	0.000871		0.000050	mg/L		07-JUL-13	R2644484
Lithium (Li)-Total	<0.0050		0.0050	mg/L		07-JUL-13	R2644484
Magnesium (Mg)-Total	7.93		0.0050	mg/L		07-JUL-13	R2644484
Manganese (Mn)-Total	0.139		0.000050	mg/L		07-JUL-13	R2644484
Molybdenum (Mo)-Total	0.00232		0.000050	mg/L		07-JUL-13	R2644484
Nickel (Ni)-Total	0.00682		0.00010	mg/L		07-JUL-13	R2644484
Phosphorus (P)-Total	<0.30		0.30	mg/L		07-JUL-13	R2644484
Potassium (K)-Total Selenium (Se)-Total	6.68 <0.00010		0.050 0.00010	mg/L mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
Silicon (Si)-Total	0.853		0.00010	-		07-JUL-13	R2644484
Silver (Ag)-Total	<0.00010		0.050	mg/L mg/L		07-JUL-13	R2644484 R2644484
Sodium (Na)-Total	24.8		0.000010	mg/L		07-JUL-13	R2644484
Strontium (Sr)-Total	0.179		0.00010	mg/L		07-JUL-13	R2644484
Thallium (TI)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Tin (Sn)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Titanium (Ti)-Total	0.00383		0.00030	mg/L		07-JUL-13	R2644484
Uranium (U)-Total	0.000274		0.000010	mg/L		07-JUL-13	R2644484
Vanadium (V)-Total	0.00042		0.00010	mg/L		07-JUL-13	R2644484
Zinc (Zn)-Total	0.0043		0.0030	mg/L		07-JUL-13	R2644484
Dissolved Metals in Water by CRC ICPMS							
Aluminum (AI)-Dissolved	0.0219		0.0010	mg/L		06-JUL-13	R2644492
Antimony (Sb)-Dissolved	0.00069		0.00010	mg/L		06-JUL-13	R2644492
Arsenic (As)-Dissolved	0.104		0.00010	mg/L		06-JUL-13	R2644492
Barium (Ba)-Dissolved	0.0155		0.000050	mg/L		06-JUL-13	R2644492
Beryllium (Be)-Dissolved	<0.00050		0.00050	mg/L		06-JUL-13	R2644492
Bismuth (Bi)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Boron (B)-Dissolved	0.030		0.010	mg/L		06-JUL-13	R2644492
Cadmium (Cd)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Calcium (Ca)-Dissolved	107		0.020	mg/L		06-JUL-13	R2644492
Chromium (Cr)-Dissolved	0.00014		0.00010	mg/L		06-JUL-13	R2644492
Cobalt (Co)-Dissolved Copper (Cu)-Dissolved	0.00221		0.00010	mg/L		06-JUL-13 06-JUL-13	R2644492
Iron (Fe)-Dissolved	0.00141 0.031		0.00010 0.010	mg/L mg/L		06-JUL-13 06-JUL-13	R2644492 R2644492
	0.031		0.010	ilig/L		00001-13	112044492

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1327443-6 UP3 - S - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 07:00							
Matrix: Surface Water							
Dissolved Metals in Water by CRC ICPMS							
Lead (Pb)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Lithium (Li)-Dissolved	<0.0030		0.0030	mg/L		06-JUL-13	R2644492
Magnesium (Mg)-Dissolved	7.22		0.0050	mg/L		06-JUL-13	R2644492
Manganese (Mn)-Dissolved	0.101		0.000050	mg/L		06-JUL-13	R2644492
Molybdenum (Mo)-Dissolved	0.00206		0.000050	mg/L		06-JUL-13	R2644492
Nickel (Ni)-Dissolved	0.00529		0.00010	mg/L		06-JUL-13	R2644492
Phosphorus (P)-Dissolved	<0.30		0.30	mg/L		06-JUL-13	R2644492
Potassium (K)-Dissolved	6.04		0.050	mg/L		06-JUL-13	R2644492
Selenium (Se)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Silicon (Si)-Dissolved	0.748		0.050	mg/L		06-JUL-13	R2644492
Silver (Ag)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Sodium (Na)-Dissolved	22.5		0.050	mg/L		06-JUL-13	R2644492
Strontium (Sr)-Dissolved	0.167		0.00010	mg/L		06-JUL-13	R2644492
Thallium (TI)-Dissolved Titanium (Ti)-Dissolved	<0.000050 <0.00030		0.000050 0.00030	mg/L		06-JUL-13 06-JUL-13	R2644492 R2644492
Tin (Sn)-Dissolved	<0.00030		0.00030	mg/L		06-JUL-13 06-JUL-13	R2644492 R2644492
Uranium (U)-Dissolved	0.000247		0.00010	mg/L mg/L		06-JUL-13	R2644492 R2644492
Vanadium (V)-Dissolved	<0.000247		0.00010	mg/L		06-JUL-13	R2644492 R2644492
Zinc (Zn)-Dissolved	0.0015		0.00010	mg/L		06-JUL-13	R2644492
NO2, NO3, & (NO2+NO3) in Water	0.0010		0.0010	iiig/ E		0000210	112044452
Nitrate as N by IC							
Nitrate (as N)	0.304		0.050	mg/L		06-JUL-13	R2644651
Nitrate+Nitrite				5			
Nitrate and Nitrite (as N)	0.304		0.071	mg/L		07-JUL-13	
Nitrite as N by IC				-			
Nitrite (as N)	<0.050		0.050	mg/L		06-JUL-13	R2644651
L1327443-7 UP3 - M - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 07:00							
Matrix: Surface Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	0.169		0.050	mg/L		06-JUL-13	R2644431
Color, True	7.7		2.0	C.U.		06-JUL-13	R2644496
Total Suspended Solids	<3.0		3.0	mg/L		06-JUL-13	R2644442
Turbidity	4.35		0.10	NTU		06-JUL-13	R2644448
pH	8.06		0.10	pН		06-JUL-13	R2644445
Total Metals in Water by CRC ICPMS							
Aluminum (AI)-Total	0.0613		0.0030	mg/L		07-JUL-13	R2644484
Antimony (Sb)-Total	0.00079		0.00010	mg/L		07-JUL-13	R2644484
Arsenic (As)-Total	0.202		0.00010	mg/L		07-JUL-13	R2644484
Barium (Ba)-Total	0.0160		0.000050	mg/L		07-JUL-13	R2644484
Beryllium (Be)-Total	<0.00050		0.00050	mg/L		07-JUL-13	R2644484
Bismuth (Bi)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Boron (B)-Total	0.033		0.010	mg/L		07-JUL-13	R2644484
Cadmium (Cd)-Total	0.000017		0.000010	mg/L		07-JUL-13	R2644484
Calcium (Ca)-Total	107		0.020	mg/L		07-JUL-13	R2644484
Chromium (Cr)-Total	0.00053		0.00010	mg/L		07-JUL-13	R2644484
Cobalt (Co)-Total	0.00297		0.00010	mg/L		07-JUL-13	R2644484
Copper (Cu)-Total	0.00317		0.00010	mg/L		07-JUL-13	R2644484
Iron (Fe)-Total	0.712		0.010	mg/L		07-JUL-13	R2644484
Lead (Pb)-Total	0.000895		0.000050	mg/L		07-JUL-13	R2644484
Lithium (Li)-Total	<0.0050		0.0050	mg/L		07-JUL-13	R2644484

L13274437 UP3 - M - OFF Sampled By: M. St. Jean on (0.5)UL-13 (9, 07:00 Matrix: Sxindee Water Total Metals in Water by CRC ICPMS 0.0050 mg/L 07-JUL-13 R2844484 Magnesium (Mo)-Total 0.00230 0.000060 mg/L 07-JUL-13 R2844484 Nickel (Ni)-Total 0.00230 0.000060 mg/L 07-JUL-13 R2844484 Polssphorus (P)-Total 0.33 0.33 mg/L 07-JUL-13 R2844484 Polssphorus (P)-Total 0.23 0.30 mg/L 07-JUL-13 R2844484 Solientum (S)-Total 0.241 0.200010 0.00010 mg/L 07-JUL-13 R2844484 Solientum (S)-Total 0.242 0.250 mg/L 07-JUL-13 R2844484 Total (M) Na)-Total 0.00029 0.00010 mg/L 07-JUL-13 R2844484 Total (M) Na)-Total 0.00029 0.00010 mg/L 07-JUL-13 R2844484 Total (M) Na)-Total 0.00027 0.000010 mg/L 07-JUL-13 R2844484	Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
Sample By: M. St. Jean on 03-JUL-13 @ 07:00 mgL 07-JUL-13 R244444 Marganese (Martin by CRC ICPNS 0.00000 mgL 07-JUL-13 R244444 Marganese (Martin by Total 0.0320 0.00000 mgL 07-JUL-13 R244444 Molyaharum (Ma)-Total 0.00230 0.00000 mgL 07-JUL-13 R244444 Prospharus (P)-Total 0.00230 0.30 mgL 07-JUL-13 R244444 Steiner (No.17041 0.030 0.30 mgL 07-JUL-13 R244444 Steiner (No.17041 0.00010 0.00010 mgL 07-JUL-13 R244444 Steiner (No.17041 0.00010 0.00010 mgL 07-JUL-13 R244444 Steiner (No.17041 0.00010 0.00010 mgL 07-JUL-13 R244444 Steiner (No.17041 0.00029 0.00010 mgL 07-JUL-13 R244444 Tinsium (No.17041 0.00029 0.00010 mgL 07-JUL-13 R244444 Tinsium (No.17041 0.00029 0.00010 mgL	L1327443-7 UP3 - M - OFF							
Matrix Surface Water by CRC ICPMS 7.54 0.0050 mgl. 07-JUL-13 R544444 Marganses (Mp)-Total 0.0320 0.000050 mgl. 07-JUL-13 R544444 Molyneasum (Mp)-Total 0.00200 0.000050 mgl. 07-JUL-13 R544444 Prosphorus (P)-Total 0.00200 0.00010 mgl. 07-JUL-13 R544444 Solution (Mp)-Total 0.00200 0.00010 mgl. 07-JUL-13 R544444 Solution (Mp)-Total 0.00010 0.00010 mgl. 07-JUL-13 R544444 Solution (Mp)-Total 0.00010 0.00010 mgl. 07-JUL-13 R544444 Solution (Mp)-Total 0.00020 0.00010 mgl. 07-JUL-13 R544444 Solution (Mp)-Total 0.01075 0.00010 mgl. 07-JUL-13 R544444 Solution (Mp)-Total 0.01075 0.00010 mgL. 07-JUL-13 R544444 Solution (Mp)-Total 0.00220 0.00010 mgL. 07-JUL-13 R544444 Varesdum (M	Sampled By: M. St. Jean on 03-JUL-13 @ 07:00							
Total Meals in Water by CRC LCPMS 7.4 D.0000 mg/L 0"-JUL-13 R2544484 Magnesim (Ma)-Total 0.135 0.000050 mg/L 0"-JUL-13 R2544484 Nickel (Ma)-Total 0.00863 0.00010 mg/L 0"-JUL-13 R2544484 Nickel (Ma)-Total 0.00863 0.00010 mg/L 0"-JUL-13 R2544484 Potssphure (F)-Total 0.030 0.30 mg/L 0"-JUL-13 R2544484 Solenvin (Se)-Total 0.05010 0.0501 mg/L 0"-JUL-13 R2544484 Solar (Na)-Total 0.00010 0.00010 mg/L 0"-JUL-13 R2544484 Solar (Na)-Total 0.00020 0.000010 mg/L 0"-JUL-13 R2544484 Total 0.000210 0.000010 mg/L 0"-JUL-13 R2544484 Total 0.00026 0.000010 mg/L 0"-JUL-13 R2544484 Total 0.00027 0.000010 mg/L 0"-JUL-13 R2544484 Total 0.00027 0.000010 mg	1 ,							
Maganesium (Mg)-Total 7,54 0.00050 mg/L 07-JUL-13 R2644484 Molyhoerum (Mg)-Total 0.00230 0.000050 mg/L 07-JUL-13 R2644484 Molyhoerum (Mg)-Total 0.00230 0.00010 mg/L 07-JUL-13 R2644484 Prosspin (K)-Total 0.030 0.30 mg/L 07-JUL-13 R2644484 Solicon (S)-Total 0.03010 0.00010 mg/L 07-JUL-13 R2644484 Solicon (S)-Total 0.040010 0.00010 mg/L 07-JUL-13 R2644484 Solicon (S)-Total 0.040010 0.00010 mg/L 07-JUL-13 R2644484 Solicon (Na)-Total 2.0300050 0.000010 mg/L 07-JUL-13 R2644484 Thailim (T)-Total 0.00024 0.00010 mg/L 07-JUL-13 R2644484 Thailim (T)-Total 0.000273 0.000010 mg/L 07-JUL-13 R2644484 Thailim (T)-Total 0.000273 0.000010 mg/L 07-JUL-13 R2644492 Varan (Crip-Total 0.0								
Manganese (Mn)-Total 0.135 0.000050 mg/L 07-JUL-13 R2644484 Nickel (Ni)-Total 0.00663 0.00010 mg/L 07-JUL-13 R2544484 Potassium (K)-Total 0.230 0.30 mg/L 07-JUL-13 R2544484 Silicon (S)-Total 0.621 0.050 mg/L 07-JUL-13 R2544484 Silicon (S)-Total 0.848 0.050 mg/L 07-JUL-13 R2544484 Silicon (S)-Total 0.848 0.050 mg/L 07-JUL-13 R2544484 Strominn (S)-Total 0.176 0.000010 0.000010 mg/L 07-JUL-13 R2544484 Strominn (S)-Total 0.176 0.000010 mg/L 07-JUL-13 R2544484 Tin S)-Total 0.00027 0.00010 mg/L 07-JUL-13 R2544484 Tin S)-Total 0.00027 0.00010 mg/L 07-JUL-13 R2544484 Tin S)-Total 0.00027 0.00010 mg/L 07-JUL-13 R2544484 Vanadum (V)-Total 0.00027		7.54		0.0050	ma/l		07-1111-13	P2644484
Mobjednum (Moj-Total 0.00230 0.00005 mgL 07-UL-13 R264484 Prosphorus (P)-Total 0.030 ngL 07-UL-13 R264484 Potassim (K)-Total 0.00010 mgL 07-UL-13 R264484 Silien (A)-Total 0.00010 0.00010 mgL 07-UL-13 R264484 Silien (A)-Total 0.0848 0.0501 mgL 07-UL-13 R264484 Solum (N)-Total 0.0848 0.0501 mgL 07-UL-13 R264484 Solum (N)-Total 0.00010 0.00010 mgL 07-UL-13 R264484 Strontum (S)-Total 0.176 0.00005 mgL 07-UL-13 R264484 Thrailum (T)-Total 0.00025 0.00010 mgL 07-UL-13 R264484 Thrainum (T)-Total 0.000273 0.000010 mgL 07-UL-13 R264484 Varadium (Y)-Total 0.00051 0.00030 mgL 07-UL-13 R264484 Varadium (Y)-Total 0.00051 0.00010 mgL 06-UL-13 R2644					-			
Nickel (Ni)-Total 0.00663 0.0010 mgL 07-ULI-13 R284484 Potasphorus (Mi)-Total 6.21 0.050 mgL 07-ULI-13 R284484 Selenium (Se)-Total 6.21 0.050 mgL 07-ULI-13 R284484 Silecn (Gi)-Total 0.0481 0.00010 mgL 07-ULI-13 R284484 Solur (Na)-Total 2.38 0.00010 mgL 07-ULI-13 R284484 Stroit (Na)-Total 0.00029 0.00010 mgL 07-ULI-13 R284484 Tinsinu (Ti)-Total 0.00029 0.00010 mgL 07-ULI-13 R284484 Tinsinu (Ti)-Total 0.000273 0.000010 mgL 07-ULI-13 R284484 Vanadium (V)-Total 0.000273 0.00010 mgL 07-ULI-13 R284484 Zon-Total 0.000273 0.00010 mgL 07-ULI-13 R284484 Zon-Total 0.00050 mgL 07-ULI-13 R284482 Antimory (NS)-Disolved 0.00050 mgL 06-ULI-13 R28448	o ()				-			
Phospinus (P)-Total -0.30 mg/L 07-UL-13 R2844484 Salenium (Se)-Total 0.010 0.0001 0.0011 0.0001 0.0011 0.0001 0.0011 0.0001 0.0011 0.0001 0.0001 0.0011 0.0001 0.0011 0.0001 0.0011 0.0001 0.0011 <td>· · · ·</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>	· · · ·				-			
Potassium (K)-Total 6.21 0.050 mg/L 07-ULI-13 R284484 Sileion (S)-Total 0.00010 0.00010 mg/L 07-ULI-13 R284484 Sileion (S)-Total 0.00010 0.00010 mg/L 07-ULI-13 R284484 Sordium (N)-Total 0.328 0.060 mg/L 07-ULI-13 R284484 Strontium (S)-Total 0.076 0.00010 mg/L 07-ULI-13 R284484 Tin (S)-Total 0.00029 0.00010 mg/L 07-ULI-13 R284484 Tin (S)-Total 0.000216 0.00010 mg/L 07-ULI-13 R284484 Vanadium (V)-Total 0.000273 0.00010 mg/L 07-ULI-13 R284484 Vanadium (V)-Total 0.00023 0.00010 mg/L 07-ULI-13 R284484 Vanadium (V)-Total 0.00024 0.00010 mg/L 06-ULI-13 R284484 Vanadium (V)-Total 0.00025 0.0010 mg/L 06-ULI-13 R284482 Antimory (Sb)-Dissolved 0.100071 0.00010<					-			
Selentum (Se)-Total 0.00010 mg/L 07-ULI-13 R284484 Silion (Sh)-Total 0.848 0.050 mg/L 07-ULI-13 R284484 Solium (Na)-Total 2.3.8 0.050 mg/L 07-ULI-13 R284484 Solium (Na)-Total 2.3.8 0.050 mg/L 07-ULI-13 R284484 Strontum (Sh)-Total 0.00010 0.00010 mg/L 07-ULI-13 R284484 Tin (Sh)-Total 0.00029 0.00010 mg/L 07-ULI-13 R284484 Vanaulum (T)-Total 0.000273 0.00010 mg/L 07-ULI-13 R284484 Vanaulum (Y)-Total 0.000273 0.00010 mg/L 07-ULI-13 R284484 Discolved Minis in Water by CRC ICPMS 0.00027 0.00010 mg/L 06-ULI-13 R284482 Animum (A)-Dissolved 0.00271 0.00010 mg/L 06-ULI-13 R284482 Animum (A)-Dissolved 0.00260 0.00050 mg/L 06-ULI-13 R284492 Animorus (Sb)-Dissolved 0.00015 0.000					-			
Silicor (S): Total 0.84 0.050 mg/L 0.7-UL:13 R2844484 Siver (Ag): Total 2.3.8 0.0601 mg/L 07-UL:13 R2844484 Stodum (Na): Total 2.3.8 0.00010 mg/L 07-UL:13 R2844484 Tinshium (Th): Total 0.00029 0.00010 mg/L 07-UL:13 R2844484 Tinshium (U): Total 0.00029 0.00010 mg/L 07-UL:13 R2844484 Vandum (V): Total 0.000273 0.00001 mg/L 07-UL:13 R2844484 Vandum (V): Total 0.000273 0.00001 mg/L 07-UL:13 R2844484 Vandum (V): Total 0.00053 0.0030 mg/L 07-UL:13 R2844484 Auminum (A): Dissolved 0.0235 0.0010 mg/L 06-UL:13 R2844492 Antimory (Sb): Dissolved 0.0149 0.000050 mg/L 06-UL:13 R2844492 Antimory (B): Dissolved 0.0149 0.000050 mg/L 06-UL:13 R2844492 Barium (B): Dissolved 0.029					-			
Silver (Ag)-Total <0.00010 mg/L 07-ULI-13 R2844484 Sodium (Na)-Total 0.176 0.00010 mg/L 07-ULI-13 R2844484 Thellium (Th)-Total 0.176 0.00010 mg/L 07-ULI-13 R2844484 Tin (Sh)-Total 0.00029 0.00010 mg/L 07-ULI-13 R2844484 Tin (Sh)-Total 0.00029 0.00010 mg/L 07-ULI-13 R2844484 Vanadium (V)-Total 0.000213 0.00010 mg/L 07-ULI-13 R2844484 Vanadium (V)-Total 0.000273 0.00010 mg/L 07-ULI-13 R2844484 Zin (Zn)-Total 0.00021 0.00010 mg/L 07-ULI-13 R2844492 Antimory (Sb)-Disolved 0.00021 0.00010 mg/L 06-ULI-13 R2844492 Antimory (Sb)-Disolved 0.015 0.00010 mg/L 06-ULI-13 R2844492 Antimory (Sb)-Disolved 0.0149 0.00050 mg/L 06-ULI-13 R284492 Bariun (Ba)-Disolved 0.0029 0.00010					-			
Sodium (Na)-Total 23.8 0.60 mg/L 07-UL-13 R284484 Thallium (Ti)-Total 0.176 0.00050 mg/L 07-UL-13 R284484 Thallium (Ti)-Total 0.00029 0.00010 mg/L 07-UL-13 R284484 Tranum (U)-Total 0.000273 0.00010 mg/L 07-UL-13 R284484 Vanadium (V)-Total 0.000273 0.00001 mg/L 07-UL-13 R284484 Zhi (Zh)-Total 0.00053 0.0030 mg/L 07-UL-13 R284484 Zhi (Zh)-Total 0.00051 0.00010 mg/L 07-UL-13 R284484 Zhi (Zh)-Total 0.00051 0.00010 mg/L 06-UL-13 R284492 Attiminum (A)-Dissolved 0.00071 0.00010 mg/L 06-UL-13 R284492 Barium (Ba)-Dissolved 0.0149 0.000050 mg/L 06-UL-13 R284492 Barium (Ba)-Dissolved 0.02010 0.00005 mg/L 06-UL-13 R284492 Cadium (Ca)-Dissolved 0.00015 0.00010 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>					-			
Strontum (St)-Total 0.176 0.00010 mg/L 07-JUL-13 R284484 Thallium (TI)-Total 0.00029 0.00010 mg/L 07-JUL-13 R284484 Tin (Sh)-Total 0.00021 0.00010 mg/L 07-JUL-13 R284484 Tinatium (TI)-Total 0.000273 0.000010 mg/L 07-JUL-13 R284484 Vanadum (V)-Total 0.000273 0.00010 mg/L 07-JUL-13 R284484 Disolved Metals in Water by CRC ICPMS 0.0053 0.0030 mg/L 07-JUL-13 R264482 Antimoru (Sb)-Disolved 0.00275 0.0010 mg/L 06-JUL-13 R264482 Arsenic (As)-Disolved 0.0026 mg/L 06-JUL-13 R264482 Arsenic (As)-Disolved 0.014 0.00050 mg/L 06-JUL-13 R2644492 Brinum (B)-Disolved 0.0129 0.010 mg/L 06-JUL-13 R2644492 Colomium (C)-Disolved 0.029 0.010 mg/L 06-JUL-13 R264492 Bron (B)-Disolved 0.02017 <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></t<>					-			
Thatilum (Th, Total <0.00050 0.00050 mg/L 07.UL-13 R2844484 Tin (Sh)-Total 0.00029 0.00010 mg/L 07.UL-13 R2844484 Tinainim (U)-Total 0.000273 0.00010 mg/L 07.UL-13 R2844484 Vanadium (V)-Total 0.000273 0.000010 mg/L 07.UL-13 R2844484 Zinc (Za)-Total 0.0053 0.0030 mg/L 07.UL-13 R2844484 Dissolved Metals in Warb by CR I CPMS 0.0053 0.0010 mg/L 06.UL-13 R2844492 Antimony (Sb)-Dissolved 0.0165 0.0010 mg/L 06.JUL-13 R2844492 Barium (Ba)-Dissolved 0.0149 0.00050 mg/L 06.JUL-13 R2844492 Berylium (Be)-Dissolved 0.0149 0.00050 mg/L 06.JUL-13 R2844492 Barium (B)-Dissolved 0.0010 0.00050 mg/L 06.JUL-13 R2844492 Cadmium (C)-Dissolved 0.029 0.010 mg/L 06.JUL-13 R2844492 Cadmium (-			
Tin (Sn)-Total 0.00029 0.00010 mg/L 07-JUL-13 R284484 Titanium (Ti)-Total 0.000213 0.000010 mg/L 07-JUL-13 R284484 Vanadium (V)-Total 0.000273 0.000010 mg/L 07-JUL-13 R284484 Vanadium (V)-Total 0.000273 0.00010 mg/L 07-JUL-13 R284484 Dissolved Metals in Water by CRC ICPMS 0.00053 0.0010 mg/L 06-JUL-13 R2644492 Antimory (Sb)-Dissolved 0.00071 0.00010 mg/L 06-JUL-13 R2644492 Arsenic (As)-Dissolved 0.0165 0.00010 mg/L 06-JUL-13 R2644492 Barium (Ba)-Dissolved 0.0149 0.00050 mg/L 06-JUL-13 R2644492 Barium (Ca)-Dissolved 0.029 0.010 mg/L 06-JUL-13 R2644492 Cadium (Ca)-Dissolved 0.02010 0.00010 mg/L 06-JUL-13 R2644492 Cadium (Ca)-Dissolved 0.00015 0.00010 mg/L 06-JUL-13 R2644492 Chomium (Ca					-			
Titanium (Th-Total 0.00316 0.00030 mg/L 07-JUL-13 R2844484 Uranium (U)-Total 0.000273 0.000010 mg/L 07-JUL-13 R2844484 Zinc (Zn)-Total 0.00031 0.0030 mg/L 07-JUL-13 R2844484 Zinc (Zn)-Total 0.00041 0.00001 mg/L 06-JUL-13 R2844484 Auminum (A)-Dissolved 0.00071 0.00010 mg/L 06-JUL-13 R2844492 Antimony (Sb)-Dissolved 0.0105 0.00071 0.00010 mg/L 06-JUL-13 R2844492 Barium (Ba)-Dissolved 0.01071 0.00050 mg/L 06-JUL-13 R2844492 Barium (Ba)-Dissolved 0.0129 0.010 mg/L 06-JUL-13 R2844492 Barium (Ba)-Dissolved 0.0219 0.010 mg/L 06-JUL-13 R2844492 Cadmium (Cd)-Dissolved 0.0029 0.010 mg/L 06-JUL-13 R2844492 Cadmium (Cd)-Dissolved 0.0016 mg/L 06-JUL-13 R2844492 Cobalt (Co)-Dissolved								
Uranium (U)-Total 0.000273 0.000010 mg/L 07-UUL-13 R2644484 Vanadum (V)-Total 0.00041 0.00030 mg/L 07-UUL-13 R2644484 Dissolved Metals in Water by CRC ICPMS 0.0235 0.0010 mg/L 06-UUL-13 R2644484 Auminum (A)-Dissolved 0.0235 0.0010 mg/L 06-UUL-13 R2644492 Antimory (Sb)-Dissolved 0.0105 0.00010 mg/L 06-UUL-13 R2644492 Barium (Ba)-Dissolved 0.0149 0.00050 mg/L 06-UUL-13 R2644492 Beryllium (Be)-Dissolved 0.0029 0.0100 mg/L 06-UUL-13 R2644492 Cadium (Cd)-Dissolved 0.029 0.010 mg/L 06-ULL-13 R2644492 Cadium (Cd)-Dissolved 0.00015 0.00010 mg/L 06-ULL-13 R2644492 Cadium (Cd)-Dissolved 0.00127 0.0010 mg/L 06-ULL-13 R2644492 Cadium (Cd)-Dissolved 0.00217 0.00010 mg/L 06-ULL-13 R2644492 Cadium					-			
Vanadium (V)-Total 0.00041 0.00010 mg/L 07-JUL-13 R2644484 Zinc (Zn)-Total 0.0053 0.0030 mg/L 07-JUL-13 R2644484 Aluminum (A)-Dissolved Metals in Water by CRC ICPMS 0.000010 mg/L 06-JUL-13 R2644492 Antimory (Sb)-Dissolved 0.00071 0.00010 mg/L 06-JUL-13 R2644492 Barium (Ba)-Dissolved 0.0105 0.000050 mg/L 06-JUL-13 R2644492 Barium (Ba)-Dissolved 0.0149 0.000050 mg/L 06-JUL-13 R2644492 Born (B)-Dissolved 0.0029 0.010 mg/L 06-JUL-13 R2644492 Cadmium (C)-Dissolved 0.0029 0.010 mg/L 06-JUL-13 R2644492 Cadmium (C)-Dissolved 0.00217 0.00010 mg/L 06-JUL-13 R2644492 Cobalt (C)-Dissolved 0.00217 0.00010 mg/L 06-JUL-13 R2644492 Cobalt (C)-Dissolved 0.00217 0.00010 mg/L 06-JUL-13 R2644492 Cobalt (C)-Dissolved <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>					-			
Zinc (Zn)-Total 0.0053 0.0030 mg/L 07-JUL-13 R2644484 Dissolved Metals in Water by CRC ICPMS 0.0235 0.0010 mg/L 06-JUL-13 R2644492 Antimium (IA)-Dissolved 0.00071 0.00010 mg/L 06-JUL-13 R2644492 Arsenic (As)-Dissolved 0.0149 0.000050 mg/L 06-JUL-13 R2644492 Berlum (Ba)-Dissolved -0.000050 0.000050 mg/L 06-JUL-13 R2644492 Born (B)-Dissolved -0.000050 0.000050 mg/L 06-JUL-13 R2644492 Brom (B)-Dissolved 0.0229 0.010 mg/L 06-JUL-13 R2644492 Cadium (Cd)-Dissolved 0.0021 mg/L 06-JUL-13 R2644492 Cadium (Cd)-Dissolved 0.00217 0.00010 mg/L 06-JUL-13 R2644492 Cobalt (Co)-Dissolved 0.0015 0.00010 mg/L 06-JUL-13 R2644492 Cobalt (Co)-Dissolved 0.00217 0.00010 mg/L 06-JUL-13 R2644492 Cobalt (Co)-Dissolved					-			
Dissolved Metais in Water by CRC ICPMIS num					-			
Aluminum (Al)-Dissolved 0.0235 0.0010 mg/L 06-JUL-13 R2644492 Antimony (Sb)-Dissolved 0.00071 0.00010 mg/L 06-JUL-13 R2644492 Arsenic (As)-Dissolved 0.105 0.00050 mg/L 06-JUL-13 R2644492 Barium (Ba)-Dissolved 0.0149 0.00050 mg/L 06-JUL-13 R2644492 Bismuth (B)-Dissolved -0.000050 0.00050 mg/L 06-JUL-13 R2644492 Cadmium (Ca)-Dissolved -0.000050 0.00050 mg/L 06-JUL-13 R2644492 Cadmium (Ca)-Dissolved -0.000010 0.00010 mg/L 06-JUL-13 R2644492 Cadmium (Ca)-Dissolved -0.00015 0.00010 mg/L 06-JUL-13 R2644492 Cobalt (Ca)-Dissolved 0.00217 0.00010 mg/L 06-JUL-13 R2644492 Cobalt (Ca)-Dissolved 0.0012 0.000050 mg/L 06-JUL-13 R2644492 Cobalt (Ca)-Dissolved 0.00217 0.00010 mg/L 06-JUL-13 R2644492		0.0053		0.0030	mg/∟		07-JUL-13	R2644484
Antimony (Sb)-Dissolved 0.00071 0.00010 mg/L 06-JUL-13 R2644492 Arsenic (As)-Dissolved 0.106 0.000050 mg/L 06-JUL-13 R2644492 Beryllium (Be)-Dissolved 0.01050 0.00050 mg/L 06-JUL-13 R2644492 Bismuth (B)-Dissolved -0.00050 0.00050 mg/L 06-JUL-13 R2644492 Bismuth (B)-Dissolved -0.000050 0.00050 mg/L 06-JUL-13 R2644492 Calium (Ca)-Dissolved 0.022 0.010 mg/L 06-JUL-13 R2644492 Calium (Ca)-Dissolved 0.00217 0.00010 mg/L 06-JUL-13 R2644492 Copper (Cu)-Dissolved 0.00142 0.00010 mg/L 06-JUL-13 R2644492 Copper (Cu)-Dissolved 0.00142 0.0010 mg/L 06-JUL-13 R2644492 Lindi (Ch)-Dissolved 0.00142 0.0010 mg/L 06-JUL-13 R2644492 Lindi (P)-Dissolved 0.0142 0.00010 mg/L 06-JUL-13 R2644492 Lindi (P)-Di		0.0225		0.0010	ma/l			D2644402
Arsenic (Ås)-Dissolved 0.105 0.0010 mg/L 06-JUL-13 R2644492 Barjuim (Ba)-Dissolved 0.0149 0.00050 mg/L 06-JUL-13 R2644492 Bismuth (Bi)-Dissolved -0.00050 0.00050 mg/L 06-JUL-13 R2644492 Bismuth (Bi)-Dissolved -0.00050 0.00050 mg/L 06-JUL-13 R2644492 Cadmium (Ca)-Dissolved 0.029 0.010 mg/L 06-JUL-13 R2644492 Calcium (Ca)-Dissolved 0.00010 0.00010 mg/L 06-JUL-13 R2644492 Calcium (Ca)-Dissolved 0.00015 0.0010 mg/L 06-JUL-13 R2644492 Cobalt (Ca)-Dissolved 0.0015 0.0010 mg/L 06-JUL-13 R2644492 Cobalt (Ca)-Dissolved 0.00142 0.0010 mg/L 06-JUL-13 R2644492 Lead (Pb)-Dissolved 0.0025 mg/L 06-JUL-13 R2644492 Itim (Li)-Dissolved 0.00268 0.00050 mg/L 06-JUL-13 R2644492 Maganees (Mh)-Dissolved 0.					-			
Barium (Ba)-Dissolved 0.0149 0.00050 mg/L 06-JUL-13 R2644492 Beryllium (Be)-Dissolved <0.00050					-			
Beryllium (Be)-Dissolved <0.00050 mg/L 06-JUL-13 R2644492 Bismuth (Bi)-Dissolved 0.00050 0.00050 mg/L 06-JUL-13 R2644492 Bismuth (Bi)-Dissolved 0.029 0.010 mg/L 06-JUL-13 R2644492 Cadmium (Cd)-Dissolved <0.00010					-			
Bismuth (Bi)-Dissolved <0.000050 mg/L 06-JUL-13 R2644492 Boron (B)-Dissolved 0.029 0.010 mg/L 06-JUL-13 R2644492 Cadmium (Cd)-Dissolved 105 0.020 mg/L 06-JUL-13 R2644492 Chromium (Cr)-Dissolved 0.00015 0.00010 mg/L 06-JUL-13 R2644492 Cobalt (Co)-Dissolved 0.00142 0.00010 mg/L 06-JUL-13 R2644492 Copper (Cu)-Dissolved 0.00142 0.00010 mg/L 06-JUL-13 R2644492 Lead (Pb)-Dissolved 0.00142 0.00010 mg/L 06-JUL-13 R2644492 Lead (Pb)-Dissolved 0.0028 0.000050 mg/L 06-JUL-13 R2644492 Magnesium (Mg)-Dissolved 7.17 0.0050 mg/L 06-JUL-13 R2644492 Molybdenum (Mo)-Dissolved 0.00253 0.000050 mg/L 06-JUL-13 R2644492 Molybdenum (Mo)-Dissolved 0.00553 0.00010 mg/L 06-JUL-13 R2644492 Phosphorus (P)-Dissolved					-			
Boron (B)-Dissolved 0.029 0.010 mg/L 06-JUL-13 R2644492 Calcium (Cd)-Dissolved 105 0.00010 mg/L 06-JUL-13 R2644492 Calcium (Ca)-Dissolved 0.0015 0.00010 mg/L 06-JUL-13 R2644492 Chromium (Cr)-Dissolved 0.00217 0.00010 mg/L 06-JUL-13 R2644492 Cobat (Co)-Dissolved 0.00142 0.00010 mg/L 06-JUL-13 R2644492 Lead (Pb)-Dissolved 0.00142 0.0010 mg/L 06-JUL-13 R2644492 Lead (Pb)-Dissolved 0.00058 0.000050 mg/L 06-JUL-13 R2644492 Magnesium (Mg)-Dissolved 7.17 0.0050 mg/L 06-JUL-13 R2644492 Molybdenum (Mo)-Dissolved 0.00214 0.00050 mg/L 06-JUL-13 R2644492 Nickel (Ni)-Dissolved 0.00214 0.00050 mg/L 06-JUL-13 R2644492 Nickel (Ni)-Dissolved 6.20 0.055 mg/L 06-JUL-13 R2644492 Nickel (Ni)-Dissolved <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>					-			
Cadmiun (Cd)-Dissolved c0.000010 mg/L 06-JUL-13 R2644492 Calcium (Ca)-Dissolved 105 0.020 mg/L 06-JUL-13 R2644492 Chromium (Cr)-Dissolved 0.00015 0.00010 mg/L 06-JUL-13 R2644492 Cobalt (Co)-Dissolved 0.00217 0.00010 mg/L 06-JUL-13 R2644492 Copper (Cu)-Dissolved 0.00142 0.00010 mg/L 06-JUL-13 R2644492 Lead (Pb)-Dissolved 0.042 0.010 mg/L 06-JUL-13 R2644492 Lead (Pb)-Dissolved 0.00058 0.00030 mg/L 06-JUL-13 R2644492 Magnesium (Mg)-Dissolved 7.17 0.0050 mg/L 06-JUL-13 R2644492 Magnesium (Mp)-Dissolved 0.00214 0.00050 mg/L 06-JUL-13 R2644492 Molydenum (Mo)-Dissolved 0.00253 0.00010 mg/L 06-JUL-13 R2644492 Nickel (Ni)-Dissolved <0.0010					-			
Calcium (Ca)-Dissolved 105 0.020 mg/L 06-JUL-13 R2644492 Chromium (Cr)-Dissolved 0.00015 0.00010 mg/L 06-JUL-13 R2644492 Cobalt (Co)-Dissolved 0.00217 0.00010 mg/L 06-JUL-13 R2644492 Copper (Cu)-Dissolved 0.00142 0.0010 mg/L 06-JUL-13 R2644492 Iron (Fe)-Dissolved 0.0022 0.010 mg/L 06-JUL-13 R2644492 Lead (Pb)-Dissolved 0.000058 0.000050 mg/L 06-JUL-13 R2644492 Magnesium (Mg)-Dissolved 7.17 0.00050 mg/L 06-JUL-13 R2644492 Magnesium (Mg)-Dissolved 0.00214 0.000050 mg/L 06-JUL-13 R2644492 Molybdenum (Mo)-Dissolved 0.00214 0.000050 mg/L 06-JUL-13 R2644492 Nickel (Ni)-Dissolved 0.00053 0.00010 mg/L 06-JUL-13 R2644492 Nickel (Ni)-Dissolved 0.00010 0.00010 mg/L 06-JUL-13 R2644492 Storonu (P					-			
Chromium (Cr)-Dissolved 0.00015 0.00010 mg/L 06-JUL-13 R2644492 Cobalt (Co)-Dissolved 0.00142 0.00010 mg/L 06-JUL-13 R2644492 Copper (Cu)-Dissolved 0.0142 0.00010 mg/L 06-JUL-13 R2644492 Iron (Fe)-Dissolved 0.042 0.010 mg/L 06-JUL-13 R2644492 Lead (Pb)-Dissolved 0.00058 0.00050 mg/L 06-JUL-13 R2644492 Lithium (Li)-Dissolved <0.00030					-			
Cobalt (Co)-Dissolved 0.00217 0.00010 mg/L 06-JUL-13 R2644492 Copper (Cu)-Dissolved 0.00142 0.0010 mg/L 06-JUL-13 R2644492 Iron (Fe)-Dissolved 0.0028 0.00058 0.000050 mg/L 06-JUL-13 R2644492 Lithium (Li)-Dissolved 0.000058 0.000050 mg/L 06-JUL-13 R2644492 Magnesium (Mg)-Dissolved 7.17 0.0050 mg/L 06-JUL-13 R2644492 Manganese (Mn)-Dissolved 0.102 0.000050 mg/L 06-JUL-13 R2644492 Molybdenum (Mo)-Dissolved 0.00214 0.000050 mg/L 06-JUL-13 R2644492 Nickel (Ni)-Dissolved 0.00253 0.00010 mg/L 06-JUL-13 R2644492 Phosphorus (P)-Dissolved <0.00553					-			
Copper (Cu)-Dissolved 0.00142 0.0010 mg/L 06-JUL-13 R2644492 Iron (Fe)-Dissolved 0.042 0.010 mg/L 06-JUL-13 R2644492 Lead (Pb)-Dissolved 0.000058 0.000050 mg/L 06-JUL-13 R2644492 Lithium (Li)-Dissolved 0.0020 0.0030 mg/L 06-JUL-13 R2644492 Magnesium (Mg)-Dissolved 7.17 0.0050 mg/L 06-JUL-13 R2644492 Molybdenum (Mo)-Dissolved 0.00214 0.000050 mg/L 06-JUL-13 R2644492 Nickel (Ni)-Dissolved 0.00253 0.00010 mg/L 06-JUL-13 R2644492 Phosphorus (P)-Dissolved <0.030					-			
Iron (Fe)-Dissolved 0.042 0.010 mg/L 06-JUL-13 R2644492 Lead (Pb)-Dissolved 0.000058 0.000050 mg/L 06-JUL-13 R2644492 Lithium (Li)-Dissolved <0.0030					-			
Lead (Pb)-Dissolved 0.000058 0.000050 mg/L 06-JUL-13 R2644492 Lithium (Li)-Dissolved 7.17 0.0030 mg/L 06-JUL-13 R2644492 Magnesium (Mg)-Dissolved 7.17 0.0050 mg/L 06-JUL-13 R2644492 Manganese (Mn)-Dissolved 0.102 0.000050 mg/L 06-JUL-13 R2644492 Molybdenum (Mo)-Dissolved 0.00214 0.00050 mg/L 06-JUL-13 R2644492 Nickel (Ni)-Dissolved 0.00553 0.00010 mg/L 06-JUL-13 R2644492 Phosphorus (P)-Dissolved <0.30					-			
Lithium (Li)-Dissolved <0.0030 mg/L 06-JUL-13 R2644492 Magnesium (Mg)-Dissolved 7.17 0.0050 mg/L 06-JUL-13 R2644492 Manganese (Mn)-Dissolved 0.102 0.000050 mg/L 06-JUL-13 R2644492 Molybdenum (Mo)-Dissolved 0.00214 0.000050 mg/L 06-JUL-13 R2644492 Nickel (Ni)-Dissolved 0.00553 0.00010 mg/L 06-JUL-13 R2644492 Phosphorus (P)-Dissolved 0.00553 0.00010 mg/L 06-JUL-13 R2644492 Selenium (Se)-Dissolved 6.20 0.055 mg/L 06-JUL-13 R2644492 Silicon (Si)-Dissolved <0.00010					-			
Magnesium (Mg)-Dissolved 7.17 0.0050 mg/L 06-JUL-13 R2644492 Manganese (Mn)-Dissolved 0.102 0.000050 mg/L 06-JUL-13 R2644492 Molybdenum (Mo)-Dissolved 0.00214 0.000050 mg/L 06-JUL-13 R2644492 Nickel (Ni)-Dissolved 0.00253 0.00010 mg/L 06-JUL-13 R2644492 Phosphorus (P)-Dissolved <0.00553					-			
Marganese (Mn)-Dissolved 0.102 0.000050 mg/L 06-JUL-13 R2644492 Molybdenum (Mo)-Dissolved 0.00214 0.000050 mg/L 06-JUL-13 R2644492 Nickel (Ni)-Dissolved 0.00553 0.00010 mg/L 06-JUL-13 R2644492 Phosphorus (P)-Dissolved <0.30					0			
Molybdenum (Mo)-Dissolved 0.00214 0.00050 mg/L 06-JUL-13 R2644492 Nickel (Ni)-Dissolved 0.00553 0.00010 mg/L 06-JUL-13 R2644492 Phosphorus (P)-Dissolved <0.30								
Nickel (Ni)-Dissolved 0.00553 0.00010 mg/L 06-JUL-13 R2644492 Phosphorus (P)-Dissolved 6.20 0.30 mg/L 06-JUL-13 R264492 Potassium (K)-Dissolved 6.20 0.050 mg/L 06-JUL-13 R264492 Selenium (Se)-Dissolved <0.00010					-			
Phosphorus (P)-Dissolved <0.30 mg/L 06-JUL-13 R2644492 Potassium (K)-Dissolved 6.20 0.050 mg/L 06-JUL-13 R264492 Selenium (Se)-Dissolved <0.00010								
Potassium (K)-Dissolved 6.20 0.050 mg/L 06-JUL-13 R2644492 Selenium (Se)-Dissolved 0.00010 mg/L 06-JUL-13 R2644492 Silicon (Si)-Dissolved 0.755 0.050 mg/L 06-JUL-13 R2644492 Silver (Ag)-Dissolved 0.755 0.050 mg/L 06-JUL-13 R2644492 Sodium (Na)-Dissolved 22.1 0.050 mg/L 06-JUL-13 R2644492 Strontium (Sr)-Dissolved 0.169 0.00010 mg/L 06-JUL-13 R2644492 Thallium (TI)-Dissolved <0.000050								
Selenium (Se)-Dissolved 0.00010 0.00010 mg/L 06-JUL-13 R2644492 Silicon (Si)-Dissolved 0.755 0.050 mg/L 06-JUL-13 R2644492 Silver (Ag)-Dissolved 0.00010 0.00010 mg/L 06-JUL-13 R2644492 Sodium (Na)-Dissolved 22.1 0.050 mg/L 06-JUL-13 R2644492 Strontium (Sr)-Dissolved 0.169 0.00010 mg/L 06-JUL-13 R2644492 Thallium (TI)-Dissolved 0.00050 mg/L 06-JUL-13 R2644492 Titanium (Ti)-Dissolved 0.00050 mg/L 06-JUL-13 R2644492 Tin (Sn)-Dissolved 0.00030 mg/L 06-JUL-13 R2644492 Uranium (U)-Dissolved 0.00010 mg/L 06-JUL-13 R2644492 Vanadium (V)-Dissolved 0.00010 mg/L 06-JUL-13 R2644492 Vanadium (V)-Di								
Silicon (Si)-Dissolved 0.755 0.050 mg/L 06-JUL-13 R2644492 Silver (Ag)-Dissolved 22.1 0.00010 mg/L 06-JUL-13 R2644492 Strontium (Sr)-Dissolved 22.1 0.050 mg/L 06-JUL-13 R2644492 Strontium (Sr)-Dissolved 0.169 0.00010 mg/L 06-JUL-13 R2644492 Thallium (TI)-Dissolved <0.00050					-			
Silver (Ag)-Dissolved <0.000010 mg/L 06-JUL-13 R2644492 Sodium (Na)-Dissolved 22.1 0.050 mg/L 06-JUL-13 R2644492 Strontium (Sr)-Dissolved 0.169 0.00010 mg/L 06-JUL-13 R2644492 Thallium (TI)-Dissolved <0.00050								
Sodium (Na)-Dissolved 22.1 0.050 mg/L 06-JUL-13 R2644492 Strontium (Sr)-Dissolved 0.169 0.00010 mg/L 06-JUL-13 R2644492 Thallium (Tl)-Dissolved <0.00050					-			
Strontium (Sr)-Dissolved 0.169 0.00010 mg/L 06-JUL-13 R2644492 Thallium (Tl)-Dissolved <0.00050								
Thallium (TI)-Dissolved <0.000050								
Titanium (Ti)-Dissolved <0.00030								
Tin (Sn)-Dissolved <0.00010 0.00010 mg/L 06-JUL-13 R2644492 Uranium (U)-Dissolved 0.000247 0.00010 mg/L 06-JUL-13 R2644492 Vanadium (V)-Dissolved <0.00010								
Uranium (U)-Dissolved 0.000247 0.000010 mg/L 06-JUL-13 R2644492 Vanadium (V)-Dissolved <0.00010								
Vanadium (V)-Dissolved <0.00010 mg/L 06-JUL-13 R2644492 Zinc (Zn)-Dissolved 0.0019 0.0010 mg/L 06-JUL-13 R2644492 NO2, NO3, & (NO2+NO3) in Water 0.0019 0.0010 mg/L 06-JUL-13 R2644492					-			
Zinc (Zn)-Dissolved 0.0019 0.0010 mg/L 06-JUL-13 R2644492 NO2, NO3, & (NO2+NO3) in Water 0.0019 0.0010 mg/L 06-JUL-13 R2644492								
NO2, NO3, & (NO2+NO3) in Water					-			
		0.0019		0.0010	mg/L		06-JUL-13	R2644492
Nitrate as N by IC								

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1327443-7 UP3 - M - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 07:00							
Matrix: Surface Water							
Nitrate as N by IC							
Nitrate (as N)	0.309		0.050	mg/L		06-JUL-13	R2644651
Nitrate+Nitrite				5			
Nitrate and Nitrite (as N)	0.309		0.071	mg/L		07-JUL-13	
Nitrite as N by IC							
Nitrite (as N)	<0.050		0.050	mg/L		06-JUL-13	R2644651
L1327443-8 UP3 - S - DOF							
Sampled By: M. St. Jean on 03-JUL-13 @ 07:00							
Matrix: Surface Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	0.167		0.050	mg/L		06-JUL-13	R2644431
Color, True	8.3		2.0	C.U.		06-JUL-13	R2644496
Total Suspended Solids	4.0		3.0	mg/L		06-JUL-13	R2644442
Turbidity	3.58		0.10	NTU		06-JUL-13	R2644448
pH	8.03		0.10	pH		06-JUL-13	R2644445
Total Metals in Water by CRC ICPMS	0.00		00	P			
Aluminum (Al)-Total	0.0626		0.0030	mg/L		07-JUL-13	R2644484
Antimony (Sb)-Total	0.00079		0.00010	mg/L		07-JUL-13	R2644484
Arsenic (As)-Total	0.208		0.00010	mg/L		07-JUL-13	R2644484
Barium (Ba)-Total	0.0157		0.000050	mg/L		07-JUL-13	R2644484
Beryllium (Be)-Total	<0.00050		0.00050	mg/L		07-JUL-13	R2644484
Bismuth (Bi)-Total	0.000292		0.000050	mg/L		07-JUL-13	R2644484
Boron (B)-Total	0.032		0.010	mg/L		07-JUL-13	R2644484
Cadmium (Cd)-Total	0.000012		0.000010	mg/L		07-JUL-13	R2644484
Calcium (Ca)-Total	108		0.020	mg/L		07-JUL-13	R2644484
Chromium (Cr)-Total	0.00038		0.00010	mg/L		07-JUL-13	R2644484
Cobalt (Co)-Total	0.00300		0.00010	mg/L		07-JUL-13	R2644484
Copper (Cu)-Total	0.00360		0.00010	mg/L		07-JUL-13	R2644484
Iron (Fe)-Total	0.759		0.010	mg/L		07-JUL-13	R2644484
Lead (Pb)-Total	0.000882		0.000050	mg/L		07-JUL-13	R2644484
Lithium (Li)-Total	<0.0050		0.0050	mg/L		07-JUL-13	R2644484
Magnesium (Mg)-Total	7.54		0.0050	mg/L		07-JUL-13	R2644484
Manganese (Mn)-Total	0.141		0.000050	mg/L		07-JUL-13	R2644484
Molybdenum (Mo)-Total	0.00231		0.000050	mg/L		07-JUL-13	R2644484
Nickel (Ni)-Total	0.00663		0.00010	mg/L		07-JUL-13	R2644484
Phosphorus (P)-Total	<0.30		0.30	mg/L		07-JUL-13	R2644484
Potassium (K)-Total	6.95		0.050	mg/L		07-JUL-13	R2644484
Selenium (Se)-Total	0.00010		0.00010	mg/L		07-JUL-13	R2644484
Silicon (Si)-Total	0.878		0.050	mg/L		07-JUL-13	R2644484
Silver (Ag)-Total	<0.000010		0.000010	mg/L		07-JUL-13	R2644484
Sodium (Na)-Total	25.6		0.050	mg/L		07-JUL-13	R2644484
Strontium (Sr)-Total	0.177		0.00010	mg/L		07-JUL-13	R2644484
Thallium (TI)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Tin (Sn)-Total	< 0.00010		0.00010	mg/L		07-JUL-13	R2644484
Titanium (Ti)-Total	0.00352		0.00030	mg/L		07-JUL-13	R2644484
Uranium (U)-Total	0.000292		0.000010	mg/L		07-JUL-13	R2644484
Vanadium (V)-Total Zine (Zn) Total	0.00047		0.00010	mg/L		07-JUL-13	R2644484
Zinc (Zn)-Total	0.0047		0.0030	mg/L		07-JUL-13	R2644484
Dissolved Metals in Water by CRC ICPMS	0.0224		0.0010	ma/l		06-JUL-13	D2644402
Aluminum (Al)-Dissolved Antimony (Sb)-Dissolved	0.0234 0.00071		0.0010 0.00010	mg/L mg/L		06-JUL-13 06-JUL-13	R2644492 R2644492
Artimony (Sb)-Dissolved Arsenic (As)-Dissolved	0.102		0.00010	mg/L		06-JUL-13	R2644492 R2644492
האאומפות (עב)-האאומפות	0.102		0.00010	nig/L		00-301-13	RZ04449Z

		Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1327443-8 UP3 - S - DOF							
Sampled By: M. St. Jean on 03-JUL-13 @ 07:00							
Matrix: Surface Water							
Dissolved Metals in Water by CRC ICPMS Barium (Ba)-Dissolved	0.0152		0.000050	mg/L		06-JUL-13	R2644492
Beryllium (Be)-Dissolved	< 0.00050		0.00050	mg/L		06-JUL-13	R2644492
Bismuth (Bi)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Boron (B)-Dissolved	0.029		0.0000000	mg/L		06-JUL-13	R2644492
Cadmium (Cd)-Dissolved	<0.00010		0.000010	mg/L		06-JUL-13	R2644492
Calcium (Ca)-Dissolved	105		0.020	mg/L		06-JUL-13	R2644492
Chromium (Cr)-Dissolved	0.00017		0.00010	mg/L		06-JUL-13	R2644492
Cobalt (Co)-Dissolved	0.00212		0.00010	mg/L		06-JUL-13	R2644492
Copper (Cu)-Dissolved	0.00146		0.00010	mg/L		06-JUL-13	R2644492
Iron (Fe)-Dissolved	0.035		0.010	mg/L		06-JUL-13	R2644492
Lead (Pb)-Dissolved	0.000052		0.000050	mg/L		06-JUL-13	R2644492
Lithium (Li)-Dissolved	< 0.0030		0.0030	mg/L		06-JUL-13	R2644492
Magnesium (Mg)-Dissolved	7.11		0.0050	mg/L		06-JUL-13	R2644492
Manganese (Mn)-Dissolved	0.0996		0.000050	mg/L		06-JUL-13	R2644492
Molybdenum (Mo)-Dissolved	0.00204		0.000050	mg/L		06-JUL-13	R2644492
Nickel (Ni)-Dissolved	0.00523		0.00010	mg/L		06-JUL-13	R2644492
Phosphorus (P)-Dissolved	<0.30		0.30	mg/L		06-JUL-13	R2644492
Potassium (K)-Dissolved	5.91		0.050	mg/L		06-JUL-13	R2644492
Selenium (Se)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Silicon (Si)-Dissolved	0.755		0.050	mg/L		06-JUL-13	R2644492
Silver (Ag)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Sodium (Na)-Dissolved	21.6		0.050	mg/L		06-JUL-13	R2644492
Strontium (Sr)-Dissolved	0.166		0.00010	mg/L		06-JUL-13	R2644492
Thallium (TI)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Titanium (Ti)-Dissolved	<0.00030		0.00030	mg/L		06-JUL-13	R2644492
Tin (Sn)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Uranium (U)-Dissolved	0.000245		0.000010	mg/L		06-JUL-13	R2644492
Vanadium (V)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Zinc (Zn)-Dissolved	0.0021		0.0010	mg/L		06-JUL-13	R2644492
NO2, NO3, & (NO2+NO3) in Water							
Nitrate as N by IC	0.004		0.050	~~~~/l			D0044054
Nitrate (as N)	0.301		0.050	mg/L		06-JUL-13	R2644651
Nitrate+Nitrite Nitrate and Nitrite (as N)	0.201		0.071	ma/l		07-JUL-13	
	0.301		0.071	mg/L		07-JUL-13	
Nitrite as N by IC Nitrite (as N)	<0.050		0.050	mg/L		06-JUL-13	R2644651
L1327443-9 UP4 - S - OFF				-			
Sampled By: M. St. Jean on 03-JUL-13 @ 10:00							
Matrix: Surface Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	0.166		0.050	mg/L		06-JUL-13	R2644431
Color, True	8.4		2.0	C.U.		06-JUL-13	R2644496
Total Suspended Solids	5.0		3.0	mg/L		06-JUL-13	R2644442
Turbidity	3.19		0.10	NTU		06-JUL-13	R2644448
pH	8.07		0.10	pH		06-JUL-13	R2644445
Total Metals in Water by CRC ICPMS	0.07		0.10	PLI		00-001-13	112044440
Aluminum (Al)-Total	0.0648		0.0030	mg/L		07-JUL-13	R2644484
Antimony (Sb)-Total	0.00071		0.00010	mg/L		07-JUL-13	R2644484
Arsenic (As)-Total	0.206		0.00010	mg/L		07-JUL-13	R2644484
Barium (Ba)-Total	0.0160		0.000050	mg/L		07-JUL-13	R2644484
Danun (Da)-Tula			5.5555000	···· 9' 🛏	1		

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1327443-9 UP4 - S - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 10:00							
Matrix: Surface Water							
Total Metals in Water by CRC ICPMS							
Bismuth (Bi)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Boron (B)-Total	0.033		0.000000	mg/L		07-JUL-13	R2644484
Cadmium (Cd)-Total	0.000013		0.000010	mg/L		07-JUL-13	R2644484
Calcium (Ca)-Total	108		0.020	mg/L		07-JUL-13	R2644484
Chromium (Cr)-Total	0.00034		0.00010	mg/L		07-JUL-13	R2644484
Cobalt (Co)-Total	0.00296		0.00010	mg/L		07-JUL-13	R2644484
Copper (Cu)-Total	0.00280		0.00010	mg/L		07-JUL-13	R2644484
Iron (Fe)-Total	0.709		0.010	mg/L		07-JUL-13	R2644484
Lead (Pb)-Total	0.000933		0.000050	mg/L		07-JUL-13	R2644484
Lithium (Li)-Total	<0.0050		0.0050	mg/L		07-JUL-13	R2644484
Magnesium (Mg)-Total	7.47		0.0050	mg/L		07-JUL-13	R2644484
Manganese (Mn)-Total	0.136		0.000050	mg/L		07-JUL-13	R2644484
Molybdenum (Mo)-Total	0.00233		0.000050	mg/L		07-JUL-13	R2644484
Nickel (Ni)-Total	0.00658		0.00010	mg/L		07-JUL-13	R2644484
Phosphorus (P)-Total	<0.30		0.30	mg/L		07-JUL-13	R2644484
Potassium (K)-Total	6.39		0.050	mg/L		07-JUL-13	R2644484
Selenium (Se)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Silicon (Si)-Total	0.842		0.050	mg/L		07-JUL-13	R2644484
Silver (Ag)-Total	<0.000010		0.000010	mg/L		07-JUL-13	R2644484
Sodium (Na)-Total	24.7		0.050	mg/L		07-JUL-13	R2644484
Strontium (Sr)-Total	0.175		0.00010	mg/L		07-JUL-13	R2644484
Thallium (TI)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Tin (Sn)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Titanium (Ti)-Total	0.00307		0.00030	mg/L		07-JUL-13	R2644484
Uranium (U)-Total	0.000273		0.000010	mg/L		07-JUL-13	R2644484
Vanadium (V)-Total	0.00042		0.00010	mg/L		07-JUL-13	R2644484
Zinc (Zn)-Total	0.0051		0.0030	mg/L		07-JUL-13	R2644484
Dissolved Metals in Water by CRC ICPMS							
Aluminum (Al)-Dissolved	0.0240		0.0010	mg/L		06-JUL-13	R2644492
Antimony (Sb)-Dissolved	0.00065		0.00010	mg/L		06-JUL-13	R2644492
Arsenic (As)-Dissolved	0.108		0.00010	mg/L		06-JUL-13	R2644492
Barium (Ba)-Dissolved	0.0151		0.000050	mg/L		06-JUL-13	R2644492
Beryllium (Be)-Dissolved	<0.00050		0.00050	mg/L		06-JUL-13	R2644492
Bismuth (Bi)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Boron (B)-Dissolved	0.029		0.010	mg/L		06-JUL-13	R2644492
Cadmium (Cd)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Calcium (Ca)-Dissolved Chromium (Cr)-Dissolved	101		0.020	mg/L		06-JUL-13	R2644492
Cobalt (Co)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Copper (Cu)-Dissolved	0.00216		0.00010	mg/L		06-JUL-13 06-JUL-13	R2644492
Iron (Fe)-Dissolved	0.00138		0.00010	mg/L		06-JUL-13 06-JUL-13	R2644492
Lead (Pb)-Dissolved	0.047 0.000094		0.010 0.000050	mg/L mg/L		06-JUL-13 06-JUL-13	R2644492 R2644492
Lithium (Li)-Dissolved	<0.00094		0.000050	mg/L		06-JUL-13 06-JUL-13	R2644492 R2644492
Magnesium (Mg)-Dissolved	<0.0030		0.0030	mg/L		06-JUL-13	R2644492 R2644492
Magnesium (Mg)-Dissolved Manganese (Mn)-Dissolved	0.100		0.00050	mg/L		06-JUL-13	R2644492 R2644492
Molybdenum (Mo)-Dissolved	0.00197		0.000050	mg/L		06-JUL-13	R2644492 R2644492
Nickel (Ni)-Dissolved	0.00528		0.000030	mg/L		06-JUL-13	R2644492
Phosphorus (P)-Dissolved	<0.30		0.30	mg/L		06-JUL-13	R2644492
Potassium (K)-Dissolved	6.11		0.050	mg/L		06-JUL-13	R2644492
Selenium (Se)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Silicon (Si)-Dissolved	0.755		0.050	mg/L		06-JUL-13	R2644492
	0.700		0.000	g/ _			

Sample Details/Parameters	Result	Qualifier* D.L.	Units	Extracted	Analyzed	Batch
L1327443-9 UP4 - S - OFF						
Sampled By: M. St. Jean on 03-JUL-13 @ 10:00						
Matrix: Surface Water						
Dissolved Metals in Water by CRC ICPMS						
Silver (Ag)-Dissolved	<0.000010	0.000010	mg/L		06-JUL-13	R2644492
Sodium (Na)-Dissolved	21.9	0.050	mg/L		06-JUL-13	R2644492
Strontium (Sr)-Dissolved	0.162	0.00010	mg/L		06-JUL-13	R2644492
Thallium (TI)-Dissolved	<0.000050	0.000050	mg/L		06-JUL-13	R2644492
Titanium (Ti)-Dissolved	< 0.00030	0.00030	mg/L		06-JUL-13	R2644492
Tin (Sn)-Dissolved	<0.00010	0.00010	mg/L		06-JUL-13	R2644492
Uranium (U)-Dissolved	0.000244	0.000010	mg/L		06-JUL-13	R2644492
Vanadium (V)-Dissolved	<0.00010	0.00010	mg/L		06-JUL-13	R2644492
Zinc (Zn)-Dissolved	0.0017	0.0010	mg/L		06-JUL-13	R2644492
NO2, NO3, & (NO2+NO3) in Water	0.0011					
Nitrate as N by IC						
Nitrate (as N)	0.303	0.050	mg/L		06-JUL-13	R2644651
Nitrate+Nitrite						
Nitrate and Nitrite (as N)	0.303	0.071	mg/L		07-JUL-13	
Nitrite as N by IC Nitrite (as N)	<0.050	0.050	mg/L		06-JUL-13	R2644651
L1327443-10 UP4 - M- OFF	<u> </u>	0.050	iiig/∟		00-301-13	N2044031
Sampled By: M. St. Jean on 03-JUL-13 @ 10:00						
Matrix: Surface Water						
Miscellaneous Parameters						
Ammonia, Total (as N)	0.173	0.050	ma/l		06-JUL-13	D0644404
		0.050	mg/L			R2644431
Color, True	7.6	2.0	C.U.		06-JUL-13	R2644496
Total Suspended Solids	<3.0	3.0	mg/L		06-JUL-13	R2644442
Turbidity	3.65	0.10	NTU		06-JUL-13	R2644448
pH	8.06	0.10	рН		06-JUL-13	R2644445
Total Metals in Water by CRC ICPMS						
Aluminum (Al)-Total	0.0595	0.0030	mg/L		07-JUL-13	R2644484
Antimony (Sb)-Total	0.00074	0.00010	mg/L		07-JUL-13	R2644484
Arsenic (As)-Total	0.202	0.00010	mg/L		07-JUL-13	R2644484
Barium (Ba)-Total	0.0159	0.000050	mg/L		07-JUL-13	R2644484
Beryllium (Be)-Total	<0.00050	0.00050	mg/L		07-JUL-13	R2644484
Bismuth (Bi)-Total	<0.000050	0.000050	mg/L		07-JUL-13	R2644484
Boron (B)-Total	0.033	0.010	mg/L		07-JUL-13	R2644484
Cadmium (Cd)-Total	0.000014	0.000010	mg/L		07-JUL-13	R2644484
Calcium (Ca)-Total	110	0.020	mg/L		07-JUL-13	R2644484
Chromium (Cr)-Total	0.00048	0.00010	mg/L		07-JUL-13	R2644484
Cobalt (Co)-Total	0.00284	0.00010	mg/L		07-JUL-13	R2644484
Copper (Cu)-Total	0.00294	0.00010	mg/L		07-JUL-13	R2644484
Iron (Fe)-Total	0.705	0.010	mg/L		07-JUL-13	R2644484
Lead (Pb)-Total	0.000904	0.000050	mg/L		07-JUL-13	R2644484
Lithium (Li)-Total	<0.0050	0.0050	mg/L		07-JUL-13	R2644484
Magnesium (Mg)-Total	7.31	0.0050	mg/L		07-JUL-13	R2644484
Manganese (Mn)-Total	0.134	0.000050	mg/L		07-JUL-13	R2644484
Molybdenum (Mo)-Total	0.00234	0.000050	mg/L		07-JUL-13	R2644484
Nickel (Ni)-Total	0.00687	0.00010	mg/L		07-JUL-13	R2644484
Phosphorus (P)-Total	<0.30	0.30	mg/L		07-JUL-13	R2644484
Potassium (K)-Total	6.44	0.050	mg/L		07-JUL-13	R2644484
Selenium (Se)-Total	<0.00010	0.00010	mg/L		07-JUL-13	R2644484
Silicon (Si)-Total	0.828	0.050	mg/L		07-JUL-13	R2644484
Silver (Ag)-Total	<0.000010	0.000010	mg/L		07-JUL-13	R2644484
Sodium (Na)-Total	24.4	0.050	mg/L		07-JUL-13	R2644484

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1327443-10 UP4 - M- OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 10:00							
Matrix: Surface Water							
Total Metals in Water by CRC ICPMS							
Strontium (Sr)-Total	0.174		0.00010	mg/L		07-JUL-13	R2644484
Thallium (TI)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Tin (Sn)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Titanium (Ti)-Total	0.00361		0.00030	mg/L		07-JUL-13	R2644484
Uranium (U)-Total	0.000268		0.000010	mg/L		07-JUL-13	R2644484
Vanadium (V)-Total	0.00043		0.00010	mg/L		07-JUL-13	R2644484
Zinc (Zn)-Total	0.0053		0.0030	mg/L		07-JUL-13	R2644484
Dissolved Metals in Water by CRC ICPMS				Ū			
Aluminum (AI)-Dissolved	0.0245		0.0010	mg/L		06-JUL-13	R2644492
Antimony (Sb)-Dissolved	0.00066		0.00010	mg/L		06-JUL-13	R2644492
Arsenic (As)-Dissolved	0.110		0.00010	mg/L		06-JUL-13	R2644492
Barium (Ba)-Dissolved	0.0149	0	0.000050	mg/L		06-JUL-13	R2644492
Beryllium (Be)-Dissolved	<0.00050		0.00050	mg/L		06-JUL-13	R2644492
Bismuth (Bi)-Dissolved	<0.000050	0	0.000050	mg/L		06-JUL-13	R2644492
Boron (B)-Dissolved	0.029		0.010	mg/L		06-JUL-13	R2644492
Cadmium (Cd)-Dissolved	<0.000010	0	0.000010	mg/L		06-JUL-13	R2644492
Calcium (Ca)-Dissolved	104		0.020	mg/L		06-JUL-13	R2644492
Chromium (Cr)-Dissolved	0.00013		0.00010	mg/L		06-JUL-13	R2644492
Cobalt (Co)-Dissolved	0.00221		0.00010	mg/L		06-JUL-13	R2644492
Copper (Cu)-Dissolved	0.00144		0.00010	mg/L		06-JUL-13	R2644492
Iron (Fe)-Dissolved	0.059		0.010	mg/L		06-JUL-13	R2644492
Lead (Pb)-Dissolved	0.000129	0	0.000050	mg/L		06-JUL-13	R2644492
Lithium (Li)-Dissolved	<0.0030		0.0030	mg/L		06-JUL-13	R2644492
Magnesium (Mg)-Dissolved	7.21		0.0050	mg/L		06-JUL-13	R2644492
Manganese (Mn)-Dissolved	0.101		0.000050	mg/L		06-JUL-13	R2644492
Molybdenum (Mo)-Dissolved	0.00201		0.000050	mg/L		06-JUL-13	R2644492
Nickel (Ni)-Dissolved	0.00539		0.00010	mg/L		06-JUL-13	R2644492
Phosphorus (P)-Dissolved	<0.30		0.30	mg/L		06-JUL-13	R2644492
Potassium (K)-Dissolved	6.13		0.050	mg/L		06-JUL-13	R2644492
Selenium (Se)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Silicon (Si)-Dissolved	0.759		0.050	mg/L		06-JUL-13	R2644492
Silver (Ag)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Sodium (Na)-Dissolved	21.6		0.050	mg/L		06-JUL-13	R2644492
Strontium (Sr)-Dissolved	0.163		0.00010	mg/L		06-JUL-13	R2644492
Thallium (TI)-Dissolved	< 0.000050		0.000050	mg/L		06-JUL-13 06-JUL-13	R2644492
Titanium (Ti)-Dissolved Tin (Sn)-Dissolved	0.00038		0.00030	mg/L		06-JUL-13 06-JUL-13	R2644492
Uranium (U)-Dissolved	<0.00010		0.00010 0.000010	mg/L		06-JUL-13 06-JUL-13	R2644492
Vanadium (V)-Dissolved	0.000247			mg/L		06-JUL-13 06-JUL-13	R2644492 R2644492
Zinc (Zn)-Dissolved	<0.00010 0.0015		0.00010 0.0010	mg/L mg/L		06-JUL-13 06-JUL-13	R2644492 R2644492
NO2, NO3, & (NO2+NO3) in Water	0.0015		0.0010	iiig/L		00-301-13	112044492
Noz, Noz, & (Noz+Noz) in Water Nitrate as N by IC							
Nitrate (as N)	0.305		0.050	mg/L		06-JUL-13	R2644651
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	0.305		0.071	mg/L		07-JUL-13	
Nitrite as N by IC Nitrite (as N)	<0.050		0.050	mg/L		06-JUL-13	R2644651
L1327443-11 UP5 - S - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 06:30							
Matrix: Surface Water							
Miscellaneous Parameters							

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1327443-11 UP5 - S - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 06:30							
Matrix: Surface Water							
Ammonia, Total (as N)	0.172		0.050	mg/L		06-JUL-13	R2644431
Color, True	6.0			C.U.		06-JUL-13	R2644496
			2.0			06-JUL-13	
Total Suspended Solids	7.0		3.0	mg/L			R2644442
Turbidity	3.56		0.10	NTU		06-JUL-13	R2644448
рН	8.06		0.10	рН		06-JUL-13	R2644445
Total Metals in Water by CRC ICPMS	0.0050		0.0000			07 11 10	D0044404
Aluminum (AI)-Total	0.0652		0.0030	mg/L		07-JUL-13	R2644484
Antimony (Sb)-Total	0.00072		0.00010	mg/L		07-JUL-13	R2644484
Arsenic (As)-Total Barium (Ba)-Total	0.204		0.00010	mg/L		07-JUL-13	R2644484
Beryllium (Be)-Total	0.0162 <0.00050		0.000050 0.00050	mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
Bismuth (Bi)-Total				mg/L		07-JUL-13 07-JUL-13	
Boron (B)-Total	<0.000050 0.034		0.000050 0.010	mg/L mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
Cadmium (Cd)-Total	<0.00010		0.010	mg/L mg/L		07-JUL-13	R2644484 R2644484
Calcium (Ca)-Total	<0.000010		0.00010	mg/L		07-JUL-13	R2644484 R2644484
Chromium (Cr)-Total	0.00031		0.020	mg/L		07-JUL-13 07-JUL-13	R2644484
Cobalt (Co)-Total	0.00298		0.00010	mg/L		07-JUL-13	R2644484
Copper (Cu)-Total	0.00298		0.00010	mg/L		07-JUL-13	R2644484
Iron (Fe)-Total	0.713		0.00010	mg/L		07-JUL-13	R2644484
Lead (Pb)-Total	0.000900		0.000050	mg/L		07-JUL-13	R2644484
Lithium (Li)-Total	< 0.0050		0.0050	mg/L		07-JUL-13	R2644484
Magnesium (Mg)-Total	7.55		0.0050	mg/L		07-JUL-13	R2644484
Manganese (Mn)-Total	0.136		0.000050	mg/L		07-JUL-13	R2644484
Molybdenum (Mo)-Total	0.00229		0.000050	mg/L		07-JUL-13	R2644484
Nickel (Ni)-Total	0.00664		0.00010	mg/L		07-JUL-13	R2644484
Phosphorus (P)-Total	<0.30		0.30	mg/L		07-JUL-13	R2644484
Potassium (K)-Total	6.41		0.050	mg/L		07-JUL-13	R2644484
Selenium (Se)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Silicon (Si)-Total	0.855		0.050	mg/L		07-JUL-13	R2644484
Silver (Ag)-Total	<0.000010		0.000010	mg/L		07-JUL-13	R2644484
Sodium (Na)-Total	24.8		0.050	mg/L		07-JUL-13	R2644484
Strontium (Sr)-Total	0.178		0.00010	mg/L		07-JUL-13	R2644484
Thallium (TI)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Tin (Sn)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Titanium (Ti)-Total	0.00452		0.00030	mg/L		07-JUL-13	R2644484
Uranium (U)-Total	0.000281		0.000010	mg/L		07-JUL-13	R2644484
Vanadium (V)-Total	0.00042		0.00010	mg/L		07-JUL-13	R2644484
Zinc (Zn)-Total	0.0040		0.0030	mg/L		07-JUL-13	R2644484
Dissolved Metals in Water by CRC ICPMS							
Aluminum (Al)-Dissolved	0.0246		0.0010	mg/L		06-JUL-13	R2644492
Antimony (Sb)-Dissolved	0.00066		0.00010	mg/L		06-JUL-13	R2644492
Arsenic (As)-Dissolved	0.107		0.00010	mg/L		06-JUL-13	R2644492
Barium (Ba)-Dissolved	0.0151		0.000050	mg/L		06-JUL-13	R2644492
Beryllium (Be)-Dissolved	<0.00050		0.00050	mg/L		06-JUL-13	R2644492
Bismuth (Bi)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Boron (B)-Dissolved	0.029		0.010	mg/L		06-JUL-13	R2644492
Cadmium (Cd)-Dissolved	0.000012		0.000010	mg/L		06-JUL-13	R2644492
Calcium (Ca)-Dissolved	105		0.020	mg/L		06-JUL-13	R2644492
Chromium (Cr)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Cobalt (Co)-Dissolved	0.00220		0.00010	mg/L		06-JUL-13	R2644492
Copper (Cu)-Dissolved	0.00141		0.00010	mg/L		06-JUL-13	R2644492
Iron (Fe)-Dissolved	0.044		0.010	mg/L		06-JUL-13	R2644492

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1327443-11 UP5 - S - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 06:30							
Matrix: Surface Water							
Dissolved Metals in Water by CRC ICPMS							
Lead (Pb)-Dissolved	0.000082		0.000050	mg/L		06-JUL-13	R2644492
Lithium (Li)-Dissolved	<0.0030		0.0030	mg/L		06-JUL-13	R2644492
Magnesium (Mg)-Dissolved	7.06		0.0050	mg/L		06-JUL-13	R2644492
Manganese (Mn)-Dissolved	0.101		0.000050	mg/L		06-JUL-13	R2644492
Molybdenum (Mo)-Dissolved	0.00200		0.000050	mg/L		06-JUL-13	R2644492
Nickel (Ni)-Dissolved	0.00524		0.00010	mg/L		06-JUL-13	R2644492
Phosphorus (P)-Dissolved	<0.30		0.30	mg/L		06-JUL-13	R2644492
Potassium (K)-Dissolved	6.19		0.050	mg/L		06-JUL-13	R2644492
Selenium (Se)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Silicon (Si)-Dissolved	0.769		0.050	mg/L		06-JUL-13	R2644492
Silver (Ag)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Sodium (Na)-Dissolved	21.6		0.050	mg/L		06-JUL-13	R2644492
Strontium (Sr)-Dissolved Thallium (TI)-Dissolved	0.168		0.00010	mg/L		06-JUL-13 06-JUL-13	R2644492
Titanium (Ti)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13 06-JUL-13	R2644492
Tin (Sn)-Dissolved	<0.00030 <0.00010		0.00030 0.00010	mg/L		06-JUL-13 06-JUL-13	R2644492 R2644492
Uranium (U)-Dissolved	0.000245		0.00010	mg/L mg/L		06-JUL-13	R2644492 R2644492
Vanadium (V)-Dissolved	<0.000245		0.00010	mg/L		06-JUL-13	R2644492 R2644492
Zinc (Zn)-Dissolved	0.0030		0.00010	mg/L		06-JUL-13	R2644492
NO2, NO3, & (NO2+NO3) in Water	0.0030		0.0010	iiig/L		00 002 10	112044432
Nitrate as N by IC							
Nitrate (as N)	0.302		0.050	mg/L		06-JUL-13	R2644651
Nitrate+Nitrite				0			
Nitrate and Nitrite (as N)	0.302		0.071	mg/L		07-JUL-13	
Nitrite as N by IC				-			
Nitrite (as N)	<0.050		0.050	mg/L		06-JUL-13	R2644651
L1327443-12 UP5 - M - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 06:30							
Matrix: Surface Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	0.170		0.050	mg/L		06-JUL-13	R2644431
Color, True	7.4		2.0	C.U.		06-JUL-13	R2644496
Total Suspended Solids	5.0		3.0	mg/L		06-JUL-13	R2644442
Turbidity	3.60		0.10	NTU		06-JUL-13	R2644448
pH	8.06		0.10	pН		06-JUL-13	R2644445
Total Metals in Water by CRC ICPMS			• • • •	r			
Aluminum (Al)-Total	0.0671		0.0030	mg/L		07-JUL-13	R2644484
Antimony (Sb)-Total	0.00074		0.00010	mg/L		07-JUL-13	R2644484
Arsenic (As)-Total	0.209		0.00010	mg/L		07-JUL-13	R2644484
Barium (Ba)-Total	0.0161		0.000050	mg/L		07-JUL-13	R2644484
Beryllium (Be)-Total	<0.00050		0.00050	mg/L		07-JUL-13	R2644484
Bismuth (Bi)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Boron (B)-Total	0.034		0.010	mg/L		07-JUL-13	R2644484
Cadmium (Cd)-Total	0.000018		0.000010	mg/L		07-JUL-13	R2644484
Calcium (Ca)-Total	113		0.020	mg/L		07-JUL-13	R2644484
Chromium (Cr)-Total	0.00040		0.00010	mg/L		07-JUL-13	R2644484
Cobalt (Co)-Total	0.00295		0.00010	mg/L		07-JUL-13	R2644484
Copper (Cu)-Total	0.00301		0.00010	mg/L		07-JUL-13	R2644484
Iron (Fe)-Total	0.715		0.010	mg/L		07-JUL-13	R2644484
Lead (Pb)-Total	0.000917		0.000050	mg/L		07-JUL-13	R2644484
Lithium (Li)-Total	<0.0050		0.0050	mg/L		07-JUL-13	R2644484

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1327443-12 UP5 - M - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 06:30							
Matrix: Surface Water							
Total Metals in Water by CRC ICPMS Magnesium (Mg)-Total	7.65		0.0050	mg/L		07-JUL-13	R2644484
Magnesium (Mg)-Total Manganese (Mn)-Total	0.137			-		07-JUL-13	R2644484 R2644484
Molybdenum (Mo)-Total			0.000050	mg/L		07-JUL-13	R2644484 R2644484
Nickel (Ni)-Total	0.00240 0.00681		0.000050	mg/L		07-JUL-13	R2644484 R2644484
Phosphorus (P)-Total			0.00010	mg/L		07-JUL-13	R2644484 R2644484
Potassium (K)-Total	<0.30 6.50		0.30	mg/L		07-JUL-13	R2644484 R2644484
Selenium (Se)-Total	<0.00010		0.050	mg/L		07-JUL-13	R2644484 R2644484
Silicon (Si)-Total	0.879		0.00010 0.050	mg/L		07-JUL-13	R2644484 R2644484
Silver (Ag)-Total				mg/L		07-JUL-13 07-JUL-13	
Sodium (Na)-Total	<0.000010		0.000010	mg/L		07-JUL-13 07-JUL-13	R2644484
	24.6		0.050	mg/L			R2644484
Strontium (Sr)-Total	0.180		0.00010	mg/L		07-JUL-13	R2644484
Thallium (TI)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Tin (Sn)-Total	0.00045		0.00010	mg/L		07-JUL-13	R2644484
Titanium (Ti)-Total	0.00349		0.00030	mg/L		07-JUL-13	R2644484
Uranium (U)-Total	0.000278		0.000010	mg/L		07-JUL-13	R2644484
Vanadium (V)-Total	0.00044		0.00010	mg/L		07-JUL-13	R2644484
Zinc (Zn)-Total	0.0052		0.0030	mg/L		07-JUL-13	R2644484
Dissolved Metals in Water by CRC ICPMS	0.0040		0.0040			00 11 11 40	D0044400
Aluminum (Al)-Dissolved	0.0242		0.0010	mg/L		06-JUL-13	R2644492
Antimony (Sb)-Dissolved	0.00065		0.00010	mg/L		06-JUL-13	R2644492
Arsenic (As)-Dissolved	0.109		0.00010	mg/L		06-JUL-13	R2644492
Barium (Ba)-Dissolved	0.0148		0.000050	mg/L		06-JUL-13	R2644492
Beryllium (Be)-Dissolved	< 0.00050		0.00050	mg/L		06-JUL-13	R2644492
Bismuth (Bi)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Boron (B)-Dissolved	0.028		0.010	mg/L		06-JUL-13	R2644492
Cadmium (Cd)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Calcium (Ca)-Dissolved	99.5		0.020	mg/L		06-JUL-13	R2644492
Chromium (Cr)-Dissolved	0.00012		0.00010	mg/L		06-JUL-13	R2644492
Cobalt (Co)-Dissolved	0.00222		0.00010	mg/L		06-JUL-13	R2644492
Copper (Cu)-Dissolved	0.00144		0.00010	mg/L		06-JUL-13	R2644492
Iron (Fe)-Dissolved	0.043		0.010	mg/L		06-JUL-13	R2644492
Lead (Pb)-Dissolved	0.000087		0.000050	mg/L		06-JUL-13	R2644492
Lithium (Li)-Dissolved	<0.0030		0.0030	mg/L		06-JUL-13	R2644492
Magnesium (Mg)-Dissolved	7.12		0.0050	mg/L		06-JUL-13	R2644492
Manganese (Mn)-Dissolved	0.101		0.000050	mg/L		06-JUL-13	R2644492
Molybdenum (Mo)-Dissolved	0.00200		0.000050	mg/L		06-JUL-13	R2644492
Nickel (Ni)-Dissolved	0.00528		0.00010	mg/L		06-JUL-13	R2644492
Phosphorus (P)-Dissolved	<0.30		0.30	mg/L		06-JUL-13	R2644492
Potassium (K)-Dissolved	6.07		0.050	mg/L		06-JUL-13	R2644492
Selenium (Se)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Silicon (Si)-Dissolved	0.759		0.050	mg/L		06-JUL-13	R2644492
Silver (Ag)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Sodium (Na)-Dissolved	22.0		0.050	mg/L		06-JUL-13	R2644492
Strontium (Sr)-Dissolved	0.160		0.00010	mg/L		06-JUL-13	R2644492
Thallium (TI)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Titanium (Ti)-Dissolved	<0.00030		0.00030	mg/L		06-JUL-13	R2644492
Tin (Sn)-Dissolved	0.00012		0.00010	mg/L		06-JUL-13	R2644492
Uranium (U)-Dissolved	0.000243		0.000010	mg/L		06-JUL-13	R2644492
Vanadium (V)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Zinc (Zn)-Dissolved	0.0024		0.0010	mg/L		06-JUL-13	R2644492
NO2, NO3, & (NO2+NO3) in Water				-			
Nitrate as N by IC							

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1327443-12 UP5 - M - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 06:30							
Matrix: Surface Water							
Nitrate as N by IC Nitrate (as N)	0.305		0.050	mg/L		06-JUL-13	R2644651
Nitrate+Nitrite	0.303		0.050	mg/∟		00-301-13	12044031
Nitrate and Nitrite (as N)	0.305		0.071	mg/L		07-JUL-13	
Nitrite as N by IC	0.000		0.071	iiig/ E		01 002 10	
Nitrite (as N)	<0.050		0.050	mg/L		06-JUL-13	R2644651
L1327443-13 UP6 - S - OFF				5			
Sampled By: M. St. Jean on 03-JUL-13 @ 10:30							
Matrix: Surface Water							
Miscellaneous Parameters							BBBBBBBBBBBBB
Ammonia, Total (as N)	0.168		0.050	mg/L		06-JUL-13	R2644431
Color, True	8.2		2.0	C.U.		06-JUL-13	R2644496
Total Suspended Solids	5.0		3.0	mg/L		06-JUL-13	R2644442
Turbidity	3.10		0.10	NTU		06-JUL-13	R2644448
рН	8.05		0.10	рН		06-JUL-13	R2644445
Total Metals in Water by CRC ICPMS							
Aluminum (AI)-Total	0.0655		0.0030	mg/L		07-JUL-13	R2644484
Antimony (Sb)-Total	0.00073		0.00010	mg/L		07-JUL-13	R2644484
Arsenic (As)-Total	0.213		0.00010	mg/L		07-JUL-13	R2644484
Barium (Ba)-Total	0.0163		0.000050	mg/L		07-JUL-13	R2644484
Beryllium (Be)-Total	<0.00050		0.00050	mg/L		07-JUL-13	R2644484
Bismuth (Bi)-Total	0.000094		0.000050 mg/L			07-JUL-13	R2644484
Boron (B)-Total	0.033		0.010	mg/L		07-JUL-13	R2644484
Cadmium (Cd)-Total	0.000011		0.000010	mg/L		07-JUL-13	R2644484
Calcium (Ca)-Total	108		0.020	mg/L		07-JUL-13	R2644484
Chromium (Cr)-Total	0.00035		0.00010	mg/L		07-JUL-13	R2644484
Cobalt (Co)-Total	0.00291		0.00010	mg/L		07-JUL-13	R2644484
Copper (Cu)-Total	0.00286		0.00010	mg/L		07-JUL-13	R2644484
Iron (Fe)-Total	0.701		0.010	mg/L		07-JUL-13	R2644484
Lead (Pb)-Total	0.000926		0.000050	mg/L		07-JUL-13	R2644484
Lithium (Li)-Total	<0.0050		0.0050	mg/L		07-JUL-13	R2644484
Magnesium (Mg)-Total	7.58		0.0050	mg/L		07-JUL-13	R2644484
Manganese (Mn)-Total	0.134		0.000050	mg/L		07-JUL-13	R2644484
Molybdenum (Mo)-Total	0.00231		0.000050	mg/L		07-JUL-13	R2644484
Nickel (Ni)-Total Phosphorus (P)-Total	0.00657		0.00010	mg/L		07-JUL-13	R2644484
Prosphorus (P)-Total Potassium (K)-Total	<0.30		0.30	mg/L		07-JUL-13	R2644484
Selenium (Se)-Total	6.32 0.00011		0.050 0.00010	mg/L mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
Silicon (Si)-Total	0.00011		0.00010	mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
Silver (Ag)-Total	0.842		0.050	mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
Sodium (Na)-Total	24.6		0.000010	mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
Strontium (Sr)-Total	0.180		0.00010	mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
Thallium (TI)-Total	<0.000050		0.00010	mg/L		07-JUL-13	R2644484
Tin (Sn)-Total	<0.000050		0.000030	mg/L		07-JUL-13	R2644484
Titanium (Ti)-Total	0.00289		0.00030	mg/L		07-JUL-13	R2644484
Uranium (U)-Total	0.000285		0.000030	mg/L		07-JUL-13	R2644484
Vanadium (V)-Total	0.000203		0.00010	mg/L		07-JUL-13	R2644484
Zinc (Zn)-Total	0.0043		0.00010	mg/L		07-JUL-13	R2644484
Dissolved Metals in Water by CRC ICPMS	0.00-10		0.0000				
Aluminum (Al)-Dissolved	0.0243		0.0010	mg/L		06-JUL-13	R2644492
Antimony (Sb)-Dissolved	0.00067		0.00010	mg/L		06-JUL-13	R2644492
Arsenic (As)-Dissolved	0.116		0.00010	mg/L		06-JUL-13	R2644492
* Refer to Referenced Information for Qualifiers (if any) a		1	2.30010	··. 37 =	L		

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1327443-13 UP6 - S - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 10:30							
Matrix: Surface Water							
Dissolved Metals in Water by CRC ICPMS							
Barium (Ba)-Dissolved	0.0154		0.000050	mg/L		06-JUL-13	R2644492
Beryllium (Be)-Dissolved	< 0.00050		0.00050	mg/L		06-JUL-13	R2644492
Bismuth (Bi)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Boron (B)-Dissolved	0.028		0.010	mg/L		06-JUL-13	R2644492
Cadmium (Cd)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Calcium (Ca)-Dissolved	101		0.020	mg/L		06-JUL-13	R2644492
Chromium (Cr)-Dissolved	0.00011		0.00010	mg/L		06-JUL-13	R2644492
Cobalt (Co)-Dissolved	0.00221		0.00010	mg/L		06-JUL-13	R2644492
Copper (Cu)-Dissolved	0.00138		0.00010	mg/L		06-JUL-13	R2644492
Iron (Fe)-Dissolved	0.048		0.010	mg/L		06-JUL-13	R2644492
Lead (Pb)-Dissolved	0.000093		0.000050	mg/L		06-JUL-13	R2644492
Lithium (Li)-Dissolved	<0.0030		0.0030	mg/L		06-JUL-13	R2644492
Magnesium (Mg)-Dissolved	6.88		0.0050	mg/L		06-JUL-13	R2644492
Manganese (Mn)-Dissolved	0.101		0.000050	mg/L		06-JUL-13	R2644492
Molybdenum (Mo)-Dissolved	0.00198		0.000050	mg/L		06-JUL-13	R2644492
Nickel (Ni)-Dissolved	0.00520		0.00010	mg/L		06-JUL-13	R2644492
Phosphorus (P)-Dissolved	<0.30		0.30	mg/L		06-JUL-13	R2644492
Potassium (K)-Dissolved Selenium (Se)-Dissolved	5.88		0.050	mg/L		06-JUL-13	R2644492
Selenium (Se)-Dissolved Silicon (Si)-Dissolved	< 0.00010		0.00010	mg/L		06-JUL-13 06-JUL-13	R2644492
Silver (Ag)-Dissolved	0.767 <0.000010		0.050 0.000010	mg/L mg/L		06-JUL-13 06-JUL-13	R2644492 R2644492
Sodium (Na)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492 R2644492
Strontium (Sr)-Dissolved	0.160		0.00010	mg/L		06-JUL-13	R2644492
Thallium (TI)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Titanium (Ti)-Dissolved	<0.00030		0.00030	mg/L		06-JUL-13	R2644492
Tin (Sn)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Uranium (U)-Dissolved	0.000244		0.000010	mg/L		06-JUL-13	R2644492
Vanadium (V)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Zinc (Zn)-Dissolved	0.0014		0.0010	mg/L		06-JUL-13	R2644492
NO2, NO3, & (NO2+NO3) in Water				-			
Nitrate as N by IC Nitrate (as N)	0.308		0.050	mg/L		06-JUL-13	R2644651
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	0.308		0.071	mg/L		07-JUL-13	
Nitrite as N by IC Nitrite (as N)	<0.050		0.050	mg/L		06-JUL-13	R2644651
L1327443-14 UP6 - M - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 10:30							
Matrix: Surface Water Miscellaneous Parameters							
Ammonia, Total (as N)	0.166		0.050	mg/L		06-JUL-13	R2644431
Color, True	7.8		2.0	nng/∟ C.U.		06-JUL-13	R2644496
	-					06-JUL-13 06-JUL-13	R2644496 R2644442
Total Suspended Solids	5.0		3.0	mg/L NTU			
Turbidity	3.53		0.10			06-JUL-13	R2644448
pH Total Matala in Water by CDC ICDMC	8.06		0.10	рН		06-JUL-13	R2644445
Total Metals in Water by CRC ICPMS Aluminum (AI)-Total	0.0659		0.0020	ma/l		07-JUL-13	R2644484
Antimony (Sb)-Total	0.0659		0.0030 0.00010	mg/L mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
Arsenic (As)-Total	0.00073		0.00010	mg/L mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
Barium (Ba)-Total	0.212		0.00010	mg/L mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
	0.0100		0.000000	iiig/L	1	00000-10	112044404

L1327443-14 UP6 - M - OFF Sampled By: M. St. Jean on 03-JUL-13 @ 10:30 Matrix: Surface Water Total Metals in Water by CRC ICPMS Bismuth (Bi)-Total Bismuth (Bi)-Total 0.03 Cadmium (Cd)-Total 0.000 Calcium (Ca)-Total 0.111 Chromium (Cr)-Total 0.000 Cobalt (Co)-Total 0.000 Cobalt (Co)-Total 0.000 Copper (Cu)-Total 0.000 Iron (Fe)-Total 0.000 Lithium (Li)-Total 0.000 Magnesium (Mg)-Total 0.000 Magnesium (Mg)-Total 0.002 Nickel (Ni)-Total 0.000 Selenium (Se)-Total <0.000 Silicon (Si)-Total 0.000 Sodium (Na)-Total 0.177 Thallium (Ti)-Total 0.000 Sodium (Na)-Total 0.177 Thallium (Ti)-Total	34 012 1 047 294 285 01 922 050 0 34 233 553 30 3 010 28 0010 1	0.000050 0.010 0.020 0.00010 0.00010 0.00010 0.00010 0.00050 0.0050 0.00050 0.00050 0.000050 0.00010 0.30 0.050 0.00010 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484
Sampled By: M. St. Jean on 03-JUL-13 @ 10:30 Matrix: Surface Water Total Metals in Water by CRC ICPMS Bismuth (Bi)-Total 0.03 Cadmium (Cd)-Total 0.000 Calcium (Ca)-Total 0.000 Cobalt (Co)-Total 0.000 Cobalt (Co)-Total 0.000 Cobalt (Co)-Total 0.002 Copper (Cu)-Total 0.002 Iron (Fe)-Total 0.002 Iron (Fe)-Total 0.000 Lithium (Li)-Total 0.000 Magnesium (Mg)-Total 0.002 Nickel (Ni)-Total 0.006 Phosphorus (P)-Total <0.000	34 012 1 047 294 285 01 922 050 0 34 233 553 30 3 010 28 0010 1	0.010 0.00010 0.020 0.00010 0.00010 0.0010 0.00050 0.0050 0.00050 0.00050 0.00050 0.00010 0.30 0.00010 0.050 0.00010 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484
Matrix: Surface Water Total Metals in Water by CRC ICPMS Bismuth (Bi)-Total <0.000	34 012 1 047 294 285 01 922 050 0 34 233 553 30 3 010 28 0010 1	0.010 0.00010 0.020 0.00010 0.00010 0.0010 0.00050 0.0050 0.00050 0.00050 0.00050 0.00010 0.30 0.00010 0.050 0.00010 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484
Total Metals in Water by CRC ICPMS Bismuth (Bi)-Total <0.000	34 012 1 047 294 285 01 922 050 0 34 233 553 30 3 010 28 0010 1	0.010 0.00010 0.020 0.00010 0.00010 0.0010 0.00050 0.0050 0.00050 0.00050 0.00050 0.00010 0.30 0.00010 0.050 0.00010 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484
Bismuth (Bi)-Total <0.000 Boron (B)-Total 0.03 Cadmium (Cd)-Total 0.000 Calcium (Ca)-Total 111 Chromium (Cr)-Total 0.000 Cobalt (Co)-Total 0.002 Copper (Cu)-Total 0.002 Copper (Cu)-Total 0.002 Iron (Fe)-Total 0.70 Lead (Pb)-Total 0.000 Lithium (Li)-Total <0.000	34 012 1 047 294 285 01 922 050 0 34 233 553 30 3 010 28 0010 1	0.010 0.00010 0.020 0.00010 0.00010 0.0010 0.00050 0.0050 0.00050 0.00050 0.00050 0.00010 0.30 0.00010 0.050 0.00010 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484
Boron (B)-Total 0.03 Cadmium (Cd)-Total 0.0000 Calcium (Ca)-Total 111 Chromium (Cr)-Total 0.0002 Cobalt (Co)-Total 0.002 Copper (Cu)-Total 0.002 Iron (Fe)-Total 0.002 Iron (Fe)-Total 0.0005 Lithium (Li)-Total 0.0005 Lithium (Li)-Total 0.0005 Lithium (Mg)-Total 0.0005 Magnesium (Mg)-Total 0.002 Nickel (Ni)-Total 0.002 Potassium (K)-Total 0.002 Silicon (Si)-Total 0.82 Silver (Ag)-Total 0.82 Silver (Ag)-Total 0.17 Sodium (Na)-Total 0.17 Thallium (TI)-Total 0.000 Tin (Sn)-Total 0.000	34 012 1 047 294 285 01 922 050 0 34 233 553 30 3 010 28 0010 1	0.010 0.00010 0.020 0.00010 0.00010 0.0010 0.00050 0.0050 0.00050 0.00050 0.00050 0.00010 0.30 0.00010 0.050 0.00010 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484
Cadmium (Cd)-Total 0.0000 Calcium (Ca)-Total 111 Chromium (Cr)-Total 0.0002 Cobalt (Co)-Total 0.002 Copper (Cu)-Total 0.002 Iron (Fe)-Total 0.70 Lead (Pb)-Total 0.0008 Lithium (Li)-Total 0.0008 Lithium (Li)-Total <0.0008	012 1 047 294 285 01 922 050 0 34 233 553 30 3 010 28 0010 1	0.000010 0.020 0.00010 0.00010 0.010 0.0050 0.0050 0.0050 0.00050 0.00010 0.30 0.00010 0.050 0.00010 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484
Calcium (Ca)-Total 111 Chromium (Cr)-Total 0.000 Cobalt (Co)-Total 0.002 Copper (Cu)-Total 0.002 Iron (Fe)-Total 0.70 Lead (Pb)-Total 0.000 Lithium (Li)-Total <0.000	1 147 294 285 01 922 050 0 34 233 353 30 3 010 28 0010 1	0.020 0.00010 0.00010 0.010 0.00050 0.0050 0.0050 0.00050 0.000050 0.00010 0.30 0.050 0.00010 0.050 0.00010 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484
Chromium (Cr)-Total 0.000 Cobalt (Co)-Total 0.002 Copper (Cu)-Total 0.002 Iron (Fe)-Total 0.70 Lead (Pb)-Total 0.000 Lithium (Li)-Total 0.000 Lithium (Li)-Total <0.00	147 294 285 01 922 050 0 34 233 653 30 3 010 28 0010 1	0.00010 0.00010 0.010 0.00050 0.0050 0.0050 0.00050 0.000050 0.00010 0.30 0.050 0.00010 0.050 0.00010 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484
Cobalt (Co)-Total 0.002 Copper (Cu)-Total 0.002 Iron (Fe)-Total 0.70 Lead (Pb)-Total 0.000 Lithium (Li)-Total 0.000 Lithium (Li)-Total <0.00	294 285 01 922 050 0 34 233 553 30 3 010 28 0010 1	0.00010 0.00010 0.010 0.0050 0.0050 0.00050 0.00050 0.00010 0.30 0.050 0.00010 0.050 0.00010 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484
Copper (Cu)-Total 0.002 Iron (Fe)-Total 0.70 Lead (Pb)-Total 0.000 Lithium (Li)-Total <0.00	285 01 922 050 0 33 33 010 28 0010 1	0.00010 0.00050 0.0050 0.0050 0.00050 0.000050 0.00010 0.30 0.050 0.00010 0.050 0.00010 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484
Iron (Fe)-Total 0.70 Lead (Pb)-Total 0.0005 Lithium (Li)-Total <0.00	11 922 050 0 34 233 353 30 3 010 28 0010 1	0.010 0.00050 0.0050 0.00050 0.000050 0.00010 0.30 0.050 0.00010 0.050 0.00010 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484
Lead (Pb)-Total 0.0009 Lithium (Li)-Total <0.00	922 950 0 34 233 353 300 3 010 28 0010 1	0.000050 0.0050 0.00050 0.000050 0.00010 0.30 0.050 0.00010 0.050 0.00010 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484
Lithium (Li)-Total <0.00	950 0 34 233 553 30 33 010 28 0010 1	0.0050 0.00050 0.000050 0.00010 0.30 0.050 0.00010 0.050 0.00010 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484
Magnesium (Mg)-Total 7.50 Manganese (Mn)-Total 0.13 Molybdenum (Mo)-Total 0.002 Nickel (Ni)-Total 0.006 Phosphorus (P)-Total <0.33	0 34 233 553 30 33 010 28 0010 1	0.0050 0.000050 0.00010 0.30 0.050 0.00010 0.050 0.00010 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484 R2644484
Manganese (Mn)-Total 0.13 Molybdenum (Mo)-Total 0.002 Nickel (Ni)-Total 0.006 Phosphorus (P)-Total <0.3	34 233 553 30 3 010 28 9010 1	0.000050 0.00010 0.30 0.050 0.00010 0.050 0.00010 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484 R2644484
Molybdenum (Mo)-Total 0.002 Nickel (Ni)-Total 0.006 Phosphorus (P)-Total <0.3	233 553 30 33 010 28 9010 1	0.000050 0.00010 0.30 0.050 0.00010 0.050 0.000010 0.050	mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484 R2644484
Nickel (Ni)-Total 0.006 Phosphorus (P)-Total <0.3	553 30 33 010 28 0010 1	0.00010 0.30 0.050 0.00010 0.050 0.000010 0.050	mg/L mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484 R2644484
Phosphorus (P)-Total<0.3Potassium (K)-Total6.43Selenium (Se)-Total<0.000	30 3 010 28 0010 1	0.30 0.050 0.00010 0.050 0.000010 0.050	mg/L mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13 07-JUL-13	R2644484 R2644484 R2644484
Potassium (K)-Total 6.43 Selenium (Se)-Total <0.000	3 010 28 0010 1	0.050 0.00010 0.050 0.000010 0.050	mg/L mg/L mg/L mg/L	07-JUL-13 07-JUL-13	R2644484 R2644484
Selenium (Se)-Total <0.000	010 28 0010 1	0.00010 0.050 0.000010 0.050	mg/L mg/L mg/L	07-JUL-13	R2644484
Silicon (Si)-Total0.82Silver (Ag)-Total0.000Sodium (Na)-Total24.1Strontium (Sr)-Total0.17Thallium (TI)-Total<0.000	28 0010 1	0.050 0.000010 0.050	mg/L mg/L		
Silver (Ag)-Total<0.000Sodium (Na)-Total24.7Strontium (Sr)-Total0.17Thallium (TI)-Total<0.000	0010 1	0.000010 0.050	mg/L	01 002 10	112011101
Sodium (Na)-Total24.'Strontium (Sr)-Total0.17Thallium (TI)-Total<0.000	1	0.050	-	07-JUL-13	R2644484
Strontium (Sr)-Total0.17Thallium (TI)-Total<0.000			ma/i	07-JUL-13	R2644484
Thallium (TI)-Total<0.000Tin (Sn)-Total0.000	5	0.00010	mg/L	07-JUL-13	R2644484
Tin (Sn)-Total 0.000		0.000050	mg/L	07-JUL-13	R2644484
		0.00010	mg/L	07-JUL-13	R2644484
		0.00030	mg/L	07-JUL-13	R2644484
Uranium (U)-Total 0.0002		0.000010	mg/L	07-JUL-13	R2644484
Vanadium (V)-Total 0.000		0.00010	mg/L	07-JUL-13	R2644484
Zinc (Zn)-Total 0.004		0.0030	mg/L	07-JUL-13	R2644484
Dissolved Metals in Water by CRC ICPMS		0.0000			
Aluminum (AI)-Dissolved 0.023	36	0.0010	mg/L	06-JUL-13	R2644492
Antimony (Sb)-Dissolved 0.000	66	0.00010	mg/L	06-JUL-13	R2644492
Arsenic (As)-Dissolved 0.11	3	0.00010	mg/L	06-JUL-13	R2644492
Barium (Ba)-Dissolved 0.015	52	0.000050	mg/L	06-JUL-13	R2644492
Beryllium (Be)-Dissolved <0.000	050	0.00050	mg/L	06-JUL-13	R2644492
Bismuth (Bi)-Dissolved <0.000		0.000050	mg/L	06-JUL-13	R2644492
Boron (B)-Dissolved 0.02		0.010	mg/L	06-JUL-13	R2644492
Cadmium (Cd)-Dissolved <0.000		0.000010	mg/L	06-JUL-13	R2644492
Calcium (Ca)-Dissolved 98.2		0.020	mg/L	06-JUL-13	R2644492
Chromium (Cr)-Dissolved <0.000		0.00010	mg/L	06-JUL-13	R2644492
Cobalt (Co)-Dissolved 0.002		0.00010	mg/L	06-JUL-13	R2644492
Copper (Cu)-Dissolved 0.001		0.00010	mg/L	06-JUL-13	R2644492
Iron (Fe)-Dissolved 0.04		0.010	mg/L	06-JUL-13	R2644492
Lead (Pb)-Dissolved 0.0000		0.000050	mg/L	06-JUL-13	R2644492
Lithium (Li)-Dissolved <0.00		0.0030	mg/L	06-JUL-13	R2644492
Magnesium (Mg)-Dissolved 6.82		0.0050	mg/L	06-JUL-13	R2644492
Manganese (Mn)-Dissolved 0.099		0.000050	mg/L	06-JUL-13	R2644492
Molybdenum (Mo)-Dissolved 0.001		0.000050	mg/L	06-JUL-13	R2644492
Nickel (Ni)-Dissolved 0.005		0.00010	mg/L	06-JUL-13	R2644492
Phosphorus (P)-Dissolved <0.3		0.30	mg/L	06-JUL-13	R2644492
Potassium (K)-Dissolved 5.94		0.050	mg/L	06-JUL-13	R2644492
Selenium (Se)-Dissolved <0.000		0.00010	mg/L	06-JUL-13	R2644492
Silicon (Si)-Dissolved 0.77	0	0.050	mg/L	06-JUL-13	R2644492

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1327443-14 UP6 - M - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 10:30							
Matrix: Surface Water							
Dissolved Metals in Water by CRC ICPMS							
Silver (Ag)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Sodium (Na)-Dissolved	21.7		0.050	mg/L		06-JUL-13	R2644492
Strontium (Sr)-Dissolved	0.162		0.00010	mg/L		06-JUL-13	R2644492
Thallium (TI)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Titanium (Ti)-Dissolved	0.00033		0.00030	mg/L		06-JUL-13	R2644492
Tin (Sn)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Uranium (U)-Dissolved	0.000244		0.000010	mg/L		06-JUL-13	R2644492
Vanadium (V)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Zinc (Zn)-Dissolved	0.0018		0.0010	mg/L		06-JUL-13	R2644492
NO2, NO3, & (NO2+NO3) in Water							
Nitrate as N by IC Nitrate (as N)	0.303		0.050	mg/L		06-JUL-13	R2644651
Nitrate+Nitrite	0.000		0.000				112011001
Nitrate and Nitrite (as N)	0.303		0.071	mg/L		07-JUL-13	
Nitrite as N by IC				0			
Nitrite (as N)	<0.050		0.050	mg/L		06-JUL-13	R2644651
L1327443-15 UP - EQ - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 11:00							
Matrix: Surface Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		06-JUL-13	R2644431
Color, True	<2.0		2.0	C.U.		06-JUL-13	R2644496
Total Suspended Solids	<3.0		3.0	mg/L		06-JUL-13	R2644442
Turbidity	0.25		0.10	NTU		06-JUL-13	R2644448
рН	5.95		0.10	pН		06-JUL-13	R2644445
Total Metals in Water by CRC ICPMS							
Aluminum (Al)-Total	<0.0030		0.0030	mg/L		07-JUL-13	R2644484
Antimony (Sb)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Arsenic (As)-Total	0.00082		0.00010	mg/L		07-JUL-13	R2644484
Barium (Ba)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Beryllium (Be)-Total	<0.00050		0.00050	mg/L		07-JUL-13	R2644484
Bismuth (Bi)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Boron (B)-Total Cadmium (Cd)-Total	< 0.010		0.010	mg/L		07-JUL-13 07-JUL-13	R2644484
Calcium (Ca)-Total	<0.000010 0.078		0.000010 0.020	mg/L mg/L		07-JUL-13 07-JUL-13	R2644484 R2644484
Chromium (Cr)-Total	<0.00010		0.020	mg/L		07-JUL-13	R2644484
Cobalt (Co)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Copper (Cu)-Total	0.00012		0.00010	mg/L		07-JUL-13	R2644484
Iron (Fe)-Total	<0.010		0.010	mg/L		07-JUL-13	R2644484
Lead (Pb)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Lithium (Li)-Total	<0.0050		0.0050	mg/L		07-JUL-13	R2644484
Magnesium (Mg)-Total	<0.0050		0.0050	mg/L		07-JUL-13	R2644484
Manganese (Mn)-Total	0.000151		0.000050	mg/L		07-JUL-13	R2644484
Molybdenum (Mo)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Nickel (Ni)-Total	0.00018		0.00010	mg/L		07-JUL-13	R2644484
Phosphorus (P)-Total	<0.30		0.30	mg/L		07-JUL-13	R2644484
Potassium (K)-Total	<0.050		0.050	mg/L		07-JUL-13	R2644484
Selenium (Se)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Silicon (Si)-Total	<0.050		0.050	mg/L		07-JUL-13	R2644484
Silver (Ag)-Total	<0.000010		0.000010	mg/L		07-JUL-13	R2644484
Sodium (Na)-Total	< 0.050		0.050	mg/L		07-JUL-13	R2644484

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1327443-15 UP - EQ - OFF							
Sampled By: M. St. Jean on 03-JUL-13 @ 11:00							
Matrix: Surface Water							
Total Metals in Water by CRC ICPMS							
Strontium (Sr)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Thallium (TI)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Tin (Sn)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Titanium (Ti)-Total	<0.00030		0.00030	mg/L		07-JUL-13	R2644484
Uranium (U)-Total	<0.000010		0.000010	mg/L		07-JUL-13	R2644484
Vanadium (V)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Zinc (Zn)-Total	<0.0030		0.0030	mg/L		07-JUL-13	R2644484
Dissolved Metals in Water by CRC ICPMS	10.0000		0.0000			0.00110	
Aluminum (Al)-Dissolved	<0.0010		0.0010	mg/L		06-JUL-13	R2644492
Antimony (Sb)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Arsenic (As)-Dissolved	0.00053		0.00010	mg/L		06-JUL-13	R2644492
Barium (Ba)-Dissolved	0.000080		0.000050	mg/L		06-JUL-13	R2644492
Beryllium (Be)-Dissolved	<0.00050		0.00050	mg/L		06-JUL-13	R2644492
Bismuth (Bi)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Boron (B)-Dissolved	<0.010		0.000000	mg/L		06-JUL-13	R2644492
Cadmium (Cd)-Dissolved	<0.00010		0.000010	mg/L		06-JUL-13	R2644492
Calcium (Ca)-Dissolved	0.089		0.020	mg/L		06-JUL-13	R2644492
Chromium (Cr)-Dissolved	< 0.00010		0.00010	mg/L		06-JUL-13	R2644492
Cobalt (Co)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Copper (Cu)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Iron (Fe)-Dissolved	<0.010		0.010	mg/L		06-JUL-13	R2644492
Lead (Pb)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Lithium (Li)-Dissolved	<0.0030		0.0030	mg/L		06-JUL-13	R2644492
Magnesium (Mg)-Dissolved	<0.0050		0.0050	mg/L		06-JUL-13	R2644492
Manganese (Mn)-Dissolved	0.000148		0.000050	mg/L		06-JUL-13	R2644492
Molybdenum (Mo)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Nickel (Ni)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Phosphorus (P)-Dissolved	<0.30		0.30	mg/L		06-JUL-13	R2644492
Potassium (K)-Dissolved	<0.050		0.050	mg/L		06-JUL-13	R2644492
Selenium (Se)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Silicon (Si)-Dissolved	<0.050		0.050	mg/L		06-JUL-13	R2644492
Silver (Ag)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Sodium (Na)-Dissolved	<0.050		0.050	mg/L		06-JUL-13	R2644492
Strontium (Sr)-Dissolved	0.00013		0.00010	mg/L		06-JUL-13	R2644492
Thallium (TI)-Dissolved	< 0.000050		0.000050	mg/L		06-JUL-13	R2644492
Titanium (Ti)-Dissolved	<0.00030		0.00030	mg/L		06-JUL-13	R2644492
Tin (Sn)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Uranium (U)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Vanadium (V)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Zinc (Zn)-Dissolved	0.0066		0.0010	mg/L		06-JUL-13	R2644492
NO2, NO3, & (NO2+NO3) in Water				··· 3/ =			
Nitrate as N by IC							
Nitrate (as N)	<0.050		0.050	mg/L		06-JUL-13	R2644651
Nitrate+Nitrite				5			
Nitrate and Nitrite (as N)	<0.071		0.071	mg/L		07-JUL-13	
Nitrite as N by IC				-			
Nitrite (as N)	<0.050		0.050	mg/L		06-JUL-13	R2644651
L1327443-16 TBLANK Sampled By: M. St. Jean on 03-JUL-13 @ 12:00							
Matrix: Surface Water Miscellaneous Parameters							

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1327443-16 TBLANK							
Sampled By: M. St. Jean on 03-JUL-13 @ 12:00							
Matrix: Surface Water							
Ammonia, Total (as N)	<0.050		0.050	mg/L		06-JUL-13	R2644431
Color, True	<2.0		2.0	C.U.		06-JUL-13	R2644496
Total Suspended Solids	<3.0		2.0 3.0	mg/L		06-JUL-13	R2644490 R2644442
				U			
Turbidity	0.18		0.10	NTU		06-JUL-13	R2644448
Total Metals in Water by CRC ICPMS Aluminum (AI)-Total	<0.0030		0.0030	mg/L		07-JUL-13	R2644484
Antimony (Sb)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Arsenic (As)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Barium (Ba)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Beryllium (Be)-Total	<0.00050		0.00050	mg/L		07-JUL-13	R2644484
Bismuth (Bi)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Boron (B)-Total	<0.010		0.010	mg/L		07-JUL-13	R2644484
Cadmium (Cd)-Total	<0.000010		0.000010	mg/L		07-JUL-13	R2644484
Calcium (Ca)-Total	<0.020		0.020	mg/L		07-JUL-13	R2644484
Chromium (Cr)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Cobalt (Co)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Copper (Cu)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Iron (Fe)-Total	<0.010		0.010	mg/L		07-JUL-13	R2644484
Lead (Pb)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Lithium (Li)-Total	<0.0050		0.0050	mg/L		07-JUL-13	R2644484
Magnesium (Mg)-Total	<0.0050		0.0050	mg/L		07-JUL-13	R2644484
Manganese (Mn)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Molybdenum (Mo)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Nickel (Ni)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Phosphorus (P)-Total	<0.30		0.30	mg/L		07-JUL-13	R2644484
Potassium (K)-Total	<0.050		0.050	mg/L		07-JUL-13	R2644484
Selenium (Se)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Silicon (Si)-Total	<0.050		0.050	mg/L		07-JUL-13	R2644484
Silver (Ag)-Total	<0.000010		0.000010	mg/L		07-JUL-13	R2644484
Sodium (Na)-Total	< 0.050		0.050	mg/L		07-JUL-13	R2644484
Strontium (Sr)-Total	<0.00010		0.00010	mg/L		07-JUL-13	R2644484
Thallium (TI)-Total	<0.000050		0.000050	mg/L		07-JUL-13	R2644484
Tin (Sn)-Total	< 0.00010		0.00010	mg/L		07-JUL-13	R2644484
Titanium (Ti)-Total Uranium (U)-Total	< 0.00030		0.00030	mg/L		07-JUL-13 07-JUL-13	R2644484
Vanadium (V)-Total	<0.000010 <0.00010		0.000010 0.00010	mg/L mg/L		07-JUL-13	R2644484 R2644484
Zinc (Zn)-Total	<0.0030		0.00010	mg/L		07-JUL-13	R2644484
Dissolved Metals in Water by CRC ICPMS	<0.0030		0.0030	iiig/L		07-002-10	112044404
Aluminum (Al)-Dissolved	<0.0010		0.0010	mg/L		06-JUL-13	R2644492
Antimony (Sb)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Arsenic (As)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Barium (Ba)-Dissolved	0.000153	RRV	0.000050	mg/L		06-JUL-13	R2644492
Beryllium (Be)-Dissolved	<0.00050		0.00050	mg/L		06-JUL-13	R2644492
Bismuth (Bi)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Boron (B)-Dissolved	<0.010		0.010	mg/L		06-JUL-13	R2644492
Cadmium (Cd)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Calcium (Ca)-Dissolved	<0.020		0.020	mg/L		06-JUL-13	R2644492
Chromium (Cr)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Cobalt (Co)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Copper (Cu)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Iron (Fe)-Dissolved	<0.010		0.010	mg/L		06-JUL-13	R2644492
Lead (Pb)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1327443-16 TBLANK							
Sampled By: M. St. Jean on 03-JUL-13 @ 12:00							
Matrix: Surface Water							
Dissolved Metals in Water by CRC ICPMS							
Lithium (Li)-Dissolved	<0.0030		0.0030	mg/L		06-JUL-13	R2644492
Magnesium (Mg)-Dissolved	<0.0050		0.0050	mg/L		06-JUL-13	R2644492
Manganese (Mn)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Molybdenum (Mo)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Nickel (Ni)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Phosphorus (P)-Dissolved	<0.30		0.30	mg/L		06-JUL-13	R2644492
Potassium (K)-Dissolved	<0.050		0.050	mg/L		06-JUL-13	R2644492
Selenium (Se)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Silicon (Si)-Dissolved	<0.050		0.050	mg/L		06-JUL-13	R2644492
Silver (Ag)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Sodium (Na)-Dissolved	<0.050		0.050	mg/L		06-JUL-13	R2644492
Strontium (Sr)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Thallium (TI)-Dissolved	<0.000050		0.000050	mg/L		06-JUL-13	R2644492
Titanium (Ti)-Dissolved	<0.00030		0.00030	mg/L		06-JUL-13	R2644492
Tin (Sn)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Uranium (U)-Dissolved	<0.000010		0.000010	mg/L		06-JUL-13	R2644492
Vanadium (V)-Dissolved	<0.00010		0.00010	mg/L		06-JUL-13	R2644492
Zinc (Zn)-Dissolved	<0.0010		0.0010	mg/L		06-JUL-13	R2644492
NO2, NO3, & (NO2+NO3) in Water							
Nitrate as N by IC Nitrate (as N)	-0.050		0.050	ma/l		06-JUL-13	R2644651
Nitrate+Nitrite	<0.050		0.050	mg/L		00-JUL-13	R2044031
Nitrate and Nitrite (as N)	<0.071		0.071	mg/L		07-JUL-13	
Nitrite as N by IC	<0.071		0.071	ing/∟		07-502-15	
Nitrite (as N)	<0.050		0.050	mg/L		06-JUL-13	R2644651

Sample Parameter Qualifier Key:

Qualifie	er	Description
DUP-H		Duplicate results outside ALS DQO, due to sample heterogeneity.
RRV		Reported Result Verified By Repeat Analysis

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
COL-TRU-ED	Water	Color, True	APHA 2120
The reported color applie	s to the pH o	f the sample as submitted unless otherwise note	d on the report.
MET-D-CCMS-ED	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A
MET-T-CCMS-ED	Water	Total Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A
NH3-CFA-ED	Water	Ammonia in Water by Colour	APHA 4500 NH3-NITROGEN (AMMONIA)
This analysis is carried o automated phenate color	0.	•	NITROGEN (AMMONIA)". Ammonia is determined using the
NO2+NO3-CALC-ED	Water	Nitrate+Nitrite	CALCULATION
NO2-IC-ED	Water	Nitrite as N by IC	APHA 4110 B-ION CHROMATOGRAPHY
NO3-IC-ED	Water	Nitrate as N by IC	APHA 4110 B-ION CHROMATOGRAPHY
PH-ED	Water	рН	APHA 4500 H-Electrode
, , , ,		for pH will have exceeded the 15 minute recomm curate results are needed)	ended hold time from time of sampling (field analysis is
SOLIDS-TOTSUS-ED	Water	Total Suspended Solids	APHA 2540 D-Gravimetric
TURBIDITY-ED	Water	Turbidity	APHA 2130 B-Nephelometer

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
ED	ALS ENVIRONMENTAL - EDMONTON, ALBERTA, CANADA
Chain of Custody Numbers:	

1

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

2

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Quality Control Report

		Workorder:	L132744	3	Report Date: 0	7-JUL-13		Page 1 of 14
	WESA Inc. 4901-48 St. Ground Floor Yellowknife NT X1A 2P9 Tim Beckenham/Melanie							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
COL-TRU-ED	Water							
	2644496							
WG1702198-3 Color, True	DUP	L1327443-1 7.2	7.9		C.U.	8.7	20	06-JUL-13
WG1702198-2	LCS	1.2				0.7		
Color, True			103.5		%		85-115	06-JUL-13
WG1702198-1 Color, True	MB		<2.0		C.U.		2	06-JUL-13
MET-D-CCMS-ED	Water							
	2644492							
WG1702089-2	CRM	ED-HIGH-WA	TRM					
Aluminum (Al)-	Dissolved		103.9		%		80-120	06-JUL-13
Antimony (Sb)-	Dissolved		102.1		%		80-120	06-JUL-13
Arsenic (As)-Di	issolved		103.0		%		80-120	06-JUL-13
Barium (Ba)-Di	ssolved		103.5		%		80-120	06-JUL-13
Beryllium (Be)-	Dissolved		98.8		%		80-120	06-JUL-13
Bismuth (Bi)-Di	issolved		92.7		%		80-120	06-JUL-13
Boron (B)-Diss	olved		94.2		%		80-120	06-JUL-13
Cadmium (Cd)	-Dissolved		102.3		%		80-120	06-JUL-13
Calcium (Ca)-D	Dissolved		98.5		%		80-120	06-JUL-13
Chromium (Cr)	-Dissolved		102.7		%		80-120	06-JUL-13
Cobalt (Co)-Dis	ssolved		102.1		%		80-120	06-JUL-13
Copper (Cu)-D	issolved		98.4		%		80-120	06-JUL-13
Lead (Pb)-Diss	olved		97.7		%		80-120	06-JUL-13
Lithium (Li)-Dis	solved		98.2		%		80-120	06-JUL-13
Magnesium (M	g)-Dissolved		110.0		%		80-120	06-JUL-13
Manganese (M	n)-Dissolved		101.8		%		80-120	06-JUL-13
Molybdenum (N	Mo)-Dissolved		95.0		%		80-120	06-JUL-13
Nickel (Ni)-Diss	solved		101.6		%		80-120	06-JUL-13
Phosphorus (P)-Dissolved		97.4		%		80-120	06-JUL-13
Potassium (K)-	Dissolved		101.9		%		80-120	06-JUL-13
Selenium (Se)-	Dissolved		105.9		%		80-120	06-JUL-13
Silicon (Si)-Dis	solved		95.9		%		80-120	06-JUL-13
Silver (Ag)-Dise	solved		97.8		%		80-120	06-JUL-13
Sodium (Na)-D	issolved		100.0		%		80-120	06-JUL-13
Strontium (Sr)-	Dissolved		100.0		%		80-120	06-JUL-13
Thallium (Tl)-D	issolved		101.6		%		80-120	06-JUL-13

Test

Quality Control Report

Workorder: L1327443 Report Date: 07-JUL-13 Page 2 of 14 WESA Inc. Client: 4901-48 St. Ground Floor Yellowknife NT X1A 2P9 Contact: Tim Beckenham/Melanie St-Jean Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-D-CCMS-ED Water Batch R2644492 WG1702089-2 CRM ED-HIGH-WATRM Titanium (Ti)-Dissolved % 91.3 80-120 06-JUL-13 Tin (Sn)-Dissolved 93.5 % 06-JUL-13 80-120 Uranium (U)-Dissolved 91.2 % 80-120 06-JUL-13 Vanadium (V)-Dissolved 101.4 % 80-120 06-JUL-13 Zinc (Zn)-Dissolved % 105.6 80-120 06-JUL-13 WG1702089-3 DUP L1328059-8

Aluminum (Al)-Dissolved	0.0381	0.0401		mg/L	5.1	20	06-JUL-13
Antimony (Sb)-Dissolved	<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	06-JUL-13
Arsenic (As)-Dissolved	0.00134	0.00131		mg/L	1.6	20	06-JUL-13
Barium (Ba)-Dissolved	0.0558	0.0570		mg/L	2.2	20	06-JUL-13
Beryllium (Be)-Dissolved	<0.0025	<0.0025	RPD-NA	mg/L	N/A	20	06-JUL-13
Bismuth (Bi)-Dissolved	<0.00025	<0.00025	RPD-NA	mg/L	N/A	20	06-JUL-13
Boron (B)-Dissolved	0.467	0.471		mg/L	0.8	20	06-JUL-13
Cadmium (Cd)-Dissolved	0.000638	0.000635		mg/L	0.5	20	06-JUL-13
Calcium (Ca)-Dissolved	437	443		mg/L	1.3	20	06-JUL-13
Chromium (Cr)-Dissolved	<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	06-JUL-13
Cobalt (Co)-Dissolved	0.0163	0.0163		mg/L	0.2	20	06-JUL-13
Copper (Cu)-Dissolved	0.00331	0.00352		mg/L	6.2	20	06-JUL-13
Iron (Fe)-Dissolved	<0.050	<0.050	RPD-NA	mg/L	N/A	20	06-JUL-13
Lead (Pb)-Dissolved	<0.00025	<0.00025	RPD-NA	mg/L	N/A	20	06-JUL-13
Lithium (Li)-Dissolved	0.659	0.646		mg/L	2.0	20	06-JUL-13
Magnesium (Mg)-Dissolved	463	464		mg/L	0.2	20	06-JUL-13
Manganese (Mn)-Dissolved	7.46	7.38		mg/L	1.1	20	06-JUL-13
Molybdenum (Mo)-Dissolved	0.00904	0.00884		mg/L	2.3	20	06-JUL-13
Nickel (Ni)-Dissolved	0.0736	0.0740		mg/L	0.6	20	06-JUL-13
Phosphorus (P)-Dissolved	<1.5	<1.5	RPD-NA	mg/L	N/A	20	06-JUL-13
Potassium (K)-Dissolved	11.4	11.4		mg/L	0.1	20	06-JUL-13
Selenium (Se)-Dissolved	0.00539	0.00586		mg/L	8.3	20	06-JUL-13
Silicon (Si)-Dissolved	13.6	13.3		mg/L	1.9	20	06-JUL-13
Silver (Ag)-Dissolved	<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	06-JUL-13
Sodium (Na)-Dissolved	272	267		mg/L	2.1	20	06-JUL-13
Strontium (Sr)-Dissolved	2.10	2.13		mg/L	1.6	20	06-JUL-13
Thallium (TI)-Dissolved	<0.00025	<0.00025	RPD-NA	mg/L	N/A	20	06-JUL-13

Workorder: L1327443 Report Date: 07-JUL-13 Page 3 of 14 WESA Inc. Client: 4901-48 St. Ground Floor Yellowknife NT X1A 2P9 Contact: Tim Beckenham/Melanie St-Jean Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-D-CCMS-ED Water Batch R2644492 WG1702089-3 DUP L1328059-8 Titanium (Ti)-Dissolved < 0.0015 < 0.0015 **RPD-NA** mg/L N/A 20 06-JUL-13 Tin (Sn)-Dissolved < 0.00050 < 0.00050 **RPD-NA** mg/L N/A 20 06-JUL-13 Uranium (U)-Dissolved 0.410 0.418 mg/L 1.9 20 06-JUL-13 Vanadium (V)-Dissolved 0.00056 0.00065 mg/L 15 20 06-JUL-13 Zinc (Zn)-Dissolved 0.0335 0.0322 mg/L 4.0 20 06-JUL-13 WG1702089-1 MB Aluminum (AI)-Dissolved < 0.0010 mg/L 0.001 06-JUL-13 0.0001 Antimony (Sb)-Dissolved < 0.00010 mg/L 06-JUL-13 Arsenic (As)-Dissolved < 0.00010 0.0001 mg/L 06-JUL-13 0.00005 Barium (Ba)-Dissolved < 0.000050 mg/L 06-JUL-13 Beryllium (Be)-Dissolved < 0.00050 0.0005 mg/L 06-JUL-13 Bismuth (Bi)-Dissolved < 0.000050 0.00005 mg/L 06-JUL-13 0.01 Boron (B)-Dissolved mg/L < 0.010 06-JUL-13 Cadmium (Cd)-Dissolved 0.00001 < 0.000010 mg/L 06-JUL-13 Calcium (Ca)-Dissolved 0.02 < 0.020 mg/L 06-JUL-13 Chromium (Cr)-Dissolved < 0.00010 0.0001 mg/L 06-JUL-13 Cobalt (Co)-Dissolved < 0.00010 mg/L 0.0001 06-JUL-13 Copper (Cu)-Dissolved < 0.00010 mg/L 0.0001 06-JUL-13 Iron (Fe)-Dissolved <0.010 mg/L 0.01 06-JUL-13 Lead (Pb)-Dissolved 0.00005 < 0.000050 mg/L 06-JUL-13 Lithium (Li)-Dissolved < 0.0030 0.003 mg/L 06-JUL-13 < 0.0050 0.005 Magnesium (Mg)-Dissolved mg/L 06-JUL-13 0.00005 Manganese (Mn)-Dissolved < 0.000050 mg/L 06-JUL-13 0.00005 Molybdenum (Mo)-Dissolved < 0.000050 mg/L 06-JUL-13 Nickel (Ni)-Dissolved 0.0001 < 0.00010 mg/L 06-JUL-13 Phosphorus (P)-Dissolved <0.30 mg/L 0.3 06-JUL-13 Potassium (K)-Dissolved < 0.050 mg/L 0.05 06-JUL-13 Selenium (Se)-Dissolved < 0.00010 0.0001 mg/L 06-JUL-13 Silicon (Si)-Dissolved < 0.050 0.05 mg/L 06-JUL-13 Silver (Ag)-Dissolved < 0.000010 mg/L 0.00001 06-JUL-13 Sodium (Na)-Dissolved < 0.050 mg/L 0.05 06-JUL-13 Strontium (Sr)-Dissolved < 0.00010 0.0001 mg/L 06-JUL-13 Thallium (TI)-Dissolved < 0.000050 mg/L 0.00005 06-JUL-13

0.0003

		Workorder:	L1327443	3	Report Date: ()7-JUL-13		Page 4 of 14
Client:	WESA Inc. 4901-48 St. Ground Flo Yellowknife NT X1A 2F	9						
Contact:	Tim Beckenham/Melani	e St-Jean						
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-E	D Water							
WG1702089-			0.00000		~~~~~~ (l		0.0003	
Titanium (Ti) Tin (Sn)-Diss			<0.00030 <0.00010		mg/L mg/L		0.0003	06-JUL-13 06-JUL-13
Uranium (U)-			<0.00010	า	mg/L		0.0001	06-JUL-13
Vanadium (V			<0.00010	,	mg/L		0.0001	06-JUL-13
Zinc (Zn)-Dis			<0.0010		mg/L		0.001	06-JUL-13
MET-T-CCMS-E								00 002 10
	R2644484							
WG1702175-3 Aluminum (A	B DUP	L1328087-1 1.09	1.35	DUP-H	mg/L	21	20	07-JUL-13
Antimony (St)-Total	<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	07-JUL-13
Arsenic (As)-	Total	0.00270	0.00303		mg/L	12	20	07-JUL-13
Barium (Ba)-	Total	0.162	0.170		mg/L	4.5	20	07-JUL-13
Beryllium (Be)-Total	<0.0025	<0.0025	RPD-NA	mg/L	N/A	20	07-JUL-13
Bismuth (Bi)-	Total	<0.00025	<0.00025	RPD-NA	mg/L	N/A	20	07-JUL-13
Boron (B)-To	tal	0.054	0.053		mg/L	1.7	20	07-JUL-13
Cadmium (C	d)-Total	<0.00020	<0.00020	RPD-NA	mg/L	N/A	20	07-JUL-13
Calcium (Ca)	-Total	47.6	47.5		mg/L	0.2	20	07-JUL-13
Chromium (C	cr)-Total	0.00477	0.00565		mg/L	17	20	07-JUL-13
Cobalt (Co)-1	Total	0.00166	0.00183		mg/L	9.8	20	07-JUL-13
Copper (Cu)-	Total	0.0113	0.0113		mg/L	0.1	20	07-JUL-13
Iron (Fe)-Tota	al	2.65	3.42	DUP-H	mg/L	25	20	07-JUL-13
Lead (Pb)-To	tal	0.00310	0.00330		mg/L	6.0	20	07-JUL-13
Lithium (Li)-T	otal	0.025	0.025		mg/L	0.2	20	07-JUL-13
Magnesium (Mg)-Total	5.00	5.05		mg/L	1.0	20	07-JUL-13
Manganese (Mn)-Total	0.119	0.126		mg/L	6.0	20	07-JUL-13
Molybdenum	(Mo)-Total	0.0115	0.0123		mg/L	6.9	20	07-JUL-13
Nickel (Ni)-Te	otal	0.00720	0.00784		mg/L	8.6	20	07-JUL-13
Phosphorus	(P)-Total	<1.5	<1.5	RPD-NA	mg/L	N/A	20	07-JUL-13
Potassium (K	()-Total	1.50	1.54		mg/L	2.9	20	07-JUL-13
Selenium (Se	e)-Total	0.00105	0.00111		mg/L	5.6	20	07-JUL-13
Silicon (Si)-T	otal	4.62	5.21		mg/L	12	20	07-JUL-13
Silver (Ag)-Te		<0.00040	<0.00040	RPD-NA	mg/L	N/A	20	07-JUL-13
Sodium (Na)	Total	126	124		mg/L	1.9	20	07-JUL-13

Client:

Contact:

Quality Control Report

Workorder: L1327443 Report Date: 07-JUL-13 Page 5 of 14 WESA Inc. 4901-48 St. Ground Floor Yellowknife NT X1A 2P9 Tim Beckenham/Melanie St-Jean

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2644484								
WG1702175-3 DUP		L1328087-1	0.000					
Strontium (Sr)-Total		0.282	0.289		mg/L	2.4	20	07-JUL-13
Thallium (TI)-Total		<0.00025	<0.00025	RPD-NA	mg/L	N/A	20	07-JUL-13
Tin (Sn)-Total		0.00273	0.00284		mg/L	4.0	20	07-JUL-13
Titanium (Ti)-Total		0.0369	0.0404		mg/L	9.1	20	07-JUL-13
Uranium (U)-Total		0.00998	0.00977		mg/L	2.1	20	07-JUL-13
Vanadium (V)-Total		0.00431	0.00466		mg/L	7.7	20	07-JUL-13
Zinc (Zn)-Total		0.043	0.051		mg/L	16	20	07-JUL-13
WG1702178-2 DUP Aluminum (Al)-Total		L1327405-1 <0.0030	<0.0030	RPD-NA	mg/L	N/A	20	07-JUL-13
Antimony (Sb)-Total		<0.00040	<0.00040	RPD-NA	mg/L	N/A	20	07-JUL-13
Arsenic (As)-Total		<0.00040	<0.00040	RPD-NA	mg/L	N/A	20	07-JUL-13
Barium (Ba)-Total		0.0548	0.0548		mg/L	0.0	20	07-JUL-13
Beryllium (Be)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	07-JUL-13
Bismuth (Bi)-Total		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	07-JUL-13
Boron (B)-Total		<0.050	<0.050	RPD-NA	mg/L	N/A	20	07-JUL-13
Cadmium (Cd)-Total		<0.00020	<0.00020	RPD-NA	mg/L	N/A	20	07-JUL-13
Calcium (Ca)-Total		76.8	73.4		mg/L	4.6	20	07-JUL-13
Chromium (Cr)-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	07-JUL-13
Cobalt (Co)-Total		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	07-JUL-13
Copper (Cu)-Total		0.0030	0.0030		mg/L	0.4	20	07-JUL-13
Iron (Fe)-Total		<0.010	<0.010	RPD-NA	mg/L	N/A	20	07-JUL-13
Lead (Pb)-Total		0.00016	0.00015		mg/L	3.2	20	07-JUL-13
Lithium (Li)-Total		0.0098	0.0087		mg/L	12	20	07-JUL-13
Magnesium (Mg)-Total		23.1	23.3		mg/L	0.8	20	07-JUL-13
Manganese (Mn)-Total		<0.0020	<0.0020	RPD-NA	mg/L	N/A	20	07-JUL-13
Molybdenum (Mo)-Total		0.00156	0.00141		mg/L	10	20	07-JUL-13
Nickel (Ni)-Total		<0.0020	<0.0020	RPD-NA	mg/L	N/A	20	07-JUL-13
Phosphorus (P)-Total		<0.30	<0.30	RPD-NA	mg/L	N/A	20	07-JUL-13
Potassium (K)-Total		1.32	1.34		mg/L	1.1	20	07-JUL-13
Selenium (Se)-Total		0.00056	0.00058		mg/L	3.4	20	07-JUL-13
Silicon (Si)-Total		1.79	1.74		mg/L	3.0	20	07-JUL-13
Silver (Ag)-Total		0.00040	<0.00040	RPD-NA	mg/L	N/A	20	07-JUL-13
Sodium (Na)-Total		14.7	14.7		mg/L	0.2	20	07-JUL-13

Test

Strontium (Sr)-Total

Quality Control Report

Workorder: L1327443 Report Date: 07-JUL-13 Page 6 of 14 WESA Inc. Client: 4901-48 St. Ground Floor Yellowknife NT X1A 2P9 Contact: Tim Beckenham/Melanie St-Jean Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-T-CCMS-ED Water Batch R2644484 L1327405-1 WG1702178-2 DUP Strontium (Sr)-Total 0.359 0.338 mg/L 6.0 20 07-JUL-13 Thallium (TI)-Total < 0.000050 < 0.000050 **RPD-NA** mg/L N/A 20 07-JUL-13 Tin (Sn)-Total < 0.00010 < 0.00010 RPD-NA mg/L N/A 20 07-JUL-13 < 0.00030 < 0.00030 Titanium (Ti)-Total **RPD-NA** mg/L N/A 20 07-JUL-13 Uranium (U)-Total 0.00080 0.00079 mg/L 1.0 20 07-JUL-13 Vanadium (V)-Total < 0.00010 < 0.00010 **RPD-NA** mg/L N/A 20 07-JUL-13 Zinc (Zn)-Total 0.0046 0.0048 mg/L 4.2 20 07-JUL-13 WG1702175-2 LCS Aluminum (Al)-Total 97.4 % 80-120 07-JUL-13 Antimony (Sb)-Total 101.0 % 80-120 07-JUL-13 95.7 Arsenic (As)-Total % 80-120 07-JUL-13 Barium (Ba)-Total 95.1 % 80-120 07-JUL-13 Beryllium (Be)-Total 96.2 % 80-120 07-JUL-13 Bismuth (Bi)-Total % 96.3 80-120 07-JUL-13 Boron (B)-Total 99.6 % 80-120 07-JUL-13 Cadmium (Cd)-Total 98.9 % 80-120 07-JUL-13 Calcium (Ca)-Total 96.9 % 80-120 07-JUL-13 Chromium (Cr)-Total 95.8 % 80-120 07-JUL-13 Cobalt (Co)-Total 95.1 % 80-120 07-JUL-13 Copper (Cu)-Total 92.0 % 80-120 07-JUL-13 Iron (Fe)-Total 91.7 % 80-120 07-JUL-13 Lead (Pb)-Total 99.0 % 80-120 07-JUL-13 Lithium (Li)-Total 96.5 % 80-120 07-JUL-13 Magnesium (Mg)-Total 90.5 % 80-120 07-JUL-13 Manganese (Mn)-Total % 93.4 80-120 07-JUL-13 Molybdenum (Mo)-Total 98.7 % 80-120 07-JUL-13 Nickel (Ni)-Total 93.9 % 80-120 07-JUL-13 92.4 Potassium (K)-Total % 80-120 07-JUL-13 Selenium (Se)-Total 106.0 % 80-120 07-JUL-13 Silicon (Si)-Total 118.4 % 80-120 07-JUL-13 Silver (Ag)-Total 95.1 % 80-120 07-JUL-13 Sodium (Na)-Total 101.7 % 80-120 07-JUL-13

96.5

%

80-120

07-JUL-13

Client:

Contact:

Batch

Test

Quality Control Report

Workorder: L1327443 Report Date: 07-JUL-13 Page 7 of 14 WESA Inc. 4901-48 St. Ground Floor Yellowknife NT X1A 2P9 Tim Beckenham/Melanie St-Jean Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-T-CCMS-ED Water R2644484 WG1702175-2 LCS Thallium (TI)-Total 105.4 % 80-120 07-JUL-13 Tin (Sn)-Total % 93.2 07-JUL-13 80-120 Titanium (Ti)-Total 86.7 % 80-120 07-JUL-13 Uranium (U)-Total 92.4 % 07-JUL-13 80-120

Vanadium (V)-Total	92.9	%	80-120	07-JUL-13
Zinc (Zn)-Total	99.98	%	80-120	07-JUL-13
WG1702175-1 MB				
Aluminum (Al)-Total	<0.0030	mg/L	0.003	07-JUL-13
Antimony (Sb)-Total	<0.00010	mg/L	0.0001	07-JUL-13
Arsenic (As)-Total	<0.00010	mg/L	0.0001	07-JUL-13
Barium (Ba)-Total	<0.000050	mg/L	0.00005	07-JUL-13
Beryllium (Be)-Total	<0.00050	mg/L	0.0005	07-JUL-13
Bismuth (Bi)-Total	<0.000050	mg/L	0.00005	07-JUL-13
Boron (B)-Total	<0.010	mg/L	0.01	07-JUL-13
Cadmium (Cd)-Total	<0.000010	mg/L	0.00001	07-JUL-13
Calcium (Ca)-Total	<0.020	mg/L	0.02	07-JUL-13
Chromium (Cr)-Total	<0.00010	mg/L	0.0001	07-JUL-13
Cobalt (Co)-Total	<0.00010	mg/L	0.0001	07-JUL-13
Iron (Fe)-Total	<0.010	mg/L	0.01	07-JUL-13
Lead (Pb)-Total	<0.000050	mg/L	0.00005	07-JUL-13
Lithium (Li)-Total	<0.0050	mg/L	0.005	07-JUL-13
Magnesium (Mg)-Total	<0.0050	mg/L	0.005	07-JUL-13
Molybdenum (Mo)-Total	<0.000050	mg/L	0.00005	07-JUL-13
Nickel (Ni)-Total	<0.00010	mg/L	0.0001	07-JUL-13
Phosphorus (P)-Total	<0.30	mg/L	0.3	07-JUL-13
Potassium (K)-Total	<0.050	mg/L	0.05	07-JUL-13
Selenium (Se)-Total	<0.00010	mg/L	0.0001	07-JUL-13
Silicon (Si)-Total	<0.050	mg/L	0.05	07-JUL-13
Silver (Ag)-Total	<0.000010	mg/L	0.00001	07-JUL-13
Sodium (Na)-Total	<0.050	mg/L	0.05	07-JUL-13
Strontium (Sr)-Total	<0.00010	mg/L	0.0001	07-JUL-13
Thallium (TI)-Total	<0.000050	mg/L	0.00005	07-JUL-13
Tin (Sn)-Total	<0.00010	mg/L	0.0001	07-JUL-13
Titanium (Ti)-Total	<0.00030	mg/L	0.0003	07-JUL-13

Workorder: L1327443 Report Date: 07-JUL-13 Page 8 of 14 WESA Inc. Client: 4901-48 St. Ground Floor Yellowknife NT X1A 2P9 Contact: Tim Beckenham/Melanie St-Jean Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-T-CCMS-ED Water R2644484 Batch WG1702175-1 MB Uranium (U)-Total < 0.000010 0.00001 mg/L 07-JUL-13 Zinc (Zn)-Total < 0.0030 mg/L 0.003 07-JUL-13 WG1702178-1 MB 0.003 Aluminum (AI)-Total < 0.0030 mg/L 07-JUL-13 Antimony (Sb)-Total < 0.00010 0.0001 mg/L 07-JUL-13 Arsenic (As)-Total < 0.00010 mg/L 0.0001 07-JUL-13 Barium (Ba)-Total < 0.000050 0.00005 mg/L 07-JUL-13 Beryllium (Be)-Total < 0.00050 0.0005 mg/L 07-JUL-13 Bismuth (Bi)-Total 0.00005 < 0.000050 mg/L 07-JUL-13 Boron (B)-Total < 0.010 mg/L 0.01 07-JUL-13 Cadmium (Cd)-Total < 0.000010 mg/L 0.00001 07-JUL-13 Calcium (Ca)-Total < 0.020 mg/L 0.02 07-JUL-13 Chromium (Cr)-Total < 0.00010 mg/L 0.0001 07-JUL-13 0.0001 Cobalt (Co)-Total < 0.00010 mg/L 07-JUL-13 Copper (Cu)-Total < 0.00010 mg/L 0.0001 07-JUL-13 Iron (Fe)-Total <0.010 0.01 mg/L 07-JUL-13 Lead (Pb)-Total 0.00005 < 0.000050 mg/L 07-JUL-13 Lithium (Li)-Total < 0.0050 0.005 mg/L 07-JUL-13 Magnesium (Mg)-Total < 0.0050 mg/L 0.005 07-JUL-13 Manganese (Mn)-Total < 0.000050 mg/L 0.00005 07-JUL-13 Molybdenum (Mo)-Total < 0.000050 0.00005 mg/L 07-JUL-13 Nickel (Ni)-Total < 0.00010 0.0001 mg/L 07-JUL-13 Phosphorus (P)-Total < 0.30 mg/L 0.3 07-JUL-13 Potassium (K)-Total < 0.050 mg/L 0.05 07-JUL-13 Selenium (Se)-Total < 0.00010 mg/L 0.0001 07-JUL-13 Silicon (Si)-Total 0.05 < 0.050 mg/L 07-JUL-13 Silver (Ag)-Total < 0.000010 mg/L 0.00001 07-JUL-13 < 0.050 0.05 Sodium (Na)-Total mg/L 07-JUL-13 Strontium (Sr)-Total < 0.00010 mg/L 0.0001 07-JUL-13 Thallium (TI)-Total 0.00005 < 0.000050 mg/L 07-JUL-13 Tin (Sn)-Total < 0.00010 0.0001 mg/L 07-JUL-13 Titanium (Ti)-Total < 0.00030 mg/L 0.0003 07-JUL-13 Uranium (U)-Total < 0.000010 0.00001 mg/L 07-JUL-13 Vanadium (V)-Total < 0.00010 mg/L 0.0001 07-JUL-13

			Quanty	Contro	Report			
		Workorder:	L1327443	R	eport Date: 07-	JUL-13		Page 9 of 14
4901	A Inc. -48 St. Ground Floor wknife NT X1A 2P9							
Contact: Tim E	Beckenham/Melanie S	t-Jean						
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2644	484							
WG1702178-1 M Zinc (Zn)-Total	В		<0.0030		mg/L		0.003	07-JUL-13
NH3-CFA-ED	Water							
Batch R2644	431							
WG1702137-3 DI Ammonia, Total (as		L1327443-16 <0.050	<0.050		ma/l	N1/A	20	00 11 10
WG1702137-2 LC		<0.030	<0.030	RPD-NA	mg/L	N/A	20	06-JUL-13
Ammonia, Total (as			101.6		%		85-115	06-JUL-13
WG1702137-1 M Ammonia, Total (as			<0.050		mg/L		0.05	06-JUL-13
WG1702137-4 Mi Ammonia, Total (as	-	L1327443-16	108.9		%		75-125	06-JUL-13
NO2-IC-ED	Water							
Batch R2644	651							
WG1702224-2 LC Nitrite (as N)	CS		91.8		%		85-115	06-JUL-13
WG1702224-1 M Nitrite (as N)	В		<0.050		mg/L		0.05	00 11 10
			<0.030		ilig/∟		0.05	06-JUL-13
NO3-IC-ED	Water							
Batch R2644 WG1702224-2 L0								
Nitrate (as N)			98.6		%		85-115	06-JUL-13
WG1702224-1 M Nitrate (as N)	В		<0.050		mg/L		0.05	06-JUL-13
SOLIDS-TOTSUS-ED	Water							
Batch R2644	442							
WG1702042-3 DI Total Suspended Se	UP olids	L1327443-16 <3.0	<3.0	RPD-NA	mg/L	N/A	20	06-JUL-13
WG1702042-4 DI Total Suspended So	UP olids	L1327438-50 4.0	8.0	J	mg/L	4.0	6	06-JUL-13
WG1702042-1 M Total Suspended So			<3.0		mg/L		3	06-JUL-13
TURBIDITY-ED	Water							

			Workorder:	L1327443	}	Report Date:	07-JUL-13		Page 10 of 14
Client:		c. St. Ground Floor fe NT X1A 2P9							
Contact:	Tim Beck	enham/Melanie	St-Jean						
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TURBIDITY-ED		Water							
Batch I	R2644448								
WG1702135-3 Turbidity	3 DUP		L1327438-49 4.22	4.24		NTU	0.5	15	06-JUL-13
WG1702135- 4 Turbidity	4 DUP		L1327443-14 3.53	3.55		NTU	0.6	15	06-JUL-13
WG1702135-2 Turbidity	2 LCS			97.8		%		70-130	06-JUL-13
WG1702135-1 Turbidity	і МВ			<0.10		NTU		0.1	06-JUL-13

Workorder: L1327443

Client:	WESA Inc.
	4901-48 St. Ground Floor
	Yellowknife NT X1A 2P9
Contact:	Tim Beckenham/Melanie St-Jean

Legend:

_		
	Limit	ALS Control Limit (Data Quality Objectives)
	DUP	Duplicate
	RPD	Relative Percent Difference
	N/A	Not Available
	LCS	Laboratory Control Sample
	SRM	Standard Reference Material
	MS	Matrix Spike
	MSD	Matrix Spike Duplicate
	ADE	Average Desorption Efficiency
	MB	Method Blank
	IRM	Internal Reference Material
	CRM	Certified Reference Material
	CCV	Continuing Calibration Verification
	CVS	Calibration Verification Standard
	LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
DUP-H	Duplicate results outside ALS DQO, due to sample heterogeneity.
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1327443

Report Date: 07-JUL-13

Client: WESA Inc. 4901-48 St. Ground Floor Yellowknife NT X1A 2P9 Contact: Tim Beckenham/Melanie St-Jean

Hold Time Exceedances:

Physical Tests Color, True 1 03-JUL-13 09:00 06-JUL-13 15:22 48 78 hours E 3 03-JUL-13 09:00 06-JUL-13 15:22 48 78 hours E 4 03-JUL-13 09:30 06-JUL-13 15:22 48 78 hours E 5 03-JUL-13 09:30 06-JUL-13 15:22 48 78 hours E 6 03-JUL-13 07:00 06-JUL-13 15:22 48 80 hours E 7 03-JUL-13 07:00 06-JUL-13 15:22 48 80 hours E 9 03-JUL-13 07:00 06-JUL-13 15:22 48 81 hours E 10 03-JUL-13 00:30 06-JUL-13 15:22 48 77 hours E 11 03-JUL-13 00:30 06-JUL-13 15:22 48 77 hours E 12 03-JUL-13 00:30 06-JUL-13 15:22 48 77 hours E 13 03-JUL-13 00:30 06-JUL-13 00:22	ALS Product Description	Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
1 03-JUL-13 09:00 06-JUL-13 15:22 48 78 hours E 2 03-JUL-13 09:00 06-JUL-13 15:22 48 78 hours E 4 03-JUL-13 09:00 06-JUL-13 15:22 48 78 hours E 5 03-JUL-13 09:30 06-JUL-13 15:22 48 78 hours E 6 03-JUL-13 07:00 06-JUL-13 15:22 48 80 hours E 7 03-JUL-13 07:00 06-JUL-13 15:22 48 80 hours E 9 03-JUL-13 10:00 06-JUL-13 15:22 48 77 hours E 10 03-JUL-13 06:30 06-JUL-13 15:22 48 77 hours E 11 03-JUL-13 06:30 06-JUL-13 15:22 48 77 hours E 13 03-JUL-13 06:30 06-JUL-13 15:22 48 76 hours E 13 03-JUL-13 06:30 06-JUL-13 06:30 48 63 hours E	Physical Tests							
2 03-JUL-13 09:00 06-JUL-13 15:22 48 78 hours E 3 03-JUL-13 09:30 06-JUL-13 15:22 48 78 hours E 5 03-JUL-13 09:30 06-JUL-13 15:22 48 78 hours E 6 03-JUL-13 07:00 06-JUL-13 15:22 48 80 hours E 7 03-JUL-13 07:00 06-JUL-13 15:22 48 80 hours E 9 03-JUL-13 10:00 06-JUL-13 15:22 48 77 hours E 10 03-JUL-13 10:00 06-JUL-13 15:22 48 81 hours E 11 03-JUL-13 0:00 06-JUL-13 15:22 48 81 hours E 12 03-JUL-13 0:00 06-JUL-13 15:22 48 77 hours E 13 03-JUL-13 0:00 06-JUL-13 15:22 48 76 hours E 14 03-JUL-13 0:00 06-JUL-13 0:00 48 63 hours E <td>Color, True</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Color, True							
2 03-JUL-13 09:00 06-JUL-13 15:22 48 78 hours E 3 03-JUL-13 09:30 06-JUL-13 15:22 48 78 hours E 5 03-JUL-13 09:30 06-JUL-13 15:22 48 78 hours E 6 03-JUL-13 07:00 06-JUL-13 15:22 48 80 hours E 7 03-JUL-13 07:00 06-JUL-13 15:22 48 80 hours E 9 03-JUL-13 10:00 06-JUL-13 15:22 48 77 hours E 10 03-JUL-13 0:00 06-JUL-13 15:22 48 77 hours E 12 03-JUL-13 0:00 06-JUL-13 15:22 48 77 hours E 13 03-JUL-13 10:30 06-JUL-13 15:22 48 77 hours E 14 03-JUL-13 0:00 06-JUL-13 15:22 48 76 hours E 15 03-JUL-13 0:00 06-JUL-13 0:00 48 63 hours E <td></td> <td>1</td> <td>03-JUL-13 09:00</td> <td>06-JUL-13 15:22</td> <td>48</td> <td>78</td> <td>hours</td> <td>EHTL</td>		1	03-JUL-13 09:00	06-JUL-13 15:22	48	78	hours	EHTL
4 03-JUL-13 09:30 06-JUL-13 15:22 48 78 hours E 5 03-JUL-13 07:00 06-JUL-13 15:22 48 80 hours E 7 03-JUL-13 07:00 06-JUL-13 15:22 48 80 hours E 9 03-JUL-13 07:00 06-JUL-13 15:22 48 80 hours E 9 03-JUL-13 10:00 06-JUL-13 15:22 48 877 hours E 10 03-JUL-13 06:30 06-JUL-13 15:22 48 81 hours E 12 03-JUL-13 10:30 06-JUL-13 15:22 48 77 hours E 13 03-JUL-13 10:30 06-JUL-13 15:22 48 77 hours E 14 03-JUL-13 10:30 06-JUL-13 15:22 48 76 hours E 15 03-JUL-13 10:30 06-JUL-13 15:22 48 76 hours E 16 03-JUL-13 10:30 06-JUL-13 00:00 48 63 hours E		2	03-JUL-13 09:00	06-JUL-13 15:22				EHTL
4 03-JUL-13 09:30 06-JUL-13 15:22 48 78 hours E 5 03-JUL-13 07:00 06-JUL-13 15:22 48 80 hours E 7 03-JUL-13 07:00 06-JUL-13 15:22 48 80 hours E 8 03-JUL-13 07:00 06-JUL-13 15:22 48 80 hours E 9 03-JUL-13 10:00 06-JUL-13 15:22 48 77 hours E 10 03-JUL-13 06:30 06-JUL-13 15:22 48 81 hours E 12 03-JUL-13 10:30 06-JUL-13 15:22 48 77 hours E 13 03-JUL-13 10:30 06-JUL-13 15:22 48 77 hours E 14 03-JUL-13 10:30 06-JUL-13 15:22 48 76 hours E 15 03-JUL-13 10:30 06-JUL-13 15:22 48 76 hours E 16 03-JUL-13 10:30 06-JUL-13 00:00 48 63 hours E		3	03-JUL-13 09:00	06-JUL-13 15:22	48	78	hours	EHTL
5 03-JUL-13 09:30 06-JUL-13 15:22 48 78 hours E 6 03-JUL-13 07:00 06-JUL-13 15:22 48 80 hours E 7 03-JUL-13 07:00 06-JUL-13 15:22 48 80 hours E 9 03-JUL-13 10:00 06-JUL-13 15:22 48 77 hours E 10 03-JUL-13 10:00 06-JUL-13 15:22 48 77 hours E 11 03-JUL-13 10:30 06-JUL-13 15:22 48 81 hours E 12 03-JUL-13 10:30 06-JUL-13 15:22 48 77 hours E 13 03-JUL-13 10:30 06-JUL-13 15:22 48 76 hours E 14 03-JUL-13 10:30 06-JUL-13 15:22 48 76 hours E 15 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 16 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E				06-JUL-13 15:22	48	78	hours	EHTL
7 03-JUL-13 07:00 06-JUL-13 15:22 48 80 hours E 8 03-JUL-13 10:00 06-JUL-13 15:22 48 80 hours E 9 03-JUL-13 10:00 06-JUL-13 15:22 48 77 hours E 10 03-JUL-13 06:30 06-JUL-13 15:22 48 81 hours E 12 03-JUL-13 10:30 06-JUL-13 15:22 48 81 hours E 13 03-JUL-13 10:30 06-JUL-13 15:22 48 77 hours E 14 03-JUL-13 10:30 06-JUL-13 15:22 48 76 hours E 15 03-JUL-13 10:30 06-JUL-13 15:22 48 76 hours E 16 03-JUL-13 10:30 06-JUL-13 15:22 48 76 hours E 16 03-JUL-13 0:00 06-JUL-13 10:00 48 63 hours E 16 03-JUL-13 0:00 06-JUL-13 00:00 48 65 hours E		5		06-JUL-13 15:22	48	78	hours	EHTL
7 03-JUL-13 07:00 06-JUL-13 15:22 48 80 hours 8 8 03-JUL-13 10:00 06-JUL-13 15:22 48 77 hours 6 9 03-JUL-13 10:00 06-JUL-13 15:22 48 77 hours 6 10 03-JUL-13 06:30 06-JUL-13 15:22 48 81 hours 6 12 03-JUL-13 10:30 06-JUL-13 15:22 48 77 hours 6 13 03-JUL-13 10:30 06-JUL-13 15:22 48 77 hours 6 14 03-JUL-13 10:30 06-JUL-13 15:22 48 76 hours 6 15 03-JUL-13 10:30 06-JUL-13 15:22 48 76 hours 6 16 03-JUL-13 10:30 06-JUL-13 00:00 48 63 hours 6 2 03-JUL-13 09:00 06-JUL-13 00:00 48 62 hours 6 3 03-JUL-13 09:00 06-JUL-13 00:00 48 65 hours 6			03-JUL-13 07:00	06-JUL-13 15:22	48	80	hours	EHTL
9 03-JUL-13 10:00 06-JUL-13 15:22 48 77 hours E 10 03-JUL-13 10:00 06-JUL-13 15:22 48 77 hours E 11 03-JUL-13 06:30 06-JUL-13 15:22 48 81 hours E 12 03-JUL-13 10:30 06-JUL-13 15:22 48 77 hours E 13 03-JUL-13 10:30 06-JUL-13 15:22 48 77 hours E 14 03-JUL-13 10:30 06-JUL-13 15:22 48 76 hours E 15 03-JUL-13 09:00 06-JUL-13 15:22 48 76 hours E 16 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 2 03-JUL-13 09:00 06-JUL-13 00:00 48 62 hours E 3 03-JUL-13 09:00 06-JUL-13 00:00 48 65 hours E 1 03-JUL-13 09:00 06-JUL-13 00:00 48 65 hours E			03-JUL-13 07:00	06-JUL-13 15:22	48	80	hours	EHTL
10 03-JUL-13 10:00 06-JUL-13 15:22 48 77 hours E 11 03-JUL-13 06:30 06-JUL-13 15:22 48 81 hours E 12 03-JUL-13 06:30 06-JUL-13 15:22 48 87 hours E 13 03-JUL-13 10:30 06-JUL-13 15:22 48 77 hours E 14 03-JUL-13 10:00 06-JUL-13 15:22 48 77 hours E 15 03-JUL-13 10:00 06-JUL-13 15:22 48 75 hours E 16 03-JUL-13 09:00 06-JUL-13 09:00 48 63 hours E 2 03-JUL-13 09:00 06-JUL-13 00:00 48 62 hours E 3 03-JUL-13 09:00 06-JUL-13 00:00 48 65 hours E 4 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 5 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E		8	03-JUL-13 07:00	06-JUL-13 15:22	48	80	hours	EHTL
11 03-JUL-13 06:30 06-JUL-13 15:22 48 81 hours E 12 03-JUL-13 06:30 06-JUL-13 15:22 48 81 hours E 13 03-JUL-13 10:30 06-JUL-13 15:22 48 77 hours E 14 03-JUL-13 11:00 06-JUL-13 15:22 48 76 hours E 15 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 2 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 2 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 3 03-JUL-13 09:00 06-JUL-13 00:00 48 62 hours E 4 03-JUL-13 09:00 06-JUL-13 00:00 48 65 hours E 5 03-JUL-13 09:00 06-JUL-13 00:00 48 65 hours E 6 03-JUL-13 00:00 48 65 hours E 9 03-JU		9	03-JUL-13 10:00	06-JUL-13 15:22	48	77	hours	EHTL
12 03-JUL-13 06:30 06-JUL-13 15:22 48 81 hours E 13 03-JUL-13 10:30 06-JUL-13 15:22 48 77 hours E 14 03-JUL-13 10:30 06-JUL-13 15:22 48 77 hours E 15 03-JUL-13 11:00 06-JUL-13 15:22 48 76 hours E 16 03-JUL-13 09:00 06-JUL-13 15:22 48 75 hours E 2 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 2 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 3 03-JUL-13 09:00 06-JUL-13 00:00 48 62 hours E 6 03-JUL-13 09:00 06-JUL-13 00:00 48 62 hours E 6 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 7 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E		10	03-JUL-13 10:00	06-JUL-13 15:22	48	77	hours	EHTL
13 03-JUL-13 10:30 06-JUL-13 15:22 48 77 hours E 14 03-JUL-13 10:30 06-JUL-13 15:22 48 76 hours E 15 03-JUL-13 12:00 06-JUL-13 15:22 48 76 hours E 16 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 2 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 3 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 4 03-JUL-13 09:00 06-JUL-13 00:00 48 62 hours E 5 03-JUL-13 09:30 06-JUL-13 00:00 48 65 hours E 6 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 7 03-JUL-13 07:00 06-JUL-13 00:00 48 66 hours E 9 03-JUL-13 07:00 06-JUL-13 00:00 48 66 hours E		11	03-JUL-13 06:30	06-JUL-13 15:22	48	81	hours	EHTL
14 03-JUL-13 10:30 06-JUL-13 15:22 48 77 hours E 15 03-JUL-13 11:00 06-JUL-13 15:22 48 76 hours E 16 03-JUL-13 09:00 06-JUL-13 15:22 48 76 hours E Turbidity 1 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 2 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 3 03-JUL-13 09:00 06-JUL-13 00:00 48 62 hours E 4 03-JUL-13 09:30 06-JUL-13 00:00 48 62 hours E 5 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 6 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 9 03-JUL-13 10:00 06-JUL-13 00:00 48 66 hours E 10 03-JUL-13 00:00 66-JUL-13 00:00 48 66 hours </td <td></td> <td>12</td> <td>03-JUL-13 06:30</td> <td>06-JUL-13 15:22</td> <td>48</td> <td>81</td> <td>hours</td> <td>EHTL</td>		12	03-JUL-13 06:30	06-JUL-13 15:22	48	81	hours	EHTL
15 03-JUL-13 11:00 06-JUL-13 15:22 48 76 hours E Turbidity 1 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 2 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 3 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 4 03-JUL-13 09:00 06-JUL-13 00:00 48 62 hours E 5 03-JUL-13 09:30 06-JUL-13 00:00 48 65 hours E 6 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 7 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 9 03-JUL-13 10:00 06-JUL-13 00:00 48 62 hours E 10 03-JUL-13 10:00 06-JUL-13 00:00 48 64 hours E 11 03-JUL-13 10:00 06-JUL-13 00:00 48 66 hours <td></td> <td>13</td> <td>03-JUL-13 10:30</td> <td>06-JUL-13 15:22</td> <td>48</td> <td>77</td> <td>hours</td> <td>EHTL</td>		13	03-JUL-13 10:30	06-JUL-13 15:22	48	77	hours	EHTL
16 03-JUL-13 12:00 06-JUL-13 15:22 48 75 hours E Turbidity 1 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 2 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 3 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 4 03-JUL-13 09:30 06-JUL-13 00:00 48 62 hours E 5 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 7 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 9 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 9 03-JUL-13 10:00 06-JUL-13 00:00 48 66 hours E 10 03-JUL-13 00:00 66-JUL-13 00:00 48 66 hours E 11 03-JUL-13 00:30 06-JUL-13 00:00 48 66 hours <td></td> <td>14</td> <td>03-JUL-13 10:30</td> <td>06-JUL-13 15:22</td> <td>48</td> <td>77</td> <td>hours</td> <td>EHTL</td>		14	03-JUL-13 10:30	06-JUL-13 15:22	48	77	hours	EHTL
Turbidity 1 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 2 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 3 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 4 03-JUL-13 09:00 06-JUL-13 00:00 48 62 hours E 5 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 6 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 7 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 9 03-JUL-13 07:00 06-JUL-13 00:00 48 66 hours E 10 03-JUL-13 10:00 06-JUL-13 00:00 48 66 hours E 11 03-JUL-13 0:00 06-JUL-13 00:00 48 66 hours E 12 03-JUL-13 0:00 06-JUL-13 00:00 48 61 hours		15	03-JUL-13 11:00	06-JUL-13 15:22	48	76	hours	EHTL
pH 1 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 2 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 3 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 4 03-JUL-13 09:30 06-JUL-13 00:00 48 62 hours E 5 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 7 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 8 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 9 03-JUL-13 10:00 06-JUL-13 00:00 48 65 hours E 10 03-JUL-13 10:00 06-JUL-13 00:00 48 62 hours E 11 03-JUL-13 10:00 06-JUL-13 00:00 48 66 hours E 12 03-JUL-13 10:00 06-JUL-13 00:00 48 66 hours E 13 03-JUL-13 10:00 06-JUL-13 00:00 48 66 hours E 14 03-JUL-13 10:30 06-JUL-13 00:00 48 66 hours E 15 03-JUL-13 10:30 06-JUL-13 00:00 48 66 hours E 16 03-JUL-13 10:00 06-JUL-13 00:00 48 66 hours E 13 03-JUL-13 10:30 06-JUL-13 00:00 48 61 hours E 14 03-JUL-13 10:30 06-JUL-13 00:00 48 61 hours E 15 03-JUL-13 10:30 06-JUL-13 00:00 48 61 hours E 15 03-JUL-13 10:30 06-JUL-13 00:00 48 61 hours E 16 03-JUL-13 10:00 06-JUL-13 00:00 48 61 hours E 16 03-JUL-13 10:00 06-JUL-13 10:00 48 60 hours E 16 03-JUL-13 10:00 06-JUL-13 10:00 48 60 hours E 16 03-JUL-13 09:00 06-JUL-13 10:00 5.73 hours EH 17 03-JUL-13 09:00 06-JUL-13 10:00 5.73 hours EH 18 03-JUL-13 09:00 06-JUL-13 10:14 0.25 73 hours EH 19 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 10 03-JUL-13 09:30 06-JUL-		16	03-JUL-13 12:00	06-JUL-13 15:22	48	75	hours	EHTL
pH 2 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 3 03-JUL-13 09:30 06-JUL-13 00:00 48 62 hours E 5 03-JUL-13 09:30 06-JUL-13 00:00 48 62 hours E 6 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 7 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 8 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 9 03-JUL-13 10:00 06-JUL-13 00:00 48 65 hours E 10 03-JUL-13 10:00 06-JUL-13 00:00 48 65 hours E 11 03-JUL-13 10:00 06-JUL-13 00:00 48 66 hours E 12 03-JUL-13 06:30 06-JUL-13 00:00 48 66 hours E 13 03-JUL-13 10:00 06-JUL-13 00:00 48 66 hours E 14 03-JUL-13 10:30 06-JUL-13 00:00 48 66 hours E 15 03-JUL-13 10:30 06-JUL-13 00:00 48 66 hours E 16 03-JUL-13 10:30 06-JUL-13 00:00 48 66 hours E 16 03-JUL-13 10:30 06-JUL-13 00:00 48 61 hours E 17 03-JUL-13 10:30 06-JUL-13 00:00 48 61 hours E 18 03-JUL-13 10:30 06-JUL-13 10:00 48 61 hours E 19 03-JUL-13 10:30 06-JUL-13 10:00 48 61 hours E 16 03-JUL-13 09:30 06-JUL-13 10:00 48 60 hours E 17 03-JUL-13 09:30 06-JUL-13 10:00 48 60 hours E 18 03-JUL-13 09:30 06-JUL-13 10:00 48 60 hours E 19 03-JUL-13 09:30 06-JUL-13 10:00 48 60 hours E 10 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 13 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 14 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 15 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 16 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 16 03-JUL-13 09:30 06-JUL-13 10:14 0.25 75 hours EH 17 03-JUL-13 09:30 06-JUL-13 10:14 0.25 75 hours EH 18 03-JUL-13 09:30 06-JUL-13 10:14 0.25 75 hours EH 19 03-JUL-13 09:30 06-JUL-13 10:14 0.25 75 hours EH 10 03-JUL-13 09:30 06-	Turbidity							
pH 2 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 3 03-JUL-13 09:30 06-JUL-13 00:00 48 62 hours E 5 03-JUL-13 09:30 06-JUL-13 00:00 48 62 hours E 6 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 7 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 8 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 9 03-JUL-13 10:00 06-JUL-13 00:00 48 65 hours E 10 03-JUL-13 10:00 06-JUL-13 00:00 48 65 hours E 11 03-JUL-13 10:00 06-JUL-13 00:00 48 66 hours E 11 03-JUL-13 06:30 06-JUL-13 00:00 48 66 hours E 12 03-JUL-13 06:30 06-JUL-13 00:00 48 66 hours E 13 03-JUL-13 10:00 06-JUL-13 00:00 48 66 hours E 14 03-JUL-13 10:30 06-JUL-13 00:00 48 66 hours E 15 03-JUL-13 10:30 06-JUL-13 00:00 48 61 hours E 16 03-JUL-13 10:30 06-JUL-13 10:00 48 61 hours E 17 03-JUL-13 09:30 06-JUL-13 10:00 48 61 hours E 18 03-JUL-13 09:30 06-JUL-13 10:00 48 61 hours E 19 03-JUL-13 09:30 06-JUL-13 10:00 48 60 hours E 10 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 13 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 14 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 15 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 16 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 16 03-JUL-13 09:30 06-JUL-13 10:14 0.25 75 hours EH 17 03-JUL-13 09:30 06-JUL-13 10:14 0.25 75 hours EH 18 03-JUL-13 09:30 06-JUL-13 10:14 0.25 75 hours EH 19 03-JUL-13 09:30 06-JUL-13 10:14 0.25 75 hours EH 10 03-JUL-13 09:30 06-		1	03-JUL-13 09:00	06-JUL-13 00:00	48	63	hours	EHTL
pH 3 03-JUL-13 09:00 06-JUL-13 00:00 48 63 hours E 4 03-JUL-13 09:30 06-JUL-13 00:00 48 62 hours E 5 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 6 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 8 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 9 03-JUL-13 10:00 06-JUL-13 00:00 48 62 hours E 10 03-JUL-13 10:00 06-JUL-13 00:00 48 62 hours E 11 03-JUL-13 10:00 06-JUL-13 00:00 48 66 hours E 12 03-JUL-13 06:30 06-JUL-13 00:00 48 66 hours E 13 03-JUL-13 06:30 06-JUL-13 00:00 48 66 hours E 14 03-JUL-13 10:30 06-JUL-13 00:00 48 66 hours E 15 03-JUL-13 10:30 06-JUL-13 00:00 48 61 hours E 16 03-JUL-13 10:30 06-JUL-13 00:00 48 61 hours E 16 03-JUL-13 10:00 06-JUL-13 00:00 48 61 hours E 16 03-JUL-13 10:30 06-JUL-13 10:00 0.25 73 hours EH 3 03-JUL-13 09:00 06-JUL-13 10:07 0.25 73 hours EH 3 03-JUL-13 09:00 06-JUL-13 10:14 0.25 73 hours EH 4 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 6 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 5 03-JUL-13 09:30 06-JUL-13 10:14 0.25 75 hours EH 5 03-JUL		2	03-JUL-13 09:00	06-JUL-13 00:00	48		hours	EHTL
pH 4 03-JUL-13 09:30 06-JUL-13 00:00 48 62 hours E 5 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 7 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 8 03-JUL-13 07:00 06-JUL-13 00:00 48 65 hours E 9 03-JUL-13 10:00 06-JUL-13 00:00 48 62 hours E 10 03-JUL-13 10:00 06-JUL-13 00:00 48 62 hours E 11 03-JUL-13 06:30 06-JUL-13 00:00 48 66 hours E 12 03-JUL-13 06:30 06-JUL-13 00:00 48 66 hours E 13 03-JUL-13 10:30 06-JUL-13 00:00 48 66 hours E 14 03-JUL-13 10:30 06-JUL-13 00:00 48 61 hours E 15 03-JUL-13 10:30 06-JUL-13 00:00 48 61 hours E 16 03-JUL-13 10:00 06-JUL-13 00:00 48 61 hours E 15 03-JUL-13 10:00 06-JUL-13 00:00 48 61 hours E 16 03-JUL-13 10:00 06-JUL-13 10:00 48 61 hours E 16 03-JUL-13 09:00 06-JUL-13 10:00 48 61 hours E 16 03-JUL-13 09:00 06-JUL-13 10:00 573 hours EH 17 03-JUL-13 09:00 06-JUL-13 10:00 573 hours EH 18 03-JUL-13 09:00 06-JUL-13 10:07 0.25 73 hours EH 19 03-JUL-13 09:30 06-JUL-13 10:11 0.25 73 hours EH 10 03-JUL-13 09:30 06-JUL-13 10:14 0.25 75 hours EH 1			03-JUL-13 09:00	06-JUL-13 00:00				EHTL
pH			03-JUL-13 09:30	06-JUL-13 00:00				EHTL
pH			03-JUL-13 09:30	06-JUL-13 00:00	48	62	hours	EHTL
pH								EHTL
pH 9 03-JUL-13 10:00 06-JUL-13 00:00 48 62 hours E 10 03-JUL-13 06:30 06-JUL-13 00:00 48 66 hours E 11 03-JUL-13 06:30 06-JUL-13 00:00 48 66 hours E 12 03-JUL-13 06:30 06-JUL-13 00:00 48 66 hours E 13 03-JUL-13 10:30 06-JUL-13 00:00 48 61 hours E 14 03-JUL-13 10:30 06-JUL-13 00:00 48 61 hours E 15 03-JUL-13 11:00 06-JUL-13 00:00 48 60 hours E 16 03-JUL-13 12:00 06-JUL-13 00:00 48 60 hours E 16 03-JUL-13 12:00 06-JUL-13 10:00 0.25 73 hours EH 2 03-JUL-13 09:00 06-JUL-13 10:04 0.25 73 hours EH 3 03-JUL-13 09:00 06-JUL-13 10:07 0.25 73 hours EH 4 03-JUL-13 09:00 06-JUL-13 10:11 0.25 73 hours EH 4 03-JUL-13 09:30 06-JUL-13 10:11 0.25 73 hours EH 6 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 5 03-JUL-13 09:30 06-JUL-13 10:14 0.25 75 hours EH 5 03-JUL-13 09:30 06-JUL-13 10:14 0.25 75 hours EH 5 03-JUL-13 09:30 06-JUL-13 10:14 0.25 75 hours EH		7	03-JUL-13 07:00		48	65	hours	EHTL
pH 9 03-JUL-13 10:00 06-JUL-13 00:00 48 62 hours E 10 03-JUL-13 10:00 06-JUL-13 00:00 48 62 hours E 11 03-JUL-13 06:30 06-JUL-13 00:00 48 66 hours E 12 03-JUL-13 06:30 06-JUL-13 00:00 48 66 hours E 13 03-JUL-13 10:30 06-JUL-13 00:00 48 61 hours E 14 03-JUL-13 10:30 06-JUL-13 00:00 48 61 hours E 15 03-JUL-13 11:00 06-JUL-13 00:00 48 60 hours E 16 03-JUL-13 12:00 06-JUL-13 00:00 48 60 hours E 16 03-JUL-13 09:00 06-JUL-13 10:00 0.25 73 hours EH 2 03-JUL-13 09:00 06-JUL-13 10:04 0.25 73 hours EH 3 03-JUL-13 09:00 06-JUL-13 10:07 0.25 73 hours EH 4 03-JUL-13 09:00 06-JUL-13 10:11 0.25 73 hours EH 4 03-JUL-13 09:30 06-JUL-13 10:11 0.25 73 hours EH 6 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 5 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 5 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 6 03-JUL-13 09:30 06-JUL-13 10:18 0.25 75 hours EH		8	03-JUL-13 07:00	06-JUL-13 00:00	48	65	hours	EHTL
pH 11 03-JUL-13 06:30 06-JUL-13 00:00 48 66 hours E 12 03-JUL-13 10:30 06-JUL-13 00:00 48 66 hours E 13 03-JUL-13 10:30 06-JUL-13 00:00 48 61 hours E 14 03-JUL-13 10:30 06-JUL-13 00:00 48 61 hours E 15 03-JUL-13 11:00 06-JUL-13 00:00 48 61 hours E 16 03-JUL-13 12:00 06-JUL-13 00:00 48 60 hours E 16 03-JUL-13 09:00 06-JUL-13 10:00 0.25 73 hours EH 2 03-JUL-13 09:00 06-JUL-13 10:04 0.25 73 hours EH 3 03-JUL-13 09:00 06-JUL-13 10:07 0.25 73 hours EH 4 03-JUL-13 09:00 06-JUL-13 10:11 0.25 73 hours EH 4 03-JUL-13 09:30 06-JUL-13 10:11 0.25 73 hours EH 5 03-JUL-13 09:30 06-JUL-13 10:14 0.25 75 hours EH 5 03-JUL-13 07:00 06-JUL-13 10:14 0.25 75 hours EH			03-JUL-13 10:00	06-JUL-13 00:00	48	62	hours	EHTL
pH 11 03-JUL-13 06:30 06-JUL-13 00:00 48 66 hours E 12 03-JUL-13 10:30 06-JUL-13 00:00 48 66 hours E 13 03-JUL-13 10:30 06-JUL-13 00:00 48 61 hours E 14 03-JUL-13 10:30 06-JUL-13 00:00 48 61 hours E 15 03-JUL-13 11:00 06-JUL-13 00:00 48 60 hours E 16 03-JUL-13 12:00 06-JUL-13 00:00 48 60 hours E 16 03-JUL-13 09:00 06-JUL-13 10:00 0.25 73 hours EH 2 03-JUL-13 09:00 06-JUL-13 10:04 0.25 73 hours EH 3 03-JUL-13 09:00 06-JUL-13 10:07 0.25 73 hours EH 4 03-JUL-13 09:00 06-JUL-13 10:11 0.25 73 hours EH 4 03-JUL-13 09:30 06-JUL-13 10:11 0.25 73 hours EH 5 03-JUL-13 09:30 06-JUL-13 10:14 0.25 75 hours EH 5 03-JUL-13 07:00 06-JUL-13 10:14 0.25 75 hours EH		10	03-JUL-13 10:00	06-JUL-13 00:00	48	62	hours	EHTL
pH 13 03-JUL-13 10:30 06-JUL-13 00:00 48 61 hours E 14 03-JUL-13 10:30 06-JUL-13 00:00 48 61 hours E 15 03-JUL-13 11:00 06-JUL-13 00:00 48 61 hours E 16 03-JUL-13 12:00 06-JUL-13 00:00 48 60 hours E pH 1 03-JUL-13 09:00 06-JUL-13 10:00 0.25 73 hours EH 2 03-JUL-13 09:00 06-JUL-13 10:04 0.25 73 hours EH 3 03-JUL-13 09:00 06-JUL-13 10:07 0.25 73 hours EH 3 03-JUL-13 09:00 06-JUL-13 10:07 0.25 73 hours EH 4 03-JUL-13 09:30 06-JUL-13 10:11 0.25 73 hours EH 5 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 6 03-JUL-13 07:00 06-JUL-13 10:18 0.25 75		11	03-JUL-13 06:30		48	66	hours	EHTL
14 03-JUL-13 10:30 06-JUL-13 00:00 48 61 hours E 15 03-JUL-13 11:00 06-JUL-13 00:00 48 61 hours E 16 03-JUL-13 12:00 06-JUL-13 00:00 48 60 hours E pH 1 03-JUL-13 09:00 06-JUL-13 10:00 0.25 73 hours EH 2 03-JUL-13 09:00 06-JUL-13 10:04 0.25 73 hours EH 3 03-JUL-13 09:00 06-JUL-13 10:07 0.25 73 hours EH 4 03-JUL-13 09:00 06-JUL-13 10:07 0.25 73 hours EH 5 03-JUL-13 09:30 06-JUL-13 10:11 0.25 73 hours EH 4 03-JUL-13 09:30 06-JUL-13 10:11 0.25 73 hours EH 5 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 6 03-JUL-13 07:00 06-JUL-13 10:18 0.25 75		12	03-JUL-13 06:30	06-JUL-13 00:00	48	66	hours	EHTL
15 03-JUL-13 11:00 06-JUL-13 00:00 48 61 hours E 16 03-JUL-13 12:00 06-JUL-13 00:00 48 60 hours E pH 1 03-JUL-13 09:00 06-JUL-13 10:00 0.25 73 hours EH 2 03-JUL-13 09:00 06-JUL-13 10:04 0.25 73 hours EH 3 03-JUL-13 09:00 06-JUL-13 10:07 0.25 73 hours EH 4 03-JUL-13 09:00 06-JUL-13 10:07 0.25 73 hours EH 5 03-JUL-13 09:30 06-JUL-13 10:07 0.25 73 hours EH 6 03-JUL-13 09:30 06-JUL-13 10:11 0.25 73 hours EH		13	03-JUL-13 10:30	06-JUL-13 00:00	48	61	hours	EHTL
16 03-JUL-13 12:00 06-JUL-13 00:00 48 60 hours E pH 1 03-JUL-13 09:00 06-JUL-13 10:00 0.25 73 hours EH 2 03-JUL-13 09:00 06-JUL-13 10:04 0.25 73 hours EH 3 03-JUL-13 09:00 06-JUL-13 10:07 0.25 73 hours EH 4 03-JUL-13 09:00 06-JUL-13 10:07 0.25 73 hours EH 5 03-JUL-13 09:30 06-JUL-13 10:11 0.25 73 hours EH 6 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH		14	03-JUL-13 10:30	06-JUL-13 00:00	48	61	hours	EHTL
pH 1 03-JUL-13 09:00 06-JUL-13 10:00 0.25 73 hours EH 2 03-JUL-13 09:00 06-JUL-13 10:04 0.25 73 hours EH 3 03-JUL-13 09:00 06-JUL-13 10:07 0.25 73 hours EH 4 03-JUL-13 09:30 06-JUL-13 10:11 0.25 73 hours EH 5 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 6 03-JUL-13 07:00 06-JUL-13 10:18 0.25 75 hours EH		15	03-JUL-13 11:00	06-JUL-13 00:00	48	61	hours	EHTL
1 03-JUL-13 09:00 06-JUL-13 10:00 0.25 73 hours EH 2 03-JUL-13 09:00 06-JUL-13 10:04 0.25 73 hours EH 3 03-JUL-13 09:00 06-JUL-13 10:07 0.25 73 hours EH 4 03-JUL-13 09:30 06-JUL-13 10:07 0.25 73 hours EH 5 03-JUL-13 09:30 06-JUL-13 10:11 0.25 73 hours EH 6 03-JUL-13 07:00 06-JUL-13 10:18 0.25 75 hours EH		16	03-JUL-13 12:00	06-JUL-13 00:00	48	60	hours	EHTL
203-JUL-13 09:0006-JUL-13 10:040.2573hoursEH303-JUL-13 09:0006-JUL-13 10:070.2573hoursEH403-JUL-13 09:3006-JUL-13 10:110.2573hoursEH503-JUL-13 09:3006-JUL-13 10:140.2573hoursEH603-JUL-13 07:0006-JUL-13 10:180.2575hoursEH	рН							
203-JUL-13 09:0006-JUL-13 10:040.2573hoursEH303-JUL-13 09:0006-JUL-13 10:070.2573hoursEH403-JUL-13 09:3006-JUL-13 10:110.2573hoursEH503-JUL-13 09:3006-JUL-13 10:140.2573hoursEH603-JUL-13 07:0006-JUL-13 10:180.2575hoursEH		1	03-JUL-13 09:00	06-JUL-13 10:00	0.25	73	hours	EHTR-FM
3 03-JUL-13 09:00 06-JUL-13 10:07 0.25 73 hours EH 4 03-JUL-13 09:30 06-JUL-13 10:11 0.25 73 hours EH 5 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 6 03-JUL-13 07:00 06-JUL-13 10:18 0.25 75 hours EH		2	03-JUL-13 09:00	06-JUL-13 10:04		73		EHTR-FM
4 03-JUL-13 09:30 06-JUL-13 10:11 0.25 73 hours EH 5 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 6 03-JUL-13 07:00 06-JUL-13 10:18 0.25 75 hours EH								EHTR-FM
5 03-JUL-13 09:30 06-JUL-13 10:14 0.25 73 hours EH 6 03-JUL-13 07:00 06-JUL-13 10:18 0.25 75 hours EH								EHTR-FM
6 03-JUL-13 07:00 06-JUL-13 10:18 0.25 75 hours EH								EHTR-FM
								EHTR-FM
		7	03-JUL-13 07:00	06-JUL-13 10:22	0.25	75	hours	EHTR-FM
								EHTR-FM
								EHTR-FM
								EHTR-FM
			03-JUL-13 06:30	06-JUL-13 10:36				EHTR-FM
								EHTR-FM
								EHTR-FM
			03-JUL-13 10:30	06-JUL-13 10:51	0.25			EHTR-FM
15 03-JUL-13 11:00 06-JUL-13 11:39 0.25 73 hours EH		15	03-JUL-13 11:00	06-JUL-13 11:39	0.25	73	hours	EHTR-FM

Anions and Nutrients

Nitrate as N by IC

Workorder: L1327443

Report Date: 07-JUL-13

Client: WESA Inc. 4901-48 St. Ground Floor Yellowknife NT X1A 2P9 Contact: Tim Beckenham/Melanie St-Jean

Hold Time Exceedances:

ALS Product Description	Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Anions and Nutrients							Quannoi
Nitrate as N by IC							
Millale as N by IC		00 11 11 40 00:00		40	74	h	E LI TI
	1	03-JUL-13 09:00	06-JUL-13 08:00	48	71	hours	EHTL
	2	03-JUL-13 09:00	06-JUL-13 08:00	48	71	hours	EHTL
	3	03-JUL-13 09:00	06-JUL-13 08:00	48	71	hours	EHTL
	4	03-JUL-13 09:30	06-JUL-13 08:00	48	71	hours	EHTL
	5	03-JUL-13 09:30	06-JUL-13 08:00	48	71	hours	EHTL
	6	03-JUL-13 07:00	06-JUL-13 08:00	48	73	hours	EHTL
	7	03-JUL-13 07:00	06-JUL-13 08:00	48	73	hours	EHTL
	8	03-JUL-13 07:00	06-JUL-13 08:00	48	73	hours	EHTL
	9	03-JUL-13 10:00	06-JUL-13 08:00	48	70	hours	EHTL
	10	03-JUL-13 10:00	06-JUL-13 08:00	48	70	hours	EHTL
	11	03-JUL-13 06:30	06-JUL-13 08:00	48	73	hours	EHTL
	12	03-JUL-13 06:30	06-JUL-13 08:00	48	73	hours	EHTL
	13	03-JUL-13 10:30	06-JUL-13 08:00	48	70	hours	EHTL
	14	03-JUL-13 10:30	06-JUL-13 08:00	48	70	hours	EHTL
	15	03-JUL-13 11:00	06-JUL-13 08:00	48	69	hours	EHTL
	16	03-JUL-13 12:00	06-JUL-13 08:00	48	68	hours	EHTL
Nitrite as N by IC							
	1	03-JUL-13 09:00	06-JUL-13 08:00	48	71	hours	EHTL
	2	03-JUL-13 09:00	06-JUL-13 08:00	48	71	hours	EHTL
	3	03-JUL-13 09:00	06-JUL-13 08:00	48	71	hours	EHTL
	4	03-JUL-13 09:30	06-JUL-13 08:00	48	71	hours	EHTL
	5	03-JUL-13 09:30	06-JUL-13 08:00	48	71	hours	EHTL
	6	03-JUL-13 07:00	06-JUL-13 08:00	48	73	hours	EHTL
	7	03-JUL-13 07:00	06-JUL-13 08:00	48	73	hours	EHTL
	8	03-JUL-13 07:00	06-JUL-13 08:00	48	73	hours	EHTL
	9	03-JUL-13 10:00	06-JUL-13 08:00	48	70	hours	EHTL
	10	03-JUL-13 10:00	06-JUL-13 08:00	48	70	hours	EHTL
	11	03-JUL-13 06:30	06-JUL-13 08:00	48	73	hours	EHTL
	12	03-JUL-13 06:30	06-JUL-13 08:00	48	73	hours	EHTL
	13	03-JUL-13 10:30	06-JUL-13 08:00	48	70	hours	EHTL
	14	03-JUL-13 10:30	06-JUL-13 08:00	48	70	hours	EHTL
	15	03-JUL-13 11:00	06-JUL-13 08:00	48	69	hours	EHTL
	16	03-JUL-13 12:00	06-JUL-13 08:00	48	68	hours	EHTL
		0002 10 12.00	00002 1000.00		00		

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1327443 were received on 04-JUL-13 17:40.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

Workorder: L1327443

Report Date: 07-JUL-13

Client: WESA Inc. 4901-48 St. Ground Floor Yellowknife NT X1A 2P9 Contact: Tim Beckenham/Melanie St-Jean

Page 14 of 14

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Biu Hernic Environmernitilinc. Hernic Environmernitilinc. Heinburg St, Fan Jinn Brackenhalm Hernic Environmernitilinc. Heinburg St, Fan Jinn Brackenhalm Exercise) Yes of No. TELES Ltd. Exercise) Yes of No. Copy of Invoice with Report? (circle) Yes On No. TELES Ltd. Copy of Invoice with Report? (circle) Yes On No. TELES Ltd. Copy of Invoice with Report? (circle) Yes On No. TELES Ltd. Copy of Invoice with Report? (circle) Yes On No. TELES Ltd. Copy of Invoice with Report? (circle) Yes On No. Teles Ltd. Copy of Invoice with Report? (circle) Yes On No. Teles Ltd. Copy of Invoice with Report? (circle) Yes On No. Teles Ltd. Copy of Invoice with Report? (circle) Yes On No. Teles Ltd. Copy of Invoice with Report? (circle) Yes On No. Teles Ltd. Copy of Invoice with Report? (circle) Yes On No. Teles Ltd. Copy of Invoice with Report? (circle) Yes On No. Teles Ltd. Corder # (lab use only) L 1 3 3 7 4 4 3 Arrow of the Intervoice details Sample Identification UP2 - S - OFF UP2 - S - OFF UP2 - S - OFF UP2 - S - OFF UP2 - S - OFF UP2 - S - OFF UP2 - S - OFF UP2 - S - OFF UP2 - S - OFF UP2 - S - OFF UP2 - S - OFF	(ALS) Enuir primerical						4	the second second	Inflation of	C	Al total	C to cont	ITAT mi	
Exploration Standard One (approximation) Standard And (approximation) Exploration Exploration Exploration Exploration Exploration Exploration Exploration Exploration Exploration <th>Report To</th> <th>Report Format / Distribution</th> <th>tion</th> <th></th> <th>Service</th> <th>Reques</th> <th>t:(Rush</th> <th>subject</th> <th>o availa</th> <th>plity - Co</th> <th>ontact AL</th> <th>2 10 COUL</th> <th>(141 111</th> <th></th>	Report To	Report Format / Distribution	tion		Service	Reques	t:(Rush	subject	o availa	plity - Co	ontact AL	2 10 COUL	(141 111	
Condition Date (Extent) Select 10 Descent 10 Frank 1 Descent and 10 Condition Extend 20 Exten	Environmentelinc.	1	(specify):		æ	egular (S	tandard	Lumarou	nd Times	s - Busine	ss Days)			
	Pan ITan Deckenham	Select: PDF V Excel	C Digital	Fax	à	ionty(2-	Busines	s Days)-	50% sur	charge - (Contact A	-S to con	firm TAT	
The Flact Light Current State Emails This Flact Emails Construction Construction <t< td=""><td>4 Cataviane Steet</td><td>Email 1: ppoinere</td><td>mureau ca</td><td></td><td></td><td>nergenc</td><td>y (1-2 Bu</td><td>siness D</td><td>ays)-100</td><td>% Surcha</td><td>arge - Cor</td><td>Itact ALS</td><td>to confirm</td><td>TAT</td></t<>	4 Cataviane Steet	Email 1: ppoinere	mureau ca			nergenc	y (1-2 Bu	siness D	ays)-100	% Surcha	arge - Cor	Itact ALS	to confirm	TAT
The full of the fu	The Trucer Lington ON K7K 127	Email 2: mSt ican@	envireau.o	5	X	ame Day	or Week	end Em	- Kouency -	Contact /	ALS to co	nfirm TA	0	
Same as Report 7 (concluse filter of concis) Wish of Concis data (Concision) Supprised and Report Concis (Wish of Concis data) Construction and Report Control (Wish of Concis data) Construction and Report Contron and Report Concis data) Construction and Repo	Fax: ((-12) < 31-1852	Email3.C. Druka	envireau.c	Ca				1	Analys	is Req	uest			
Corputations with Report forcied Yealson Los # YB/11(2) Los # YB/11(2) Los # YB/11(2) Los # YB/11(2) Ref Carlo Part Ref 14, 14 Part Ref 14, 15 Part Ref 14, 15 Part Ref 14, 15 Part Ref 14, 15 All the factor of Factor	Same as Report ? (circle) Yes or (No) (if No, provide details)	Client / Project Informati			1		Indice	te Filte	ered or	Presei		(L)		_
П. П. С. С. ОТ П. П. С. ОТ П. С. С. ОТ П.	Copy of Invoice with Report? (circle) Yes or No	Job #: YB/1192-00-0	Q		6	6	4	1	1	1		7	1	
33 Concriter for v33 (Fourthier 10: v33 (Fourthier for v1	LECK (1)	PO / AFE:			12	wz,	(9)	h						-
容式Charlierd Street Car 133 (elbuska)に ATT vit Jau AC Order # (ab use only) 1 3 3 1 4 1 3 Contact: 本(の10年 # (ab use only) 1 3 3 1 4 1 3 Contact: 本(の10年 # (ab use only) 1 3 3 1 4 1 3 Contact: 本(の10年 # (ab use only) 1 3 3 1 4 1 3 Contact: 本(の10年 # (ab use only) 1 3 3 1 4 1 3 Contact: 本(の10年 * (ab use only) 1 3 3 1 4 1 4 3 Contact: 本(の10年 * (ab use only) 1 3 3 1 4 1 4 3 Contact: 本(の10年 * (ab use only) 1 3 3 1 4 1 4 3 Contact: 本(の10年 * (ab use only) 1 3 3 1 4 1 4 3 Contact: 本(の10年 * (ab use only) 1 3 3 1 4 1 4 3 Contact: 本(10年 * (ab use only) 1 3 3 1 4 1 4 3 Contact: 本(10年 * (ab use only) 1 3 3 1 4 1 4 3 Contact: 本(10年 * (ab use only) 1 3 2 3 1 4 1 4 3 Contact: 本(10年 * (ab use only) 1 3 2 5 - 0 F 1 1 4 2 Contact: 1 1 1 2 5 - 5 - 0 F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	eich Gouthier	LSD:			in in	IN.	ini)	Hp.		-			-	5
Contract from the report of the factor of the fac	98 archited Sheet Box 133 Velow Knife NT XIA and				55	ad k	גיין אין ברו	q.		-				ners
Alter # (lab use only) L 1 3 3 H L 4 3 Als Sample : H Christian Time sample : H Christian Sample : H Christian Sample : H Christian Sample : H Christian Time sample : H Christian Contact: Date Date Date Time sample : H Christian Contact: Date Date Date Time sample : H Christian Contact: Date Date Date Time sample : H Christian Contact: D3: CHristian Sample : H Christian D3: CHristian UP2 - S - CHF III H Christian III H Christian H Christian UP2 - H - CFF III H Christian H Christian H Christian UP2 - H - CFF III H Christian H Christian H Christian UP2 - H - CFF III H Christian H Christian H Christian UP2 - H - CFF III IIII H Christian H Christian UP2 - H - CFF IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	347) 669-948	Quote #:			I)sp	ma	Va	<u>nı</u>			_		-	ietu
Sample Identification Date Time Sample identification Date Time description will appear on the report) Date Time description will appear on the report) Date Date Sample if part	der # (lab use only) L1337443	ALS Contact:	Sampler: Held	he	Neta	neg wa	uun	10/0)					_	oO to re
(D1.5 - OFF 03 - OF 203 form surface under x x	5	Date (dd-mmm-vv)	Time (hh:mm)	Sample Type	12401	13510	mol	551		-				dmuN
いたいには、「「「「「「「「」」」」」」「「「」」」」「「「」」」」」「「「」」」」」「「」」」」	0	03-02-20	yam	ucharo u tuler	>	X	X	X	X					5
UP1-N-OFF u u N N N N N N UP3-S-OFF u n N N N N N N UP3-S-OFF u N N N N N N N UP3-S-OFF u N N N N N N N UP3-S-OFF u N N N N N N N N UP3-S-OFF u N N N N N N N N N UP3-S-OFF u N N N N N N N N N UP4-UOFF n N N N N N N N N UP4-N-OFF n n N N N N N N UP4-N-OFF n n N N N N N UP4-N-OFF n n N N N N UP4-N-OFF n n N N N N UP4-NOFF n n N N N N S		02-112-2013	am	11	X	X	X	×	X					5
UP3-S-OFF II Product II Product II Product II Product II Product Produt Product Product		11		n	X	X	XX	×	X					5
UP3-H-OFF II P:30 am	10-3-CO1	11	9:30 am	11	×	X	X	×	X				-	5
UP3-5-OFF II ¥DO4M II ¥DO4M II ¥ X X <td>103-N-0FF</td> <td>11</td> <td>9:30 am</td> <td>11</td> <td>×</td> <td>×</td> <td>X</td> <td>×</td> <td>X</td> <td></td> <td></td> <td></td> <td>_</td> <td>5</td>	103-N-0FF	11	9:30 am	11	×	×	X	×	X				_	5
UP3-H-OFF II Production II Production III Production IIII Production IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	103-S-0FF	11	#:00am	11	×	x	××	×	X.	-	_			S
UP3-S-DeF II II Storam II X × × × × × × × × II Storam II X × × × × × × × × II Storam II X × × × × × × × × II Storam II X × × × × × × × II Storam II X × × × × × × × × × II Storam II X × × × × × × × × × × Storam II X × × × × × × × × × × × × Storam II X × × × × × × × × × × × × × × × × × × ×	11P3- M- OFF	11	3:00	11	X	X	×	×	X		_			5
UP4-S-CFF II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	UP3-S-DOF	11	7:coam	11	×	×	×	×	X	-	_			5
UP4-H-oFF If I/6:com I/6 I/6:com I/6 I/6 <td>11P4- S-0FF</td> <td>n.</td> <td>10:00km</td> <td>0</td> <td>X</td> <td>Ŷ</td> <td>×</td> <td>×</td> <td>X</td> <td></td> <td>-</td> <td></td> <td></td> <td>5</td>	11P4- S-0FF	n.	10:00km	0	X	Ŷ	×	×	X		-			5
UPS-S-OFF In	H.	11	16:000m	11	×	X	X	×	X		_		-	5
UPS-H-OFF N N X	105- C- OFF	11	6: Cam	ef.	×	X	×	×	X		_		-	5
Special Instructions / Regulation with water or land use (CCME - Freshwater Aquatic Life/BC CSR-Commercial/AB Tier 1 Failure to complete all portions of this form may delay analysis. Please fill in this form LEt By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back SHIPMENT RELEASE (client use) SHIPMENT RELEASE (client use) Time: Reserved by: Date: Time: Verified 1 TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY VELLOW L1327443-COFC	UPS-H-OFF	11	6:30m	11	X	X	×	X	X		_		-	2
Failure to complete all portions of this form may delay analysis. Please fill in this form LET By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back SHIPMENT RELEASE (client use) SHIPMENT RELEASE (client use) SHIPMENT RECEPTION (lab use only) Time: Regented by: Date: Time: Temperature: Verified i CHORE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY VELLOW	Special Instructions / Regulation with water or land	use (CCME- Freshwater	Aquatic Life/BC C	SR-Commerci	IIAB T	ler 1		1-1-1			-11-17-1			r
By the use of this form the user acknowledges and agrees with the refins and conditions as specified only in the user acknowledges and agrees with the refined only in the use only is the use only in the use only is the use only is the use only in the use only is the use of the use only is the use of the us	Failure to complete all p	ortions of this form may	delay analysis. P	lease fill in this	form the he	14 3								
Date: Time: Reserved by: Date: Time: Temperature: Verified I 2 TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION NHITE - LABORATORY COPY Y Y Y	By the use of this form the user acknowledges an SHIPMENT RELEASE (client use)	SHIPMENT RECEPT	TION (lab use only)			= 5							=	-
1 1 1 WHITE - LABORATORY COPY YELLOW LIJ2/ 443-0000	Date: Time:	X	-	emperature:	Verifi	I pa			0208	19 00			_	
	REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATI	in 1, 1, 1, NO	WHITE - LABOR	T. T. J. D.O.	VELLO	M		2			5			-

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878

	100
	-
	798
	1.5
	1. 6
	484
	1.
	Seite .
	TL
	- 141
	100
	100
	1.00
	-
	100
	1.00
	100
	171
	~
	100
	lease in
	-
	10
	_1
	-
	1
	144
	110.
	IT V
	144
	2
	1.1
-	10
	v i
	• 1
100	
	_
	1
	1
	•

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878

Report To	Report Format / Distribution	bution		Service Regulast	(Buch cution to an	Service Rectinest (Buch subtant to availability. Contrast ALC to available to the	TAT
company: Blukethe Environmental Inc.	Standard: V Ott	Other (specify)		Reoular (St	andard Tumatoren T	Regular (Standard Turnary and Tunary Buchase Down	(INI IIIIII)
JERNIE St FOUN ITTM BOLKE	DF	Pinital	Env	Prioritv(2-4	Business Davel 60st	Printh/2-4 Rusiness Devel 50% successory Contrast 1 5 to 100-1	111
	action of	initia initia		100	e no le fino ensueno	winning - animaning	
The Trust Lingth ONI		nien	ca	Cuergency	(1-2 Business Days)-	Emergency (1-2 Business Days)-100% Surcharge - Contact ALS to confirm TAT	itact ALS to confirm 1
Phone: Phone: Fax // 121/21- 1677	fisa	0	.Ca	X Same Day o	or Weekend Emergen	Same Day or Weekend Emergency - Contact ALS to confirm TAT	nferm TAT
F	HMAIL 3. CORVX	la envitau ca	1.ca		Anal	Analysis Request	
	Client / Project Information	ation		0	(Indicate Filtered or Preserved,		F/P)
	Job #: VB1192-00-00	8		656 6		V V V	
>	PO / AFE:			(*	En		
contact: Leish Gauthicr	LSD:			12 41	141		
Address: 9% Ouchubuld Street, 130x 133. Velburkhife. NT XIA 3N				90	pic (W)		
Phone: (867)669-9481 Fax: (867)669-9482	Quote #:			11/ 11/	p n n		
Lab Work Order # (lab use only)	ALS Contact:	Sampler: Nellanie	lunic -Tann	nnn 1) 1994 1994	+W'a		
	Date	Time	Jear		+10)		
leso	(dd-mmm-yy)	(hhimm)	Sample Type	240/	4d '551 41N		
VUP6-S-OFF	03-07-2013	10: 200m	Surface under	XXX	TXX		
1 (P6-H-OFF	11	10:3000	11	(X) (X)	XX		
UP-EQ-OFF	11	II. arin	11		r > (x)		
Takner	\$	and the					
			ŧ	XXX	XX		
				_			
				1			
				1			
Special Instructions / Regulation with water or land use (CCME- Freshwaler Arriatic Life/BC CSB Communication	use (CCME- Freshwater /	Anuatic Life/BC C	CD Common	18	L1327443-COFC	OFC	
	use (come- rreshwater /	Aquatic Life/BC C	SR-Commercia				
5	Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. In user acknowledges and agrees with the Terms and Conditions as specified on the back page of	delay analysis. Pla and Conditions as	ease fill in this	form LEGIBLY.	f the white as	1	
SHIPME	SHIPMENT RECEPTION (lab use only)	ION (lab use only)		HS HS	IPMENT VERIF	SHIPMENT VERIFICATION (Iab use only)	e only)
released by: Date: Time: Received by:	1	Time: Te	Temperature:	Verified by:	Date:	Time:	Observations: Yes / No ?
	CINININ VIA	20	2				If Yes and SIE

WESA Inc. ATTN: Tim Beckenham 4 Cataraqui Street The Tower Kingston ON K7K 1Z7 Date Received:29-JUL-13Report Date:01-AUG-13 16:19 (MT)Version:FINAL

Client Phone: --

Certificate of Analysis

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L1339689 NOT SUBMITTED ABORIGINAL 15929 1, 2

Catherine Evaristo-Cordero Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 9936-67 Avenue, Edmonton, AB T6E 0P5 Canada | Phone: +1 780 413 5227 | Fax: +1 780 437 2311 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1339689 CONTD.... PAGE 2 of 12 01-AUG-13 16:19 (MT) Version: FINAL

				Version: FINAL		
	Sample ID Description Sampled Date Sampled Time Client ID	L1339689-1 Surface Water 28-JUL-13 14:00 UP1-S	L1339689-2 Surface Water 28-JUL-13 14:00 UP1-M	L1339689-3 Surface Water 28-JUL-13 14:00 UP1-B	L1339689-4 Surface Water 28-JUL-13 14:00 UP2-S	L1339689-5 Surface Water 28-JUL-13 14:00 UP2-M
Grouping	Analyte					
WATER						
Physical Tests	рН (рН)	7.83	7.84	7.83	7.84	7.85
	Total Suspended Solids (mg/L)	6.0	<3.0	7.0	5.0	3.0
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.102	0.080	0.073	0.120	0.066
	Nitrate and Nitrite (as N) (mg/L)	0.148	0.153	0.130	0.166	0.151
	Nitrate (as N) (mg/L)	0.148	0.153	0.130	0.166	0.151
	Nitrite (as N) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
Total Metals	Aluminum (Al)-Total (mg/L)	0.0597	0.0716	0.157	0.0648	0.0696
	Antimony (Sb)-Total (mg/L)	0.00073	0.00074	0.00077	0.00072	0.00074
	Arsenic (As)-Total (mg/L)	0.227	0.235	0.268	0.235	0.240
	Barium (Ba)-Total (mg/L)	0.0164	0.0169	0.0178	0.0166	0.0164
	Beryllium (Be)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	<0.000050	0.000052	<0.000050
	Boron (B)-Total (mg/L)	0.032	0.033	0.033	0.031	0.032
	Cadmium (Cd)-Total (mg/L)	0.000012	0.000015	0.000016	0.000100	0.000016
	Calcium (Ca)-Total (mg/L)	116	120	120	115	117
	Chromium (Cr)-Total (mg/L)	0.00026	0.00064	0.00075	0.00028	0.00037
	Cobalt (Co)-Total (mg/L)	0.00383	0.00396	0.00409	0.00396	0.00400
	Copper (Cu)-Total (mg/L)	0.00187	0.00213	0.00223	0.00191	0.00199
	Iron (Fe)-Total (mg/L)	0.748	0.816	1.10	0.759	0.776
	Lead (Pb)-Total (mg/L)	0.000472	0.000514	0.000849	0.000511	0.000525
	Lithium (Li)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Magnesium (Mg)-Total (mg/L)	8.46	8.81	8.93	8.50	8.75
	Manganese (Mn)-Total (mg/L)	0.131	0.136	0.142	0.134	0.137
	Molybdenum (Mo)-Total (mg/L)	0.00233	0.00244	0.00238	0.00231	0.00238
	Nickel (Ni)-Total (mg/L)	0.00741	0.00827	0.00806	0.00745	0.00796
	Phosphorus (P)-Total (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Total (mg/L)	7.17	7.28	7.32	7.16	7.20
	Selenium (Se)-Total (mg/L)	<0.00010	0.00011	<0.00010	0.00011	0.00010
	Silicon (Si)-Total (mg/L)	0.653	0.691	0.790	0.701	0.692
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	0.000010	<0.000010	<0.000010
	Sodium (Na)-Total (mg/L)	28.1	29.3	29.4	28.6	28.9
	Strontium (Sr)-Total (mg/L)	0.194	0.194	0.197	0.188	0.193
	Thallium (TI)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Tin (Sn)-Total (mg/L)	<0.00010	0.00026	0.00014	<0.00010	0.00026
	Titanium (Ti)-Total (mg/L)	0.00275	0.00271	0.00610	0.00241	0.00265
	Uranium (U)-Total (mg/L)	0.000305	0.000315	0.000323	0.000311	0.000308
	Vanadium (V)-Total (mg/L)	0.00035	0.00036	0.00064	0.00038	0.00037

L1339689 CONTD.... PAGE 3 of 12 01-AUG-13 16:19 (MT) Version: FINAL

		1			Vers	ion: FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1339689-6 Surface Water 28-JUL-13 14:00 UP2-B	L1339689-7 Surface Water 28-JUL-13 14:00 UP3-S	L1339689-8 Surface Water 28-JUL-13 14:00 UP3-M	L1339689-9 Surface Water 28-JUL-13 14:00 UP3-B	L1339689-10 Surface Water 28-JUL-13 14:00 UP4-S
Grouping	Analyte					
WATER						
Physical Tests	рН (рН)	7.84	7.85	7.85	7.86	7.86
-	Total Suspended Solids (mg/L)	4.0	8.0	6.0	3.0	8.0
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.104	0.075	0.085	0.109	0.092
	Nitrate and Nitrite (as N) (mg/L)	0.154	0.146	0.153	0.159	0.164
	Nitrate (as N) (mg/L)	0.154	0.146	0.153	0.159	0.164
	Nitrite (as N) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
Total Metals	Aluminum (Al)-Total (mg/L)	0.0575	0.0645	0.0672	0.0652	0.0707
	Antimony (Sb)-Total (mg/L)	0.00069	0.00075	0.00075	0.00075	0.00073
	Arsenic (As)-Total (mg/L)	0.227	0.249	0.257	0.243	0.244
	Barium (Ba)-Total (mg/L)	0.0164	0.0163	0.0173	0.0169	0.0164
	Beryllium (Be)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	0.031	0.033	0.033	0.032	0.032
	Cadmium (Cd)-Total (mg/L)	0.000015	0.000011	0.000014	0.000012	0.000011
	Calcium (Ca)-Total (mg/L)	109	121	117	115	117
	Chromium (Cr)-Total (mg/L)	0.00037	0.00026	0.00099	0.00031	0.00030
	Cobalt (Co)-Total (mg/L)	0.00381	0.00386	0.00405	0.00385	0.00389
	Copper (Cu)-Total (mg/L)	0.00185	0.00198	0.00226	0.00220	0.00189
	Iron (Fe)-Total (mg/L)	0.740	0.733	0.766	0.711	0.724
	Lead (Pb)-Total (mg/L)	0.000483	0.000511	0.000559	0.000514	0.000507
	Lithium (Li)-Total (mg/L)	<0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050
	Magnesium (Mg)-Total (mg/L)	8.18	8.59	8.97	8.32	8.48
	Manganese (Mn)-Total (mg/L)	0.129	0.133	0.137	0.131	0.134
	Molybdenum (Mo)-Total (mg/L)	0.00225	0.00240	0.00252	0.00240	0.00236
	Nickel (Ni)-Total (mg/L)	0.00769	0.00757	0.00842	0.00759	0.00755
	Phosphorus (P)-Total (mg/L)	< 0.30	<0.30	<0.30	< 0.30	< 0.30
	Potassium (K)-Total (mg/L)	6.71	7.46	7.10	6.95	7.38
	Selenium (Se)-Total (mg/L)	<0.00010	0.00010	0.00010	<0.00010	0.00011
	Silicon (Si)-Total (mg/L)	0.658	0.670	0.700	0.664	0.691
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	0.000011	<0.00010	<0.00010
	Sodium (Na)-Total (mg/L)	27.4	28.7	29.1	27.9	28.5
	Strontium (Sr)-Total (mg/L)	0.187	0.189	0.198	0.191	0.191
	Thallium (TI)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Tin (Sn)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Titanium (Ti)-Total (mg/L)	0.00015	0.00263	0.00015	0.00279	0.00259
	Uranium (U)-Total (mg/L)	0.00256	0.00283	0.000320	0.00279	0.00239
	Vanadium (V)-Total (mg/L)	0.000291	0.000315	0.000320	0.000315	0.000311

L1339689 CONTD.... PAGE 4 of 12 01-AUG-13 16:19 (MT) Version: FINAL

					Versi	ion: FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1339689-11 Surface Water 28-JUL-13 14:00 UP4-M	L1339689-12 Surface Water 28-JUL-13 14:00 UP4-B	L1339689-13 Surface Water 28-JUL-13 14:00 UP5-S	L1339689-14 Surface Water 28-JUL-13 14:00 UP5-M	L1339689-15 Surface Wate 28-JUL-13 14:00 UP5-B
Grouping	Analyte					
WATER	-					
Physical Tests	рН (рН)	7.86	7.86	7.85	7.85	7.86
-	Total Suspended Solids (mg/L)	6.0	4.0	6.0	7.0	6.0
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.088	0.078	0.066	<0.050	<0.050
	Nitrate and Nitrite (as N) (mg/L)	0.154	0.149	0.150	0.146	0.142
	Nitrate (as N) (mg/L)	0.154	0.149	0.150	0.146	0.142
	Nitrite (as N) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
Total Metals	Aluminum (Al)-Total (mg/L)	0.0732	0.0704	0.0676	0.0892	0.0712
	Antimony (Sb)-Total (mg/L)	0.00072	0.00073	0.00078	0.00077	0.00073
	Arsenic (As)-Total (mg/L)	0.237	0.247	0.275	0.268	0.269
	Barium (Ba)-Total (mg/L)	0.0163	0.0168	0.0172	0.0171	0.0167
	Beryllium (Be)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	0.032	0.034	0.034	0.032	0.033
	Cadmium (Cd)-Total (mg/L)	0.000017	0.000014	0.000022	0.000013	0.000013
	Calcium (Ca)-Total (mg/L)	113	121	119	114	117
	Chromium (Cr)-Total (mg/L)	0.00042	0.00089	0.00029	0.00091	0.00038
	Cobalt (Co)-Total (mg/L)	0.00378	0.00400	0.00409	0.00381	0.00393
	Copper (Cu)-Total (mg/L)	0.00194	0.00200	0.00203	0.00201	0.00201
	Iron (Fe)-Total (mg/L)	0.723	0.741	0.737	0.733	0.708
	Lead (Pb)-Total (mg/L)	0.000532	0.000536	0.000578	0.000594	0.000594
	Lithium (Li)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Magnesium (Mg)-Total (mg/L)	8.13	8.73	8.59	8.23	8.40
	Manganese (Mn)-Total (mg/L)	0.130	0.136	0.140	0.135	0.135
	Molybdenum (Mo)-Total (mg/L)	0.00234	0.00247	0.00251	0.00247	0.00243
	Nickel (Ni)-Total (mg/L)	0.00744	0.00829	0.00810	0.00796	0.00781
	Phosphorus (P)-Total (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Total (mg/L)	7.00	7.66	7.59	7.30	7.26
	Selenium (Se)-Total (mg/L)	<0.00010	0.00012	0.00012	<0.00010	0.00012
	Silicon (Si)-Total (mg/L)	0.666	0.674	0.693	0.701	0.688
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Total (mg/L)	28.0	28.8	29.3	28.0	28.0
	Strontium (Sr)-Total (mg/L)	0.187	0.198	0.200	0.188	0.193
	Thallium (TI)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	0.00016
	Titanium (Ti)-Total (mg/L)	0.00325	0.00273	0.00244	0.00316	0.00234
	Uranium (U)-Total (mg/L)	0.000309	0.000323	0.000326	0.000318	0.000328
	Vanadium (V)-Total (mg/L)	0.00037	0.00039	0.00041	0.00043	0.00041

L1339689 CONTD.... PAGE 5 of 12 01-AUG-13 16:19 (MT) Version: FINAL

					Versi	ion: FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1339689-16 Surface Water 28-JUL-13 14:00 UP6-S	L1339689-17 Surface Water 28-JUL-13 14:00 UP6-M	L1339689-18 Surface Water 28-JUL-13 14:00 DUP 6	L1339689-19 Surface Water 28-JUL-13 14:00 DUP 7	L1339689-20 Surface Water 28-JUL-13 14:00 UP-EQ
Grouping	Analyte					
WATER						
Physical Tests	рН (рН)	7.85	7.85	7.85	7.86	6.62
	Total Suspended Solids (mg/L)	4.0	9.0	4.0	5.0	<3.0
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	<0.050	0.070	0.066	0.059	<0.050
	Nitrate and Nitrite (as N) (mg/L)	0.167	0.157	0.155	0.162	<0.071
	Nitrate (as N) (mg/L)	0.167	0.157	0.155	0.162	<0.050
	Nitrite (as N) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
Total Metals	Aluminum (Al)-Total (mg/L)	0.0717	0.0774	0.0616	0.0645	0.0086
	Antimony (Sb)-Total (mg/L)	0.00077	0.00074	0.00074	0.00073	<0.00010
	Arsenic (As)-Total (mg/L)	0.273	0.276	0.232	0.240	0.00271
	Barium (Ba)-Total (mg/L)	0.0165	0.0166	0.0168	0.0164	0.000094
	Beryllium (Be)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	0.033	0.034	0.034	0.032	<0.010
	Cadmium (Cd)-Total (mg/L)	0.000013	0.000014	0.000014	0.000011	<0.000010
	Calcium (Ca)-Total (mg/L)	117	118	121	114	0.059
	Chromium (Cr)-Total (mg/L)	0.00030	0.00122	0.00030	0.00026	0.00046
	Cobalt (Co)-Total (mg/L)	0.00382	0.00382	0.00387	0.00377	<0.00010
	Copper (Cu)-Total (mg/L)	0.00192	0.00198	0.00189	0.00196	<0.00010
	Iron (Fe)-Total (mg/L)	0.698	0.718	0.791	0.712	0.018
	Lead (Pb)-Total (mg/L)	0.000640	0.000597	0.000507	0.000520	0.000063
	Lithium (Li)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Magnesium (Mg)-Total (mg/L)	8.20	8.48	8.40	7.97	0.0055
	Manganese (Mn)-Total (mg/L)	0.133	0.135	0.137	0.131	0.000513
	Molybdenum (Mo)-Total (mg/L)	0.00241	0.00254	0.00233	0.00229	<0.000050
	Nickel (Ni)-Total (mg/L)	0.00758	0.00816	0.00750	0.00729	0.00036
	Phosphorus (P)-Total (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Total (mg/L)	7.23	7.32	7.37	7.26	<0.050
	Selenium (Se)-Total (mg/L)	0.00010	0.00011	0.00011	0.00010	<0.00010
	Silicon (Si)-Total (mg/L)	0.671	0.685	0.692	0.682	<0.050
	Silver (Ag)-Total (mg/L)	<0.000010	0.000018	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Total (mg/L)	27.8	27.9	29.0	27.4	<0.050
	Strontium (Sr)-Total (mg/L)	0.192	0.195	0.195	0.186	0.00014
	Thallium (TI)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	< 0.000050
	Tin (Sn)-Total (mg/L)	<0.00010	0.00048	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	0.00296	0.00312	0.00293	0.00284	0.00034
	Uranium (U)-Total (mg/L)	0.000290	0.000321	0.000233	0.000204	< 0.000010
	Vanadium (V)-Total (mg/L)	0.000321	0.00044	0.00039	0.000373	<0.00010

L1339689 CONTD.... PAGE 6 of 12 01-AUG-13 16:19 (MT) Version: FINAL

			1	1	1	version.	FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1339689-21 Surface Water 28-JUL-13 14:00 TBLANK					
Grouping	Analyte						
WATER							
Physical Tests	рН (рН)	5.91					
	Total Suspended Solids (mg/L)	<3.0					
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	<0.050					
	Nitrate and Nitrite (as N) (mg/L)	<0.071					
	Nitrate (as N) (mg/L)	<0.050					
	Nitrite (as N) (mg/L)	<0.050					
Total Metals	Aluminum (Al)-Total (mg/L)	<0.0030					
	Antimony (Sb)-Total (mg/L)	<0.00010					
	Arsenic (As)-Total (mg/L)	<0.00010					
	Barium (Ba)-Total (mg/L)	<0.000050					
	Beryllium (Be)-Total (mg/L)	<0.00050					
	Bismuth (Bi)-Total (mg/L)	<0.000050					
	Boron (B)-Total (mg/L)	<0.010					
	Cadmium (Cd)-Total (mg/L)	<0.000010					
	Calcium (Ca)-Total (mg/L)	<0.020					
	Chromium (Cr)-Total (mg/L)	<0.00010					
	Cobalt (Co)-Total (mg/L)	<0.00010					
	Copper (Cu)-Total (mg/L)	<0.00010					
	Iron (Fe)-Total (mg/L)	<0.010					
	Lead (Pb)-Total (mg/L)	<0.000050					
	Lithium (Li)-Total (mg/L)	<0.0050					
	Magnesium (Mg)-Total (mg/L)	<0.0050					
	Manganese (Mn)-Total (mg/L)	<0.000050					
	Molybdenum (Mo)-Total (mg/L)	<0.000050					
	Nickel (Ni)-Total (mg/L)	<0.00010					
	Phosphorus (P)-Total (mg/L)	<0.30					
	Potassium (K)-Total (mg/L)	<0.050					
	Selenium (Se)-Total (mg/L)	<0.00010					
	Silicon (Si)-Total (mg/L)	<0.050					
	Silver (Ag)-Total (mg/L)	<0.000010					
	Sodium (Na)-Total (mg/L)	<0.050					
	Strontium (Sr)-Total (mg/L)	<0.00010					
	Thallium (TI)-Total (mg/L)	<0.000050					
	Tin (Sn)-Total (mg/L)	<0.00010					
	Titanium (Ti)-Total (mg/L)	<0.00030					
	Uranium (U)-Total (mg/L)	<0.000010					
	Vanadium (V)-Total (mg/L)	<0.00010					

L1339689 CONTD.... PAGE 7 of 12 CAL REPORT 01-AUG-13 16:19 (MT) Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

			on: FINAL			
	Sample ID Description Sampled Date Sampled Time Client ID	L1339689-1 Surface Water 28-JUL-13 14:00 UP1-S	L1339689-2 Surface Water 28-JUL-13 14:00 UP1-M	L1339689-3 Surface Water 28-JUL-13 14:00 UP1-B	L1339689-4 Surface Water 28-JUL-13 14:00 UP2-S	L1339689-5 Surface Wate 28-JUL-13 14:00 UP2-M
Grouping	Analyte					
WATER						
Total Metals	Zinc (Zn)-Total (mg/L)	0.0043	0.0058	0.0056	0.0421	0.0061
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	0.0238	0.0247	0.0246	0.0222	0.0270
	Antimony (Sb)-Dissolved (mg/L)	0.00063	0.00065	0.00062	0.00066	0.00065
	Arsenic (As)-Dissolved (mg/L)	0.121	0.119	0.115	0.129	0.129
	Barium (Ba)-Dissolved (mg/L)	0.0169	0.0171	0.0160	0.0169	0.0168
	Beryllium (Be)-Dissolved (mg/L)	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	< 0.000050
	Boron (B)-Dissolved (mg/L)	0.029	0.031	0.031	0.030	0.030
	Cadmium (Cd)-Dissolved (mg/L)	<0.000010	RRV 0.000036	<0.000010	0.000018	0.000011
	Calcium (Ca)-Dissolved (mg/L)	114	118	120	117	114
	Chromium (Cr)-Dissolved (mg/L)	0.00010	0.00017	0.00014	0.00013	0.00014
	Cobalt (Co)-Dissolved (mg/L)	0.00335	0.00330	0.00326	0.00345	0.00343
	Copper (Cu)-Dissolved (mg/L)	0.00154	0.00451	0.00138	0.00149	0.00147
	Iron (Fe)-Dissolved (mg/L)	0.051	0.055	0.039	0.048	0.054
	Lead (Pb)-Dissolved (mg/L)	0.000279	0.000595	0.000090	0.000332	0.000306
	Lithium (Li)-Dissolved (mg/L)	<0.0030	<0.0030	<0.0030	<0.0030	< 0.0030
	Magnesium (Mg)-Dissolved (mg/L)	8.62	8.72	8.65	9.00	8.52
	Manganese (Mn)-Dissolved (mg/L)	0.111	0.109	0.109	0.113	0.111
	Molybdenum (Mo)-Dissolved (mg/L)	0.00201	0.00223	0.00222	0.00218	0.00219
	Nickel (Ni)-Dissolved (mg/L)	0.00681	0.00722	0.00684	0.00700	0.00699
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	< 0.30
	Potassium (K)-Dissolved (mg/L)	7.17	7.14	7.04	7.20	6.85
	Selenium (Se)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	0.00011	0.00011
	Silicon (Si)-Dissolved (mg/L)	0.630	0.615	0.613	0.613	0.617
	Silver (Ag)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Sodium (Na)-Dissolved (mg/L)	28.8	28.8	29.2	29.1	28.9
	Strontium (Sr)-Dissolved (mg/L)	0.181	0.194	0.191	0.191	0.188
	Thallium (TI)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Tin (Sn)-Dissolved (mg/L)	<0.00010	0.00041	<0.00010	<0.00010	<0.000000
	Titanium (Ti)-Dissolved (mg/L)	<0.00030	0.00093	<0.00030	<0.00030	0.00037
	Uranium (U)-Dissolved (mg/L)	0.000287	0.000293	0.000298	0.000285	0.000297
	Vanadium (V)-Dissolved (mg/L)	<0.000287	<0.000293	<0.000298	<0.000285	<0.000297
	Zinc (Zn)-Dissolved (mg/L)	0.0120	<0.00010 RRV 0.0156	0.0066	0.0236	0.0090

L1339689 CONTD.... PAGE 8 of 12 01-AUG-13 16:19 (MT) Version: FINAL

	Version: FIN								
	Sample ID Description Sampled Date Sampled Time Client ID	L1339689-6 Surface Water 28-JUL-13 14:00 UP2-B	L1339689-7 Surface Water 28-JUL-13 14:00 UP3-S	L1339689-8 Surface Water 28-JUL-13 14:00 UP3-M	L1339689-9 Surface Water 28-JUL-13 14:00 UP3-B	L1339689-10 Surface Wate 28-JUL-13 14:00 UP4-S			
Grouping	Analyte								
WATER									
Total Metals	Zinc (Zn)-Total (mg/L)	0.0048	0.0046	0.0052	0.0048	0.0046			
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	0.0262	0.0307	0.0441	0.0321	0.0293			
	Antimony (Sb)-Dissolved (mg/L)	0.00063	0.00065	0.00065	0.00066	0.00069			
	Arsenic (As)-Dissolved (mg/L)	0.128	0.146	0.203	0.147	0.138			
	Barium (Ba)-Dissolved (mg/L)	0.0160	0.0170	0.0172	0.0171	0.0160			
	Beryllium (Be)-Dissolved (mg/L)	< 0.00050	<0.00050	<0.00050	<0.00050	< 0.00050			
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050			
	Boron (B)-Dissolved (mg/L)	0.031	0.030	0.029	0.030	0.030			
	Cadmium (Cd)-Dissolved (mg/L)	0.000011	<0.000010	<0.000010	<0.000010	0.000020			
	Calcium (Ca)-Dissolved (mg/L)	116	112	114	118	116			
	Chromium (Cr)-Dissolved (mg/L)	<0.00010	<0.00010	0.00018	<0.00010	0.00010			
	Cobalt (Co)-Dissolved (mg/L)	0.00338	0.00327	0.00450	0.00323	0.00323			
	Copper (Cu)-Dissolved (mg/L)	0.00159	0.00141	0.00195	0.00144	0.00136			
	Iron (Fe)-Dissolved (mg/L)	0.112	0.047	0.056	0.066	0.045			
	Lead (Pb)-Dissolved (mg/L)	0.000257	0.000092	0.000089	0.000218	0.000101			
	Lithium (Li)-Dissolved (mg/L)	<0.0030	<0.0030	< 0.0030	<0.0030	< 0.0030			
	Magnesium (Mg)-Dissolved (mg/L)	8.48	8.67	11.7	8.55	8.57			
	Manganese (Mn)-Dissolved (mg/L)	0.110	0.106	0.145	0.106	0.105			
	Molybdenum (Mo)-Dissolved (mg/L)	0.00223	0.00221	0.00219	0.00223	0.00218			
	Nickel (Ni)-Dissolved (mg/L)	0.00691	0.00676	0.00923	0.00676	0.00656			
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30			
	Potassium (K)-Dissolved (mg/L)	7.07	7.09	7.16	7.23	7.24			
	Selenium (Se)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	0.00011			
	Silicon (Si)-Dissolved (mg/L)	0.620	0.594	0.595	0.612	0.611			
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010			
	Sodium (Na)-Dissolved (mg/L)	28.3	28.4	30.0	27.3	28.3			
	Strontium (Sr)-Dissolved (mg/L)	0.190	0.186	0.187	0.187	0.189			
	Thallium (TI)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	< 0.000050			
	Tin (Sn)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010			
	Titanium (Ti)-Dissolved (mg/L)	<0.00030	<0.00030	0.00032	0.00037	< 0.00030			
	Uranium (U)-Dissolved (mg/L)	0.000292	0.000300	0.000296	0.000300	0.000295			
	Vanadium (V)-Dissolved (mg/L)	< 0.00010	< 0.00010	<0.00010	<0.00010	<0.00010			
	Zinc (Zn)-Dissolved (mg/L)	0.0067	0.0068	0.0036	0.0104	0.0122			

L1339689 CONTD.... PAGE 9 of 12 01-AUG-13 16:19 (MT) Version: FINAL

				Version: FINAL		
	Sample ID Description Sampled Date Sampled Time Client ID	L1339689-11 Surface Water 28-JUL-13 14:00 UP4-M	L1339689-12 Surface Water 28-JUL-13 14:00 UP4-B	L1339689-13 Surface Water 28-JUL-13 14:00 UP5-S	L1339689-14 Surface Water 28-JUL-13 14:00 UP5-M	L1339689-15 Surface Wate 28-JUL-13 14:00 UP5-B
Grouping	Analyte	-				
WATER						
Total Metals	Zinc (Zn)-Total (mg/L)	0.0058	0.0054	0.0063	0.0048	0.0049
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	0.0312	0.0316	0.0313	0.0276	0.0252
	Antimony (Sb)-Dissolved (mg/L)	0.00064	0.00065	0.00065	0.00065	0.00066
	Arsenic (As)-Dissolved (mg/L)	0.142	0.139	0.158	0.159	0.158
	Barium (Ba)-Dissolved (mg/L)	0.0165	0.0168	0.0166	0.0166	0.0169
	Beryllium (Be)-Dissolved (mg/L)	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Dissolved (mg/L)	0.029	0.029	0.029	0.030	0.030
	Cadmium (Cd)-Dissolved (mg/L)	0.000013	<0.000010	0.000014	<0.000010	<0.000010
	Calcium (Ca)-Dissolved (mg/L)	118	115	114	115	114
	Chromium (Cr)-Dissolved (mg/L)	0.00029	0.00015	<0.00010	<0.00010	<0.00010
	Cobalt (Co)-Dissolved (mg/L)	0.00334	0.00333	0.00333	0.00336	0.00335
	Copper (Cu)-Dissolved (mg/L)	0.00143	0.00176	0.00142	0.00150	0.00153
	Iron (Fe)-Dissolved (mg/L)	0.054	0.056	0.039	0.044	0.035
	Lead (Pb)-Dissolved (mg/L)	0.000159	0.000134	0.000333	0.000195	0.000067
	Lithium (Li)-Dissolved (mg/L)	< 0.0030	<0.0030	<0.0030	<0.0030	< 0.0030
	Magnesium (Mg)-Dissolved (mg/L)	8.62	8.42	8.39	8.55	8.42
	Manganese (Mn)-Dissolved (mg/L)	0.102	0.108	0.109	0.108	0.108
	Molybdenum (Mo)-Dissolved (mg/L)	0.00210	0.00211	0.00214	0.00220	0.00217
	Nickel (Ni)-Dissolved (mg/L)	0.00210	0.00211	0.00214	0.00220	0.00217
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	< 0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	7.03	7.04	6.89	7.16	7.12
	Selenium (Se)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Silicon (Si)-Dissolved (mg/L)	0.608	0.604	0.603		0.603
	Silver (Ag)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	0.596 <0.000010	< 0.000010
	Sodium (Na)-Dissolved (mg/L)	28.5	28.2	27.8	27.8	28.3
	Strontium (Sr)-Dissolved (mg/L)	0.183	0.180	0.184	0.184	0.184
	Thallium (TI)-Dissolved (mg/L)	<0.000050		<0.000050		< 0.000050
	Tin (Sn)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050 <0.00010	<0.000030
	Titanium (Ti)-Dissolved (mg/L)					
	Uranium (U)-Dissolved (mg/L)	<0.00030	< 0.00030	< 0.00030	<0.00030	<0.00030
	Vanadium (V)-Dissolved (mg/L)	0.000298	0.000299	0.000299	0.000253	0.000279
	Zinc (Zn)-Dissolved (mg/L)	<0.00010 0.0025	<0.00010 0.0032	<0.00010 RRV 0.0183	<0.00010 RRV 0.0176	<0.00010 ^{RF} 0.0165

L1339689 CONTD.... PAGE 10 of 12 01-AUG-13 16:19 (MT) Version: FINAL

					Version: FINA	
	Sample ID Description Sampled Date Sampled Time Client ID	L1339689-16 Surface Water 28-JUL-13 14:00 UP6-S	L1339689-17 Surface Water 28-JUL-13 14:00 UP6-M	L1339689-18 Surface Water 28-JUL-13 14:00 DUP 6	L1339689-19 Surface Water 28-JUL-13 14:00 DUP 7	L1339689-2 Surface Wat 28-JUL-13 14:00 UP-EQ
Grouping	Analyte					
WATER	-					
Total Metals	Zinc (Zn)-Total (mg/L)	0.0051	0.0049	0.0075	0.0056	<0.0030
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	0.0292	0.0249	0.0308	0.0268	<0.0000
	Antimony (Sb)-Dissolved (mg/L)	0.00065	0.00066	0.00062	0.00063	
	Arsenic (As)-Dissolved (mg/L)	0.162	0.164	0.129	0.137	
	Barium (Ba)-Dissolved (mg/L)	0.0166	0.0161	0.0161	0.0164	
	Beryllium (Be)-Dissolved (mg/L)	<0.00050	<0.00050	< 0.00050	<0.00050	
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.00050	<0.000050	<0.000050	
	Boron (B)-Dissolved (mg/L)	0.029	0.029	0.029	0.029	
	Cadmium (Cd)-Dissolved (mg/L)	<0.00010	<0.00010	0.000015	0.000012	
	Calcium (Ca)-Dissolved (mg/L)	111	113	112	112	
	Chromium (Cr)-Dissolved (mg/L)	<0.00010	0.00010	0.00015	0.00019	
	Cobalt (Co)-Dissolved (mg/L)	0.00319	0.00328	0.00336	0.00331	
	Copper (Cu)-Dissolved (mg/L)	0.00319	0.00328	0.00330	0.00331	
	Iron (Fe)-Dissolved (mg/L)	0.035	0.039	0.057	0.052	
	Lead (Pb)-Dissolved (mg/L)	0.000410	0.000066	RRV	0.000190	
	Lithium (Li)-Dissolved (mg/L)	<0.0030	<0.0030	0.000710	<0.0030	
	Magnesium (Mg)-Dissolved (mg/L)					
	Manganese (Mn)-Dissolved (mg/L)	8.48	8.49	8.16	8.20	
	Molybdenum (Mo)-Dissolved (mg/L)	0.106	0.107	0.109	0.106	
	Nickel (Ni)-Dissolved (mg/L)	0.00216	0.00218	0.00171	0.00217	
	Phosphorus (P)-Dissolved (mg/L)	0.00663	0.00685	0.00669	0.00676	
	Potassium (K)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	
	Selenium (Se)-Dissolved (mg/L)	7.27	6.94	6.90	7.09	
	Silicon (Si)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	
	Silver (Aq)-Dissolved (mg/L)	0.585	0.593	0.608	0.600	
	Sodium (Na)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	
	Strontium (Sr)-Dissolved (mg/L)	27.2	27.0	27.6	27.8	
	Thallium (TI)-Dissolved (mg/L)	0.180	0.183	0.185	0.182	
	Tin (Sn)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Titanium (Ti)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	
		<0.00030	<0.00030	0.00059	<0.00030	
	Uranium (U)-Dissolved (mg/L)	0.000299	0.000285	0.000268	0.000282	
	Vanadium (V)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	
	Zinc (Zn)-Dissolved (mg/L)	0.0092	0.0083	0.0083	0.0055	

L1339689 CONTD PAGE 11 of 12 01-AUG-13 16:19 (MT)

	ALS ENVIRONME			Vers	ion: FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1339689-21 Surface Water 28-JUL-13 14:00 TBLANK			
Grouping	Analyte				
WATER					
Total Metals	Zinc (Zn)-Total (mg/L)	<0.0030			
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	<0.0030			
	Antimony (Sb)-Dissolved (mg/L)				
	Arsenic (As)-Dissolved (mg/L)				
	Barium (Ba)-Dissolved (mg/L)				
	Beryllium (Be)-Dissolved (mg/L)				
	Bismuth (Bi)-Dissolved (mg/L)				
	Boron (B)-Dissolved (mg/L)				
	Cadmium (Cd)-Dissolved (mg/L)				
	Calcium (Ca)-Dissolved (mg/L)				
	Chromium (Cr)-Dissolved (mg/L)				
	Cobalt (Co)-Dissolved (mg/L)				
	Copper (Cu)-Dissolved (mg/L)				
	Iron (Fe)-Dissolved (mg/L)				
	Lead (Pb)-Dissolved (mg/L)				
	Lithium (Li)-Dissolved (mg/L)				
	Magnesium (Mg)-Dissolved (mg/L)				
	Manganese (Mn)-Dissolved (mg/L)				
	Molybdenum (Mo)-Dissolved (mg/L)				
	Nickel (Ni)-Dissolved (mg/L)				
	Phosphorus (P)-Dissolved (mg/L)				
	Potassium (K)-Dissolved (mg/L)				
	Selenium (Se)-Dissolved (mg/L)				
	Silicon (Si)-Dissolved (mg/L)				
	Silver (Ag)-Dissolved (mg/L)				
	Sodium (Na)-Dissolved (mg/L)				
	Strontium (Sr)-Dissolved (mg/L)				
	Thallium (TI)-Dissolved (mg/L)				
	Tin (Sn)-Dissolved (mg/L)				
	Titanium (Ti)-Dissolved (mg/L)				
	Uranium (U)-Dissolved (mg/L)				
	Vanadium (V)-Dissolved (mg/L)				
	Zinc (Zn)-Dissolved (mg/L)				

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

Reference Information

Qualifiers for Individual Parameters Listed:

Qualifier	Description		
	•		
RRV	Reported Result Ver	ified By Repeat Analysis	
rest Method	References:		
ALS Test Cod	le Matrix	Test Description	Method Reference**
MET-D-CCMS	-ED Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A
MET-T-CCMS	-ED Water	Total Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A
NH3-CFA-ED	Water	Ammonia in Water by Colour	APHA 4500 NH3-NITROGEN (AMMONIA)
	s is carried out using proc henate colourimetric met		ROGEN (AMMONIA)". Ammonia is determined using the
NO2+NO3-CA	LC-ED Water	Nitrate+Nitrite	CALCULATION
NO2-IC-ED	Water	Nitrite as N by IC	APHA 4110 B-ION CHROMATOGRAPHY
NO3-IC-ED	Water	Nitrate as N by IC	APHA 4110 B-ION CHROMATOGRAPHY
PH-ED	Water	рН	APHA 4500 H-Electrode
		for pH will have exceeded the 15 minute recommenc curate results are needed)	led hold time from time of sampling (field analysis is
SOLIDS-TOTS	SUS-ED Water	Total Suspended Solids	APHA 2540 D-Gravimetric
* ALS test met	hods may incorporate m	odifications from specified reference methods to imp	rove performance.
The last two le	etters of the above test co	ode(s) indicate the laboratory that performed analytic	al analysis for that test. Refer to the list below:
Laboratory De	efinition Code Labo	ratory Location	
ED	ALS	ENVIRONMENTAL - EDMONTON, ALBERTA, CAN	ADA
Chain of Custo	ody Numbers:		
1	2		
GLOSSARY C	DF REPORT TERMS	in behaviour to target analyte(s), but that does not o	cour naturally in environmental samples. For

Workorder: L1339689

Report Date: 01-AUG-13

Page 1 of 10

					•			
Client:	WESA Inc. 4 Cataraqui Street The	Tower						
	Kingston ON K7K 1Z	7						
Contact:	Tim Beckenham							
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-	ED Water							
Batch	R2663013							
WG1717768		ED-HIGH-W			<u>.</u>			
	(AI)-Dissolved		102.0		%		80-120	31-JUL-1
	Sb)-Dissolved		102.6		%		80-120	31-JUL-1
Arsenic (As			102.7		%		80-120	31-JUL-1
Barium (Ba			100.3		%		80-120	31-JUL-1
	Be)-Dissolved		97.0		%		80-120	31-JUL-1
	i)-Dissolved		93.2		%		80-120	31-JUL-1
Boron (B)-D			97.0		%		80-120	31-JUL-1
	Cd)-Dissolved		101.5		%		80-120	31-JUL-1
Calcium (C	a)-Dissolved		99.2		%		80-120	31-JUL-1
Chromium	(Cr)-Dissolved		102.3		%		80-120	31-JUL-1
Cobalt (Co))-Dissolved		99.6		%		80-120	31-JUL-1
Copper (Cu	ı)-Dissolved		97.7		%		80-120	31-JUL-1
Lead (Pb)-[Dissolved		94.9		%		80-120	31-JUL-1
Lithium (Li)	-Dissolved		95.2		%		80-120	31-JUL-1
Magnesium	n (Mg)-Dissolved		100.3		%		80-120	31-JUL-1
Manganese	e (Mn)-Dissolved		101.5		%		80-120	31-JUL-1
Molybdenur	m (Mo)-Dissolved		96.9		%		80-120	31-JUL-1
Nickel (Ni)-	Dissolved		102.3		%		80-120	31-JUL-1
Phosphorus	s (P)-Dissolved		117.4		%		80-120	31-JUL-1
Potassium	(K)-Dissolved		102.2		%		80-120	31-JUL-1
Selenium (S	Se)-Dissolved		101.5		%		80-120	31-JUL-1
Silicon (Si)-	Dissolved		103.3		%		80-120	31-JUL-1
Sodium (Na	a)-Dissolved		101.2		%		80-120	31-JUL-1
Strontium (Sr)-Dissolved		100.8		%		80-120	31-JUL-1
Thallium (T	I)-Dissolved		96.6		%		80-120	31-JUL-1
Titanium (T	i)-Dissolved		97.9		%		80-120	31-JUL-1
Tin (Sn)-Dis	ssolved		95.6		%		80-120	31-JUL-1
	J)-Dissolved		98.0		%		80-120	31-JUL-1
Vanadium ((V)-Dissolved		100.6		%		80-120	31-JUL-1
Zinc (Zn)-D	vissolved		98.4		%		80-120	31-JUL-1
WG1717768	3-1 MB							
	(AI)-Dissolved		<0.0010		mg/L		0.001	31-JUL-1
Antimony (S	Sb)-Dissolved		<0.00010)	mg/L		0.0001	31-JUL-1
Arsenic (As	s)-Dissolved		<0.00010)	mg/L		0.0001	31-JUL-1

		Workorder:	L133968	9	Report Date: 01	I-AUG-13	Pa	ge 2 of 1
lest .	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-ED	Water							
Batch R26630								
WG1717768-1 ME			-0.00005	0			0 00005	
Barium (Ba)-Dissolv			<0.00005		mg/L		0.00005	31-JUL-13
Beryllium (Be)-Disso			<0.00050		mg/L		0.0005	31-JUL-13
Bismuth (Bi)-Dissolv			<0.00005	0	mg/L		0.00005	31-JUL-13
Boron (B)-Dissolved			<0.010	0	mg/L		0.01	31-JUL-13
Cadmium (Cd)-Diss			<0.00001	0	mg/L		0.00001	31-JUL-13
Calcium (Ca)-Dissol			<0.020		mg/L		0.02	31-JUL-13
Chromium (Cr)-Diss			<0.00010		mg/L		0.0001	31-JUL-13
Cobalt (Co)-Dissolve			<0.00010		mg/L		0.0001	31-JUL-13
Copper (Cu)-Dissolv	/ed		<0.00010		mg/L		0.0001	31-JUL-13
Iron (Fe)-Dissolved			<0.010		mg/L		0.01	31-JUL-13
Lead (Pb)-Dissolved			<0.00005	0	mg/L		0.00005	31-JUL-13
Lithium (Li)-Dissolve			<0.0030		mg/L		0.003	31-JUL-13
Magnesium (Mg)-Di			<0.0050	_	mg/L		0.005	31-JUL-13
Manganese (Mn)-Di			<0.00005		mg/L		0.00005	31-JUL-13
Molybdenum (Mo)-D			<0.00005		mg/L		0.00005	31-JUL-13
Nickel (Ni)-Dissolved			<0.00010		mg/L		0.0001	31-JUL-13
Phosphorus (P)-Dise			<0.30		mg/L		0.3	31-JUL-13
Potassium (K)-Disso			<0.050		mg/L		0.05	31-JUL-13
Selenium (Se)-Disso	blved		<0.00010		mg/L		0.0001	31-JUL-13
Silicon (Si)-Dissolve	d		<0.050		mg/L		0.05	31-JUL-13
Silver (Ag)-Dissolve	d		<0.00001	0	mg/L		0.00001	31-JUL-13
Sodium (Na)-Dissolv	ved		<0.050		mg/L		0.05	31-JUL-13
Strontium (Sr)-Disso	blved		<0.00010		mg/L		0.0001	31-JUL-13
Thallium (TI)-Dissolv	ved		<0.00005	0	mg/L		0.00005	31-JUL-13
Titanium (Ti)-Dissol	ved		<0.00030		mg/L		0.0003	31-JUL-13
Tin (Sn)-Dissolved			<0.00010		mg/L		0.0001	31-JUL-13
Uranium (U)-Dissolv	ved		<0.00001	0	mg/L		0.00001	31-JUL-13
Vanadium (V)-Disso	lved		<0.00010		mg/L		0.0001	31-JUL-13
Zinc (Zn)-Dissolved			<0.0010		mg/L		0.001	31-JUL-13
Batch R26638	353							
WG1718563-2 CR		ED-HIGH-WA						
Barium (Ba)-Dissolv			103.2		%		80-120	01-AUG-13
Cadmium (Cd)-Diss			103.8		%		80-120	01-AUG-13
Chromium (Cr)-Diss	olved		97.1		%		80-120	01-AUG-13

		Workorder	: L133968	39	Report Date: 0	1-AUG-13	Pa	ge 3 of 10
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-ED	Water							
Batch R2663853								
WG1718563-2 CRM		ED-HIGH-W						
Copper (Cu)-Dissolved			96.2		%		80-120	01-AUG-13
Lead (Pb)-Dissolved			94.1		%		80-120	01-AUG-13
Potassium (K)-Dissolved			97.9		%		80-120	01-AUG-13
Sodium (Na)-Dissolved			106.5		%		80-120	01-AUG-13
Zinc (Zn)-Dissolved			101.8		%		80-120	01-AUG-13
WG1718563-1 MB Barium (Ba)-Dissolved			<0.0000	50	mg/L		0.00005	01-AUG-13
Cadmium (Cd)-Dissolved	l		< 0.0000	10	mg/L		0.00001	01-AUG-13
Chromium (Cr)-Dissolved			<0.00010)	mg/L		0.0001	01-AUG-13
Copper (Cu)-Dissolved			<0.00010)	mg/L		0.0001	01-AUG-13
Lead (Pb)-Dissolved			<0.0000	50	mg/L		0.00005	01-AUG-13
Potassium (K)-Dissolved			<0.050		mg/L		0.05	01-AUG-13
Sodium (Na)-Dissolved			<0.050		mg/L		0.05	01-AUG-13
Zinc (Zn)-Dissolved			<0.0010		mg/L		0.001	01-AUG-13
MET-T-CCMS-ED	Water							
Batch R2663003								
WG1717679-3 LCS Aluminum (Al)-Total			100.4		%		80-120	31-JUL-13
Antimony (Sb)-Total			103.4		%		80-120	31-JUL-13
Arsenic (As)-Total			104.4		%		80-120	31-JUL-13
Barium (Ba)-Total			99.9		%		80-120	31-JUL-13
Beryllium (Be)-Total			92.5		%		80-120	31-JUL-13
Bismuth (Bi)-Total			99.7		%		80-120	31-JUL-13
Boron (B)-Total			92.4		%		80-120	31-JUL-13
Cadmium (Cd)-Total			101.6		%		80-120	31-JUL-13
Calcium (Ca)-Total			98.1		%		80-120	31-JUL-13
Chromium (Cr)-Total			103.1		%		80-120	31-JUL-13
Cobalt (Co)-Total			100.3		%		80-120	31-JUL-13
Copper (Cu)-Total			98.3		%		80-120	31-JUL-13
Iron (Fe)-Total			100.1		%		80-120	31-JUL-13
Lead (Pb)-Total			100.3		%		80-120	31-JUL-13
Lithium (Li)-Total			87.6		%		80-120	31-JUL-13
Magnesium (Mg)-Total			100.2		%		80-120	31-JUL-13
							00 120	0.00000

		Trenter der	: L133968	.0	Report Date: 0	1-700-13	га	ge 4 of 1
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R266300	3							
WG1717679-3 LCS			04.0		0/			
Molybdenum (Mo)-Tot	a		94.9		%		80-120	31-JUL-13
Nickel (Ni)-Total			102.0		%		80-120	31-JUL-13
Potassium (K)-Total			101.5		%		80-120	31-JUL-13
Selenium (Se)-Total			107.3		%		80-120	31-JUL-13
Silicon (Si)-Total			98.2		%		80-120	31-JUL-13
Silver (Ag)-Total			99.3		%		80-120	31-JUL-13
Sodium (Na)-Total			102.4		%		80-120	31-JUL-13
Strontium (Sr)-Total			97.2		%		80-120	31-JUL-13
Thallium (TI)-Total			101.0		%		80-120	31-JUL-13
Tin (Sn)-Total			98.0		%		80-120	31-JUL-13
Titanium (Ti)-Total			103.4		%		80-120	31-JUL-13
Uranium (U)-Total			103.4		%		80-120	31-JUL-13
Vanadium (V)-Total			100.2		%		80-120	31-JUL-13
Zinc (Zn)-Total			102.8		%		80-120	31-JUL-13
WG1717679-1 MB					"			
Aluminum (Al)-Total			<0.0030		mg/L		0.003	31-JUL-13
Antimony (Sb)-Total			<0.00010		mg/L		0.0001	31-JUL-13
Arsenic (As)-Total			<0.00010		mg/L		0.0001	31-JUL-13
Barium (Ba)-Total			<0.00005		mg/L		0.00005	31-JUL-13
Beryllium (Be)-Total			<0.00050		mg/L		0.0005	31-JUL-13
Bismuth (Bi)-Total			<0.00005	50	mg/L		0.00005	31-JUL-13
Boron (B)-Total			<0.010		mg/L		0.01	31-JUL-13
Cadmium (Cd)-Total			<0.00002	10	mg/L		0.00001	31-JUL-13
Calcium (Ca)-Total			<0.020		mg/L		0.02	31-JUL-13
Chromium (Cr)-Total			<0.00010)	mg/L		0.0001	31-JUL-13
Cobalt (Co)-Total			<0.00010)	mg/L		0.0001	31-JUL-13
Copper (Cu)-Total			<0.00010)	mg/L		0.0001	31-JUL-13
Iron (Fe)-Total			<0.010		mg/L		0.01	31-JUL-13
Lead (Pb)-Total			<0.00005	50	mg/L		0.00005	31-JUL-13
Lithium (Li)-Total			<0.0050		mg/L		0.005	31-JUL-13
Magnesium (Mg)-Tota	I		<0.0050		mg/L		0.005	31-JUL-13
Manganese (Mn)-Tota	d		<0.00005	50	mg/L		0.00005	31-JUL-13
Molybdenum (Mo)-Tot	al		<0.00005	50	mg/L		0.00005	31-JUL-13
Nickel (Ni)-Total			<0.00010)	mg/L		0.0001	31-JUL-13

		Workorder:	L133968	9	Report Date: 0	1-AUG-13	Pa	ge 5 of 1
lest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2663003								
WG1717679-1 MB								
Phosphorus (P)-Total			<0.30		mg/L		0.3	31-JUL-13
Potassium (K)-Total			<0.050		mg/L		0.05	31-JUL-13
Selenium (Se)-Total			<0.00010		mg/L		0.0001	31-JUL-13
Silicon (Si)-Total			<0.050		mg/L		0.05	31-JUL-13
Silver (Ag)-Total			<0.00001	0	mg/L		0.00001	31-JUL-13
Sodium (Na)-Total			<0.050		mg/L		0.05	31-JUL-13
Strontium (Sr)-Total			<0.00010		mg/L		0.0001	31-JUL-13
Thallium (TI)-Total			<0.00005	0	mg/L		0.00005	31-JUL-13
Tin (Sn)-Total			<0.00010		mg/L		0.0001	31-JUL-13
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	31-JUL-13
Uranium (U)-Total			<0.00001	0	mg/L		0.00001	31-JUL-13
Vanadium (V)-Total			<0.00010		mg/L		0.0001	31-JUL-13
Zinc (Zn)-Total			<0.0030		mg/L		0.003	31-JUL-13
WG1717787-1 MB								
Aluminum (Al)-Total			<0.0030		mg/L		0.003	31-JUL-13
Antimony (Sb)-Total			<0.00010		mg/L		0.0001	31-JUL-13
Arsenic (As)-Total			<0.00010		mg/L		0.0001	31-JUL-13
Barium (Ba)-Total			<0.00005	0	mg/L		0.00005	31-JUL-13
Beryllium (Be)-Total			<0.00050		mg/L		0.0005	31-JUL-13
Bismuth (Bi)-Total			<0.00005	0	mg/L		0.00005	31-JUL-13
Boron (B)-Total			<0.010		mg/L		0.01	31-JUL-13
Cadmium (Cd)-Total			<0.00001	0	mg/L		0.00001	31-JUL-13
Calcium (Ca)-Total			<0.020		mg/L		0.02	31-JUL-13
Chromium (Cr)-Total			<0.00010		mg/L		0.0001	31-JUL-13
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	31-JUL-13
Copper (Cu)-Total			<0.00010		mg/L		0.0001	31-JUL-13
Iron (Fe)-Total			<0.010		mg/L		0.01	31-JUL-13
Lead (Pb)-Total			<0.00005	0	mg/L		0.00005	31-JUL-13
Lithium (Li)-Total			<0.0050		mg/L		0.005	31-JUL-13
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	31-JUL-13
Manganese (Mn)-Total			<0.00005	0	mg/L		0.00005	31-JUL-13
Molybdenum (Mo)-Total	l		<0.00005	0	mg/L		0.00005	31-JUL-13
Nickel (Ni)-Total			<0.00010		mg/L		0.0001	31-JUL-13
Phosphorus (P)-Total			<0.30		mg/L		0.3	31-JUL-13

		Workorder:	L1339689)	Report Date: 01-	AUG-13	Pa	ge 6 of 10
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2663003								
WG1717787-1 MB Potassium (K)-Total			<0.050		mg/L		0.05	31-JUL-13
Selenium (Se)-Total			<0.00010		mg/L		0.0001	31-JUL-13
Silicon (Si)-Total			<0.050		mg/L		0.05	31-JUL-13
Silver (Ag)-Total			<0.000010)	mg/L		0.00001	31-JUL-13
Sodium (Na)-Total			<0.050		mg/L		0.05	31-JUL-13
Strontium (Sr)-Total			<0.00010		mg/L		0.0001	31-JUL-13
Thallium (TI)-Total			<0.000050	1	mg/L		0.00005	31-JUL-13
Tin (Sn)-Total			<0.00010		mg/L		0.0001	31-JUL-13
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	31-JUL-13
Uranium (U)-Total			<0.000010	1	mg/L		0.00001	31-JUL-13
Vanadium (V)-Total			<0.00010		mg/L		0.0001	31-JUL-13
Zinc (Zn)-Total			<0.0030		mg/L		0.003	31-JUL-13
NH3-CFA-ED	Water							
Batch R2662605 WG1717907-11 DUP Ammonia, Total (as N)		L1339689-11 0.088	0.081		mg/L	8.2	20	31-JUL-13
WG1717907-2 LCS Ammonia, Total (as N)			99.2		%	0.2	85-115	31-JUL-13
WG1717907-1 MB Ammonia, Total (as N)			<0.050		mg/L		0.05	31-JUL-13
WG1717907-10 MS Ammonia, Total (as N)		L1339260-11	104.0		%		75-125	31-JUL-13
WG1717907-3 MS Ammonia, Total (as N)		L1338603-8	100.0		%		75-125	31-JUL-13
WG1717907-7 MS Ammonia, Total (as N)		L1336733-2	101.6		%		75-125	31-JUL-13
NO2-IC-ED	Water							
Batch R2661320 WG1716524-2 LCS			97.7		%		00.440	00 1111 40
Nitrite (as N) WG1716524-1 MB Nitrite (as N)			<0.050		∞ mg/L		90-110 0.05	29-JUL-13 29-JUL-13
WG1716524-4 MS Nitrite (as N)		L1336259-2	100.8		%		75-125	29-JUL-13
WG1716524-6 MS Nitrite (as N)		L1337681-7	107.6		%		75-125	29-JUL-13

			Workorder:	L133968	9	Report Date: 01	-AUG-13	Page 7 of 10		
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
NO3-IC-ED		Water								
Batch R2	2661320									
WG1716524-2 Nitrate (as N)	LCS			100.4		%		90-110	29-JUL-13	
WG1716524-1 Nitrate (as N)	MB			<0.050		mg/L		0.05	29-JUL-13	
WG1716524-4 Nitrate (as N)	MS		L1336259-2	106.6		%		75-125	29-JUL-13	
WG1716524-6 Nitrate (as N)	MS		L1337681-7	100.9		%		75-125	29-JUL-13	
PH-ED		Water								
Batch R2	2662637									
WG1717698-6 рН	DUP		L1339689-13 7.85	7.84	J	pН	0.00	0.3	31-JUL-13	
WG1717698-3 рН	LCS			7.03		рН		6.9-7.1	31-JUL-13	
SOLIDS-TOTSUS-	ED	Water								
Batch R2	2662709									
WG1717663-3 Total Suspende	DUP ed Solids		L1339689-1 6.0	6.0		mg/L	0.0	20	31-JUL-13	
WG1717663-2 Total Suspende	LCS ed Solids			90.0		%		85-115	31-JUL-13	
WG1717663-1 Total Suspende	MB ed Solids			<3.0		mg/L		3	31-JUL-13	

Workorder: L1339689

Report Date: 01-AUG-13

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1339689

Report Date: 01-AUG-13

Page 9 of 10

Hold Time Exceedances:

ALS Product Description	Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
hysical Tests							
рН							
pri	1	20 11 12 14.00	21 11 12 10.46	0.25	60	houro	
	1	28-JUL-13 14:00	31-JUL-13 10:46	0.25	69 60	hours	EHTR-FM
	2	28-JUL-13 14:00	31-JUL-13 10:49	0.25	69 60	hours	EHTR-FM
	3	28-JUL-13 14:00	31-JUL-13 10:53	0.25	69	hours	EHTR-FM
	4	28-JUL-13 14:00	31-JUL-13 10:56	0.25	69	hours	EHTR-FM
	5	28-JUL-13 14:00	31-JUL-13 11:00	0.25	69	hours	EHTR-FM
	6	28-JUL-13 14:00	31-JUL-13 11:04	0.25	69	hours	EHTR-FM
	7	28-JUL-13 14:00	31-JUL-13 11:08	0.25	69	hours	EHTR-FM
	8	28-JUL-13 14:00	31-JUL-13 11:11	0.25	69	hours	EHTR-FM
	9	28-JUL-13 14:00	31-JUL-13 11:15	0.25	69	hours	EHTR-FM
	10	28-JUL-13 14:00	31-JUL-13 11:18	0.25	69	hours	EHTR-FM
	11	28-JUL-13 14:00	31-JUL-13 11:22	0.25	69	hours	EHTR-FM
	12	28-JUL-13 14:00	31-JUL-13 11:26	0.25	69	hours	EHTR-FM
	13	28-JUL-13 14:00	31-JUL-13 11:29	0.25	70	hours	EHTR-FM
	14	28-JUL-13 14:00	31-JUL-13 11:37	0.25	70	hours	EHTR-FM
	15	28-JUL-13 14:00	31-JUL-13 11:40	0.25	70	hours	EHTR-FM
	16	28-JUL-13 14:00	31-JUL-13 11:44	0.25	70	hours	EHTR-FM
	17	28-JUL-13 14:00	31-JUL-13 11:48	0.25	70	hours	EHTR-FM
	18	28-JUL-13 14:00	31-JUL-13 11:51	0.25	70	hours	EHTR-FM
	19	28-JUL-13 14:00	31-JUL-13 11:55	0.25	70	hours	EHTR-FM
	20	28-JUL-13 14:00	31-JUL-13 11:58	0.25	70	hours	EHTR-FM
	21	28-JUL-13 14:00	31-JUL-13 12:02	0.25	70	hours	EHTR-FM
nions and Nutrients							
Nitrate as N by IC							
	1	28-JUL-13 14:00	31-JUL-13 14:24	48	72	hours	EHTL
	2	28-JUL-13 14:00	31-JUL-13 14:24	48	72	hours	EHTL
	3	28-JUL-13 14:00	31-JUL-13 14:24	48	72	hours	EHTL
	4	28-JUL-13 14:00	31-JUL-13 14:24	48	72	hours	EHTL
	5	28-JUL-13 14:00	31-JUL-13 14:24	48	72	hours	EHTL
	6	28-JUL-13 14:00	31-JUL-13 14:24	48	72	hours	EHTL
	7	28-JUL-13 14:00	31-JUL-13 14:24	48	72	hours	EHTL
	8	28-JUL-13 14:00	31-JUL-13 14:24	48	72	hours	EHTL
	9	28-JUL-13 14:00	31-JUL-13 14:24	48	72	hours	EHTL
	10	28-JUL-13 14:00	31-JUL-13 14:24	48	72	hours	EHTL
	11	28-JUL-13 14:00	31-JUL-13 14:24	48	72	hours	EHTL
	12	28-JUL-13 14:00	31-JUL-13 14:24	48	72	hours	EHTL
	13	28-JUL-13 14:00	31-JUL-13 14:24	48	72	hours	EHTL
	14	28-JUL-13 14:00	31-JUL-13 17:57	48	76	hours	EHTL
	15	28-JUL-13 14:00	31-JUL-13 17:57	48	76	hours	EHTL
	16	28-JUL-13 14:00	31-JUL-13 17:57	40	76	hours	EHTL
	17	28-JUL-13 14:00	31-JUL-13 19:11	40	70	hours	EHTL
			31-JUL-13 19:11		77		EHTL
	18	28-JUL-13 14:00		48		hours	
	19	28-JUL-13 14:00	31-JUL-13 19:11	48	77	hours	EHTL
	20	28-JUL-13 14:00	31-JUL-13 19:11	48	77	hours	EHTL
	21	28-JUL-13 14:00	31-JUL-13 19:11	48	77	hours	EHTL
Nitrite as N by IC							
	1	28-JUL-13 14:00	31-JUL-13 14:24	48	72	hours	EHTL
	2	28-JUL-13 14:00	31-JUL-13 14:24	48	72	hours	EHTL
	3	28-JUL-13 14:00	31-JUL-13 14:24	48	72	hours	EHTL
	4	28-JUL-13 14:00	31-JUL-13 14:24	48	72	hours	EHTL
	5	28-JUL-13 14:00	31-JUL-13 14:24	48	72	hours	EHTL
	6	28-JUL-13 14:00	31-JUL-13 14:24	48	72	hours	EHTL
	7	28-JUL-13 14:00	31-JUL-13 14:24	40	72	hours	EHTL
	8	28-JUL-13 14:00	31-JUL-13 14:24	48	72	hours	EHTL
					72		EHTL
	9	28-JUL-13 14:00	31-JUL-13 14:24 31-JUL-13 14:24	48 48	72 72	hours hours	EHTL
				4X		TH MITC	
	10	28-JUL-13 14:00					
	10 11 12	28-JUL-13 14:00 28-JUL-13 14:00 28-JUL-13 14:00	31-JUL-13 14:24 31-JUL-13 14:24 31-JUL-13 14:24	48 48	72 72 72	hours	EHTL

Workorder: L1339689

Report Date: 01-AUG-13

Page 10 of 10

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Anions and Nutrients							
Nitrite as N by IC							
	13	28-JUL-13 14:00	31-JUL-13 14:24	48	72	hours	EHTL
	14	28-JUL-13 14:00	31-JUL-13 17:57	48	76	hours	EHTL
	15	28-JUL-13 14:00	31-JUL-13 17:57	48	76	hours	EHTL
	16	28-JUL-13 14:00	31-JUL-13 17:57	48	76	hours	EHTL
	17	28-JUL-13 14:00	31-JUL-13 19:11	48	77	hours	EHTL
	18	28-JUL-13 14:00	31-JUL-13 19:11	48	77	hours	EHTL
	19	28-JUL-13 14:00	31-JUL-13 19:11	48	77	hours	EHTL
	20	28-JUL-13 14:00	31-JUL-13 19:11	48	77	hours	EHTL
	21	28-JUL-13 14:00	31-JUL-13 19:11	48	77	hours	EHTL

Legend & Qualifier Definitions:

EHTR-FM:	Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR:	Exceeded ALS recommended hold time prior to sample receipt.
EHTL:	Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT:	Exceeded ALS recommended hold time prior to analysis.
Rec HT.	ALS recommended hold time (see units)

Rec. HI: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1339689 were received on 29-JUL-13 16:00.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 -

ę ÷

(STA)	(ALS) Enfortanmental		III on a short of the second s					rage [6
Report To		Report Format / Distribution	bution		Service Request (Rush subject to availability - Contact ALS to confirm TAT)	ush subject to ava	elability - Contact A	ALS to confirm T	4T)
2		Standard: V Oth	Other (specify):		Regular (Stand	lard Turnaround Tin	Regular (Standard Tumaround Times - Business Days)	(5)	
	"thataquest Tim Rechanham	DF V	cet V Digital	Fax	Priority(2-4 Bur	Priority(2-4 Business Days)-50% s	surcharge - Contact ALS to confirm TAT	ALS to confirm T	11
in		Email 1: CORNX	env	es	Emergency (1-	2 Business Days)-1	Emergency (1-2 Business Days)-100% Surcharge - Contact ALS to confirm TAT	ontact ALS to con	firm TAT
-	ower, "Knastme, On, K7K 127	Email 2: Neckenham	amo wesa.	(a	Same Day or V	Veekend Emergenc	Same Day or Weekend Emergency - Contact ALS to confirm TAT	confirm TAT	
Phone: (CI	3		>		-	Analy	Analysis Request		
Invoice To		Client / Project Information	ation		(Inc	(Indicate Filtered or Preserved,	or Preserved,	F/P)	
	×1	Job #.			19/50	100		11	
Company:	I EES LH	PO / AFE:			(T
Contact:	2 	LSD:			ง ' รูป	in the			
Address: 46	Address: 98 Archeld St. Box 133 Kellenknike, MT XIA INI				94 ~?	l'a	-		ste
Phone: (8	Phone: (867) 669-9481 Fax: (867) 669-948)	Quote #:			مري مري	10			onis
Lab Work (Lab Work Order # (lab use only)	ALS Catherine Contact: Evericts	Sampler: Pascal	al Poirier	Hq Allah Allah	uounu V P			noJ lo
Sample #	Sample Identification (This description will appear on the report)	Date (dd-mm-w)	Time (hh mm)	Sample Type	22 Montato	o Toto	-	-	nmber
いたい	UPI-S	C170/BC	-	Contra walken	× 1 × 1	12			N
家門を	UPI-M			1	× × •	-			
1. 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1291-8								
HUN	S-ton					-			
The second	UP2-M							DEC	
「ないな」	(19)-8		1			-		-cc	
2 - 14 - C	UP3-S			-				689	
1	UP3-M							665	
1100 La	UP3-B							сіл 	
	S-hdr)				1 1 1 1 1				
- and	UPH-M								
the second second	11PH-B	J.	-6	0	N I D	10	-		
14 (A)	Spocial Instructions / Regulation with water or land use (CCME- Freshwater Aquatic Life/BC CSR-Commercial/AB Tier 1-Natural/etc) / Hazardous Details	ise (CCME- Freshwater	Aquatic Life/BC C	SR-Commercia	I/AB Tier 1-Nature	al/otc) / Hazan	dous Details		12
Krep	t	· Rottles ind	ication of	ss. hata	/ ha	ve been	F.H.	dind Me	(nor nor
	Failure to complete all portions By the use of this form the user acknowledness and served	rtions of this form may delay analysis.	delay analysis. P	lease fill in this	Please fill in this form LEGIBLY.		2-	are the	Jissoho
20	int use)	SHIPMENT RECEPTION (lab use only)	TION (lab use only)	s specified on	ne back page of SHIP	MENT VERIFI	e of the white - report copy. SHIPMENT VERIFICATION (Iab use only)	use only)	Intal
Released by:	Dir + Date:	0	Time (1C) a T	Temperature:	Verified by:	Date:	Time:	Observations	ations
(ascal	Scal Poirier 29/07/13 11:00 Jun	PWU 3		Aver BC				If Yes add	Yes / No ? If Yes add SIF
	A WAY AND FOR MES FOR MIDINS AND SAMPLING DEDAMATIC	z	WHITE - LABORATORY COPY	TORYCOPY	Tamp Mex 8-8	COPY O		NA FM 01014 400 Form22 May 201	1102 May 2013
					RV90				

c.
-
-04
41.
-
24
1.00
in t
1.2
72
ы.
1
-
••
41.
а.
×.
PR.
64
- 1
1.1
44
n
N
N
N
N
L N
ALN.
ALN
ALN

4

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878

1 l

(ALS)	(ALS) Environmental	MMM.	www.aisglobal.com		Page 1 of 1
Report To		Report Format / Distribution	tion	Service Request: (Rush subject to ave	Service Request: (Rush subject to availability - Contact ALS to confirm TAT)
Company:		Standard: Other	Other (specify):	Regular (Standard Turnaround Times - Business Days)	mes - Business Days)
Contact:			Digital Fax	Priority(2-4 Business Days)-50%	Priority(2-4 Business Days)-50% surcharge - Contact ALS to confirm TAT
Address:		Email 1:		Emergency (1-2 Business Days)-	Emergency (1-2 Business Days)-100% Surcharge - Contact ALS to confirm TAT
		Email 2:		Same Day or Weekend Emergency - Contact ALS to confirm TAT	cy - Contact ALS to confirm TAT
Phone:	Fax;			Anal	Analysis Request
Invoice To	Same as Report ? (circle) Yes or No (if No, provide details)	Client / Project Information	on	(Indigate Filtered or Preserved.	or Preserved, F/P)
	Copy of Invoice with Report? (circle) Yes or No	Job #:		1 Starter	
Company		PO / AFE		5	
Contact:		LSD:		, w, I, w	
Address;)'90)'90	GLS
Phone:	Fax:	Quote #:		9.05 1.05 0.19	nist
Lab Work Or	Lab Work Order # (lab use only)	ALS Contact:	Sampler:	H V V V V V V V V V V V V V V V V V V V	of Con
Sample #	Sample Identification (This description will appear on the report)	Date (dd-mmm-yy)	Time Sample Type (hh.mm)	22 1010 1000 10	орицирания
and the second	UP5-S	28/07/13	14:00 Soffice with	XXXXX	
は語い	U p5 - M				
時期に	UP5-8				
第二時	UP6-S				
	UP6-M				
Prin and	Dup C				
時間	Duck		D))))
1.1.1	IP EQ				589
1. Sec 14	TR/ank			4× × P	655
100		HAN -	211112	1XXXX1	ניז
		1. 1. 1. 11. 11	THALT	NWW NYN	
		AN.	1 10 11 100	1XXXX	
	Special Instructions / Regulation with water or land use	1000	quatic Life/BC CSR-Comme	CCME-Freshwater Aquatic Life/BC CSR-Commercial/AB Tier 1-Natural/etc) 7 h.	
	Failure to complete all po	rtions of this form may de	Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY.	this form LEGIBLY.	
	By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.	agrees with the Terms a	nd Conditions as specified	on the back page of the white - re	port copy.
	ent use)	SHIP	ON (lab use only)	10.3	SHIPMENT VERIFICATION (lab use only)
Keleased by:	Date: Time: Received by:	W Date July 29 H	H. 00 Machine	. Verified by: Date:	Time: Observations: Yes / No ? If Yes add SIF
REFER T	REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION	N	WHITE - LABORATORY COPY	VELLOW - CLIENT COPY	E TO, YAM STUDY A VOL FILLE VILLE VI

WESA Inc. ATTN: Tim Beckenham 4 Cataraque Street The Tower Kingston ON K7K 1Z7 Date Received:07-AUG-13Report Date:12-AUG-13 16:49 (MT)Version:FINAL

Client Phone: 613-531-2725

Certificate of Analysis

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L1344178 NOT SUBMITTED ABORIGINAL 15929 1, 2, 3

Catherine Evaristo-Cordero Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 9936-67 Avenue, Edmonton, AB T6E 0P5 Canada | Phone: +1 780 413 5227 | Fax: +1 780 437 2311 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1344178 CONTD.... PAGE 2 of 10 12-AUG-13 16:49 (MT) Version: FINAL

					vers	on: FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1344178-1 Surface Water 06-AUG-13 10:00 UP1-S	L1344178-2 Surface Water 06-AUG-13 10:00 UP1-B	L1344178-3 Surface Water 06-AUG-13 10:00 UP2-S	L1344178-4 Surface Water 06-AUG-13 10:00 UP2-B	L1344178-5 Surface Water 06-AUG-13 10:00 UP3-S
Grouping	Analyte					
WATER	•					
Physical Tests	рН (рН)	7.72	7.86	7.87	7.88	7.88
	Total Suspended Solids (mg/L)	<3.0	3.0	<3.0	<3.0	<3.0
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	<0.050	<0.050	<0.050	0.078	0.063
	Nitrate and Nitrite (as N) (mg/L)	0.100	0.105	0.104	0.100	0.096
	Nitrate (as N) (mg/L)	0.100	0.105	0.104	0.100	0.096
	Nitrite (as N) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
Total Metals	Aluminum (Al)-Total (mg/L)	0.044	0.068	0.047	0.046	0.047
	Antimony (Sb)-Total (mg/L)	DLM 0.00052	0.00059	0.00054	0.00060	ol.00050
	Arsenic (As)-Total (mg/L)	0.180	0.185	0.187	0.179	0.224
	Barium (Ba)-Total (mg/L)	о.0193	0.0190	0.0184	0.0180	DLM 0.0181
	Beryllium (Be)-Total (mg/L)	<0.0025	O.0025	olum<0.0025	<0.0025	olum <0.0025
	Bismuth (Bi)-Total (mg/L)	<0.00025	O.00025	olum <0.00025	DLM <0.00025	DLM <0.00025
	Boron (B)-Total (mg/L)	<0.050	O.050	olum<0.050	olm <0.050	olm
	Cadmium (Cd)-Total (mg/L)	o.000050	DLM <0.000050	olum <0.000050	DLM <0.000050	DLM <0.000050
	Calcium (Ca)-Total (mg/L)	133 DLM	138 DLM	DLM 141	DLM 136	DLM 140
	Chromium (Cr)-Total (mg/L)	ol.00050	0.00078	olum <0.00050	DLM 0.00086	DLM <0.00050
	Cobalt (Co)-Total (mg/L)	0.00438	0.00458	0.00466	DLM 0.00446	0.00420
	Copper (Cu)-Total (mg/L)	0.00184	0.00205	0.00180	DLM 0.00185	0.00190
	Iron (Fe)-Total (mg/L)	DLM 1.07	DLM 1.20	DLM 1.16	DLM 1.06	1.12
	Lead (Pb)-Total (mg/L)	0.00039	0.00053	DLM 0.00037	DLM 0.00038	0.00045
	Lithium (Li)-Total (mg/L)	olm <0.025	ol.025	olum	DLM <0.025	olum<0.025
	Magnesium (Mg)-Total (mg/L)	8.77 DLM	B.92	9.16	DLM 8.71	8.86 DLM
	Manganese (Mn)-Total (mg/L)	0.137	0.142	0.143	0.137	0.134
	Molybdenum (Mo)-Total (mg/L)	0.00217	0.00283	DLM 0.00224	DLM 0.00241	0.00223
	Nickel (Ni)-Total (mg/L)	DLM 0.00782	0.00936	0.00862	DLM 0.00891	DLM 0.00818
	Phosphorus (P)-Total (mg/L)	<1.5	<1.5	<1.5	<1.5	<1.5
	Potassium (K)-Total (mg/L)	6.88	7.00 DLM	7.13 DLM	6.82	6.91
	Selenium (Se)-Total (mg/L)	DLM <0.00050	DLM <0.00050	olum <0.00050	DLM <0.00050	DLM <0.00050
	Silicon (Si)-Total (mg/L)	0.50	0.57 DLM	0.50	0.48	0.49
	Silver (Ag)-Total (mg/L)	ol.000050	DLM <0.000050	olum <0.000050	DLM <0.000050	DLM <0.000050
	Sodium (Na)-Total (mg/L)	31.6 DLM	32.7 DLM	33.5 DLM	^{DLM} 31.2	32.4 DLM
	Strontium (Sr)-Total (mg/L)	^{DLM} 0.216	0.220 DLM	0.220 DLM	0.219	0.218
	Thallium (TI)-Total (mg/L)	оло 0.00025	O.00025	olum <0.00025	DLM <0.00025	DLM <0.00025
	Tin (Sn)-Total (mg/L)	_{DLM}	0.00073	olum <0.00050	DLM 0.00103	DLM <0.00050
	Titanium (Ti)-Total (mg/L)	_{DLM} 0.0052	DLM 0.0060	DLM 0.0040	DLM 0.0036	DLM 0.0038
	Uranium (U)-Total (mg/L)	DLM 0.000271	DLM 0.000295	DLM 0.000283	DLM 0.000277	DLM 0.000287
	Vanadium (V)-Total (mg/L)	DLM <0.00050	DLM <0.00050	DLM <0.00050	DLM <0.00050	DLM <0.00050

L1344178 CONTD.... PAGE 3 of 10 12-AUG-13 16:49 (MT) Version: FINAL

					Versi	on: FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1344178-6 Surface Water 06-AUG-13 10:00 UP3-B	L1344178-7 Surface Water 06-AUG-13 10:00 UP4-S	L1344178-8 Surface Water 06-AUG-13 10:00 UP4-B	L1344178-9 Surface Water 06-AUG-13 10:00 UP5-S	L1344178-10 Surface Water 06-AUG-13 10:00 UP5-B
Grouping	Analyte					
WATER						
Physical Tests	рН (рН)	7.88	7.86	7.86	7.87	7.87
-	Total Suspended Solids (mg/L)	<3.0	<3.0	3.0	<3.0	<3.0
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Nitrate and Nitrite (as N) (mg/L)	0.095	0.104	0.102	0.098	0.091
	Nitrate (as N) (mg/L)	0.095	0.104	0.102	0.098	0.091
	Nitrite (as N) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
Total Metals	Aluminum (AI)-Total (mg/L)	0.050	0.044	0.041	0.048	0.061
	Antimony (Sb)-Total (mg/L)	DLM 0.00052	0.00052	DLM 0.00051	DLM 0.00054	DLM 0.00059
	Arsenic (As)-Total (mg/L)	0.219	0.179	0.177	0.246	о.252 DLM
	Barium (Ba)-Total (mg/L)	DLM 0.0177	0.0180	0.0183	DLM 0.0177	DLM 0.0187
	Beryllium (Be)-Total (mg/L)	DLM <0.0025	olum <0.0025	olum<0.0025	_{DLM}	DLM <0.0025
	Bismuth (Bi)-Total (mg/L)	_{DLM}	DLM <0.00025	olum <0.00025	DLM <0.00025	DLM <0.00025
	Boron (B)-Total (mg/L)	DLM <0.050	DLM <0.050	DLM <0.050	DLM <0.050	DLM <0.050
	Cadmium (Cd)-Total (mg/L)	DLM <0.000050	DLM <0.000050	DLM <0.000050	_{DLM} <0.000050	DLM <0.000050
	Calcium (Ca)-Total (mg/L)	DLM 138	DLM 137	DLM 135	DLM 139	DLM 141
	Chromium (Cr)-Total (mg/L)	DLM 0.00199	DLM <0.00050	DLM 0.00055	DLM <0.00050	DLM 0.00072
	Chromium (Cr)-Total (mg/L) Cobalt (Co)-Total (mg/L)	DLM 0.00424	DLM 0.00491	DLM 0.00495	DLM 0.00399	DLM 0.00404
	Copper (Cu)-Total (mg/L)	DLM 0.00179	DLM 0.00176	DLM 0.00181	_{DLM} 0.00192	DLM 0.00195
	Iron (Fe)-Total (mg/L)	_{DLM} 1.10	DLM 1.15	DLM 1.13	DLM 1.03	DLM 1.10
	Lead (Pb)-Total (mg/L)	DLM 0.00045	DLM 0.00034	DLM 0.00037	DLM 0.00048	DLM 0.00050
	Lithium (Li)-Total (mg/L)	DLM <0.025	DLM <0.025	DLM <0.025	DLM <0.025	DLM <0.025
	Magnesium (Mg)-Total (mg/L)	DLM 8.72	8.94	DLM 8.83	DLM 8.65	DLM 8.86
	Manganese (Mn)-Total (mg/L)	DLM 0.131	0.153	DLM 0.151	DLM 0.131	DLM 0.132
	Molybdenum (Mo)-Total (mg/L)	DLM 0.00229	0.00210	DLM 0.00217	DLM 0.00212	DLM 0.00233
	Nickel (Ni)-Total (mg/L)	DLM 0.00837	0.00859	DLM 0.00856	DLM 0.00792	DLM 0.00817
	Phosphorus (P)-Total (mg/L)	_{DLM}	DLM <1.5	DLM <1.5	DLM <1.5	DLM <1.5
	Potassium (K)-Total (mg/L)	DLM 6.76	DLM 6.89	DLM 6.80	DLM 6.74	DLM 6.87
	Selenium (Se)-Total (mg/L)	DLM <0.00050	DLM <0.00050	DLM <0.00050	DLM <0.00050	DLM <0.00050
	Silicon (Si)-Total (mg/L)	DLM 0.49	DLM 0.50	DLM 0.50	DLM 0.49	DLM 0.53
	Silver (Ag)-Total (mg/L)	<0.000050	OLM <0.000050	<0.000050	OLM <0.000050	<0.000050
	Sodium (Na)-Total (mg/L)	дслососос ДLM 32.0	олососос DLM 31.9	32.1	30.6	32.1
	Strontium (Sr)-Total (mg/L)	0.215 DLM	0.217	0.211 DLM	0.225	0.216
	Thallium (TI)-Total (mg/L)	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025
	Tin (Sn)-Total (mg/L)	<0.00020 _{DLM}	<0.00020 DLM <0.00050	<0.00020 DLM <0.00050	<0.00020 DLM <0.00050	<0.00020 DLM <0.00050
	Titanium (Ti)-Total (mg/L)	0.0040	0.0042	0.0051	0.0046	0.0039
	Uranium (U)-Total (mg/L)	0.000290	0.00042 DLM 0.000266	0.000274	0.00040 DLM 0.000281	0.000295
	Vanadium (V)-Total (mg/L)	<0.000250 DLM <0.00050	<0.000200 DLM <0.00050	<0.000274 DLM <0.00050	<0.000201 DLM <0.00050	<0.000200 DLM <0.00050

L1344178 CONTD.... PAGE 4 of 10 12-AUG-13 16:49 (MT) Version: FINAL

					Vers	on: FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1344178-11 Surface Water 06-AUG-13 10:00 UP6-S	L1344178-12 Surface Water 06-AUG-13 10:00 UP6-B	L1344178-13 Surface Water 06-AUG-13 10:00 TBLANK	L1344178-14 Surface Water 06-AUG-13 10:00 UP-EQ	L1344178-15 Surface Water 06-AUG-13 10:00 DUP 9
Grouping	Analyte					
WATER						
Physical Tests	рН (рН)	7.86	7.86	5.62	5.34	7.77
-	Total Suspended Solids (mg/L)	<3.0	<3.0	<3.0	<3.0	4.0
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Nitrate and Nitrite (as N) (mg/L)	0.088	0.086	<0.071	<0.071	0.104
	Nitrate (as N) (mg/L)	0.088	0.086	<0.050	<0.050	0.104
	Nitrite (as N) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
Total Metals	Aluminum (Al)-Total (mg/L)	0.055	0.051	<0.0030	0.019	0.044
	Antimony (Sb)-Total (mg/L)	DLM 0.00053	0.00055	<0.00010	olum <0.00050	DLM 0.00052
	Arsenic (As)-Total (mg/L)	0.276	DLM 0.264	<0.00010	DLM 0.00203	0.184
	Barium (Ba)-Total (mg/L)	DLM 0.0182	DLM 0.0192	<0.000050	olum <0.00025	DLM 0.0179
	Beryllium (Be)-Total (mg/L)	DLM <0.0025	DLM <0.0025	<0.00050	DLM <0.0025	DLM <0.0025
	Bismuth (Bi)-Total (mg/L)	DLM <0.00025	DLM <0.00025	<0.000050	olum <0.00025	DLM <0.00025
	Boron (B)-Total (mg/L)	DLM <0.050	DLM <0.050	<0.010	olum <0.050	DLM <0.050
	Cadmium (Cd)-Total (mg/L)	DLM <0.000050	DLM <0.000050	<0.000010	olum <0.000050	DLM <0.000050
	Calcium (Ca)-Total (mg/L)	DLM 144	DLM 136	<0.020	OLM <0.10	DLM 137
	Chromium (Cr)-Total (mg/L)	DLM <0.00050	DLM 0.00075	<0.00010	DLM <0.00050	DLM <0.00050
	Chromium (Cr)-Total (mg/L) Cobalt (Co)-Total (mg/L)	DLM 0.00412	DLM 0.00416	<0.00010	DLM <0.00050	DLM 0.00454
	Copper (Cu)-Total (mg/L)	DLM 0.00202	DLM 0.00195	<0.00010	DLM <0.00050	DLM 0.00174
	Iron (Fe)-Total (mg/L)	^{DLM}	DLM 1.14	<0.010	DLM <0.050	DLM 1.10
	Lead (Pb)-Total (mg/L)	DLM 0.00052	DLM 0.00052	<0.000050	DLM <0.00025	DLM 0.00034
	Lithium (Li)-Total (mg/L)	olum <0.025	DLM <0.025	<0.0050	olum <0.025	olm<0.025
	Magnesium (Mg)-Total (mg/L)	DLM 9.12	DLM 9.11	<0.0050	olum <0.025	DLM 9.03
	Manganese (Mn)-Total (mg/L)	DLM 0.139	о.139 DLM	<0.000050	DLM 0.00073	DLM 0.138
	Molybdenum (Mo)-Total (mg/L)	DLM 0.00227	DLM 0.00229	<0.000050	DLM <0.00025	DLM 0.00215
	Nickel (Ni)-Total (mg/L)	DLM 0.00827	DLM 0.00845	<0.00010	DLM 0.00123	DLM 0.00801
	Phosphorus (P)-Total (mg/L)	DLM <1.5	DLM <1.5	<0.30	DLM <1.5	DLM <1.5
	Potassium (K)-Total (mg/L)	^{DLM} 7.05	DLM 7.03	<0.050	DLM <0.25	6.93
	Selenium (Se)-Total (mg/L)	DLM <0.00050	DLM <0.00050	<0.00010	DLM <0.00050	DLM <0.00050
	Silicon (Si)-Total (mg/L)	DLM 0.49	DLM 0.51	<0.050	DLM <0.25	DLM 0.51
	Silver (Ag)-Total (mg/L)	<0.000050	0.000101	<0.000010	<0.000050	<0.000050
	Sodium (Na)-Total (mg/L)	олососос DLM 32.9	32.6	< 0.050	<0.25	32.0
	Strontium (Sr)-Total (mg/L)	0.219	0.220 DLM	<0.00010	<0.00050	0.212
	Thallium (TI)-Total (mg/L)	<0.00025	<0.00025	<0.000050	<0.00025	<0.00025
	Tin (Sn)-Total (mg/L)	<0.00023 _{DLM}	0.00400	<0.00010	<0.00023 _{DLM} <0.00050	<0.00023 DLM <0.00050
	Titanium (Ti)-Total (mg/L)	с00030 _{DLM} 0.0046	0.00400 DLM 0.0039	<0.00030	<0.00050 _{DLM} <0.0015	0.0040
	Uranium (U)-Total (mg/L)	0.00040 DLM 0.000290	0.00039 DLM 0.000306	<0.000010	<0.00015 DLM <0.000050	0.00040 DLM 0.000267
	Vanadium (V)-Total (mg/L)	0.000230 DLM <0.00050	<0.000500 DLM <0.00050	<0.00010	<0.000030 DLM <0.00050	<0.000207 DLM <0.00050

L1344178 CONTD.... PAGE 5 of 10 12-AUG-13 16:49 (MT) Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

					Version:	FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1344178-16 Surface Water 06-AUG-13 10:00 DUP 10	L1344178-20 Surface Water 06-AUG-13 09:00 EFF 167	L1344178-24 Surface Water 07-AUG-13 09:00 EFF 171		
Grouping	Analyte					
WATER						
Physical Tests	рН (рН)	7.84	7.91	7.92		
	Total Suspended Solids (mg/L)	3.0	<3.0	<3.0		
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.056	0.114	0.066		
	Nitrate and Nitrite (as N) (mg/L)	0.106	0.110	0.090		
	Nitrate (as N) (mg/L)	0.106	0.110	0.090		
	Nitrite (as N) (mg/L)	<0.050	<0.050	<0.050		
Total Metals	Aluminum (Al)-Total (mg/L)	о.043	olum <0.015	olum<0.015		
	Antimony (Sb)-Total (mg/L)	DLM 0.00050	DLM <0.00050	DLM <0.00050		
	Arsenic (As)-Total (mg/L)	0.182	0.0223	0.0257		
	Barium (Ba)-Total (mg/L)	0.0184	0.0150	0.0153		
	Beryllium (Be)-Total (mg/L)	оло совется общать спорт общать с	olum <0.0025	<0.0025		
	Bismuth (Bi)-Total (mg/L)	DLM <0.00025	O.00025	OLM <0.00025		
	Boron (B)-Total (mg/L)	DLM <0.050	olum <0.050	olum <0.050		
	Cadmium (Cd)-Total (mg/L)	DLM <0.000050	OLM <0.000050	O.000050		
	Calcium (Ca)-Total (mg/L)	DLM 137	DLM 143	DLM 145		
	Chromium (Cr)-Total (mg/L)	DLM <0.00050	OLM <0.00050	OLM <0.00050		
	Cobalt (Co)-Total (mg/L)	_{DLM} 0.00493	0.00313	DLM 0.00306		
	Copper (Cu)-Total (mg/L)	DLM 0.00172	0.00183	DLM 0.00092		
	Iron (Fe)-Total (mg/L)	^{DLM} 1.15	DLM 1.90	DLM 2.00		
	Lead (Pb)-Total (mg/L)	_{DLM} 0.00035	DLM <0.00025	DLM <0.00025		
	Lithium (Li)-Total (mg/L)	_{DLM} <0.025	DLM <0.025	DLM <0.025		
	Magnesium (Mg)-Total (mg/L)	^{DLM} 9.06	DLM 8.87	DLM 9.09		
	Manganese (Mn)-Total (mg/L)	^{DLM} 0.156	DLM 0.0725	DLM 0.0737		
	Molybdenum (Mo)-Total (mg/L)	DLM 0.00215	DLM 0.00141	DLM 0.00141		
	Nickel (Ni)-Total (mg/L)	_{DLM} 0.00877	DLM 0.00559	DLM 0.00575		
	Phosphorus (P)-Total (mg/L)	_{DLM}	DLM <1.5	DLM <1.5		
	Potassium (K)-Total (mg/L)	_{DLM} 6.99	DLM 6.33	DLM 6.44		
	Selenium (Se)-Total (mg/L)	DLM <0.00050	DLM <0.00050	DLM <0.00050		
	Silicon (Si)-Total (mg/L)	0.53	0.33	0.30		
	Silver (Ag)-Total (mg/L)	<0.000050	<0.000050	<0.000050		
	Sodium (Na)-Total (mg/L)	олососос DLM 32.6	олососос DLM 36.4	37.3		
	Strontium (Sr)-Total (mg/L)	0.224	0.222	0.227		
	Thallium (TI)-Total (mg/L)	<0.00025	<0.00025	<0.00025		
	Tin (Sn)-Total (mg/L)	<0.00020 DLM <0.00050	<0.00020 DLM <0.00050	<0.00020 DLM <0.00050		
	Titanium (Ti)-Total (mg/L)	с0.00030 _{DLM} 0.0044	0.0085	0.0091		
	Uranium (U)-Total (mg/L)	о.оочч _{DLM} 0.000273	0.000151	0.000159		
	Vanadium (V)-Total (mg/L)	0.000273 DLM <0.00050	<0.000131 DLM <0.00050	<0.000139 DLM <0.00050		

L1344178 CONTD.... PAGE 6 of 10 12-AUG-13 16:49 (MT) Version: FINAL

					Vers	ion: FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1344178-1 Surface Water 06-AUG-13 10:00 UP1-S	L1344178-2 Surface Water 06-AUG-13 10:00 UP1-B	L1344178-3 Surface Water 06-AUG-13 10:00 UP2-S	L1344178-4 Surface Water 06-AUG-13 10:00 UP2-B	L1344178-5 Surface Water 06-AUG-13 10:00 UP3-S
Grouping	Analyte					
WATER						
Total Metals	Zinc (Zn)-Total (mg/L)	_{DLM}	_{DLM}	DLM <0.015	^{DLM} <0.015	olm<80.015
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	DLM 0.0209	0.0193	DLM 0.0188	0.0177	0.0197
	Antimony (Sb)-Dissolved (mg/L)	0.00051	<0.00050	<0.00050	<0.00050	0.00052
	Arsenic (As)-Dissolved (mg/L)	0.0499	0.0468	DLM 0.0474	DLM 0.0476	0.0760
	Barium (Ba)-Dissolved (mg/L)	0.0165	0.0166	0.0165	0.0163	0.0167
	Beryllium (Be)-Dissolved (mg/L)	olum <0.0025	DLM <0.0025	olum<0.0025	olum 0.0025	olum <0.0025
	Bismuth (Bi)-Dissolved (mg/L)	OLM <0.00025	DLM <0.00025	olum <0.00025	olum <0.00025	olum<0.00025
	Boron (B)-Dissolved (mg/L)	OLM <0.050	DLM <0.050	olum <0.050	olum <0.050	<0.050
	Cadmium (Cd)-Dissolved (mg/L)	DLM <0.000050	DLM <0.000050	DLM <0.000050	DLM <0.000050	DLM <0.000050
	Calcium (Ca)-Dissolved (mg/L)	DLM 128	DLM 129	DLM 132	DLM 128	DLM 130
	Chromium (Cr)-Dissolved (mg/L)	DLM <0.00050	DLM <0.00050	olum <0.00050	DLM <0.00050	olimication dla 0.00050
	Cobalt (Co)-Dissolved (mg/L)	DLM 0.00341	DLM 0.00341	DLM 0.00343	DLM 0.00338	DLN 0.00313
	Copper (Cu)-Dissolved (mg/L)	0.00132	DLM 0.00124	DLM 0.00121	DLM 0.00120	DLM 0.00124
	Iron (Fe)-Dissolved (mg/L)	0.065	DLM 0.052	DLM <0.050	DLM 0.055	DLN <0.050
	Lead (Pb)-Dissolved (mg/L)	OLM <0.00025	DLM <0.00025	olum <0.00025	DLM <0.00025	DLN <0.00025
	Lithium (Li)-Dissolved (mg/L)	olum<0.015	олы со.015	олы совется общать совется общать совется общать общать совется совет	_{DLM} <0.015	DLM <0.015
	Magnesium (Mg)-Dissolved (mg/L)	8.60 DLM	8.63 DLM	^{DLM} 8.71	B.53	DLN 8.61
	Manganese (Mn)-Dissolved (mg/L)	0.0992	0.100 DLM	0.100 ^{DLM}	0.101	0.0959
	Molybdenum (Mo)-Dissolved (mg/L)	0.00205	0.00251	0.00213	DLM 0.00228	DLN 0.00205
	Nickel (Ni)-Dissolved (mg/L)	0.00658	о.00745	DLM 0.00670	DLM 0.00783	DLM 0.00666
	Phosphorus (P)-Dissolved (mg/L)	<1.5 DLM	<1.5	<1.5	^{DLM}	<1.5
	Potassium (K)-Dissolved (mg/L)	7.19 DLM	7.20 DLM	DLM 7.27	7.06 DLM	7.12 DLM
	Selenium (Se)-Dissolved (mg/L)	OLM <0.00050	оло соло со село село село село село сел	olum <0.00050	olum <0.00050	DLM <0.00050
	Silicon (Si)-Dissolved (mg/L)	0.44	0.46	0.45	DLM 0.44	0.43
	Silver (Ag)-Dissolved (mg/L)	<0.000050	DLM <0.000050	ol.000050	DLM <0.000050	DLM <0.000050
	Sodium (Na)-Dissolved (mg/L)	29.7 DLM	29.3 DLM	29.3 DLM	29.3 DLM	29.6 DLM
	Strontium (Sr)-Dissolved (mg/L)	0.202	о.196	0.203	0.201	0.202
	Thallium (TI)-Dissolved (mg/L)	O.00025	оло совется общать странование и странование странов Странование странование странование странование странование странование странование странование странование стран	olum <0.00025	DLM <0.00025	DLM <0.00025
	Tin (Sn)-Dissolved (mg/L)	olum <0.00050	оло 0.00050	olum <0.00050	DLM <0.00050	ol.00050
	Titanium (Ti)-Dissolved (mg/L)	олы сарына с0.0015	оло совется общать станов странов стр	olum <0.0015	olim	olino <0.0015
	Uranium (U)-Dissolved (mg/L)	о.000243	о.000255	DLM 0.000240	DLM 0.000253	DLN 0.000261
	Vanadium (V)-Dissolved (mg/L)	olum <0.00050	оло 0.00050	olum <0.00050	DLM <0.00050	DLN <0.00050
	Zinc (Zn)-Dissolved (mg/L)	DLM <0.0050	DLM <0.0050	DLM <0.0050	DLM <0.0050	olumeters/

L1344178 CONTD.... PAGE 7 of 10 12-AUG-13 16:49 (MT) Version: FINAL

					Vers	ion: FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1344178-6 Surface Water 06-AUG-13 10:00 UP3-B	L1344178-7 Surface Water 06-AUG-13 10:00 UP4-S	L1344178-8 Surface Water 06-AUG-13 10:00 UP4-B	L1344178-9 Surface Water 06-AUG-13 10:00 UP5-S	L1344178-10 Surface Wate 06-AUG-13 10:00 UP5-B
Grouping	Analyte					
WATER						
Total Metals	Zinc (Zn)-Total (mg/L)	_{DLM}	_{DLM}	DLM <0.015	_{DLM} <0.015	DLM <0.015
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	0.0250	0.0175	0.0177	0.0204	0.0202
	Antimony (Sb)-Dissolved (mg/L)	0.00051	0.00051	<0.00050	0.00051	0.00053
	Arsenic (As)-Dissolved (mg/L)	0.0755	0.0433	0.0432	0.0955	0.0945
	Barium (Ba)-Dissolved (mg/L)	0.0171	0.0162	0.0168	0.0172	0.0170
	Beryllium (Be)-Dissolved (mg/L)	<0.0025	<0.0025	<0.0025	<0.0025	olin di DLN <0.0025
	Bismuth (Bi)-Dissolved (mg/L)	олоооосо 0.00025	DLM <0.00025	olum <0.00025	olum <0.00025	ol.00025
	Boron (B)-Dissolved (mg/L)	OLM <0.050	olum <0.050	olum <0.050	olum <0.050	<0.050
	Cadmium (Cd)-Dissolved (mg/L)	DLM <0.000050	DLM <0.000050	OLM <0.000050	DLM <0.000050	_{DLM} <0.000050
	Calcium (Ca)-Dissolved (mg/L)	DLM 131	DLM 130	DLM 128	DLM 130	DLM 128
	Chromium (Cr)-Dissolved (mg/L)	DLM <0.00050	DLM <0.00050	DLM <0.00050	DLM <0.00050	DLI <0.00050
	Cobalt (Co)-Dissolved (mg/L)	DLM 0.00316	DLM 0.00384	DLM 0.00385	DLM 0.00313	DLI 0.00297
	Copper (Cu)-Dissolved (mg/L)	0.00115	0.00124	DLM 0.00118	DLM 0.00127	DL 0.00124
	Iron (Fe)-Dissolved (mg/L)	0.052	olum <0.050	olimet <0.050	^{DLM} 0.065	0.052
	Lead (Pb)-Dissolved (mg/L)	O.00025	ol.00025	olum <0.00025	DLM <0.00025	ol.00025
	Lithium (Li)-Dissolved (mg/L)	оло совется общать странование и совется общать совется с совется с совется совется с	оло совется общать справо общат Справо общать справо общать С	ollm<0.015	₀ 20.015	oLL <0.015
	Magnesium (Mg)-Dissolved (mg/L)	8.62 DLM	8.72 DLM	B.72	8.59	8.61
	Manganese (Mn)-Dissolved (mg/L)	0.0967	0.116	0.116	DLM 0.0957	DL 0.0944
	Molybdenum (Mo)-Dissolved (mg/L)	0.00218	0.00201	DLM 0.00208	0.00206	0.00208
	Nickel (Ni)-Dissolved (mg/L)	0.00656	0.00722	DLM 0.00754	DLM 0.00646	0.00651
	Phosphorus (P)-Dissolved (mg/L)	<1.5	<1.5	<1.5	^{DLM}	<1.5
	Potassium (K)-Dissolved (mg/L)	7.12 DLM	DLM 7.24	7.31 DLM	7.18	7.16
	Selenium (Se)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	olm <0.00050	DL <0.00050
	Silicon (Si)-Dissolved (mg/L)	0.43	0.46	0.45	0.43	0.42
	Silver (Ag)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	ol.000050	_{DL}
	Sodium (Na)-Dissolved (mg/L)	29.3 DLM	30.0 DLM	30.4 DLM	29.6 DLM	29.6
	Strontium (Sr)-Dissolved (mg/L)	0.206	0.205	0.195	0.202	0.201
	Thallium (TI)-Dissolved (mg/L)	<0.00025	O.00025	<0.00025	olm <0.00025	<0.00025
	Tin (Sn)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	olum <0.00050	<0.00050
	Titanium (Ti)-Dissolved (mg/L)	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015
	Uranium (U)-Dissolved (mg/L)	0.000258	0.000247	0.000237	0.000270	0.000256
	Vanadium (V)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	ol.0050	<0.0050

L1344178 CONTD.... PAGE 8 of 10 12-AUG-13 16:49 (MT) Version: FINAL

						ion: FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1344178-11 Surface Water 06-AUG-13 10:00 UP6-S	L1344178-12 Surface Water 06-AUG-13 10:00 UP6-B	L1344178-13 Surface Water 06-AUG-13 10:00 TBLANK	L1344178-14 Surface Water 06-AUG-13 10:00 UP-EQ	L1344178-15 Surface Wate 06-AUG-13 10:00 DUP 9
Grouping	Analyte					
WATER						
Total Metals	Zinc (Zn)-Total (mg/L)	_{DLM}	DLM <0.015	<0.0030	о.159	<0.015
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	DLM 0.0202	DLM 0.0213			
	Antimony (Sb)-Dissolved (mg/L)	0.00052	<0.00050			
	Arsenic (As)-Dissolved (mg/L)	о.105	DLM 0.101			
	Barium (Ba)-Dissolved (mg/L)	DLM 0.0172	DLM 0.0161			
	Beryllium (Be)-Dissolved (mg/L)	DLM <0.0025	DLM <0.0025			
	Bismuth (Bi)-Dissolved (mg/L)	DLM <0.00025	DLM <0.00025			
	Boron (B)-Dissolved (mg/L)	olum <0.050	оло 0.050			
	Cadmium (Cd)-Dissolved (mg/L)	DLM <0.000050	DLM <0.000050			
	Calcium (Ca)-Dissolved (mg/L)	DLM 125	DLM 127			
	Chromium (Cr)-Dissolved (mg/L)	OLM <0.00050	DLM <0.00050			
	Cobalt (Co)-Dissolved (mg/L)	0.00310	0.00313			
	Copper (Cu)-Dissolved (mg/L)	0.00128	0.00131			
	Iron (Fe)-Dissolved (mg/L)	0.054	0.059			
	Lead (Pb)-Dissolved (mg/L)	O.00025	OLM <0.00025			
	Lithium (Li)-Dissolved (mg/L)	DLM <0.015	olum <0.015			
	Magnesium (Mg)-Dissolved (mg/L)	8.69 DLM	B.68			
	Manganese (Mn)-Dissolved (mg/L)	0.103	0.103			
	Molybdenum (Mo)-Dissolved (mg/L)	DLM 0.00207	0.00203			
	Nickel (Ni)-Dissolved (mg/L)	0.00669	0.00683			
	Phosphorus (P)-Dissolved (mg/L)	<1.5	<1.5			
	Potassium (K)-Dissolved (mg/L)	7.18 DLM	7.13 DLM			
	Selenium (Se)-Dissolved (mg/L)	OLM <0.00050	OLM <0.00050			
	Silicon (Si)-Dissolved (mg/L)	0.43	0.43			
	Silver (Ag)-Dissolved (mg/L)	<0.000050	DLM <0.000050			
	Sodium (Na)-Dissolved (mg/L)	30.0 DLM	29.5 DLM			
	Strontium (Sr)-Dissolved (mg/L)	0.204	0.196			
	Thallium (TI)-Dissolved (mg/L)	<0.00025	DLM <0.00025			
	Tin (Sn)-Dissolved (mg/L)	<0.00050	DLM <0.00050			
	Titanium (Ti)-Dissolved (mg/L)	<0.0015	DLM <0.0015			
	Uranium (U)-Dissolved (mg/L)	DLM 0.000269	0.000256			
	Vanadium (V)-Dissolved (mg/L)	DLM <0.00050	DLM <0.00050			
	Zinc (Zn)-Dissolved (mg/L)	DLM <0.0050	DLM <0.0050			

L1344178 CONTD PAGE 9 of 10 12-AUG-13 16:49 (MT)

	ALS ENVIRONME	NTAL AN	IALYTICA	L REPORT	CT 12-AUG-13 16:49 (i Version: FINAL		
	Sample ID Description Sampled Date Sampled Time Client ID	L1344178-16 Surface Water 06-AUG-13 10:00 DUP 10	L1344178-20 Surface Water 06-AUG-13 09:00 EFF 167	L1344178-24 Surface Water 07-AUG-13 09:00 EFF 171			
Grouping	Analyte						
WATER							
Total Metals	Zinc (Zn)-Total (mg/L)	DLM <0.015	<0.015	<0.015			
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)						
	Antimony (Sb)-Dissolved (mg/L)						
	Arsenic (As)-Dissolved (mg/L)						
	Barium (Ba)-Dissolved (mg/L)						
	Beryllium (Be)-Dissolved (mg/L)						
	Bismuth (Bi)-Dissolved (mg/L)						
	Boron (B)-Dissolved (mg/L)						
	Cadmium (Cd)-Dissolved (mg/L)						
	Calcium (Ca)-Dissolved (mg/L)						
	Chromium (Cr)-Dissolved (mg/L)						
	Cobalt (Co)-Dissolved (mg/L)						
	Copper (Cu)-Dissolved (mg/L)						
	Iron (Fe)-Dissolved (mg/L)						
	Lead (Pb)-Dissolved (mg/L)						
	Lithium (Li)-Dissolved (mg/L)						
	Magnesium (Mg)-Dissolved (mg/L)						
	Manganese (Mn)-Dissolved (mg/L)						
	Molybdenum (Mo)-Dissolved (mg/L)						
	Nickel (Ni)-Dissolved (mg/L)						
	Phosphorus (P)-Dissolved (mg/L)						
	Potassium (K)-Dissolved (mg/L)						
	Selenium (Se)-Dissolved (mg/L)						
	Silicon (Si)-Dissolved (mg/L)						
	Silver (Ag)-Dissolved (mg/L)						
	Sodium (Na)-Dissolved (mg/L)						
	Strontium (Sr)-Dissolved (mg/L)						
	Thallium (TI)-Dissolved (mg/L)						
	Tin (Sn)-Dissolved (mg/L)						
	Titanium (Ti)-Dissolved (mg/L)						
	Uranium (U)-Dissolved (mg/L)						
	Vanadium (V)-Dissolved (mg/L)						
	Zinc (Zn)-Dissolved (mg/L)						

Reference Information

Qualifiers for Individual Parameters Listed:

Qualifier Descri	otion		
DLM Detect	on Limit Adjus	ted For Sample Matrix Effects	
Test Method Referenc	es:		
ALS Test Code	Matrix	Test Description	Method Reference**
MET-D-CCMS-ED	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A
MET-T-CCMS-ED	Water	Total Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A
NH3-CFA-ED	Water	Ammonia in Water by Colour	APHA 4500 NH3-NITROGEN (AMMONIA)
This analysis is carried automated phenate colo			ROGEN (AMMONIA)". Ammonia is determined using the
NO2+NO3-CALC-ED	Water	Nitrate+Nitrite	CALCULATION
NO2-IC-ED	Water	Nitrite as N by IC	APHA 4110 B-ION CHROMATOGRAPHY
NO3-IC-ED	Water	Nitrate as N by IC	APHA 4110 B-ION CHROMATOGRAPHY
PH-ED	Water	pH	APHA 4500 H-Electrode
		or pH will have exceeded the 15 minute recommen surate results are needed)	ded hold time from time of sampling (field analysis is
SOLIDS-TOTSUS-ED	Water	Total Suspended Solids	APHA 2540 D-Gravimetric
The last two letters of the	above test co	difications from specified reference methods to imp de(s) indicate the laboratory that performed analytic	
Laboratory Definition C			424
ED	ALS E	NVIRONMENTAL - EDMONTON, ALBERTA, CAN	IADA
Chain of Custody Numbe	ers:		
1	2	3	
applicable tests, surrogat mg/kg - milligrams per kil mg/kg wwt - milligrams per mg/kg lwt - milligrams per mg/L - milligrams per litre < - Less than. D.L The reported Detect N/A - Result not available	that is similar i es are added t ogram based o er kilogram base r kilogram base	n behaviour to target analyte(s), but that does not o o samples prior to analysis as a check on recovery on dry weight of sample. Sed on wet weight of sample. A on lipid-adjusted weight of sample. O known as the Limit of Reporting (LOR). Ilifier code and definition for explanation. SAMPLES WERE RECEIVED IN ACCEPTABLE C	

Workorder: L1344178

Report Date: 12-AUG-13 Page 1 of 12

Client:	WESA Inc. 4 Cataraque Street The Kingston ON K7K 12							
Contact:	Tim Beckenham							
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS	-ED Water							
Batch	R2669339							
WG172342 Aluminum	1-2 CRM (Al)-Dissolved	ED-HIGH-W	ATRM 100.6		%		80-120	09-AUG-13
Antimony ((Sb)-Dissolved		98.4		%		80-120	09-AUG-13
Arsenic (As	s)-Dissolved		103.1		%		80-120	09-AUG-13
Barium (Ba	a)-Dissolved		102.2		%		80-120	09-AUG-13
Beryllium (Be)-Dissolved		101.3		%		80-120	09-AUG-13
Bismuth (B	Bi)-Dissolved		100.6		%		80-120	09-AUG-13
Boron (B)-l	Dissolved		98.2		%		80-120	09-AUG-13
Cadmium	(Cd)-Dissolved		104.4		%		80-120	09-AUG-13
Calcium (C	Ca)-Dissolved		105.0		%		80-120	09-AUG-13
Chromium	(Cr)-Dissolved		103.6		%		80-120	09-AUG-13
Cobalt (Co)-Dissolved		100.2		%		80-120	09-AUG-13
Copper (Co	u)-Dissolved		99.2		%		80-120	09-AUG-13
Lead (Pb)-	Dissolved		100.2		%		80-120	09-AUG-13
Lithium (Li))-Dissolved		101.5		%		80-120	09-AUG-13
Magnesiun	n (Mg)-Dissolved		100.1		%		80-120	09-AUG-13
Manganes	e (Mn)-Dissolved		99.4		%		80-120	09-AUG-13
Molybdenu	ım (Mo)-Dissolved		102.3		%		80-120	09-AUG-13
Nickel (Ni)	-Dissolved		102.6		%		80-120	09-AUG-13
Phosphoru	is (P)-Dissolved		111.0		%		80-120	09-AUG-13
Potassium	(K)-Dissolved		105.9		%		80-120	09-AUG-13
Selenium ((Se)-Dissolved		104.1		%		80-120	09-AUG-13
Silicon (Si)	-Dissolved		106.0		%		80-120	09-AUG-13
Silver (Ag)	-Dissolved		102.3		%		80-120	09-AUG-13
Sodium (N	a)-Dissolved		97.2		%		80-120	09-AUG-13
Strontium ((Sr)-Dissolved		104.2		%		80-120	09-AUG-13
Thallium (1	TI)-Dissolved		102.7		%		80-120	09-AUG-13
Titanium (1	Ti)-Dissolved		108.2		%		80-120	09-AUG-13
Tin (Sn)-Di	issolved		97.5		%		80-120	09-AUG-13
Uranium (l	J)-Dissolved		102.7		%		80-120	09-AUG-13
Vanadium	(V)-Dissolved		100.5		%		80-120	09-AUG-13
Zinc (Zn)-E	Dissolved		99.9		%		80-120	09-AUG-13
WG172342 Aluminum	1-1 MB (Al)-Dissolved		<0.0010		mg/L		0.001	09-AUG-13
	(Sb)-Dissolved		<0.00010)	mg/L		0.0001	09-AUG-13

		Workorder	: L1344178	3	Report Date: 12	2-AUG-13	Pa	ge 2 of 12
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-ED	Water							
Batch R266	9339							
	//B		0.0004.0					
Arsenic (As)-Disso			<0.00010	`	mg/L		0.0001	09-AUG-13
Barium (Ba)-Disso			<0.000050)	mg/L		0.00005	09-AUG-13
Beryllium (Be)-Dis			<0.00050		mg/L		0.0005	09-AUG-13
Bismuth (Bi)-Disso			<0.000050)	mg/L		0.00005	09-AUG-13
Boron (B)-Dissolve			<0.010		mg/L		0.01	09-AUG-13
Cadmium (Cd)-Dis			<0.000010)	mg/L		0.00001	09-AUG-13
Calcium (Ca)-Diss	olved		<0.020		mg/L		0.02	09-AUG-13
Chromium (Cr)-Di	ssolved		<0.00010		mg/L		0.0001	09-AUG-13
Cobalt (Co)-Dissol	lved		<0.00010		mg/L		0.0001	09-AUG-13
Copper (Cu)-Disso	olved		<0.00010		mg/L		0.0001	09-AUG-13
Iron (Fe)-Dissolve	d		<0.010		mg/L		0.01	09-AUG-13
Lead (Pb)-Dissolv	ed		<0.000050)	mg/L		0.00005	09-AUG-13
Lithium (Li)-Dissol	ved		<0.0030		mg/L		0.003	09-AUG-13
Magnesium (Mg)-I	Dissolved		<0.0050		mg/L		0.005	09-AUG-13
Manganese (Mn)-l	Dissolved		<0.000050)	mg/L		0.00005	09-AUG-13
Molybdenum (Mo)	-Dissolved		<0.000050)	mg/L		0.00005	09-AUG-13
Nickel (Ni)-Dissolv	ved		<0.00010		mg/L		0.0001	09-AUG-13
Phosphorus (P)-D	issolved		<0.30		mg/L		0.3	09-AUG-13
Potassium (K)-Dis	solved		<0.050		mg/L		0.05	09-AUG-13
Selenium (Se)-Dis	solved		<0.00010		mg/L		0.0001	09-AUG-13
Silicon (Si)-Dissolv	ved		<0.050		mg/L		0.05	09-AUG-13
Silver (Ag)-Dissolv	ved		<0.000010)	mg/L		0.00001	09-AUG-13
Sodium (Na)-Diss			<0.050		mg/L		0.05	09-AUG-13
Strontium (Sr)-Dis			<0.00010		mg/L		0.0001	09-AUG-13
Thallium (TI)-Disso			<0.000050)	mg/L		0.00005	09-AUG-13
Titanium (Ti)-Diss			<0.00030		mg/L		0.0003	09-AUG-13
Tin (Sn)-Dissolved			<0.00010		mg/L		0.0001	09-AUG-13
Uranium (U)-Disso			<0.000010)	mg/L		0.00001	09-AUG-13
Vanadium (V)-Diss			<0.00010	•	mg/L		0.0001	09-AUG-13
Zinc (Zn)-Dissolve			<0.00010		mg/L		0.0001	09-AUG-13

MET-T-CCMS-ED

Water

Test MET-T-CCMS-ED Batch R2668991	Matrix Water	Reference	Result	Qualifier	Unito			
Batch R2668991	Water			Quaintoi	Units	RPD	Limit	Analyzed
WG1723752-1 MB			-0.0020		~~~~ <i>"</i>		0.000	40.0110.40
Aluminum (Al)-Total			<0.0030		mg/L		0.003	10-AUG-13
Antimony (Sb)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Arsenic (As)-Total			<0.00010	`	mg/L		0.0001	10-AUG-13
Barium (Ba)-Total			<0.000050	J	mg/L		0.00005	10-AUG-13
Beryllium (Be)-Total			<0.00050	_	mg/L		0.0005	10-AUG-13
Bismuth (Bi)-Total			<0.000050	J	mg/L		0.00005	10-AUG-13
Boron (B)-Total			<0.010	_	mg/L		0.01	10-AUG-13
Cadmium (Cd)-Total			<0.000010)	mg/L		0.00001	10-AUG-13
Calcium (Ca)-Total			<0.020		mg/L		0.02	10-AUG-13
Chromium (Cr)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Iron (Fe)-Total			<0.010		mg/L		0.01	10-AUG-13
Lead (Pb)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Lithium (Li)-Total			<0.0050		mg/L		0.005	10-AUG-13
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	10-AUG-13
Manganese (Mn)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Molybdenum (Mo)-Total			<0.000050	C	mg/L		0.00005	10-AUG-13
Nickel (Ni)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Phosphorus (P)-Total			<0.30		mg/L		0.3	10-AUG-13
Potassium (K)-Total			<0.050		mg/L		0.05	10-AUG-13
Selenium (Se)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Silicon (Si)-Total			<0.050		mg/L		0.05	10-AUG-13
Silver (Ag)-Total			<0.000010	D	mg/L		0.00001	10-AUG-13
Sodium (Na)-Total			<0.050		mg/L		0.05	10-AUG-13
Strontium (Sr)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Thallium (TI)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Tin (Sn)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	10-AUG-13
Uranium (U)-Total			<0.000010)	mg/L		0.00001	10-AUG-13
Vanadium (V)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Zinc (Zn)-Total			<0.0030		mg/L		0.003	10-AUG-13

	M = 1 = 1	Defens -	11	0	11-11		1.1 14	A
est	Matrix	Reference R	esult	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2669616								
WG1723768-3 LCS Aluminum (Al)-Total		1	00.7		%		80-120	10-AUG-13
Antimony (Sb)-Total			01.4		%		80-120	10-AUG-13
Arsenic (As)-Total			02.7		%		80-120	10-AUG-13
Barium (Ba)-Total			01.4		%		80-120	10-AUG-13
Beryllium (Be)-Total			02.5		%		80-120	10-AUG-13
Bismuth (Bi)-Total			03.8		%		80-120	10-AUG-13
Boron (B)-Total			03.1		%		80-120	10-AUG-13
Cadmium (Cd)-Total			04.7		%		80-120	10-AUG-13
Calcium (Ca)-Total			06.9		%		80-120	10-AUG-13
Chromium (Cr)-Total			04.1		%		80-120	10-AUG-13
Cobalt (Co)-Total			01.9		%		80-120	10-AUG-1
Copper (Cu)-Total			9.3		%		80-120	10-AUG-13
Iron (Fe)-Total			5.4		%		80-120	10-AUG-1
Lead (Pb)-Total			07.3		%		80-120	10-AUG-1
Lithium (Li)-Total		1	07.8		%		80-120	10-AUG-1
Magnesium (Mg)-Total		10	05.2		%		80-120	10-AUG-1
Manganese (Mn)-Total		10	00.8		%		80-120	10-AUG-1
Molybdenum (Mo)-Total		10	04.5		%		80-120	10-AUG-1
Nickel (Ni)-Total		1	00.3		%		80-120	10-AUG-1
Potassium (K)-Total		98	8.2		%		80-120	10-AUG-1
Selenium (Se)-Total		1	08.6		%		80-120	10-AUG-13
Silicon (Si)-Total		10	08.6		%		80-120	10-AUG-13
Silver (Ag)-Total		9.	4.1		%		80-120	10-AUG-13
Sodium (Na)-Total		1	02.4		%		80-120	10-AUG-13
Strontium (Sr)-Total		1	13.1		%		80-120	10-AUG-13
Thallium (TI)-Total		10	06.2		%		80-120	10-AUG-13
Tin (Sn)-Total		94	4.8		%		80-120	10-AUG-13
Titanium (Ti)-Total		10	06.1		%		80-120	10-AUG-13
Uranium (U)-Total		1	01.2		%		80-120	10-AUG-13
Vanadium (V)-Total		1	03.6		%		80-120	10-AUG-13
Zinc (Zn)-Total		1	03.7		%		80-120	10-AUG-13
WG1723768-4 LCS								
Aluminum (Al)-Total			18.5		%		80-120	10-AUG-13
Antimony (Sb)-Total		1	06.9		%		80-120	10-AUG-13

		Workorder	: L134417	8	Report Date: 12	2-AUG-13	Pa	ge 5 of 1
Fest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2669616								
WG1723768-4 LCS Arsenic (As)-Total			101.8		%		00.400	
			101.8		%		80-120	10-AUG-13
Barium (Ba)-Total Beryllium (Be)-Total			98.4		%		80-120	10-AUG-13
Bismuth (Bi)-Total			98.4 98.5		%		80-120	10-AUG-13
			98.5 100.5		%		80-120	10-AUG-13
Boron (B)-Total Cadmium (Cd)-Total			100.5		%		80-120	10-AUG-13
Calcium (Ca)-Total			101.5		%		80-120	10-AUG-13
			103.0		%		80-120	10-AUG-13
Chromium (Cr)-Total Cobalt (Co)-Total			99.3		%		80-120	10-AUG-13
Copper (Cu)-Total			99.3 99.5		%		80-120	10-AUG-13
Iron (Fe)-Total			99.5 105.7		%		80-120	10-AUG-13
Lead (Pb)-Total			103.7		%		80-120	10-AUG-13 10-AUG-13
Lithium (Li)-Total			97.6		%		80-120	
Magnesium (Mg)-Total			97.0 107.3		%		80-120	10-AUG-13
Manganese (Mn)-Total			99.6		%		80-120	10-AUG-13
Molybdenum (Mo)-Tota	1		102.2		%		80-120 80-120	10-AUG-13 10-AUG-13
Nickel (Ni)-Total			98.2		%		80-120 80-120	
Potassium (K)-Total			96.8		%			10-AUG-13
Selenium (Se)-Total			106.1		%		80-120 80-120	10-AUG-13 10-AUG-13
Silver (Ag)-Total			96.9		%		80-120 80-120	
Sodium (Na)-Total			30.9 101.9		%		80-120	10-AUG-13
Strontium (Sr)-Total			101.9		%		80-120 80-120	10-AUG-13 10-AUG-13
Thallium (TI)-Total			107.1		%		80-120 80-120	10-AUG-13
Tin (Sn)-Total			96.5		%		80-120 80-120	10-AUG-13
Titanium (Ti)-Total			114.6		%		80-120	10-AUG-13
Uranium (U)-Total			98.4		%		80-120 80-120	10-AUG-13
Vanadium (V)-Total			101.4		%		80-120 80-120	10-AUG-13
Zinc (Zn)-Total			101.4		%		80-120	10-AUG-13
WG1723752-2 MB			102.1		<i>,</i> 0		00-120	10-400-13
Aluminum (Al)-Total			<0.0030		mg/L		0.003	10-AUG-13
Antimony (Sb)-Total			<0.00010)	mg/L		0.0001	10-AUG-13
Arsenic (As)-Total			<0.00010)	mg/L		0.0001	10-AUG-13
Barium (Ba)-Total			<0.00005	50	mg/L		0.00005	10-AUG-13
Beryllium (Be)-Total			<0.00050		mg/L		0.0005	10-AUG-13

		Workorder:	L1344178	3	Report Date: 12	2-AUG-13	Pa	ge 6 of 1
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2669616								
WG1723752-2 MB			0 000050	`				
Bismuth (Bi)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Boron (B)-Total			<0.010		mg/L		0.01	10-AUG-13
Cadmium (Cd)-Total			<0.000010)	mg/L		0.00001	10-AUG-13
Calcium (Ca)-Total			<0.020		mg/L		0.02	10-AUG-13
Chromium (Cr)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Copper (Cu)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Iron (Fe)-Total			<0.010		mg/L		0.01	10-AUG-13
Lead (Pb)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Lithium (Li)-Total			<0.0050		mg/L		0.005	10-AUG-13
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	10-AUG-13
Manganese (Mn)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Molybdenum (Mo)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Nickel (Ni)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Phosphorus (P)-Total			<0.30		mg/L		0.3	10-AUG-13
Potassium (K)-Total			<0.050		mg/L		0.05	10-AUG-13
Selenium (Se)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Silicon (Si)-Total			<0.050		mg/L		0.05	10-AUG-13
Silver (Ag)-Total			<0.000010)	mg/L		0.00001	10-AUG-13
Sodium (Na)-Total			<0.050		mg/L		0.05	10-AUG-13
Strontium (Sr)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Thallium (TI)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Tin (Sn)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	10-AUG-13
Uranium (U)-Total			<0.000010)	mg/L		0.00001	10-AUG-13
Vanadium (V)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Zinc (Zn)-Total			<0.0030		mg/L		0.003	10-AUG-13
WG1723768-1 MB								
Aluminum (Al)-Total			<0.0030		mg/L		0.003	10-AUG-13
Antimony (Sb)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Arsenic (As)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Barium (Ba)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Beryllium (Be)-Total			<0.00050		mg/L		0.0005	10-AUG-13
Bismuth (Bi)-Total			<0.000050)	mg/L		0.00005	10-AUG-13

		Workorder	: L134417	8	Report Date: 12	2-AUG-13	Page 7 of 12		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-T-CCMS-ED	Water								
Batch R2669616	i								
WG1723768-1 MB			0.040						
Boron (B)-Total			<0.010	•	mg/L		0.01	10-AUG-13	
Cadmium (Cd)-Total			<0.00001	0	mg/L		0.00001	10-AUG-13	
Calcium (Ca)-Total			<0.020		mg/L		0.02	10-AUG-13	
Chromium (Cr)-Total			<0.00010		mg/L		0.0001	10-AUG-13	
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	10-AUG-13	
Copper (Cu)-Total			<0.00010		mg/L		0.0001	10-AUG-13	
Iron (Fe)-Total			<0.010		mg/L		0.01	10-AUG-13	
Lead (Pb)-Total			<0.00005	0	mg/L		0.00005	10-AUG-13	
Lithium (Li)-Total			<0.0050		mg/L		0.005	10-AUG-13	
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	10-AUG-13	
Manganese (Mn)-Total			<0.00005	0	mg/L		0.00005	10-AUG-13	
Molybdenum (Mo)-Tota	I		<0.00005	0	mg/L		0.00005	10-AUG-13	
Nickel (Ni)-Total			<0.00010	1	mg/L		0.0001	10-AUG-13	
Phosphorus (P)-Total			<0.30		mg/L		0.3	10-AUG-13	
Potassium (K)-Total			<0.050		mg/L		0.05	10-AUG-13	
Selenium (Se)-Total			<0.00010	1	mg/L		0.0001	10-AUG-13	
Silicon (Si)-Total			<0.050		mg/L		0.05	10-AUG-13	
Silver (Ag)-Total			<0.00001	0	mg/L		0.00001	10-AUG-13	
Sodium (Na)-Total			<0.050		mg/L		0.05	10-AUG-13	
Strontium (Sr)-Total			<0.00010	1	mg/L		0.0001	10-AUG-13	
Thallium (TI)-Total			<0.00005	0	mg/L		0.00005	10-AUG-13	
Tin (Sn)-Total			<0.00010)	mg/L		0.0001	10-AUG-13	
Titanium (Ti)-Total			<0.00030	1	mg/L		0.0003	10-AUG-13	
Uranium (U)-Total			<0.00001	0	mg/L		0.00001	10-AUG-13	
Zinc (Zn)-Total			<0.0030		mg/L		0.003	10-AUG-13	
WG1723768-2 MB									
Aluminum (Al)-Total			<0.0030		mg/L		0.003	10-AUG-13	
Antimony (Sb)-Total			<0.00010)	mg/L		0.0001	10-AUG-13	
Arsenic (As)-Total			<0.00010)	mg/L		0.0001	10-AUG-13	
Barium (Ba)-Total			<0.00005	0	mg/L		0.00005	10-AUG-13	
Beryllium (Be)-Total			<0.00050	1	mg/L		0.0005	10-AUG-13	
Bismuth (Bi)-Total			<0.00005	0	mg/L		0.00005	10-AUG-13	
Boron (B)-Total			<0.010		mg/L		0.01	10-AUG-13	
Cadmium (Cd)-Total			<0.00001	0	mg/L		0.00001	10-AUG-13	

		Workorder:	L1344178	3	Report Date: 12	2-AUG-13	Pa	ge 8 of 12
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2669616								
WG1723768-2 MB Calcium (Ca)-Total			<0.020		mg/L		0.02	10-AUG-13
Chromium (Cr)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Copper (Cu)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Iron (Fe)-Total			<0.010		mg/L		0.01	10-AUG-13
Lead (Pb)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Lithium (Li)-Total			<0.0050		mg/L		0.005	10-AUG-13
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	10-AUG-13
Manganese (Mn)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Molybdenum (Mo)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Nickel (Ni)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Phosphorus (P)-Total			<0.30		mg/L		0.3	10-AUG-13
Potassium (K)-Total			<0.050		mg/L		0.05	10-AUG-13
Selenium (Se)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Silicon (Si)-Total			<0.050		mg/L		0.05	10-AUG-13
Silver (Ag)-Total			<0.000010)	mg/L		0.00001	10-AUG-13
Sodium (Na)-Total			<0.050		mg/L		0.05	10-AUG-13
Strontium (Sr)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Thallium (TI)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Tin (Sn)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	10-AUG-13
Uranium (U)-Total			<0.000010)	mg/L		0.00001	10-AUG-13
Zinc (Zn)-Total			<0.0030		mg/L		0.003	10-AUG-13
NH3-CFA-ED	Water							
Batch R2668937								
WG1723203-2 LCS			00.7		0/		05 · · -	00 4110 1-
Ammonia, Total (as N)			99.7		%		85-115	09-AUG-13
WG1723203-1 MB Ammonia, Total (as N)			<0.050		mg/L		0.05	09-AUG-13
WG1723203-6 MS Ammonia, Total (as N)		L1344178-13	96.6		%		75-125	09-AUG-13
WG1723203-9 MS Ammonia, Total (as N)		L1342019-4	98.5		%		75-125	09-AUG-13
NO2-IC-ED	Water							

NO2-IC-ED

Water

		Workorder:	L134417	8	Report Date: 12-	-AUG-13	Pa	ge 9 of 12
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO2-IC-ED	Water							
Batch R2669522 WG1723929-1 MB Nitrite (as N)			<0.050		mg/L		0.05	09-AUG-13
NO3-IC-ED	Water							
Batch R2669522 WG1723929-1 MB Nitrate (as N) Nitrate (as N)			<0.050		mg/L		0.05	09-AUG-13
PH-ED	Water							
Batch R2668867 WG1723395-7 DUP рН		L1344178-11 7.86	7.86	J	рН	0.00	0.3	09-AUG-13
WG1723395-3 LCS рН			7.05		рН		6.9-7.1	09-AUG-13
Batch R2670354 WG1724551-3 LCS рН			7.03		рН		6.9-7.1	12-AUG-13
SOLIDS-TOTSUS-ED	Water							
Batch R2669161 WG1723215-2 LCS Total Suspended Solids			100.0		%		85-115	09-AUG-13
WG1723215-1 MB Total Suspended Solids			<3.0		mg/L		3	09-AUG-13

Workorder: L1344178

Report Date: 12-AUG-13

Legend:

ALS Control Limit (Data Quality Objectives)
Duplicate
Relative Percent Difference
Not Available
Laboratory Control Sample
Standard Reference Material
Matrix Spike
Matrix Spike Duplicate
Average Desorption Efficiency
Method Blank
Internal Reference Material
Certified Reference Material
Continuing Calibration Verification
Calibration Verification Standard
Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1344178

Report Date: 12-AUG-13

Page 11 of 12

Hold Time Exceedances:

ALS Product Description	Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
рН							
ľ	1	06-AUG-13 10:00	09-AUG-13 14:34	0.25	77	hours	EHTR-FM
	2	06-AUG-13 10:00	09-AUG-13 14:38	0.25	77	hours	EHTR-FM
	3	06-AUG-13 10:00	09-AUG-13 14:41	0.25	77	hours	EHTR-FM
	4	06-AUG-13 10:00	09-AUG-13 14:45	0.25	77	hours	EHTR-FM
	5	06-AUG-13 10:00	09-AUG-13 14:49	0.25	77	hours	EHTR-FM
	6	06-AUG-13 10:00	09-AUG-13 14:52	0.25	77	hours	EHTR-FM
	7	06-AUG-13 10:00	09-AUG-13 14:52	0.25	77	hours	EHTR-FM
	8	06-AUG-13 10:00	09-AUG-13 14:59	0.25	77	hours	EHTR-FM
	9	06-AUG-13 10:00	09-AUG-13 15:03	0.25	77	hours	EHTR-FM
	10	06-AUG-13 10:00	09-AUG-13 15:05	0.25	77	hours	EHTR-FM
	10	06-AUG-13 10:00	09-AUG-13 15:10	0.25	77	hours	EHTR-FM
	12	06-AUG-13 10:00	09-AUG-13 15:18	0.25	77	hours	EHTR-FM
	12			0.25	150		
	13	06-AUG-13 10:00	12-AUG-13 16:24 12-AUG-13 16:24	0.25	150	hours	EHTR-FM EHTR-FM
	14	06-AUG-13 10:00				hours	EHTR-FM
		06-AUG-13 10:00	09-AUG-13 15:29	0.25	78 78	hours	
	16	06-AUG-13 10:00	09-AUG-13 15:32	0.25	78 70	hours	EHTR-FM
	20	06-AUG-13 09:00	09-AUG-13 15:36	0.25	79	hours	EHTR-FM
Anions and Nutrients	24	07-AUG-13 09:00	09-AUG-13 15:39	0.25	55	hours	EHTR-FM
Nitrate as N by IC							
Nillale as N by IC	1	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	2	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	3	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	4	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	5	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	6	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	7	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	8	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	9	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	9 10	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	10	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	12		09-AUG-13 08:00	48	70		EHTL
	12	06-AUG-13 10:00			70 70	hours	
		06-AUG-13 10:00	09-AUG-13 08:00	48		hours	EHTL
	14	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	15	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	16	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	20	06-AUG-13 09:00	09-AUG-13 08:00	48	71	hours	EHTL
Nitrite as N by IC	1	06-AUG-13 10:00	09-AUG-13 08:00	48	70	houro	EHTL
	1					hours	
	2	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	3	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	4	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	5	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	6	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	7	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	8	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	9	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	10	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	11	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	12	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	13	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	14	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	15	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	16	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	20	06-AUG-13 09:00	09-AUG-13 08:00	48	70	nouis	EHTL

Legend & Qualifier Definitions:

Workorder: L1344178

Report Date: 12-AUG-13

Page 12 of 12

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR: Exceeded ALS recommended hold time prior to sample receipt.
EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT: Exceeded ALS recommended hold time prior to analysis.
Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1344178 were received on 07-AUG-13 17:20.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

	101
	- 40
	14
	10
	1.64
	- 70
	244
	- E
	PT
	- D
	100
	10
	100
	100
	- 14
	-(1)
	- 142
	5
	610
	NU.
	E 1
Sec.	1 -
-	1.1
	14
	~

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878

-

COC #

of	
Page	

matrix Description Server requeres request by service solutions of contained interpret to an and the sound interpret to an analysis Request ArcUX Oriential Analysis Request Oriential Intervent of notified in the sound interpret to an analysis Request ArcUX Analysis Request Description Example of Containing Analysis Request Analysis Request Analysis Request ArcUX Sample of Containing Analysis Request ArcUX Analysis Request Analysis Request ArcUX Analysis Request Analysis Request ArcUX Sample of Containing Analysis Request ArcUX Analysis Request Analysis Request ArcUX Sample of Containing Analysis Request ArcUX Sample of Containing Analysis Request ArcUX Sample of Containing Analysis Request ArcUX Analysis Request Analy	Report Format / Ustruction 12:1 Email 1: (_Dr CUX (@ RN) I'T (DU) (C 10:0 Email 2: 1-15 (L (L (D (U) (G (N)) (T (D)) (C) (D)) (C) (D)) (C) (C) (C) (C) (C) (C) (C) (C) (C) (a analysis subject to availability	Business Days)	harge - Contact ALS to Confirm TAT	charge - Contact ALS to Confirm TAT &	atact ALS to Confirm TAT		Request	eserved or both (F, P, F/P)							2010 Jo 16	-	2				DEC	-82	LÞt	7EL-				etc) / Hazardous Details	they are for dissolution		ommon analyses. ATION (lab use only)	Time: Observations: Yes / No ?	nno cal II
mat / Distribution	Report Format / Distribution Report Format / Distribution Resonance Resonance Resonance Resonance Resonance Resonance Resonance Resonance Pax Email 3: Fax No District Project Information Dug S, A + U, A Piss Email 3: Fax Boulknike, MI XIA ANI Piss Poliati Fax Boulknike, MI XIA ANI District Project Information Dot Piss Poliati Fax Boulknike, MI XIA ANI Piss Poliati Fax Bould # Sample function Bould # Fax Bould # Sample function Bould # S		Regular (Standard Turnaround Times - E	O Priority (2-4 Business Days) - 50% Surch	Emergency (1-2 Bus. Days) - 100% Surc	Came Dav or Weekend Emergency - Cor		Analysis F	Please indicate below Filtered, Pre	级	и. (:	to N 9J	" " "	2	0 0 112	-24000 (V: 2'59)5 HO	100 00 000 000 000 000 000 000 000 000	F 103 2 10	XXXXXX										- Natural,	and preserved and	s form LEGIBLY. rovided on a separate Excel tab.	SHIPMENT VERIFICA		MUCH
	Report Fo Report Fo Exterit Report Fo Sasteport Po Poil Po State Po Po Po State Po State Po State Po Po Po Po Po Po Po Po Po Po Po <			K Excel Digital	2 DALIVEAU C	A NIVITINA	ham lel 133		oject Information							HUNISTO Sampler: AUX	Time	(mm:hn)	6/08/13/10:00	i i inoter							h la la	2 2 2	CSR	nor	this form may delay analysis. Please fill in this od agrees with the Terms and Conditions as pr	, phone numbers and sample container / prese	Temperatur	RIG 07.0 CIN

ALS Environmental	onmental		WWW.9	www.alsglobal.com			Ра	Pageof
Report To		Report	Report Format / Distribution	tion		Service Requeste	Service Requested (Rush for routine analysis subject to availability)	ject to availability)
Company:		Standard	ard 🗌 Other			💓 Regular (Standard	Regular (Standard Turnaround Times - Business Days)	EF1-143
Contact		PDF	Excel	Digital	Eax.	O Priority (2-4 Busine	Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT	ALS to Confirm TAT
Address:		Email 1:				Emergency (1-2 Bu	🕅 Emergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT 🔐	t ALS to Confirm TAT
		Email 2:				O Same Day or Week	Same Day or Weekend Emergency - Contact ALS to Confirm TAT	nfirm TAT
Phone:	Fax:	Email 3:	,			¢	Analysis Request	
Invoice To Same as Report ?	Report? 🔲 Yes 🔄 🛛 No	Client /	Client / Project Information	no		Please indicate b	Please indicate below Filtered, Preserved or both (F, P, F/P)	oth (F, P, F/P)
Hardcopy of Invoice with Report?	1 Report? 🔲 Yes 🔲 No	Job #:				d M'		
Company:		PO / AFE:	ы			ad the	rd	
Contact		LSD:				, ,,	C 41	
Address.						2	e v	
Phone:	Fax:	Quote #.				50)	- Fue	
Lab Work Order #	#	ALS		Sampler:		H and N	44 107	
(lab use only)		Contact:				~ 7	0 7	
Sample	Sample Identification		Date	Time	Sample Type	201		_
111	(1 nis description will appear on the report)	(trode		(mm.mm)		N 21 1	I	Ι
HTT-10	0.		51/20/50	15:00	Surau		1	
EFFICS	65		05/08/13	21:00	water			
EFF/66	00		00/08/13	3:00				
FFF16	t of		06/08/13	00:6		XXXX		
EFF/6	s 5		50,108/13	15100				EC.
EFF16	69		26/08/13	00:17				00-
EFF1	70		07/08/13	3.00				871
EFFI	1t		51/80/20	9:00	9	XXX		544
			1			144 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		:17
Spe	Special Instructions / Regulations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardous Details	er or land use (CCI	ME-Freshwater A	quatic Life/BC	CSR - Commerc	ial/AB Tier 1 - Natu	ural, etc) / Hazardous Detail	s
keep the ex	extra bolitles on hold.	EFF171	1 emergency	ey turn	over , El	EFF167 DIN	> normal furnaver	
Also pro	Failure to complete all portions of By the use of this form the user acknowledges an Also provided on another Excel tab are the ALS location addresses,	Failure to complete all portions of his form the user acknowledges ar ab are the ALS location addresses,		delay analysis. The Terms and re and re and sample of the second	Please fill in th Conditions as p container / presi	this form may delay analysis. Please fill in this form LEGIBLY. Id agrees with the Terms and Conditions as provided on a separate Excel tab. phone numbers and sample container / preservation / holding time table for	this form may delay analysis. Please fill in this form LEGIBLY. d agrees with the Terms and Conditions as provided on a separate Excel tab. phone numbers and sample container / preservation / holding time table for common analyses	lyses.
10.00	SHIPMENT RELEASE (client use)	SHIP		ON (lab use only	0	SHIP	SHIPMENT VERIFICATION (lab use only)	ise only)
Released by:	Date (dd-mmm-yy) Time (hh-mm)	Received by;	Date	Time	Temperature: °C	Verified by:	Date: Time:	Observations: Yes / No ? If Yes add SIF

COC #

				- 24
				- 64
				. 77
				- 0.
				-
				- 01
				. 14
				10
				- 1.1
				1.07
				- 14
				10
				- E.
				11
				M.
				_
				-
			- 4	
		-	a	UD.
	1.4	6	82	•
1.2	æ		87	101
-	c		· .	-
~	85	-	e.	-
	-		1	1
				CI
		- 27	-	~
				× .
				-

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878

200

3	
Zot -	to availability)
Page	analysis subject t
	uested (Rush for routine analysis s
	(Rus)
	uested (

(ALS)	(ALS) Environmental	(E)									1	
Report To				Report F	t Format / Distribution	tion		Service I	Requeste	d (Rush for routine	Service Requested (Rush for routine analysis subject to availability)	availability)
Company:				Standard	rd Other			 Regula 	r (Standard	 Regular (Standard Turnaround Times - Business Days) 	Business Days)	
Contact:				DPF	Excel	Digital	Eax .	O Priority	(2-4 Busine	ss Days) - 50% Surch	O Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT	Confirm TAT
Address:				Email 1:			*		ncy (1-2 Bu	s. Days) - 100% Surc	Emergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT -	Confirm TAT
				Email 2:				0	ay or Weel	end Emergency - Con	Same Day or Weekend Emergency - Contact ALS to Confirm TAT	T
Phone:		Fax:		Email 3:					1	Analysis Request	tequest	
Invoice To	Same as Report ?	T Yes	No	Client / I	/ Project Information	uo		Please	ndicate b	elow Filtered, Pre	Please indicate below Filtered, Preserved or both (F, P, F/P)	P, F/P)
Hardcopy of	Hardcopy of Invoice with Report?	T Yes	No	;# qof				9		0		
Company:				PO / AFE:				1	-	ид		
Contact:				LSD:				17	1	Gar		14
Address:								0		LIM		ST91
Phone:		Fax:		Quote #:					£0.	27		nistr
Lab	Lab Work Order #			ALS		Sampler:		rat t	N			of Cor
(13	(lab use only)			CONTACT				1	5	-		er (
Sample #	(This de	Sample Identification (This description will appear on the report)	cation ar on the report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	10401	-01	hered leters		dmuN
	TRIAK				h6/h2/73	00.01		XX	X	0		
	11P-EQ				1			X X	X	×		
	DUP 9				11	"		1 1	1	-		
										1		
	DUP 10				11				-	-	DEC	1
										-	00-	
										1	821	
				7								
										-	-	
	Special Instructions / Regulations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardous Details	ons / Regulations	s with water or I	and use (CCI	AE-Freshwater A	quatic Life/BC 0	CSR - Commerc	ial/AB Tie	-1 - Natu	ral, etc) / Hazard	ious Details	
		Fair	tre to complete	all nortions o	Eailure to complete all nortions of this form may delay analysis. Please fill in this form I EGIRI Y	delav analveis	Please fill in th	s form L	GIRI Y			
	By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses.	By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. another Excel tab another Excel	orm the user ac	knowledges .	and agrees with the structure of the str	the Terms and C	Conditions as p container / pres	rovided a	n al separ	ate Excel tab. ime table for co	mmon analyses.	ſ.
	SHIPMENT RELEASE (client use)	(client use)		SHIP	SHIPMENT RECEPTION (lab use only)	VI (lab use only	(SHIP	MENT VERIFICA	SHIPMENT VERIFICATION (lab use only)	()
Released by	har Distante		Time (או-איי) Received by: ענימי: ממ	ed by:	Date:	Time:	Temperature:	Verified by:	y.	Date:	Time:	Observations: Yes / No ?
Challen a	1 Number	11 11 1000	~~				>				CENE	CENE 18 01 Eroot
											CCIN	IO'LI LIGHT

APPENDIX D

Accredited Laboratory Certificate of Analysis – Discharge Events

Taiga Batch No.: 130476

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- FINAL REPORT -

Prepared For: Tlicho Engineering & Environmental Ser.

Address: 98 Archibald Street Yellowknife, NT X1A 2N1

Attn: Melanie St Jean

Facsimile: (867) 669-9482

Final report has been reviewed and approved by:

Angelique Ruzindana Quality Assurance Officer

NOTES:

- Test methods and data are validated by the laboratory's Quality Assurance Program. Taiga Environmental Laboratory is accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) as a testing laboratory for specific tests registered with CALA.
- > Routine methods are based on recognized procedures from sources such as
 - o Standard Methods for the Examination of Water and Wastewater APHA AWWA WEF;
 - o Environment Canada
 - o USEPA
- Samples shall be kept for thirty (30) days after the final report is issued. All microbiological samples shall be disposed of immediately upon completion of analysis to minimize biohazardous risks to laboratory personnel. Please contact the laboratory if you have any special requirements.
- Final results are based on the specific tests at the time of analysis and do not represent the conditions during sampling.

ReportDate: Monday, July 15, 2013 Print Date: Monday, July 15, 2013

Taiga Batch No.: 130476

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- CERTIFICATE OF ANALYSIS -

Client Sample ID: UP3-S-INT

Taiga Sample ID: 001

Client Project:	YB11192-00-00
Sample Type:	Surface Water
Received Date:	05-Jul-13
Sampling Date:	03-Jul-13
Sampling Time:	6:30
Location:	Upper Pond & WTP

Report Status: Final

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
Colour, Apparent	44	5	CU	05-Jul-13	SM2120:B	
Colour, True	< 5	5	TCU	05-Jul-13	SM2120:B	
Solids, Total Suspended	4	3	mg/L	07-Jul-13	SM2540:D	
Turbidity	2.16	0.05	NTU	06-Jul-13	SM2130:B	
Inorganics - Nutrients						
Ammonia as Nitrogen	0.151	0.005	mg/L	11-Jul-13	SM4500-NH3:	
<u>Major Ions</u>						
Nitrate as Nitrogen	0.39	0.01	mg/L	06-Jul-13	SM4110:B	
Nitrite as Nitrogen	0.02	0.01	mg/L	06-Jul-13	SM4110:B	
Trace Metals, Dissolved						
Arsenic	96.1	0.2	μg/L	05-Jul-13	EPA200.8	
Copper	0.8	0.2	µg/L	05-Jul-13	EPA200.8	
Lead	< 0.1	0.1	µg/L	05-Jul-13	EPA200.8	
Nickel	5.4	0.1	μg/L	05-Jul-13	EPA200.8	

ReportDate:Monday, July 15, 2013Print Date:Monday, July 15, 2013

Taiga Batch No.: 130476

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- CERTIFICATE OF ANALYSIS -

Client Sample ID: U	JP3-S-INT		Т	aiga Sample II	D: 001
Zinc	1.1	0.4	μg/L	05-Jul-13	EPA200.8
<u>Trace Metals, Total</u>					
Arsenic	185	0.2	µg/L	05-Jul-13	EPA200.8
Copper	1.2	0.2	μg/L	05-Jul-13	EPA200.8
Lead	0.9	0.1	μg/L	05-Jul-13	EPA200.8
Nickel	6.3	0.1	μg/L	05-Jul-13	EPA200.8
Zinc	3.3	0.4	μg/L	05-Jul-13	EPA200.8

ReportDate:Monday, July 15, 2013Print Date:Monday, July 15, 2013

Taiga Batch No.: 130476

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- CERTIFICATE OF ANALYSIS -

Client Sample ID: AFF-INT-13

Taiga Sample ID: 002

Client Project:	YB11192-00-00
Sample Type:	Surface Water
Received Date:	05-Jul-13
Sampling Date:	04-Jul-13
Sampling Time:	13:00
Location:	Upper Pond & WTP
Report Status:	Final

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
Solids, Total Suspended	8	3	mg/L	07-Jul-13	SM2540:D	
Turbidity	3.75	0.05	NTU	06-Jul-13	SM2130:B	

Taiga Batch No.: 130476

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- CERTIFICATE OF ANALYSIS -

Client Sample ID: EFF-INT-13

Taiga Sample ID: 003

Client Project:	YB11192-00-00
Sample Type:	Surface Water
Received Date:	05-Jul-13
Sampling Date:	04-Jul-13
Sampling Time:	13:00
Location:	Upper Pond & WTP
Report Status:	Final

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
Solids, Total Suspended	4	3	mg/L	07-Jul-13	SM2540:D	
Turbidity	3.68	0.05	NTU	06-Jul-13	SM2130:B	

Taiga Batch No.: 130476

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- CERTIFICATE OF ANALYSIS -

Client Sample ID: Tblank

Taiga Sample ID: 004

Client Project:	YB11192-00-00
Sample Type:	Travel Blank
Received Date:	05-Jul-13
Sampling Date:	04-Jul-13
Sampling Time:	13:00
Location:	

Report Status: Final

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
Colour, Apparent	< 5	5	CU	05-Jul-13	SM2120:B	
Colour, True	< 5	5	TCU	05-Jul-13	SM2120:B	
Turbidity	0.07	0.05	NTU	08-Jul-13	SM2130:B	
Inorganics - Nutrients						
Ammonia as Nitrogen	< 0.005	0.005	mg/L	11-Jul-13	SM4500-NH3:	
<u>Major Ions</u>						
Nitrate as Nitrogen	< 0.01	0.01	mg/L	06-Jul-13	SM4110:B	
Nitrite as Nitrogen	< 0.01	0.01	mg/L	06-Jul-13	SM4110:B	
Trace Metals, Dissolved						
Arsenic	No Contain	ner	μg/L		EPA200.8	
Copper	No Contain	ner	μg/L		EPA200.8	
Lead	No Contain	ner	μg/L		EPA200.8	
Nickel	No Contain	ner	μg/L		EPA200.8	
Zinc	No Contain	ner	μg/L		EPA200.8	

Taiga Batch No.: 130476

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- CERTIFICATE OF ANALYSIS -

Client Sample ID: Tblank	Taiga Sample ID: 004			
Trace Metals, Total				
Arsenic	< 0.2	0.2	μg/L	05-Jul-13 EPA200.8
Copper	< 0.2	0.2	μg/L	05-Jul-13 EPA200.8
Lead	< 0.1	0.1	µg/L	05-Jul-13 EPA200.8
Nickel	< 0.1	0.1	µg/L	05-Jul-13 EPA200.8
Zinc	< 0.4	0.4	μg/L	05-Jul-13 EPA200.8

Taiga Batch No.: 130476

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- CERTIFICATE OF ANALYSIS -

Client Sample ID: Tblank

Taiga Sample ID: 004

* Taiga analytical methods are based on the following standard analytical methods

SM - Standard Methods for the Examination of Water and Wastewater

EPA - United States Environmental Protection Agency

ReportDate:Monday, July 15, 2013Print Date:Monday, July 15, 2013

Taiga Batch No.: 130630

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- FINAL REPORT -

Prepared For: WESA

 Address:
 4901 - 48 Street

 P.O. Box 11086
 Yellowknife, NT

 X1A 3X7

Attn: Tim Beckenham

Facsimile: (867) 873-3499

Final report has been reviewed and approved by:

Angelique Ruzindana Quality Assurance Officer

NOTES:

- Test methods and data are validated by the laboratory's Quality Assurance Program. Taiga Environmental Laboratory is accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) as a testing laboratory for specific tests registered with CALA.
- > Routine methods are based on recognized procedures from sources such as
 - o Standard Methods for the Examination of Water and Wastewater APHA AWWA WEF;
 - o Environment Canada
 - o USEPA
- Samples shall be kept for thirty (30) days after the final report is issued. All microbiological samples shall be disposed of immediately upon completion of analysis to minimize biohazardous risks to laboratory personnel. Please contact the laboratory if you have any special requirements.
- Final results are based on the specific tests at the time of analysis and do not represent the conditions during sampling.

ReportDate:Friday, August 16, 2013**Print Date:**Friday, August 16, 2013

Taiga Batch No.: 130630

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- CERTIFICATE OF ANALYSIS -

Client Sample ID: UP5-S

Taiga Sample ID: 001

Client Project:	YB11192 Tundra
Sample Type:	Surface Water
Received Date:	08-Aug-13
Sampling Date:	06-Aug-13
Sampling Time:	10:00
Location:	Tundra Mine Site
-	T ! 1

Report Status: Final

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
pН	7.77		pH units	08-Aug-13	SM4500-H:B	
Solids, Total Suspended	8	3	mg/L	13-Aug-13	SM2540:D	
Inorganics - Nutrients						
Nitrate+Nitrite as Nitrogen	0.22	0.01	mg/L	08-Aug-13	SM4110:B	
Trace Metals, Total						
Arsenic	246	0.2	µg/L	12-Aug-13	EPA200.8	
Copper	1.7	0.2	μg/L	12-Aug-13	EPA200.8	
Lead	0.4	0.1	μg/L	12-Aug-13	EPA200.8	
Nickel	7.9	0.1	μg/L	12-Aug-13	EPA200.8	
Zinc	3.3	0.4	μg/L	12-Aug-13	EPA200.8	

Taiga Batch No.: 130630

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

- CERTIFICATE OF ANALYSIS -

Client Sample ID: UP5-S

Taiga Sample ID: 001

* Taiga analytical methods are based on the following standard analytical methods

SM - Standard Methods for the Examination of Water and Wastewater

EPA - United States Environmental Protection Agency

ReportDate:Friday, August 16, 2013Print Date:Friday, August 16, 2013

WESA Inc. ATTN: Tim Beckenham 4 Cataraque Street The Tower Kingston ON K7K 1Z7 Date Received:14-AUG-13Report Date:23-AUG-13 16:11 (MT)Version:FINAL

Client Phone: 613-531-2725

Certificate of Analysis

Lab Work Order #: L1347781

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED ABORIGINAL 15929

1

Catherine Evaristo-Cordero Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 9936-67 Avenue, Edmonton, AB T6E 0P5 Canada | Phone: +1 780 413 5227 | Fax: +1 780 437 2311 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

					Version:	FINAL
	Sample ID	L1347781-1	L1347781-4	L1347781-7		
	Description	Surface Water 12-AUG-13	Surface Water 13-AUG-13	Surface Water 14-AUG-13		
	Sampled Date Sampled Time	21:15	15:00	09:00		
	Client ID	EFF 178	EFF 196	EFF 214		
Grouping	Analyte					
WATER						
Physical Tests	рН (рН)	7.89	7.88	7.92		
-	Total Suspended Solids (mg/L)	7.0	5.0	5.0		
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.105	0.077	0.081		
	Nitrate and Nitrite (as N) (mg/L)	<0.071	<0.071	<0.071		
	Nitrate (as N) (mg/L)	<0.050	<0.050	0.053		
	Nitrite (as N) (mg/L)	<0.050	<0.050	<0.050		
Total Metals	Aluminum (Al)-Total (mg/L)	0.019	olm<0.015	<0.015		
	Antimony (Sb)-Total (mg/L)	DLM <0.00050	olum <0.00050	DLM <0.00050		
	Arsenic (As)-Total (mg/L)	DLM 0.0692	DLM 0.0247	0.0305		
	Barium (Ba)-Total (mg/L)	DLM 0.0169	DLM 0.0153	DLM 0.0176		
	Beryllium (Be)-Total (mg/L)	DLM <0.0025	DLM <0.0025	DLM <0.0025		
	Bismuth (Bi)-Total (mg/L)	DLM <0.00025	DLM <0.00025	DLM <0.00025		
	Boron (B)-Total (mg/L)	OLM <0.050	<0.050	<0.050		
	Cadmium (Cd)-Total (mg/L)	DLM <0.000050	OLM <0.000050	OLM <0.000050		
	Calcium (Ca)-Total (mg/L)	DLM 133	DLM 147	DLM 150		
	Chromium (Cr)-Total (mg/L)	0.00055	olm <0.00050	0.00051		
	Cobalt (Co)-Total (mg/L)	0.00343	0.00296	0.00287		
	Copper (Cu)-Total (mg/L)	0.00201 0.00201	0.00158	0.00139		
	Iron (Fe)-Total (mg/L)	0.00201 DLM 1.86	1.69	0.00100 DLM 1.81		
	Lead (Pb)-Total (mg/L)	оло осло осло осло осло осло осло осло	<0.00025	<0.00025		
	Lithium (Li)-Total (mg/L)	DLM	DLM	DLM		
	Magnesium (Mg)-Total (mg/L)	<0.025	<0.025	<0.025		
	Manganese (Mn)-Total (mg/L)	10.2	10.4	10.8		
	Molybdenum (Mo)-Total (mg/L)	0.150	0.0880	0.0827		
	Nickel (Ni)-Total (mg/L)	0.00186	0.00150	0.00154		
	Phosphorus (P)-Total (mg/L)	0.00699	0.00587	0.00600		
	Potassium (K)-Total (mg/L)	<1.5	<1.5	<1.5		
		7.08 DLM	7.00 DLM	7.60 DLM		
	Selenium (Se)-Total (mg/L) Silicon (Si)-Total (mg/L)	<0.00050	<0.00050	<0.00050		
		0.33 DLM	0.27 DLM	0.27 DLM		
	Silver (Ag)-Total (mg/L)	<0.000050 DLM	<0.000050 DLM	<0.000050 DLM		
	Sodium (Na)-Total (mg/L)	36.3 DLM	39.1 _{DLM}	38.9 _{DLM}		
	Strontium (Sr)-Total (mg/L)	0.208 DLM	0.213 _{DLM}	0.225 _{DLM}		
	Thallium (TI)-Total (mg/L)	<0.00025	<0.00025	<0.00025		
	Tin (Sn)-Total (mg/L)	<0.00050 DLM	<0.00050	<0.00050 DLM		
	Titanium (Ti)-Total (mg/L)	0.0087	0.0084	0.0102 DLM		
	Uranium (U)-Total (mg/L)	0.000227 DLM	0.000160 DLM	0.000181 DLM		
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050	<0.00050		

PAGE 3 of 5 23-AUG-13 16:11 (MT) ALS ENVIRONMENTAL ANALYTICAL REPORT Version: FINAL L1347781-1 L1347781-4 L1347781-7 Sample ID Surface Water Surface Water Surface Water Description Sampled Date 12-AUG-13 13-AUG-13 14-AUG-13 21:15 15:00 09:00 Sampled Time EFF 178 EFF 196 EFF 214 Client ID Grouping Analyte WATER DLM DLM DLM Zinc (Zn)-Total (mg/L) **Total Metals** <0.015 <0.015 <0.015

L1347781 CONTD

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Method Blank	Barium (Ba)-Total	В	L1347781-7
Method Blank	Manganese (Mn)-Total	В	L1347781-7
Duplicate	Aluminum (Al)-Total	DLM	L1347781-1, -4
Duplicate	Antimony (Sb)-Total	DLM	L1347781-1, -4
Duplicate	Arsenic (As)-Total	DLM	L1347781-1, -4
Duplicate	Barium (Ba)-Total	DLM	L1347781-1, -4
Duplicate	Beryllium (Be)-Total	DLM	L1347781-1, -4
Duplicate	Bismuth (Bi)-Total	DLM	L1347781-1, -4
Duplicate	Boron (B)-Total	DLM	L1347781-1, -4
Duplicate	Cadmium (Cd)-Total	DLM	L1347781-1, -4
Duplicate	Calcium (Ca)-Total	DLM	L1347781-1, -4
Duplicate	Chromium (Cr)-Total	DLM	L1347781-1, -4
Duplicate	Cobalt (Co)-Total	DLM	L1347781-1, -4
Duplicate	Copper (Cu)-Total	DLM	L1347781-1, -4
Duplicate	Iron (Fe)-Total	DLM	L1347781-1, -4
Duplicate	Lead (Pb)-Total	DLM	L1347781-1, -4
Duplicate	Lithium (Li)-Total	DLM	L1347781-1, -4
Duplicate	Magnesium (Mg)-Total	DLM	L1347781-1, -4
Duplicate	Manganese (Mn)-Total	DLM	L1347781-1, -4
Duplicate	Molybdenum (Mo)-Total	DLM	L1347781-1, -4
Duplicate	Nickel (Ni)-Total	DLM	L1347781-1, -4
Duplicate	Phosphorus (P)-Total	DLM	L1347781-1, -4
Duplicate	Potassium (K)-Total	DLM	L1347781-1, -4
Duplicate	Selenium (Se)-Total	DLM	L1347781-1, -4
Duplicate	Silicon (Si)-Total	DLM	L1347781-1, -4
Duplicate	Silver (Ag)-Total	DLM	L1347781-1, -4
Duplicate	Sodium (Na)-Total	DLM	L1347781-1, -4
Duplicate	Strontium (Sr)-Total	DLM	L1347781-1, -4
Duplicate	Thallium (TI)-Total	DLM	L1347781-1, -4
Duplicate	Tin (Sn)-Total	DLM	L1347781-1, -4
Duplicate	Titanium (Ti)-Total	DLM	L1347781-1, -4
Duplicate	Uranium (U)-Total	DLM	L1347781-1, -4
Duplicate	Vanadium (V)-Total	DLM	L1347781-1, -4
Duplicate	Zinc (Zn)-Total	DLM	L1347781-1, -4
Method Blank	Vanadium (V)-Total	MB-LOR	L1347781-7

Qualifiers for Individual Parameters Listed:

Qualifier	Description
В	Method Blank exceeds ALS DQO. All associated sample results are at least 5 times greater than blank levels and are considered reliable.
DLM	Detection Limit Adjusted For Sample Matrix Effects
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.

Test Method References:

ALS Test Code Matr		Test Description	Method Reference**							
MET-T-CCMS-ED	Water	Total Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A							
NH3-CFA-ED	Water	Ammonia in Water by Colour	APHA 4500 NH3-NITROGEN (AMMONIA)							
This analysis is carried automated phenate colo	01	•	ITROGEN (AMMONIA)". Ammonia is determined using the							
NO2+NO3-CALC-ED	Water	Nitrate+Nitrite	CALCULATION							
NO2-IC-ED	D2-IC-ED Water Nitrite as N by IC		APHA 4110 B-ION CHROMATOGRAPHY							
NO3-IC-ED Water Nitrate as N by IC		Nitrate as N by IC	APHA 4110 B-ION CHROMATOGRAPHY							

Reference Information

PH-ED Water pH APHA 4500 H-Electrode All samples analyzed by this method for pH will have exceeded the 15 minute recommended hold time from time of sampling (field analysis is recommended for pH where highly accurate results are needed) APHA 2540 D-Gravimetric SOLIDS-TOTSUS-ED Water Total Suspended Solids APHA 2540 D-Gravimetric ** ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location

ED

ALS ENVIRONMENTAL - EDMONTON, ALBERTA, CANADA

Chain of Custody Numbers:

1

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L1347781

Report Date: 23-AUG-13 Page 1 of 11

Client:	WESA Inc. 4 Cataraque Street Th Kingston ON K7K 1Z							
Contact:	Tim Beckenham							
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-	ED Water							
Batch	R2673800							
WG172789 Aluminum			101.8		%		80-120	16-AUG-13
Antimony (99.8		%		80-120	16-AUG-13
Arsenic (As			104.9		%		80-120 80-120	16-AUG-13
Barium (Ba			101.8		%		80-120	16-AUG-13
Beryllium (94.0		%		80-120	16-AUG-13
Bismuth (B			101.2		%		80-120	16-AUG-13
Boron (B)-			100.7		%		80-120	16-AUG-13
Cadmium (104.5		%		80-120	16-AUG-1
Calcium (C			100.0		%		80-120	16-AUG-13
Chromium			105.1		%		80-120	16-AUG-1
Cobalt (Co			101.3		%		80-120	16-AUG-1
Copper (Cu			99.4		%		80-120	16-AUG-1
Iron (Fe)-T			97.3		%		80-120	16-AUG-1
Lead (Pb)-			105.9		%		80-120	16-AUG-1
Lithium (Li)			101.7		%		80-120	16-AUG-1
	n (Mg)-Total		107.8		%		80-120	16-AUG-1
-	e (Mn)-Total		102.4		%		80-120	16-AUG-13
-	ım (Mo)-Total		93.4		%		80-120	16-AUG-1
Nickel (Ni)-			104.5		%		80-120	16-AUG-1
Potassium			103.5		%		80-120	16-AUG-1
Selenium (106.6		%		80-120	16-AUG-1
Silicon (Si)			109.6		%		80-120	16-AUG-1
Silver (Ag)			96.9		%		80-120	16-AUG-13
Sodium (N			106.3		%		80-120	16-AUG-13
Strontium (95.3		%		80-120	16-AUG-13
Thallium (T			108.3		%		80-120	16-AUG-13
Tin (Sn)-To			96.8		%		80-120	16-AUG-13
Titanium (1			112.7		%		80-120	16-AUG-13
Uranium (L	,		99.4		%		80-120	16-AUG-13
Vanadium			103.3		%		80-120	16-AUG-13
Zinc (Zn)-T			99.8		%		80-120	16-AUG-13
WG172789	8-4 LCS							
Aluminum			95.4		%		80-120	17-AUG-13
Antimony (Sb)-Total		95.9		%		80-120	17-AUG-13

				.				
est N	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2673800								
WG1727898-4 LCS Arsenic (As)-Total			99.2		%		80-120	17-AUG-13
Barium (Ba)-Total			101.6		%		80-120	17-AUG-13
Beryllium (Be)-Total			91.6		%		80-120	17-AUG-13
Bismuth (Bi)-Total			104.4		%		80-120	17-AUG-13
Boron (B)-Total			83.4		%		80-120	17-AUG-13
Cadmium (Cd)-Total			97.4		%		80-120	17-AUG-13
Calcium (Ca)-Total			98.8		%		80-120	17-AUG-13
Chromium (Cr)-Total			96.9		%		80-120	17-AUG-13
Cobalt (Co)-Total			96.5		%		80-120	17-AUG-13
Copper (Cu)-Total			97.4		%		80-120	17-AUG-13
Iron (Fe)-Total			97.3		%		80-120	17-AUG-13
Lead (Pb)-Total			100.2		%		80-120	17-AUG-13
Lithium (Li)-Total			109.2		%		80-120	17-AUG-13
Magnesium (Mg)-Total			100.7		%		80-120	17-AUG-13
Manganese (Mn)-Total			96.2		%		80-120	17-AUG-13
Molybdenum (Mo)-Total			95.5		%		80-120	17-AUG-13
Nickel (Ni)-Total			100.5		%		80-120	17-AUG-13
Potassium (K)-Total			100.9		%		80-120	17-AUG-13
Selenium (Se)-Total			107.1		%		80-120	17-AUG-13
Silicon (Si)-Total			109.8		%		80-120	17-AUG-13
Silver (Ag)-Total			92.9		%		80-120	17-AUG-13
Sodium (Na)-Total			102.7		%		80-120	17-AUG-13
Strontium (Sr)-Total			97.5		%		80-120	17-AUG-13
Thallium (TI)-Total			107.1		%		80-120	17-AUG-13
Tin (Sn)-Total			93.1		%		80-120	17-AUG-13
Titanium (Ti)-Total			100.2		%		80-120	17-AUG-13
Uranium (U)-Total			98.4		%		80-120	17-AUG-13
Vanadium (V)-Total			98.2		%		80-120	17-AUG-13
Zinc (Zn)-Total			99.2		%		80-120	17-AUG-13
WG1727898-1 MB			0.0000				0.000	
Aluminum (Al)-Total			<0.0030		mg/L		0.003	16-AUG-13
Antimony (Sb)-Total			<0.00010		mg/L		0.0001	16-AUG-13
Arsenic (As)-Total			<0.00010)	mg/L		0.0001	16-AUG-13

		Workorder:	L134778	1	Report Date: 2	3-AUG-13	Pa	ge 3 of 1 ⁻
ſest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2673800								
WG1727898-1 MB								
Beryllium (Be)-Total			<0.00050	_	mg/L		0.0005	16-AUG-13
Bismuth (Bi)-Total			<0.000050)	mg/L		0.00005	16-AUG-13
Boron (B)-Total			<0.010	_	mg/L		0.01	16-AUG-13
Cadmium (Cd)-Total			<0.000010)	mg/L		0.00001	16-AUG-13
Calcium (Ca)-Total			<0.020		mg/L		0.02	16-AUG-13
Chromium (Cr)-Total			<0.00010		mg/L		0.0001	16-AUG-13
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	16-AUG-13
Copper (Cu)-Total			<0.00010		mg/L		0.0001	16-AUG-13
Iron (Fe)-Total			<0.010		mg/L		0.01	16-AUG-13
Lead (Pb)-Total			<0.000050)	mg/L		0.00005	16-AUG-13
Lithium (Li)-Total			<0.0050		mg/L		0.005	16-AUG-13
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	16-AUG-13
Manganese (Mn)-Total			<0.000050	0	mg/L		0.00005	16-AUG-13
Molybdenum (Mo)-Tota	I		<0.000050)	mg/L		0.00005	16-AUG-13
Nickel (Ni)-Total			<0.00010		mg/L		0.0001	16-AUG-13
Phosphorus (P)-Total			<0.30		mg/L		0.3	16-AUG-13
Potassium (K)-Total			<0.050		mg/L		0.05	16-AUG-13
Selenium (Se)-Total			<0.00010		mg/L		0.0001	16-AUG-13
Silicon (Si)-Total			<0.050		mg/L		0.05	16-AUG-13
Silver (Ag)-Total			<0.000010)	mg/L		0.00001	16-AUG-13
Sodium (Na)-Total			<0.050		mg/L		0.05	16-AUG-13
Strontium (Sr)-Total			<0.00010		mg/L		0.0001	16-AUG-13
Thallium (TI)-Total			<0.000050)	mg/L		0.00005	16-AUG-13
Tin (Sn)-Total			<0.00010		mg/L		0.0001	16-AUG-13
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	16-AUG-13
Uranium (U)-Total			<0.000010	D	mg/L		0.00001	16-AUG-13
Zinc (Zn)-Total			<0.0030		mg/L		0.003	16-AUG-13
WG1727898-2 MB								
Aluminum (Al)-Total			<0.0030		mg/L		0.003	17-AUG-13
Antimony (Sb)-Total			<0.00010		mg/L		0.0001	17-AUG-13
Arsenic (As)-Total			<0.00010		mg/L		0.0001	17-AUG-13
Barium (Ba)-Total			0.000077	В	mg/L		0.00005	17-AUG-13
Beryllium (Be)-Total			<0.00050		mg/L		0.0005	17-AUG-13
Bismuth (Bi)-Total			<0.000050)	mg/L		0.00005	17-AUG-13

		Workorder:	L1347781		Report Date: 2	3-AUG-13	Pa	ge 4 of 1
lest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2673800								
WG1727898-2 MB			0.040					
Boron (B)-Total			<0.010		mg/L		0.01	17-AUG-13
Cadmium (Cd)-Total			<0.000010		mg/L		0.00001	17-AUG-13
Calcium (Ca)-Total			<0.020		mg/L		0.02	17-AUG-13
Chromium (Cr)-Total			<0.00010		mg/L		0.0001	17-AUG-13
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	17-AUG-13
Copper (Cu)-Total			<0.00010		mg/L		0.0001	17-AUG-13
Iron (Fe)-Total			<0.010		mg/L		0.01	17-AUG-13
Lead (Pb)-Total			<0.000050		mg/L		0.00005	17-AUG-13
Lithium (Li)-Total			<0.0050		mg/L		0.005	17-AUG-13
Magnesium (Mg)-Total			<0.0050	-	mg/L		0.005	17-AUG-13
Manganese (Mn)-Total			0.000182	В	mg/L		0.00005	17-AUG-13
Molybdenum (Mo)-Total			<0.000050	1	mg/L		0.00005	17-AUG-13
Nickel (Ni)-Total			<0.00010		mg/L		0.0001	17-AUG-13
Phosphorus (P)-Total			<0.30		mg/L		0.3	17-AUG-13
Potassium (K)-Total			<0.050		mg/L		0.05	17-AUG-13
Selenium (Se)-Total			<0.00010		mg/L		0.0001	17-AUG-13
Silicon (Si)-Total			<0.050		mg/L		0.05	17-AUG-13
Silver (Ag)-Total			<0.000010	1	mg/L		0.00001	17-AUG-13
Sodium (Na)-Total			<0.050		mg/L		0.05	17-AUG-13
Strontium (Sr)-Total			<0.00010		mg/L		0.0001	17-AUG-13
Thallium (TI)-Total			<0.000050	1	mg/L		0.00005	17-AUG-13
Tin (Sn)-Total			<0.00010		mg/L		0.0001	17-AUG-13
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	17-AUG-13
Uranium (U)-Total			<0.000010	1	mg/L		0.00001	17-AUG-13
Vanadium (V)-Total			0.00022	MB-L	OR mg/L		0.0001	17-AUG-13
Zinc (Zn)-Total			<0.0030		mg/L		0.003	17-AUG-13
Batch R2674438								
WG1728243-5 DUP Aluminum (Al)-Total		L1347781-1 0.019	0.017		mg/L	9.3	20	18-AUG-13
Antimony (Sb)-Total		<0.00050	<0.00050	RPD	-	N/A	20	18-AUG-13
Arsenic (As)-Total		0.0692	0.0672		mg/L	3.0	20	18-AUG-13
Barium (Ba)-Total		0.0169	0.0162		mg/L	4.1	20	18-AUG-13
Beryllium (Be)-Total		<0.0025	<0.0025	RPD	-	N/A	20	18-AUG-13
Bismuth (Bi)-Total		<0.00025	<0.00025	RPD		N/A	20	18-AUG-13

		Workorder:	L1347781	Re	port Date: 2	23-AUG-13	P	age 5 of 11
Fest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2674438	5							
WG1728243-5 DUP Boron (B)-Total		L1347781-1 <0.050	<0.050	RPD-NA	mg/L	N/A	20	18-AUG-13
Cadmium (Cd)-Total		<0.000050	<0.000050		mg/L	N/A	20	18-AUG-13
Calcium (Ca)-Total		133	141		mg/L	6.0	20	18-AUG-13
Chromium (Cr)-Total		0.00055	<0.00050	RPD-NA	mg/L	0.0 N/A	20	18-AUG-13
Cobalt (Co)-Total		0.00343	0.00341		mg/L	0.5	20	18-AUG-13
Copper (Cu)-Total		0.00201	0.00201		mg/L	0.3	20	18-AUG-13
Iron (Fe)-Total		1.86	1.82		mg/L	2.1	20	18-AUG-13
Lead (Pb)-Total		<0.00025	< 0.00025	RPD-NA	mg/L	N/A	20	18-AUG-13
Lithium (Li)-Total		<0.025	<0.025	RPD-NA	mg/L	N/A	20	18-AUG-13
Magnesium (Mg)-Total		10.2	9.94		mg/L	2.7	20	18-AUG-13
Manganese (Mn)-Total		0.150	0.145		mg/L	2.7	20	18-AUG-13
Molybdenum (Mo)-Tota	al	0.00186	0.00190		mg/L	2.3	20	18-AUG-13
Nickel (Ni)-Total		0.00699	0.00677		mg/L	3.1	20	18-AUG-13
Phosphorus (P)-Total		<1.5	<1.5	RPD-NA	mg/L	N/A	20	18-AUG-13
Potassium (K)-Total		7.08	6.84		mg/L	3.6	20	18-AUG-13
Selenium (Se)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	18-AUG-13
Silicon (Si)-Total		0.33	0.34		mg/L	3.8	20	18-AUG-13
Silver (Ag)-Total		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	18-AUG-13
Sodium (Na)-Total		36.3	35.1		mg/L	3.2	20	18-AUG-13
Strontium (Sr)-Total		0.208	0.207		mg/L	0.5	20	18-AUG-13
Thallium (TI)-Total		<0.00025	<0.00025	RPD-NA	mg/L	N/A	20	18-AUG-13
Tin (Sn)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	18-AUG-13
Titanium (Ti)-Total		0.0087	0.0080		mg/L	8.4	20	18-AUG-13
Uranium (U)-Total		0.000227	0.000236		mg/L	4.1	20	18-AUG-13
Vanadium (V)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	18-AUG-13
Zinc (Zn)-Total		<0.015	<0.015	RPD-NA	mg/L	N/A	20	18-AUG-13
WG1728243-4 LCS Aluminum (Al)-Total			97.8		%		80-120	18-AUG-13
Antimony (Sb)-Total			102.7		%		80-120	18-AUG-13
Arsenic (As)-Total			100.6		%		80-120	18-AUG-13
Barium (Ba)-Total			96.1		%		80-120	18-AUG-13
Beryllium (Be)-Total			96.6		%		80-120	18-AUG-13
Bismuth (Bi)-Total			98.7		%		80-120	18-AUG-13
Boron (B)-Total			92.6		%		80-120	18-AUG-13

		Workorder			Report Date: 2			ge 6 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2674438								
WG1728243-4 LCS Cadmium (Cd)-Total			99.0		%		80-120	18-AUG-13
Calcium (Ca)-Total			97.6		%		80-120	18-AUG-13
Chromium (Cr)-Total			98.5		%		80-120	18-AUG-13
Cobalt (Co)-Total			95.0		%		80-120	18-AUG-13
Copper (Cu)-Total			95.6		%		80-120	18-AUG-13
Iron (Fe)-Total			90.8		%		80-120	18-AUG-13
Lead (Pb)-Total			104.6		%		80-120	18-AUG-13
Lithium (Li)-Total			103.3		%		80-120	18-AUG-13
Magnesium (Mg)-Total			102.6		%		80-120	18-AUG-1
Manganese (Mn)-Total			98.7		%		80-120	18-AUG-13
Molybdenum (Mo)-Tota	I		98.1		%		80-120	18-AUG-1
Nickel (Ni)-Total			96.1		%		80-120	18-AUG-1
Potassium (K)-Total			92.0		%		80-120	18-AUG-1
Selenium (Se)-Total			103.4		%		80-120	18-AUG-1
Silicon (Si)-Total			99.0		%		80-120	18-AUG-1
Silver (Ag)-Total			96.4		%		80-120	18-AUG-1
Sodium (Na)-Total			104.2		%		80-120	18-AUG-13
Strontium (Sr)-Total			94.9		%		80-120	18-AUG-1
Thallium (TI)-Total			101.9		%		80-120	18-AUG-1:
Tin (Sn)-Total			92.8		%		80-120	18-AUG-1:
Titanium (Ti)-Total			92.4		%		80-120	18-AUG-1:
Uranium (U)-Total			101.7		%		80-120	18-AUG-1
Vanadium (V)-Total			95.0		%		80-120	18-AUG-13
Zinc (Zn)-Total			97.8		%		80-120	18-AUG-13
WG1728243-2 MB								
Aluminum (Al)-Total			<0.0030		mg/L		0.003	18-AUG-13
Antimony (Sb)-Total			<0.00010		mg/L		0.0001	18-AUG-1
Arsenic (As)-Total			<0.00010		mg/L		0.0001	18-AUG-13
Barium (Ba)-Total			<0.00005		mg/L		0.00005	18-AUG-13
Beryllium (Be)-Total			<0.00050		mg/L		0.0005	18-AUG-1
Bismuth (Bi)-Total			<0.00005	0	mg/L		0.00005	18-AUG-1
Boron (B)-Total			<0.010	-	mg/L		0.01	18-AUG-13
Cadmium (Cd)-Total			<0.00001	0	mg/L		0.00001	18-AUG-13
Calcium (Ca)-Total			<0.020		mg/L		0.02	18-AUG-13

		Workorder:	L1347781		Report Date: 2	3-AUG-13	Pa	ge 7 of 1
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2674438								
WG1728243-2 MB Chromium (Cr)-Total			<0.00010		mg/L		0.0001	18-AUG-13
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	18-AUG-13
Copper (Cu)-Total			<0.00010		mg/L		0.0001	18-AUG-13
Iron (Fe)-Total			<0.010		mg/L		0.01	18-AUG-13
Lead (Pb)-Total			<0.000050	1	mg/L		0.00005	18-AUG-13
Lithium (Li)-Total			<0.0050		mg/L		0.005	18-AUG-13
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	18-AUG-13
Manganese (Mn)-Total			<0.000050	1	mg/L		0.00005	18-AUG-13
Molybdenum (Mo)-Total			<0.000050	1	mg/L		0.00005	18-AUG-13
Nickel (Ni)-Total			<0.00010		mg/L		0.0001	18-AUG-13
Phosphorus (P)-Total			<0.30		mg/L		0.3	18-AUG-13
Potassium (K)-Total			<0.050		mg/L		0.05	18-AUG-13
Selenium (Se)-Total			<0.00010		mg/L		0.0001	18-AUG-13
Silicon (Si)-Total			<0.050		mg/L		0.05	18-AUG-13
Silver (Ag)-Total			<0.000010	1	mg/L		0.00001	18-AUG-13
Sodium (Na)-Total			<0.050		mg/L		0.05	18-AUG-13
Strontium (Sr)-Total			<0.00010		mg/L		0.0001	18-AUG-13
Thallium (TI)-Total			<0.000050	1	mg/L		0.00005	18-AUG-13
Tin (Sn)-Total			<0.00010		mg/L		0.0001	18-AUG-13
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	18-AUG-13
Uranium (U)-Total			<0.000010	1	mg/L		0.00001	18-AUG-13
Vanadium (V)-Total			<0.00010		mg/L		0.0001	18-AUG-13
Zinc (Zn)-Total			<0.0030		mg/L		0.003	18-AUG-13
NH3-CFA-ED	Water							
Batch R2676584								
WG1730699-2 LCS Ammonia, Total (as N)			94.9		%		85-115	21-AUG-13
WG1730699-1 MB Ammonia, Total (as N)			<0.050		mg/L		0.05	21-AUG-13
WG1730699-4 MS Ammonia, Total (as N)		L1350041-1	94.3		%		75-125	21-AUG-13
WG1730699-7 MS Ammonia, Total (as N)		L1348457-2	98.1		%		75-125	21-AUG-13
NO2-IC-ED	Water							

NO2-IC-ED

Water

			Workorder:	L134778	- 1	Report Date: 2	3-AUG-13	Pa	ge 8 of 1
ſest		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO2-IC-ED		Water							
Batch R2	2673849								
WG1727633-2 Nitrite (as N)	LCS			91.0		%		90-110	15-AUG-13
WG1727633-1 Nitrite (as N)	MB			<0.050		mg/L		0.05	16-AUG-13
WG1727633-6 Nitrite (as N)	MS		L1347157-3	107.9		%		75-125	15-AUG-13
WG1727633-8 Nitrite (as N)	MS		L1347961-2	110.9		%		75-125	15-AUG-13
Batch R2	2677823								
WG1728457-2 Nitrite (as N)	LCS			98.4		%		90-110	16-AUG-13
WG1728457-1 Nitrite (as N)	MB			<0.050		mg/L		0.05	16-AUG-13
WG1728457-4 Nitrite (as N)	MS		L1347921-10	105.3		%		75-125	16-AUG-13
WG1728457-6 Nitrite (as N)	MS		L1348020-8	97.9		%		75-125	16-AUG-13
NO3-IC-ED		Water							
Batch R2	2673849								
WG1727633-2 Nitrate (as N)	LCS			103.7		%		90-110	15-AUG-13
WG1727633-1 Nitrate (as N)	MB			<0.050		mg/L		0.05	16-AUG-13
WG1727633-6 Nitrate (as N)	MS		L1347157-3	103.1		%		75-125	15-AUG-13
WG1727633-8 Nitrate (as N)	MS		L1347961-2	99.8		%		75-125	15-AUG-13
Batch R2	2677823								
WG1728457-2 Nitrate (as N)	LCS			94.6		%		90-110	16-AUG-13
WG1728457-1 Nitrate (as N)	MB			<0.050		mg/L		0.05	16-AUG-13
WG1728457-4 Nitrate (as N)	MS		L1347921-10	94.0		%		75-125	16-AUG-13
WG1728457-6 Nitrate (as N)	MS		L1348020-8	94.6		%		75-125	16-AUG-13
PH-ED		Water							

		Workorder	: L134778	51	Report Date: 2	3-AUG-13	Pa	ge 9 of 11
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH-ED Batch R2673710 WG1727932-3 LCS рН	Water		7.03		рН		6.9-7.1	16-AUG-13
SOLIDS-TOTSUS-ED Batch R2673779 WG1727768-2 LCS	Water							
Total Suspended Solids	5		102.0		%		85-115	16-AUG-13
WG1727768-1 MB Total Suspended Solids	6		<3.0		mg/L		3	16-AUG-13
Batch R2674375 WG1727906-2 LCS Total Suspended Solids			98.0		%		85-115	16-AUG-13
WG1727906-1 MB Total Suspended Solids	5		<3.0		mg/L		3	16-AUG-13

Workorder: L1347781

Report Date: 23-AUG-13

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
В	Method Blank exceeds ALS DQO. All associated sample results are at least 5 times greater than blank levels and are considered reliable.
J	Duplicate results and limits are expressed in terms of absolute difference.
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1347781

Report Date: 23-AUG-13

Page 11 of 11

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
рН							
	1	12-AUG-13 21:15	16-AUG-13 10:27	0.25	85	hours	EHTR-FM
	4	13-AUG-13 15:00	16-AUG-13 10:30	0.25	67	hours	EHTR-FM
	7	14-AUG-13 09:00	16-AUG-13 10:23	0.25	49	hours	EHTR-FM
Anions and Nutrients							
Nitrate as N by IC							
	1	12-AUG-13 21:15	16-AUG-13 08:00	48	83	hours	EHTL
	4	13-AUG-13 15:00	16-AUG-13 08:00	48	65	hours	EHTL
	7	14-AUG-13 09:00	16-AUG-13 15:35	48	54	hours	EHT
Nitrite as N by IC							
	1	12-AUG-13 21:15	16-AUG-13 08:00	48	83	hours	EHTL
	4	13-AUG-13 15:00	16-AUG-13 08:00	48	65	hours	EHTL
	7	14-AUG-13 09:00	16-AUG-13 15:35	48	54	hours	EHT
	,			10	51	neuro	<u> </u>

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1347781 were received on 14-AUG-13 16:35.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Charles Carlo Andre Andread Carlo Andread Carlo Andread Carlo Andread Charles Andread Charles Protein Andread	toot Too	Report Fo	Report Format / Distribution	tion		Service Redu	lested (Rush for	Service Requested (Rush for routine analysis subject to availability)	ct to availability		
Juli URANG Matrix Extendent Date An Decken Mark Email 2: + Dec Read Date Date Example of a (A a (and	Personal Property	inter Button Park			
M. B C & Kin Mark Mark Mark Mark Days Days Days Charler A and Mark Fax: Email 1: c.p. row YOC eANIFECALL. C.C. Email 1: c.p. row YOC eANIFECALL. C.C. 5531-271-271-271-5 Email 1: c.p. row YOC eANIFECALL. C.C. Same as Report? Tres R.N. Same as Report? Tres R.N. Invoice with Report? Tres Row Andrew Invoice with Report? List List Sample Identification Invoice with Recentlation List C.Allearrie Sample Type Infine This description will appear on the report) 12/05/13 3.1:00 EFF 138 EFF 138 13/05/13 3.1:00 Worker EFF 130 EFF 130 13/05/13 3.1:00 Worker EFF 2003 EFF 2003 13/05/13 3.1:00 Worker EFF 2003 13/05/13 <td>BUL</td> <td>Standard</td> <td></td> <td>(</td> <td>1</td> <td>() regular (Sta</td> <td>Indarg Lumaround</td> <td>(sken ssausng - saus</td> <td></td> <td></td>	BUL	Standard		(1	() regular (Sta	Indarg Lumaround	(sken ssausng - saus			
Carva eye Carva eye Email 1: C. p. cov Y@ e. Nutrecou c. c. $945n1$ $045nic$ 127 Email 2: Hoc for	a	N PDF	Excel	Digital		C Priority (2-4	Business Days) - 50	% Surcharge - Contact A	S to Confirm TAT	1	
run frain Common fragment Email 2. Hoc C. REIAL Jow. Dillocome 10. Commonson Common all structures Ensure strangent Tex. Email 2. Hoc C. REIAL Jow. Dillocome 10. Email 2. Hoc C. Reial 2. Hoc Reial 2.	tuj	Email 1: C		ENVITEDL	1. Cov	K Emergency (1-2 Bus, Days) - 10	1% Surcharge - Contact /	LS to Confirm TA	7	
	1 252 martin Outania	Email 2: +	200		Co. C	C Same Day or	r Weekend Emergen	cy - Contact ALS to Confi	m TAT		
as Report? with Report? with Report? with Report? with Report Press indicate below Filtered, Press indit Litered, Standarda Andulle Lit	J- 2775 Fax:	Email 3:					Ana	ysis Request			
17 □ res □ to 100 # 100 # 17 □ res □ to 100 # 100 # 17 □ res □ to 100 mole # 17 □ res □ res □ to 100 mole # 17 □ res □ res □ to 100 mole # 17 □ res □ re	e as Report ?	Client / Pn	oject Informati	uo		Please indic	ate below Filten	ed, Preserved or bot	h (F. P. F/P)	0	
POLAFE: POLAFE: POLAFE: POLAFE: POLAFE: Rec13 Vilouén (k. M. XIA 2011 ISD: ISD: </td <td>T Yes</td> <td>Job #:</td> <td></td> <td></td> <td></td> <td>(u)</td> <td></td> <td></td> <td></td> <td>-</td>	T Yes	Job #:				(u)				-	
Tax(53 Killuz kin/k MT XH 2NI) LSD Tax(53 Killuz kin/k MT XH 2NI) LSD Fax(53 Killuz kin/k MT XH 2NI) LSD Fax(53 Killuz kin/k MT XH 2NI) LUBE # L13H171 & Londer: LULSH178 Sample Identification LLSH171 & Libraria Sample Identification LLSH171 & Libraria Sample Identification LLSH178 This description will appear on the report) 2/05/13 2/05/13 2/10 2/05/13 3/10 2/05/13 3/10 2/10 X X X X 13/05/13 3/10 13/05/13 3/10 13/05/13 3/10 13/05/13 3/10 13/05/13 3/10 13/05/13 3/10 13/05/13 3/10 13/05/13 3/10 13/05/13 3/10 13/05/13 3/10 13/05/13 3/10 13/05/13 3/10 11 11/12	1	PO / AFE				2.71	L			-	
Tax(53 Ml/auk/n // X/A 2/N1 Contact: Sampler: ALS Cubes/ne Fax(547) (6.91-9/180) Quote # 1 L134171 & L ALS Cubes/ne 8 Sample Identification Date Imme 1 Date Time Sample ryae 1 Sample Identification Imme Sample ryae 1 Sample ryae Sample ryae Sample ryae 1 Sample ryae Sample r	1.1000	-SD-		ļ		79	100		_		
Enclose in the section of the sect	11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5				0%	rey t		-	SI	
L13H77 B1 ALS Culture ite Sampler: Alx xouldrax H & youldrax Sample Identification Bate Dute ite Number Noe H & youldray Sample Identification Interesting Dute ite Number Noe H & youldray (This description will appear on the report) Contact: Evanistic Sample identification Interesting (This description will appear on the report) 205113 2.1:15 Surface X X X (S 3:00 Unable: X X X X X X X X (S 3:00 Unable: X X X X X X X X (S 3:00 Unable: X X X X X X X X X (S 3:00 Unable: X X X X X X X X (S 3:00 X : 00 X X X X X X X X (S 3:00 Unable: 1:00 X (S 3:00 X : 00 X X X X X X X X (S 3:00 X : 00 X : 00 X (S 1:00 X : 00 X : 00 X : 00 (S 1:00 X : 00 X : 00 X : 00 (S 1:00 X : 00 X : 00 X : 00 (S 1:00 X :	Fax(864) (46,9-94)	Ouote #				75	14 -			enist	
Buse only L U J H I & I Contact: Evants to antipet: Dubets Time Sample Identification This description will appear on the report) Bate Time Sample IVpe C & A A EFF 138 EFF 138 21/15 Surface X X X A EFF 134 21/05 31/05 Uvector A A EFF 134 31/05 31/05 Vector X X X A EFF 130 EFF 130 31/05 31/05 Vector X X X EFF 2007 EFF 2007 31/05 31/05 X X X X X EFF 2007 EFF 2008 31/05 31/05 31/05 X EFF 2007 EFF 2008 31/05 31/05 31/05 X EFF 2007 EFF 2008 31/05 31/05 31/05 X EFF 2007 51/0 X X X X X X EFF 2008 51/05 31/05 31/05 31/05 11/05 EFF 2008 EFF 2018 11/05 11/05 11/05 11/05 Social Linetructions Matter or land use (COME-Freshwater Aquatic Lifeliot CSR - CommercialAB Tire 1 - Natural, etc) / Hazardous Betallal		ALS Cat	Jurite	AV AV	exandra	no ti	oiuc P			Con	
Sample Identification Date Time Sample Type Classification (This description will appear on the report) (denominy) (denominy) (denominy) EFF 138 (This description will appear on the report) 12/05/13 2.1:15 Surflote EFF 134 (above the report) 13/63/13 3:00 Uncodes No EFF 130 (EFF 130 13/63/13 3:00 Uncodes No EFF 130 (EFF 20)3 3:100 No No No EFF 2013 3:00 X X X X EFF 2014 (Up 63/13) 3:00 X X X Statistic 3:00 X X X X EFF 2014 (Up 63/13) 3:00 X X X EFF 2014 (Up 63/13) 3:00 X X X Statistic (Up 63/13) 3:00 (Up 14000000000000000000000000000000000000		Contact:	Evanisto	Sampler:	Juchesne	1 d	nno no			to te	
EFE138 Constrained of the report 2/09/13 2/1/5 Nutburg K<	ple		Date Idd-mmm-vvl	Time	Sample Type	1949 155	107.	- -	-	quin	
84 368/13 3:00 wether 1 190 13/08/13 5:00 wether 1 196 13/08/13 5:00 wether 1 196 13/08/13 15:00 wether 1 20.7 13/08/13 3:00 1 x x 20.8 113/08/13 3:00 1 x x x 20.7 20.8 3:00 1 x <	FECIDO		108/1	21:15	Suchra	m 文 上 ン	X			25	
190 13/68/13 13/68/13 13/68/13 13/68/13 13/68/13 13/68/13 13/68/13 13/68/13 13/68/13 13/68/13 13/68/13 10/6	CIT 1 P 8		116-31	3:00	water					5	
F19L6 13/05/13 15/16/13 15/16/13 15/16/13 15/16/13 15/16/13 15/16/13 15/16/13 16/16/13 <th 16<="" td=""><td>1.5.10</td><td></td><td>1801</td><td>9:00</td><td>1</td><td></td><td></td><td>134</td><td></td><td>5</td></th>	<td>1.5.10</td> <td></td> <td>1801</td> <td>9:00</td> <td>1</td> <td></td> <td></td> <td>134</td> <td></td> <td>5</td>	1.5.10		1801	9:00	1			134		5
F203 13/68/13 21:00 13/68/13 21:00 10 10 F203 10 11/68/13 3:00 X <x th=""> X<x< th=""> N 03 03 F203 214 11/68/13 3:00 X X X N 03</x<></x>	FEF196		1/2	15:00	-	XXX	CX	1778		5	
208 208 14/08/13 3:00 14/08/13 3:00 214 30 3:00 214 30 3:00 214 30 3:00 214 30 3:00 214 20 20 20 20 20 20 20 20 20 20 20 20 20	EFE LOW		1	21:00	-					5	
C 2/14 7:00 X X 0 C 2/14 10 1 1 1 C 2/14 100 1 1 1 C 2/14 100 1 1 1 Special Instructions / Reculations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardous Details	11		0					OF		5	
Shacial Instructions / Reculations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardous Details	Lu		14/63/13	19-5			X			N	
Shacial Instructions / Reculations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardous Details			E								
Special Instructions / Reculations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardous Details									1	1211	
Special Instructions / Regulations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardous Details									4	11.	
Snecial Instructions / Regulations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardous Details							F	1.1.1.1			
	Special Instructions / Regulations with water or lan	nd use (CCMB	E-Freshwater A	Aquatic Life/BC	CSR - Commerc	ial/AB Tier 1 -	Natural, etc) /	fazardous Details			
	Failure to complete al By the use of this form the user ackn	Il portions of nowledges ar		delay analysis the Terms and	. Please fill in th Conditions as p	is form LEGIB rovided on a s	LY. separate Excel	ab,			
	Also provided on another Excel tab are the ALS locatio SHIPMENT RELEASE (client use)	on addresses, SHIPN		ers and sample ON (lab use on	container / pres	ervation / hold	ling time table SHIPMENT VEF	or common analys IFICATION (lab use	tes.		
Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIE are of this form the user acknowledges and agrees with the Terms and Conditions as provided on a sceled tab are the ALS location addresses, phone numbers and sample container / preservation / hole use) are the ALS location addresses, phone numbers and sample container / preservation / hole use)	Date (dt-mm-yy) Time (hh-mm)	10 Ju	Date: 14 H	Time: 24:250	Temperatu Mo-413	Verified by:	Date:	Time:	Observatio Yes / No ?	Suc	
Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. se of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. xcel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. use) SHIPMENT RECEPTION (lab use only) Time (m-mm) Received by: Date: Date: Model 3. Date:	00-12 North 0100 14-09-15 17:00	101	L'INTE LANAL I	1					the second	U	

COC #

WESA Inc. ATTN: Tim Beckenham / Melanie St-Jean 4 Cataraqui Street The Tower Kingston ON K7K 1Z7 Date Received:19-AUG-13Report Date:03-SEP-13 14:34 (MT)Version:FINAL REV. 3

Client Phone: 613-531-2725

Certificate of Analysis

Lab Work Order #: L1349723

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED ABORIGINAL 15929

Comments: ADDITIONAL 30-AUG-13 13:35

L1349723-1, -2, -5, -6 and -8; There was a uploading problem with original metals data, correct data has now been imported to report. Metals data for L1349723-3 all confirmed recheck, except for Zinc, correct result for Zinc has been added to report. Metals data for L1349723-4 all confirmed recheck.

3

31-AUG-13: .. 03-SEP-13: Fixed sample date and time on L1349723-9, -12 and -22 as well as added metals results back on L1349723-8

Catherine Evaristo-Cordero Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 9936-67 Avenue, Edmonton, AB T6E 0P5 Canada | Phone: +1 780 413 5227 | Fax: +1 780 437 2311 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1349723 CONTD.... PAGE 2 of 6 03-SEP-13 14:34 (MT) Version: FINAL REV. 3

						ION: FINAL REV
	Sample ID Description Sampled Date Sampled Time Client ID	L1349723-1 Surface Water 15-AUG-13 09:00 EFF234	L1349723-2 Surface Water 16-AUG-13 10:15 EFF253	L1349723-3 Surface Water 17-AUG-13 09:00 EFF272	L1349723-4 Surface Water 17-AUG-13 15:00 EFF278	L1349723-5 Surface Water 18-AUG-13 15:00 EFF289
Grouping	Analyte					
WATER						
Physical Tests	рН (рН)	8.01	7.97	8.02	8.03	8.00
•	Total Suspended Solids (mg/L)	21.0	7.0	7.0	6.0	10.0
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.082	0.094	0.095	0.103	0.156
	Nitrate (as N) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Nitrite (as N) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
Total Metals	Aluminum (AI)-Total (mg/L)	0.017	0.021	0.019	olm<0.015	0.016
	Antimony (Sb)-Total (mg/L)	olum <0.00050	O.00050	olum <0.00050	olum <0.00050	ol.00050
	Arsenic (As)-Total (mg/L)	о.0546	0.0464	0.0510	0.0471	0.0324
	Barium (Ba)-Total (mg/L)	DLM 0.0180	0.0182	0.0199	0.0192	0.0189
	Beryllium (Be)-Total (mg/L)	ol.0025	<0.0025	<0.0025	ol.0025	ol.0025
	Bismuth (Bi)-Total (mg/L)	DLM <0.00025	O.00025	<0.00025	<0.00025	DLM <0.00025
	Boron (B)-Total (mg/L)	<0.050	olum <0.050	olum<0.050	<0.050	olm<0.050
	Cadmium (Cd)-Total (mg/L)	<0.000050	OLM <0.000050	olum <0.000050	DLM <0.000050	DLM <0.000050
	Calcium (Ca)-Total (mg/L)	DLM 140	DLM 149	DLM 146	DLM 150	DLM 156
	Chromium (Cr)-Total (mg/L)	<0.00050	OLM <0.00050	0.00051	<0.00050	ol.00050
	Cobalt (Co)-Total (mg/L)	0.00296	0.00314	0.00310	0.00299	DLM 0.00301
	Copper (Cu)-Total (mg/L)	0.00177	0.00152	0.00142	0.00130	0.00119
	Iron (Fe)-Total (mg/L)	2.05 DLM	DLM 1.97	2.09 DLM	DLM 1.88	^{DLM} 1.93
	Lead (Pb)-Total (mg/L)	ol.00025	olum <0.00025	<0.00025	<0.00025	ol.00025
	Lithium (Li)-Total (mg/L)	olum <0.025	olum <0.025	olum	DLM <0.025	DLM <0.025
	Magnesium (Mg)-Total (mg/L)	DLM 10.4	DLM 10.4	^{DLM} 11.5	^{DLM} 10.4	^{DLM} 12.0
	Manganese (Mn)-Total (mg/L)	DLM 0.0986	0.117	0.134	0.130	0.130
	Molybdenum (Mo)-Total (mg/L)	DLM 0.00194	0.00192	0.00203	0.00185	о.00157
	Nickel (Ni)-Total (mg/L)	0.00657	0.00682	0.00650	0.00658	DLM 0.00622
	Phosphorus (P)-Total (mg/L)	<1.5	<1.5	<1.5	_{DLM}	^{DLM}
	Potassium (K)-Total (mg/L)	7.59 DLM	DLM 7.53	^{DLM} 7.71	DLM 7.25	7.65 DLM
	Selenium (Se)-Total (mg/L)	ol.00050	DLM <0.00050	olum <0.00050	olimet 20.00050	DLM <0.00050
	Silicon (Si)-Total (mg/L)	0.31	0.33 DLM	0.34	0.32	0.30 DLM
	Silver (Ag)-Total (mg/L)	DLM <0.000050	OLM <0.000050	ol.000050	DLM <0.000050	olim <0.000050
	Sodium (Na)-Total (mg/L)	олы армания 39.4	39.0 DLM	39.4 DLM	36.5	DLM 42.2
	Strontium (Sr)-Total (mg/L)	0.222 DLM	0.236	0.244	0.238	0.272
	Thallium (TI)-Total (mg/L)	DLM <0.00025	DLM <0.00025	olum <0.00025	DLM <0.00025	DLM <0.00025
	Tin (Sn)-Total (mg/L)	DLM <0.00050	DLM <0.00050	olum <0.00050	DLM <0.00050	ol.00050
	Titanium (Ti)-Total (mg/L)	DLM 0.0083	DLM 0.0084	DLM 0.0093	DLM 0.0092	DLM 0.0082
	Uranium (U)-Total (mg/L)	DLM 0.000240	0.000221	0.000283	DLM 0.000275	0.000240
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	олососос DLM <0.015	<0.015	<0.015	<0.015	<0.015

L1349723 CONTD.... PAGE 3 of 6 03-SEP-13 14:34 (MT) Version: FINAL REV. 3

					vers	ion: FINAL RE
	Sample ID Description Sampled Date Sampled Time Client ID	L1349723-6 Surface Water 19-AUG-13 09:20 EFF303	L1349723-7 Surface Water 15-AUG-13 09:00 TBLANK	L1349723-8 Surface Water 17-AUG-13 09:00 DUP11	L1349723-9 Water 15-AUG-13 21:30 EFF242	L1349723-12 Water 15-AUG-13 16:00 EFF239
Grouping	Analyte					
WATER						
Physical Tests	рН (рН)	7 70	0.45	7.00		
Thysical rests	Total Suspended Solids (mg/L)	7.72	6.15	7.96		
Anions and	Ammonia, Total (as N) (mg/L)	8.0	<3.0	9.0	<3.0	6.0
Nutrients		0.269	<0.050	0.104		
	Nitrate (as N) (mg/L)	<0.050	<0.050	<0.050		
	Nitrite (as N) (mg/L)	<0.050 _{DLM}	<0.050	<0.050		
Total Metals	Aluminum (Al)-Total (mg/L)	0.019	<0.0030	0.020		
	Antimony (Sb)-Total (mg/L)	<0.00050	<0.00010	<0.00050		
	Arsenic (As)-Total (mg/L)	0.0220	<0.00010	0.0526		
	Barium (Ba)-Total (mg/L)	DLM 0.0222	<0.000050	DLM 0.0188		
	Beryllium (Be)-Total (mg/L)	<0.0025	<0.00050	olum<0.0025		
	Bismuth (Bi)-Total (mg/L)	DLM <0.00025	<0.000050	<0.00025		
	Boron (B)-Total (mg/L)	olm<0.050	<0.010	<0.050		
	Cadmium (Cd)-Total (mg/L)	DLM <0.000050	<0.000010	olum <0.000050		
	Calcium (Ca)-Total (mg/L)	DLM 168	0.025	DLM 148		
	Chromium (Cr)-Total (mg/L)	DLM <0.00050	<0.00010	DLM <0.00050		
	Cobalt (Co)-Total (mg/L)	DLM 0.00492	<0.00010	о.00321		
	Copper (Cu)-Total (mg/L)	DLM 0.00096	<0.00010	DLM 0.00133		
	Iron (Fe)-Total (mg/L)	DLM 2.20	<0.010	DLM 2.21		
	Lead (Pb)-Total (mg/L)	<0.00025	<0.000050	<0.00025		
	Lithium (Li)-Total (mg/L)	<0.025	<0.0050	<0.00020 DLM <0.025		
	Magnesium (Mg)-Total (mg/L)	13.8	<0.0050	ULM 11.1		
	Manganese (Mn)-Total (mg/L)	0.220	<0.000050	0.130		
	Molybdenum (Mo)-Total (mg/L)	0.220 DLM 0.00098	<0.000050	0.130 DLM 0.00193		
	Nickel (Ni)-Total (mg/L)	0.00098 DLM 0.00907	<0.00010	0.00193 DLM 0.00719		
	Phosphorus (P)-Total (mg/L)	0.00907 DLM <1.5	<0.30	DLM		
	Potassium (K)-Total (mg/L)	DLM		<1.5		
	Selenium (Se)-Total (mg/L)	8.00 DLM	<0.050	7.68		
	Silicon (Si)-Total (mg/L)	<0.00050	<0.00010	<0.00050		
	Silver (Ag)-Total (mg/L)	0.39	< 0.050	0.34		
	Sodium (Na)-Total (mg/L)	<0.000050	<0.000010	<0.000050		
	Strontium (Sr)-Total (mg/L)	44.6	<0.050	39.5		
	Thallium (TI)-Total (mg/L)	0.294	<0.00010	0.245		
		<0.00025 DLM	<0.000050	<0.00025		
	Tin (Sn)-Total (mg/L)	<0.00050 DLM	<0.00010	<0.00050 DLM		
	Titanium (Ti)-Total (mg/L)	0.0088 DLM	<0.00030	0.0100 DLM		
	Uranium (U)-Total (mg/L)	0.000177 DLM	<0.000010	0.000244 DLM		
	Vanadium (V)-Total (mg/L)	<0.00050 _{DLM}	<0.00010	<0.00050		
	Zinc (Zn)-Total (mg/L)	<0.015	<0.0030	<0.015		

L1349723 CONTD.... PAGE 4 of 6 03-SEP-13 14:34 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L1349723-22 Water 15-AUG-13 15:00 EFF229		
Grouping	Analyte			
WATER				
Physical Tests	рН (рН)			
	Total Suspended Solids (mg/L)	<3.0		
Anions and Nutrients	Ammonia, Total (as N) (mg/L)			
	Nitrate (as N) (mg/L)			
	Nitrite (as N) (mg/L)			
Total Metals	Aluminum (AI)-Total (mg/L)			
	Antimony (Sb)-Total (mg/L)			
	Arsenic (As)-Total (mg/L)			
	Barium (Ba)-Total (mg/L)			
	Beryllium (Be)-Total (mg/L)			
	Bismuth (Bi)-Total (mg/L)			
	Boron (B)-Total (mg/L)			
	Cadmium (Cd)-Total (mg/L)			
	Calcium (Ca)-Total (mg/L)			
	Chromium (Cr)-Total (mg/L)			
	Cobalt (Co)-Total (mg/L)			
	Copper (Cu)-Total (mg/L)			
	Iron (Fe)-Total (mg/L)			
	Lead (Pb)-Total (mg/L)			
	Lithium (Li)-Total (mg/L)			
	Magnesium (Mg)-Total (mg/L)			
	Manganese (Mn)-Total (mg/L)			
	Molybdenum (Mo)-Total (mg/L)			
	Nickel (Ni)-Total (mg/L)			
	Phosphorus (P)-Total (mg/L)			
	Potassium (K)-Total (mg/L)			
	Selenium (Se)-Total (mg/L)			
	Silicon (Si)-Total (mg/L)			
	Silver (Ag)-Total (mg/L)			
	Sodium (Na)-Total (mg/L)			
	Strontium (Sr)-Total (mg/L)			
	Thallium (TI)-Total (mg/L)			
	Tin (Sn)-Total (mg/L)			
	Titanium (Ti)-Total (mg/L)			
	Uranium (U)-Total (mg/L)			
	Vanadium (V)-Total (mg/L)			
	Zinc (Zn)-Total (mg/L)			

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Duplicate	Aluminum (AI)-Total	DLM	L1349723-3, -4
Duplicate	Antimony (Sb)-Total	DLM	L1349723-3, -4
Duplicate	Arsenic (As)-Total	DLM	L1349723-3, -4
Duplicate	Barium (Ba)-Total	DLM	L1349723-3, -4
Duplicate	Beryllium (Be)-Total	DLM	L1349723-3, -4
Duplicate	Bismuth (Bi)-Total	DLM	L1349723-3, -4
Duplicate	Boron (B)-Total	DLM	L1349723-3, -4
Duplicate	Cadmium (Cd)-Total	DLM	L1349723-3, -4
Duplicate	Calcium (Ca)-Total	DLM	L1349723-3, -4
Duplicate	Chromium (Cr)-Total	DLM	L1349723-3, -4
Duplicate	Cobalt (Co)-Total	DLM	L1349723-3, -4
Duplicate	Copper (Cu)-Total	DLM	L1349723-3, -4
Duplicate	Iron (Fe)-Total	DLM	L1349723-3, -4
Duplicate	Lead (Pb)-Total	DLM	L1349723-3, -4
Duplicate	Lithium (Li)-Total	DLM	L1349723-3, -4
Duplicate	Magnesium (Mg)-Total	DLM	L1349723-3, -4
Duplicate	Manganese (Mn)-Total	DLM	L1349723-3, -4
Duplicate	Molybdenum (Mo)-Total	DLM	L1349723-3, -4
Duplicate	Nickel (Ni)-Total	DLM	L1349723-3, -4
Duplicate	Phosphorus (P)-Total	DLM	L1349723-3, -4
Duplicate	Potassium (K)-Total	DLM	L1349723-3, -4
Duplicate	Selenium (Se)-Total	DLM	L1349723-3, -4
Duplicate	Silicon (Si)-Total	DLM	L1349723-3, -4
Duplicate	Silver (Ag)-Total	DLM	L1349723-3, -4
Duplicate	Sodium (Na)-Total	DLM	L1349723-3, -4
Duplicate	Strontium (Sr)-Total	DLM	L1349723-3, -4
Duplicate	Thallium (TI)-Total	DLM	L1349723-3, -4
Duplicate	Tin (Sn)-Total	DLM	L1349723-3, -4
Duplicate	Titanium (Ti)-Total	DLM	L1349723-3, -4
Duplicate	Uranium (U)-Total	DLM	L1349723-3, -4
Duplicate	Vanadium (V)-Total	DLM	L1349723-3, -4
Duplicate	Zinc (Zn)-Total	DLM	L1349723-3, -4

Qualifiers for Individual Parameters Listed:

Qualifier Description

DLM	Detection Limit Adjusted For Sample Matrix Effects

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
MET-T-CCMS-ED	Water	Total Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A
NH3-CFA-ED	Water	Ammonia in Water by Colour	APHA 4500 NH3-NITROGEN (AMMONIA)
This analysis is carried of automated phenate colo			NTROGEN (AMMONIA)". Ammonia is determined using the
NO2-IC-ED	Water	Nitrite as N by IC	APHA 4110 B-ION CHROMATOGRAPHY
NO3-IC-ED	Water	Nitrate as N by IC	APHA 4110 B-ION CHROMATOGRAPHY
PH-ED	Water	pH	APHA 4500 H-Electrode
1 , , ,		or pH will have exceeded the 15 minute recomme curate results are needed)	ended hold time from time of sampling (field analysis is
	Water	Total Suspended Solids	APHA 2540 D-Gravimetric

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Reference Information

Laboratory Definition Code Laboratory Location

ED

ALS ENVIRONMENTAL - EDMONTON, ALBERTA, CANADA

Chain of Custody Numbers:

3

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample. mg/kg wwt - milligrams per kilogram based on wet weight of sample. mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample. mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L1349723 Report Date: 03-SEP-13 Page 1 of 9 WESA Inc. Client: 4 Cataraqui Street The Tower Kingston ON K7K 1Z7 Tim Beckenham / Melanie St-Jean Contact: RPD Test Matrix Reference Result Qualifier Units Limit Analyzed MET-T-CCMS-ED Water Batch R2676775 WG1730772-2 LCS Aluminum (Al)-Total 88.6 % 80-120 21-AUG-13 Antimony (Sb)-Total 100.4 % 80-120 21-AUG-13 Arsenic (As)-Total 103.4 % 80-120 21-AUG-13 Barium (Ba)-Total 92.0 % 80-120 21-AUG-13 Beryllium (Be)-Total 82.4 % 80-120 21-AUG-13 Bismuth (Bi)-Total 87.5 % 80-120 21-AUG-13 Boron (B)-Total 94.5 % 80-120 21-AUG-13 Cadmium (Cd)-Total 93.9 % 80-120 21-AUG-13 Calcium (Ca)-Total 89.5 % 80-120 21-AUG-13 Chromium (Cr)-Total 91.7 % 80-120 21-AUG-13 Cobalt (Co)-Total 91.1 % 80-120 21-AUG-13 Copper (Cu)-Total 89.7 % 80-120 21-AUG-13 Iron (Fe)-Total 89.4 % 80-120 21-AUG-13 Lead (Pb)-Total 86.1 % 80-120 21-AUG-13 Lithium (Li)-Total 80.5 % 80-120 21-AUG-13 Magnesium (Mg)-Total 94.1 % 80-120 21-AUG-13 Manganese (Mn)-Total 89.4 % 80-120 21-AUG-13 Molybdenum (Mo)-Total 98.7 % 80-120 21-AUG-13 Nickel (Ni)-Total 89.7 % 80-120 21-AUG-13 Potassium (K)-Total 86.0 % 21-AUG-13 80-120 Selenium (Se)-Total 112.5 % 21-AUG-13 80-120 Silicon (Si)-Total 99.4 % 80-120 21-AUG-13 Silver (Ag)-Total 94.6 % 80-120 21-AUG-13 Sodium (Na)-Total 88.7 % 80-120 21-AUG-13 Strontium (Sr)-Total 100.7 % 80-120 21-AUG-13 Thallium (TI)-Total 93.3 % 80-120 21-AUG-13 Tin (Sn)-Total 96.1 % 80-120 21-AUG-13 Titanium (Ti)-Total 100.6 % 80-120 21-AUG-13 Uranium (U)-Total 94.2 % 80-120 21-AUG-13 Vanadium (V)-Total 90.2 % 80-120 21-AUG-13 Zinc (Zn)-Total 89.1 % 80-120 21-AUG-13 WG1730772-1 MB Aluminum (AI)-Total < 0.0030 mg/L 0.003 21-AUG-13 Antimony (Sb)-Total < 0.00010 mg/L 0.0001 21-AUG-13

		Workorder:	L1349723	3	Report Date: 03	-SEP-13	Pa	ge 2 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2676775								
WG1730772-1 MB Arsenic (As)-Total			<0.00010		~~~/l		0.0004	
			<0.00010	,	mg/L		0.0001	21-AUG-13
Barium (Ba)-Total Beryllium (Be)-Total			<0.00050)	mg/L mg/L		0.00005	21-AUG-13
Bismuth (Bi)-Total			<0.00050	h	mg/L		0.0005	21-AUG-13
Boron (B)-Total			<0.000030)	mg/L		0.00005	21-AUG-13
Cadmium (Cd)-Total			<0.000010	h	-		0.01	21-AUG-13
Calcium (Ca)-Total			<0.020)	mg/L		0.00001	21-AUG-13
			<0.020		mg/L		0.02	21-AUG-13
Chromium (Cr)-Total Cobalt (Co)-Total			<0.00010		mg/L mg/L		0.0001 0.0001	21-AUG-13 21-AUG-13
Copper (Cu)-Total			<0.00010		mg/L			
Iron (Fe)-Total			<0.00010		mg/L		0.0001 0.01	21-AUG-13 21-AUG-13
Lead (Pb)-Total			<0.000050	h	mg/L		0.00005	
Lithium (Li)-Total			<0.0050		mg/L		0.00005	21-AUG-13
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	21-AUG-13 21-AUG-13
Manganese (Mn)-Total			<0.000050)	mg/L		0.00005	21-AUG-13
Molybdenum (Mo)-Total			<0.000050		mg/L		0.00005	21-AUG-13
Nickel (Ni)-Total			<0.00010	·	mg/L		0.0001	21-AUG-13
Phosphorus (P)-Total			<0.30		mg/L		0.3	21-AUG-13
Potassium (K)-Total			<0.050		mg/L		0.05	21-AUG-13
Selenium (Se)-Total			<0.00010		mg/L		0.0001	21-AUG-13
Silicon (Si)-Total			<0.050		mg/L		0.05	21-AUG-13
Silver (Ag)-Total			<0.000010)	mg/L		0.00001	21-AUG-13
Sodium (Na)-Total			<0.050		mg/L		0.05	21-AUG-13
Strontium (Sr)-Total			<0.00010		mg/L		0.0001	21-AUG-13
Thallium (TI)-Total			< 0.000050)	mg/L		0.00005	21-AUG-13
Tin (Sn)-Total			<0.00010		mg/L		0.0001	21-AUG-13
Titanium (Ti)-Total			< 0.00030		mg/L		0.0003	21-AUG-13
Uranium (U)-Total			<0.000010)	mg/L		0.00001	21-AUG-13
Vanadium (V)-Total			<0.00010		mg/L		0.0001	21-AUG-13
Zinc (Zn)-Total			<0.0030		mg/L		0.003	21-AUG-13
Batch R2680632								
WG1734797-2 LCS								
Aluminum (Al)-Total			92.6		%		80-120	27-AUG-13
Antimony (Sb)-Total			98.7		%		80-120	27-AUG-13

		Workorder:	L134972	23	Report Date: 0	3-SEP-13	Pa	ige 3 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2680632								
WG1734797-2 LCS			400.0		0/			
Arsenic (As)-Total			102.2		%		80-120	27-AUG-13
Barium (Ba)-Total			90.9		%		80-120	27-AUG-13
Beryllium (Be)-Total			89.7		%		80-120	27-AUG-13
Bismuth (Bi)-Total			90.1		%		80-120	27-AUG-13
Boron (B)-Total			90.5		%		80-120	27-AUG-13
Cadmium (Cd)-Total			91.5		%		80-120	27-AUG-13
Calcium (Ca)-Total			92.8		%		80-120	27-AUG-13
Chromium (Cr)-Total			89.9		%		80-120	27-AUG-13
Cobalt (Co)-Total			88.8		%		80-120	27-AUG-13
Copper (Cu)-Total			89.3		%		80-120	27-AUG-13
Iron (Fe)-Total			83.9		%		80-120	27-AUG-13
Lead (Pb)-Total			89.4		%		80-120	27-AUG-13
Lithium (Li)-Total			91.3		%		80-120	27-AUG-13
Magnesium (Mg)-Total			92.9		%		80-120	27-AUG-13
Manganese (Mn)-Total			89.5		%		80-120	27-AUG-13
Molybdenum (Mo)-Total			100.5		%		80-120	27-AUG-13
Nickel (Ni)-Total			89.9		%		80-120	27-AUG-13
Potassium (K)-Total			86.5		%		80-120	27-AUG-13
Selenium (Se)-Total			104.6		%		80-120	27-AUG-13
Silicon (Si)-Total			107.8		%		80-120	27-AUG-13
Silver (Ag)-Total			87.6		%		80-120	27-AUG-13
Sodium (Na)-Total			94.4		%		80-120	27-AUG-13
Strontium (Sr)-Total			99.98		%		80-120	27-AUG-13
Thallium (TI)-Total			87.9		%		80-120	27-AUG-13
Tin (Sn)-Total			95.2		%		80-120	27-AUG-13
Titanium (Ti)-Total			86.2		%		80-120	27-AUG-13
Uranium (U)-Total			81.4		%		80-120	27-AUG-13
Vanadium (V)-Total			90.2		%		80-120	27-AUG-13
Zinc (Zn)-Total			90.6		%		80-120	27-AUG-13
WG1734797-1 MB							-	
Aluminum (Al)-Total			<0.0030		mg/L		0.003	27-AUG-13
Antimony (Sb)-Total			<0.00010)	mg/L		0.0001	27-AUG-13
Arsenic (As)-Total			<0.00010)	mg/L		0.0001	27-AUG-13
Barium (Ba)-Total			<0.0005	50	mg/L		0.00005	27-AUG-13

		Workorder:	L1349723	3	- Report Date: 03	-SEP-13	Pa	ge 4 of
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2680632								
WG1734797-1 MB			0 00050					
Beryllium (Be)-Total			<0.00050		mg/L		0.0005	27-AUG-13
Bismuth (Bi)-Total			<0.000050		mg/L		0.00005	27-AUG-13
Boron (B)-Total			<0.010		mg/L		0.01	27-AUG-13
Cadmium (Cd)-Total			<0.000010		mg/L		0.00001	27-AUG-13
Calcium (Ca)-Total			<0.020		mg/L		0.02	27-AUG-13
Chromium (Cr)-Total			<0.00010		mg/L		0.0001	27-AUG-13
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	27-AUG-13
Copper (Cu)-Total			<0.00010		mg/L		0.0001	27-AUG-13
Iron (Fe)-Total			<0.010		mg/L		0.01	27-AUG-13
Lead (Pb)-Total			<0.000050		mg/L		0.00005	27-AUG-13
Lithium (Li)-Total			<0.0050		mg/L		0.005	27-AUG-13
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	27-AUG-13
Manganese (Mn)-Total			<0.000050		mg/L		0.00005	27-AUG-13
Molybdenum (Mo)-Total			<0.000050		mg/L		0.00005	27-AUG-13
Nickel (Ni)-Total			<0.00010		mg/L		0.0001	27-AUG-13
Phosphorus (P)-Total			<0.30		mg/L		0.3	27-AUG-13
Potassium (K)-Total			<0.050		mg/L		0.05	27-AUG-13
Selenium (Se)-Total			<0.00010		mg/L		0.0001	27-AUG-13
Silicon (Si)-Total			<0.050		mg/L		0.05	27-AUG-13
Silver (Ag)-Total			<0.000010)	mg/L		0.00001	27-AUG-13
Sodium (Na)-Total			<0.050		mg/L		0.05	27-AUG-13
Strontium (Sr)-Total			<0.00010		mg/L		0.0001	27-AUG-13
Thallium (TI)-Total			<0.000050)	mg/L		0.00005	27-AUG-13
Tin (Sn)-Total			<0.00010		mg/L		0.0001	27-AUG-13
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	27-AUG-13
Uranium (U)-Total			<0.000010	1	mg/L		0.00001	27-AUG-13
Vanadium (V)-Total			<0.00010		mg/L		0.0001	27-AUG-13
Zinc (Zn)-Total			<0.0030		mg/L		0.003	27-AUG-13
Batch R2681303								
WG1735194-1 MB								
Aluminum (Al)-Total			<0.0030		mg/L		0.003	28-AUG-13
Antimony (Sb)-Total			<0.00010		mg/L		0.0001	28-AUG-13
Arsenic (As)-Total			<0.00010		mg/L		0.0001	28-AUG-13
Barium (Ba)-Total			<0.000050)	mg/L		0.00005	28-AUG-13

		Workorder:	L1349723	3	Report Date: 03	S-SEP-13	Pa	ge 5 of
Fest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2681303								
WG1735194-1 MB								
Beryllium (Be)-Total			<0.00050		mg/L		0.0005	28-AUG-13
Bismuth (Bi)-Total			<0.000050)	mg/L		0.00005	28-AUG-13
Boron (B)-Total			<0.010		mg/L		0.01	28-AUG-13
Cadmium (Cd)-Total			<0.000010)	mg/L		0.00001	28-AUG-13
Calcium (Ca)-Total			<0.020		mg/L		0.02	28-AUG-13
Chromium (Cr)-Total			<0.00010		mg/L		0.0001	28-AUG-13
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	28-AUG-13
Copper (Cu)-Total			<0.00010		mg/L		0.0001	28-AUG-13
Iron (Fe)-Total			<0.010		mg/L		0.01	28-AUG-13
Lead (Pb)-Total			<0.000050)	mg/L		0.00005	28-AUG-13
Lithium (Li)-Total			<0.0050		mg/L		0.005	28-AUG-13
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	28-AUG-13
Manganese (Mn)-Total			<0.000050)	mg/L		0.00005	28-AUG-13
Molybdenum (Mo)-Total			<0.000050)	mg/L		0.00005	28-AUG-13
Nickel (Ni)-Total			<0.00010		mg/L		0.0001	28-AUG-13
Phosphorus (P)-Total			<0.30		mg/L		0.3	28-AUG-13
Potassium (K)-Total			<0.050		mg/L		0.05	28-AUG-13
Selenium (Se)-Total			<0.00010		mg/L		0.0001	28-AUG-13
Silicon (Si)-Total			<0.050		mg/L		0.05	28-AUG-13
Silver (Ag)-Total			<0.000010)	mg/L		0.00001	28-AUG-13
Sodium (Na)-Total			<0.050		mg/L		0.05	28-AUG-13
Strontium (Sr)-Total			<0.00010		mg/L		0.0001	28-AUG-13
Thallium (TI)-Total			<0.000050)	mg/L		0.00005	28-AUG-13
Tin (Sn)-Total			<0.00010		mg/L		0.0001	28-AUG-13
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	28-AUG-13
Uranium (U)-Total			<0.000010)	mg/L		0.00001	28-AUG-13
Vanadium (V)-Total			<0.00010		mg/L		0.0001	28-AUG-13
Zinc (Zn)-Total			<0.0030		mg/L		0.003	28-AUG-13
NH3-CFA-ED	Water							
Batch R2676584								
WG1730699-2 LCS Ammonia, Total (as N)			94.9		%		85-115	21-AUG-13
WG1730699-1 MB Ammonia, Total (as N)			<0.050		mg/L		0.05	21-AUG-13
WG1730699-4 MS		L1350041-1						

				-	-			
		Workorder:	L134972	23 Re	eport Date:	03-SEP-13	Pa	ige 6 of 9
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NH3-CFA-ED	Water							
Batch R2676584								
WG1730699-4 MS Ammonia, Total (as N)		L1350041-1	94.3		%		75-125	21-AUG-13
WG1730699-7 MS Ammonia, Total (as N)		L1348457-2	98.1		%		75-125	21-AUG-13
Batch R2680529								
WG1734632-3 DUP Ammonia, Total (as N)		L1349723-8 0.104	0.107		mg/L	3.2	20	27-AUG-13
WG1734632-2 LCS Ammonia, Total (as N)			94.5		%		85-115	27-AUG-13
WG1734632-1 MB Ammonia, Total (as N)			<0.050		mg/L		0.05	27-AUG-13
WG1734632-4 MS Ammonia, Total (as N)		L1344909-8	99.9		%		75-125	27-AUG-13
WG1734632-6 MS Ammonia, Total (as N)		L1352037-3	93.2		%		75-125	27-AUG-13
WG1734632-8 MS Ammonia, Total (as N)		L1352615-2	96.8		%		75-125	27-AUG-13
NO2-IC-ED	Water							
Batch R2676653								
WG1730457-7 DUP Nitrite (as N)		L1349723-8 <0.050	<0.050	RPD-NA	mg/L	N/A	20	20-AUG-13
WG1730457-2 LCS Nitrite (as N)			93.1		%		90-110	20-AUG-13
WG1730457-1 MB Nitrite (as N)			<0.050		mg/L		0.05	21-AUG-13
WG1730457-6 MS Nitrite (as N)		L1349749-1	91.8		%		75-125	20-AUG-13
WG1730457-8 MS Nitrite (as N)		L1349723-8	92.5		%		75-125	20-AUG-13
IO3-IC-ED	Water							
Batch R2676653								
WG1730457-7 DUP Nitrate (as N)		L1349723-8 <0.050	<0.050	RPD-NA	mg/L	N/A	20	20-AUG-13
WG1730457-2 LCS Nitrate (as N)			99.1		%		90-110	20-AUG-13
WG1730457-1 MB Nitrate (as N)			<0.050		mg/L		0.05	20-AUG-13
WG1730457-6 MS		L1349749-1						-

		Workorder:	L134972	3	Report Date: 0	3-SEP-13	Pa	ge 7 of 9
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO3-IC-ED	Water							
Batch R2676653 WG1730457-6 MS Nitrate (as N) Nitrate (as N)		L1349749-1	97.9		%		75-125	20-AUG-13
WG1730457-8 MS Nitrate (as N)		L1349723-8	99.6		%		75-125	20-AUG-13
PH-ED Batch R2675575 WG1729897-3 LCS рН	Water		7.05		рН		6.9-7.1	20-AUG-13
SOLIDS-TOTSUS-ED Batch R2676260	Water							
WG1729760-2 LCS Total Suspended Solids			98.0		%		85-115	20-AUG-13
WG1729760-1 MB Total Suspended Solids			<3.0		mg/L		3	20-AUG-13
Batch R2683778 WG1737403-2 LCS Total Suspended Solids			94.0		%		85-115	30-AUG-13
WG1737403-1 MB Total Suspended Solids			<3.0		mg/L		3	30-AUG-13

Workorder: L1349723

Report Date: 03-SEP-13

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1349723

Report Date: 03-SEP-13

Page 9 of 9

Hold Time Exceedances:

ALS Product Description	Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
Total Suspended Solids							
	9	15-AUG-13 21:30	30-AUG-13 00:00	7	14	davs	EHT
	9 12	15-AUG-13 16:00	30-AUG-13 00:00	7	14	days	EHT
	22	15-AUG-13 15:00	30-AUG-13 00:00	7	14	days	EHT
	22	13-A0G-13 13.00	30-709-13 00.00	'	14	uays	L
рН							
	1	15-AUG-13 09:00	20-AUG-13 15:10	0.25	126	hours	EHTR-FM
	2	16-AUG-13 10:15	20-AUG-13 15:13	0.25	101	hours	EHTR-FM
	3	17-AUG-13 09:00	20-AUG-13 15:17	0.25	78	hours	EHTR-FM
	4	17-AUG-13 15:00	20-AUG-13 15:20	0.25	72	hours	EHTR-FM
	5	18-AUG-13 15:00	20-AUG-13 15:24	0.25	48	hours	EHTR-FM
	6	19-AUG-13 09:20	20-AUG-13 15:27	0.25	30	hours	EHTR-FM
	7	15-AUG-13 09:00	20-AUG-13 15:31	0.25	126	hours	EHTR-FM
	8	17-AUG-13 09:00	20-AUG-13 15:35	0.25	78	hours	EHTR-FM
Anions and Nutrients							
Nitrate as N by IC							
-	1	15-AUG-13 09:00	20-AUG-13 12:08	48	123	hours	EHTR
	2	16-AUG-13 10:15	20-AUG-13 12:08	48	98	hours	EHTR
	3	17-AUG-13 09:00	20-AUG-13 12:08	48	75	hours	EHTR
	4	17-AUG-13 15:00	20-AUG-13 12:08	48	69	hours	EHTR
	7	15-AUG-13 09:00	20-AUG-13 12:08	48	123	hours	EHTR
	8	17-AUG-13 09:00	20-AUG-13 12:08	48	75	hours	EHTR
Nitrite as N by IC							
-	1	15-AUG-13 09:00	20-AUG-13 12:08	48	123	hours	EHTR
	2	16-AUG-13 10:15	20-AUG-13 12:08	48	98	hours	EHTR
	3	17-AUG-13 09:00	20-AUG-13 12:08	48	75	hours	EHTR
	4	17-AUG-13 15:00	20-AUG-13 12:08	48	69	hours	EHTR
	7	15-AUG-13 09:00	20-AUG-13 12:08	48	123	hours	EHTR
	8	17-AUG-13 09:00	20-AUG-13 12:08	48	75	hours	EHTR

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1349723 were received on 19-AUG-13 15:13.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Y	Chain of Custody / An Canada Toll Fre	of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878	Fage 1 of 1
LS) Environmental	www.aisc	www.aisgionai.com	control Remuested (Rush for routine analysis subject to availability)
~	Report Format / Distribution	E	Service requires Turnaround Times - Business Days)
зľ	Terretard Other		C Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Commun (A)
-	R PDF K Excel	Digital L rax	Cemergency (1-2 Bus, Days) - 100% Surcharge - Contact ALS to Continue 141
runess 4 ceterague St kar 172	Correct C		Same Day or Weekend Emergency - Contact ALS to Continu 1AI
the Towar Kingdan On	thecken	name west ica	Analysis Request
(3) 53/ -27 K J Fax	pool ner @	envireau 100	Please indicate below Filtered, Preserved or both (F, F, F, F)
Invoice to Same as Report ? 🗌 Yes 📝 No	a.	-	
Tes	Job #:		Cort
Contrat. Then Englacentas & Environmental Service (1)	PO / AFE:		1
ever d d	TSD:		i u:
12 ILAN	10		5. 100
(861) 664-9481 Fax: (867) 669-9	Ouote #:		940
(lab use only) LI 34 972 3		Sampler: Azad Biriev	5
Sample Sample Identification # /This documents with the documents of the d	1	Time Sample Type	SAN ON HO SSI
de lim liondiness surv		Surfuce water	The second secon
EFFISH	15 199112	9:00	
Efenda -	11/1/2/12	10:15	
EFPLAL	21/20/21	9:00	
EFFING	-	15:00	
CPC390 FFLY20	1	15:00	
1	-	9:30	6
TBlank	1		K C a a k 4
	F13*		
Dup 11	1/80/21	1 9:00 11	A C S S S S S A Hazardous Details
Special Instructions / Regulations with water or land use /C		r Aquatic Life/BC CSR - Com	CME-Freshwater Aquatic Life/BC CSR - Commercial/AB Iter 1 - Manual 1 / / /

WESA Inc. ATTN: Tim Beckenham / Melanie St-Jean 4 Cataraqui Street The Tower Kingston ON K7K 1Z7 Date Received:21-AUG-13Report Date:31-AUG-13 13:43 (MT)Version:FINAL

Client Phone: --

Certificate of Analysis

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L1351553 NOT SUBMITTED Y-B11192-00-00

1

Catherine Evaristo-Cordero Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 9936-67 Avenue, Edmonton, AB T6E 0P5 Canada | Phone: +1 780 413 5227 | Fax: +1 780 437 2311 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1351553 CONTD.... PAGE 2 of 4 31-AUG-13 13:43 (MT) Version: FINAL

				version:	FINAL
	Sample ID	L1351553-2 Surface Water			
	Description Sampled Date	Surface Water 20-AUG-13			
	Sampled Time	17:15			
	Client ID	EFF305			
Grouping	Analyte				
WATER					
Physical Tests	рН (рН)	7.97			
	Total Suspended Solids (mg/L)	6.0			
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.564			
	Nitrate and Nitrite (as N) (mg/L)	<0.071			
	Nitrate (as N) (mg/L)	<0.050			
	Nitrite (as N) (mg/L)	<0.050			
Total Metals	Aluminum (Al)-Total (mg/L)	olm<0.015			
	Antimony (Sb)-Total (mg/L)	DLM <0.00050			
	Arsenic (As)-Total (mg/L)	DLM 0.0162			
	Barium (Ba)-Total (mg/L)	DLM 0.0217			
	Beryllium (Be)-Total (mg/L)	DLM <0.0025			
	Bismuth (Bi)-Total (mg/L)	DLM <0.00025			
	Boron (B)-Total (mg/L)	DLM <0.050			
	Cadmium (Cd)-Total (mg/L)	DLM <0.000050			
	Calcium (Ca)-Total (mg/L)	DLM 160			
	Chromium (Cr)-Total (mg/L)	DLM <0.00050			
	Cobalt (Co)-Total (mg/L)	DLM 0.00420			
	Copper (Cu)-Total (mg/L)	DLM <0.00050			
	Iron (Fe)-Total (mg/L)	^{DLM}			
	Lead (Pb)-Total (mg/L)	DLM <0.00025			
	Lithium (Li)-Total (mg/L)	DLM <0.025			
	Magnesium (Mg)-Total (mg/L)	DLM 12.2			
	Manganese (Mn)-Total (mg/L)	DLM 0.281			
	Molybdenum (Mo)-Total (mg/L)	DLM 0.00088			
	Nickel (Ni)-Total (mg/L)	DLM 0.00845			
	Phosphorus (P)-Total (mg/L)	□LM <1.5			
	Potassium (K)-Total (mg/L)	DLM 7.45			
	Selenium (Se)-Total (mg/L)	DLM <0.00050			
	Silicon (Si)-Total (mg/L)	DLM 0.40			
	Silver (Ag)-Total (mg/L)	DLM <0.000050			
	Sodium (Na)-Total (mg/L)	DLM 43.5			
	Strontium (Sr)-Total (mg/L)	0.319			
	Thallium (TI)-Total (mg/L)	olon o DLM <0.00025			
	Tin (Sn)-Total (mg/L)	<0.00020 DLM <0.00050			
	Titanium (Ti)-Total (mg/L)	0.0055			
	Uranium (U)-Total (mg/L)	0.000301			
	Vanadium (V)-Total (mg/L)	<0.00050			

31-AUG-13 13:43 (MT) ALS ENVIRONMENTAL ANALYTICAL REPORT Version: FINAL L1351553-2 Sample ID Description Surface Water Sampled Date 20-AUG-13 17:15 Sampled Time EFF305 Client ID Grouping Analyte WATER DLM **Total Metals** Zinc (Zn)-Total (mg/L) <0.015

L1351553 CONTD.... PAGE 3 of 4

Reference Information

Qualifiers for Individual Parameters Listed:

Qualifier	Description		
DLM	Detection Limit Adju	sted For Sample Matrix Effects	
Fest Method	References:		
ALS Test Coo	le Matrix	Test Description	Method Reference**
MET-T-CCMS	-ED Water	Total Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A
NH3-CFA-ED	Water	Ammonia in Water by Colour	APHA 4500 NH3-NITROGEN (AMMONIA)
	s is carried out using pro henate colourimetric me	•	IITROGEN (AMMONIA)". Ammonia is determined using the
NO2+NO3-CA	LC-ED Water	Nitrate+Nitrite	CALCULATION
NO2-IC-ED	Water	Nitrite as N by IC	APHA 4110 B-ION CHROMATOGRAPHY
NO3-IC-ED	Water	Nitrate as N by IC	APHA 4110 B-ION CHROMATOGRAPHY
PH-ED	Water	рН	APHA 4500 H-Electrode
		for pH will have exceeded the 15 minute recomme ccurate results are needed)	ended hold time from time of sampling (field analysis is
SOLIDS-TOT	SUS-ED Water	Total Suspended Solids	APHA 2540 D-Gravimetric
* ALS test met	hods may incorporate m	odifications from specified reference methods to ir	nprove performance.
The last two le	etters of the above test c	ode(s) indicate the laboratory that performed analy	rtical analysis for that test. Refer to the list below:
Laboratory D	efinition Code Lab	pratory Location	
ED	A1 6		

ED

ALS ENVIRONMENTAL - EDMONTON, ALBERTA, CANADA

Chain of Custody Numbers:

1

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L1351553 Report Date: 31-AUG-13 Page 1 of 5 WESA Inc. Client: 4 Cataraqui Street The Tower Kingston ON K7K 1Z7 Tim Beckenham / Melanie St-Jean Contact: RPD Test Matrix Reference Result Qualifier Units Limit Analyzed MET-T-CCMS-ED Water Batch R2683386 WG1737747-1 MB Aluminum (AI)-Total < 0.0030 mg/L 0.003 31-AUG-13 Antimony (Sb)-Total < 0.00010 mg/L 0.0001 31-AUG-13 Arsenic (As)-Total < 0.00010 mg/L 0.0001 31-AUG-13 Barium (Ba)-Total < 0.000050 mg/L 0.00005 31-AUG-13 Beryllium (Be)-Total < 0.00050 mg/L 0.0005 31-AUG-13 Bismuth (Bi)-Total < 0.000050 mg/L 0.00005 31-AUG-13 Boron (B)-Total < 0.010 mg/L 0.01 31-AUG-13 Cadmium (Cd)-Total < 0.000010 mg/L 0.00001 31-AUG-13 Calcium (Ca)-Total <0.020 mg/L 0.02 31-AUG-13 Chromium (Cr)-Total < 0.00010 mg/L 0.0001 31-AUG-13 Cobalt (Co)-Total < 0.00010 mg/L 0.0001 31-AUG-13 Copper (Cu)-Total < 0.00010 mg/L 0.0001 31-AUG-13 < 0.010 Iron (Fe)-Total mg/L 0.01 31-AUG-13 Lead (Pb)-Total <0.000050 mg/L 0.00005 31-AUG-13 Lithium (Li)-Total < 0.0050 mg/L 0.005 31-AUG-13 Magnesium (Mg)-Total < 0.0050 mg/L 0.005 31-AUG-13 Manganese (Mn)-Total < 0.000050 mg/L 0.00005 31-AUG-13 Molybdenum (Mo)-Total < 0.000050 mg/L 0.00005 31-AUG-13 Nickel (Ni)-Total < 0.00010 mg/L 0.0001 31-AUG-13 Phosphorus (P)-Total < 0.30 mg/L 0.3 31-AUG-13 Potassium (K)-Total < 0.050 mg/L 0.05 31-AUG-13 Selenium (Se)-Total < 0.00010 mg/L 0.0001 31-AUG-13 Silicon (Si)-Total < 0.050 mg/L 0.05 31-AUG-13 Silver (Ag)-Total < 0.000010 mg/L 0.00001 31-AUG-13 Sodium (Na)-Total < 0.050 mg/L 0.05 31-AUG-13 Strontium (Sr)-Total < 0.00010 mg/L 0.0001 31-AUG-13 Thallium (TI)-Total < 0.000050 mg/L 0.00005 31-AUG-13 Tin (Sn)-Total < 0.00010 mg/L 0.0001 31-AUG-13 Titanium (Ti)-Total < 0.00030 mg/L 0.0003 31-AUG-13 Uranium (U)-Total < 0.000010 mg/L 0.00001 31-AUG-13 Vanadium (V)-Total < 0.00010 mg/L 0.0001 31-AUG-13 < 0.0030 Zinc (Zn)-Total mg/L 0.003 31-AUG-13

NH3-CFA-ED

Water

				-	•			
		Workorder:	L135155	53	Report Date: 3	1-AUG-13	Pa	ige 2 of 5
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NH3-CFA-ED	Water							
Batch R26805	29							
WG1734632-2 LC: Ammonia, Total (as I			94.5		%		85-115	27-AUG-13
WG1734632-1 MB Ammonia, Total (as I			<0.050		mg/L		0.05	27-AUG-13
WG1734632-4 MS Ammonia, Total (as I		L1344909-8	99.9		%		75-125	27-AUG-13
WG1734632-6 MS Ammonia, Total (as I		L1352037-3	93.2		%		75-125	27-AUG-13
WG1734632-8 MS Ammonia, Total (as I		L1352615-2	96.8		%		75-125	27-AUG-13
NO2-IC-ED	Water							
Batch R26796	73							
WG1733203-2 LC3 Nitrite (as N)			96.1		%		90-110	23-AUG-13
WG1733203-1 MB Nitrite (as N)			<0.050		mg/L		0.05	23-AUG-13
WG1733203-10 MS Nitrite (as N)		L1351983-6	90.2		%		75-125	23-AUG-13
WG1733203-4 MS Nitrite (as N)		L1351453-6	100.0		%		75-125	23-AUG-13
WG1733203-6 MS Nitrite (as N)		L1351933-1	97.4		%		75-125	23-AUG-13
WG1733203-8 MS Nitrite (as N)		L1352199-5	94.5		%		75-125	23-AUG-13
NO3-IC-ED	Water							
Batch R26796	73							
WG1733203-2 LC3 Nitrate (as N)			100.0		%		90-110	23-AUG-13
WG1733203-1 MB Nitrate (as N)			<0.050		mg/L		0.05	23-AUG-13
WG1733203-10 MS Nitrate (as N)		L1351983-6	101.0		%		75-125	23-AUG-13
WG1733203-4 MS Nitrate (as N)		L1351453-6	102.7		%		75-125	23-AUG-13
WG1733203-6 MS Nitrate (as N)		L1351933-1	99.4		%		75-125	23-AUG-13
WG1733203-8 MS Nitrate (as N)		L1352199-5	99.5		%		75-125	23-AUG-13
			-					

		Workorder	: L135155	53	Report Date: 3	1-AUG-13	Pa	ge 3 of 5
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH-ED	Water							
Batch R2678234 WG1732555-3 LCS рН			7.04		рН		6.9-7.1	23-AUG-13
SOLIDS-TOTSUS-ED	Water							
Batch R2679070								
WG1732605-2 LCS Total Suspended Solids			106.0		%		85-115	23-AUG-13
WG1732605-1 MB Total Suspended Solids			<3.0		mg/L		3	23-AUG-13

Workorder: L1351553

Report Date: 31-AUG-13

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1351553

Report Date: 31-AUG-13

Hold Time Exceedances:

Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
2	20-AUG-13 17:15	24-AUG-13 00:23	0.25	79	hours	EHTR-FM
2	20-AUG-13 17:15	23-AUG-13 08:00	48	63	hours	EHTL
2	20-AUG-13 17:15	23-AUG-13 08:00	48	63	hours	EHTL
	1 D 2 2	ID Sampling Date 2 20-AUG-13 17:15 2 20-AUG-13 17:15	ID Sampling Date Date Processed 2 20-AUG-13 17:15 24-AUG-13 00:23 2 20-AUG-13 17:15 23-AUG-13 08:00	ID Sampling Date Date Processed Rec. HT 2 20-AUG-13 17:15 24-AUG-13 00:23 0.25 2 20-AUG-13 17:15 23-AUG-13 08:00 48	ID Sampling Date Date Processed Rec. HT Actual HT 2 20-AUG-13 17:15 24-AUG-13 00:23 0.25 79 2 20-AUG-13 17:15 23-AUG-13 08:00 48 63	ID Sampling Date Date Processed Rec. HT Actual HT Units 2 20-AUG-13 17:15 24-AUG-13 00:23 0.25 79 hours 2 20-AUG-13 17:15 23-AUG-13 08:00 48 63 hours

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR: Exceeded ALS recommended hold time prior to sample receipt.
EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT: Exceeded ALS recommended hold time prior to analysis.
Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1351553 were received on 21-AUG-13 17:30.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

National Other Renail 1: CDUX CONVESA.Co Email 2: Hold Learnhama ONVESA.co Email 3: Email 3: Client / Project Information Job #: Y-BIII191 - e0 - 00 POI AFE: LISD: ALS Catherine Sampler: P2 Als Catherine Sampler: P2 Contact: Events Date Infinition	LS to Confirm TAT MLS to Confirm TAT m TAT th (F, P, F/P)	LS to Confirm TAT MLS to Confirm TAT m TAT th (F, P, F/P)	Confirm TAT Confirm TAT U	Confirm TAT Confirm TAT TAT Confirm TAT TAT TAT TAT TAT TAT TAT TAT	LS to Confirm TAT MLS to Confirm TAT m TAT th (F, P, F/P) () () () () () () () () () ($\frac{1}{12} + \frac{1}{12} $	Other		Service Request	Service Requested (Rush for routine analysis subject to availability)	aitability)
Error Rate Content ALS to Conferent ALS to Conference ALS to Co	LS to Confirm TAT TAT TAT TAT TAT TAT TAT TAT	Its to Confirm TAT TAT TAT The TAT The TAT The TAT	Contirm TAT Contirm TAT (Contirm TAT (Con	Contirm TAT Contirm TAT (P, F/P)	Alt Tend Tend Tend Tend Tend Sets Sensing - Contra AS to Commit At 2. Final 1: Chronom Contraction Ensitients Chronom Contraction Ensitients Chronom Contraction Ensitients Chronom Contraction 2. Ensite Chronom Contraction Ensite Chronom Contraction Ensite Chronom Contraction Ensite Chronom Contraction 2. Ensite Contraction Prase indicate blow Filter Contraction Prase indicate blow Filter Contraction 2. Ensite Contraction Prase indicate blow Filter Contraction Prase indicate blow Filter Contraction 2. Ensite Prase indicate blow Filter Prase indicate blow Filter Prase indicate blow Filter Prase indicate blow Filter 2. Ensite Prase indicate blow Filter Prase indicate blow Filter Prase indicate blow Filter Prase indicate blow Filter 2. Ensite Prase indicate blow Filter Prase indicate blow Filter Prase indicate blow Filter Prase indicate blow Filter 2. Ensite Prase indicate blow Filter Prase indicate blow Filter Prase indicate blow Filter Prase indicate blow Filter 2. Ensite Prase indicate blow Filter Prase indicate blow Filt	Email 1 Email 2 Email 2 Email 3 Client / Job #; PO / AF LSD: LSD: LSD: ALS C			Regular (Standard	Turnaround Times - Business Days)	Kumpun
Email 1. Chr Ou M C Privi Fao. U.O. O Emerginey (12 Bus) 2006 Surdaringe : Context Als to Contin Tri Email 2. The clean DN 25.0. Email 3. Email 3. Email 3. Email 3. Email 3. Analysis Request Lenn 4 Polose # Job #. Y-Billiq1 - oo - dO Pease indicate below Filtered Preserved or both (F, P, Frb) Job #. Y-Billiq1 - oo - dO Pol Are: Jub # Als Curvesh Jub # Als Curvesh Als Curvesh Sampler: PP Jub # Als Curvesh Als Curvesh Sampler Type (aboute # Als Curvesh Als Curvesh Als Curvesh <t< td=""><td>th (F, P, F/P)</td><td>th (F, P, F/P)</td><td>U. (P, F/P)</td><td>TT TAT (P, F/P)</td><td>TX TS Tennal 1 CP/TOUX Definition Description <thdescription< th=""> Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<></thdescription<></td><td>Email 1 Email 2 Email 3 Email 3 Client / Job #: Job #: LSD: LSD: LSD: ALS C Contac</td><td>T Excel</td><td></td><td></td><td>ess Days) - 50% Surcharge - Contact ALS to Co</td><td>thrm TAT</td></t<>	th (F, P, F/P)	th (F, P, F/P)	U. (P, F/P)	TT TAT (P, F/P)	TX TS Tennal 1 CP/TOUX Definition Description Description <thdescription< th=""> Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<></thdescription<>	Email 1 Email 2 Email 3 Email 3 Client / Job #: Job #: LSD: LSD: LSD: ALS C Contac	T Excel			ess Days) - 50% Surcharge - Contact ALS to Co	thrm TAT
Email 2: The Like Althous Qive Sign. O Same Day or weekend Emergency. Context Als to Content Items Email 3: Email 3: Email 3: Client / Project Information Place indicate below Filtered. Preserved or both (F, P, FP) Jub #: Y-Billing. Place indicate below Filtered. Preserved or both (F, P, FP) Jub #: Y-Billing. Place indicate below Filtered. Preserved or both (F, P, FP) Jub #: Y-Billing. Place indicate below Filtered. Preserved or both (F, P, FP) Jub #: Y-Billing. Place indicate below Filtered. Preserved or both (F, P, FP) Jub #: Y-Billing. Place indicate below Filtered. Preserved or both (F, P, FP) Jub #: Y-Billing. Place indicate below Filtered. Preserved or both (F, P, FP) Jub #: Y-Billing. Place indicate below Filtered. Preserved or both (F, P, FP) Jub #: Y-Billing. Place indicate below Filtered. Preserved or both (F, P, FP) Date Time Sampler. PP Date Time Sampler. PP Doute #: Date Place indicate below Filtered. Place indicate below Fi	m TAT	m TAT	(d/2 'd')		C.P.R. 1.2.7. Email: 2. The Use Anton Count 25.4. Control tension. Contract data by the optimization of the tension of tension of the tension of tension of tension of the tension of tension of tension of the tension of tension of	Email 2 Email 3 Ernail 3 Job #: PO / AF PO / AF LSD: LSD: LSD: ALS C Contac	Q		O Emergency (1-2 B	us. Days) - 100% Surcharge - Contact ALS to C	Infirm TAT
Email 3. Analysis Request Client / Project Intornation Please indicate below Filared. Preserved or both (F. P. FP) Job #: Y-B/11/12 - 60 - 0/0 Please indicate below Filared. Preserved or both (F. P. FP) Job #: Y-B/11/12 - 60 - 0/0 Please indicate below Filared. Preserved or both (F. P. FP) Job #: Y-B/11/12 - 60 - 0/0 Please indicate below Filared. Preserved or both (F. P. FP) Job #: Y-B/11/12 - 60 - 0/0 Please indicate below Filared. Preserved or both (F. P. FP) PRO / AFE: Please indicate below Filared. Preserved or both (F. P. FP) Duote #: Duote #: Outlet #: Date Internet (P) Please (F. P. FP) Doute #: Doute #: Outlet #: Date Internet (F. P. FP) Please (F. P. FP) Doute #: Date Doute #: Doute #: D	(F. P. F/P)	11 (F. P. F/P)	(FIP)	(A)	Email Email Analysis Request IX Icent Project Information Please Indicate below Filtered Preserved or tool ft. P. Filty IX Icent Project Information Please Indicate below Filtered Preserved or tool ft. P. Filty IX Icent Project Information Please Indicate below Filtered Preserved or tool ft. P. Filty IX Icent Project Information Please Indicate below Filtered Preserved or tool ft. P. Filty IX Icent Project Information Please Indicate below Filtered Preserved or tool ft. P. Filty IX Icent Project Information Please Indicate below Filtered Preserved or tool ft. P. Filty IX Icent Project Information Please Indicate below Filtered Preserved or tool ft. P. Filty IX Icent Project Information Please Indicate below Filtered Preserved or tool ft. P. Filty IX Icent Project Information Please Indicate below Filtered Preserved or tool ft. P. Filty IX Icent Project Information Please Indicate below Filtered Preserved or tool ft. Ple	Email 3 Client / Job #; PO / AF PO / AF LLSD: LLSD: LLSD: ALS C Contac	kenha	QUNESA. Pa	O Same Day or Wee	kend Emergency - Contact ALS to Confirm TAT	
Client / Project Information Piezes indicate below Filtered, Preserved or both (F, P, FP) Job #: Y-8/III193 - 60 - 00 PO / AFE: Job #: Y-8/II193 - 60 - 00 PO / AFE: Job #: Y-8/II193 - 60 - 00 PO / AFE: LISD: PO / AFE: ALS Cathwrine Sampler: PP ALS Cathwrine PO / AFE: ALS Cathwrine Sampler: PP ALS Cathwrine PO / AFE: Double # PO / AFE: DobB/I3 PP: IS Schafterwine PO / AFE: DobB/I3 PP: IS Schafterwine PO / AFE: LI3513:COFC L1353:COFC	(F, P, F/P)	(P, F/P)	(d/2 / d/2 /	(A)	B to client Project Information E No E N	Client / Job #; PO / AF LSD: LSD: ALS C ALS C Contac				Analysis Request	
Job #: V-Bilify - eb - d() Job #: V-Bilify - eb - d() POIAFE: LISD: LISD: LISD: POIAFE: Example: LISD: LISD: Contact: Example: POIAFE: Example: ALS Catherine Example: Date Time Sample: PO Date Time Date Time <				8	Roman Bots Full (1, - e) - d) maril Scripter (1) POLARE: Valuation (s. M) (10, N) ED) (c) Valuation (s. M) (c) Als Calmer, (s. M) (c) (c)	Job #: Job AF LSD: k JM Quote # ALS C Contac	ject Information		Please indicate t	below Filtered, Preserved or both (F, I	, F/P)
POIAFE: POIAFE: LSD: LSD: LSD: LSD: LSD: LSD: ALS Carther in Earlier: POIAFE: Date Time Sampler: POIAFE: ALS Carther in Earlier: POIAFE: POIAFE: POIAFE:					March I. Scrive (E) POLAE: And Latine (E) Lists) Als Carlie (E) Lists) Als Carl	DO / AF LSD: LSD: ALS Conte # Contac	00-00-TU118		2		
LSD: LSD: ALS Cartherine Sampler: PP, JC Duote # Outlet # ALS Cartherine Sampler: PP, JC ALS Cartherine Sampler: PP, JC Date Time DoUblig Track/andres Date Time Doublig Trissing type					With Kin K, Mitt A, M LSD. LSD. <t< td=""><td>LSD: c.M Quote # ALS Cat Contact:</td><td></td><td></td><td>8'Q</td><td></td><td></td></t<>	LSD: c.M Quote # ALS Cat Contact:			8'Q		
Aus Carther the Sampler: PP, JC Lucite # Contact: Events Contact: Event					Wallschrift, Mitrik all Wallschrift, Mitrik all (c2)	د کلا Quote #: ALS گمل Contact:			141		1
Outle # Alls Cathrent Sampler: PP, JC Alls Cathrent Sampler: PP, JC Alls Cathrent Sampler: PP, JC Date Time Sampler Date Date Div Date List Date List Date List Date List Date Date Date					(c.1) (c.1 - 1/1(2) Jourde # (c.1) (c.1 - 1/1(2) Lust (c.1, t.1) appear on the report) Data Three Time appear on the report) Data Three Data Three Sample type Also of the report) Data Three Data Three Sample type Data Data Three Data Data	Quote #. ALS Cat Contact:			+N - 9J - 5SL		ners
ALS Cathvert Sampler: PP, JC ALS Cathvert Contact: Everst Bate Time Date Imbody Important (dotarmary) Important 10/0/13 17:15 20/0/13 17:15 20/0/13 17:15 20/0/13 17:15 20/0/13 17:15 20/0/13 17:15					ALS Current: Sampler: PL C antification Contact: Current: Sampler: PL PL appear on the report) Contact: Current: Sampler: PL PL appear on the report) Contact: Contact: Contact: Contact: Contact: appear on the report) Contact: Contact: Contact: Contact: Contact: appear on the report) Contact: Contact: Contact: Contact: Contact: appear on the report) Contact: Contact: Contact: Contact: Contact: appear Contact: Contact: Contact: Contact: Contact: <	ALS Cat Contact:			10/2	Dal	ein
Date Time sample Type 2 2 2 (d,mm,y) (mmm) (mmm) (mmm) (d,mm,y)					entification Date Time Sample Type C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			npler: PP, JC	projul 15/201	* (an of Co
19/07/13 17-15 Schlaceuster X X 0/0 Hold 20/08/13 17-15 Schlaceuster X X 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				8	Image: Second		Date (dd-mmm-yy)		Type R 2 2	001	Mumb
17-15 Scrateeu_fet X X X 1 1 1 1 1 1 1 1 1 1 1 1				8	Debuglish IP:15 SciPtage ust A X X X X X Interview 20,66(13 IP:15 SciPtage ust A IP:15 IP:15 IP:15 Interview 1351553-COFC 11351553-COFC 11351553-COFC IP:15 IP:15 IP:15 Interview Interview Interview Interview IP:15 IP:15 IP:15 Interview Interview Intervie		EIHOND	tredet	anter X X -	Ho	5
	Image: Sector	1 1	In the complete subtraction of the form and container (a second on a separate Excel tab. Failure to complete subtraction with the form and container (preservation / holding time table for common analyses.	Image: Second	Image: Second	TT- 2001	/		< X X X X Provin		5
	ions with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardous Details	ations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardous Details π_{1b}	Identions with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardous Details $\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \right) \right)$ Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. If this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. If this form the user the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses.	lations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardous Details $\circ \Pi e_C \circ V_{\rm e} V_{\rm e} 0$ Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. If this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. If the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. If the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. If the user acknowledges are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. SHIPMENT RECEPTION (lab use only) SHIPMENT VERIFICATION (tab use only)	ations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardous Details $\Pi_{PC} \sim V_{E}/O$ Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. This form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. Time (nh-mm) Received by. Date: Time: Verified by: Date: Time: Observations: Time (nh-mm) Received by. Time: Verified by: Date: Time: Observations: Verified by: Date: Time: Observations: Verified by: Date: Verified Stift Verified by: Date: Verified Stift Verified St						

WESA Inc. ATTN: Tim Beckenham 4 Cataraque Street The Tower Kingston ON K7K 1Z7 Date Received:07-AUG-13Report Date:12-AUG-13 16:49 (MT)Version:FINAL

Client Phone: 613-531-2725

Certificate of Analysis

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L1344178 NOT SUBMITTED ABORIGINAL 15929 1, 2, 3

Catherine Evaristo-Cordero Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 9936-67 Avenue, Edmonton, AB T6E 0P5 Canada | Phone: +1 780 413 5227 | Fax: +1 780 437 2311 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1344178 CONTD.... PAGE 2 of 10 12-AUG-13 16:49 (MT) Version: FINAL

					vers	on: FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1344178-1 Surface Water 06-AUG-13 10:00 UP1-S	L1344178-2 Surface Water 06-AUG-13 10:00 UP1-B	L1344178-3 Surface Water 06-AUG-13 10:00 UP2-S	L1344178-4 Surface Water 06-AUG-13 10:00 UP2-B	L1344178-5 Surface Water 06-AUG-13 10:00 UP3-S
Grouping	Analyte					
WATER	•					
Physical Tests	рН (рН)	7.72	7.86	7.87	7.88	7.88
	Total Suspended Solids (mg/L)	<3.0	3.0	<3.0	<3.0	<3.0
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	<0.050	<0.050	<0.050	0.078	0.063
	Nitrate and Nitrite (as N) (mg/L)	0.100	0.105	0.104	0.100	0.096
	Nitrate (as N) (mg/L)	0.100	0.105	0.104	0.100	0.096
	Nitrite (as N) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
Total Metals	Aluminum (Al)-Total (mg/L)	0.044	0.068	0.047	0.046	0.047
	Antimony (Sb)-Total (mg/L)	DLM 0.00052	0.00059	0.00054	0.00060	ol.00050
	Arsenic (As)-Total (mg/L)	0.180	0.185	0.187	0.179	0.224
	Barium (Ba)-Total (mg/L)	о.0193	0.0190	0.0184	0.0180	DLM 0.0181
	Beryllium (Be)-Total (mg/L)	<0.0025	O.0025	olum<0.0025	<0.0025	olum <0.0025
	Bismuth (Bi)-Total (mg/L)	<0.00025	O.00025	olum <0.00025	DLM <0.00025	DLM <0.00025
	Boron (B)-Total (mg/L)	<0.050	O.050	olum<0.050	olm <0.050	olm
	Cadmium (Cd)-Total (mg/L)	o.000050	DLM <0.000050	olum <0.000050	DLM <0.000050	DLM <0.000050
	Calcium (Ca)-Total (mg/L)	133 DLM	138 DLM	DLM 141	DLM 136	DLM 140
	Chromium (Cr)-Total (mg/L)	ol.00050	0.00078	olum <0.00050	DLM 0.00086	DLM <0.00050
	Cobalt (Co)-Total (mg/L)	0.00438	0.00458	DLM 0.00466	DLM 0.00446	0.00420
	Copper (Cu)-Total (mg/L)	0.00184	0.00205	0.00180	DLM 0.00185	0.00190
	Iron (Fe)-Total (mg/L)	DLM 1.07	DLM 1.20	DLM 1.16	DLM 1.06	1.12
	Lead (Pb)-Total (mg/L)	0.00039	0.00053	DLM 0.00037	DLM 0.00038	0.00045
	Lithium (Li)-Total (mg/L)	olm <0.025	ol.025	olum	DLM <0.025	olum<0.025
	Magnesium (Mg)-Total (mg/L)	8.77 DLM	B.92	9.16	DLM 8.71	8.86 DLM
	Manganese (Mn)-Total (mg/L)	0.137	0.142	0.143	0.137	0.134
	Molybdenum (Mo)-Total (mg/L)	0.00217	0.00283	DLM 0.00224	DLM 0.00241	0.00223
	Nickel (Ni)-Total (mg/L)	DLM 0.00782	0.00936	0.00862	DLM 0.00891	DLM 0.00818
	Phosphorus (P)-Total (mg/L)	<1.5	<1.5	<1.5	<1.5	<1.5
	Potassium (K)-Total (mg/L)	6.88	7.00 DLM	7.13 DLM	6.82	6.91
	Selenium (Se)-Total (mg/L)	DLM <0.00050	DLM <0.00050	olum <0.00050	DLM <0.00050	DLM <0.00050
	Silicon (Si)-Total (mg/L)	0.50	0.57 DLM	0.50	0.48	0.49
	Silver (Ag)-Total (mg/L)	ol.000050	DLM <0.000050	ol.000050	DLM <0.000050	DLM <0.000050
	Sodium (Na)-Total (mg/L)	31.6 DLM	32.7 DLM	33.5 DLM	^{DLM} 31.2	32.4 DLM
	Strontium (Sr)-Total (mg/L)	^{DLM} 0.216	0.220 DLM	0.220 DLM	0.219	0.218
	Thallium (TI)-Total (mg/L)	оло 0.00025	O.00025	olum <0.00025	DLM <0.00025	DLM <0.00025
	Tin (Sn)-Total (mg/L)	_{DLM}	0.00073	olum <0.00050	DLM 0.00103	DLM <0.00050
	Titanium (Ti)-Total (mg/L)	_{DLM} 0.0052	DLM 0.0060	DLM 0.0040	DLM 0.0036	DLM 0.0038
	Uranium (U)-Total (mg/L)	DLM 0.000271	DLM 0.000295	DLM 0.000283	DLM 0.000277	DLM 0.000287
	Vanadium (V)-Total (mg/L)	DLM <0.00050	DLM <0.00050	DLM <0.00050	DLM <0.00050	DLM <0.00050

L1344178 CONTD.... PAGE 3 of 10 12-AUG-13 16:49 (MT) Version: FINAL

					Versi	on: FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1344178-6 Surface Water 06-AUG-13 10:00 UP3-B	L1344178-7 Surface Water 06-AUG-13 10:00 UP4-S	L1344178-8 Surface Water 06-AUG-13 10:00 UP4-B	L1344178-9 Surface Water 06-AUG-13 10:00 UP5-S	L1344178-10 Surface Water 06-AUG-13 10:00 UP5-B
Grouping	Analyte					
WATER						
Physical Tests	рН (рН)	7.88	7.86	7.86	7.87	7.87
-	Total Suspended Solids (mg/L)	<3.0	<3.0	3.0	<3.0	<3.0
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Nitrate and Nitrite (as N) (mg/L)	0.095	0.104	0.102	0.098	0.091
	Nitrate (as N) (mg/L)	0.095	0.104	0.102	0.098	0.091
	Nitrite (as N) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
Total Metals	Aluminum (AI)-Total (mg/L)	0.050	0.044	0.041	0.048	0.061
	Antimony (Sb)-Total (mg/L)	DLM 0.00052	0.00052	DLM 0.00051	DLM 0.00054	DLM 0.00059
	Arsenic (As)-Total (mg/L)	0.219	0.179	0.177	0.246	о.252 DLM
	Barium (Ba)-Total (mg/L)	DLM 0.0177	0.0180	0.0183	DLM 0.0177	DLM 0.0187
	Beryllium (Be)-Total (mg/L)	DLM <0.0025	olum <0.0025	olum<0.0025	_{DLM}	DLM <0.0025
	Bismuth (Bi)-Total (mg/L)	_{DLM}	DLM <0.00025	olum <0.00025	DLM <0.00025	DLM <0.00025
	Boron (B)-Total (mg/L)	_{DLM}	DLM <0.050	DLM <0.050	DLM <0.050	DLM <0.050
	Cadmium (Cd)-Total (mg/L)	DLM <0.000050	DLM <0.000050	DLM <0.000050	_{DLM} <0.000050	DLM <0.000050
	Calcium (Ca)-Total (mg/L)	DLM 138	DLM 137	DLM 135	DLM 139	DLM 141
	Chromium (Cr)-Total (mg/L)	DLM 0.00199	DLM <0.00050	DLM 0.00055	DLM <0.00050	DLM 0.00072
	Cobalt (Co)-Total (mg/L)	DLM 0.00424	DLM 0.00491	DLM 0.00495	DLM 0.00399	DLM 0.00404
	Copper (Cu)-Total (mg/L)	DLM 0.00179	DLM 0.00176	DLM 0.00181	_{DLM} 0.00192	DLM 0.00195
	Iron (Fe)-Total (mg/L)	_{DLM} 1.10	DLM 1.15	DLM 1.13	DLM 1.03	DLM 1.10
	Lead (Pb)-Total (mg/L)	DLM 0.00045	DLM 0.00034	DLM 0.00037	DLM 0.00048	DLM 0.00050
	Lithium (Li)-Total (mg/L)	DLM <0.025	DLM <0.025	DLM <0.025	DLM <0.025	DLM <0.025
	Magnesium (Mg)-Total (mg/L)	DLM 8.72	8.94	DLM 8.83	DLM 8.65	DLM 8.86
	Manganese (Mn)-Total (mg/L)	DLM 0.131	0.153	DLM 0.151	DLM 0.131	DLM 0.132
	Molybdenum (Mo)-Total (mg/L)	DLM 0.00229	0.00210	DLM 0.00217	DLM 0.00212	DLM 0.00233
	Nickel (Ni)-Total (mg/L)	DLM 0.00837	0.00859	DLM 0.00856	DLM 0.00792	DLM 0.00817
	Phosphorus (P)-Total (mg/L)	_{DLM}	DLM <1.5	DLM <1.5	DLM <1.5	DLM <1.5
	Potassium (K)-Total (mg/L)	DLM 6.76	DLM 6.89	DLM 6.80	DLM 6.74	DLM 6.87
	Selenium (Se)-Total (mg/L)	DLM <0.00050	DLM <0.00050	DLM <0.00050	DLM <0.00050	DLM <0.00050
	Silicon (Si)-Total (mg/L)	DLM 0.49	DLM 0.50	DLM 0.50	DLM 0.49	DLM 0.53
	Silver (Ag)-Total (mg/L)	<0.000050	DLM <0.000050	<0.000050	OLM <0.000050	<0.000050
	Sodium (Na)-Total (mg/L)	дслососос ДLM 32.0	олососос DLM 31.9	32.1	30.6	32.1
	Strontium (Sr)-Total (mg/L)	0.215 DLM	0.217	0.211 DLM	0.225	0.216
	Thallium (TI)-Total (mg/L)	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025
	Tin (Sn)-Total (mg/L)	<0.00020 _{DLM}	<0.00020 DLM <0.00050	<0.00020 DLM <0.00050	<0.00020 DLM <0.00050	<0.00020 DLM <0.00050
	Titanium (Ti)-Total (mg/L)	0.0040	0.0042	0.0051	0.0046	0.0039
	Uranium (U)-Total (mg/L)	0.000290	0.00042 DLM 0.000266	0.000274	0.00040 DLM 0.000281	0.000295
	Vanadium (V)-Total (mg/L)	<0.000250 DLM <0.00050	<0.000200 DLM <0.00050	<0.000274 DLM <0.00050	<0.000201 DLM <0.00050	<0.000200 DLM <0.00050

L1344178 CONTD.... PAGE 4 of 10 12-AUG-13 16:49 (MT) Version: FINAL

					Vers	on: FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1344178-11 Surface Water 06-AUG-13 10:00 UP6-S	L1344178-12 Surface Water 06-AUG-13 10:00 UP6-B	L1344178-13 Surface Water 06-AUG-13 10:00 TBLANK	L1344178-14 Surface Water 06-AUG-13 10:00 UP-EQ	L1344178-15 Surface Water 06-AUG-13 10:00 DUP 9
Grouping	Analyte					
WATER						
Physical Tests	рН (рН)	7.86	7.86	5.62	5.34	7.77
-	Total Suspended Solids (mg/L)	<3.0	<3.0	<3.0	<3.0	4.0
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Nitrate and Nitrite (as N) (mg/L)	0.088	0.086	<0.071	<0.071	0.104
	Nitrate (as N) (mg/L)	0.088	0.086	<0.050	<0.050	0.104
	Nitrite (as N) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
Total Metals	Aluminum (Al)-Total (mg/L)	0.055	0.051	<0.0030	0.019	0.044
	Antimony (Sb)-Total (mg/L)	DLM 0.00053	0.00055	<0.00010	olum <0.00050	DLM 0.00052
	Arsenic (As)-Total (mg/L)	0.276	DLM 0.264	<0.00010	DLM 0.00203	о.184
	Barium (Ba)-Total (mg/L)	DLM 0.0182	DLM 0.0192	<0.000050	olum <0.00025	DLM 0.0179
	Beryllium (Be)-Total (mg/L)	DLM <0.0025	DLM <0.0025	<0.00050	DLM <0.0025	DLM <0.0025
	Bismuth (Bi)-Total (mg/L)	DLM <0.00025	DLM <0.00025	<0.000050	olum <0.00025	DLM <0.00025
	Boron (B)-Total (mg/L)	DLM <0.050	DLM <0.050	<0.010	olum <0.050	DLM <0.050
	Cadmium (Cd)-Total (mg/L)	DLM <0.000050	DLM <0.000050	<0.000010	olum <0.000050	DLM <0.000050
	Calcium (Ca)-Total (mg/L)	DLM 144	DLM 136	<0.020	OLM <0.10	DLM 137
	Chromium (Cr)-Total (mg/L)	DLM <0.00050	DLM 0.00075	<0.00010	DLM <0.00050	DLM <0.00050
	Cobalt (Co)-Total (mg/L)	DLM 0.00412	DLM 0.00416	<0.00010	DLM <0.00050	DLM 0.00454
	Copper (Cu)-Total (mg/L)	DLM 0.00202	DLM 0.00195	<0.00010	DLM <0.00050	DLM 0.00174
	Iron (Fe)-Total (mg/L)	^{DLM}	DLM 1.14	<0.010	DLM <0.050	DLM 1.10
	Lead (Pb)-Total (mg/L)	DLM 0.00052	DLM 0.00052	<0.000050	DLM <0.00025	DLM 0.00034
	Lithium (Li)-Total (mg/L)	olum <0.025	DLM <0.025	<0.0050	olum <0.025	olm<0.025
	Magnesium (Mg)-Total (mg/L)	DLM 9.12	DLM 9.11	<0.0050	olum <0.025	DLM 9.03
	Manganese (Mn)-Total (mg/L)	DLM 0.139	о.139 DLM	<0.000050	DLM 0.00073	DLM 0.138
	Molybdenum (Mo)-Total (mg/L)	DLM 0.00227	DLM 0.00229	<0.000050	DLM <0.00025	DLM 0.00215
	Nickel (Ni)-Total (mg/L)	DLM 0.00827	DLM 0.00845	<0.00010	DLM 0.00123	DLM 0.00801
	Phosphorus (P)-Total (mg/L)	DLM <1.5	DLM <1.5	<0.30	DLM <1.5	DLM <1.5
	Potassium (K)-Total (mg/L)	DLM 7.05	DLM 7.03	<0.050	DLM <0.25	6.93
	Selenium (Se)-Total (mg/L)	DLM <0.00050	DLM <0.00050	<0.00010	DLM <0.00050	DLM <0.00050
	Silicon (Si)-Total (mg/L)	DLM 0.49	DLM 0.51	<0.050	DLM <0.25	DLM 0.51
	Silver (Ag)-Total (mg/L)	<0.000050	0.000101	<0.000010	<0.000050	<0.000050
	Sodium (Na)-Total (mg/L)	олососос DLM 32.9	32.6	< 0.050	<0.25	32.0
	Strontium (Sr)-Total (mg/L)	0.219	0.220 DLM	<0.00010	<0.00050	0.212
	Thallium (TI)-Total (mg/L)	<0.00025	<0.00025	<0.000050	<0.00025	<0.00025
	Tin (Sn)-Total (mg/L)	<0.00023 _{DLM}	0.00400	<0.00010	<0.00023 _{DLM} <0.00050	<0.00023 DLM <0.00050
	Titanium (Ti)-Total (mg/L)	с00030 _{DLM} 0.0046	0.00400 DLM 0.0039	<0.00030	<0.00050 _{DLM} <0.0015	0.0040
	Uranium (U)-Total (mg/L)	0.00040 DLM 0.000290	0.00039 DLM 0.000306	<0.000010	<0.00015 DLM <0.000050	0.00040 DLM 0.000267
	Vanadium (V)-Total (mg/L)	0.000230 DLM <0.00050	<0.000500 DLM <0.00050	<0.00010	<0.000030 DLM <0.00050	<0.000207 DLM <0.00050

L1344178 CONTD.... PAGE 5 of 10 12-AUG-13 16:49 (MT) Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

					Version:	FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1344178-16 Surface Water 06-AUG-13 10:00 DUP 10	L1344178-20 Surface Water 06-AUG-13 09:00 EFF 167	L1344178-24 Surface Water 07-AUG-13 09:00 EFF 171		
Grouping	Analyte					
WATER						
Physical Tests	рН (рН)	7.84	7.91	7.92		
	Total Suspended Solids (mg/L)	3.0	<3.0	<3.0		
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.056	0.114	0.066		
	Nitrate and Nitrite (as N) (mg/L)	0.106	0.110	0.090		
	Nitrate (as N) (mg/L)	0.106	0.110	0.090		
	Nitrite (as N) (mg/L)	<0.050	<0.050	<0.050		
Total Metals	Aluminum (Al)-Total (mg/L)	о.043	olum <0.015	olum<0.015		
	Antimony (Sb)-Total (mg/L)	DLM 0.00050	DLM <0.00050	DLM <0.00050		
	Arsenic (As)-Total (mg/L)	0.182	0.0223	0.0257		
	Barium (Ba)-Total (mg/L)	о.0184	0.0150	0.0153		
	Beryllium (Be)-Total (mg/L)	оло совется общать странование и справо и справо общать странование и справо общать странование и средского средско	olum <0.0025	<0.0025		
	Bismuth (Bi)-Total (mg/L)	DLM <0.00025	ol.00025	OLM <0.00025		
	Boron (B)-Total (mg/L)	DLM <0.050	olum <0.050	olum <0.050		
	Cadmium (Cd)-Total (mg/L)	DLM <0.000050	OLM <0.000050	O.000050		
	Calcium (Ca)-Total (mg/L)	DLM 137	DLM 143	DLM 145		
	Chromium (Cr)-Total (mg/L)	DLM <0.00050	OLM <0.00050	OLM <0.00050		
	Cobalt (Co)-Total (mg/L)	_{DLM} 0.00493	0.00313	DLM 0.00306		
	Copper (Cu)-Total (mg/L)	DLM 0.00172	0.00183	DLM 0.00092		
	Iron (Fe)-Total (mg/L)	^{DLM} 1.15	DLM 1.90	DLM 2.00		
	Lead (Pb)-Total (mg/L)	_{DLM} 0.00035	DLM <0.00025	DLM <0.00025		
	Lithium (Li)-Total (mg/L)	_{DLM} <0.025	DLM <0.025	DLM <0.025		
	Magnesium (Mg)-Total (mg/L)	^{DLM} 9.06	DLM 8.87	DLM 9.09		
	Manganese (Mn)-Total (mg/L)	^{DLM} 0.156	DLM 0.0725	DLM 0.0737		
	Molybdenum (Mo)-Total (mg/L)	DLM 0.00215	DLM 0.00141	DLM 0.00141		
	Nickel (Ni)-Total (mg/L)	_{DLM} 0.00877	DLM 0.00559	DLM 0.00575		
	Phosphorus (P)-Total (mg/L)	_{DLM}	DLM <1.5	DLM <1.5		
	Potassium (K)-Total (mg/L)	_{DLM} 6.99	DLM 6.33	DLM 6.44		
	Selenium (Se)-Total (mg/L)	DLM <0.00050	DLM <0.00050	DLM <0.00050		
	Silicon (Si)-Total (mg/L)	0.53	0.33	0.30		
	Silver (Ag)-Total (mg/L)	<0.000050	<0.000050	<0.000050		
	Sodium (Na)-Total (mg/L)	олососос DLM 32.6	олососос DLM 36.4	37.3		
	Strontium (Sr)-Total (mg/L)	0.224	0.222	0.227		
	Thallium (TI)-Total (mg/L)	<0.00025	<0.00025	<0.00025		
	Tin (Sn)-Total (mg/L)	<0.00020 DLM <0.00050	<0.00020 DLM <0.00050	<0.00020 DLM <0.00050		
	Titanium (Ti)-Total (mg/L)	с0.00030 _{DLM} 0.0044	0.0085	0.0091		
	Uranium (U)-Total (mg/L)	о.оочч _{DLM} 0.000273	0.000151	0.000159		
	Vanadium (V)-Total (mg/L)	0.000273 DLM <0.00050	<0.000131 DLM <0.00050	<0.000139 DLM <0.00050		

L1344178 CONTD.... PAGE 6 of 10 12-AUG-13 16:49 (MT) Version: FINAL

					Vers	ion: FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1344178-1 Surface Water 06-AUG-13 10:00 UP1-S	L1344178-2 Surface Water 06-AUG-13 10:00 UP1-B	L1344178-3 Surface Water 06-AUG-13 10:00 UP2-S	L1344178-4 Surface Water 06-AUG-13 10:00 UP2-B	L1344178-5 Surface Water 06-AUG-13 10:00 UP3-S
Grouping	Analyte					
WATER						
Total Metals	Zinc (Zn)-Total (mg/L)	_{DLM}	_{DLM}	DLM <0.015	^{DLM} <0.015	olm<80.015
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	DLM 0.0209	0.0193	DLM 0.0188	0.0177	0.0197
	Antimony (Sb)-Dissolved (mg/L)	0.00051	<0.00050	<0.00050	<0.00050	0.00052
	Arsenic (As)-Dissolved (mg/L)	0.0499	0.0468	DLM 0.0474	DLM 0.0476	0.0760
	Barium (Ba)-Dissolved (mg/L)	0.0165	0.0166	0.0165	0.0163	0.0167
	Beryllium (Be)-Dissolved (mg/L)	olum <0.0025	DLM <0.0025	olum<0.0025	olum 0.0025	olum <0.0025
	Bismuth (Bi)-Dissolved (mg/L)	OLM <0.00025	DLM <0.00025	olum <0.00025	olum <0.00025	olum<0.00025
	Boron (B)-Dissolved (mg/L)	OLM <0.050	DLM <0.050	olum <0.050	olum <0.050	<0.050
	Cadmium (Cd)-Dissolved (mg/L)	DLM <0.000050	DLM <0.000050	DLM <0.000050	DLM <0.000050	DLM <0.000050
	Calcium (Ca)-Dissolved (mg/L)	DLM 128	DLM 129	DLM 132	DLM 128	DLM 130
	Chromium (Cr)-Dissolved (mg/L)	DLM <0.00050	DLM <0.00050	olum <0.00050	DLM <0.00050	olimication dlamatication dlamaticaticaticaticaticaticaticaticaticatic
	Cobalt (Co)-Dissolved (mg/L)	DLM 0.00341	DLM 0.00341	DLM 0.00343	DLM 0.00338	DLN 0.00313
	Copper (Cu)-Dissolved (mg/L)	0.00132	DLM 0.00124	DLM 0.00121	DLM 0.00120	DLM 0.00124
	Iron (Fe)-Dissolved (mg/L)	0.065	DLM 0.052	DLM <0.050	DLM 0.055	DLN <0.050
	Lead (Pb)-Dissolved (mg/L)	OLM <0.00025	DLM <0.00025	olum <0.00025	DLM <0.00025	DLN <0.00025
	Lithium (Li)-Dissolved (mg/L)	olum<0.015	олы со.015	олы совется общать совется общать совется общать общать совется совет	_{DLM} <0.015	DLM <0.015
	Magnesium (Mg)-Dissolved (mg/L)	8.60 DLM	8.63 DLM	^{DLM} 8.71	B.53	DLN 8.61
	Manganese (Mn)-Dissolved (mg/L)	0.0992	0.100 DLM	0.100 ^{DLM}	0.101	0.0959
	Molybdenum (Mo)-Dissolved (mg/L)	0.00205	0.00251	0.00213	DLM 0.00228	DLN 0.00205
	Nickel (Ni)-Dissolved (mg/L)	0.00658	о.00745	DLM 0.00670	DLM 0.00783	DLM 0.00666
	Phosphorus (P)-Dissolved (mg/L)	<1.5 DLM	<1.5	<1.5	^{DLM}	<1.5
	Potassium (K)-Dissolved (mg/L)	7.19 DLM	7.20 DLM	DLM 7.27	7.06 DLM	7.12 DLM
	Selenium (Se)-Dissolved (mg/L)	OLM <0.00050	оло соло со село село село село село сел	olum <0.00050	olum <0.00050	DLM <0.00050
	Silicon (Si)-Dissolved (mg/L)	0.44	0.46	0.45	DLM 0.44	0.43
	Silver (Ag)-Dissolved (mg/L)	<0.000050	DLM <0.000050	ol.000050	DLM <0.000050	DLM <0.000050
	Sodium (Na)-Dissolved (mg/L)	29.7 DLM	29.3 DLM	29.3 DLM	29.3 DLM	29.6 DLM
	Strontium (Sr)-Dissolved (mg/L)	0.202	о.196	0.203	0.201	0.202
	Thallium (TI)-Dissolved (mg/L)	O.00025	оло совется общать странование и странование странов Странование странование странование странование странование странование странование странование странование стран	olum <0.00025	DLM <0.00025	DLM <0.00025
	Tin (Sn)-Dissolved (mg/L)	olum <0.00050	оло соло со село село село село село сел	olum <0.00050	DLM <0.00050	ol.00050
	Titanium (Ti)-Dissolved (mg/L)	олы сарына с0.0015	оло совется страната и справо совется с общат с общат се советски	olum <0.0015	olim	olino <0.0015
	Uranium (U)-Dissolved (mg/L)	о.000243	о.000255	DLM 0.000240	DLM 0.000253	DLN 0.000261
	Vanadium (V)-Dissolved (mg/L)	olum <0.00050	оло соло со село село село село село сел	olum <0.00050	DLM <0.00050	DLN <0.00050
	Zinc (Zn)-Dissolved (mg/L)	DLM <0.0050	DLM <0.0050	DLM <0.0050	DLM <0.0050	olumeters/

L1344178 CONTD.... PAGE 7 of 10 12-AUG-13 16:49 (MT) Version: FINAL

			Vers	ersion: FINAL		
	Sample ID Description Sampled Date Sampled Time Client ID	L1344178-6 Surface Water 06-AUG-13 10:00 UP3-B	L1344178-7 Surface Water 06-AUG-13 10:00 UP4-S	L1344178-8 Surface Water 06-AUG-13 10:00 UP4-B	L1344178-9 Surface Water 06-AUG-13 10:00 UP5-S	L1344178-10 Surface Wate 06-AUG-13 10:00 UP5-B
Grouping	Analyte					
WATER						
Total Metals	Zinc (Zn)-Total (mg/L)	_{DLM}	_{DLM}	DLM <0.015	_{DLM} <0.015	DLM <0.015
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	0.0250	0.0175	0.0177	0.0204	0.0202
	Antimony (Sb)-Dissolved (mg/L)	0.00051	0.00051	<0.00050	0.00051	0.00053
	Arsenic (As)-Dissolved (mg/L)	0.0755	0.0433	0.0432	0.0955	0.0945
	Barium (Ba)-Dissolved (mg/L)	0.0171	0.0162	0.0168	0.0172	0.0170
	Beryllium (Be)-Dissolved (mg/L)	<0.0025	<0.0025	<0.0025	<0.0025	olin di DLN <0.0025
	Bismuth (Bi)-Dissolved (mg/L)	олоооосо 0.00025	DLM <0.00025	olum <0.00025	olum <0.00025	ol.00025
	Boron (B)-Dissolved (mg/L)	OLM <0.050	olumication (0.050)	olum <0.050	olum <0.050	<0.050
	Cadmium (Cd)-Dissolved (mg/L)	DLM <0.000050	DLM <0.000050	OLM <0.000050	DLM <0.000050	_{DLM} <0.000050
	Calcium (Ca)-Dissolved (mg/L)	DLM 131	DLM 130	DLM 128	DLM 130	DLM 128
	Chromium (Cr)-Dissolved (mg/L)	DLM <0.00050	DLM <0.00050	DLM <0.00050	DLM <0.00050	DLI <0.00050
	Cobalt (Co)-Dissolved (mg/L)	DLM 0.00316	DLM 0.00384	DLM 0.00385	DLM 0.00313	DLI 0.00297
	Copper (Cu)-Dissolved (mg/L)	0.00115	0.00124	DLM 0.00118	DLM 0.00127	DL 0.00124
	Iron (Fe)-Dissolved (mg/L)	0.052	olum <0.050	olimet <0.050	^{DLM} 0.065	0.052
	Lead (Pb)-Dissolved (mg/L)	O.00025	оло совется общать справо общат Справо общать справо общать С	olum <0.00025	DLM <0.00025	ol.00025
	Lithium (Li)-Dissolved (mg/L)	оло совется общать странование и справо и справо общать справо и справо общать справо	оло совется общать совется совется совется совется сов	ollm<0.015	₀ 20.015	oLL <0.015
	Magnesium (Mg)-Dissolved (mg/L)	8.62 DLM	8.72 DLM	B.72	8.59	8.61
	Manganese (Mn)-Dissolved (mg/L)	0.0967	0.116	0.116	DLM 0.0957	DL 0.0944
	Molybdenum (Mo)-Dissolved (mg/L)	0.00218	0.00201	DLM 0.00208	0.00206	0.00208
	Nickel (Ni)-Dissolved (mg/L)	0.00656	0.00722	DLM 0.00754	DLM 0.00646	0.00651
	Phosphorus (P)-Dissolved (mg/L)	<1.5	<1.5	<1.5	^{DLM}	<1.5
	Potassium (K)-Dissolved (mg/L)	7.12 DLM	DLM 7.24	7.31 DLM	7.18	7.16
	Selenium (Se)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	olm <0.00050	DL <0.00050
	Silicon (Si)-Dissolved (mg/L)	0.43	0.46	0.45	0.43	0.42
	Silver (Ag)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	ol.000050	_{DL}
	Sodium (Na)-Dissolved (mg/L)	29.3 DLM	30.0 DLM	30.4 DLM	29.6 DLM	29.6
	Strontium (Sr)-Dissolved (mg/L)	0.206	0.205	0.195	0.202	0.201
	Thallium (TI)-Dissolved (mg/L)	<0.00025	O.00025	<0.00025	olm<0.00025	<0.00025
	Tin (Sn)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	olum <0.00050	<0.00050
	Titanium (Ti)-Dissolved (mg/L)	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015
	Uranium (U)-Dissolved (mg/L)	0.000258	0.000247	0.000237	0.000270	0.000256
	Vanadium (V)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	ol.0050	<0.0050

L1344178 CONTD.... PAGE 8 of 10 12-AUG-13 16:49 (MT) Version: FINAL

						ion: FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1344178-11 Surface Water 06-AUG-13 10:00 UP6-S	L1344178-12 Surface Water 06-AUG-13 10:00 UP6-B	L1344178-13 Surface Water 06-AUG-13 10:00 TBLANK	L1344178-14 Surface Water 06-AUG-13 10:00 UP-EQ	L1344178-15 Surface Wate 06-AUG-13 10:00 DUP 9
Grouping	Analyte					
WATER						
Total Metals	Zinc (Zn)-Total (mg/L)	_{DLM}	DLM <0.015	<0.0030	о.159	<0.015
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	DLM 0.0202	DLM 0.0213			
	Antimony (Sb)-Dissolved (mg/L)	0.00052	<0.00050			
	Arsenic (As)-Dissolved (mg/L)	о.105	DLM 0.101			
	Barium (Ba)-Dissolved (mg/L)	DLM 0.0172	DLM 0.0161			
	Beryllium (Be)-Dissolved (mg/L)	DLM <0.0025	DLM <0.0025			
	Bismuth (Bi)-Dissolved (mg/L)	DLM <0.00025	DLM <0.00025			
	Boron (B)-Dissolved (mg/L)	olum <0.050	оло 0.050			
	Cadmium (Cd)-Dissolved (mg/L)	DLM <0.000050	DLM <0.000050			
	Calcium (Ca)-Dissolved (mg/L)	DLM 125	DLM 127			
	Chromium (Cr)-Dissolved (mg/L)	OLM <0.00050	DLM <0.00050			
	Cobalt (Co)-Dissolved (mg/L)	0.00310	0.00313			
	Copper (Cu)-Dissolved (mg/L)	0.00128	0.00131			
	Iron (Fe)-Dissolved (mg/L)	0.054	0.059			
	Lead (Pb)-Dissolved (mg/L)	O.00025	OLM <0.00025			
	Lithium (Li)-Dissolved (mg/L)	DLM <0.015	olum <0.015			
	Magnesium (Mg)-Dissolved (mg/L)	8.69 DLM	B.68			
	Manganese (Mn)-Dissolved (mg/L)	0.103	0.103			
	Molybdenum (Mo)-Dissolved (mg/L)	DLM 0.00207	0.00203			
	Nickel (Ni)-Dissolved (mg/L)	0.00669	0.00683			
	Phosphorus (P)-Dissolved (mg/L)	<1.5	<1.5			
	Potassium (K)-Dissolved (mg/L)	7.18 DLM	7.13 DLM			
	Selenium (Se)-Dissolved (mg/L)	OLM <0.00050	OLM <0.00050			
	Silicon (Si)-Dissolved (mg/L)	0.43	0.43			
	Silver (Ag)-Dissolved (mg/L)	<0.000050	DLM <0.000050			
	Sodium (Na)-Dissolved (mg/L)	30.0 DLM	29.5 DLM			
	Strontium (Sr)-Dissolved (mg/L)	0.204	0.196			
	Thallium (TI)-Dissolved (mg/L)	<0.00025	DLM <0.00025			
	Tin (Sn)-Dissolved (mg/L)	<0.00050	DLM <0.00050			
	Titanium (Ti)-Dissolved (mg/L)	<0.0015	DLM <0.0015			
	Uranium (U)-Dissolved (mg/L)	DLM 0.000269	0.000256			
	Vanadium (V)-Dissolved (mg/L)	DLM <0.00050	DLM <0.00050			
	Zinc (Zn)-Dissolved (mg/L)	DLM <0.0050	DLM <0.0050			

L1344178 CONTD PAGE 9 of 10 12-AUG-13 16:49 (MT)

	ALS ENVIRONME	NTAL AN	IALYTICA	L REPORT	12-AUG-13 16:49 (N Version: FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1344178-16 Surface Water 06-AUG-13 10:00 DUP 10	L1344178-20 Surface Water 06-AUG-13 09:00 EFF 167	L1344178-24 Surface Water 07-AUG-13 09:00 EFF 171	
Grouping	Analyte				
WATER					
Total Metals	Zinc (Zn)-Total (mg/L)	DLM <0.015	<0.015	<0.015	
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)				
	Antimony (Sb)-Dissolved (mg/L)				
	Arsenic (As)-Dissolved (mg/L)				
	Barium (Ba)-Dissolved (mg/L)				
	Beryllium (Be)-Dissolved (mg/L)				
	Bismuth (Bi)-Dissolved (mg/L)				
	Boron (B)-Dissolved (mg/L)				
	Cadmium (Cd)-Dissolved (mg/L)				
	Calcium (Ca)-Dissolved (mg/L)				
	Chromium (Cr)-Dissolved (mg/L)				
	Cobalt (Co)-Dissolved (mg/L)				
	Copper (Cu)-Dissolved (mg/L)				
	Iron (Fe)-Dissolved (mg/L)				
	Lead (Pb)-Dissolved (mg/L)				
	Lithium (Li)-Dissolved (mg/L)				
	Magnesium (Mg)-Dissolved (mg/L)				
	Manganese (Mn)-Dissolved (mg/L)				
	Molybdenum (Mo)-Dissolved (mg/L)				
	Nickel (Ni)-Dissolved (mg/L)				
	Phosphorus (P)-Dissolved (mg/L)				
	Potassium (K)-Dissolved (mg/L)				
	Selenium (Se)-Dissolved (mg/L)				
	Silicon (Si)-Dissolved (mg/L)				
	Silver (Ag)-Dissolved (mg/L)				
	Sodium (Na)-Dissolved (mg/L)				
	Strontium (Sr)-Dissolved (mg/L)				
	Thallium (TI)-Dissolved (mg/L)				
	Tin (Sn)-Dissolved (mg/L)				
	Titanium (Ti)-Dissolved (mg/L)				
	Uranium (U)-Dissolved (mg/L)				
	Vanadium (V)-Dissolved (mg/L)				
	Zinc (Zn)-Dissolved (mg/L)				

Reference Information

Qualifiers for Individual Parameters Listed:

Qualifier Descri	otion		
DLM Detect	on Limit Adjus	ted For Sample Matrix Effects	
Test Method Referenc	es:		
ALS Test Code	Matrix	Test Description	Method Reference**
MET-D-CCMS-ED	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A
MET-T-CCMS-ED	Water	Total Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A
NH3-CFA-ED	Water	Ammonia in Water by Colour	APHA 4500 NH3-NITROGEN (AMMONIA)
This analysis is carried automated phenate colo			ROGEN (AMMONIA)". Ammonia is determined using the
NO2+NO3-CALC-ED	Water	Nitrate+Nitrite	CALCULATION
NO2-IC-ED	Water	Nitrite as N by IC	APHA 4110 B-ION CHROMATOGRAPHY
NO3-IC-ED	Water	Nitrate as N by IC	APHA 4110 B-ION CHROMATOGRAPHY
PH-ED	Water	pH	APHA 4500 H-Electrode
		or pH will have exceeded the 15 minute recommen surate results are needed)	ded hold time from time of sampling (field analysis is
SOLIDS-TOTSUS-ED	Water	Total Suspended Solids	APHA 2540 D-Gravimetric
The last two letters of the	above test co	difications from specified reference methods to imp de(s) indicate the laboratory that performed analytic	
Laboratory Definition C			424
ED	ALS E	NVIRONMENTAL - EDMONTON, ALBERTA, CAN	IADA
Chain of Custody Numbe	ers:		
1	2	3	
applicable tests, surrogat mg/kg - milligrams per kil mg/kg wwt - milligrams per mg/kg lwt - milligrams per mg/L - milligrams per litre < - Less than. D.L The reported Detect N/A - Result not available	that is similar i es are added t ogram based o er kilogram base r kilogram base	n behaviour to target analyte(s), but that does not o o samples prior to analysis as a check on recovery on dry weight of sample. Sed on wet weight of sample. A on lipid-adjusted weight of sample. O known as the Limit of Reporting (LOR). Ilifier code and definition for explanation. SAMPLES WERE RECEIVED IN ACCEPTABLE C	

Workorder: L1344178

Report Date: 12-AUG-13 Page 1 of 12

Client:	WESA Inc. 4 Cataraque Street The Kingston ON K7K 12							
Contact:	Tim Beckenham							
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS	-ED Water							
Batch	R2669339							
WG172342 Aluminum	1-2 CRM (Al)-Dissolved	ED-HIGH-W	ATRM 100.6		%		80-120	09-AUG-13
Antimony ((Sb)-Dissolved		98.4		%		80-120	09-AUG-13
Arsenic (As	s)-Dissolved		103.1		%		80-120	09-AUG-13
Barium (Ba	a)-Dissolved		102.2		%		80-120	09-AUG-13
Beryllium (Be)-Dissolved		101.3		%		80-120	09-AUG-13
Bismuth (B	Bi)-Dissolved		100.6		%		80-120	09-AUG-13
Boron (B)-l	Dissolved		98.2		%		80-120	09-AUG-13
Cadmium	(Cd)-Dissolved		104.4		%		80-120	09-AUG-13
Calcium (C	Ca)-Dissolved		105.0		%		80-120	09-AUG-13
Chromium	(Cr)-Dissolved		103.6		%		80-120	09-AUG-13
Cobalt (Co)-Dissolved		100.2		%		80-120	09-AUG-13
Copper (Co	u)-Dissolved		99.2		%		80-120	09-AUG-13
Lead (Pb)-	Dissolved		100.2		%		80-120	09-AUG-13
Lithium (Li))-Dissolved		101.5		%		80-120	09-AUG-13
Magnesiun	n (Mg)-Dissolved		100.1		%		80-120	09-AUG-13
Manganes	e (Mn)-Dissolved		99.4		%		80-120	09-AUG-13
Molybdenu	ım (Mo)-Dissolved		102.3		%		80-120	09-AUG-13
Nickel (Ni)	-Dissolved		102.6		%		80-120	09-AUG-13
Phosphoru	is (P)-Dissolved		111.0		%		80-120	09-AUG-13
Potassium	(K)-Dissolved		105.9		%		80-120	09-AUG-13
Selenium ((Se)-Dissolved		104.1		%		80-120	09-AUG-13
Silicon (Si)	-Dissolved		106.0		%		80-120	09-AUG-13
Silver (Ag)	-Dissolved		102.3		%		80-120	09-AUG-13
Sodium (N	a)-Dissolved		97.2		%		80-120	09-AUG-13
Strontium ((Sr)-Dissolved		104.2		%		80-120	09-AUG-13
Thallium (1	TI)-Dissolved		102.7		%		80-120	09-AUG-13
Titanium (1	Ti)-Dissolved		108.2		%		80-120	09-AUG-13
Tin (Sn)-Di	issolved		97.5		%		80-120	09-AUG-13
Uranium (l	J)-Dissolved		102.7		%		80-120	09-AUG-13
Vanadium	(V)-Dissolved		100.5		%		80-120	09-AUG-13
Zinc (Zn)-E	Dissolved		99.9		%		80-120	09-AUG-13
WG172342 Aluminum	1-1 MB (Al)-Dissolved		<0.0010		mg/L		0.001	09-AUG-13
	(Sb)-Dissolved		<0.00010)	mg/L		0.0001	09-AUG-13

		Workorder	: L1344178	3	Report Date: 12	2-AUG-13	Pa	ge 2 of 12
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-ED	Water							
Batch R266	9339							
	//B		0.0004.0					
Arsenic (As)-Disso			<0.00010	`	mg/L		0.0001	09-AUG-13
Barium (Ba)-Disso			<0.000050)	mg/L		0.00005	09-AUG-13
Beryllium (Be)-Dis			<0.00050		mg/L		0.0005	09-AUG-13
Bismuth (Bi)-Disso			<0.000050)	mg/L		0.00005	09-AUG-13
Boron (B)-Dissolve			<0.010		mg/L		0.01	09-AUG-13
Cadmium (Cd)-Dis			<0.000010)	mg/L		0.00001	09-AUG-13
Calcium (Ca)-Diss	olved		<0.020		mg/L		0.02	09-AUG-13
Chromium (Cr)-Di	ssolved		<0.00010		mg/L		0.0001	09-AUG-13
Cobalt (Co)-Dissol	lved		<0.00010		mg/L		0.0001	09-AUG-13
Copper (Cu)-Disso	olved		<0.00010		mg/L		0.0001	09-AUG-13
Iron (Fe)-Dissolve	d		<0.010		mg/L		0.01	09-AUG-13
Lead (Pb)-Dissolv	ed		<0.000050)	mg/L		0.00005	09-AUG-13
Lithium (Li)-Dissol	ved		<0.0030		mg/L		0.003	09-AUG-13
Magnesium (Mg)-I	Dissolved		<0.0050		mg/L		0.005	09-AUG-13
Manganese (Mn)-l	Dissolved		<0.000050)	mg/L		0.00005	09-AUG-13
Molybdenum (Mo)	-Dissolved		<0.000050)	mg/L		0.00005	09-AUG-13
Nickel (Ni)-Dissolv	ved		<0.00010		mg/L		0.0001	09-AUG-13
Phosphorus (P)-D	issolved		<0.30		mg/L		0.3	09-AUG-13
Potassium (K)-Dis	solved		<0.050		mg/L		0.05	09-AUG-13
Selenium (Se)-Dis	solved		<0.00010		mg/L		0.0001	09-AUG-13
Silicon (Si)-Dissolv	ved		<0.050		mg/L		0.05	09-AUG-13
Silver (Ag)-Dissolv	ved		<0.000010)	mg/L		0.00001	09-AUG-13
Sodium (Na)-Diss			<0.050		mg/L		0.05	09-AUG-13
Strontium (Sr)-Dis			<0.00010		mg/L		0.0001	09-AUG-13
Thallium (TI)-Disso			<0.000050)	mg/L		0.00005	09-AUG-13
Titanium (Ti)-Diss			<0.00030		mg/L		0.0003	09-AUG-13
Tin (Sn)-Dissolved			<0.00010		mg/L		0.0001	09-AUG-13
Uranium (U)-Disso			<0.000010)	mg/L		0.00001	09-AUG-13
Vanadium (V)-Diss			<0.00010	•	mg/L		0.0001	09-AUG-13
Zinc (Zn)-Dissolve			<0.00010		mg/L		0.0001	09-AUG-13

MET-T-CCMS-ED

Water

Test MET-T-CCMS-ED Batch R2668991	Matrix Water	Reference	Result	Qualifier	Unito			
Batch R2668991	Water			Quaintoi	Units	RPD	Limit	Analyzed
WG1723752-1 MB			-0.0020		~~~~ <i>"</i>		0.000	
Aluminum (Al)-Total			<0.0030		mg/L		0.003	10-AUG-13
Antimony (Sb)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Arsenic (As)-Total			<0.00010	`	mg/L		0.0001	10-AUG-13
Barium (Ba)-Total			<0.000050	J	mg/L		0.00005	10-AUG-13
Beryllium (Be)-Total			<0.00050	_	mg/L		0.0005	10-AUG-13
Bismuth (Bi)-Total			<0.000050	J	mg/L		0.00005	10-AUG-13
Boron (B)-Total			<0.010	_	mg/L		0.01	10-AUG-13
Cadmium (Cd)-Total			<0.000010)	mg/L		0.00001	10-AUG-13
Calcium (Ca)-Total			<0.020		mg/L		0.02	10-AUG-13
Chromium (Cr)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Iron (Fe)-Total			<0.010		mg/L		0.01	10-AUG-13
Lead (Pb)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Lithium (Li)-Total			<0.0050		mg/L		0.005	10-AUG-13
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	10-AUG-13
Manganese (Mn)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Molybdenum (Mo)-Total			<0.000050	C	mg/L		0.00005	10-AUG-13
Nickel (Ni)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Phosphorus (P)-Total			<0.30		mg/L		0.3	10-AUG-13
Potassium (K)-Total			<0.050		mg/L		0.05	10-AUG-13
Selenium (Se)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Silicon (Si)-Total			<0.050		mg/L		0.05	10-AUG-13
Silver (Ag)-Total			<0.000010	D	mg/L		0.00001	10-AUG-13
Sodium (Na)-Total			<0.050		mg/L		0.05	10-AUG-13
Strontium (Sr)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Thallium (TI)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Tin (Sn)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	10-AUG-13
Uranium (U)-Total			<0.000010)	mg/L		0.00001	10-AUG-13
Vanadium (V)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Zinc (Zn)-Total			<0.0030		mg/L		0.003	10-AUG-13

	M = 1 = 1	Defens -	11	0	11-11		1.1 14	A
est	Matrix	Reference R	esult	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2669616								
WG1723768-3 LCS Aluminum (Al)-Total		1	00.7		%		80-120	10-AUG-13
Antimony (Sb)-Total			01.4		%		80-120	10-AUG-13
Arsenic (As)-Total			02.7		%		80-120	10-AUG-13
Barium (Ba)-Total			01.4		%		80-120	10-AUG-13
Beryllium (Be)-Total			02.5		%		80-120	10-AUG-13
Bismuth (Bi)-Total			03.8		%		80-120	10-AUG-13
Boron (B)-Total			03.1		%		80-120	10-AUG-13
Cadmium (Cd)-Total			04.7		%		80-120	10-AUG-13
Calcium (Ca)-Total			06.9		%		80-120	10-AUG-13
Chromium (Cr)-Total			04.1		%		80-120	10-AUG-13
Cobalt (Co)-Total			01.9		%		80-120	10-AUG-1
Copper (Cu)-Total			9.3		%		80-120	10-AUG-13
Iron (Fe)-Total			5.4		%		80-120	10-AUG-1
Lead (Pb)-Total			07.3		%		80-120	10-AUG-1
Lithium (Li)-Total		1	07.8		%		80-120	10-AUG-1
Magnesium (Mg)-Total		10	05.2		%		80-120	10-AUG-1
Manganese (Mn)-Total		10	00.8		%		80-120	10-AUG-1
Molybdenum (Mo)-Total		10	04.5		%		80-120	10-AUG-1
Nickel (Ni)-Total		1	00.3		%		80-120	10-AUG-1
Potassium (K)-Total		98	8.2		%		80-120	10-AUG-1
Selenium (Se)-Total		1	08.6		%		80-120	10-AUG-13
Silicon (Si)-Total		10	08.6		%		80-120	10-AUG-13
Silver (Ag)-Total		9.	4.1		%		80-120	10-AUG-13
Sodium (Na)-Total		1	02.4		%		80-120	10-AUG-13
Strontium (Sr)-Total		1	13.1		%		80-120	10-AUG-13
Thallium (TI)-Total		10	06.2		%		80-120	10-AUG-13
Tin (Sn)-Total		94	4.8		%		80-120	10-AUG-13
Titanium (Ti)-Total		10	06.1		%		80-120	10-AUG-13
Uranium (U)-Total		1	01.2		%		80-120	10-AUG-13
Vanadium (V)-Total		1	03.6		%		80-120	10-AUG-13
Zinc (Zn)-Total		1	03.7		%		80-120	10-AUG-13
WG1723768-4 LCS								
Aluminum (Al)-Total			18.5		%		80-120	10-AUG-13
Antimony (Sb)-Total		1	06.9		%		80-120	10-AUG-13

		Workorder	: L134417	8	Report Date: 12	2-AUG-13	Pa	ge 5 of 1
Fest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2669616								
WG1723768-4 LCS Arsenic (As)-Total			101.8		%		00.400	
			101.8		%		80-120	10-AUG-13
Barium (Ba)-Total Beryllium (Be)-Total			98.4		%		80-120	10-AUG-13
Bismuth (Bi)-Total			98.4 98.5		%		80-120	10-AUG-13
			98.5 100.5		%		80-120	10-AUG-13
Boron (B)-Total Cadmium (Cd)-Total			100.5		%		80-120	10-AUG-13
Calcium (Ca)-Total			101.5		%		80-120	10-AUG-13
			103.0		%		80-120	10-AUG-13
Chromium (Cr)-Total Cobalt (Co)-Total			99.3		%		80-120	10-AUG-13
Copper (Cu)-Total			99.3 99.5		%		80-120	10-AUG-13
Iron (Fe)-Total			99.5 105.7		%		80-120	10-AUG-13
Lead (Pb)-Total			103.7		%		80-120	10-AUG-13 10-AUG-13
Lithium (Li)-Total			97.6		%		80-120	
Magnesium (Mg)-Total			97.0 107.3		%		80-120	10-AUG-13
Manganese (Mn)-Total			99.6		%		80-120	10-AUG-13
Molybdenum (Mo)-Tota	1		102.2		%		80-120 80-120	10-AUG-13 10-AUG-13
Nickel (Ni)-Total			98.2		%		80-120 80-120	
Potassium (K)-Total			96.8		%			10-AUG-13
Selenium (Se)-Total			106.1		%		80-120 80-120	10-AUG-13 10-AUG-13
Silver (Ag)-Total			96.9		%		80-120 80-120	
Sodium (Na)-Total			30.9 101.9		%		80-120	10-AUG-13
Strontium (Sr)-Total			101.9		%		80-120 80-120	10-AUG-13 10-AUG-13
Thallium (TI)-Total			107.1		%		80-120 80-120	10-AUG-13
Tin (Sn)-Total			96.5		%		80-120 80-120	10-AUG-13
Titanium (Ti)-Total			114.6		%		80-120	10-AUG-13
Uranium (U)-Total			98.4		%		80-120 80-120	10-AUG-13
Vanadium (V)-Total			101.4		%		80-120 80-120	10-AUG-13
Zinc (Zn)-Total			101.4		%		80-120	10-AUG-13
WG1723752-2 MB			102.1		<i>,</i> 0		00-120	10-400-13
Aluminum (Al)-Total			<0.0030		mg/L		0.003	10-AUG-13
Antimony (Sb)-Total			<0.00010)	mg/L		0.0001	10-AUG-13
Arsenic (As)-Total			<0.00010)	mg/L		0.0001	10-AUG-13
Barium (Ba)-Total			<0.00005	50	mg/L		0.00005	10-AUG-13
Beryllium (Be)-Total			<0.00050		mg/L		0.0005	10-AUG-13

		Workorder:	L1344178	3	Report Date: 12	2-AUG-13	Pa	ge 6 of 1
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2669616								
WG1723752-2 MB			0 000050	`				
Bismuth (Bi)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Boron (B)-Total			<0.010		mg/L		0.01	10-AUG-13
Cadmium (Cd)-Total			<0.000010)	mg/L		0.00001	10-AUG-13
Calcium (Ca)-Total			<0.020		mg/L		0.02	10-AUG-13
Chromium (Cr)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Copper (Cu)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Iron (Fe)-Total			<0.010		mg/L		0.01	10-AUG-13
Lead (Pb)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Lithium (Li)-Total			<0.0050		mg/L		0.005	10-AUG-13
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	10-AUG-13
Manganese (Mn)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Molybdenum (Mo)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Nickel (Ni)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Phosphorus (P)-Total			<0.30		mg/L		0.3	10-AUG-13
Potassium (K)-Total			<0.050		mg/L		0.05	10-AUG-13
Selenium (Se)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Silicon (Si)-Total			<0.050		mg/L		0.05	10-AUG-13
Silver (Ag)-Total			<0.000010)	mg/L		0.00001	10-AUG-13
Sodium (Na)-Total			<0.050		mg/L		0.05	10-AUG-13
Strontium (Sr)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Thallium (TI)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Tin (Sn)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	10-AUG-13
Uranium (U)-Total			<0.000010)	mg/L		0.00001	10-AUG-13
Vanadium (V)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Zinc (Zn)-Total			<0.0030		mg/L		0.003	10-AUG-13
WG1723768-1 MB								
Aluminum (Al)-Total			<0.0030		mg/L		0.003	10-AUG-13
Antimony (Sb)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Arsenic (As)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Barium (Ba)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Beryllium (Be)-Total			<0.00050		mg/L		0.0005	10-AUG-13
Bismuth (Bi)-Total			<0.000050)	mg/L		0.00005	10-AUG-13

		Workorder	: L134417	8	Report Date: 12	2-AUG-13	Pa	ge 7 of 1
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2669616	i							
WG1723768-1 MB			0.040					
Boron (B)-Total			<0.010	•	mg/L		0.01	10-AUG-13
Cadmium (Cd)-Total			<0.00001	0	mg/L		0.00001	10-AUG-13
Calcium (Ca)-Total			<0.020		mg/L		0.02	10-AUG-13
Chromium (Cr)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Copper (Cu)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Iron (Fe)-Total			<0.010		mg/L		0.01	10-AUG-13
Lead (Pb)-Total			<0.00005	0	mg/L		0.00005	10-AUG-13
Lithium (Li)-Total			<0.0050		mg/L		0.005	10-AUG-13
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	10-AUG-13
Manganese (Mn)-Total			<0.00005	0	mg/L		0.00005	10-AUG-13
Molybdenum (Mo)-Tota	I		<0.00005	0	mg/L		0.00005	10-AUG-13
Nickel (Ni)-Total			<0.00010	1	mg/L		0.0001	10-AUG-13
Phosphorus (P)-Total			<0.30		mg/L		0.3	10-AUG-13
Potassium (K)-Total			<0.050		mg/L		0.05	10-AUG-13
Selenium (Se)-Total			<0.00010	1	mg/L		0.0001	10-AUG-13
Silicon (Si)-Total			<0.050		mg/L		0.05	10-AUG-13
Silver (Ag)-Total			<0.00001	0	mg/L		0.00001	10-AUG-13
Sodium (Na)-Total			<0.050		mg/L		0.05	10-AUG-13
Strontium (Sr)-Total			<0.00010	1	mg/L		0.0001	10-AUG-13
Thallium (TI)-Total			<0.00005	0	mg/L		0.00005	10-AUG-13
Tin (Sn)-Total			<0.00010)	mg/L		0.0001	10-AUG-13
Titanium (Ti)-Total			<0.00030	1	mg/L		0.0003	10-AUG-13
Uranium (U)-Total			<0.00001	0	mg/L		0.00001	10-AUG-13
Zinc (Zn)-Total			<0.0030		mg/L		0.003	10-AUG-13
WG1723768-2 MB								
Aluminum (Al)-Total			<0.0030		mg/L		0.003	10-AUG-13
Antimony (Sb)-Total			<0.00010)	mg/L		0.0001	10-AUG-13
Arsenic (As)-Total			<0.00010)	mg/L		0.0001	10-AUG-13
Barium (Ba)-Total			<0.00005	0	mg/L		0.00005	10-AUG-13
Beryllium (Be)-Total			<0.00050	1	mg/L		0.0005	10-AUG-13
Bismuth (Bi)-Total			<0.00005	0	mg/L		0.00005	10-AUG-13
Boron (B)-Total			<0.010		mg/L		0.01	10-AUG-13
Cadmium (Cd)-Total			<0.00001	0	mg/L		0.00001	10-AUG-13

		Workorder:	L1344178	3	Report Date: 12	2-AUG-13	Pa	ge 8 of 12
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2669616								
WG1723768-2 MB Calcium (Ca)-Total			<0.020		mg/L		0.02	10-AUG-13
Chromium (Cr)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Copper (Cu)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Iron (Fe)-Total			<0.010		mg/L		0.01	10-AUG-13
Lead (Pb)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Lithium (Li)-Total			<0.0050		mg/L		0.005	10-AUG-13
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	10-AUG-13
Manganese (Mn)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Molybdenum (Mo)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Nickel (Ni)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Phosphorus (P)-Total			<0.30		mg/L		0.3	10-AUG-13
Potassium (K)-Total			<0.050		mg/L		0.05	10-AUG-13
Selenium (Se)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Silicon (Si)-Total			<0.050		mg/L		0.05	10-AUG-13
Silver (Ag)-Total			<0.000010)	mg/L		0.00001	10-AUG-13
Sodium (Na)-Total			<0.050		mg/L		0.05	10-AUG-13
Strontium (Sr)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Thallium (TI)-Total			<0.000050)	mg/L		0.00005	10-AUG-13
Tin (Sn)-Total			<0.00010		mg/L		0.0001	10-AUG-13
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	10-AUG-13
Uranium (U)-Total			<0.000010)	mg/L		0.00001	10-AUG-13
Zinc (Zn)-Total			<0.0030		mg/L		0.003	10-AUG-13
NH3-CFA-ED	Water							
Batch R2668937								
WG1723203-2 LCS			00.7		0/		05 · · -	00 4110 1-
Ammonia, Total (as N)			99.7		%		85-115	09-AUG-13
WG1723203-1 MB Ammonia, Total (as N)			<0.050		mg/L		0.05	09-AUG-13
WG1723203-6 MS Ammonia, Total (as N)		L1344178-13	96.6		%		75-125	09-AUG-13
WG1723203-9 MS Ammonia, Total (as N)		L1342019-4	98.5		%		75-125	09-AUG-13
NO2-IC-ED	Water							

NO2-IC-ED

Water

		Workorder:	L134417	8	Report Date: 12-	-AUG-13	Pa	ge 9 of 12
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO2-IC-ED	Water							
Batch R2669522 WG1723929-1 MB Nitrite (as N)			<0.050		mg/L		0.05	09-AUG-13
NO3-IC-ED	Water							
Batch R2669522 WG1723929-1 MB Nitrate (as N) Nitrate (as N)			<0.050		mg/L		0.05	09-AUG-13
PH-ED	Water							
Batch R2668867 WG1723395-7 DUP рН		L1344178-11 7.86	7.86	J	рН	0.00	0.3	09-AUG-13
WG1723395-3 LCS рН			7.05		рН		6.9-7.1	09-AUG-13
Batch R2670354 WG1724551-3 LCS рН			7.03		рН		6.9-7.1	12-AUG-13
SOLIDS-TOTSUS-ED	Water							
Batch R2669161 WG1723215-2 LCS Total Suspended Solids			100.0		%		85-115	09-AUG-13
WG1723215-1 MB Total Suspended Solids			<3.0		mg/L		3	09-AUG-13

Workorder: L1344178

Report Date: 12-AUG-13

Legend:

ALS Control Limit (Data Quality Objectives)
Duplicate
Relative Percent Difference
Not Available
Laboratory Control Sample
Standard Reference Material
Matrix Spike
Matrix Spike Duplicate
Average Desorption Efficiency
Method Blank
Internal Reference Material
Certified Reference Material
Continuing Calibration Verification
Calibration Verification Standard
Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1344178

Report Date: 12-AUG-13

Page 11 of 12

Hold Time Exceedances:

ALS Product Description	Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
рН							
ľ	1	06-AUG-13 10:00	09-AUG-13 14:34	0.25	77	hours	EHTR-FM
	2	06-AUG-13 10:00	09-AUG-13 14:38	0.25	77	hours	EHTR-FM
	3	06-AUG-13 10:00	09-AUG-13 14:41	0.25	77	hours	EHTR-FM
	4	06-AUG-13 10:00	09-AUG-13 14:45	0.25	77	hours	EHTR-FM
	5	06-AUG-13 10:00	09-AUG-13 14:49	0.25	77	hours	EHTR-FM
	6	06-AUG-13 10:00	09-AUG-13 14:52	0.25	77	hours	EHTR-FM
	7	06-AUG-13 10:00	09-AUG-13 14:52	0.25	77	hours	EHTR-FM
	8	06-AUG-13 10:00	09-AUG-13 14:59	0.25	77	hours	EHTR-FM
	9	06-AUG-13 10:00	09-AUG-13 15:03	0.25	77	hours	EHTR-FM
	10	06-AUG-13 10:00	09-AUG-13 15:05	0.25	77	hours	EHTR-FM
	10	06-AUG-13 10:00	09-AUG-13 15:10	0.25	77	hours	EHTR-FM
	12	06-AUG-13 10:00	09-AUG-13 15:18	0.25	77	hours	EHTR-FM
	12			0.25	150		
	13	06-AUG-13 10:00	12-AUG-13 16:24 12-AUG-13 16:24	0.25	150	hours	EHTR-FM EHTR-FM
	14	06-AUG-13 10:00				hours	EHTR-FM
		06-AUG-13 10:00	09-AUG-13 15:29	0.25	78 78	hours	
	16	06-AUG-13 10:00	09-AUG-13 15:32	0.25	78 70	hours	EHTR-FM
	20	06-AUG-13 09:00	09-AUG-13 15:36	0.25	79 55	hours	EHTR-FM
Anions and Nutrients	24	07-AUG-13 09:00	09-AUG-13 15:39	0.25	55	hours	EHTR-FM
Nitrate as N by IC							
Nillale as N by IC	1	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	2	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	3	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	4	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	5	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	6	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	7	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	8	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	9	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	9 10	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	10	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	12		09-AUG-13 08:00	48	70		EHTL
	12	06-AUG-13 10:00			70 70	hours	
		06-AUG-13 10:00	09-AUG-13 08:00	48		hours	EHTL
	14	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	15	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	16	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	20	06-AUG-13 09:00	09-AUG-13 08:00	48	71	hours	EHTL
Nitrite as N by IC	1	06-AUG-13 10:00	09-AUG-13 08:00	48	70	houro	EHTL
	1					hours	
	2	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	3	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	4	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	5	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	6	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	7	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	8	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	9	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	10	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	11	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	12	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	13	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	14	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	15	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	16	06-AUG-13 10:00	09-AUG-13 08:00	48	70	hours	EHTL
	20	06-AUG-13 09:00	09-AUG-13 08:00	48	70	nouis	EHTL

Legend & Qualifier Definitions:

Workorder: L1344178

Report Date: 12-AUG-13

Page 12 of 12

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR: Exceeded ALS recommended hold time prior to sample receipt.
EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT: Exceeded ALS recommended hold time prior to analysis.
Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1344178 were received on 07-AUG-13 17:20.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

	101
	- 10
	14
	10
	1.64
	- 70
	244
	- E
	PT
	- D
	100
	10
	100
	100
	- 10
	-(1)
	- 142
	5
	610
	NU.
	E 1
Sec.	1 -
-	11
	14
	~

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878

-

COC #

of	
Page	

matrix Description Server requeres request by service solutions of contained interpret to an and the sound interpret to an analysis Request ArcUX Oriential Analysis Request Oriential Intervent of notified in the sound interpret to an analysis Request ArcUX Analysis Request Description Example of Containing Analysis Request Analysis Request Analysis Request ArcUX Sample of Containing Analysis Request ArcUX Analysis Request Analysis Request ArcUX Analysis Request Analysis Request ArcUX Sample of Containing Analysis Request ArcUX Analysis Request Analysis Request ArcUX Sample of Containing Analysis Request ArcUX Sample of Containing Analysis Request ArcUX Sample of Containing Analysis Request ArcUX Analysis Request Analy	Report Format / Ustruction 12:1 Email 1: (_Dr CUX (@ RN) I'T (DU) (C 10:0 Email 2: 1-15 (L (L (D (U) (G (N)) (T (D)) (C) (D)) (C) (D)) (C) (C) (C) (C) (C) (C) (C) (C) (C) (a analysis subject to availability	Business Days)	harge - Contact ALS to Confirm TAT	charge - Contact ALS to Confirm TAT &	atact ALS to Confirm TAT		Request	eserved or both (F, P, F/P)							2010 Jo 16	-	2				DEC	-82	LÞt	7EL-				etc) / Hazardous Details	they are for dissolution		ommon analyses. ATION (lab use only)	Time: Observations: Yes / No ?	nno cal II
mat / Distribution	Report Format / Distribution Report Format / Distribution Resonance Resonance Resonance Resonance Resonance Resonance Resonance Resonance Pax Email 3: Fax No District Project Information Dug S, A + U, A Piss Email 3: Fax Boulknik MI XIA ANI Piss Poliati Fax Bould ANI Piss Poliati Fax Boulknik MI XIA ANI District Evolutify Bampler: // U. K. A. M. Collar Piss Poliati Fax Bould A Sample Identification Date Induction Date AH 178 Sampler: // U. K. A. M. Collar Sample Identification Date Induct Version Date AH 178 Contact: Lass Contact:		Regular (Standard Turnaround Times - E	O Priority (2-4 Business Days) - 50% Surch	Emergency (1-2 Bus. Days) - 100% Surc	Came Dav or Weekend Emergency - Cor		Analysis F	Please indicate below Filtered, Pre	级	и. (:	to N 9J	" " "	2	0 0 112	-24000 (V: 2'59)5 HO	100 00 000 000 000 000 000 000 000 000	F 103 2 10	XXXXXX										- Natural,	and preserved and	s form LEGIBLY. rovided on a separate Excel tab.	SHIPMENT VERIFICA		MUCH
	Report Fo Report Fo Exterit Report Fo Sasteport Po Poil Po State Po Po Po Po Po Po Po Po Po Po Po			K Excel Digital	2 DALIVEAU C	A NIVITINA	ham lel 133		oject Information							HUNISTO Sampler: AUX	Time	(mm:hn)	6/08/13/10:00	i i inoter							h la la	2 2 2	CSR	nor	this form may delay analysis. Please fill in this od agrees with the Terms and Conditions as pr	, phone numbers and sample container / prese	Temperatur	RIG 07.0 CIN

ALS Environmental	onmental		WWW.9	www.alsglobal.com			Ра	Pageof
Report To		Report	Report Format / Distribution	tion		Service Requeste	Service Requested (Rush for routine analysis subject to availability)	ject to availability)
Company:		Standard	ard 🗌 Other			💓 Regular (Standard	Regular (Standard Turnaround Times - Business Days)	EF1-143
Contact		PDF	Excel	Digital	Eax.	O Priority (2-4 Busine	Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT	ALS to Confirm TAT
Address:		Email 1:				Emergency (1-2 Bu	🕅 Emergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT 🔐	t ALS to Confirm TAT
		Email 2:				O Same Day or Week	Same Day or Weekend Emergency - Contact ALS to Confirm TAT	nfirm TAT
Phone:	Fax:	Email 3:	,			¢	Analysis Request	
Invoice To Same as Report ?	Report? 🔲 Yes 🔄 🛛 No	Client /	Client / Project Information	uo		Please indicate b	Please indicate below Filtered, Preserved or both (F, P, F/P)	oth (F, P, F/P)
Hardcopy of Invoice with Report?	1 Report? 🔲 Yes 🔲 No	Job #:				d M'		
Company:		PO / AFE:	ы			ad the	rd	
Contact		LSD:				, ,,	C 41	
Address.						2	e v	
Phone:	Fax:	Quote #.				50)	- Fue	
Lab Work Order #	#	ALS		Sampler:		H and N	44 107	
(lab use only)		Contact:				~ 7	0 7	
Sample	Sample Identification		Date	Time	Sample Type	201		_
111	(1 nis description will appear on the report)	(troda		(mm.mm)		N 21	I	Ι
HTT-0	0.		51/20/50	15:00	Surau		1	
EFFICS	65		05/08/13	21:00	water			
EFF/66	00		00/08/13	3:00				
FFF16	t of		06/08/13	00:6		XXXX		
EFF/6	s 5		50,108/13	15100				EC.
EFF16	69		26/08/13	00:17				00-
EFF1	70		07/08/13	3.00				871
EFFI	1t		51/80/20	9:00	9	XXX		544
			1			14.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		:17
Spe	Special Instructions / Regulations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardous Details	er or land use (CCI	ME-Freshwater A	quatic Life/BC	CSR - Commerc	ial/AB Tier 1 - Natu	ural, etc) / Hazardous Detail	s
keep the ex	extra bolitles on hold.	EFF171	1 emergency	ey turn	over , El	EFF167 DIN	> normal furnaver	
Also pro	Failure to complete all portions of By the use of this form the user acknowledges an Also provided on another Excel tab are the ALS location addresses,	Failure to complete all portions of his form the user acknowledges ar ab are the ALS location addresses,		delay analysis. The Terms and re and	Please fill in th Conditions as p container / presi	this form may delay analysis. Please fill in this form LEGIBLY. Id agrees with the Terms and Conditions as provided on a separate Excel tab. phone numbers and sample container / preservation / holding time table for	this form may delay analysis. Please fill in this form LEGIBLY. d agrees with the Terms and Conditions as provided on a separate Excel tab. phone numbers and sample container / preservation / holding time table for common analyses	lyses.
10.00	SHIPMENT RELEASE (client use)	SHIP		ON (lab use only	0	SHIP	SHIPMENT VERIFICATION (lab use only)	ise only)
Released by:	Date (dd-mmm-yy) Time (hh-mm)	Received by;	Date	Time	Temperature: °C	Verified by:	Date: Time:	Observations: Yes / No ? If Yes add SIF

COC #

				- 24
				- 64
				. 77
				- 0.
				-
				- 01
				. 14
				10
				- 1.1
				1.07
				- 14
				10
				- E.
				11
				M.
				_
				-
			- 4	
		-	a	UD.
	1.4	6	82	•
1.2	æ		87	101
-	c		· .	-
~	85	-	e.	-
	-		1	1
				CI
		- 27	-	~
				N
				-

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878

200

3	
Zot -	to availability)
Page	analysis subject t
	uested (Rush for routine analysis s
	(Rus)
	uested (

(ALS)	(ALS) Environmental	(12)										
Report To				Report	t Format / Distribution	ution		Service F	equeste	d (Rush for routine a	Service Requested (Rush for routine analysis subject to availability)	ailability)
Company:				Standard	ndard Other			 Regular 	(Standard	 Regular (Standard Turnaround Times - Business Days) 	siness Days)	
Contact:				PDF	Excel	Digital	Eax .	O Priority	(2-4 Busine	ss Days) - 50% Surchai	O Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT	nfirm TAT
Address:				Email 1	1.		*		ncy (1-2 Bu	s. Days) - 100% Surcha	Emergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT -	onfirm TAT
				Email 2:	2:			0	ay or Week	Same Day or Weekend Emergency - Contact ALS to Confirm TAT	ict ALS to Confirm TAT	
Phone:		Fax:		Email 3:	3:				1	Analysis Request	aquest	
Invoice To	Same as Report ?	Tes 🗌	٥N 🗌	Client	/ Project Information	ion		Please in	ndicate b	elow Filtered, Pres	Please indicate below Filtered, Preserved or both (F, P, F/P)	, F/P)
Hardcopy of	Hardcopy of Invoice with Report?	T Yes	No No	Job #:				9		0		
Company:				PO / AFE:	Ē					из		1
Contact:				LSD:				1.9		G		18
Address:								0	*	LIM		STOR
Phone:		Fax:		Quote	#				٤C	23		nistr
Lab	Lab Work Order #			ALS		Sampler:		ran H	N	45714		of Cor
(la	(lab use only)			Conta	ct:			1	-			er c
Sample #	(This d	Sample Id lescription will	Sample Identification (This description will appear on the report)	port)	Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	1551	-9N	Treje		dmuN
	TRIAN				n6/n2/123	00.01		XX	X			
	119-60				1			XX	X			
	DUP 9				11	"		1 1	1	-		
						-				+		
	DUP 10				11	1			1 1	1	DEC	
										-	00-	
											821	
											.77	
										110	617 	
											-	-
											The local dist.	
	Special Instruct	tions / Regula	tions with wate	r or land use (C	Special Instructions / Regulations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardous Details	Aquatic Life/BC	CSR - Commerc	ial/AB Tier	1 - Natu	ral, etc) / Hazardo	ous Details	
			Eailura to comr	lists all nortions	Esilute to complete all nortions of this form may delay analysis. Disass fill in this form I EGIRI V	delav analveic	Diasca fill in th	e form I E				
	By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses.	y the use of t other Excel t	his form the use ab are the ALS I	IT adknowledge ocation address	By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for	the Terms and le	Conditions as p container / pres	rovided on ervation / h	a separ iolding t	ate Excel tab. Ime table for com	imon analyses.	
	SHIPMENT RELEASE (client use)	E (client use)		SF	SHIPMENT RECEPTION (lab use only)	ION (lab use only	(SHIPI	AENT VERIFICAT	SHIPMENT VERIFICATION (lab use only)	
Released by	ha Disherro		Time (hh-mm) R	Received by:	Date:	Time:	Temperature:	Verified by:	Y:	Date:	Time: Ot Ye	Observations: Yes / No ?
Charles & A	Numa	1 - 11 - 11	~ 1				>				CENE 10	CENE 19 01 Eroot
											CENT 10	NIDIL IN

WESA Inc. ATTN: Tim Beckenham 4 Cataraqui Street The Tower Kingston ON K7K 1Z7 Date Received:06-AUG-13Report Date:17-AUG-13 16:58 (MT)Version:FINAL REV. 2

Client Phone: --

Certificate of Analysis

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L1342803 NOT SUBMITTED ABORIGINAL 15929 1

ю.

Comments: ADDITIONAL 16-AUG-13 11:21

Catherine Evaristo-Cordero Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 9936-67 Avenue, Edmonton, AB T6E 0P5 Canada | Phone: +1 780 413 5227 | Fax: +1 780 437 2311 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1342803 CONTD.... PAGE 2 of 6 17-AUG-13 16:58 (MT) Version: FINAL REV. 2

						on: FINAL REV
	Sample ID Description Sampled Date Sampled Time Client ID	L1342803-1 Surface Water 02-AUG-13 15:45 EFF154	L1342803-2 Surface Water 03-AUG-13 15:00 EFF156	L1342803-4 Surface Water 04-AUG-13 03:00 EFF158	L1342803-5 Surface Water 04-AUG-13 09:00 EFF159	L1342803-6 Surface Water 04-AUG-13 15:00 EFF160
Grouping	Analyte					
WATER						
Physical Tests	рН (рН)	7.68	7.80		7.73	
	Total Suspended Solids (mg/L)	4.0	<3.0		4.0	
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.089	0.088		0.089	
	Nitrate and Nitrite (as N) (mg/L)	0.143	0.133		0.125	
	Nitrate (as N) (mg/L)	0.143	0.133		0.125	
	Nitrite (as N) (mg/L)	<0.050	<0.050		<0.050	
Total Metals	Aluminum (Al)-Total (mg/L)	0.0113	0.0099		0.0086	
	Antimony (Sb)-Total (mg/L)	0.00034	0.00032		0.00031	
	Arsenic (As)-Total (mg/L)	0.0306	0.0212		0.0210	
	Barium (Ba)-Total (mg/L)	0.0164	0.0159		0.0165	
	Beryllium (Be)-Total (mg/L)	<0.00050	<0.00050		<0.00050	
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050		<0.000050	
	Boron (B)-Total (mg/L)	0.033	0.031		0.031	
	Cadmium (Cd)-Total (mg/L)	0.000011	<0.000010		<0.000010	
	Calcium (Ca)-Total (mg/L)	136	131		132	
	Chromium (Cr)-Total (mg/L)	0.00039	0.00039		0.00032	
	Cobalt (Co)-Total (mg/L)	0.00363	0.00293		0.00309	
	Copper (Cu)-Total (mg/L)	0.00372	0.00396	0.00116	0.0112	0.00367
	Iron (Fe)-Total (mg/L)	2.45	1.96		1.76	
	Lead (Pb)-Total (mg/L)	0.000213	0.000207		0.000585	
	Lithium (Li)-Total (mg/L)	<0.0050	<0.0050		<0.0050	
	Magnesium (Mg)-Total (mg/L)	8.50	8.66		8.70	
	Manganese (Mn)-Total (mg/L)	0.0989	0.0683		0.0691	
	Molybdenum (Mo)-Total (mg/L)	0.00116	0.00125		0.00114	
	Nickel (Ni)-Total (mg/L)	0.00676	0.00546		0.00630	
	Phosphorus (P)-Total (mg/L)	<0.30	<0.30		<0.30	
	Potassium (K)-Total (mg/L)	7.21	7.09		7.51	
	Selenium (Se)-Total (mg/L)	<0.00010	<0.00010		<0.00010	
	Silicon (Si)-Total (mg/L)	0.443	0.370		0.375	
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010		<0.000010	
	Sodium (Na)-Total (mg/L)	36.4	36.4		36.2	
	Strontium (Sr)-Total (mg/L)	0.203	0.201		0.207	
	Thallium (TI)-Total (mg/L)	<0.000050	<0.000050		<0.000050	
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010		0.00011	
	Titanium (Ti)-Total (mg/L)	0.0122	0.00871		0.00845	
	Uranium (U)-Total (mg/L)	0.000161	0.000158		0.000136	
	Vanadium (V)-Total (mg/L)	0.00015	0.00013		0.00013	

L1342803 CONTD.... PAGE 3 of 6 17-AUG-13 16:58 (MT) Version: FINAL REV. 2

					Versio	n: FINAL REV
	Sample ID Description Sampled Date Sampled Time Client ID	L1342803-7 Surface Water 04-AUG-13 21:00 EFF161	L1342803-9 Surface Water 05-AUG-13 09:00 EFF163	L1342803-10 Surface Water 03-AUG-13 15:00 DUP8	L1342803-11 Surface Water 02-AUG-13 12:00 TRAVEL BLANK	
Grouping	Analyte					
WATER						
Physical Tests	рН (рН)		7.60	7.71	5.99	
	Total Suspended Solids (mg/L)		6.0	4.0	<3.0	
Anions and Nutrients	Ammonia, Total (as N) (mg/L)		0.091	0.094	<0.050	
	Nitrate and Nitrite (as N) (mg/L)		0.118	0.138	<0.071	
	Nitrate (as N) (mg/L)		0.118	0.138	<0.050	
	Nitrite (as N) (mg/L)		<0.050	<0.050	<0.050	
Total Metals	Aluminum (Al)-Total (mg/L)		0.0105	0.0097	<0.0030	
	Antimony (Sb)-Total (mg/L)		0.00030	0.00033	<0.00010	
	Arsenic (As)-Total (mg/L)		0.0208	0.0211	<0.00010	
	Barium (Ba)-Total (mg/L)		0.0154	0.0154	<0.000050	
	Beryllium (Be)-Total (mg/L)		<0.00050	<0.00050	<0.00050	
	Bismuth (Bi)-Total (mg/L)		<0.000050	<0.000050	<0.000050	
	Boron (B)-Total (mg/L)		0.034	0.032	<0.010	
	Cadmium (Cd)-Total (mg/L)		<0.000010	<0.000010	<0.000010	
	Calcium (Ca)-Total (mg/L)		145	136	<0.020	
	Chromium (Cr)-Total (mg/L)		0.00035	0.00037	<0.00010	
	Cobalt (Co)-Total (mg/L)		0.00326	0.00292	<0.00010	
	Copper (Cu)-Total (mg/L)	0.00174	0.00127	0.00516	<0.00010	
	Iron (Fe)-Total (mg/L)		1.78	1.95	<0.010	
	Lead (Pb)-Total (mg/L)		0.000071	0.000268	<0.000050	
	Lithium (Li)-Total (mg/L)		<0.0050	<0.0050	<0.0050	
	Magnesium (Mg)-Total (mg/L)		9.63	8.63	<0.0050	
	Manganese (Mn)-Total (mg/L)		0.0765	0.0684	<0.000050	
	Molybdenum (Mo)-Total (mg/L)		0.00130	0.00124	<0.000050	
	Nickel (Ni)-Total (mg/L)		0.00571	0.00546	<0.00010	
	Phosphorus (P)-Total (mg/L)		<0.30	<0.30	<0.30	
	Potassium (K)-Total (mg/L)		7.18	7.22	<0.050	
	Selenium (Se)-Total (mg/L)		<0.00010	<0.00010	<0.00010	
	Silicon (Si)-Total (mg/L)		0.336	0.356	<0.050	
	Silver (Ag)-Total (mg/L)		<0.000010	<0.000010	<0.000010	
	Sodium (Na)-Total (mg/L)		36.6	36.9	<0.050	
	Strontium (Sr)-Total (mg/L)		0.221	0.205	<0.00010	
	Thallium (TI)-Total (mg/L)		<0.000050	<0.000050	<0.000050	
	Tin (Sn)-Total (mg/L)		<0.00010	<0.00010	<0.00010	
	Titanium (Ti)-Total (mg/L)		0.00918	0.00883	<0.00030	
	Uranium (U)-Total (mg/L)		0.000142	0.000164	<0.000010	
	Vanadium (V)-Total (mg/L)		0.00014	0.00014	<0.00010	

L1342803 CONTD.... PAGE 4 of 6 17-AUG-13 16:58 (MT) Version: FINAL REV. 2

						1010	ION: FINAL REV
		Sample ID Description Sampled Date Sampled Time Client ID	L1342803-1 Surface Water 02-AUG-13 15:45 EFF154	L1342803-2 Surface Water 03-AUG-13 15:00 EFF156	L1342803-4 Surface Water 04-AUG-13 03:00 EFF158	L1342803-5 Surface Water 04-AUG-13 09:00 EFF159	L1342803-6 Surface Water 04-AUG-13 15:00 EFF160
Grouping	Analyte						
WATER							
Total Metals	Zinc (Zn)-Total (mg/L)		0.0082	0.0064		0.0088	

L1342803 CONTD.... PAGE 5 of 6 17-AUG-13 16:58 (MT) Version: FINAL REV. 2

						ver 3101	n: FINAL REV.
		Sample ID Description Sampled Date Sampled Time Client ID	L1342803-7 Surface Water 04-AUG-13 21:00 EFF161	L1342803-9 Surface Water 05-AUG-13 09:00 EFF163	L1342803-10 Surface Water 03-AUG-13 15:00 DUP8	L1342803-11 Surface Water 02-AUG-13 12:00 TRAVEL BLANK	
Grouping	Analyte						
WATER							
Total Metals	Zinc (Zn)-Total (mg/L)			0.0043	0.0061	<0.0030	

Reference Information

Qualifiers for Individual Parameters Listed:

Qualifier	Description		
RRV	Reported Result Ve	rified By Repeat Analysis	
Fest Method	References:		
ALS Test Coo	le Matrix	Test Description	Method Reference**
MET-T-CCMS	-ED Water	Total Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A
NH3-CFA-ED	Water	Ammonia in Water by Colour	APHA 4500 NH3-NITROGEN (AMMONIA)
	s is carried out using pro henate colourimetric me	•	ITROGEN (AMMONIA)". Ammonia is determined using the
NO2+NO3-CA	LC-ED Water	Nitrate+Nitrite	CALCULATION
NO2-IC-ED	Water	Nitrite as N by IC	APHA 4110 B-ION CHROMATOGRAPHY
NO3-IC-ED	Water	Nitrate as N by IC	APHA 4110 B-ION CHROMATOGRAPHY
PH-ED	Water	рН	APHA 4500 H-Electrode
		for pH will have exceeded the 15 minute recomme ccurate results are needed)	ended hold time from time of sampling (field analysis is
SOLIDS-TOTS	SUS-ED Water	Total Suspended Solids	APHA 2540 D-Gravimetric
* ALS test met	hods may incorporate m	odifications from specified reference methods to ir	mprove performance.
The last two le	etters of the above test of	ode(s) indicate the laboratory that performed analy	rtical analysis for that test. Refer to the list below:
Laboratory D	efinition Code Lab	oratory Location	

ED

ALS ENVIRONMENTAL - EDMONTON, ALBERTA, CANADA

Chain of Custody Numbers:

1

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Client:

Contact:

MET-T-CCMS-ED

Test

Quality Control Report

Report Date: 17-AUG-13 Workorder: L1342803 Page 1 of 7 WESA Inc. 4 Cataraqui Street The Tower Kingston ON K7K 1Z7 Tim Beckenham RPD Matrix Reference Result Qualifier Units Limit Analyzed Water

Batch R2668413 WG1721993-1 MB						
Aluminum (Al)-Total		<0.0030	mg/L		0.003	08-AUG-1
Antimony (Sb)-Total		<0.00010	mg/L		0.0001	08-AUG-1
Arsenic (As)-Total		<0.00010	mg/L		0.0001	08-AUG-1
Barium (Ba)-Total		<0.000050	mg/L		0.00005	08-AUG-1
Beryllium (Be)-Total		<0.00050	mg/L		0.0005	08-AUG-1
Bismuth (Bi)-Total		<0.000050	mg/L		0.00005	08-AUG-1
Boron (B)-Total		<0.010	mg/L		0.01	08-AUG-1
Cadmium (Cd)-Total		<0.000010	mg/L		0.00001	08-AUG-1
Calcium (Ca)-Total		<0.020	mg/L		0.02	08-AUG-1
Chromium (Cr)-Total		<0.00010	mg/L		0.0001	08-AUG-1
Cobalt (Co)-Total		<0.00010	mg/L		0.0001	08-AUG-1
Copper (Cu)-Total		<0.00010	mg/L		0.0001	08-AUG-1
Lead (Pb)-Total		<0.000050	mg/L		0.00005	08-AUG-1
Lithium (Li)-Total		<0.0050	mg/L		0.005	08-AUG-1
Magnesium (Mg)-Total		<0.0050	mg/L		0.005	08-AUG-1
Molybdenum (Mo)-Total		<0.000050	mg/L		0.00005	08-AUG-1
Nickel (Ni)-Total		<0.00010	mg/L		0.0001	08-AUG-1
Phosphorus (P)-Total		<0.30	mg/L		0.3	08-AUG-1
Potassium (K)-Total		<0.050	mg/L		0.05	08-AUG-1
Selenium (Se)-Total		<0.00010	mg/L		0.0001	08-AUG-1
Silicon (Si)-Total		<0.050	mg/L		0.05	08-AUG-1
Silver (Ag)-Total		<0.000010	mg/L		0.00001	08-AUG-1
Sodium (Na)-Total		<0.050	mg/L		0.05	08-AUG-1
Strontium (Sr)-Total		<0.00010	mg/L		0.0001	08-AUG-1
Thallium (TI)-Total		<0.000050	mg/L		0.00005	08-AUG-1
Tin (Sn)-Total		<0.00010	mg/L		0.0001	08-AUG-1
Titanium (Ti)-Total		<0.00030	mg/L		0.0003	08-AUG-1
Uranium (U)-Total		<0.000010	mg/L		0.00001	08-AUG-1
Vanadium (V)-Total		<0.00010	mg/L		0.0001	08-AUG-1
Zinc (Zn)-Total		<0.0030	mg/L		0.003	08-AUG-1
Batch R2668584						
WG1721993-4 DUP Aluminum (Al)-Total	L1342803-1 0.0113	0.0134	mg/L	17	20	08-AUG-1
Antimony (Sb)-Total	0.00034	0.00034	mg/L	1.0	20	08-AUG-1

		Workorder:	L1342803	Re	port Date: 1	7-AUG-13	Pa	age 2 of 7
Fest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2668584								
WG1721993-4 DUP		L1342803-1						
Arsenic (As)-Total		0.0306	0.0304		mg/L	0.8	20	08-AUG-13
Barium (Ba)-Total		0.0164	0.0164		mg/L	0.0	20	08-AUG-13
Beryllium (Be)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	08-AUG-13
Bismuth (Bi)-Total		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	08-AUG-13
Boron (B)-Total		0.033	0.031		mg/L	6.8	20	08-AUG-13
Cadmium (Cd)-Total		0.000011	0.000010		mg/L	6.5	20	08-AUG-13
Calcium (Ca)-Total		136	125		mg/L	8.8	20	08-AUG-13
Chromium (Cr)-Total		0.00039	0.00038		mg/L	3.3	20	08-AUG-13
Cobalt (Co)-Total		0.00363	0.00366		mg/L	0.6	20	08-AUG-13
Copper (Cu)-Total		0.00372	0.00371		mg/L	0.1	20	08-AUG-13
Iron (Fe)-Total		2.45	2.44		mg/L	0.5	20	08-AUG-13
Lead (Pb)-Total		0.000213	0.000208		mg/L	2.7	20	08-AUG-13
Lithium (Li)-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	08-AUG-13
Magnesium (Mg)-Total		8.50	8.77		mg/L	3.1	20	08-AUG-13
Manganese (Mn)-Total		0.0989	0.100		mg/L	1.3	20	08-AUG-13
Molybdenum (Mo)-Tota	l	0.00116	0.00113		mg/L	2.9	20	08-AUG-13
Nickel (Ni)-Total		0.00676	0.00677		mg/L	0.2	20	08-AUG-13
Phosphorus (P)-Total		<0.30	<0.30	RPD-NA	mg/L	N/A	20	08-AUG-13
Potassium (K)-Total		7.21	7.27		mg/L	0.7	20	08-AUG-13
Selenium (Se)-Total		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	08-AUG-13
Silicon (Si)-Total		0.443	0.441		mg/L	0.3	20	08-AUG-13
Silver (Ag)-Total		<0.000010	<0.000010	RPD-NA	mg/L	N/A	20	08-AUG-13
Sodium (Na)-Total		36.4	36.0		mg/L	1.1	20	08-AUG-13
Strontium (Sr)-Total		0.203	0.194		mg/L	4.5	20	08-AUG-13
Thallium (TI)-Total		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	08-AUG-13
Tin (Sn)-Total		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	08-AUG-13
Titanium (Ti)-Total		0.0122	0.0118		mg/L	3.8	20	08-AUG-13
Uranium (U)-Total		0.000161	0.000159		mg/L	1.4	20	08-AUG-13
Vanadium (V)-Total		0.00015	0.00015		mg/L	0.6	20	08-AUG-13
Zinc (Zn)-Total		0.0082	0.0082		mg/L	0.0	20	08-AUG-13
WG1721993-2 MB		0.0002	0.0002			0.5	20	00-AUG-13
Aluminum (Al)-Total			<0.0030		mg/L		0.003	08-AUG-13
Antimony (Sb)-Total			<0.00010		mg/L		0.0001	08-AUG-13
Arsenic (As)-Total			<0.00010		mg/L		0.0001	08-AUG-13

		Workorder	: L134280	3	Report Date: 17	7-AUG-13	Pa	ge 3 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2668584	Ļ							
WG1721993-2 MB			0 00005	`			0 00005	
Barium (Ba)-Total			<0.000050	J	mg/L		0.00005	08-AUG-13
Beryllium (Be)-Total				`	mg/L		0.0005	08-AUG-13
Bismuth (Bi)-Total			<0.000050	J	mg/L		0.00005	08-AUG-13
Boron (B)-Total			<0.010	`	mg/L		0.01	08-AUG-13
Cadmium (Cd)-Total			<0.000010	J	mg/L		0.00001	08-AUG-13
Calcium (Ca)-Total			<0.020		mg/L		0.02	08-AUG-13
Chromium (Cr)-Total			<0.00010		mg/L		0.0001	08-AUG-13
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	08-AUG-13
Copper (Cu)-Total			<0.00010		mg/L		0.0001	08-AUG-13
Iron (Fe)-Total			<0.010		mg/L		0.01	08-AUG-13
Lead (Pb)-Total			<0.00005	0	mg/L		0.00005	08-AUG-13
Lithium (Li)-Total			<0.0050		mg/L		0.005	08-AUG-13
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	08-AUG-13
Manganese (Mn)-Total			<0.00005	C	mg/L		0.00005	08-AUG-13
Molybdenum (Mo)-Tota	al		<0.00005	C	mg/L		0.00005	08-AUG-13
Nickel (Ni)-Total			<0.00010		mg/L		0.0001	08-AUG-13
Phosphorus (P)-Total			<0.30		mg/L		0.3	08-AUG-13
Potassium (K)-Total			<0.050		mg/L		0.05	08-AUG-13
Selenium (Se)-Total			<0.00010		mg/L		0.0001	08-AUG-13
Silicon (Si)-Total			<0.050		mg/L		0.05	08-AUG-13
Silver (Ag)-Total			<0.00001	C	mg/L		0.00001	08-AUG-13
Sodium (Na)-Total			<0.050		mg/L		0.05	08-AUG-13
Strontium (Sr)-Total			<0.00010		mg/L		0.0001	08-AUG-13
Thallium (TI)-Total			<0.00005	C	mg/L		0.00005	08-AUG-13
Tin (Sn)-Total			<0.00010		mg/L		0.0001	08-AUG-13
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	08-AUG-13
Uranium (U)-Total			<0.00001	D	mg/L		0.00001	08-AUG-13
Vanadium (V)-Total			<0.00010		mg/L		0.0001	08-AUG-13
Zinc (Zn)-Total			<0.0030		mg/L		0.003	08-AUG-13
Batch R2668991								
WG1721993-1 MB								
Manganese (Mn)-Total			<0.00005	C	mg/L		0.00005	10-AUG-13

		Workorder:	L1342803		Report Date: 17	'-AUG-13	Pa	ge 4 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
IET-T-CCMS-ED	Water							
Batch R2674276								
WG1728671-2 LCS Copper (Cu)-Total			96.3		%		80-120	17-AUG-13
WG1728671-1 MB								
Copper (Cu)-Total			<0.00010		mg/L		0.0001	17-AUG-13
H3-CFA-ED	Water							
Batch R2668120								
WG1722354-2 LCS Ammonia, Total (as N)			97.6		%		85-115	08-AUG-13
WG1722354-1 MB			01.0		,.		00 110	00-400-1
Ammonia, Total (as N)			<0.050		mg/L		0.05	08-AUG-13
WG1722354-5 MS		L1340312-2						
Ammonia, Total (as N)			97.1		%		75-125	08-AUG-13
WG1722354-7 MS Ammonia, Total (as N)		L1338182-16	95.6		%		75-125	08-AUG-1
Batch R2671079								
WG1725225-8 DUP Ammonia, Total (as N)		L1342803-10 0.094	0.092		ma/l	0.4	00	
WG1725225-2 LCS		0.094	0.092		mg/L	2.4	20	13-AUG-13
Ammonia, Total (as N)			95.7		%		85-115	13-AUG-13
WG1725225-1 MB								
Ammonia, Total (as N)			<0.050		mg/L		0.05	13-AUG-13
WG1725225-7 MS		L1342383-3	00.7		0/		75 405	
Ammonia, Total (as N) WG1725225-9 MS		1 40 40405 0	92.7		%		75-125	13-AUG-13
Ammonia, Total (as N)		L1343195-2	97.2		%		75-125	13-AUG-13
Batch R2671953								
WG1726083-2 LCS								
Ammonia, Total (as N)			94.5		%		85-115	14-AUG-13
WG1726083-1 MB			0.050					
Ammonia, Total (as N)			<0.050		mg/L		0.05	14-AUG-1:
WG1726083-3 MS Ammonia, Total (as N)		L1342803-11	101.4		%		75-125	14-AUG-13
WG1726083-6 MS		L1344813-3						
Ammonia, Total (as N)			95.5		%		75-125	14-AUG-1:
O2-IC-ED	Water							

			-	-			
		Workorder:	L1342803	Report Date: 17	-AUG-13	Pa	ige 5 of 7
Test	Matrix	Reference	Result Quali	fier Units	RPD	Limit	Analyzed
NO2-IC-ED	Water						
Batch R266806	D						
WG1722240-2 LCS							
Nitrite (as N)			109.9	%		90-110	08-AUG-13
WG1722240-1 MB							
Nitrite (as N)			<0.050	mg/L		0.05	08-AUG-13
WG1722240-4 MS		L1342594-5					
Nitrite (as N)		210120010	85.5	%		75-125	08-AUG-13
WG1722240-6 MS		L1342701-5					
Nitrite (as N)		L1342701-3	96.2	%		75-125	08-AUG-13
						10 120	
NO3-IC-ED	Water						
Batch R266806	D						
WG1722240-2 LCS							
Nitrate (as N)			98.4	%		90-110	08-AUG-13
WG1722240-1 MB							
Nitrate (as N)			<0.050	mg/L		0.05	08-AUG-13
WG1722240-4 MS		L1342594-5					
Nitrate (as N)			101.8	%		75-125	08-AUG-13
WG1722240-6 MS		L1342701-5					
Nitrate (as N)			104.3	%		75-125	08-AUG-13
PH-ED	Water						
Batch R266731	4						
WG1721594-3 LCS	•						
pH			7.04	рН		6.9-7.1	07-AUG-13
•						0.0	
SOLIDS-TOTSUS-ED	Water						
Batch R266748							
WG1721558-2 LCS	2						
Total Suspended Solic			96.0	%		85-115	07-AUG-13
			50.0	70		05-115	07-AUG-13
WG1721558-1 MB Total Suspended Solid	e		-2.0	ma/l		2	07 4110 40
i otal Suspended Solid			<3.0	mg/L		3	07-AUG-13
Batch R266872	Ð						
WG1722884-2 LCS							
Total Suspended Solid	s		90.0	%		85-115	08-AUG-13
WG1722884-1 MB Total Suspended Solid			<3.0	mg/L		3	

Workorder: L1342803

Report Date: 17-AUG-13

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1342803

Report Date: 17-AUG-13

Page 7 of 7

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
рН							
	1	02-AUG-13 15:45	07-AUG-13 11:43	0.25	116	hours	EHTR-FM
	2	03-AUG-13 15:00	07-AUG-13 11:46	0.25	93	hours	EHTR-FM
	5	04-AUG-13 09:00	07-AUG-13 11:50	0.25	75	hours	EHTR-FM
	9	05-AUG-13 09:00	07-AUG-13 11:39	0.25	51	hours	EHTR-FM
	10	03-AUG-13 15:00	07-AUG-13 12:10	0.25	93	hours	EHTR-FM
	11	02-AUG-13 12:00	07-AUG-13 11:35	0.25	120	hours	EHTR-FM
Anions and Nutrients							
Nitrate as N by IC							
	1	02-AUG-13 15:45	08-AUG-13 08:00	48	136	hours	EHTR
	2	03-AUG-13 15:00	08-AUG-13 08:00	48	113	hours	EHTR
	5	04-AUG-13 09:00	08-AUG-13 08:00	48	95	hours	EHTR
	9	05-AUG-13 09:00	08-AUG-13 11:59	48	75	hours	EHTL
	10	03-AUG-13 15:00	08-AUG-13 08:00	48	113	hours	EHTR
	11	02-AUG-13 12:00	08-AUG-13 08:00	48	140	hours	EHTR
Nitrite as N by IC							
	1	02-AUG-13 15:45	08-AUG-13 08:00	48	136	hours	EHTR
	2	03-AUG-13 15:00	08-AUG-13 08:00	48	113	hours	EHTR
	5	04-AUG-13 09:00	08-AUG-13 08:00	48	95	hours	EHTR
	9	05-AUG-13 09:00	08-AUG-13 11:59	48	75	hours	EHTL
	10	03-AUG-13 15:00	08-AUG-13 08:00	48	113	hours	EHTR
	11	02-AUG-13 12:00	08-AUG-13 08:00	48	140	hours	EHTR

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1342803 were received on 06-AUG-13 09:30.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

()) ()) ()) ()) ()) ()) ()) ())	Please fill in this form LEGIBLY. Conditions as provided on a separate Excel tab. container / preservation / holding time table for M SHIPMENT VERIFIC Temperature: Verified by: Date:	Ity) Jemperature:	P. S	Date: Aug talis	Received by:	Date (dominimy) line (momm)	Alax and be
	rovided on a separate ervation / holding time SHIPME	lly)					Release
	is form LEGIBLY.		TION (lab use or	SHIPMENT RECEPTION (lab use only	SH	SHIPMENT RELEASE (client use)	
L1342803-COFC	his form LEGIBLY.	Conditions as p container / pres	h the Terms and bers and sample	s and agrees wit ses, phone num!	ser acknowledges location address	By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses.	
L1342803-COFC	10.		y delay analysis	of this form ma	20	The even your of not	Vec /
L1342803-COFC	ont for FFF	mplu	selected saw	for all s	lan Service	Special Instructions / Regulations with water or fail use comment comment of all scheded say	100 10
	Commercial/AB Tier 1 - Natural, etc) / Hazardous	CSR -	Aquatic Life/BC	ME Ereshwater	- as land upp (P)		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					Travel blank	
	X X X X		00:01	01/00/00		DUPS	
	XXXX	V	7.			EFF/63	
<b>TTTTTTTTTTTTT</b>	< X X X	4-	0 .	1100/1		EFF162	
			201100	11801		EFF161	
1111			1 2 1	18		EFF160	
++++	V CV C		1	1		EFF/59	
++++	× × × ×			40		ELLIS8	
			0	108		EFFIST	
	-	-	15.	10/1		EFFISG	
Num	<	and love	10	1100		EFFISH	
Num	XXXX	A 11	10.45			1113 resultions in the second se	#
b	TSS Total NO2 Tota	Sample Type	Time (hh:mm)	Date (dd-mmm-yy)	port)	Sample Identification	밀
er of Co	pH metal metal	vandra V	Sampler: Alex	athering to	ALS (at Contact:	lork use	Lat
onta	N N		-		3NI Quote #	(a6a - (148) Fax(863)	
iners	,Zn,( 03 ia				XIA	as Archibald St. Box 133 Blowking N	Address: (
3					LSD:	1	Contact
	No, No			10	PO / AFE	W TEES Ltd	Company:
					Job #	f Invoice with Report?	Hardcopy
Please indicate below Filtered, Preserved or both (F, P, F/P)	Please indicate below		ion	<b>Client / Project Information</b>	Client / I	Same as Report ?	Invoice To
Analysis Request					Email 3:	Fax: ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	
Same Day or Weekend Emergency - Contact ALS to Confirm TAT	Same Day or Weekend	Jesa.ca	nhamau	1.	Email 2:	1 Coverantur	Address: W
Emergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT FF	CEmergency (1-2 Bus. Di	1.000	Denvirenue	Chronxo	Email 1:	2 2	Contact
Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT	Priority (2-4 Business D	Fax .	Digital	X Excel	X PDF	IN P YOYLE	Company: 15
Regular (Standard Turnaround Times - Business Days)	Regular (Standard Turr			rd Other	X Standard	Nw Is	Report Io
Service Requested (Rush for routine analysis subject to availability)	Service Requested (F		tion	Report Format / Distribution	Report F	1	111
Pageof		1 9878	Canada Toll Free: 1 800 668 www.alsglobal.com	Canada Toll F		FRUITCONMENTER	
COC#		quest Form	Analytical Red	Chain of Custody / Analytical Request Form	Cha		

. ÷

K



Taiga Batch No.: 130553

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

### - FINAL REPORT -

**Prepared For:** BluMetric

Address: 4 Cataraque Street The Tower Kingston, ON K7K 1Z7

Attn: Pascal Poirier

Facsimile: (613) 531-1852

Final report has been reviewed and approved by:

Angelique Ruzindana Quality Assurance Officer

#### NOTES:

- Test methods and data are validated by the laboratory's Quality Assurance Program. Taiga Environmental Laboratory is accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) as a testing laboratory for specific tests registered with CALA.
- > Routine methods are based on recognized procedures from sources such as
  - o Standard Methods for the Examination of Water and Wastewater APHA AWWA WEF;
  - o Environment Canada
  - o USEPA
- Samples shall be kept for thirty (30) days after the final report is issued. All microbiological samples shall be disposed of immediately upon completion of analysis to minimize biohazardous risks to laboratory personnel. Please contact the laboratory if you have any special requirements.
- Final results are based on the specific tests at the time of analysis and do not represent the conditions during sampling.

ReportDate:Sunday, August 04, 2013Print Date:Sunday, August 04, 2013



Taiga Batch No.: 130553

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

## - CERTIFICATE OF ANALYSIS -

### Client Sample ID: EFF120

Client Project:Y-B11192-00-00Sample Type:Surface WaterReceived Date:22-Jul-13Sampling Date:20-Jul-13Sampling Time:9:00Location:Tundra MineReport Status:Final

Taiga Sample ID: 001

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
pН	7.70		pH units	22-Jul-13	SM4500-H:B	
Solids, Total Suspended	12	3	mg/L	22-Jul-13	SM2540:D	
Inorganics - Nutrients						
Ammonia as N (Field Preserved)	0.092	0.005	mg/L	24-Jul-13	SM4500-NH3:	
<u>Major Ions</u>						
Nitrate as Nitrogen	0.33	0.01	mg/L	23-Jul-13	SM4110:B	
Nitrite as Nitrogen	0.02	0.01	mg/L	23-Jul-13	SM4110:B	
Trace Metals, Total						
Arsenic	40.3	0.2	µg/L	01-Aug-13	EPA200.8	
Copper	4.1	0.2	μg/L	01-Aug-13	EPA200.8	
Lead	0.2	0.1	μg/L	01-Aug-13	EPA200.8	
Nickel	6.1	0.1	μg/L	01-Aug-13	EPA200.8	
Zinc	6.0	0.4	μg/L	01-Aug-13	EPA200.8	



Taiga Batch No.: 130553

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

### - CERTIFICATE OF ANALYSIS -

### Client Sample ID: Dup 5

Taiga Sample ID: 002

<b>Client Project:</b>	Y-B11192-00-00
Sample Type:	Surface Water
<b>Received Date:</b>	22-Jul-13
Sampling Date:	20-Jul-13
Sampling Time:	9:00
Location:	Tundra Mine
Report Status:	Final

Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
7.71		pH units	22-Jul-13	SM4500-H:B	
12	3	mg/L	22-Jul-13	SM2540:D	
0.34	0.01	mg/L	23-Jul-13	SM4110:B	
0.02	0.01	mg/L	23-Jul-13	SM4110:B	
42.2	0.2	μg/L	01-Aug-13	EPA200.8	
4.4	0.2	μg/L	01-Aug-13	EPA200.8	
0.3	0.1	μg/L	01-Aug-13	EPA200.8	
6.3	0.1	μg/L	01-Aug-13	EPA200.8	
7.4	0.4	μg/L	01-Aug-13	EPA200.8	
	7.71 12 0.34 0.02 42.2 4.4 0.3 6.3	Result         Limit           7.71         3           12         3           0.34         0.01           0.02         0.01           42.2         0.2           4.4         0.2           0.3         0.1           6.3         0.1	Result         Limit         Units           7.71         pH units           12         3         mg/L           0.34         0.01         mg/L           0.02         0.01         mg/L           42.2         0.2         µg/L           4.4         0.2         µg/L           0.3         0.1         µg/L	Result         Limit         Units         Date           7.71         pH units         22-Jul-13           12         3         mg/L         22-Jul-13           0.34         0.01         mg/L         23-Jul-13           0.32         0.01         mg/L         23-Jul-13           42.2         0.2         µg/L         01-Aug-13           4.4         0.2         µg/L         01-Aug-13           0.3         0.1         µg/L         01-Aug-13           6.3         0.1         µg/L         01-Aug-13	ResultLimitUnitsDateMethod *7.71 $pH$ units22-Jul-13SM4500-H:B123 $mg/L$ 22-Jul-13SM2540:D0.340.01 $mg/L$ 23-Jul-13SM4110:B0.020.01 $mg/L$ 23-Jul-13SM4110:B42.20.2 $\mu g/L$ 01-Aug-13EPA200.84.40.2 $\mu g/L$ 01-Aug-13EPA200.80.30.1 $\mu g/L$ 01-Aug-13EPA200.86.30.1 $\mu g/L$ 01-Aug-13EPA200.8



**Taiga Batch No.:** 130553

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Fax: (867)-669-2718 Tel: (867)-669-2788

## - CERTIFICATE OF ANALYSIS -

### Client Sample ID: Travel Blank

Taiga Sample ID: 003

<b>Client Project:</b>	Y-B11192-00-00
Sample Type:	ТВ
<b>Received Date:</b>	22-Jul-13
Sampling Date:	20-Jul-13
Sampling Time:	9:00
Location:	Tundra Mine
Report Status:	Final

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
pН	5.60		pH units	22-Jul-13	SM4500-H:B	
Solids, Total Suspended	< 3	3	mg/L	22-Jul-13	SM2540:D	
Inorganics - Nutrients						
Ammonia as N (Field Preserved)	0.008	0.005	mg/L	24-Jul-13	SM4500-NH3:	
<u>Major Ions</u>						
Nitrate as Nitrogen	< 0.01	0.01	mg/L	23-Jul-13	SM4110:B	
Nitrite as Nitrogen	< 0.01	0.01	mg/L	23-Jul-13	SM4110:B	
Trace Metals, Total						
Arsenic	< 0.2	0.2	μg/L	01-Aug-13	EPA200.8	
Copper	< 0.2	0.2	μg/L	01-Aug-13	EPA200.8	
Lead	0.1	0.1	μg/L	01-Aug-13	EPA200.8	
Nickel	< 0.1	0.1	μg/L	01-Aug-13	EPA200.8	
Zinc	< 0.4	0.4	μg/L	01-Aug-13	EPA200.8	



Taiga Batch No.: 130553

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

### - CERTIFICATE OF ANALYSIS -

Client Sample ID: Travel Blank

Taiga Sample ID: 003

* Taiga analytical methods are based on the following standard analytical methods

SM - Standard Methods for the Examination of Water and Wastewater

EPA - United States Environmental Protection Agency

ReportDate:Sunday, August 04, 2013Print Date:Sunday, August 04, 2013



Taiga Batch No.: 130551

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

### - AMENDED REPORT -

Prepared For: BluMetric

Address: 4 Cataraque Street The Tower Kingston, ON K7K 1Z7

Attn: Pascal Poirier

Facsimile: (613) 531-1852

Final report has been reviewed and approved by:

Judy Jule.

#### NOTES:

- Test methods and data are validated by the laboratory's Quality Assurance Program. Taiga Environmental Laboratory is accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) as a testing laboratory for specific tests registered with CALA.
- > Routine methods are based on recognized procedures from sources such as
  - o Standard Methods for the Examination of Water and Wastewater APHA AWWA WEF;
  - o Environment Canada
  - o USEPA
- Samples shall be kept for thirty (30) days after the final report is issued. All microbiological samples shall be disposed of immediately upon completion of analysis to minimize biohazardous risks to laboratory personnel. Please contact the laboratory if you have any special requirements.
- Final results are based on the specific tests at the time of analysis and do not represent the conditions during sampling.

ReportDate:Sunday, August 04, 2013Print Date:Wednesday, February 26, 2014



Taiga Batch No.: 130551

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

### - CERTIFICATE OF ANALYSIS -

### Client Sample ID: EFF112

Taiga Sample ID: 001

Client Project: Sample Type: Water Received Date: 22-Jul-13 Sampling Date: 18-Jul-13 Sampling Time:

Location:Tundra MineReport Status:Amended

Detection Analysis Analytical Units **Test Parameter** Result Qualifer Limit Method * Date **Inorganics - Physicals** pН 8.06 pH units 22-Jul-13 SM4500-H:B Solids, Total Suspended 12 3 mg/L 22-Jul-13 SM2540:D **Inorganics - Nutrients** Ammonia as N (Field Preserved) 0.099 0.005 mg/L 24-Jul-13 SM4500-NH3: 0.94 Nitrogen, Total 0.06 mg/L 24-Jul-13 ISO/TR 11905 **Major Ions** Nitrate as Nitrogen 0.33 0.01 mg/L 22-Jul-13 SM4110:B 0.02 0.01 Nitrite as Nitrogen mg/L 22-Jul-13 SM4110:B **Trace Metals, Total** 34.5 Arsenic 0.2 μg/L 01-Aug-13 EPA200.8 Copper 1.0 0.2 μg/L 01-Aug-13 EPA200.8 < 0.1 Lead 0.1 μg/L 01-Aug-13 EPA200.8 4.9 Nickel 0.1 01-Aug-13 EPA200.8 μg/L Zinc 3.1 0.4 01-Aug-13 EPA200.8 μg/L

ReportDate:Sunday, August 04, 2013Print Date:Wednesday, February 26, 2014

Page 2 of 5



Taiga Batch No.: 130551

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

### - CERTIFICATE OF ANALYSIS -

### Client Sample ID: EFF116

Taiga Sample ID: 002

Client Project:	
Sample Type:	Water
<b>Received Date:</b>	22-Jul-13
Sampling Date:	19-Jul-13
Sampling Time:	
Location:	Tundra Mine
Dourout Ctatura	Amondod

*Report Status:* Amended

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
pH	7.70		pH units	22-Jul-13	SM4500-H:B	
Solids, Total Suspended	12	3	mg/L	22-Jul-13	SM2540:D	
Inorganics - Nutrients						
Ammonia as N (Field Preserved)	0.100	0.005	mg/L	24-Jul-13	SM4500-NH3:	
Nitrogen, Total	0.97	0.06	mg/L	24-Jul-13	ISO/TR 11905	
<u>Major Ions</u>						
Nitrate as Nitrogen	0.34	0.01	mg/L	22-Jul-13	SM4110:B	
Nitrite as Nitrogen	0.02	0.01	mg/L	22-Jul-13	SM4110:B	
<u>Trace Metals, Total</u>						
Arsenic	36.6	0.2	μg/L	01-Aug-13	EPA200.8	
Copper	0.4	0.2	µg/L	01-Aug-13	EPA200.8	
Lead	0.2	0.1	μg/L	01-Aug-13	EPA200.8	
Nickel	5.8	0.1	μg/L	01-Aug-13	EPA200.8	
Zinc	3.7	0.4	μg/L	01-Aug-13	EPA200.8	

ReportDate: Sunday, August 04, 2013 **Print Date:** Wednesday, February 26, 2014



Taiga Batch No.: 130551

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

### - CERTIFICATE OF ANALYSIS -

### Client Sample ID: Travel Blank

Taiga Sample ID: 003

**Client Project:** Sample Type: Water Received Date: 22-Jul-13 Sampling Date: 21-Jul-13 Sampling Time: Location: Tundra Mine

Amended **Report Status:** 

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
pН	5.60		pH units	22-Jul-13	SM4500-H:B	
Solids, Total Suspended	< 3	3	mg/L	22-Jul-13	SM2540:D	
Inorganics - Nutrients						
Ammonia as N (Field Preserved)	0.006	0.005	mg/L	24-Jul-13	SM4500-NH3:	
Nitrogen, Total	< 0.06	0.06	mg/L	24-Jul-13	ISO/TR 11905	
<u>Major Ions</u>						
Nitrate as Nitrogen	< 0.01	0.01	mg/L	22-Jul-13	SM4110:B	
Nitrite as Nitrogen	< 0.01	0.01	mg/L	22-Jul-13	SM4110:B	
Trace Metals, Total						
Arsenic	< 0.2	0.2	μg/L	01-Aug-13	EPA200.8	
Copper	< 0.2	0.2	μg/L	01-Aug-13	EPA200.8	
Lead	0.2	0.1	μg/L	01-Aug-13	EPA200.8	
Nickel	< 0.1	0.1	μg/L	01-Aug-13	EPA200.8	
Zinc	< 0.4	0.4	µg/L	01-Aug-13	EPA200.8	

ReportDate: Sunday, August 04, 2013 **Print Date:** Wednesday, February 26, 2014



Taiga Batch No.: 130551

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

### - CERTIFICATE OF ANALYSIS -

Client Sample ID: Travel Blank

Taiga Sample ID: 003

* Taiga analytical methods are based on the following standard analytical methods

SM - Standard Methods for the Examination of Water and Wastewater EPA - United States Environmental Protection Agency

**Comments** Sample collect dates corrected for sample -001 (EFF112) and -002 (EFF116).

ReportDate:Sunday, August 04, 2013Print Date:Wednesday, February 26, 2014



WESA Inc. ATTN: Tim Beckenham 4 Cataraque Street The Tower Kingston ON K7K 1Z7 Date Received:17-JUL-13Report Date:26-FEB-14 09:06 (MT)Version:FINAL REV. 2

Client Phone: 613-531-2725

# **Certificate of Analysis**

### Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L1334056 NOT SUBMITTED Y-B11192-00-00

1

Catherine Evaristo-Cordero Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 9936-67 Avenue, Edmonton, AB T6E 0P5 Canada | Phone: +1 780 413 5227 | Fax: +1 780 437 2311 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company



www.alsglobal.com

**RIGHT SOLUTIONS RIGHT PARTNER** 

#### L1334056 CONTD.... PAGE 2 of 4 26-FEB-14 09:06 (MT) Version: FINAL REV. 2

## ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1334056-1 Surface Water 16-JUL-13 09:40 EFF104	L1334056-2 Surface Water 17-JUL-13 09:00 EFF108	L1334056-3 Surface Water 17-JUL-13 12:00 TBLANK	
Grouping	Analyte				
WATER					
Physical Tests	рН (рН)	7.18	7.66	6.50	
	Total Suspended Solids (mg/L)	6.0	9.0	<3.0	
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.143	0.089	<0.050	
	Nitrate and Nitrite (as N) (mg/L)	0.267	0.264	<0.071	
	Nitrate (as N) (mg/L)	0.267	0.264	<0.050	
	Nitrite (as N) (mg/L)	<0.050	<0.050	<0.050	
Total Metals	Aluminum (Al)-Total (mg/L)	DLM <0.015	0.019	<0.0030	
	Antimony (Sb)-Total (mg/L)	<0.00050	<0.00050	<0.00010	
	Arsenic (As)-Total (mg/L)	0.0311	0.0344	<0.00010	
	Barium (Ba)-Total (mg/L)	о.0151	0.0139	<0.000050	
	Beryllium (Be)-Total (mg/L)	<0.0025	<0.0025	<0.00050	
	Bismuth (Bi)-Total (mg/L)	оло 0.00025	DLM <0.00025	<0.000050	
	Boron (B)-Total (mg/L)	олы совется общать общат	DLM <0.050	<0.010	
	Cadmium (Cd)-Total (mg/L)	DLM <0.000050	DLM <0.000050	<0.000010	
	Calcium (Ca)-Total (mg/L)	^{DLM} 119	DLM 118	<0.020	
	Chromium (Cr)-Total (mg/L)	олы со.00050	olum <0.00050	<0.00010	
	Cobalt (Co)-Total (mg/L)	DLM 0.00574	DLM 0.00388	<0.00010	
	Copper (Cu)-Total (mg/L)	DLM 0.00603	DLM 0.00588	0.00066	
	Iron (Fe)-Total (mg/L)	DLM 2.76	DLM 2.64	<0.010	
	Lead (Pb)-Total (mg/L)	DLM <0.00025	DLM 0.00030	<0.000050	
	Lithium (Li)-Total (mg/L)	DLM <0.025	DLM <0.025	<0.0050	
	Magnesium (Mg)-Total (mg/L)	DLM 8.30	DLM 8.24	<0.0050	
	Manganese (Mn)-Total (mg/L)	0.155	0.119	0.000091	
	Molybdenum (Mo)-Total (mg/L)	DLM 0.00068	DLM 0.00108	<0.000050	
	Nickel (Ni)-Total (mg/L)	DLM 0.00910	DLM 0.00686	<0.00010	
	Phosphorus (P)-Total (mg/L)	олы страната. <1.5	<1.5	<0.30	
	Potassium (K)-Total (mg/L)	^{DLM} 5.85	5.99 DLM	<0.050	
	Selenium (Se)-Total (mg/L)	DLM <0.00050	DLM <0.00050	<0.00010	
	Silicon (Si)-Total (mg/L)	0.65	0.54	<0.050	
	Silver (Ag)-Total (mg/L)	DLM <0.000050	DLM <0.000050	<0.000010	
	Sodium (Na)-Total (mg/L)	DLM 26.1	DLM 25.2	<0.050	
	Strontium (Sr)-Total (mg/L)	0.192	0.197	<0.00010	
	Thallium (TI)-Total (mg/L)	DLM <0.00025	DLM <0.00025	<0.000050	
	Tin (Sn)-Total (mg/L)	DLM <0.00050	DLM <0.00050	<0.00010	
	Titanium (Ti)-Total (mg/L)	DLM 0.0103	DLM 0.0126	<0.00030	
	Uranium (U)-Total (mg/L)	DLM 0.000080	0.000125	<0.000010	
	Vanadium (V)-Total (mg/L)	OLM <0.00050	<0.00050	0.00023	

L1334056 CONTD.... PAGE 3 of 4 26-FEB-14 09:06 (MT) Version: FINAL REV. 2

## ALS ENVIRONMENTAL ANALYTICAL REPORT

						Versio	n: FINAL REV
		Sample ID Description Sampled Date Sampled Time Client ID	L1334056-1 Surface Water 16-JUL-13 09:40 EFF104	L1334056-2 Surface Water 17-JUL-13 09:00 EFF108	L1334056-3 Surface Water 17-JUL-13 12:00 TBLANK		
Grouping	Analyte						
WATER							
Total Metals	Zinc (Zn)-Total (mg/L)		olum<0.015	<0.015	<0.0030		

### **Reference Information**

#### QC Samples with Qualifiers & Comments:

QC Type Desci	ription	Parameter	Qualifier	Applies to Sample Number(s)
Duplicate		Aluminum (AI)-Total	DUP-H	L1334056-1, -2, -3
Qualifiers for	Individual Parameters	s Listed:		
Qualifier	Description			
DLM	Detection Limit Adjus	sted due to sample matrix effects.		
DUP-H	Duplicate results out	side ALS DQO, due to sample heter	ogeneity.	
est Method R	eferences:			
ALS Test Code	Matrix	Test Description		Method Reference**
MET-T-CCMS-E	D Water	Total Metals in Water by CRC IC	PMS	APHA 3030 B&E / EPA SW-846 6020A
NH3-CFA-ED	Water	Ammonia in Water by Colour		APHA 4500 NH3-NITROGEN (AMMONIA)
	s carried out using proc enate colourimetric met		4500 NH3 "NITROG	EN (AMMONIA)". Ammonia is determined using the
NO2+NO3-CAL	C-ED Water	Nitrate+Nitrite		CALCULATION
NO2-IC-ED	Water	Nitrite as N by IC		APHA 4110 B-ION CHROMATOGRAPHY
This analysis is	s carried out using proc	cedures adapted from EPA Method 3	00.0 "Determination	of Inorganic Anions by Ion Chromatography".
NO3-IC-ED	Water	Nitrate as N by IC		APHA 4110 B-ION CHROMATOGRAPHY
This analysis is	s carried out using proc	edures adapted from EPA Method 3	00.0 "Determination	of Inorganic Anions by Ion Chromatography".
PH-ED	Water	рН		APHA 4500 H-Electrode
		for pH will have exceeded the 15 mir curate results are needed)	ute recommended h	old time from time of sampling (field analysis is
SOLIDS-TOTSU	JS-ED Water	Total Suspended Solids		APHA 2540 D-Gravimetric
* ALS test metho	ods may incorporate mo	odifications from specified reference	methods to improve	performance.
The last two lett	ers of the above test co	ode(s) indicate the laboratory that pe	rformed analytical ar	nalysis for that test. Refer to the list below:
Laboratory Defi	inition Code Labo	pratory Location		
ED	ALS	ENVIRONMENTAL - EDMONTON, A	LBERTA, CANADA	

1

#### **GLOSSARY OF REPORT TERMS**

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample. mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.



		Workorder:	L133405	56	Report Date: 26	6-FEB-14	Pa	ige 1 of 8
Client: Contact:	WESA Inc. 4 Cataraque Street The Kingston ON K7K 1Z7 Tim Beckenham							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-E	D Water							
Batch	R2652888							
WG1710210- Aluminum (A			100.7		%		70-130	19-JUL-13
Antimony (Sl	b)-Total		98.3		%		70-130	19-JUL-13
Arsenic (As)	-Total		100.9		%		70-130	19-JUL-13
Barium (Ba)-	Total		95.7		%		70-130	19-JUL-13
Beryllium (Be	e)-Total		90.3		%		70-130	19-JUL-13
Bismuth (Bi)	-Total		95.7		%		70-130	19-JUL-13
Boron (B)-To	otal		86.8		%		70-130	19-JUL-13
Cadmium (C	d)-Total		102.3		%		70-130	19-JUL-13
Calcium (Ca	)-Total		92.4		%		70-130	19-JUL-13
Chromium (0	Cr)-Total		99.0		%		70-130	19-JUL-13
Cobalt (Co)-	Total		96.8		%		70-130	19-JUL-13
Copper (Cu)	-Total		95.5		%		70-130	19-JUL-13
Iron (Fe)-Tot	al		95.1		%		70-130	19-JUL-13
Lead (Pb)-To	otal		97.5		%		70-130	19-JUL-13

Lead (Pb)-Total	97.5	%	70-130	19-JUL-13
Lithium (Li)-Total	87.7	%	70-130	19-JUL-13
Magnesium (Mg)-Total	101.8	%	70-130	19-JUL-13
Manganese (Mn)-Total	96.0	%	70-130	19-JUL-13
Molybdenum (Mo)-Total	89.9	%	70-130	19-JUL-13
Nickel (Ni)-Total	101.0	%	70-130	19-JUL-13
Potassium (K)-Total	93.2	%	70-130	19-JUL-13
Selenium (Se)-Total	107.5	%	70-130	19-JUL-13
Silicon (Si)-Total	89.6	%	70-130	19-JUL-13
Silver (Ag)-Total	97.4	%	70-130	19-JUL-13
Sodium (Na)-Total	107.1	%	70-130	19-JUL-13
Strontium (Sr)-Total	96.5	%	70-130	19-JUL-13
Thallium (TI)-Total	97.4	%	70-130	19-JUL-13
Tin (Sn)-Total	93.2	%	70-130	19-JUL-13
Titanium (Ti)-Total	86.2	%	70-130	19-JUL-13
Uranium (U)-Total	92.3	%	70-130	19-JUL-13
Vanadium (V)-Total	98.5	%	70-130	19-JUL-13
Zinc (Zn)-Total	99.8	%	70-130	19-JUL-13
WG1710210-4 LCS				
Aluminum (Al)-Total	104.5	%	70-130	20-JUL-13
Antimony (Sb)-Total	112.1	%	70-130	20-JUL-13



		Workorder	L133405	6	Report Date: 2	26-FEB-14	Pa	ige 2 of
lest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2652888								
WG1710210-4 LCS			107.3		0/		70.400	
Arsenic (As)-Total			107.3		%		70-130	20-JUL-13
Barium (Ba)-Total					%		70-130	20-JUL-13
Beryllium (Be)-Total			96.3		%		70-130	20-JUL-13
Bismuth (Bi)-Total			107.6		%		70-130	20-JUL-13
Boron (B)-Total			95.0		%		70-130	20-JUL-13
Cadmium (Cd)-Total			110.0		%		70-130	20-JUL-13
Calcium (Ca)-Total			99.8		%		70-130	20-JUL-13
Chromium (Cr)-Total			106.0		%		70-130	20-JUL-13
Cobalt (Co)-Total			102.6		%		70-130	20-JUL-13
Copper (Cu)-Total			104.3		%		70-130	20-JUL-13
Iron (Fe)-Total			97.9		%		70-130	20-JUL-13
Lead (Pb)-Total			104.2		%		70-130	20-JUL-13
Lithium (Li)-Total			102.8		%		70-130	20-JUL-13
Magnesium (Mg)-Total			103.8		%		70-130	20-JUL-13
Manganese (Mn)-Total			102.3		%		70-130	20-JUL-13
Molybdenum (Mo)-Total			98.3		%		70-130	20-JUL-13
Nickel (Ni)-Total			106.3		%		70-130	20-JUL-13
Potassium (K)-Total			97.0		%		70-130	20-JUL-13
Selenium (Se)-Total			115.0		%		70-130	20-JUL-13
Silicon (Si)-Total			98.4		%		70-130	20-JUL-13
Silver (Ag)-Total			106.9		%		70-130	20-JUL-13
Sodium (Na)-Total			112.5		%		70-130	20-JUL-13
Strontium (Sr)-Total			101.8		%		70-130	20-JUL-13
Thallium (TI)-Total			108.7		%		70-130	20-JUL-13
Tin (Sn)-Total			100.1		%		70-130	20-JUL-13
Titanium (Ti)-Total			93.9		%		70-130	20-JUL-13
Uranium (U)-Total			104.3		%		70-130	20-JUL-13
Vanadium (V)-Total			104.7		%		70-130	20-JUL-13
Zinc (Zn)-Total			105.1		%		70-130	20-JUL-13
WG1710210-1 MB								
Aluminum (Al)-Total			<0.0030		mg/L		0.003	19-JUL-13
Antimony (Sb)-Total			<0.00010		mg/L		0.0001	19-JUL-13
Arsenic (As)-Total			<0.00010	)	mg/L		0.0001	19-JUL-13
Barium (Ba)-Total			<0.00005	50	mg/L		0.00005	19-JUL-13



		Workorder:	L133405	6	Report Date: 2	6-FEB-14	Pa	ge 3 of 8
lest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R2652888	i i							
WG1710210-1 MB								
Beryllium (Be)-Total			<0.00050	_	mg/L		0.0005	19-JUL-13
Bismuth (Bi)-Total			<0.000050	0	mg/L		0.00005	19-JUL-13
Boron (B)-Total			<0.010		mg/L		0.01	19-JUL-13
Cadmium (Cd)-Total			<0.00001	0	mg/L		0.00001	19-JUL-13
Calcium (Ca)-Total			<0.020		mg/L		0.02	19-JUL-13
Chromium (Cr)-Total			<0.00010		mg/L		0.0001	19-JUL-13
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	19-JUL-13
Iron (Fe)-Total			<0.010		mg/L		0.01	19-JUL-13
Lead (Pb)-Total			<0.00005	D	mg/L		0.00005	19-JUL-13
Lithium (Li)-Total			<0.0050		mg/L		0.005	19-JUL-13
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	19-JUL-13
Manganese (Mn)-Total			<0.00005	D	mg/L		0.00005	19-JUL-13
Molybdenum (Mo)-Tota	I		<0.00005	D	mg/L		0.00005	19-JUL-13
Nickel (Ni)-Total			<0.00010		mg/L		0.0001	19-JUL-13
Phosphorus (P)-Total			<0.30		mg/L		0.3	19-JUL-13
Potassium (K)-Total			<0.050		mg/L		0.05	19-JUL-13
Selenium (Se)-Total			<0.00010		mg/L		0.0001	19-JUL-13
Silicon (Si)-Total			<0.050		mg/L		0.05	19-JUL-13
Silver (Ag)-Total			<0.00001	C	mg/L		0.00001	19-JUL-13
Sodium (Na)-Total			<0.050		mg/L		0.05	19-JUL-13
Strontium (Sr)-Total			<0.00010		mg/L		0.0001	19-JUL-13
Thallium (TI)-Total			<0.00005	C	mg/L		0.00005	19-JUL-13
Tin (Sn)-Total			<0.00010		mg/L		0.0001	19-JUL-13
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	19-JUL-13
Uranium (U)-Total			<0.00001	C	mg/L		0.00001	19-JUL-13
Zinc (Zn)-Total			<0.0030		mg/L		0.003	19-JUL-13
WG1710210-2 MB								
Aluminum (Al)-Total			<0.0030		mg/L		0.003	20-JUL-13
Antimony (Sb)-Total			<0.00010		mg/L		0.0001	20-JUL-13
Arsenic (As)-Total			<0.00010		mg/L		0.0001	20-JUL-13
Barium (Ba)-Total			<0.00005	C	mg/L		0.00005	20-JUL-13
Beryllium (Be)-Total			<0.00050		mg/L		0.0005	20-JUL-13
Bismuth (Bi)-Total			<0.00005	С	mg/L		0.00005	20-JUL-13
Boron (B)-Total			<0.010		mg/L		0.01	20-JUL-13



		Workorder:	L133405	6	Report Date: 2	26-FEB-14	Pa	ge 4 of 8
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-ED	Water							
Batch R265288	38							
WG1710210-2 MB								
Cadmium (Cd)-Total			<0.00001	0	mg/L		0.00001	20-JUL-13
Calcium (Ca)-Total			<0.020		mg/L		0.02	20-JUL-13
Chromium (Cr)-Total			<0.00010		mg/L		0.0001	20-JUL-13
Cobalt (Co)-Total			<0.00010	)	mg/L		0.0001	20-JUL-13
Iron (Fe)-Total			<0.010		mg/L		0.01	20-JUL-13
Lead (Pb)-Total			<0.00005	50	mg/L		0.00005	20-JUL-13
Lithium (Li)-Total			<0.0050		mg/L		0.005	20-JUL-13
Magnesium (Mg)-Tota	al		<0.0050		mg/L		0.005	20-JUL-13
Molybdenum (Mo)-To	tal		<0.00005	50	mg/L		0.00005	20-JUL-13
Nickel (Ni)-Total			<0.00010	)	mg/L		0.0001	20-JUL-13
Phosphorus (P)-Total			<0.30		mg/L		0.3	20-JUL-13
Potassium (K)-Total			<0.050		mg/L		0.05	20-JUL-13
Selenium (Se)-Total			<0.00010	)	mg/L		0.0001	20-JUL-13
Silicon (Si)-Total			<0.050		mg/L		0.05	20-JUL-13
Silver (Ag)-Total			<0.00001	0	mg/L		0.00001	20-JUL-13
Sodium (Na)-Total			<0.050		mg/L		0.05	20-JUL-13
Thallium (TI)-Total			<0.00005	50	mg/L		0.00005	20-JUL-13
Tin (Sn)-Total			<0.00010	)	mg/L		0.0001	20-JUL-13
Titanium (Ti)-Total			<0.00030	)	mg/L		0.0003	20-JUL-13
Uranium (U)-Total			<0.00001	0	mg/L		0.00001	20-JUL-13
Zinc (Zn)-Total			<0.0030		mg/L		0.003	20-JUL-13
NH3-CFA-ED	Water							
Batch R265373	34							
WG1711300-11 DUF Ammonia, Total (as N		<b>L1334056-2</b> 0.089	0.119	J	mg/L	0.030	0.1	22-JUL-13
WG1711300-2 LCS Ammonia, Total (as N			99.2		%		85-115	22-JUL-13
WG1711300-1 MB Ammonia, Total (as N	1)		<0.050		mg/L		0.05	22-JUL-13
WG1711300-10 MS Ammonia, Total (as N	1)	L1334045-2	100.0		%		75-125	22-JUL-13
WG1711300-5 MS Ammonia, Total (as N	1)	L1329011-5	99.3		%		75-125	22-JUL-13
WG1711300-7 MS Ammonia, Total (as N	1)	L1333221-8	97.5		%		75-125	22-JUL-13



	Workorde	er: L1334056	Report Date: 26	-FEB-14	Pa	ge 5 of 8
<b>Fest</b>	Matrix Reference	Result Quali	ifier Units	RPD	Limit	Analyzed
NH3-CFA-ED	Water					
Batch R2655258						
WG1712947-2 LCS Ammonia, Total (as N)		100.1	%		85-115	24-JUL-13
WG1712947-1 MB Ammonia, Total (as N)		<0.050	mg/L		0.05	24-JUL-13
WG1712947-3 MS Ammonia, Total (as N)	L1330415-3	<b>3</b> 99.4	%		75-125	24-JUL-13
WG1712947-6 MS Ammonia, Total (as N)	L1334056-3	<b>3</b> 97.2	%		75-125	24-JUL-13
NO2-IC-ED	Water					
Batch R2653715						
WG1711217-2 LCS Nitrite (as N)		94.2	%		90-110	21-JUL-13
WG1711217-1 MB Nitrite (as N)		<0.050	mg/L		0.05	21-JUL-13
Batch R2654282						
WG1711809-2 LCS Nitrite (as N)		93.6	%		90-110	22-JUL-13
WG1711809-1 MB Nitrite (as N)		<0.050	mg/L		0.05	22-JUL-13
NO3-IC-ED	Water					
Batch R2653715						
WG1711217-2 LCS Nitrate (as N)		99.9	%		90-110	21-JUL-13
WG1711217-1 MB Nitrate (as N)		<0.050	mg/L		0.05	21-JUL-13
Batch R2654282			-			
WG1711809-2 LCS Nitrate (as N)		102.4	%		90-110	22-JUL-13
WG1711809-1 MB Nitrate (as N)		<0.050	mg/L		0.05	22-JUL-13
WG1711809-6 MS Nitrate (as N)	L1334952-	<b>11</b> 90.7	%		75-125	22-JUL-13
PH-ED	Water					
Batch R2653131						
WG1710933-3 LCS						

SOLIDS-TOTSUS-ED

Water



		Workorder:	L133405	56	Report Date: 2	6-FEB-14	Pa	ge 6 of 8
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SOLIDS-TOTSUS-ED	Water							
Batch R2652746 WG1710213-3 DUP Total Suspended Solids		<b>L1334056-2</b> 9.0	7.0	J	mg/L	2.0	6	19-JUL-13
WG1710213-2 LCS Total Suspended Solids			102.0		%		85-115	19-JUL-13
WG1710213-1 MB Total Suspended Solids			<3.0		mg/L		3	19-JUL-13

Workorder: L1334056

Report Date: 26-FEB-14

### Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

#### Sample Parameter Qualifier Definitions:

Qualifier	Description
DUP-H	Duplicate results outside ALS DQO, due to sample heterogeneity.
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1334056

Report Date: 26-FEB-14

#### Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
рН							
	1	16-JUL-13 09:40	20-JUL-13 11:55	0.25	98	hours	EHTR-FM
	2	17-JUL-13 09:00	20-JUL-13 11:59	0.25	75	hours	EHTR-FM
	3	17-JUL-13 12:00	20-JUL-13 12:03	0.25	72	hours	EHTR-FM
Anions and Nutrients							
Nitrate as N by IC							
	1	16-JUL-13 09:40	21-JUL-13 08:00	48	118	hours	EHTL
	2	17-JUL-13 09:00	21-JUL-13 08:00	48	95	hours	EHT
	3	17-JUL-13 12:00	22-JUL-13 08:00	48	116	hours	EHT
Nitrite as N by IC							
	1	16-JUL-13 09:40	21-JUL-13 08:00	48	118	hours	EHTL
	2	17-JUL-13 09:00	21-JUL-13 08:00	48	95	hours	EHT
	3	17-JUL-13 12:00	22-JUL-13 08:00	48	116	hours	EHT
				-			

#### Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1334056 were received on 17-JUL-13 17:20.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Pace Pace	XX	Regular (	Slandard 4 Busine	Turnarou ss Days)-	nd Times 50% surc	Regular (Standard Turnaround Times - Business Days) 분주은/04 Priorly12 - 8 Business Days) - 50% surcharge - Contact ALS to confirm	s Days)	X Regular (Standard Turnaround Times - Business Days) EFF (04 , F)	. TB/au	
e Pass			4 Busine	ss Days)-	50% surc	harge - Co			1210	1
		Priority(2-	Contraction of the local distance of the loc				ntact ALS	Priority(2-4 Business Days)-50% surcharge - Contact ALS to confirm TAT	TAT	1
er: Pass mm) fo		Emergene	sy (1-2 Bu	Isiness D	ays)-100*	% Surchar	ge - Contac	Emergency (1-2 Business Days)-100% Surcharge - Centact ALS to confirm TAT $\mathbb{GP}$ = $10\%$	onfirm TAT	巴
er: Pass mm) fo		Same Da	y or Weel	tend Eme	- kouek	Same Day or Weekend Emergency - Contact ALS to confirm TAT	S to confir	m TAT		Ι
er: Pass mm) (o				•	ualysi	Analysis Request			T	
er: Pass mm) (o		1	( Indica	ite Filte	ered or	( Indicate Filtered or Preserved,	ed, F/P)	-	1	
npler: Pascal Biliter Time Sample Ty (nhmm) Sample Ty		7	1	7	1	1	1	7	1	
npler: Passal Politier Time Sample Ty (nhmm) Sample Ty	1.1		one t	3.		-		-		
npler: Pascal Biliter Time Sample Ty (hhmm) Sample Ty	1	1	port!		-					S
npler: Passal Palitier Time Sample Ty (hhmm) Sample Ty	W.		1¥			_		_		ijai
npler: Passal Biliter Time Sample Ty (hhmm) Sample Ty	70		3	50.15	-					uiein
e î t		-	a tough.	No VALLA TO		-		-		01 000
	8 99,2A	FON	Jefel	Ho	SSL			-		admuN
T	Y	×	X	~	×					10
9:00 Surtare water	×	7	x x	X	X	-Que h	400	**	*	100
	-	X	X	×	-		1			m
		-	0			-				
		-	1							1
		t	-	T	t	-		-		Г
									1	-
	-								-	
									-	
									-	
	Ē								-	
ic Life/BC CSR-Comme	cial/AE		L13	3405	6-CO	EC.				179
	1									
analysis. Please fill in t	his form L	EGIBL	Y.			t o				
ab use only)		Rodus	SHIPM	ENTV	ERIFIC	ATION	(lab use	only)	1	10
emperatur Nox 9.6		1.		Date:		Time	6	Obse Yes /	I No ?	1.
	CCME- Freshwater Aquatic Life/BC CSR-Commer CCCME- Freshwater Aquatic Life/BC CSR-Commer Sor AS & TS no AS & TS no this form may delay analysis. Please fill in t rees with the Terms and Conditions as specified t SHIPMENT RECEPTION (Iab use only) SHIPMENT RECEPTION (Iab use only)	Re- Freshwater Aquatic Life/BC CSR-Commercial/AE       Re- Freshwater Aquatic Life/BC CSR-Commercial/AE       For     A       For     A	tic Life/BC CSR-Commercial/AE	Interference     Interference     Interference       Interference     Interference     Interference <td>tic Life/BC CSR-Commercial/AE L133405 tic L134405 tic L134</td> <td>tic Life/BC CSR-Commercial/AE L1334056-CO tic Life/BC CSR-Commercial/AE L1334056-CO tic Life/BC CSR-Commercial/AE L1334056-CO tic Life/BC CSR-Commercial/AE Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Conditions as specified on the back page of the white - rep analysis. Conditions as specified on the back page of the white - rep analysis. Conditions as specified on the back page of the white - rep analysis. Conditions as specified on the back page of the wh</td> <td>tic Life/BC CSR-Commercial/AB tic Life/BC CSR-Commercial/AB L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC</td> <td>active interval     Image: Control of the interval       active interval     Image: Control of the interval</td> <td>ap nse</td> <td>tic Life/BC CSR-Commercial/A tic Life/BC CSR-Commercial/A L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1344057-COFC L1344057-COFC L1344057-COFC L1344057-COFC L1344057-COFC L1344057-COFC L1344057-COFC L1344057-COFC L1344057-COFC L1344057-COFC L1344057-COFC L1344057-COFC L1344057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1455057-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COF</td>	tic Life/BC CSR-Commercial/AE L133405 tic L134405 tic L134	tic Life/BC CSR-Commercial/AE L1334056-CO tic Life/BC CSR-Commercial/AE L1334056-CO tic Life/BC CSR-Commercial/AE L1334056-CO tic Life/BC CSR-Commercial/AE Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Please fill in this form LEGIBLY. Conditions as specified on the back page of the white - rep analysis. Conditions as specified on the back page of the white - rep analysis. Conditions as specified on the back page of the white - rep analysis. Conditions as specified on the back page of the white - rep analysis. Conditions as specified on the back page of the wh	tic Life/BC CSR-Commercial/AB tic Life/BC CSR-Commercial/AB L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC L1334056-CCFC	active interval     Image: Control of the interval       active interval     Image: Control of the interval	ap nse	tic Life/BC CSR-Commercial/A tic Life/BC CSR-Commercial/A L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1334056-COFC L1344057-COFC L1344057-COFC L1344057-COFC L1344057-COFC L1344057-COFC L1344057-COFC L1344057-COFC L1344057-COFC L1344057-COFC L1344057-COFC L1344057-COFC L1344057-COFC L1344057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1445057-COFC L1455057-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COFC L145507-COF

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878



Taiga Batch No.: 130524

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

### - FINAL REPORT -

Prepared For: BluMetric

Address: 4 Cataraque Street The Tower Kingston, ON K7K 1Z7

Attn: Pascal Poirier

Facsimile: (613) 531-1852

Final report has been reviewed and approved by:

Judy Inh

Judy Mah Client Service Officer

#### NOTES:

- Test methods and data are validated by the laboratory's Quality Assurance Program. Taiga Environmental Laboratory is accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) as a testing laboratory for specific tests registered with CALA.
- > Routine methods are based on recognized procedures from sources such as
  - o Standard Methods for the Examination of Water and Wastewater APHA AWWA WEF;
  - o Environment Canada
  - o USEPA
- Samples shall be kept for thirty (30) days after the final report is issued. All microbiological samples shall be disposed of immediately upon completion of analysis to minimize biohazardous risks to laboratory personnel. Please contact the laboratory if you have any special requirements.
- Final results are based on the specific tests at the time of analysis and do not represent the conditions during sampling.

ReportDate:Monday, July 29, 2013Print Date:Friday, August 02, 2013



Taiga Batch No.: 130524

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

### - CERTIFICATE OF ANALYSIS -

#### Client Sample ID: EFF86

Taiga Sample ID: 001

Client Project:Y-B11192-00-00Sample Type:Surface WaterReceived Date:16-Jul-13Sampling Date:10-Jul-13Sampling Time:21:00Location:Tundra Mine

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
рН	7.87		pH units	15-Jul-13	SM4500-H:B	
Solids, Total Suspended	6	3	mg/L	17-Jul-13	SM2540:D	
Inorganics - Nutrients						
Ammonia as N (Field Preserved)	0.100	0.005	mg/L	19-Jul-13	SM4500-NH3:	
<u>Major Ions</u>						
Nitrate as Nitrogen	0.36	0.01	mg/L	19-Jul-13	SM4110:B	
Nitrite as Nitrogen	0.02	0.01	mg/L	19-Jul-13	SM4110:B	
Trace Metals, Total						
Arsenic	27.0	0.2	μg/L	23-Jul-13	EPA200.8	
Copper	1.5	0.2	μg/L	23-Jul-13	EPA200.8	
Lead	< 0.1	0.1	μg/L	23-Jul-13	EPA200.8	
Nickel	3.9	0.1	μg/L	23-Jul-13	EPA200.8	
Zinc	3.8	0.4	μg/L	23-Jul-13	EPA200.8	



Taiga Batch No.: 130524

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

### - CERTIFICATE OF ANALYSIS -

### Client Sample ID: EFF87

Taiga Sample ID: 002

Client Projec	et: Y-B11192-00-00
Sample Typ	e: Surface Water
<b>Received</b> Dat	e: 16-Jul-13
Sampling Dat	e: 11-Jul-13
Sampling Tim	<b>e:</b> 3:00
Location	<b>n:</b> Tundra Mine
<b>D</b>	T.º 1

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
pН	8.17		pH units	15-Jul-13	SM4500-H:B	
Solids, Total Suspended	16	3	mg/L	17-Jul-13	SM2540:D	
Inorganics - Nutrients						
Ammonia as N (Field Preserved)	0.103	0.005	mg/L	19-Jul-13	SM4500-NH3:	
<u>Major Ions</u>						
Nitrate as Nitrogen	0.34	0.01	mg/L	19-Jul-13	SM4110:B	
Nitrite as Nitrogen	0.02	0.01	mg/L	19-Jul-13	SM4110:B	
Trace Metals, Total						
Arsenic	35.2	0.2	μg/L	23-Jul-13	EPA200.8	
Copper	1.8	0.2	μg/L	23-Jul-13	EPA200.8	
Lead	0.1	0.1	μg/L	23-Jul-13	EPA200.8	
Nickel	3.8	0.1	μg/L	23-Jul-13	EPA200.8	
Zinc	3.3	0.4	μg/L	23-Jul-13	EPA200.8	



Taiga Batch No.: 130524

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

### - CERTIFICATE OF ANALYSIS -

### Client Sample ID: Dup 4

Taiga Sample ID: 003

<b>Client Project:</b>	Y-B11192-00-00
Sample Type:	Surface Water
<b>Received Date:</b>	16-Jul-13
Sampling Date:	11-Jul-13
Sampling Time:	13:30
Location:	Tundra Mine
Descent Chatses	Eira al

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
pН	7.88		pH units	15-Jul-13	SM4500-H:B	
Solids, Total Suspended	8	3	mg/L	17-Jul-13	SM2540:D	
Inorganics - Nutrients						
Ammonia as N (Field Preserved)	0.103	0.005	mg/L	19-Jul-13	SM4500-NH3:	
<u>Major Ions</u>						
Nitrate as Nitrogen	0.34	0.01	mg/L	19-Jul-13	SM4110:B	
Nitrite as Nitrogen	0.02	0.01	mg/L	19-Jul-13	SM4110:B	
Trace Metals, Total						
Arsenic	24.8	0.2	μg/L	23-Jul-13	EPA200.8	
Copper	5.5	0.2	µg/L	23-Jul-13	EPA200.8	
Lead	0.3	0.1	μg/L	23-Jul-13	EPA200.8	
Nickel	4.2	0.1	μg/L	23-Jul-13	EPA200.8	
Zinc	4.6	0.4	μg/L	23-Jul-13	EPA200.8	



Taiga Batch No.: 130524

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

### - CERTIFICATE OF ANALYSIS -

#### Client Sample ID: EFF89

Taiga Sample ID: 004

Client Project: Y-B11192-00-00 Sample Type: Surface Water Received Date: 16-Jul-13 Sampling Date: 11-Jul-13 Sampling Time: 13:30 Location: Tundra Mine

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
pН	7.87		pH units	15-Jul-13	SM4500-H:B	
Solids, Total Suspended	8	3	mg/L	17-Jul-13	SM2540:D	
Inorganics - Nutrients						
Ammonia as N (Field Preserved)	0.107	0.005	mg/L	19-Jul-13	SM4500-NH3:	
Major Ions						
Nitrate as Nitrogen	0.35	0.01	mg/L	19-Jul-13	SM4110:B	
Nitrite as Nitrogen	0.02	0.01	mg/L	19-Jul-13	SM4110:B	
Trace Metals, Total						
Arsenic	23.7	0.2	μg/L	23-Jul-13	EPA200.8	
Copper	2.8	0.2	μg/L	23-Jul-13	EPA200.8	
Lead	0.2	0.1	μg/L	23-Jul-13	EPA200.8	
Nickel	4.1	0.1	μg/L	23-Jul-13	EPA200.8	
Zinc	3.9	0.4	μg/L	23-Jul-13	EPA200.8	



Taiga Batch No.: 130524

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

### - CERTIFICATE OF ANALYSIS -

### Client Sample ID: EFF91

Taiga Sample ID: 005

<b>Client Project:</b>	Y-B11192-00-00
Sample Type:	Surface Water
<b>Received Date:</b>	16-Jul-13
Sampling Date:	12-Jul-13
Sampling Time:	3:00
Location:	Tundra Mine
	<b>T</b> !

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
рН	7.65		pH units	15-Jul-13	SM4500-H:B	
Solids, Total Suspended	10	3	mg/L	17-Jul-13	SM2540:D	
Inorganics - Nutrients						
Ammonia as N (Field Preserved)	0.106	0.005	mg/L	19-Jul-13	SM4500-NH3:	
<u>Major Ions</u>						
Nitrate as Nitrogen	0.31	0.01	mg/L	19-Jul-13	SM4110:B	
Nitrite as Nitrogen	0.02	0.01	mg/L	19-Jul-13	SM4110:B	
Trace Metals, Total						
Arsenic	33.6	0.2	μg/L	23-Jul-13	EPA200.8	
Copper	5.9	0.2	μg/L	23-Jul-13	EPA200.8	
Lead	0.4	0.1	μg/L	23-Jul-13	EPA200.8	
Nickel	5.5	0.1	μg/L	23-Jul-13	EPA200.8	
Zinc	4.7	0.4	μg/L	23-Jul-13	EPA200.8	



Taiga Batch No.: 130524

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

### - CERTIFICATE OF ANALYSIS -

#### Client Sample ID: EFF93

Taiga Sample ID: 006

Client Project:Y-B11192-00-00Sample Type:Surface WaterReceived Date:16-Jul-13Sampling Date:13-Jul-13Sampling Time:9:30Location:Tundra Mine

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
pН	7.37		pH units	15-Jul-13	SM4500-H:B	
Solids, Total Suspended	8	3	mg/L	17-Jul-13	SM2540:D	
Inorganics - Nutrients						
Ammonia as N (Field Preserved)	0.108	0.005	mg/L	19-Jul-13	SM4500-NH3:	
<u>Major Ions</u>						
Nitrate as Nitrogen	0.34	0.01	mg/L	19-Jul-13	SM4110:B	
Nitrite as Nitrogen	0.02	0.01	mg/L	19-Jul-13	SM4110:B	
Trace Metals, Total						
Arsenic	26.8	0.2	μg/L	23-Jul-13	EPA200.8	
Copper	0.8	0.2	μg/L	23-Jul-13	EPA200.8	
Lead	< 0.1	0.1	μg/L	23-Jul-13	EPA200.8	
Nickel	7.0	0.1	μg/L	23-Jul-13	EPA200.8	
Zinc	6.3	0.4	μg/L	23-Jul-13	EPA200.8	



Taiga Batch No.: 130524

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

### - CERTIFICATE OF ANALYSIS -

### Client Sample ID: EFF96

Taiga Sample ID: 007

Clie	nt Project:	Y-B11192-00-00
San	nple Type:	Surface Water
Rece	ived Date:	16-Jul-13
Samp	oling Date:	14-Jul-13
Samp	ling Time:	3:00
	Location:	Tundra Mine
л		T" 1

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
pН	7.88		pH units	15-Jul-13	SM4500-H:B	
Solids, Total Suspended	8	3	mg/L	17-Jul-13	SM2540:D	
<b>Inorganics - Nutrients</b>						
Ammonia as N (Field Preserved)	0.107	0.005	mg/L	19-Jul-13	SM4500-NH3:	
<u>Major Ions</u>						
Nitrate as Nitrogen	0.36	0.01	mg/L	19-Jul-13	SM4110:B	
Nitrite as Nitrogen	0.02	0.01	mg/L	19-Jul-13	SM4110:B	
Trace Metals, Total						
Arsenic	26.5	0.2	μg/L	23-Jul-13	EPA200.8	
Copper	4.8	0.2	μg/L	23-Jul-13	EPA200.8	
Lead	0.2	0.1	μg/L	23-Jul-13	EPA200.8	
Nickel	4.7	0.1	µg/L	23-Jul-13	EPA200.8	
Zinc	6.9	0.4	μg/L	23-Jul-13	EPA200.8	



Taiga Batch No.: 130524

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

### - CERTIFICATE OF ANALYSIS -

### Client Sample ID: TB

Taiga Sample ID: 008

Client Project: Y-B11192-00-00 Sample Type: Water Received Date: 16-Jul-13 Sampling Date: 15-Jul-13 Sampling Time: Location: Tundra Mine

Test Parameter	Result	Detection Limit	Units	Analysis Date	Analytical Method *	Qualifer
Inorganics - Physicals						
pН	5.64		pH units	15-Jul-13	SM4500-H:B	
Solids, Total Suspended	< 3	3	mg/L	17-Jul-13	SM2540:D	
Inorganics - Nutrients						
Ammonia as N (Field Preserved)	< 0.005	0.005	mg/L	19-Jul-13	SM4500-NH3:	
<u>Major Ions</u>						
Nitrate as Nitrogen	< 0.01	0.01	mg/L	19-Jul-13	SM4110:B	
Nitrite as Nitrogen	< 0.01	0.01	mg/L	19-Jul-13	SM4110:B	
Trace Metals, Total						
Arsenic	< 0.2	0.2	μg/L	23-Jul-13	EPA200.8	
Copper	< 0.2	0.2	µg/L	23-Jul-13	EPA200.8	
Lead	< 0.1	0.1	μg/L	23-Jul-13	EPA200.8	
Nickel	< 0.1	0.1	μg/L	23-Jul-13	EPA200.8	
Zinc	< 0.4	0.4	μg/L	23-Jul-13	EPA200.8	



Taiga Batch No.: 130524

4601-52nd Ave., Box 1500, Yellowknife, NT. X1A 2R3 Tel: (867)-669-2788 Fax: (867)-669-2718

### - CERTIFICATE OF ANALYSIS -

Client Sample ID: TB

Taiga Sample ID: 008

* Taiga analytical methods are based on the following standard analytical methods

SM - Standard Methods for the Examination of Water and Wastewater EPA - United States Environmental Protection Agency

ReportDate:Monday, July 29, 2013Print Date:Friday, August 02, 2013

Page 10 of 10

## APPENDIX E

Environmental Spill Reports



# Accident - Incident Short Report Form

	TEES-SAR	F-FOR-041						Log #	SR	-2014-09
Section	To be complete	d by		Date of Accider	nt/Incident	Da	ite Report	ed	Date c	of Investigation
#1	FRONT LINE S	UPERVISOR		15-Jul-	14		15-Jul-13			15-Jul-13
PRC	DJECT	CONTRACTOR/DEPART	TMENT	Time of Accide	nt/Incident	Tir	ne Report	ed	Date	e Submitted
				Noticed at 1	0:30am		10:30am		1	5-Jul-13
	Tundra	Water Treatmen	ıt				DEOO	DIDTION		104 1000
				-241						URY, LOSS, R HAZARD
TYPE OF MISHA		Multiple Selections Possib	ble							and the second s
	AC	CIDENT		INC	DENT			NEAF	R MISS	3
INJ	IURY	PROPERTY DAMA LOSS TO PROCE		POTENTI	AL FOR LO	SS				
FIRST AID		ENVIRONMENT		INJURY						
MEDICAL AID		EQUIPMENT	X	ENVIRONMENT		X		-		
LOST TIME		MATERIAL		EQUIPMENT						
OCCUPATIONAL ILL	NESS	LOSS TO PROCESS		LOSS TO PROCES	S					
				HAZARD						
				SHE NON-CONFOR	RMANCE		LOC	ATION OF	occi	JRRENCE
							Tre	ated Water	Disch	arge Pipe
EMPLOYEE NAME & PAYROLL #:	Wate	er Treatment Plant	OCCUPA	TION:			YRS OF EX	PERIENCE		UPATIC
DESCRIPE LION	THE MICHAR O	CCURRED; Include what the	and a state of the	una dalar tadar t	a da a sed	a distance in	and the second s			
applox 2 weeks 5	ago iniaterial wat	s put over the leak site and cla	amped and	r me patch gave w	ay. The sp	med treate	o water o	rained back	s into is	ower pond.
						PER	SON	DATE TO	BE	DATE
PREVENTATIVE	ACTION IMPLEM	MENTED OR TO BE IMPLEM	ENTED			RESPO	PONSIBLE COMPLETED COMPLET		COMPLETED	
A new patch will b	e placed on the p	pipe by days end.				Jim Way 15-Jul-13 15-Ju			15-Jul-13	
A more vigilant wa	atch will be done	on that particular part of the p	ipe.			Water Treatment Plant Employees 15-Jul-13 On go				
							1.10	15-Jul-1	13	ongoing
WITNESSES:								15-Jul-1	10	Grigonig
WITNESSES:			HIG	HEST	RISK ASS	ESSMENT		15-Jul-1	10	Ungoing
WITNESSES		PROBABILITY		HEST		ESSMENT		15-Jul-1	.3	Ongoing
WITNESSES:		PROBABILITY 3 +	CONSE		RAT			15-Jul-1	1.3	ongoing
			CONSE		RAT	ING		15-Jul-1	13	ongoing
RISK ASSESSI			CONSE		LC	ING		TITLE		DATE
RISK ASSESSI RATING			CONSE		LC	ring ow		TITLE		
RISK ASSESSI RATING			CONSE		LC	ring ow			ite	
RISK ASSESSI RATING			CONSE		LC	ring ow		TITLE	ite sor	
RISK ASSESSI RATING			CONSE		LC	ring ow		TITLE Immedia Supervis	ite sor ae	
RISK ASSESSI RATING			CONSE		LC	ring ow		TITLE Immedia Supervis Employe	tte tor 22e Y	
RISK ASSESSI RATING			CONSE		LC	ring ow		TITLE Immedia Supervis Employe SAFET Site Spvs	ate sor eee Y Y	
RISK ASSESSI RATING			CONSE		LC	ring ow		TITLE Immedia Supervis Employe SAFET Site Spvs Mine Su	tte sor ee Y ror pt. ep	
RISK ASSESSI RATING			CONSE		LC	ring ow		TITLE Immedia Supervis Employe SAFET Site Spys Mine Sup OH&S m EH&S	atte ior eee Y Y ep ER	

	1	Risk Ma	ıtrix						
		CONSEQUENCE SEVERITY							
PROBABLY	- Low -Couldn't cause injury or damage	B - Minor-Could cause first aid injury or minor damage	C - Moderate-Could cause MTC/LTI or moderate damage	<b>D - Major</b> - Could cause serious injury (major LTI) or major damage	E - Critical- Could kill, permanently disable o cause very serious damage				
5 - Almost Certain- will happen	High	High	Extreme	Extreme	Extreme				
4 - Likely- will happen at some point	Moderate	High	High	Extreme	Extreme				
<b>3 - Possible-</b> it may happen at some point	Low	Moderate	High	Extreme	Extreme				
<b>2 - Unlikely</b> -not likely to happen	Low	Low	Moderate	High	Extreme				
1 - Rare -practically impossible	Low	Low	Moderate	High	High				

Any risk ranking that result in a HIGH or EXTREME rating will require a full "long" investigation report



SR-2014-09 Leak in Treated Water Discharge Pipe July 15, 2013 Picture 1 – Discharge pipe liner material wrapped around pipe(blue arrow) and clamped(red arrow) with water leaking out (yellow circle) Picture 2 – Closer look of the leak. Liner material (blue arrow), clamp (red arrow), water leaking from liner/clamp patch (yellow circle) APPENDIX F

**H&S** Incident Reports



# Accident - Incident Short Report Form

TEE	S-SAF-	FOR-041				Log # IR-2014-09				-2014-09						
Section To be	completed	by		Date of A	ccident/Incident	Da	ate Report	ed	Date of	of Investigation						
#1 FROM	IT LINE SUP	PERVISOR		1	5-Jun-13		16-Jun-13			16-Jun-13						
PROJECT		CONTRACTOR/DEPARTM	IENT	Time of A	ccident/Incident	Tir	ne Repor	ted	Dat	e Submitted						
					3:00pm	8:00ar		8:00am		8:00am		8:00am			1	17-Jun-13
	ra	Water Treatment Pla					DESCRIPTION OF INJURY, LOS POTENTIAL LOSS, OR HAZAR									
TYPE OF MISHAP	ACC	Multiple Selections Possible			INCIDENT	DENT		NEAR MISS		S						
INJURY		PROPERTY DAMAG		PO	TENTIAL FOR LO	LOSS										
FIRST AID		ENVIRONMENT		INJURY												
MEDICAL AID		EQUIPMENT	Х	ENVIRONM	ENT											
LOST TIME		MATERIAL		EQUIPMEN	Г	Х										
OCCUPATIONAL ILLNESS		LOSS TO PROCESS		LOSS TO P	ROCESS											
				HAZARD												
				SHE NON-C	ONFORMANCE		LOC	CATION O	F OCC	URRENCE						
							Tu	ndra Water	r Treatr	ment Plant						
EMPLOYEE NAME & PAYROLL #:	Da	ve Davidson	OCCUPA ⁻	FION:	WTP Opera	tor	YRS OF E	XPERIENCE	IN OCC							
the wires been pulled out tripped to prevent wires fr out using a plastic pole w were worn for the retreva was welded it was not ex	Please not rom being e rith a built in I. Mixer sh actly center	eard strange noises from the te the wires were 44 inches fr lectrified, which it had been t plastic hook, Proper PPE in aft had been wobbling a bit si ed which caused the wobble. into the tank. The mixer is in	rom tank. tripped. T the form o ince it had The wob	He notified The other m of disposab d been weld oble seemed	the plant operato ixers on that train le nitrile gloves, co ed into place duri d to put undue stre	r who the were shu overalls, f ng mainte ess on the	n checked t off as we hard hat, C enance of bracket h	d to see if t ell. The miz CSA boots the mixer la holding the	he brea xer was and sa ast wee mixer	aker had been s safely fished fety glasses ek. When it in place which						
							SON	DATE TO	-							
		NTED OR TO BE IMPLEME					NSIBLE	COMPLE	TED	COMPLETED						
		walk arounds, if any noticeal afely identify why it is doing s				WTPOp	perations	16-Jun	-14	Ongoing						
, , , , , , , , , , , , , , , , , , ,	is seen or h	n these mixers, test the mixe neard not to be functioning co as needed.				WTP Op	perations	16-Jun	-14	Ongoing						
WITNESSES:			Clifford k	(enny Weda	awin (after the inci	dent)										
			HIG	HEST	RISK ASS	ESSMENT										
		PROBABILITY		QUENCE		ING										
RISK ASSESSMENT		HOBABILITT		QUEITUE												
RATING		3 +		В	= Mod	erate										
COMMENTS					s	IGNATUF	RE	TITL	E	DATE						
								Immedi Supervi								
								Employ	/ee							
								SAFE	ΤY							
								Site Spv Mine Si								
								OH&S	rep							
								EH&S MANAG								
								Mine/O Manag								

		Risk Ma	ıtrix		
		CC	DNSEQUENCE SEVERITY		
PROBABLY	A - Low -Couldn't cause injury or damage	B - Minor-Could cause first aid injury or minor damage	- Moderate-Could cause MTC/LTI or moderate damage	<b>D - Major</b> - Could cause serious injury (major LTI) or major damage	E - Critical- Could kill, permanently disable or cause very serious damage
5 - Almost Certain- will happen	High	High	Extreme	Extreme	Extreme
4 - Likely- will happen at some point	Moderate	High	High	Extreme	Extreme
3 - Possible- it may happen at some point	Low	Moderate	High	Extreme	Extreme
<b>2 - Unlikely</b> -not likely to happen	Low	Low	Moderate	High	Extreme
1 - Rare -practically impossible	Low	Low	Moderate	High	High

Any risk ranking that result in a HIGH or EXTREME rating *will* require a full "long" investigation report



Picture 1 IR-2014-10 June 15, 2013 Mixer Bracket broke causing the mixer to fall into tank.



Picture 2
IR-2014-10 June 15, 2013
Mixer bracket broke causing the mixer to fall into tank.
Yellow circle – How the bracket would hold the mixer in place
Red circle – Where the bracket and mixer sat before it broke off
Orange circle – Wires that were left behind when the mixer fell into the tank (wires are 44inches from the tank)

AEL/TEES



Date of Statement:	JUNE 16 2013	Time of Statement:	3:00 pm 9:15
Date of Incident:	JUNE 15, 2013	Time of Incident:	3:00 pm
Location:	WAVER TREAT	Person Giving Statement:	DAVE DAVISON
Plazas provida dataila :	(who, what, where, when, why, etc.		19400 11.000
.1 ~		E OFF TRAIN 3	BROKE AND
FELL IN	and the second se	E OFF IRAIN J	ISCURE MAD
	- Int Inam		
KEWNY W.	15 NY GEO?	TUBES. I WAS	BAYCHLANG LOP
KENNY its	EARD 15 FALL	IN AND RA	N TO FELL
ME. F	SHUS OFF	OWNER MIKER	IN TANK.
PASCAL C.	ARE TO GAUL	E A MAND TO	Puce ATTRE
Feore TA	11	SURED BREAKE	
TO PRE.	VENT WIRES	4	ELECKEIF.ED.
MILER 1	X90 BEEN I	WOBBLIES SINE	E MY ARENA
AS SIE	. TINE SHAD		WELDED IN
PREV. OOSLY	BECAUSE 17		Ocia, WAEN
1.1.4 = 1.1 =	LAZA ZZ WY		OFF STEACET
WAY WE	/		BBLE EVENIL
CANFINE	TINE WUBRE.		
(qurine	THE WOBBE,	OF THE M	
-	-	OF THE MU	EFAL.
(qurine	TIRE FAILURE		ETAL.
CAUFINE CAUFES WE REE	TIRE FAILURE	ST OF Frenc	

If you require more space to provide facts, please obtain another form or write on the reverse of this one. If you prefer to give your statement orally and have it recorded by someone else, please advise the investigator.

FPE WORN DURING RETRIEVAL INCLUDED: . Itaes das · SAFETS GUARTES · NIVERLE GLOVES , WORK GLOWES · SAFETY BOOT · COVER-ALLS

MOTOR MIXER WAT ALLOWED TO DRY AFFER RETRIEVAL AND PRIOR TO DISMONTLINK FOR REPAIR.

PRICE " MIXER WILL BE TERDED WITTON THAT Fuce SERVICE To BEINE PUE BACK INTO

(20 to S D - 1 Vorte - ______ vanity that this statement is bris to the best of exploration and

BIOPATURE OF FEREON GIVING BYATEMENT

We are typing to determinantil the faces associated with this incident. Please while in your 5 m words, what you rank were the factor leading up to the incident.

If you require more some to provide facts, picane applied enotities from or write an the new or this one. If you prefet to give your eleternamic ally shall have it renorded by company ates, planets only by the investigator.

# **AEL/TEES**



#### WORKER / WITNESS STATEMENT

Date of Statement:	June 16	Time of Statement:	9:20 am
Date of Incident:	June 15	Time of Incident:	3:00 pm
Location:	Water Freatment plant	Person Giving Statement:	Clifford Wedawin

Please provide details (who, what, where, when, why, etc.)

the From MIKEL the Floc train trink broke 00 the walk tank when 900 no nothing Went geotubes Stomp m Le, al back hea a a DDP MIXOr Safe rs mut Happen on Was 9000 :00 pm a Maybe Three OF POOR an ypars th MIXER been enough runnin had

I <u>Clifford Kenny Wedgwin</u> verify that this statement is true to the best of my knowledge and (please print name)

understand that any fabrication of events or details may lead to disciplinary action.

### SIGNATURE OF PERSON GIVING STATEMENT:

ennewedances

We are trying to determine all the facts associated with this incident. Please write, in your own words, what you feel were the facts leading up to the incident.

If you require more space to provide facts, please obtain another form or write on the reverse of this one. If you prefer to give your statement orally and have it recorded by someone else, please advise the investigator.

# Accident - Incident Short Report Form

ection	To be comple	ted by		Date of	Accident/Incident	Da				e of Investigation	
#1	FRONT LINE	SUPERVISOR		J	uly 1 2013	J	uly 1 2013		July 1	2013	
	PROJECT	CONTRACTOR/DEP	ARTMENT	Time of	Accident/Incident	Tin	ne Report	ed (	Date Su	bmitted	
					10:30 AM		4:00 PM		July1	2013	
	Tundra	Site Service	es				DESCRIPTION OF INJURY, LO		LOSS,		
		Multiple Colections Des	nible				POTE	ENTIAL LOSS	ORH	AZARD	
PE OF MIS		Multiple Selections Pos ACCIDENT	sible	1	INCIDENT			NEAR M	ISS		
	Sector Sector	PROPERTY DA	MAGE	-		20					
	INJURY	LOSS TO PRO	CESS	PC	DTENTIAL FOR LOS	55					
RST AID	)	K ENVIRONMENT		INJURY		x			_		
EDICAL AID		EQUIPMENT		ENVIRON							
ST TIME		MATERIAL	-	EQUIPME							
CUPATIONAL	LILLNESS	LOSS TO PROCESS		HAZARD	PROCESS						
			-	The second second	CONFORMANCE		LOC	ATION OF O	CCURF	RENCE	
				STILL TO TH		-		water treatm			
PLOYEE NAM	ME &	Marcel Basil	0000	ATION:	Site service	e a	YRS OF F		CCUPA	DIT	
AYROLL #:			OCCOP	ATTACK.	One Service		THE OF E	a artisitys in s			
REVENTAT	IVE ACTION IMPL	EMENTED OR TO BE IMPL	EMENTED:				SON	DATE TO B COMPLETE	1000	DATE	
	IVE ACTION IMPL get help to lift unst	EMENTED OR TO BE IMPL able object.	EMENTED:			RESPO		Contraction of the second	1000	10 State 10	
	get help to lift unst		EMENTED:			RESPO	NSIBLE	COMPLETE	1000	DATE	
VII in future ( VITNESSES RISK ASS	get help to lift unst		COM	HIGHEST ISEQUENCE Moderate	RA	RESPO	Incel	COMPLETE	1000	10 State 10	
VIII in future ( VITNESSES RISK ASS	get help to lift unst	PROBABILITY	COM	HIGHEST		RESPO Ma SESSMENT TING	nsible rcel	COMPLETE		10 State 10	
VIII in future ( VITNESSES RISK ASS RA	get help to lift unst	PROBABILITY	COM	HIGHEST		RESPC Ma BESSMEN TING derate	nsible rcel	COMPLETE	e	OMPLETE	
VIII IN FUTURE OF VITNESSES RISK ASS RA COMMENTS	get help to lift unst	PROBABILITY Iow	+	HIGHEST	= Mod	RESPC Ma BESSMEN TING derate	nsible rcel	COMPLETE	e or	OMPLETE	
All in future ( VITNESSES RISK ASS RA COMMENTS	get help to lift unst	PROBABILITY Iow	+	HIGHEST	= Mod	RESPC Ma BESSMEN TING derate	nsible rcel	COMPLETE ASAP TITLE Immediat Supervise	e e	DATE	
All in future ( VITNESSES RISK ASS RA COMMENTS	get help to lift unst	PROBABILITY	+	HIGHEST	= Mod	RESPC Ma BESSMEN TING derate	nsible rcel	COMPLETE ASAP TITLE Immediat Superviso Employe	e for	DATE July 1 20	
All in future ( VITNESSES RISK ASS RA COMMENTS	get help to lift unst	PROBABILITY Iow	+	HIGHEST	= Mod	RESPC Ma BESSMEN TING derate	nsible rcel	COMPLETE ASAP TITLE Immediat Supervise Employe SAFET	e for	DATE July 1 20 July 1 20	
All in future ( VITNESSES RISK ASS RA COMMENTS	get help to lift unst	PROBABILITY Iow	+	HIGHEST	= Mod	RESPC Ma BESSMEN TING derate	nsible rcel	COMPLETE ASAP TITLE Immediat Supervise Employe SAFET Site Spysi Mine Sup	e for	DATE July 1 20 July 1 20	

# Accident - Incident Short Report Form

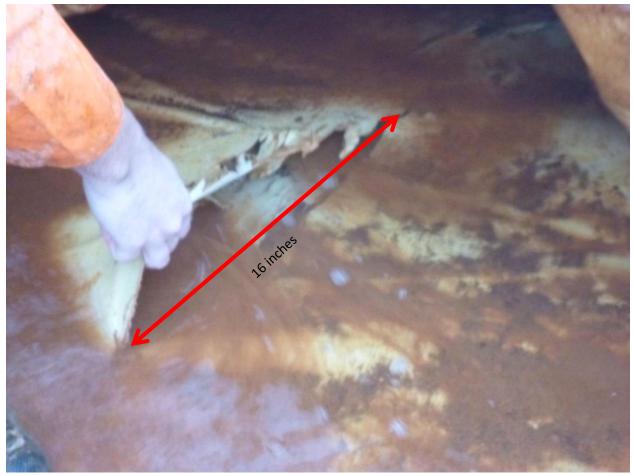
XXXX	TEES	-SAF-	FOR-041						Log #	IR	-2014-16
Section	To be co	mpleted b	ру		Date of Ac	cident/Incident	Da	ate Report	ted	Date	of Investigation
#1	FRONT I	LINE SUF	ERVISOR		12	Jul-13		12-Jul-13	5		12-Jul-13
	JECT		CONTRACTOR/DEPARTM	IENT	Time of Ac	ccident/Incident	Tir	ne Repor	ted	Da	te Submitted
110	0201		CONTRACTOR		4:	30 AM		5:30 AM			12-Jul-13
	Tundra		Water Treatment Pla	ant							
					1			DESCRIPTION OF INJURY, LOS POTENTIAL LOSS, OR HAZAR			
TYPE OF MISHAP		ACCI	Multiple Selections Possible	;		INCIDENT		NEAR MISS			\$
		7,001	PROPERTY DAMAG	26		NOIDEINI		NEAR MIGO			5
INJ	URY		LOSS TO PROCES		POTI	ENTIAL FOR LO	SS				
FIRST AID			ENVIRONMENT	x	INJURY						
MEDICAL AID			EQUIPMENT	^	ENVIRONME	NT					
LOST TIME			MATERIAL		EQUIPMENT			•			
-						00500					
OCCUPATIONAL ILL	NE22		LOSS TO PROCESS		LOSS TO PR	OCESS					
					HAZARD						
					SHE NON-CO	ONFORMANCE		LOG			URRENCE
									WTF	P-Train	3
EMPLOYEE NAME & PAYROLL #:		Water	Treatment Plant	OCCUPAT	FION:			YRS OF E	XPERIENCE		
			URRED; Include what the pe		voc doing th	ing to do and an	wthing up				
Upon falling into th in IR-2014-09. Wh movement. Upon removed. A small 2 tank to avoid any	ne tank the nen doing seeing the amount c y potential	e mixer ca inspectio e mixer a of trickling I spill. It v	a night shift water treatment p aused the circuit breaker to tr ns there was no need for cor nd shaft in the tank the powe water was noted at the base was found that the bolt holdin tely drained a 16 inch rip was	ip so pow neern on t r was shu of the tai g the mix	ver was cut to his mixer aft it off complet nk and a sub er to the clar	o the mixer. It sh er it was reinstall tely on train 3 an mersible pump v np had broken in	ould be n led as the d the mixe vas place half, whi	oted that re was no er disconr d into the	this was the apparent nected from tank and t	ne same wobblin n the ta he tank ed the	e mixer involved ng or nk and a drained to train
								ONSIBLE COMPLETED		COMPLETED	
			NTED OR TO BE IMPLEME		<b>)</b>		WTP pe			CONFLETED	
on going daily map				concouve	<i>.</i>		win po		On go	oing	On going
			reatment Plant will be secure e tanks if anything fails again				WTP pe	ersonnel	19-Jul	-13	
WITNESSES:									• •		
				HIG	HEST	RISK ASS	ESSMENT				
RISK ASSESSI RATING	<b>NENT</b>		PROBABILITY 2 +		QUENCE B		TING				
COMMENTS						s	IGNATUF	RE	TITL		DATE
									Immed Superv		
									Emplo	yee	
									SAFE	TY	
									Site Spv Mine S		
									OH&S	rep	
									EH& MANAC		
									Mine/C Mana		

		Risk Ma	trix		
		CC	INSEQUENCE SEVERITY		
PROBABLY	A - Low -Couldn't cause injury or damage	<b>B</b> - <b>Minor</b> -Could cause first aid injury or minor damage	C - Moderate-Could cause MTC/LTI or moderate damage	D - Major- Could cause serious injury (major LTI) or major damage	E - Critical- Could kill, permanently disable or cause very serious damage
<b>5 - Almost Certain-</b> will happen	High	High	Extreme	Extreme	Extreme
<b>4 - Likely</b> - will happen at some point	Moderate	High	High	Extreme	Extreme
3 - Possible- it may happen at some point	Low	Moderate	High	Extreme	Extreme
2 - Unlikely -not likely to happen	Low	Low	Moderate	High	Extreme
1 - Pare -practically impossible	Low	Low	Moderate	High	High

Any risk ranking that result in a HIGH or EXTREME rating will require a full "long" investigation report



#### IR-2014-16 July 12, 2013


**Equipment Damage** – mixer falls into tank and rips a hole in the bottom of tank

#### Picture 1

Clamp (yellow circle) that holds the mixer in place on the beam. The bolt holding the clamp and the mixer together (red arrow) broke causing the two to come apart, thus the mixer falling into the tank.



IR-2014-16 July 12, 2013
Equipment Damage – mixer falls into tank and rips a hole in the bottom of tank
Picture 2
Broken bolt still stuck in the clamp



IR-2014-16 July 12, 2013 Equipment Damage – mixer falls into tank and rips a hole in the bottom of tank Picture 3

When the mixer fell into the tank it caused a 16 inch rip in the bottom of the tank.

**AEL/TEES** 



#### WORKER / WITNESS STATEMENT

Date of Statement:	July 12, 2013	Time of Statement:	9:00am
Date of Incident:	July 12, 2013	Time of Incident:	4:30 am
Location:	WTP	Person Giving Statement:	Aaron Barker

#### Please provide details (who, what, where, when, why, etc.)

At 4:30am on July 12th the mixer on train 3's third tank (polymer
mixing tank Fell into the tank causing a thought sil on the
bottem of the tank. Good falling into the tank the mixer caused
the circuit breaker to switch dreventing further damage to the bottem
of the tank. It should be noted this was the same mixer as
of the tank. It should be noted this was the same mixer as mentioned in the previous's report, when I returned to site the
mixer was reattached and in I had no cause for concern as 3
assumed the problem was resolved. The reason for the failure on
July 12th was the bolt which attaches the mixer head to
the champ which fasters the mixed to the Franework for split
in half allowing the mixer head and shaft to fall into the tonk.
It should also be noted the upon seeing the mixer in the tank
the power was shut off to the mixer, the prixer was disconnected
from the wiring " Train 3 was shut down and since some we
a trickle of water was leaking out of the tank a submergeble
fump was torred lowered into the tank to move the water from
train 3 into train 2 to quoid any potential spill.

(please print name) verify that this statement is true to the best of my knowledge and

understand that any fabrication of events or details may lead to disciplinary action.

### SIGNATURE OF PERSON GIVING STATEMENT:

We are trying to determine all the facts associated with this incident. Please write, in your own words, what you feel were the facts leading up to the incident.

If you require more space to provide facts, please obtain another form or write on the reverse of this one. If you prefer to give your statement orally and have it recorded by someone else, please advise the investigator.

# Accident - Incident Short Report Form

****	TEES	-SAF-	FOR-041						Log #	IR-2	
ection To be completed by				Date of Accide	nt/Incident Date Rep		Reporte	ed D	ate of	Investigation	
#1 FRONT LINE SU				12-Jul-	2-Jul-13		-Jul-13			-Jul-13	
	JECT		CONTRACTOR/DEPARTMENT		Time of Accide	nt/Incident	Time	Reporte	ed		Submitted
FRO	0201		CONTINUEDO	SALINEN(	2:00p		and the second s	:10am	2. C.		-Jul-13
	Tundra		WESA (Water Treatm	nent Planti	2.000		0	- TODITI		14	-501-15
								DESC	RIPTION OF	INJUF S, OR	RY, LOSS, HAZARD
TYPE OF MISHAP	6	1001	Multiple Selections Post DENT	sible	IN IN	OUDFAIT			NIT AD	1000	
		ACCI			INCIDENT		_	NEAR MISS			
INJU	URY		PROPERTY DAI		POTENTI	AL FOR LO	SS				
			LOSS TO PROC	CESS		itest artes					
	IRST AID X		ENVIRONMENT		INJURY						
MEDICAL AID	_		EQUIPMENT		ENVIRONMENT						
OST TIME	_		MATERIAL		EQUIPMENT						
OCCUPATIONAL ILLN	NESS		LOSS TO PROCESS		LOSS TO PROCESS						
	_				HAZARD						
					SHE NON-CONFO	RMANCE		1.00	ATION OF C	CCUE	RENCE
					and the south of				Water Treat		
		Der	iel Tucholski					_	valer rreat	nent P	iant
EMPLOYEE NAME & PAYROLL #:		Dan	iei Tucholski	OCCUPA	TION	WTP Opera	tor YR	S OF EX	PERIENCE IN	OCCUP	DITA
as he was walking	<ol> <li>he felt s nditions.</li> </ol>	ome dise The work	coloration (no bruising), the comfort but not actual particle that because are did state that because	in. The weat	her conditions on	the 12th of	July was ove	er cast. i	rainy and wir	dy, wh	nich made fo
Vorker was spoke onsequences that onditions improve Vorker spoken to a ith appropriately.	n to abou t could oc : (which w about rep	MPLEME t the impo cur if that as actual	NTED OR TO BE IMPLE ortance of not rushing a t continues. If weather is ly done in this case) ar misses and incidents p PROBABILITY 3 +	ask, due to th an issue, the promptly so th HIG CONSE	en stop the task u	d ntil be dealt RISK ASS RAT	PERSC RESPONS Safety Safety ESSMENT ING erate	ON SIBLE	DATE TO B COMPLETE 13-Jul-13 13-Jul-13	ED C	DATE COMPLETEI 13-Jul-13 13-Jul-13
Worker was spoke consequences that conditions improve Worker spoken to a with appropriately WITNESSES: RISK ASSESSM RATING	n to abou t could oc : (which w about rep	MPLEME t the impo cur if that as actual	ortance of not rushing a t continues. If weather is ly done in this case) ar misses and incidents p PROBABILITY	ask, due to th an issue, the promptly so th HIG CONSE	en stop the task u hat the issues can HEST QUENCE	d ntii be dealt RISK ASS RAT Mod	RESPONS Safety Safety ESSMENT ING	ON SIBLE	COMPLETE		OMPLETEI
Vorker was spoke onsequences that onditions improve Vorker spoken to a /th appropriately. VITNESSES: RISK ASSESSM RATING	n to abou t could oc : (which w about rep	MPLEME t the impo cur if that as actual	ortance of not rushing a t continues. If weather is ly done in this case) ar misses and incidents p PROBABILITY	ask, due to th an issue, the promptly so th HIG CONSE	en stop the task u hat the issues can HEST QUENCE	d ntii be dealt RISK ASS RAT Mod	RESPONS Safety Safety ESSMENT ING erate	ON SIBLE	COMPLETE 13-Jul-13 13-Jul-13 TITLE Immediate Superviso Employee SAFETY		OMPLETE 13-Jul-13 13-Jul-13
Vorker was spoke consequences that conditions improve Vorker spoken to a with appropriately. VITNESSES: RISK ASSESSM RATING	n to abou t could oc : (which w about rep	MPLEME t the impo cur if that as actual	ortance of not rushing a t continues. If weather is ly done in this case) ar misses and incidents p PROBABILITY	ask, due to th an issue, the promptly so th HIG CONSE	en stop the task u hat the issues can HEST QUENCE	d ntii be dealt RISK ASS RAT Mod	RESPONS Safety Safety ESSMENT ING erate	ON SIBLE	COMPLETE 13-Jul-13 13-Jul-13 TITLE Immediate Superviso Employee		OMPLETE 13-Jul-13 13-Jul-13
Vorker was spoke consequences that conditions improve Worker spoken to a with appropriately WITNESSES: RISK ASSESSM RATING	n to abou t could oc : (which w about rep	MPLEME t the impo cur if that as actual	ortance of not rushing a t continues. If weather is ly done in this case) ar misses and incidents p PROBABILITY	ask, due to th an issue, the promptly so th HIG CONSE	en stop the task u hat the issues can HEST QUENCE	d ntii be dealt RISK ASS RAT Mod	RESPONS Safety Safety ESSMENT ING erate	ON SIBLE	COMPLETE 13-Jul-13 13-Jul-13 13-Jul-13 TITLE Immediate Superviso Employee SAFETY Site Spysr of Mine Supt OH&S rep		OMPLETE 13-Jul-13 13-Jul-13
Worker was spoke consequences that conditions improve Worker spoken to a with appropriately. WITNESSES: RISK ASSESSM	n to abou t could oc : (which w about rep	MPLEME t the impo cur if that as actual	ortance of not rushing a t continues. If weather is ly done in this case) ar misses and incidents p PROBABILITY	ask, due to th an issue, the promptly so th HIG CONSE	en stop the task u hat the issues can HEST QUENCE	d ntii be dealt RISK ASS RAT Mod	RESPONS Safety Safety ESSMENT ING erate	ON SIBLE	COMPLETE 13-Jul-13 13-Jul-13 13-Jul-13 TITLE Immediate Superviso Employee SAFETY Site Spvsr Mine Supt OH&S rep EH&S MANAGEF		OMPLETEI 13-Jul-13 13-Jul-13
Vorker was spoke onsequences that onditions improve Vorker spoken to a /th appropriately. VITNESSES: RISK ASSESSM RATING	n to abou t could oc : (which w about rep	MPLEME t the impo cur if that as actual	ortance of not rushing a t continues. If weather is ly done in this case) ar misses and incidents p PROBABILITY	ask, due to th an issue, the promptly so th HIG CONSE	en stop the task u hat the issues can HEST QUENCE	d ntii be dealt RISK ASS RAT Mod	RESPONS Safety Safety ESSMENT ING erate	ON SIBLE	COMPLETE 13-Jul-13 13-Jul-13 13-Jul-13 TITLE Immediate Superviso Employee SAFETY Site Spvsr of Mine Supt OH&S rep EH&S		OMPLETE 13-Jul-13 13-Jul-13

Risk Matrix								
	CONSEQUENCE SEVERITY							
PROBABLY	A - Low -Couldn't cause injury or damage	<b>d</b> - <b>Minor</b> -Could cause first and injury or minor damage	C - Moderate-Could cause MTC/LTI or moderate damage	<b>D - Major</b> - Could cause serious injury (major LTI) or major damage	E - Critical- Could kill, permanently disable or cause very serious damage			
5 - Almost Certain- will happen	High	High	Extreme	Extreme	Extreme			
4 - Likely- will happen at	Moderate	High	High	Extreme	Extreme			
3 - Possible- it may happen at some point	Low	Moderate	High	Extreme	Extreme			
<b>2 - Unlikely</b> -not likely to happen	Low	Low	Moderate	High	Extreme			
1 - Rare -practically impossible	Low	Low	Moderate	High	High			

Any risk ranking that result in a HIGH or EXTREME rating will require a full "long" investigation report

**AEL/TEES** 



WORKER / WITNESS STATEMENT						
Date of Statement: July 13	Time of Statement:	8:30 0.2				
Date of Incident: Tuly 12.	Zo13 Time of Incident:	~ 2:00 pm.				
Location: This Lif	Person Giving State					

Please provide details (who, what, where, when, why, etc.)

Medre

verify that this statement is true to the best of my knowledge and (please print name)

understand that any fabrication of events or details may lead to disciplinary action.

#### SIGNATURE OF PERSON GIVING STATEMENT:

We are trying to determine all the facts associated with this incident. Please write, in your own words, what you feel were the facts leading up to the incident.

If you require more space to provide facts, please obtain another form or write on the reverse of this one. If you prefer to give your statement orally and have it recorded by someone else, please advise the investigator.

# Division of BluMetric Environmental Inc.

Envir-Eau		WES	Atech	Seprotech	WESA Tec	nologias S.A. de C.V.
440, Blvd Rene-Levesqu Bureau 350 Montréal, Québec Canada H2Z 1V7 Téléphone: 514 844.71 Télécopieur: 514 841.9 <u>montreal@envireau.ca</u>	Gatineau, Québo Canada J&T &J1 Téléphone: 819 99 Télécopieur: 819	c The To Kingst 243.7555 Canad 243.0167 Tel: (6 <u>au.ca</u> Fax: (6	raqui Street wer, The Woolen Mill on, Ontario a K7K 127 13) 531-2725 513) 531-1852 ing@wesa.ca	2378 Holly Lane Ottawa, Ontario Canada K1V 7P1 Tel: (613) 523-164 Fax: (613) 731-085 contact@seprotect	Casa # 3, Colo San Salvador, 1 Teléfono: 01 51 Fax: 613-839	1-503-2513-1335 -5376
WESA 3108 Carp Road PO Box 430 Ottawa, Ontario Canada KOA 1L0 Tel: (613) 839-3053 Fax: (613) 839-5376 wesacarp@wesa.ca	4 Cataraqui Street The Tower, The Woolen Mill Kingston, Ontario Canada K7K 127 Tel: (613) 531-2725 Fax: (613) 531-1852 wesaking@wesa.ca	171 Victoria Stre North Kitchener, Ontai Canada N2H 5CJ Tel: (519) 742-6 Fax: (519) 742-9 wesakw@wesa.c	Sudbury,           io         Canada I           5         Tel: (705           585         Fax: (705           810         wesasud	Ontario         To           '3C 1V5         Ca           '525-6075         Te           '525-6077         Fa:	Kern Road, Suite 1, ronto, Ontario, nada M3B 1T1 I: (416) 383-0957 x: (416) 383-0956 <u>ssatoronto@wesa.ca</u>	4901 – 48 Street Ground Floor Yellowknife, NT Canada X1A 2P9 Tel: (867) 873-3500 Fax: (867) 873-3499 yellowknife@wesa.ca

### www.blumetric.ca