


ELEVATION

Description:

- Two pipe arch galvanized corrugated steel plate culverts Galvanized, corrugated steel binwalls at inlets and outlets 1.
- 2.

Year Constructed:	1960's
Original Design:	PWGSC
Drawings Available:	No
Previous C Inspection Report for 2007:	Delcan – Stan Reimer, P.Eng.
Previous G Inspection Report for 2008:	PWGSC – Alex Taheri, P.Eng., Pei-Chin Tsai,
	E.I.T. and Jeff Downing, P.Eng.
Current Inspection Date:	August 16, 2011
Inspectors:	Delcan Corporation
Ĩ	Stan Reimer, P.Eng.
	Grant Waldie, E.I.T.
Temperature:	10°C
Weather:	Overcast
Equipment:	Standard Inspection Equipment, Laser Distancer,
1 1	Chest Waders
2009 Structural Condition Rating:	3
2009 Functional Rating:	6
2010 Structural Condition Rating:	3
2010 Functional Rating:	6
2011 Structural Condition Rating:	3 (barrel condition)
2011 Functional Rating:	6
Estimated Remaining Life:	10 years
Estimated Replacement Cost:	\$2.1 million (2011 dollars)
GPS Coordinates:	N 58°-39'-20.9", W 124°-36'-58.6"

Ter	Year	Plan -	Cost	Estima	te (2011	dollars)			
	Priority			Unit	Within	Within	Within	Within	Maint.
Recommended Work	Code	Units	Qty	Cost	1 Yr	3 Yrs	5 Yrs	10 Yrs	
1. Install concrete lip below south barrel	А	lump	1	\$8,000	\$8,000				
2. Remove large boulders from both barrels	М	lump	2	\$1,500					\$3,000
3. Rehabilitate both barrels with CSP liner	10	m ²	342	\$2,230				\$762,660	
Constru	uction/Ma	intenanc	e Cost S	Subtotals:	\$8,000	\$0	\$0	\$762,660	\$3,000
Enineering	gCosts (20	0% of c	onstructi	ion cost):	\$1,600	\$0	\$0	\$152,532	
		2	0% Con	tingency:	\$1,600	\$0	\$0	\$152,532	\$600
Note: Costs do not include: mobilization or fl	agging	\$11,200	\$0	\$0	\$1,067,724	\$3,600			
	Tot		\$	1,082,52	4				

Significant	1. Both barrels are in poor condition with significant distortion and significant
Inspection	cracking along plate seams. The south barrel has a maximum of 15.4%
Concerns	vertical distortion and 10 of 15 rings cracked with as little as 50 mm
	remaining steel plate between cracks. The north barrel has a maximum of
	12.7% vertical distortion and 7 of 15 rings cracked with as little as 23 mm
	remaining steel plate between cracks (down from 35 mm in 2005 but
	unchanged from 2009) (see Photo P17). Both barrels have historically
	cantilevered (gun barreled) out of the highway embankment a few metres. The
	eroded gap below the outlet barrels has been backfilled periodically over the
	years and cycles between the backfilled and scoured state. The barrels are
	currently well backfilled with riprap at the outlet. Both barrels have drooped at
	the outlets with the bottom plates in the last few rings dropping as much as
	400 mm. There are two large (200 mm) dents in roof the south barrel at rings 5
	and 14. The bottom corrugations are flattened by rock flow in both barrels.
	These barrels (particularly the north barrel) have a relatively short 10 years of
	estimated remaining life, therefore, an investment in floor armouring probably
	doesn't make sense prior to lining or replacement.
	2. Although this culvert has a Structural Condition Rating of just 3, no major
	repair actions are warranted until barrels are lined in 10 years.
	3. Some flow is piping below the south barrel inlet and squirting in through bolt
	holes in ring 1.

		2009			2011			
Element	MCR	PCR	Priority	MCR	PCR	Priority	Observations	Photo References
Primary Comp	onent	s						
Watercourse	4	4	D	4	4	D	The Tetsa Creek is a fast flowing braided watercourse that enters the inlets on an angle. A berm of heavy riprap protects the SE inlet embankment and diverts the stream into the twin barrels. There are rocks strewn along both culvert barrels.	2,21
Soil – Steel Structures	3	3	М	3	3	M 10	Both barrels are in poor condition with significant distortion and significant cracking along plate seams. The south barrel has a maximum of 15.4% vertical distortion and 10 of 15 rings cracked with as little as 50 mm remaining steel plate between cracks. The north barrel has a maximum of 12.7% vertical distortion and 7 of 15 rings cracked with as little as 23 mm remaining steel plate between cracks (down from 35 mm in 2005 but unchanged from 2009). Both barrels have historically cantilevered (gun barreled) out of the highway embankment a few metres. The eroded gap below	5-17

		2009			2011			
Element	MCR	PCR	Priority	MCR	PCR	Priority	Observations	Photo References
							the outlet barrels has been backfilled periodically over the years and cycles between the backfilled and scoured state. The barrels are currently well backfilled with riprap at the outlet. Both barrels have drooped at the outlets with the bottom plates in the last few rings dropping as much as 400 mm. There are two large (200 mm) dents in roof the south barrel at rings 5 and 14. The bottom corrugations are flattened by rock flow in both barrels. These barrels (particularly the north barrel) have a relatively short 10 years of estimated remaining life, therefore, an investment in floor armouring probably doesn't make sense prior to lining or replacement.	
Inlet	4	4	A	4	4	A	The inlets both have minor collision damage. There are some large rocks blocking the north barrel inlet. Some flow is piping below the south barrel inlet and squirting in through bolt holes in ring 1.	3,4
Outlet	3	4	D	3	4	D	Both barrels have historically cantilevered (gun barreled) out of the highway embankment a few metres. The eroded gap below the outlet barrels has been backfilled periodically over the years and cycles between the backfilled and scoured state. The barrels are currently well backfilled with riprap. Both barrels have drooped at the outlets with the bottom plates in the last few rings dropping as much as 400 mm. Both outlets have minor collision damage.	18,19, 20
Secondary Con	ipone	nts						. I
Embankments	5	5	D	5	5	D	The embankments below the outlets have been undermined and have settled significantly resulting in deformation of both barrels. Otherwise, embankments are well covered with river rock and there is little evidence of erosion.	3-5, 10-12, 18
Retaining Walls	4	4	D	4	4	D	There are binwalls at the inlets only. Binwalls have some collision damage.	3-5
Approaches	5	5	D	5	5	D	Approach roadways have a BST wearing surface and are in good condition.	1
Galvanizing	5	5	D	5	5	D	The galvanizing is in surprisingly good condition with corrosion limited to the bottom of both barrels where galvanizing has been largely removed by stream abrasion.	5-17
Auxiliary Com	ponen	ts						

	2009				2011			
Element	MCR	PCR	Priority	MCR	PCR	Priority	Observations	Photo References
Slope Protection	5	5	D	5	5	D	Embankments are well covered with river rock and there is little evidence of erosion. A berm of heavy riprap protects the SE inlet embankment and diverts the stream into the twin barrels.	3,18
Signs	5	5	D	5	5	D	Creek name signs present on both approaches.	1

	Tetsa Creek Multiplate 4 - Barrel 1 - km 595.3											
South Barrel - Geometric Data												
S	pan (mm)	489	0 mm							Skew	18 degrees	
R	ise (mm)	320	0 mm							Slope	1.50%	
L	ength (m)	35.0) m						Est	. Cover (m)	1.3 m	
	rugations	152	x 51 n	ım				Inlet Bevel None				
Flow	Flow Direction East to west										None	
Barrel Measurements and Condition												
Ring	Length	Stn.	Span	Defl.	Rise	Sag	#	Long.	Min.	Comments		
#	(m)	(m)	(mm)	%	(mm)	%		Cracks	Steel			
1	1.8	0.9	4814	-1.6%	3018	5.7%						
2	1.8	2.7	4878	-0.2%	2906	9.2%						
3	1.8	4.6	4937	1.0%		10.1%						
4	2.4	7.0	4923	0.7%		13.4%	1	4:30	55		acking along one plate splice	
5	2.4	9.5	4963	1.5%		10.8%	1	4:30	65	acking along one plate splice		
6	2.4	11.9	4969	1.6%		10.8%	1	4:30	105		acking along one plate splice	
7	2.4	14.3	4951	1.2%	2856	10.8%	1	4:30	140		acking along one plate splice	
<u>8</u> 9	2.4	16.8 19.2	5027 5060	2.8% 3.5%	2780 2731	13.1%	1	4:30	110	Monitor cra	acking along one plate splice	
10	2.4	21.6	5075	3.8%	2731	14.7%	1	4:30	125	Monitor or	acking along one plate splice	
10	2.4	24.1	5109	4.5%	-	-	1	4:30	123		acking along one plate splice	
12	2.4	26.5	5076	3.8%			1	4:30	90		acking along one plate splice	
13	2.4	29.0	5115	4.6%	2708	15.4%	1	4:30	50		king along plate splice	
14	2.4	31.4	5069	3.7%	2839	11.3%	1	4:30	57		settled approximately 400 mm	
15	2.4	33.8	4826		3271	-2.2%	-				settled approximately 400 mm	
		Ring #					the l	bolted cir	cumfe		starting from upstream end	
		2			<u> </u>						umferential seam	
					_						span and rise were taken	
		Span	The ho	orizonta	d measu	ured dist	tance	e from in	side cre	est to inside	crest	
	Defle	ection	Defle	ction %	= (mea	asured s	pan -	design s	pan) / (design span)		
		Rise	The ve	ertical n	neasure	d distan	ce fi	rom insid	e crest	to inside cre	est	
		Sag	Sag %	= (desi	ign rise	- measu	ıred	rise) / (d	esign ri	se)		
	# of C	Cracks	The nu	umber o	of crack	ed seam	is in	a given ri	ng			
Log	gitudinal C	Cracks	The lo	cation	of long	itudinal	crac	ks is give	n in a 1	2 hour clock	k format looking downstream	
	Minimum	Steel	The m	inimum	n longit	udinal di	istan	ce of ren	naining	steel betwee	en two adjacent longitudinal cracks	

	Tetsa Creek Multiplate 4 - Barrel 2 - km 595.3										
North	Barrel -	Geon	netric I	Data				<u> </u>	-	-	
S	pan (mm)	489	0 mm							Skew	18 degrees
R	tise (mm)	320	00 mm							Slope	1.50%
L	ength (m)	35.	0 m						Est	. Cover (m)	1.3 m
Cor	rugations	152	2 x 51 n	nm						Inlet Bevel	None
Flow	Direction	Eas	t to wes	st					C	Outlet Bevel	None
Barre	l Measur	ement	s and (Conditi	on						
Ring	Length	Stn.	Span	Defl.	Rise	Sag	#	Long.	Min.	Comments	
#	(m)	(m)	(mm)	%	(mm)	%		Cracks	Steel		
1	1.8	0.9	4899	0.2%	3070	4.1%	-	-	-		
2	1.8	2.7	4924	0.7%	2996	6.4%	1	4:30	70	Monitor cra	acking along one plate splice
3	1.8	4.6	4991	2.1%	2883	9.9%	1	4:30	55	Monitor cra	acking along one plate splice
4	2.4	7.0	4993	2.1%	2816	12.0%	1	4:30	23	Worst crac	k in plate splice
5	2.4	9.5	5026	2.8%	2835	11.4%	1	4:30	35	Monitor cra	acking along one plate splice
6	2.4	11.9	5009	2.4%	2816	12.0%	1	4:30	35		acking along one plate splice
7	2.4	14.3	5017	2.6%	2795	12.7%	1	4:30	35		acking along one plate splice
8	2.4	16.8	4977	1.8%	2858	10.7%	1	4:30	45	Monitor cra	acking along one plate splice
9	2.4	19.2	4964	1.5%	2858	10.7%	-	-	-		
10	2.4	21.6	4954	1.3%	2855	10.8%	-	-	-		
11	2.4	24.1	4943	1.1%	2872	10.3%	-	-	-		
12	2.4	26.5	4900	0.2%	2920	8.8%	-	-	-		
13	2.4	29.0	4880	-0.2%		6.6%	-	-	-		
14	2.4	31.4	4822	-1.4%	3232	-1.0%	-	-	-		settled approximately 400 mm
15	2.4	33.8	4726	-3.4%	-	-	-	-	-		settled approximately 400 mm
											starting from upstream end
			U		<u> </u>						umferential seam
	S	tation									span and rise were taken
		Span								est to inside	
	Defle						·		• · · · · · · · · · · · · · · · · · · ·	design span)	
		Rise								to inside cro	est
								rise) / (d		.se)	
		Cracks						a given ri			
Lo											k format looking downstream
	Minimum Steel The minimum longitudinal distance of remaining steel between two adjacent longitudinal cracks										

P01 - Roadway Looking North

P02 - Upstream Watercourse to the East

P03 - Inlets and East Embankment

P04 - South Barrel - Inlet and East Embankment

P05 - South Barrel - Minor Collision Damage both Sides of Inlet Rim

P06 - South Barrel - Inlet Watercourse to North of Inlet

P07 - South Barrel - Looking Towards Outlet - Most Flow on South Side - Debris on North Side

P08 - South Barrel - Bottom Corrugations Folded Over Due to Rock Impact in Both Barrels

P09 - South Barrel - Ring 5 - Roof Kinked Down ~150 mm

P10 - South Barrel - Floor has Drooped Down ~400 mm in Both Barrels - Collision Damage Kink in Roof at Ring 14

P11 - South Barrel - Outlet - Floor has Drooped Down ~400 mm in Both Barrels Due to Erosion of Supporting Material Below Outlet in Past

P12 - North Barrel - Inlet Watercourse - Large Riprap in Watercourse

P13 - North Barrel - Minor Collision Damage to Inlet Rim

P14 - North Barrel - Looking Towards Outlet

P15 - North Barrel - Light Surface Corrosion to High Water Level

P16 - North Barrel - Floor has Drooped Down ~400 mm in Both Barrels

P17 - North Barrel - Longitudinal Cracking in Both Barrels - Ring 4 @ 4:30 - 23 mm Remaining Section

P18 - North Barrel - Outlet - Floor has Drooped Down ~400 mm in Both Barrels

P19 - North Barrel - Minor Collision Damage to Outlet Rim

P20 - Outlets and West Embankment

Delcan Photo Page 10 of 11

P21 - Downstream Watercourse to the West