

Memorandum

То	To Neil Klassen								
СС									
Subject	Subject Department of Fisheries and Oceans Canada Prefabricated Building Foundations - Geotechnical Investigation Gimli, Manitoba								
From	Saba Ibrahim								
Date	September 2, 2016	Project Number 60513310 (431)							

1. Introduction

The Department of Fisheries and Oceans Canada (DFO) retained AECOM Canada Limited (AECOM) to carry out a geotechnical investigation and provide building foundation recommendations for two proposed prefabricated buildings in Gimli, Manitoba.

This memorandum summarizes the results of the geotechnical investigation completed in July 2016 and provides geotechnical recommendations for the building foundations based on the results of the investigation.

2. Field Investigation

From July 8 to 9, 2016, two (2) test holes (TH16-01 and TH16-02) were drilled at the approximate locations shown on the test hole location plan, Figure 01 in Appendix A.

Drilling was completed by Maple Leaf Drilling using a truck-mounted Mobile B54X drill rig equipped with 125 mm solid stem augers and 175 mm hollow stem augers. Subsurface conditions observed during drilling were visually classified and documented by AECOM geotechnical personnel. Other pertinent information such as groundwater and drilling conditions were also recorded during drilling. Samples retrieved during the field investigation were tested in AECOM's Materials Testing Laboratory in Winnipeg, Manitoba. Geotechnical samples collected during the investigation included a relatively undisturbed Shelby Tube sample and disturbed grab and split spoon samples.

A detailed test hole log has been prepared for each test hole, and are attached as Appendix B. The test hole logs include description and depth of the soil units encountered, sample type, sample location, results of field and laboratory testing, and other pertinent information such as seepage and sloughing. Laboratory testing was conducted on select soil samples collected during the geotechnical field investigation. The soil testing program included the determination of moisture contents, grain size distributions (hydrometer methods) and Atterberg Limits. The laboratory test results are presented in Appendix C.

Table 2-1 summarizes test hole information including location, and termination depth.

Table 2-1: Test Hole Summary

Test Hole	Northing (m)	Easting (m)	Termination Depth (m)
TH16-01	5610731	642544	24.4
TH16-02	5610735	642556	24.8

3. Subsurface Conditions

The following sections describe the subsurface conditions encountered during the geotechnical investigation. Subsurface conditions can vary across the site and the information provided in this section is a summary of the findings from the field investigation and laboratory testing program.

3.1 Subsurface Profile

In descending order the soil profile consists of:

- Topsoil
- Fill
- Silt and Clay
- Clay
- Glacial Till

These soil units are described separately below. A summary of moisture and Atterberg limit laboratory test results is presented as Figure 02 in Appendix A.

<u>Topsoil</u>

Topsoil was encountered in TH16-01 immediately below ground surface with a thickness of 0.1 m. The topsoil was black, dry and contained trace roots.

Fill

Fill was encountered directly beneath the ground surface in TH16-02. The fill comprised of 0.6 m thick of sand fill overlying 0.6 m thick clay fill. The sand fill contained trace gravel and trace cobbles, was dark brown, loose and dry to moist. The clay fill was silty, contained trace sand, trace gravel, trace roots, was dark grey to black, stiff, moist and of intermediate plasticity. Results of one moisture content test performed on the clay fill indicated a moisture content of 29 percent.

Silt and Clay

A layer of silt and clay was encountered beneath the topsoil in TH16-01 with a thickness of 0.8 m. The silt and clay contained trace sand, was brown, firm, moist, and of intermediate plasticity. Results of one moisture content test performed on the layer indicated a moisture content of 24 percent.

<u>Clay</u>

A clay layer was encountered beneath the silt and clay in TH16-01 and beneath the fill in TH16-02. The thickness of the layer was 2.1 m. The clay contained some silt to silty, trace sand and trace

gravel. The clay was dark greyish-brown to brown, soft to stiff, moist, and of intermediate to high plasticity. A summary of the index properties of the clay is presented in Table 3-1.

Test	Minimum Value	Maximum Value	Number of Tests		
Moisture Content (%)	30.6	49.8	3		
SPT 'N' Blow Counts (uncorrected)		1			
Atterberg - Plastic Limit (%)	14.7	20.7	2		
Atterberg - Liquid Limit (%)	57.8	79.8	2		
Grain Size - Gravel (%)	0.0	0.1	2		
Grain Size - Sand (%)	1.6	5.0	2		
Grain Size - Silt (%)	16.5	29.6	2		
Grain Size - Clay (%)	65.4	81.9	2		

Table 3-1: Summary of Index Properties of Clay

Glacial Till

Glacial till was encountered in both test holes and it was categorized into three different layers based on the major till compositions below:

- - Silt till;
- - Silt and sand till;
- Sand till

Silt till was encountered beneath the clay layer in TH16-01 with a thickness of 9.1 m. The silt till was sandy, contained some clay and trace gravel, was light brown to greyish-brown, compact to dense, dry to moist, and of low plasticity. A summary index of properties of the silt till is presented in Table 3-2.

Test	Minimum Value	Maximum Value	Number of Tests			
Moisture Content (%)	7.2	10.1	6			
SPT 'N' Blow Counts (uncorrected)	19	49	6			
Atterberg - Plastic Limit (%)	9	.0	1			
Atterberg - Liquid Limit (%)	15	1				
Grain Size - Gravel (%)	8	1				
Grain Size - Sand (%)	34	1				
Grain Size - Silt (%)	38	1				
Grain Size - Clay (%)	18	1				

Table 3-2: Summary of Index Properties of Silt Till

Sand and silt till was encountered beneath the silt till in TH16-01 and beneath the clay in TH16-02 ranging in thickness from 12.2 m to 10.4 m. The sand and silt till contained some clay, trace to some gravel, was light brown to greyish-brown, compact to dense, dry to moist and of low plasticity. A summary of the index properties of the sand and silt till is presented in Table 3-3.

Test	Minimum Value	Maximum Value	Number of Tests	
Moisture Content (%)	9.2	11.2	13	
SPT 'N' Blow Counts (uncorrected)	10	37	14	
Atterberg - Plastic Limit (%)	8.1	9.0	3	
Atterberg - Liquid Limit (%)	13.3	13.6	3	
Grain Size - Gravel (%)	9.6	11.9	3	
Grain Size - Sand (%)	36.5	40.5	3	
Grain Size - Silt (%)	37.0	36.5	3	
Grain Size - Clay (%)	13.4	14.6	3	

Table 3-3: Summary of Index Properties of Sand and Silt Till

Sand till was encountered in TH16-02 beneath the sand and silt till with a thickness of 11.1 m measured at test hole termination depth. The sand till was silty, contained some clay and trace gravel, was brownish-grey, compact, dry to moist, and of low plasticity. A summary of index properties of the sand till is presented in Table 3-4.

Test	Minimum Value	Maximum Value	Number of Tests
Moisture Content (%)	9.9	13.4	5
SPT 'N' Blow Counts (uncorrected)	9	18	5
Atterberg - Plastic Limit (%)	8	.8	1
Atterberg - Liquid Limit (%)	13	1	
Grain Size - Gravel (%)	8	1	
Grain Size - Sand (%)	54	1	
Grain Size - Silt (%)	26	1	
Grain Size - Clay (%)	10	1	

Table 3-4: Summary of Index Properties of Sand Till

3.2 Sloughing and Groundwater Conditions

Groundwater seepage was observed in TH16-02 at a depth between 3.0 m and 4.6 m below ground surface. Sloughing was not observed in either test hole. Where seepage was encountered, further details are provided in the test hole logs in Appendix B. Groundwater monitoring was not performed for this project.

It should be noted that groundwater levels and subsequently sloughing may change seasonally, annually or as a result of construction activities.

3.3 Seasonal Frost Penetration

The mean freezing index in the project area is at 2000 °C-days based on the Canadian Foundation Engineering Manual, accordingly the estimated seasonal frost penetration depth is approximately 2.5 m. Factors such as snow cover, vegetation at surface, soil type, and groundwater conditions can all significantly impact the depth of frost penetration.

3.4 Soil Chemistry

Electrochemical tests were conducted on two soil samples collected from TH16-01 and TH16-02 to determine water soluble sulphate concentration and resistivity. A summary of the test results, degree of corrosiveness and potential for sulphate attack of the subsurface soils are presented in Table 3-5.

The soil corrosion potential was assessed based on soil resistivity. Based on the resistivity values, the soil is considered to be moderate to severe corrosive. The selection and design of the foundation should take into account the possible corrosion of the steel reinforcement.

The soil's potential for sulphate attack was assessed based on the soluble sulphate content of soil samples collected from two samples at the vicinity of the proposed structures. The soluble sulphate contents indicated the soil has a negligible potential for sulphate attack on concrete.

All concrete in contact with the soil should be made in accordance with CSA Standard A23.1 and A23.2. The use of Type HS (sulphate resistance cement) is recommended to be considered for any concrete in contact with subsurface soils.

Table 2 F. Summar		hata Contant	and Decistivity	Teste
Table 3-5. Summar	y oi Suip	nale Content	and Resistivity	16212

Soil Unit	Sample Depth (m)	Test hole	Sulphate Content in Soil Sample %	Potential for Sulphate Attack	Resistivity (ohm-cm)	Degree of Corrosiveness
Clay	1.5	TH16-01	0.011	Negligible	3140	Moderate
Clay	2.25	TH16-02	0.0241	Negligible	1340	Sever

4. Discussion and Recommendations

4.1 General

It is understood that the proposed buildings will be comprised of a prefabricated aluminum frame structure. The intended use of one of the proposed buildings is accommodations, while the other is intended to be used as office space.

4.2 Foundations

Generally, the top 3 to 4 m of the soil is comprised of highly plastic clay; underlain by glacial till, and shallow foundation can be considered to support the proposed lightly loaded structure. However, potential vertical movement due to swelling and/or frost heave should be counted for structure future performance.

Shallow footings are considered a suitable foundation system to support the proposed accommodation and office buildings considering the anticipated loading and the shallow depth to bearing stratum. However, during design development, the geotechnical team was notified to consider raft foundation underlain by a 1.0 thick compacted granular pad as the preferred option.

Deep foundations are not considered a cost effective foundation system and therefore will not be discussed further in this memorandum.

4.2.1 Shallow Foundation - Square Footing

Shallow footings can be used to support and transfer light loads to the underlying soil at a pressure consistent with the loading requirements and the bearing capacity of the soil. Square footing was considered for this project.

The main concern with shallow foundation design at this site is the requirements for protection against frost heave. Sufficient soil cover or thermal insulation should be provided to protect against frost action. In this regard, if insulation is not considered, the footing should be located at depth not less than 2.5 m, as discussed in section 3.3.

Square footings installed less than 2.5 m below existing grade will require rigid insulation to minimize frost penetration into the soil around and below the footings. A minimum insulation thickness of 50 mm is recommended. Horizontal insulation sheets should be placed over the footings with a minimum soil cover of 0.5 m. The insulation should extend at least 1.2 m past the perimeter of the footings.

Nominal and factored bearing resistance at ultimate limit state (ULS) for a range of square footing dimensions bearing from 1.0 m to 3.0 m below existing ground has been evaluated with footing effective width ranging from 1 to 2.5 m. A resistance factor of 0.5 can be used to derive the factored bearing resistance at ULS. The bearing resistance of a footing is highly influenced by the load inclination, an inclined load of horizontal (H)/vertical (V) = 0.1 would result in reduction of the factored bearing resistance to 88 percent of the value above (i.e 0.88 X Nominal bearing resistance). If the design inclination ratio (H/V) is more than 0.1 then further reduction in bearing resistance will be required.

Recommendations for the bearing resistance at both ULS and SLS are provided on Table 4-1. SLS bearing resistance has been calculated corresponding to settlement of 50 mm.

		J		
Footing Depth	Footing Width	Nominal Bearing	Factored Bearing	Bearing Resistance
below Ground	D** (m)	Resistance at ULS (kPa)-	Resistance at ULS	at SLS (kPa)-
Level(m)	Б (Ш)	Square footing*	(kPa)- Square footing	Square footing
1		224	112	80
2	1	233	116	110
3		241	120	120
1		224	112	50
2	1.5	233 116		75
3		290	145	120
1		224	112	40
2	2.0	233	116	65
3		356	178	105
1		224	112	35
2	2.5	248	124	60
3		446	223	105

Table 4-1: Bearing Resistance at SLS and ULS for Square Footing

*H/V =0.0,

Where: H/V ratio of horizontal to vertical load

** B=L, square footing

Different configurations (included footing, thickened edge, shape modification etc.) of spread footings may result in a potential for load superposition and overstressing of the bearing stratum. Under these circumstances modification to the footings configuration or a review of the bearing capacity may be required.

Footings should not be placed on frozen soil, uncontrolled fill, organic or other deleterious soils. The bearing surfaces should be excavated at least 0.3 m into the clay layer. The bearing stratum should be cleaned to remove all disturbed or otherwise affected soil and protected from frost, desiccation and the ingress of free water. The footing excavations must be maintained in a dry condition at all times.

The footing excavations should be backfilled with clay soil in an effort to keep water from infiltrating down beside the footings. The clay should be compacted to about 95 percent of the Standard Proctor maximum dry density within 2 percent of the optimum moisture content.

Soil within the depth of frost penetration can freeze to the foundation developing an uplift force. An adfreeze bond of 65 kPa can be used to estimate the uplift forces. These forces can be resisted by the sustained vertical loads on the footing. If dead load plus sustained live load is insufficient to resist the uplift forces, then a restraining device or uplift resistance measures will be required. A frost non-susceptible material or bond breaker/thermal insulation between the footing and the adjacent soil can be used to protect against adfreeze bond development.

Nominal unit resistance to sliding at ULS conditions can be calculated as the sum of normal sliding resistance and passive sliding resistance. A resistance factor of 0.85 should be applied to the nominal normal sliding resistance which can be taken as the smaller of:

- Clay undrained shear strength = 35 kPa; or
- Provided the footing is supported on at least 150 mm compacted granular, one half the normal stress at the footing/clay interface.

If passive sliding resistance is accounted for in the design, then it should be carefully evaluated for the possibility of future removal of the soil from the front of the wall and the associated displacement to mobilize the maximum passive soil resistance.

4.2.2 Raft Foundation

During the design stage, an 18.3 m x 7.3 m raft foundation was selected by the structural engineer as a preferred option to support the office and accommodation building.

A compacted granular fill consisting of 40 mm minus crushed gravel will be required below the foundation underside with a minimum thickness of 1.0 m. The compacted granular fill should be constructed to reduce the thickness of the compressible clay layer below the raft base, and to minimize the long term consolidation settlement accordingly.

The nominal and factored bearing resistance at ultimate limit state (ULS) for the selected footing dimensions bearing at ground surface has been evaluated. A nominal bearing resistance of 255 kPa and a resistance factor of 0.5 can be used to derive the factored bearing resistance at ULS. The

bearing resistance of a footing is highly influenced by the load inclination, an inclined load H/V = 0.1 would result in reduction of the bearing resistance to 87 percent of the value above (i.e., 255 x 0.87).

Settlement of the compacted granular fill is expected to be 1% of fill thickness (i.e 10 mm). This settlement will take place during construction. Bearing pressures at SLS of 30 kPa have been estimated for both buildings corresponding to settlement of 60 mm in which 10 mm is immediate and 50 is long term consolidation settlement. 90 % of long term consolidation settlement is expected within 1.5 year following the construction.

Based on the loading conditions and the adopted dimensions, spacing and configurations of the proposed development, a series of settlement analyses were conducted to estimate the anticipated total and differential settlement of the granular fill, clay and till units supporting the raft foundation.

The effects of the overlapping stress bulbs from the proposed adjacent buildings were considered in the stress analysis. It is understood that the space between the proposed two buildings is limited to 2.1 m; therefore differential settlement of about 15 mm is anticipated between the inner side (adjacent to the other building) and the outer side of the building.

It is highly recommended that the area between the proposed buildings is to be sub-excavated to 1.0 m and replaced with same granular fill, in-order to mitigate the risk associated with swelling potential of the soil and a non-uniform heave movement.

Recommendations related to frost depth, protection against frost action and adfreeze is discussed in sections 4.2.1 and 3.3.

Raft foundations for the selected dimensions (18.3 m x 7.3 m), may be designed using modulus of vertical subgrade reaction, ks, of 3250 kN/m³ at ground surface, providing that clay material will be excavated to minimum 1.0 m and will be replaced with granular fill 40 mm minus.

Since a 1.0 m subcut of the clay and replacement with granular material is required, water inflow from surface and rainfall will infiltrate into the granular fill and accumulate at the base without finding a drainage path to drain via overland run-off. Accumulation of water at the interface between the granular fill and the clay layer will result in softening the bearing strata and excessive settlement should be expected. Therefore, a sub-drain/weeping tile system will need to be implemented at the bottom of the sub-cut to capture drainage from the bottom of the granular fill and transport it into the land drainage system. The exposed subgrade should be sloped to drain subsurface water towards permanent drains and sumps. Adequate permanent drainage system and grading should be implemented in-order to drain any water as soon as possible, protect against the ingress of free water and prevent the accumulation of water beside the buildings.

4.2.3 Construction Recommendations

Additional design and construction recommendations for shallow foundations are provided below:

- 1. A foundation preparation should include over-excavation to a depth of 0.5 m below bearing elevations.
- 2. The over-excavation should extend at least 1 m beyond the exterior footing edges. The excavated soil should be replaced with compacted clean granular fill.

- 3. A dewatering system (e.g. sump and pump, well points system, etc.) may be required to control groundwater seepage and allow construction in the dry. Seepage was noted during the site investigation, therefore provisions for construction dewatering should be allowed for in the construction budget and schedule.
- 4. Care should be taken during excavation to ensure that the final bearing surface is not disturbed or subjected to freezing, water inundation or excessive drying. All loose or disturbed soil should be removed from the final bearing surface.
- 5. Excavations will likely be required to facilitate the construction of the new structure. The method of excavation and safe support of excavation are the responsibility of the contractor and all other necessary measures should be undertaken to protect against adverse impact or undermining the foundation or stability of existing infrastructure/structures.
- 6. All existing fill and/or silt materials are considered non suitable subgrade and should be removed and replaced with granular fill.
- 7. The exposed subgrade after removal of the clay material up to minimum 1.0m depth for raft foundation, or to the foundation elevation for square footing should be compacted to 95 percent of Standard Proctor Maximum Dry Density (SPMDD).
- 8. After compaction, the subgrade should be proof rolled to identify any soft spots. The proof rolling should be performed for the finished subgrade, following the compaction, under the observation of a representative from AECOM.
- 9. Each successive pass of the equipment used for proof rolling should be offset by not greater than one tire width to provide adequate coverage. The rolling pattern should be completed in a systematic fashion and the results recorded .The proof rolling should cover 100% of the foundation area.
- 10. If soft spots are encountered after the proof rolling below the exposed subgrade, placement of biaxial geogrid reinforcement (an approved product is Combigrid as supplied by NAUE or approved equivalent) will be required, to provide a stable foundation base.
- 11. The exposed subgrade surface should be protected from freezing, wetting, drying or disturbance. As such, it may be necessary for the contractor to sequence construction so that only a small portion of the subgrade remains open at a given time and that excavations are backfilled as soon as possible. Where excavations are to be left open overnight, the subgrade surface should be sealed with a smooth drum roller and sloped to a low point in the excavation to facilitate removal of ponded water if necessary.
- 12. Once the bearing soil at the foundation level has been prepared, it should be evaluated by geotechnical personnel to verify the soil is consistent with the soil identified in this memorandum.
- 13. It is recommended that a non-woven geotextile be placed directly over the prepared subgrade and at the interface around perimeter drainage layer to provide separation between the subgrade and the granular/drainage layer.
- 14. The new compacted fill above exposed subgrade should be placed in a maximum loose lift of 200 mm in thickness and compacted to a minimum of 98 percent of SPMDD. Moisture contents should be maintained within ±2 percent of optimum moisture during placement and compaction.
- 15. The excavation should be capped at grade with a layer of clay and graded at a 2% slope away from the buildings.
- 16. Raft should be adequately reinforced to allow the structure to settle uniformly and maintain structural integrity.
- 17. Flexible connections should be provided from the structure to all connected piping to accommodate differential settlements.

4.3 Floor Slabs

Generally, fill material can be used to support slabs-on-grade if the fill is placed and compacted in a controlled manner (engineered fill). In this regard, no information is available with respect to the placement and compaction of the existing fill, and therefore, it is considered unsuitable to support slabs-on-grade. The existing fill should be removed and prepared according to the guidelines below before it can be used as subgrade for slab-on-grade.

Floor slabs may be subjected to some vertical deformation due to swelling or shrinkage of the subgrade soil in response to changes in moisture content.

The following are guidelines for design and construction of slab-on-grade:

- 1. If the soil at subgrade surface does dry out, it should be dampened, scarified, and recompacted to a minimum of 95 percent of Standard Proctor maximum dry density.
- 2. Any fill required to bring slab areas to design grade should consist of clean, inorganic material compacted to 95 percent of Standard Proctor maximum dry density.
- 3. A minimum of 150mm compacted thickness of clean free draining granular fill compacted to 95 percent of Standard Proctor maximum dry density should underlie the slab.
- 4. A vapour barrier below the slab is recommended to minimize long term moisture change within the subgrade.
- 5. Adequate slab reinforcement is to be provided.
- 6. A competent subfloor drainage system is to be provided for any portion of the slab which is constructed below the exterior grade.
- 7. The slab should be isolated from all fixed structural elements.
- 8. Light partitions bearing on the slab should be designed to permit vertical movement between the partition and the ceiling to minimize the possibility of damage if the slab heaves.
- 9. Control joints should be provided in the slab to reduce random cracking.
- 10. A minimum void space of 150 mm should be provided under the grade beam system to minimize the effect of local soil movement.

4.4 Lateral Earth Pressure

Any permanent below grade walls should be designed to resist both hydrostatic pressures and lateral earth pressures as well as any surcharge loading.

The lateral earth pressure can be calculated on the basis of the following conventional relationship which produces a triangular pressure distribution:

 $P=K_o(\gamma D + q)$ Where:

P= Lateral earth pressure at depth D (kPa)

 K_o = At-rest earth pressure coefficient = 0.60

- γ = Soil/Backfill unit weight =18 (kPa)
- D = depth from ground surface to point of pressure calculation (m)
- q = surcharge load within distance D from the wall edge (kPa)

Below the groundwater table, the hydrostatic water pressure must be added and the submerged weight of soil/backfill can be used. In this regard, no information is available concerning the long term groundwater table. For design purposes, the groundwater table can be assumed at the ground level.

The base of the walls should be provided with a filter-protected positive drainage system to prevent the buildup of hydrostatic pressure against the wall. Where required, backfill between the walls and the excavated faces should consist of granular material. The backfill should be sufficiently compacted only to minimize settlement of the backfill itself. The backfill should be compacted to 95 percent of Standard Proctor maximum dry density. Placement of the backfill should be undertaken in such a manner to prevent unbalanced forces from acting on the sides of the structure. Compaction by heavy equipment which could cause excessive lateral pressure on the walls should be avoided. All material within 1.5 m from the walls should be compacted using manually operated pad tampers. A 500 mm clay seal at the ground surface is recommended to reduce surface water infiltration. Grading should be installed on the outside of the walls to protect against the accumulation of water behind the walls. Some settlement of the backfill should be expected. If no settlement of the backfill can be tolerated, the backfill types and compaction requirements should be reviewed by AECOM.

5. Closure

The findings and recommendations in this memorandum were based on the results of field and laboratory investigations, combined with an interpolation of soil and groundwater conditions between the test hole locations. If conditions are encountered that appear to be different from those shown by the test holes drilled at this site and described in this report, or if the assumptions stated herein are not in keeping with the design, this office should be notified in order that the recommendations can be reviewed and adjusted, if necessary.

Please do not hesitate to contact the undersigned for any questions or further information.

Respectfully Submitted, AECOM Canada Ltd.

Prepared by:

Saba Ibrahim, P.Eng. Geotechnical Engineering

Zeyad Al-Hayazai, M.Sc., P.Eng, Senior Geotechnical Engineer

Appendix A

Figure 01: Test Hole Location Plan Figure 02: Summary of Laboratory Test Results

Prefabricated Building Foundations Geotechnical Investigation Department of Fisheries and Oceans **Test Hole Location Plan**

AECOM Figure: 01

Appendix B

Test Hole Logs

PROJ	ECT:	Prefab Building Foundation	С	LIEN	T: D	Department of Fisheries and Oceans TESTHOLE NO: TH16-01	
LOCA		: UTM 14 - 5610731 m N, 642544 m E				PROJECT NO.: 60513310	
CONT				1ETH 1spu	OD: T SPO	Mobile B54 X SSA and HSA ELEVATION (m): NA	
DEPTH (m)	SOIL SYMBOL		SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UNDRAINED SHEAR STRENGTH	DEPTH
0		TOPSOIL - black, dry, trace roots					:
		SILT and CLAY - trace sand - brown, firm, moist - intermediate plasticity CLAY - silty, trace sand - dark greyish-brown, stiff, moist - hich plasticity		G1			1-
2		- trace to some silt inclusions		52	y	SPT Blows: [4/3/6], Spoon Recovery 100%, Gravel: 0.0%, Sand: 5.0%, Silt: 29.6%, Clay: 65.4%	2-
-4	00000000000000000000000000000000000000	SILT (Till) - sandy, some clay, trace gravel - light brown, dense, dry - low plasticity		S3B	49	SPT Blows: [17/22/27], Spoon Recovery 89%	4 -
-5			\times	S4	41	●H. ◆ SPT Blows: [10/17/24], Spoon Recovery 89%, Gravel: 8.5%, Sand: 34.9%, Silt: 38.5%, Clay: 18.1%	5 -
-6 	0000000	- greyish-brown below 6.1 m	\times	S5	32	SPT Blows: [14/17/15], Spoon Recovery 72%	6 - 7 -
8	00000000000000000000000000000000000000	- gravel in tip of spoon at 7.6 m (40 mm diam.)	X	S6	31	SPT Blows: [8/14/17], Spoon Recovery 33%	8-
-9 -10	000000000000000000000000000000000000000	- compact, dry to moist below 9.1 m	\times	S7	23	SPT Blows: [7/11/12], Spoon Recovery 28%	9 - 10 -
11		- gravel in tip of spoon at 10.7 m (25 mm diam.)	\times	S8	19	SPT Blows: [6/9/10], Spoon Recovery 33%	11 –
12	00000000000000000000000000000000000000	SAND and SILT (Till) - some clay, trace gravel	X	S9	10	SPT Blows: [4/5/5], Spoon Recovery 83%	12 - 13 -
14	00000000000000000000000000000000000000	- some gravel below 13.7 m	X	S10	15	 SPT Blows: [3/7/8], Spoon Recovery 100%, Gravel: 10.2%, Sand: 40.2%, Silt: 36.2%, Clay: 13.4% 	14 -
		A=COM				LOGGED BY: Ryan Harras COMPLETION DEPTH: 24.38 m	
		AECOM				REVIEWED BY: Zeyad Snukri COMPLETION DATE: //8/16 PROJECT ENGINEER: Neil Klassen Page 1	of 2
· L							VI 4

PROJ	ECT:	Prefab Building Foundation	С	LIEN	T: De	epartn	nent of Fisheries a	and Oceans	TE	STHOLE NO: TH16-0	1	
LOCA		: UTM 14 - 5610731 m N, 642544 m E		PROJECT NO.: 60513310								
			M ∑	IETH 1.spu i	OD: T.SPO							
DEPTH (m)	SOIL SYMBOL		SAMPLE TYPE	SAMPLE #	SPT (N)	PE ← SPT 0 20 16 17 Pla 20	Image: Secker # Dynamic Cone ◊ (Standard Pen Test) ♦ (Blows/300mm) 40 60 80 100 Total Unit Wt ■ (kN/m³) 18 19 20 21 Site MC Liquid 40 60 80 100	UNDRAINED SHEAR + Torvane × QU/2 × □ Lab Vane △ Pocket Per � Field Vano (kPa) 50 100	STRENGTH + < □ n. △ æ æ	COMMENTS	DEPTH	
- 15 - 16	000000000000000000000000000000000000000		X	S11	16	•				SPT Blows: [7/8/8], Spoon Recovery 72%	16	
	00000000000000000000000000000000000000		\times	S12	14					SPT Blows: [4/6/8], Spoon Recovery 100%	17 -	
	00000000000000000000000000000000000000		\times	S13	13					SPT Blows: [5/6/7], Spoon Recovery 100%	18 – 19 –	
-20	00000000000000000000000000000000000000		\times	S14	19					SPT Blows: [5/8/11], Spoon Recovery 33%, Gravel: 11.9%, Sand: 36.5%, Silt: 37.0%, Clay	20	
-21	00000000000000000000000000000000000000		\times	S15	12					14.6% SPT Blows: [5/5/7], Spoon Recovery 100%	21	
-23	000000000000000000000000000000000000000		\boxtimes	S16	18					SPT Blows: [6/9/9], Spoon Recovery 0%	23	
24		END OF TEST HOLE AT 24.38 m IN SAND and SILT (Till) Notes: 1. Seenage was not observed									24	
925/16		 Sloughing was not observed. Hole open to 24.38 m upon removal of auger. SSA used to 1.5 m. Switched to HSA below 1.5 m. Test hole backfilled with auger cuttings and bentonite upon completion. 									26	
NIM WIM CLUC AND CLUC											27	
28 1281 HOLE LOG	-28 -29										28	
HOLE							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·			
1EST EST						LOG	GED BY: Ryan Har	ras	COMPL	ETION DEPTH: 24.38 m		
G OF		AECOM				REV	EWED BY: Zeyad	Shukri	COMPL	ETION DATE: 7/8/16		
9						PRO	JECT ENGINEER:	Neil Klassen		Page 2 of 2		

PROJ	ECT:	Prefab Building Foundation	С	LIEN	T: De	epar	tmen	t of F	ishe	ries a	and C	cean	S	TE	STHOLE NO: TH16-02	2
		: UTM 14 - 5610735 m N, 642556 m E TOR: Manle Leaf Drilling			00.			- 4 V	004					PR	OJECT NO.: 6051331	0
SAME				1SPU	UD: T SPO	<u>viodi</u> On	Ie B		<u>SSA</u> ULK						EVATION (M): NA	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 :: 16 1	PENET	RATIOI Becke namic (undard ws/300 tal Uni (kN/m 8 1 MC MC	N TEST r ★ Cone < Pen T Dmm) 50 8 t Wt ■ 9 2 Liqu 50 1	S est) ♦ 0 100 0 21 id	UNDRA	 INED S + To ∠ C □ Lat 2 Pocł 2 Fiel (1	HEAR ST rvane + QU/2 × o Vane □ ket Pen. 4 d Vane 4 kPa)	RENGTH	COMMENTS	DEPTH
= 0		SAND (FILL) - trace gravel, trace cobbles - dark brown, loose, dry to moist medium to coarse grained		0.17												
-1		CLAY (FILL) - silty, trace sand, trace gravel, trace roots - dark grey to black, stiff, moist - intermediate plasticity	-	G17			•			· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·				1_
-2		CLAY - silty, trace sand - dark greyish-brown, firm to stiff, moist - intermediate to high plasticity		T18			1								Tube Recovery 52%	2
-3		Trace slit inclusions CLAY - some slit, trace sand - brown, soft to firm, moist bick breatight,		015				•				· · · · · · · · · · · · · · · · · · ·			1.6%, Silt 16.5%, Clay 81.9%	3-
		- trace gravel, trace silt till pockets below 3.0 m SAND and SILT (Till) - some clay, trace gravel - light brown, dense, dry to moist	K	S20	17										SPT Blows: [3/9/8], Spoon Recovery 67%	4 —
5		- row plasticity	X	S21	37										SPT Blows: [11/13/24], Spoon Recovery 67%	5
-6	00000000000000000000000000000000000000		X	S22	34		•								SPT Blows: [13/15/19], Spoon Recovery 67%	6
8	000000000000000000000000000000000000000	- brownish-grey, compact below 7.6 m	X	S23	27		٠								SPT Blows: [12/13/14], Spoon Recovery 61%	8
9 			X	S24	21	•									SPT Blows: [10/10/11], Spoon Recovery 50%, Gravel: 9.6%, Sand: 40.5%, Silt: 36.5%, Clay: 13.5%	9
4.GDT 8/25/16	00000		X	S25	17										SPT Blows: [6/8/9], Spoon Recovery 83%	11
E LOGS.GPJ UMA WIN 11 13 13			X	S26	23	•									SPT Blows: [6/12/11], Spoon Recovery 67%	12 - 13 -
THOLE TEST HOL		SAND (Till) - silty, some clay, trace gravel - brownish-grey, compact, dry to moist - low plasticity	X	S27	14										SPT Blows: [5/7/7], Spoon Recovery 89%	14 -
	מיומו		1			LO	GGE) BY:	Rya	n Har	ras		C	OMPL	ETION DEPTH: 24.84 m	
G OF		AECOM				RE	/IEW	ED B	Y: Z	eyad S	Shukri		C	OMPL	ETION DATE: 7/9/16	4 5 5
9	/ = 00///					PROJECT ENGINEER: Neil Klassen						lasser	ו ו	Page 1 of 2		

PROJ	ECT:	Prefab Building Foundation	С	LIEN	T: D	epartment of Fisheries and Oceans TESTHOLE	NO: TH16-02	
LOCA	TION	: UTM 14 - 5610735 m N, 642556 m E				PROJECT N	PROJECT NO.: 60513310	
CONT			N	<u>1ЕТН</u> Лери и	OD:		<u>√ (m): NA</u>	
DEPTH (m)			SAMPLE TYPE	SAMPLE #	(N) TAS	ON BOLK NO RECOVERY PENETRATION TESTS WNDRAINED SHEAR STRENGTH * Becker * + Torvane + > Dynamic Cone + * SPT (Standard Pen Test) □ Lab Vane □ 0 20 40 60 80 100 ■ Total Unit Wt ■ △ Pocket Pen. △ ● Field Vane ● 16 17 18 19 20 21 Plastic MC Liquid (kPa) 100 150 200		
15 16 17 18 -19 -20	0202020202020202020202020202020 0202020202020202020202020202020		X	S28	18	Performance and the second se	rs: [5/8/10], scovery 78%, .4%, Sand: ilt: 26.7%, Clay: 17 - vs: [8/8/10], scovery 100% 19 - 20 -	
-21 -22 -23		- moist to wet below 22.9 m		S30	15	SPT Blow Spoon Re	/s: [6/7/8], ecovery 56% 22 – 23 –	
-24				,			24 -	
25 9		- IOOSE DEIOW 24.4 m END OF TEST HOLE AT 24.84 m IN SAND (Till) Notes:		S31	9	SPT Blow Spoon Re	/s: [3/4/5], ecovery 56% 25 –	
E TEST HOLE LOGS GPJ UMA WINN.GDT 8/25, 66 88 25 25 92 92 92 92 92 92 92 92 92 92 92 92 92		 Seepage was observed between 3.0 m and 4.6 m. Sloughing was not observed. Hole open to 24.84 m upon removal of auger. Water to 6.7 m upon removal of auger. Test hole backfilled with auger cuttings and bentonite upon completion. 					26 - 27 - 28 - 29 -	
	1				1	LOGGED BY: Ryan Harras COMPLETION DE	EPTH: 24.84 m	
jo Do		A_COM				REVIEWED BY: Zeyad Shukri COMPLETION DA	ATE: 7/9/16	
						PROJECT ENGINEER: Neil Klassen	Page 2 of 2	

Appendix C

Laboratory Test Results

Fax: 204 284 2040

Project Name:	Prefab Building Foundation	Supplier:	AECOM
Project Number:	60513310	Specification:	N/A
Client:	DFO Gimli	Field Technician:	RHarras
Sample Location:	Gimli, MB.	Sample Date:	July 8, 2016
Sample Depth:	Varies	Lab Technician:	EManimbao
Sample Number:	Varies	Date Tested:	July 7, 2016

Moisture Content (ASTM D2216-10)

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

Location	Sample	Depth (m)	Moisture Content (%)	Location	Sample	Depth (m)	Moisture Content (%)
TH16-01	G1	0.76 - 0.91 m	24.4%				
	S2	1.52 - 1.98 m	30.6%				
	S3B	3.05 - 3.51 m	8.4%				
	S4	4.57 - 5.03 m	8.2%				
	S5	6.10 - 6.55 m	7.2%				
	S6	7.62 - 1.52 m	8.6%				
	S7	9.14 - 9.60 m	9.5%				
	S8	10.67 - 11.13 m	10.1%	_			
	S9	12.19 - 12.65 m	10.4%				1
	S10	13.72 - 1.83 m	10.0%				
· · · · · · · · · · · · · · · · · · ·	S11	15.24 - 15.70 m	9.3%				
	S12	16.76 - 17.22 m	11.2%				
	S13	18.29 - 18.75 m	10.0%	- L(
	S14	19.81 - 2.13 m	10.7%				
	S15	21.34 - 21.79 m	9.8%				
Ter 187	S16	22.86 - 23.32 m	-			11 Ben (197	
TH16-02	G17	0.76 - 0.91 m	28.9%				
	T18	1.52 - 2.44 m					
	G19	2.29 - 2.44 m	49.8%				
	S20	3.05 - 3.51 m	31.1%				
	S21	4.57 - 5.03 m	9.8%				
	S22	6.10 - 2.74 m	9.2%				
	S23	7.62 - 8.08 m	9.7%		_		
	S24	9.14 - 9.60 m	10.3%				
	S25	10.67 - 11.13 m	9.8%				
	S26	12.19 - 12.65 m	10.0%			1.000	
	S27	13.72 - 14.17 m	9.9%				
	S28	15.24 - 15.70 m	10.1%				
	S29	18.29 - 18.75 m	10.5%				
	S30	21.34 - 21.79 m	10.5%				
	S31	24.38 - 24.84 m	13.4%				
34	t						
					1 1		
							×
	_						

Fax: 204 284 2040

Project Name:	Prefab Building Foundation	Supplier:	AECOM
Project Number:	60513310	Specification:	N/A
Client:	DFO Gimli	Field Technician:	RHarras
Sample Location:	TH16-01	Sample Date:	July 14, 2016
Sample Depth:	0.76 - 1.22 m	Lab Technician:	EManimbao
Sample Number:	S2	Date Tested:	July 20, 2016

Atterberg Limits (ASTM D4318)

Fax: 204 284 2040

Project Name:	Prefab Building Foundation	Supplier:	AECOM
Project Number:	60513310	Specification:	N/A
Client:	DFO Gimli	Field Technician:	RHarras
Sample Location:	TH16-01	Sample Date:	July 14, 2016
Sample Depth:	4.57 - 5.03 m	Lab Technician:	EManimbao
Sample Number:	S4	Date Tested:	July 19, 2016

Atterberg Limits (ASTM D4318)

Fax: 204 284 2040

Project Name:	Prefab Building Foundation	Supplier:	AECOM
Project Number:	60513310	Specification:	N/A
Client:	DFO Gimli	Field Technician:	RHarras
Sample Location:	TH16-01	Sample Date:	July 14, 2016
Sample Depth:	13.72 - 14.17 m	Lab Technician:	EManimbao
Sample Number:	S10	Date Tested:	July 19, 2016

Atterberg Limits (ASTM D4318)

Fax: 204 284 2040

Project Name:	Prefab Building Foundation	Supplier:	AECOM
Project Number:	60513310	Specification:	N/A
Client:	DFO Gimli	Field Technician:	RHarras
Sample Location:	TH16-01	Sample Date:	July 14, 2016
Sample Depth:	19.81 - 20.27 m	Lab Technician:	EManimbao
Sample Number:	S14	Date Tested:	July 20, 2016

Atterberg Limits (ASTM D4318)

Fax: 204 284 2040

Project Name:	Prefab Building Foundation	Supplier:	AECOM
Project Number:	60513310	Specification:	N/A
Client:	DFO Gimli	Field Technician:	RHarras
Sample Location:	TH16-02	Sample Date:	July 14, 2016
Sample Depth:	2.29 - 2.44 m	Lab Technician:	EManimbao
Sample Number:	G19	Date Tested:	July 20, 2016

Atterberg Limits (ASTM D4318)

Fax: 204 284 2040

Project Name:	Prefab Building Foundation	Supplier:	AECOM
Project Number:	60513310	Specification:	N/A
Client:	DFO Gimli	Field Technician:	RHarras
Sample Location:	TH16-02	Sample Date:	July 14, 2016
Sample Depth:	9.14 - 9.60 m	Lab Technician:	EManimbao
Sample Number:	S24	Date Tested:	July 19, 2016

Atterberg Limits (ASTM D4318)

Fax: 204 284 2040

Project Name:	Prefab Building Foundation	Supplier:	AECOM
Project Number:	60513310	Specification:	N/A
Client:	DFO Gimli	Field Technician:	RHarras
Sample Location:	TH16-02	Sample Date:	July 14, 2016
Sample Depth:	15.24 - 15.70 m	Lab Technician:	EManimbao
Sample Number:	S28	Date Tested:	July 19, 2016

Atterberg Limits (ASTM D4318)

AECOM Canada Ltd. ATTN: SABA IBRAHIM 99 Commerce Drive Winnipeg MB R3P 0Y7 Date Received: 12-AUG-16 Report Date: 18-AUG-16 12:02 (MT) Version: FINAL

Client Phone: 204-477-5381

Certificate of Analysis

Lab Work Order #: L1812916 Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc:

NOT SUBMITTED 60513310

Nin

Gail Hill, B.Sc. Account Manager [This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1812916-1 TH 16-01; S2 Sampled By: CLIENT Matrix: Soil Miscellaneous Parameters							
% Moisture Resistivity	17.6 3140		0.10	% ohm*cm	16-AUG-16	17-AUG-16 18-AUG-16	R3527287
Sulphate	109		20	mg/kg	16-AUG-16	16-AUG-16 18-AUG-16	R3527666
L1812916-2 TH 16-01; G19 Sampled By: CLIENT Matrix: Soil	0.010		0.0040				10020011
Miscellaneous Parameters % Moisture Resistivity	33.7 1340		0.10 1.0	% ohm*cm	16-AUG-16	17-AUG-16 18-AUG-16	R3527287
Sulphate Conductivity	241 0.746		20 0.0040	mg/kg mS/cm	16-AUG-16	16-AUG-16 18-AUG-16	R3527666 R3528371
Conductivity	0.746		0.0040	mS/cm		18-AUG-16	R3528371

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**				
EC-WT	Soil	Conductivity (EC)	MOEE E3138				
A representative subsampl conductivity meter.	A representative subsample is tumbled with de-ionized (DI) water. The ratio of water to soil is 2:1 v/w. After tumbling the sample is then analyzed by a conductivity meter.						
Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).							
MOISTURE-WT	Soil	% Moisture	Gravimetric: Oven Dried				
RESISTIVITY-CALC-WT	Soil	Resistivity Calculation	APHA 2510 B				
Resistivity are calculated b	ased on the	conductivity using APHA 2510B where Conductiv	ity is the inverse of Resistivity.				
RESISTIVITY-CALC-WT	Soil	Resistivity Calculation	MOECC E3138				
Resistivity are calculated based on the conductivity using APHA 2510B where Conductivity is the inverse of Resistivity.							
SO4-WT	Soil	Sulphate	EPA 300.0				
* ALS test methods may incorporate modifications from specified reference methods to improve performance.							

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Quality Control Report

			Workorder:	L1812916	6	Report Date: 18-/	AUG-16	Pa	ge 1 of 2
Client:	AECOM (99 Comm Winnipeg	Canada Ltd. herce Drive MB R3P 0Y7							
Contact:	SADA IDI								
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
EC-WT		Soil							
Batch R WG2370236-1	3528371 LCS								
Conductivity				99.4		%		90-110	18-AUG-16
WG2370069-1 Conductivity	MB			<0.0040		mS/cm		0.044	18-AUG-16
MOISTURE-WT		Soil							
Batch R WG2368557-2 % Moisture	3527287 LCS			99.9		%		90-110	17-AUG-16
WG2368557-1 % Moisture	МВ			<0.10		%		0.1	17-AUG-16
SO4-WT		Soil							
Batch R	3527666								
WG2368454-4 Sulphate	CRM		AN-CRM-WT	96.5		%		60-140	16-AUG-16
WG2368454-3 Sulphate	DUP		L1812916-1 109	105		mg/kg	4.2	30	16-AUG-16
WG2368454-2 Sulphate	LCS			99.3		%		70-130	16-AUG-16
WG2368454-1 Sulphate	МВ			<20		mg/kg		20	16-AUG-16

Quality Control Report

Workorder: L1812916

Report Date: 18-AUG-16

Legend:

Limit DUP	ALS Control Limit (Data Quality Objectives)
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

ALS	LIGIZ91 Environment	Chain of Cus Re Canada To	tody (COC) / / equest Form Il Free: 1 800 668	Analytical 3 9878		L181291	6-CC	DFC					COC N	lumber	r: 14 Page 1/5	- 4 	53 "	19 7	9
Report To			T	Benort Format	<u> </u>			_				ów (Rush	Turnaro	und Tim	e (TAT) is	not eveliet	le for all	tests)	<u></u>
Company:	FCAXA		Select Report For	mat:			P		Regular i	Standard	TAT if	eceived by	v 3om)						
Contact: CA	BA IRPALLI	4.0	Quality Control (O	C) Report with Ber	nort 🗌 Yes			님기	Priority (2-4 husini	ess davs	if receive	d hy Borr	n)					
Address:	A COMMERCE			nort - nrovide details bei	aw if box checked		F	7	Emeroen	cy (1-2 bi	usiness	davs if reo	eived by	3pm)					
VALIAINIE	ZEG MAR I	DRD DTZ	Select Distribution			FAX	E2	H	Same da	v or week	end em	ergency if	receiver	d by 10a	im – conta	act ALS for	surchare	æ.	
Phone:	120,1010 1	<u>-0/0/-/</u> _	Email 1 or Eax.	aba tha	abin Q		Speci	fy Date	Requir	red for E	E2.E o	r P:							
			Email 2			verni un	1	,				An	alysis	Reque					
Invoice To	Same as Report To	Yes E.No	1	 Invoice DI	stribution			1	ndicate f	iltered (F), Prese	rved (P) or	r Filtered	and Prr	eserved (F	/P) below			T
	Copy of Invoice with Report	Yos ENo	Select Invoice Dis	tribution:					1	<u> </u>			<u> </u>					<u> </u>	-
Company:			Empil 1 or Eav	Daha T.C.	main main								-+	 +	+-		+	—	-
Contact:	VRA URDAILLA	~	Email 2	nin +01	GIVM(2C	samion	1												
	+< >++ / / / / / / / / / / / / / / / / / /	<u>′/</u>		and Gas Require	d Fields (client us	بە (م	┫, │												. Se
ALS Queta #:			Approved ID::/		Cost Contor		- Լհ	ト							.				itain
ALS QUOLE #:			Approver ID.		Routing Code		二 ペ	N											ວັ
	23/05/0		GL Account.		[Rodding Code:		17	N											ĕ
PU/AFE:			Activity Code:	Sec. 19		<u> </u>	\mathcal{I}	ド											Pe
LSD:			Location: Color			1. S. 1. 1. 1.	\mathbb{Z}	- N											I I I
ALS Lab Wor	rk Order # (lab use only)		ALS Contact:		Sampler:		3	Ř											
ALS Sample #	Sample iden	tification and/or Coordinates		Date	Time	Sample Tupo	15	୍ୟା								1			
(lab use only)	(This descrip	tion will appear on the report)		(dd-mmm-yy)	(hh:mm)	Sampia Type	ĺ	Ń											
	TH 16-01:	S2				.m/L		\mathbf{X}											
S. S. M. Ash	TH4 10 -02	CP				01	Ž	. /										-	1
	1110 0001				<u> </u>		¥	Y							-+				
1997 (1997) 		<u> </u>												+			—	_	-
3 S		· · · · · · · · · · · · · · · · · · ·												$ \rightarrow $	\perp		\rightarrow		_
a start										Ĩ						-			
					<u> </u>						-				+	<u> </u>	·		
and the second		HNID	J													<u> </u>			+
			· · · · · · · · · · · · · · · · · · ·															<u> </u>	
Sec. Sec.		<u>`</u>	-												<u> </u>				
			/																
														+	-+				
					<u> </u>	l				SAMP	I E CC		NASE	RECEL	VED /la	h use o			
Drinking	g Water (DW) Samples ¹ (client use) Special	Instructions / Speci	fy Criteria to add on	report (client Use)		Froze	n z				S	IF Obs	ervatir	ons i	Yes	<u> </u>	No	
Are samples taker	n from a Regulated DW System?					·	Ice na	cks	Yes		No	n io	Justody	/ seal i	ntact	Yes	П	No	Н
L. Ye	es 🞵 No			ON P	\hat{c}		Coolir	ng Initia	ted	Ē			· · · · · · · · · · · · · · · · · · ·	<u>.</u>		-			L
Are samples for h	uman drinking water use?			251	<u> </u>		IN	IITIAL CO	DOLER T	EMPERA	TURES	•c T		Fil	NAL COO		ERATUR	ES °C	
L Ye	is Ti No			\sim -															
	SHIDMENT PELEASE (alloct			HIPMENT DECED	TION (lab use only)	1	1.1		· · ·	E (L			TREC	EDTIC	N (lob	IPA cel		<u>.</u>	
Released by:	Date:	Time: Receive	ed by:		Date: /	Time:	Rece	lved by		·	ine al	OC WEIN		ate:	<u>na nan t</u>	Time:			<u> </u>
			A·K		Hug12/11	3255				•									
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAM	PLING INFORMATION		WHI	TE LABORATORY	COPY YELLO	W - CLIE	INT CO	PY					NAF	41-0326e 405 Fr	uri/03 Colober 7	013	····	

Feilure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.: Client: Project : Date Tested: Tested By: 60513310 DFO Gimli Prefab Building Foundation 18-Jul-16 EManimbao Hole No.:TH16-01Sample No.:S2Depth:0.76 - 1.22 mDate Sampled:VariesSampled By:AECOM

GRAIN SIZE DISTRIBUTION

(ASTM D422-63)

MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada

tel (204) 477-5381 fax (204) 284-2040

Job No.: Client: Project : Date Tested: Tested By:

60513310 DFO Gimli Prefab Building Foundation 18-Jul-16 EManimbao

Hole No.: TH16-01 Sample No.: **S4** 4.57 - 5.03 m Depth: Date Sampled: Varies Sampled By: AECOM

GRAVEL SIZES		SAN	D SIZES	FINES		
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	
50.0	100.0	2.00	91.5	0.0750	60.8	
38.0	100.0	0.83	82.4	0.0601	56.6	
25.0	100.0	0.43	77.1	0.0428	55.2	
19.0	98.2	0.18	72.3	0.0306	52.3	
12.5	96.3	0.15	67.7	0.0221	47.9	
9.5	96.3	0.075	60.8	0.0158	45.0	
4.75	95.0			0.0118	39.2	
2.00	91.5			0.0085	34.8	
				0.0061	30.5	
				0.0044	24.7	
				0.0031	21.7	
				0.0022	18.8	
				0.0013	15.9	

GRAIN SIZE DISTRIBUTION CURVE

** Note: Soil Classification based on Grain Size from Canadian Foundation Engineering Manual, 3rd edition (1992).

MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada

tel (204) 477-5381 fax (204) 284-2040

Job No.: Client: Project : Date Tested: Tested By:

Gravel

Sand

60513310 DFO Gimli Prefab Building Foundation 18-Jul-16 EManimbao
 Hole No.:
 TH16-01

 Sample No.:
 S10

 Depth:
 13.72 - 14.17 m

 Date Sampled:
 Varies

 Sampled By:
 AECOM

	GRAVE	EL SIZES	SAN	D SIZES	FIN	ES
Grain Siz	e (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.	0	100.0	2.00	89.8	0.0750	55.7
38.	0	100.0	0.83	78.9	0.0617	49.9
25.	0	100.0	0.43	72.6	0.0441	47.0
19.	0	100.0	0.18	67.4	0.0316	44.2
12.	5	97.1	0.15	62.3	0.0226	41.3
9.8		95.8	0.075	55.7	0.0162	37.0
4.7	5	94.2			0.0121	32.8
2.0	0	89.8			0.0087	28.5
					0.0062	24.2
					0.0045	19.9
					0.0010	17.1
					0.0032	14.0
					0.0023	14.2
					0.0013	11.4
	Clay	Silt		Sand	Gravel	
100		Fine Medium	Coarse Fine	Medium Coarse	Fine Medium	Coarse
06 09 09 09 09 09 09						
b 30						

** Note: Soil Classification based on Grain Size from Canadian Foundation Engineering Manual, 3rd edition (1992).

10.19%

40.22%

0.010

0.100

Grain Diameter, mm

1.000

Silt

Clay

10.000

36.22%

13.38%

100.000

MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.: Client: Project : Date Tested: Tested By: 60513310 DFO Gimli Prefab Building Foundation 18-Jul-16 EManimbao
 Hole No.:
 TH16-01

 Sample No.:
 S14

 Depth:
 19.81 - 20.27 m

 Date Sampled:
 Varies

 Sampled By:
 AECOM

GRAVEL SIZES		D SIZES	FINES		
Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	
100.0	2.00	88.1	0.0750	56.9	
100.0	0.83	79.3	0.0609	51.7	
100.0	0.43	73.1	0.0436	48.9	
100.0	0.18	67.9	0.0312	46.1	
93.9	0.15	63.1	0.0223	43.3	
91.7	0.075	56.9	0.0162	37.7	
91.5			0.0119	34.9	
88.1			0.0086	30.7	
			0.0062	25.1	
			0.0044	20.9	
			0.0032	18.1	
			0.0023	15.3	
			0.0013	12.5	
	Total Percent Passing 100.0 100.0 100.0 93.9 91.7 91.5 88.1	Total Percent Passing Grain Size (mm.) 100.0 2.00 100.0 0.83 100.0 0.43 100.0 0.18 93.9 0.15 91.7 0.075 91.5 88.1	Total Percent Passing Grain Size (mm.) Total Percent Passing 100.0 2.00 88.1 100.0 0.83 79.3 100.0 0.43 73.1 100.0 0.18 67.9 93.9 0.15 63.1 91.7 0.075 56.9 91.5	Total Percent Passing Grain Size (mm.) Total Percent Passing Grain Size (mm.) 100.0 2.00 88.1 0.0750 100.0 0.83 79.3 0.0609 100.0 0.43 73.1 0.0436 100.0 0.18 67.9 0.0312 93.9 0.15 63.1 0.0223 91.7 0.075 56.9 0.0162 91.5 0.0086 0.0086 0.0062 0.0044 0.0032 0.0023 0.0013 0.0013	

GRAIN SIZE DISTRIBUTION CURVE

** Note: Soil Classification based on Grain Size from Canadian Foundation Engineering Manual, 3rd edition (1992).

MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.: Client: Project : Date Tested: Tested By: 60513310 DFO Gimli Prefab Building Foundation 18-Jul-16 EManimbao Hole No.:TH16-02Sample No.:G19Depth:2.29 - 2.44 mDate Sampled:VariesSampled By:AECOM

	GRAVE	L SIZES	SAN	D SIZES	FIN	ES
Grain Size	(mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0		100.0	2.00	99.9	0.0750	98.3
38.0		100.0	0.83	99.5	0.0503	98.3
25.0		100.0	0.43	99.1	0.0356	98.3
19.0		100.0	0.18	98.7	0.0252	98.3
12.5		100.0	0.15	98.3	0.0180	95.8
9.5		100.0	0.075	90.3	0.0120	90.2
2.00		00.0			0.0054	03.6
2.00		55.5			0.0007	95.0
		101 I			0.0046	90.4
					0.0035	01.2
					0.0025	84.1
					0.0018	80.9
			· · · · · ·		0.0011	/6.1
	г <u>г</u>	GRAIN	SIZE DISTR		VE	
	Clay	Fine Medium	Coarse Fine	Sano Medium Coarse	Fine Medium	Coarse
100	1				─── ──	
90						
00						
80 -						
▶ 70						
u de						
ії ⁶⁰						
± 50						
ö 40						
. 30						
L						
20						
10						
0						
0	04	0.040	0.400	4 000	40.000	400.000
0.0	101	0.010	0.100	1.000	10.000	100.000
			Grain [Diameter, mm		
Grave	el	0.0	7%	Silt	16.4	7%
Sand		1 6	1 EQV/ Clay 94 969			16%
Sano		1.5	J /0	Ciay	01.0	0 /0

MATERIALS LABORATORY AECOM

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.: Client: Project : Date Tested: Tested By: 60513310 DFO Gimli Prefab Building Foundation 18-Jul-16 EManimbao
 Hole No.:
 TH16-02

 Sample No.:
 S24

 Depth:
 9.14 - 9.60 m

 Date Sampled:
 Varies

 Sampled By:
 AECOM

GRAVE	GRAVEL SIZES		D SIZES	FINES		
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	
50.0	100.0	2.00	90.4	0.0750	60.9	
38.0	100.0	0.83	82.3	0.0617	50.2	
25.0	100.0	0.43	76.9	0.0441	47.3	
19.0	100.0	0.18	71.8	0.0316	44.5	
12.5	97.1	0.15	67.3	0.0227	40.2	
9.5	95.2	0.075	60.9	0.0163	35.8	
4.75	94.6			0.0121	33.0	
2.00	90.4			0.0087	28.7	
				0.0062	24.4	
				0.0045	18.6	
				0.0032	15.7	
				0.0023	14.3	
				0.0013	11.4	

GRAIN SIZE DISTRIBUTION CURVE

** Note: Soil Classification based on Grain Size from Canadian Foundation Engineering Manual, 3rd edition (1992).

MATERIALS LABORATORY AECOM

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.: Client: Project : Date Tested: Tested By: 60513310 DFO Gimli Prefab Building Foundation 18-Jul-16 EManimbao
 Hole No.:
 TH16-02

 Sample No.:
 S28

 Depth:
 15.24 - 15.70 m

 Date Sampled:
 Varies

 Sampled By:
 AECOM

GRAVEL SIZES		SAN	D SIZES	FINES		
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	
50.0	100.0	2.00	91.6	0.0750	61.2	
38.0	100.0	0.83	83.3	0.0650	37.8	
25.0	100.0	0.43	77.6	0.0462	36.3	
19.0	100.0	0.18	72.5	0.0329	34.8	
12.5	97.7	0.15	67.6	0.0235	31.9	
9.5	96.5	0.075	61.2	0.0168	29.0	
4.75	95.5			0.0123	27.6	
2.00	91.6			0.0088	24.7	
				0.0063	21.8	
				0.0045	17.4	
				0.0032	14.5	
				0.0023	11.6	
				0.0013	8.7	
1			1			

GRAIN SIZE DISTRIBUTION CURVE

** Note: Soil Classification based on Grain Size from Canadian Foundation Engineering Manual, 3rd edition (1992).