

RETURN BIDS TO: RETOURNER LES SOUMISSIONS A :

Procurement & Contracting Services Bid Receiving Unit VISITOR'S CENTRE - Main Entrance 73 Leikin Drive, Mailstop #15 Ottawa, Ontario K1A 0R2 Canada Attn: Shannon Plunkett

Services d'acquisitions et des marchés Module de réception des soumissions CENTRE DES VISITEURS - Entrée Principale 73 promenade Leikin, arrêt postal nº15 Ottawa (Ontario) K1A 0R2 Canada A/S : Shannon Plunkett

SOLICITATION AMENDMENT

MODIFICATION DE L'INVITATION

The referenced document is hereby revised; unless otherwise indicated, all other terms and conditions of the Solicitation remain the same.

Ce document est par la présente révisé; sauf indication contraire, les modalités de l'invitation demeurent les mêmes.

Comments: - Commentaries :

Title – Suj RCMP Pat	nsportation		Date October 31, 2016		
Solicitatio 201605344	n No. – № de 4/B	l'invitation			endment No. – de la modification I
Client Ref 201605344	erence No I 1	No. De Référe	ence du (Clier	nt
Solicitatio	n Closes – L'	invitation pro	end fin		
At /à :	2 :00 PM				Γ (Eastern Standard Time) Ε (heure normale de l'Est)
On / le :	November 1	7, 2016			
Delivery -	Livraison	Taxes - Tax	es		Duty – Droits
Destinations services	on of Goods a	nd Services	– Destina	atior	ns des biens et
Instructio See hereir	ns n — Voir aux p	résentes			
Adresser	n quiries to – t oute demano anski (anna.ro:				
Telephone 613-843-6	972	e téléphone	Facsim 613-825		lo. – No. de télécopieur 32
Delivery R Livraison			Delivery Livraiso		fered – roposée
	rm Name, Ad t représentan				– Raison sociale, epreneur:
Telephone	e No. – No. de	e téléphone	Facsim	ile N	lo. – No. de télécopieur
Name and (type or p	title of perso rint) – Nom et seur/de l'ent	on authorized t titre de la pe	l to sign o ersonne a	on b auto	lo. – No. de télécopieur ehalf of Vendor/Firm risée à signer au nom e en caractères

Canadä

This amendment is raised to address the following:

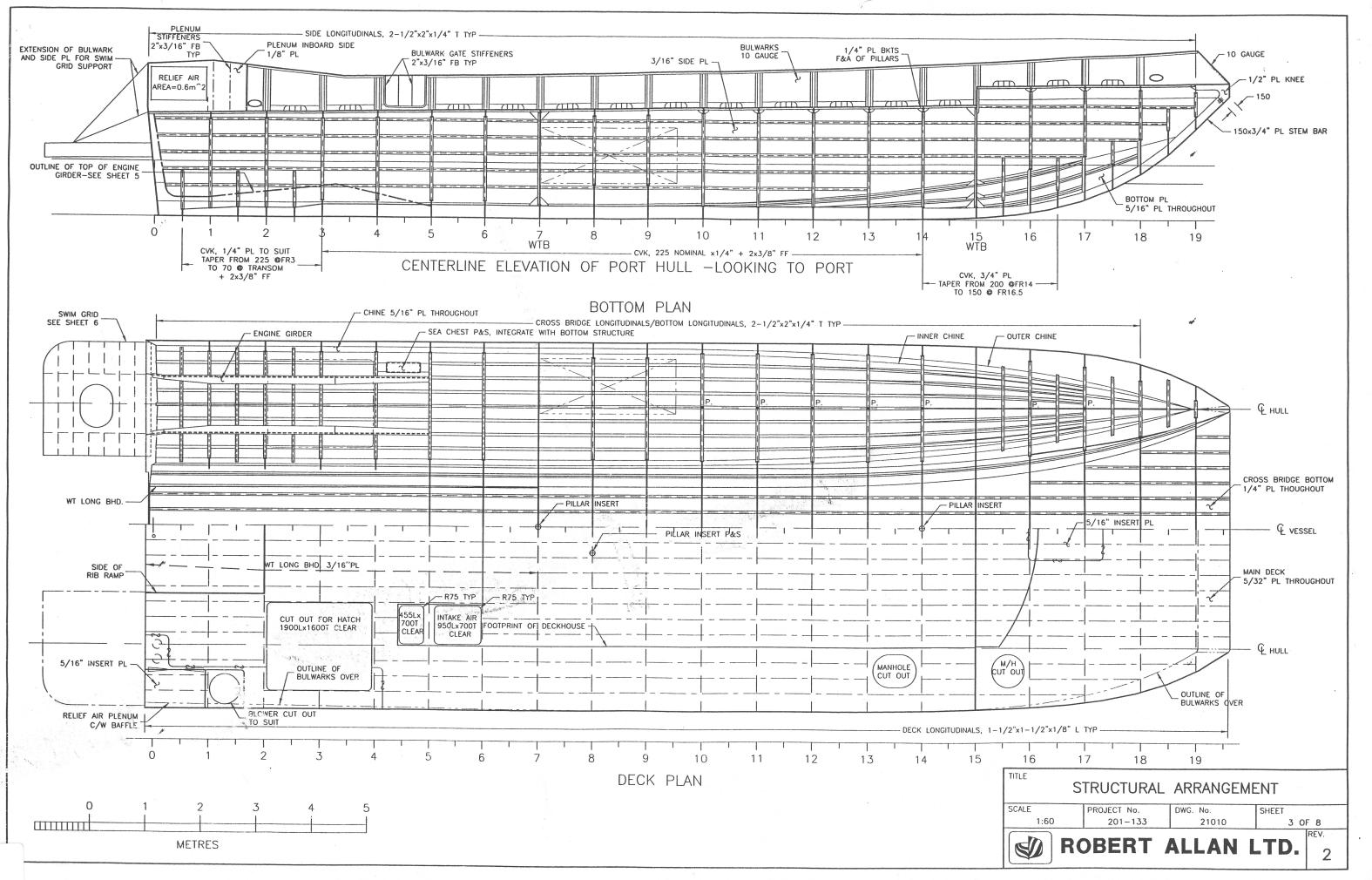
- To respond to questions received during the solicitation period; and
- To revise the solicitation accordingly, as applicable.

QUESTIONS AND ANSWERS

- Question 1: The Insurance Requirements detailed in Annex B of the RFP, the Contractor must insure for not less than \$10,000,000.00 on Replacement Cost (new) basis. Can you confirm the replacement value will not exceed \$10,000,000? If it does exceed \$10,000,000.00, what would the value be?
- Answer 1: RCMP cannot confirm that replacement value will not exceed \$10,000,000.00. The exact Replacement Cost (new) is unknown. Ten million dollars is RCMP's best estimate, excluding cost of on board equipment.
- Question 2: Will the Zodiac and life rafts be transported as well? And will equipment inside the vessel be secured for sea?
- Answer 2: All equipment on board will be transported with the vessel as described in Annex A: Statement of Work, article 7 Contractor's Obligations.
- Question 3: Will the UHF and VHF antennas be removed for transport?
- Answer 3: All equipment on board will be transported with the vessel as described in Annex A: Statement of Work, article 7 Contractor's Obligations.
- Questions 4: Are there restrictions on the lifting of the vessel?
- Answer 4: Documents are provided in subsequent pages of this amendment for determination of lifting arrangements. These documents and answer 5 below should allow calculation of Centre of Gravity of the vessel, as per Question 2 of RFP amendment 003.
- Question 5: How much fuel is on board?
- Answer 5: Tank 1 has 963 litres and Tank 2 has 970 litres of diesel fuel. (Tank 4 has 98 litres of fresh water and Tank 5 has 98 litres of fresh water.)
- Question 6: Will an earlier transport date be considered more favourably than a later date?
- Answer 6: No, an earlier transport date is not more favourable than a later date. Please refer to the Basis of Selection on page 8 of the RFP which states, "A bid must comply with the requirements of the bid solicitation and meet all mandatory technical evaluation criteria to be declared responsive. The responsive bid with the lowest evaluated price will be recommended for award of a contract."
- Question 7: How will other options (modes of transport) than the preferred option be evaluated?
- Answer 7: Other modes of transport are evaluated at mandatory technical evaluation criterion M5. The criterion is further clarified and amended at Solicitation Revision 1 below.

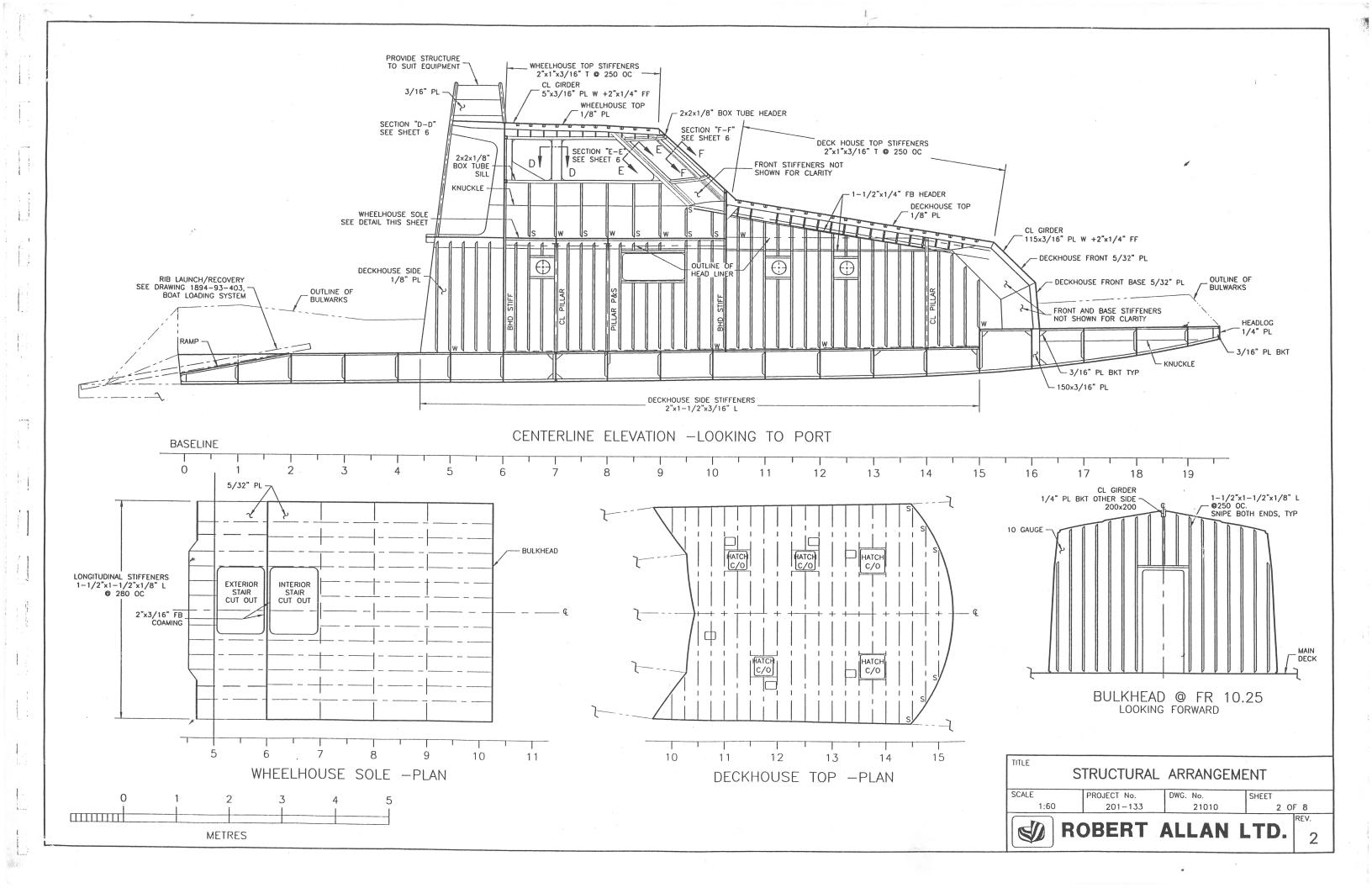
SOLICITATION REVISIONS

1) On page 23-24, D2.2 Mandatory Criteria Table,


Delete:

M5	The preferred method of transportation is for the Patrol Vessel to be carried on a larger vessel however other modes of transport would be considered if they are more cost effective and do not involve higher risk.
	If the Bidder proposes a method of transport other than the preferred, the Bidder must demonstrate that the proposed method does not involve higher risk.

Insert:


M5	The preferred method of transportation is for the Patrol Vessel to be carried on a larger vessel however other modes of transport would be considered.	
	If the Bidder proposes a mode of transport other than the preferred, the Bidder must provide a detailed description of all risks and explain how each risk will be mitigated.	
	RCMP will determine, at its sole discretion, that the proposed other mode of transport does not involve higher risk and that the risks and mitigation strategies outlined by the Bidder are acceptable.	

2) The solicitation closing date is extended to November 17, 2016 as detailed on page 1 of this amendment. The tender notice at <u>https://buyandsell.gc.ca/procurement-data/tender-notice/PW-16-00750146</u> is revised accordingly.

1

N.

III E.Y.E. MARINE CONSULTANTS

Suite 1, 327 Prince Albert Road, Dartmouth, Nova Scotia, Canada B2Y 1N7

Tel: (902) 463-8940 Fax: (902) 463-6319

"MURRAY"

TRIM AND STABILITY BOOKLET

1%

BY:E.Y.E. MARINE CONSULTANTSFOR:A.F. THERIAULT & SON LTD.DATE:15 MARCH 2005JOB NO:04060

H:VAFVes DAOGONSTAB-COVERING

email: eye@eyemarine.com

website: www.cyemarine.com

'MURRAY'

TABLE OF CONTENTS

- 1. General Particulars
- 2. Nomenclature and Datums
- 3. Notes to Master Regarding Stability and Loading of Vessel
- 4. General Arrangement Drawing
- 5. Draft Marks & Datums Drawing
- 6. Tank Capacities
- 7. Hydrostatic Properties
 - 1. Hydrostatic Data and Curves
 - 2. Righting Arm Data and Cross Curves of Stability

11

- 8. Intact Loading Conditions
 - 1. Lightship (Non-operational)
 - 2. Full Load Departure (Worst Operating)
 - 3. Port Arrival
- 9. Stability Calculation Worked Example
- 10 Inclining Experiment Report

H:\04flles\04060\04060-stbk.doc

GENERAL PARTICULARS

email: eye@eyemarine.com

website: www.eyemarine.com

E.Y.E. MARINE

.....

'MURRAY'

PRINCIPAL PARTICULARS

Vessel Name:

'MURRAY'

A.F. Theriault

Type: Patrol Vessel

Built

2005 Length, Overall 19.75m

Length Between Perpendiculars 17.60m

Length on Waterline 17.68m

Beam 6.70m

Depth 1.99m

No. of Crew

Draft

4

0.70m

.

• · ····· ·

2

NOMENCLATURE AND DATUMS

1

email: eye@cyemarine.com

website: www.eyemarine.com

.

...

'MURRAY'

1

NOMENCLATURE AND DATUMS

a	- Aft of midships
B.O.K.	- Bottom of keel
Critical Height	- Vertical distance from the waterline to the critical point.
Critical Points	- Points on the vessel which would cause progressive flooding if immersed.
Deck Imm	- The angle at which any point of the weather deck is submerged.
Depth	- Distance from the origin to the waterplane and measured perpendicular to the waterplane. It is used in place of "draft" which becomes undefined at significant angles of heel.
Displ. (MT)	- The total weight of the vessel in Metric tons
f	- Forward of midships
FSM	- Free surface moment
GML	- The longitudinal metacentre (used for trim calculations only)
GMT	- The transverse geometric metacentre (i.e. the distance from the vessel's VCG to the metacentre)
GM Upright	- The GM of the vessel if it were at zero heel (may not be the current loading)
KML	- The distance from the baseline to the longitudinal metacentre.
KMT	- The distance from the baseline to the transverse metacentre.
KN	 The righting arm calculated for various angles assuming the VCG = 0. Must be corrected for free surface to determine the actual righting arm.

i

..

WURRAY '

2

LCB	- The longitudinal centre of buoyancy measured from the origin.
LCF	- The longitudinal centre of flotation measured from the origin.
LCG	- The longitudinal centre of gravity measured from the origin.
Max FSM	- The maximum free surface of a tank (may not be the current loading).
Moment/deg Trim	- Moment to change trim 1 degree
Origin	- The origin is the intersection of the three orthogonal co-ordinate axes (see datum points)
SpGr	- Specific Gravity: weight of a liquid relative to FW (i.e SW is 1.025, FO is 0.87)
TCB	- Transverse centre of buoyancy
TCG	- Transverse centre of gravity.
VCB	- Vertical centre of buoyancy above keel.
VCG	- Vertical centre of gravity above keel
Weight/cm	- Weight, in MT, required to sink vessel 1 cm.

1

H:\0411les\04060\04060-stbk.doc

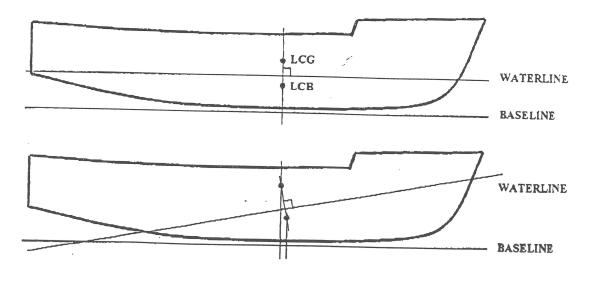
'MURRAY'

3

ORIGIN PLANES

Vertical: Baseline (BL) is as defined on enclosed datums drawing

<u>Perpendiculars</u>: Planes located at the aft and fwd draft mark locations Aft perpendicular located 8.808m aft of midships. Fwd perpendicular located 8.788m fwd of midships as defined on enclosed datums drawing


<u>Transverse</u>: The centerline of the vessel with starboard designated as positive.

Longitudinal: Midships – a plane 194mm aft of frame 9 as defined on enclosed datums drawing.

<u>NOTE</u>: Weights centers are measured in the plan of the vessel, i.e. along the baseline or centerline.

All references are in "Boat Co-ordinates" (baseline, etc.) If the waterplane is not parallel to the baseline (trimmed or heeled condition) then the line between the LCG and LCB, which is perpendicular to the waterplane, cannot be perpendicular to the baseline plane. Hence, if the LCG and LCB are separated vertically then equal and parallel references from the origin on the baseline plane cannot be equal and parallel on the waterplane.

The important point to remember is that the definition of equilibrium is: RA (Righting Arm) = 0

H:\04files\04060\04060-stbk.doc

NOTES TO MASTER

cmail: cye@cycmarine.com

website: www.eyemarine.com

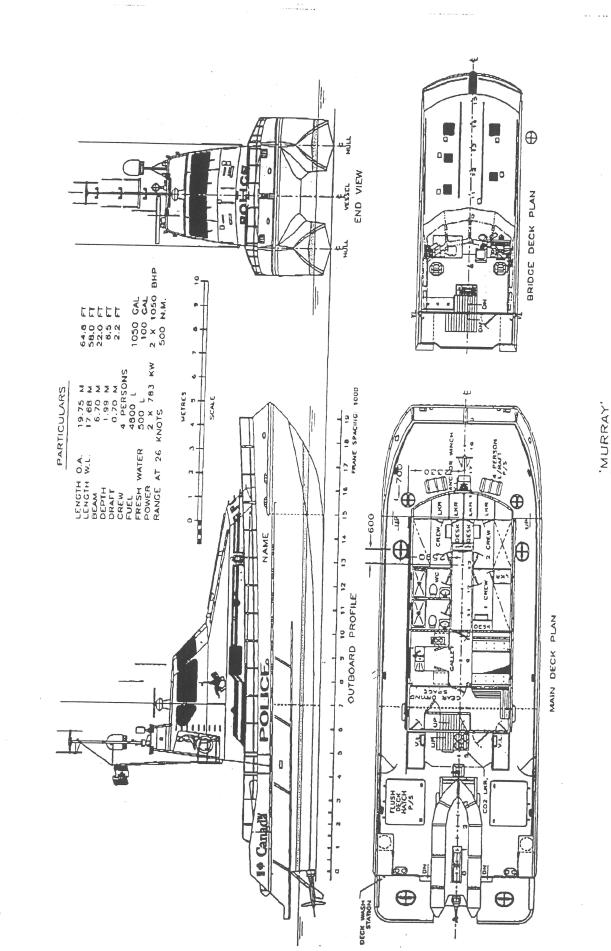
'MURRAY'

Notes to Master Regarding Stability and Loading of Vessel

- 1. Compliance with the stability criteria indicated does not ensure immunity against capsizing regardless of the circumstances, or absolve the master from his responsibilities. Masters should, therefore, exercise prudence and good seamanship having regard to the season of the year, weather forecasts and the navigational zone and should take the appropriate action as to speed and course warranted by the prevailing circumstances.
- 2. Care should be taken to ensure that the cargo allocated to the vessel is capable of being stowed so that the compliance with the criteria can be achieved. If necessary, the amount should be limited to the extent that ballast weight may be required.
- 3. Before a voyage commences care should be taken to ensure cargo and pieces of equipment have been properly stowed or lashed so as to minimize the possibility of both longitudinal and lateral shifting while as sea under the effect of acceleration caused by rolling and pitching.
- 4. The stability of this vessel has been evaluated according to TP7301, Stab 6. As this vessel is a a catamaran, the maximum righting arm occurs at a lesser engle than stated in the regulations and the point of vanishing stability occurs at 36.92 degrees in the port arrival condition. Because the upright GM exceeds the required value by approximately 40 times and the area under the curve to 40 degrees (or when RA=0) exceeds the required value by approximately 5 times, the vessel has sufficient righting energy to operate safely.

.....

902 463 6319 P.12


بالمعاجرين فيعمدها بمندم مرهداه

4

GENERAL ARRANGEMENT

cmall: cyc@eyemarine.com

website: www.eyemarine.com

"MURRAY" GENERAL ARRANGEMENT

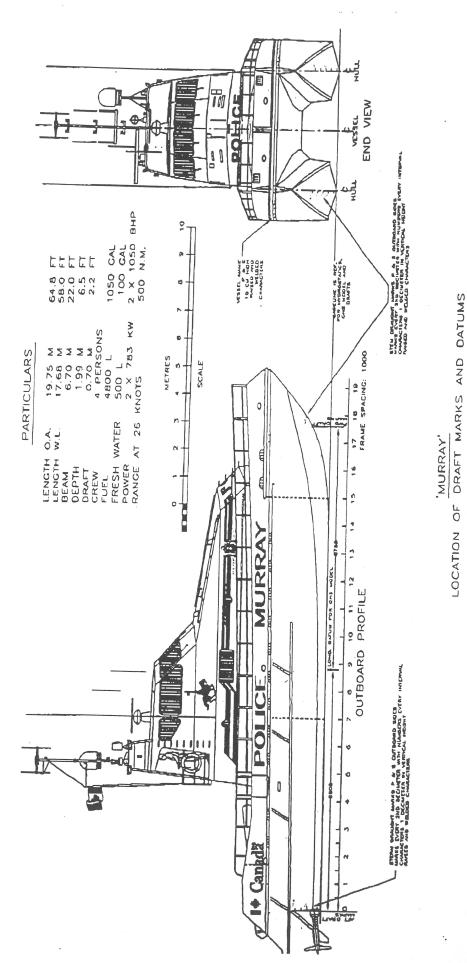
1

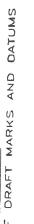
1

......

. Menore's Minudian .

5


. . .


DRAFT MARKS AND DATUMS

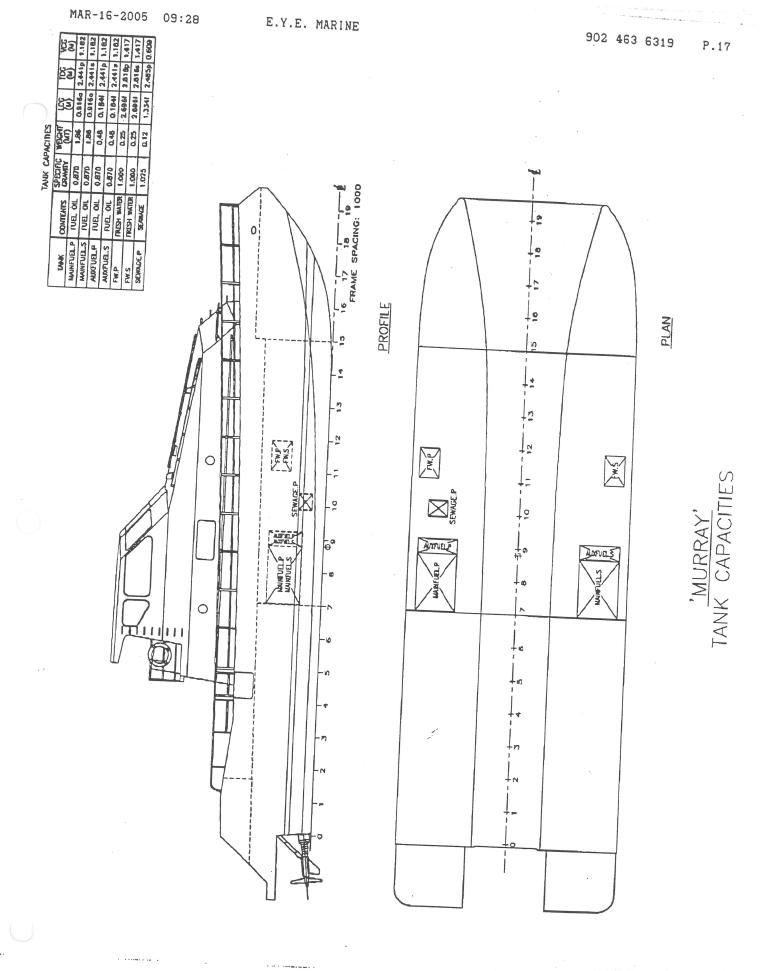
cmail: eyc@cycmarine.com

ł

website: www.cyemarine.com

.....

The second of comments to


6

TANK CAPACITIES

4

cmail: cyc@cyemarine.com

website: www.eyemarine.com

05-03-15 11:25:24	E.Y.E. Marine Consultants	Page 2
GHS 8.06A	MURRAY	04060
PartLoad- MAINFUEL.S 1.000 MAINFUEL.P 1.000 AUXFUEL.S 1.000 AUXFUEL.P 1.000 FW.S 1.000 FW.P 1.000 SEWAGE.P 1.000 Total Tanks Distances in METERS	TANK STATUS Trim: zero, Heel: zero 0.870 1.86 0.916a 2.441s 1.182 0.870 1.86 0.916a 2.441p 1.182 0.870 1.86 0.916a 2.441p 1.182 0.870 0.48 0.184f 2.441p 1.182 0.870 0.48 0.184f 2.441p 1.182 0.870 0.48 0.184f 2.441p 1.182 1.000 0.25 2.696f 2.816s 1.417 1.025 0.12 1.334f 2.485p 0.609 -> 5.30 0.325f 0.056p 1.191	0.22 0.22 0.06 0.06 0.01 0.01 0.01

1

/

05-03-15 11:25:24 E.Y.E. Marine Consultants GHS 8.06A

MURRAY

Page 3 04060

and the second second

TANK CHARACTERISTICS No Trim, No Heel

···· ···· ··· · ·

Tank: MAINFUEL.P, Contents: FUEL OIL at 0.870 Specific Gravity

						CITIC GIAV	μty
Cu M	Volume		Cer	ter of a	Fravity		Dette
Snding	LITERS	METRIC TON	LCG	TCG	VCG	C) C	FSM
						GML	MMT
0	0	0.00					
20	35	0.03	0,916a	2.355p	0.660	10.00	
40	70	0.06	0.916a	2.360-	0.670	12.88	0.13
60	107	0.09	0 9162	2.3000	0.670	6.50	0.14
08	143	0.12	0.9162	2.365p	0.680	4.38	0.15
100	181	0,16	0.016-	2.370p	0.691	3.31	0.16
120	219	0.19	0.9104	2.375p		2.67	0.17
140	258	0.22	0.916a			2.25	0.18
160	298	0.22	0.916a			1.94	0.19
180	338		0.916a			1.71	0.20
200	379	0.29	0.916a			1.53	0.21
220		0.33	0.916a		0.753	1.39	0.22
240	421	0.37	0.916a		0.764	1.25	0.22
260	462	0.40	0.916a	2.410p	0.774	1,14	0.22
	503	0.44	0.916a	2.413p	0.784	1.05	0.22
280	545	0.47	0.916a	2.416p	0.795	0.97	
300	586	0.51	0.916a	2.419p	0.805	0.90	0.22
320	628	0.55	0.916a	2.421p	0.815		0.22
340	669	0.58	0.916a		0.825	0.84	0.22
360	710	0.62	0.916a		0.836	0.79	0.22
380	752	0,65	0.916a	2.425p		0.74	0.22
400	793	0,69	0.916a		0.846	0.70	0.22
420	834	0.73	0.916a		0.856	0,67	0.22
440	876	0,76	0.916a		0,866	0.63	0.22
460	917	0.80	0.916a		0.876	0.60	0.22
480	959	0.83	0.916a			0.58	0.22
500	1000	0.87	0.9164			0.55	0.22
520	1041	0.91	0.916a			0.53	0.22
540	1083	0.94	0.916a		0.917	0.51	0.22
560	1124		0.916a		0.927	0.49	0.22
580	1165	0,98	0.916a		0.937	0.47	0.22
600	1207	1.01	0.916a	2.434p	0.947	0.45	0.22
620		1.05	0.916a		0.957	0.44	0.22
640	1248	1.09	0.916a	2.435p	0.967	0.42	0.22
660	1290	1.12	0.916a	2.436p	0.977	0.41	0.22
680	1331	1.16	0.916a	2.436p	0.987	0.40	0,22
700	1372	1.19	0.916a	2.437p		0.38	0.22
	1414	1.23	0.916a	2.437p	1.007	0.37	0.22
720	1455	1.27	0.916a	2.437p	1.017	0.36	0.22
740	1496	1.30	0.916a	2.438p	1.027	0.35	
760	1538	1.34	0,916a	2.438p	1.037	0.33	0.22
780	1579	1,37	0.916a	2.438p			0.22
800	1621	1.41	0.916a		1 057	0.33	0.22
820	1662	1.45	0.916a		1 067	0.33	0.22
840	1703	1 48	0 016-	2 120-	1 077	0.32	0.22
Soundings	in mm P Reference	-Other dist	anana in	100mma		0.31	0.22
MAINFUEL.	P Reference	Point: Lon		162 70-	na - 0 +	E0_ ••	
	(Zero S	ounding is	at the D			oup vert.	= 0,650

(Zero Sounding is at the Reference Point.) vert. 0,650 ٧Þ

.

.

GHS 8.06A

· · · · · · · · · ·

05-03-15 11:25:24 E.Y.E. Marine Consultants MURRAY

Page 4 04060

.....

TANK CHARACTERISTICS, continued No Trim, No Heel Tank: MAINFUEL.P, Contents: FUEL OIL at 0.870 Specific Gravity

							-
Snding	Volume LITERS M	Weight ETRIC TON	Cent LCG	er of Gr TCG	avity VCG	GML	FSM MMT
860 880 900 920 940 960 980 1000 1020 1040 1050 Soundings in MAINFUEL P	1745 1786 1827 1869 1910 1952 1993 2034 2076 2117 2137 mm	1.86 -Other dis	0.916a	2.440p 2.440p 2.440p 2.441p 2.441p 2.441p 2.441p 2.441p 2.441p 2.441p	1.107 1.117 1.127 1.137 1.147 1.157 1.168 1.178 1.182	0.30 0.29 0.28 0.28 0.27 0.26 0.26 0.26 0.25 0.25	0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22
MAINFUEL.P	Kererence	Point: Lo	ng.= 0.9	916a Tra	ans.= 2.	450p Vert	= 0.650

(Zero Sounding is at the Reference Point.) 2.450p Vert.= 0.650

1

.

GHS 8.06A

05-03-15 11:25:24 E.Y.E. Marine Consultants MURRAY

Page 5 04060

TANK CHARACTERISTICS No Trim, No Heel

Tank: MAINFUEL.S, Contents: FUEL OIL at 0.870 Specific Gravity

Snding	Volume LITERS ME	Weight TRIC TON	Cent LCG	ter of Gr TCG	avity VCG	GML	FSM MMT
0	0	0,00				********	
20	35	0.03	0,916a	2,355s	0,660	12.88	0.13
40	70	0.06	0.916a			6,50	0.14
60	107	0.09	0.916a			4.38	0.15
80	143	0.12		2.370s		3.31	0.16
100	181	0.16	0.916a	2.3755			
120	219	0.19	0.916a	2.380s		2.25	0.18
140	258	0.22		2.3865	0.722	1.94	0.19
160	298	0.26	0.916a	2.391s		1,71	0.20
180	338	0.29	0.916a		0.743	1.53	0.21
200	379	0.33	0.916a	2,401s	0.753	1.39	0.22
220	421	0.37	0.916a			1.25	0.22
240	462	0.40	0.916a	2.410s		1.14	0.22
260	503	0.44	0.916a	2.413s		1.14	0.22
280	545	0.47	0.916a	2.4165			0.22
300	586	0.51	0.916a		0.805		
320	628	0.55	0.916a			0.84	0.22
340	669	0.58	0.916a	2.422s		0.84	0.22
360	710	0.62	0.916a	2.424s		0.79	0,22
380	752	0.65	0,916a			0.74	0.22
400	793	0.69	0.916a				0.22
420	834	0.73	0.916a			0.67	0.22
440	876	0.76		2.4293		0.63	0.22
460	917	0.80	0.916a				0.22
480	959	0.83	0.916a				0.22
500	1000	0.87	0.916a				0.22
520	1041	0.91	0.916a				0.22
540	1083		0.916a			0.51	0.22
560	1124	0.98	0.916a			0.49	0.22
580	1165	1.01	0.916a 0.916a			0.47	0.22
600	1207	1.05	0.916a			0.45	0.22
620	1248	1.09				0.44	0.22
640	4000	. 1.12		2.4355			0.22
660	1331	1.12		2.4365	0.977		0.22
680	1372	1.19	0.916a 0.916a		0.987		0.22
700	1414	1.13	0.916a				0.22
720	1455	1.23	0.916a 0.916a	2.437s	1.007		0.22
740	1496	1.30		2.437s	1.017	0.36	0.22
760	1538	1.30	0.916a	2.438s	1.027	0.35	0.22
780	1538			2.4385		0.34	0.22
800	1621	1.37	0.916a	2.4383		0.33	0.22
820	1662	1.41	0.916a			0.33	0.22
840	1703	1.45	0.916a			0.32	0.22
	1705 1 mm	1.48	0.916a	2.4393	1.077	0.31	0.22

(Zero Sounding is at the Reference Point.)

05-03-15 11:25:24 GHS 8.06A

E.Y.E. Marine Consultants MURRAY

. .

Page 6 04060

TANK CHARACTERISTICS, continued No Trim, No Heel Tank: MAINFUEL.S, Contents: FUEL OIL at 0.870 Specific Gravity

Volume Weight Center of Gravity LITERS METRIC TON LCG TCG VCG GML FSM Snding M.-MT _____

 1745
 1.52
 0.916a
 2.439s
 1.087
 0.30

 1786
 1.55
 0.916a
 2.440s
 1.097
 0.30

 1827
 1.59
 0.916a
 2.440s
 1.107
 0.29

 1869
 1.63
 0.916a
 2.440s
 1.117
 0.28

 1910
 1.66
 0.916a
 2.440s
 1.127
 0.28

 1952
 1.70
 0.916a
 2.441s
 1.137
 0.27

 1993
 1.73
 0.916a
 2.441s
 1.147
 0.26

 2034
 1.77
 0.916a
 2.441s
 1.157
 0.26

 2076
 1.81
 0.916a
 2.441s
 1.168
 0.25

 2117
 1.84
 0.916a
 2.441s
 1.178
 0.25

 2137
 1.86
 0.916a
 2.441s
 1.182

 _____ 860 0.22 880 0.22 900 0.22 920 0.22 940 960 0.22 980 0,22 1000 0.22 1020 0.22 1040 0.22 1060 Soundings in mm.-----Other distances in METERS.----MAINFUEL.S Reference Point: Long.= 0.916a Trans.= 2.450s Vert.= 0.650 (Zero Sounding is at the Reference Point.)

1.

-

, !

GHS 8.06A

05-03-15 11:25:24 E.Y.E. Marine Consultants MURRAY

Page 7 04060

TANK CHARACTERISTICS No Trim, No Heel

Tank: AUXFUEL.P, Contents: FUEL OIL at 0.870 Specific Gravity

Snding	Volume LITERS ME	Weight TRIC TON	Cen LCG	ter of G TCG	ravity VCG	GML	FSM MMT
0	0	0.00					
20	9	0,01	0.184f	2.355p	0,660	0,85	0.0
40	18	0.02	0.184f			0.43	0.0
60	27	0.02	0.184f			0.29	0.0
80	37	0.03	0.184f	2.370p		0.22	
100	47	0.04	0.184f	2.375p		0.18	0,0
120	56	0.05	0.184f			0.15	0.0
140	66	0.06	0.184f			0.13	0.0
160	77	0.07	0.184£	2.391p	0.732		0.0
180	87	0.08	0.184f	2.396p	0.743	0.11	0.0
200	98	0,08	0.184f	2.401p		0.10	0.0
220	108	0.09	0.184f	2.401p 2.406p	0.764	0.09	0.0
240	119	0.10	0.184f	2.400p 2.410p		0.08	0.0
260	130	0.11	0.184f			0.08	0.0
280	140	0.12	0.1841 0.184f	2.413p		0.07	0.0
300	151	0.12		2.416p		0.06	0.0
320	161	0.13	0.184f	2.419p		0.06	0.0
340	172		0.184f	2.421p		0.06	0.0
360	183	0.15	0.184f	2.422p		0.05	0.0
380	193	0.16	0.184f	2.424p		0.05	0.0
400	204	0.17	0.184f			0.05	0.0
420		0.18	0.184f	2.427p		0.04	0.0
440	215 225	0.19	0.184f	4		0,04	0.0
460		0.20	0.184f	2,429p	0.876	0.04	0.0
480	236	0.21	0.184£	2.430p		0.04	0.0
500	247	0.21	0.184f	2.431p		0.04	0.0
520	257	0.22	0.184f	2.432p		0.03	0.0
540	268	0.23	0.184f	2.432p		0.03	0.0
	279	0.24	0.184f	2.433p		0.03	0.0
560	289	0.25	0.184f	2.434p	0.937	0.03	0.0
580	30.0	0.26	0.184f	2.434p		0.03	0.0
600	310	0.27	0.184f	2.435p	0.957	0.03	0.0
620	321	0.28	0.184£	2.435p	0.967	0.03	0.0
640	332	0.29	0.184f	2.436p		0.03	0.0
660	342	0.30	0.184f	2.436p	0.987	0.03	0.0
680	353	0.31	0.184f	2.437p	0.997	0.03	0.0
700	364	0.32	0.184f	2.437p	1.007	0.02	0.0
720	374	0,33	0.184f	2.437p		0.02	0.0
740	385	0.33	0.184f	2.438p		0.02	0.00
760	396	0.34	0.184f	2.438p		0.02	0.00
780	406	0.35	0.184f	2.438p	1.047	0.02	0.00
800	417	0.36	0.184f	2.439p	1.057	0.02	0.00
820	428	0.37		2.439p		0.02	0.06
840	438	0.38	0.184f	2.439p	1.077	0,02	0.06

AUXFUEL.P Reference Point: Long.= 0.184f Trans.= 2.450p Vert.= 0.650 (Zero Sounding is at the Reference Point.) .

.

GHS 8.06A

05-03-15 11:25:24 E.Y.E. Marine Consultants MURRAY

Page 8 04060

.

TANK CHARACTERISTICS, continued No Trim, No Heel

Tank: AUXFUEL.P, Contents: FUEL OIL at 0.870 Specific Gravity

					-		- 1
Snding	Volume LITERS MET	Weight RIC TON	Cent LCG	ter of Gi TCG	cavity VCG	GML	FSM MMT
860 880 900 920 940 960 980 1000 1020 1040 1060 Soundings in AUXFUEL.P I	449 460 470 481 491 502 513 523 534 545 550 A mm	LUC. LON	0.184f 0.184f tances in $g_{-} = 0.18$	2,441p METERS	1.107 1.117 1.127 1.137 1.147 1.157 1.168 1.178 1.182		0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

1

· ····

·

GHS 8.06A

05-03-15 11:25:24 E.Y.E. Marine Consultants MURRAY

Page 9 04060

TANK CHARACTERISTICS No Trim, No Heel

Tank: AUXFUEL.S, Contents: FUEL OIL at 0.870 Specific Gravity

		Volume	Weight				OTTIC OLGV,	τιγ
	Snding	LITERS M	ETRIC TON	Cer LCG	nter of (TCG	Fravity VCG	GML	FSM MMT
	0	0	0.00					
	20	9	0.01	0.184f				
	40	18	0.02	0.184f			0.85	0.03
	60	27	0.02	0.184f		· · · •	0.43	0.04
	80	37	0.03	0.1841 0.184f			0.29	0.04
	100	47	0.04	0.1841 0.184f			0,22	0.04
	120	56	0.05	0.1841 0.184f			0.18	0.04
	140	66	0.06				0.15	0.05
	160	77	0.00	0.184f			0.13	0.05
	180	87	0.08	0.184f	-		0.11	0.05
	200	98	0.08	0.184f			0.10	0.05
	220	108	0.08	0.184f			0.09	0.06
	240	119		0.184f		0.764	0.08	0.06
	260	130	0.10	0.184f			0.08	0.06
	280	140	0.11	0.184f			0.07	0.06
	300	151	0.12	0.184f			0.06	0.06
	320	161	0.13	0.184f	2.419s		0.06	0,06
	340	172	0.14	0.184f	2.421s		0.06	0.06
	360	183	0.15	0.184f	2.422s		0.05	0.06
	380	193	0.16	0.184f	2.424s	0.836	0.05	0.06
	400	204	0.17	0.184f	2.4255	0.846	0.05	0.06
	420	215	0.18	0,184f		0.856	0.04	0.06
	440	225	0,19	0.184f	2.428s	0.866	0.04	0.06
	460	225	0.20	0.184f	2.429s	0.876	0.04	0.06
	480	230	0.21	0.184f	2.430s	0.886	0.04	0.06
	500	257	0.21	0.184f	2.431s	0.896	0.04	0,06
	520	268	0.22	0.184f	2.4325	0.906	0.03	0.06
	540	279	0.23	0.184f	2.432s	0.917	0.03	0.06
	560		0.24	0.184f	2.433s	0.927	0.03	0.06
	580	289	0.25	0.184f	2.4349	0.937	0.03	0.06
	600	300	0.26	0.184f	2.434s	0.947	0.03	0.06
	620	310	0.27	0.184f	2.435s	0.957	0.03	0.06
	640	321	0.28	0.184f	2.4355	0.967	0.03	0.06
	660	332	0.29	0.184f	2.436s	0.977	0.03	0,06
	680	342	0.30	0.184f	2.436s	0,987	0.03	0.06
	700	353	0.31	0.184f	2.437s	0.997	0.03	0.06
	720	364	0.32	0.184f		1.007	0.02	0.06
	740	374	0.33	0.184f		1.017	0.02	0.06
	760	385	0.33	0.184f	2.438s	1.027	0.02	0.06
	780	396	0.34	0.184f	2.438s	1.037	0.02	0.06
	800	406	0.35	0.184f	2.438s	1.047	0.02	0.06
	820	417	0.36	0.184f	2.439s	1.057	0.02	0.06
	840	428	0.37		2.439s	1.067	0.02	0.06
ŝ		438	0.38	0 184f	2 120-	1 099		0.06
ומ	INFIRT C D.	mm	Uther dist	tances in	METERS.			
11	VALVED.3 K	rerence PO	rut: Toud	1.2 0.18	4f Trar	q = 2.45	0s Vert.=	0.650
		19610 201	unding is	at the R	eference	Point.)	•	

.

GHS 8.06A

05-03-15 11:25:24 E.Y.E. Marine Consultants MURRAY

Page 10 04060

ر این اور برای میروند بیشین میکند. از از ایران ماروند میکارده

TANK CHARACTERISTICS, continued No Trim, No Heel

Tank: AUXFUEL.S, Contents: FUEL OIL at 0.870 Specific Gravity

Snding	Volume LITERS M	Weight ETRIC TON	Cent LCG	ter of Gr TCG	avity VCG	GML	FSM MMT
860 880 900 920 940 960 980 1000 1020 1040 1060 Soundings in AUXFUEL.S Re	CECECANCE E	0.48 Octher dis	0.184f tances i: g.= 0.1	2.440s 2.440s 2.440s 2.440s 2.441s 2.441s 2.441s 2.441s 2.441s 2.441s 2.441s 2.441s 2.441s 2.441s	1.097 1.107 1.117 1.127 1.137 1.147 1.157 1.168 1.178 1.182		0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

GHS 8.06A

05-03-15 11:25:24 E.Y.E. Marine Consultants MURRAY

· · · · · · · ·

Page 11 04060

···· · · · ·

TANK CHARACTERISTICS No Trim, No Heel Tank: FW.P, Contents: FRESH WATER at 1.000 Specific Gravity

					ere opoc	2220 020V1	C Y
Snding	Volume LITERS ME	Weight TRIC TON	Cen LCG	ter of G TCG	ravity VCG	GML	FSM MMT
0	0	0.00					
20	1	0.00	2 6066				
40	3	0.00		2.816p		6.75	0.00
60	8	0.00	2.696f			3.38	0.00
80	14		2.696f			2.25	0.00
100	21	0.01	2,696f			1.69	0.00
120	30	0.02	2.696f			1.27	0.01
140	38	0.03	2.696f		1.180	0.95	0.01
160	47	0.04	2.696f		1.191	0.77	0.01
180		0.05	2.696f		1.202	0.64	0.01
200	56	0.06	2.696f		1.213	0.56	0.01
220	65	0.07	2.696f		1.225	0.49	0.01
240	75	0.07	2.696f	2.816p		0.44	0.01
240	85	0.08	2.696f	2.816p	1.247	0.40	0.01
280	95	0.10	2,696f	2.816p		0.37	0.01
300	106	0.11	2.696f	2.816p	1.269		0.02
	116	0.12	2.696f	2,816p	1,281	0,32	0,02
320	127	0,13	2.696£	2.816p	1.292	0.30	0.02
340	138	0.14	2.696f	2.816p	1.303	0.26	0.02
360	149	0.15	2.696f	2.816p		0.24	0.02
380	160	0.16	2.696f	2.816p		0.22	
400	170	0.17	2.696f	2.816p		0.20	0.01
420	180	0.18	2.696f	2,816p		0,18	0.01
440	189	0.19	2.696£		1.353	0.17	0.01
460	198	0.20	2.696f			0.15	0.01
480	207	0.21	2.696f	2.816p		0.13	0.01
500	216	0.22	2.696f		1 380	0.14	0.01
520	224	0.22	2.696f		1 389	0.13	0.01
540	232	0.23	2.696f	2,816p	1,397		0.01
560	239	0.24	2.696f		1.405	0.09	0.01
580	245	0.24	2.696f	2.010p 2.816p	1,410	0.09	0.00
600	248		2.696f	2.816p	1,410		0.00
620	250	0.25		2.816p	1 /17	0.04	0.00
640	251	0 25	2 6065	2 010		0.01	
Soundings in FW.P Referen	mmQ)ther dia	tongog in				
FW.P Referen		TOUG'-	6.696T 1	rang =	2 216 1	7	
	(Zero Sou	inding is	at the F	leference	- Doint	verr.= 1.1	101
	÷	,			EQTIC.	1	

GHS 8.06A

05-03-15 11:25:24 E.Y.E. Marine Consultants MURRAY

Page 12 04060 and the second

TANK CHARACTERISTICS No Trim, No Heel Tank: FW.S, Contents: FRESH WATER at 1.000 Specific Gravity

					op op oo	TIC GIAVI	LY
Snding	Volume LITERS ME	Weight ETRIC TON	Cen LCG	ter of G TCG	ravity VCG	GML	FSM MMT
0	0	0,00					
20	1	0.00	2.696f	2.816s	4 4 4 4		
40	3	0.00	2.696f	2.8165		6.75	0.00
60	8	0.01	2.696f		1.128	3,38	0.00
80	14	0.01	2.696f			2.25	0.00
100	21	0.02	2.696f			1.69	0.00
120	30	0,03	2.696f			1.27	0.01
140	38	0.04	2.696f		1.180	0.95	0.01
160	47	0.05	2.696f		1.191	0.77	0.01
180	56	0.06	2.696f		1.202	0,64	0.01
200	65	0.07	2.696f			0.56	0.01
220	75	0.07	2.696f			0.49	0.01
240	85	0.08	2.696f	2.816s		0.44	0.01
260	95	0.10				0.40	0.01
280	106	0.11	2.696f 2.696f		1.258	0.37	0.01
300	116	0.12			1.269	0.34	0.02
320	127	0.12	2.696f			0.32	0.02
340	138	0.13	2.696f		1.292	0.30	0.02
360	149	0.14	2.696f	2.816s	1.303	0.26	0.02
380	160		2.696f	2.816s	1.314	0.24	0.02
400	170	0.16	2.696f	2.816s	1.324	0.22	0.01
420	180	0.17	2.696f	2.8165	1.334	0,20	0.01
440	189	0.18	2.696f	2.816s	1.344	0.18	0.01
460	198	0.19	2.696f	2.816s	1.353	0.17	0.01
480	207	0.20	2.696f	2.816s	1.362	0.15	0.01
500	216	0.21	2.696f	2.816s	1.371	0.14	0.01
520	224	0.22	2.696f	2.816s	1,380	0.13	0.01
540	232	0.22	2.696f	2.8163		0.12	0.01
560	232	0.23	2.696f	2.816s		0.11	0.01
580	245	0.24	2.696f	2.816s	1.405	0.09	0.00
600		0.24	2.696f	2.816s	1.410	0.06	0.00
620	248 250	0.25	2.696f	2.816s	1.414	0.04	0.00
640		0.25	2,696f	2.8163	1.417	0.01	0.00
	251	0.25	2.696f	2.816s	1.417		
Coundings in FW.S Referen	IIUII(Juner dis	tances in	n METERS.			
FW.S Referen	and a dance.	-, pinou	2.096I '	rang =	2 9160 12	ant - 1	101
	(Lero So	unding is	at the I	Reference	e Point.)		

GHS 8.06A

05-03-15 11:25:24 E.Y.E. Marine Consultants MURRAY

.

Page 13 04060

.

TANK CHARACTERISTICS No Trim, No Heel

Tank: SEWAGE.P, Contents: SEWAGE at 1.025 Specific Gravity

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						-		4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Snding	Volume LITERS ME	Weight ETRIC TON		ter of G TCG		GML	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0 00					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					2.485p	0.411	1.94	0.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.3341	2.485p	0.416	0.97	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1.334f			0.65	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						0.426	0.48	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.334f	2.485p	0.431		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						0.436		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.334f	2.485p	0.441		
100 26 0.03 1.334f 2.485p 0.451 0.22 0.01 110 31 0.03 1.334f 2.485p 0.456 0.19 0.01 120 34 0.04 1.334f 2.485p 0.461 0.18 0.01 130 37 0.04 1.334f 2.485p 0.476 0.14 0.01 140 40 0.04 1.334f 2.485p 0.481 0.13 0.01 150 43 0.04 1.334f 2.485p 0.481 0.12 0.01 160 46 0.05 1.334f 2.485p 0.481 0.12 0.01 180 51 0.05 1.334f 2.485p 0.496 0.11 0.01 200 57 0.06 1.334f 2.485p 0.506 0.10 0.01 210 60 0.06 1.334f 2.485p 0.511 0.09 0.01 220 63 0.06			0.02	1.334f				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.03	1.334f	2.4850	0.451		
110 31 0.03 1.334f 2.485p 0.461 0.18 0.01 120 34 0.04 1.334f 2.485p 0.466 0.16 0.01 130 37 0.04 1.334f 2.485p 0.471 0.15 0.01 140 40 0.04 1.334f 2.485p 0.476 0.14 0.01 150 43 0.04 1.334f 2.485p 0.486 0.12 0.01 160 46 0.05 1.334f 2.485p 0.486 0.12 0.01 170 48 0.05 1.334f 2.485p 0.486 0.11 0.01 180 51 0.05 1.334f 2.485p 0.501 0.10 0.01 200 57 0.06 1.334f 2.485p 0.501 0.10 0.01 210 60 0.06 1.334f 2.485p 0.511 0.09 0.01 220 63 0.06 1.334f 2.485p 0.526 0.08 0.01 240 68 <td></td> <td>28</td> <td>0.03</td> <td></td> <td></td> <td></td> <td></td> <td></td>		28	0.03					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		31	0.03					
130 37 0.04 1.334f 2.485p 0.400 0.160 0.01 140 40 0.04 1.334f 2.485p 0.476 0.15 0.01 150 43 0.04 1.334f 2.485p 0.481 0.13 0.01 160 46 0.05 1.334f 2.485p 0.4861 0.12 0.01 170 48 0.05 1.334f 2.485p 0.491 0.11 0.01 180 51 0.05 1.334f 2.485p 0.496 0.11 0.01 200 57 0.06 1.334f 2.485p 0.506 0.10 0.01 210 60 0.06 1.334f 2.485p 0.516 0.09 0.01 220 63 0.06 1.334f 2.485p 0.516 0.09 0.01 230 65 0.07 1.334f 2.485p 0.516 0.08 0.01 240 68 0.07 1.334f 2.485p 0.536 0.07 0.01 250 71<		34						
140 40 0.04 $1.334f$ $2.435p$ 0.476 0.15 0.01 150 43 0.04 $1.334f$ $2.485p$ 0.476 0.14 0.01 160 46 0.05 $1.334f$ $2.485p$ 0.481 0.13 0.01 170 48 0.05 $1.334f$ $2.485p$ 0.496 0.11 0.01 180 51 0.05 $1.334f$ $2.485p$ 0.496 0.11 0.01 190 54 0.06 $1.334f$ $2.485p$ 0.501 0.10 0.01 200 57 0.06 $1.334f$ $2.485p$ 0.506 0.10 0.01 210 60 0.06 $1.334f$ $2.485p$ 0.511 0.09 0.01 220 63 0.06 $1.334f$ $2.485p$ 0.526 0.08 0.01 230 65 0.07 $1.334f$ $2.485p$ 0.526 0.08 0.01 240 68 0.07 $1.334f$ $2.485p$ 0.526 0.08 0.01 260 74 0.08 $1.334f$ $2.485p$ 0.531 0.08 0.01 260 74 0.08 $1.334f$ $2.485p$ 0.546 0.07 0.01 280 80 0.09 $1.334f$ $2.485p$ 0.556 0.06 0.01 300 85 0.09 $1.334f$ $2.485p$ 0.556 0.06 0.01 310 86 0.09 $1.334f$ 2.48	130	37						
150 43 0.04 1.334f 2.465p 0.481 0.13 0.01 160 46 0.05 1.334f 2.485p 0.481 0.13 0.01 170 48 0.05 1.334f 2.485p 0.486 0.12 0.01 180 51 0.05 1.334f 2.485p 0.496 0.11 0.01 200 57 0.06 1.334f 2.485p 0.501 0.10 0.01 210 60 0.06 1.334f 2.485p 0.511 0.09 0.01 220 63 0.06 1.334f 2.485p 0.516 0.09 0.01 230 65 0.07 1.334f 2.485p 0.526 0.08 0.01 240 68 0.07 1.334f 2.485p 0.536 0.07 0.01 250 71 0.07 1.334f 2.485p 0.541 0.07 0.01 260 74 0.08 1.334f 2.485p 0.541 0.07 0.01 290 83 <td>140</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	140							
160460.051.334f2.485p0.4810.130.01170480.051.334f2.485p0.4910.110.01180510.051.334f2.485p0.4960.110.01190540.061.334f2.485p0.5010.100.01200570.061.334f2.485p0.5060.100.01210600.061.334f2.485p0.5160.090.01220630.061.334f2.485p0.5160.090.01230650.071.334f2.485p0.5260.080.01240680.071.334f2.485p0.5260.080.01250710.071.334f2.485p0.5310.080.01260740.081.334f2.485p0.5410.070.01280800.081.334f2.485p0.5410.070.01290830.081.334f2.485p0.5560.060.01300850.091.334f2.485p0.5660.060.01310880.091.334f2.485p0.5660.060.01320910.091.334f2.485p0.5710.060.01320910.091.334f2.485p0.5660.060.01340970.101.334f2.485p0.566 <td>150</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	150							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160				2.485p	0,481		0.01
18051 0.05 1.3341 $2.485p$ 0.491 0.11 0.01 19054 0.06 $1.334f$ $2.485p$ 0.496 0.11 0.01 20057 0.06 $1.334f$ $2.485p$ 0.506 0.10 0.01 21060 0.06 $1.334f$ $2.485p$ 0.511 0.09 0.01 22063 0.06 $1.334f$ $2.485p$ 0.511 0.09 0.01 23065 0.07 $1.334f$ $2.485p$ 0.526 0.08 0.01 24068 0.07 $1.334f$ $2.485p$ 0.526 0.08 0.01 25071 0.07 $1.334f$ $2.485p$ 0.531 0.08 0.01 26074 0.08 $1.334f$ $2.485p$ 0.546 0.07 0.01 27077 0.08 $1.334f$ $2.485p$ 0.546 0.07 0.01 28080 0.08 $1.334f$ $2.485p$ 0.546 0.07 0.01 29083 0.08 $1.334f$ $2.485p$ 0.566 0.06 0.01 31088 0.09 $1.334f$ $2.485p$ 0.566 0.06 0.01 32091 0.09 $1.334f$ $2.485p$ 0.566 0.06 0.01 34097 0.10 $1.334f$ $2.485p$ 0.566 0.06 0.01 350 100 0.10 $1.334f$ $2.485p$ 0.566 0.06 0.01 <t< td=""><td></td><td></td><td></td><td>1.3341</td><td></td><td>0.486</td><td></td><td>0.01</td></t<>				1.3341		0.486		0.01
19054 0.06 $1.334f$ $2.485p$ 0.496 0.11 0.01 20057 0.06 $1.334f$ $2.485p$ 0.501 0.10 0.01 21060 0.06 $1.334f$ $2.485p$ 0.516 0.09 0.01 22063 0.06 $1.334f$ $2.485p$ 0.516 0.09 0.01 23065 0.07 $1.334f$ $2.485p$ 0.526 0.08 0.01 24068 0.07 $1.334f$ $2.485p$ 0.526 0.08 0.01 25071 0.07 $1.334f$ $2.485p$ 0.526 0.08 0.01 26074 0.08 $1.334f$ $2.485p$ 0.536 0.07 0.01 28080 0.08 $1.334f$ $2.485p$ 0.546 0.07 0.01 29083 0.08 $1.334f$ $2.485p$ 0.551 0.07 0.01 31088 0.09 $1.334f$ $2.485p$ 0.556 0.06 0.01 32091 0.09 $1.334f$ $2.485p$ 0.566 0.06 0.01 34097 0.10 $1.334f$ $2.485p$ 0.571 0.06 0.01 350 100 0.10 $1.334f$ $2.485p$ 0.571 0.06 0.01 360 103 0.11 $1.334f$ $2.485p$ 0.591 0.06 0.01 360 103 0.11 $1.334f$ $2.485p$ 0.591 0.06 0.01 <				1.3341			0.11	0.01
200 57 0.06 1.334f 2.485p 0.50f 0.10 0.01 210 60 0.06 1.334f 2.485p 0.51f 0.09 0.01 220 63 0.06 1.334f 2.485p 0.51f 0.09 0.01 230 65 0.07 1.334f 2.485p 0.52f 0.08 0.01 240 68 0.07 1.334f 2.485p 0.52f 0.08 0.01 250 71 0.07 1.334f 2.485p 0.531 0.08 0.01 260 74 0.08 1.334f 2.485p 0.54f 0.07 0.01 280 80 0.08 1.334f 2.485p 0.54f 0.07 0.01 290 83 0.08 1.334f 2.485p 0.55f 0.07 0.01 300 85 0.09 1.334f 2.485p 0.56f 0.06 0.01 310 88 0.09 1.334f 2.485p 0.56f 0.06 0.01 320 91 <td></td> <td></td> <td></td> <td>1.3341</td> <td>±</td> <td></td> <td>0.11</td> <td>0.01</td>				1.3341	±		0.11	0.01
210 60 0.06 1.334f 2.485p 0.506 0.10 0.01 220 63 0.06 1.334f 2.485p 0.511 0.09 0.01 230 65 0.07 1.334f 2.485p 0.516 0.09 0.01 240 68 0.07 1.334f 2.485p 0.526 0.08 0.01 250 71 0.07 1.334f 2.485p 0.531 0.08 0.01 260 74 0.08 1.334f 2.485p 0.536 0.07 0.01 270 77 0.08 1.334f 2.485p 0.541 0.07 0.01 280 80 0.08 1.334f 2.485p 0.546 0.07 0.01 290 83 0.08 1.334f 2.485p 0.556 0.06 0.01 300 85 0.09 1.334f 2.485p 0.556 0.06 0.01 320 91 0.09 1.334f 2.485p 0.566 0.06 0.01 340 97 <td></td> <td></td> <td></td> <td>1.3341</td> <td></td> <td></td> <td>0.10</td> <td>0.01</td>				1.3341			0.10	0.01
22063 0.06 $1.334f$ $2.485p$ 0.511 0.09 0.01 23065 0.06 $1.334f$ $2.485p$ 0.516 0.09 0.01 24068 0.07 $1.334f$ $2.485p$ 0.526 0.08 0.01 25071 0.07 $1.334f$ $2.485p$ 0.526 0.08 0.01 26074 0.08 $1.334f$ $2.485p$ 0.531 0.08 0.01 27077 0.08 $1.334f$ $2.485p$ 0.541 0.07 0.01 28080 0.08 $1.334f$ $2.485p$ 0.546 0.07 0.01 29083 0.08 $1.334f$ $2.485p$ 0.556 0.06 0.01 30085 0.09 $1.334f$ $2.485p$ 0.556 0.06 0.01 31088 0.09 $1.334f$ $2.485p$ 0.561 0.06 0.01 32091 0.09 $1.334f$ $2.485p$ 0.566 0.06 0.01 33094 0.10 $1.334f$ $2.485p$ 0.586 0.06 0.01 360103 0.11 $1.334f$ $2.485p$ 0.586 0.05 0.01 360103 0.11 $1.334f$ $2.485p$ 0.586 0.05 0.01 370105 0.11 $1.334f$ $2.485p$ 0.586 0.05 0.01 380108 0.11 $1.334f$ $2.485p$ 0.596 0.05 0.01 <				1.334£			0.10	
230 65 0.06 1.334f 2.485p 0.516 0.09 0.01 240 68 0.07 1.334f 2.485p 0.526 0.08 0.01 250 71 0.07 1.334f 2.485p 0.531 0.08 0.01 260 74 0.08 1.334f 2.485p 0.536 0.07 0.01 270 77 0.08 1.334f 2.485p 0.546 0.07 0.01 280 80 0.08 1.334f 2.485p 0.546 0.07 0.01 290 83 0.08 1.334f 2.485p 0.556 0.06 0.01 300 85 0.09 1.334f 2.485p 0.556 0.06 0.01 310 88 0.09 1.334f 2.485p 0.566 0.06 0.01 320 91 0.09 1.334f 2.485p 0.566 0.06 0.01 340 97 0.10 1.334f 2.485p 0.571 0.06 0.01 350 100 </td <td></td> <td></td> <td></td> <td>1.334f</td> <td>2.485p</td> <td>0.511</td> <td>0.09</td> <td></td>				1.334f	2.485p	0.511	0.09	
230 65 0.07 1.334f 2.485p 0.521 0.08 0.01 240 68 0.07 1.334f 2.485p 0.526 0.08 0.01 250 71 0.07 1.334f 2.485p 0.531 0.08 0.01 260 74 0.08 1.334f 2.485p 0.536 0.07 0.01 270 77 0.08 1.334f 2.485p 0.541 0.07 0.01 280 80 0.08 1.334f 2.485p 0.546 0.07 0.01 290 83 0.08 1.334f 2.485p 0.556 0.06 0.01 300 85 0.09 1.334f 2.485p 0.566 0.06 0.01 310 88 0.09 1.334f 2.485p 0.566 0.06 0.01 320 91 0.09 1.334f 2.485p 0.566 0.06 0.01 340 97 0.10 1.334f 2.485p 0.576 0.06 0.01 350 100 </td <td></td> <td></td> <td></td> <td></td> <td>2.485p</td> <td>0.516</td> <td></td> <td></td>					2.485p	0.516		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					2.485p			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.334f	2.485p			
200 74 0.08 1.334f 2.485p 0.536 0.07 0.01 270 77 0.08 1.334f 2.485p 0.541 0.07 0.01 280 80 0.08 1.334f 2.485p 0.546 0.07 0.01 290 83 0.08 1.334f 2.485p 0.551 0.07 0.01 300 85 0.09 1.334f 2.485p 0.556 0.06 0.01 310 88 0.09 1.334f 2.485p 0.561 0.06 0.01 320 91 0.09 1.334f 2.485p 0.566 0.06 0.01 320 91 0.09 1.334f 2.485p 0.566 0.06 0.01 340 97 0.10 1.334f 2.485p 0.576 0.06 0.01 350 100 0.10 1.334f 2.485p 0.586 0.06 0.01 360 103 0.11 1.334f 2.485p 0.586 0.05 0.01 370 105			0.07	1.334£	2.4850	0.531		
270 77 0.08 1.334f 2.485p 0.541 0.07 0.01 280 80 0.08 1.334f 2.485p 0.546 0.07 0.01 290 83 0.08 1.334f 2.485p 0.551 0.07 0.01 300 85 0.09 1.334f 2.485p 0.556 0.06 0.01 310 88 0.09 1.334f 2.485p 0.566 0.06 0.01 320 91 0.09 1.334f 2.485p 0.566 0.06 0.01 330 94 0.10 1.334f 2.485p 0.571 0.06 0.01 340 97 0.10 1.334f 2.485p 0.576 0.06 0.01 350 100 0.10 1.334f 2.485p 0.581 0.06 0.01 360 103 0.11 1.334f 2.485p 0.586 0.05 0.01 370 105 0.11 1.334f 2.485p 0.591 0.05 0.01 380 10			0.08	1.334f	2.4850			
280 80 0.08 1.334f 2.485p 0.546 0.07 0.01 290 83 0.08 1.334f 2.485p 0.551 0.07 0.01 300 85 0.09 1.334f 2.485p 0.556 0.06 0.01 310 88 0.09 1.334f 2.485p 0.561 0.06 0.01 320 91 0.09 1.334f 2.485p 0.566 0.06 0.01 330 94 0.10 1.334f 2.485p 0.571 0.06 0.01 340 97 0.10 1.334f 2.485p 0.576 0.06 0.01 350 100 0.10 1.334f 2.485p 0.576 0.06 0.01 360 103 0.11 1.334f 2.485p 0.581 0.06 0.01 370 105 0.11 1.334f 2.485p 0.591 0.05 0.01 380 108 0.11 1.334f 2.485p 0.596 0.05 0.01 390 1			0.08					
290 83 0.08 1.334f 2.485p 0.546 0.07 0.01 300 85 0.09 1.334f 2.485p 0.556 0.06 0.01 310 88 0.09 1.334f 2.485p 0.566 0.06 0.01 320 91 0.09 1.334f 2.485p 0.566 0.06 0.01 330 94 0.10 1.334f 2.485p 0.576 0.06 0.01 340 97 0.10 1.334f 2.485p 0.571 0.06 0.01 350 100 0.10 1.334f 2.485p 0.576 0.06 0.01 360 103 0.11 1.334f 2.485p 0.581 0.06 0.01 370 105 0.11 1.334f 2.485p 0.591 0.05 0.01 380 108 0.11 1.334f 2.485p 0.591 0.05 0.01 390 111 0.11 1.334f 2.485p 0.596 0.05 0.01 400		80	0.08					
300 85 0.09 1.334f 2.485p 0.556 0.07 0.01 310 88 0.09 1.334f 2.485p 0.561 0.06 0.01 320 91 0.09 1.334f 2.485p 0.566 0.06 0.01 330 94 0.10 1.334f 2.485p 0.566 0.06 0.01 340 97 0.10 1.334f 2.485p 0.576 0.06 0.01 350 100 0.10 1.334f 2.485p 0.576 0.06 0.01 360 103 0.11 1.334f 2.485p 0.581 0.06 0.01 360 103 0.11 1.334f 2.485p 0.581 0.06 0.01 370 105 0.11 1.334f 2.485p 0.591 0.05 0.01 380 108 0.11 1.334f 2.485p 0.596 0.05 0.01 390 111 0.11 1.334f 2.485p 0.601 0.05 0.01 400 <td< td=""><td></td><td>83</td><td>0.08</td><td></td><td></td><td></td><td></td><td></td></td<>		83	0.08					
310 88 0.09 1.334f 2.485p 0.561 0.06 0.01 320 91 0.09 1.334f 2.485p 0.566 0.06 0.01 330 94 0.10 1.334f 2.485p 0.566 0.06 0.01 340 97 0.10 1.334f 2.485p 0.576 0.06 0.01 350 100 0.10 1.334f 2.485p 0.576 0.06 0.01 360 103 0.11 1.334f 2.485p 0.581 0.06 0.01 370 105 0.11 1.334f 2.485p 0.586 0.05 0.01 380 108 0.11 1.334f 2.485p 0.591 0.05 0.01 390 111 0.11 1.334f 2.485p 0.596 0.05 0.01 400 114 0.12 1.334f 2.485p 0.601 0.05 0.01 410 115 0.12 1.334f 2.485p 0.606 0.05 0.01 410 <t< td=""><td></td><td>85</td><td>0.09</td><td></td><td></td><td></td><td></td><td></td></t<>		85	0.09					
320 91 0.09 1.334f 2.485p 0.566 0.06 0.01 330 94 0.10 1.334f 2.485p 0.571 0.06 0.01 340 97 0.10 1.334f 2.485p 0.571 0.06 0.01 350 100 0.10 1.334f 2.485p 0.576 0.06 0.01 360 103 0.11 1.334f 2.485p 0.581 0.06 0.01 370 105 0.11 1.334f 2.485p 0.586 0.05 0.01 380 108 0.11 1.334f 2.485p 0.591 0.05 0.01 390 111 0.11 1.334f 2.485p 0.596 0.05 0.01 400 114 0.11 1.334f 2.485p 0.601 0.05 0.01 410 115 0.12 1.334f 2.485p 0.606 0.05 0.01 410 115 0.12 1.334f 2.485p 0.606 0.05 0.01		88			2 4850	0.550		
330 94 0.10 1.334f 2.485p 0.571 0.06 0.01 340 97 0.10 1.334f 2.485p 0.571 0.06 0.01 350 100 0.10 1.334f 2.485p 0.576 0.06 0.01 360 103 0.11 1.334f 2.485p 0.581 0.06 0.01 370 105 0.11 1.334f 2.485p 0.586 0.05 0.01 380 108 0.11 1.334f 2.485p 0.596 0.05 0.01 390 111 0.11 1.334f 2.485p 0.596 0.05 0.01 400 114 0.12 1.334f 2.485p 0.601 0.05 0.01 410 115 0.12 1.334f 2.485p 0.606 0.05 0.01 410 115 0.12 1.334f 2.485p 0.606 0.05 0.01	320	91			2.4050	0.501		
340 97 0.10 1.334f 2.485p 0.576 0.06 0.01 350 100 0.10 1.334f 2.485p 0.581 0.06 0.01 360 103 0.11 1.334f 2.485p 0.581 0.06 0.01 370 105 0.11 1.334f 2.485p 0.586 0.05 0.01 380 108 0.11 1.334f 2.485p 0.596 0.05 0.01 390 111 0.11 1.334f 2.485p 0.601 0.05 0.01 400 114 0.12 1.334f 2.485p 0.606 0.05 0.01 410 115 0.12 1.334f 2.485p 0.606 0.05 0.01 Soundings in mm. Other distances in METERS	330	94			2.4050	0.500		
350 100 0.10 1.334f 2.485p 0.576 0.06 0.01 360 103 0.11 1.334f 2.485p 0.581 0.06 0.01 370 105 0.11 1.334f 2.485p 0.586 0.05 0.01 380 108 0.11 1.334f 2.485p 0.596 0.05 0.01 390 111 0.11 1.334f 2.485p 0.596 0.05 0.01 400 114 0.12 1.334f 2.485p 0.606 0.05 0.01 410 115 0.12 1.334f 2.485p 0.606 0.05 0.01	340							
360 103 0.11 1.3341 2.485p 0.581 0.06 0.01 370 105 0.11 1.334f 2.485p 0.586 0.05 0.01 380 108 0.11 1.334f 2.485p 0.591 0.05 0.01 390 111 0.11 1.334f 2.485p 0.596 0.05 0.01 400 114 0.12 1.334f 2.485p 0.606 0.05 0.01 410 115 0.12 1.334f 2.485p 0.609 0.05 0.01	350			1 3314		0.5/6		
370 105 0.11 1.3341 2.485p 0.586 0.05 0.01 380 108 0.11 1.334f 2.485p 0.591 0.05 0.01 390 111 0.11 1.334f 2.485p 0.596 0.05 0.01 400 111 0.11 1.334f 2.485p 0.601 0.05 0.01 410 114 0.12 1.334f 2.485p 0.606 0.05 0.01 410 115 0.12 1.334f 2.485p 0.609 0.01				1 32YE T'99AT				
380 108 0.11 1.3341 2.485p 0.591 0.05 0.01 390 111 0.11 1.334f 2.485p 0.596 0.05 0.01 400 111 0.11 1.334f 2.485p 0.601 0.05 0.01 410 114 0.12 1.334f 2.485p 0.606 0.05 0.01 410 115 0.12 1.334f 2.485p 0.609 0.05 0.01								0.01
390 111 0.11 1.334f 2.485p 0.596 0.05 0.01 400 114 0.12 1.334f 2.485p 0.601 0.05 0.01 410 115 0.12 1.334f 2.485p 0.606 0.05 0.01 Soundings in mm. Other distances in METERS Other distances in METERS								0.01
400 114 0.12 1.334f 2.485p 0.601 0.05 0.01 410 115 0.12 1.334f 2.485p 0.606 0.05 0.01 Soundings in mmOther distances in METERS 0.609 0.609 0.609 0.609								0.01
410 115 0.12 1.334f 2.485p 0.606 0.05 0.01 410 115 0.12 1.334f 2.485p 0.609 Soundings in mm. Other distances in METERS Other distances in METERS					2.485p	0.601	0.05	0.01
Soundings in mmOther distances in METERS							0.05	
SEWACE P References Devices in METERS.		TTD	0.12	1.334f	2.485p	0.609		
	SEMPCE D D-	ики, =======(бототото с	Juner dist	tances in	METERS.			

SEWAGE.P Reference Point: Long.= 1.334f Trans.= 2.485p Vert.= 0.406 (Zero Sounding is at the Reference Point.)

.

7

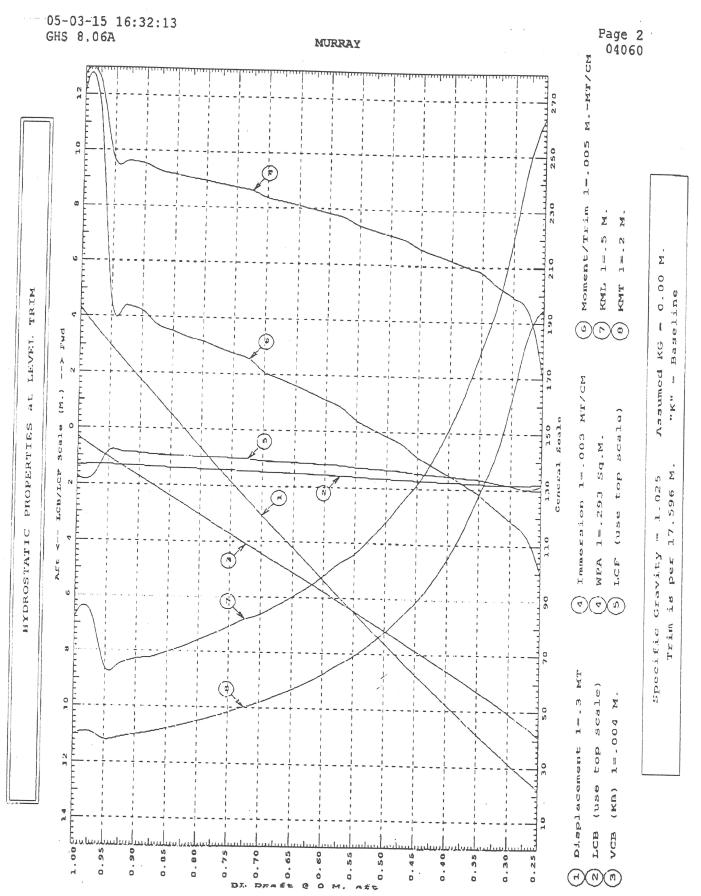
HYDROSTATIC PROPERTIES

email: cyc@eyemarinc.com

website: www.cycmarinc.com

05-03-15 16:32:13 GHS 8.06A

E.Y.E. Marine Consultants MURRAY


Page 1 04060

HYDROSTATIC PROPERTIES No Trim, No Heel, VCG = 0.000

Draft@ Di	splacement	: Buoya	ncy-Ctr.	Weight/		Moment/		
Origin 0.250	Weight(MT)	LCB-	VCB	(M-		-CM this	10/7	
0.250	6,64	1.800a	0.164	0.51	1.834a		101 OF	KMT
0.275	8.02	1.827a		0.58		0.50		
0.300	9.50	1.837a		0,60	1.976a		124.36	
0.325	11.01	1,830a	0.213		1.854a		109.94	32.342
0.350	12.56	1.809a		0.61	1.768a		98.43	28.426
0.375	14.12	1.789a		0.62	1.660a		89.71	25.623
0.400	15.70	1.768a		0.63	1.608a	0.66	81,94	23.064
0.425	17.30			0.64	1.559a	0.67	75.57	20.988
0.450	18.91	1.746a		0.64	1.513a	0.69	70.21	19.269
0.475	20.54	1.723a		0,65	1.467a	0.71	65.72	17.830
0.500		1.699a		0.66	1.392a	0.73	62.39	16.696
0.525	22.19	1.674a		0.66	1.359a	0.74	58.84	15.601
0.550	23.85	1.650a		0.67	1.326a	0.76	55.76	14.652
	25.52	1.627a		0.67	1.293a	0.77	53.05	
0.575	27.20	1.604a		0.68	1.221a	0.79	51.28	13.820
0.600	28.91	1.580a	0.369	0.68	1.196a	0.81		13.168
0.625	30.63	1.557a	0.383	0.69	1.170a	0.81	49.00	12.495
0.650	32.35	1.535a		0.69	1.144a		46.97	11.895
0.675	34.09	1.513a	0.410	0.70	1.119a	0.83	45.15	11.357
0,700	35,84	1.492a		0.70		0.84	43.48	10.869
0.725	37.61	1.471a	0.437	0.71	1.095a	0.85	41.92	10.422
0.750	39.39	1.449a	0.451		1.030a	0.88	41.04	10.070
0.775	41.17	1.428a	0.464	0.71	1.012a	0.89	39.64	9.688
0.800	42.97	1.408a	0.404	0.72	0.993a	0.90	38.36	9.339
0.825	44.77	1.390a		0.72	0.975a	0.91	37.17	9.018
0.850	46.58		0.491	0.72	0.963a	0.92	35.97	8.732
0.875	48.39	1.373a	0.505	0.72	0.945a	0.93	34.96	8.466
0.900	50.22	1.356a	0.518	0.73	0,927a	0.94	34.02	8.218
0.925		1.338a	0.531	0.74	0.864a	0.96	33,67	8.026
0.950	52.06	1.321a	0.545	0.74	0.849a	0.97	32.80	7.805
	53.91	1.304a		0.74	0,826a	0,98	31.91	7.612
0.975	55.86	1.302a		0.83	1.729a	1.34	42.21	8.204
1.000	57.94	1.317a	0.588	0 0 2	1			
Distances in	METERS	Speci	fic Gravi	ity = 1.0	25	MAT	PULL	7.959
		Tr	im is per	17.60M	,	MOI	TETC TU	M. M.I.
Draft is fro	T DT		•					

Draft is from BL.

ł.

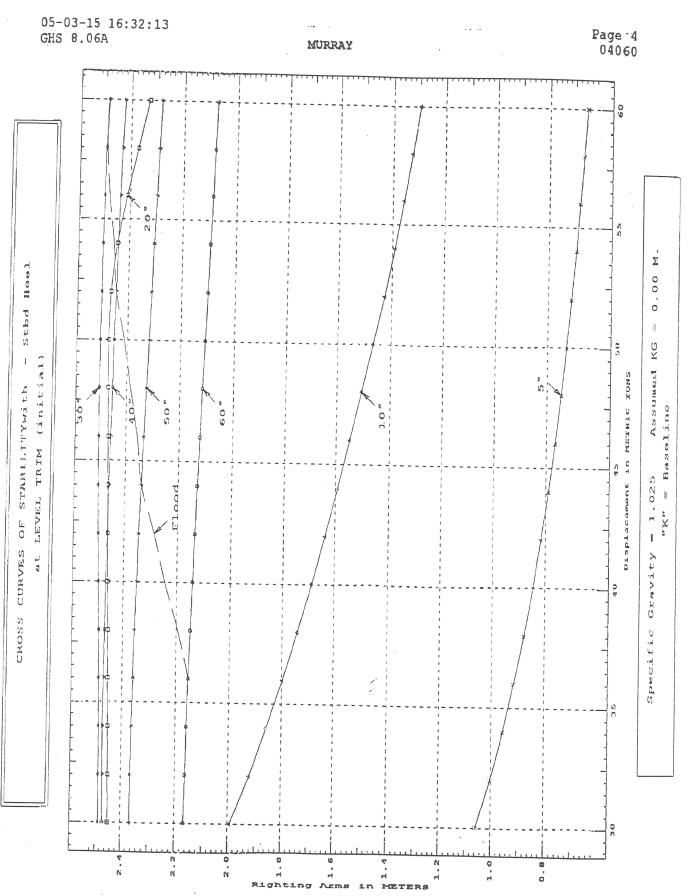
P.11

. . . .

.

GHS 8.06A

05-03-15 16:32:13 E.Y.E. Marine Consultants MURRAY


Page 3 04060

CROSS CURVES OF STABILITY Showing righting arms in heel at VCG = 0.00 Trim: zero at zero heel (trim righting arm held at zero)

Displacement METRIC TONS	5.00s	Heel Ang 10.00s	gles in I 20.00s	Degrees 30.00s	40.00s
30.00 32.00 34.00 36.00 38.00 40.00 42.00 44.00 46.00 48.00 50.00 52.00 54.00 56.00 58.00 60.00	1.059s 1.005s 0.957s 0.915s 0.878s 0.846s 0.817s 0.792s 0.769s 0.748s 0.729s 0.748s 0.729s 0.712s 0.696s 0.681s 0.668s 0.656s	1.994s 1.923s 1.859s 1.798s 1.742s 1.689s 1.639s 1.593s 1.548s 1.506s 1.465s 1.465s 1.427s 1.391s 1.359s 1.328s 1.299s	2.450s 2.452s 2.454s 2.456s 2.458s 2.461s 2.463s 2.466s 2.469s 2.472s 2.474s 2.467s 2.467s 2.446s 2.411s 2.371s 2.331s	2.488s 2.489s 2.490s 2.493s 2.496s 2.499s 2.503s 2.503s 2.507s 2.508s 2.507s 2.508s 2.507s 2.504s 2.501s 2.495s 2.488s	2.471s 2.473s 2.474s 2.473s 2.471s 2.468s 2.465s 2.462s 2.462s 2.459s 2.459s 2.455s 2.451s 2.447s 2.443s 2.443s 2.432s 2.432s 2.424s

MERDIC MONO	50.00		@ F]	looding	
METRIC TONS	50.00s	60.00s	Arm	Angle	
34.00 36.00 38.00 40.00 42.00 44.00 46.00 48.00 50.00 52.00 54.00 56.00 58.00	2.364s 2.361s 2.358s 2.354s 2.349s 2.349s 2.349s 2.343s 2.331s 2.324s 2.318s 2.312s 2.306s 2.299s 2.292s 2.292s 2.285s	2.159s 2.154s 2.149s 2.143s 2.137s 2.131s 2.124s 2.118s 2.111s 2.104s 2.098s 2.091s 2.084s 2.077s	2.245s 2.288s 2.337s 2.355s 2.385s 2.413s 2.447s 2.460s 2.480s 2.491s 2.491s	58.03s 55.51s 53.12s 50.00s 48.48s 46.00s 43.52s 40.00s 38.20s 34.88s 31.22s 27.26s	5

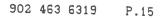
ł

:

MAR-16-2005 09:33 E.Y.E. MARINE

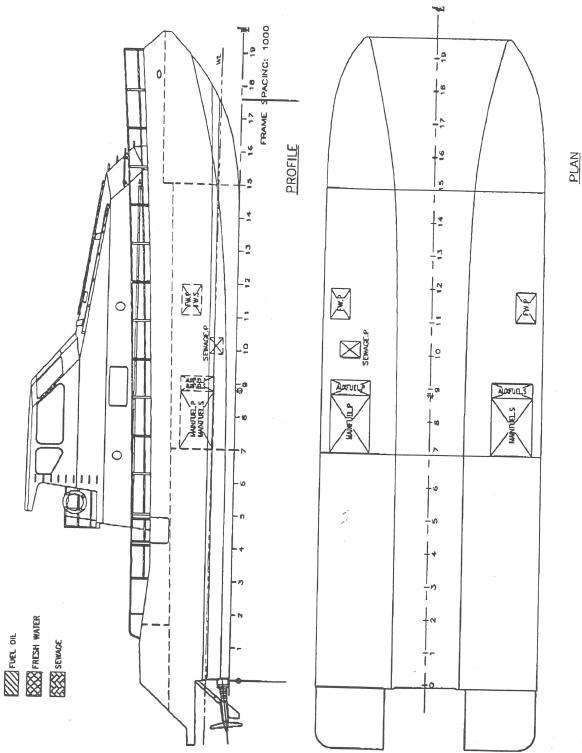
- -----

INTACT LOADING CONDITIONS


email: eyc@eyemarine.com

website: www.eyemarine.com

......


.

EY.E. Marine Consultants "MURRAY"

Page 1

.......

.....

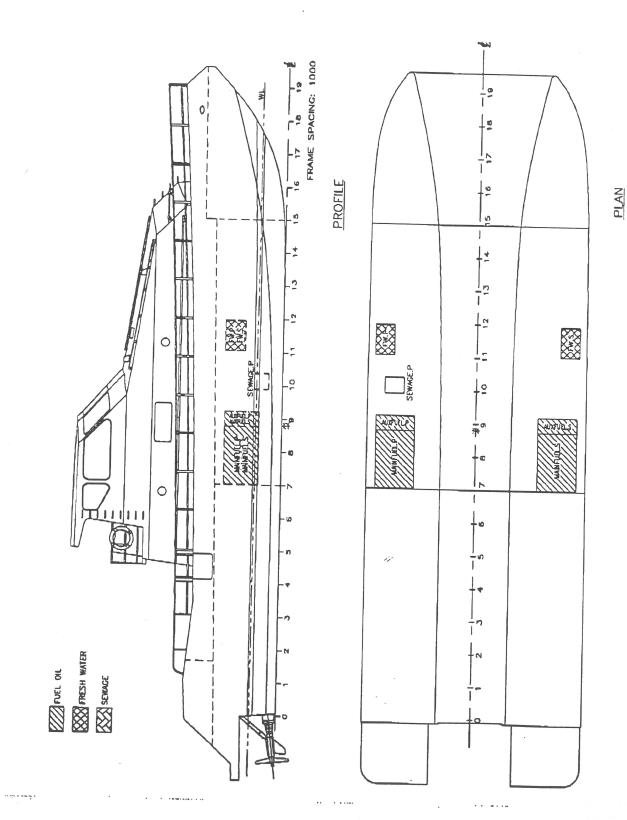
..

والمراجع المراجع مستوجع فا

05-03-15 16:54:17 GHS 8.06A	E.Y.E. 1	Marine Consu MURRAY	ltants			Page : 0406
	COND	TION NUMBER	1			
LIGH	TSHIP **Nor	Operationa	l Condit	ion**		
Trime	λf+ 0 110/1	EIGHT STATU	S			
		.7.596, Hee -Weight (MT)	1: Port	0.28 deg.		
						FSM
Total Tanks	SpGr >					
Total Tanks Distances in METERS		0.00			V	0.00
						in MMT.
HIDROSTA	TIC REPORT	ON THE EQUI	LIBRIUM V	ATERLINE		
BL	draft, 0 61	T and WATER	PLANE STA	TUS		
	ATT 11 $119/1$	5 @ 8.79f, 0 7.596, Hee				
HULL Part Total Waterplane;	1.025	34.59	1.791a	0.0515	VCB	RefHt
Part	SpGr	WPA	LCF	TCF	U.415	-0.6/4
Total Waterplane;	> 1.025	07.0	1.1043	0.0140	41 35	10 244
Distances in METERS		0.69		0.74	37.63	6.524
	HYDROST	ATIC PROPER	TTDC			
	19/17.596,					

Draft@ Displacement Buoyancy-Ctr. Weight/ Moment/ Origin----Weight(MT)----LCB-----VCB-----CM-----LCF---CM trim----GML-----GMT 0.674 34.59 1.791a 0.415 0.69 1.184a 0.74 37.63 6.524 Distances in METERS.-----Specific Gravity = 1.025.-----Moment in M.-MT. Trim is per 17.60M.

> DRAFT REPORT BL draft: 0.615 @ 8.79f, 0.734 @ 8.81a


ł

E.Y.E. MARINE

2.2

CONDITION NUMBER 2 FULLY LOADED DEPARTURE •••• WORST OPERATING •••

EY.E. Marine Consultants "MURRAY"

05 00 05 00			·····		•••••••••••••••••••••••••••••••••••••••		** • • • • • •
05-03-15 16: GHS 8.06A	:54;17	E.Y.E.	Marine Consu MURRAY	ltants			Page 4 04060
		CON	DITION NUMBER	2			
		FULLY	LOADED DEPAR	TURE			
	(Tradient		WEIGHT STATE				
Part	1 F1m: .	AIT 0.067,	/17.596, Hee	1: Port	0.18 deg	•	
LIGHT SHIP			weight (MT)	LCG	TCG-	VCG	
CREW			34.39	1./66a	0.0330	4.135	
Total Fixe	d	>	0.40	0.375a	0.250s	4,155	
	Load		34.99	1.750a	0.030p	4.135	
MAINFUEL.S	0,980	0 870					FSM
MAINFUEL.P	0,920	0.870	1.82	0.917a	2.441s	1,172	0.22
AUXFUEL.S	0,950	0 870	1.82 1.71	0.917a	2.441p	1.141	0.22
AUXFUEL.P							
FW.S		V. U/U	11 45	0 19/6	2 441-	4 4 5 5	
FW.P	0 950	1 000	0.24	2,6961	2,8163	1.403	
Total Tanks	>	1.000	0.24	2.696f	2.816p	1.403	0 00
Total Weigh	, 1t>		4.92	0.364a	0.055s	1.181	0.55
Eree Surf	ace Adjust	mont-	59.91	1,579a	0.019p	3.771	
Adjusted	CG					0.014	
Distances in	METERS		>	1.579a	0.019p	3.785	
	BL d Trim: A	15PLACEME, raft: 0.7, ft 0.067/	ON THE EQUII NT and WATERE 20 @ 8.79f, C 17.596, Heel	LANE STA	TUS .81a		
Part HULL	and the set and and and and the set		Dien (MT)_	TCD	man		
HULL Part Total Water		1.025	39,91	1 5912	0 0205	VCB	ReiHt
Part		SpGr	WPA	I.CF	TCF	0.433	-0.753
Total Water	plane>	1.025		1 036a	0 0130	20 10	BMT
				UJ UA	0.0100	38.10 GML	ч прл
			0 71		A 84		
Distances in 1	METERS,				····	J1./0	5./68
Tri	n: Aft 0.00	HYDROS 57/17.596,	STATIC PROPER Heel: Port	TIES 0.18 deg.	, VCG =	3.771	
Draft@ Disp OriginWes 0.753	rair (MT)	-TCB	VCBCM	ICF-	CM A	1	GMT
Distances in	JJ.JL 1	Specifi		∕ 1.036a 1.025	0 7	A A A A A A A A A A A A A A A A A A A	-
Draft is from	n BL.		. TO Net 11.0		e Free Su	urface inc	luded.
	BL dr	DR aft: 0.72	AFT REPORT 0 @ 8.79£, 0.	.787 @ 8.	81a		

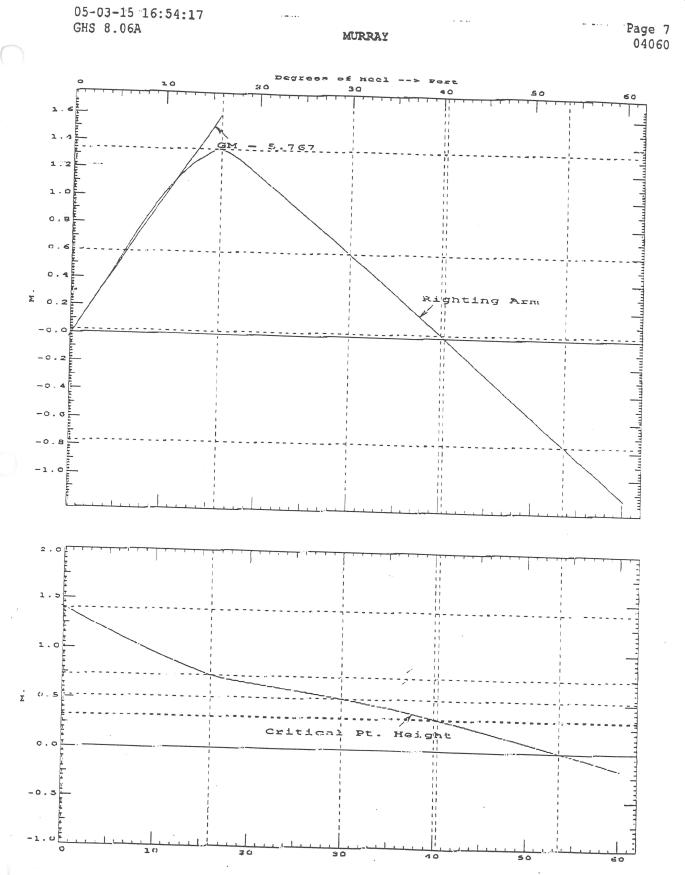
CCG STABILITY ASSESSMENT

.

MAR-16-2005 09:34 E.Y.E. MARINE

05-03-15 16:54:17 GHS 8.06A	E.Y.E. Marine Consultants MURRAY	
Fixed CG:	RIGHTING ARMS VS HEEL ANGLE LCG = 1.750a TCG = 0.030p VCG = 4.135	

<u> </u>				~			
Origin	Degr	ees of	Displacement	Righti	ng Arms		
Depth-	Trim-	Heel-	Weight (MT)	-in Trin			Flood Pt
			39.90	0.000	0.019s	> Area	Height
0.753	0.22a	0.18p	39,91	0.000		0.0000	1.405(1)
0.751	0.23a	2.50p	39,91	0.000	0.000p	-0.0000	1.397(1)
0.747	0.24a	3.84p	39.90	0,000	0.237p	0.0048	1.288(1)
0.742	0.23a	5.18p	39,90	0.000	0.375p	0.0119	1.226(1)
0.728	0.21a	7.68p	39,91	0.000	0.519p	0.0224	1.167(1)
0.705	0.22a	10.18p	39.90	0.000	0.788p	0.0508	1.058(1)
0,668	0.24a	12.68p	39,90		1.031p	0.0905	0.951(1)
0.652	0.26a	13.49p	39,91	0.000	1,213p	0.1395	0.853(1)
0.614	0.31a	15.18p	39.91	0.000	1.258p		Deck Imm,
0.592	0.37a	15.95p	39.91	0,000	1.327p	0.1951	0.761(1)
0.523	0.45a	17.68p		0.000	1,340p	0.2130	0.734(1)
0.413	0.47a	20.18p	39.91	0.000	1.276p	0,2526	0.697(1)
0.303	0.49a	22.68p	39.90	0.000	1.139p	0.3056	0.663(1)
0.192	0.51a	25.18p	39.90	0.000	1.002p	0.3524	0.628(1)
0.081	0.53a		39.90	0.000	0.863p	0.3930	0.592(1)
-0.023	0.55a	27.68p	39.91	0.000	0.723p	0.4276	0.555(1)
-0.031	0.55a	30.00p	39.90	0.000	0.593p	0.4543	0.518(1)
-0.143	0.59a 0.59a	30.18p	39.91	0.000	0.583p	0.4561	0.515(1)
-0.253		32,68p	39.90	0.000	0.441p	0.4784	0.473(1)
-0.363	0.64a	35.18p	39.91	0.000	0.299p	0.4946	0.427(1)
	0.71a	37.68p	39.90	0.000	0.156p	0.5045	0.378(1)
-0.462	0.78a	40.00p	39.90	0.000	0.022p	0.5082	0.329(1)
-0.469	0.78a	40.18p	39.91	0.000	0.012p	0.5082	0.325(1)
-0.478	0.79a	40.38p	39.91	0.000	0.000p	0,5082	0.320(1)
-0.575	0.86a	42.68p	39.90	0.000	-0.133p	0.5056	0,269(1)
-0.678	0.96a	45.18p	39.90	0.000	-0.279p	0.4966	0,209(1)
-0.780	1.06a	47.68p	39.89	0.000	-0.425p	0.4812	0.210(1)
-0.879	1.16a	50.18p	39.91	0.000	-0.572p	0.4595	0.149(1)
-0.977	1.27a	52.68p	39,90	0.000	-0.718p	0.4313	0.086(1)
-1.011	1.31a	53.55p	39.91	0.000	-0.769p		0.022(1)
-1.073	1.38a	55.18p	39.90	0.000	-0.864p	0,4200	-0.000(1)
-1.167	1.49a	57.68p	39,90	0.000	-1.009p	0.3968	-0.042(1)
-1.257	1.59a	60.18p	20 01	0 002-	4 4 7 4	0.3559	-0.106(1)
Distance	s in MEI	rers	Specific Gravi	tv = 1	-1.151p	0.3088	-0.171(1)
				* 3 1/6 U. /		Area 11	n mRad.


Note: The Center of Gravity shown above is for the Fixed Weight of 34.99 MT. As the tank load centers shift with heel and trim, the total Center of Gravity varies. The righting arms shown above include the effect of the C.G. variation.

	Critical Point		- LCP	TCP	VCP
(1)	Exhaust Plenum	FLOOD	7.883a	2.650	2.189

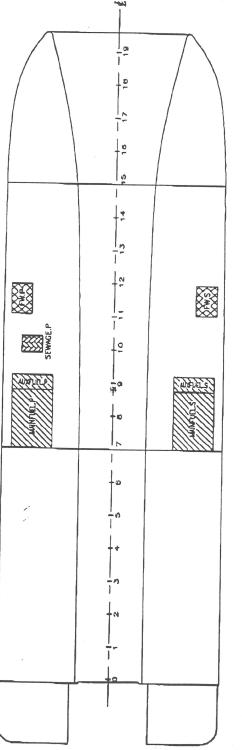
Page 5 04060

. ..

05-03-15 16:54:17	E V B III I		· · · · · · · ·
GHS 8.06A	E.Y.E. Marine Consultants MURRAY	3	Page 6 04060
 (2) Area from Equilibrium (3) Area from Equilibrium (4) Area from abs 30 deg (5) Angle from abs 0 deg (6) Righting Arm at abs 3 	n to abs 40 deg or RAzero to abs 40 or RAzero to MarRA	<pre>> 0.150 M. > 0.0550 MRad > 0.0900 MRad > 0.0300 MRad > 25.00 deg</pre>	-Attained 5.774 P 0.4543 P 0.5082 P 0.0539 P 15.95 F

FIESH WATER

SEWAGE


มอ มน

E.Y.E. MARINE

EYE Marine Consultants "MURRAY"

CONDITION NUMBER 3 PORT ARRIVAL

FRAME SPACING: 1000 9 ş 0 18 17 16 PROFILE 15 . : 2 SEWNCE.P - 2 L 0 10 a AMIEND_P Concession of Ð 0 11111 n

.

PLAN

. .

....

يواستناك يصدر متدمية والاله الكار

GHS 8.06A			MURRAY				Page 0406
		COND	ITION NUMBER	3			
			ORT ARRIVAL	Ť			
		1	WEIGHT STATU	S			
	Trim:	744 0 100/	17 500	•) 32 deg	÷.,	
Part			Weight (MT)	LCG	TCG	VCC	
DIGHT DHILL			34.59	1.766a 0.375a 1.750a	0.0330	4,135	
CREW			0.40	0.375a	0.250s	4 155	
Total Fixe	d	>	34.99	1.750a	0.030p	4.135	
	Load	SpGr		T CC	maa	7700	FCN
MAINFUEL,S MAINFUEL,P							
			0.19	0.930a	2.385p	0.710	0.18
AUXFUEL.S AUXFUEL.P	0.100	0,870	0.05	0.183f	2.3753	0,710	0.04
			0.05	0.1831	2.385p	0.710	0.05
EW.S	0.100	1.000	0 0 2	2 6005	0 014	4 4 5 4	
FW.P SEWAGE,P	0.100	1.000	0.03	2.690f	2.817p	1.173	0.01
SEWAGE, P	0,900	1.025	0.11	1.334f	2.485p	0.588	0.01
Total Tank:	5	>	0.62 35.61	0.083a	0.427p	0.726	0.46
Total Weigh	1t	>	35.61	1.721a	0.037p	4.075	
Free Suri	tace Adjus	tment	>		-	0.013	
Adjusted	CG		>	1.721a	0.037p	4.088	
Adjusted Distances in	METERS					Moments i	n MMT
	HYDROSTA	TIC REPORT	ON THE EQUII	TRRTIM W	ATEDITNE		
		DISPLACEMEN	T and WATERF	LANE STA	AIGNDING THS		
	BL	draft: 0.63	7 @ 8.79f, C	743 8 8	812		
	Trime	$A \neq A = 1 \cap C / 1$	7 500 11. 1				
Part		SpGr	Displ(MT)-	~ICB	TCB	VCB	Pofu
HULL		1.025	35.62	1.743a	0 0570	0 423	-0 60
HULL Part			WPA==	ICF		DMT	53.000
Total Water	plane	> 1.025	67.8	1.160a	0.015n	40 57	0 076
			MT/CM	M	-MT/CM	GMI	
Distances in			0,69	***	0.75	36.91	6.323
)istances in	METERS						
			TATIC PROPER				

Distances in METERS.----Specific Gravity = 1.025.----Moment in M.-MT. Trim is per 17.60M. Draft is from BL.

True Free Surface included.

DRAFT REPORT BL draft: 0.637 @ 8.79f, 0.743 @ 8.81a

CCG STABILITY ASSESSMENT

.

05-03-15 16:54:17 GHS 8.06A

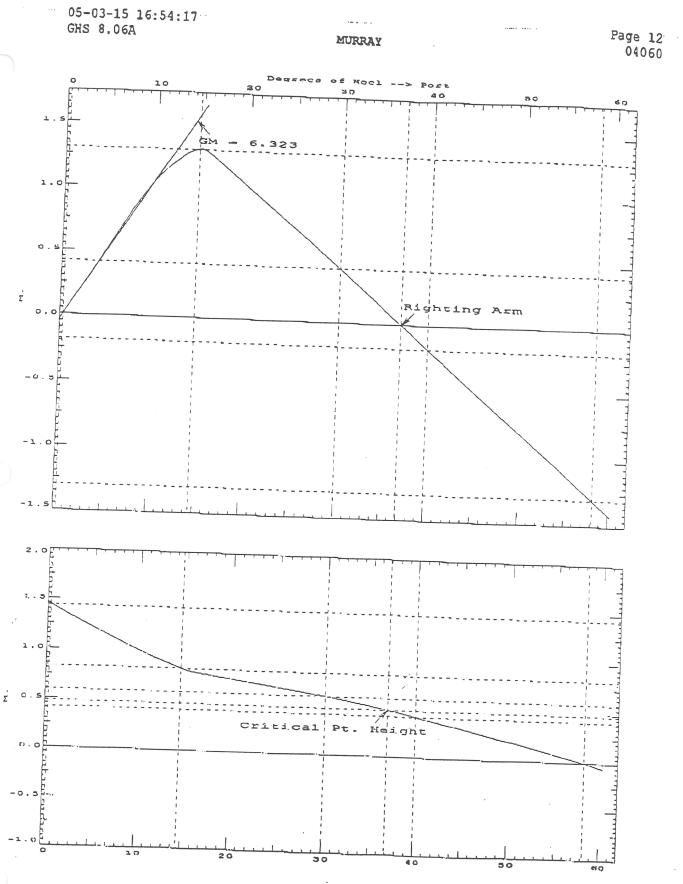
E.Y.E. Marine Consultants MURRAY

.....

Page 10 04060

يستحد حقارك

:


0	-			-			
Origin	Degr	ees of	Displacement	Right	ing Arms		
Depth	Trim-	Heel-	Weight (MT)-		ing Aims		Flood Pt
0.690	0.34a	0.00	Weight (MT) 35.61		in Heel	> Area	Height
0.690	0.34a	0.32p		0.000	0.03/5	0.0000	1.452(1)
0.687	0.36a		35.61	0.000	0.000p	-0.0001	1.437(1)
0.684	0.38a		35.61	0.000	0.245p	0.0045	1.335(1)
0.678	0.39a		35.62	0.000	0.402p	0.0125	1.000(1)
0.662		-	35.61	0,000	0.565p	0.0244	1.267(1)
	0.41a		35.62	0.000	0.853p	0.0553	1.202(1)
0.634	0.43a		35.61	0.000	1.088p		1.090(1)
0.590	0.48a	12.82p	35.62	0.000		0.0977	0.986(1)
0.557	0.55a	14.13p	35,60	0.000	1.250p	0.1487	0.890(1)
0.542	0.58a	14.62p	35.60	0.000	1.298p	0.1778	Deck Imm.
0.517	0.64a	15.32p	35.62		1.304p	0.1890	0.826(1)
0.411	0.68a	17.82p	35.61	0.000	1.293p	0.2049	0.805(1)
0.303	0.68a	20.32p		0.000	1.153p	0.2588	0.768(1)
0,195	0.69a	22,82p	35.61	0.000	1.003p	0.3062	0.735(1)
0.085	0.69a		35.61	0.000	0,852p	0.3467	0.700(1)
-0.025		25.32p	35.61	0.000	0.701p	0.3805	0.665(1)
-0.121	0.70a	27.82p	35.61	0.000	0.549p	0.4078	0.000(1)
-0.135	0.70a	30.00p	35.61	0.000	0.417p	0.4261	0.628(1)
	0.71a	30.32p	35.61	0.000	0.398p	0.4284	0.595(1)
-0.246	0.72a	32.82p	35.61	0.000	0.247p	0.4425	0.590(1)
-0.356	0.75a	35.32p	35.61	0.000	0.096p		0.550(1)
-0.425	0.77a	36.92p	35.62	0.000	0.000p	0.4500	0.507(1)
-0.455	0.79a	37.82p	35.62	0.000		0.4513	0.477(1)
-0.559	0.84a	40.00p	35.61	0,000	-0.055p	0.4509	0.460(1)
-0.573	0.85a	40.32p	35,62		-0.186p	0.4463	0.417(1)
-0.679	0.92a	42.82p	35.61	0.000	-0.206p	0.4452	0.410(1)
-0.784	1.00a	45.32p	35.60	0.000	-0.358p	0.4329	0,357(1)
-0.887	1.08a	47.82p		0.000	-0.512p	0,4139	0.302(1)
-0.989	1.16a	50,32p	35.61	0.000	-0.666p	0.3882	0.245(1)
-1.088	1.24a		35.60	0.000	-0.820p	0.3558	0.187(1)
-1.184	1.32a	52.82p	35,60	0.002a	-0.974p	0.3167	0.129(1)
-1.279		55.32p	35.61	0.000	-1.127p	0.2708	
-1.293	1.40a	57.82p	35.61	0.000	-1.277p	0.2184	0.069(1)
	1.41a	58.21p	35.62	0.000	-1.300p	0.2097	0.009(1)
-1.371	1.48a	60.32p	35.62	0 0 0 0			0.000(1)
Distance	s in MET	ERS	Specific Gravi	ty = 1.02	25	<i>V</i> 202	-0.052(1)
Nation	_					nied in	riKad.

Note: The Center of Gravity shown above is for the Fixed Weight of 34.99 MT. As the tank load centers shift with heel and trim, the total Center of Gravity varies. The righting arms shown above include the effect of the C.G. variation.

(1)	Critical Point		LCP	TCP	
(1)	Exhaust Plenum	FLOOD	7.883a	2.650	2.189

ريا ايري مرابق الجاهيمين منظرمتهم روار الريان

05-03-15 16:54:17 E.Y.E. Marine Consultants GHS 8.06A MURRAY	Page 11 04060
LIMCCG STAB 6 CRITERION	-Min/MaxAttained 0.150 M. 6.333 P 0.0550 MRad 0.4262 P

• • • • • • • •

9

STABILITY CALCULATION WORKED EXAMPLE

email: eye@eyemarine.com

website: www.eyemarine.com

'MURRAY '

••••

STABILITY CALCULATION WORKED EXAMPLE

The following is a manual calculation of condition #3, Arrival Condition, to show the differences which may occur due to simplifying the calculations.

The major simplifications are:

1. Upright hydrostatics used without effect of heel or trim

2. Cross Curves are for zero trim

Generally a manual calculation is a conservative estimate of the stability of the vessel. Differences will exist if the vessel is trimmed.

H:\04Files\04060\EXAMPLE.DOC

. .

'MURRAY'

Condition: 3, PORT ARRIVAL CONDITION

Consumables Remaining: 10 %

DESCRIPTION	%	MAX FSM		1			
	/0	ITAA FOIVI	WEIGHT	LCG	L.MMT	VCG	V.MMT
Light Ship Crew & Effects			34.59 0.40	1.77 0.38	61.09 0.15	4.14 4.18	143.03 1.66
Tanks: MAINFUEL.P MAINFUEL.S AUXFUEL.P AUXFUEL.S FW.P FW.S SEWAGE.P	10% 10% 10% 10% 10% 90%	0.22 0.06 0.06 0.01 0.01 0.01	0.19 0.05 0.05 0.03 0.03 0.11	0.92 -0.18 -0.18 -2.70 -2.70 -1.33	0.17 0.17 -0.01 -0.07 -0.07 -0.15	0.71 0.71 0.71 1.17 1.17 0.59	0.13 0.13 0.04 0.04 0.03 0.03 0.06
otal:		0.59	35.63	1.72	61.28	4.07	145.16

and the second second

'MURRAY'

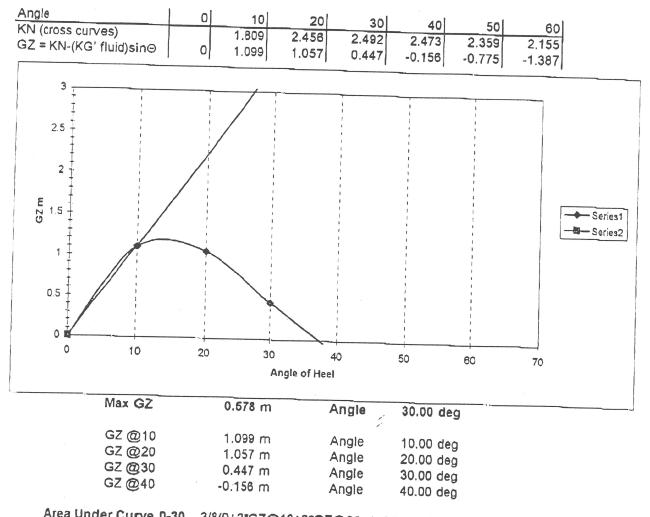
Condition: 3, PORT ARRIVAL CONDITION

Consumables Remaining:	10	%		
Mean Draft (hydrostatics) MCT cm (hydrostatics) LCF (hydrostatics) L BTWN MKS (particulars) AFT MKS AFT OF MIDSHIPS FWD MKS FWD OF MIDSHIPS L AFT LCF (AFT MKS-LCF) L FWD LCF (FWD MKS+LCF) KG (VCG weight table) KM (hydrostatics) GM (KM-KG) FS (Total FSM/A)	0.83 1.10 17.60 8.83 8.76 7.71 9.89 4.07 10.48 8.40 0.02	1 m 9 m 1 m 9 m 7 m 8 m 9 m 2 m	LCG (weight table) LCB (hydrostatics) BG (LCB-LCG) TR. MMT. (Δ*BG) TRIM TRIM AFT TRIM FWD	1.72 m 1.50 m -0.21 m -7.48 m-tonnes -0.088 m -0.0386 m 0.0495 m
GM Fluid (GM-FS)	6.38	m	DRAFT AFT DRAFT FWD	0.74 m 0.65 m

TRIM = [Trim Moment/MCT 1cm]/100 Trim aft/fwd = L/LBM*TRIM Draft aft/fwd = Mean Draft -TRIM aft/fwd

E.Y.E.\ 04060-EG.XLS

.....


'MURRAY'

Condition: 3, PORT ARRIVAL CONDITION

Consumables Remaining: 10 %

Displacement	35.63 tonnes
GM (fluid)	6.38 m
KG (actual) FS	4.07 m
	0.02 m
KG' (fluid) = KG + FS	4.09 m

···· · · · · · ·

0-40	3/8(0+3*GZ@10+3*GZ@20+1*GZ@30)*10/57.3 1/3(0+4*GZ@10+2*GZ@20+4*GZ@30+GZ@40)*10/57.3 area 0-30 - area 0-40	0.452 m-Rad 0.473 m-Rad 0.021 m-Rad
		alar III-Mau

1%

.

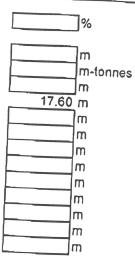
'MURRAY'

Condition:

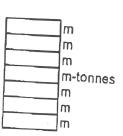
Consumables Remaining:

DESCRIPTION Δ MAX FSM WEIGHT % LCG VCG V.MMT L.MMT Light Ship 34.59 1.77 61.09 4.14 143.03 Tanks: MAINFUEL.P MAINFUEL,S AUXFUEL.P AUXFUEL.S FW.P FW.S SEWAGE.P Total:

· · · · · · ·


.

" 'MURRAY'


Condition:

Consumables Remaining:

Mean Draft (hydrostatics) MCT cm (hydrostatics) LCF (hydrostatics) L BTWN MKS (particulars) AFT MKS AFT OF MIDSHIPS FWD MKS FWD OF MIDSHIPS L AFT LCF (AFT MKS-LCF) L FWD LCF (FWD MKS+LCF) KG (VCG weight table) KM (hydrostatics) GM (KM-KG) FS (Total FSM/ Δ) GM Fluid (GM-FS)

LCG (weight table) LCB (hydrostatics) BG (LCB-LCG) TR. MMT. (Δ°BG) TRIM TRIM AFT TRIM FWD

 [(ROK AFT + ROK FWD)/2]
 0 m

 DRAFT AFT
 m

 DRAFT FWD
 m

TRIM = [Trim Moment/MCT 1cm]/100 Trim aft/fwd = L/LBM*TRIM Draft aft/fwd = Mean Draft -TRIM aft/fwd

E.Y.E.1 04060-EG.XLS

()

Condition: Consumables Remainir	ng:%					
	GM (f KG (a FS	acement Iuid) ctual) Iuid) = KG + FS		tonnes m m m m		:
GZ = (KN-K	G' fluid)sin⊝	0				
4.5 4 3.5 3 2 5 2 1.5 1 0.5 0 0	10	20	30 Angle of Hee	40 50	E 60	
	Max GZ GZ @10 GZ @20 GZ @30 GZ @40	m m m m m m	Angle Angle Angle Angle Angle	deg deg deg deg deg		

10

INCLINING EXPERIMENT REPORT

n

ri

E 1

III E.Y.E. MARINE CONSULTANTS

Suite 1, 327 Prince Albert Road, Dartmouth, Nova Scotia, Canada B2Y IN7

Tel: (902) 463-8940 Fax: (902) 463-6319

"MURRAY"

INCLINING EXPERIMENT

Transpo Conoda	rt Transports Canada
ON THE AUTHORITY OF THE CANADA SHIPPING ACT AND REGULATIONS MADE THEREUNDER	- APPROUVÉ EN VERTU DE LA LOI SUR LA MARINE MARCHANDE DU CANADA ET DES RÉGLEMENTS CONNEXES.
ON BEHALF OF THE BOARD OF STEAMSHIP INSPECTION GE- PARTMENT OF TRANSPORT.	POUR LE COMPTE DU BUREAU D'INSPECTION DE MAVIRES À VASEUR, MINISTÈRE DES TRANSPORTS.
FEB	2 5 2005
Ď	ATE

SUBJECT TO THE ACCURACY OF THE BASIC DATA BEING THE RESPONSIBILITY OF THE OWNER. HIS NAVAL ARCHITECT OR THE SHIP. BUILDER. SONT PRECICES.

H: O-Filer 04060 INCL-COVER MUP

BY:E.Y.E. MARINE CONSULTANTSFOR:A.F. THERIAULT & SON LTD.DATE:21 FEBRUARY 2005JOB NO:04060

email: eye@eyemarinc.com

website: www.cyemarine.com

......

"MURRAY" Inclining Report

This is the report of the inclining of the vessel "Murray" which was performed on January 9th 2005 in Meteghan River commencing at 9:00 AM

REPRESENTATIVES

Jerry Peet Dave Lutwick Mike Orr Graham Oakley George Kwan

EYE Marine Consultants EYE Marine Consultants Transport Canada A.F. Theriault PWGSC

LOCATION

A.F. Theriault Wharf, Meteghan River, NS

WEATHER CONDITIONS

Sea conditions were relatively calm, the vessel was free to incline throughout the test. The gangway was removed and the mooring lines were slack. Snow and ice was removed from all decks and house tops.

INCLINING WEIGHTS

Inclining weights consisted of steel drums filled with concrete. The weights were certified by a TCMS inspector. Calibration Certificate for the scale used to measure the weights is included.

(See attached sketch for location of inclining weights)

Inclining Wt Id	Wt (lbs)	Wt(t)	·
1	1120.0	0.508	
2	1160.0	0.526	
3	1120.0	0.508	
4	1160.0	0.526	

HYDROMETER READING

Measured Specific Gravity of water =

1.0075

DRAFT MARKS and FREEBOARDS

Note : Freeboards were recorded at vessel in inches and converted to metric

	(m)	(m)	Aft Freeboard	Mid Freeboard	Fwd Freeboard	1
Port	0.740	0.680	(m) 1.181	(m)	(m)	
Stbd	0.725	0.675	1.175	1.295	1.819	Measured freeboard
Ave	0.733	0.678	0.721	1.308	1.819	in metres
Dist to Datum		8.788fwd	6,621aft	0.682	0.617	Draft in metres from avo

Drafts obtained from mid and fwd freeboard readings were not included due to erroneous 10.877fwd freeboard measurements results and large error occuring when included. All other drafts were input into the computer for least square analysis. Results confirmed maximum error of +/- 3mm which was determined to be within the accuracy of the measurement

- Heel =0.13deg to port determined from the aft draft marks

ri

4

4

····

"MURRAY" Inclining Report

PENDULUM LENGTHS

A4 0	Length (in)	Length (m)	
Aft Pendulum =	115.500	2.934	
Fwd Pendulum =	87.625	2.226	
Ave Pendulum Length	101.563	2.580	

.

PENDULUM DEFLECTIONS

GENERAL DATA			AFT PEND. 2,934	FWD PEND. 2.226	1
Shift No.	Weight (t)	Distance (m)	Deflection (mm)	Deflection (mm)	Direction of Shift
2	0.508	3.962 3.962	27.000 26.500	20.000	Stbd-Port
3	0.526	3.962	25.000	23.000	Stbd-Port Port-Stbd
5	0.508	3.962	29.000 24.500	20.000	Port-Stbd
6	0.526	3.962	28.500	22.500	Port-Stbd Port-Stbd
8	0.526	3.962 3.962	26.000 28.500	21.500 22.500	Stbd-Port
Averages	0.517	3.962	26.875	21.750	Stbd-Port

CALCULATION OF GMTM

Average Pendu	lum Length = L =	2.580) m
Average Pendului	n Deflection = defl =	0.024	m
Average Weight	= w =	0.517	t
Average Shift =	d =	3.962	m
,GMTM =	<u>vvxdxL</u> = 2 defi	20.198 t-m	Input to Computer
displ =	35.74 t	Displacement a	at inclining

6.161 m

displ =

Displacement at inclining

GM = <u>GMTM =</u> displ

"MURRAY" Inclining Report

......

CONDITION OF TANKS DURING INCLINING

Tanks were completely empty during inclining. Tanks were sounded to confirm this.

WEIGHTS TO BE ADDED/REMOVED

Weights to be added -

Engine Room Insulation Aft Deck Boat Anchor Rope on FWD Winch 30 gallons of Hydraulic Fluid in Hydraulic Tank Ceiling Panels (Crew's Mess, Wet Locker, Wheelhouse) CO₂ Doors and Battery Doors Engine Room Grates Radar and Electronics Fluids in Systems Table in Gallery Wheelhouse Setee ER Intake Covers

Weights to be removed -

Bilges-

All bilges dry

5 personnel Inclining weights

Inclining experiment equipment 4 Off 2" x 8" planks, 10' long

Tools in Galley (20 lbs) Tools in Wheelhouse (45lbs)

EYE 04060/INCLINE.XLS

·····

The providence of the second

· ·····

Page 4

04060

GHS 8.06A

· ··· ·

05-02-18 09:13:44 E.Y.E. Marine Consultants MURRAY

. ...

DRAFTS used to establish Waterline

Location-	Given	Used	Error
8.808a	0.733	0.730	0.003
6.621a	0.721	0.724	-0.003
8.788f	0.678	0.678	
		0.678	0.000
Distances in	METERS	Drafts from	Baseline

	WEIGHT and DI Baseline draf	t: 0.704	@ Origin	2		
Trim:	Aft 0.17 deg.	, Heel:	Port 0.1	L3 deg.		
Part		35.74	1.598a	0.015n	4 103	ESM
Total Tanks>		0.00				0.00
HULL	1.008	spl(MT)- 35.74	LCB 1.609a	TCB 0.023p	VCB 0.428	
Righting Distances in METERS	Arms:		0.000	0.000s		
					Moments	in MMT.

** Condition at Inclining **

Baseline draft: 0.704 @ Origin

HYDROSTATIC PROPERTIES Trim: Aft 0.17 deg., Heel: Port 0.13 deg., VCG = 4.103

Draft@ Displacement Buoyancy-Ctr. Weight/ Moment/ Origin----Weight(MT)----LCB-----VCB-----CM-----LCF--Deg trim----GML-----GMT 0.704 35.74 1.609a 0.428 0.69 1.118a 22.90 36.71 6.162 Distances in METERS.-----Specific Gravity = 1.008.-----Moment in M.-MT. Draft is from Baseline.

1

1

7

Lą

1.8 -1

.......

GHS 8.06A

05-02-18 09:13:44 E.Y.E. Marine Consultants MURRAY

Page 5 04060

and the second second

The Following items were aboard and included in the Lightship: Fluids in systems

Weights to Add or Deduct to Obtain Lightship

WEIGHT and DISPLACEMENT STATUS Baseline draft: 0.687 @ Origin

Trim: Aft 0.17 deg., Heel: Port 0.13 deg. Part-----Weight(MT)----LCG----TCG-

Part	Waight (MT)	FOLL U.	is deg.	NOG	
Part Vessel as Inclined Inclining Weights#1 Inclining Weights#2 Inclining Weights#3 Inclining Weights#4 2 Men and Incline Equip F 2 Men and Incline Equip A Personnel on board 2:8-10' Long Wood Planks Tools in Galley Life Rafts Life Rafts Life Raft Tools in Wheelhouse Port E.R. Flooring Stbd E.R. Flooring Port E.R. Insulation Stbd E.R. Insulation RIB Anchor Rode	35 74	1 500-	0 015-	VCG	
Inclining Weights#1	-0.51	3 566	0.015p	4.103	
Inclining Weights#2	-0.53	1 764-	2.7905	2.465	
Inclining Weights#3	-0.51	2 726-	2,7903	2.502	
Inclining Weights#4	=0.53	2,730a	2.782p	2.488	
2 Men and Incline Equip F	-0.17	1 4445	2.782p	2.512	
2 Men and Incline Equip A	-0.23	1.4441	0.000	3.087	
Personnel on board	-0.23	4.3/Sa	0.000	3.004	
278-10' Long Wood Planks	-0.09	8.000 <u>r</u>	0.000	4.046	
Tools in Galley	-0.09	2.240a	0.000	1.955	
Life Rafts	-0,01	0.2501	0.985p	3.040	
Life Raft	-0.10	7.5931	0.000	3,300	
Tools in Wheelbouse	0.10	8.069a	0.000	2.189	
Port F. R. Flooring	-0.02	1.000a	0.000	4.720	
Sthd F. P. Flooring	0.03	3.805a	2.200p	0.500	
Port F. P. Insulation	0.03	3.805a	2.200p	0.500	
Sthe F. P. Insulation	0.25	5.305a	2.200p	2.100	
PTB	0.25	5.305a	2.200s	2.100	
Anchur Pode	0.50	7.805a	0.000	2.000	
		7.915f 3.805a	0.000	3.300	
Ceiling in Moss	0.14	3.805a	3.000p	1.500	
Hydraulic Tank W/Oil Ceiling in Mess Ceiling in Wet Locker Ceiling in Wheelhouse Setee in Wheelhouse	0.01	0.195f	0.000	4.000	
Ceiling in Wheelbourg	0.01	1.805a	0.000	4.000	
Setee in Wheelhouse	0.03	0.805a	0.000	6.000	
Discharge in Missil		2.805a			
Electronics in Wheelhouse	0.04	2.805a	1.000p	5.000	
	0.01	0.195a	2.000s	3,000	
CO2 Locker Deer	0.03	2.305a	0.000	2.000	
CO2 Locker Door	0.01	2.805a	0.000	3.000	
LR INTAKE COVERS	0.02	3.630a	0.000	3.160	
Net Locker Furnishings	0.02	1.805a	0.000	3.000	
Interior Furnishings	0,03	0.195a	0.000	3.000	
Towing Rope	0.01	4.305a	1.000p	2.500	
Life Rings	0.01	0.000	0.000	3.202	
Scanner Arm 4rt	0.01	1.855a	0.000	6.635	
Scanner Arm 6ft	0.01	3.474a	1.091s	7.236	
Dining Table Dining Table Spares CO2 Locker Door ER INtake Covers Wet Locker Furnishings Interior Furnishings Towing Rope Life Rings Scanner Arm 4ft Scanner Arm 6ft Total Weight> SpGr	34.59	1.766a	0.033p	4.135	
SpGr	Displ(MT)-	LCB	TCB	VCB	RefHt
SpGr HULL 1.008	34.59	1.626a	0.024p	0.419	-0.687
Righting Arms:		0.151f	0.018s		
Righting Arms: 0.151f 0.018s Distances in METERS					

ľ

Ľ

Ľ

ų.

ı

,

.

05-02-18 09:13:44 GHS 8.06A	diffic outsullants	
Trim:	WEIGHT STATUS Aft 0.17 deg., Heel: Port 0 13	dea

...

Part	Weight (MT) -			1100
WEIGHT	34 50	1 766-	0.022-	4 125
Distances in METERS	34.59	1.7004	0.033p	4,135