Attachment 1

Site Photographs

Photograph 1: View of Main Site (CS-1), facing north.

Photograph 2: View of concrete dock and hoist at CS-1, facing south.

Photograph 3: View of duplex dwelling facing northwest.

Photograph 4: View of duplex dwelling facing south.

Photograph 5: View of poor condition, lead containing white paint on the exterior of the duplex dwelling, facing southwest.

Photograph 6: View of cobble stone soils near duplex dwelling, facing southeast.

Photograph 7: View of main dwelling facing northwest.

Photograph 8: View of grassed area and path east of main dwelling facing west.

Photograph 9: View of poor condition, asbestos-containing window caulking on main dwelling, and paint debris on ground surrounding the building.

Photograph 10: View of lead-containing, white paint on main dwelling, and paint debris on ground surrounding the building.

Photograph 11: View of paint debris along the perimeter of the main dwelling building, facing east.

Photograph 12: View of poor condition paint in basement stairwell of the main dwelling.

Photograph 13: View of poor condition white paint and above ground storage tanks in basement of main dwelling.

Photograph 14: View of old fog alarm / generator building, facing southeast.

Photograph 15: View of old fog alarm / generator Building, facing north.

Photograph 16: View of grassed area near the old fog alarm / generator building, and poor condition asbestos containing red and black shingles on roof, facing southeast.

Photograph 17: View of grassed area and path north of the old fog alarm/generator building, facing west.

Photograph 18: View of grassed area on the east side of the old fog alarm/generator building, facing south.

Photograph 19: View of poor condition, lead containing white paint, and paint debris on the ground surrounding old fog Alarm/generator building.

Photograph 20: View of poor condition, lead-containing white paint and water damaged material on ceiling in old fog alarm/generator building.

Photograph 21: View of poor condition, lead-containing grey paint and generators in old fog alarm/generator building.

Photograph 22: View of paint on ceiling of old fog alarm / generator building in the machinery room found to be in poor condition.

Photograph 23: View of poor condition paint on ceiling with visible signs of water damage in old fog alarm / generator building.

Photograph 24: View of poor condition paint on ceiling of second level with visible signs of water damage in old fog alarm / generator building.

Photograph 25: View of poor condition white paint on the main level of the old for alarm / generator building.

Photograph 26: View of paint debris on the second level floor of the old for alarm / generator building.

Photograph 27: View of the attic of the old fog alarm / generator building found to have paint debris on floor and lead containing painted surfaces in poor condition.

Photograph 28: View of used paint supply debris in the paint room of the old fog alarm / generator building.

Photograph 29: View of cobble stone soil, new diesel generation building, old fog alarm / generator building and former oil house, facing northeast.

Photograph 30: View of cobble stone soil on the south side of the New Fog Alarm/Generator Building, and New Diesel Generator Building, facing west.

Photograph 31: View of New Fog Alarm Building, facing southeast.

Photograph 32: View of grassy areas surrounding the Former Oil House, facing northeast.

Photograph 33: View of poor condition, lead containing white and red paint on Former Oil House, facing northeast.

Photograph 34: View of poor condition, lead-containing, white paint on Outhouse at CS-1, facing northeast.

Photograph 35: View of interior of outhouse at CS-1, showing poor condition paint.

Photograph 36: View of waste in Debris Pile 1B (East Debris Pile) containing empty oil pails, facing east.

Photograph 37: View of waste in Debris Pile 1B (East Debris Pile), facing west.

Photograph 38: View of waste in Debris Pile 1B (East Debris pile).

Photograph 39: View of waste in Debris Pile 1A (West Debris Pile), facing west.

Photograph 40: View of waste in Debris Pile 1A (West Debris Pile), facing west.

Photograph 41: View of foot path from CS-3 to leading to CS-2, facing south.

Photograph 42: View of foot path leading to CS-2, facing east.

Photograph 43: View of stairway from CS-2 leading to CS-1, facing south.

Photograph 44: View of Lighthouse, facing east.

Photograph 45: View of poor condition, lead-containing white paint on Lighthouse.

Photograph 46: View of poor condition, lead containing white paint and debris on top balcony of Lighthouse.

Photograph 47: View of soil surrounding Lighthouse, facing west.

Photograph 48: View of soil surrounding Lighthouse, facing east.

Photograph 49: View of interior mould impacted materials on ceiling of main level of the Lighthouse building.

Photograph 50: View of poor condition grey paint on the main level floor of the Lighthouse building.

Photograph 51: View of interior poor condition white paint on the second level of the lighthouse building.

Photograph 52: View of interior of lighthouse upper level ceiling, found to have lead-containing white paint in poor condition.

Photograph 53: View of waste in Debris Pile 3A (Lighthouse).

Photograph 54: View of Old Dwelling Building, facing southeast.

Photograph 55: View of Old Dwelling at CS-3, facing west.

Photograph 56: Overview of CS-3 (Old Dwelling), facing east.

Photograph 57: View of stairs leading to the second level of the old dwelling building found to have leadcontaining grey paint in poor condition.

Photographs 58: View of soil along old dwelling building perimeter, facing west.

Photograph 59: View grassed area near old dwelling builling, facing northwest.

Photograph 60: View of waste in Debris Pile 2A, facing east.

Photograph 61: View of waste in Debris Pile 2 B.

Attachment 2

Environmental Program Report

Environmental Program Report Slate Islands Coast Guard Site Patterson Island, Lake Superior, Ontario DFRP No. 56027

March 28, 2017

PWGSC No. R.083149.001 & .004 DST File No.: GV-SD-027105 FCSI No.: 56027001, 56027002 & 56027003

Prepared for: Public Works and Government Services Canada Environmental Services 4900 Young Street, 11th Floor Toronto, Ontario, M2N6A6

Prepared by:

DST Consulting Engineers Inc. 885 Regent Street, Suite 3-1B, Sudbury, Ontario, P3E 5M4 Tel: (705) 523-6680 Fax: (705) 523-6690 Email: <u>sudbury@dstgroup.com</u>

Distribution:

Public Works and Government Services	two electronic copies,	one hard copy
DST Consulting Engineers Inc.	one electronic copy, o	one hard copy

EXECUTIVE SUMMARY

DST Consulting Engineers Inc. (DST) was retained by Public Works Government Services Canada (PWGSC; also referred to as the "Client") to carry out the following work at the Slate Islands Coast Guard Site, located on Patterson Island in Lake Superior (the "Site"):

- Review background information and previous reports;
- Complete a Designated Substance and Hazardous Materials Survey (DSHMS);
- Conduct additional soil sampling;
- Review and update the Species at Risk (SAR) survey;
- Complete an Environmental Effects Evaluation (EEE);
- Perform a structural assessment; and,
- Conduct a marine assessment.

The work was carried out in accordance with the Statement of Work (SOW) prepared by PWGSC (2016) and the DST proposal dated July 29, 2016. The Site, identified as Directory of Federal Real Property (DFRP) No. 56027, is Crown land under the custody of Fisheries and Oceans Canada (DFO).

The objectives of the environmental program detailed herein is to gather data and information to be used to prepare a set of specifications to remove the primary sources of soil contamination at the Site; that is to abate, remove and dispose of exterior lead-containing substances and any debris piles observed at the Site. Interior lead-based paint is also to be removed as indicated in the SOW. Soil remediation may be included in the specifications depending on Client and DFO requirements.

This environmental program report comprises the first phase of the overall project, which is broken down into two phases. The second phase consists of the development of plans and specifications which will be provided under separate cover.

Site Description

The Slate Islands Coast Guard Site is located within the Slate Islands group near the north shore of Lake Superior, approximately 18 km south of the community of Terrace Bay, Ontario. The

location of the Site, illustrated on Figure 1 in Appendix A, is approximately 165 km east of Thunder Bay.

The Site occupies approximately 12.1 ha and is located on Sunday Point, Patterson Island; the largest and most southerly of the Slate Islands. The Site has been divided into three areas of interest (also referred to as contaminated sites; "CS") as described below, and illustrated on Figure 2 in Appendix A.

The Main Site (CS-1) is located on the south side of Sunday Point. The structural features of this area consist of the main Coast Guard station including the main dwelling, the duplex dwelling, the two-storey old fog alarm building, the former oil house building, the new fog alarm building, the new diesel generator building and various other structures. Most buildings on-Site are wood construction with wood cladding or shingle siding. The locations of the Main Site features are illustrated in Figure 3 in Appendix A. A concrete dock is located south of the duplex dwelling. The structures on-Site are connected by concrete pathways. The Site is inhabited seasonally by private lease holders who use the Site as a seasonal home from April to October each year.

The Lighthouse Area (CS-2) is located on the rocky summit of Sunday Point. Structural features of this area consist of the three-storey lighthouse building, a helicopter pad, and a solar shed that supports several solar panels found east of the lighthouse building. The locations of the CS-2 area and structures are illustrated in Figure 4 in Appendix A.

The Old Dwelling Site (CS-3) is located north of CS-1 and CS-2 in a sheltered bay within Sunday Harbour. From the water edge, CS-3 has a sand and gravel beach extending into an area covered by grass. The area surrounding the grassed area is wooded. The structural features in this area include a two-storey residential dwelling referred to as the old dwelling building, an outhouse and former boat winch. The locations of CS-3 area features are illustrated in Figure 5 in Appendix A.

The undeveloped areas of the Site consist primarily of exposed bedrock and boreal forested areas. Sunday Point is surrounded by the open water of Lake Superior to the south and west, and Sunday Harbour to the north. The Site and surrounding area is accessible only by boat or helicopter and there are no significant developments or infrastructure in other areas near the Site.

Designated Substance and Hazardous Materials

The DSHMS scope of work included an assessment for the presence of the 11 Designated Substances, identified in the *Occupational Health and Safety Act*, as well as polychlorinated biphenyls (PCBs), halocarbons, mould, and other hazardous materials.

The following conclusions and recommendations are provided for asbestos and lead as per the SOW and subsequent communication with the Client.

<u>Asbestos</u>

The survey included a room-by-room assessment of all accessible areas of the Site buildings. Site photographs and site plans showing sample locations (i.e. Figures 6 through 11) are provided in Appendix B.

Based on the current scope of work as discussed with the Client, Type 2 asbestos abatement will be completed on all interior drywall with asbestos-containing joint compound where lead containing paint is present as outlined in Table 4 in Appendix B. Lead precautionary measures should also be considered on any removal of drywall with lead-containing paint.

Based on the current project scope, asbestos abatement following a Type 1 will be completed on the following material/structure:

- Main dwelling, exteriors basement windows caulking and stored window where asbestos caulking was present; and,
- Old fog alarm building, roofing shingles and shingles debris.

Where painted window caulking is present on the main dwelling exterior basement, lead precautionary measures should also be considered.

The time weight average exposure limit (TWAEL) for airborne asbestos is prescribed by Ontario Regulation 490/09 *Designated Substances* under the *Occupational Health and Safety Act, R.S.O. 1990, c. O.1* (O. Reg. 490/09), as amended. Work procedures and personal protective equipment must be used to ensure that workers are not exposed to airborne asbestos levels that exceed this TWAEL.

The following recommendations apply to asbestos containing materials (ACMs) and assumed ACMs:

- Materials found in poor condition should be abated using appropriate precautionary measures;
- Materials must be maintained in good condition;
- Appropriate work procedures and precautionary measures must be used, as outlined in O. Reg. 278/05, Asbestos on Construction Projects and in Buildings and Repair Operations enabled under the Occupational Health and Safety Act R.S.O. 1990, Chapter 1 (O. Reg. 278/05), as amended, when performing work that may disturb ACMs or suspected ACMs, including prior to building demolition;
- Disturbance and/or removal of ACMs must be appropriately recorded as part of the building's Asbestos Management Plan;
- If ACMs or suspected ACMs become damaged and worker exposure to the material is likely to occur, the damaged material must be repaired or removed following work procedures outlined in O. Reg. 278/05, as amended; and
- Disposal of asbestos waste is controlled by Reg. 347, as amended. This regulation requires that asbestos waste be sealed in double containers resistant to puncture and tears, and appropriately labelled. The waste must be disposed of at a licensed waste disposal site. Proper notification must be issued to the site representative prior to transportation of waste. The transport of the waste to the disposal site is controlled by the federal *Transportation of Dangerous Goods Act*, 1992 (TDGA) and Reg. 347.

<u>Lead</u>

Paint samples collected by DST were confirmed to have detectable concentrations of lead. Sample location floor plans (i.e. Figures 6 through 11) are provided in Appendix B

Table 4, attached in Appendix B, provides a summary of lead-containing painted surfaces, location and quantities.

The following recommendations apply to paint and surface coatings on building finishes found to contain elevated concentrations of lead:

- Paint on the exterior of buildings should be abated using appropriate specialized paint strippers (e.g. alkaline caustic or soy gel) and power tools equipped with HEPA filtered vacuums;
- Paint on interior surfaces should be abated using appropriate Type 1 procedures as outlined in the MoL *Guideline: Lead on Construction Projects*;
- Paint debris surrounding the perimeter of the buildings and structures should be remediated scrapping top layer of soil to a depth of up to 5 cm where feasible. Where debris is located on bedrock, sidewalks or cobblestone, debris should be removed using HEPA filtered vacuums. Debris found in the interior of buildings should be remediated following MoL precautionary measures, outlined in the document referenced above; and,
- Based on the current scope of remediation as discussed with PWGSC, the remediation of lead paint will be completed on all identified lead-base interior surfaces, all exterior paint and all paint debris as noted in Table 4 of Appendix B. It should also be noted that where lead paint remediation is to be completed on asbestos containing substrate material, the most stringent guidelines shall be applied.

If not abated, all interior paints containing elevated levels of leads, should be maintained in good condition.

Environmental Soil Investigation

DST has completed a soil investigation and additional delineation at the Site. The soil investigation of three previously identified contaminated areas included field screening of soil samples and laboratory analyses to identify and delineate contaminated areas at the Site. In addition, the investigation involved the identification and quantification of concentrated debris piles located at and around the three developed areas of the Site.

Soil logged during the surface soil sampling activities indicated that the soil along the shoreline at CS-1 consists of cobbles with some gravel beach deposits, in places extending to the treeline. The developed grassed areas surrounding the dwellings at CS-1 are underlain by shallow soil, consisting of topsoil with some sand, cobbles and gravel. In the forested areas surrounding CS-1, soils were often found to have organic litter, fibric and humus (LFH) horizons. Underlying the LFH horizons, mineral soils were found to have a coarse sandy loam texture with some gravel. Exposed bedrock was observed predominantly along the shoreline of the site within the area of the littoral zone.

At CS-2, the overburden was found to consist of discontinuous sandy gravel with some cobbles in low-lying patches on the rugged bedrock surface.

At CS-3, soils were found to be a medium to coarse sand with some gravel, extending to the beach at Lake Superior. In the surrounding forested areas of CS-3, soils were found to have LFH horizons overlying sand and gravel.

Contaminated Soil

The areas of contaminated soil, separated by hazardous and non-hazardous conditions are summarized as follows:

- CS-1 (Main Site Area): Three areas of contaminated soil covering an area of approximately 2,150 m² and an estimated volume of 800 in-situ m³ of non-hazardous contaminated soil and 50 in-situ m³ of solid hazardous waste as defined by Reg. 347;
- CS-2 (Lighthouse Area): contaminated soil in this area was delineated in all directions on the summit with an approximate area of 600 m² and an estimated volume of 70 in-situ m³ of non-hazardous contaminated soil and 30 in-situ m³ of solid hazardous waste as defined by Reg. 347, and;
- CS-3 (Old Dwelling Area): an area of approximately 920 m² and estimated volume of 550 in-situ m³ of non-hazardous contaminated soil.

Debris Areas

The areas where historical debris dumping was observed in concentrated conditions are as follows:

- CS-1 (Main Site Area): Two debris piles (East and West Dumps) with an area of 300 m² and estimated debris volume of 220 in-situ m³.
- CS-2 (Lighthouse Area): Approximate area of 80 m² and estimated volume of 25 in-situ m³; and;
- CS-3 (Old Dwelling Area): three debris dumps with a collective area of 75 m² and an estimated volume of 23 in-situ m³ of debris.

In addition, small amounts of scattered debris were observed at the base of the lighthouse cliff towards the south and east. The debris was not concentrated into any one area, rather appeared to have been historically thrown from the top of the cliff.

It is recommended that all identified debris be removed from the Site as per the SOW. This debris should be excavated/removed and placed into suitable bulk bags with suitable liners and carry straps. The debris should be sorted as indicated in Section 4 to separate, and appropriately containerize, the debris for disposal. Efforts should be made to decrease the volume of the debris prior to containerization. The containerized debris should be transported from the Site to the appropriately licensed waste receiver for disposal. During, and upon completion of debris removal, inspections are recommended to be completed by an environmental consultant to confirm waste removal and to collect confirmatory samples, as required.

Also, it is recommended that a new human health and ecological site specific risk assessment be completed for the Site. After the risk assessment and confirmatory sampling recommended above, the areas and volumes of contaminated soil can be refined, based on the risk management/remediation recommendations within the risk assessment.

Species At Risk Survey Update

It was determined by the Client that an updated SAR survey report was required to develop a comprehensive set of mitigation measures to be implemented during the construction phase of this project. These mitigation measures have been developed to minimize impacts to potential SARs at the Site during the abatement and debris removal activities planned.

No SAR listed as endangered or threatened under the Species at Risk Act (SARA) were observed on-Site during the Site visit and field investigation. Potential evidence of winter caribou foraging was observed at CS-3 and the Site in general provides attributes supporting its function as a Winter Use Area for Boreal Woodland Caribou, although this function is not confirmed. Mitigation measures related to avoidance of winter work periods, minimization of the intensity, spatial and temporal extent of on-Site activities, as well as restricting remediation activities to disturbed areas to the extent practical, will likely prevent any meaningful impacts to Boreal Woodland Caribou and/or their habitat at and in the vicinity of the Site.

Four bird SAR (Canada Warbler, Common Nighthawk, Eastern Whip-poor will and Olive Sided Flycatcher) were identified by Environment and Climate Change Canada (ECCC) as having the potential to be present on or near the Site. SARO indicated the potential presence of the Barn Swallow. Surveys for these five avian species were not conducted as the Site visit was completed outside the seasons for the appropriate surveys. However, by observing the following mitigation measures during the planned abatement and debris clean-up work, no impacts to these bird SAR are anticipated: nesting sweeps by a qualified avian biologist in potentially impacted areas; implementation of buffer zones if/where bird SARs are encountered; restrictions of remediation activities to disturbed areas of ground to the extent practical; and, minimization of spatial and temporal extent of work.

Three species of bats (Northern Myotis, Little Brown Myotis, and Tri-colored Bat) were identified by ECCC as having the potential to occur at the Site. Building demolition is not proposed as part of the designated substance removal portion of the remedial program, though the replacement of roofing materials is to be completed. Therefore, bat roosting habitat in buildings is unlikely to be impacted. If/where debris removal from historic dumps will include tree removal, or where tree removal may otherwise occur and have the potential to impact bat maternal roost colonies, surveys for bat maternity snags according to the Ontario Ministry of Natural Resources and Forestry (MNRF, 2011) should be undertaken by a qualified biologist. If no suitable maternal snags are identified, work may proceed. If suitable maternal snags are identified, these should be retained and debris removal in their vicinity should be done by hand where practical. Where these mitigation measures are observed, no impacts to bat SAR are anticipated as a result of the proposed work.

Two aquatic SAR were identified as having the potential to occur around the Slate Islands. Both species, the Upper Great Lakes Kiyi and Deepwater Sculpin (Great Lakes – Western St. Lawrence population) are listed as 'special concern' under Schedule 1 of the SARA. Therefore, neither receives individual or habitat protection. However, prohibitions under the Fisheries Act prohibit causing 'serious harm' to these species. Through the application of appropriate mitigation measures, no impacts to either of these species is anticipated.

Overall, so long as the aforementioned mitigation measures are implemented, it is unlikely that the abatement and debris removal activities will have any meaningful impact to SAR.

Environmental Effects Evaluation

DST completed an Environmental Effects Evaluation (EEE) in accordance with Section 67 of the *Canadian Environmental Assessment Act* 2012 to determine what, if any, environmental effects the proposed project might have on the environment. The EEE report, based on a template provided by PWGSC, is presented in Appendix E.

As part of the EEE, DST reviewed available information regarding the proposed project, reviewed Site information, completed a Site visit, consulted with various directly affected agencies and conducted research to determine potential effects and provide mitigation measures that would help to avoid causing any negative impacts to the environment.

Following the completion of the EEE, it was determined that, to mitigate any potential environmental impacts the project may incur, consideration will be taken relating to: avoidance of winter work periods; nesting sweeps by a qualified avian biologist; implementation of buffer zones if/where bird SAR are encountered; and, minimization of the intensity, spatial and temporal extent of on-Site activities, as well as restricting remediation activities to disturbed areas of ground to the extent practical.

It is reasonable to conclude that with appropriate mitigation measures included in the work specifications and as summarized in Section C, Tables 2.1-2.7 of the EEE (Appendix E), any potential environmental effects will be of short duration and the zone of influence, if any, will be confined to the immediate vicinity of the Site. Further, the removal of the lead impacted materials and debris piles currently at the Site are expected to have a positive effect on any environmental receptors present at the Site or nearby areas.

Structural Assessment

DST retained JML Engineering (JML) of Thunder Bay, Ontario, to conduct a Level II building inspection in order to evaluate the current conditions of the buildings on the Slate Island Coast Guard Site with commentary on the need for a repair/replacement program and associated costs. The JML report is provided in Appendix F of this report.

JML provided recommendations to ensure that the structures and their systems will reach their maximum life expectancy, and maintain the required health and safety levels. The findings of the

report recommended \$306,000.00 in short term (1-5 years) expenditures and \$287,000.00 in long term (6-25 years) expenditures. Additional details can be found in the JML Structural attached as Appendix F of this report.

It was indicated that each structure included in the report can withstand the recommended abatement activities and there are no health and safety concerns with contractors accessing the structures.

Marine Assessment

Public Works and Government Services Canada, on behalf of DFO, requested DST to conduct an environmental program on the Slate Islands Coast Guard Site (GC 1111), Lake Superior. The program was intended to identify the needs for any structural repairs or soil remediation at the site.

DST retained Riggs Engineering Ltd. (Riggs) to conduct a marine assessment as a component of its overall program. The objective of the marine assessment is to evaluate access options for the scope of the remedial works required at the Slate Islands Coast Guard Site.

PWGSC's requirements for the assessment are as follows:

- Conduct a review of available Canadian Hydrographic Survey (CHS) charts for the area;
- Evaluate methods of access to Patterson Island considering no current infrastructure (dock or wharf) is available, and provide a recommendation for the most feasible and cost effective option;
- Determine type(s) of vessel that could meet the needs of the project (excavation and disposal of contaminated soil and possibly building materials) including access to and from the Site; and,
- A report detailing observations made on site, including recommendations and cost estimates for site access options during remediation.

It was advised that bidding contractors inspect the potential marine access areas at the Site including soundings to determine landing locations and approaches, the types and combinations of vessels to use, and which mainland port to utilize in order to set a workable marine servicing plan and cost.

Marine Servicing the Main Site

The Main Site will require marine servicing to mobilize/demobilize equipment and supplies to the Site and to transfer the containerized waste off-Site.

The Main Site is fully exposed to open Lake Superior and subject to wind and waves from all directions except north and northwest. Safe access to the Main Site landing will be limited to days when winds and waves are light. Locals indicate that the best season providing calm conditions is in late spring (late-May through June).

Landing at the Main Site dock can only be achieved with narrow beam, shallow draft, and maneuverable vessels. The flat-bottomed barges carried by Coast Guard supply vessels to supply the Site while it was manned are an example of vessel types needed to service remediation activities from the Main Site dock. The capacity of this size of vessel will be less than 12 tonnes. Mobilizing and demobilizing mobile equipment and removing containerized waste from the Site to a larger support vessel will involve 30 trips or more for a vessel of this size. Additional trips will be required should soil remediation activities be added to the work scope.

It is assumed that waste from the Lighthouse Area will be consolidated and containerized along with Main Site waste for removal off-Site. Transportation of equipment, materials and waste to and from the Lighthouse Area will likely be via helicopter.

The Main Site cannot be accessed by mobile equipment overland from the Old Dwelling Site.

Marine Servicing the Old Dwelling Site

The Old Dwelling Site is not as exposed to open lake conditions as is the Main Site location. The Sunday Harbour dock is accessible under wind and wave conditions from all directions except those from the northwest. Safe access to the dock during northwest wind and waves will be limited to days when winds are light. The approach is deep and the sand beach can provide alternate landing. There are no vessel restrictions at Sunday Harbour.

Mainland Ports

The closest mainland landing area to the Slate Island light station is Terrace Bay, 21 km to the north. The marine facilities there are limited and suited for pleasure craft and light vessels only.

The adjacent beach is protected and could provide a landing for front loading, landing-craft type vessels. The landing has road access through Town to Highway 17.

Other small mainland ports include Rossport and Redrock. These are small scale facilities serving pleasure craft and light commercial fishing vessels, only.

The closest industrial sized mainland port is at Peninsula Harbour at Marathon, 47 km east of the light station. This deep water harbour that served the Marathon paper mill is currently closed but contractors can negotiate its use with the owner, Tembec Inc.

Other large mainland ports include Thunder Bay, 167 km west of the light station and Sault Ste. Marie, 315 km east of the Site. These are active industrial-commercial ports having a wide range of marine services that could provide suitable vessels and manpower and other marine support to service the proposed work.

TABLE OF CONTENTS

Execu	tive Summa	ry		i		
Table	of Contents.			xiii		
List of	Appendices	S		xvi		
1	Introduction	n		1		
	1.1	Envir	onmental Program Objectives	1		
•	0.4			•		
2	Site Descrip	scription2				
3	3 Previous Investigations					
	3.1	Enha	nced Phase I ESA – XCG Consultants Ltd., 2001	4		
	3.2	Scree	ening Level Risk Assessment – XCG Consultants, 2003	7		
	33	Site S	Specific Risk Assessment - DST Consulting Engineers 2005	9		
	0.0					
4	Designated	Substa	ance and Hazardous Materials	13		
	4.1	Back	ground	14		
	4.2	Scop 4.2.1 4.2.2	e of Work and Methodology Quality Assurance and Quality Control Site Assessment	. 15 15 15		
	4.3	Findi	ngs	17		
		4.3.1	Acrylonitrile	17		
		4.3.2	Arsenic	17		
		4.3.3	Renzene	17		
		4.3.5	Coke Oven Emissions			
		4.3.6	Ethylene Oxide	23		
		4.3.7	Isocyanates	23		
		4.3.8	Lead	23		
		4.3.9	Niercury	32		
		4.3.10	Vinvl Chloride	32		
		4.3.12	Polychlorinated Biphenyls	33		
		4.3.13	Halocarbons	33		
		4.3.14	Mould and Water Damage	34		
		4.3.15	Other Hazardous Materials	34		
	4.4	Desig	nated Substance and Hazardous Materials Survey Conclusion	s and		
	Reco	mmend	Achestes	34		
		4.4.1 112	กรมธรเบร Renzene	30 27		
		4.4.3	Lead	37		
		4.4.4	 Mercury	39		
		4.4.5	Silica	40		
		4.4.6	Polychlorinated Biphenyls	40		
		4.4.7	Halocarbons	41		

	4.4.8 4.4.9	Mould and Water Damage Other Hazardous Materials	
Environme	ntal So	il Investigation	44
5.1	Scop	be of Work	
5.2	Торо	ography and Geology	44
5.3	Anal	ytical Results Comparative Framework	45
	5.3.1	Determination of Most Applicable Comparative Guidelines	
	5.3.2 5.3.3	Generic Federal Guidelines	
	5.3.4	Generic Provincial Guidelines and Standards	
5.4	Field	Activities and Methodologies	
	5.4.1 5.4.2	Field Activities Field Screening and Soil Sampling Methodologies	49 49
	5.4.3	Quality Assurance and Quality Control Measures	
5.5	Soil	Investigation Results	51
	5.5.1	Soil Stratigraphy and Bedrock Exposure	51
5.6	Back	، sground	
	5.6.1 5.6.2	Identified Waste Disposal Dumps	
	5.6.3	Waste Characterization	
	5.6.4	Quality Assurance and Quality Control Results	58
5.7	Soil	Investigation Conclusions and Recommendations	
	5.7.1	Debris Areas	
Species A4	Diake		60
Species Al Risk Survey Opuale			
0.1	Scop		
6.2	621	Literature Review and Secondary Sources	62 62
	6.2.2	Consultation/Communication with Regulatory Agencies	
	6.2.3	Field Investigation	63
6.3	Resu	Literature Deview and Secondary Sources	
	6.3.1 6.3.2	Consultation/Communication with Regulatory Agencies	
	6.3.3	Field Surveys for SAR	70
6.4	Disc	ussion of Results Related to Caribou Use of the Site	72
6.5	6.5 Proposed Mitigation Measures		
6.6	Spec	cies at Risk Survey Update Conclusions and Recommendatio	ns76
Environme	ntal Eff	ects Evaluation	78
Structural Assessment8			80
Structural	100000		
Marine Ass	sessme	nt	82
	Environme 5.1 5.2 5.3 5.4 5.4 5.5 5.6 5.7 5.7 5.7 5.7 5.7 5.7 6.1 6.2 6.3 6.3 6.4 6.5 6.6 Environme	4.4.8 4.4.9 Environmental So 5.1 Score 5.2 Topo 5.3 Anal 5.3 Anal 5.3 5.3 5.3 5.3 5.3 5.3 5.4 Field 5.4.1 5.4.2 5.4.3 5.5 Soil 5.5.1 5.6 Back 5.6.1 5.6.1 5.6.2 5.6.3 5.6.4 5.7 Soil 5.7.1 5.7.2 Species At Risk S 6.1 Score 6.2 Mett 6.2.1 6.2.3 6.3 Resu 6.3 Resu 6.3.1 6.3.2 6.3 Species 6.4 Disc 6.3 Species 6.5 Prop 6.6 Species	4.4.9 Other Hazardous Materials. Environmental Soil Investigation

		9.1.3 Mainland Ports	83
10	Summary o	f Conclusions and Recommendations	85
	10.1	Designated Substance and Hazardous Materials Survey 10.1.1 Asbestos 10.1.2 Lead	85 85 87
	10.2	Environmental Soil Investigation 10.2.1 Contaminated Soil 10.2.2 Debris Areas	
	10.3	91	
	10.4	Environmental Effects Evaluation	92
	10.5	Structural Assessment	93
	10.6	Marine Assessment10.6.1Marine Servicing the Main Site10.6.2Marine Servicing the Old Dwelling Site10.6.3Mainland Ports	93 94 95
11	Limitations of Report		96
	11.1	Designated Substances and Hazardous Materials	
	11.2	Environmental Soil Investigation	
	11.3	Natural Science Elements	99
12	Closure		
	12.1	Designated Substances and Hazardous Materials Survey	100
	12.2	Environmental Soil Investigation	100
	12.3	Species at Risk Survey	100
13	References		101

LIST OF APPENDICES

Appendix A: General Site Figures

Appendix B: Designated Substance and Hazardous Materials Survey

- Floor Plans
- Tables
- Photographs
- Laboratory Certificates of Analyses

Appendix C: Soil Sampling Investigation

- Figures
- Tables
- Photographs
- Laboratory Certificates of Analyses

Appendix D: Species at Risk Survey

- Figures
- Correspondence
- Photographs

Appendix E: Environmental Effects Evaluation (EEE)

- Appendix F: Structural Evaluation
- Appendix G: Marine Assessment

1 INTRODUCTION

DST Consulting Engineers Inc. (DST) was retained by Public Works Government Services Canada (PWGSC; also referred to as the "Client") to carry out the following work at the Slate Islands Coast Guard Site, located on Patterson Island in Lake Superior (the "Site"):

- Review background information and previous reports;
- Complete a Designated Substance and Hazardous Materials Survey (DSHMS);
- Conduct additional soil sampling;
- Review and update the Species at Risk (SAR) survey;
- Complete an Environmental Effects Evaluation (EEE);
- Perform a structural assessment; and,
- Conduct a marine assessment.

The work was carried out in accordance with the Statement of Work (SOW) prepared by PWGSC (2016) and the DST proposal dated July 29, 2016. The Site, identified as Directory of Federal Real Property (DFRP) No. 56027, is Crown land under the custody of Fisheries and Oceans Canada (DFO).

1.1 Environmental Program Objectives

The objectives of the environmental program detailed herein is to gather data and information to be used to prepare a set of specifications to remove the primary sources of soil contamination at the Site; that is to abate, remove and dispose of exterior lead-containing substances and any debris piles observed at the Site. Interior lead-based paint is also to be removed as indicated in the SOW. Soil remediation may be included in the specifications depending on Client and DFO requirements.

The project is broken down into two phases. The first phase consists of the preparation of this Environmental Program report which includes the results of the work items detailed above. The second phase consists of the development of plans and specifications which will be provided under separate cover.

2 SITE DESCRIPTION

The Slate Islands Coast Guard Site is located within the Slate Islands group near the north shore of Lake Superior, approximately 18 km south of the community of Terrace Bay, Ontario. The location of the Site, illustrated on Figure 1 in Appendix A, is approximately 165 km east of Thunder Bay.

The Site occupies approximately 12.1 ha and is located on Sunday Point, Patterson Island; the largest and most southerly of the Slate Islands. The Site has been divided into three areas of interest (also referred to as contaminated sites; "CS") as described below, and illustrated on Figure 2 in Appendix A.

The Main Site (CS-1/FCSI No.:56027001) is located on the south side of Sunday Point. The structural features of this area consist of the main Coast Guard station including the main dwelling, the duplex dwelling, the two-storey old fog alarm building, the former oil house building, the new fog alarm building, the new diesel generator building and various other structures. Most buildings on-Site are wood construction with wood cladding or shingle siding. The locations of the Main Site features are illustrated in Figure 3 in Appendix A. A concrete dock is located south of the duplex dwelling. The structures on-Site are connected by concrete pathways. The Site is inhabited seasonally by private lease holders who use the Site as a seasonal home from April to October each year.

The Lighthouse Area (CS-2/FCSI No.:56027002) is located on the rocky summit of Sunday Point. Structural features of this area consist of the three-storey lighthouse building, a helicopter pad, and a solar shed that supports several solar panels found east of the lighthouse building. The locations of the CS-2 area and structures are illustrated in Figure 4 in Appendix A.

The Old Dwelling Site (CS-3/FCSI No.:56027003) is located north of CS-1 and CS-2 in a sheltered bay within Sunday Harbour. From the water edge, CS-3 has a sand and gravel beach extending into an area covered by grass. The area surrounding the grassed area is wooded. The structural features in this area include a two-storey residential dwelling referred to as the old dwelling building, an outhouse and former boat winch. The locations of CS-3 area features are illustrated in Figure 5 in Appendix A.

The undeveloped areas of the Site consist primarily of exposed bedrock and boreal forested areas. Sunday Point is surrounded by the open water of Lake Superior to the south and west, and Sunday Harbour to the north. The Site and surrounding area is accessible only by boat or helicopter and there are no significant developments or infrastructure in other areas near the Site.

3 PREVIOUS INVESTIGATIONS

The following subsections summarize relevant information from previous environmental investigations completed for the Site, and provided to DST by the Client for review.

3.1 Enhanced Phase I ESA – XCG Consultants Ltd., 2001

An Enhanced Phase I ESA was carried out by XCG Consultants Ltd. (XCG) at the Site, which included the review of historical information and databases, the completion of interviews, and a Site visit to identify areas of potential environmental concern (APECs). The assessment also included sampling and confirmatory testing. The objectives were to identify and document actual or potential contamination, and develop a National Classification System (NCS) score for the Site, where required.

The lighthouse was constructed at this Site in 1903 to assist transport ships and commercial fishing vessels destined for Terrace Bay. The old fog alarm building (which also housed generators) and original dwelling (Sunday Harbour) was constructed in the early 1900's. The main dwelling was constructed on the south shore in 1956 and the duplex dwelling in 1965. The new generator/fog alarm buildings were constructed in 1970's.

The Slate Island lighthouse was reviewed by the federal Heritage Buildings Review Office in 1990 and was not recommended for a designation as a heritage site.

Several plant species belonging to the Arctic Alpine Basic Bedrock Shoreline group were identified on Patterson Island in the area of the subject property.

Soil sample analytical results for polycyclic aromatic hydrocarbons (PAHs) were compared to the residential/parkland land use in the Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines Canadian Soil Quality Guidelines (1999) and Table F criteria for all other land use of the Ontario Ministry of the Environment and Climate Change (MOECC, 1998; name and acronym used to refer to organization under previous names throughout this report) *Guideline for Use at Contaminated Sites in Ontario* (1996). The MOECC Table F was used because the overburden at the Site is less than 2 m. Soil sampling in the vicinity of the diesel tank pad, diesel tank dyke, the former oil house, new diesel generator building and furnace oil tank pad indicated that petroleum hydrocarbons concentrations exceeded

acceptable values outlined in the *Guideline for Use at Contaminated Sites in Ontario* (1998) - Table A criteria for residential/parkland for coarse grained soil authored by what is now the MOECC. In this report, a comparison was also made to the 1998 MOECC Table A guidelines; though they do not apply given the shallow depth of overburden, they may still be considered to be protective of human health provided that contaminant leaching to groundwater can be eliminated as a pathway of concern.

Results from the 2001 XCG report, and other historical reports, have also been compared to the site specific target levels (SSTLs) and maximum known concentrations that do not pose unacceptable risks for human health and ecological receptors at the Site. These were derived from the site specific risk assessment for human health (SSRA-HH) and ecological receptors (SSERA) completed by DST (DST, 2005) and form the basis of the current applicable comparative framework (refer to section 5.4). The federal framework used to compared the historical results to current standards are as follows.

- CCME (2010) Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health, Polycyclic Aromatic Hydrocarbons factsheet, Table 2 Soil Quality Guidelines for Carcinogenic and Other PAHs, for residential land use,
- 2008 Canadian Council of Ministers of the Environment (CCME) *Canada-Wide Standards* for *Petroleum Hydrocarbons in Soil, Technical Supplement* document, Table 3 pathway specific Tier 1 levels for PHCs in coarse-grained surface soils and residential land use
- Canadian Environmental Quality Guidelines (CEQG) Canadian Soil Quality Guidelines (SQGs) for the Protection of Environmental and Human Health for coarse grained soils in residential land use, and;
- CEQC SQGs for the Protection of Environmental and Human Health for coarse grained soils in residential land

The 2001 XCG assessment identified the following:

 Concentrations of metals in two soil samples, collected from the burn pit area at the Main Site and from the vicinity of the lighthouse building, exceeded the MOECC (1998) Table F guidelines, and some also exceeded Table A and CCME criteria. The burn pit sample failed the SSTLs (DST, 2005) or current applicable CCME for naphthalene antimony, arsenic, cadmium, mercury, copper, lead and zinc. The lighthouse sample failed to meet the SSTLs for lead, vanadium and zinc.

- One soil sample collected from the earthen floor of the Former Oil House (note: although this structure is referred to as the Former Oil House, the structure still exists on the Site at the time of this report, and is understood to be formerly used as an oil house; now a storage shed) was analyzed for PAHs and several parameters were found to exceed the MOECC Table F guidelines. Naphthalene, phenanthrene, fluorine, total petroleum hydrocarbons (TPH) (gas/diesel) and TPH (heavy oils) failed to meet the SSTLs (DST, 2005) or current applicable CCME guidelines.
- Six samples collected from the vicinity of the diesel tank pad, diesel tank dyke, the Former Oil House, New Diesel Generator building, and furnace oil tank pad at the Main Site were analyzed for total petroleum hydrocarbons (TPH) (gas/diesel), which exceeded MOECC Table A guidelines. Of the six samples, three samples also exceeded the MOECC Table A guideline for TPH (heavy oil). Four of the soil samples failed to meet the SSTLs (DST, 2005) for hydrocarbon parameters.

The National Contaminated Site Classification System (NCSCS) was applied to two contaminated areas at the Site (Petroleum Storage Areas/Burn Pit and the Lighthouse Area). Scores for the contaminated areas indicated that action is likely required (Class 2). The contaminated areas, their associated contaminants of concern (COCs) and NCSCS ranking are summarized below.

Table 3.1: Contaminated Are	as identified by XCG (2001)
-----------------------------	-----------------------------

Contaminated Areas	Contaminants of Concern	NCSCS Class/ Ranking	
Petroleum Storage Areas and burn pit	TPH, PAHs and Metals	2	
Lighthouse area	Metals	2	

XCG recommended that a Screening Level Risk Assessment (SLRA) be performed to determine whether potential exposures to the contaminants found at the Site are within acceptable limits, and thus whether remedial action is required.

XCG also completed paint sampling as part of the 2001 investigation. Lead based paint is present as the exterior red and white paint (205, 971 ppm respectively) of the old fog alarm building. It was assumed that the exterior red and white paint of the lighthouse, former oil house, old dwelling, main dwelling and the duplex dwelling were also lead based. It was also assumed that the grey paint on the floors of the new fog alarm and new diesel generator buildings were lead based.

Painted surfaces were generally in good condition according to XCG. Appropriate precautionary measures were recommended to be implemented during any future painting activities to ensure metallic elements present in paint applications do not contaminate soils. Other issues identified by XCG (2001) included asbestos containing materials, potential presence of polychlorinated biphenyls (PCBs) and ozone depleting substances (ODSs).

3.2 <u>Screening Level Risk Assessment – XCG Consultants, 2003</u>

XCG conducted a Screening Level Risk Assessment (SLRA) at the Site (XCG, 2003). The risk assessment relied on previously collected data and additional soil samples collected by XCG in 2001. The SLRA was conducted to investigate the risks associated with the COCs identified in their 2001 ESA. Both human and ecological receptors were taken into consideration.

Based on the findings of the Enhanced Phase I ESA, and a Phase II ESA (both completed by XCG in 2001, though the Phase II ESA was not provided to DST for review) three contaminated sites were identified at the Site. The south end of the island (i.e. the Main Site – CS1) was identified as a contaminated site CS56027-001, and was found to have metals, TPH, and PAH impacts. CS56027-001 was separated into seven sub sites (CS-1 (a) to CS-1 (g)). The Lighthouse Area (CS-2) was identified as contaminated site CS56027-002, and was found to have metals-impacted soil. The Old Dwelling (CS-3) area at the north side of Sunday Point was identified as CS56027-003, and was found to have metals-impacted soil.

As part of the risk assessment, the likelihood and expected severity of effects on potential human and ecological receptors were estimated, taking into account receptor characteristics, the nature of the identified hazard, exposure pathways and mitigating circumstances.

The exposure pathways for humans included dermal contact with, and ingestion and inhalation of, impacted soil. The potential risk associated with exposure through each of these pathways was determined for the following areas:

- CS-1 1a) burn pit, 1c) former oil shed, 1d) diesel tank dyke, old fog alarm / generator building, new diesel generator and new fog alarm buildings, 1e) main dwelling, 1f) duplex dwelling, and 1h) ground-mounted transformer;
- CS-2 Lighthouse Area; and,
- CS-3 Old Dwelling Site.

Two areas were not assessed for potential risk, labelled by XCG as 1b) diesel tank pad and 1g) furnace oil tank pad because only the COC present was TPH (gas/diesel) and it was determined that the concentration of TPH (gas/diesel) at these locations was lower than the pathway-specific Tier 1 level (i.e. the soil ingestion Tier 1 value).

The results of the human health SLRA determined that the presence of metals, PAH and TPH soil impacts did not pose an unacceptable risk to DFO workers who visit the Site on an occasional basis. However, it was determined that, in the absence of appropriate engineering measures, the contaminants of potential concern posed an unacceptable risk to more sensitive visitors to the Site (i.e. children). For children, hazard quotients greater than 0.2 were identified for the following parameters:

- CS-1:
 - Antimony, cadmium, copper and lead at the burn pit;
 - Lead and TPH (gas/diesel) in the areas of the former oil shed and diesel tank dyke, old fog alarm building, and generator building; and,
 - Lead in the area of the main dwelling.
- CS-2:
 - o Lead
- CS-3:
 - o **Lead**

The results of the ecological SLRA determined that potential exposure pathways identified included: dermal contact, ingestion and inhalation of the soil, the movement of COCs through surface run-off or into groundwater and movement through the food web. The concentrations of metals, PAHs and TPH (gas/diesel and heavy oil) represented a potential risk to ecological receptors. The potential for detrimental effect to aquatic receptors was considered unlikely due to the large mixing capacity of Lake Superior.

The following three remedial options were presented for consideration: removal and off-Site disposal of the impacted soils, completion of a site specific risk assessment (SSRA) and the development and implementation of a risk management plan, including capping (soil cover).

3.3 <u>Site Specific Risk Assessment – DST Consulting Engineers, 2005</u>

DST in association with GlobalTox International Consultants (GlobalTox) completed a Site Specific Human Health Risk Assessment (SSRA-HH) and a Site Specific Ecological Risk Assessment (SSERA) for the Site. The purpose of the SSRA-HH and SSERA were to assess and quantify the risks posed by contaminants to both human and ecological receptors resulting from the historical use of the island as a light station.

Analytical results and data used within the risk assessments were compared to:

- CCME Canadian Environmental Quality Guidelines, Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health (1999, including updates up to 2001 and in part 2002);
- CCME Canada Wide Standards for Petroleum Hydrocarbons (CWS-PHC) in Soil (2001), Tier 1 levels for surface soil; and
- MOECC Soil, Groundwater and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act, March 2004:
 - Table 1: Full Depth Background Site Condition Standards Soil All other types of property uses, Table 2: Full Depth Generic Site Condition Standards in Potable Groundwater Condition – Soil Standards – Residential/Parkland/Intuitional Property Use;
 - Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition – Soil Standards – Residential/Parkland/Institutional Property Use; and
 - Table 6: Soil Extract and Ground Water Standards to Determine Whether a Property is a "Shallow Soil Property" – Potable Ground Water.

DST completed a sampling program to supplement the previous Phase I and II ESAs and provide adequate data for the SSRA. DST advanced a total of 47 shallow test pits varying in depth from 0.05 m to 0.8 m. The samples encompassing ground level to bedrock are referred to as 'composite samples'. The last 10 cm of each soil sample strata (soil layer closest to bedrock) were also assigned identification numbers and were referred to as 'grab samples'. The grab samples were used to determine if COCs found in composite samples had migrated to the interface with bedrock.

The sampling and analysis completed included the following:

- Sixty-two soil samples from CS-1: 30 grab samples from soil adjacent to the bedrock, and 32 composite samples from ground surface to the bedrock. Twenty-seven samples were analyzed for metals (five grab samples and 22 composite samples); four for PAHs (three composite samples, one grab sample); and 13 for PHCs (four grab samples and nine composite). Leachate testing was completed on three soil samples, one for selected PAHs and two for selected metals.
- Ten soil samples from CS-2: five grab samples and five composite samples. Five composite and two grab samples were analyzed for metals. Leachate testing was completed on one grab sample for lead.
- Twenty soil samples at CS-3: 10 grab samples and 10 composite samples. Four soil samples were analyzed for selected metals (one grab sample and three composite samples). Leachate testing was completed on one grab sample for lead.

Soil samples collected from CS-1 exhibited elevated concentrations of the following metal parameters above federal and/or provincial standards: mercury; antimony; barium; cadmium; chromium; cobalt; copper; lead; nickel; selenium; silver; vanadium; and zinc.

Soil samples collected from CS-2 exhibited elevated concentrations of the following metal parameters above federal and/or provincial standards: mercury; antimony; barium; lead; vanadium; and zinc.

Soil samples collected from CS-3 exhibited elevated concentrations of the following metal parameters above federal and/or provincial standards: lead and silver.

Three samples from CS-1 were submitted for PAHs. One sample taken from the burn pit at CS-1 exceeded applicable provincial standards for naphthalene and phenanthrene. It was determined through discussions with PWGSC that the burn pit would be remediated as a localized hotspot and separated from the remainder of CS-1, and thus not included in the risk analysis for CS-1.

Leachate analysis was performed on grab samples collected in the vicinity of old dwelling building, north of the old fog alarm building, and east of lighthouse building and exceeded MOECC (2004) Table 6 standard for lead. The results of leachate analysis performed on grab samples east of former oil house building and north of old fog alarm building exceeded the MOECC Table 6

standard for zinc. These results indicate that the Site was considered a shallow soil site under the 2004 MOECC standards.

Two surface water samples were collected: one was collected directly south of contaminated site CS-1, and the other was collected directly west of contaminated site CS-3. Both were analyzed for metals, PHCs, and PAHs. The surface water samples indicated no impacts due to metals, PHC or PAH contamination.

The result of the SSRA-HH indicated that concentrations of lead in soil on the Site present potential unacceptable risks to seasonal residents at CS-1 and CS-2 and campers at CS-2. Toddlers and children are most susceptible to exposure to potential health concerns via direct contact with soil (dermal contact and ingestion). No unacceptable risks were identified for the DFO adult workers through the inhalation of dust, ingestion of soil or through dermal contact with soil pathways, or through inhalation of indoor air pathways.

It was concluded that remediation was required to reduce exposure to lead through direct contact pathway to the following levels:

- CS-1 and CS-3: 425 mg/kg; and,
- CS-2: 1,857 mg/kg.

No unacceptable risks were identified for the remaining parameters and all other pathways considered (i.e. outdoor air pathway, indoor air pathway, inhalation of fugitive dust).

As part of this risk assessment, specific attention was provided to the potential impacts to threatened species. The Boreal population of the Woodland Caribou was identified as a threatened species under the Species at Risk Act. Other species identified in the area (i.e. on the mainland) that are listed in the Species at Risk Act include the Eastern Wolf, listed as a special concern; the Peregrine Falcon, listed as threatened; and, the Monarch Butterfly, listed as special concern. A threatened species is one that is likely to become an endangered species if nothing is done to reverse the factors leading to its extirpation or extinction. A species of special concern is one that may become a threatened or an endangered species due to a combination of biological characteristics and identified threats. Although not listed under the Species at Risk Act, the Bald Eagle is on the Ontario Birds at Risk (OBAR) target list, which is administered by Bird Studies

Canada. The goal of OBAR is to work towards the protection and recovery of vulnerable, threatened and endangered (VTE) and other bird species at risk in Ontario.

The results of the ecological risk assessment identified lead and zinc in soil as representing an unacceptable risk to plants and invertebrates at CS-1 and CS-2, and lead only in soil at CS-3. The concentrations considered protective of the most sensitive receptors (plants and soil invertebrates) were lead at 1,857 mg/kg and zinc at 615 mg/kg. At a human health-based lead clean-up level of 425 mg/kg at CS-1 and CS-3, no unacceptable risks for any ecological receptors were identified. A lead clean-up level of 1,857 mg/kg at CS-2 resulted in conditions that are marginally above acceptable risks for birds and mammals, but given the unfavourable habitat at this location, the marginally elevated risks were judged not to represent a problem at a population level.

Based on the results, the clean-up levels that are considered protective of human receptors and that will not result in population decreases for ecological receptors are as follows:

- Lead: CS-1 and CS-3: 425 mg/kg; and CS-2: 1,857 mg/kg
- Zinc: CS-1 and CS-2: 615 mg/kg

DST recommended three options for the metal contaminated soil: dilute the zinc contaminated soil, capping (soil cover), and removal and off-Site disposal.

For the burn pit, DST recommended remediating the burnt pit area by removing the affected soil to bedrock and reinstating with clean fill. For the PHC hot spots (two were identified), DST recommended two options: capping (soil cover), or removal and off-Site disposal.

4 DESIGNATED SUBSTANCE AND HAZARDOUS MATERIALS

DST was retained by PWGSC to conduct a Designated Substance and Hazardous Materials Survey (DSHMS) of the various buildings and the surrounding areas at the Site.

The approved objectives of the DSHMS were to:

- Collect and analyze representative building material samples to support the identification of select designated substances;
- Determine the extent and locations of designated substances and hazardous materials within the buildings at the Site through a non-intrusive investigation; and,
- Collect sufficient information to subsequently enable DST to recommend appropriate measures to mitigate risks to human health and/or the environment during future management and abatement operations.

The survey program implemented by DST was designed for consistency with the record of materials containing the 11 designated substances listed in Section 30 of the *Ontario Occupational Health and Safety Act, R.S.O. 1990*, Chapter 0.1.

Designated substances, as identified under the Ontario Occupational Health & Safety Act are:

- Acrylonitrile;
- Arsenic;
- Asbestos (both friable and non-friable);
- Benzene;
- Coke Oven Emissions;
- Ethylene Oxide;
- Isocyanates;
- Lead;
- Mercury;
- Silica; and
- Vinyl Chloride.

Other hazardous materials, which are not classified as designated substances, but which are still of concern due to other regulations, best practice guidelines and/or potential risks to human health and/or the environment, were included as part of the DSHMS scope of work, include:

- PCBs;
- Halocarbons;
- Mould; and
- Other hazardous materials.

4.1 Background

As per background information provided by PWGSC (refer to section 3) and Site observations, the buildings and structures included in the scope of work are as follows:

- Main dwelling
- Duplex dwelling
- Old fog alarm building
- New fog alarm building
- New diesel generator building
- Former oil house
- Lighthouse
- Old dwelling
- Outhouses at CS1 and CS3

- Docks and hoists at CS1 and CS3
- Flag pole
- Boat winch
- Helicopter pads at the CS1 and CS2
- Diesel tank pad
- Ground-mounted transformer
- Retaining wall
- Diesel dyke
- Oil furnace tank cradle pad

Also, while on-Site, DST inspected the surrounding grounds including all known dump areas and burn pits for visible designated substances or hazardous materials in waste piles.

Where available, DST project personnel reviewed documents as they pertained to designated substances and hazardous materials in the buildings at the Site. As part of the project, DST reviewed the following document as described in section 3 of this report:

• Enhance Phase 1 Environmental Assessment, Slate Island Light Station, Lake Superior, Ontario. Prepared by XCG Consultants Ltd., dated April 2, 2001.

DST referenced the identifiable past samples and analytical results of the above-noted past report, where applicable. As such, materials already identified as containing hazardous materials or designated substances in the previous report were not necessarily re-sampled by DST. Furthermore, as part of the survey, the presence, quantity and condition of asbestos-containing

materials were confirmed by DST. DST's field program also included the sampling of any additional Asbestos-Containing Materials (ACMs) and lead as well as the identification of other designated substances and hazardous materials not previously noted. Where applicable, a sufficient number of bulk asbestos samples were collected in order to satisfy the current bulk sampling requirements of Ontario Regulation 278/05 under the *Occupational Health and Safety Act, R.S.O. 1990, c. 01* (O. Reg. 278/05), as amended.

4.2 Scope of Work and Methodology

4.2.1 Quality Assurance and Quality Control

A quality assurance, quality control (QA/QC) program was implemented for this program that included the use of duplicates, proper sample containment, handling and transportation. In addition, the use of a third-party accredited laboratory for sample analysis was employed, using detection limits appropriate for the required criteria / guidelines outlined; and all necessary health and safety precautions were taken.

4.2.2 <u>Site Assessment</u>

DST performed the Site visit for the DSHMS on August 29th, and 30th, 2016. The survey included a walkthrough assessment of all accessible areas of the each of the Site buildings and structures. Intrusive, non-destructive investigations were performed where possible to examine concealed conditions, using existing openings to examine concealed conditions. Whenever possible samples were taken from discrete locations. No other buildings and/or structures at the Site in addition to those listed above were surveyed. At the time of the DSHMS, the basement level of the old dwelling and the solar shed were inaccessible to the surveyor due to locked doors.

Materials suspected of containing designated substances and other hazardous materials were visually identified, based on the surveyor's knowledge of the historical composition of building products. Equipment that may contain halocarbons (e.g. air conditioning and refrigeration equipment) or PCBs (e.g. electrical transformers and fluorescent light ballasts) can often be identified by examining manufacturer's labels. For safety reasons, DST personnel do not remove the ballast shields from fluorescent light fixtures to examine the ballast codes unless the electrical circuit for the lighting has been tagged and locked out by a qualified electrician. Visual identification of materials suspected to contain asbestos or lead (in paint) was supported by the collection and analysis of a limited number of representative samples. Materials suspected of

containing designated substances other than asbestos or lead (in paint) were identified by appearance, age, and knowledge of historical applications.

In Ontario, a material is defined as an ACM if the material has a minimum asbestos content of 0.5% by dry weight. ACMs can be divided into two categories: friable and non-friable material. A friable ACM is a material that can be crumbled, powdered, or pulverized by hand pressure and can readily release fibres when disturbed. Common applications of friable ACMs are sprayed or trowelled surfacing materials (e.g. sprayed fireproofing and textured coatings) as well as mechanical and thermal insulation. Non-friable materials are materials that will generally release fibres only when cut or shaped. Common non-friable ACMs include vinyl floor products, asbestos textile products and asbestos cement products (Transite). Some of these products may become friable with time or when disturbed.

Bulk ACM samples were collected in order to meet the bulk sampling requirements stipulated in O. Reg. 278/05, as amended. Bulk samples were submitted to and analyzed by Paracel Laboratories Ltd. (Paracel). Paracel is an accredited laboratory through the Canadian Association for Laboratory Accreditation (CALA) and the National Voluntary Laboratory Accreditation Program (NVLAP). The bulk samples were analyzed using polarised light microscopy (PLM). This analytical method complies with the United States Environmental Protection Agency (U.S. EPA) Method 600/R-93/116 dated July, 1993, which is the regulatory approved protocol for bulk asbestos analysis in Ontario. In accordance with O. Reg. 278/05, it is not necessary to analyze multiple bulk material samples collected from the same area of homogeneous material if analysis establishes that a bulk material sample contains 0.5 per cent or more asbestos by dry weight. Therefore, additional samples collected in order to satisfy the requirements of O. Reg. 278/05 were not analyzed if an individual sample in a sample series was identified as asbestos-containing.

With regards to lead in paint, although the Ontario Ministry of Labour (MoL) has published a guideline for control of lead exposures on construction projects in Ontario, it does not include criteria for the classification of lead-paint. Instead, it uses presumed airborne lead concentrations for specific tasks as criteria for classifying work. However, in regulations set by the United States (U.S.) Department of Housing and Urban Development, lead based paint is classified as any paint application containing at least 1.0 milligrams of lead per square centimetre of surface area (1.0 mg/cm²), or at least 0.5% lead content by weight (5,000 ppm). This criterion is widely, although not universally, used in Canada. In Canada, the Federal Canada Consumer Product Safety Act's

Surface Coating Materials Regulations SOR/2005-109 has lowered the allowable concentration of lead in paints for new consumer products to 0.009% lead content by weight (90 ppm). For the purposes of this survey and report, paints having a lead content of 90 ppm or more are considered to be lead-containing.

Paint chip samples were collected and submitted for lead content analysis at Paracel. Sample or representative paint applications were collected and subsequently submitted for analysis of lead content to Paracel using inductively coupled plasma atomic emission spectroscopy.

Laboratory certificates of analysis and Site photographs are included in Appendix B.

4.3 Findings

The following sections summarize in a narrative format the consolidated findings the DSHMS for the buildings and surrounding structures included at this Site.

4.3.1 Acrylonitrile

Acrylonitrile was neither observed in the buildings or surrounding structures, nor suspected of being present, in forms or quantities that would either impact future work or pose risks to human health or the environment.

4.3.2 <u>Arsenic</u>

Arsenic was neither observed in the buildings or surrounding structures, nor suspected of being present, in forms or quantities that would either impact future work or pose risks to human health or the environment.

4.3.3 Asbestos

This section summarizes previous and current findings relating to asbestos. Results for specific buildings/structures are presented within separate sub-sections. For specific information relating to sample descriptions and analytical results, refer to the respective laboratory certificates of analysis and the *Summary of Bulk Samples Analyzed for Asbestos Content* presented in Table 1 found in Appendix B.

The survey included a room-by-room assessment of all accessible areas of the Site buildings. Should any previously unidentified suspect ACMs be encountered as part of future work, these

materials are to be treated as ACMs and handled accordingly, unless sampling proves otherwise. Site photographs and site plans showing sample locations (i.e. Figures 6 through 11) are provided in Appendix B.

Materials that have not been analyzed, but are visibly similar to other materials identified as asbestos-containing, must be considered asbestos-containing unless proven otherwise by laboratory analysis.

Table 2, attached in Appendix B, provides a summary of asbestos-containing materials, location and quantities.

4.3.3.1 Main Dwelling

Based on bulk laboratory analysis results and on-Site observations, the following materials, present at the main dwelling building, have been confirmed to contain regulated concentrations of asbestos:

- Approximately 18 m² of non-friable beige vinyl floor tiles with brown streaks (Sample 027105-MD-02A-C) in good condition and confirmed to contain 0.79% Chrysotile asbestos and was observed throughout the kitchen area;
- Approximately 310 m² of non-friable drywall joint compound (Sample 027105-MD-04 A-D) in good condition was confirmed to contain 1% Chrysotile asbestos and was observed on the ceiling and walls throughout the main level of the building;
- Approximately 4.5 m of non-friable window caulking (Sample 027105-MD-06 A-C) in fair condition on windows being stored in storage room;
- Approximately 6 m² of drywall debris was observed in the crawlspace;
- Approximately 12 m of non-friable window caulking (Sample 027105-MD-07 A-C) in poor condition on exterior basement windows; and
- Approximately 3 m of non-friable exterior black caulking on exterior fixtures (Sample 027105-MD-09 A-C) in good condition.

In addition, the following materials are suspected or assumed to contain asbestos:

- Joints on cast iron pipe located in basement;
- Roofing materials beneath tin roof and roofing material debris on ground surrounding building; and

• Tar paper not accessible to sample was observed under exterior wood siding.

Based on analysis of samples collected, the following materials do not contain asbestos:

- Dark grey vinyl floor tiles with black and white streaks;
- Floor mastic on dark grey vinyl floor tiles; and
- Main level white window caulking.

4.3.3.2 Duplex Dwelling

Based on bulk laboratory analysis results and on-site observations, the following materials, present at the duplex dwelling building have been confirmed to contain regulated concentrations of asbestos:

- Approximately 500 m² of non-friable drywall joint compound (Sample 027105-DD-01 A-E) in good condition was confirmed to contain 1% Chrysotile asbestos and was observed on the ceiling and walls throughout the main level of the building;
- Approximately 114 m² of non-friable white vinyl floor tiles with brown streaks and white vinyl floor tiles with green streaks (Samples 027105-DD-02 A-C and 027105-DD-05 A-C, respectfully) in good condition were confirmed to contain 0.75 and 0.74% Chrysotile asbestos, respectively, and were observed throughout the living room areas; bathroom areas and bedrooms in both dwellings of the duplex building;
- Approximately 56 m² of non-friable green vinyl floor tiles with white streaks (Sample 027105-DD-09 A-C) in good condition was confirmed to contain 2.22% Chrysotile asbestos and was observed throughout the kitchen area and hallway areas in both dwellings of the duplex building; and
- Approximately 170 m² of non-friable vinyl floor tile mastic (Samples 027105-DD-02 A-C, 027105-DD-05 A-C, 027105-DD-09 A-C and 027105-DD-011 A-C) in good condition was confirmed to contain 0.60 to 2.45% Chrysotile asbestos and was observed in all areas of the main level of the duplex dwelling.

In addition, roofing materials beneath the tin roof are suspected or assumed to contain asbestos.

Based on analysis of samples collected, the following materials do not contain asbestos:

• Interior white caulking; and

Beige vinyl floor tiles found to have asbestos containing mastic (027105-DD-011 A-C) as outlined above.

4.3.3.3 Old Fog Alarm Building

Based on bulk laboratory analysis results and on-site observations, the following material, present at the old fog alarm building, have been confirmed to contain regulated concentrations of asbestos:

 Approximately 250 m² of non-friable red and black shingles (Sample 027105-WS-05 A-C) in poor condition was confirmed to contain 0.73% Chrysotile asbestos and was observed on the roof of the building.

In addition, roofing material debris present on the ground, surrounding the building, is assumed to contain asbestos, as the roofing debris is similar in appearance to sample 027105-WS-05 A-C.

Based on analysis of samples collected, the following materials do not contain asbestos:

- Vinyl sheet flooring in paint room; and
- Exterior window caulking.

4.3.3.4 New Fog Alarm Building

Based on bulk laboratory analysis results and on-site observations, the following materials, present at the new fog alarm building, have been confirmed to contain regulated concentrations of asbestos:

- Approximately 72 m² of non-friable corrugated Transite siding (Sample 027105-S1-01 A-C) in good condition was confirmed to contain 20% Chrysotile asbestos and was observed on the exterior walls and roof of the building;
- Approximately 104 m² of non-friable Transite wallboard (Samples 027105-S1-02 A-C) in good condition was confirmed to contain 20% Chrysotile asbestos and was observed covering the building interior walls and ceiling; and
- Approximately 10 m of non-friable grey caulking (Samples 027105-S1-03 A-C) in good condition at various locations on the exterior of on exterior doors.

4.3.3.5 <u>New Diesel Generator Building</u>

Based on bulk laboratory analysis results and on-site observations, the following materials, present at the new diesel generator building, have been confirmed to contain regulated concentrations of asbestos:

- Approximately 72 m² of non-friable Transite wallboard (Samples 027105-S2-01 A-C) in good condition was confirmed to contain 20% Chrysotile asbestos and was observed covering the building interior walls and ceiling;
- Approximately 72 m² of non-friable corrugated Transite siding (Sample 027105-S2-02 A-C) in good condition was confirmed to contain 20% Chrysotile asbestos and was observed on the exterior walls and roof of the building; and
- Approximately 20 m of non-friable grey caulking (Samples 027105-S2-03 A-C) in good condition at various locations on the exterior of the building associated with the exhaust, doorframes and joints of the Transite paneling.

4.3.3.6 Former Oil House

Based on bulk laboratory analysis results and on-Site observations no asbestos containing materials were identified.

Analytical results have confirmed that two types of roof shingles do not contain asbestos.

4.3.3.7 Lighthouse

Based on analysis of samples collected, the following materials do not contain asbestos:

- Exterior and interior caulking located on windows; and
- Cementitious parging layer (Grey and White) on poured concrete.

4.3.3.8 Old Dwelling

Based on bulk laboratory analysis results and on-Site observations, the following materials present at the old dwelling building have been confirmed to contain regulated concentrations of asbestos:

- Approximately 25 m² of non-friable grey vinyl floor tiles with white and blue specks (Sample 027105-OH-02 A-C) in good condition was confirmed to contain 2.3% Chrysotile asbestos and was observed throughout the kitchen area and entrance;
- Approximately 140 m² of non-friable drywall joint compound (Sample 027105-OH- A-C) in good condition was confirmed to contain 1% Chrysotile asbestos and was observed on the ceiling and walls throughout the main level of the building.

Based on analysis of samples collected, the following materials do not contain asbestos:

- Black shingles located on the roof;
- Vinyl floor tile mastic; and
- White window caulking.

The basement area of the old dwelling building was inaccessible (locked) at the time of the DSHMS. Therefore, no information regarding the presence, type and conditions of designated substances and hazardous materials within this location was gathered.

4.3.4 <u>Benzene</u>

Benzene is assumed to be present in the following areas:

- Minor quantities of residual fuel within five approximately 1,000 L fuel oil above-ground storage tanks (ASTs) in the main dwelling and duplex dwelling buildings;
- Various partially full oil containers and spray oil lubricants in the main dwelling, duplex dwelling building, old fog alarm / generator building, former oil house and lighthouse;
- Fuel associated with two 80 L ASTs found partially full connected to the generators in the old fog alarm building;
- Minor quantities of residual fuel within a single 80 L AST observed to be empty in the new fog alarm building;
- Fuel associated with a 150 L AST and a 1000 L AST connected to diesel generators in the new generator building;
- Visible fuel staining on the basement floor of the main dwelling, duplex building, old fog alarm/generator building, new generator building, former oil house and lighthouse;

- Fuel within two kerosene lanterns observed in the basement of the duplex dwelling building;
- A partially full drip pan with oil or diesel in the new generator building; and,
- Minor quantities of residual fuel associated with two portable boat gasoline fuel tanks (above-deck style) found to be empty in the old fog alarm building.

4.3.5 Coke Oven Emissions

Coke oven emissions were neither observed in the buildings, nor suspected of being present, in forms or quantities that would either impact future work or pose risks to human health or the environment.

4.3.6 Ethylene Oxide

Ethylene oxide was neither observed in the buildings, nor suspected of being present, in forms or quantities that would either impact future work or pose risks to human health or the environment.

4.3.7 Isocyanates

Isocyanates were neither observed in the buildings, nor suspected of being present, in forms or quantities that would either impact future work or pose risks to human health or the environment.

4.3.8 <u>Lead</u>

This section summarizes previous and current findings relating to lead. Table 3 in Appendix B summarize the results of representative surface coating sample analysis for lead content for the Site buildings and structures.

Paint samples collected by DST were confirmed to have detectable concentrations of lead. Sample location floor plans (i.e. Figures 6 through 11) are provided in Appendix B. The following sub-sections present the findings of lead-containing materials for each of the subject buildings. Laboratory certificate of analysis, are attached as Appendix B (building identifiers are included in the sample IDs for reference).

Table 4, attached in Appendix B, provides a summary of lead-containing painted surfaces, location and quantities.

4.3.8.1 Main Dwelling

Seven representative paint finishes were sampled from the building by DST and submitted for lead content analysis (excluding a duplicate sample). Six paint samples exceeded the 90 ppm limit established by the Federal Canada Consumer Product Safety. As such, all paints at the building with the exception of the beige paint sampled from an interior wall of the living room are considered to be lead-containing unless analytical results confirm otherwise.

Based upon the analytical results available for the building as well as for similar paints in other buildings, as applicable, the following paints are considered to be lead-containing unless future sampling confirms otherwise:

- Exterior white;
- Exterior red;
- Exterior and interior grey;
- Interior white;
- Interior light green;
- Interior dark blue;
- Interior light green;
- Interior sky blue; and
- Interior light blue.

Exterior paint finishes in poor condition include:

- Approximately 40 m² of white paint on the exterior wood cladding, window trim, soffits, downspouts, and on poured concrete foundation and retaining wall;
- Approximately 20 m² of red paint on exterior wood trim, doors, fascia and eaves troughs;
- Approximately 10 m² of grey paint on exterior stairs; and
- Paint debris found surrounding the perimeter of the building.

Interior paint finishes found in poor condition include:

- Approximately 30 m² of white paint found in the interior throughout the main level surfaces;
- Approximately 3 m² of light blue paint found on the mudroom and bedroom 2 wall surfaces;
- Approximately 6 m² of light green paint found on the stairwell wall surfaces;
- Approximately 1 m² of grey on the basement stairs; and
- Paint debris was observed on floor of the basement and several rooms of the main level.

Lead is also suspected to be present in the following materials:

- Solder on the joints of copper piping;
- Paints within various partially full cans; and
- Joints of cast iron drain pipes.

4.3.8.2 Duplex Dwelling

Five representative paint finishes were sampled from the building by DST and submitted for lead content analysis. Two paint samples exceeded the 90 ppm limit established by the Federal Canada Consumer Product Safety. As such, all paints at the building with the exception of the beige paint sampled from an interior wall of the stairwell and white in the basement are considered to be lead-containing unless analytical results confirm otherwise.

Based upon the analytical results available for the building as well as for similar paints in other buildings, as applicable, all paints within the building are considered to be lead-containing unless future sampling confirms otherwise. These paints include:

- Exterior white;
- Exterior red;
- Exterior and interior grey;
- Interior white;
- Interior sky blue; and
- Interior light blue.

Exterior paint finishes in poor condition include:

- Approximately 40 m² of white paint on the exterior wood cladding, window trim, soffits, eave troughs, and concrete foundation;
- Approximately 6 m² of red paint on exterior wood trim, doors, fascia and eaves troughs; and
- Paint debris found surrounding the perimeter of the building.

Interior paint finishes found in poor condition include:

- Approximately 1 m² of white paint on various interior surfaces;
- Approximately 2 m² of grey on the basement stairs; and
- Paint debris was observed on floor of the basement and stairs.

Lead is also suspected to be present in the following materials:

- Solder on the joints of copper piping;
- Paints within various partially full cans;
- Joints of cast iron drain pipes; and,
- One wet cell lead acid battery.

4.3.8.3 Old Fog Alarm Building

Six representative paint finishes were sampled from the building by DST and submitted for lead content analysis (excluding a duplicate sample). All paint samples exceeded the 90 ppm limit established by the Federal Canada Consumer Product Safety Act. As such, all paints at the building are considered to be lead-containing unless analytical results confirm otherwise.

Based upon the analytical results available for the building as well as for similar paints in other buildings, as applicable, the following paints are considered to be lead-containing unless future sampling confirms otherwise:

- Exterior white;
- Exterior red;
- Exterior and interior grey;
- Interior light green;
- Metallic grey; and
- Interior white.

Exterior paint finishes in poor condition include:

- Approximately 20 m² of white paint on the exterior wood shingle siding, soffits and wood window trim;
- Approximately 10 m² of red paint on exterior wood trim, doors, fascia and eaves troughs; and,
- Paint debris found surrounding the perimeter of the building.

Interior paint finishes found in poor condition include:

- Approximately 400 m² of interior paints, including grey, white and light green in poor condition; and
- Paint debris was observed throughout building.

Lead is also suspected to be present in the following materials:

- Five (5) wet cell lead acid batteries;
- Paints within various partially full cans and on used painting supplies; and
- Solder on the joints of copper piping.

4.3.8.4 New Fog Alarm Building

Based upon the analytical results available for the building as well as for similar paints in other buildings, as applicable, the following paints are considered to be lead-containing unless future sampling confirms otherwise:

- Exterior white;
- Interior grey; and
- Interior white.

Exterior paint finishes in poor condition include:

• Approximately 2 m² of white paint on the exterior metal door and trim.

Interior paint finishes found in poor condition include:

- Approximately 1 m² of grey on poured concrete floor; and
- Minor paint debris observed on floor.

4.3.8.5 New Diesel Generator Building

Based upon the analytical results available for the building as well as for similar paints in other buildings, as applicable, the following paints are considered to be lead-containing unless future sampling confirms otherwise:

- Exterior white;
- Interior grey; and
- Interior white.

Exterior paint finishes in poor condition include:

• Approximately 2 m² of white paint on the exterior metal door and trim.

Interior paint finishes found in poor condition include:

• Approximately 2 m² of grey on poured concrete floor; and

• Minor paint debris observed on floor.

Lead is also suspected to be present in the following materials:

- One wet cell lead acid battery; and
- Solder on the joints of copper piping.

4.3.8.6 Former Oil House

Two representative paint finishes were sampled from the building by DST and submitted for lead content analysis (excluding a duplicate sample). All paint samples exceeded the 90 ppm limit established by the Federal Canada Consumer Product Safety Act. As such, all paints at the building are considered to be lead-containing unless analytical results confirm otherwise. Based upon the analytical results available for the building as well as for similar paints in other buildings, as applicable, the following paints are considered to be lead-containing unless future sampling confirms otherwise:

- Exterior white; and
- Exterior red.

Exterior paint finishes in poor condition include:

- Approximately 70 m² of white paint on the wood clad siding, door and soffits;
- Approximately 8 m² of red of wood trim, fascia and door; and
- Paint debris found surrounding the perimeter of the building.

Lead is also suspected to be present in the following materials:

- Paints within various partially full cans; and
- Solder on the joints of copper piping associated with stored hot water tanks.

4.3.8.7 Lighthouse

Five representative paint finishes were sampled from the building by DST and submitted for lead content analysis. All the paint samples exceeded the 90 ppm limit established by the Federal Canada Consumer Product Safety Act. As such, all paints at the building are considered to be lead-containing unless analytical results confirm otherwise. Paints within the building were in good to poor condition at the time of the Site visit.

Based upon the analytical results available for the building as well as for similar paints in other buildings, as applicable, the following paints are considered to be lead-containing unless future sampling confirms otherwise:

- Exterior white;
- Exterior grey;
- Exterior red;
- Interior white and white on red; and
- Interior grey.

Exterior paint finishes in fair to poor condition include:

- Approximately 260 m² of white paint on the exterior wood shingle siding;
- Approximately 20 m² of red paint on the exterior of the upper level lantern, roof, siding, railing and balcony;
- Approximately 10 m² of grey exterior paint on the exterior door and steps; and
- Paint debris found surrounding the perimeter of the building.

Interior paint finishes found in poor condition include:

- Approximately 50 m² of grey on wood floor, metal floor and stairs;
- Approximately 50 m² of interior white paint on wood walls, white ceiling of top level and metal window trim; and,
- Paint debris found on all floor surfaces.

Lead in a wet cell acid battery is also suspected to be present.

4.3.8.8 Old Dwelling

Four representative paint finishes were sampled from the building by DST and submitted for lead content analysis. All paint samples exceeded the 90 ppm limit established by the Federal Canada Consumer Product Safety Act. As such, all paints at the building are considered to be lead-containing unless analytical results confirm otherwise.

Based upon the analytical results available for the building as well as for similar paints in other buildings, as applicable, the following paints are considered to be lead-containing unless future sampling confirms otherwise:

• Exterior white;

- Exterior red;
- Exterior grey;
- Interior white;
- Interior light blue on light green;
- Interior Salmon (suspected); and
- Interior grey.

Exterior paint finishes in fair to poor condition include:

- Approximately 14 m² of white paint on the exterior wood shingle siding and soffits;
- Approximately 4 m² of red paint on the exterior trim and fascia;
- Approximately 10 m² of grey exterior paint on the front porch; and
- Paint debris found surrounding the perimeter of the building.

Interior paint finishes in poor condition include:

 Approximately 20 m² of interior grey paint on stairs, second level floors and storage room door.

Lead in solder on the joints of copper piping is also suspected to be present.

4.3.8.9 Outhouse at CS1

Two representative paint finishes were sampled from the building by DST and submitted for lead content analysis. All paint samples exceeded the 90 ppm limit established by the Federal Canada Consumer Product Safety Act. As such, all paints at the building are considered to be lead-containing unless analytical results confirm otherwise.

Based upon the analytical results available for the building as well as for similar paints in other buildings, as applicable, the following paints are considered to be lead-containing unless future sampling confirms otherwise:

- Exterior white;
- Interior white; and
- Interior grey.

All paint finishes were found in poor condition on the outhouse of the Main Site. The building has approximately 15 m² of exterior white paint. As well, approximately 18 m² of interior grey paint

was found in poor condition. Paint debris was also found on the interior floor of the outhouse. Debris was also found surrounding the perimeter of the building.

4.3.8.10 Outhouse at CS3

Paints finishes on the outhouse at CS3, having a corresponding representative paint sample or based on sampled similar finishes found to contain lead above the applicable 90 ppm limit established by the Federal Canada Consumer Product Safety include:

- Exterior white; and
- Interior white and grey.

Exterior paint finishes in fair to poor condition include:

• Approximately 1 m² of white paint on the exterior wood siding.

4.3.8.11 Surrounding Structures

Paint finishes were also found on concrete and metal structures located on the Site. These structures include:

- Two concrete helicopter pads;
- One diesel tank dyke;
- One retaining wall;
- Two docks and hoists;
- One flag pole;
- Boat winch;
- Two tank cradle pads; and
- Ground-mounted transformer.

Based upon the analytical results available for the building as well as for similar paints in other buildings, as applicable, the following paints are considered to be lead-containing unless future sampling confirms otherwise:

- Exterior grey;
- Exterior white;
- Exterior red; and
- Exterior forest green.

Approximately 60 m² of paint finishes in poor condition were found on concrete and metal structures at the Site such as the exterior of the transformer box, the boat winch, the dock hoists, flag pole, and retaining wall.

4.3.8.12 Debris Sites

Various debris and wastes found throughout all known dumping sites are suspected to contain lead. These materials include:

- Used paint cans;
- Wet cell lead acid batteries; and
- Wood and metal wastes with painted surfaces.

4.3.9 <u>Mercury</u>

Based on the historical composition of building materials, mercury is expected to be present in the following materials where observed within the buildings:

- Fluorescent light fixtures containing fluorescent light tubes, which contain mercury in a vapour form and in the phosphor coating on the lamp tube;
- Compact fluorescent light bulbs; and
- Thermostats.

4.3.10 <u>Silica</u>

Based on the historical composition of building materials, silica is expected to be present in the following materials where observed within the buildings:

- Concrete building elements including concrete structures such as helicopter pads, transformer pad, diesel dyke, tank cradles, base of flag pole, sidewalks and retaining wall;
- Masonry building materials and associated mortars;
- Cementitious parging generally found on building elements;
- Drywall building elements; and
- Vinyl flooring products.

4.3.11 Vinyl Chloride

Vinyl Chloride was neither observed in the buildings or surrounding structures, nor suspected of being present, in forms or quantities that would either impact future work or pose risks to human health or the environment.

4.3.12 Polychlorinated Biphenyls

Polychlorinated Biphenyls, also known as Chlorobiphenyls, are hazardous chemicals which were used in the manufacturing of a variety of equipment, such as electrical equipment, heat exchangers, hydraulic systems, and for several other specialized applications. Polychlorinated Biphenyls are commonly found within electrical ballasts manufactured prior to 1981, found within fluorescent light fixtures and high intensity discharge (HID) lamps.

Light fixtures with T12 lamps are more likely to contain ballasts that were manufactured prior to 1981. T8 lamps are associated with light fixtures that were manufactured after the phase-out of PCB-containing ballasts. The letter "T" denotes the shape of the light fixture (e.g. tubular) and the number which follows indicates the diameter in eights of an inch.

The ballasts of light fixtures with T12 light tubes are suspected to be present in the Duplex Dwelling building.

Also, a ground-mounted transformer suspected to contain PCBs was observed north of the new diesel generator building.

4.3.13 Halocarbons

Halocarbons are a family of synthetic organic compounds that are composed of carbon and the following elements: hydrogen, chlorine, fluorine, and/or bromine. They are inert, heat-absorbing molecules which are useful as refrigerants and fire suppression agents because they are inexpensive, non-flammable and very stable.

Halocarbons are used specifically as refrigerants in air-conditioning and refrigeration systems, fire extinguishing agents in fire extinguishing systems, blowing agents in the manufacture of foams, and as solvents. Halocarbons are regulated because many of them contribute to the depletion of the stratospheric ozone layer.

Halocarbons are suspected to be present in the following materials observed within the buildings:

- Refrigerators; and
- Freezers.

4.3.14 Mould and Water Damage

Table 5 in Appendix B provides a summary of locations and quantities of mould impacted materials. DST observed the following suspected mould impacted and/or water damaged building materials:

- Water damage was observed in multiple rooms on the first and second level of the old fog alarm building. Based on observed water intrusion (i.e. water leakage during Site visit) and suspected mould growth on various surfaces (i.e. surface of table, window seals, floor joists and ceiling materials), approximately less than 10 m² of mould-impacted building materials were observed in the old fog alarm building. Concealed mould is suspected to be present in water damaged areas of the building.
- Water damage was observed on every level of the lighthouse building. Approximately 10 m² of water damaged building materials and 2 m² of suspected mould impacted materials were observed. Based on current conditions (water staining) it is anticipated that concealed / building / observed mould exists on the wooden mudroom floor of the main dwelling building. Based on visual observations concealed mould may be present under vinyl floor tiles and subsequent wood subfloor.

4.3.15 Other Hazardous Materials

The following hazardous materials were observed to be present:

• Approximately 20 L of labelled sulfuric acid stored in a plastic bladder in a labelled box was observed in the former oil house building.

4.4 <u>Designated Substance and Hazardous Materials Survey Conclusions and</u> <u>Recommendations</u>

DST was retained by PWGSC to conduct a DSHMS of the buildings, surrounding structures and grounds at the Slate Island Coast Guard Site identified with the Property Number 56027.

The DSHMS scope of work included an assessment for the presence of the 11 Designated Substances, as identified in the *Occupational Health and Safety Act*, as well as PCBs, halocarbons, mould, and other hazardous materials.

The following recommendations apply to only designated substances and hazardous materials observed in the buildings and surrounding areas, as applicable. The handling and use of these materials should be undertaken by those with proper training (e.g. Workplace Hazardous Materials Information System, etc.) and adhere to any applicable guidelines and/or regulations.

4.4.1 Asbestos

The disturbance of ACMs on construction and demolition projects in the province of Ontario is governed by *O. Reg. 278/05, Asbestos on Construction Projects and in Buildings and* Repair Operations enabled under the *Occupational Health and Safety Act R.S.O. 1990, Chapter 1.* This regulation classifies all asbestos disturbances as Low Risk (Type 1), Moderate Risk (Type 2), or High Risk (Type 3), each of which has defined precautionary measures. All asbestos materials are subject to specific handling and disposal precautions, and must be removed prior to demolition. The MoL must be notified of any project involving removal of more than a minor amount (e.g. typically 1 square metre) of friable asbestos material.

The transport and disposal of asbestos waste is governed by R.R.O. *Regulation 347 – General – Waste Management* under the *Environmental Protection Act R.S.O. Ch. E. 19* (Reg. 347), as amended. This regulation requires that asbestos waste be sealed in appropriately labelled, double containers resistant to puncture and tears. The waste must be disposed of at a licensed waste disposal site.

The removal of less than one square metre of drywall in which joint-filling compounds are asbestos-containing can be performed following Type 1 asbestos precautionary measures, as applicable as per O. Reg. 278/05, as amended. The removal of one square metre or more of drywall in which joint-filling compounds are asbestos-containing must be performed following Type 2 asbestos removal procedures, as a minimum.

Based on the current scope of work as discussed with the PWGSC, Type 2 asbestos abatement will be completed on all interior drywall with asbestos-containing joint compound where lead containing paint is present as outlined in Table 4 in Appendix B. Lead precautionary measures should also be considered on any removal of drywall with lead-containing paint.

The breaking, cutting, drilling, abrading, grinding, sanding or vibrating of non-friable ACMs such as vinyl floor tiles, adhesives, mortars, mastics, Transite, pipe joint gaskets and caulking products

can be conducted using Type 1 asbestos precautionary measures, provided the material is wetted to control the spread of dust or fibres, and the work is done only be means of non-powered handheld tools. If these conditions cannot be met, then more stringent (Type 2 or Type 3) work procedures are required (e.g. power tool removal).

Based on the current project scope as discussed with the PWGSC, asbestos abatement following a Type 1 will be completed on the following material/structure:

- Main dwelling, exteriors basement windows caulking and stored window where asbestos caulking was present; and,
- Old fog alarm building, roofing shingles and shingles debris.

Where painted window caulking is present on the main dwelling exterior basement, lead precautionary measures should also be considered.

Based on the review of the structure report, all buildings were found to be structurally sound and can withstand the abatement work. Refer to Appendix F for the structural report.

The time weight average exposure limit (TWAEL) for airborne asbestos is prescribed by Ontario Regulation 490/09 *Designated Substances* under the *Occupational Health and Safety Act, R.S.O. 1990, c. O.1* (O. Reg. 490/09), as amended. Work procedures and personal protective equipment must be used to ensure that workers are not exposed to airborne asbestos levels that exceed this TWAEL.

DST made every attempt to look above false ceilings and into wall cavity hatches. In spite of these efforts, some ACMs may be concealed and not observed at the time of the survey. As such, should any previously unidentified suspect ACMs be encountered as part of future work, these materials are to be treated as ACMs and handled accordingly, unless sampling proves otherwise. Materials that have not been analyzed, but are visibly similar to other materials identified as asbestos-containing, must be considered asbestos-containing unless proven otherwise by laboratory analysis.

The following recommendations apply to ACMs and assumed ACMs:

- Materials found in poor condition should be abated using appropriate precautionary measures;
- Materials must be maintained in good condition;

- The condition of material(s) identified in this report must be inspected at least annually, and this record must be updated accordingly;
- Appropriate work procedures and precautionary measures must be used, as outlined in O. Reg. 278/05, as amended, when performing work that may disturb ACMs or suspected ACMs, including prior to building demolition;
- Disturbance and/or removal of ACMs must be appropriately recorded as part of the building's Asbestos Management Plan;
- If ACMs or suspected ACMs become damaged and worker exposure to the material is likely to occur, the damaged material must be repaired or removed following work procedures outlined in O. Reg. 278/05, as amended; and
- Disposal of asbestos waste is controlled by Reg. 347, as amended. This regulation requires that asbestos waste be sealed in double containers resistant to puncture and tears, and appropriately labelled. The waste must be disposed of at a licensed waste disposal site. Proper notification must be issued to the site representative prior to transportation of waste. The transport of the waste to the disposal site is controlled by the federal *Transportation of Dangerous Goods Act*, 1992 (TDGA).

4.4.2 <u>Benzene</u>

There are no regulations that specifically govern the disturbance of benzene on construction projects. Industrial processes involving benzene are regulated under O. Reg. 490/09. The transport of the waste to the disposal site is controlled by the federal TDGA and applicable provincial regulations (Reg. 347).

Based on the current project scope as discussed with PWGSC, the remediation of benzene will not be included in the current scheduled work.

4.4.3 <u>Lead</u>

The Occupational Health and Safety Branch of the Ontario Ministry of Labour have published *Guideline: Lead on Construction Projects*. This document classifies all lead disturbances as Type 1, Type 2a, Type 2b, Type 3a or Type 3b work, and assigns different levels of respiratory protection and work procedures for each classification.

Paint and surface coatings on various building finishes containing elevated concentrations of lead can pose a health risk to humans if ingested or inhaled. Such lead paints are also a risk to the

environment with the potential to contaminate soil, groundwater, sediments and surface water. Paints with elevated lead content can also pose a health risk to workers while completing demolition activities.

The TWAEL for airborne lead is prescribed by O. Reg. 490/09, as amended. Work procedures and personal protective equipment must be used to ensure that workers are not exposed to airborne lead levels that exceed this TWAEL.

DST recommends that any future disturbance should avoid operations that generate high levels of dust (e.g. sanding, grinding) and that should these operations be required, appropriate precautionary measures be implemented for worker exposure.

The disposal of construction waste containing lead is governed by Reg. 347, as amended. The transportation of the waste to the disposal site is controlled by the federal TDGA and applicable provincial regulations and licenses. Materials with elevated concentrations of lead should be subject to analytical testing using the toxicity characteristic leaching procedure (TCLP) to determine its waste class in accordance with Reg. 347, as amended.

The following recommendations apply to paint and surface coatings on building finishes found to contain elevated concentrations of lead:

- Paint on the exterior of buildings should be abated using appropriate specialized paint strippers (e.g. alkaline caustic or soy gel) and power tools equipped with HEPA filtered vacuums;
- Paint on interior surfaces should be abated using appropriate Type 1 procedures as outlined in the MoL *Guideline: Lead on Construction Projects*;
- Paint debris surrounding the perimeter of the buildings and structures should be remediated scrapping top layer of soil to a depth of up to 5 cm where feasible. Where debris is located on bedrock, sidewalks or cobblestone, debris should be removed using HEPA filtered vacuums. Debris found in the interior of buildings should be remediated following MoL precautionary measures, outlined in the document referenced above;
- Based on the current scope of remediation as discussed with PWGSC, the remediation of lead paint will be completed on all identified lead-base interior surfaces, all exterior paint and all paint debris as noted in Table 3 of Appendix B. It should also be noted that where lead paint remediation is to be completed on asbestos containing substrate material, the most stringent guidelines shall be applied; and

• The structural evaluation has identified that all buildings and features/structure that are to undergo lead abatement can withstand the planned remediation work as outlined in the revised structural report located in Appendix F

If not abated, all interior paints containing elevated levels of leads, should be maintained in good condition. Prior to, or during demolition or renovation work, the following additional procedures should be performed with respect to other anticipated lead-containing materials:

- Copper piping solder can be cut a small distance (e.g. 50 mm) from the joints to avoid direct disturbance of the lead material; and,
- Cast iron drain pipes can be cut away from the joints to avoid direct disturbance of the lead caulking in the joints.

4.4.4 <u>Mercury</u>

There are no regulations that specifically govern the disturbance of mercury on construction projects. However, the Occupational Health and Safety Division of the Ontario MoL has published *The Safe Handling of Mercury: A Guide for the Construction Industry*. This document provides advice on how to reduce the risk of mercury exposure, and outlines clean-up methods for spills. In the absence of specific legislation for mercury on construction projects, this guideline would serve as a reasonable, peer reviewed standard for work procedures.

When removal of the fluorescent light tubes is required, the tubes should be removed intact from the fixtures. This prevents worker exposure to mercury vapour, particularly if the tubes were energized shortly before removal. Other sources of liquid mercury should be removed in a similar fashion (intact) to prevent worker exposure.

The TWAEL for mercury is prescribed by O. Reg. 490/09, as amended. Work procedures and personal protective equipment must be used to ensure that workers are not exposed to airborne mercury levels that exceed this TWAEL.

Liquid mercury is classified as a hazardous waste under Reg. 347, as amended. The transport of the waste to a disposal site is controlled by Reg. 347 and by the federal TDGA. It is now common practice to recycle fluorescent light tubes, and other items containing mercury, recovering the component materials, and avoiding the generation of hazardous waste.

Remediation action for mercury is not required at this time, as discussed with PWGSC.

4.4.5 <u>Silica</u>

The Occupational Health and Safety Branch of the Ontario MoL has published *Guideline: Silica on Construction Projects*. This document classifies all silica disturbances as Type 1, Type 2 or Type 3 work, and assigns different levels of respiratory protection and work procedures for each classification. In the absence of specific legislation for silica on construction projects, this guideline would serve as a reasonable, peer reviewed standard for work procedures.

The TWAEL for airborne silica is prescribed by O. Reg. 490/09 *Designated Substances*, as amended. Work procedures and personal protective equipment must be used to ensure that workers are not exposed to airborne silica levels that exceed this TWAEL.

As a general rule, it is preferable to use more stringent dust suppression techniques and engineering controls as opposed to relying on respiratory protection to control worker exposure. Respiratory protection should only be relied on as a last resort when dust suppression techniques and engineering controls fail to control worker exposure to silica.

Disturbance of Silica is not anticipated to occur on lead containing materials scheduled for abatement.

4.4.6 Polychlorinated Biphenyls

Prior to removal or disposal, the PCB content of equipment should be confirmed to determine the proper procedures to be followed, unless conservatively assumed to contain PCBs. When the fluorescent light fixtures are taken out of service, the ballasts should be examined to determine whether they contain PCBs. This can be done by comparing the manufacturer date codes stamped on the ballasts to information contained in the document titled *Identification of Lamp Ballasts Containing PCBs*, published by Environment Canada. Ballasts that contain PCBs must be packaged, transported and disposed of in accordance with all appropriate provincial and federal regulations.

In Canada revised federal PCB Regulations came into force in September 2008. The regulations impose deadlines on the elimination of all PCBs and PCB-containing material currently in storage, and requires all other PCBs to be phased out. In general, the end-of-use deadlines imposed by this new regulation are as follows:

- December 31, 2009, all equipment containing PCBs in a concentration of 500 parts per million (ppm) or more (excluding pole-mounted equipment and light ballasts).
- December 31, 2025, all equipment containing PCBs in a concentration of 50 ppm or more (including pole-mounted equipment and light ballasts).

This regulation and end-use deadlines apply to anyone that owns, stores, manages, or disposes of PCB-containing equipment and waste. The PCBs must be destroyed at an authorized facility, and the owner of the PCBs must submit an annual report to Environment Canada, indicating the quantity of PCBs sent off-site to a transfer or destruction facility. This regulation also includes reporting requirements.

The transport of PCB waste to the disposal site is controlled by the federal TDGA, 1992 and O. Reg. 362/90 – *Waste Management, PCBs,* as amended, under the *Environmental Protection Act* as well as Reg. 347.

No immediate recommendation for remediation is anticipated based on the current project area scope.

4.4.7 <u>Halocarbons</u>

The handling, transport and disposal of Ozone Depleting Substances are governed by the following:

- O. Reg. 463/10, Ozone Depleting Substances and Other Halocarbons, as amended, under the *Environmental Protection Act, R.S.O. 1990 Ch. E. 19*; and,
- Federal Halocarbon Regulations, 2003

When confirmed and/or suspected halocarbon-containing equipment is taken out of service, the halocarbon refrigerants must be captured and reclaimed by a licensed technician. The presence of halocarbon refrigerants within units no longer in service should be verified. If halocarbon refrigerants are found to be present, they must be captured and reclaimed by a licensed technician.

No immediate recommendation for remediation of halocarbons is presented based on the current scope of work.

4.4.8 Mould and Water Damage

Water damaged and mould-impacted building materials were identified. Access to building areas with significant quantities (e.g. $>10 \text{ m}^2$) of suspected mould growth should be restricted to only those equipped with appropriate personal protective equipment such as protective coveralls and respiratory protection. The building should be entered by authorized personnel only when necessary. Mould impacted materials should not be disturbed unless by appropriately trained personnel.

Currently, there are no regulations pertaining to mould on construction projects. Most jurisdictions have issued alerts or bulletins concerning the hazard of mould in indoor environments. The Canadian Construction Association (CCA) published the following document as a response to concerns in the construction industry: CCA 82-2004, *Mould Guidelines for the Canadian Construction Industry*, 2004. The Guideline recommends Level I, II and III mould abatement procedures for small (<1 m²), medium (1 m² to 10 m²) and large scale (>10 m²) mould abatement operations that are to be determined by professionals based on the extent and density of mould.

Where mould/water impacted material is present on lead based surfaces planned for remediation such as in the old fog alarm building and in the lighthouse, proper mould precautionary measures should be taken and the most stringent guideline shall be followed for remediation activities.

Concealed mould may be present in some locations within these buildings. If further mouldimpacted materials are discovered during the remediation activities, all work must stop and more stringent precautionary measures may be warranted (i.e. Level III).

Mould remediation in advance of building demolition is not required. If required to support other work operations such as salvage, the removal of suspected mould impacted building materials should follow the above noted guideline. Workers performing such salvaging activities shall be equipped with proper respiratory protection as outline in the referenced guidelines. In the case of conflict between mould and other requirements (e.g. asbestos), the more stringent precautionary measures shall apply.

4.4.9 Other Hazardous Materials

The handling and use of chemicals such as sulfuric acid should be undertaken by those with proper training (e.g. Workplace Hazardous Materials Information System, etc.) and adhere to any

applicable guidelines and/or regulations. Prior to demolition operations, they should be disposed of appropriately. The transport and disposal of chemical waste is governed by Reg. 347, as amended.

5 ENVIRONMENTAL SOIL INVESTIGATION

The results of the soil investigation is described in the following sections. All information, including figures, analytical results summary tables, photographs, and laboratory certificates of analyses are provided in Appendix C.

5.1 Scope of Work

The scope of work for the environmental soil investigation included the following:

- Review background information;
- Carry out complementary soil sampling and chemical analysis;
- Determine the extents of additional soil impacts and further characterize impacts in areas that were not fully delineated as part of previous assessment work; and,
- Prepare a summary report with the findings of the soil investigation.

The initial proposed soil investigation was detailed in the DST proposal dated July 29, 2016. Following the initial sampling event, it was determined that additional soil sampling was required to achieve meaningful delineation of COCs in several areas where new sources of contamination were identified. This follow up sampling event description and justification was detailed in an email to PWGSC dated September 26, 2016 and the additional field sampling took place on October 12th and 13th, 2016.

5.2 **Topography and Geology**

Bedrock geology at the Site consists of felsic to intermediate metavolcanic rocks (dacitic and andesitic flows, tuffs and breccias) in the southern portion of the point, and mafic and ultramafic rocks (gabbro and anorthosite) in the northern portion of Sunday Point. The bedrock geology consists primarily of undifferentiated igneous and metamorphic rock, exposed at surface or covered by a discontinuous, thin layer of drift (MNDM, 2014).

Based on observations of CS-1 and historical report (refer to Section 3), soils are shallow and discontinuous, where present at the Site. Exposed bedrock is evident at the shoreline around much of the Site. Local overburden materials are predominantly coarse-textured gravel and cobbles, with dark brown, organic-rich topsoil.

At CS-2, the overburden was found to consist of discontinuous sandy gravel with some cobbles in low-lying patches on the rugged bedrock surface.

At CS-3, soils were found to be a medium to coarse sand with some gravel, extending to the beach at Lake Superior. In the surrounding forested areas of CS-3, soils were found to have LFH horizons overlying sand and gravel.

Site topography is rugged and moderately hilly, with a steep cliff, approximately 20 m in height, climbing upwards from the south shore to the Lighthouse Area on the summit of the point. There are no permanent surface water bodies on the Site other than the adjacent Lake Superior. Surface runoff from Sunday Point flows directly into Lake Superior.

5.3 Analytical Results Comparative Framework

The following sections describe the selection of the guidelines and standards applied to the laboratory analytical results obtained during the investigation, in accordance with the SOW.

5.3.1 <u>Determination of Most Applicable Comparative Guidelines</u>

Site specific target levels (SSTLs) and maximum known concentrations that do not pose unacceptable risks for human health and ecological receptors are available for the Site. These were derived from the SSRA-HH and SSERA completed by DST (2005) and form the basis of the comparative framework for soil contamination delineation and remediation objectives. Where available, the SSTLs (both calculated and previous maximums that were demonstrated to not pose unacceptable risk) are considered the most applicable comparative criteria for analytical data in this assessment. For applicable COCs, these site specific criteria take precedence over published generic guidelines.

As a federal site, generic federal environmental guidelines are also applicable. Federal guidelines are considered the applicable criteria where there are no human health or ecological SSTLs. Where analytical parameters have no SSTLs or generic federal guidelines, a comparison is made to the provincial standards, where available.

5.3.2 Risk Assessment

As indicated in the above section, SSTLs have been developed through the risk assessment work, to quantify maximum acceptable concentrations of COCs at the Site to ensure the protection of

human health (SSTL_{HH}) and ecological receptors (SSTL_{ECO}). Where the maximum known concentration of a contaminant characterized through previous assessments was not found to be an unacceptable risk to human and ecological receptors, for the purpose of this assessment, the maximum known concentration of the contaminant is considered the SSTL value.

The remedial action plan proposed by DST (2005), which included the removal of the contaminant sources from the Site followed by remediation of contaminated soils where lead and zinc concentrations exceed the SSTLs for the protection of human health, was also considered in the selection of the comparative framework.

The selection of COCs for the development of the human health and ecological SSTLs are described in Section 5.1.1.14 and 6.2.1 of the DST (2005) report respectively. It is noted again that the COCs for input into the SSRA were identified based on parameter exceedances of generic guidelines that have since been updated to the guidelines and standards presented in Sections 5.4.3 and 5.4.4. As a result, parameters that would currently be considered potential COCs were not necessarily included in the 2005 SSRA. This may result in the determination of parameter concentrations as impacts that were deemed by the 2005 SSRA to not be contamination, and the identification of additional COCs based on current applicable generic guidelines. The SSTLs also need to be revisited as Health Canada guidance for specific parameters (e.g. lead) have changed since the 2005 report.

For the current investigation, shallow soil samples collected from the Site were compared to the human health risk-based SSTL for lead of 1,857 mg/kg for CS-2, 425 mg/kg lead for CS-1 and CS-3, and an SSTL_{ECO} of 615 mg/kg for zinc at CS-1 and CS-2. Other COCs that were not assigned human health and ecological SSTLs are compared to the maximum concentrations identified through the previous investigations completed at the Site. The other SSTLs and maximum known concentrations applicable to the current investigation are presented in DST 2005 and indicated in the analytical tables in Appendix C.

5.3.3 Generic Federal Guidelines

There are several documents that deal with soil quality guidelines under federal jurisdiction. The following subsections describe which guideline documents and pathways were used in this investigation.

5.3.3.1 Exposure Pathway Exclusion

For the purpose of selecting generic comparative guidelines and standards for this investigation, the marine life contaminant exposure pathways were excluded as there are no marine (i.e. saltwater) water bodies near the Site. It is noted that the shallow groundwater at the Site is not used as a potable water source, and ingestion of shallow groundwater is not expected. Therefore, the exposure pathway for the protection of potable groundwater is also excluded.

5.3.3.2 Applicable Pathways

Considering the excluded exposure pathway listed above and the exposure pathways presented in the guideline documents referenced below, the following exposure pathways are considered applicable for the Site: vapour inhalation; soil organism/dermal contact; soil and food ingestion; and protection of freshwater life. Additional information related to these pathways are provided in the following subsections. Lake Superior is expected to be a receptor of shallow groundwater flowing from the Site; thus, the groundwater pathway for the protection of freshwater life is applicable.

5.3.3.3 Federal Soil Guidelines

There were three documents used to determine federal generic soil analytical comparative guidelines used as part of this project.

Petroleum Hydrocarbons

The guidelines for petroleum hydrocarbon fractions 1 through 4 (PHC F1-F4) were selected from the 2008 Canadian Council of Ministers of the Environment (CCME) *Canada-Wide Standards for Petroleum Hydrocarbons in Soil, Technical Supplement* document, Table 3 pathway specific Tier 1 levels for PHCs in coarse-grained surface soils and residential land use (CCME CWS). The lowest value of all the pathways, except for the protection of potable groundwater, for each PHC fraction was used for comparison to results.

For benzene, toluene, ethylbenzene and xylenes (BTEX), the CCME (1999, as revised) *Canadian Environmental Quality Guidelines (CEQG) Canadian Soil Quality Guidelines (SQGs) for the Protection of Environmental and Human Health* for coarse grained soils and residential land use were selected as the comparative guidelines. The guideline values used for comparison to the laboratory results are applicable for both surface soil and subsoil. The guideline for 10⁻⁵ incremental lifetime cancer risk was used for the benzene guideline.

Polycyclic Aromatic Hydrocarbons

The polycyclic aromatic hydrocarbon parameter guidelines for comparison to the soil analytical data from this investigation were derived from CCME (2010) *Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health, Polycyclic Aromatic Hydrocarbons* factsheet, Table 2 Soil Quality Guidelines for Carcinogenic and Other PAHs, for residential land use. The lowest guideline value for all pathways presented, including the Interim Soil Quality Criteria and any provisional values but excluding the protection of marine life and potable water, were applied for environmental health guidelines based on non-carcinogenic effects of PAHs. For the protection of human health based on the carcinogenic effects of PAHs, benzo(a)pyrene total potency equivalents were derived from the carcinogenic effects of PAHs, based on 1 x 10⁻⁵ incremental lifetime cancer risk. Where input values were less than the reported detection limit, half the detection limit was used in the calculation of this value.

Inorganics

For inorganic parameters, the CCME (1999, as revised) *CEQC SQGs for the Protection of Environmental and Human Health* for coarse grained soils in residential land use were selected as the comparative guidelines.

5.3.4 Generic Provincial Guidelines and Standards

Provincial guideline values were obtained from MOECC (2011) *Soils, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act*; Table 1: Full Depth Generic Site Condition Standards, Coarse-grained soil, Residential Property Use (herein referred to as the "Table 1 SCSs"). The selection of these SCSs was based on the following Site characteristics as required by Ontario Regulation 153/04 under the *Environmental Protection Act R.S.O. 1990, Ch. E. 19*, as ammended (O. Reg. 153/04):

- The groundwater under the Site is not used a potable water source and is unlikely to be in the future (water intake from Lake Superior is more practical);
- The Site may be considered habitat for SARs;
- Determined to be an area of environmental protection by the Township of Terrace Bay (refer to Section 6.3.2);
- The soil pH is generally outside of the limits (5 to 9 for surface soil) allowed for the use of non-background SCSs;
- The Site is within 30 m of a surface water feature;

- The Site is considered a shallow soil site;
- The Site is considered to have coarse-grained soils; and,
- The land use of the Site is residential.

Soil samples collected for toxicity characteristic leaching procedure (TCLP) analysis were compared to Schedule 4 of Reg. 347 to determine if the waste material is considered hazardous or non-hazardous for disposal purposes.

5.4 Field Activities and Methodologies

The field activities completed as part of this project, and the associated methodologies, are presented in the following subsections.

5.4.1 Field Activities

Field work related to the soil investigation was completed from August 28 to September 1 and October 12 to 13, 2016 by DST personnel. The Site was accessed by boat via the Terrace Bay Public Boat Launch. Photographs of the Site conditions at the time of the field investigations are included in Appendix C.

5.4.2 Field Screening and Soil Sampling Methodologies

At each soil sampling location, using a Niton XL Series handheld X-ray fluorescence (XRF) analyzer, DST personnel conducted field screening of soil to assess the potential presence and/or absence of contamination based on lead concentration measurements provided by the XRF analyzer. The lead concentration was used as the indicator parameter based on historical soil results (refer to Section 3).

A systematic approach was implemented in which DST commenced field screening at areas that had been previously determined to be contaminated, local to the suspected sources, and then stepped out further from the source areas to identify areas where horizontal delineation may be achieved. Field screening using the handheld XRF analyzer provided a relative screening-level concentration of lead in the field to help identify potentially contaminated and non-contaminated soils to be chosen for laboratory analysis.

At each field screening location, the surface vegetation material were removed by hand to expose the underlying shallow soil, typically to a depth of about 5-10 cm to avoid the inclusion of

vegetation or roots. The soil was screened in-situ using the handheld XRF analyzer. The samples selected for laboratory analysis were collected directly by hand using nitrile gloves into laboratory-supplied containers. Where required, a steel shovel was employed to retrieve the soil sample from a depth just below the root mat where contamination from surface sources is most likely to occur without including excessive organic matter in the sample. Care was taken to ensure that soil that had contacted the trowel was not placed into the sample container.

The laboratory-supplied sample containers were filled completely with the soil sample to reduce the amount of headspace vapour within the jars. Samples to be submitted to the laboratory for analysis of volatile compounds were collected using disposable soil plug collectors provided by the laboratory. These soil plugs were placed in laboratory-supplied vials charged with measured volumes of methanol for sample preservation. Cross-contamination between samples was avoided by washing sampling tools with reagent-free detergent and water and by wearing new disposable nitrile gloves during field screening and sampling activities at each location.

Once collected, the soil samples were maintained at less than 10 °C in a cooler packed with ice, under a Chain of Custody protocol until delivery to Maxxam Analytics Inc. (Maxxam). Maxxam is ISO/IEC 17025 certified, and is accredited by the Standards Council of Canada and the Canadian Association for Laboratory Accreditation Inc. All samples were delivered to the laboratory within sample holding times.

Samples were selected for analysis of the CCME metals suite, including lead and zinc. In addition, selected soil samples from the area of CS-1, where elevated concentrations of several PHCs, VOCs and PAHs were identified in the DST (2005) report, were submitted for laboratory analysis of these COCs. Also, DST field personnel submitted 24 shallow soil samples for analysis using the toxicity characteristic leaching procedure (TCLP) for waste characterization purposes.

Data recorded at each soil sample location included XRF lead measurements, geographic positioning system (GPS) coordinates, a soil description including colour, moisture, evidence of visual or olfactory contamination and soil depth. GPS coordinates of all soil sample locations were recorded using a Trimble XH 6000 GPS unit. Horizontal coordinates were recorded using the Canadian Spatial Referencing System (CSRS) North American Datum 1983 (NAD83) Universal Transverse Mercator (UTM) Zone 16 North. GPS data, including the correction factor, soil sample descriptions and soil screening results are included in Table 7 of Appendix C.

5.4.3 <u>Quality Assurance and Quality Control Measures</u>

DST maintains a standard Quality Assurance/Quality Control (QA/QC) program for all field programs. The field sampling and QA/QC program was completed in accordance with the sampling plan provided in the DST proposal, *Guidance Manual for Environmental Site Characterization in Support of Environmental and Human Health Risk Assessment Volume 1 Guidance Manual* (CCME, 2016), O. Reg. 153/04 (as amended), and *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario* (MOECC, 1996) as appropriate. All project documentation was maintained and controlled under each specific work site and sampling area by the appointed site supervisor. All soil sampling was completed in accordance with industry standards, and applicable provincial standards/guidance. DST operates under Certificates of Authorization issued by the Professional Engineers of Ontario (PEO) and the Association of Professional Geoscientists of Ontario (APGO) and all work was carried out with due regard to PEO and APGO standards for professional practice.

Field QA/QC samples were included in this investigation. Blind field duplicate soil samples were collected and analysed for metals, PAHs, PHCs, and VOCs.

Field and laboratory QA/QC results are described in Section 5.6.5.

5.5 Soil Investigation Results

5.5.1 Soil Stratigraphy and Bedrock Exposure

Soil logged during the surface soil sampling activities indicated that the soil along the shoreline at CS-1 consists of cobbles with some gravel beach deposits, in places extending to the treeline. The developed grassed areas surrounding the dwellings at CS-1 are underlain by shallow soil, consisting of topsoil with some sand, cobbles and gravel. In the forested areas surrounding CS-1, soils were often found to have organic litter, fibric and humus (LFH) horizons. Underlying the LFH horizons, mineral soils were found to have a coarse sandy loam texture with some gravel. Exposed bedrock was observed predominantly along the shoreline of the site within the area of the littoral zone.

At CS-2, the overburden was found to consist of discontinuous sandy gravel with some cobbles in low-lying patches on the rugged bedrock surface.

At CS-3, soils were found to be a medium to coarse sand with some gravel, extending to the beach at Lake Superior. In the surrounding forested areas of CS-3, soils were found to have LFH horizons overlying sand and gravel.

In general, for the purpose of this investigation, to estimate extents and volumes of contaminated soils, three distinct surficial geology types are classified for the investigated areas: predominantly shallow soil areas, predominantly cobblestone and gravel areas, and exposed bedrock. The estimated coverages and depths are based on field observations, historical reports, and aerial photographs.

Areas surrounding the dwellings at CS-1 having grass cover were calculated to have approximately 95% soil cover to 0.6 meters in depth and 5% exposed bedrock. The predominantly cobblestone and gravel areas are estimated to have 85% soil cover up to a depth of 0.5 meters and 15% exposed bedrock. The area of the south of the old fog alarm building is estimated to have approximately 75% soil cover up to 0.4 meters in depth and 25% exposed bedrock. Figure 12 illustrates the approximate extents of the overburden / soil types and bedrock encountered throughout CS-1.

At CS-2 the ground cover is estimated to be 75% soil cover up to 0.2 meters in depth and 25% exposed bedrock.

The areas within CS-3 is estimated to have 100% soil cover up to a depth of 0.6 m.

5.6 Background

Details of the background information review, as it pertains to the environmental quality of the soil at the Site, are provided in Section 3 of this report.

5.6.1 Identified Waste Disposal Dumps

Though not included in the SOW or identified in any of the historical reports, DST personnel observed several areas at all three developed areas of the Site where debris had historically been disposed of. These areas are summarized in the following subsections.

5.6.1.1 <u>Main Site (CS-1)</u>

Two separate waste debris disposal areas were discovered during the field program at CS-1. The East Debris Pile, located in a wooded area approximately 32 m northeast of the new diesel generator building extends approximately 30 m in an east-west direction with an average width of approximately 3 m as shown on Figure 13. The estimated area of extent of the East Debris Pile is approximately 100 m² and, based on a depth of 1 m based on field observations, has an approximate volume of 100 in-situ m³. Partially buried wastes found in the East Debris Pile include:

- 5 gallon metal pails as well as other container sizes used for various petroleum hydrocarbon products;
- Household wastes such a metal cans, glass jars and plastic containers;
- Used paint cans;
- Miscellaneous wood and metal wastes; and,
- A washing machine.

The West Debris Pile, located in a wooded area approximately 22 m north of the Duplex Dwelling Building extends approximately 25 m with an average width of 8 m, as shown on Figure 13. The estimated area of extent of the West Debris Pile is 200 m² and, based on an average depth of 0.6 m based on field observations, a volume of approximately 120 in-situ m³. Partially buried wastes in the West Debris Pile were found to include:

- Majority wastes include household items such a metal cans, glass jars and plastic containers;
- 5 gallon metal pails as well as other container sizes used for various petroleum hydrocarbon products;
- Some used paint cans;
- Minor miscellaneous wood and metal wastes; and,
- Two empty 45 gallon drums.

5.6.1.2 Lighthouse Area (CS-2)

Debris Pile 3-A, location illustrated on Figure 14, was observed in the wooded area north of the Lighthouse Area. Waste was observed to be scattered over the area of shown as Debris Pile 3-A on Figure 14 in Appendix C, and was partially buried. The estimated area of extent of the dumping area is 80 m² and, based on an average depth of 0.3 m as estimated by field observations, a volume of approximately 25 in-situ m³. These wastes include:

- Wet cell batteries; and
- Paint cans.

In addition to Debris Pile 3-A, small amounts of scattered debris were observed at the base of the lighthouse cliff towards the south and east. The debris was not concentrated into any one area, rather appeared to have been historically thrown from the top of the cliff. This debris generally consisted of paint cans and old automotive-style batteries.

5.6.1.3 Old Dwelling (CS-3)

The perimeter of CS-3 consists of wooded areas with multiple areas containing partially buried and scattered debris piles. The piles are labelled Debris Pile 2-A, 2-B, and 2-C and are shown on Figure 15. The estimated collective area of the debris piles is 75 m² and, based on an average depth of 0.3 m as estimated from field observations, there is an estimated volume of 23 in-situ m³. These wastes observed in these piles include:

- Household items such a metal cans and glass jars;
- 5 gallon metal pails as well as other container sizes used for various petroleum hydrocarbon products; and,
- Paint cans.

5.6.2 Soil Analytical Results and Discussion

The following sub-sections present the analytical results from the shallow soil samples collected from the Site. The sample locations are shown on Figures 13 to 15 for each contaminated area of the Site. Laboratory analytical results are presented in Tables 8 through 10 in Appendix C, as are the laboratory certificates of analysis.

In order to provide meaningful contaminated soil areas, the surface areas were estimated based on interpreted soil impact delineation areas for lead and zinc as they compared to the 2005 human health and ecological SSTLs. The areas of the contaminated soil was conservatively estimated, based on the Clients request, by extending the estimated contaminated area from the known impacted area to the nearest clean sampling point. The volume estimates were determined based on the Site and soil observations described in 5.6.1. Samples that exceeded the SSTLs are shown as red in Figure 13-15. Where other parameters exceeded the updated applicable guidelines as described in Section 5.3, either due to exceeding the previous maximum values of the parameter reported historically, or because the generic guideline have changed since the

SSRA was competed, these areas were not included in the contaminated areas and are shown as yellow in Figure 13-15. Samples that met all of the applicable guidelines (except pH) are shown as green on Figure 13-15. Soil pH values that are outside the CCME range are indicated on the summary table in Appendix C, where applicable based on the circumstances described in Section 5.4.1, though are not considered impacts from any current or historical Site activities.

Generally, volumes of contaminated soil were estimated for each of the three overburden types found throughout the Site, based on the overburden thicknesses and overburden-bedrock coverage described above in Section 5.6.1. The sum of each estimated volume for the overburden types within an indicated contaminated area resulted in the volume estimates provided below.

5.6.2.1 Main Site Area (CS1)

Forty-eight soil sample locations (four of which were submitted as field duplicates) throughout CS-1 were field screened and submitted for laboratory analysis of metals concentrations: 20 soil samples were additionally submitted for PHC F1-F4 and BTEX analysis, and 18 for PAH analysis. The XRF field screening lead concentrations and the analytical results are presented on Table 8 in Appendix C of this report.

XRF field screening of the collected soil samples indicated lead concentrations ranging from below the detection limit of the instrument to 53,610 ppm.

Twelve soil samples from the sampling locations (plus two field duplicates) were found to exhibit lead concentrations greater than the SSTL_{HH} of 425 μ g/g. Laboratory results analytical results for lead ranged from 14 μ g/g (samples CS1-35, CS1-38, CS1-41) to 47,000 μ g/g (sample CS1-10, collected adjacent to the Former Oil House) as shown on Table 8.

Nine soil samples from the sampling locations (plus one field duplicate) were found to exhibit zinc concentrations greater than the SSTL_{HH} of 615 μ g/g. Laboratory analytical results for zinc ranged from 12 μ g/g (samples CS1-29) to 14,000 μ g/g (sample CS1-11), collected in the burn pit area.

Concentrations of other metals were also found to exceed the applicable generic guidelines throughout the CS-1 area. These concentrations included marginal exceedances of selenium, vanadium, arsenic and nickel as shown on Figure 13 in Appendix A.

Samples CS1-1, CS1-5, CS1-11, CS1-12 and CS1-22 failed to meet applicable CCME guidelines for one or both of benzene and ethylbenzene. Samples CS1-1, CS1-2, CS1-7, CS1-11, and CS1-12 did not meet the applicable federal or provincial criteria for PAH parameters (one or more of acenaphthylene, 1-,2-methylnaphthalene, and phenanthrene).

As described in Section 5.4.1, due to updates to the applicable generic guidelines since the SSRA was completed, contaminant screening thresholds have changed for some parameters, and COCs have been identified by the current investigation were deemed to not be a risk in the 2005 SSRA. The 14 locations where neither lead or zinc exceeded the SSTLs but there were exceedances of one or more parameters that were not previously assessed by the SSRA, or exceeded the previous maximum concentration that was deemed not to be a risk to receptors, are shown on Figure 13 in yellow, labelled with the applicable parameter that exceeded.

The surface area where shallow soil contains lead concentrations greater than the HH SSTL is estimated to be approximately 2,150 m² and contain a volume of approximately 800 in-situ m³ of solid non-hazardous waste and approximately 50 in-situ m³ of hazardous waste as defined by Reg. 347. These areas are shown on Figure 13 and the parameters used to calculate the volume are described in Section 5.6.1. The leachate-hazardous and non-hazardous soil is mostly found surrounding the old fog alarm building with an isolated area located north of the former oil house. In addition, there was non-hazardous contaminated soil identified near the former burn pit in the eastern portion of CS-1.

5.6.2.2 Lighthouse Area (CS-2)

Twenty-four samples from 22 locations throughout the CS-2 were field screened and submitted for metals analysis. XRF field screening indicated lead concentrations ranging from below detection limit of the instrument to 9,408 ppm. Five of the samples submitted failed to meet the SSTL_{HH} of 1,857 μ g/g for lead. Laboratory lead concentration results ranged from 14 μ g/g (sample CS2-1) to the highest lead concentration of 12,000 μ g/g (sample CS2-3) as shown on Table 9 in Appendix C.

Four soil samples were found to exhibit zinc concentrations greater than the SSTL_{HH} of 615 μ g/g. Laboratory zinc concentration results ranged from 53 μ g/g (sample CS2-1) to 1,700 μ g/g (sample CS2-2, collected adjacent to the base of the lighthouse).

As described in Section 5.4.1, due to changes in regulation since the 2005 SSRA was completed, generic standards have changed, thus affecting the contaminant parameter screening thresholds for risk assessments. Parameters that would be considered potential COCs currently, were not included in the 2005 SSRA. This has resulted in exceedances of some of the previous parameter concentrations that were deemed to not be a risk. The nine locations where there was an exceedance of a parameter that was not previously assessed by the SSRA are shown on Figure 14 in yellow, and are annotated with the parameter that exceeded. The majority of the samples exceeded the generic CCME guideline for selenium, though there were copper, arsenic, nickel and vanadium exceedances as well.

For CS-2, the surface area of shallow soil estimated to contain lead and/or zinc concentrations greater than the HH SSTL is approximately 600 m². It is estimated, based on the parameters presented in Section 5.6.1, that CS-2 contains a volume of approximately 70 m³ of solid non-hazardous waste and 30 m³ of hazardous waste as defined by Reg. 347. The leachate-hazardous and non-hazardous contaminated soil is all centred around the lighthouse structure as shown on Figure 14.

5.6.2.3 Old Dwelling (CS-3)

Twenty-five samples from 22 locations throughout the Old Dwelling area were field screened and submitted for metals analysis and five were submitted for PHCs, VOCs and PAHs. XRF field screening indicated lead field screening results ranging from below detection limit of the instrument to 351 ppm.

Eight of the samples submitted failed to meet the SSTL_{HH} of 425 μ g/g for lead and 14 samples (including one field duplicate) failed to meet the CCME residential guidelines of 200 μ g/g for zinc. Laboratory lead results ranged from 18 μ g/g (sample CS3-19) to 1,800 μ g/g (sample CS3-16) and zinc concentrations ranged from 52 μ g/g (sample CS3-18) to 970 μ g/g (sample CS3-16) as shown on Table 10 in Appendix C.

As described in Section 5.4.1, due to changes in regulation since the 2005 SSRA was completed, generic standards have changed thus affecting the contaminant parameter screening thresholds. Also, higher zinc concentrations were noted than previously measured. Therefore, parameters that would be considered potential COCs currently, were not included in the 2005 SSRA. This has resulted in exceedances of some of the previous parameter concentrations that were deemed

to not be a risk. The nine locations where there was an exceedance of a parameter that was not previously assessed by the SSRA are shown on Figure 15 in yellow, and are annotated with the parameter that exceeded. These parameters included benzene, ethylbenzene, toluene, copper, selenium, nickel, chromium, arsenic and zinc.

The surface area where shallow soil contains lead concentrations greater than the SSTLs is estimated to be approximately 920 m^2 and contain a volume of approximately 550 m^3 of contaminated soil. All of the contaminated soil is considered non-hazardous and is centred around the Old Dwelling building.

5.6.3 <u>Waste Characterization</u>

Twenty four samples were selected for TCLP analysis based on field screening indicators and for general site coverage. CS-1 and CS-2 were found to have soils classified as leachate-hazardous soil wastes according to Reg. 347 as shown on Table 11 in Appendix C. These areas are illustrated on Figures 13 and 14 in Appendix C and quantified in the previous sections.

5.6.4 Quality Assurance and Quality Control Results

The QA/QC results for this investigation are detailed in the following sections.

5.6.4.1 Field QA/QC Results

DST collected and submitted blind field duplicate samples for laboratory analysis. The duplicate samples are summarized below.

Medium	Sample ID	Duplicate Sample ID	Analytical Parameters
Soil	CS1-5	CS10-5	PHC, VOC, PAHS, Metals, pH
Soil	CS1-9	CS10-9	PHC, VOC, PAHS, Metals, pH
Soil	CS1-23	CS10-23	Metals
Soil	CS1-41	CS1-410	Metals
Soil	CS2-11	CS20-11	Meals
Soil	CS2-20	CS2-200	Metals, TCLP
Soil	CS3-11	CS3-110	Metals
Soil	CS3-20	CS3-200	Metals

Table 5.1: Blind Field Duplicates Submitted for Laboratory Analysis

A relative percent difference (RPD) calculations were completed to evaluate precision of sampling and laboratory analyses:

RPD= <u>(Sample Result – Duplicate Result) x 100</u> (Sample Result + Duplicate Result) / 2

Relative percentage differences are considered applicable when the concentrations of the sample and its duplicate are both greater than five times the reportable detection limit (RDL) (Maxxam, 2012). Applicable RPDs between the samples and their duplicates were reviewed and compared to alert limits as shown on Table 12 in Appendix C.

The PHC F3 concentration between CS1-9 (250 μ g/g) and its field duplicate (1100 μ g/g) exhibited an RDL greater than the alert limit (126% versus 100%). This discrepancy will not materially affect the conclusions of the report as neither concentration approached the SSTL_{HH} of 7200 μ g/g. All other applicable RPDs were less than the alert limits derived from Maxxam (2012).

5.6.4.2 Laboratory QA/QC Results

All samples were submitted within sample hold times. All samples were submitted using sample containers and preservation methods consistent with laboratory procedures and applicable regulations and guidelines.

A review of the laboratory Quality Control Data report indicated that acenaphthene, benzo(a)anthracene, chrysene, fluorine, phenanthrene and pyrene all exhibited a high bias, however all of the parameters met application standards, therefore would not affect the material conclusions of the report. All other analyses were within the acceptable QA/QC limits. Laboratory quality reports are included with the laboratory Certificates of Analysis in Appendix C.

5.7 Soil Investigation Conclusions and Recommendations

DST has completed a soil investigation and additional delineation at the Slate Island Light Station on Patterson Island, near Terrace Bay, Ontario. The soil investigation of three previously identified contaminated areas included field screening of soil samples and laboratory analyses to identify and delineate contaminated areas at the Site. In addition, the investigation involved the identification and quantification of concentrated debris piles located at and around the three developed areas of the Site.

Soil logged during the surface soil sampling activities indicated that the soil along the shoreline at CS-1 consists of cobbles with some gravel beach deposits, in places extending to the treeline. The developed grassed areas surrounding the dwellings at CS-1 are underlain by shallow soil, consisting of topsoil with some sand, cobbles and gravel. In the forested areas surrounding CS-1, soils were often found to have organic litter, fibric and humus (LFH) horizons. Underlying the LFH horizons, mineral soils were found to have a coarse sandy loam texture with some gravel. Exposed bedrock was observed predominantly along the shoreline of the site within the area of the intertidal zone.

At CS-2, the overburden was found to consist of discontinuous sandy gravel with some cobbles in low-lying patches on the rugged bedrock surface.

At CS-3, soils were found to be a medium to coarse sand with some gravel, extending to the beach at Lake Superior. In the surrounding forested areas of CS-3, soils were found to have LFH horizons overlying sand and gravel.

5.7.1 <u>Contaminated Soil</u>

The areas of contaminated soil, separated by hazardous and non-hazardous conditions are summarized as follows:

- CS-1 (Main Site Area): Three areas of contaminated soil covering an area of approximately 3,050 m² and an estimated volume of 1,150 in-situ m³ of non-hazardous contaminated soil and 70 in-situ m³ of solid hazardous waste as defined by Reg. 347;
- CS-2 (Lighthouse Area): contaminated soil in this area was delineated in all directions on the summit with an approximate area of 600 m² and an estimated volume of 70 in-situ m³ of non-hazardous contaminated soil and 30 in-situ m³ of solid hazardous waste as defined by Reg. 347, and;
- CS-3 (Old Dwelling Area): an area of approximately 920 m² and estimated volume of 550 in-situ m³ of non-hazardous contaminated soil.

5.7.2 <u>Debris Areas</u>

The areas where historical debris dumping was observed in concentrated conditions are as follows:

- CS-1 (Main Site Area): Two debris piles (East and West Dumps) with an area of 300 m² and estimated debris volume of 220 in-situ m³.
- CS-2 (Lighthouse Area): Approximate area of 80 m² and estimated volume of 25 in-situ m³ and;
- CS-3 (Old Dwelling Area): three debris dumps with a collective area of 75 m² and an estimated volume of 23 in-situ m³ of debris.

In addition, small amounts of scattered debris were observed at the base of the lighthouse cliff towards the south and east. The debris was not concentrated into any one area, rather appeared to have been historically thrown from the top of the cliff.

It is recommended that all identified debris be removed from the Site as per the SOW. This debris should be excavated/placed into suitable bulk bags with suitable liners and carry straps. The debris should be sorted as indicated in Section 4 to separate, and appropriately containerize, the debris for disposal. Efforts should be made to decrease the volume of the debris prior to containerization. The containerized debris should be transported from the Site to the appropriately licensed waste receiver for disposal. During, and upon completion of debris removal, inspections are recommended to be completed by an environmental consultant to confirm waste removal and to collect confirmatory samples, as required.

Also, it is recommended that a new human health and ecological site specific risk assessment be completed for the Site. After the risk assessment and confirmatory sampling recommended above, the areas and volumes of contaminated soil can be refined, based on the risk management/remediation recommendations within the risk assessment.

6 Species At Risk Survey Update

It was determined by the Client that an updated SAR survey report was required to develop a comprehensive set of mitigation measures to be implemented during the construction phase of this project. These mitigation measures have been developed to minimize impacts to potential SARs at the Site during the abatement and debris removal activities planned.

6.1 Scope of Work

The scope of work for the SAR review and survey included the following components:

- Database searches, including Species at Risk in Ontario (SARO) and the Natural Heritage Information Center (NHIC);
- Consultation with regulatory agencies and Site custodians;
- Review of SAR information presented in the historical report provided by the Client (Refer to Section 3);
- A Site visit and field observations;
- Habitat assessment;
- Develop a list of potentially occurring SAR;
- Compilation of mitigation measures to reduce impacts to SARs during construction activities; and
- Development of a report outlining the desktop and field results as well as recommended mitigation measures for the SAR review and update.

6.2 <u>Methodologies</u>

6.2.1 Literature Review and Secondary Sources

DST conducted a review of available literature for the Site and areas adjacent to the Site in order to determine potential SARs at the Site, including:

- Screening Level Risk Assessment, Canadian Coast Guard Navigational Aid L.L. 1111.0 Patterson Island, Slate Islands, Lake Superior, Ontario (XCG, 2003);
- Site Specific Risk Assessment, Canadian Coast Guard Light Station L.L 1111, Slate Islands, Lake Superior, Ontario (DST, 2005);
- Ontario Parks website, 2016, Slate Islands;
- Aerial photographs, and Ontario Base Maps and other available maps;

- Ministry of Natural Resources and Forestry (MNRF; acronym used to refer to organization under previous names) Natural Heritage Information Center (NHIC) Biodiversity Explorer (2016);
- Federal species at risk public registry, Schedule 1, SARA (ECCC, 2016);
- SARO website, Thunder Bay region (MNRF, 2016b);
- DFO aquatic species at risk website (DFO, 2016);
- Biodiversity and Conservation Atlas of the Great Lakes Islands; and,
- The literature review provided historical and current information on SAR occurrences and regulatory context for the Site.

6.2.2 <u>Consultation/Communication with Regulatory Agencies</u>

DST contacted the following agencies to gather information related to the environmental program at the Site and the occurrence of Species at Risk and/or their habitats, and any related permitting requirements:

- Environment Canada and Climate Change (ECCC);
- MNRF;
- Ontario Parks Nipigon Region;
- Lake Superior National Conservation Area of Canada (LSNMCA);
- DFO;
- Township of Terrace Bay; and,
- Mr. Rodney Bryton, leaseholder, provided on-Site support during the Site visit between August 30 and 31, 2016 as well as anecdotal evidence related to potential SAR occurrence at the Site.

6.2.3 Field Investigation

A Site visit was completed to conduct a field investigation for SAR and/or their habitat was made on August 30, 2016, between 9:00 am and 4:00 pm and on August 31, 2016 between 9:00 am and 1:00 pm. Weather conditions during both survey days were mainly sunny with a mid-day temperature of approximately 15 °C. The Main Site (CS-1) and Lighthouse Area (CS-2) were surveyed on August 30, 2016, while the Old Dwelling (CS-3) area was surveyed on August 31, 2016. Photographs taken during the Site visit are provided in Appendix D.

Transect surveys traversing each of the three main developed areas within the Site (CS-1, CS-2, and CS-3) were conducted to inspect for the presence or evidence of SAR, in particular Boreal

Woodland Caribou (*Rangifer tarandus caribou*) tracks and scat. Transects included open portions of each area, and continued into wooded areas surrounding each area for a distance of approximately 100 m. An effort to make transects linear and to space them approximately 15 m apart was made. However, due to topography, this was not always possible. Figure 16 shows the transects that were completed. All areas surrounding the Site buildings (CS-1, CS-2, and CS-3) as well as areas scheduled for debris removal and soil remediation were inspected in this manner. Suitable habitat for Peregrine Falcon (*Falco peregrinus*), such as the cliffs around the Site, was inspected using 8 x 42 Bushnell binoculars. Cliffs that were inspected are marked on Figure 16.

6.3 <u>Results</u>

6.3.1 Literature Review and Secondary Sources

XCG (2003) contained no information on SAR that may be present at the Site. DST (2005), as detailed in Section 3, indicated SAR that may potentially be present on the Slate Islands include: Boreal Woodland Caribou (threatened provincially and federally); Eastern Wolf (*Canis lupus lycaon;* special concern federally, threatened provincially); Peregrine Falcon (special concern provincially and federally); and, the Monarch Butterfly (*Danaus plexippus;* special concern provincially and federally). Although these species have habitat preferences favoring biophysical conditions at the Site, none of these species were observed or identified during the Site investigation conducted in 2005.

Mammals that are known to occur on Patterson Island include Boreal Woodland Caribou (*Rangifer tarandus caribou*), Beaver (*Castor Canadensis*), Red Fox (*Vulpes vulpes*), Snowshoe Hare (*Lepus americanus*), Muskrat (*Ondatra zibethica*), and Shorttailed Weasels (*Mustela vison*; XCG 2003; Ontario Parks, 2016). At least two wolves reached the island during the winter of 2002-2003 (DST 2005), but no later records of wolves accessing the island have been found or were produced by the MNRF.

Results related to NHIC, federal SAR, SARO list and the DFO aquatic SAR list are provided in subsequent sections.

6.3.1.1 Natural Heritage Information Center

The Natural Heritage Information Center (NHIC) was queried for occurrences of rare and at risk species for the $1.0 \times 1.0 \text{ km}$ UTM grids containing the Site, as well as the adjacent grids. Four species were identified in the search. An additional two species and two plant communities whose

DST File No.: GV-TB--027105 occurrences were deemed sensitive data were identified only as Species and Plant Communities,

respectively, belonging to Great Lakes Arctic-Alpine Basic Open Bedrock Shoreline Type. These species are disjunct on the Slate Islands archipelago, having a Provincial Conservation Ranking of S3, meaning they are rare in Ontario, usually having 20-100 occurrences in the province. Although considered rare in this particular area, these species are not listed as SAR.

Results of the search of the NHIC are provided in Table 6.1 below. Note that the only SAR identified by the NHIC database was the Peregrine Falcon. This specie is listed as a species of Special Concern (SARA).

Table 6.1: Species Occurrences of Rare and At Risk Species for the Site Provided by theNHIC

Species/ Community Name	Scientific Name	Year of Record	Conservation Status	ESA Listing	SARA - Schedule 1 Listing
Drummonds Mountain Avens	Dryas drummondii	1980	S1	Not listed	Not listed
Rosy Pussytoes	Antennaria rosea	1949	S1S2	Not listed	Not listed
A lichen	Porpidia herteliana	1976	S1S3	Not listed	Not listed
Peregrine Falcon	Falco peregrinus	2007	S3B	SC	SC
Great Lakes Arctic-Alpine Basic Open Bedrock Shoreline Type – Species	Great Lakes Arctic- Alpine Basic Open Bedrock Shoreline Type	1937	S3	N/A	N/A
Great Lakes Arctic-Alpine Basic Open Bedrock Shoreline Type – Species	Great Lakes Arctic- Alpine Basic Open Bedrock Shoreline Type	1973	S3	N/A	N/A
Great Lakes Arctic-Alpine Basic Open Bedrock Shoreline Type – Plant Community	Great Lakes Arctic- Alpine Basic Open Bedrock Shoreline Type	1937	S3	N/A	N/A
Great Lakes Arctic-Alpine Basic Open Bedrock Shoreline Type – Plant Community	Great Lakes Arctic- Alpine Basic Open Bedrock Shoreline Type	1973	S3	N/A	N/A

Notes:

S1: Critically Imperiled—Critically imperiled in the nation or state/province because of extreme rarity (often 5 or fewer occurrences) or because of some factor(s) such as very steep declines making it especially vulnerable to extirpation from the state/province.

S2: Imperiled—Imperiled in the nation or state/province because of rarity due to very restricted range, very few populations (often 20 or fewer), steep declines, or other factors making it very vulnerable to extirpation from the nation or state/province.

S1S2: Species is ranked as both S1 (Critically Imperiled) and S2 (Imperiled), reflecting the uncertainty as to whether the species should be listed as S1 or S2.

S3: Vulnerable—Vulnerable in the nation or state/province due to a restricted range, relatively few populations (often 80 or fewer), recent and widespread declines, or other factors making it vulnerable to extirpation.

B: Breeding— Refers to the breeding population of the species in the nation or state/province.

Not listed: Indicated the species is not listed under the applicable Act.

SC: The species is listed as Special Concern.

N/A: No data are available regarding the listing of the species or community under the applicable Act.

6.3.1.2 SAR Species Potentially Present According to ECCC

Schedule 1 of SARA was consulted, however, only federal SAR identified by ECCC were considered for this project. The following is a list of SAR that may occur on the Slate Islands archipelago according to ECCC (Rob Dobos and Sheelagh Hsenaj of ECCC, 2016).

6.3.1.2.1 Mammals

1. Boreal Woodland Caribou (*Rangifer tarandus caribou*) – Threatened (Federal and Provincial)

The Boreal population of Woodland Caribou reside in the boreal forest all year. Only the Boreal population is listed as a SAR in Ontario, and in the SARA, Schedule 1. Prior to the 1990s, the caribou population on the Slate Islands had reached its highest population density, however, a food shortage in the 1990s caused the population to decline. According to ECCC the Slate islands are critical habitat for the caribou.

2. Northern Myotis (*Myotis septentrionalis*) – Endangered (Federal, Provincial)

The Northern Myotis is common throughout forested portions of southern Ontario, north to the north shore of Lake Superior, and has been found as far north as Moosonee. This species is typically associated with boreal forest types, roosting under loose bark or in the cavities of trees. Like the Little Brown Myotis, this species hibernates from October or November, through to March or April, selecting humid caves and abandoned mines as hibernacula (MNRF, 2011).

3. Little Brown Myotis (Myotis lucifugus) – Endangered (Federal, Provincial)

The Little Brown Myotis is common across southern Ontario and as far north as Moose Factory and Favourable Lake, Ontario. It forms summer colonies in attics, abandoned buildings and barns, where it raises its young. Only very rarely does this specie select trees as roost habitat (MNRF, 1984). It hibernates from October or November through March or April. Humid caves and abandoned mines that stay above freezing throughout the winter are generally selected as hibernacula (MNRF, 2011).

4. Tri-coloured Bat (Perimyotis subflavus) – Endangered (Federal, Provincial)

The Tri-coloured bat is found in a variety of forested habitats during the summer months. It forms day roosts and maternity colonies in older forest and occasionally in barns or other structures. Foraging occurs over water and along streams in the forest. Tri-colored Bats eat flying insects and spiders gleaned from webs. In the fall, they travel to a location where they swarm; it is generally near the cave or underground location where they will overwinter. Caves are generally selected as winter hibernacula (MNRF, 2011). This bat is found in southern Ontario and is known to occur as far north as Espanola near Sudbury. It should be noted that the known range for this species does not overlap the Site and it is unlikely to occur there.

6.3.1.2.2 Birds

1. Canada Warbler (*Cardinella canadensis*) – Threatened (Federal), Special Concern (Provincial)

The Canada Warbler is found most abundantly in wet, mixed deciduous-coniferous forest with a well-developed shrub layer. Dense shrub and understory vegetation help conceal Canada Warbler nests that are usually located on or near the ground on mossy logs or roots, along stream banks or on hummocks. Its primary breeding range is in the Boreal Shield, extending north into the Hudson Plains and south into the Mixedwood Plains.

2. Common Nighthawk (Chordeiles minor) – Threatened (Federal), Special Concern (Provincial)

Traditional Common Nighthawk habitat consists of open areas with little to no ground vegetation, such as logged or burned-over areas, forest clearings, rock barrens, peat bogs, lakeshores, and mine tailings.

3. Eastern Whip-poor-will *(Caprimulgus vociferous)* – Threatened (Federal, Provincial) Eastern Whip-poor-will is usually found in areas with a mix of open and forested areas, such as savannahs, open woodlands or openings in more mature, deciduous, coniferous and mixed forests. It forages in these open areas and uses forested areas for roosting (resting and sleeping) and nesting.

4. Olive Sided Flycatcher (*Contopus cooperi*) – Threatened (Federal), Special Concern (Provincial)

The Olive-sided flycatcher is most often found along natural forest edges and openings. It will use forests that have been logged or burned if there are ample tall snags and trees to use for foraging

perches. Its breeding habitat usually consists of coniferous or mixed forest adjacent to rivers or wetlands. In Ontario, Olive-sided flycatchers commonly nest in conifers such as White and Black spruce.

6.3.1.2.3 Plants

No plant SAR were identified by ECCC as being present or potentially present on the Slate Island archipelago.

6.3.1.3 SARO Species List

While MNRF did not indicate the potential presence of any SAR beyond woodland caribou, the SARO list for the region including the Slate Islands indicated the potential presence of Barn Swallow (*Hirundo rustica*). This species is listed as threatened in Ontario, but is not listed as a SAR under the SARA.

6.3.1.4 DFO Aquatic Species at Risk List

The DFO aquatic species at risk list was consulted. The following is a list of aquatic SAR that may occur around the Slate Islands archipelago:

1. Deepwater Sculpin - Great Lakes - Western St. Lawrence (*Myoxocephalus thompsonii*) The Deepwater Sculpin is a lake-dwelling sculpin of the family Cottidae. It is a bottom-dwelling fish that is found in cold (<7 degrees Celsius), well oxygenated, deep lakes. In the Great Lakes, adults usually live between 60 and 150 meters in depth. Spawning appears to occur during the winter.

2. Upper Great Lakes Kiyi (Coregonus kiyi kiyi)

The Kiyi is among the deepest water forms of cisco species found in Canada. It lives in a clear, cold-water environment at depths ranging from 10 meters to 305 meters, with peak abundances found at depths between 130 to 150 meters. Kiyi have been collected over lake bottoms of clay and mud substrates. Spawning generally occurs in the late fall at depths between 91 and 168 meters.

6.3.2 Consultation/Communication with Regulatory Agencies

As a result of agency communication and consultation, ECCC, DFO, LSNMCA, MNRF, Ontario Parks, and the Township of Terrace Bay provided expert advice that was considered and

incorporated in the SAR assessment. Specifically, ECCC indicated that Boreal Woodland Caribou, Northern Myotis (*Myotis septentrionalis*), Little Brown Myotis (*Myotis lucifugus*), Tricolored Bat (*Perimyotis subflavus*), Canada Warbler (*Cardinella canadensis*), Common Nighthawk (*Chordeiles minor*), Eastern Whip-poor Will (*Caprimulgus vociferous*), and Olive Sided Flycatcher (*Contopus cooperi*) had the potential to be present on or near the Site.

The contact information of each agency, and the associated response, are provided in Table 6.2. Where correspondence was provided, e-mail responses are included in Appendix D.

Agency	Person	Contact Information	Kesponse
Environment Canada and Climate Change (ECCC)	Rob Dobos; Sheelagh Hsenaj	Manager of Environmental Assessment Section of ECCC for Ontario Region; Environmental Assessment Officer, Environmental Protection Branch	Critical habitat for Boreal Woodland Caribou overlaps the Site. Additional SAR with ranges overlapping the Site include: Northern Myotis, Little Brown Myotis, Tri-colored Bat, Canada Warbler, Common Nighthawk, Eastern Whip-poor will, and Olive Sided Flycatcher.
Ministry of Natural Resources and Forestry (MNRF)	Kimberly McNaughton	Planner, Nipigon District	Timing and types of project activities might have impacts on caribou if during calving/nursery period (May 1 st – July 30 th). "Best Management Practices for Aggregate Activities and Boreal Woodland Caribou in Ontario" should be consulted. An ESA permit may be required depending on project activities. There may be arctic alpine disjunct communities associated with the Site.
Ontario Parks, Nipigon District	Allison Dennis	Park Superintendent, Nipigon Cluster	Boreal Woodland Caribou are present on Island. Provided an Ontario Parks map depicting caribou crossing routes on and between the Slate Islands. No identified crossing routes are present near the Site.
Lake Superior National Marine Conservation Area of Canada (LSNMCA)	Lisa Nyman	Resource Conservation Manager, Lake Superior National Marine Conservation Area	The Lake Superior National Marine Conservation Area boundary, when established, will be 400 m away from the high water mark of the Slate Islands. The project lands will not be subject to the Canada National Marine Conservation Areas Act, and, therefore, will not require authorization from Parks Canada. Slate Islands are identified as having a globally significant Boreal Woodland Caribou population with rare arctic-alpine plant habitat.
Fisheries and Oceans Canada (DFO)	Jennifer Sifton	Environmental Officer	Real Property and Fisheries Protection Group were contacted and did not have further information to provide for the project.
Township of Terrace Bay	Jon Hall	Chief Administrative Officer/Clerk	In the Official Plan and Zoning Bylaw for Terrace Bay Township the Site is designated as and environmental protection area. All of the Slate Islands are designated Caribou habitat.

 Table 6.2: Summary of Regulatory Agency Consultation and Response

Site leaseholder, Mr. Rodney Bryton, indicated that no Boreal Woodland Caribou were observed on or around the Site between his arrival on the Island in April 2016, and the time of the field investigation (Rodney Bryton, pers. comm.) coinciding with the calving and nursery periods.

6.3.3 Field Surveys for SAR

The results of the field survey are provided in the following subsections. Photographs collected during the Site visit are provided in Appendix D.

6.3.3.1 Habitat Features

6.3.3.1.1 Geology and Topography

The geological and topographical descriptions below are provided to qualify the habitat conditions in the areas of proposed work. Certain features, such as the presence of steep cliffs, may be unsuitable for some species, such as the woodland caribou, but favourable for others, such as the peregrine falcon.

CS-1 consists of cobbles with some gravel beach deposits, in places extending to the treeline. The developed grassed areas surrounding the structures of CS-1 are underlain by shallow soil, consisting of topsoil with some sand, cobbles and gravel. In the forested areas surrounding CS-1, soils were often found to have LFH horizons. Exposed bedrock was observed predominantly along the shoreline of the Site within the area of the intertidal zone.

At CS-2, the overburden was found to consist of discontinuous sandy gravel with some cobbles in low-lying patches on the rugged bedrock surface.

At CS-3, soils were found to be a medium to coarse sand with some gravel, extending to the beach at Lake Superior. In the surrounding forested areas of CS-3, soils were found to have LFH horizons overlying sand and gravel. The topography is moderately hilly, with a 20 m steep cliff climbing upwards from the south shore to the lighthouse on the summit. Surface water would drain into Lake Superior.

6.3.3.1.2 Surface Water, Wetlands and Floodplains

The Site is located on Sunday Point, Patterson Island and is surrounded to the north, south and west by Lake Superior. There are no wetlands, creeks or rivers nearby.

6.3.3.1.3 Vegetation

Terrestrial vegetation at the Site consists of typical Boreal forest species, including Spruce (*Picea* spp.), Eastern White Cedar (*Thuja occidentalis*) and White Birch (*Betula papyrifera*). Common understorey shrub species on-Site include Common Juniper (*Juniperus communis*), Ninebark

(*Physocarpus opulifolius*), Mountain Maple (*Acer spicatum*) and Red-Osier Dogwood (*Comus stolonifera*). Other understorey species commonly include Twinflower (*Linnaea borealis*), Peat Moss (*Sphagnum spp.*), Schreber's Moss (*Pleurozium schreberi*) and Step Moss (*Hylocomium splendens*). The littoral (nearshore) area typically consists of horizontal outcrops of basalt rock, with no visible aquatic vegetation.

6.3.3.2 SAR Field Survey Results

At site CS-3, suspected evidence of caribou winter foraging of Old Man's Beard (*Usnea* spp.) and other similar lichen species from tree branches was observed, since, at lower branch levels, fewer lichens were found. Also, a weathered caribou antler was observed approximately 250 m from CS-3, outside of the areas surveyed for SAR. No other evidence of SAR was observed at CS-3.

With the exception of Monarch butterflies observed at CS-1, no evidence of any SAR, and caribou in particular, was observed at either CS-1 or CS-2.

The Site consists of steep cliffs next to a large body of water which suggests it would be suitable habitat for Peregrine Falcon. However, no Peregrine Falcons or nests were observed during the field investigation, and the last observations recorded in the area on the NHIC website was in 2007. It should be noted that the investigation was conducted after the time when nesting would likely occur.

As noted above, several Monarch butterflies were observed at CS-1. However, no Common Milkweed (*Asclepias syriaca*) plants were identified on Site. Monarchs in Canada exist primarily in areas with milkweed and wildflowers, such as Goldenrods (*Solidago spp.*), Asters (*Aster spp.*), and Purple Loosestrife (*Lythrum salicaria*). Females lay their eggs on Common Milkweed which is the primary food source for the caterpillars. A lack of Common Milkweed suggests the Site is not a significant breeding habitat for Monarchs Butterflies.

No evidence of Eastern Wolf was observed during the SAR surveys.

The Site visit and field investigation were completed beyond the timing windows when point counts for breeding birds and, where available, species-specific surveys are appropriate. As such, surveys for Canada Warbler, Common Nighthawk, Eastern Whip-poor Will, Olive Sided Flycatcher, Barn Swallow, and bats were not conducted.

6.4 Discussion of Results Related to Caribou Use of the Site

Three Category 1 habitats (highly sensitive habitat areas where the species is anticipated to have the lowest tolerance to alteration) for Boreal Woodland Caribou are recognized by the MNRF (MNRF, 2016a): Nursery Areas, Winter Use Areas, and Travel Corridors.

Although Boreal Woodland Caribou are present on Patterson Island, the steep cliffs near CS-1 and CS-2 do not provide ideal Nursery Area conditions for caribou. Nursery Areas are typically comprised of lakes and wetland complexes dominated by fens and bogs. These areas are also typically relatively gentle in their topography. Furthermore, the Site is occupied between April and October, meaning that a level of background disturbance exists at the Site. This disturbance takes place during typical calving/nursery times, further reducing the likelihood the Site functions as a Nursery Area.

Travel Corridors are used by Boreal Woodland Caribou to migrate between Nursery Areas and Winter Use Areas. As the Site is located on a peninsula, it is unlikely that it is used specifically as only a Travel Corridor. In addition, Ontario Parks provided a map attached in Appendix D Figure 17 outlining Boreal Woodland Caribou Travel Corridors on the Slate Islands and none were identified within the vicinity of the Site.

Habitat features that contribute to an area's function as a Winter Use Area include presence of arboreal and terrestrial lichens, and areas with lower than average snow depths that facilitate caribou movement. For example, open wind-swept areas or areas with a greater density of forest cover can result in less snow cover and may be favourable for Boreal Woodland Caribou. In addition, areas where Boreal Woodland Caribou can aggregate in groups and seek refuge from predators are often selected. While lichens are present and openings associated with project buildings may contribute to decreased winter snow depths favouring the Site's function as a Winter Use Area, snow depths at the Site are unknown and it cannot be confirmed to what degree, if any, the Site serves as a Winter Use Area. It is unlikely that construction activities would occur in the winter, and removal of debris and abatement of exterior lead paint would benefit any caribou using the Site as a Winter Use Area.

While the Site may provide some features consistent with sensitive caribou habitat, in particular, Winter Use Areas, it should be clearly noted that proposed lead abatement and debris removal activities are not anticipated to result in meaningful impacts to caribou habitat. Although caribou

tend to have a low tolerance for disturbance in Category 1 habitat, the scale of disturbance, in terms of duration, spatial extent and intensity associated with the planned remedial activities is unlikely to significantly impact caribou use of the Site.

6.5 **Proposed Mitigation Measures**

Species at Risk are protected by the federal SARA, which affords individual and habitat protection to at-risk species listed as 'threatened' or 'endangered' under Schedule 1 of the Act. Species listed as 'special concern' do not receive individual or habitat protection under the Act.

Potential evidence of Boreal Woodland Caribou winter foraging was observed at CS-3, indicating the Site may serve as a Winter Use Area, and ECCC has indicated that Critical Habitat for Boreal Woodland Caribou overlaps the Site, although did not indicate the function of the habitat. During a conference call on November 9, 2016 between DST and ECCC staff, ECCC recommended a 500 metre buffer zone be established between project activities and sensitive caribou areas, including Nursery Areas, Winter Use Areas, and Travel Corridors, to mitigate potential impacts to Boreal Woodland Caribou.

While it may not be possible to observe the 500 m buffer proposed by ECCC, minimizing the duration and spatial extent of remedial activities will contribute significantly to minimizing potential disturbance to Boreal Woodland Caribou at and in the vicinity of the Site. Given the health and safety issues associated with Site access (crossing of Lake Superior), late-spring and summer are proposed as being suitable times to access the Site and complete remedial activities. This is outside of the period during which the Site would function as a Winter Use Area and outside of the MNRF's restriction on working within a Winter Use Area (between December 1st and March 31st [MNRF, 2015]). As indicated above, the Site is not likely used as a Nursery Area or a Travel Corridor in the snow-free months. Furthermore, occupation of the Site by custodians, including the use of fossil-fuel fired generators, between April and October results in a level of background disturbance during the time when Site access is favourable. If remedial activities are planned during this period of background disturbance, and are kept as short in duration as possible, this will further reduce the likelihood of causing significant disturbance to caribou at the Site.

Designated substance abatement activities at project buildings (lead removal) are not expected to cause any significant alterations to caribou habitat at the Site. Debris removal from historic dump sites may result in very minimal impacts to caribou habitat at the Site, for example, if

patches of lichen are disturbed, although these are likely to be very limited in spatial and temporal extent and are not likely to result in long-term, negative alterations to caribou habitat. Ultimately, debris removal should contribute to improvement of the quality of caribou habitat at the Site by returning portions of the Site to a pre-impacted state.

While the above measures will likely mitigate potential impacts to caribou at the Site, should it be deemed that impacts to Boreal Woodland Caribou are unavoidable, *Endangered Species Act* and/or SARA permits may be required, according to ECCC. At this point it is not anticipated that SARA permits will be required.

No evidence of Eastern Wolf or Peregrine Falcon was noted on Site. Both species are listed as 'special concern' under SARA and as a result do not receive individual or habitat protection under this Act. Furthermore, due to the nature of the project it is not anticipated that project activities would negatively impact these species should they be present.

Monarch butterflies were noted on Site. However, it was deemed there was a lack of significant habitat and it is not anticipated that project activities would significantly impact this species. In addition, Monarchs are currently listed as 'special concern' under the SARA and do not receive individual or habitat protection under this Act.

Canada Warbler, Common Nighthawk, Eastern Whip-poor will and Olive Sided Flycatcher were identified by ECCC as having the potential to be present on or near the Site. Barn Swallow were indicated by SARO to potentially occur in the area. Since the Site visit and field investigation were completed beyond the timing windows when point counts for breeding birds and species-specific surveys are appropriate, surveys for these species were not conducted, though no evidence of these species was noted during the Site visit. To mitigate potential impacts to these species, nesting sweeps should be conducted by a qualified avian biologist if/where vegetation clearing is required and buildings should be checked for Barn Swallow nests prior to beginning work. Additionally, to the extent possible, movement of materials, equipment and personnel across the Site to the extent practical. Workers should be trained to identify the above-mentioned bird SARs and if any are encountered during the course of work, work should cease immediately and an experienced avian biologist must be consulted for the way forward. The biologist must develop a species-appropriate buffer zone, as applicable, beyond which work may continue and provide

further information on noise levels which may not be exceeded within an appropriate distance to the nest, taking into account the species of bird and the area surrounding the nest. The buffer zone should also be identified using fencing or coloured tape such that it is plainly visible. It must be maintained until the chicks have naturally and permanently left the areas near the nest or until work is completed. If a buffer zone cannot be established, the specie of breeding bird should be identified and ECCC should be contacted to determine how best to proceed. Due to the nature of the project, however, it is not anticipated that project activities would negatively impact these species where appropriate mitigation measures are adhered to.

Three species of bats (Northern Myotis, Little Brown Myotis, and Tri-colored Bat) were identified by ECCC as having the potential to occur at the Site. Building removal/demolition is not proposed as part of the designated substance removal portion of the remedial program, though the Client has requested that the replacement of asbestos-containing shingles be completed. In this way, bat roosting habitat in buildings is unlikely to be impacted. Moreover, according to the MNRF document, *Bats and Bat Habitats: Guidelines for Wind Power Projects* (2011), roosts within human structures are not considered to be significant wildlife habitat. If/where debris removal from historic dumps will include tree removal, or where tree removal may otherwise occur and have the potential to impact bat maternal roost colonies, surveys for bat maternal snags according to MNRF (2011) should be undertaken by a qualified biologist. If no suitable maternal snags are identified, work may proceed. If suitable maternal snags are identified, these should be retained and debris removal in their vicinity should be done by hand where practical. Suitable bat hibernacula must have air temperatures slightly above zero and relative humidity levels above 90% and are typically found in humid caves or abandoned mines, and it is, therefore, highly unlikely that the Site buildings serve as a bat hibernaculum (MNRF, 2000).

Two aquatic SAR were identified as having the potential to occur around the Slate Islands. These were the Upper Great Lakes Kiyi and the Deep Water Sculpin (Great Lakes – Western St. Lawrence population). Both fish are listed as 'special concern' on Schedule 1 of SARA and therefore, do not receive individual or habitat protection under SARA. However, general prohibitions against causing 'serious harm' to fish under the Fisheries Act (R.S.C., 1985, c. F-14) still apply to these species. The following measures, if properly applied, will mitigate serious harm to these species: no work should be undertaken below the water line; a sediment and erosion control plan shall be designed and implemented, with appropriate control measures put in place on-site; loading/unloading should not impact the banks and/or cause additional erosion into the

water; designated routes for equipment travel are to be used, preferably along existing pathways; staging areas/re-fueling are to take place well away from waterbodies in designated areas; a spill response plan should be in place and a spill kit available; workers should be trained in the use of the spill kit; equipment should arrive clean and free of fluid leaks, and be maintained as such.

Contractors and workers should be familiar with SAR that may occur at the Site. If workers identify any SAR at the Site, work should cease and the project manager and a qualified biologist must be consulted for how to proceed.

6.6 Species at Risk Survey Update Conclusions and Recommendations

No SAR listed as endangered or threatened under the SARA were identified on Site during the Site visit and field investigation. Potential evidence of winter caribou foraging was observed at site CS-3 and the Site in general provides attributes supporting its function as a Winter Use Area for Boreal Woodland Caribou, although this function is not confirmed. Mitigation measures related to avoidance of winter work periods, minimization of the intensity, spatial and temporal extent of on-Site activities, as well as restricting remediation activities to disturbed areas to the extent practical will likely prevent any meaningful impacts to Boreal Woodland Caribou and/or their habitat at and in the vicinity of the Site.

Four bird SAR (Canada Warbler, Common Nighthawk, Eastern Whip-poor will and Olive Sided Flycatcher) were identified by ECCC as having the potential to be present on or near the Site. SARO indicated the potential presence of Barn Swallow. Surveys for these five species were not conducted as the Site visit was conducted beyond the time when appropriate surveys could have been conducted. However, by observing the following mitigation measures, no impacts to these bird SAR are anticipated: nesting sweeps by a qualified avian biologist in potentially impacted areas; implementation of buffer zones if/where bird SAR are encountered; restrictions of remediation activities to disturbed areas of ground to the extent practical; and, minimization of spatial and temporal extent of work.

Three species of bats (Northern Myotis, Little Brown Myotis, and Tri-colored Bat) were identified by ECCC as having the potential to occur at the Site. Building demolition is not proposed as part of the designated substance removal portion of the remedial program, though the replacement of roofing materials is to be completed. Therefore, bat roosting habitat in buildings is unlikely to be impacted. If/where debris removal from historic dumps will include tree removal, or where tree

removal may otherwise occur and have the potential to impact bat maternal roost colonies, surveys for bat maternity snags according to the Ontario Ministry of Natural Resources and Forestry (MNRF, 2011) should be undertaken by a qualified biologist. If no suitable maternal snags are identified, work may proceed. If suitable maternal snags are identified, these should be retained and debris removal in their vicinity should be done by hand where practical. Where these mitigation measures are observed, no impacts to bat SAR are anticipated as a result of the proposed work.

Two aquatic SAR were identified as having the potential to occur around the Slate Islands. Both species, the Upper Great Lakes Kiyi and Deepwater Sculpin (Great Lakes – Western St. Lawrence population) are listed as 'special concern' under Schedule 1 of the SARA. Therefore, neither receives individual or habitat protection. However, prohibitions under the Fisheries Act prohibit causing 'serious harm' to these species. Through the application of appropriate mitigation measures, no impacts to either of these species is anticipated.

7 ENVIRONMENTAL EFFECTS EVALUATION

DST completed an Environmental Effects Evaluation (EEE) in accordance with Section 67 of the *Canadian Environmental Assessment Act* 2012 (CEAA 2012) to determine what, if any, environmental effects the proposed project might have on the environment. The EEE report, based on a template provided by PWGSC is presented in Appendix E.

As part of the EEE, DST reviewed available information regarding the proposed project, reviewed Site information, completed a Site visit, consulted with various directly affected agencies and conducted research to determine potential effects and provide mitigation measures that would help to avoid causing any negative impacts to the environment.

Federal and provincial authorities likely to have an interest in the project were contacted by DST on behalf of PWGSC, during the course of the environmental effects evaluation. A project description was distributed to the following authorities in order to garner expert advice. These authorities included:

- ECCC;
- DFO;
- LSNMCA;
- MNRF;
- Township of Terrace Bay;
- Ontario Parks;
- Indigenous and Northern Affairs Canada (INAC, no response to date); and
- Pic River First Nation (no response to date).

As a result of this consultation, ECCC, DFO, LSNMCA, MNRF, and the Township of Terrace Bay provided expert advice that was considered and incorporated in the environmental effects evaluation. Records of consultation are provided in the EEE report in Appendix E.

The Site visit portion of the EEE work was completed in conjunction with other Site work on August 30th and 31st, 2016. Photographs taken during the Site visit are provided in the EEE report in Appendix E.

To mitigate any potential environmental impacts the project may incur, consideration will be taken relating to avoidance of winter work periods, nesting sweeps by a qualified avian biologist, implementation of buffer zones if/where bird SAR are encountered and minimization of the intensity, spatial and temporal extent of on-Site activities, as well as restricting remediation activities to disturbed areas of ground to the extent practical. These mitigation measures were largely proposed in the previous section to mitigate potential effects on SARs.

It is reasonable to conclude that with appropriate mitigation measures included in the work specifications and as summarized above and detailed in Section C, Tables 2.1-2.7 of the EEE (Appendix E), any potential environmental effects will be of short duration and the zone of influence, if any, will be confined to the immediate vicinity of the Site. Further, the removal of the lead impacted materials and debris piles currently at the Site are expected to have a positive effect on any environmental receptors present at the Site or nearby areas.

8 STRUCTURAL ASSESSMENT

DST retained JML Engineering (JML) of Thunder Bay, Ontario, to conduct a Level II building inspection in order to evaluate the current conditions of the buildings on the Slate Island Coast Guard Site with commentary on the need for a repair/replacement program and associated costs. The JML report is provided in Appendix F of this report.

JML provided recommendations to ensure that the structures and their systems will reach their maximum life expectancy, and maintain the required health and safety levels. JML reviewed all available historical data and completed a Site inspection of all buildings on September 1, 2016. The table below summarizes the JML findings.

Table 8.1: Structural Assessment Findings

No.	Name	Construction Date	Condition	Recommended Expenditure (1-5 years)
1	Lighthouse	1903	Poor	\$ 66,000
2	Solar Building	2000's	Good	\$ 0
3	Upper Helicopter Pad	Unknown	Good	\$ 0
4	Main Dwelling	1959	Fair	\$ 26,500
5	Duplex Dwelling	1965	Fair	\$ 16,500
6	Old Fog Alarm/Generator Building	Early 1900's	Poor	\$ 79,500
7	New Fog Alarm/Electronics Building	1975	Good	\$4,500
8	New Diesel Generator Building	1975	Good	\$5,500
9	Former Oil House	1920's	Good	\$ 2, 000
10	Furnace Oil Tank Pad	Unknown	Good	\$ 0
11	Diesel Tank Pad	1958	Good	\$ 0
12	Diesel Tank Dyke	Unknown	Good	\$ 0
13	Transformer	Unknown	Fair	\$ 5, 000
14	Lower Helicopter Pad	Unknown	Good	\$ 0
15	Lighthouse Dock	1960's	Fair	\$ 5,000
16	Log Retaining Wall	1990's	Poor	\$ 20,000
17	Sidewalks	Unknown	Good	\$ 0
18	Old Dwelling	1894	Fair	\$ 71,500

No.	Name	Construction Date	Condition	Recommended Expenditure (1-5 years)
19	Winch Pad	Unknown	Good	\$ 2,000
20	Sunday Harbour Dock	1981	Good	\$ 2,000

The findings of the report recommended \$306,000.00 in short term (1-5 years) expenditures and \$287,000.00 in long term (6-25 years) expenditures. Additional details can be found in the JML Structural attached as Appendix F of this report.

It was indicated that each structure included in the report can withstand the recommended abatement activities and there are no health and safety concerns with contractors accessing the structures.

9 MARINE ASSESSMENT

Public Works and Government Services Canada, on behalf of DFO, requested DST to conduct an environmental program on the Slate Islands Coast Guard Site (GC 1111), Lake Superior. The program was intended to identify the needs for any structural repairs or soil remediation at the site.

DST retained Riggs Engineering Ltd. (Riggs) to conduct a marine assessment as a component of its overall program. The objective of the marine assessment is to evaluate access options for the scope of the remedial works required at the Slate Islands Coast Guard Site.

PWGSC's requirements for the assessment are as follows:

- Conduct a review of available Canadian Hydrographic Survey (CHS) charts for the area;
- Evaluate methods of access to Patterson Island considering no current infrastructure (dock or wharf) is available, and provide a recommendation for the most feasible and cost effective option;
- Determine type(s) of vessel that could meet the needs of the project (excavation and disposal of contaminated soil and possibly building materials) including access to and from the Site; and,
- A report detailing observations made on site, including recommendations and cost estimates for site access options during remediation.

Since survey equipment was necessary for the marine assessment DST requested that Riggs carry out a limited topographical survey of the Site.

9.1.1 Marine Servicing the Main Site

The Main Site will require marine servicing to mobilize/demobilize equipment and supplies to the Site and to transfer the containerized waste off-Site.

The Main Site is fully exposed to open Lake Superior and subject to wind and waves from all directions except north and northwest. Safe access to the Main Site landing will be limited to days when winds and waves are light. Locals indicate that the best season providing calm conditions is in late spring (late-May through June).

Landing at the Main Site dock can only be achieved with narrow beam, shallow draft, and maneuverable vessels. The flat-bottomed barges carried by Coast Guard supply vessels to supply the Site while it was manned are an example of vessel types needed to service remediation activities from the Main Site dock. The capacity of this size of vessel will be less than 12 tonnes. Mobilizing and demobilizing mobile equipment and removing containerized waste from the Site to a larger support vessel will involve 30 trips or more for a vessel of this size. Additional trips will be required should soil remediation activities be added to the work scope.

It is assumed that waste from the Lighthouse Area will be consolidated and containerized along with Main Site waste for removal off-Site. Transportation of equipment, materials and waste to and from the Lighthouse Area will likely be via helicopter.

The Main Site cannot be accessed by mobile equipment overland from the Old Dwelling Site.

9.1.2 Marine Servicing the Old Dwelling Site

The Old Dwelling Site is not as exposed to open lake conditions as is the Main Site location. The Sunday Harbour dock is accessible under wind and wave conditions from all directions except those from the northwest. Safe access to the dock during northwest wind and waves will be limited to days when winds are light. The approach is deep and the sand beach can provide alternate landing. There are no vessel restrictions at Sunday Harbour.

9.1.3 Mainland Ports

The closest mainland landing area to the Slate Island light station is Terrace Bay, 21 km to the north. The marine facilities there are limited and suited for pleasure craft and light vessels only. The adjacent beach is protected and could provide a landing for front loading, landing-craft type vessels. The landing has road access through Town to Highway 17.

Other small mainland ports include Rossport and Redrock. These are small scale facilities serving pleasure craft and light commercial fishing vessels, only.

The closest industrial sized mainland port is at Peninsula Harbour at Marathon, 47 km east of the light station. This deep water harbour that served the Marathon paper mill is currently closed but contractors can negotiate its use with the owner, Tembec Inc.

Other large mainland ports include Thunder Bay, 167 km west of the light station and Sault Ste. Marie, 315 km east of the Site. These are active industrial-commercial ports having a wide range of marine services that could provide suitable vessels and manpower and other marine support to service the proposed work.

It was advised that bidding contractors inspect the potential marine access areas at the Site including soundings to determine landing locations and approaches, the types and combinations of vessels to use, and which mainland port to utilize in order to set a workable marine servicing plan and cost.

10 SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS

A summary of the conclusions and recommendations from the various disciplines involved with this project and how they impact the overall objectives of the project in terms of completing the lead (and asbestos) abatement and debris removal are discussed in the following subsections.

10.1 Designated Substance and Hazardous Materials Survey

DST was retained by PWGSC to conduct a DSHMS of the buildings, surrounding structures and grounds at the Slate Island Coast Guard Site identified with the Property Number 56027.

The DSHMS scope of work included an assessment for the presence of the 11 Designated Substances, as identified in the *Occupational Health and Safety Act*, as well as PCBs, halocarbons, mould, and other hazardous materials.

The following recommendations apply to only designated substances and hazardous materials observed in the buildings and surrounding areas, as applicable. The handling and use of these materials should be undertaken by those with proper training (e.g. Workplace Hazardous Materials Information System, etc.) and adhere to any applicable guidelines and/or regulations.

10.1.1 Asbestos

The disturbance of ACMs on construction and demolition projects in the province of Ontario is governed by *O. Reg. 278/05, Asbestos on Construction Projects and in Buildings and* Repair Operations enabled under the *Occupational Health and Safety Act R.S.O. 1990, Chapter 1.* This regulation classifies all asbestos disturbances as Low Risk (Type 1), Moderate Risk (Type 2), or High Risk (Type 3), each of which has defined precautionary measures. All asbestos materials are subject to specific handling and disposal precautions, and must be removed prior to demolition. The MoL must be notified of any project involving removal of more than a minor amount (e.g. typically 1 square metre) of friable asbestos material.

The transport and disposal of asbestos waste is governed by R.R.O. *Regulation 347 – General – Waste Management* under the *Environmental Protection Act R.S.O. Ch. E. 19* (Reg. 347), as amended. This regulation requires that asbestos waste be sealed in appropriately labelled, double containers resistant to puncture and tears. The waste must be disposed of at a licensed waste disposal site.

The removal of less than one square metre of drywall in which joint-filling compounds are asbestos-containing can be performed following Type 1 asbestos precautionary measures, as applicable as per O. Reg. 278/05, as amended. The removal of one square metre or more of drywall in which joint-filling compounds are asbestos-containing must be performed following Type 2 asbestos removal procedures, as a minimum.

Based on the current scope of work as discussed with the PWGSC, Type 2 asbestos abatement will be completed on all interior drywall with asbestos-containing joint compound where lead containing paint is present as outlined in Table 4 in Appendix B. Lead precautionary measures should also be considered on any removal of drywall with lead-containing paint.

The breaking, cutting, drilling, abrading, grinding, sanding or vibrating of non-friable ACMs such as vinyl floor tiles, adhesives, mortars, mastics, Transite, pipe joint gaskets and caulking products can be conducted using Type 1 asbestos precautionary measures, provided the material is wetted to control the spread of dust or fibres, and the work is done only be means of non-powered handheld tools. If these conditions cannot be met, then more stringent (Type 2 or Type 3) work procedures are required (e.g. power tool removal).

Based on the current project scope as discussed with the PWGSC, asbestos abatement following a Type 1 will be completed on the following material/structure:

- Main dwelling, exteriors basement windows caulking and stored window where asbestos caulking was present; and,
- Old fog alarm building, roofing shingles and shingles debris.

Where painted window caulking is present on the main dwelling exterior basement, lead precautionary measures should also be considered.

The time weight average exposure limit (TWAEL) for airborne asbestos is prescribed by Ontario Regulation 490/09 *Designated Substances* under the *Occupational Health and Safety Act, R.S.O. 1990, c. O.1* (O. Reg. 490/09), as amended. Work procedures and personal protective equipment must be used to ensure that workers are not exposed to airborne asbestos levels that exceed this TWAEL.

Should any previously unidentified suspect ACMs be encountered as part of planned work, these materials are to be treated as ACMs and handled accordingly, unless sampling proves otherwise.

Materials that have not been analyzed, but are visibly similar to other materials identified as asbestos-containing, must be considered asbestos-containing unless proven otherwise by laboratory analysis.

The following recommendations apply to ACMs and assumed ACMs:

- Materials found in poor condition should be abated using appropriate precautionary measures;
- Materials must be maintained in good condition;
- Appropriate work procedures and precautionary measures must be used, as outlined in O. Reg. 278/05, as amended, when performing work that may disturb ACMs or suspected ACMs, including prior to building demolition;
- Disturbance and/or removal of ACMs must be appropriately recorded as part of the building's Asbestos Management Plan;
- If ACMs or suspected ACMs become damaged and worker exposure to the material is likely to occur, the damaged material must be repaired or removed following work procedures outlined in O. Reg. 278/05, as amended; and
- Disposal of asbestos waste is controlled by Reg. 347, as amended. This regulation requires that asbestos waste be sealed in double containers resistant to puncture and tears, and appropriately labelled. The waste must be disposed of at a licensed waste disposal site. Proper notification must be issued to the site representative prior to transportation of waste. The transport of the waste to the disposal site is controlled by the federal *Transportation of Dangerous Goods Act*, 1992 (TDGA) and Reg. 347.

10.1.2 <u>Lead</u>

The Occupational Health and Safety Branch of the Ontario Ministry of Labour have published a document entitled, *Guideline: Lead on Construction Projects*. This document classifies all lead disturbances as Type 1, Type 2a, Type 2b, Type 3a or Type 3b work, and assigns different levels of respiratory protection and work procedures for each classification.

Paint and surface coatings on various building finishes containing elevated concentrations of lead can pose a health risk to humans if ingested or inhaled. Such lead paints are also a risk to the environment with the potential to contaminate soil, groundwater, sediments and surface water. Paints with elevated lead content can also pose a health risk to workers while completing demolition activities.

The TWAEL for airborne lead is prescribed by O. Reg. 490/09, as amended. Work procedures and personal protective equipment must be used to ensure that workers are not exposed to airborne lead levels that exceed this TWAEL.

DST recommends that any future disturbance should avoid operations that generate high levels of dust (e.g. sanding, grinding) and that should these operations be required, appropriate precautionary measures be implemented for worker exposure.

The disposal of construction waste containing lead is governed by Reg. 347, as amended. The transportation of the waste to the disposal site is controlled by the federal TDGA and applicable provincial regulations and licenses. Materials with elevated concentrations of lead should be subject to analytical testing using TCLP analytical techniques to determine its waste class in accordance with Reg. 347, as amended.

The following recommendations apply to paint and surface coatings on building finishes found to contain elevated concentrations of lead:

- Paint on the exterior of buildings should be abated using appropriate specialized paint strippers (e.g. alkaline caustic or soy gel) and power tools equipped with HEPA filtered vacuums;
- Paint on interior surfaces should be abated using appropriate Type 1 procedures as outlined in the MoL *Guideline: Lead on Construction Projects*;
- Paint debris surrounding the perimeter of the buildings and structures should be remediated scrapping top layer of soil to a depth of up to 5 cm where feasible. Where debris is located on bedrock, sidewalks or cobblestone, debris should be removed using HEPA filtered vacuums. Debris found in the interior of buildings should be remediated following MoL precautionary measures, outlined in the document referenced above; and,
- Based on the current scope of remediation as discussed with PWGSC, the remediation of lead paint will be completed on all identified lead-base interior surfaces, all exterior paint and all paint debris as noted in Table 4 of Appendix B. It should also be noted that where lead paint remediation is to be completed on asbestos containing substrate material, the most stringent guidelines shall be applied.

If not abated, all interior paints containing elevated levels of leads, should be maintained in good condition. Prior to, or during demolition or renovation work, the following additional procedures should be performed with respect to other anticipated lead-containing materials:

• Copper piping solder can be cut a small distance (e.g. 50 mm) from the joints to avoid direct disturbance of the lead material; and,

Cast iron drain pipes can be cut away from the joints to avoid direct disturbance of the lead caulking in the joints.

10.2 Environmental Soil Investigation

DST has completed a soil investigation and additional delineation at the Slate Island Light Station on Patterson Island, near Terrace Bay, Ontario. The soil investigation of three previously identified contaminated areas included field screening of soil samples and laboratory analyses to identify and delineate contaminated areas at the Site. In addition, the investigation involved the identification and quantification of concentrated debris piles located at and around the three developed areas of the Site.

Soil logged during the surface soil sampling activities indicated that the soil along the shoreline at CS-1 consists of cobbles with some gravel beach deposits, in places extending to the treeline. The developed grassed areas surrounding the dwellings at CS-1 are underlain by shallow soil, consisting of topsoil with some sand, cobbles and gravel. In the forested areas surrounding CS-1, soils were often found to have organic litter, fibric and humus (LFH) horizons. Underlying the LFH horizons, mineral soils were found to have a coarse sandy loam texture with some gravel. Exposed bedrock was observed predominantly along the shoreline of the site within the area of the littoral zone.

At CS-2, the overburden was found to consist of discontinuous sandy gravel with some cobbles in low-lying patches on the rugged bedrock surface.

At CS-3, soils were found to be a medium to coarse sand with some gravel, extending to the beach at Lake Superior. In the surrounding forested areas of CS-3, soils were found to have LFH horizons overlying sand and gravel.

A total of nine contaminated areas, or areas with discarded debris piles, were identified at the Site.

10.2.1 Contaminated Soil

The areas of contaminated soil, separated by hazardous and non-hazardous conditions are summarized as follows:

- CS-1 (Main Site Area): Three areas of contaminated soil covering an area of approximately 2,150 m² and an estimated volume of 800 in-situ m³ of non-hazardous contaminated soil and 50 in-situ m³ of solid hazardous waste as defined by Reg. 347;
- CS-2 (Lighthouse Area): contaminated soil in this area was delineated in all directions on the summit with an approximate area of 600 m² and an estimated volume of 70 in-situ m³ of non-hazardous contaminated soil and 30 in-situ m³ of solid hazardous waste as defined by Reg. 347, and;
- CS-3 (Old Dwelling Area): an area of approximately 920 m² and estimated volume of 550 in-situ m³ of non-hazardous contaminated soil.

10.2.2 Debris Areas

The areas where historical debris dumping was observed in concentrated conditions are as follows:

- CS-1 (Main Site Area): Two debris piles (East and West Dumps) with an area of 300 m² and estimated debris volume of 220 in-situ m³.
- CS-2 (Lighthouse Area): Approximate area of 80 m² and estimated volume of 25 in-situ m³ and;
- CS-3 (Old Dwelling Area): three debris dumps with a collective area of 75 m² and an estimated volume of 23 in-situ m³ of debris.

In addition, small amounts of scattered debris were observed at the base of the lighthouse cliff towards the south and east. The debris was not concentrated into any one area, rather appeared to have been historically thrown from the top of the cliff.

It is recommended that all identified debris be removed from the Site as per the SOW. This debris should be excavated/placed into suitable bulk bags with suitable liners and carry straps. The debris should be sorted as indicated in Section 4 to separate, and appropriately containerize, the debris for disposal. Efforts should be made to decrease the volume of the debris prior to containerization. The containerized debris should be transported from the Site to the appropriately licensed waste receiver for disposal. During, and upon completion of debris

removal, inspections are recommended to be completed by an environmental consultant to confirm waste removal and to collect confirmatory samples, as required.

Also, it is recommended that a new human health and ecological site specific risk assessment be completed for the Site. After the risk assessment and confirmatory sampling recommended above, the areas and volumes of contaminated soil can be refined, based on the risk management/remediation recommendations within the risk assessment.

10.3 Species At Risk Survey Update

It was determined by the Client that an updated SAR survey report was required to develop a comprehensive set of mitigation measures to be implemented during the construction phase of this project. These mitigation measures have been developed to minimize impacts to potential SARs at the Site during the abatement and debris removal activities planned.

No SAR listed as endangered or threatened under the SARA were identified on Site during the Site visit and field investigation. Potential evidence of winter caribou foraging was observed at CS-3 and the Site in general provides attributes supporting its function as a Winter Use Area for Boreal Woodland Caribou, although this function is not confirmed. Mitigation measures related to avoidance of winter work periods, minimization of the intensity, spatial and temporal extent of on-Site activities, as well as restricting remediation activities to disturbed areas to the extent practical will likely prevent any meaningful impacts to Boreal Woodland Caribou and/or their habitat at and in the vicinity of the Site.

Four bird SAR (Canada Warbler, Common Nighthawk, Eastern Whip-poor will and Olive Sided Flycatcher) were identified by ECCC as having the potential to be present on or near the Site. SARO indicated the potential presence of Barn Swallow. Surveys for these five species were not conducted as the Site visit was conducted beyond the time when appropriate surveys could have been conducted. However, by observing the following mitigation measures, no impacts to these bird SAR are anticipated: nesting sweeps by a qualified avian biologist in potentially impacted areas; implementation of buffer zones if/where bird SARs are encountered; restrictions of remediation activities to disturbed areas of ground to the extent practical; and, minimization of spatial and temporal extent of work.

Three species of bats (Northern Myotis, Little Brown Myotis, and Tri-colored Bat) were identified by ECCC as having the potential to occur at the Site. Building demolition is not proposed as part of the designated substance removal portion of the remedial program, though the replacement of roofing materials is to be completed. Therefore, bat roosting habitat in buildings is unlikely to be impacted. If/where debris removal from historic dumps will include tree removal, or where tree removal may otherwise occur and have the potential to impact bat maternal roost colonies, surveys for bat maternity snags according to the Ontario Ministry of Natural Resources and Forestry (MNRF, 2011) should be undertaken by a qualified biologist. If no suitable maternal snags are identified, work may proceed. If suitable maternal snags are identified, these should be retained and debris removal in their vicinity should be done by hand where practical. Where these mitigation measures are observed, no impacts to bat SAR are anticipated as a result of the proposed work.

Two aquatic SAR were identified as having the potential to occur around the Slate Islands. Both species, the Upper Great Lakes Kiyi and Deepwater Sculpin (Great Lakes – Western St. Lawrence population) are listed as 'special concern' under Schedule 1 of the SARA. Therefore, neither receives individual or habitat protection. However, prohibitions under the Fisheries Act prohibit causing 'serious harm' to these species. Through the application of appropriate mitigation measures, no impacts to either of these species is anticipated.

Overall, so long as the aforementioned mitigation measures are implemented, it is unlikely that the abatement, debris and soil removal activities will have any meaningful impact to SAR.

10.4 Environmental Effects Evaluation

DST completed an Environmental Effects Evaluation (EEE) in accordance with Section 67 of the *Canadian Environmental Assessment Act* 2012 to determine what, if any, environmental effects the proposed project might have on the environment. The EEE report, based on a template provided by PWGSC, is presented in Appendix E.

As part of the EEE, DST reviewed available information regarding the proposed project, reviewed Site information, completed a Site visit, consulted with various directly affected agencies and conducted research to determine potential effects and provide mitigation measures that would help to avoid causing any negative impacts to the environment.

Following the completion of the EEE, it was determined that, to mitigate any potential environmental impacts the project may incur, consideration will be taken relating to: avoidance of winter work periods; nesting sweeps by a qualified avian biologist; implementation of buffer zones if/where bird SAR are encountered; and, minimization of the intensity, spatial and temporal extent of on-Site activities, as well as restricting remediation activities to disturbed areas of ground to the extent practical.

It is reasonable to conclude that with appropriate mitigation measures included in the work specifications and as summarized in Section C, Tables 2.1-2.7 of the EEE (Appendix E), any potential environmental effects will be of short duration and the zone of influence, if any, will be confined to the immediate vicinity of the Site. Further, the removal of the lead impacted materials and debris piles currently at the Site are considered to have a positive effect on any environmental receptors present at the Site or nearby areas.

10.5 Structural Assessment

DST retained JML Engineering (JML) of Thunder Bay, Ontario, to conduct a Level II building inspection in order to evaluate the current conditions of the buildings on the Slate Island Coast Guard Site with commentary on the need for a repair/replacement program and associated costs. The JML report is provided in Appendix F of this report.

JML provided recommendations to ensure that the structures and their systems will reach their maximum life expectancy, and maintain the required health and safety levels. The findings of the report recommended \$306,000.00 in short term (1-5 years) expenditures and \$287,000.00 in long term (6-25 years) expenditures. Additional details can be found in the JML Structural attached as Appendix F of this report.

It was indicated that each structure included in the report can withstand the recommended abatement activities and there are no health and safety concerns with contractors accessing the structures.

10.6 Marine Assessment

Public Works and Government Services Canada, on behalf of DFO, requested DST to conduct an environmental program on the Slate Islands Coast Guard Site (GC 1111), Lake Superior. The

program was intended to identify the needs for any structural repairs or soil remediation at the site.

DST retained Riggs Engineering Ltd. (Riggs) to conduct a marine assessment as a component of its overall program. The objective of the marine assessment is to evaluate access options for the scope of the remedial works required at the Slate Islands Coast Guard Site.

PWGSC's requirements for the assessment are as follows:

- Conduct a review of available Canadian Hydrographic Survey (CHS) charts for the area;
- Evaluate methods of access to Patterson Island considering no current infrastructure (dock or wharf) is available, and provide a recommendation for the most feasible and cost effective option;
- Determine type(s) of vessel that could meet the needs of the project (excavation and disposal of contaminated soil and possibly building materials) including access to and from the Site; and,
- A report detailing observations made on site, including recommendations and cost estimates for site access options during remediation.

It was advised that bidding contractors inspect the potential marine access areas at the Site including soundings to determine landing locations and approaches, the types and combinations of vessels to use, and which mainland port to utilize in order to set a workable marine servicing plan and cost.

10.6.1 Marine Servicing the Main Site

The Main Site will require marine servicing to mobilize/demobilize equipment and supplies to the Site and to transfer the containerized waste off-Site.

The Main Site is fully exposed to open Lake Superior and subject to wind and waves from all directions except north and northwest. Safe access to the Main Site landing will be limited to days when winds and waves are light. Locals indicate that the best season providing calm conditions is in late spring (late-May through June).

Landing at the Main Site dock can only be achieved with narrow beam, shallow draft, and maneuverable vessels. The flat-bottomed barges carried by Coast Guard supply vessels to supply the Site while it was manned are an example of vessel types needed to service remediation

activities from the Main Site dock. The capacity of this size of vessel will be less than 12 tonnes. Mobilizing and demobilizing mobile equipment and removing containerized waste from the Site to a larger support vessel will involve 30 trips or more for a vessel of this size. Additional trips will be required should soil remediation activities be added to the work scope.

It is assumed that waste from the Lighthouse Area will be consolidated and containerized along with Main Site waste for removal off-Site. Transportation of equipment, materials and waste to and from the Lighthouse Area will likely be via helicopter.

The Main Site cannot be accessed by mobile equipment overland from the Old Dwelling Site.

10.6.2 Marine Servicing the Old Dwelling Site

The Old Dwelling Site is not as exposed to open lake conditions as is the Main Site location. The Sunday Harbour dock is accessible under wind and wave conditions from all directions except those from the northwest. Safe access to the dock during northwest wind and waves will be limited to days when winds are light. The approach is deep and the sand beach can provide alternate landing. There are no vessel restrictions at Sunday Harbour.

10.6.3 Mainland Ports

The closest mainland landing area to the Slate Island light station is Terrace Bay, 21 km to the north. The marine facilities there are limited and suited for pleasure craft and light vessels only. The adjacent beach is protected and could provide a landing for front loading, landing-craft type vessels. The landing has road access through Town to Highway 17.

Other small mainland ports include Rossport and Redrock. These are small scale facilities serving pleasure craft and light commercial fishing vessels, only.

The closest industrial sized mainland port is at Peninsula Harbour at Marathon, 47 km east of the light station. This deep water harbour that served the Marathon paper mill is currently closed but contractors can negotiate its use with the owner, Tembec Inc.

Other large mainland ports include Thunder Bay, 167 km west of the light station and Sault Ste. Marie, 315 km east of the Site. These are active industrial-commercial ports having a wide range of marine services that could provide suitable vessels and manpower and other marine support to service the proposed work.

11 LIMITATIONS OF REPORT

Limitation of this report and third party reliance information is provided in the following subsections.

11.1 Designated Substances and Hazardous Materials

This report is intended for Client, Government of Canada, and DFO use only. Any use of this document by a third party, or any reliance on or decisions made based on the findings described in this report, are the sole responsibility of such third parties, and DST Consulting Engineers Inc. accepts no responsibility for damages, suffered by any third party as a result of decisions made or actions conducted based on this report. No other warranties are implied or expressed.

The data, conclusions and recommendations which are presented in this report, and the quality thereof, are based on a scope of work authorized by the Client. The sampling program included asbestos bulk sampling, paint chip sampling and paint with substrate sampling in select representative areas for laboratory analysis. There is a practical limitation on the number of samples that can be collected in a building. This requires the investigator to extrapolate observations and analytical results between sample locations. The uncertainty, and inherent risk, associated with this necessity increases with the distance between sampling locations. Note, however, that no scope of work, no matter how exhaustive, can guarantee to identify all contaminants. This report therefore cannot warranty that all building conditions are represented by those identified at specific locations.

Recommendations, when included, are made in good faith and are based on several successful experiences. DST is not in a position to evaluate the health risks associated with exposure to the mould referenced in this report. Since human reactions to mould exposure vary widely amongst individuals, and specific segments of the population are generally recognized to be more susceptible than others, an evaluation of health risks can only be made on an individual basis and even then, only by a licensed medical practitioner equipped with knowledge of the individual's medical history.

Any use of this report by the client and any other party is contingent upon their understanding and acceptance of the following condition:

"Mould is a naturally occurring substance and regardless of the results of an assessment or how completely it is removed, it could reoccur."

Regardless of the effectiveness of any remedial actions, mould growth may occur/reoccur anywhere within a building at any time, should conditions be favourable. It is therefore essential to maintain buildings, surfaces, appliances and furnishings under conditions which are not favourable to mould incubation and growth (warm, dry, and clean). The scope of services provided by DST for this assignment did not include a detailed evaluation of the thermal and moisture management characteristics of the exterior wall assembly, or a detailed building envelope investigation to ascertain every potential root cause of the water infiltration that created an environment favourable to mould proliferation. Similarly, DST has not been engaged to provide detailed designs for the reinstatement of building finishes or for improvements to the building envelope.

Note also that standards, guidelines and practices related to DST's scope of work may change with time. Those which were applied at the time of this program may be obsolete or unacceptable at a later date.

Any comments given in this report on potential remediation problems and possible methods are intended only for the guidance of the designer. The scope of work may not be sufficient to determine all of the factors that may affect construction, clean-up methods and/or costs. Contractors bidding on this project or undertaking clean-ups should, therefore, make their own interpretation of the factual information presented and draw their own conclusions as to how the conditions may affect their work.

11.2 Environmental Soil Investigation

Any results from an analytical laboratory or other subcontractor reported herein have been carried out by others, and DST Consulting Engineers Inc. cannot warranty their accuracy. Similarly, DST cannot warranty the accuracy of information supplied by the Client.

The information, conclusions and recommendations given herein are specific to this project and this Client, Government of Canada and DFO; and for the scope of work described herein. This report may not be relied upon, in whole or in part, by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or

decisions made based on it, are the responsibility of such third parties. DST does not accept responsibility for damages, if any, suffered by any third party due to decisions or actions made based on this report.

The data, conclusions and recommendations which are presented in this report, and the quality thereof, are based on a scope of work authorized by the Client. This report cannot warranty that all conditions on, or off, the Site are represented by those identified at specific locations. For example, conditions between sampling locations may differ from those encountered in the investigation and observed or measured conditions may change with time.

Any recommendations and conclusions provided, that are based on conditions or assumptions reported herein, will inherently include any uncertainty associated with those conditions or assumptions. Many aspects involving professional judgment such as subsurface models and remediation criteria contain a degree of uncertainty. This uncertainty should be managed by periodic review and refinement as additional information becomes available.

Note also that standards, guidelines and practices related to environmental investigations may change with time. Those which were applied at the time of this investigation may be obsolete or unacceptable at a later date.

Any topographic benchmarks and elevations documented in this report are primarily used to establish relative elevation differences between test locations and should not be used for other purposes such as grading, excavation, planning, development, etc.

Any comments given in this report on potential remediation problems and possible methods are intended only for the guidance of the designer. The scope of work may not be sufficient to determine all of the factors that may affect construction or clean-up methods and costs.

Any results from laboratory or other subcontractors reported herein have been carried out by others, and DST Consulting Engineers Inc. cannot warrant their accuracy. Similarly, DST cannot warrant the accuracy of information supplied by the Client or others.

This report may not be reproduced, in whole or in part, without written consent from DST.

11.3 Natural Science Elements

The scope of work, conclusions and recommendations given herein are specifically for this project and this Client, the Government of Canada and DFO, and for the scope of work described herein, and may not be sufficient for other uses. Natural sciences are the sciences used in the study of the natural physical world, including physics, chemistry, geology, biology and botany. The conclusions and recommendations regarding natural conditions which are presented in this report, and the quality thereof, are based on a scope of work authorized by the client. Note, however, that virtually no scope of work, no matter how exhaustive, can identify all habitat types or all natural features on land and in the water. For example, natural features between transects or fish net sets may differ from those encountered at sampling locations during the time of the field investigation; and may change with time. This report, therefore, cannot warranty that all conditions on or off the site are represented by those identified at specific locations.

Note that identification of natural features are limited by seasonal conditions which may preclude the identification of some natural features during the field investigation. Habitats are not static, but change with time, and the presence or absence of certain flora and fauna identified in the field are limited to the time of the investigation and may not always be representative of future conditions. Any topographic benchmark and elevations used in this report are primarily to establish relative elevation differences for water or stratigraphy and are site specific.

Any comments given in this report on the presence of features including significant wetlands, significant portions of habitat for endangered or threatened species, fish habitat, significant woodlands, significant valley lands, wildlife habitat and significant areas of natural and scientific interests (ANSI's) are intended only for the guidance of the client. The scope of work may not be sufficient to determine all of the features which may affect site operation plans and potential development proposals. Clients should, therefore, make their own interpretations of the factual information presented and draw their own conclusions as to how the conditions may affect their work on the project.

Any results prepared by an analytical laboratory reported herein have been carried out by others, and DST Consulting Engineers Inc. does not warranty their accuracy. Similarly, DST cannot warranty the accuracy of information supplied by the client.

12 CLOSURE

We trust this report meets your present requirements and appreciate this opportunity to provide environmental consulting services to you. If you have any questions or comments, please contact the undersigned.

12.1 Designated Substances and Hazardous Materials Survey

Written by:

Reviewed by:

S.Washell

Jon Waddell, M.Sc. Environmental Scientist

12.2 Environmental Soil Investigation

Written by:

R Lake

Geoff Lake, G.I.T. Geoscientist in Training

12.3 Species at Risk Survey

Written by:

Adam Moin

Adam Moreira, M.Sc. Environmental Biologist

Whend.

Brendan Harrigan, P.Eng. Principal

Reviewed by:

Curtis Schmidt, P.Eng. Environmental Engineer

Reviewed by:

David Vardy, Ph.D. Environmental Biologist

13 REFERENCES

- Canadian Council of Ministers of the Environment, 2016. Guidance Manual for Environmental Site Characterization in Support of Environmental and Human Health Risk Assessment Volume 1 Guidance Manual (2016) Guidance Manual on Sampling, Analysis, and Data Management for Contaminated Sites.
- Canadian Council of Ministers of the Environment, 2010. *Canadian Soil Quality Guidelines, Carcinogenic and other Polycyclic Aromatic Hydrocarbons (PAHs), Environmental and Human Health Effects. Scientific Criteria Document (revised).* PN 1445.
- Canadian Council of Ministers of the Environment, 2008. *Canada Wide Standard for Petroleum Hydrocarbons in Soil – Technical Supplement*. January, 2008.
- Canadian Council of Ministers of the Environment, 2008. *National Classification System for Contaminated Sites, Guidance Document*. Canadian Council for Ministers of the Environment, Winnipeg, MB.
- Canadian Council of Ministers of the Environment, 1999 (as revised). *Canadian Environmental Quality Guidelines*. Includes: Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health; Canadian Water Quality Guidelines for the Protection of Aquatic Life; and Canadian Sediment Quality Guidelines for the Protection of Aquatic Life; Freshwater).
- Department of Fisheries and Oceans Canada, 2016. Aquatic Species at Risk Maps. Available from: <u>http://www.dfo-mpo.gc.ca/species-especes/fpp-ppp/index-eng.htm</u>.
- DST Consulting Engineers Inc., July 29, 2016. Additional Soil Delineation, Designated Substances Survey, Species At Risk Survey Update, Structural Assessment, Marine Assessment, Risk Assessment Update and Development of Plans and Specifications for Abatement and Soil Remediation, Slate Islands Coast Guard Site, Patterson Island, Lake Superior, Ontario.
- DST Consulting Engineers Inc., March 2005. Site Specific Risk Assessment, Canadian Coast Guard Light Station L.L 1111, Patterson Island, Slate Islands, Lake Superior, Ontario.
- Environment Canada and Climate Change, 2016. Schedule 1, Species at Risk Act, (Subsections 2(1), 42(2) and 68(2)), List of Wildlife Species at Risk. Available from: <u>https://www.registrelep-sararegistry.gc.ca/species/schedules_e.cfm?id=1</u>.

Maxxam Laboratories Inc., 2012. National QA/QC Interpretation Guide - Environmental Services.

Ministry of Natural Resources and Forestry, 2016. Natural Heritage Information Center Biodiversity Explorer. Available from: <u>http://www.gisapplication.lrc.gov.on.ca/mamnh/Index.html?site=MNR NHLUPS Natural</u> <u>Heritage&viewer=NaturalHeritage&locale=en-US</u>.

- Ministry of Natural Resources and Forestry, 2016 (a). General Habitat Description for the Forestdwelling Woodland Caribou (*Rangifer tarandus caribou*).
- Ministry of Natural Resources and Forestry, 2016b. Species at Risk in Ontario List. Available from: https://www.ontario.ca/environment-and-energy/species-risk-ontario-list.
- Ministry of Natural Resources and Forestry, 2015. Best Management Practices for Aggregate Activities and Woodland Caribou in Ontario. Available from: <u>https://www.ontario.ca/page/best-management-practices-aggregate-activities-and-forest-dwelling-woodland-caribou</u>.
- Ontario Ministry of the Environment, 2011. Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act.
- Ontario Ministry of Environment, 1996. *Guideline for Use at Contaminated Sites in Ontario*
- Ontario Ministry of Natural Resources, 2011. Bats and Bat Habitats: Guidelines for Wind Power Projects.
- Ontario Ministry of Natural Resources, 2000. Significant Wildlife Habitat Technical Guide.
- Ontario Ministry of Northern Development and Mines, 2014. OGS Earth Quaternary Geology. Available from: <u>http://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth#simple-table-of-contents-4.</u>
- Ontario Parks, 2016. Slate Islands. Available from: <u>https://www.ontarioparks.com/park/slateislands</u>.
- Ontario. *R.R.O. Regulation 347 of the Ontario Environmental Protection Act*, Schedule 4: Leachate Quality Criteria
- Public Works and Government Services Canada, Environmental Services, July 12, 2016 Scope of Work for Additional Soil Delineation, Designated Substances Survey, Species At Risk Survey Update, Structural Assessment, Marine Assessment, Risk Assessment Update and Development of Plans and Specifications for Abatement and Soil Remediation, Slate Islands Coast Guard Site, Patterson Island, Lake Superior, Ontario. DFRP No. 56027 PWGSC No. R.083149.001 & .004

Rodney Bryton, personal communication. August 30, 2016.

- XCG Consultants, 2003. *Screening Level Ecological Risk Assessment* Canadian Coast Guard Light Station L.L 1111, Patterson Island, Slate Islands, Lake Superior, Ontario.
- XCG Consultants Ltd, April 2001. Enhanced *Phase I Environmental Site Assessment*, Canadian Coast Guard Light Station L.L 1111, Slate Islands, Lake Superior, Ontario.

Appendix A

General Site Figures

Appendix B

Designated Substance and Hazardous Materials Survey

Floor Plans

DUPLEX DWELLING

APPROXIMATE SCALE

consulting engineers							
٤ TEL (85 REGENT 9 SUDBURY, 0 705) 523-668 www.c	STR DNT 80 Istg	EET, SUIT ARIO, P3E FAX (705 Jroup.com	TE 3-1B E 5M4 5) 523-6690			
EGEN	ND:						
▲ ;	ASBESTOS CONTAIN AS AMENDED ([≤] 0.5%	ling %)	MATERIAL AS F	PER O.REG 278/05			
A 1	NON ASBESTOS CON	IIAT	NING MATERIAL				
F (PAINTED SURFACE E AS PER HAZARDOUS COATING MATERIALS AMENDED	EXCE S PRO S RE	EDS THE 9) pp DDUCTS ACT'S GULATIONS SO	m LIMIT FOR LEAD, SURFACE R/2005-109, AS			
F (PAINTED SURFACE E AS PER HAZARDOUS COATING MATERIALS AMENDED	BELO B PRO S RE	W THE 90 ppm DDUCTS ACT'S GULATIONS SO	LIMIT FOR LEAD, SURFACE R/2005-109, AS			
NOTE 1. T 2. A V	ES: HIS FIGURE SHALL CCOMPANYING TEC LL SAMPLE IDENTIF VHICH WAS LEFT OU	BE R CHNIG TIERS JT OF	EAD IN CONJUN CAL REPORT. 5 ARE PREFIXEL 7 DRAWING FOF	ICTION WITH THE 0 WITH 027105 8 CLARITY			
1	29/03/17		FINAL	BH			
0	05/12/16		DRAFT	BH			
REV	DATE		ISSUE	APPROVAL			
PROJECT TITLE: ENVIRONMENTAL PROGRAM REPORT, SLATE ISLAND COAST GUARD SITE, PATTERSON ISLAND LAKE SUPERIOR, ON PRAWING TITLE:							
DUPLEX DWELLING FLOOR PLAN							
DESIG	DESIGNED BY: SCALE:						
	JR AS SHOWN						
RAW	JR		DATE: MARCH 2017				
PPRO	OVED BY:		PROJECT	NO:			
	BH		GV-TB	-027105			

FIGURE 7

Tables

Table 1 Summary of Bulk Samples for Asbestos Content

Sample L D	Building Name	Sample Location	Sample Description	Ashestos Content
027105-MD-01-A	-Dunung Hame	oumpic Location	oumpie Description	Assested content
027105-MD-01-B		Mudroom, Floor	Grey Vinyl Floor Tile/ Mastic	None Detected
027105-MD-01-C				
027105-MD-02-A				0.79 % Chrysotile
027105-MD-02-B		Kitchen	Beige Vinyl Floor Tile	Not Analyzed (Stop Positive)
027105-MD-02-C				
027105-MD-03-A				
027105-WID-03-B		Kitchen	White Window Caulking	None Detected
027105-MD-03-DLIP				
027105-MD-04-A				1% Chrysotile
027105-MD-04-B		Mudroom, North Bedroom,		
027105-MD-04-C	Main Dwelling	Living Room, South Bedroom,	Grey Drywall Joint Compound	Not Analyzed (Ston Positive)
027105-MD-04-D		West Bedroom		Not Analyzed (Stop Positive)
027105-MD-04-E				
027105-MD-06-A		Change David		0.89 % Chrysotile
027105-MD-06-B		Storage Room	Grey Caulking on Stored Window	Not Analyzed (Stop Positive)
027105-WD-06-C				0.91 % Chrysotile
027105-MD-07-A				0.51 /6 Chi y30thC
027105-MD-07-C		Basement	Grey Window Caulking	Not Analyzed (Stop Positive)
027105-MD-07-DUP				
027105-MD-09-A				4.56 % Chrysotile
027105-MD-09-B		Exterior	Black Caulking	Not Analyzed (Stop Positive)
027105-MD-09-C				
027105-DD-01-A		Bedroom 3	-	1% Chrysotile / 1% Chrysotile
027105-DD-01-B		Stairwell 1	Grey / White Drywall Joint	
027105-DD-01-D		Living Room 1	Compound	Not Analyzed (Stop Positive)
027105-DD-01-E		Bedroom 1		
027105-DD-01-Dup		Bedroom 3		
027105-DD-02-A				0.75% / 2.35 % Chrysotile
027105-DD-02-B		Living room 1	White Floor Tile/ Black Mastic	Not Analyzed (Stop Positive)
027105-DD-02-C				
027105-DD-03-A			Interior White Bathroom Caulking	
027105-DD-03-B		Bathroom 1		None Detected
027105-DD-03-DUP				
027105-DD-04-A				0.6 % Chrysotile
027105-DD-04-B	Duplay Dwalling	Living Room 1	Black Mastic	Net Analyzed (Step Desitive)
027105-DD-04-C	Duplex Dwelling			Not Analyzed (Stop Positive)
027105-DD-05-A			White Vinyl Floor Tile with Green	0.74% / 2.22 % Chrysotile
027105-DD-05-B		Bedroom 2	Streaks / Black Mastic	Not Analyzed (Stop Positive)
027105-DD-05-C			-	
027105-DD-07-A		Exterior	Grey Caulking	None Detected
027105-DD-07-C		Enterior	2.0, 000.00	
027105-DD-09-A				2.22 % Chrysotile / 2.45 % Chrysotile
027105-DD-09-B		Kitchen 1	White Vinyl Floor Tile with Green	
027105-DD-09-C		Mullell 1	Streaks / Mastic	Not Analyzed (Stop Positive)
027105-DD-09-DUP				
027105-DD-11-A				None Detected / 0.61 % Chrysotile (Mastic)
027105-DD-11-B		Mudroom 2	Beige Vinyl Floor Tile / Beige Mastic	
027105-DD-11-D				Not Analyzed (Stop Positive)
027105-WS-01-A				
027105-WS-01-B		Eutorian	White Window Coulling	None Datastad
027105-WS-01-C		Exterior	white window Caulking	None Detected
027105-WS-01-DUP				
027105-WS-04-A		D-1-1-D		New Dirich
027105-WS-04-B	Old Fog Alarm /	Paint Room	Vinyi Sheet Flooring	None Detected
027105-WS-04-C	Generator			0.72 % Charactila
027105-WS-05-A		Exterior	Shingle Roofing	0.75 % Chrysotile
027105-WS-05-C			8	Not Analyzed (stop positive)
027105-WS-06-A				
027105-WS-06-B		Exterior	Grey Parging Cement	None Detected
027105-WS-06-C				

Table 1 Summary of Bulk Samples for Asbestos Content

Sample I.D.	Building Name	Sample Location	Sample Description	Asbestos Content	
027105-S1-01-A		Exterior	Grey Transit Corrugated Cladding	20% Chrysotile Asbestos	
027105-S1-01-B 027105-S1-01-C		Exterior	and Roofing	Not Analyzed (Stop Positive)	
027105-S1-02-A	New Fog Alarm /			20% Chrysotile Asbestos	
027105-S1-02-B	Electronics	Interior	Grey Transite Paneling	Net Angland (Stor Desitive)	
027105-S1-02-C				Not Analyzed (Stop Positive)	
027105-S1-03-A				0.52 % Chrysotile Asbestos	
027105-S1-03-B 027105-S1-03-C		Exterior	Grey Wall Caulking	Not Analyzed (Stop Positive)	
027105-S2-01-A				20% Chrysotile Asbestos	
027105-S2-01-B		Interior	Grey Transite Paneling		
027105-S2-01-C				Not Analyzed (Stop Positive)	
027105-S2-01-DUP					
027105-S2-02-A	New Diesel Generator	Exterior	Grey Transit Corrugated Cladding	20% Chrysotile Asbestos	
027105-S2-02-B				Not Analyzed (Stop Positive)	
027105-S2-02-C				0.52% Chrysotile Asbestos	
027105-S2-03-A					
027105-S2-03-B		Exterior	Grey Caulking Near Vent	None Detected	
027105-52-03-0					
027105-S3-01-A			Red Shingles / Pottom Layor		
027105-S3-01-B	Former Oil House	Exterior	Roofing Material	None Detected	
027105-S3-01-C			-		
027105-LH-01-A		Exterior	Red Caulking, Third Level Balcony		
027105-LH-01-B				None Detected	
027105-LH-01-C					
027105-LH-01-DUP					
027105-LH-03-A					
027105-LH-03-B	Lighthouse	Exterior	Light Grey / Dark Parging Cement	None Detected	
02/105-LH-03-C					
027105-LH-03-DUP					
027105-LH-05-B		Interior Balcony, Window	White Caulking	None Detected	
027105-LH-05-C					
027105-LH-06-A				None Detected	
027105-LH-06-B		Exterior	Grey Caulking		
027105-LH-06-C				<u> </u>	
027105-OH-01-A					
027105-OH-01-B		Exterior	Shingle Roofing	None Detected	
027105-OH-01-C					
027105-OH-02-A			Grev floor tile with White Specs/	2.3 % Chrysotile / None Detected	
027105-OH-02-B		Entrance	Black Mastic		
027105-OH-02-C				Not Analyzed (Stop Positive)	
027105-OH-02-DUP	Old Dwelling				
027105-OH-04-A	Old Dwelling	Extorior	White Window Coulking	None Detected	
027105-OH-04-B		Exterior	White White we callking	None Detected	
027105-OH-05-A				1% Chrysotile	
027105-OH-05-B					
027105-OH-05-C		Main Level	Grey Drywall Joint Compound	Not Analyzed (Stop Positive)	

*Bold items exceed the 0.5% regulated concentration of asbestos, as per O. Reg. 278/05, as amended.

Table 2 Summary of ACMs Quantities and Conditions

Building	Floor	Specific Location	Asbestos Containing Material	Colour	Friability	% Present	Asbestos Type	Total Quantity	Quantity In Fair / Poor Condition	Required Abatement	Comments
		Floor	Vinyl Floor Tile	Beige with Brown Streaks	Non-Friable	0.79	Chrysotile	18 m ²	None	None	
	Main	Walls & Ceiling	Drywall Joint Compound	Grey	Non-Friable	1.0	Chrysotile	310 m ²	None	Type 2 (ACM)	Lead Containing Surfaces
		Stored Window	Caulking	Grey	Non-Friable	0.89	Chrysotile	4.5 m	4.5 (Fair)	Remove window if not it use; Type 1 (ACM)	Window observed to be in storage
Main Dwelling		Windows	Caulking	Grey	Non-Friable		Chrysotile	12 m	12 m	Type 1 (ACM)	Lead Containing Surfaces
	Basement	Drywall Debris	Drywall Joint Compound	Grey	Non-Friable	1.0	Chrysotile	6 m ²	6 m ²	Type 2 (ACM)	Observed Debris in the Crawl Space
		Cast iron pipe	Caulking	White	Non-Friable	Suspected	-	1	None	None	
		Fixtures	Caulking	Black	Non-Friable	2.35	Chrysotile	3 m	None	Type 1 (ACM)	Lead Containing Surfaces
	Exterior	Roof	Roofing materials	-	Non-Friable	Suspected	-	-	None	None	Covered by tin roof
		Wall	Tar Paper	Black	Non-Friable	Suspected	-	-	None	None	Covered by wood cladding
		Walls & Ceiling	Drywall Joint Compound	White and Grey	Non-Friable	1.0	Chrysotile	500 m ²	None	Туре 2 (АСМ)	Lead Containing Surfaces
Duploy Dwelling	Main	Floor	Vinyl Floor Tile	White with Brown Streaks	Non-Friable	0.74 and 0.75	Chrysotile	114 m ²	None	None	
Duplex Dweiling		Floor	Vinyl Floor Tile	Green With White Streaks	Non-Friable	2.22	Chrysotile	56 m ²	None	None	
		Floor	Mastic	Black	Non-Friable	0.60 and 2.45	Chrysotile	170 m ²	None	None	
	Exterior	Roof	Roofing materials	-	Non-Friable	Suspected	-	-	None	None	Covered by tin roof
Old Fog Alarm	Exterior	Roof	Shingles	Red and Black	Non-Friable	0.73	Chrysotile	250 m ²	250 m ²	Type 1 (ACM)	
Building		Debris	Shingles	Red and Black	Non-Friable	Suspected	-	10 m ²	10 m ²	Type 1 (ACM)	Various locations surrouding building
	Main	Walls & Ceiling	Transite Wallboard	Grey	Non-Friable	20.0	Chrysotile	104 m ²	None	Type 1 (ACM)	
New Fog Alarm Building	Exterior	Walls & Roof	Transite Corrugated Cladding	Grey	Non-Friable	20.0	Chrysotile	72 m ²	None	Type 1 (ACM)	
		Walls	Caulking	Grey	Non-Friable	0.52	Chrysotile	10 m	None	None	
New Diesel Generation Exte	Main	Walls & Ceiling	Transite Wallboard	Grey	Non-Friable	20.0	Chrysotile	72 m ²	None	Type 1 (ACM)	
	Exterior	Walls & Roof	Transite Corrugated Cladding	Grey	Non-Friable	20.0	Chrysotile	72 m ²	None	None	
		Walls	Caulking	Grey	Non-Friable	0.52	Chrysotile	20 m	None	None	
		Floor	Vinyl Floor Tile	Grey with White and Blue Specks	Non-Friable	2.3	Chrysotile	25 m ²	None	None	
Old Dwelling	Main	Walls and Ceiling	Drywall Joint Compound	Grey	Non-Friable	1.0	Chrysotile	140 m ²	None	Type 2 (ACM)	Lead Containing Surfaces

Table 3 Summary of Pain Chip Samples Analyzed for Lead

Sample I D	Building	Sample Location	Paint Description	Lead (nnm)
	Dunung			
027105-MD-LP-01	-	Second Bedroom	Light Blue	93
027105-IVID-LP-02	-	Stairweil	Light Green	194
027105-MD-LP-03	-	Living Room	Beige	9
027105-MID-LP-03-DUP	Main Dwalling	Living Room	Duplicate of LP-03	10
02/105-MD-LP-06	Main Dweiling	Niudroom	Sky blue	1/4
02/105-MD-LP-0/	-	Exterior	white	94,300
027105-MD-LP-08	-	Exterior	Red	25,500
027105-MD-LP-09		North Bedroom	Blue	380
027105-DD-LP-01		Basement	Grey	1,030
027105-DD-LP-02		Basement	White	<20
027105-DD-LP-03	Duplex Building	Exterior	White	1,360
027105-DD-LP-04		Exterior	Red	8,150
027105-DD-LP-05		Stairwell	Beige	24
027105-WS-LP-01		Machinery Room	Grey	116,000
027105-WS-LP-01-DUP		Machinery Room	Duplicate of LP-01	110,000
027105-WS-LP-03		Tank	Metallic Grey	80,200
027105-WS-LP-04	Did Fog Alarm	Entrance Room	Grey	1,480
027105-WS-LP-05	Building	Machinery Room	White	133,000
027105-WS-LP-06		Exterior	White	159,000
027105-WS-LP-07		Exterior	Red	217,000
027105-S3-LP-01		Exterior	White	216,000
027105-S3-LP-02	Former Oil House	Exterior	Red	31,800
027105-S3-LP-02- DUP		Exterior	Duplicate of LP-02	26,400
027105-LH-LP-01		Exterior - Top Balcony	Red	19,100
027105-LH-LP-02		Interior-Second level	White	206,000
027105-LH-LP-03	Lighthouse	Exterior	White	19,200
027105-LH-LP-04		Third level	White on Red	253,000
027105-LH-LP-05		Floors and Stairs	Grey	184,000
027105-OH-LP-01		Exterior	White	42,400
027105-OH-LP-02]	Exterior	Red	101,000
027105-OH-LP-03	Old Dwelling	Main level	White	189,000
027105-OH-LP-04	027105-OH-LP-04		Light Grey on Light Green	552
027105-OUTH-LP-1	Outhouse (near Old	Interior	White on Grey	259,000
021705-OUTH-LP-2	Dwelling)	Exterior	White Paint	163,000
021705-HP-LP-01	Exterior Structure	Helipad	White	3,070
021705-Diesel-LP-01	Exterior Structure	Diesel Dyke	White	472
021705-T-LP-01	Exterior Structure	Transformer	Forest Green	10,400

Notes:

1) **Bold** items exceed the 90 ppm limit for lead, as per Hazardous Products Act's *Surface Coating Materials Regulations SOR*/2005-109, as amended.

2) Samples 027105-MD-LP-04, 027105-MD-LP-05; 027105-WS-LP-02 were omitted in the analysis intentionally due to additional duplicate samples collected.

Table 4 Lead Based Material Required for Abatement

				Ouentity In Boor	Demined Minimum Alestereet		
Building	Floor	Colour	Total Area (m ²)	Condition (m ²)	Loval	Comments	
			100	Condition (m)			
	Bacamont	White	100	30	Type 1 (Lead)	Concrete Foundation	
	Dasement	Debris	20	20	Type 1 (Lead)		
		Debits	20	20			
		White	160	0	Type 2 (ACM) and Type 1 (Lead)	Asbestos Containing Drywall	
		Dark Plug on			Type 1 (ACM) on painted	40 m ² of Dorticle Depart ()Mood Departs (
		Light Blue	60	0	caulking and Type 1 (Lead) all	40 m of Particle Board / Wood Doors /	
		Light Dide			painted surfaces		
	Main	Sky Blue	40	3		Mudroom / Bedroom - Asbestos Containing	
		,			Type 2 (ACM) and Type 1 (Lead)	Drywall	
Main Dwolling		Light Pluo	00	0	Type 2 (ACM) and Type 1 (lead)	Asbestos Containig Drywall	
Main Dwelling		Light Dide	50	0			
		Light Green	20	6	Type 2 (ACM) and Type 1 (Lead)	Asbestos Containig Drywall - Stairwell	
		Debris	5	5	Type 1 (Lead)	Mudroom	
						Wood Cladding / Windows / Soffits /	
					Type 1 (ACM) on painted	Eavetroughs / Concrete Foundation / Type 1	
		White	200	40	caulking and Type 1 (Lead) all	asbestos precautionary measures for basement	
	Exterior				painted surfaces	windows caulking and other black caulking	
		Bod	20	20	Tupo 1 (Lood)	application	
		Grev	10	10	Type 1 (Lead)	Fascia / Window Trim / Door Front stairs	
		Debris	200	200	Type 1 (Lead)	Grassed Area / Sidewalks	
		Grey	10	2	Type 1 (Lead)	Stairs	
	Basement	Debris	4	4	Type 1 (Lead)	Floor	
						Ashesto Containing Drywall	
		White	270	1	Type 2 (ACM) and Type 1 (Lead)		
	Main					Asbestos Containing Drywall	
		Sky Blue	120	0	Type 2 (ACM) and Type 1 (Lead)		
Duplex Dwelling		Light Pluo	120	0	Type 2 (ACM) and Type 1 (lead)	Asbestos Containing Drywall	
Duplex Divening		Light blue	120	0		Wood Clad Siding / Windows / Soffits /	
		White	200	40	Type 1 (Lead)	Eavetroughs / Foundation	
	Eutonian.					Fascia / Window Trim / Door Trim/eave	
	Exterior	Red	20	6	Type 1 (Lead)	troughs	
		Grey	15	0	Type 1 (Lead)	Stairs	
		Debris	200	200	Type 1 (Lead)	Cobble stones / Grassed Area / Sidewalks	
						Walls and Ceilings / Workshon area ceiling is	
						approx. 4.5 m / Heavily Water Damaged	
	Main				Type 1 (Lead) and Level II	Materials Observed on Ceilings $/ < 10 \text{ m}^2$ of	
		White	400	200	Mould Precausionary Measures	mould observed / Possible mould in concealed	
					on lead based material	areas / Approximately 340 m ² Total Area of	
						Particle Board with Lead Painted Surfaces	
						having the colour White, Grey and Light Green	
		Mettalic Grey	28	0	Type 1 (Lead)	Old Compressed air Tank Located In	
		Grev	380	175	Type 1 (Lead)	Walls / Possible water damaged materials /	
		dicy	300	175		Particle Board found to be painted Grey	
Old Fog Alarm		Debris	100	100	Type 1 (Lead)	Throughout the First Floor	
Building		\\/bita	120	70		Walls, Ceiling & Attic / Particle Board Found to	
		white	150	70	Type I (Lead)	be Painted White	
		Grey	5	0	Type 1 (Lead)	Particle Board Found to be Painted Grey	
	Second and Attic	Second and Attic		100	20	Type 1 (Lead) and Level II	Walls and Ceiling / Water Damaged Material /
		Light Green	180	30	Mould Precausionary Measures	Suspected Mould Observed / Particle Board	
					on lead based material	Found to be Painted Light Green	
		Debris	40	40		Located throughout Second Floor and Attic	
		Debris	0			Wood Cladding / Soffits / Windows / Boof	
		White	360	20	Type 1 (Lead)	Vents	
		Grev	6	0	Type 1 (Lead)	Foundation	
	Exterior	Red	32	10	Type 1 (Lead)	Fascia / Trim / Roof Vents / Eavestrough	
		Dobric	220	220		Grassed Area / Sidewalks / Bedrock (Debris and	
		Debris	220	220	Type I (Lead)	Spilled Paint) / Cobblestone	
		White	40	0	Type 1 (Lead)	Metal Doors / Wood	
New Fog Alarm	Main	Grey	15	1	Type 1 (Lead)	Concrete Floor	
Building	Exterior	Debris	1	1	Type 1 (Lead)	Concrete Floor	
	Exterior	White White	5	2	Type 1 (Lead)	Metal Door	
New Diesel	Main	Grev	3 30	2	Type 1 (Lead)	Concrete Floor / Wood	
Generator Building		Debris	1	1	Type 1 (Lead)	Concrete Floor	
8	Exterior	White	6	2	Type 1 (Lead)	Metal Door	
	-	White	70	70	Type 1 (Lead)	Wood Cladding / Door / Vent	
Former Oil House	Exterior	Red	8	8	Type 1 (Lead)	Trim / Fascia	
		Debris	65	65	Type 1 (Lead)	Grassed Area / Cobblestone	
						Dhuwood Walls and Cailing (Misible Water	
		White	160	10	Type 1 (Lead)	Damaged Materials / Suspected Mould Growth	
	Main	winte	100	10	Type I (Lead)	/ Possible Concealed Mould Conditions	
Lighthouse		Grey	60	30	Type 1 (Lead)	Wood Floor / Wood Stairs	
		Debris	20	20	Type 1 (Lead)	Wood Floor	
		White	60	20	Type 1 (Lead)	wood Frame / Visible Water Damages	
	Second	Grov	30	10	Type 1 (Load)	Wood Eleon / Stairs	
		Debris	10	10	Type 1 (Lead)	Wood Floor	

Table 4 Lead Based Material Required for Abatement

Building	Floor	Colour	Total Area (m ²)	Quantity In Poor Condition (m ²)	Required Minimum Abatement Level	Comments
		White	30	20	Type 1 (Lead)	Metal Ceiling / Wood Walls
	Third / Lontorn	Grey	4	1	Type 1 (Lead)	Metal Floor
	minu / Lantem	Red	10	4	Type 1 (Lead)	Door to Balcony / Metal Light Stand
Lighthouse (cont'd)		Debris	4	4	Type 1 (Lead)	Throughout Floor Area
		White	260	260	Type 1 (Lead)	Wood Cladding (shingles) / Window
	Fut and a st	Grey	10	10	Type 1 (Lead)	Stairs / Door Area
	Exterior	Red	60	20	Type 1 (Lead)	Metal Balcony / Lantern / Roof
		Debris	110	110	Type 1 (Lead)	Bedrock / Gravel
	Basement			Not Accessib	e at the time of the survey	
		White	110	0	Type 2 (ACM) and Type 1 (Lead)	Asbestos Containing Drywall
	Main	Grev	30	15	Type 1 (Lead)	Stairs / Door
		Light Blue on Light Green	80	0	Type 2 (ACM) and Type 1 (Lead)	Asbestos Containing Drywall
Old Dwelling		White	80	0	Type 2 (ACM) on Drywall and Type 1 (Lead) on all painted surfaces	Trim / Asbestos Containing Drywall Ceiling / Wood Ceiling / Window
	Second	Grey	110	5	Type 1 (Lead)	Wood Floor / Wood Walls
		Salmon	80	0	Type 2 (ACM) on Drywall and Type 1 (Lead) on all surfaces	Asbestos containing drywall / wood walls
	Exterior	White	250	14	Type 1 (Lead)	Wood Cladding / Soffits / Windows / Door
		Red	20	4	Type 1 (Lead)	Trim / Fascia / Vent / Door
		Grey	10	10	Type 1 (Lead)	Deck found under newer deck
		Debris	140	140	Type 1 (Lead)	Grassed Area / Gravel Sand
	Interior	Grey	18	18	Type 1 (Lead)	Deteriorated Wood
Outhouse (CS1)	interior	Debris	2	2	Type 1 (Lead)	Through Interior of Outhouse
	Exterior	White	15	15	Type 1 (Lead)	Deteriorated Wood
	Externor	Debris	20	20	Type 1 (Lead)	Cobble Stones and Vegetated Area
Outhouse (CS3)	Interior	Grey	18	0	Type 1 (Lead)	Plywood
	Exterior	White	15	1	Type 1 (Lead)	Plywood
Diesel Dyke	Exterior	White	45	0	Type 1 (Lead)	Concrete
Helinad (Both)	Exterior	White	10	0	Type 1 (Lead)	Concrete
	Exterior	Red	10	0	Type 1 (Lead)	Concrete
Retaining Wall (near Main Dwelling)	Exterior	White	5	5	Type 1 (Lead)	Concrete
Dock Hoist (Both)	Exterior	Red	20	2	Type 1 (Lead)	Metal
Transformer	Exterior	Forest Green	10	6	Type 1 (Lead)	Metal
		White	1	0	Type 1 (Lead)	Metal
Flag Pole	Exterior	Red	4	0	Type 1 (Lead)	Metal and Concrete
Flag Pole		Debris	4	4	Type 1 (Lead)	Grassed Area
Tank Cradle (Bath)	Exterior	White	1	0	Type 1 (Lead)	Small amounds of spilled paint
	EXTELLOL	Red	1	0	Type 1 (Lead)	Small amounds of spilled paint
Post Winch	Exterior	Red	1	1	Type 1 (Lead)	Metal
	EXTGUOL	Grey	1	1	Type 1 (Lead)	Metal

DST Consulting Engineers Inc.

Environmental Program Report - Slate Islands Coast Guard Site

Table 5 Summary of Mould and Water **Impacted Materials**

Page 1 of 1

1

Patterson Island, Lake Superior, Ontario

Т

DST File No.: GV-TB-027105

Building	Floor	Recommendations	Comments
			Roof observed to be leaking at the time of site visit
	Main & Second		Water impacted materials throughout buidling
Old Fog Alarm Building		Level II (Mould)	< 10 m ² of observed mould growth throughout building on wood ceiling, walls and contents
			Concealed mould may be present
			Approx 10 m ² of water-impacted materials throughout buidling
Lighthouse	Main, Second and Third	Level II (Mould)	Approximately 2 m ² of mould growth on plywood observed on main floor
			Concealed mould may be present

Quantities and Conditions

Page 1 of 1	
-------------	--

Building	Floor	Material	Estimated Quantity	Suspected Designated Substances	Recommendations	Comments / Abatement required
		Paint Cans	4	Lead	Lead is to be disposed of in accordance with O. Reg. 347, as amended, <i>General Waste</i> <i>Management</i>	Suspected to contain lead; Not in use / abatement required
Main Dwelling	Basement (Crawl Space)	Painted Wood	2	Lead		Scattered dehris in crawl snace, nossible
		Painted Metal	2	Lead	Type 1 (Lead) Precautionay Measure and Disposed of in Accordance with O.Reg. 347, as Amended, <i>General Waste Management</i> .	hiden materials / abatement required
		T12 Light Ballast	1	РСВ	Disposal as per O. Reg. 347, as amended and Hendeling as per Transportation of Dangerous Goods Act;	Appeared in-use / abatement not required
		Light Tubes	3	Mercury	Remove for recycling or disposal as per O.Reg 490/09 09 Designated Substances.	Appeared in-use / abatement not required
		Spiral Light Bulbs	4	Mercury	as amended; and O. Reg. 347, as amended, General Waste Management	Observed in -use / abatement not required
Duplex Dwelling	Basement	Freezer	2	Halocarbons	The handling, transport and disposal of ODSs are governed by Reg. 463/10: Ozone Depleting Substances and Other	One appeared not in use; convered in debris / abatement not required
		Refrigerator	3	Halocarbons	Halocarbons, and Federal Halocarbon Regulation 2003.	Unknown as to whether in use / abatement not required
		Paint Cans	2	Lead	Lead is to be disposed of in accordance with O. Reg. 347, as amended, <i>General Waste</i> <i>Management</i>	Unknown as to whether in use / abatement not required
	Main	Thermostat	2	Mercury	Remove for recycling or disposal as per O.Reg 490/09 09 Designated Substances, as amended; and O. Reg. 347, as amended,	Unknown as to whether in use / abatement not required
		Spiral Light Bulbs	2	Mercury	General Waste Management	Observed in-use / abatement not required
		Paint Cans & Used Paint Supplies	25	Lead	Lead is to be disposed of in accordance with O. Reg. 347, as amended, <i>General Waste</i> <i>Management</i>	Unknown as to whether in use; Some observed to be waste; various locations throughout building / abatement required
Old Fog Alarm / Generator	Main	Refrigerator	1	Halocarbons	The handling, transport and disposal of ODSs are governed by Reg. 463/10: Ozone Depleting Substances and Other Halocarbons, and Federal Halocarbon Regulation 2003.	Not in use / abatement not required
		Wet lead cell battery	5	Lead	Lead is to be disposed of in accordance with O. Reg. 347, as amended, <i>General Waste</i> <i>Management</i>	Some unknown as to whether in use; some appeared in use / abatement required
New Diesel Generator	Main	Wet lead cell battery	1	Lead	Lead is to be disposed of in accordance with O. Reg. 347, as amended, <i>General Waste</i> <i>Management</i>	Appeared in-use / abatement required
		Solder on Copper Pipe	1	Lead	Copper piping solder can be cut a small distance (e.g. 50 mm) from the joints to avoid direct disturbance of the lead material;	Several hot water tanks observed to be not in use; One observed to have solder / abatement not required
		Paint Cans	12	Lead	Lead is to be disposed of in accordance with O. Reg. 347, as amended, <i>General Waste</i>	Not in use / abatement required
Former Oil	Main	Sulfuric Acid	20 Liters	Other Hazardous	Disposal as per O. Reg. 347, as amended and Hendeling as per Transportation of Dangerous Goods Act;	Container found in poor condition /abatement required
House		Refrigerator	2	Halocarbons	The handling, transport and disposal of ODSs are governed by Reg. 463/10: Ozone Depleting Substances and Other Halocarbons, and Federal Halocarbon Regulation 2003.	Appeared to be not in use / abatement not required
	Exterior	Solder on Copper Pipe	2	Lead	Copper piping solder can be cut a small distance (e.g. 50 mm) from the joints to avoid direct disturbance of the lead material;	Several lenghts of stored copper pipes / abatement required
Lighthouse	Second	Wet lead cell battery	1	Lead	Lead is to be disposed of in accordance with O. Reg. 347, as amended, <i>General Waste</i> <i>Management</i>	Appeard in-use / abatement required
Old Dwelling	Main	Refrigerator	1	Halocarbons	The handling, transport and disposal of ODSs are governed by Reg. 463/10: Ozone Depleting Substances and Other Halocarbons, and Federal Halocarbon Regulation 2003.	Unknown as to whether in use / abatement not required
Pad-Mounted Transformer	Exterior	Oil	1	PCBs	Disposal as per O. Reg. 347, as amended and Hendeling as per Transportation of Dangerous Goods Act;	Unknown as to whether in use / abatement not required
Tank Cradle	Exterior	Refrigerator	1	Halocarbons	The handling, transport and disposal of ODSs are governed by Reg. 463/10: Ozone Depleting Substances and Other Halocarbons, and Federal Halocarbon Regulation 2003.	Appeared Not in Use / abatement not required

Photographs

Photograph 1: Exterior view of Main Dwelling, facing northwest.

Photograph 2: View of the Main Dwelling's kitchen Beige floor tiles found to contain asbestos.

Photograph 3: View of paint debris along the perimeter of the Main Dwelling Building

Photograph 4: View of the Main Dwelling's basement foundation walls, painted white and found to be in poor condition.

Photograph 5: Exterior view of Duplex Dwelling, facing northwest.

Photograph 6: View of two vinyl floor types, white with brown streaks and green with white streaks, in the Duplex Dwelling found to contain asbestos.

Photograph 7: View of Old Fog Alarm / Generator Building, facing southeast.

Photograph 8: View of paint on ceiling of Old Fog Alarm / Generator Building in the Machinery Room found to be in poor condition.

Photograph 9: View of poor condition paint on ceiling with visible signs of water damage in Old Fog Alarm / Generator Building.

Photograph 10: View of poor condition paint on ceiling of second level with visible signs of water damage in Old Fog Alarm / Generator Building.

Photograph 11: View of paint debris on and suspect asbestos containing roof single debris along the perimeter of the Old Fog Alarm / Generator Building.

Photograph 12: View of paint debris on south side of the Old Fog Alarm / Generator Building.

Photograph 13: View of New Fog Alarm / Electronics building, facing southeast.

Photograph 14: View of Former Oil House, found to have exterior paint in poor condition.

Photograph 15: View of Ground-Mounted Transformer, having paint in poor condition and suspect PCB contain transformer oil.

Photograph 16: View of outhouse on Site 1, having poor condition paint and extensive signs of water damage.

Photograph 17: View of Lighthouse, found to have exterior paint in poor condition.

Photograph 18: View of debris along the base of the perimeter of the lighthouse.

Photograph 19: View of interior of Lighthouse upper level lantern, found to have paint in poor condition, paint debris on floor and signs of water damage.

Photograph 20: View of interior of Lighthouse upper level lantern ceiling, found to have paint in poor condition.

Photograph 21: Exterior view of Old Dwelling Building, facing north.

Photograph 22: View of asbestos-containing vinyl floor tiles in the kitchen of the Old Dwelling Building

Laboratory Certificates of Analysis

RELIABLE.

Certificate of Analysis

DST Consulting Engineers Inc. (Sudbury)

1351 Kelly Lake Road, Unit 4 Sudbury, ON P3E 5P5 Attn: Micheline Gervais Client PO: Project: GV TB 027105 Custody:

Report Date: 14-Sep-2016 Order Date: 13-Sep-2016

Order #: 1638075

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1638075-01	027105-OH-LP-01
1638075-02	027105-OH-LP-02
1638075-03	027105-OH-LP-03
1638075-04	027105-MD-LP-01
1638075-05	027105-MD-LP-03
1638075-06	027105-MD-LP-06
1638075-07	027105-MD-LP-08
1638075-08	027105-MD-LP-03-DUP
1638075-09	027105-LH-LP-01
1638075-10	027105-LH-LP-02
1638075-11	027105-LH-LP-03
1638075-12	027105-LH-LP-04
1638075-13	027105-LH-LP-05
1638075-14	027105-DD-LP-04
1638075-15	027105-OUTH-LP-1
1638075-16	027105-OUTH-LP-2
1638075-17	027105-HP-LP-01
1638075-18	027105-T-LP-01
1638075-19	027105-S3-LP-01
1638075-20	027105-S3-LP-02
1638075-21	027105-S3-LP-02-DUP
1638075-22	027105-WS-LP-01
1638075-23	027105-WS-LP-01-DUP
1638075-24	027105-WS-LP-03
1638075-25	027105-WS-LP-04
1638075-26	027105-WS-LP-05
1638075-27	027105-WS-LP-06
1638075-28	027105-WS-LP-07

Approved By:

lack Frat

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Project Description: GV TB 027105

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date A	nalysis Date
Metals, ICP-MS	EPA 6020 - Digestion, ICP-MS	13-Sep-16	13-Sep-16

Sample Data Revisions

None

Work Order Revisions/Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Sample Results

Lead			Sampl	Matrix: Paint e Date: 29-Aug-16
Paracel ID	Client ID	Units	MDL	Result
1638075-01	027105-OH-LP-01	ug/g	5	42400
1638075-02	027105-OH-LP-02	ug/g	5	101000
1638075-03	027105-OH-LP-03	ug/g	5	189000
1638075-04	027105-MD-LP-01	ug/g	5	93
1638075-05	027105-MD-LP-03	ug/g	5	9
1638075-06	027105-MD-LP-06	ug/g	5	174
1638075-07	027105-MD-LP-08	ug/g	5	25500
1638075-08	027105-MD-LP-03-DUP	ug/g	5	10
1638075-15	027105-OUTH-LP-1	ug/g	5	259000
1638075-16	027105-OUTH-LP-2	ug/g	5	163000
1638075-17	027105-HP-LP-01	ug/g	5	3070
1638075-18	027105-T-LP-01	ug/g	5	10400
1638075-19	027105-S3-LP-01	ug/g	5	216000
1638075-20	027105-S3-LP-02	ug/g	5	31800
1638075-21	027105-S3-LP-02-DUP	ug/g	5	26400
1638075-22	027105-WS-LP-01	ug/g	5	116000
1638075-23	027105-WS-LP-01-DUP	ug/g	5	110000
1638075-24	027105-WS-LP-03	ug/g	5	80200
1638075-25	027105-WS-LP-04	ug/g	5	1480
1638075-26	027105-WS-LP-05	ug/g	5	133000
1638075-27	027105-WS-LP-06	ug/g	5	159000
1638075-28	027105-WS-LP-07	ug/g	5	217000
Lead				Matrix: Paint
LCUU			Sampl	e Date: 30-Aug-16
Paracel ID	Client ID	Units	MDL	Result
1638075-09	027105-LH-LP-01	ug/g	5	19100
1638075-10	027105-LH-LP-02	ug/g	5	206000
1638075-11	027105-LH-LP-03	ug/g	5	19200
1638075-12	027105-LH-LP-04	ug/g	5	253000
1638075-13	027105-LH-LP-05	ug/g	5	184000
1638075-14	027105-DD-LP-04	ug/g	5	8150

Order #: 1638075

Report Date: 14-Sep-2016 Order Date: 13-Sep-2016 Project Description: GV TB 027105

Project Description: GV TB 027105

Laboratory Internal QA/QC

	F	Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Matrix Blank									
Lead	22.1	5	ug/g						
Matrix Duplicate									
Lead	ND	5	ug/g	ND			0.0	50	
Matrix Spike									
Lead	48.3		ug/L	ND	96.3	70-130			

GPARACEL		T R U S R E S F	ON S). IVE.						Hea 300 Otta p. 1	ad Offic -2319 S awa, O I-800-7	e St. Laurer htario K1 49-1947 @paracella	it Blvd. G 4J8 ibs.con	n	Cha (in of Lab Use	Custo Only)	dy
EABORATORIES ETDI			ADL	. E 1									Page of <u></u>					
Client Name: DST Consulting Engineers				Project Reference	GU-TB.	-07	71	05	-					Turnaround Time:				me:
Contact Name: Micheline Gervais				Quote #										011	Day		⊠?	3 Day
Address: 885 Regent St. Suite 3-1B				PO #													rist.	
Telephone:				Email Address:	ngerva	is@	ds	stg	roy	p.	con	L			Day		1	Regular
105-523-6680 ext, 232	211 T	10. 0.	550 101			10 /04				n 1.			10 M	Date	Requ	red:		
Criteria. []O. Reg. 133/04 (As Amended) Table _ []RSC I		JO. Reg	. 228/00		СМЕ ЦВО	B (510	rm)		nR (Sann	ary) M	unicipali	ly:			Other:		
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S	S (Storm/S	Sanitary S	ewer) P	(Paint) A (Air) O ()ther)	Rec	luire	ed A	naly	ses								
Paracel Order Number:		me	tainers	Sample	Taken	4+BTEX			ICP			trip						
1030013	rix	Volu	Con			F1-F	~		ls by		VS)	in 1						
Sample ID/Location Name	Mat	Air	# of	Date	Time	PHCs	VOC	PAHs	Metal	Hg	CrVI B (H)	lead						
1 027105-0H-LP-01 -	P			Aug 29/16	PM							\square				Г	1	
2 027105-0H-LP-02.	ρ	2	÷.	(10 VI	PM												11	
3 027105-0H-LP-03.	P	3	1	<i>U V</i>	PM							\square					JE	
4 027105-MD-LP-01	P	-		0 U	PM							$\overline{}$						
5 027105-MD-LP-03	P	4	÷	tt it	PM													
6 027105-MD-LP-06	P	x	4	0 - 0	PM												IL	
7 027105-MD-LP-08	P	ĸ	-	10 0	PM							V					JL	
8 027105-MD-LP-03-DUP	P		a	(i - 1)	pm											L	JL	
9 027105- LH-LP-01	P	- (4)		Aug 30/16	.PM												ΠĽ	
10 027105-LH-LP-02.	P	×		110 11	PM						ЭE			TL	HE		ΗE	H
Comments:															Metho	d of De	livery:	
Samples 027105-MD-LP.02;04;05;0	07' 1	eft e	out i	nterionale	y.										F	und	ktc	5
Relinquished By (Sign): Jennifi Kaim Di	Received	t by Driv	er/Depot		Receiv	Red at L	ab:	1	0	6	1		Verifie	d By:	chol	5	h	at
Relinquished By (Print): Jennifer lainville	Date/Tir	ne:			Date/	Time:	Se	0	13	TA	18	:49	Date/Ti	ime:	SP	01	3/1/	93
Date/Time: Sept. 10/16 11:00Am	Tempera	iture:	0	C	Temp	crature:		1	°C			130-6	pH Ver	ified [X	By: N	YA.		

Chain of Custody (Env) - Rev 0.7 Feb. 2016

GPARACEL		r R U S R E S P	TED	IVE.						Hea 300 Otta	ad Offi -2319 awa, C I-800-7 parace	ce St. Laurei ntario K1 49-1947 @paracell	nt Blvd. G 4J8 abs.cor	n	Cha	in of Lab Use	Cust e Only	ody)	
LABORATORILS LID.	1 (ADL	E.											Р	nge <u>2</u>	of _	3	
Client Name: DST Consultine Engineers				Project Reference:	GU-TB	- 00	27	10	5						Turi	narou	nd T	ime:	
Contact Name: Micheline Gervais				Quote #											Day		· 🕅	3 Day	y
Address: 885 Regent St. Swite 3-1B.				PO #														e	
Sudbury, ON P3E 5M4.				Email Address: 🏼	ugerva	i's (e	QQ	15+	gr	DUP	». u	m		21	Day		Koz.	Regu	lar
Telephone: 705-523-6680-ext-232.)				9					Date	Requ	ired:	-		
Criteria: O. Reg. 153/04 (As Amended) Table RSC F	iling []O. Reg	, 558/00		CCME SU	B (Sto	rm)	S	UB (Sanit	ary) N	Iunicipal	ity:			Other:			_
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS	s (Storm/S	Sanitary S	ewer) P (Paint) A (Air) O (C	Other)	Rec	laire	ed A	naly	ses									
Paracel Order Number:	rix	Volume	^c Containers	Sample	Taken	's F1-F4+BTEX	S	S	als by ICP		I	d in Paint							
Sample ID/Location Name	Ma	Air	io #	Date	Time	DHG	VOC	PAF	Met	Hg	CrV	Leo							
1 027105-LH-LP-03	P			Aug 30/16	PM														
2 027105-LH-LP-04	P			10 11	PM														
3 027105-LH-LP-05	P			ţt ti	PM.														
4 027105-DD-LP-04	P			Aug 30/16	PM														
5 027105-0UTH-LP-1	P			Aug 29/16	PM														
6 027105-0UTH-LP-2	P.			Aug 29/16	pm														
7 027105-HP-LP-01	P			Aug 29/16	PM								1L						
8 027105-T-LP-01	P			Aug 29/16	PM														
· 027105-53-LP-01	P			Aug 29/16	PM														
10 027105-53-LP-02	P			Aug 29/16	PM								1		HL	HL			
Comments:	.0.			0											Meth	od of Do	elivery:		
	100	11	-			1				_			Inc. 10	1.0	H	unc	Act	00	
Relinquished By (Sign): Jennifer Painville	Receive	a by Driv	ver/Depo	L.	Recei	R(20:	he		SI	1610	ect-	verifie	Ra Ba	chel	50	bie	t	
Relinquished By (Print): Jannifer Ranville	Date/Ti	me:			Date/	Time:	Sc	0	13	110	60	8:49	Date/1	ime:	Se	PI	34/	60	1:31
Date/Time: Sept. 10/16 11:00AM	Temper	ature:	0	С	Temp	erature:	-		°C		100	100-57	pH Ve	rified [)	{ By:	VA	12/4		

Chain of Custody (Env) - Rev 0.7 Feb. 2016

GPARACEL		T R U R E S R E L	S T E I P O N S I A B I	D. SIVE. _E.						Hea 300 Otta p. 1	ad Offi -2319 awa, C I-800-5 parace	ice St. Laurent Blvc Intario K1G 4J8 749-1947 I@paracellabs.co	I.	Ch	ain of (Lab Use	Custo e Only)	dy	
Client Name: DST C				Project Reference	0.01		-		-				-	P	age <u>5</u>	of <u>3</u>		
Contact Name: n.				Ouote #	GU-7B	-02	-7/	09	ž	_			_	Turnaround			ne:	
Address: add - Day to be 1/2 5 1/2				Quote #		_		_						Day		$\boxtimes 3$	🖾 3 Day	
\$85 Keght St Suite 3-10				PO #										D		_		
Telephone: TO San				Email Address: n	ngerva	i's@	ds	itg	rei	ųр.	Cor	n	L ²	Day		LR	egular	
Criteria: O Reg 153/04 (As Amended) Table DRC	T111	10.0					-	-					Date	e Requ	ired:	_		
- Rac	rung L	JU, Keg	g. 558/0	D Theo T c	CME []SU	B (Stor	rm)		UB (Sanit	ary) N	funicipality:	-		Other:			
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S	SS (Storm/	Sanitary S	Sewer) P	(Paint) A (Air) O (O	ther)	Req	uire	ed A	naly	/ses								
Paracel Order Number:			SIS			EX						4	1		T			
1638075	rix	Volume	Containe	Sample	Taken	F1-F4+BT			s by ICP		/S)	in lain						
Sample ID/Location Name	Mat	Air	# of	Date	Time	HCs	/OCs	AHS	Aetal:	g	I'VI	end						
1 D27105-93-LP-02-DUP	P		71-	410 28/110	PM	Π	ń											
2 A27105-WS-LP-01	P			4 11	Pn	h			H		╡╞	레글는		: =	╢┝	╬┝═		
3 027105-WS-LP-DI-DUR	P	-		L. C.	Din	H	H	님	님		╬		╞		╢┝═			
4 027105-145-18-02	0			1. ¹⁰ (i)	Por	H			님		╬							
5 022105-146 1 2-04	P			a ()	Part	붜	늼	늼	님		╬		╞					
6 DOTION WS-LP 01	0			11 11	Y W	붜	늼		님		╬		╠					
7 022/05-116-18-06	P			15 (1	PM	믬			H									
8 027105-WG-LR07	P		-	0 0	PIN	붜			님				-					
9	1				PM	H	믬				╬							
10						旧							Ļ					
Comments:											ЦĽ							
														Metho	PLIC	ivery:	20	
Relinquished By (Sign): Jennifer Kainill	Received	t by Driv	er/Depot		Receiv	ed at La	ıb:					Verifie	d By:		1.01	ora	Or	
Relinquished By (Print):	Dat-IT'					R	00	he	1	Su	ojec	t	Bay	he	15	ibie	ct	
PIT PILLER EMPYILLE	Date/Tin	10.		and the second	Date/T	ime:	5	A	13	116	2	5;49 Date/T	ime:	2nd	131	160	1:31	

Chain of Custody (Env) - Rev 0.7 Feb. 2016

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

DST Consulting Engineers Inc. (Sudbury)

1351 Kelly Lake Road, Unit 4 Sudbury, ON P3E 5P5 Attn: Micheline Gervais

Client PO: Project: GV TB 027105 Custody:

Report Date: 19-Sep-2016 Order Date: 13-Sep-2016

Order #: 1638285

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID		
1638285-01	027105-MD-01A (FT)		
1638285-02	027105-MD-01B (FT)		
1638285-03	027105-MD-01C (FT)		
1638285-04	027105-MD-01A (Mastic)		
1638285-05	027105-MD-01B (Mastic)		
1638285-06	027105-MD-01C (Mastic)		
1638285-07	027105-MD-02-A		
1638285-08	027105-MD-02-B		
1638285-09	027105-MD-02-C		
1638285-10	027105-MD-03-A		
1638285-11	027105-MD-03-B		
1638285-12	027105-MD-03-C		
1638285-13	027105-MD-03-DUP		
1638285-14	027105-MD-04-A (Compound)		
1638285-15	027105-MD-04-B (Compound)		
1638285-16	027105-MD-04-C (Compound)		
1638285-17	027105-MD-04-E (Compound)		
1638285-18	027105-MD-04-D (Compound)		
1638285-19	027105-MD-06-A		
1638285-20	027105-MD-06-B		
1638285-21	027105-MD-06-C		
1638285-22	027105-MD-07-A		
1638285-23	027105-MD-07-B		
1638285-24	027105-MD-07-C		
1638285-25	027105-MD-09-A		
1638285-26	027105-MD-09-B		
	i o	Emma Diaz	

Approved By:

Senior Analyst

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Certificate of Analysis

1638285-27

Client:	DST Consulting Engineers Inc. (Sudbury)
Client P	0:

027105-MD-09-C

Report Date: 19-Sep-2016 Order Date: 13-Sep-2016 Project Description: GV TB 027105

1638285-28	027105-MD-07-DUP
1638285-29	027105-DD-01-A (Grey DJC)
1638285-30	027105-DD-01-B (Grey DJC)
1638285-31	027105-DD-01-C (Grey DJC)
1638285-32	027105-DD-01-E (Grey DJC)
1638285-33	027105-DD-01-D (Grey DJC)
1638285-34	027105-DD-01-C (White DJC)
1638285-35	027105-DD-01-D (White DJC)
1638285-36	027105-DD-01-DUP (White DJC)
1638285-37	027105-DD-02-A (FT)
1638285-38	027105-DD-02-B (FT)
1638285-39	027105-DD-02-C (FT)
1638285-40	027105-DD-02-A (Mastic)
1638285-41	027105-DD-02-B (Mastic)
1638285-42	027105-DD-02-C (Mastic)
1638285-43	027105-DD-03-A
1638285-44	027105-DD-03-B
1638285-45	027105-DD-03-C
1638285-46	027105-DD-04-A (Mastic)
1638285-47	027105-DD-04-B (Mastic)
1638285-48	027105-DD-04-C (Mastic)
1638285-49	027105-DD-03-DUP
1638285-50	027105-DD-05-A (VFT)
1638285-51	027105-DD-05-B (VFT)
1638285-52	027105-DD-05-C (VFT)
1638285-53	027105-DD-05-A (Mastic)
1638285-54	027105-DD-05-B (Mastic)
1638285-55	027105-DD-05-C (Mastic)
1638285-56	027105-DD-07-A
1638285-57	027105-DD-07-B
1638285-58	027105-DD-07-C
1638285-59	027105-DD-09-A
1638285-60	027105-DD-09-B
1638285-61	027105-DD-09-C
1638285-62	027105-DD-09-DUP (FT)
1638285-63	027105-DD-09-DUP (Mastic)
1638285-64	027105-DD-011-A (FT)
1638285-65	027105-DD-011-B (FT)
1638285-66	027105-DD-011-C (FT)
1638285-67	027105-DD-011-A (Mastic)
1638285-68	027105-DD-011-B (Mastic)
1638285-69	027105-DD-011-C (Mastic)
1638285-70	027105-OH-01-A

Certificate of Analysis

1638285-71

Client: DST Consulting Engineers Inc. (Sudbury) Client PO:

027105-OH-01-B

Report Date: 19-Sep-2016 Order Date: 13-Sep-2016 Project Description: GV TB 027105

1638285-72	027105-OH-01-C
1638285-73	027105-OH-02-A (FT)
1638285-74	027105-OH-02-B (FT)
1638285-75	027105-OH-02-C (FT)
1638285-76	027105-OH-02-DUP (FT)
1638285-77	027105-OH-02-A (Mastic)
1638285-78	027105-OH-02-B (Mastic)
1638285-79	027105-OH-02-C (Mastic)
1638285-80	027105-OH-02-DUP (Mastic)
1638285-81	027105-OH-04-A (Caulking)
1638285-82	027105-OH-04-B (Caulking)
1638285-83	027105-OH-04-C (Caulking)
1638285-84	027105-OH-05-A (Compound)
1638285-85	027105-OH-05-B (Compound)
1638285-86	027105-OH-05-C (Compound)
1638285-87	027105-LH-01-DUP
1638285-88	027105-LH-03-A (Light Grey)
1638285-89	027105-LH-03-B (Light Grey)
1638285-90	027105-LH-03-C (Light Grey)
1638285-91	027105-LH-03-A (Dark Grey)
1638285-92	027105-LH-03-B (Dark Grey)
1638285-93	027105-LH-03-C (Dark Grey)
1638285-94	027105-LH-05-A
1638285-95	027105-LH-05-B
1638285-96	027105-LH-05-C
1638285-97	027105-LH-06-A
1638285-98	027105-LH-06-B
1638285-99	027105-LH-06-C
1638285-AA	027105-LH-03-DUP (Light Grey)
1638285-AB	027105-LH-03-DUP (Dark Grey)
1638285-AC	027105-WS-01-A (Caulking)
1638285-AD	027105-WS-01-B (Caulking)
1638285-AE	027105-WS-01-C (Caulking)
1638285-AF	027105-WS-04-A (Vinyl)
1638285-AG	027105-WS-04-B (Vinyl)
1638285-AH	027105-WS-04-C (Vinyl)
1638285-AI	027105-WS-05-A
1638285-AJ	027105-WS-05-B
1638285-AK	027105-WS-05-C
1638285-AL	027105-WS-06-A
1638285-AM	027105-WS-06-B
1638285-AN	027105-WS-06-C
1638285-AO	027105-WS-01-DUP

Certificate of Analysis

Client: DST Consulting Engineers Inc. (Sudbury) Client PO:

Report Date: 19-Sep-2016 Order Date: 13-Sep-2016 Project Description: GV TB 027105

1638285-AP	027105-S1-01-A
1638285-AQ	027105-S1-01-B
1638285-AR	027105-S1-01-C
1638285-AS	027105-S1-02-A
1638285-AT	027105-S1-02-B
1638285-AU	027105-S1-02-C
1638285-AV	027105-S1-03-A
1638285-AW	027105-S1-03-B
1638285-AX	027105-S1-03-C
1638285-AY	027105-S2-01-A
1638285-AZ	027105-S2-01-B
l638285-BA	027105-S2-01-C
1638285-BB	027105-S2-01-DUP
1638285-BC	027105-S2-02-A
l638285-BD	027105-S2-02-B
1638285-BE	027105-S2-02-C (Transite)
l638285-BF	027105-S2-02-C (Caulking)
l638285-BG	027105-S2-03-A
l638285-BH	027105-S2-03-B
l638285-BI	027105-S2-03-C
l638285-BJ	027105-S2-03-DUP
l638285-BK	027105-S3-01-A
1638285-BL	027105-S3-01-B
1638285-BM	027105-S3-01-C
1638285-BN	027105-S3-02-A
1638285-BO	027105-S3-02-B
1638285-BP	027105-S3-02-C
l638285-BQ	027105-S3-02-DUP
l638285-BR	027105-LH-01-A
1638285-BS	027105-LH-01-B
l638285-BT	027105-LH-01-C

Order #: 1638285

Report Date: 19-Sep-2016

Order Date: 13-Sep-2016

Project Description: GV TB 027105

Asbestos, PLM Visual Estimation **MDL - 0.5%**

Paracel I.D.		Sample Date	Layers Analyzed	Colour	Description	Asbestos Detected:	Material Identification	% Content
1638285-01	2	29-Aug-16	sample homogenized	Grey	Floor Tile	No	Client ID: 027105-MD-01A (FT)	[AS-PRE]
							Non-Fibers	100
1638285-02	2	29-Aug-16	sample homogenized	Grey	Floor Tile	No	Client ID: 027105-MD-01B (FT)	[AS-PRE]
							Non-Fibers	100
1638285-03	2	29-Aug-16	sample homogenized	Grey	Floor Tile	No	Client ID: 027105-MD-01C (FT)	[AS-PRE]
							Non-Fibers	100
1638285-04	2	29-Aug-16	sample homogenized	Beige	Mastic	No	Client ID: 027105-MD-01A (Mastic)	[AS-PRE]
							Non-Fibers	100
1638285-05	2	29-Aug-16	sample homogenized	Beige	Mastic	No	Client ID: 027105-MD-01B (Mastic)	[AS-PRE]
							Non-Fibers	100
1638285-06	2	29-Aug-16	sample homogenized	Beige	Mastic	No	Client ID: 027105-MD-01C (Mastic)	[AS-PRE]
							Non-Fibers	100
1638285-07	2	29-Aug-16	sample homogenized	Grey	Floor Tile	Yes	Client ID: 027105-MD-02-A	[AS-PRE]
							Chrysotile	0.79
							Non-Fibers	95.25
							Other fibers	3.96
1638285-08	2	29-Aug-16					Client ID: 027105-MD-02-B	
							not analyzed	
1638285-09	2	29-Aug-16					Client ID: 027105-MD-02-C	
							not analyzed	
1638285-10	1	29-Aug-16	sample homogenized	White	Caulking	No	Client ID: 027105-MD-03-A	[AS-PRE]
							Non-Fibers	100
1638285-11	1	29-Aug-16	sample homogenized	White	Caulking	No	Client ID: 027105-MD-03-B	[AS-PRE]
							Non-Fibers	100
1638285-12	1	29-Aug-16	sample homogenized	White	Caulking	No	Client ID: 027105-MD-03-C	[AS-PRE]
							Non-Fibers	100
1638285-13	1	29-Aug-16	sample homogenized	White	Caulking	No	Client ID: 027105-MD-03-DUP	[AS-PRE]
							Non-Fibers	100
1638285-14	1	29-Aug-16	sample homogenized	Grey	Drywall Joint Compound	Yes	Client ID: 027105-MD-04-A (Compound)	
							Chrysotile	1
							Cellulose	1
							Non-Fibers	98
1638285-15	1	29-Aug-16					Client ID: 027105-MD-04-B (Compound)	
	·						not analyzed	

Order #: 1638285

Report Date: 19-Sep-2016

Order Date: 13-Sep-2016

Project Description: GV TB 027105

Asbestos, PLM Visual Estimation *	*MDL - 0.5%**
-----------------------------------	---------------

Paracel I.D.	Sample Date	Layers Analyzed	Colour	Description	Asbestos Detected:	Material Identification	% Content
1638285-16	1 29-Aug-16					Client ID: 027105-MD-04-C (Compound)	
						not analyzed	
1638285-17	1 29-Aug-16					Client ID: 027105-MD-04-E (Compound)	
						not analyzed	
1638285-18	1 29-Aug-16					Client ID: 027105-MD-04-D (Compound)	
						not analyzed	
1638285-19	1 29-Aug-16	sample homogenized	Grey	Caulking	Yes	Client ID: 027105-MD-06-A	[AS-PRE]
						Chrysotile	0.89
						Non-Fibers	99.11
1638285-20	1 29-Aug-16					Client ID: 027105-MD-06-B	
						not analyzed	
1638285-21	1 29-Aug-16					Client ID: 027105-MD-06-C	
						not analyzed	
1638285-22	1 29-Aug-16	sample homogenized	Grey	Caulking	Yes	Client ID: 027105-MD-07-A	[AS-PRE]
						Chrysotile	0.91
						Non-Fibers	99.19
1638285-23	1 29-Aug-16					Client ID: 027105-MD-07-B	
						not analyzed	
1638285-24	1 29-Aug-16					Client ID: 027105-MD-07-C	
						not analyzed	
1638285-25	1 29-Aug-16	sample homogenized	Black	Caulking	Yes	Client ID: 027105-MD-09-A	[AS-PRE]
						Chrysotile	4.56
						Non-Fibers	95.44
1638285-26	1 29-Aug-16					Client ID: 027105-MD-09-B	
						not analyzed	
1638285-27	1 29-Aug-16					Client ID: 027105-MD-09-C	
						not analyzed	
1638285-28	1 29-Aug-16					Client ID: 027105-MD-07-DUP	
						not analyzed	
1638285-29	1 30-Aug-16	sample homogenized	Grey	Drywall Joint Compound	Yes	Client ID: 027105-DD-01-A (Grey DJC)	
						Chrysotile	1
						Cellulose	1
						Non-Fibers	98
1638285-30	1 30-Aug-16					Client ID: 027105-DD-01-B (Grey DJC)	
	-					not analvzed	

Order #: 1638285

Report Date: 19-Sep-2016

Order Date: 13-Sep-2016

Project Description: GV TB 027105

Asbestos,	PLM	Visual Estima	tion	**MDL -	0.5%**
-----------	-----	---------------	------	---------	--------

Paracel I.D.		Sample Date	Layers Analyzed	Colour	Description	Asbestos Detected:	Material Identification	% Content
1638285-31	1	30-Aug-16					Client ID: 027105-DD-01-C (Grey DJC)	
							not analyzed	
1638285-32	1	30-Aug-16					Client ID: 027105-DD-01-E (Grey DJC)	
							not analyzed	
1638285-33	1	30-Aug-16					Client ID: 027105-DD-01-D (Grey DJC)	
							not analyzed	
1638285-34	1	30-Aug-16					Client ID: 027105-DD-01-C (White DJC)	
							not analyzed	
1638285-35	1	30-Aug-16	sample homogenized	White	Drywall Joint Compound	Yes	Client ID: 027105-DD-01-D (White DJC)	
							Chrysotile	1
							Cellulose	1
							Non-Fibers	98
1638285-36	1	30-Aua-16					Client ID: 027105-DD-01-DUP (White DJC)	
	1	5					not analyzed	
1638285-37	2	30-Aug-16	sample homogenized	White	Floor Tile	Yes	Client ID: 027105-DD-02-A (FT)	[AS-PRE]
							Chrysotile	0.75
							Non-Fibers	99.25
1638285-38	2	30-Aug-16					Client ID: 027105-DD-02-B (FT)	
							not analyzed	
1638285-39	2	30-Aug-16					Client ID: 027105-DD-02-C (FT)	
							not analyzed	
1638285-40	2	30-Aug-16	sample homogenized	Black	Mastic	Yes	Client ID: 027105-DD-02-A (Mastic)	[AS-PRE]
							Chrysotile	2.35
							Non-Fibers	97.65
1638285-41	2	30-Aug-16					Client ID: 027105-DD-02-B (Mastic)	
							not analyzed	
1638285-42	2	30-Aug-16					Client ID: 027105-DD-02-C (Mastic)	
							not analyzed	
1638285-43	1	30-Aug-16	sample homogenized	White	Caulking	No	Client ID: 027105-DD-03-A	[AS-PRE]
							Non-Fibers	100
1638285-44	1	30-Aug-16	sample homogenized	White	Caulking	No	Client ID: 027105-DD-03-B	[AS-PRE]
							Non-Fibers	100
1638285-45	1	30-Aug-16	sample homogenized	White	Caulking	No	Client ID: 027105-DD-03-C	[AS-PRE]
							Non-Fibers	100

RACFL BORATORIES

Certificate of Analysis Client: DST Consulting Engineers Inc. (Sudbury) Order #: 1638285

Report Date: 19-Sep-2016

Order Date: 13-Sep-2016

% Content [AS-PRE] 0.6 99.4

> [AS-PRE] 100

[AS-PRE] 0.74 99.26

[AS-PRE] 2.22 97.78

[AS-PRE] 0.53 99.47

[AS-PRE] <MDL 100

[AS-PRE] <MDL 100

[AS-PRE]

2.22

97.78

Project Description: GV TB 027105

Client PO:		

1638285-59 2 30-Aug-16

sample homogenized

Asbesto	s,	PLM Visua	I Estimation **I	MDL - 0.5%	**		
Paracel I.D.		Sample Date	Layers Analyzed	Colour	Description	Asbestos Detected:	Material Identification
1638285-46	2	30-Aug-16	sample homogenized	Black	Mastic	Yes	Client ID: 027105-DD-04-A (Mastic)
							Chrysotile
							Non-Fibers
638285-47	2	30-Aug-16					Client ID: 027105-DD-04-B (Mastic)
							not analyzed
638285-48	2	30-Aug-16					Client ID: 027105-DD-04-C (Mastic)
							not analyzed
638285-49	1	30-Aug-16	sample homogenized	White	Caulking	No	Client ID: 027105-DD-03-DUP
							Non-Fibers
638285-50	2	30-Aug-16	sample homogenized	White	Floor Tile	Yes	Client ID: 027105-DD-05-A (VFT)
							Chrysotile
							Non-Fibers
638285-51	2	30-Aug-16					Client ID: 027105-DD-05-B (VFT)
							not analyzed
638285-52	2	30-Aug-16					Client ID: 027105-DD-05-C (VFT)
							not analyzed
638285-53	2	30-Aug-16	sample homogenized	Black	Mastic	Yes	Client ID: 027105-DD-05-A (Mastic)
							Chrysotile
							Non-Fibers
638285-54	2	30-Aug-16					Client ID: 027105-DD-05-B (Mastic)
							not analyzed
638285-55	2	30-Aug-16					Client ID: 027105-DD-05-C (Mastic)
							not analyzed
638285-56	1	30-Aug-16	sample homogenized	Grey	Caulking	No	Client ID: 027105-DD-07-A
							MMVF
							Non-Fibers
638285-57	1	30-Aug-16	sample homogenized	Grey	Caulking	No	Client ID: 027105-DD-07-B
							MMVF
							Non-Fibers
638285-58	1	30-Aug-16	sample homogenized	Grey	Caulking	No	Client ID: 027105-DD-07-C
							MMVF
							Non-Fibers

OTTAWA • CALGARY • MISSISSAUGA • KINGSTON • LONDON • NIAGARA • SARNIA 1-800-749-1947 • www.paracellabs.com Page 8 of 15

Yes

Client ID: 027105-DD-09-A

Chrysotile

Non-Fibers

Floor Tile

Green

Order #: 1638285

Report Date: 19-Sep-2016

Order Date: 13-Sep-2016

Project Description: GV TB 027105

Asbestos, PLM Visual Estimation **MDL - 0.5%**

Paracel I.D.		Sample Date	Layers Analyzed	Colour	Description	Asbestos Detected:	Material Identification	% Content
1638285-60	2	30-Aug-16					Client ID: 027105-DD-09-B	
							not analyzed	
1638285-61	2	30-Aug-16					Client ID: 027105-DD-09-C	
							not analyzed	
1638285-62	2	30-Aug-16					Client ID: 027105-DD-09-DUP (FT)	
							not analyzed	
1638285-63	2	30-Aug-16	sample homogenized	Black	Mastic	Yes	Client ID: 027105-DD-09-DUP (Mastic)	[AS-PRE]
							Chrysotile	2.45
							Non-Fibers	97.55
1638285-64	2	30-Aug-16	sample homogenized	Beige	Floor Tile	No	Client ID: 027105-DD-011-A (FT)	[AS-PRE]
	-	-		-			Non-Fibers	100
1638285-65	2	30-Aug-16	sample homogenized	Beige	Floor Tile	No	Client ID: 027105-DD-011-B (FT)	[AS_PRF]
	2	5	1 5	5			Non-Fibers	100
1638285-66	2	30-Aug-16	sample homogenized	Beige	Floor Tile	No	Client ID: 027105-DD-011-C (FT)	
	2	oo nag to	oumpie nomogemzeu	20.90			Non-Fibers	100
1638285-67	2	30-Aug-16	sample homogenized	Beige	Mastic	Yes	Client ID: 027105-DD-011-A (Mastic)	
	2	oo nag to	oumpie nomogemzeu	20.90			Chrysotile	0.61
							Non-Fibers	99.39
1638285-68	2	30-Aug-16					Client ID: 027105-DD-011-B (Mastic)	
	-	-					not analyzed	
1638285-69	2	30-Aug-16					Client ID: 027105-DD-011-C (Mastic)	
							not analyzed	
1638285-70	2	30-Aug-16	sample homogenized	Black	Shingle	No	Client ID: 027105-0H-01-A	[AS-PRE]
							Cellulose	40
							Non-Fibers	60
1638285-71	2	30-Aug-16	sample homogenized	Black	Shingle	No	Client ID: 027105-0H-01-B	[AS-PRE]
							Cellulose	40
							Non-Fibers	60
1638285-72	2	30-Aug-16	sample homogenized	Black	Shingle	No	Client ID: 027105-0H-01-C	[AS-PRE]
							Cellulose	40
							Non-Fibers	60
1638285-73	2	30-Aug-16	sample homogenized	Grey	Floor Tile	Yes	Client ID: 027105-0H-02-A (FT)	[AS-PRE]
	-	-		-			Chrysotile	2.3
							Non-Fibers	97.7

Order #: 1638285

Report Date: 19-Sep-2016

Order Date: 13-Sep-2016

Project Description: GV TB 027105

Asbestos, PLM Visual Estimation	**MDL - 0.5%**
---------------------------------	----------------

Paracel I.D.		Sample Date	Layers Analyzed	Colour	Description	Asbestos Detected:	Material Identification	% Content
1638285-74	2	30-Aug-16					Client ID: 027105-0H-02-B (FT)	
							not analyzed	
1638285-75	2	30-Aug-16					Client ID: 027105-0H-02-C (FT)	
							not analyzed	
1638285-76	2	30-Aug-16					Client ID: 027105-0H-02-DUP (FT)	
							not analyzed	
1638285-77	2	30-Aug-16	sample homogenized	Black	Mastic	No	Client ID: 027105-0H-02-A (Mastic)	[AS-PRE]
							Non-Fibers	100
1638285-78	2	30-Aug-16	sample homogenized	Black	Mastic	No	Client ID: 027105-OH-02-B (Mastic)	[AS-PRE]
							Non-Fibers	100
1638285-79	2	30-Aug-16	sample homogenized	Black	Mastic	No	Client ID: 027105-0H-02-C (Mastic)	[AS-PRE]
							Non-Fibers	100
1638285-80	2	30-Aug-16	sample homogenized	Black	Mastic	No	Client ID: 027105-0H-02-DUP (Mastic)	[AS-PRE]
							Non-Fibers	100
1638285-81	1	30-Aug-16	sample homogenized	White	Caulking	No	Client ID: 027105-0H-04-A (Caulking)	[AS-PRE]
							MMVF	<mdl< td=""></mdl<>
							Non-Fibers	100
1638285-82	1	30-Aug-16	sample homogenized	White	Caulking	No	Client ID: 027105-0H-04-B (Caulking)	[AS-PRE]
							MMVF	0.59
							Non-Fibers	99.41
1638285-83	1	30-Aug-16	sample homogenized	White	Caulking	No	Client ID: 027105-0H-04-C (Caulking)	
							MMVF	0.52
							Non-Fibers	99.48
1638285-84	1	30-Aug-16	sample homogenized	Grey	Drywall Joint Compound	Yes	Client ID: 027105-0H-05-A (Compound)	
							Chrysotile	1
							Cellulose	1
							Non-Fibers	98
1638285-85	1	30-Aug-16					Client ID: 027105-0H-05-B (Compound)	
							not analyzed	
1638285-86	1	30-Aug-16					Client ID: 027105-0H-05-C (Compound)	
							not analyzed	
1638285-87	1	30-Aug-16	sample homogenized	Red	Caulking	No	Client ID: 027105-LH-01-DUP	
							MMVF	0.58
							Non-Fibers	98.42
							Other fibers	1

Order #: 1638285

Report Date: 19-Sep-2016

Order Date: 13-Sep-2016

Project Description: GV TB 027105

Asbestos, PLM Visual Estimation **MDL - 0.5%**

Paracel I.D.		Sample Date	Layers Analyzed	Colour	Description	Asbestos Detected:	Material Identification	% Content
1638285-88	2	30-Aug-16	sample homogenized	Light Grey	Parging Cement	No	Client ID: 027105-LH-03-A (Light Grey)	
							Non-Fibers	100
1638285-89	2	30-Aug-16	sample homogenized	Light Grey	Parging Cement	No	Client ID: 027105-LH-03-B (Light Grey)	
							Non-Fibers	100
1638285-90	2	30-Aug-16	sample homogenized	Light Grey	Parging Cement	No	Client ID: 027105-LH-03-C (Light Grey)	
							Non-Fibers	100
1638285-91	2	30-Aug-16	sample homogenized	Dark Grey	Parging Cement	No	Client ID: 027105-LH-03-A (Dark Grey)	
							Non-Fibers	100
1638285-92	2	30-Aug-16	sample homogenized	Dark Grey	Parging Cement	No	Client ID: 027105-LH-03-B (Dark Grey)	
							Non-Fibers	100
1638285-93	2	30-Aug-16	sample homogenized	Dark Grey	Parging Cement	No	Client ID: 027105-LH-03-C (Dark Grey)	
							Non-Fibers	100
1638285-94	1	30-Aug-16	sample homogenized	White	Caulking	No	Client ID: 027105-LH-05-A	[AS-PRE]
							Non-Fibers	100
1638285-95	1	30-Aug-16	sample homogenized	White	Caulking	No	Client ID: 027105-LH-05-B	[AS-PRE]
							Non-Fibers	100
1638285-96	1	30-Aug-16	sample homogenized	White	Caulking	No	Client ID: 027105-LH-05-C	[AS-PRE]
							Non-Fibers	100
1638285-97	1	30-Aug-16	sample homogenized	Grey	Caulking	No	Client ID: 027105-LH-06-A	[AS-PRE]
							Cellulose	5
							Non-Fibers	95
1638285-98	1	30-Aug-16	sample homogenized	Grey	Caulking	No	Client ID: 027105-LH-06-B	[AS-PRE]
							Cellulose	5
							Non-Fibers	95
1638285-99	1	30-Aug-16	sample homogenized	Grey	Caulking	No	Client ID: 027105-LH-06-C	[AS-PRE]
							Cellulose	5
							Non-Fibers	95
1638285-AA	2	30-Aug-16	sample homogenized	Light Grey	Parging Cement	No	Client ID: 027105-LH-03-DUP (Light Grey)	
							Non-Fibers	100
1638285-AB	2	30-Aug-16	sample homogenized	Dark Grey	Parging Cement	No	Client ID: 027105-LH-03-DUP (Dark Grey)	
							Non-Fibers	100
1638285-AC	1	29-Aug-16	sample homogenized	White	Caulking	No	Client ID: 027105-WS-01-A (Caulking)	[AS-PRE]
							MMVF	0.56
							Non-Fibers	98.44
							Other fibers	1

OTTAWA • CALGARY • MISSISSAUGA • KINGSTON • LONDON • NIAGARA • SARNIA 1-800-749-1947 • www.paracellabs.com

Order #: 1638285

Report Date: 19-Sep-2016

Order Date: 13-Sep-2016

Project Description: GV TB 027105

Asbestos.	PLM	Visual Estimation	**MDL	- 0.5%**
,				

Paracel I.D.		Sample Date	Layers Analyzed	Colour	Description	Asbestos Detected:	Material Identification	% Content
1638285-AD	1	29-Aug-16	sample homogenized	White	Caulking	No	Client ID: 027105-WS-01-B (Caulking)	[AS-PRE]
							MMVF	0.57
							Non-Fibers	98.43
							Other fibers	1
1638285-AE	1	29-Aug-16	sample homogenized	White	Caulking	No	Client ID: 027105-WS-01-C (Caulking)	[AS-PRE]
							Non-Fibers	100
1638285-AF	2	29-Aug-16	sample homogenized	Grey	Vinyl Sheet Flooring	No	Client ID: 027105-WS-04-A (Vinyl)	[AS-PRE]
							Non-Fibers	100
1638285-AG	2	29-Aug-16	sample homogenized	Grey	Vinyl Sheet Flooring	No	Client ID: 027105-WS-04-B (Vinyl)	[AS-PRE]
							Non-Fibers	100
1638285-AH	2	29-Aug-16	sample homogenized	Grey	Vinyl Sheet Flooring	No	Client ID: 027105-WS-04-C (Vinyl)	[AS-PRE]
							Non-Fibers	100
1638285-Al	2	29-Aug-16	sample homogenized	Black	Shingle	Yes	Client ID: 027105-WS-05-A	[AS-PRE]
							Chrysotile	0.73
							Cellulose	39.27
							Non-Fibers	60
1638285-AJ	2	29-Aug-16					Client ID: 027105-WS-05-B	
							not analyzed	
1638285-AK	2	29-Aug-16					Client ID: 027105-WS-05-C	
							not analyzed	
1638285-AL	2	29-Aug-16	sample homogenized	Grey	Parging Cement	No	Client ID: 027105-WS-06-A	
							Non-Fibers	100
1638285-AM	2	29-Aug-16	sample homogenized	Grey	Parging Cement	No	Client ID: 027105-WS-06-B	
							Non-Fibers	100
1638285-AN	2	29-Aug-16	sample homogenized	Grey	Parging Cement	No	Client ID: 027105-WS-06-C	
							Non-Fibers	100
1638285-AO	1	29-Aug-16	sample homogenized	White	Caulking	No	Client ID: 027105-WS-01-DUP	[AS-PRE]
							MMVF	0.54
							Non-Fibers	98.46
							Other fibers	1
1638285-AP	2	29-Aug-16	sample homogenized	Grey	Transite	Yes	Client ID: 027105-S1-01-A	
							Chrysotile	20
							Non-Fibers	80
1638285-AQ	2	29-Aug-16					Client ID: 027105-S1-01-B	
	-	-					not analyzed	

OTTAWA • CALGARY • MISSISSAUGA • KINGSTON • LONDON • NIAGARA • SARNIA 1-800-749-1947 • www.paracellabs.com

Order #: 1638285

Report Date: 19-Sep-2016

Order Date: 13-Sep-2016

Project Description: GV TB 027105

Asbestos.	PLM	Visual Estimation	**MDL	- 0.5%**
,,				

Paracel I.D.		Sample Date	Layers Analyzed	Colour	Description	Asbestos Detected:	Material Identification	% Content
1638285-AR	2	29-Aug-16					Client ID: 027105-S1-01-C	
							not analyzed	
1638285-AS	2	29-Aug-16	sample homogenized	Grey	Paneling	Yes	Client ID: 027105-S1-02-A	
							Chrysotile	20
							Non-Fibers	80
1638285-AT	2	29-Aug-16					Client ID: 027105-S1-02-B	
							not analyzed	
1638285-AU	2	29-Aug-16					Client ID: 027105-S1-02-C	
							not analyzed	
1638285-AV	1	29-Aug-16	sample homogenized	Grey	Caulking	Yes	Client ID: 027105-S1-03-A	[AS-PRE]
							Chrysotile	0.52
							Non-Fibers	99.48
1638285-AW	1	29-Aug-16					Client ID: 027105-S1-03-B	
							not analyzed	
1638285-AX	1	29-Aug-16					Client ID: 027105-S1-03-C	
							not analyzed	
1638285-AY	2	29-Aug-16	sample homogenized	Grey	Paneling	Yes	Client ID: 027105-S2-01-A	
							Chrysotile	20
							Non-Fibers	80
1638285-AZ	2	29-Aug-16					Client ID: 027105-S2-01-B	
							not analyzed	
1638285-BA	2	29-Aug-16					Client ID: 027105-S2-01-C	
							not analyzed	
1638285-BB	2	29-Aug-16					Client ID: 027105-S2-01-DUP	
							not analyzed	
1638285-BC	2	29-Aug-16	sample homogenized	Grey	Transite	Yes	Client ID: 027105-S2-02-A	
							Chrysotile	20
							Non-Fibers	80
1638285-BD	2	29-Aug-16					Client ID: 027105-S2-02-B	
							not analyzed	
1638285-BE	2	29-Aug-16					Client ID: 027105-S2-02-C (Transite)	
							not analyzed	
1638285-BF	2	29-Aug-16	sample homogenized	Grey	Caulking	Yes	Client ID: 027105-S2-02-C (Caulking)	[AS-PRE]
							Chrysotile	0.52
							Non-Fibers	99.48

Order #: 1638285

Report Date: 19-Sep-2016

Order Date: 13-Sep-2016

Project Description: GV TB 027105

Client PO:

Asbestos, PLM Visual Estimation **MDL - 0.5%**

Paracel I.D.		Sample Date	Layers Analyzed	Colour	Description	Asbestos Detected:	Material Identification	% Content
1638285-BG	1	29-Aug-16	sample homogenized	Grey	Caulking	No	Client ID: 027105-S2-03-A	[AS-PRE]
							Non-Fibers	99
							Other fibers	1
1638285-BH	1	29-Aug-16	sample homogenized	Grey	Caulking	No	Client ID: 027105-S2-03-B	[AS-PRE]
							Non-Fibers	99
							Other fibers	1
1638285-Bl	1	29-Aug-16	sample homogenized	Grey	Caulking	No	Client ID: 027105-S2-03-C	[AS-PRE]
							Non-Fibers	99
							Other fibers	1
1638285-BJ	1	29-Aug-16	sample homogenized	Grey	Caulking	No	Client ID: 027105-S2-03-DUP	[AS-PRE]
							Non-Fibers	99
							Other fibers	1
1638285-BK	2	29-Aug-16	sample homogenized	Black	Shingle	No	Client ID: 027105-S3-01-A	[AS-PRE]
							Cellulose	40
							Non-Fibers	60
1638285-BL	2	29-Aug-16	sample homogenized	Black	Shingle	No	Client ID: 027105-S3-01-B	[AS-PRE]
							Cellulose	40
							Non-Fibers	60
1638285-BM	2	29-Aug-16	sample homogenized	Black	Shingle	No	Client ID: 027105-S3-01-C	[AS-PRE]
							Cellulose	40
							Non-Fibers	60
1638285-BN	2	29-Aug-16	sample homogenized	Black	Shingle	No	Client ID: 027105-S3-02-A	[AS-PRE]
							Cellulose	20
							Non-Fibers	80
1638285-BO	2	29-Aug-16	sample homogenized	Black	Shingle	No	Client ID: 027105-S3-02-B	[AS-PRE]
							Cellulose	20
							Non-Fibers	80
1638285-BP	2	29-Aug-16	sample homogenized	Black	Shingle	No	Client ID: 027105-S3-02-C	[AS-PRE]
							Cellulose	20
							Non-Fibers	80
1638285-BQ	2	29-Aug-16	sample homogenized	Black	Shingle	No	Client ID: 027105-S3-02-DUP	[AS-PRE]
							Cellulose	20
							Non-Fibers	80

Report Date: 19-Sep-2016 Order Date: 13-Sep-2016

Project Description: GV TB 027105

Asbestos, PLM Visual Estimation **MDL - 0.5%**

Paracel I.D.		Sample Date	Layers Analyzed	Colour	Description	Asbestos Detected:	Material Identification	% Content
1638285-BR	1	30-Aug-16	sample homogenized	Red	Caulking	No	Client ID: 027105-LH-01-A	[AS-PRE]
							MMVF	0.57
							Non-Fibers	98.43
							Other fibers	1
1638285-BS	1	30-Aug-16	sample homogenized	Red	Caulking	No	Client ID: 027105-LH-01-B	[AS-PRE]
							MMVF	0.58
							Non-Fibers	98.42
							Other fibers	1
1638285-BT	1	30-Aug-16	sample homogenized	Red	Caulking	No	Client ID: 027105-LH-01-C	[AS-PRE]
							MMVF	0.59
							Non-Fibers	98.41
							Other fibers	1

* MMVF: Man Made Vitreous Fibers: Fiberglass, Mineral Wool, Rockwool, Glasswool

** Analytes in bold indicate asbestos mineral content.

Analysis Summary Table

Analysis	Method Reference/Description	Lab Location	NVLAP Lab Code *	Analysis Date
Asbestos, PLM Visual Estimation	by EPA 600/R-93/116	1 - Mississauga	200863-0	19-Sep-16
Asbestos, PLM Visual Estimation	by EPA 600/R-93/116	2 - Ottawa West Lab	200812-0	19-Sep-16

* Reference to the NVLAP term does not permit the user of this report to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Qualifier Notes

Sample Qualifiers :

AS-PRE: Due to the difficult nature of the bulk sample (interfering fibers/binders), additional NOB preparation was required prior to analysis

Work Order Revisions / Comments

None

Gp	ARACEL	- F F	TRUSTI RESPOI RELIAJ	ED, NSIVE, BLE,		Head Office 300-2319 St. La Ottawa, Ontario 1-800-749-19 paracel@para	urent Blvd. K1G 4J8 47 cellabs.com		Chain of Custody (Lab Use Only)
Client Name:				Project Refer	aŋ/ŋ·				Page 1 of 9
Contact Name:				Outer	GV-TB-027105				Turnaround Time:
Adda.	Alcheline Gervais			Quote #:	16-117				nediate 1 Day
Address: 8	85 Regent Street, Suite 3-1B			PO #:					our 2 Day
S	Sudbury, ON P3E 5M4			Email Addres	s: mgervais@dstgroup.c	com		p	
Telephone: (7	705) 523-6680 ext. 231			1	jwaddell@dstgroup.cc	m		De	to Doguine de
No. ANS	and the set of the set of the set	al en de	ASBES	TOS &	MOLDANA	IVSIS		Da	
Matrix:	Air PBulk Tape Li	ft 🗌	Swah	Other	Regulatory C	uideline:			
Required A	nalvses: Microscopic Mold		urabla Ma			undenne.		<u></u>	
Paracel Order	r Number:					CM PLM	Chat	theld	_TEM
	638285 Same ID	Sampling Date	Air Volume	Analysis	Mail	A	Stop?	Bulk Is the Sample Layered?	If layered, Describe Layer(s) to be Analyzed Separately* or
1 027105- M ()	Sumple ID	Annolu	(L)	PIM	Matrix Desc	ription	(Y/N)	(Y/N)	Homogenize all **
2 027105- NO	1-01-B	Aug /		PLM	Vinyl Hourh le ligh	it grey	Y	N	FT + Mastic &
3 027105- Mr)-0[-C	Aug II		PLM	il.	10 50	Y V	N	
4 027105- 40	1-02-A	Aug (PLM	In I Anghia	ALLE LOO.	Ŷ	//	¥ 10
5 027105- MD	1-02-0	Aug		PLM	HING FIDOS FILE U	are grey	Y	<u>N</u>	
6 027105- MO	02-0	Aug		PLM	14	0	Y	N	
7 027105- MD	1-03.A	Aug II		PLM	Window Carllkine	- ullite	Ŷ	N	
8 027105- ND	-03-B	Aug ((PLM		1/	Y	N	
9 027105- MD	1-03 C	Aug 🔢		PLM	34	<u>N</u>	Y	N	
10 02/105- MD	1-03 DUP	Aug		PLM	<i>ec.</i>	11	Y	N	
11 027105- MO	2-04-A	Aug		PLM	Drywall Joint C	empound	Y	¥	Analy & compound only
12 027105 M	D-04-B	Aug II		PLM	11	0	Y	Y	11
14 027105- 04-0	0-04-0	Aug 5		PLM	11	11	Y	Y	$I_{I} = I_{I}$
15 027105-MA	104-E	Aug		PLM	12	(1	Y	4	H p
Each laver will b	-09-D	Aug		PLM				Y	14
Comments: Selinquished By (S Jenn Relinquished By (F Date Time: Send	rupe bago mistabeled as 027 Test sample laye fin: famile Received frint): Tennifer Painville	US QS at Depot:	ase report	tas ca firmed	Received at Labo	nd. Ku	Veri	fied By:	Methodraf Delivery:

Iontact Name: Micheline Gervais			Project Dafa	ança			_	1 age 01
diame. Micheline Gervais	- 10			GV-TB-027105				Turnaround Time:
			Quote #:	16-117				nediate 1 Day
885 Regent Street, Suite 3-1B			PO #:					our 2 Day
Sudbury, ON P3E 5M4			Email Addres	s: mgervais@dstgroup.	com			Gan S Day
elephone: (705) 523-6680 ext. 231				jwaddell@dstgroup.c	om		Dat	te Pequirad:
	A	SBES	TOS &	MOLD ANA	LYSIS	13000	Dal	
Iatrix: ☐Air ☑Bulk ☐Tape	Lift	Swab	Othe	Regulatory G	uideline [.]			
Required Analyses: Microscopic Mol		able Mol	d $\Box B_2$	Icteria GRAM		- Cha	6.14	
aracel Order Number:		uole Mol						IEM
11038285		Air				Aspestos -	Bulk	
10 20 201	Sampling	Volume	Analysis			Positive Ston?	Is the Sample	If layered, Describe Layer(s) to
Sample ID	Date	(L)	Required	Matrix Desc	cription	(Y/N)	Layered? (Y/N)	Homogenize all **
027105- MD-06 A	Aug 29/16		PLM	Window Coulkin	ng . G riey	Y	N	
027105- MD-06-B	Aug 11		PLM	Ч		Y	N	
027105- MD 06-C	Aug		PLM	()	4.4	Y	N	
027105- MD - 07-A	Aug ¹¹		PLM	Window coulding	- y ney	Y	N	
			P1.14		1 11	Y	1	
027105- MD 07-B	Aug		PLM	0		22.10.	N	
027105- MD 07-B	Aug 11		PLM	4	17	Ŷ	N	
027105- MD-07-B 027105- MD-07-C 027105- MD-09-A	Aug ¹¹ Aug ¹¹ Aug 11		PLM PLM PLM	" Exterior Caulki"	ng. black	Y Y	N	
027105- MD-07-B 027105- MD-07-C 027105- MD-09-A 027105- MD-09-B	Aug ¹¹ Aug ⁴¹ Aug ¹¹ Aug ¹¹		PLM PLM PLM PLM	Exterior Caulki'	ng-black	Y Y Y	N N N	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Aug II Aug II Aug II Aug II Aug II		PLM PLM PLM PLM	Exterior Caudkin	ng-black	Y Y Y Y	N N N N	
027105- MD-07-B 027105- MD-07-C 027105- MD-09-A 027105- MD-09-B 027105- MD-09-C 027105- MD-09-C 027105- MD-07-05P	Aug II		PLM PLM PLM PLM PLM PLM	Exterior Caulkin Exterior Caulkin Window Caulking	ny · black	Y Y Y Y Y	N N N N N N	white/grey A -
027105- MD-07-B 027105- MD-07-C 027105- MD-09-A 027105- MD-09-B 027105- MD-09-C 027105- MD-09-C 027105- MD-07-05P 027105- DD-01-A	Aug 11 Aug 11 Aug 11 Aug 11 Aug 11 Aug 11 Aug 1		PLM PLM PLM PLM PLM PLM PLM	Window andria Dry wall Toint	ng - black	Y Y Y Y Y Y	N N N N Y	white/greyA-
$\begin{array}{c} 027105 \ MD \ 07 \ B \\ \hline 027105 \ MD \ 07 \ C \\ 027105 \ MD \ 07 \ C \\ 027105 \ MD \ 09 \ C \\ \hline 027105 \ MD \ 09 \ C \\ \hline 027105 \ MD \ 09 \ -C \\ \hline 027105 \ MD \ 09 \ -C \\ \hline 027105 \ DD \ 01 \ -A \\ \hline 2 \ 027105 \ DD \ 01 \ -B \\ \hline 027105 \ DD \ 01 \ -B \ 027105 \ DD \ 01 \ -B \\ \hline 027105 \ DD \ 01 \ -B \ 027105 \ -B $	Aug 11		PLM PLM PLM PLM PLM PLM PLM PLM	Window and Kin Window and Kin Dry wall Joint (ng-black in gray compound	Y Y Y Y Y Y	N N N N Y	white/group A - Analyze compound only
$\begin{array}{c} 027105 MD \cdot 07 - B \\ 027105 MD - 07 - C \\ 027105 MD - 09 - A \\ 027105 MD - 09 - B \\ 027105 MD - 09 - C \\ 027105 MD - 09 - C \\ 027105 MD - 09 - C \\ 027105 DD - 01 - A \\ 2 \\ 027105 DD - 01 - B \\ 3 \\ 027105 DD - 01 - C \\ 027105 $	Aug 11 Aug 11 Aug 11 Aug 11 Aug 11 Aug 1 Aug 20///16 Aug 11		PLM PLM PLM PLM PLM PLM PLM PLM	Exterior Caulkin Exterior Caulkin Window Caulking Dry wall Joint (11 11	ng - black - gray Compoind	Y Y Y Y Y Y Y	N N N N Y Y Y	White/grey A - Anelyze compound only 11 11 11
$\begin{array}{c} 027105 \ \ MD \cdot 07 - B \\ 027105 \ \ MD \cdot 07 - C \\ 027105 \ \ MD - 09 - A \\ 027105 \ \ MD - 09 - A \\ 027105 \ \ MD - 09 - C \\ 027105 \ \ MD - 09 - C \\ 027105 \ \ MD - 07 - 00P \\ 027105 \ \ DD - 01 - A \\ 027105 \ \ DD - 01 - B \\ 1 \ 027105 \ \ DD - 01 - C \\ 027105 \$	Aug 11 Aug 11		PLM PLM PLM PLM PLM PLM PLM PLM PLM PLM	Undew andrie Window andrie Drywall Toint a 11	ng black	Y Y Y Y Y Y Y Y	N N N N N N N N N N N N N N N N N N N	Anelyze compound only 11 11 11 11 11

LABORATORIES LTD	F	RELIAI	BLE.		1-800-749-19 paracel@para	47 cellabs.com		
Client Name: DOT Consulting Environment			Project Pafer	2009/				Page <u>3</u> of <u>9</u>
Contact Name: http://www.contact.Name: http://wwww.contact.Name: http://www.contact.Name: http://www.contact.Name: http://wwwwwwww: http://wwww.contact.Name: http://www.contact.Name: http://www.co			Outed	GV-TB-027105				Turnaround Time:
Address			Quote =:	16-117				nediate 1 Day
885 Regent Street, Suite 3-1B			PO #:	_				our 2 Day
Sudbury, ON P3E 5M4			Email Addres	S: mgervais@dstgroup.com			 p	
Telephone: (705) 523-6680 ext. 231				jwaddel@dstgroup.com			Da	te Required:
The second se		ASBES	STOS &	MOLD ANALY	SIS	Sales in	Du	te requireu
Matrix: Air 🗹 Bulk 🗌 Tape Lii	t 🗌	Swab	Other	Regulatory Guide	line:			
Required Analyses: Microscopic Mold	Cultu	rable Mo	ld 🗍 Ba	cteria GRAM PCM	PI M	Cha	field	TEM
Paracel Order, Number:	_				I LIVI	chaetos		
(03828)		Air			P	Positivo	DUIK	
	Sampling	Volume	Analysis			Stop?	Is the Sample	Analyzed Separately* or
Sample ID	Date	(L)	Required	Matrix Descriptio	n	(Y/N)	(Y/N)	Homogenize all **
2 02/105 DO 01 -	Aug 30/16		PLM	Drywall Joint Com	pound	Y	1	Anotyze compound only
3 027105-00-01-4	Aug 11		PLM		1	Y	4	11 11
4 027105 - D - O - O - D - D - D - D - D - D - D	Aug II		PLM	n		Y	J	
5 027105- DD - D2 - A	Aug		PLM	Visul Moor L'Los white it has	ulla care	Y	Y AN	PT March L
6 027105- DD-02-B	Aug U		PLM	in the state of the state of the	11 II	Ŷ	N	+ + + WULLANC SK
7 027105- OD - OQ - C	Aug u		PLM	li -	11	Y	N	y he
8 027105-DD-03-A	Aug (PLM	Bathroom Caulling .	white.	Y	N	
9 027105-00-03 B	Aug (I		PLM	0	16	Y	N	
10 027105-20 444	Aug 11		PLM		.(Ŷ	N	
12 027105-0.0	Aug 11		PLM	Mastic		Y	4	-Analyze mastic only
13 027105 DD DU -C	Aug h		PLM			Y	4	
14 027105- DD - 03 - DUP	Aug II		PLM	Bullion In Akl	140	Y	7	17
15 027105- OD D5-A	Aug N		PLM	Vinal floor hle while of	- white	(Y	N	Friday 17
Each layer will be analyzed and charged separately **Homo	genize = All I	ayers are ble	nded into a sir	gle uniform sample.	giren itrai	2.	/N	FI F Mastic # 15
Comments: Sample bags mislabled as 02- OPOIF-C-HR	1107, p move	dease re	upurt as	ing submission	m.p			Method of Delivery:

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4.18

Chain of Custody

(Lab Use Only)

Constraining rule area Constraining rule area <thconstrai< th=""> Constraining rule area <t< th=""><th>lient Name: DST Consulting Engineers</th><th></th><th></th><th>Project Rafar</th><th>anca</th><th></th><th></th><th>Page $\underline{4}$ of $\underline{9}$</th></t<></thconstrai<>	lient Name: DST Consulting Engineers			Project Rafar	anca			Page $\underline{4}$ of $\underline{9}$	
Image and the derival (cold = 1 16-117 Image and the set of the	Contact Name: Micholine Contact			Ouata ri	GV-TB-027105			Turnaround Time:	
Box Marris BBD Hegent Street, Suide 3-18 P0+ If Hour ID ay Suddury, ON PSE 5M4 Email Address: mgervas@@stgrup.com ID ate Regular Texphrae: (705) 5228680 ext 231 ID ate Regular ID ate Regular Matrix: Air Tape Lift Swab Other Regularous com Matrix: Analysis Image Analyses Image Analyses Image Analyses Sample ID Date Culturable Mold Bacteria GRAM IPCM Chatfield TEM Sample ID Date Air Air Air Air Air Air Air Sample ID Date Air	Micheline Gervals			Quote #:	16-117			mediate 1 Day	
Suddury, ON P3E 5M4 Email Address: mgervas@ditproup.com prout D Day Stephine: (705) 522-6680 ext 231 inaddel@ddiptop.com Date Required: Matrix: Air SBESTOS & MOLD ANALYSIS Matrix: Air Swab Other Regularcy Guideline: Required Analyses: Microscopic Mold Culturable Mold Bacteria GRAM PCM PLM Chaffeld TEM Araced Order Number; Sample ID Date Date Regulatory Guideline: Sample ID Date Date Regulatory Guideline: Sample ID Date Air Air Air Sampling Volume Date Regularcy Guideline: Sampling Volume Air Air Air Air Air Air Sampling Volume Date Regulate Other Colspan="2">Air Air Air Air <t< td=""><td>885 Regent Street, Suite 3-1B</td><td></td><td></td><td>PO #:</td><td></td><td></td><td></td><td>lour 2 Day</td></t<>	885 Regent Street, Suite 3-1B			PO #:				lour 2 Day	
Image:	Sudbury, ON P3E 5M4			Email Addres	is: mgervais@dstgroup.com		- L bu	Day	
ASBESTOS & MOLD ANALYSIS Matrix: Air Bulk Tape Lift Swab Other Regulatory Guideline: Required Analyses: Microscopic Mold Culturable Mold Bacteria GRAM PCM Plan Chatfield TEM Astronom Colspan="2">Astronom Colspan="2">Astronom Colspan="2">Astronom Colspan="2">Astronom Colspan="2">Reguired Analyses Microscopic Mold Culturable Mold Bacteria GRAM PCM Plan Chatfield TEM Astronom Colspan="2">Astronom Colspan="2" Astronom Colspan="2">Astronom Colspan="2"	elephone: (705) 523-6680 ext. 231				jwaddell@dstgroup.com		Da	to Dequired.	
Matrix: Air Bulk Tape Lift Swab Other Regulatory Guideline: Required Analyses: Microscopic Mold Culturable Mold Bacteria GRAM PCM PLM Chatfield TEM aracel Order Number, Sampling Sampling Air Air Analysis Matrix Description Positive It layered. Describe Layer(d) to be Analysed Separately* or I Ordes DD* 05 · B Aa326/4 Puu Ningl Most Hile wild & gene data. N ATT HMShile & T Analysis I Ordes DD* 05 · C Aa Puu Ningl Most Hile wild & gene data. N ATT HMShile & T Puu Ningl Most Hile wild & gene data. N I Ordes DD* 05 · C Aa Puu Ningl Most Hile wild & gene data. N ATT HMShile & T Pui I Ordes DD · O1 · A Aa Puu Ningl Most Hile wild & gene data. N Att HMShile & Microscopic Most Hile wild & gene data. N I Ordes DD · O1 · A Aa Puu Puu Ningl Most Hile wild & gene data. N N I Ordes DD · O1 · B Aa Puu Puu	The second second		ASBES	STOS &	MOLD ANALYSIS	a contraction	Da		
Required Analyses: Microscopic Mold Culturable Mold Bacteria GRAM PCM Chatfield TEM arrect Order Number, Sampling Sampling Volume Air Asbestos - Bulk Sample ID Date (L) Prove the Analysis Matrix Description (V1X) Matrix Description (V1X) Air Au Volume Analysis Matrix Description (V1X) Matrix Description (V1X) Analyse Segarately or Analyse Segarately or OC DD D D C A Analyse Segarately or Analyse Segarately or No No Analyse Segarately or Analyse Segarately or Analyse Segarately or No No Analyse Segarately or <th colspan<="" td=""><td>Matrix: Air Bulk Tape</td><td>Lift</td><td>Swab</td><td>Other</td><td>Regulatory Guideline</td><td>100 100</td><td></td><td></td></th>	<td>Matrix: Air Bulk Tape</td> <td>Lift</td> <td>Swab</td> <td>Other</td> <td>Regulatory Guideline</td> <td>100 100</td> <td></td> <td></td>	Matrix: Air Bulk Tape	Lift	Swab	Other	Regulatory Guideline	100 100		
arrived Order Number: Contraction of the light with Order Michael Contraction of the light Mich	Required Analyses: Microscopic Mol	d Culti	rable Mo		Interia GRAM DPCM LDIM		CII F		
Asterna Air Air Sample ID Date Air Volume Analysis Matrix Description Positive Is the sample Supple Date Analysis Analysis Matrix Description Positive Is the sample 1 Other DD - D5 - B Analysis Matrix Description Positive If averet? 2 Option DD - D5 - C Analysis Positive Is the sample Image Paret 2 Option DD - D5 - C Analysis Positive Is the sample Image Paret 3 Option DD - D5 - C Analysis Positive Is the sample Image Paret 3 Option DD - D7 - C Analysis Positive Is the sample Image Paret 4 Option DD - D7 - A Analysis Positive Is the sample Image Paret 4 Option DD - D7 - C Analysis Positive Image Paret N 4 Option DD - D7 - C Analysis Positive Image Paret N 4 Option DD - D7 - C Analysis Positive Image Paret N 4 Option DD - D7 - C Analysis Positive Image Paret N 4 <td>aracel Order Number:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>IEM</td>	aracel Order Number:							IEM	
Sampling Somple IDVolume DateAnalysis RequiredMatrix DescriptionPositive Stop?In the sample Layerd?If avered, Describe Layer(s) to be Analyzed Separately* or Homogenize all **1 $acros: OD - D5 - B$ $Aa 30/16$ $Required$ Matrix Description (Y/N) (Y/N) (Y/N) $Hayzed Separately* orHomogenize all **2acros: OD - D5 - CAa - 11RewHlowit Horit Hori$	11038285		Air		P	sbestos -	Bulk		
Sample IDDate(L)RequiredMatrix Description(Y/N)Layered: (Y/N)Analyzed: Homogenize all **1 $arros: DD - D5 - B$ $hag 20/16$ PLM $Vinut Hoat Hez White & gene state, YNVITH Moatic & Epo:2arros: DD - D5 - Chag 11PLMVinut Hoat Hez White & gene state, YNVITH Moatic & Epo:3arros: DD - D7 - Bhag 11PLMVinut Hoat Hez White & gene state, YNV4arros: DD - D7 - Bhag 11PLMVinut Hoat Hez White & gene state, YN4arros: DD - D7 - Bhag 11PLMVinut Hoat Hez White & gene state, YN5arros: DD - D7 - Bhag 11PLMVinut Hoat Hez White & gene state, YN6arros: DD - D7 - Bhag 11PLMVinut Hoat Hez White & gene state, YN6arros: DD - D7 - Bhag 11PLMVinut Hoat Hez White & gene state, YN7arros: DD - D7 - Bhag 11PLMVinut Hoat Hez White & gene state, YN8arros: DD - O7 - Bhag 11PLMVinut Hoat Hez White & gene state, YN9arros: DD - O7 - Bhag 11PLMVinut Hoat Hez White & gene state, YN9arros: DD - O7 - Bhag 11PLMVinut Hoat Hez White & gene state, YN9arros: DD - O7 - Bhag 11PLMVinut Hoat Hez White & gene state, YN9arros: DD - O7 - Bhag 11$		Sampling	Volume	Analysis		Positive Stop?	Is the Sample	If layered, Describe Layer(s) to be	
1 1	Sample ID	Date	(L)	Required	Matrix Description	(Y/N)	Layered? (Y/N)	Homogenize all **	
a corrob DD DS C A.g. II PLM II PLM II VI V N a corrob DD - D7 - A A.g. II PLM Catherior Caulking - grey Y N a corrob DD - D7 - R A.g. II PLM II PLM II Y N a corrob DD - D7 - R A.g. II PLM II PLM II Y N a corrob DD - D7 - R A.g. II PLM II II Y N a corrob DD - D7 - R A.g. II PLM III III Y N a corrob DD - D7 - R A.g. II PLM III III Y N a corrob DD - D7 - R A.g. II PLM III III Y N a corrob DD - D7 - R A.g. II PLM III III Y N a corrob DD - D7 - R A.g. II PLM III III Y N a corrob DD - D7 - C A.g. II PLM III III Y N IIII a corrob DD - D7 - C A.g. II PLM	1 02/105 0 0 - 65 - 8	Aug 30/16		PLM	Viny Moor file white is goen strak	, Y	N	FT+ Mastic st if Dos	
a corros DD - DT - R Aug PLM Exterior Caulking - grey V N a corros DD - DT - R Aug PLM II PLM II V N a corros DD - DT - R Aug II PLM II III V N a corros DD - DT - R Aug II PLM II III V N a corros DD - DT - C Aug II PLM III V N a corros DD - DT - C Aug II PLM III V N a corros DD - DT - C Aug II PLM III V N a corros DD - DT - C Aug II PLM II V N a corros DD - DT - C Aug II PLM Vinul Bloor Hile - Beirg V N FT + MCOStac + T a corros DD - II - C Aug I PLM Vinul Bloor Hile - Beirg V N III a corros DD - II - C Aug PLM <td>3 027105-00 00 4</td> <td>Aug 11</td> <td></td> <td>PLM</td> <td>9</td> <td>Y</td> <td>N</td> <td>K K K</td>	3 027105-00 00 4	Aug 11		PLM	9	Y	N	K K K	
c 0.00-07-6 Aug 11 PLM 11 Y N s 027105-00-07-6 Aug 11 PLM 11 Y N s 027105-00-07-6 Aug 11 PLM 11 Y N r 027105-00-07-6 Aug 11 PLM 11 Y N r 027105-00-07-6 Aug 11 PLM 11 Y N s 027105-00-07-6 Aug 11 PLM 11 Y N s 027105-00-09-02 Aug 11 PLM 11 Y N s 027105-00-11-A Aug PLM 11 Y N FT+MCBAC s 027105-00-11-A Aug PLM Y N FT+MCBAC X s 027105-00-11-C Aug PLM Y N Y N s 027105-00-11-C Aug PLM Y N Y N s 027105-01-1 Aug PLM Y <td< td=""><td>4 027105- 00 - 67 p</td><td>Aug 11</td><td></td><td>PLM</td><td>Exterior Coulking - grey</td><td>Y</td><td>N</td><td></td></td<>	4 027105- 00 - 67 p	Aug 11		PLM	Exterior Coulking - grey	Y	N		
6 027105 00 07 Ag 11 Y N 7 027105 00 07 Ag 11 PLM Vinul Alact Alle-green is whitestraks Y N 8 027105 00 07 Ag 11 PLM 11 Y N 9 027105 00 09 Ag 11 PLM 11 Y N 9 027105 00 09 Ag 11 PLM 11 Y N 9 027105 00 09 Ag 11 PLM 11 Y N 9 027105 00 -09 Ag 11 PLM 11 Y N 10 027105 00 -11<-A	5 027105- 00-62	Aug 1		PLM		Y	N		
7 027105 DD OA Aug 11 PLM 11 Y N 8 027105 DD OA Aug 11 PLM 11 Y N 9 027105 DD OA Aug 11 PLM 11 Y N 9 027105 DD OA Aug 11 PLM 11 Y N 9 027105 DD I Aug 11 PLM 11 Y N 9 027105 DD I Aug 11 PLM 11 Y N FT + MCBStr.C.F 1 027105 DD I Aug I PLM 11 Y N FT + MCBStr.C.F 2 027105 DD I C Aug I PLM 11 Y N I 3 027105 DD I Aug I PLM 11 Y N I 3 027105 DH OL Aug <t< td=""><td>6 027105 DD 09 A</td><td>Aug</td><td></td><td>PLM</td><td></td><td>Y</td><td>N</td><td></td></t<>	6 027105 DD 09 A	Aug		PLM		Y	N		
8 027105-DD-09.C Aug 11 PLM 11 11 Y N 9 027105-DD-11-A Aug 11 PLM 11 Y N FT+MQStic Ft 1 0 027105-DD-11-A Aug 11 PLM 11 Y N FT+MQStic Ft 1 0 027105-DD-11-A Aug 11 PLM 11 Y N FT+MQStic Ft 1 0 027105-DD-11-C Aug PLM Y N FT+MQStic Ft 2 027105-DD-11-C Aug PLM Y N Y N 2 027105-DD-11-C Aug PLM Y N Y N 3 027105-DD-11-C Aug PLM Y N Y N 3 027105-DD-11-C Aug PLM Y N Y N 4 027105-D1-D B Aug PLM Y N Y N 5 027105-GH-O1-C Aug PLM Y N N	7 027105 DD 05 B	Aug IL		PLM	Vinyl-Moor Mle-green w whitestraiks	Y	N		
9 027105- DD · OG · DUP Aug ** PLM ** N 0 027105- DD · II · A Aug ** PLM ** N FT + MQSALC * 1 027105- DD · II · A Aug ** PLM ** N FT + MQSALC * 2 027105- DD · II · B Aug ** PLM ** N FT + MQSALC * 2 027105- DD · II · C Aug ** PLM ** N ** N 3 027105- DD · II · C Aug ** PLM ** N * N 4 027105- DH · DI · B Aug ** PLM ** N * N 5 027105- DH · DI · B Aug ** PLM ** N * N 5 027105- DH · DI · C Aug ** PLM ** N * N Each layer will be analyzed and charged separately **Homogenize = All layers are blended into a single uniform sample. * N * N Omments: Sample bago nuis labeled as 027107: Please teport as 027105. No · 08 · A· C', and 027105 · DO · 10 · A · C' left out intent orally Method of D	8 027105-00-09-0	Aug ()		DIM	11	Ŷ	N		
0 027105-DD-11-A Aug I PLM Vinyl Cloor hle - Beigg V N F1+MCStic A 1 027105-DD-11-B Aug I PLM I V N F1+MCStic A 2 027105-DD-11-C Aug I PLM I V N I Misstic A 3 027105-DD-11-C Aug I PLM I V N I 3 027105-DH-DI-A Aug PLM M II V N 4 027105-DH-DI-B Aug PLM PLM II V N 5 027105-OH-DI-B Aug PLM II V N III 5 027105-OH-DI-C Aug PLM III V N IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	9 027105- DD 09- DUP	Aug ^{II}		PLM	11	v	N	TT I I A	
1 027105- DO - 11 - B Aug 'I PLM II V N 2 027105- DO - 11 - C Aug 'I PLM II V N 3 027105- DH - DI - A Aug 'I PLM II V N 4 027105- OH - DI - B Aug 'I PLM II V N 5 027105- OH - DI - B Aug 'I PLM II V N 4 027105- OH - DI - B Aug 'I PLM II V N 5 027105- OH - DI - C Aug 'I PLM II V N 5 027105- OH - DI - C Aug 'I PLM II V N Each layer will be analyzed and charged separately **Homogenize = All layers are blended into a single uniform sample. V N comments: Sample bags nuis labeled as O 27107, please report as D 2710 5. So 7105 - DD - 10 - 10 - 10 - 10 - 10 - 10 - 10	0 027105- DD -11 - A	Aug (i		PLM	Vial Charlie Bain	Y	//	FITMOSTIC	
2 027105- DD - 11 - C Aug PLM 11 Y N 3 027105- DH - DI - A Aug PLM Shiragles Y N 4 027105- OH - DI - B Aug PLM PLM II Y N 5 027105- OH - DI - C Aug PLM II Y N 5 027105- OH - DI - C Aug PLM II Y N 5 027105- OH - DI - C Aug PLM II Y N 5 027105- OH - DI - C Aug PLM II Y N 6.1 Aug PLM II Y N N 6.2 027105- OH - OC Aug PLM II Y N Each layer will be analyzed and charged separately **Homogenize = All layers are blended into a single uniform sample. Y N Omments: Sample bags nuis labeled as 027107; please report as 027105. Soc 027105- DD - 06:A-C', '027105- DD - 06:A-C', '027105- DD - 06:A-C', '027105- DD - 06:A-C', '027105- DD - 10:A-C' left out intent orally PUMO (ceft etimusished By (Sign); Que to the tothe t	1 027105- DD - 11 - B	Aug		PLM	Ving Plast hie Deige	Y	N	FT Mustic X	
3 027105- DH- DI-A Aug PLM Shingles Y N 4 027105- DH- DI- DI- DI- DI- N N 5 027105- DH- DI- C Aug PLM II Y N 5 027105- DH- DI- C Aug PLM II Y N 5 027105- DH- DI- C Aug PLM II Y N 6 DI- C Aug PLM II II Y N 6 DI- C Aug PLM II II Y N 6 DI- C Aug PLM II II Y N Carinos- Barge rwill be analyzed and charged separately **Homogenize = All layers are blended into a single uniform sample. V N omments: Sample bags ruis labeled as 0.0.710.7. Please report as 0.2710.5. DO-10: A-C' left out intent orably PUMO (cetrost) etimusished By (Sion): <td>2 027105- 00-11-C</td> <td>Aug</td> <td></td> <td>PLM</td> <td>ii la</td> <td>Y</td> <td></td> <td></td>	2 027105- 00-11-C	Aug		PLM	ii la	Y			
4 027105- 0H - 01, B Aug PUM H H Y N 5 027105- 0H - 01, C Aug PUM H H Y N Each layer will be analyzed and charged separately **Homogenize = All layers are blended into a single uniform sample. Y N Comments: Sample bags nis labeled as 027107, please report as 027105. Samples '027105-00-06.4-C', '027105-00-08-A-C', and '027105-00-10-4-C' left out intent orally Method of Delivery: Plumoided at Deate Point of the option of the opt	3 027105- DH- DI-A	Aug		PLM	Spinolin	Y	N	V	
5 027105- 6H - 01 - C Each layer will be analyzed and charged separately **Homogenize = All layers are blended into a single uniform sample. Omments: Sample bags ruis labeled as 027107, please report as 027105. - Samples '027105-DD - 06.4-C', '027105-DD - 08-A-C', and '027105-DD - 10-A-C' left out intentionally PUND locate elinquished By (Sign): 0 = 5 = 4 = 0 PUND locate PUND locate	4 027105- OH - OL . B	Aug		PLM	11 II	Y	//		
Each layer will be analyzed and charged separately **Homogenize = All layers are blended into a single uniform sample. 'omments: Sample bags mis labeled as 027107; please report as 027105. - Samples '027105. DD-06:A-C', '027105-DD-08:A-C', and '027105-DD-10:A-C' left out intent crally PUMO locate elinquished By (Sign): Q = 2.1 a. Product at Dense	5 027105- 6H - 01 - C	Aug		PLM	16 IV	Y '	IV		
Comments: Sample bags nis labeled as 027107, please report as 027105. - Samples '027105. DD-06.4.C', '027105-DD-08.A.C', and '027105-DD-10.4.C' left out intentionally PUND Cetter	Each layer will be analyzed and charged separately $**Ho$	mogenize = All I	ayers are ble	nded into a sin	gle uniform sample.		N		
- Samples '027105-DD-0614-C', '027105-DD-08-A-C', and '027105-DD-10-A-C' left out intentionally PUNO locate	omments: Sample bags nis labeled as	027107.F	lease re	port as 1	007105			Method of Delivery	
elinquished By (Sign): 0 = 2 = 0	- Samples '027105-DD-04	A-C' 'D2	7105-00	02.4.0	and 'approx-DD-10:4-C' left wit is	tention	00	Den 1	
		, , , , ,	1000 100	vorne je	and dation by to are left but th	HUMANTI UNA	-y	Purolett	

Chain of Custody (Asbestos) - Rev 0 5 Jan. 2016

			and in the second s				Page <u>5</u> of <u>9</u>
Client Name: DST Consulting Engineers			Project Refer	ence: GV-TB-027105			Turnaround Time:
Contact Name: Micheline Gervais			Quote #:	16-117		Imn	nediate 🔲 1 Day
Address: 885 Regent Street, Suite 3-1B	- B		PO #:				our 2 Day
Sudbury, ON P3E 5M4			Email Addres	s: mgervais@dstgroup.com		ьн	our 3 Day
Telephone: (705) 523-6680 ext. 231				jwaddell@dstgroup.com		De	r Doquirad
		ASBES	TOS 8	MOLD ANALYSIS			
Matrix: 🗌 Air 🖉 Bulk 🗌	Tape Lift 🗌	Swab	Other	Regulatory Guideline:			
Required Analyses: Microscopi	e Mold Cultu	rable Mo	ld 🛛 Ba	cteria GRAM PCM PLM		field	TFM
Paracel Orden Number:	-				Ashestos -	Rulk	1 EM
103828		Air			Positive	Duik	If lavared Describe Lavar(a) to b
	Sampling	Volume	Analysis	that be the of the	Stop?	Is the Sample Lavered?	Analyzed Separately* or
Sample ID	Date	(L)	Required	Matrix Description	(Y/N)	(Y/N)	Homogenize all **
$\frac{1}{2} \frac{027105}{027105} + \frac{01}{04} + \frac{02}{02} + \frac{02}{04} + $	Aug 30/16		PLM	Unyl floor tile-gray is white specs	Y	N	FT+MUSTIC to
3 027105 OH - D2 - C	Aug 11		PLM		Y	N	
4 027105- 6H - 0 2 - 0100	Aug (1		PLM	11	Y	N	R. K.
5 027105- AH - OH - A	Aug		PLM	Extension of the Ali	Y	N	+ 1 tomastic A
6 027105- 0H-0Y-B	Aug 1/		PLM	11 Window Caukking - White	Y	10	Calling & how
7 027105- OH - OY C	Aug /		PLM	11	Y	N	
8 027105-04 -05 - A	Aug		PLM	Davis DD To int Composind	Y	V	N. Las con L. A.
9 027105- OH -05 - B	Aug		PLM	"	Y	Y Y	they compand only
10 027105- OH -05 - C	Aug		PLM	St. 1	Y	Y	1) 1)
11 027105 01 05 1	Aug		PLM	6 (1	Υ	1	<u>4</u>
12 027105-0H-05-E-E	Aug		PLM		Y	¥-	ц. — П
13 027105- 0H-06- A 0H-01-A	Aug 🥼		PLM	Exterior Caulking - red	Y	N	
14 02/105- 0H-06 JEB LH-01-AB	Aug		PLM		Y	N	
15 02/105- 0H- 06-26 LH-01-C	Aug		PLM	0	Y	N	
Comments: Council be analyzed and charged separatel	y **Homogenize = All	ease rep	nded into a sir	gle uniform sample. 27105-	139.00		Method of Delivery:

	- R	RUSTE ESPON ELIAB	D. ISIVE. BLE.	Head Office 300-2319 St. La Ottawa, Ontari 1-800-749-18 paracelepara	aurent Blvd. 5 K1G 4J8 947 acellabs.com		(Lab Use Only)
			D . D .				Page 6 of 9
lient Name: DST Consulting Engineers			Project Refere	nce: GV-TB-027105			Turnaround Time:
ontact Name: Micheline Gervais			Quote #:	16-117			nediate 1 Day
.ddress: 885 Regent Street, Suite 3-1B			PO #:				Dur 3 Day
Sudbury, ON P3E 5M4			Email Address	mgervais@dstgroup.com			☐ B Buy ☐ Regular
elephone: (705) 523-6680 ext. 231				jwaddell@dstgroup.com		Dat	e Required
And the second second second second		ASBES	TOS &	MOLD ANALYSIS		Build	
Matrix: Air PRulk Tane I	ift 🗌	Swah	Other	Regulatory Guideline		Carter and the	
Paguined Analyzan Microscopic Mold		rahla Mo		cteria GRAM PCM PIM	Cha	tfield	TEM
Acquired Analyses:wincloscopic Mold							
Sample ID	- Sampling Date	Air Volume (L)	Analysis Required	Matrix Description	Positive Stop?	Is the Sample Layered?	If layered, Describe Layer(s) to be Analyzed Separately* or Homogenize all **
1 027105-1 14-07-00P	Aug ZA//L	(2)	PLM	Ectediar Caulking Ped	(17.4) Y	N .	Homogenize an
2 027105-14-03-0	Aug II		PLM	Compliants Paraint -	Y	N	hight + Dark Grey
3 027105-1 H . 0.3 B	Aug U		PLM	11 The standing stand	Ŷ	N	Agint bank City
4 027105-1 H - 03 C	Aug (1		PLM	0 11	Y	N	N.
5 027105. LH - 05 A.	Aug		PLM	Interior caulking white	Y	N	
6 027105- LH -05 B	Aug		PLM		Y	N	
7 027105- LH 05 C	Aug		PLM	- N	Ŷ	N	
8 027105- LH- Ole- A	Aug		PLM	Exterior coulding - gray	Y	N	
9 027105. LH-06.B	Aug		PLM		Y	N	
10 027105- LH - Ob - C	Aug		PLM	1 <u>1</u>	Y	N	
11 027105-LH. U3 DUP	Aug II		PLM	Cementious larging	Ŷ	N	Light Gray + bar
12 027105- WS - 01 - A	Aug 29/16		PLM	Exterior window Caulking	Y V	Y	Analyze caulking only
13 02105 WS-01-B	Aug		PLM	T	v	4	11 - H
14 02/105 WS-01-C	Aug		PLM		Y.	1	
15 WS 04-A	Aug		PLM	Vinyl sheet Mooring	· · · · · · · · · · · · · · · · · · ·	N	Analyze viny only.
Comments: Sample bags mislabeled as l Samples '82765-64-02-A-C' and Rolinquished By (Sign): Jumife Ramille Receiv	027105. 027105. ed at Depot:	LH.04.	portas 4.c. lefi	O27105. + out intentionally. Received at labor	· Ver	tified By:	Method of Delivery:

18 51-072	Aug	PLM	<i>U</i> ()	Ŷ	Ý	**.
*Each layer will be analyzed and charged separately	y **Homogenize = All layer	s are blended into a sing	gle uniform sample.			* * '
Comments: Sample bags mistable	id as 027107, pi	lease report :	as 027/05.			Method of Delivery:
Samples '027105 . WS 02-A	-C'and '027105-	WS-03 A-C' le	ett out intentionalle	1.		Plucker
Relinquished By (Sign):	Received at Depot:	Contraction of the second	Received at Lab:	Ver	ified By:	1 avoice 10
Jennife Rainelle			1 the to	- I"	inter Dy.	
Relinquished By (Print): Jennifier Raunsille			1 march	and the second		
Date Time: Sept. 12/16 10:00mm	Date/Time:		Date/Time: (19/B/	9:15um	Time	
	and the second se			o l'un Dau	e/ 1 mme:	

Transite

Paneling

-

11

PLM

PLM

PLM

PLM

PLM

N

N

N

N

Y

4

XX

XX

Y

Y

Y

Chain of Custody (Asbestos) - Rev 0 5 Jan. 2016

027105- 51

027105-11

027105-12

027105-14

51

0

02-A

02-B

Aug

Aug 11

Aug

h. Aug

11 Aug

1

10

13 027105

DST Consulting Engineers							Page $\underline{\mathcal{S}}$ of $\underline{\mathcal{Q}}$
			Project Refer	ence: GV-TB-027105	9		Turnaround Time:
Contact Name: Micheline Gervais			Quote #:	16-117		Imr	nediate 🔲 1 Day
Address: 885 Regent Street, Suite 3-1B	120		PO #:				our 2 Day
Sudbury, ON P3E 5M4			Email Addres	ss: mgervais@dstgroup.com		—рн	our 3 Day
Telephone: (705) 523-6680 ext. 231				jwaddell@dstgroup.com		Da	to Desuring d
		ASBES	STOS &	MOLD ANALYSIS		Da	
Matrix: Air PBulk Tape	Lift 🗌	Swah		Regulatory Cuideline	the state of the		
Required Analyses: Microscopic Mo		rable Mo		A Regulatory Guidenne.			
Paracel Order Number:							IIEM
1038285		Air			Asbestos -	Bulk	112 a 60 ca a co co
10 50 700 7	Sampling	Volume	Analysis		Stop?	Is the Sample	If layered, Describe Layer(s) to t Analyzed Separatoly* or
Sample ID	Date	(L)	Required	Matrix Description	(Y/N)	(Y/N)	Homogenize all **
1 027105- S1-03-A	Aug 29/16	7	PLM	Caulking	Y	N	
2 027105- 27 - 12	A (D /		PLM				
2 007105 CA - 2 -	AUG 24/16	-			Y	N	
3 027105 S1-03 C 4 027105 S2 01 4	Aug 29/16	8	PLM		Y Y	N	
$\begin{array}{c} 3 & 027105 \\ \hline 4 & 027105 \\ \hline 5 & 227105 \\ \hline 5 & 227105 \\ \hline 6 & 27105 \\ \hline 6 & 27105 \\ \hline 7 & 2$	Aug 29/16 Aug 29/16 Aug 29/16		PLM PLM	Paneling	Y Y Y	NN	
$\begin{array}{c} 3 & 027105 \\ 4 & 027105 \\ 5 & 027105 \\ 5 & 027105 \\ 5 & 027105 \\ 6 & 027105 \\ 5 & 027105 \\ 6 & 027105 \\ 7 & 027105 $	Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16	*	PLM PLM PLM	Paneling Paneling	Y Y Y Y	N N N	
$\begin{array}{c} 3 & 027105 - 51 - 03 \\ 4 & 027105 - 52 - 01 - 4 \\ 5 & 027105 - 52 - 01 - 6 \\ 6 & 027105 - 52 - 01 - 6 \\ 7 & 027105 - 52 - 01 - 0 \\ 7 & 027105 - 52 - 01 - 0 \\ \end{array}$	Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16	-	PLM PLM PLM PLM	Paneling Paneling Paneling	Y Y Y Y	N N N N	
$\begin{array}{c} 3 & 027105 \cdot 51 - 03 \cdot C \\ 4 & 027105 \cdot 52 - 01 - A \\ 5 & 027105 \cdot 52 - 01 - B \\ 6 & 027105 \cdot 52 - 01 - C \\ 7 & 027105 \cdot 52 - 01 - 01 \cdot P \\ 8 & 027105 \cdot 52 - 01 - 01 \cdot P \\ \end{array}$	Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16 Aug 11	8	PLM PLM PLM PLM PLM	Paneling Paneling Paneling Paneling	Y Y Y Y Y Y	N N N N N N N N N N N N N N N N N N N	
$\begin{array}{c} 3 & 027105 - 51 - 03 \\ 4 & 027105 - 52 - 01 - 4 \\ 5 & 027105 - 52 - 01 - 6 \\ 6 & 027105 - 52 - 01 - 6 \\ 7 & 027105 - 52 - 01 - 010 \\ 8 & 027105 - 52 - 01 - 010 \\ 8 & 027105 - 52 - 01 - 010 \\ 9 & 027105 - 52 - 01 - 6 \end{array}$	Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16 Aug 11 Aug 11 Aug 11	8	PLM PLM PLM PLM PLM PLM	Paneling Paneling Paneling Tomsife	Y Y Y Y Y Y Y	N N N N N N N	
$\begin{array}{c} 3 & 027105 - 51 - 03 \\ 4 & 027105 - 52 - 01 - 4 \\ 5 & 027105 - 52 - 01 - 6 \\ 6 & 027105 - 52 - 01 - 0 \\ 7 & 027105 - 52 - 01 - 0 \\ 8 & 027105 - 52 - 01 - 0 \\ 9 & 027105 - 52 - 02 - 4 \\ 9 & 027105 - 52 - 02 - 6 \\ 10 & 027105 - 52 - 02 - 6 \\ \end{array}$	Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16 Aug 11 Aug 11 Aug 11	* * *	PLM PLM PLM PLM PLM PLM PLM PLM	Paneling Paneling Paneling Paneling Tomsife	Y Y Y Y Y Y Y Y	N N N N N N N N N N N N N N N N N N N	
$\begin{array}{c} 3 & 027105 \cdot 51 - 03 \cdot C \\ 4 & 027105 \cdot 52 - 01 - A \\ 5 & 027105 \cdot 52 - 01 - B \\ 6 & 027105 \cdot 52 - 01 - C \\ 7 & 027105 \cdot 52 - 01 - C \\ 7 & 027105 \cdot 52 - 01 - DUP \\ 8 & 027105 \cdot 52 - 02 - A \\ 9 & 027105 \cdot 52 - 02 - B \\ 10 & 027105 \cdot 52 - 02 - C \\ 11 & 027105 \cdot 52 - 03 \cdot A \end{array}$	Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16 Aug 11 Aug 11 Aug 11 Aug 11 Aug 11	2	PLM PLM PLM PLM PLM PLM PLM PLM	Paneling Paneling Paneling Pomeling Tomsife 11 11 11 11	Y Y Y Y Y Y Y Y Y	N N N N N N N N N N N N N N N N N N N	Transite + Caulki
$\begin{array}{c} 3 & 027105 \cdot 51 - 03 \ C \\ 4 & 027105 \cdot 52 - 01 - A \\ 5 & 027105 \cdot 52 - 01 - B \\ 6 & 027105 \cdot 52 - 01 - C \\ 7 & 027105 \cdot 52 - 01 - DUP \\ 8 & 027105 \cdot 52 - 02 - A \\ 9 & 027105 \cdot 52 - 02 - B \\ 10 & 027105 \cdot 52 - 02 - C \\ 11 & 027105 \cdot 52 - 02 - C \\ 11 & 027105 \cdot 52 - 03 \cdot A \\ 12 & 027105 \cdot 52 - 03 \cdot B \end{array}$	Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16 Aug 11 Aug 11 Aug 11 Aug 11 Aug 11	* * * *	PLM PLM PLM PLM PLM PLM PLM PLM	Paneling Paneling Paneling Paneling Transite 11	Y Y Y Y Y Y Y Y Y Y Y	N N N N N N N N N N	Transite + Caulki
$\begin{array}{c} 3 & 027105 \\ \hline 5 & 027105 \\ \hline 6 & 027105 \\ \hline 7 & 027105 \\ \hline$	Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16 Aug 11 Aug 11 Aug 11 Aug 11 Aug 11 Aug 11	2 2 2	PLM PLM PLM PLM PLM PLM PLM PLM	Paneling Paneling Paneling Paneling Tomsife 11 11 11 11 11 11 11 11 11 11	Y Y	N N N N N N N N N N N N N N N N N N N	Transite + Cawly
$\begin{array}{c} 3 & 027105 \\ \hline 3 & 027105 \\ \hline 5 & 01 \\ \hline 6 & 027105 \\ \hline 5 & 01 \\ \hline 7 & 027105 \\ \hline 5 & 01 \\ \hline 7 & 027105 \\ \hline 7 & 027105 \\ \hline 9 & 027105 $	Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16 Aug 11 Aug 11 Aug 11 Aug 11 Aug 11 Aug 11 Aug 11 Aug 11 Aug 11	2	PLM PLM PLM PLM PLM PLM PLM PLM	Paneling Paneling Paneling Paneling Pomiling Transite 11 11 11 11 Exterior Guilking - grey 11 11 11 11	Y Y Y Y Y Y Y Y Y Y Y Y	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Transite + Caulki
$\begin{array}{c} 3 & 027105 \\ \hline 5 & 027105 \\ \hline 6 & 027105 \\ \hline 7 & 027105 \\ \hline$	Aug 24/16 Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16 Aug 29/16 Aug 11 Aug 11 Aug 11 Aug 11 Aug 11 Aug 11 Aug 11 Aug 11 Aug 11		PLM PLM PLM PLM PLM PLM PLM PLM	Paneling Paneling Paneling Paneling Paneling Transite 11 11 11 11 Exterior Caulting - grey 11 11 11 11 11 11 Exterior Caulting - grey 11 11 11 11 11 11 Exterior Caulting - grey 11 11 11 11 Exterior Caulting - grey 11 11 11 11 Exterior Caulting - grey 11 11 11 11 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y	N N N N N N N N N N N N N N N N N N N	Transite + Caulki

Chain of Custody (Asbestos) - Rev 0 5 Jan. 2016

6	PARACEL	RACELTRUSTED,Head OfficeRESPONSIVE,300-2319 St. Laurent Blvd.Ottawa, OntarioK1G 4J81-800-749-19471-800-749-1947paracel@paracellabs.com						Chain of Custody (Lab Use Only)
Cliant Nome				In the new				Page <u>9</u> , of <u>9</u>
e nent ivanie.	DST Consulting Engineers			Project Refere	GV-TB-027105			Turnaround Time:
Contact Name:	Micheline Gervais			Quote #:	16-117			nediate 1 Day
Address:	885 Regent Street, Suite 3-1B			PO #:				our 2 Day
	Sudbury, ON P3E 5M4			Email Addres	S: maervais@dstoroup.com		-L ^{¢H}	our 3 Day
Telephone:	(705) 523-6680 ext. 231			1	ingdral@datasau com		23	Regular
10.02580.00			ODD	TOC	jwadden@dstgroup.com		Da	te Required:
			ASBES	105 0	MOLD ANALYSIS	11021		
Matrix:	LAIr Bulk LTape L	ift 📋	Swab	Other	Regulatory Guideline:			
Required	Analyses: Microscopic Mold	Cultu	rable Mo	ld 🗌 Ba	cteria GRAM PCM PLM	1 Cha	tfield	TEM
Paracel Or	rder Number:					Asbestos -	Bulk	
	Sample ID	Sampling Date	Air Volume (L)	Analysis Required	Matrix Description	Positive Stop?	Is the Sample Layered?	If layered, Describe Layer(s) to be Analyzed Separately* or Homoroniza all **
1 027105- 4	53-01-B	Aug 29/16		PLM	Shingles	(17.4) Y		Homogenize an
2 027105-5	53-01-C	Aug I'		PLM	Shirely	Y	N	
3 027105-	53-02-A	Aug (PLM	Shi reles.	Y	N	
4 027105-	53-02-B	Aug ()		PLM		Y	N	
5 027105-	53-02-C	Aug (\		PLM	(* ₁ 1	Y	N	
6 027105- 5	53-02-DUP.	Aug 🚺		PLM	14 11	Y	N	
7 027105-		Aug		PLM		Y		
8 027105-		Aug		PLM		Y		
9 027105-		Aug		PLM		Y		
10 027105		Aug		PLM		Y		
12 027105		Aug		PLM		Y		
12 027105	No	Aug		PUM		Y		
1.4 027105-		Aug		PLM		v		
15 027105-		Aug		PLM		- v		
*Fach laver w	vill he analyzed and charged senarately **Hom	Aug ogenize = All l	avere are ble	PLM nded into a ciu	ode uniform comple			
Comments: Relinquished F	Sample bags mistabled as By (Sign): nuff: Rainville By (Print): Tehniter fainville Destin	Oz 710 7 at Depot:	, please	e report	Received at abo		ified By:	Method of Pelivery:

Chain of Custody (Asbestos) - Rev 0 5 Jan. 2016

RELIABLE.

Certificate of Analysis

DST Consulting Engineers Inc. (Sudbury)

1351 Kelly Lake Road, Unit 4 Sudbury, ON P3E 5P5 Attn: Micheline Gervais

Client PO: Project: GV TS 027105 Custody:

Report Date: 1-Feb-2017 Order Date: 27-Jan-2017

Revised Report

Order #: 1704344

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 1704344-01 027105-MD-LP-02 1704344-02 027105-DD-LP-02

Approved By:

ack Fr

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Certificate of Analysis Client: DST Consulting Engineers Inc. (Sudbury) Client PO: Report Date: 01-Feb-2017 Order Date: 27-Jan-2017

Project Description: GV TS 027105

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Ana	alysis Date
Metals, ICP-OES	based on MOE E3470, ICP-OES	30-Jan-17	30-Jan-17

Sample Data Revisions

None

Work Order Revisions/Comments:

Revision 1 - This report includes updated client Sample ID's.

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Certificate of Analysis Client: DST Consulting Engineers Inc. (Sudbury) Client PO:

Sample Results

Lead			Sampl	Matrix: Paint e Date: 29-Aug-16
Paracel ID	Client ID	Units	MDL	Result
1704344-01	027105-MD-LP-02	ug/g	20	194
1704344-02	027105-DD-LP-02	ug/g	20	<20

Laboratory Internal QA/QC

	F	Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Matrix Blank									
Lead	ND	20	ug/g						
Matrix Duplicate									
Lead	222	20	ug/g	183			19.2	30	
Matrix Spike									
Lead	314		ug/L	91.4	88.8	70-130			

							17(043	44												
GPARACEL		T R U S R E S F R E L I	STED PONS IABL	IVE. E.							1-800 parac	0-749 celep	I-1947 Paracell	labs.c	orr	and the second	Cha (I	in of .ab Us	Cus e Oni	itody y)	
Client Name:				Project Reference					-						_		Pa	ge <u>1</u>	of		
Contact Name:				Ouote #	6-11-1	5-1	Yé	27	11)5	5	_			4	1	Turn	arou	nd]	Гime	:
Address: A La A La A La A	~	[h. (Л	PO #					_						╞		ay		1	_ 3 D	ay
205 kogent 51. Surlo 3 10 500	ON)	thru	J	Email Address:]2 D	ay		Ī	Re	gular
Telephone: 705 562 -2486	0.0			maer	Jabo	o d	51	91	00	ep),(0	\sim		E	Date	Requi	red:			
Criteria: 0. Reg. 153/04 (As Amended) Table RSC F	iling []O. Reg	. 558/00	PWQ0	CCME SU	B (Sto	(mn		UB (Sanit	tary)	Mu	nicipal	ity:		197		Other			
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS	(Storm/S	Sanitary S	ewen P	Paint) A (Air) O	Other)	Rec	quir	ed A	naly	ses	_										
Paracel Order Number:			s			X								T-	Т		<u> </u>	Т	Т		
1704344	rix	Volume	Container	Sample	e Taken	5 F1-F4+BTI	s		Is by ICP			WS)	top to								
Sample ID/Location Name	Mat	Air	# of	Date	Time	PHCs	VOC	PAHS	Metal	Ηβ	CrVI	B (H)	3°C								
1 027105-MD-LP2/kam	9		1										V	E				T	11		
2 027105 - DD - LP2/Bogen	TP		1										V								
3																		L			
4																		L			
5																					
6														IL][[
7													Ц					L			
8								Ц					Ц	L	1			L	1		
9							Ц	Ш					Ц	ļĻ	1	Ц		L	1		
10 Samples taker	N A	uc	29	th as	prr		Ш	Ш										L			
Michelin	e-	RS	-														Metho	f of De	livery		
Relinquished By (Sign)	Receive	d by Driv	er/Depot		Receiv	red at L	ab:	1	Su	he	t	-		Verif	fied B	iy: Ri	ich	el	di v	in	art
Relinquished By (Print). Miche Mc Cervais	Date/Tit	ne:	10		Date/1	Time:	D	an	2	4	T	1.		Date	/Time	1 1	D	an	2	27	T
Date/Time: Jan 26/17	Tempera	sture:	0(2	Temp	erature:		19/13	°C			8:	45	pH V	erifie	d [X]	By: k	SIL	-	l	2158

Chain of Custody (Env) - Rev 0.7 Feb. 2016

RELIABLE.

Certificate of Analysis

DST Consulting Engineers Inc. (Sudbury)

1351 Kelly Lake Road, Unit 4 Sudbury, ON P3E 5P5 Attn: Jonathan Waddell Client PO: Project: GV TB 027105 Custody:

Report Date: 1-Feb-2017 Order Date: 1-Feb-2017

Revised Report

Order #: 1705200

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 1705200-01 027105-MD-LP-09 1705200-02 027105-DD-LP-05 1705200-03 027105-OH-LP-04

1705200-04 027105-MD-LP-07 1705200-05 027105-DD-LP-01 1705200-06 027105-DD-LP-03 1705200-07 027105-Diesel-LP-01

Approved By:

ack Fr

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Certificate of Analysis Client: DST Consulting Engineers Inc. (Sudbury) Client PO:

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Anal	ysis Date
Metals, ICP-OES	based on MOE E3470, ICP-OES	1-Feb-17	1-Feb-17

Sample Data Revisions

None

Work Order Revisions/Comments:

Revision 1 - This report includes an updated client Sample ID.

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Certificate of Analysis Client: DST Consulting Engineers Inc. (Sudbury) Client PO:

Sample Results

Lead			Sampl	Matrix: Paint e Date: 29-Aug-16
Paracel ID	Client ID	Units	MDL	Result
1705200-01	027105-MD-LP-09	ug/g	20	380
1705200-04	027105-MD-LP-07	ug/g	20	94300
1705200-07	027105-Diesel-LP-01	ug/g	20	472
				Matrix: Daint
Lead			Sampl	e Date: 30-Aug-16
Lead Paracel ID	Client ID	Units	Sampl MDL	e Date: 30-Aug-16 Result
Lead Paracel ID 1705200-02	Client ID 027105-DD-LP-05	Units ug/g	Sampl MDL 20	e Date: 30-Aug-16 Result 24
Lead Paracel ID 1705200-02 1705200-03	Client ID 027105-DD-LP-05 027105-OH-LP-04	Units ug/g ug/g	Sampl MDL 20 20	e Date: 30-Aug-16 Result 24 552
Lead Paracel ID 1705200-02 1705200-03 1705200-05	Client ID 027105-DD-LP-05 027105-OH-LP-04 027105-DD-LP-01	Units ug/g ug/g ug/g	Sampl MDL 20 20 20	Result 24 552 1030

Laboratory Internal QA/QC

Analyte	F Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Matrix Blank									
Lead	ND	20	ug/g						
Matrix Duplicate									
Lead	594	20	ug/g	591			0.5	30	
Matrix Spike									
Lead	511		ug/L	296	86.3	70-130			

Client N Contact Address	GPARACEL TRUSTED. RESPONSIVE. 1-800-749-1947 RESPONSIVE. 9 paracellabs.com RELIABLE. www.paracellabs.com ient Name: DST Consulting Engineers JOST Consulting Engineers Project Reference: Guote # Quote # Idress: 885 Regent Street, Suite 3-1 B Sudbury, Ontario, P3E 5M4 PO # Temail Address: jwaddell@dstgroup.com										s.corr n	TAT: Date R	Chai (I. Paı Regu 2 Da equired:	n of (ab Use ge <u>1</u> llar y	Only) of 1 3 D	dy ay ay					
1 elephone: 705-523 6680 x232 Criteria: O. Reg. 153/04 (As Amended) Table RSC Filing O. Reg. 558/00 PWQO CCME SUB (Storm) SUB (Sanitary) Municipality: Other:										114											
Matrix 7	ype: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS el Order Number:	S (Storm/S	Sanitary Se	Containers	Paint) A (Air) O (Sample	Other)	F1-F4+BTEX	luire	d A	s by ICP	ses		/S)	d Paint					Τ	Τ	
	Sample ID/Location Name	Matr	Air V	Jo #	Date	Time	PHCs	VOCs	PAHs	Metals	Hg	CrVI	B (HW	Lea							
1	027105-MD-LP-09	Р			Aug 29 2016									1					JC		5
2	027105-DD-LP-03	Ρ			Aug 30 2016									1					JC][]
3	027105-OH-LP-04	Р			Aug 30 2016									1][
4	027105-MD-LP-07	Р			Aug 29 2016									۷][
5	027105-DD-LP-01	Р			Aug 30 2016									1					JC][ב
6	027105-DD-LP-03	Р			Aug 30 2016									4					IC][רב
7	027105-Diesel-LP-01	Р			Aug 29 2016									1][
8][
9][[
10][
Relinqui	shed By (Sign)	Received	d by Driv	et/Depot	:	Receiv	ed at 1		2V	1	110	1	11	<u> </u>	Verified Date/Ti	By:	PL Che	l of Del		40	Y
Date/Tin	10: JAN 31 2017	Tempera	sture:	0	Ċ	Tempe	rature:	000	-	°C	-	8:	50	2a	pH Veri	fied [A	By:	74	-	10:	53.

Paracel ID: 1705200

Chain of Custody (Env) - Rev 0.6 Jan. 2015

Appendix C

Soil Sampling Investigation

Figures

	TE	Consu 885 REGEN SUDBL L (705) 523-6 WWW	Iting IT STI JRY, C 6680 J.dstg	engineers REET, UNIT 3-18 DN, P3E 5M4 FAX (705) 523 roup.com	3 -6690
2 Bart	LEGEND:				
	👖 SH	IALLOW S	OIL		
	🔀 co	BBLES AI	ND G	RAVEL	
THE K	💋 BE	DROCK			
	🗌 ст	RUCTURE	E		
	🔲 DL	IMP SITE I	_0C/	TION	
	NOTE: 1. TWO O MIXED	R MORE MATER SURFACE COND	IAL TYP ITIONS	ES ARE OYERLAPPI	NG TO INDICATE
		0/00/47			
	0	3/29/17 8/12/16		FINAL DRAFT	CS
	REV	DATE		ISSUE	APPROVAL
	PROJECT 1 ENVIR SLAT	IITLE ONMENTA E ISLAND PATTER LAKE S	AL PI O CO RSON SUPE	ROGRAM RE AST GUARD N ISLAND, RIOR, ON	PORT - SITE
	DRAWING	TITLE			
30 m		CS-1 SURF	(MA ICIA	AIN SITE) AL COVER	
	DESIGNED) BY		SCALE	
ALE	DRAWN B	JW		As St	nown
	APPROVE	JR D BY		PROJECT NO.	:
	FIGURE NO	<u>CS</u>).		GV-TB-	027105
DEPENDENCES OF		F	IGU	KE IZ	

NOTES:

- All tabulated soil concentration units are ug/g.
 Site specific target level (SSTL) for the protection of human health (HH) and ecological (ECO) receptors derived from DST Consulting Engineers Inc. (March 2005) Site Specific Risk Assessment, Canadian Coast Guard Station L.L. 1111, Slate Island, Lake Superior, Ontario.
- 3. "NV" means no value for that parameter was presented in the associated standard/guidance document
- 4. Soil parameter concentrations in (parentheses) indicates field duplicate concentration.

APPROXIMATE SCALE

15

30

	ті	consu 885 REGEN SUDBI EL (705) 523-6 WWW	Iting NT STI JRY, C 5680 v.dstg	engineers REET, UNIT 3-1B DN, P3E 5M4 FAX (705) 523-66 roup.com	90									
	LEGEND	<u>:</u>												
	Δ	nalyzed para	meter	s meet all applicab	le									
1995	g O	uidelines (CC	ME, N excee	AOE, SSTL) ds 2005 SSTI										
		cromotor con	oontro	tion overede conc	ario.									
hul -	g c	uidelines or p oncentrations	reviou (para	mon exceeds gene is maximum meter indicated)	anc									
	<mark>о</mark> с	Concentration eachate Qua	meets lity Cri	Reg. 347, Scheo teria.	lule 4:									
Mar Ha		oncentration	excee uality	eds Reg. 347 , Scl Criteria.	nedule									
	⊞ s	oil sample lo	cation											
	Δ	pproximate lo	ocatior	n of debris pile										
9		stimated exte	ents of	contaminated soil										
7. C. C. C.		stimated exte	ents of	leachate hazardo	us soil									
		listorical cont	amina	ted soil delineatior	n (DST									
	 Estimated extents of leachate hazardous soil Historical contaminated soil delineation (DST 2005) <u>NOTES:</u> Exceedances of CCME pH guidelines not shown on this figure Soil parameter results based on laboratory analysis. Dashed line indicates impacts not delineated 													
	2005) NOTES: 1. Exceedances of CCME pH guidelines not shown on this figure 2. Soil parameter results based on laboratory analysis. 3. Dashed line indicates impacts not delineated 1 3/29/17 1 3/29/17													
	1	2/20/17												
S.C.S.S.	0	8/12/16			CS CS									
	REV	DATE		ISSUE	APPROVAL									
	PROJECT	TITLE												
	ENVI SLA	RONMENT TE ISLANI PATTEI LAKE S	AL P D CO RSON SUPE	ROGRAM REP(AST GUARD S N ISLAND, RIOR, ON	ORT, ITE									
	DRAWING	TITLE												
	SOII C	MAIN SAMPLI ONTAMI	I SIT NG NAT	™E (CS-1) LOCATIONS ION EXTEN	AND rs									
	DESIGNE	D BY:		SCALE:	 wn									
m	DRAWN E	SY:			2017									
					2017									
		CS		GV-TB-02	7105									
	DRAWING TITLE MAIN SITE (CS-1) SOIL SAMPLING LOCATIONS AND CONTAMINATION EXTENTS DESIGNED BY: SCALE: JW As Shown DRAWN BY: DATE: JR MARCH 2017 APPROVED BY: PROJECT NO.: CS GV-TB-027105 FIGURE NO.: FIGURE 13													

LEGEND:

- Analyzed parameters meet all applicable guidelines (CCME, MOE, SSTL)
- Concentration exceeds 2005 SSTL
- Parameter concentration exceeds generic guidelines or previous maximum concentrations (parameter indicated)
- Concentration meets Reg. 347, Schedule 4: 0 Leachate Quality Criteria.
- Concentration exceeds Reg. 347, Schedule Ο 4: Leachate Quality Criteria.
- Ħ Soil sample location
- Approximate location of debris pile
- Estimated extents of contaminated soil exceeding 2005 SSTLs
- Estimated extents of leachate hazardous soil
- Historical contaminated soil delineation (DST 2005)

NOTES:

1. Exceedances of CCME pH guidelines not shown on this figure 2. Soil parameter results based on laboratory analysis.

1	3/29/17	FINAL	CS
0	8/12/16	FINAL	CS
REV	DATE	ISSUE	APPROVAL
DD 0 15 OT 7			

PROJECT TITLE

ENVIRONMENTAL PROGRAM REPORT, SLATE ISLAND COAST GUARD SITE PATTERSON ISLAND, LAKE SUPERIOR, ON

DRAWING TITLE

LIGHTHOUSE (CS-2) SOIL SAMPLING LOCATIONS AND CONTAMINATION EXTENTS

DESIGNED BY:	SCALE:
JW	As Shown
DRAWN BY:	DATE:
JR	MARCH 2017
APPROVED BY:	PROJECT NO.:
CS	GV-TB-027105
FIGURE NO.: FIGU	JRE 14

- 3. "NV" means no value for that parameter was presented in the associated standard/guidance document.
- 4. Soil parameter concentrations in (parentheses) indicates field duplicate concentration.

Tables

Table 7 Sample Log

		Horizontal C	oordinates ⁽¹⁾	a	Dete	Commis		XRF lead	Description at
Site Location	Sampling ID	Easting	Northing	Correction Factor	Date Sampled	Depth (m)	CVC (ppm)	reading	sampling
CS-1 Main Site	CS1-1	5385272.95	500290.66	60 cm	31-Aug-16	0.05	<5	(ppm) (-) 663	B
CS-1 Main Site	CS1-2	5385274.27	500295.83	74 cm	31-Aug-16	0.10	<5	205	A
CS-1 Main Site	CS1-3	5385295.50	500335.29	79 cm	31-Aug-16	0.05	<5	812	A
CS-1 Main Site	CS1-4	5385280.45	500299.45	72 cm	31-Aug-16	0.10	<5	NA ⁽⁴⁾	В
CS-1 Main Site	CS1-5	5385262.77	500268.70 500343.40	58 cm	31-Aug-16	0.10	<5	593	B
CS-1 Main Site	CS1-0	5385268.11	500292.03	1.5 m	31-Aug-16	0.10	<5	265	A
CS-1 Main Site	CS1-8	5385276.99	500278.05	81 cm	31-Aug-16	0.10	<5	NA	В
CS-1 Main Site	CS1-9	5285281.85	500310.35	89 cm	31-Aug-16	0.10	<5	NA	В
CS-1 Main Site	CS1-10	5385288.58	500287.26	59 cm	31-Aug-16	0.10	<5	53610	B
CS-1 Main Site	CS1-11 CS1-12	5385285.58	500340.24	1.5 m	31-Aug-16	0.05	<5	NA	B
CS-1 Main Site	CS1-13	5385274.16	500299.71	1.1 m	31-Aug-16	0.12	<5	NA	В
CS-1 Main Site	CS1-14	5385294.69	500207.17	58 cm	31-Aug-16	0.05	<5	NA	A
CS-1 Main Site	CS1-15	5385288.51	500195.43	1.8 m	31-Aug-16	0.10	<5	NA 248	A
CS-1 Main Site	CS1-16 CS1-17	5385297.85	500310.45	73 cm	31-Aug-16 31-Aug-16	0.10	<5	NA	B
CS-1 Main Site	CS1-18	5385282.66	500201.96	1.1 m	31-Aug-16	0.10	<5	NA	А
CS-1 Main Site	CS1-19	5385257.61	500283.97	74 cm	31-Aug-16	0.03	<5	30500	A
CS-1 Main Site	CS1-20	5385279.33	500223.22	58 cm	31-Aug-16	0.10	<5	NA	В
CS-1 Main Site	CS1-21	5385285.77	500265.57	1.9 m	31-Aug-16	0.15	<5	NA	A
CS-1 Main Site	CS1-22 CS1-23	5385278.21	500209.71	58 cm	31-Aug-16	0.02	<5	NA	B
CS-1 Main Site	CS1-24	5385272.46	500264.66	74 cm	31-Aug-16	0.10	<5	213	B
CS-1 Main Site	CS1-25	5385276.83	500253.51	74 cm	31-Aug-16	0.10	<5	69	В
CS-1 Main Site	CS1-26	5385255.05	500266.99	1.1 m	13-Oct-16	0.10	NA	NA	В
CS-1 Main Site	CS1-27	5385255.70 5385265 91	500283.35 500314 24	6.5 m	13-Oct-16	0.10	NA NA	NA 585	A A
CS-1 Main Site	CS1-20	5385293.33	500362.29	1.4 m	13-Oct-16	0.10	NA	NA	A
CS-1 Main Site	CS1-30	5385310.00	500378.00	3 m	13-Oct-16	0.10	NA	82	В
CS-1 Main Site	CS1-31	5385296.00	500321.00	3 m	13-Oct-16	0.10	NA	24	В
CS-1 Main Site	CS1-32	5385292.46	500287.74	3 m	13-Oct-16	0.10	NA	75	В
CS-1 Main Site	CS1-33 CS1-34	5385326.74	500173.98	73 cm	13-Oct-16	0.10	NA	NA	В
CS-1 Main Site	CS1-35	5385306.61	500218.73	71 cm	13-Oct-16	0.10	NA	NA	B
CS-1 Main Site	CS1-36	5385294.18	500195.72	1.1 m	13-Oct-16	0.10	NA	46	A
CS-1 Main Site	CS1-37	5385298.61	500198.49	1.8 m	13-Oct-16	0.10	NA	NA	A
CS-1 Main Site	CS1-38	5385304.40	500223.19	1.4 m	13-Oct-16	0.10	NA NA	NA NA	A
CS-1 Main Site	CS1-39 CS1-40	5385277.93	500214.92	70 cm	13-Oct-16	0.10	NA	34	B
CS-1 Main Site	CS1-41	5385260.33	500247.43	6.3 m	13-Oct-16	0.10	NA	6	В
CS-1 Main Site	CS1-42	5385301.40	500336.50	NA	13-Oct-16	0.10	NA	NA	В
CS-1 Main Site	CS1-43	5385289.00	500331.00	3 m	13-Oct-16	0.10	NA	NA	В
CS-1 Main Site	CS1-44 CS1-45	5385307.00	500356.24	1.0 III 3 m	13-Oct-16	0.10	NA	44 NA	B
CS-1 Main Site	CS1-46	5385316.00	500214.00	3 m	13-Oct-16	0.10	NA	NA	B
East Dump	East Dump	5385295.95	500324.69	3 m	13-Oct-16	0.10	NA	NA	В
West Dump	West Dump	5385314.16	500189.12	1.8 m	31-Aug-16	0.10	NA	NA	В
CS-2 Lighthouse Area	CS2-1	5385436.08 5385442.85	500282.79 500310.81	55 cm 74 cm	31-Aug-16	0.05	NA NA	NA 4020	C C
CS-2 Lighthouse Area	CS2-2 CS2-3	5385441.03	500310.01	46 cm	31-Aug-16	0.05	NA	9408	c
CS-2 Lighthouse Area	CS2-4	5385444.79	500295.94	1.1 m	31-Aug-16	0.10	NA	140	С
CS-2 Lighthouse Area	CS2-5	5385435.66	500318.65	68 cm	31-Aug-16	0.05	NA	2782	С
CS-2 Lighthouse Area	CS2-6	5385446.60	500307.53	1.8 m	31-Aug-16	0.05	NA	2760	С
CS-2 Lighthouse Area	CS2-7 CS2-8	5385434.97	500291.51	1.1 m 1.0 m	31-Aug-16	0.05	NA	NA 1072	C
CS-2 Lighthouse Area	CS2-9	5385438.39	500313.45	1.9 m	31-Aug-16	0.05	NA	5392	C
CS-2 Lighthouse Area	CS2-10	53855436.97	500327.67	2 m	31-Aug-16	0.05	NA	2531	С
CS-2 Lighthouse Area	CS2-11	5385445.50	500318.20	1.5 m	31-Aug-16	0.05	NA	3223	С
CS-2 Lighthouse Area	CS2-12	53855458.79 5385400.00	500279.57	1 m 4 m	13-Oct-16	0.10	<5	NA	B
CS-2 Lighthouse Area	CS2-13 CS2-14	5385411.00	500327.00	5 m	13-Oct-16	0.10	<5	98	B
CS-2 Lighthouse Area	CS2-15	5385470.00	500323.00	7 m	13-Oct-16	0.10	<5	43	В
CS-2 Lighthouse Area	CS2-16	5385473.07	500289.16	64 cm	13-Oct-16	0.10	<5	NA	В
CS-2 Lighthouse Area	CS2-17	5385455.00	500289.00	3 m	13-Oct-16	0.10	<5	105	С
CS-2 Lighthouse Area	CS2-18 CS2-19	5385424 00	500259.00 500369.00	4 m 4 m	13-Oct-16	0.10	<> <5	NA NA	B
CS-2 Lighthouse Area	CS2-20	5385444.45	500321.13	5.7 m	13-Oct-16	0.10	<5	2919	c
CS-2 Lighthouse Area	CS2-21	53855437.09	500307.02	1.2 m	13-Oct-16	0.10	<5	1113	С
CS-2 Lighthouse Area	CS2-22	5385452.85	500280.22	1.1 m	13-Oct-16	0.10	<5	199	С
CS-3 Old Dwelling Site	CS3-1	5385640.20	500380.10	1.2 m	31-Aug-16	0.10	<5	283	D
CS-3 Old Dwelling Site	CS3-2	5385656.60	500395.10	2.2 m	31-Aug-16 31-Aug-16	0.10	<5	35	D
CS-3 Old Dwelling Site	CS3-4	5385659.12	500393.27	1.9 m	31-Aug-16	0.10	<5	NA	D
CS-3 Old Dwelling Site	CS3-5	5385658.66	500392.33	1.2 m	31-Aug-16	0.10	<5	NA	D
CS-3 Old Dwelling Site	CS3-6	5385654.89	500382.27	90 cm	31-Aug-16	0.10	<5	203	D
CS-3 Old Dwelling Site	CS3-7 CS3-8	5385637 48	500391.53 500378 60	90 cm 67 cm	31-Aug-16 31-Aug-16	0.10	<5 <5	351	B
CS-3 Old Dwelling Site	CS3-9	5385640.55	500394.08	1.5 m	31-Aug-16	0.10	<5	185	D
CS-3 Old Dwelling Site	CS3-10	5385649.06	500378.42	5 m	31-Aug-16	0.10	<5	221	D
CS-3 Old Dwelling Site	CS3-11	5385662.65	500375.02	1.1 m	13-Oct-16	0.10	<5	NA	D
CS-3 Old Dwelling Site	CS3-12	5385675.00	500391.00	10 m	13-Oct-16	0.10	<5	51	B
CS-3 Old Dwelling Site	CS3-13 CS3-14	5385651.75	500407.00	9 m 1.6 m	13-Oct-16	0.10	<5	59	
CS-3 Old Dwelling Site	CS3-15	5385648.53	500409.02	6.7 m	13-Oct-16	0.10	<5	71	D
CS-3 Old Dwelling Site	CS3-16	5385640.00	500400.00	8 m	13-Oct-16	0.10	<5	110	В
CS-3 Old Dwelling Site	CS3-17	5385631.00	500386.00	4 m	13-Oct-16	0.10	<5	97	В
CS-3 Old Dwelling Site	CS3-18	5385639.00	500361 00	6 M 3 m	13-Oct-16	0.10	<5	101	B
CS-3 Old Dwelling Site	CS3-20	5385651.73	500372.13	1.1 m	13-Oct-16	0.10	<5	NA	B
CS-3 Old Dwelling Site	CS3-21	5385618.00	500393.00	3 m	13-Oct-16	0.10	<5	NA	В
CS-3 Old Dwelling Site	CS3-22	5385631.00	500390.00	4 m	13-Oct-16	0.10	<5	130	D

Notes:

1) Horizontal coordinates provided in Canadian Spatial Referencing System (CSRS) North American Datum 1983 (NAD83) Universal Transverse Mercator (UTM) Zone 17 (North).

2) "ppm" means parts per million.

3) Soil Description:

A = coarse-textured gravel aNA cobbles, with dark brown, organic-rich topsoil, shallow aNA discontiunous B = Organic Litter, Fibric aNA Humus (LFH) horizons. UNAerlying the LFH horizons, mineral soils were fouNA to have a coarse saNAy loam texture with some gravel

C = Discontinuous saNAy gravel with some cobbles in low-lying patches on the rugged bedrock surface.

D = Medium to coarse grained saNA with some gravel.

4) "NA" means no data available.

Table 8 **Soil Analytical Results** CS-1 Main Site

					Sample Location										CS-1 Main Site									
					Sample ID	C\$1-1	C\$1-2	CS1-3	CS1-4	C\$1-5	C\$10-5	C\$1-6	CS1-7	CS1-8	CS1-9	C\$10-9	CS1-10	CS1-11	CS1-12	C\$1-13	CS1-14	C\$1-15	C\$1-16	C\$1-17
					Date	21 Aug 16	21 Aug 16	21 Aug 16	21 Aug 16	21 Aug 16	21 Aug 16	21 Aug 16	21 Aug 16	21 Aug 16	21 Aug 16	21 Aug 16	21 Aug 16	21 Aug 16	21 Aug 16	21 Aug 16	21 Aug 16	21 Aug 16	21 Aug 16	21 Aug 16
					(1)	51-Aug-10	51-Aug-10	51-Aug-10	51-Aug-10	51-Aug-10	51-Aug-10	51-Aug-10	51-Aug-10	51-Aug-10	51-Aug-10	SI-Aug-10	51-Aug-10	51-Aug-10	51-Aug-10	51-Aug-10	51-Aug-10	51-Aug-10	51-Aug-10	51-Aug-10
				XRF Lea	d Reading (ppm ^(±))	663	205	812	ND (2)	593	593	111	265	ND	ND	ND	53610	1760	NA ⁽³⁾	NA	NA	NA	248	NA
	r	1	<u>т т</u>	г – т	Sample Depth (m)	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Parameter	Units	CCME Residential (4)	MOE Table 1 ⁽⁵⁾	SSTL _{HH} ⁽⁶⁾	SSTL _{ECO} (6)						Field Duplicate of					Field Duplicate of								
Potroloum Hudrocarbons		1									CS1-5					CS1-9					I			
	ug/g	30	25	450 (8) (9)	NIV (7)	<20	<10	-	<10	<10	<10	<10	<10	<10	<50	<10	<30	<20	<20	-	I _		_	_
E1 (C6 C10) PTEX	με/ε	30	25	450	NV NIV	<20	<10	-	<10	<10	<10	<10	<10	<10	<50	<40	<30	<20	<20	-	-	-	-	-
F2 (C10 C16)	με/ε	150	10	430 F 4 000 ⁽⁹⁾	NV	14	<10	-	<10	<10	12	<10	<10	<10	< <u>50</u>	120	20	<20 69	19	-	-	-	-	-
F2 (C16-C16)	μg/g	200	240	7 200 ⁽⁹⁾	NV NV	14	04	-	<10	~10	100	~10	180	<10	30	1 100	29	2 200	100	-	-	-	-	-
F3 (C10-C34) F4 (C34-C50)	με/ε	2 800	120	7,200 NV	NV	160	50	-	<50	<50	100 <50	<50	100	<50	<100	270	76	1 300	190	-		-		-
Reached Baseline at C50	με/ε με/ε	2,800 NV	-	NV	NV	NO	YES	-	YES	YES	YES	YES	NO	YES	YES	YES	YES	YES	NO	-	-	-	-	-
F4G (Gravimetric)	μg/g	2,800	120	NV	NV	180	-	-	-	-	-	-	150	-	-	-	-	-	<100	-	-	-	-	-
VOC							•																	
Benzene	µg/g	0.030	0.02	NV	NV	<u>0.039</u>	0.03	-	<0.0060	<u>0.071</u>	<u>0.084</u>	<0.0060	0.014	<0.0060	< 0.030	<0.024	<0.018	<u>0.27</u>	<u>0.041</u>	-	-	-	-	-
Ethylbenzene	µg/g	0.082	0.05	NV	NV	0.089	0.033	-	<0.010	<u>0.094</u>	0.059	<0.010	0.02	<0.010	<0.050	<0.040	<0.030	0.053	0.044	-	-	-	-	-
Toluene	µg/g	0.37	0.2	NV	NV	0.27	0.15	-	<0.020	0.35	0.29	<0.020	0.076	<0.020	<0.10	<0.080	<0.060	0.15	0.21	-	-	-	-	-
p+m-Xylene	<u>μg/g</u>	NV	NV	NV	NV	0.33	0.14	-	<0.020	0.44	0.23	<0.020	0.088	<0.020	<0.10	0.11	<0.060	0.15	0.21	-	-	-	-	-
Total Xvlenes	на/а Ца/а	11	0,05	NV	NV	0.54	0,24	-	<0.020	0.37	0.42	<0.020	0.15	<0.020	<0.10	0.11	<0.000	0.2	0.050	-	-	-	-	-
Polycyclic Aromatic Hydrocarbons (PAHs)	F-6/ 0		1								0.12										1			
Acenaphthene	µg/g	0.28	0.072	NV	NV	< 0.05	< 0.05	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.1	<0.1	<0.1	< 0.05	<0.05	-	-	-	-	-
Acenaphthylene	µg/g	320	0.093	NV	NV	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.1	<0.1	<0.05	<u>0.09</u>	-	-	-	-	-
Anthracene	μg/g	2.5	0.16	NV	NV	< 0.05	< 0.05	-	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.1	<0.1	<0.1	< 0.05	< 0.05	-	-	-	-	-
Benzo(a)anthracene	μg/g	1	0.36	NV NV	NV	0.05	0.24	-	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.1	<0.1	<0.1	< 0.05	0.14	-	-	-	-	-
Benzo(a)pyrene	μg/g	0.6	0.3	NV NV	NV NV	0.06	0.25	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.1	<0.1	<0.05	0.13	-	-	-	-	-
Benzo(g h i)pervlene	με/ε με/ε	NV	0.47	NV	NV	0.09	0.30	-	<0.03	<0.03	<0.05	<0.03	0.03	<0.05	<0.1	<0.1	<0.1	0.08	0.23		-	-	-	-
Benzo(k)fluoranthene	μg/g	1	0.48	NV	NV	< 0.05	0.12	-	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.1	<0.1	<0.1	< 0.05	0.07	-	-	-	-	-
Chrysene	μg/g	6.2	2.8	NV	NV	0.08	0.24	-	<0.05	<0.05	< 0.05	< 0.05	0.06	<0.05	<0.1	<0.1	<0.1	<0.05	0.15	-	-	-	-	-
Dibenz(a,h)anthracene	µg/g	1	0.1	NV	NV	< 0.05	< 0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.1	<0.1	<0.05	<0.05	-	-	-	-	-
Fluoranthene	µg/g	15.4	0.56	NV	NV	0.15	0.39	-	<0.05	<0.05	<0.05	<0.05	0.08	<0.05	<0.1	<0.1	<0.1	< 0.05	0.24	-	-	-	-	-
Fluorene	μg/g	0.25	0.12	NV	NV	< 0.05	< 0.05	-	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.1	<0.1	<0.1	< 0.05	< 0.05	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	<u>μg/g</u>	1	0.23	NV	NV	0.06	0.19	-	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.1	<0.1	<0.1	<0.05	0.14	-	-	-	-	-
2-Methylnaphthalene	ug/g	NV	0.59	NV	NV	0.22	0.06	-	<0.05	0.07	<0.05	<0.05	0.12	<0.05	<0.1	<0.1	<0.1	0.84	0.07	-	-	-	-	-
1+2-Methylnaphthalene	μg/g	NV	0.59	NV	NV	0.35	<0.071	-	< 0.071	<0.071	<0.071	<0.071	0.21	< 0.071	<0.14	<0.14	<0.14	1.2	0.071					
Naphthalene	µg/g	0.013	0.09	3.2 ⁽⁹⁾	3.2 ⁽⁹⁾	0.11	< 0.05	-	< 0.05	0.05	< 0.05	< 0.05	0.06	<0.05	<0.1	<0.1	<0.1	0.37	<0.05	-	-	-	-	-
Phenanthrene	µg/g	0.046	0.69	NV	NV	<u>0.14</u>	0.13	-	<0.05	<0.05	< 0.05	<0.05	0.09	< 0.05	<0.1	<u><0.1</u>	<0.1	<u>0.3</u>	0.05	-	-	-	-	-
Pyrene	µg/g	7.7	1	NV	NV	0.17	0.33	-	<0.05	<0.05	<0.05	<0.05	0.08	<0.05	<0.1	<0.1	<0.1	0.33	0.2	-	-	-	-	-
Benzo(a)pyrene Total Potency Equivalents	µg/g	5.3	NV	NV	NV	0.106	0.370	-	0.061	0.061	0.063	0.061	0.068	0.061	0.121	0.121	0.121	0.066	0.218	-	-	-	-	-
Metals Acid Extractable Antimony (Sh)		20	1.2	NIV/	NIV	26	67	15	0.24	10	1.0	1.2	2.1	0.47	0.24	<0.20	E 90	74	1 5	0.24	0.52	0.42	1.0	0.27
Acid Extractable Arsenic (As)	με/ε με/ε	12	1.3	NV	NV	6.4	6.6	13	11	6.7	6.9	5.9	7.1	3.3	13	<1.0	14	21	5.3	4.5	7.5	3.3	5.3	2.9
Acid Extractable Barium (Ba)	μg/g	500	220	1.480 ⁽⁹⁾	1,480 ⁽⁹⁾	250	350	540	240	240	240	140	310	48	200	190	400	2,600	290	110	180	140	190	300
Acid Extractable Beryllium (Be)	μg/g	4	2.5	NV	NV	0.66	1.5	<0.20	<0.20	0.37	0.35	0.24	0.58	<0.20	<0.20	<0.20	<2.0	0.44	<0.20	0.43	0.31	<0.20	0.85	<0.20
Acid Extractable Cadmium (Cd)	μg/g	10	1.2	NV	NV	1.8	5.3	<u>160</u>	0.27	1.6	1.7	0.54	3.4	0.32	1	0.6	1.6	<u>63</u>	<u>14</u>	0.72	0.86	1	1.2	0.96
Acid Extractable Chromium (Cr)	µg/g	64	70	149 ⁽⁹⁾	149 ⁽⁹⁾	39	49	74	16	56	48	53	70	21	8.8	5.9	23	<u>380</u>	37	34	53	8.7	17	21
Acid Extractable Cobalt (Co)	µg/g	50	21	NV	NV	11	13	17	5.4	26	25	16	16	14	3.4	2.3	4.5	47	14	10	14	2	8.8	5.2
Acid Extractable Copper (Cu)	µg/g	63	92	744 ⁽⁹⁾	744 ⁽⁹⁾	94	170	<u>3,100</u>	20	120	120	92	210	31	23	19	50	<u>2,300</u>	74	110	36	29	160	26
Acid Extractable Lead (Pb)	µg/g	140	120	425	425	<u>890</u>	<u>860</u>	<u>2,200</u>	91	<u>910</u>	<u>650</u>	290	<u>1,600</u>	76	62	36	<u>47,000</u>	<u>14,000</u>	<u>1,300</u>	34	120	53	<u>640</u>	220
Acid Extractable Molybdenum (Mo)	μg/g	10	2	NV (9)	NV (9)	1.2	1.5	6.3	0.56	1.6	1.2	0.69	1.9	0.55	<0.50	<0.50	<u><5.0</u>	<u>38</u>	1.4	1.7	1.1	1	1.9	0.81
Acid Extractable Nickel (Ni)	µg/g	45	82	111 (9)	111 (9)	28	37	87	12	86	80	42	51	50	9.4	6.4	18	<u>120</u>	29	28	32	7	19	14
Acid Extractable Selenium (Se)	μg/g	1	1.5	NV	NV	0.95	<u>1.5</u>	0.95	<0.50	1	0.89	0.8	<u>1.4</u>	<0.50	0.56	<0.50	<5.0	1	0.89	<u>1.7</u>	0.78	0.94	1.2	0.89
Acid Extractable Sliver (Ag) Acid Extractable Thallium (TI)	μg/g μg/g	1	0.5	NV NV	NV NV	0.20	0.26	0.32	0.071	0.25	0.24	<0.20 0.054	0.29	<0.20	0.064	0.053	<u><2.0</u> <0.50	8 1.7	<0.20 0.26	0.26	0.097	0.085	0.19	0.085
Acid Extractable Uranium (U)	μg/g	23	2.5	NV	NV	0.61	0.87	0.33	0.81	1.5	1.4	0.4	0.65	0.23	0.13	0.12	<0.50	0.85	0.32	1.7	0.49	0.45	0.63	0.28
Acid Extractable Vanadium (V)	μg/g	130	86	151 ⁽⁹⁾	151 ⁽⁹⁾	61	47	16	29	95	87	35	54	19	11	6.9	<50	49	41	66	44	8.1	25	22
Acid Extractable Zinc (Zn)	μg/g	200	290	NV	615	860	<u>750</u>	7,100	150	1,000	<u>1,100</u>	86	<u>1,100</u>	110	400	350	250	14,000	<u>2,400</u>	85	150	190	830	130
Miscellaneous												-												
Available (CaCl2) pH	рН	6 - 8	NV	NV	NV	6.82	7.02	5.83	6	5.66	5.56	6.3	7.17	5.82	5.04	<u>5.49</u>	5.07	6.7	5.47	4.7	4.68	<u>4.83</u>	5.64	<u>3.9</u>

Notes

1) "ppm" means parts per million.

2) "ND" means not detected.

3) "NA" means no field parameter reading was taken at that sample location 4) CCME guidelines were derived from the following, for residential land use:

- For PHCs - CCME (2008), Canada Wide Standard for Petroleum Hydrocarbons in Soil - Technical Supplement ; Table 3: Tier 1 levels for coarse grained surface soils. Guideline values are the most stringent of all pathways excluding the protection of potable groundwater.

- For VOCs - CCME (1999, as revised), Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health ; Coarse Soil. Guideline for 10⁻⁵ incremental lifetime cancer risk was used for benzene guideline.

- For PAHs - CCME (2010), Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health, Polycyclic Aromatic Hydrocarbons; Table 2: Soil Quality Guidelines for Carcinogenic and Other PAHs. Includes the lowest value of all pathways except potable water.

- Includes Interim Soil Quality Criteria and provisional values.

- Benzo(a) pyrene Total Potency Equivalent derived from the carcinogenic effects of PAHs, based on 1 x 10⁻⁵ incremental lifetime cancer risk. Where input values are less than the reported detection limit, half the detection limit is used in calculation.

- For Inorganics - CCME (1999, as revised), Canadian Soil Quality Guidelines, Soil Guidelines for the Protection of Environment and Human Health ; Coarse Soil.

5) Values obtained from MOE (2011) Soils, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act; Table 1: Full Depth Background Site Condition Standards; Coarse-grained Soil, Residential Property Use.

6) Site specific target level (SSTL) for the protection of human health (HH) and ecological (ECO) receptors derived from DST Consulting Engineers Inc. (March 2005) Site Specific Risk Assessment, Canadian Coast Guard Station L.L. 1111, Slate Island, Lake Superior, Ontario.

7) "NV" means no value for that parameter was presented in the associated standard/guidance document.
 8) The standard or guideline values that are considered "applicable" to this investigation (i.e. SSTLs, CCME guidelines or MOE standards) are indicated by red typeface.

9) Value represents previous maximum concentration measured at the Site, and considered to be no risk to receptors; not a calculated SSTL (DST, 2005).

10) Concentrations that exceed the applicable guidelines are illustrated by bold, underlined and red typeface

11) If applicable, where the laboratory detection limit is greater than the applicable guideline, it is indicated by *italic and underlined typeface*.

Table 8 **Soil Analytical Results** CS-1 Main Site

					Sample Location										CS-1 Main Site									
					Sample ID	CS1-18	CS1-19	CS1-20	CS1-21	CS1-22	C\$1-23	CS10-23	CS1-24	CS1-25	CS1-26	C\$1-27	CS1-28	CS1-29	CS1-30	C\$1-31	CS1-32	C\$1-33	C\$1-34	C\$1-35
					Date	31-Aug-16	31-Aug-16	31-Aug-16	31-Aug-16	31-Aug-16	31-Aug-16	31-Aug-16	31-Aug-16	31-Aug-16	13-Oct-16	12-Oct-16	13-Oct-16	13-Oct-16	13-Oct-16	13-Oct-16	13-Oct-16	13-Oct-16	13-Oct-16	13-Oct-16
				XRF Lea	ad Reading (ppm ⁽¹⁾)	NA ⁽³⁾	30500	NA	NA	NA	NA	ND (2)	213	69	ND	NA	585	ND	82	24	75	32	ND	ND
					Sample Depth (m)	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Parameter	Units	CCME Residential (4)	MOE Table 1 (5)	SSTL _{HH} ⁽⁶⁾	SSTL _{ECO} ⁽⁶⁾							Field Duplicate of CS1-23												
Petroleum Hydrocarbons	u	u	I							1														7
F1 (C6-C10)	ug/g	30	25	450 (8) (9)	NV ⁽⁷⁾	-	-	-	-	<70	-		-	-	-	-	-	-	-	-	-	-	-	44
F1 (C6-C10) - BTEX	ug/g	30	25	450 ⁽⁹⁾	NV	-	-	-	-	<70	-	-	-	-	-	-	-	-	-	-	-	-	-	44
E2 (C10-C16)	ug/g	150	10	54 000 ⁽⁹⁾	NV	-	-	-	-	250	-	-	-	-	-	-	-	-	-	-	-	-	-	<10
E3 (C16-C34)	µg/g	300	240	7 200 ⁽⁹⁾	NV	-	-	-	-	2.100	-	-	-	-	-	-	-	-	-	-	-	-	-	<50
F4 (C34-C50)	не/е	2.800	120	NV	NV	-	-	-	-	<100	-	-	-	-	-	-	-	-	-	-	-	-	-	<50
Reached Baseline at C50	μg/g	-	-	NV	NV	-	-	-	-	YES	-	-	-	-	-	-	-	-	-	-	-	-	-	YES
F4G (Gravimetric)	µg/g	2,800	120	NV	NV	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
voc				•						•														
Benzene	µg/g	0.030	0.02	NV	NV	-	-	-	-	<u><0.042</u>	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.040
Ethylbenzene	μg/g	0.082	0.05	NV	NV	-	-	-	-	0.35	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.040
I oluene	μg/g	0.37	0.2	NV	NV	-	-	-	-	0.25	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.040
p+m-Xylene	μg/g	NV NV	NV	NV NV	NV	-	-	-	-	1.6	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.080
Total Xylenes	με/s	11	0.05	NV	NV	-	-	-	-	2.1	-	-	-	-	-		-	-	-	-	-	-	-	<0.040
Polycyclic Aromatic Hydrocarbons (PAHs)	1 PD/D		0.00																					
Acenaphthene	μg/g	0.28	0.072	NV	NV	-	-	-	-	<0.1	-	- 1	-	-	-	-	-	-	-	-	-	-	-	<0.0050
Acenaphthylene	µg/g	320	0.093	NV	NV	-	-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.0050
Anthracene	µg/g	2.5	0.16	NV	NV	-	-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.0050
Benzo(a)anthracene	µg/g	1	0.36	NV	NV	-	-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0050
Benzo(a)pyrene	µg/g	0.6	0.3	NV	NV	-	-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0050
Benzo(b/j)fluoranthene	μg/g	1	0.47	NV	NV	-	-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.0050
Benzo(g,h,i)perylene	μg/g	NA 1	0.68	NV NV	NV NV	-	-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0050
	μg/g	62	2.8	INV NV	IN V NV	-	-	-		<0.1		-			-		-	-	-	-	-	-	-	<0.0050
Dibenz(a.h)anthracene	<u>µв/в</u> цg/g	1	0.1	NV	NV	-	-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.0050
Fluoranthene	μg/g	15.4	0.56	NV	NV	-	-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.0050
Fluorene	µg/g	0.25	0.12	NV	NV	-	-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.0050
Indeno(1,2,3-cd)pyrene	µg/g	1	0.23	NV	NV	-	-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.0050
1-Methylnaphthalene	µg/g	NV	0.59	NV	NV	-	-	-	-	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0050
2-Methylnaphthalene	µg/g	NV	0.59	NV	NV	-	-	-	-	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0050
1+2-Methylnaphthalene	μg/g	NV	0.59	NV (0)	NV (9)	-	-	-	-	0.37	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0050
Naphthalene	µg/g	0.013	0.09	3.2 (3)	3.2 (5)	-	-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0050
Phenanthrene	µg/g	0.046	0.69	NV	NV	-	-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0050
Pyrene Benzo(a)pyrene Total Potency Equivalents	μg/g	7.7	1	INV NV	NV NV	-	-	-	-	0.4	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0050
Metals	μ6/5	3.3	INV	INV	INV	-		-		0.121			-									-	-	0.000
Acid Extractable Antimony (Sb)	ug/g	20	1.3	NV	NV	0.24	3.3	0.38	0.42	0.35	0.31	0.33	<0.20	<0.20	0.41	2.5	2.9	0.57	3.7	0.45	0.47	0.39	0.56	<0.20
Acid Extractable Arsenic (As)	μg/g	12	18	NV	NV	4.9	7.2	21	2.9	3.5	7.1	9	4.6	2	7.3	4.3	13	2.9	4.8	4.9	7.4	5.3	9.2	2.2
Acid Extractable Barium (Ba)	µg/g	500	220	1,480 ⁽⁹⁾	1,480 ⁽⁹⁾	180	1100	340	110	200	95	100	120	67	240	140	170	22	140	140	270	57	170	81
Acid Extractable Beryllium (Be)	μg/g	4	2.5	NV	NV	0.42	0.36	0.56	0.22	<0.20	0.3	0.34	0.3	0.22	0.57	0.59	1.0	<0.20	<0.20	<0.20	<0.20	<0.20	0.32	0.33
Acid Extractable Cadmium (Cd)	µg/g	10	1.2	NV	NV	1.5	4	2.7	0.57	1.1	0.84	1	0.74	0.36	1.1	0.56	1.3	0.35	0.78	1.6	1.2	0.74	1.8	0.20
Acid Extractable Chromium (Cr)	µg/g	64	70	149 ⁽⁹⁾	149 ⁽⁹⁾	39	50	44	22	13	60	75	31	51	42	110	18	2.7	27	24	12	7.2	12	92
Acid Extractable Cobalt (Co)	µg/g	50	21	NV	NV	8.6	20	10	6.9	2.1	5.1	5.8	7.5	36	14	31	11	0.68	17	5.4	6.1	2.1	3.3	46
Acid Extractable Copper (Cu)	µg/g	63	92	744 ⁽⁹⁾	744 ⁽⁹⁾	600	110	220	52	27	110	140	77	55	88	70	68	6.8	30	49	85	22	150	54
Acid Extractable Lead (Pb)	μg/g	140	120	425	425	50	<u>16,000</u>	71	60	67	81	150	82	47	130	<u>680</u>	<u>950</u>	59	<u>570</u>	160	130	56	47	14
Acid Extractable Molybdenum (Mo)	µg/g	10	2	NV	NV	2.2	1.5	3.7	0.7	0.83	0.99	1	0.59	<0.50	1.4	0.89	2.7	0.65	0.74	1.2	1.3	1.1	1.2	<0.50
Acid Extractable Nickel (Ni)	µg/g	45	82	111 ⁽⁹⁾	111 ⁽⁹⁾	74	33	49	19	8.6	32	38	28	110	29	91	25	2.8	36	19	14	7.7	28	<u>130</u>
Acid Extractable Selenium (Se)	μg/g	1	1.5	NV	NV	<u>2.9</u>	<u>1.4</u>	2.8	0.67	0.96	<u>3.5</u>	<u>3.6</u>	<u>1.2</u>	0.63	<u>1.3</u>	0.56	<u>4.7</u>	0.68	0.76	1.0	0.73	<u>1.4</u>	<u>1.8</u>	<0.50
Acid Extractable Silver (Ag)	μg/g	20	0.5	NV	NV	0.61	0.43	0.42	<0.20	0.25	<0.20	0.23	<0.20	<0.20	0.27	<0.20	0.27	<0.20	<0.20	0.32	0.21	<0.20	0.35	<0.20
Aciu extractable Trailium (T) Acid Extractable Uranium (T)	μg/g	1	1	NV NV	INV NV	0.12	<u>2.1</u>	0.15	0.072	0.089	0.12	0.15	0.076	0.054	0.094	0.11	0.35	<0.050	0.22	0.078	0.090	0.060	0.088	<0.050
Acid Extractable Vanadium (V)	μ <u>8</u> /8 μα/α	130	2.5	1E1 ⁽⁹⁾	1E1 ⁽⁹⁾	4 60	32	2.4 50	21	11	40	46	31	130	1.9	79	31	<5.0	59	41	0.24	6.2	2.1	160
Acid Extractable Tin (Sn)	₩6/5 110/a	200	290	NV	NV	<1.0	11	<1.0	21	14	13	16	<1.0	<1.0	230	290	540	12	150	120	280	31	9.5	100
Acid Extractable Zinc (Zn)	₩6/5 Цg/g	200	290	NV	615	320	5,300	280	160	93	1.0	130	160	130	230	290	540	12	150	120	280	31	94	100
Miscellaneous								_30			_00		_30											
Available (CaCl2) pH	рН	6 - 8	NV	NV	NV	5.69	6.53	5.15	6.98	3.58	6.07	6.06	6.91	5.65	5.99	7.14	5.63	3.39	4.90	3.40	4.44	3.26	5.39	4.93

Notes

1) "ppm" means parts per million.

2) "ND" means not detected.

3) "NA" means no field parameter reading was taken at that sample location

4) CCME guidelines were derived from the following, for residential land use:

- For PHCs - CCME (2008), Canada Wide Standard for Petroleum Hydrocarbons in Soil - Technical Supplement ; Table 3: Tier 1 levels for coarse grained surface soils. Guideline values are the most stringent of all pathways excluding the protection of potable groundwater.

- For VOCs - CCME (1999, as revised), Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health ; Coarse Soil. Guideline for 10⁻⁵ incremental lifetime cancer risk was used for benzene guideline.

- For PAHs - CCME (2010), Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health, Polycyclic Aromatic Hydrocarbons; Table 2: Soil Quality Guidelines for Carcinogenic and Other PAHs. Includes the lowest value of all pathways except potable water. - Includes Interim Soil Quality Criteria and provisional values.

- Benzo(a) pyrene Total Potency Equivalent derived from the carcinogenic effects of PAHs, based on 1 x 10⁻⁵ incremental lifetime cancer risk. Where input values are less than the reported detection limit, half the detection limit is used in calculation.

- For Inorganics - CCME (1999, as revised), Canadian Soil Quality Guidelines, Soil Guidelines for the Protection of Environment and Human Health; Coarse Soil.

5) Values obtained from MOE (2011) Soils, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act; Table 1: Full Depth Background Site Condition Standards; Coarse-grained Soil, Residential Property Use.

6) Site specific target level (SSTL) for the protection of human health (HH) and ecological (ECO) receptors derived from DST Consulting Engineers Inc. (March 2005) Site Specific Risk Assessment, Canadian Coast Guard Station LL. 1111, Slate Superior, Ontario .

7) "NV" means no value for that parameter was presented in the associated standard/guidance document.

8) The standard or guideline values that are considered "applicable" to this investigation (i.e. SSTLs, CCME guidelines or MOE standards) are indicated by red typeface.

9) Value represents previous maximum concentration measured at the Site, and considered to be no risk to receptors; not a calculated SSTL (DST, 2005).

10) Concentrations that exceed the applicable guidelines are illustrated by <u>bold, underlined and red typeface</u>.
 11) If applicable, where the laboratory detection limit is greater than the applicable guideline, it is indicated by <u>italic and underlined typeface</u>.

Table 8 **Soil Analytical Results** CS-1 Main Site

					Sample Location							CS-1 M	ain Site				
					Sample ID	CS1-36	CS1-37	CS1-38	CS1-39	CS1-40	CS1-41	CS1-410	CS1-42	CS1-43	CS1-44	CS1-45	CS1-46
					Date	13-Oct-16	13-Oct-16	13-Oct-16	13-Oct-16	13-Oct-16	13-Oct-16	13-Oct-16	13-Oct-16	13-Oct-16	13-Oct-16	13-Oct-16	13-Oct-16
				XRF Le	ad Reading (ppm ⁽¹⁾)	46	ND (2)	ND	ND	34	6	NA	NA ⁽³⁾	ND	44	ND	ND
					Sample Depth (m)	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Parameter	Units	CCME Residential (4)	MOE Table 1 $^{(5)}$	SSTL _{HH} ⁽⁶⁾	SSTL _{ECO} ⁽⁶⁾							Field Duplicate of CS1-41					
Petroleum Hydrocarbons		"															
F1 (C6-C10)	µg/g	30 (5)	25	450 ⁽⁸⁾⁽⁹⁾	NV ⁽⁷⁾	<50	<100	<10	-	-		-	-	-	-	-	-
F1 (C6-C10) - BTEX	µg/g	30	25	450 ⁽⁹⁾	NV	<50	<100	<10	-	-		-	-	-	-	-	-
F2 (C10-C16)	µg/g	150	10	54,000 ⁽⁹⁾	NV	<20	<30	<10	-	-		-	-	-	-	-	-
F3 (C16-C34)	µg/g	300	240	7,200 ⁽⁹⁾	NV	150	160	<50	-	-		-	-	-	-	-	-
F4 (C34-C50)	µg/g	2,800	120	NV	NV	<100	<150	<50	-	-		-	-	-	-	-	-
Reached Baseline at C50	µg/g	-	-	NV	NV	YES	YES	YES	-	-		-	-	-	-	-	-
F4G (Gravimetric)	µg/g	2,800	120	NV	NV	-	-	-	-	-		-	-	-	-		-
VOC		0.030	0.02	ND /	h n c	10.10	-0.20	-0.020		1		-		1	-		1
Ethylhenzene	μg/g	0.030	0.02	INV NV	INV NV	<0.10	<0.20	<0.020	-	-		-	-	-	-	-	-
Toluene	ug/g	0.37	0.2	NV	NV	<0.10	<0.20	<0.020	-	-		-	-	-	-	-	-
p+m-Xylene	μg/g	NV	NV	NV	NV	<0.20	<0.40	< 0.040	-	-		-	-	-	-	-	-
o-Xylene	μg/g	NV	NV	NV	NV	<0.10	<0.20	<0.020	-	-		-	-	-	-	-	-
Total Xylenes	μg/g	11	0.05	NV	NV	<0.20	<0.40	<0.040	-	-		-	-	-	-	-	-
Polycyclic Aromatic Hydrocarbons (PAHs)						-						-		-			
Acenaphthene	μg/g	0.28	0.072	NV	NV	< 0.010	<0.015	<0.0050	-	-	-	-	-	-	-	-	-
Acenaphthylene	μg/g	320	0.093	NV	NV	<0.010	< 0.015	< 0.0050	-	-	-	-	-	-	-	-	-
Anthracene	µg/g	2.5	0.16	NV	NV	<0.010	<0.015	< 0.0050	-	-	-	-	-	-	-	-	-
Benzo(a)anthracene	μg/g	1	0.36	NV	NV	<0.010	<0.015	<0.0050	-	-	-	-	-	-	-	-	-
Benzo(b/i)fluoranthene	μg/g	1	0.3	NV	NV	<0.010	0.040	<0.0030	-	-	-			-			-
Benzo(g,h,i)pervlene	ug/g	NA	0.68	NV	NV	<0.010	<0.015	<0.0050	-	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene	μg/g	1	0.48	NV	NV	<0.010	< 0.015	< 0.0050	-	-	-	-	-	-	-	-	-
Chrysene	μg/g	6.2	2.8	NV	NV	<0.010	0.021	< 0.0050	-	-	-	-	-	-	-	-	-
Dibenz(a,h)anthracene	µg/g	1	0.1	NV	NV	<0.010	<0.015	<0.0050	-	-	-	-	-	-	-	-	-
Fluoranthene	μg/g	15.4	0.56	NV	NV	0.012	0.027	<0.0050	-	-	-	-	-	-	-	-	-
Fluorene	µg/g	0.25	0.12	NV	NV	<0.010	<0.015	<0.0050	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	μg/g	1	0.23	NV	NV	<0.010	<0.015	< 0.0050	-	-	-	-	-	-	-	-	-
1-Methylnaphthalene	μg/g	NV NV	0.59	NV	NV NV	<0.010	<0.015	<0.0050	-	-	-	-	-	-	-	-	-
2-Methylnaphthalene	μg/g	NV	0.59	IN V	NV NV	<0.010	<0.015	<0.0050	-	-	-	-	-	-	-	-	-
Nanhthalene	<u>µ6/6</u>	0.013	0.09	2 2 (9)	2 2 (9)	<0.010	<0.015	<0.0050		-	-						-
Phenanthrene	11g/g	0.046	0.69	5.2 NV	5.2 NV	<0.010	<0.015	<0.0050	-	-	-	-	-	-	-	-	-
i nendirene	ug/g	7.7	1	NV	NV	<0.010	0.021	0.0065	-	-	-	-	-	-	-	-	-
Benzo(a)pyrene Total Potency Equivalents	μg/g	5.3	NV	NV	NV	0.012	0.022	0.006	-	-	-	-	-	-	-	-	-
Metals		•							•								
Acid Extractable Antimony (Sb)	μg/g	20	1.3	NV	NV	0.51	0.54	<0.20	0.50	0.44	<0.20	0.22	0.62	1.1	0.96	0.43	0.46
Acid Extractable Arsenic (As)	µg/g	12	18	NV	NV	4.6	4.7	2.4	8.1	7.5	1.5	1.7	2.7	3.1	5.6	2.0	4.2
Acid Extractable Barium (Ba)	µg/g	500	220	1,480 ⁽⁹⁾	1,480 ⁽⁹⁾	190	120	48	130	180	40	40	120	97	230	110	170
Acid Extractable Beryllium (Be)	µg/g	4	2.5	NV	NV	<0.20	<0.20	0.28	0.46	0.31	<0.20	<0.20	<0.20	<0.20	0.24	<0.20	0.20
Acid Extractable Cadmium (Cd)	μg/g	10	1.2	NV	NV (0)	0.53	0.52	0.19	1.0	1.5	0.22	0.14	0.74	0.59	9.4	0.24	1.5
Acid Extractable Chromium (Cr)	µg/g	64	70	149 (*)	149 (5)	4.9	3.6	62	51	31	18	18	13	7.4	18	5.6	32
Acid Extractable Cobalt (Co)	μg/g	50	21	NV (9)	NV (9)	1.1	0.85	41	7.8	12	3.5	3.6	2.5	1.2	3.8	1.3	12
Acid Extractable Copper (Cu)	μg/g	63	92	744 (3)	744 (3)	12	8.1	41	51	150	13	12	24	18	41	17	62
Acid Extractable Lead (PD)	μ <u>g/g</u>	140	120	425	425 NV	44	56	14	83	83	14	13	110	100	140	29	1/0
Acid Extractable Nickel (Ni)	μg/g	10	2	111 (9)	111 (9)	1.5	2.0	100	24	1.3	0.30	10	1.0	1.0 E.O	1.1	0.03	20
	μ <u>β</u> /g	40	02	TTT	III ···	4.1	3.0	20 50	24	4/	3.3 <0.50	20 50	10	5.0 1.0	10	0.60	5U 0 07
Acid Extractable Silver (Ag)	με/ε μσ/σ	20	0.5	NV	NV	<0.20	<0.27	<0.30	0.22	0.27	<0.30	<0.30	<0.35	<0.20	<0.20	<0.05	0.37
Acid Extractable Thallium (TI)	μg/g	1	1	NV	NV	0.055	0.075	<0.050	0.068	0.086	0.051	<0.050	0.12	0.054	0.10	<0.050	0.084
Acid Extractable Uranium (U)	μg/g	23	2.5	NV	NV	0.36	0.19	0.17	0.49	2.4	0.50	0.73	0.31	0.19	0.43	0.28	0.62
Acid Extractable Vanadium (V)	μg/g	130	86	151 ⁽⁹⁾	151 ⁽⁹⁾	5.8	5.1	<u>160</u>	39	38	18	20	14	6.7	20	<5.0	39
Acid Extractable Tin (Sn)	μg/g	200	290	NV	NV	34	20	67	96	190	35	36	270	120	190	13	210
Acid Extractable Zinc (Zn)	µg/g	200	290	NV	615	34	20	67	96	190	35	36	270	120	190	13	210
Miscellaneous		n															1
Available (CaCl2) pH	pH	6 - 8	NV	NV	NV	3.26	<u>3.31</u>	5.35	4.08	6.30	6.91	6.93	<u>3.81</u>	3.85	3.93	4.79	5.49

Notes

1) "ppm" means parts per million.

2) "ND" means not detected.

3) "NA" means no field parameter reading was taken at that sample location

4) CCME guidelines were derived from the following, for residential land use:

- For PHCs - CCME (2008), Canada Wide Standard for Petroleum Hydrocarbons in Soil - Technical Supplement ; Table 3: Tier 1 levels for coarse grained surface soils. Guideline values are the most stringent of all pathways excluding the protection of potable groundwater.

- For VOCs - CCME (1999, as revised), Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health ; Coarse Soil. Guideline for 10⁻⁵ incremental lifetime cancer risk was used for benzene guideline.

- For PAHs - CCME (2010), Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health, Polycyclic Aromatic Hydrocarbons; Table 2: Soil Quality Guidelines for Carcinogenic and Other PAHs. Includes the lowest value of all pathways except potable water.

- Includes Interim Soil Quality Criteria and provisional values.

- Benzo(a)pyrene Total Potency Equivalent derived from the carcinogenic effects of PAHs, based on 1 x 10⁻⁵ incremental lifetime cancer risk. Where input values are less than the reported detection limit, half the detection limit is used in calculation.

- For Inorganics - CCME (1999, as revised), Canadian Soil Quality Guidelines, Soil Guidelines for the Protection of Environment and Human Health ; Coarse Soil.

5) Values obtained from MOE (2011) Soils, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act; Table 1: Full Depth Background Site Condition Standards; Coarse-grained Soil, Residential Property Use.

6) Site specific target level (SSTL) for the protection of human health (HH) and ecological (ECO) receptors derived from DST Consulting Engineers Inc. (March 2005) Site Specific Risk Assessment, Canadian Coast Guard Station LL. 1111, Slate Island, Lake Superior, Ontario

7) "NV" means no value for that parameter was presented in the associated standard/guidance document.

8) The standard or guideline values that are considered "applicable" to this investigation (i.e. SSTLs, CCME guidelines or MOE standards) are indicated by red typeface.

9) Value represents previous maximum concentration measured at the Site, and considered to be no risk to receptors; not a calculated SSTL (DST, 2005).

10) Concentrations that exceed the applicable guidelines are illustrated by <u>bold, underlined and red typeface</u>.
11) If applicable, where the laboratory detection limit is greater than the applicable guideline, it is indicated by *italic and underlined typeface*.

East Dump Nest Dum 1-Sep-16 1-Sep-16 ND ND 0-0.1 0-0.1 <60 <80 <60 <80 <10 <20 300 190 330 <100 YES YES <0.036 <0.048 <0.060 <0.080 <0.12 <0.16 <0.12 <0.16 <0.12 <0.16 <0.12 <0.16 0.77 0.89 11 3.2 190 110 0.28 < 0.20 1.8 1.7 30 7.0 5.8 1.8 42 46 190 240 1.5 2.7 20 6.8 1.1 <0.20 0.37 0.13 <0.050 0.56 0.28 42 <5.0

6.6

120

3.93

57

130

4.79

Table 9 Soil Analytical Results **CS-2** Lighthouse

				Sai	mple Locatior												CS-2 Lighth	ouse Area											
					Sample ID	CS2-1	CS2-2	CS2-3	CS2-4	CS2-5	CS2-6	CS2-7	CS2-8	CS2-9	CS2-10	CS2-11	CS20-11	CS2-12	CS2-13	CS2-14	CS2-15	CS2-16	CS2-17	CS2-18	CS2-19	CS2-20	CS2-200	CS2-21	CS2-22
					Date	Aug 31, 2016	Aug 31, 2016	Aug 31, 2016	Aug 31, 2016	Aug 31, 2016	Aug 31, 2016	Aug 31, 2016	Aug 31, 2016	Aug 31, 2016	Aug 31, 2016	Aug 31, 2016	Aug 31, 2016	Oct 13, 2016	Oct 12, 2016	Oct 13, 2016	Oct 13, 2016	Oct 12, 2016	Oct 13, 2016						
				XRF Lead R	eading (ppm ¹	ND ⁽²⁾	4930	9408	140	2782	2760	ND	1072	5392	2531	3223	3223	ND	ND	98	43	ND	105	ND	ND	2919	2919	1113	199
				Sam	ple Depth (m	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Parameter	Units	CCME Residential ⁽³⁾	MOE Table 1 ⁽⁴⁾	SSTL _{HH} ⁽⁵⁾	SSTL _{ECO} ⁽⁵⁾												Field Duplicate of CS2-11										Field Duplicate of CS2-20		
Metals																													
Acid Extractable Antimony (Sb)	µg/g	20 (5) (7)	1.3	NV ⁶	NV	0.23	1.4	2.3	0.32	1.1	1.2	0.4	0.73	0.7	0.79	0.49	0.31	0.60	0.24	0.53	0.46	0.31	0.31	0.30	0.21	0.44	0.38	0.23	0.26
Acid Extractable Arsenic (As)	µg/g	12	18	NV	NV	2	6.5	6.7	3	5.5	6.3	4.3	9	4.4	9.8	2.8	2.5	8.3	1.7	5.7	<u>17</u>	9.2	4.1	4.9	1.8	2.6	2.5	2.9	4.5
Acid Extractable Barium (Ba)	µg/g	500	220	536	536	51	480	410	75	320	210	82	150	160	110	100	81	100	27	70	68	87	51	73	32	110	86	84	46
Acid Extractable Beryllium (Be)	μg/g	4	2.5	NV	NV	0.3	0.46	0.35	<0.20	1.3	0.29	0.29	0.38	0.51	0.49	0.24	0.23	0.31	<0.20	<0.20	<0.20	0.51	0.34	<0.20	<0.20	0.22	0.24	<0.20	<0.20
Acid Extractable Cadmium (Cd)	μg/g	10	1.2	NV	NV	0.19	3	0.42	0.65	1.2	8.7	0.73	0.86	0.92	0.75	0.78	0.53	0.83	0.60	0.67	0.38	0.69	0.28	1.1	0.81	0.76	0.76	0.62	0.14
Acid Extractable Chromium (Cr)	µg/g	64	70	NV	NV	8.9	23	26	6.8	22	21	7.7	11	21	13	8.4	7.2	31	2.7	7.3	43	61	58	8.4	11	7.7	6.8	9.9	23
Acid Extractable Cobalt (Co)	μg/g	50	21	NV	NV	5.8	17	8.8	3.9	10	11	7.2	13	19	12	8.3	7.4	12	4.0	3.3	8.7	17	19	6.3	1.8	8.7	10	5.4	8.5
Acid Extractable Copper (Cu)	μg/g	63	92	NV	144	24	75	83	23	61	210	26	<u>180</u>	55	47	44	35	53	24	21	13	27	48	55	22	47	45	23	31
Acid Extractable Lead (Pb)	μg/g	140	120	3,800	1,857	14	<u>8,600</u>	<u>12,000</u>	100	<u>4,100</u>	<u>3,100</u>	53	1,000	<u>1,900</u>	1,200	1,200	720	120	61	60	34	19	170	61	17	1,000	560	320	180
Acid Extractable Molybdenum (Mo)	µg/g	10	2	NV	NV	2.4	5.9	7	1.2	4.6	2.9	2.1	2.4	3.4	3.9	2	2.2	1.0	0.55	0.79	3.7	4.8	1.3	1.0	1.9	1.9	1.8	1.7	2.3
Acid Extractable Nickel (Ni)	µg/g	45	82	NV	NV	3.5	11	4.8	4.5	8.6	8.3	5.1	8.3	16	8.2	5.5	4.6	23	3.3	10	20	24	<u>62</u>	9.4	8.5	5.1	5.5	6.4	19
Acid Extractable Selenium (Se)	µg/g	1	1.5	NV	NV	0.98	<u>1.2</u>	<u>1.9</u>	<0.50	<u>4.8</u>	0.83	<u>1.2</u>	1	<u>1.4</u>	<u>1.6</u>	0.53	0.71	0.86	0.69	<u>1.1</u>	0.82	<u>1.6</u>	0.72	0.90	<u>1.2</u>	0.57	0.69	0.84	<0.50
Acid Extractable Silver (Ag)	μg/g	20	0.5	NV	NV	<0.20	0.35	0.4	<0.20	<0.20	0.53	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.30	<0.20	1.3	0.23	1.1	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Acid Extractable Thallium (TI)	μg/g	1	1	NV	NV	< 0.050	0.12	0.12	0.11	0.05	0.16	0.083	0.16	0.079	0.088	0.067	0.072	0.082	< 0.050	0.067	0.10	0.081	0.081	<0.050	< 0.050	0.17	0.16	0.12	0.077
Acid Extractable Uranium (U)	μg/g	23	2.5	NV	NV	0.64	0.63	1	0.44	1.5	0.45	0.69	0.54	0.69	0.64	0.46	0.5	0.31	0.18	0.25	0.36	0.76	0.38	0.50	0.11	0.51	0.57	0.72	0.35
Acid Extractable Vanadium (V)	μg/g	130	86	NV	144	120	140	130	57	140	85	100	96	<u>150</u>	<u>160</u>	120	120	44	9.7	16	<u>160</u>	130	<u>210</u>	51	6.2	110	110	64	<u>170</u>
Acid Extractable Zinc (Zn)	μg/g	200	290	NV	615	53	<u>1,700</u>	<u>930</u>	71	<u>1,500</u>	<u>910</u>	84	260	610	290	490	330	180	170	87	110	140	170	98	160	300	280	120	82
Miscellaneous																													
рН	рН	6-8	NV	NV	NV	3.94	4.55	4.07	3.68	<u>4.63</u>	4.45	6.41	<u>3.98</u>	4.24	4.2	3.88	<u>3.9</u>	4.75	4.55	3.30	<u>3.82</u>	<u>4.58</u>	4.65	2.99	5.40	4.07	<u>3.90</u>	<u>3.83</u>	4.17
Notes																													

1) "ppm" means parts per million.

2) ND means not detected.

3) CCME guidelines were derived from the following, for residential land use:

- For Inorganics - CCME (1999, as revised), Canadian Soil Quality Guidelines, Soil Guidelines for the Protection of Environment and Human Health ; Coarse Soil.

4) Values obtained from MOE (2011) Soils, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, Table 1: Full Depth Background Site Condition Standards; Coarse-grained Soil, Residential Property Use.
 5) Site specific target level (SSTL) for the protection of human health (HH) and ecological (ECO) receptors derived from DST Consulting Engineers Inc. (March 2005) Site Specific Risk Assessment, Canadian Coast Guard Station L. 1111, Slate Island, Lake Superior, Ontario

6) "NV" means no value for that parameter was presented in the associated standard/guidance document.

7) The standard or guideline values that are considered "applicable" to this investigation (i.e. SSTLs, CCME guidelines or MOE standards) are indicated by red typeface.

8) Value represents previous maximum concentration measured at the Site, and considered to be no risk to receptors; not a calculated SSTL (DST, 2005).

9) Concentrations that exceed the applicable guidelines are illustrated by bold, underlined and red typeface

10) If applicable, where the laboratory detection limit is greater than the applicable guideline, it is indicated by *italic and underlined typeface* .

Table 10 **Soil Analytical Results CS-3 Old House**

				s	ample Location										CS-3 Old House Si	ito								
				J	Sample ID	C\$2_1	C\$2-2	C\$2-2	C\$2_4	C\$2_5	C\$2-6	0.020	C\$2-7	8-520		CS2-10	C\$2-11	C\$2-110	C\$2_12	C\$2_12	CS2-14	C\$2_15	C\$2-16	C\$2-17
					Date	Aug 21 2016	Aug 21, 2016	Aug 21 2016	Aug 21 2016	Aug 21 2016	Aug 21 2016	Aug 21, 2016	Aug 21 2016	Aug 21, 2016	Aug 21 2016	Aug 21 2016	Oct 12 2016	Oct 12, 2016	Oct 12 2016	Oct 12 2016	Oct 12, 2016	Oct 12, 2016	Oct 12, 2016	Oct 12, 2016
				VPELoad	Roading (npm ¹)	702 JOS	Aug 51, 2010	Aug 31, 2010	ND ⁽²⁾	Aug 31, 2010	Aug 31, 2010	Aug 31, 2010	Aug 51, 2010	2010	105	Aug 31, 2010	ND	NA	E1	E2	50	71	110	07
				ARF Ledu	mplo Dopth (m)	205	100	55	ND 0.01	0.01	203	0.01	551	52	105	221	0.0.1	0.1	0.01	55	59	/1	110	57
	r	COME	<u> </u>	29	mple Depth (m)	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	U-U.I	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	U1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Parameter	Units	Residentia	MOE Table 1 ⁽⁴⁾	SSTL _{HH} ⁽⁵⁾	SSTL _{ECO} ⁽⁵⁾							Field Duplicate						Field Duplicate						
Detrolours Undresenheine		(3)						1			l	01 C33-0	1					01 C53-11						L
		20 (7)	25	hi) (6)	ND/		-10	-10	-10	-10		-10	T	T	T	T		1	r	1	T	1		
F1 (C6-C10) PTEX	με/ε	30	25	NV ···	INV NIV	-	<10	<10	<10	<10	-	<10	-	-	-	-	-	-	-	-	-	-	-	
F3 (C10-C16)	μ <u>σ</u> /σ	150	10	NV	NV		02	25	<10	<10	-	<10								-		-		<u> </u>
F3 (C16-C10)	<u>με/ε</u> μσ/σ	300	240	NV	NV		140	<50	<50	<50	-	<50	-	-	-	-	-	-	-	-	-	-	-	-
F4 (C34-C50)	<u>με/ε</u> μα/σ	2 800	120	NV	NV		<50	<50	<50	<50		<50			-	-				-		-		<u> </u>
Reached Baseline at C50	119/9	NV	NV	NV	NV	-	YES	YES	YES	YES	-	YES	-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds	P6/5						125	125	125	125	l	165	1	1	1	1		1		1				1
Benzene	ug/g	0.030	0.02	NV	NV	-	<0.0060	<0.0060	0.0065	0.60	-	<0.0060	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	ug/g	0.082	0.05	NV	NV	-	<0.010	<0.010	< 0.010	0.23	-	0.087	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	ug/g	0.37	0.2	NV	NV	-	<0.020	<0.020	0.021	1.7	-	0.16	-	-	-	-	-	-	-	-	-	-	-	-
p+m-Xylene	μg/g	NV	NV	NV	NV	-	< 0.020	<0.020	0.036	0.67	-	0.23	-	-	-	-	-	-	-	-	-	-	-	-
o-Xylene	μg/g	NV	NV	NV	NV	-	<0.020	<0.020	0.027	0.46	-	0.21	-	-	-	-	-	-	-	-	-	-	-	-
Total Xylenes	μg/g	11	0.05	NV	NV	-	<0.020	<0.020	0.063	1.1	-	0.45	-	-	-	-	-	-	-	-	-	-	-	-
Polycyclic Aromatic Hydrocarbons (PAHs)	10.0						•		•	•		•	•	•	•	•		•	•		•			
Acenaphthene	μg/g	0.28	0.072	NV	NV	-	< 0.0050	< 0.0050	<0.0050	< 0.0050	-	<0.0050	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene	µg/g	320	0.093	NV	NV	-	< 0.0050	< 0.0050	0.0064	< 0.0050	-	< 0.0050	-	-	-	-	-	-	-	-	-	-	-	-
Anthracene	μg/g	2.5	0.16	NV	NV	-	< 0.0050	< 0.0050	0.0051	< 0.0050	-	< 0.0050	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)anthracene	μg/g	1	0.36	NV	NV	-	< 0.0050	< 0.0050	0.016	0.012	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)pyrene	μg/g	0.6	0.3	NV	NV	-	<0.0050	0.0051	0.016	0.013	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(b/j)fluoranthene	μg/g	1	0.47	NV	NV	-	0.0069	< 0.0050	0.023	0.017	-	0.014	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(g,h,i)perylene	μg/g	NV	0.68	NV	NV	-	0.008	<0.0050	0.01	0.0073	-	0.0061	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene	μg/g	1	0.48	NV	NV	-	< 0.0050	<0.0050	0.0082	0.0056	-	0.005	-	-	-	-	-	-	-	-	-	-	-	-
Chrysene	µg/g	6.2	2.8	NV	NV	-	0.0054	<0.0050	0.015	0.011	-	0.0096	-	-	-	-	-	-	-	-	-	-	-	-
Dibenz(a,h)anthracene	µg/g	1	0.1	NV	NV	-	<0.0050	<0.0050	<0.0050	<0.0050	-	<0.0050	-	-	-	-	-	-	-	-	-	-	-	
Fluoranthene	μg/g	15.4	0.56	NV	NV	-	0.0059	<0.0050	0.031	0.025	-	0.018	-	-	-	-	-	-	-	-	-	-	-	-
Fluorene	µg/g	0.25	0.12	NV	NV	-	<0.0050	<0.0050	<0.0050	<0.0050	-	<0.0050	-	-	-	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	µg/g	1	0.23	NV	NV	-	0.0061	<0.0050	0.012	0.0086	-	0.0073	-	-	-	-	-	-	-	-	-	-	-	-
1-Methylnaphthalene	µg/g	NV	0.59	NV	NV	-	0.052	<0.0050	<0.0050	0.0057	-	<0.0050	-	-	-	-	-	-	-	-	-	-	-	-
2-Methylnaphthalene	µg/g	NV	0.59	NV	NV	-	0.067	0.0071	<0.0050	0.0074	-	0.0057	-	-	-	-	-	-	-	-	-	-	-	-
1+2-Methylnaphthalene	µg/g	NV	0.59	NV	NV	-	0.12	0.0071	<0.0071	0.013	-	<0.0071	-	-	-	-	-	-	-	-	-	-	-	
Naphthalene	µg/g	0.013	0.09	NV	NV	-	< 0.050	<0.0050	<0.0050	<0.0050	-	<0.0050	-	-	-	-	-	-	-	-	-	-	-	
Phenanthrene	μg/g	0.046	0.69	NV	NV	-	0.02	< 0.0050	0.0083	0.011	-	0.0065	-	-	-	-	-	-	-	-	-	-	-	
Pyrene	µg/g	7.7	1	NV	NV	-	0.0064	<0.0050	0.026	0.02	-	0.016	-	-	-	-	-	-	-	-	-	-	-	
Benzo(a)pyrene Total Potency Equivalents	µg/g	5.3	NV	NV	NV	-	0.007	0.006	0.025	0.020	-	0.016	-	-	-	-	-	-	-	-				
Metals		20	1.2	ND (A.D. /	4.5		1.2	0.26	0.64	0.52	0.74	4.2	0.00		1.1.2	0.00	1.2	-0.20	0.54	0.50	4.7	2.6	0.26
Acid Extractable Antimony (SD)	µg/g	20	1.3	NV NV	NV	1.5	1.1	1.3	0.26	0.64	0.53	0.71	1.2	0.69	6.6	1.2	0.69	1.2	<0.20	0.54	0.58	1./	2.6	0.26
Acid Extractable Barium (Ba)	μ <u>8/8</u> μα/α	500	10	NV NV	NV	4.8	3.0	0.1	3.9	6.0	10	57	3.5	64	120	2.4 92	4.3	2.9	4.0	220	5./	9.1	520	4.2
Acid Extractable Beryllium (Be)	μ <u>σ/σ</u>	A	220	NV/	NV	<0.20	<0.20	0.30	<0.20	0.25	<0.20	0.27	0.22	0.28	<0.20	<0.20	<0.20	<0.20	<0.20	0.37	0.28	0.44	21	<0.20
Acid Extractable Cadmium (Cd)	<u>μα/σ</u>	10	1.2	NV	NV	0.99	0.52	11	0.20	0.71	0.57	0.86	2.22	0.20	1.5	1.5	0.20	0.19	0.20	17	0.20	19	1.8	0.55
Acid Extractable Chromium (Cr)	<u>μα/α</u>	64	70	NV	NV	25	21	28	23	25	20	23	2.2	26	30	25	15	14	17	32	16	32	29	19
Acid Extractable Cobalt (Co)	не/е це/е	50	21	NV	NV	13	12	18	11	13	12	13	15	16	9.5	12	6.2	5.3	10	16	7.0	20	18	3.1
Acid Extractable Copper (Cu)	ug/g	63	92	NV	NV	32	50	44	81	46	69	51	72	73	110	44	15	13	12	130	140	88	200	24
Acid Extractable Lead (Pb)	<u>µg/g</u>	140	120	425	425	770	280	540	260	350	490	380	1.200	680	1.700	490	130	150	25	110	200	240	1.800	25
Acid Extractable Molybdenum (Mo)	μg/g	10	2	NV	NV	0.52	0.57	0.76	0.52	0.62	0.66	0.68	1.4	1	0.69	0.76	<0.50	<0.50	<0.50	2.3	0.60	0.90	3.3	0.87
Acid Extractable Nickel (Ni)	μg/g	45	82	NV	NV	22	19	26	22	23	20	22	19	21	17	23	16	13	15	22	20	31	31	9.6
Acid Extractable Selenium (Se)	μg/g	1	1.5	NV	NV	<0.50	< 0.50	0.73	0.63	0.75	< 0.50	0.89	0.96	0.65	0.71	0.57	<0.50	<0.50	<0.50	1.9	1.7	<u>1</u> .6	<u>1</u> .5	0.79
Acid Extractable Silver (Ag)	μg/g	20	0.5	NV	NV	0.28	<0.20	0.24	0.22	0.27	<0.20	0.27	0.23	0.24	0.45	0.24	<0.20	<0.20	<0.20	0.24	0.48	0.67	0.76	<0.20
Acid Extractable Thallium (TI)	μg/g	1	1	NV	NV	< 0.050	<0.050	0.072	<0.050	0.061	< 0.050	0.059	0.3	0.13	0.25	0.1	<0.050	<0.050	<0.050	0.099	0.085	0.094	0.52	<0.050
Acid Extractable Uranium (U)	μg/g	23	2.5	NV	NV	0.17	0.2	0.4	0.36	0.39	0.19	0.42	0.39	0.31	0.21	0.14	0.12	0.13	0.13	4.4	1.5	0.98	0.89	0.36
Acid Extractable Vanadium (V)	μg/g	130	86	NV	NV	17	16	23	21	21	14	19	16	22	19	15	13	11	13	25	9.7	24	30	12
Acid Extractable Zinc (Zn)	μg/g	200	290	NV	NV	<u>610</u>	<u>210</u>	<u>350</u>	140	<u>270</u>	<u>260</u>	<u>270</u>	<u>330</u>	<u>250</u>	<u>420</u>	<u>540</u>	100	100	61	<u>260</u>	150	<u>230</u>	<u>970</u>	56
Miscellaneous																								
pH	pН	6 - 8	NV	NV	NV	5.93	6.48	7.52	6.78	6.85	5.52	6.73	4.81	4.13	<u>5.01</u>	6.67	5.86	5.73	4.70	4.83	6.64	4.83	<u>4.71</u>	3.64

Notes

1) "ppm" means parts per million.

2) "ND" means not detected.

3) CCME guidelines were derived from the following, for residential land use:

- For PHCs - CCME (2008), Canada Wide Standard for Petroleum Hydrocarbons in Soil - Technical Supplement ; Table 3: Tier 1 levels for coarse grained surface soils. Guideline values are the most stringent of all pathways excluding the protection of potable groundwater.

- For VOCs - CCME (1999, as revised), Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health; Coarse Soil. Guideline for 10⁻⁵ incremental lifetime cancer risk was used for benzene guideline.

- For PAHs - CCME (2010), Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health, Polycyclic Aromatic Hydrocarbons; Table 2: Soil Quality Guidelines for Carcinogenic and Other PAHs. Includes the lowest value of all pathways except potable water.

- Includes Interim Soil Quality Criteria and provisional values.

- Benzo(a)pyrene Total Potency Equivalent derived from the carcinogenic effects of PAHs, based on 1 x 10⁵ incremental lifetime cancer risk. Where input values are less than the reported detection limit, half the detection limit is used in calculation.

- For Inorganics - CCME (1999, as revised), Canadian Soil Quality Guidelines, Soil Guidelines for the Protection of Environment and Human Health; Coarse Soil.

4) Values obtained from MOE (2011) Soils, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act; Table 1: Full Depth Background Site Condition Standards; Coarse-grained Soil, Residential Property Use.

5) Site specific target level (SSTL) for the protection of human health (HH) and ecological (ECO) receptors derived from DST Consulting Engineers Inc. (March 2005) Site Specific Risk Assessment, Canadian Coast Guard Station L.L. 1111, Slate Island, Lake Superior, Ontario.

6) "NV" means no value for that parameter was presented in the associated standard/guidance document.

7) The standard or guideline values that are considered "applicable" to this investigation (i.e. SSTLs, CCME guidelines or MOE standards) are indicated by red typeface.

8) Value represents previous maximum concentration measured at the Site, and considered to be no risk to receptors; not a calculated SSTL (DST, 2005).

9) Concentrations that exceed the applicable guidelines are illustrated by <u>bold, underlined and red typeface</u>.
 10) If applicable, where the laboratory detection limit is greater than the applicable guideline, it is indicated by <u>italic and underlined typeface</u>.

Sample Location								CS-3 OI	d House		
Sample ID						CS3-18	CS3-19	CS3-20	CS3-200	CS3-21	CS3-22
Date						Oct 12, 2016	Oct 12, 2016	Oct 12, 2016	Oct 12, 2016	Oct 12, 2016	Oct 12, 2016
XRF Lead Reading (ppm ¹)						101	119	ND	NA	ND	130
Sample Depth (m)						0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0.5-0.6
Parameter	Units	CCME Residential	MOE Table 1 ⁽⁴⁾	SSTL _{HH} ⁽⁵⁾	SSTL _{ECO} ⁽⁵⁾				Field Duplicate of CS3-20		
Petroleum Hydrocarbons											
F1 (C6-C10)	ug/g	30 ⁽⁷⁾	25	NV (6)	NV	-	-	-	-	-	-
F1 (C6-C10) - BTEX	ug/g	30	25	NV	NV	-	-	-	-	-	-
F2 (C10-C16)	ug/g	150	10	NV	NV	-	-	-	-	-	-
F3 (C16-C34)	ug/g	300	240	NV	NV	-	-	-	-	-	-
F4 (C34-C50)	ug/g	2800	120	NV	NV	-	-	-	-	-	-
Reached Baseline at C50	ug/g	NV	NV	NV	NV	-	-	-	-	-	-
Volatile Organic Compounds	1 .	1	1		1	1		1			
Benzene	ug/g	0.030	0.02	NV	NV	-	-	-	-	-	-
Ethylbenzene	ug/g	0.082	0.05	NV	NV	-	-	-	-	-	-
Toluene	ug/g	0.37	0.2	NV	NV	-	-	-	-	-	-
p+m-Xylene	ug/g	NV	NV	NV	NV	-	-	-	-	-	-
o-Xylene	ug/g	NV	NV 0.05	NV	NV	-	-	-	-	-	-
Total Xylenes	ug/g	11	0.05	NV	NV	-	-	-	-	-	•
Polycyclic Aromatic Hydrocarbons (PAHs)		0.20	0.072	NI) /	ND/	[[[
Acenaphthulana	ug/g	0.28	0.072	INV NIV	IN V	-	-	-	-	-	-
Acenaphinylene	ug/g	320	0.095	NV NV	IN V	-	-	-	-	-	-
Antifiacene Repro(a)anthracene	ug/g	2.5	0.10	INV NIV	IN V	-	-	-	-	-	-
Benzo(a)pyrepe	ug/g	0.6	0.30	NV	NV				-		
Benzo(b/i)fluoranthene	ug/g	1	0.3	NV	NV				-		
Benzo(g, h.i)pervlene	ug/g	NV	0.47	NV	NV		-		-		
Benzo(k)fluoranthene	110/0	1	0.48	NV	NV	-	-	-	-	-	-
Chrysene	110/0	6.2	2.8	NV	NV	-	-	-	-	-	-
Dibenz(a,h)anthracene	ug/g	1	0.1	NV	NV	-	-	-	-	-	-
Fluoranthene	ug/g	15.4	0.56	NV	NV	-	-	-	-	-	-
Fluorene	ug/g	0.25	0.12	NV	NV	-	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	ug/g	1	0.23	NV	NV	-	-	-	-	-	-
1-Methylnaphthalene	ug/g	NV	0.59	NV	NV	-	-	-	-	-	-
2-Methylnaphthalene	ug/g	NV	0.59	NV	NV	-	-	-	-	-	-
1+2-Methylnaphthalene	ug/g	NV	0.59	NV	NV	-	-	-	-	-	-
Naphthalene	ug/g	0.013	0.09	NV	NV	-	-	-	-	-	-
Phenanthrene	ug/g	0.046	0.69	NV	NV	-	-	-	-	-	-
Pyrene	ug/g	7.7	1	NV	NV	-	-	-	-	-	-
Benzo(a)pyrene Total Potency Equivalents	µg/g	5.3	NV	NV	NV	-	-	-	-	-	-
Metals											
Acid Extractable Antimony (Sb)	ug/g	20	1.3	NV	NV	0.24	<0.20	0.64	0.23	0.48	0.60
Acid Extractable Arsenic (As)	ug/g	12	18	NV	NV	<u>28</u>	5.4	3.1	2.9	<u>20</u>	6.5
Acid Extractable Barium (Ba)	ug/g	500	220	NV	NV	53	20	36	84	76	37
Acid Extractable Beryllium (Be)	ug/g	4	2.5	NV	NV	0.42	<0.20	<0.20	<0.20	0.25	<0.20
Acid Extractable Cadmium (Cd)	ug/g	10	1.2	NV	NV	0.71	0.27	0.36	0.62	1.4	0.90
Acid Extractable Chromium (Cr)	ug/g	64	70	NV	NV	<u>350</u>	18	18	9.9	16	19
Acid Extractable Cobalt (Co)	ug/g	50	21	NV	NV	17	9.7	9.0	5.4	9.9	16
Acid Extractable Copper (Cu)	ug/g	63	92	NV	NV	26	25	27	23	47	<u>78</u>
Acid Extractable Lead (Pb)	ug/g	140	120	425	425	160	18	150	320	45	31
Acid Extractable Molybdenum (Mo)	ug/g	10	2	INV	NV NV	<0.50	<0.50	0.59	1./	1.9	0.52
Acid Extractable Selenium (Se)	ug/g	45	<u>٥</u> ۷	INV NIV	INV NV	1.0	22	13	0.4	29	14
Acid Extractable Selenium (Se)	ug/g	1	1.5	INV NV	INV NV	1.0	<0.50	<0.50	0.84	0.85	<0.50
Acid Extractable Silver (Ag)	ug/g	20	0.5	INV NIV	IN V	0.25	<0.20	<0.20	<0.20	0.67	<0.20
Acid Extractable Uranium (11)	ug/g	22	25	INV NIV		0.075	0.050	0.050	0.12	0.12	0.050
Acid Extractable Vanadium (V)	ug/g	130	2.3	NV	NV/	38	13	0.25	64	0.45	16
Acid Extractable Zinc (Zn)	ug/g	200	290	NV	NV	52	77	99	120	130	340
	ug/g	200	230	14.4	144	32	,,,	33	120	130	340
pH	рH	6 - 8	NV	NV	NV	5,00	6.15	6.33	6.30	3.34	4,66
							0.10	0.00	0.00		

Notes 1) "ppm" means parts per million.

2) "ND" means not detected.

3) CCME guidelines were derived from the following, for residential land use:

- For PHCs - CCME (2008), Canada Wide Standard for Petroleum Hydrocarbons in Soil - Technical Supplement ; Table 3: Tier 1 levels for coarse grained surface soils. Guideline values are the most stringent of all pathways excluding the protection of potable groundwater.

- For VOCs - CCME (1999, as revised), Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health; Coarse Soil. Guideline for 10⁻⁵ incremental lifetime cancer risk was used for benzene guideline. - For PAHs - CCME (2010), Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health, Polycyclic Aromatic Hydrocarbons; Table 2: Soil Quality Guidelines for Carcinogenic and Other PAHs. Includes the lowest value of all pathways except potable water.

- Includes Interim Soil Quality Criteria and provisional values.

- Benzo(a)pyrene Total Potency Equivalent derived from the carcinogenic effects of PAHs, based on 1 x 10⁻⁵ incremental lifetime cancer risk. Where input values are less than the reported detection limit, half the detection limit is used in calculation.

- For Inorganics - CCME (1999, as revised), Canadian Soil Quality Guidelines, Soil Guidelines for the Protection of Environment and Human Health ; Coarse Soil.

4) Values obtained from MOE (2011) Soils, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act; Table 1: Full Depth Background Site Condition Standards; Coarse-grained Soil, Residential Property Use.

5) Site specific target level (SSTL) for the protection of human health (HH) and ecological (ECO) receptors derived from DST Consulting Engineers Inc. (March 2005) Site Specific Risk Assessment, Canadian Coast Guard Station L.L. 1111, Slate Island, Lake Superior, Ontario .

6) "NV" means no value for that parameter was presented in the associated standard/guidance document. "N/A" means not applicable.

7) The standard or guideline values that are considered "applicable" to this investigation (i.e. SSTLs, CCME guidelines or MOE standards) are indicated by red typeface.

8) Value represents previous maximum concentration measured at the Site, and considered to be no risk to receptors; not a calculated SSTL (DST, 2005).

b) Goncentrations that exceed the applicable guidelines are illustrated by <u>bold, underlined and red typeface</u>.
 10) If applicable, where the laboratory detection limit is greater than the applicable guideline, it is indicated by <u>italic and underlined typeface</u>.

Page 2 of 2

Environmental Program Report – Slate Islands Coast Guard Site Patterson Island, Lake Superior, Ontario DST File No.: GV-TB-027105

Table 11 **TCLP Analytical Results**

		Sample Location	1							CS-1 Main Site										CS-2 Lighth	ouse Area			CS-	3 Old Dwelling S	bite
		Sample I	CS1-3	CS1-4	CS1-5	CS1-7	CS1-8	CS1-10	CS1-11	CS1-14	CS1-16	CS1-17	CS1-19	CS1-27	CS1-32	CS1-42	CS1-46	CS2-2	CS2-4	CS2-5	CS2-20	CS2-200	CS2-21	CS3-1	CS3-7	CS3-9
		Date	e Aug 31, 2016	Aug 31, 2016	Aug 31, 2016	Aug 31, 2016	Aug 31, 2016	Oct 12, 2016	Oct 12, 2016	Oct 13, 2016	Oct 13, 2016	Aug 31, 2016	Aug 31, 2016	Aug 31, 2016	Oct 13, 2016	Oct 12, 2016	Oct 12, 2016	Aug 31, 2016	Aug 31, 2016	Aug 31, 2016						
		Depth (cm) 0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Parameter	Units	Schedule 4 ¹																				Field Duplicate of CS2-20				
Metals																										
Leachable Arsenic (As)	mg/L	2.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Leachable Barium (Ba)	mg/L	100	0.6	1.1	0.5	0.7	<0.2	0.9	4.1	0.3	0.6	0.4	1.8	0.6	0.5	0.3	0.3	1	<0.2	0.5	0.2	<0.2	0.3	<0.2	<0.2	<0.2
Leachable Boron (B)	mg/L	500	0.3	0.2	0.4	0.2	0.2	0.7	0.2	0.3	0.3	1	0.3	0.2	0.2	0.2	0.3	0.2	0.2	0.3	0.2	<0.1	<0.1	0.2	0.2	0.2
Leachable Cadmium (Cd)	mg/L	0.5	0.19	< 0.05	< 0.05	<0.05	<0.05	<0.05	0.06	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05
Leachable Chromium (Cr)	mg/L	5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Leachable Lead (Pb)	mg/L	5	<0.1	<0.1	<0.1	0.1	<0.1	<u>36</u>	2.3	<0.1	0.2	<0.1	<u>12</u>	0.3	<0.1	<0.1	<0.1	<u>14</u>	<0.1	2.7	0.3	0.1	0.1	0.3	<0.1	<0.1
Leachable Mercury (Hg)	mg/L	0.1	-	< 0.0010	-	<0.0011	< 0.0012	-	-	-	-	-	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	-	-	-
Leachable Selenium (Se)	mg/L	1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Leachable Silver (Ag)	mg/L	5	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01
Leachable Uranium (U)	mg/L	10	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01
TCLP Volatile Organic Compounds (VOCs)																										
Leachable Benzene	μg/L	500	<0.020	-	<0.020	-	-	<0.020	-	-	-		<0.020	<0.020	<0.020	<0.020	<0.020	<0.020			<0.020	<0.020	<0.020	<0.020	-	-
TCLP Semi-volatiles (SVOCs)																										
Leachable Benzo(a)pyrene	μg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10			<0.10	<0.10	<0.10	<0.10	<0.10	<0.10

Notes: 1) R.R.O. Reg. 347 of the Ontario Environmental Protection Act, Schedule 4: Leachate Quality Criteria (as amended).

2) Concentrations that exceed the applicable guidelines are illustrated by **bold**, **underlined and red typeface**.

Sample L Sa		ple Location	CS	51-5	PDD	CS	1-9	PPD	CS	L-23	PDD	CS:	1-41	PPD	CS2	2-11	PDD	CS	2-20	PDD	CS	3-6
		Sample ID	CS1-5	CS10-5	RPD	CS1-9	CS10-9	RPD	CS1-23	CS10-23	RPD	CS1-41	CS1-410	KPD	CS2-11	CS20-11	RPD	CS2-20	CS2-200	KPD	CS3-6	CS30-6
Parameter	Units	Alert																				
Petroleum Hydrocarbons		Limit (%)																				
F1 (C6-C10)	110/0	100	<10	<10	NA	<50	<40	NA	I -	-	-	-	- 1	-	I -	-	- 1	1 -	- 1	-	I -	-
F1 (C6-C10) - BTEX	µв/в цр/р	100	<10	<10	NA	<50	<40	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F2 (C10-C16)	<u>на/а</u>	100	<10	12	NA	36	120	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F3 (C16-C34)	μg/g	100	72	100	33%	250	1.100	126%	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F4 (C34-C50)	<u>не/е</u>	100	<50	<50	NA	<100	270	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Reached Baseline at C50	μg/g	100	YES	YES	NA	YES	YES	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F4G (Gravimetric)	μg/g	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BTEX						•																
Benzene	μg/g	100	0.071	0.084	17%	<0.030	<0.024	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	μg/g	100	0.094	0.059	46%	<0.050	<0.040	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	μg/g	100	0.35	0.29	19%	<0.10	<0.080	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-
p+m-Xylene	μg/g	100	0.44	0.23	63%	<0.10	0.11	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-
o-Xylene	μg/g	100	0.37	0.19	64%	<0.10	<0.080	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Xylenes	μg/g	100	0.81	0.42	63%	<0.10	0.11	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Polycyclic Aromatic Hydrocarbons (PAHs)	T	-	n		n	T.	-	1	m	1		m		1	m	1	1	m	-	1	m	
1+2-Methylnaphthalene	μg/g	100	<0.071	<0.071	NA	<0.14	<0.14	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthene	μg/g	100	<0.05	<0.05	NA	<0.1	<0.1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene	μg/g	100	< 0.05	<0.05	NA	<0.1	<0.1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Anthracene	μg/g	100	< 0.05	<0.05	NA	<0.1	<0.1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)anthracene	μg/g	100	< 0.05	<0.05	NA	<0.1	<0.1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)pyrene	μg/g	100	< 0.05	< 0.05	NA	<0.1	<0.1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(b/j)fluoranthene	μg/g	100	<0.05	0.05	NA	<0.1	<0.1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	
Benzo(g,h,i)perylene	μg/g	100	<0.05	<0.05	NA	<0.1	<0.1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	
Benzo(k)fluoranthene	μg/g	100	<0.05	<0.05	NA	<0.1	<0.1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	
Chrysene	μg/g	100	<0.05	<0.05	NA	<0.1	<0.1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibenz(a,n)anthracene	μg/g	100	<0.05	<0.05	NA	<0.1	<0.1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	μg/g	100	<0.05	<0.05	NA NA	<0.1	<0.1	NA NA	-	-	-	-	-	-	-	-	-	-	-	-	-	
Indono(1,2,2,cd)pyropo	μg/g	100	<0.05	<0.05	NA NA	<0.1	<0.1	NA NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1-Methylpaphthalene	με/ε	100	<0.05	<0.05	NA	<0.1	<0.1	NA		_	_			-	_		_					
2-Methylnaphthalene	με/ε	100	0.05	<0.05	NΔ	<0.1	<0.1	NΔ	_	_	-		_		_	_	_	_	_	_		-
Nanhthalene	<u>με/ε</u> μσ/σ	100	0.05	<0.05	NΔ	<0.1	<0.1	ΝΔ	-	_			_	-	_	_	-			_	-	-
Phenanthrene	110/0	100	<0.05	<0.05	NA	<0.1	<0.1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pyrene	µв/в цр/р	100	<0.05	<0.05	NA	<0.1	<0.1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-
РСВ	F-0/ 0								и						и		1	u			u	
Aroclor 1242	μg/g	100	-	-	-	-	-	-	-	-	-	<1.0	<1.0	NA	<1.0	<1.0	NA	<1.0	<1.0	NA	-	-
Aroclor 1248	μg/g	100	-	-	-	-	-	-	-	-	-	<1.0	<1.0	NA	<1.0	<1.0	NA	<1.0	<1.0	NA	-	-
Aroclor 1254	μg/g	100	-	-	-	-	-	-	-	-	-	<1.0	<1.0	NA	<1.0	<1.0	NA	<1.0	<1.0	NA	-	-
Aroclor 1260	μg/g	100	-	-	-	-	-	-	-	-	-	<1.0	<1.0	NA	<1.0	<1.0	NA	<1.0	<1.0	NA	-	-
Total Polychlorinated Biphenyls (PCBs)	μg/g	100	-	-	-	-	-	-	-	-	-	<1.0	<1.0	NA	<1.0	<1.0	NA	<1.0	<1.0	NA	-	-
Metals														•								
Acid Extractable Antimony (Sb)	μg/g	100	1.9	1.8	5%	0.24	<0.20	NA	0.31	0.33	NA	<0.20	0.22	NA	0.49	0.31	NA	0.44	0.38	NA	0.53	0.71
Acid Extractable Arsenic (As)	μg/g	100	6.7	6.9	3%	1.3	<1.0	NA	7.1	9	24%	1.5	1.7	12%	2.8	2.5	11%	2.6	2.5	4%	10	6.2
Acid Extractable Barium (Ba)	μg/g	100	240	240	0%	200	190	5%	95	100	5%	40	40	0%	100	81	21%	110	86	24%	37	57
Acid Extractable Beryllium (Be)	μg/g	100	0.37	0.35	NA	<0.20	<0.20	NA	0.3	0.34	NA	<0.20	<0.20	NA	0.24	0.23	NA	0.22	0.24	NA	<0.20	0.27
Acid Extractable Cadmium (Cd)	µg/g	100	1.6	1.7	6%	1	0.6	50%	0.84	1	17%	0.22	0.14	44%	0.78	0.53	38%	0.76	0.76	0%	0.57	0.86
Acid Extractable Chromium (Cr)	μg/g	100	56	48	15%	8.8	5.9	39%	60	75	22%	18	18	0%	8.4	7.2	15%	7.7	6.8	12%	20	23
Acid Extractable Cobalt (Co)	µg/g	100	26	25	4%	3.4	2.3	39%	5.1	5.8	13%	3.50	3.6	3%	8.3	7.4	11%	8.7	10	14%	12	13
Acid Extractable Copper (Cu)	μg/g	100	120	120	0%	23	19	19%	110	140	24%	13	12	8%	44	35	23%	47	45	4%	69	51
Acid Extractable Lead (Pb)	μg/g	100	910	650	33%	62	36	53%	81	150	60%	14	13	7%	1200	720	50%	1000	560	56%	490	380
Acid Extractable Molybdenum (Mo)	μg/g	100	1.6	1.2	29%	<0.50	<0.50	NA	0.99	1	1%	< 0.50	<0.50	NA	2	2.2	10%	1.9	1.8	5%	0.66	0.68
Acid Extractable Nickel (Ni)	μg/g	100	86	80	7%	9.4	6.4	38%	32	38	17%	9.3	10	7%	5.5	4.6	18%	5.1	5.5	8%	20	22
Acid Extractable Selenium (Se)	μg/g	100	1	0.89	12%	0.56	<0.50	NA	3.5	3.6	3%	<0.50	<0.50	NA	0.53	0.71	29%	0.57	0.69	19%	<0.50	0.89
Acid Extractable Silver (Ag)	μg/g	100	0.25	0.24	4%	<0.20	<0.20	NA 100/	<0.20	0.23	NA	<0.20	<0.20	NA	<0.20	<0.20	NA To:	<0.20	<0.20	NA	<0.20	0.27
Acid Extractable Tranium (11)	μg/g	100	0.21	0.085	NA 70/	0.064	0.053	19%	0.12	0.15	22%	0.051	<0.050	NA 270/	0.067	0.072	1%	0.17	0.16	6%	<0.050	0.059
Acid Extractable Vanadium (U)	μg/g	100	1.5	1.4	/%	0.13	0.12	8%	1.5	1.8	1.4%	0.5	0.73	3/%	0.46	0.5	8%	0.51	0.57	11%	0.19	0.42
Acid Extractable Tin (Sp)	με/ε	100	95	61	9%	2 /	1.9	40%	40	40	210/	35.0	20	20/	120	120	0%	110	110	0%	14	13
Acid Extractable Tin (SII)	μ <u>g/g</u>	100	1.000	1 100	9% 10%	2.4	1.9	23%	1.3	1.0	21%	35.0	26.0	3%	- 400	-	200/	- 200	-	- 70/		-
אנוט באנומנומטופ צוווג (צוו)	μ8/8	100	1,000	1,100	10%	400	550	13%	100	130	20%	55.0	50.0	3%	490	330	59%	300	280	/ 70	200	2/0

Notes:

1) Alert Limits only applicable if both sample values are 5 times greater than the laboratory reportable detection limit

2) "NA" indicates that the RPD could not be calculated as both analyte concentrations were less than 5 times the reportable detection limit.

3) An exceedance of the alert limit, if applicable, is shown as <u>red, bold and underlined</u> text.

4) "<" Less than the laboratory Reportable Detection Limit.

0		CS3-6		
CS2-200	RPD	CS3-6	C\$30-6	RPD
		1		1
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-		-	-	-
-	-	-	-	-
-	_	-	-	-
_				
_				
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
<1.0	NA	-	-	-
<1.0	NA	-	-	-
<1.0	NA	-	-	-
<1.0	NA	-	-	-
<1.0	NA	-	-	-
0.38	NA	0.53	0.71	NA
2.5	4%	10	6.2	47%
86	24%	37	57	43%
0.24	NA	<0.20	0.27	NA
0.76	0%	0.57	0.86	41%
6.8	12%	20	23	14%
10	1/1%	12	12	24/0 20/
10	14/0	60	1J 51	20%
45	4%	400	200	3U%
1.0	50%	490	380	25%
1.0	5%	0.66	0.68	3%
5.5	8%	20	22	10%
0.69	19%	<0.50	0.89	NA
<0.20	NA	<0.20	0.27	NA

NA 75% 30%

4%

Page 1 of 1

Photographs

Photograph 1: View of cobble stone soil, New Diesel Generation Building, Old Fog Alarm / Generator building and Former Oil House, facing northeast.

Photograph 2: View of grassed area near the Old Fog Alarm / Generator Building, facing southeast.

Photograph 3: View of Former Oil House, facing northeast.

Photograph 4: View of Old Fog Alarm / Generator Building, facing north.

Photograph 5: View of cobble stone soils near Duplex Dwelling, facing southeast.

Photograph 6: View of waste pile in East Dump containing empty oil pails, facing east.

Photograph 7: View of waste pile in East Dump, facing west.

Photograph 8: View of waste in West Dump, facing west.

Photograph 9: View of waste pile in West Dump, facing west.

Photograph10: View of soil surrounding Lighthouse, facing West.

Photograph 11: View of soil surrounding Lighthouse, facing East.

Photograph 12: View of Old Dwelling Building, facing southeast.

Photograph 13: View of Old Dwelling Building, facing northeast.

Photographs 14: View of soil along Old Dwelling perimeter, facing west.

Photograph 15: View soil grassed area near Old Dwelling Buidling, facing southwest.

Laboratory Certificates of Analysis

Your Project #: GV-TB-027105 Site Location: MAIN SILT Your C.O.C. #: 59245, 59248, 59250

Attention:Geoffrey Lake

DST Consulting Engineers Inc Sudbury - Standing Offer 885 Regent Street Suite 3-1B Sudbury, ON P3E 5M4

> **Report Date: 2016/10/07** Report #: R4194053 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B6I9077 Received: 2016/09/02, 16:20

Sample Matrix: Soil # Samples Received: 28

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	14	N/A	2016/09/16	CAM SOP-00301	EPA 8270D m
Petroleum Hydrocarbons F2-F4 in Soil (1)	14	2016/09/10	2016/09/12	CAM SOP-00316	CCME CWS m
F4G (CCME Hydrocarbons Gravimetric)	3	2016/09/14	2016/09/14	CAM SOP-00316	CCME PHC-CWS m
Mercury (TCLP Leachable) (mg/L)	3	N/A	2016/10/05	CAM SOP-00453	EPA 7470A m
Strong Acid Leachable Metals by ICPMS	18	2016/09/09	2016/09/12	CAM SOP-00447	EPA 6020B m
Strong Acid Leachable Metals by ICPMS	2	2016/09/09	2016/09/13	CAM SOP-00447	EPA 6020B m
Strong Acid Leachable Metals by ICPMS	6	2016/09/12	2016/09/12	CAM SOP-00447	EPA 6020B m
Strong Acid Leachable Metals by ICPMS	2	2016/09/12	2016/09/13	CAM SOP-00447	EPA 6020B m
Total Metals in TCLP Leachate by ICPMS	8	2016/09/13	2016/09/15	CAM SOP-00447	EPA 6020B m
Total Metals in TCLP Leachate by ICPMS	3	2016/10/04	2016/10/05	CAM SOP-00447	EPA 6020B m
PAH Compounds by GC/MS (SIM) (2)	14	2016/09/13	2016/09/14	CAM SOP - 00318	EPA 8270 m
Moisture	2	N/A	2016/09/08	CAM SOP-00445	Carter 2nd ed 51.2 m
Moisture	12	N/A	2016/09/09	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Leachate by GC/MS (SIM)	8	2016/09/13	2016/09/14	CAM SOP-00318	EPA 8270D m
Polychlorinated Biphenyl in Soil	1	2016/09/09	2016/09/10	CAM SOP-00309	EPA 8082A m
pH CaCl2 EXTRACT	5	2016/09/08	2016/09/08	CAM SOP-00413	EPA 9045 D m
pH CaCl2 EXTRACT	16	2016/09/09	2016/09/09	CAM SOP-00413	EPA 9045 D m
pH CaCl2 EXTRACT	7	2016/09/12	2016/09/12	CAM SOP-00413	EPA 9045 D m
TCLP - % Solids	8	2016/09/12	2016/09/13	CAM SOP-00401	EPA 1311 Update I m
TCLP - % Solids	3	2016/10/03	2016/10/04	CAM SOP-00401	EPA 1311 Update I m
TCLP - Extraction Fluid	8	N/A	2016/09/13	CAM SOP-00401	EPA 1311 Update I m
TCLP - Extraction Fluid	3	N/A	2016/10/04	CAM SOP-00401	EPA 1311 Update I m
TCLP - Initial and final pH	8	N/A	2016/09/13	CAM SOP-00401	EPA 1311 Update I m
TCLP - Initial and final pH	3	N/A	2016/10/04	CAM SOP-00401	EPA 1311 Update I m
TCLP Zero Headspace Extraction	4	2016/09/14	2016/09/15	CAM SOP-00430	EPA 1311 m
Volatile Organic Compounds and F1 PHCs	14	N/A	2016/09/08	CAM SOP-00230	EPA 8260 m
VOCs in ZHE Leachates	4	2016/09/15	2016/09/15	CAM SOP-00226	EPA 8260C m

Remarks:

Your Project #: GV-TB-027105 Site Location: MAIN SILT Your C.O.C. #: 59245, 59248, 59250

Attention:Geoffrey Lake

DST Consulting Engineers Inc Sudbury - Standing Offer 885 Regent Street Suite 3-1B Sudbury, ON P3E 5M4

> Report Date: 2016/10/07 Report #: R4194053 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B6I9077

Received: 2016/09/02, 16:20

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.

Maxxam Analytics is accredited for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

(2) Sample(s) analyzed using methodologies that have not been subjected to Maxxam's standard validation process for the submitted matrix and is not an Accredited method. Analysis performed with client consent, however results should be viewed with discretion

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Augustyna Dobosz, Project Manager Email: ADobosz@maxxam.ca Phone# (905)817-5700 Ext:5798

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 63

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

Maxxam ID		CZW622		CZW623	CZW625	CZW626	CZW627		
Sampling Data		2016/08/31		2016/08/31	2016/08/31	2016/08/31	2016/08/31		
		08:00		08:15	09:15	09:20	09:30		
COC Number		59245		59245	59245	59245	59245		
	UNITS	CS1-1	RDL	CS1-2	CS1-4	CS1-5	CS1-6	RDL	QC Batch
Volatile Organics									
Acetone (2-Propanone)	ug/g	<1.0	1.0	<0.50	<0.50	<0.50	<0.50	0.50	4650611
Benzene	ug/g	0.039	0.012	0.030	<0.0060	0.071	<0.0060	0.0060	4650611
Bromodichloromethane	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Bromoform	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Bromomethane	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Carbon Tetrachloride	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Chlorobenzene	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Chloroform	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Dibromochloromethane	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
1,2-Dichlorobenzene	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
1,3-Dichlorobenzene	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
1,4-Dichlorobenzene	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Dichlorodifluoromethane (FREON 12)	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
1,1-Dichloroethane	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
1,2-Dichloroethane	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
1,1-Dichloroethylene	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
cis-1,2-Dichloroethylene	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
trans-1,2-Dichloroethylene	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
1,2-Dichloropropane	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
cis-1,3-Dichloropropene	ug/g	<0.060	0.060	<0.030	<0.030	<0.030	<0.030	0.030	4650611
trans-1,3-Dichloropropene	ug/g	<0.080	0.080	<0.040	<0.040	<0.040	<0.040	0.040	4650611
Ethylbenzene	ug/g	0.089	0.020	0.033	<0.010	0.094	<0.010	0.010	4650611
Ethylene Dibromide	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Hexane	ug/g	<0.10	0.10	<0.050	<0.050	0.067	<0.050	0.050	4650611
Methylene Chloride(Dichloromethane)	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Methyl Isobutyl Ketone	ug/g	<1.0	1.0	<0.50	<0.50	<0.50	<0.50	0.50	4650611
Methyl Ethyl Ketone (2-Butanone)	ug/g	<1.0	1.0	<0.50	<0.50	<0.50	<0.50	0.50	4650611
Methyl t-butyl ether (MTBE)	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Styrene	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
1,1,1,2-Tetrachloroethane	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
1,1,2,2-Tetrachloroethane	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Tetrachloroethylene	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Toluene	ug/g	0.27	0.040	0.15	<0.020	0.35	<0.020	0.020	4650611
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

Maxxam ID		CZW622		CZW623	CZW625	CZW626	CZW627		
Sampling Date		2016/08/31		2016/08/31	2016/08/31	2016/08/31	2016/08/31		
		08:00		08:15	09:15	09:20	09:30		
COC Number		59245		59245	59245	59245	59245		
	UNITS	CS1-1	RDL	CS1-2	CS1-4	CS1-5	CS1-6	RDL	QC Batch
1,1,1-Trichloroethane	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
1,1,2-Trichloroethane	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Trichloroethylene	ug/g	<0.020	0.020	<0.010	<0.010	<0.010	<0.010	0.010	4650611
Vinyl Chloride	ug/g	<0.040	0.040	<0.020	<0.020	<0.020	<0.020	0.020	4650611
p+m-Xylene	ug/g	0.33	0.040	0.14	<0.020	0.44	<0.020	0.020	4650611
o-Xylene	ug/g	0.21	0.040	0.093	<0.020	0.37	<0.020	0.020	4650611
Total Xylenes	ug/g	0.54	0.040	0.24	<0.020	0.81	<0.020	0.020	4650611
Chloroethane	ug/g	<0.40	0.40	<0.20	<0.20	<0.20	<0.20	0.20	4650611
Chloromethane	ug/g	<0.80	0.80	<0.40	<0.40	<0.40	<0.40	0.40	4650611
Trichlorofluoromethane (FREON 11)	ug/g	<0.10	0.10	<0.050	<0.050	<0.050	<0.050	0.050	4650611
F1 (C6-C10)	ug/g	<20	20	<10	<10	<10	<10	10	4650611
F1 (C6-C10) - BTEX	ug/g	<20	20	<10	<10	<10	<10	10	4650611
Gasoline	ug/g	<20	20	<10	<10	<10	<10	10	4650611
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	14	10	<10	<10	<10	<10	10	4655381
F3 (C16-C34 Hydrocarbons)	ug/g	180	50	94	<50	72	75	50	4655381
F4 (C34-C50 Hydrocarbons)	ug/g	160	50	<50	<50	<50	<50	50	4655381
Reached Baseline at C50	ug/g	No		Yes	Yes	Yes	Yes		4655381
Surrogate Recovery (%)									
o-Terphenyl	%	96		96	97	97	100		4655381
4-Bromofluorobenzene	%	101		101	101	102	100		4650611
D10-o-Xylene	%	92		95	105	95	90		4650611
D4-1,2-Dichloroethane	%	85		86	87	86	86		4650611
D8-Toluene	%	92		92	92	93	93		4650611
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

CCME PETROLEUM HYDROCARBONS (SOIL)

	1				1				-	
Maxxam ID		CZW628	CZW628	CZW629		CZW630		CZW631		
Sampling Date		2016/08/31	2016/08/31	2016/08/31		2016/08/31		2016/08/31		
		10:00	10:00	10:30		10:35		10:40		
COC Number		59245	59245	59245		59245		59245		
	UNITS	CS1-7	CS1-7 Lab-Dup	CS1-8	RDL	CS1-9	RDL	CS1-10	RDL	QC Batch
Volatile Organics										
Acetone (2-Propanone)	ug/g	<0.50	<0.50	<0.50	0.50	2.8	2.5	<1.5	1.5	4650611
Benzene	ug/g	0.014	0.015	<0.0060	0.0060	<0.030	0.030	<0.018	0.018	4650611
Bromodichloromethane	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
Bromoform	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
Bromomethane	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
Carbon Tetrachloride	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
Chlorobenzene	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
Chloroform	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
Dibromochloromethane	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
1,2-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
1,3-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
1,4-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
1,1-Dichloroethane	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
1,2-Dichloroethane	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
1,1-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
cis-1,2-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
trans-1,2-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
1,2-Dichloropropane	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	<0.030	0.030	<0.15	0.15	<0.090	0.090	4650611
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	<0.040	0.040	<0.20	0.20	<0.12	0.12	4650611
Ethylbenzene	ug/g	0.020	0.020	<0.010	0.010	<0.050	0.050	<0.030	0.030	4650611
Ethylene Dibromide	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
Hexane	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
Methylene Chloride(Dichloromethane)	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
Methyl Isobutyl Ketone	ug/g	<0.50	<0.50	<0.50	0.50	<2.5	2.5	<1.5	1.5	4650611
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	<0.50	<0.50	0.50	<2.5	2.5	<1.5	1.5	4650611
Methyl t-butyl ether (MTBE)	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
Styrene	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
1,1,1,2-Tetrachloroethane	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
1,1,2,2-Tetrachloroethane	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
Tetrachloroethylene	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
RDL = Reportable Detection Limit					•		•			

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

CCME PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID		CZW628	CZW628	CZW629		CZW630		CZW631		
Sampling Date		2016/08/31 10:00	2016/08/31 10:00	2016/08/31 10:30		2016/08/31 10:35		2016/08/31 10:40		
COC Number		59245	59245	59245		59245		59245		
	UNITS	CS1-7	CS1-7 Lab-Dup	CS1-8	RDL	CS1-9	RDL	CS1-10	RDL	QC Batch
Toluene	ug/g	0.076	0.075	<0.020	0.020	<0.10	0.10	<0.060	0.060	4650611
1,1,1-Trichloroethane	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
1,1,2-Trichloroethane	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
Trichloroethylene	ug/g	<0.010	<0.010	<0.010	0.010	<0.050	0.050	<0.030	0.030	4650611
Vinyl Chloride	ug/g	<0.020	<0.020	<0.020	0.020	<0.10	0.10	<0.060	0.060	4650611
p+m-Xylene	ug/g	0.088	0.087	<0.020	0.020	<0.10	0.10	<0.060	0.060	4650611
o-Xylene	ug/g	0.064	0.063	<0.020	0.020	<0.10	0.10	<0.060	0.060	4650611
Total Xylenes	ug/g	0.15	0.15	<0.020	0.020	<0.10	0.10	<0.060	0.060	4650611
Chloroethane	ug/g	<0.20	<0.20	<0.20	0.20	<1.0	1.0	<0.60	0.60	4650611
Chloromethane	ug/g	<0.40	<0.40	<0.40	0.40	<2.0	2.0	<1.2	1.2	4650611
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	<0.050	<0.050	0.050	<0.25	0.25	<0.15	0.15	4650611
F1 (C6-C10)	ug/g	<10	<10	<10	10	<50	50	<30	30	4650611
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	10	<50	50	<30	30	4650611
Gasoline	ug/g	<10	<10	<10	10	<50	50	<30	30	4650611
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/g	<10		<10	10	36	20	29	10	4655381
F3 (C16-C34 Hydrocarbons)	ug/g	180		<50	50	250	100	350	50	4655381
F4 (C34-C50 Hydrocarbons)	ug/g	100		<50	50	<100	100	76	50	4655381
Reached Baseline at C50	ug/g	No		Yes		Yes		Yes		4655381
Surrogate Recovery (%)										
o-Terphenyl	%	97		98		84		104		4655381
4-Bromofluorobenzene	%	101	100	100		103		103		4650611
D10-o-Xylene	%	91	91	92		98		92		4650611
D4-1,2-Dichloroethane	%	88	88	87		87		86		4650611
D8-Toluene	%	91	92	92		92		92		4650611
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicate	9									

Page 6 of 63

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

Maxxam ID		CZW633	CZW634		CZW645		CZW649		
Sampling Data		2016/08/31	2016/08/31		2016/08/31		2016/08/31		
		10:45	10:50		11:55		10:35		
COC Number		59248	59248		59250		59250		
	UNITS	CS1-11	CS1-12	RDL	CS1-22	RDL	CS10-9	RDL	QC Batch
Inorganics									
Moisture	%					1.0	56	1.0	4653840
Volatile Organics									
Acetone (2-Propanone)	ug/g	<1.0	1.0	1.0	<3.5	3.5	3.3	2.0	4650611
Benzene	ug/g	0.27	0.041	0.012	<0.042	0.042	<0.024	0.024	4650611
Bromodichloromethane	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
Bromoform	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
Bromomethane	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
Carbon Tetrachloride	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
Chlorobenzene	ug/g	0.15	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
Chloroform	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
Dibromochloromethane	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
1,2-Dichlorobenzene	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
1,3-Dichlorobenzene	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
1,4-Dichlorobenzene	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
Dichlorodifluoromethane (FREON 12)	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
1,1-Dichloroethane	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
1,2-Dichloroethane	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
1,1-Dichloroethylene	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
cis-1,2-Dichloroethylene	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
trans-1,2-Dichloroethylene	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
1,2-Dichloropropane	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
cis-1,3-Dichloropropene	ug/g	<0.060	<0.060	0.060	<0.21	0.21	<0.12	0.12	4650611
trans-1,3-Dichloropropene	ug/g	<0.080	<0.080	0.080	<0.28	0.28	<0.16	0.16	4650611
Ethylbenzene	ug/g	0.053	0.044	0.020	0.35	0.070	<0.040	0.040	4650611
Ethylene Dibromide	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
Hexane	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
Methylene Chloride(Dichloromethane)	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
Methyl Isobutyl Ketone	ug/g	<1.0	<1.0	1.0	<3.5	3.5	<2.0	2.0	4650611
Methyl Ethyl Ketone (2-Butanone)	ug/g	<1.0	<1.0	1.0	<3.5	3.5	<2.0	2.0	4650611
Methyl t-butyl ether (MTBE)	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
Styrene	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
1,1,1,2-Tetrachloroethane	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
1,1,2,2-Tetrachloroethane	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
Tetrachloroethylene	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
RDL = Reportable Detection Limit			+		+				
QC Batch = Quality Control Batch									

Maxxam ID		CZW633	CZW634		CZW645		CZW649		
Sampling Date		2016/08/31	2016/08/31		2016/08/31		2016/08/31		
COC Number		50249	50249		50250		50250		
	LINUTC	CS1 11	CS1 12		CS1 22		CS10.0		OC Patch
	UNITS	(31-11	C31-12	KUL	C31-22	KUL	C310-9	RDL	QC Batch
Toluene	ug/g	0.15	0.21	0.040	0.25	0.14	<0.080	0.080	4650611
1,1,1-Trichloroethane	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
1,1,2-Trichloroethane	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
Trichloroethylene	ug/g	<0.020	<0.020	0.020	<0.070	0.070	<0.040	0.040	4650611
Vinyl Chloride	ug/g	<0.040	<0.040	0.040	<0.14	0.14	<0.080	0.080	4650611
p+m-Xylene	ug/g	0.15	0.21	0.040	1.6	0.14	0.11	0.080	4650611
o-Xylene	ug/g	0.051	0.096	0.040	0.56	0.14	<0.080	0.080	4650611
Total Xylenes	ug/g	0.20	0.30	0.040	2.1	0.14	0.11	0.080	4650611
Chloroethane	ug/g	<0.40	<0.40	0.40	<1.4	1.4	<0.80	0.80	4650611
Chloromethane	ug/g	<0.80	<0.80	0.80	<2.8	2.8	<1.6	1.6	4650611
Trichlorofluoromethane (FREON 11)	ug/g	<0.10	<0.10	0.10	<0.35	0.35	<0.20	0.20	4650611
F1 (C6-C10)	ug/g	<20	<20	20	<70	70	<40	40	4650611
F1 (C6-C10) - BTEX	ug/g	<20	<20	20	<70	70	<40	40	4650611
Gasoline	ug/g	<20	<20	20	<70	70	<40	40	4650611
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	68	18	10	250	20	120	20	4655381
F3 (C16-C34 Hydrocarbons)	ug/g	3200	190	50	2100	100	1100	100	4655381
F4 (C34-C50 Hydrocarbons)	ug/g	1300	110	50	<100	100	270	100	4655381
Reached Baseline at C50	ug/g	Yes	No		Yes		Yes		4655381
Surrogate Recovery (%)	•			•		•		•	
o-Terphenyl	%	107	96		118		76		4655381
4-Bromofluorobenzene	%	100	98		101		110		4650611
D10-o-Xylene	%	87	85		88		110		4650611
D4-1,2-Dichloroethane	%	86	107		87		85		4650611
D8-Toluene	%	91	94		91		91		4650611
RDL = Reportable Detection Limit	•	-		•		•		•	-
QC Batch = Quality Control Batch									

Maxxam ID		CZW650		
Sampling Date		2016/08/31		
		09:20		
COC Number		59250		
	UNITS	CS10-5	RDL	QC Batch
Inorganics				
Moisture	%	14	1.0	4654236
Volatile Organics				
Acetone (2-Propanone)	ug/g	<0.50	0.50	4650611
Benzene	ug/g	0.084	0.0060	4650611
Bromodichloromethane	ug/g	<0.050	0.050	4650611
Bromoform	ug/g	<0.050	0.050	4650611
Bromomethane	ug/g	<0.050	0.050	4650611
Carbon Tetrachloride	ug/g	<0.050	0.050	4650611
Chlorobenzene	ug/g	<0.050	0.050	4650611
Chloroform	ug/g	<0.050	0.050	4650611
Dibromochloromethane	ug/g	<0.050	0.050	4650611
1,2-Dichlorobenzene	ug/g	<0.050	0.050	4650611
1,3-Dichlorobenzene	ug/g	<0.050	0.050	4650611
1,4-Dichlorobenzene	ug/g	<0.050	0.050	4650611
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	0.050	4650611
1,1-Dichloroethane	ug/g	<0.050	0.050	4650611
1,2-Dichloroethane	ug/g	<0.050	0.050	4650611
1,1-Dichloroethylene	ug/g	<0.050	0.050	4650611
cis-1,2-Dichloroethylene	ug/g	<0.050	0.050	4650611
trans-1,2-Dichloroethylene	ug/g	<0.050	0.050	4650611
1,2-Dichloropropane	ug/g	<0.050	0.050	4650611
cis-1,3-Dichloropropene	ug/g	<0.030	0.030	4650611
trans-1,3-Dichloropropene	ug/g	<0.040	0.040	4650611
Ethylbenzene	ug/g	0.059	0.010	4650611
Ethylene Dibromide	ug/g	<0.050	0.050	4650611
Hexane	ug/g	<0.050	0.050	4650611
Methylene Chloride(Dichloromethane)	ug/g	<0.050	0.050	4650611
Methyl Isobutyl Ketone	ug/g	<0.50	0.50	4650611
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	0.50	4650611
Methyl t-butyl ether (MTBE)	ug/g	<0.050	0.050	4650611
Styrene	ug/g	<0.050	0.050	4650611
1,1,1,2-Tetrachloroethane	ug/g	<0.050	0.050	4650611
1,1,2,2-Tetrachloroethane	ug/g	<0.050	0.050	4650611
Tetrachloroethylene	ug/g	<0.050	0.050	4650611
RDL = Reportable Detection Limit		,		
QC Batch = Quality Control Batch				

CZW650 Maxxam ID 2016/08/31 Sampling Date 09:20 COC Number 59250 UNITS CS10-5 RDL QC Batch Toluene 0.020 4650611 0.29 ug/g 1,1,1-Trichloroethane 4650611 < 0.050 0.050 ug/g 1,1,2-Trichloroethane ug/g <0.050 0.050 4650611 Trichloroethylene 4650611 < 0.010 0.010 ug/g Vinyl Chloride < 0.020 0.020 4650611 ug/g p+m-Xylene 0.23 0.020 4650611 ug/g o-Xylene 0.020 4650611 ug/g 0.19 Total Xylenes 0.42 0.020 4650611 ug/g Chloroethane ug/g <0.20 0.20 4650611 Chloromethane < 0.40 0.40 4650611 ug/g Trichlorofluoromethane (FREON 11) < 0.050 0.050 4650611 ug/g F1 (C6-C10) ug/g <10 10 4650611 F1 (C6-C10) - BTEX <10 10 4650611 ug/g Gasoline 10 4650611 ug/g <10 F2-F4 Hydrocarbons F2 (C10-C16 Hydrocarbons) 4655381 ug/g 12 10 F3 (C16-C34 Hydrocarbons) ug/g 100 50 4655381 F4 (C34-C50 Hydrocarbons) ug/g <50 50 4655381 Reached Baseline at C50 ug/g Yes 4655381 Surrogate Recovery (%) o-Terphenyl % 98 4655381 4-Bromofluorobenzene 4650611 % 105 D10-o-Xylene 4650611 % 98 D4-1,2-Dichloroethane % 4650611 83 D8-Toluene % 93 4650611 RDL = Reportable Detection Limit QC Batch = Quality Control Batch

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

Maxxam ID		CZW622	CZW623			CZW624			CZW625		
Sampling Data		2016/08/31	2016/08/31			2016/08/31			2016/08/31		
		08:00	08:15			09:00			09:15		
COC Number		59245	59245			59245			59245		
	UNITS	CS1-1	CS1-2	RDL	QC Batch	CS1-3	RDL	QC Batch	CS1-4	RDL	QC Batch
Metals											
Acid Extractable Antimony (Sb)	ug/g	2.6	6.7	0.20	4656068	15	0.20	4654389	0.34	0.20	4656068
Acid Extractable Arsenic (As)	ug/g	6.4	6.6	1.0	4656068	12	1.0	4654389	1.1	1.0	4656068
Acid Extractable Barium (Ba)	ug/g	250	350	0.50	4656068	540	0.50	4654389	240	0.50	4656068
Acid Extractable Beryllium (Be)	ug/g	0.66	1.5	0.20	4656068	<0.20	0.20	4654389	<0.20	0.20	4656068
Acid Extractable Cadmium (Cd)	ug/g	1.8	5.3	0.10	4656068	160	0.10	4654389	0.27	0.10	4656068
Acid Extractable Chromium (Cr)	ug/g	39	49	1.0	4656068	74	1.0	4654389	16	1.0	4656068
Acid Extractable Cobalt (Co)	ug/g	11	13	0.10	4656068	17	0.10	4654389	5.4	0.10	4656068
Acid Extractable Copper (Cu)	ug/g	94	170	0.50	4656068	3100	0.50	4654389	20	0.50	4656068
Acid Extractable Lead (Pb)	ug/g	890	860	1.0	4656068	2200	1.0	4654389	91	1.0	4656068
Acid Extractable Molybdenum (Mo)	ug/g	1.2	1.5	0.50	4656068	6.3	0.50	4654389	0.56	0.50	4656068
Acid Extractable Nickel (Ni)	ug/g	28	37	0.50	4656068	87	0.50	4654389	12	0.50	4656068
Acid Extractable Selenium (Se)	ug/g	0.95	1.5	0.50	4656068	0.95	0.50	4654389	<0.50	0.50	4656068
Acid Extractable Silver (Ag)	ug/g	<0.20	0.26	0.20	4656068	1.3	0.20	4654389	<0.20	0.20	4656068
Acid Extractable Thallium (TI)	ug/g	0.25	0.28	0.050	4656068	0.32	0.050	4654389	0.071	0.050	4656068
Acid Extractable Tin (Sn)	ug/g	22	24	1.0	4656068	72	1.0	4654389	<1.0	1.0	4656068
Acid Extractable Uranium (U)	ug/g	0.61	0.87	0.050	4656068	0.33	0.050	4654389	0.81	0.050	4656068
Acid Extractable Vanadium (V)	ug/g	61	47	5.0	4656068	16	5.0	4654389	29	5.0	4656068
Acid Extractable Zinc (Zn)	ug/g	860	750	5.0	4656068	7100	25	4654389	150	5.0	4656068
RDL = Reportable Detection Limit											
QC Batch = Quality Control Batch											

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

Maxxam ID		CZW626		CZW627		CZW628		CZW629		
Sampling Data		2016/08/31		2016/08/31		2016/08/31		2016/08/31		
		09:20		09:30		10:00		10:30		
COC Number		59245		59245		59245		59245		
	UNITS	CS1-5	QC Batch	CS1-6	QC Batch	CS1-7	QC Batch	CS1-8	RDL	QC Batch
Metals										
Acid Extractable Antimony (Sb)	ug/g	1.9	4656068	1.2	4654389	3.1	4656068	0.47	0.20	4654389
Acid Extractable Arsenic (As)	ug/g	6.7	4656068	5.9	4654389	7.1	4656068	3.3	1.0	4654389
Acid Extractable Barium (Ba)	ug/g	240	4656068	140	4654389	310	4656068	48	0.50	4654389
Acid Extractable Beryllium (Be)	ug/g	0.37	4656068	0.24	4654389	0.58	4656068	<0.20	0.20	4654389
Acid Extractable Cadmium (Cd)	ug/g	1.6	4656068	0.54	4654389	3.4	4656068	0.32	0.10	4654389
Acid Extractable Chromium (Cr)	ug/g	56	4656068	53	4654389	70	4656068	21	1.0	4654389
Acid Extractable Cobalt (Co)	ug/g	26	4656068	16	4654389	16	4656068	14	0.10	4654389
Acid Extractable Copper (Cu)	ug/g	120	4656068	92	4654389	210	4656068	31	0.50	4654389
Acid Extractable Lead (Pb)	ug/g	910	4656068	290	4654389	1600	4656068	76	1.0	4654389
Acid Extractable Molybdenum (Mo)	ug/g	1.6	4656068	0.69	4654389	1.9	4656068	0.55	0.50	4654389
Acid Extractable Nickel (Ni)	ug/g	86	4656068	42	4654389	51	4656068	50	0.50	4654389
Acid Extractable Selenium (Se)	ug/g	1.0	4656068	0.80	4654389	1.4	4656068	<0.50	0.50	4654389
Acid Extractable Silver (Ag)	ug/g	0.25	4656068	<0.20	4654389	0.29	4656068	<0.20	0.20	4654389
Acid Extractable Thallium (Tl)	ug/g	0.21	4656068	0.054	4654389	0.31	4656068	<0.050	0.050	4654389
Acid Extractable Tin (Sn)	ug/g	7.2	4656068	12	4654389	69	4656068	2.7	1.0	4654389
Acid Extractable Uranium (U)	ug/g	1.5	4656068	0.40	4654389	0.65	4656068	0.23	0.050	4654389
Acid Extractable Vanadium (V)	ug/g	95	4656068	35	4654389	54	4656068	19	5.0	4654389
Acid Extractable Zinc (Zn)	ug/g	1000	4656068	86	4654389	1100	4656068	110	5.0	4654389
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										

Maxxam ID		CZW630			CZW631			CZW633		
Sampling Date		2016/08/31			2016/08/31			2016/08/31		
		10:35			10:40			10:45		
COC Number		59245			59245			59248		
	UNITS	CS1-9	RDL	QC Batch	CS1-10	RDL	QC Batch	CS1-11	RDL	QC Batch
Metals										
Acid Extractable Antimony (Sb)	ug/g	0.24	0.20	4654389	580	2.0	4656068	74	0.20	4654027
Acid Extractable Arsenic (As)	ug/g	1.3	1.0	4654389	14	10	4656068	21	1.0	4654027
Acid Extractable Barium (Ba)	ug/g	200	0.50	4654389	400	5.0	4656068	2600	2.5	4654027
Acid Extractable Beryllium (Be)	ug/g	<0.20	0.20	4654389	<2.0	2.0	4656068	0.44	0.20	4654027
Acid Extractable Cadmium (Cd)	ug/g	1.0	0.10	4654389	1.6	1.0	4656068	63	0.10	4654027
Acid Extractable Chromium (Cr)	ug/g	8.8	1.0	4654389	23	10	4656068	380	1.0	4654027
Acid Extractable Cobalt (Co)	ug/g	3.4	0.10	4654389	4.5	1.0	4656068	47	0.10	4654027
Acid Extractable Copper (Cu)	ug/g	23	0.50	4654389	50	5.0	4656068	2300	0.50	4654027
Acid Extractable Lead (Pb)	ug/g	62	1.0	4654389	47000	50	4656068	14000	5.0	4654027
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	0.50	4654389	<5.0	5.0	4656068	38	0.50	4654027
Acid Extractable Nickel (Ni)	ug/g	9.4	0.50	4654389	18	5.0	4656068	120	0.50	4654027
Acid Extractable Selenium (Se)	ug/g	0.56	0.50	4654389	<5.0	5.0	4656068	1.0	0.50	4654027
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	4654389	<2.0	2.0	4656068	8.0	0.20	4654027
Acid Extractable Thallium (TI)	ug/g	0.064	0.050	4654389	<0.50	0.50	4656068	1.7	0.050	4654027
Acid Extractable Tin (Sn)	ug/g	2.4	1.0	4654389	<10	10	4656068	200	1.0	4654027
Acid Extractable Uranium (U)	ug/g	0.13	0.050	4654389	<0.50	0.50	4656068	0.85	0.050	4654027
Acid Extractable Vanadium (V)	ug/g	11	5.0	4654389	<50	50	4656068	49	5.0	4654027
Acid Extractable Zinc (Zn)	ug/g	400	5.0	4654389	250	50	4656068	14000	25	4654027
RDL = Reportable Detection Limit			•			•	-		•	-
QC Batch = Quality Control Batch										

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

Maxxam ID		CZW634	CZW635	CZW636	CZW637		CZW638	CZW639		
Sampling Data		2016/08/31	2016/08/31	2016/08/31	2016/08/31		2016/08/31	2016/08/31		
		10:50	10:55	11:00	11:05		11:10	11:15		
COC Number		59248	59248	59248	59248		59248	59248		
	UNITS	CS1-12	CS1-13	CS1-14	CS1-15	QC Batch	CS1-16	CS1-17	RDL	QC Batch
Metals										
Acid Extractable Antimony (Sb)	ug/g	1.5	0.24	0.52	0.42	4654027	1.8	0.37	0.20	4654389
Acid Extractable Arsenic (As)	ug/g	5.3	4.5	7.5	3.3	4654027	5.3	2.9	1.0	4654389
Acid Extractable Barium (Ba)	ug/g	290	110	180	140	4654027	190	300	0.50	4654389
Acid Extractable Beryllium (Be)	ug/g	<0.20	0.43	0.31	<0.20	4654027	0.85	<0.20	0.20	4654389
Acid Extractable Cadmium (Cd)	ug/g	14	0.72	0.86	1.0	4654027	1.2	0.96	0.10	4654389
Acid Extractable Chromium (Cr)	ug/g	37	34	53	8.7	4654027	17	21	1.0	4654389
Acid Extractable Cobalt (Co)	ug/g	14	10	14	2.0	4654027	8.8	5.2	0.10	4654389
Acid Extractable Copper (Cu)	ug/g	74	110	36	29	4654027	160	26	0.50	4654389
Acid Extractable Lead (Pb)	ug/g	1300	34	120	53	4654027	640	220	1.0	4654389
Acid Extractable Molybdenum (Mo)	ug/g	1.4	1.7	1.1	1.0	4654027	1.9	0.81	0.50	4654389
Acid Extractable Nickel (Ni)	ug/g	29	28	32	7.0	4654027	19	14	0.50	4654389
Acid Extractable Selenium (Se)	ug/g	0.89	1.7	0.78	0.94	4654027	1.2	0.89	0.50	4654389
Acid Extractable Silver (Ag)	ug/g	<0.20	0.26	<0.20	<0.20	4654027	<0.20	0.23	0.20	4654389
Acid Extractable Thallium (Tl)	ug/g	0.26	0.082	0.097	0.085	4654027	0.19	0.085	0.050	4654389
Acid Extractable Tin (Sn)	ug/g	7.1	<1.0	1.5	1.8	4654027	27	2.8	1.0	4654389
Acid Extractable Uranium (U)	ug/g	0.32	1.7	0.49	0.45	4654027	0.63	0.28	0.050	4654389
Acid Extractable Vanadium (V)	ug/g	41	66	44	8.1	4654027	25	22	5.0	4654389
Acid Extractable Zinc (Zn)	ug/g	2400	85	150	190	4654027	830	130	5.0	4654389
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

CCME ICPMS & ICP METALS (SOIL)

Maxxam ID		CZW640			CZW641	CZW641			CZW642		
Compling Data		2016/08/31			2016/08/31	2016/08/31			2016/08/31		
		11:20			11:25	11:25			11:45		
COC Number		59248			59248	59248			59248		
	UNITS	CS1-18	RDL	QC Batch	CS1-19	CS1-19 Lab-Dup	RDL	QC Batch	CS1-20	RDL	QC Batch
Metals											
Acid Extractable Antimony (Sb)	ug/g	0.24	0.20	4654389	3.3	3.2	0.20	4656068	0.38	0.20	4654389
Acid Extractable Arsenic (As)	ug/g	4.9	1.0	4654389	7.2	7.0	1.0	4656068	21	1.0	4654389
Acid Extractable Barium (Ba)	ug/g	180	0.50	4654389	1100	1000	0.50	4656068	340	0.50	4654389
Acid Extractable Beryllium (Be)	ug/g	0.42	0.20	4654389	0.36	0.36	0.20	4656068	0.56	0.20	4654389
Acid Extractable Cadmium (Cd)	ug/g	1.5	0.10	4654389	4.0	4.1	0.10	4656068	2.7	0.10	4654389
Acid Extractable Chromium (Cr)	ug/g	39	1.0	4654389	50	47	1.0	4656068	44	1.0	4654389
Acid Extractable Cobalt (Co)	ug/g	8.6	0.10	4654389	20	19	0.10	4656068	10	0.10	4654389
Acid Extractable Copper (Cu)	ug/g	600	0.50	4654389	110	110	0.50	4656068	220	0.50	4654389
Acid Extractable Lead (Pb)	ug/g	50	1.0	4654389	16000	17000	5.0	4656068	71	1.0	4654389
Acid Extractable Molybdenum (Mo)	ug/g	2.2	0.50	4654389	1.5	1.7	0.50	4656068	3.7	0.50	4654389
Acid Extractable Nickel (Ni)	ug/g	74	0.50	4654389	33	32	0.50	4656068	49	0.50	4654389
Acid Extractable Selenium (Se)	ug/g	2.9	0.50	4654389	1.4	1.4	0.50	4656068	2.8	0.50	4654389
Acid Extractable Silver (Ag)	ug/g	0.61	0.20	4654389	0.43	0.46	0.20	4656068	0.42	0.20	4654389
Acid Extractable Thallium (Tl)	ug/g	0.12	0.050	4654389	2.1	2.1	0.050	4656068	0.15	0.050	4654389
Acid Extractable Tin (Sn)	ug/g	<1.0	1.0	4654389	11	11	1.0	4656068	<1.0	1.0	4654389
Acid Extractable Uranium (U)	ug/g	4.0	0.050	4654389	0.64	0.62	0.050	4656068	2.4	0.050	4654389
Acid Extractable Vanadium (V)	ug/g	60	5.0	4654389	32	30	5.0	4656068	50	5.0	4654389
Acid Extractable Zinc (Zn)	ug/g	320	5.0	4654389	5300	5500	25	4656068	280	5.0	4654389
RDL = Reportable Detection Limit QC Batch = Quality Control Batch											

Lab-Dup = Laboratory Initiated Duplicate

Maxxam ID		CZW644	CZW645	CZW646	CZW647	CZW647	CZW648		
Sampling Data		2016/08/31	2016/08/31	2016/08/31	2016/08/31	2016/08/31	2016/08/31		
		11:50	11:55	12:00	12:05	12:05	12:07		
COC Number		59250	59250	59250	59250	59250	59250		
	UNITS	CS1-21	CS1-22	CS1-23	CS1-24	CS1-24 Lab-Dup	CS1-25	RDL	QC Batch
Metals									
Acid Extractable Antimony (Sb)	ug/g	0.42	0.35	0.31	<0.20	0.26	<0.20	0.20	4654389
Acid Extractable Arsenic (As)	ug/g	2.9	3.5	7.1	4.6	4.6	2.0	1.0	4654389
Acid Extractable Barium (Ba)	ug/g	110	200	95	120	120	67	0.50	4654389
Acid Extractable Beryllium (Be)	ug/g	0.22	<0.20	0.30	0.30	0.39	0.22	0.20	4654389
Acid Extractable Cadmium (Cd)	ug/g	0.57	1.1	0.84	0.74	0.71	0.36	0.10	4654389
Acid Extractable Chromium (Cr)	ug/g	22	13	60	31	33	51	1.0	4654389
Acid Extractable Cobalt (Co)	ug/g	6.9	2.1	5.1	7.5	7.5	36	0.10	4654389
Acid Extractable Copper (Cu)	ug/g	52	27	110	77	78	55	0.50	4654389
Acid Extractable Lead (Pb)	ug/g	60	67	81	82	80	47	1.0	4654389
Acid Extractable Molybdenum (Mo)	ug/g	0.70	0.83	0.99	0.59	0.86	<0.50	0.50	4654389
Acid Extractable Nickel (Ni)	ug/g	19	8.6	32	28	27	110	0.50	4654389
Acid Extractable Selenium (Se)	ug/g	0.67	0.96	3.5	1.2	1.3	0.63	0.50	4654389
Acid Extractable Silver (Ag)	ug/g	<0.20	0.25	<0.20	<0.20	<0.20	<0.20	0.20	4654389
Acid Extractable Thallium (Tl)	ug/g	0.072	0.089	0.12	0.076	0.13	0.054	0.050	4654389
Acid Extractable Tin (Sn)	ug/g	2.1	1.4	1.3	<1.0	1.3	<1.0	1.0	4654389
Acid Extractable Uranium (U)	ug/g	0.76	0.37	1.5	1.4	1.4	0.32	0.050	4654389
Acid Extractable Vanadium (V)	ug/g	21	11	40	31	31	130	5.0	4654389
Acid Extractable Zinc (Zn)	ug/g	160	93	100	160	160	130	5.0	4654389
RDL = Reportable Detection Limit QC Batch = Quality Control Batch									
Lab-Dup = Laboratory Initiated Duplic	cate								

Maxxam ID		CZW649		CZW650		CZW651		
Sampling Data		2016/08/31		2016/08/31		2016/08/31		
		10:35		09:20		12:00		
COC Number		59250		59250		59250		
	UNITS	CS10-9	QC Batch	CS10-5	QC Batch	CS10-23	RDL	QC Batch
Metals								
Acid Extractable Antimony (Sb)	ug/g	<0.20	4654389	1.8	4656068	0.33	0.20	4654389
Acid Extractable Arsenic (As)	ug/g	<1.0	4654389	6.9	4656068	9.0	1.0	4654389
Acid Extractable Barium (Ba)	ug/g	190	4654389	240	4656068	100	0.50	4654389
Acid Extractable Beryllium (Be)	ug/g	<0.20	4654389	0.35	4656068	0.34	0.20	4654389
Acid Extractable Cadmium (Cd)	ug/g	0.60	4654389	1.7	4656068	1.0	0.10	4654389
Acid Extractable Chromium (Cr)	ug/g	5.9	4654389	48	4656068	75	1.0	4654389
Acid Extractable Cobalt (Co)	ug/g	2.3	4654389	25	4656068	5.8	0.10	4654389
Acid Extractable Copper (Cu)	ug/g	19	4654389	120	4656068	140	0.50	4654389
Acid Extractable Lead (Pb)	ug/g	36	4654389	650	4656068	150	1.0	4654389
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	4654389	1.2	4656068	1.0	0.50	4654389
Acid Extractable Nickel (Ni)	ug/g	6.4	4654389	80	4656068	38	0.50	4654389
Acid Extractable Selenium (Se)	ug/g	<0.50	4654389	0.89	4656068	3.6	0.50	4654389
Acid Extractable Silver (Ag)	ug/g	<0.20	4654389	0.24	4656068	0.23	0.20	4654389
Acid Extractable Thallium (Tl)	ug/g	0.053	4654389	0.085	4656068	0.15	0.050	4654389
Acid Extractable Tin (Sn)	ug/g	1.9	4654389	6.6	4656068	1.6	1.0	4654389
Acid Extractable Uranium (U)	ug/g	0.12	4654389	1.4	4656068	1.8	0.050	4654389
Acid Extractable Vanadium (V)	ug/g	6.9	4654389	87	4656068	46	5.0	4654389
Acid Extractable Zinc (Zn)	ug/g	350	4654389	1100	4656068	130	5.0	4654389
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

O.REG 153 PAHS (SOIL)

Maxxam ID			CZW	622	CZW	523	CZW62	5	CZW626			CZV	V627			
Sampling Date			2016/0	08/31	2016/0	8/31	2016/08	/31	2016/08/3	1		2016,	/08/31			
			08:	00	08:	15	09:15	;	09:20			09	9:30			
COC Number			592	45	592	45	59245	5	59245			59	245			
	ι	JNITS	CS1	-1	CS1	-2	CS1-4		CS1-5	Q	C Batch	CS	1-6	RDL	QC Ba	atch
Inorganics																
Moisture		%	26	5	23	5	6.5		16	4	654236	8	.4	1.0	4653	840
Calculated Parameters	I		1												1	
Methylnaphthalene, 2-	(1-)	ug/g	0.3	5	<0.0	71	<0.07	1	<0.071	4	648303	<0	071	0.071	4648	303
RDL = Reportable Deter	ction Lin	nit														
QC Batch = Quality Con	trol Bate	ch														
Maxxam ID			CZW62	28		C	ZW629		CZW63	30		(ZW631			
Comelia - Data		2	2016/08	3/31		201	6/08/31		2016/08	/31		20	16/08/3	31		
Sampling Date			10:0	0			10:30		10:3	5			10:40			
COC Number			5924	5		 ,	59245		5924	5			59245			
	U	NITS	CS1-7	7	QC Batcl	h (CS1-8	RDI	. CS1-9)	QC Bate	:h	CS1-10	RD	L QC	Batch
Inorganics																
Moisture		%	13		4654236	5	12	1.0	51		465384	0	34	1.	0 465	4236
Calculated Parameters																
Methylnaphthalene, 2-(1	-) u	g/g	0.21		4648303	3 <	0.071	0.07	1 <0.14	Ļ	464830	13	<0.14	0.1	.4 464	8303
RDL = Reportable Detect	ion Limi	t							*			•				
QC Batch = Quality Contr	ol Batch	n														
		071		071			ſ			0			0714	c=0		
xam iD		2016	V633	2010	N634			20	ZW645	201	W649		CZW	050		
pling Date		2016/	/08/31)·45	2016	/08/31 0·50			20	16/08/31 11·55	201	6/08/31 10·35		2016/C 09·	20		
Number		59	248	59	248				59250	5	9250		592	50		
	UNITS	CS1	1-11	CS	1-12	RDL	QC Batc	h	CS1-22	C	S10-9	RDL	CS10)-5	RDL	QC Ba
ganics	ļ		ļ		ļ		<u>I</u>	!	Į			<u> </u>				
sture	%	2	21		26	1.0	465190	9	47			1.0			1.0	4653
ulated Parameters									l							
hylnaphthalene, 2-(1-)	ug/g	1	2	0.	071	0.071	464830	3	0.37	<	<0.14	0.14	<0.0	71	0.071	4648
= Reportable Detection L	imit				I											
	• • • •															

O.REG 153 PCBS (SOIL)

Maxxam ID		CZW625		
Sampling Data		2016/08/31		
Samping Date		09:15		
COC Number		59245		
	UNITS	CS1-4	RDL	QC Batch
PCBs				
Aroclor 1242	ug/g	<0.010	0.010	4654696
Aroclor 1248	ug/g	<0.010	0.010	4654696
Aroclor 1254	ug/g	<0.010	0.010	4654696
Aroclor 1260	ug/g	<0.010	0.010	4654696
Total PCB	ug/g	<0.010	0.010	4654696
Surrogate Recovery (%)				
Decachlorobiphenyl	%	85		4654696
RDL = Reportable Detection L	imit			
QC Batch = Quality Control B	atch			

O.REG 558 TCLP VOLATILE ORGANICS (SOIL)

Maxxam ID		CZW624	CZW626	CZW631	CZW641		
Sampling Date		2016/08/31	2016/08/31	2016/08/31	2016/08/31		
		09:00	09:20	10:40	11:25		
COC Number		59245	59245	59245	59248		
	UNITS	CS1-3	CS1-5	CS1-10	CS1-19	RDL	QC Batch
Charge/Prep Analysis							
Amount Extracted (Wet Weight) (g)	N/A	25	25	25	25	N/A	4659866
Volatile Organics							
Leachable Benzene	mg/L	<0.020	<0.020	<0.020	<0.020	0.020	4661637
Surrogate Recovery (%)							
Leachable 4-Bromofluorobenzene	%	97	99	99	99		4661637
Leachable D4-1,2-Dichloroethane	%	102	102	103	104		4661637
Leachable D8-Toluene	%	98	100	100	98		4661637
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							
N/A = Not Applicable							

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

O.REG 558 TCLP BENZO(A)PYRENE

Maxxam ID		CZW624	CZW626	CZW626	CZW631	CZW633	CZW636	CZW638		
Sampling Data		2016/08/31	2016/08/31	2016/08/31	2016/08/31	2016/08/31	2016/08/31	2016/08/31		
		09:00	09:20	09:20	10:40	10:45	11:00	11:10		
COC Number		59245	59245	59245	59245	59248	59248	59248		
	UNITS	CS1-3	CS1-5	CS1-5 Lab-Dup	CS1-10	CS1-11	CS1-14	CS1-16	RDL	QC Batch
Polyaromatic Hydrocarbons										
Leachable Benzo(a)pyrene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	4658741
Surrogate Recovery (%)										,
Leachable D10-Anthracene	%	108	111	104	100	104	107	96		4658741
Leachable D14-Terphenyl (FS)	%	86	94	87	75	91	97	88		4658741
Leachable D8-Acenaphthylene	%	97	102	95	92	86	94	93		4658741
DDL - Departable Detection Line	:+									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Maxxam ID		CZW639	CZW641		
Sampling Date		2016/08/31	2016/08/31		
COC Number		59248	59248		
	UNITS	CS1-17	CS1-19	RDL	QC Batch
Polyaromatic Hydrocarbons					
Leachable Benzo(a)pyrene	ug/L	<0.10	<0.10	0.10	4658741
Surrogate Recovery (%)	•	•	•		
Leachable D10-Anthracene	%	99	107		4658741
Leachable D14-Terphenyl (FS)	%	74	84		4658741
Leachable D8-Acenaphthylene	%	102	97		4658741
RDL = Reportable Detection Lim	it			•	
QC Batch = Quality Control Batc	h				

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

O.REG 558 TCLP LEACHATE PREPARATION (SOIL)

organics											
	UNITS	CS1-8	QC Batch	CS1-10	CS1-11	CS1-14	CS1-16	CS1-17	F	RDL	QC Batch
OC Number		59245		59245	59248	59248	59248	59248			
mpling Date		10:30		10:40	10:45	11:00	11:10	11:15			
		2016/08/31		2016/08/31	2016/08/31	2016/08/31	2016/08/	31 2016/08/	31		
axxam ID		CZW629		CZW631	CZW633	CZW636	CZW638	CZW639)		
QC Batch = Quality Contr	ol Batch										
RDL = Reportable Detecti	on Limit										
TCLP Extraction Fluid	N/A	FLUID 1	465641	0 FLUID 1	4686646	FLUID 1	4656410	FLUID 1		468	36646
TCLP - % Solids	%	100	465640	6 100	4686645	100	4656406	100	0.2	468	86645
Initial pH	pН	6.75	465641	.1 6.25	4686647	7.04	4656411	8.38		468	86647
Final pH	рН	4.94	465641	.1 4.98	4686647	4.91	4656411	5.27		468	86647
Inorganics		-		1		1					
	UNIT	S CS1-3	QC Bat	ch CS1-4	QC Batch	CS1-5	QC Batch	CS1-7	RDL	QC	Batch
COC Number		59245		59245		59245		59245			
		09:00		09:15		09:20		10:00			
Sampling Data		2016/08/3	81	2016/08/3	81	2016/08/31		2016/08/31			
Maxxam ID		CZW624		CZW625		CZW626		CZW628			

Final pH	рН	4.98	4686647	4.93	5.85	4.85	4.96	4.83		4656411
Initial pH	рН	7.96	4686647	6.59	8.03	6.36	6.95	4.47		4656411
TCLP - % Solids	%	100	4686645	100	100	100	100	100	0.2	4656406
TCLP Extraction Fluid	N/A	FLUID 1	4686646	FLUID 1		4656410				
RDI - Reportable Detection I	imit									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Maxxam ID		CZW641		
Sampling Date		2016/08/31 11:25		
COC Number		59248		
	UNITS	CS1-19	RDL	QC Batch
Inorganics				
Final pH	рН	5.16		4656411
Initial pH	рΗ	7.75		4656411
TCLP - % Solids	%	100	0.2	4656406
TCLP Extraction Fluid	N/A	FLUID 1		4656410
RDL = Reportable Detection L QC Batch = Quality Control Ba	imit itch			

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

O.REG 558 TCLP METALS (SOIL)

Sampling Date 20 COC Number Image: COC Number Image: Coc Number Image: COC Number I	016/08/31 09:00 59245 Q CS1-3 Q 4 <0.2	QC Batch 4687569 4658002 4658002 4658002 4658002 4658002 4658002 4658002 4658002	2016/08/31 09:15 59245 CS1-4 <0.0010 <0.2 1.1 0.2 <0.05 <0.1 <0.1 <0.1 <0.01 <0.01	QC Batch 4687569 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842	2016/08/31 09:20 59245 C\$1-5 <0.2 0.5 0.4 <0.05 <0.1 <0.1 <0.1	QC Batch 4687569 4658002 4658002 4658002 4658002 4658002 4658002 4658002 4658002 4658002 4658002 4658002	2016/08/31 10:00 59245 CS1-7 <0.0010 <0.2 0.7 0.2 <0.05 <0.1 0.1	RDL 0.0010 0.2 0.2 0.1 0.05 0.1	QC Batch 4687569 4687842 4687842 4687842 4687842
COC Number UNITS Metals units Leachable Mercury (Hg) mg/L Leachable Arsenic (As) mg/L Leachable Barium (Ba) mg/L Leachable Barium (Ba) mg/L Leachable Cadmium (Cd) mg/L Leachable Chromium (Cr) mg/L Leachable Chromium (Cr) mg/L Leachable Lead (Pb) mg/L Leachable Selenium (Se) mg/L Leachable Silver (Ag) mg/L Leachable Uranium (U) mg/L RDL = Reportable Detection Limit QC QC Batch = Quality Control Batch 2010 Maxxam ID CZ ampling Date 2010 COC Number 5 COC Number 5 COC Number 5 CAtals eachable Mercury (Hg) mg/L eachable Arsenic (As) mg/L - eachable Barium (Ba) mg/L - eachable Boron (B) mg/L - eachable Barium (Cd) mg/L -	09:00 59245 CS1-3 Q <0.7	QC Batch 4687569 4658002 4658002 4658002 4658002 4658002 4658002 4658002 4658002	09:15 59245 CS1-4 <0.0010 <0.2 1.1 0.2 <0.05 <0.1 <0.1 <0.1 <0.01 <0.01	QC Batch QC Batch 4687569 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842	09:20 59245 CS1-5 <0.2	QC Batch 4687569 4658002 4658002 4658002 4658002 4658002 4658002 4658002 4658002 4658002 4658002 4658002	10:00 59245 CS1-7 <0.0010 <0.2 0.7 0.2 <0.05 <0.1 0.1	RDL 0.0010 0.2 0.2 0.1	QC Batch 4687569 4687842 4687842 4687842 4687842
COC Number UNITS Metals units Leachable Mercury (Hg) mg/L Leachable Arsenic (As) mg/L Leachable Barium (Ba) mg/L Leachable Boron (B) mg/L Leachable Cadmium (Cd) mg/L Leachable Chromium (Cr) mg/L Leachable Chromium (Cr) mg/L Leachable Chromium (Se) mg/L Leachable Selenium (Se) mg/L Leachable Silver (Ag) mg/L Leachable Uranium (U) mg/L RDL = Reportable Detection Limit QC Batch = Quality Control Batch Maxxam ID CZ ampling Date 2010 COC Number 5 COC Number 5 COC Number 5 eachable Mercury (Hg) mg/L eachable Arsenic (As) mg/L eachable Barium (Ba) mg/L eachable Boron (B) mg/L eachable Boron (B) mg/L	59245 Q CS1-3 Q 4 <0.2	QC Batch 4687569 4658002 4658002 4658002 4658002 4658002 4658002 4658002 4658002	59245 CS1-4 <0.0010	QC Batch QC Batch 4687569 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842	59245 CS1-5 <0.2	QC Batch 4687569 4658002 <td>59245 CS1-7 <0.0010 <0.2 0.7 0.2 <0.05 <0.1 0.1</td> <td>RDL 0.0010 0.2 0.1 0.05 0.1</td> <td>QC Batch 4687569 4687842 4687842 4687842 4687842</td>	59245 CS1-7 <0.0010 <0.2 0.7 0.2 <0.05 <0.1 0.1	RDL 0.0010 0.2 0.1 0.05 0.1	QC Batch 4687569 4687842 4687842 4687842 4687842
MetalsLeachable Mercury (Hg)mg/LLeachable Arsenic (As)mg/LLeachable Barium (Ba)mg/LLeachable Boron (B)mg/LLeachable Cadmium (Cd)mg/LLeachable Cadmium (Cd)mg/LLeachable Cadmium (Cr)mg/LLeachable Chromium (Cr)mg/LLeachable Selenium (Se)mg/LLeachable Silver (Ag)mg/LLeachable Uranium (U)mg/LRDL = Reportable Detection Limit QC Batch = Quality Control BatchCZAaxxam IDCZampling Date2010 2011COC Number5UNITSCAetalseachable Mercury (Hg)mg/Leachable Arsenic (As)mg/Leachable Barium (Ba)mg/Leachable Boron (B)mg/Leachable Boron (B)mg/Leachable Cadmium (Cd)mg/Lampling Cadmium (Cd)mg/L	CS1-3 Q 4 4 <0.2	QC Batch 4687569 4658002 4658002 4658002 4658002 4658002 4658002 4658002 4658002	CS1-4 <0.0010 <0.2 1.1 0.2 <0.05 <0.1 <0.1 <0.1 <0.01 <0.01	QC Batch 4687569 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842	CS1-5 <0.2 0.5 0.4 <0.05 <0.1 <0.1 <0.1 <0.1	QC Batch I 4687569 I 4658002 I	CS1-7 <0.0010 <0.2 0.7 0.2 <0.05 <0.1 0.1	RDL 0.0010 0.2 0.1 0.05 0.1	QC Batch 4687569 4687842 4687842 4687842 4687842
Metals Leachable Mercury (Hg) mg/L Leachable Arsenic (As) mg/L Leachable Barium (Ba) mg/L Leachable Boron (B) mg/L Leachable Cadmium (Cd) mg/L Leachable Cadmium (Cd) mg/L Leachable Chromium (Cr) mg/L Leachable Lead (Pb) mg/L Leachable Selenium (Se) mg/L Leachable Silver (Ag) mg/L Leachable Uranium (U) mg/L RDL = Reportable Detection Limit QC Batch = Quality Control Batch Maxxam ID CZ Gord Number 5 COC Number 5 COC Number 5 eachable Arsenic (As) mg/L eachable Arsenic (As) mg/L eachable Barium (Ba) mg/L eachable Boron (B) mg/L eachable Cadmium (Cd) mg/L	4 <0.2	4687569 4658002 4658002 4658002 4658002 4658002 4658002 4658002 4658002	<0.0010 <0.2 1.1 0.2 <0.05 <0.1 <0.1 <0.1 <0.01 <0.01	4687569 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842	<0.2 0.5 0.4 <0.05 <0.1 <0.1 <0.1	4687569 4658002 4658002 4658002 4658002 4658002 4658002 4658002 4658002 4658002	<0.0010 <0.2 0.7 0.2 <0.05 <0.1 0.1	0.0010 0.2 0.2 0.1 0.05 0.1	4687569 4687842 4687842 4687842 4687842
Leachable Mercury (Hg) mg/L Leachable Arsenic (As) mg/L Leachable Barium (Ba) mg/L Leachable Boron (B) mg/L Leachable Cadmium (Cd) mg/L Leachable Chromium (Cr) mg/L Leachable Chromium (Cr) mg/L Leachable Lead (Pb) mg/L Leachable Selenium (Se) mg/L Leachable Selenium (Se) mg/L Leachable Vranium (U) mg/L RDL = Reportable Detection Limit QC Batch = Quality Control Batch Maxxam ID CZ Gor Number 5 COC Number 5 eachable Arsenic (As) mg/L eachable Arsenic (As) mg/L eachable Barium (Ba) mg/L eachable Boron (B) mg/L eachable Boron (B) mg/L	4 <0.2	4687569 4658002 4658002 4658002 4658002 4658002 4658002 4658002	<0.0010 <0.2 1.1 0.2 <0.05 <0.1 <0.1 <0.1 <0.01 <0.01	4687569 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842	<0.2 0.5 0.4 <0.05 <0.1 <0.1 <0.1	4687569 4658002	<0.0010 <0.2 0.7 0.2 <0.05 <0.1 0.1	0.0010 0.2 0.2 0.1 0.05 0.1	4687569 4687842 4687842 4687842 4687842
Leachable Arsenic (As) mg/L Leachable Barium (Ba) mg/L Leachable Boron (B) mg/L Leachable Cadmium (Cd) mg/L Leachable Cadmium (Cd) mg/L Leachable Chromium (Cr) mg/L Leachable Lead (Pb) mg/L Leachable Selenium (Se) mg/L Leachable Silver (Ag) mg/L Leachable Uranium (U) mg/L RDL = Reportable Detection Limit QC Batch = Quality Control Batch Aaxxam ID CZ ampling Date 2010 COC Number 5 QC Batch = Quality Control Batch 1 COC Number 5 QC Number 5 QC Batch = Quality (Mg) mg/L COC Number 5 QC Aretals 9 eachable Mercury (Hg) mg/L eachable Barium (Ba) mg/L eachable Boron (B) mg/L eachable Boron (B) mg/L	<0.2	4658002 4658002 4658002 4658002 4658002 4658002 4658002 4658002	<0.2 1.1 0.2 <0.05 <0.1 <0.1 <0.1 <0.01 <0.01	4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842	<0.2 0.5 0.4 <0.05 <0.1 <0.1 <0.1	4658002 4 4658002 4 4658002 4 4658002 4 4658002 4 4658002 4 4658002 4 4658002 4 4658002 4	<0.2 0.7 0.2 <0.05 <0.1 0.1	0.2 0.2 0.1 0.05 0.1	4687842 4687842 4687842 4687842
Leachable Barium (Ba) mg/L Leachable Boron (B) mg/L Leachable Cadmium (Cd) mg/L Leachable Chromium (Cr) mg/L Leachable Chromium (Cr) mg/L Leachable Lead (Pb) mg/L Leachable Selenium (Se) mg/L Leachable Selenium (Se) mg/L Leachable Silver (Ag) mg/L Leachable Uranium (U) mg/L RDL = Reportable Detection Limit QC Batch = Quality Control Batch Axxam ID CZ ampling Date 2010 COC Number 5 COC Number 5 eachable Mercury (Hg) mg/L eachable Arsenic (As) mg/L eachable Barium (Ba) mg/L eachable Boron (B) mg/L eachable Cadmium (Cd) mg/L	0.6 4 0.3 4 0.19 4 <0.1	4658002 4658002 4658002 4658002 4658002 4658002 4658002	1.1 0.2 <0.05	4687842 4687842 4687842 4687842 4687842 4687842 4687842 4687842	0.5 0.4 <0.05 <0.1 <0.1 <0.1	4658002465800246580024658002465800246580024658002	0.7 0.2 <0.05 <0.1 0.1	0.2 0.1 0.05 0.1	4687842 4687842 4687842
Leachable Boron (B) mg/L Leachable Cadmium (Cd) mg/L Leachable Chromium (Cr) mg/L Leachable Lead (Pb) mg/L Leachable Selenium (Se) mg/L Leachable Selenium (Se) mg/L Leachable Silver (Ag) mg/L Leachable Uranium (U) mg/L RDL = Reportable Detection Limit QC Batch = Quality Control Batch Aaxxam ID CZ ampling Date 2016 CO Number 5 OC Number 5 Qeachable Mercury (Hg) mg/L eachable Arsenic (As) mg/L eachable Barium (Ba) mg/L eachable Boron (B) mg/L eachable Cadmium (Cd) mg/L	0.3 4 0.19 4 <0.1	4658002 4658002 4658002 4658002 4658002 4658002	0.2 <0.05 <0.1 <0.1 <0.1 <0.01 <0.01	4687842 4687842 4687842 4687842 4687842 4687842 4687842	0.4 <0.05 <0.1 <0.1 <0.1	4658002 4658002 4658002 4658002 4658002 4658002	0.2 <0.05 <0.1 0.1	0.1 0.05 0.1	4687842 4687842
Leachable Cadmium (Cd) mg/L Leachable Chromium (Cr) mg/L Leachable Lead (Pb) mg/L Leachable Selenium (Se) mg/L Leachable Silver (Ag) mg/L Leachable Silver (Ag) mg/L Leachable Uranium (U) mg/L RDL = Reportable Detection Limit QC Batch = Quality Control Batch Aaxxam ID CZ ampling Date 2010 OC Number 5 UNITS C Aetals eachable Mercury (Hg) mg/L eachable Barium (Ba) mg/L - eachable Boron (B) mg/L - eachable Cadmium (Cd) mg/L -	0.19 4 <0.1	4658002 4658002 4658002 4658002 4658002 4658002	<0.05 <0.1 <0.1 <0.1 <0.01 <0.01	4687842 4687842 4687842 4687842 4687842 4687842	<0.05 <0.1 <0.1 <0.1	4658002 4658002 4658002 4658002	<0.05 <0.1 0.1	0.05 0.1	4687842
Leachable Chromium (Cr) mg/L Leachable Lead (Pb) mg/L Leachable Selenium (Se) mg/L Leachable Silver (Ag) mg/L Leachable Uranium (U) mg/L RDL = Reportable Detection Limit QC Batch = Quality Control Batch Maxxam ID CZ ampling Date 2010 COC Number 5 UNITS C Aetals eachable Mercury (Hg) mg/L eachable Barium (Ba) mg/L <	<0.1	4658002 4658002 4658002 4658002 4658002	<0.1 <0.1 <0.1 <0.01 <0.01	4687842 4687842 4687842 4687842 4687842	<0.1 <0.1 <0.1	4658002 4658002 4658002	<0.1 0.1	0.1	
Leachable Lead (Pb) mg/L Leachable Selenium (Se) mg/L Leachable Silver (Ag) mg/L Leachable Uranium (U) mg/L RDL = Reportable Detection Limit QC Batch = Quality Control Batch Aaxxam ID CZ Gampling Date 2016 COC Number 5 UNITS CC Aetals eachable Mercury (Hg) mg/L eachable Barium (Ba) mg/L <0	<0.1	4658002 4658002 4658002 4658002	<0.1 <0.1 <0.01 <0.01	4687842 4687842 4687842	<0.1 <0.1	4658002 4658002	0.1		4687842
Leachable Selenium (Se) mg/L Leachable Silver (Ag) mg/L Leachable Uranium (U) mg/L RDL = Reportable Detection Limit QC Batch = Quality Control Batch Maxxam ID CZ Gampling Date 2010 COC Number 5 UNITS C Aetals eachable Mercury (Hg) mg/L eachable Barium (Ba) mg/L - eachable Boron (B) mg/L - eachable Cadmium (Cd) mg/L <	<0.1 4 <0.01 4 <0.01 4	4658002 4658002 4658002	<0.1 <0.01 <0.01	4687842 4687842	<0.1	4658002		0.1	4687842
Leachable Silver (Ag) mg/L Leachable Uranium (U) mg/L RDL = Reportable Detection Limit QC Batch = Quality Control Batch Maxxam ID CZ Jaxxam ID CZ COC Number 5 UNITS C Aetals eachable Mercury (Hg) mg/L eachable Barium (Ba) mg/L <0	<0.01 4 <0.01 4	4658002 4658002	<0.01 <0.01	4687842	<0.01		<0.1	0.1	4687842
Leachable Uranium (U) mg/L RDL = Reportable Detection Limit QC Batch = Quality Control Batch Maxxam ID CZ Jampling Date 2010 COC Number 5 UNITS CC Aetals 4 eachable Mercury (Hg) mg/L <0	<0.01 4	4658002	<0.01	1607012	<0.01	4658002	<0.01	0.01	4687842
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Maxxam ID CZ ampling Date 2010 COC Number 5 UNITS C Metals 9 eachable Mercury (Hg) mg/L <			•	408/842	<0.01	4658002	<0.01	0.01	4687842
QC Batch = Quality Control Batch Maxxam ID CZ Gampling Date 2010 COC Number 5 UNITS CC Metals Maxable Mercury (Hg) mg/L eachable Mercury (Hg) mg/L <0				• • • •			······		
Maxxam ID CZ Gampling Date 2010 Gampling Date 1 COC Number 5 UNITS C Metals 0 Leachable Mercury (Hg) mg/L Leachable Arsenic (As) mg/L Leachable Barium (Ba) mg/L Leachable Boron (B) mg/L Leachable Cadmium (Cd) mg/L									
Viaxxam ID CZ Sampling Date 2016 COC Number 5 UNITS C Metals C Leachable Mercury (Hg) mg/L <	714(620		C714/C24	67 14/622	C7 14/C2C	6714/620	6714/620		1
iampling Date 2011 COC Number 5 UNITS CO Metals 0 eachable Mercury (Hg) mg/L eachable Arsenic (As) mg/L eachable Barium (Ba) mg/L eachable Boron (B) mg/L eachable Cadmium (Cd) mg/L	.2W629		CZW631	CZW633	CZW636	CZW638	CZW639		_
COC Number 5 UNITS CO Vetals eachable Mercury (Hg) mg/L <0 eachable Arsenic (As) mg/L eachable Barium (Ba) mg/L eachable Boron (B) mg/L eachable Cadmium (Cd) mg/L <0	16/08/31 10·30		2016/08/31 10·40	2016/08/31	2016/08/31	2016/08/3 11·10	11.15	1	
UNITS C Metals mg/L <0	59245		59245	59248	59248	59248	59248		-
Metals mg/L <0	CS1-8 Q	C Batch	CS1-10	CS1-11	CS1-14	CS1-16	CS1-17	RDL	QC Bato
.eachable Mercury (Hg) mg/L <0	1.4	•							
.eachable Arsenic (As) mg/L .eachable Arsenic (As) mg/L .eachable Barium (Ba) mg/L .eachable Boron (B) mg/L .eachable Cadmium (Cd) mg/L	:0 0010 4f	1687569						0.001	1 468756
.eachable Barium (Ba) mg/L .eachable Boron (B) mg/L .eachable Cadmium (Cd) mg/L	<0.0010 40	16878/12	<0.2	<0.2	<0.2	<0.2	<0.2	0.001	/65800
eachable Boron (B) mg/L eachable Cadmium (Cd) mg/L <	<0.2 46	1687842	0.2	4 1	0.2	0.2	0.2	0.2	465800
eachable Cadmium (Cd) mg/L <	0.2 46	1687842	0.7	0.2	0.3	0.0	1.0	0.1	465800
116/2	0.2	1687842	<0.05	0.06	<0.0	<0.05	<0.05	0.1	465800
eachable Chromium (Cr) mg/i 🦾	<0.05 46	1687842	<0.03	<0.00	<0.05	<0.05	<0.03	0.05	465800
eachable Lead (Pb) mg/L	<0.05 46	16878/12	36	2 3	<0.1	0.1	<0.1	0.1	465800
eachable Selenium (Se) mg/l	<0.05 46 <0.1 46	.50/042	<0.1	<0.1	<0.1	<0.2	<0.1	0.1	465800
eachable Silver (Ag) mg/l	<0.05 46 <0.1 46 <0.1 46 <0.1 46	1687842	-0.1	<0.01	<0.01	<0.1	<0.1	0.1	465800
eachable Uranium (U) mg/l <	<0.05 46 <0.1 46 <0.1 46 <0.1 46 <0.1 46	1687842 1687842	<0.01	St / . 1 / 1	-0.01	<0.01	<0.01	0.01	465800
RDI = Reportable Detection Limit	<0.05 46 <0.1 46 <0.1 46 <0.1 46 <0.01 46 <0.01 46 <0.01 46	4687842 4687842 4687842	<0.01 <0.01	<0.01	<0.01	SU.U.I	.0.01	0.01	
)C Batch = Quality Control Batch	<0.05	4687842 4687842 4687842	<0.01 <0.01	<0.01	<0.01	10.01			

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

O.REG 558 TCLP METALS (SOIL)

Maxxam ID		CZW641					
Sampling Date		2016/08/31					
		11:25					
COC Number		59248					
	UNITS	CS1-19	RDL	QC Batch			
Metals							
Leachable Arsenic (As)	mg/L	<0.2	0.2	4658002			
Leachable Barium (Ba)	mg/L	1.8	0.2	4658002			
Leachable Boron (B)	mg/L	0.3	0.1	4658002			
Leachable Cadmium (Cd)	mg/L	<0.05	0.05	4658002			
Leachable Chromium (Cr)	mg/L	<0.1	0.1	4658002			
Leachable Lead (Pb)	mg/L	12	0.1	4658002			
Leachable Selenium (Se)	mg/L	<0.1	0.1	4658002			
Leachable Silver (Ag)	mg/L	<0.01	0.01	4658002			
Leachable Uranium (U)	mg/L	<0.01	0.01	4658002			
RDL = Reportable Detection Limit							
QC Batch = Quality Control Ba	atch						

Report Date: 2016/10/07

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

RESULTS OF ANALYSES OF SOIL

				C2W6	522 C	ZW623	3		CZW	624			CZWé	525	CZV	V626		
	Sampling Date			2016/08 08:0	8/31 20:)0	L6/08/3 08:15	31		2016/0 09:)8/31 00		2	016/0 09:1	8/31 L5	2016, 09	/08/31 9:20		
ľ	COC Number			5924	15	59245			592	45			5924	45	59	245		
ļ			UNITS	CS1-	1	CS1-2	QC E	Batch	CS1	-3	QC Bat	ch	CS1	-4	CS	51-5	QC Ba	atch
	Inorganics		1	1														
<u>,</u>	Available (CaCl2) pH		рН	6.82	2	7.02	4654	4264	5.8	3	46536	71	6.0	0	5.	.66	4654	264
ľ	QC Batch = Quality Co	ontrol Ba	atch															
Maxx	am ID		CZ	W627		CZ	W628			CZW6	529	CZW	530			CZW6	31	
Samp	ling Date		201	6/08/31 09:30		2016 1	5/08/31 .0:00		2	016/0 10:3	8/31 2 30	016/0 10:3	8/31 35			2016/08 10:4	3/31 0	
COC	Number		5	9245		5	9245			5924	45	5924	45			5924	5	
		UNI	TS C	CS1-6	QC Batc	ר מ	S1-7	QC B	atch	CS1	-8	CS1	-9	QC Ba	atch	CS1 -1	0	QC Bat
Inorg	anics																	
Availa	able (CaCl2) pH	рН		6.30	4653672		7.17	4654	4264	5.8	2	5.0	4	4653	671	5.07	,	465426
QC Ba	atch = Quality Control	Batch																
/axxam	ı ID		CZW	633	CZW634	CZ	W635	CZ	W636	CZ	W637			CZV	V638	CZ۱	V639	
amplin	g Date		2016/0 10:	08/31 20 45)16/08/3 10:50	L 2016	5/08/31 .0:55	2016	5/08/31 1:00	2016	5/08/31 1:05			2016, 11	/08/3 .:10	1 2016	/08/3 1:15	1
OC Nur	mber		592	48	59248	5	9248	59	9248	59	9248			59	248	59	248	
		UNITS	CS1-	-11	CS1-12	C	61-13	CS	51-14	CS	51-15	QCE	Batch	CS	L-16	CS	1-17	QC E
norgani	ics																	
vailable	e (CaCl2) pH	рΗ	6.7	'0	5.47	4	4.70	4	1.68	4	1.83	465	2152	5.	64	3	.90	4653
LC Batc	h = Quality Control Ba	itch																
Ma	axxam ID			CZW640	CZV	/640	CZW	541	CZW	642	CZW	544	CZ	W645	0	ZW646		
Sai	mpling Date		2	016/08/3	31 2016/	08/31	2016/0	8/31	2016/0	08/31	2016/0	8/31	2016	5/08/3	1 20	16/08/3	1	
501				11:20	11	:20	11:2	25	11:	45	11:	50	1	1:55		12:00		
0	C Number			59248	59	248 - 18	5924	48	592	48	592	50	59	9250		59250	_	
		U	NITS	CS1-18	Lab	Dup	CS1-	19	CS1-	20	CS1-	21	CS	51-22		CS1-23	QC	Batch
Inc	organics	• • •					•				-		-					
Av	ailable (CaCl2) pH		рН	5.69	5.	61	6.5	3	5.1	5	6.9	8	(1)	8.58		6.07	46	53671

Maxxam ID		CZW647	CZW648	CZW649		CZW650		CZW651	
Compling Data		2016/08/31	2016/08/31	2016/08/31		2016/08/31		2016/08/31	
Sampling Date		12:05	12:07	10:35		09:20		12:00	
COC Number		59250	59250	59250		59250		59250	
	UNITS	CS1-24	CS1-25	CS10-9	QC Batch	CS10-5	QC Batch	CS10-23	QC Batch
Inorganics	UNITS	CS1-24	CS1-25	CS10-9	QC Batch	CS10-5	QC Batch	CS10-23	QC Batch
Inorganics Available (CaCl2) pH	DNITS	CS1-24 6.91	CS1-25 5.65	CS10-9 5.49	QC Batch 4653671	CS10-5 5.56	QC Batch 4654264	CS10-23 6.06	QC Batch 4653671

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		CZW622	CZW623	CZW623	CZW625	CZW626	CZW627	CZW628		
Sampling Date		2016/08/31	2016/08/31	2016/08/31	2016/08/31	2016/08/31	2016/08/31	2016/08/31		
		08:00	08:15	08:15	09:15	09:20	09:30	10:00		ļ
COC Number		59245	59245	59245	59245	59245	59245	59245		
	UNITS	CS1-1	CS1-2	CS1-2 Lab-Dup	CS1-4	CS1-5	CS1-6	CS1-7	RDL	QC Batch
Polyaromatic Hydrocarbons										
Acenaphthene	ug/g	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	4659161
Acenaphthylene	ug/g	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	4659161
Anthracene	ug/g	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	4659161
Benzo(a)anthracene	ug/g	0.05	0.24	0.20	<0.05	<0.05	<0.05	<0.05	0.05	4659161
Benzo(a)pyrene	ug/g	0.06	0.25	0.20	<0.05	<0.05	<0.05	<0.05	0.05	4659161
Benzo(b/j)fluoranthene	ug/g	0.09	0.36	0.29	<0.05	<0.05	<0.05	0.09	0.05	4659161
Benzo(g,h,i)perylene	ug/g	0.06	0.17	0.14	<0.05	<0.05	<0.05	0.05	0.05	4659161
Benzo(k)fluoranthene	ug/g	<0.05	0.12	0.09	<0.05	<0.05	<0.05	<0.05	0.05	4659161
Chrysene	ug/g	0.08	0.24	0.18	<0.05	<0.05	<0.05	0.06	0.05	4659161
Dibenz(a,h)anthracene	ug/g	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	4659161
Fluoranthene	ug/g	0.15	0.39	0.30	<0.05	<0.05	<0.05	0.08	0.05	4659161
Fluorene	ug/g	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	4659161
Indeno(1,2,3-cd)pyrene	ug/g	0.06	0.19	0.16	<0.05	<0.05	<0.05	<0.05	0.05	4659161
1-Methylnaphthalene	ug/g	0.13	<0.05	<0.05	<0.05	<0.05	<0.05	0.09	0.05	4659161
2-Methylnaphthalene	ug/g	0.22	0.06	<0.05	<0.05	0.07	<0.05	0.12	0.05	4659161
Naphthalene	ug/g	0.11	<0.05	<0.05	<0.05	0.05	<0.05	0.06	0.05	4659161
Phenanthrene	ug/g	0.14	0.13	0.08	<0.05	<0.05	<0.05	0.09	0.05	4659161
Pyrene	ug/g	0.17	0.33	0.26	<0.05	<0.05	<0.05	0.08	0.05	4659161
Surrogate Recovery (%)										
D10-Anthracene	%	75	76	75	81	78	79	78		4659161
D14-Terphenyl (FS)	%	70	73	72	76	74	76	73		4659161
D8-Acenaphthylene	%	67	66	66	70	69	71	70		4659161
RDL = Reportable Detection L QC Batch = Quality Control Ba	imit atch									

Lab-Dup = Laboratory Initiated Duplicate

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		CZW629		CZW630	CZW631		CZW633	CZW634		CZW645		
Sampling Data		2016/08/31		2016/08/31	2016/08/31		2016/08/31	2016/08/31		2016/08/31		
		10:30		10:35	10:40		10:45	10:50		11:55		
COC Number		59245		59245	59245		59248	59248		59250		
	UNITS	CS1-8	RDL	CS1-9	CS1-10	RDL	CS1-11	CS1-12	RDL	CS1-22	RDL	QC Batch
Polyaromatic Hydrocarbons												
Acenaphthene	ug/g	<0.05	0.05	<0.1	<0.1	0.1	<0.05	<0.05	0.05	<0.1	0.1	4659161
Acenaphthylene	ug/g	<0.05	0.05	<0.1	<0.1	0.1	<0.05	0.09	0.05	<0.1	0.1	4659161
Anthracene	ug/g	<0.05	0.05	<0.1	<0.1	0.1	<0.05	<0.05	0.05	<0.1	0.1	4659161
Benzo(a)anthracene	ug/g	<0.05	0.05	<0.1	<0.1	0.1	<0.05	0.14	0.05	<0.1	0.1	4659161
Benzo(a)pyrene	ug/g	<0.05	0.05	<0.1	<0.1	0.1	<0.05	0.13	0.05	<0.1	0.1	4659161
Benzo(b/j)fluoranthene	ug/g	<0.05	0.05	<0.1	<0.1	0.1	0.08	0.25	0.05	<0.1	0.1	4659161
Benzo(g,h,i)perylene	ug/g	<0.05	0.05	<0.1	<0.1	0.1	0.07	0.14	0.05	<0.1	0.1	4659161
Benzo(k)fluoranthene	ug/g	<0.05	0.05	<0.1	<0.1	0.1	<0.05	0.07	0.05	<0.1	0.1	4659161
Chrysene	ug/g	<0.05	0.05	<0.1	<0.1	0.1	<0.05	0.15	0.05	<0.1	0.1	4659161
Dibenz(a,h)anthracene	ug/g	<0.05	0.05	<0.1	<0.1	0.1	<0.05	<0.05	0.05	<0.1	0.1	4659161
Fluoranthene	ug/g	<0.05	0.05	<0.1	<0.1	0.1	<0.05	0.24	0.05	<0.1	0.1	4659161
Fluorene	ug/g	<0.05	0.05	<0.1	<0.1	0.1	<0.05	<0.05	0.05	<0.1	0.1	4659161
Indeno(1,2,3-cd)pyrene	ug/g	<0.05	0.05	<0.1	<0.1	0.1	<0.05	0.14	0.05	<0.1	0.1	4659161
1-Methylnaphthalene	ug/g	<0.05	0.05	<0.1	<0.1	0.1	0.34	<0.05	0.05	0.1	0.1	4659161
2-Methylnaphthalene	ug/g	<0.05	0.05	<0.1	<0.1	0.1	0.84	0.07	0.05	0.2	0.1	4659161
Naphthalene	ug/g	<0.05	0.05	<0.1	<0.1	0.1	0.37	<0.05	0.05	<0.1	0.1	4659161
Phenanthrene	ug/g	<0.05	0.05	<0.1	<0.1	0.1	0.30	0.05	0.05	<0.1	0.1	4659161
Pyrene	ug/g	<0.05	0.05	<0.1	<0.1	0.1	0.33	0.20	0.05	0.4	0.1	4659161
Surrogate Recovery (%)									-			
D10-Anthracene	%	83		68	69		73	68		73		4659161
D14-Terphenyl (FS)	%	79		62	64		66	64		65		4659161
D8-Acenaphthylene	%	72		64	67		74	64		73		4659161
RDL = Reportable Detection L	imit											
QC Batch = Quality Control Ba	atch											

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		CZW649		CZW650		
Sampling Data		2016/08/31		2016/08/31		
		10:35		09:20		
COC Number		59250		59250		
	UNITS	CS10-9	RDL	CS10-5	RDL	QC Batch
Polyaromatic Hydrocarbons						
Acenaphthene	ug/g	<0.1	0.1	<0.05	0.05	4659161
Acenaphthylene	ug/g	<0.1	0.1	<0.05	0.05	4659161
Anthracene	ug/g	<0.1	0.1	<0.05	0.05	4659161
Benzo(a)anthracene	ug/g	<0.1	0.1	<0.05	0.05	4659161
Benzo(a)pyrene	ug/g	<0.1	0.1	<0.05	0.05	4659161
Benzo(b/j)fluoranthene	ug/g	<0.1	0.1	0.05	0.05	4659161
Benzo(g,h,i)perylene	ug/g	<0.1	0.1	<0.05	0.05	4659161
Benzo(k)fluoranthene	ug/g	<0.1	0.1	<0.05	0.05	4659161
Chrysene	ug/g	<0.1	0.1	<0.05	0.05	4659161
Dibenz(a,h)anthracene	ug/g	<0.1	0.1	<0.05	0.05	4659161
Fluoranthene	ug/g	<0.1	0.1	<0.05	0.05	4659161
Fluorene	ug/g	<0.1	0.1	<0.05	0.05	4659161
Indeno(1,2,3-cd)pyrene	ug/g	<0.1	0.1	<0.05	0.05	4659161
1-Methylnaphthalene	ug/g	<0.1	0.1	<0.05	0.05	4659161
2-Methylnaphthalene	ug/g	<0.1	0.1	<0.05	0.05	4659161
Naphthalene	ug/g	<0.1	0.1	<0.05	0.05	4659161
Phenanthrene	ug/g	<0.1	0.1	<0.05	0.05	4659161
Pyrene	ug/g	<0.1	0.1	<0.05	0.05	4659161
Surrogate Recovery (%)						
D10-Anthracene	%	65		74		4659161
D14-Terphenyl (FS)	%	59		73		4659161
D8-Acenaphthylene	%	64		70		4659161
RDL = Reportable Detection L	imit					
QC Batch = Quality Control Ba	itch					

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		CZW622	CZW628	CZW634		
Sampling Data		2016/08/31	2016/08/31	2016/08/31		
Sampling Date		08:00	10:00	10:50		
COC Number		59245	59245	59248		
	UNITS	CS1-1	CS1-7	CS1-12	RDL	QC Batch
F2-F4 Hydrocarbons						
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	180	150	<100	100	4659446
RDL = Reportable Detection Limit						
QC Batch = Quality Control Batch						

TEST SUMMARY

Collected: 2016/08/31
Shipped: Received: 2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4648303	N/A	2016/09/16	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4655381	2016/09/10	2016/09/12	Zhiyue (Frank) Zhu
F4G (CCME Hydrocarbons Gravimetric)	BAL	4659446	2016/09/14	2016/09/14	Lovelpreet Thind
Strong Acid Leachable Metals by ICPMS	ICP/MS	4656068	2016/09/12	2016/09/12	Viviana Canzonieri
PAH Compounds by GC/MS (SIM)	GC/MS	4659161	2016/09/13	2016/09/14	Lingyun Feng
Moisture	BAL	4654236	N/A	2016/09/09	Min Yang
pH CaCl2 EXTRACT	AT	4654264	2016/09/12	2016/09/12	Neil Dassanayake
Volatile Organic Compounds and F1 PHCs	GC/MS	4650611	N/A	2016/09/08	Denis Reid

Maxxam ID: CZW623 Sample ID: CS1-2 Matrix: Soil Collected: 2016/08/31 Shipped: Received: 2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4648303	N/A	2016/09/16	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4655381	2016/09/10	2016/09/12	Zhiyue (Frank) Zhu
Strong Acid Leachable Metals by ICPMS	ICP/MS	4656068	2016/09/12	2016/09/12	Viviana Canzonieri
PAH Compounds by GC/MS (SIM)	GC/MS	4659161	2016/09/13	2016/09/14	Lingyun Feng
Moisture	BAL	4654236	N/A	2016/09/09	Min Yang
pH CaCl2 EXTRACT	AT	4654264	2016/09/12	2016/09/12	Neil Dassanayake
Volatile Organic Compounds and F1 PHCs	GC/MS	4650611	N/A	2016/09/08	Denis Reid

Maxxam ID: 0 Sample ID: 0 Matrix: 5	CZW623 Dup CS1-2 Soil					Collected: 2016/08/31 Shipped:
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
PAH Compounds by GC/MS	(SIM)	GC/MS	4659161	2016/09/13	2016/09/14	Lingyun Feng

Maxxam ID: CZW624 Sample ID: CS1-3 Matrix: Soil Collected: 2016/08/31 Shipped: Received: 2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4654389	2016/09/09	2016/09/12	Viviana Canzonieri
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	4658002	2016/09/13	2016/09/15	Cristina Petran
PAH Compounds in Leachate by GC/MS (SIM)	GC/MS	4658741	2016/09/13	2016/09/14	Lingyun Feng
pH CaCl2 EXTRACT	AT	4653671	2016/09/09	2016/09/09	Neil Dassanayake
TCLP - % Solids	BAL	4656406	2016/09/12	2016/09/13	Jian (Ken) Wang
TCLP - Extraction Fluid		4656410	N/A	2016/09/13	Jian (Ken) Wang
TCLP - Initial and final pH	РН	4656411	N/A	2016/09/13	Jian (Ken) Wang
TCLP Zero Headspace Extraction		4659866	2016/09/14	2016/09/15	Walt Wang
VOCs in ZHE Leachates	GC/MS	4661637	2016/09/15	2016/09/15	Adriana Zurita

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

TEST SUMMARY

Maxxam ID: C	CZW625	Collected:	2016/08/31
Sample ID: C	CS1-4	Shipped:	
Matrix: S	Soil	Received:	2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4648303	N/A	2016/09/16	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4655381	2016/09/10	2016/09/12	Zhiyue (Frank) Zhu
Mercury (TCLP Leachable) (mg/L)	CV/AA	4687569	N/A	2016/10/05	Magdalena Carlos
Strong Acid Leachable Metals by ICPMS	ICP/MS	4656068	2016/09/12	2016/09/12	Viviana Canzonieri
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	4687842	2016/10/04	2016/10/05	Cristina Petran
PAH Compounds by GC/MS (SIM)	GC/MS	4659161	2016/09/13	2016/09/14	Lingyun Feng
Moisture	BAL	4654236	N/A	2016/09/09	Min Yang
Polychlorinated Biphenyl in Soil	GC/ECD	4654696	2016/09/09	2016/09/10	Mahmudul Khan
pH CaCl2 EXTRACT	AT	4654264	2016/09/12	2016/09/12	Neil Dassanayake
TCLP - % Solids	BAL	4686645	2016/10/03	2016/10/04	Walt Wang
TCLP - Extraction Fluid		4686646	N/A	2016/10/04	Walt Wang
TCLP - Initial and final pH	PH	4686647	N/A	2016/10/04	Walt Wang
Volatile Organic Compounds and F1 PHCs	GC/MS	4650611	N/A	2016/09/08	Denis Reid

Maxxam ID:	CZW626
Sample ID:	CS1-5
Matrix:	Soil

Collected: 2016/08/31 Shipped: Received: 2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4648303	N/A	2016/09/16	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4655381	2016/09/10	2016/09/12	Zhiyue (Frank) Zhu
Strong Acid Leachable Metals by ICPMS	ICP/MS	4656068	2016/09/12	2016/09/12	Viviana Canzonieri
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	4658002	2016/09/13	2016/09/15	Cristina Petran
PAH Compounds by GC/MS (SIM)	GC/MS	4659161	2016/09/13	2016/09/14	Lingyun Feng
Moisture	BAL	4654236	N/A	2016/09/09	Min Yang
PAH Compounds in Leachate by GC/MS (SIM)	GC/MS	4658741	2016/09/13	2016/09/14	Lingyun Feng
pH CaCl2 EXTRACT	AT	4654264	2016/09/12	2016/09/12	Neil Dassanayake
TCLP - % Solids	BAL	4656406	2016/09/12	2016/09/13	Jian (Ken) Wang
TCLP - Extraction Fluid		4656410	N/A	2016/09/13	Jian (Ken) Wang
TCLP - Initial and final pH	PH	4656411	N/A	2016/09/13	Jian (Ken) Wang
TCLP Zero Headspace Extraction		4659866	2016/09/14	2016/09/15	Walt Wang
Volatile Organic Compounds and F1 PHCs	GC/MS	4650611	N/A	2016/09/08	Denis Reid
VOCs in ZHE Leachates	GC/MS	4661637	2016/09/15	2016/09/15	Adriana Zurita

Maxxam ID: Sample ID: Matrix:	CZW626 Dup CS1-5 Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PAH Compounds in Leach	ate by GC/MS (SIM)	GC/MS	4658741	2016/09/13	2016/09/14	Lingyun Fen	g

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

TEST SUMMARY

Maxxam ID:	CZW627	Collected:	2016/08/31
Sample ID:	CS1-6	Shipped:	
Matrix:	Soil	Received:	2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4648303	N/A	2016/09/16	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4655381	2016/09/10	2016/09/12	Zhiyue (Frank) Zhu
Strong Acid Leachable Metals by ICPMS	ICP/MS	4654389	2016/09/09	2016/09/13	Viviana Canzonieri
PAH Compounds by GC/MS (SIM)	GC/MS	4659161	2016/09/13	2016/09/14	Lingyun Feng
Moisture	BAL	4653840	N/A	2016/09/09	Min Yang
pH CaCl2 EXTRACT	AT	4653671	2016/09/09	2016/09/09	Neil Dassanayake
Volatile Organic Compounds and F1 PHCs	GC/MS	4650611	N/A	2016/09/08	Denis Reid
PAH Compounds by GC/MS (SIM) Moisture pH CaCl2 EXTRACT Volatile Organic Compounds and F1 PHCs	GC/MS BAL AT GC/MS	4659161 4653840 4653671 4650611	2016/09/13 N/A 2016/09/09 N/A	2016/09/14 2016/09/09 2016/09/09 2016/09/08	Lingyun Feng Min Yang Neil Dassanayake Denis Reid

Maxxam ID:	CZW628
Sample ID:	CS1-7
Matrix:	Soil

Collected:	2016/08/31
Shipped:	
Received:	2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4648303	N/A	2016/09/16	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4655381	2016/09/10	2016/09/12	Zhiyue (Frank) Zhu
F4G (CCME Hydrocarbons Gravimetric)	BAL	4659446	2016/09/14	2016/09/14	Lovelpreet Thind
Mercury (TCLP Leachable) (mg/L)	CV/AA	4687569	N/A	2016/10/05	Magdalena Carlos
Strong Acid Leachable Metals by ICPMS	ICP/MS	4656068	2016/09/12	2016/09/12	Viviana Canzonieri
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	4687842	2016/10/04	2016/10/05	Cristina Petran
PAH Compounds by GC/MS (SIM)	GC/MS	4659161	2016/09/13	2016/09/14	Lingyun Feng
Moisture	BAL	4654236	N/A	2016/09/09	Min Yang
pH CaCl2 EXTRACT	AT	4654264	2016/09/12	2016/09/12	Neil Dassanayake
TCLP - % Solids	BAL	4686645	2016/10/03	2016/10/04	Walt Wang
TCLP - Extraction Fluid		4686646	N/A	2016/10/04	Walt Wang
TCLP - Initial and final pH	PH	4686647	N/A	2016/10/04	Walt Wang
Volatile Organic Compounds and F1 PHCs	GC/MS	4650611	N/A	2016/09/08	Denis Reid

Maxxam ID: Sample ID: Matrix:	CZW628 Dup CS1-7 Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Volatile Organic Compour	nds and F1 PHCs	GC/MS	4650611	N/A	2016/09/08	Denis Reid	
Maxxam ID: Sample ID: Matrix: Test Description	CZW629 CS1-8 Soil	Instrumentation	Batch	Extracted	Date Analyzed	Collected: Shipped: Received:	2016/08/31 2016/09/02
Mothylpaphthalono Sum			4649202		2016/00/16	Automator	d Statchk
Detroloure Undreserbare			4046505	N/A	2010/09/10	Automated	
Petroleum Hydrocarbons	F2-F4 IN SOII	GC/FID	4655381	2016/09/10	2016/09/12	Zhiyue (Fra	ank) znu
Mercury (TCLP Leachable) (mg/L)	CV/AA	4687569	N/A	2016/10/05	Magdalena	a Carlos
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4654389	2016/09/09	2016/09/13	Viviana Ca	nzonieri
Total Metals in TCLP Lead	hate by ICPMS	ICP1/MS	4687842	2016/10/04	2016/10/05	Cristina Pe	tran
PAH Compounds by GC/N	AS (SIM)	GC/MS	4659161	2016/09/13	2016/09/14	Lingyun Fe	ng

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

TEST SUMMARY

Maxxam ID:	CZW629	Collected:	2016/08/31
Sample ID:	CS1-8	Shipped:	
Matrix:	Soil	Received:	2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	4653840	N/A	2016/09/09	Min Yang
pH CaCl2 EXTRACT	AT	4653671	2016/09/09	2016/09/09	Neil Dassanayake
TCLP - % Solids	BAL	4686645	2016/10/03	2016/10/04	Walt Wang
TCLP - Extraction Fluid		4686646	N/A	2016/10/04	Walt Wang
TCLP - Initial and final pH	PH	4686647	N/A	2016/10/04	Walt Wang
Volatile Organic Compounds and F1 PHCs	GC/MS	4650611	N/A	2016/09/08	Denis Reid

Maxxam ID:	CZW630
Sample ID:	CS1-9
Matrix:	Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4648303	N/A	2016/09/16	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4655381	2016/09/10	2016/09/12	Zhiyue (Frank) Zhu
Strong Acid Leachable Metals by ICPMS	ICP/MS	4654389	2016/09/09	2016/09/12	Viviana Canzonieri
PAH Compounds by GC/MS (SIM)	GC/MS	4659161	2016/09/13	2016/09/14	Lingyun Feng
Moisture	BAL	4653840	N/A	2016/09/09	Min Yang
pH CaCl2 EXTRACT	AT	4653671	2016/09/09	2016/09/09	Neil Dassanayake
Volatile Organic Compounds and F1 PHCs	GC/MS	4650611	N/A	2016/09/08	Denis Reid

Maxxam ID:	CZW631
Sample ID:	CS1-10
Matrix:	Soil

2016/08/31
2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4648303	N/A	2016/09/16	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4655381	2016/09/10	2016/09/12	Zhiyue (Frank) Zhu
Strong Acid Leachable Metals by ICPMS	ICP/MS	4656068	2016/09/12	2016/09/13	Viviana Canzonieri
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	4658002	2016/09/13	2016/09/15	Cristina Petran
PAH Compounds by GC/MS (SIM)	GC/MS	4659161	2016/09/13	2016/09/14	Lingyun Feng
Moisture	BAL	4654236	N/A	2016/09/09	Min Yang
PAH Compounds in Leachate by GC/MS (SIM)	GC/MS	4658741	2016/09/13	2016/09/14	Lingyun Feng
pH CaCl2 EXTRACT	AT	4654264	2016/09/12	2016/09/12	Neil Dassanayake
TCLP - % Solids	BAL	4656406	2016/09/12	2016/09/13	Jian (Ken) Wang
TCLP - Extraction Fluid		4656410	N/A	2016/09/13	Jian (Ken) Wang
TCLP - Initial and final pH	РН	4656411	N/A	2016/09/13	Jian (Ken) Wang
TCLP Zero Headspace Extraction		4659866	2016/09/14	2016/09/15	Walt Wang
Volatile Organic Compounds and F1 PHCs	GC/MS	4650611	N/A	2016/09/08	Denis Reid
VOCs in ZHE Leachates	GC/MS	4661637	2016/09/15	2016/09/15	Adriana Zurita

Collected: 2016/08/31 Shipped: Received: 2016/09/02

TEST SUMMARY

Maxxam ID:	CZW633	Collected:	2016/08/31
Sample ID:	CS1-11	Shipped:	
Matrix:	Soil	Received:	2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4648303	N/A	2016/09/16	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4655381	2016/09/10	2016/09/12	Zhiyue (Frank) Zhu
Strong Acid Leachable Metals by ICPMS	ICP/MS	4654027	2016/09/09	2016/09/12	Viviana Canzonieri
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	4658002	2016/09/13	2016/09/15	Cristina Petran
PAH Compounds by GC/MS (SIM)	GC/MS	4659161	2016/09/13	2016/09/14	Lingyun Feng
Moisture	BAL	4651909	N/A	2016/09/08	Valentina Kaftani
PAH Compounds in Leachate by GC/MS (SIM)	GC/MS	4658741	2016/09/13	2016/09/14	Lingyun Feng
pH CaCl2 EXTRACT	AT	4652152	2016/09/08	2016/09/08	Neil Dassanayake
TCLP - % Solids	BAL	4656406	2016/09/12	2016/09/13	Jian (Ken) Wang
TCLP - Extraction Fluid		4656410	N/A	2016/09/13	Jian (Ken) Wang
TCLP - Initial and final pH	PH	4656411	N/A	2016/09/13	Jian (Ken) Wang
Volatile Organic Compounds and F1 PHCs	GC/MS	4650611	N/A	2016/09/08	Denis Reid

Maxxam ID: CZW634 Sample ID: CS1-12 Matrix: Soil

Collected: 2016/08/31 Shipped: **Received:** 2016/09/02

Collected:

2016/08/31

Shipped: Received: 2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4648303	N/A	2016/09/16	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4655381	2016/09/10	2016/09/12	Zhiyue (Frank) Zhu
F4G (CCME Hydrocarbons Gravimetric)	BAL	4659446	2016/09/14	2016/09/14	Lovelpreet Thind
Strong Acid Leachable Metals by ICPMS	ICP/MS	4654027	2016/09/09	2016/09/12	Viviana Canzonieri
PAH Compounds by GC/MS (SIM)	GC/MS	4659161	2016/09/13	2016/09/14	Lingyun Feng
Moisture	BAL	4651909	N/A	2016/09/08	Valentina Kaftani
pH CaCl2 EXTRACT	AT	4652152	2016/09/08	2016/09/08	Neil Dassanayake
Volatile Organic Compounds and F1 PHCs	GC/MS	4650611	N/A	2016/09/08	Denis Reid

Maxxam ID: CZW635 Sample ID: CS1-13 Matrix: Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Metals by ICPMS	ICP/MS	4654027	2016/09/09	2016/09/12	Viviana Ca	inzonieri
pH CaCl2 EXTRACT	AT	4652152	2016/09/08	2016/09/08	Neil Dassa	inayake

Maxxam ID:	CZW636
Sample ID:	CS1-14
Matrix:	Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4654027	2016/09/09	2016/09/12	Viviana Canzonieri
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	4658002	2016/09/13	2016/09/15	Cristina Petran
PAH Compounds in Leachate by GC/MS (SIM)	GC/MS	4658741	2016/09/13	2016/09/14	Lingyun Feng
pH CaCl2 EXTRACT	AT	4652152	2016/09/08	2016/09/08	Neil Dassanayake
TCLP - % Solids	BAL	4656406	2016/09/12	2016/09/13	Jian (Ken) Wang

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	CZW636 CS1-14 Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
TCLP - Extraction Fluid			4656410	N/A	2016/09/13	Jian (Ken)	Wang
TCLP - Initial and final pH		РН	4656411	N/A	2016/09/13	Jian (Ken) Wang	
Maxxam ID: Sample ID: Matrix:	CZW637 CS1-15 Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	Strong Acid Leachable Metals by ICPMS		4654027	2016/09/09	2016/09/12	Viviana Canzonieri	
pH CaCl2 EXTRACT		AT	4652152	2016/09/08	2016/09/08	Neil Dassanayake	
Maxxam ID: Sample ID: Matrix:	CZW638 CS1-16 Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Metals by ICPMS		ICP/MS	4654389	2016/09/09	2016/09/12	Viviana Canzonieri	
Total Metals in TCLP Leachate by ICPMS		ICP1/MS	4658002	2016/09/13	2016/09/15	Cristina Petran	
PAH Compounds in Leachate by GC/MS (SIM)		GC/MS	4658741	2016/09/13	2016/09/14	Lingyun Feng	
pH CaCl2 EXTRACT		AT	4653671	2016/09/09	2016/09/09	Neil Dassanayake	
TCLP - % Solids		BAL	4656406	2016/09/12	2016/09/13	Jian (Ken) Wang	
TCLP - Extraction Fluid			4656410	N/A	2016/09/13	Jian (Ken) Wang	
TCLP - Initial and final pH		PH	4656411	N/A	2016/09/13	Jian (Ken) Wang	
Maxxam ID: Sample ID: Matrix: Test Description	CZW639 CS1-17 Soil	Instrumentation	Batch	Extracted	Date Analyzed	Collected: Shipped: Received: Analyst	2016/08/31 2016/09/02
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4654389	2016/09/09	2016/09/12	Viviana Ca	nzonieri
Total Metals in TCLP Leachate by ICPMS		ICP1/MS	4658002	2016/09/13	2016/09/15	Cristina Petran	
PAH Compounds in Leachate by GC/MS (SIM)		GC/MS	4658741	2016/09/13	2016/09/14	Lingyun Feng	
pH CaCl2 EXTRACT		AT	4653671	2016/09/09	2016/09/09	Neil Dassanayake	
TCLP - % Solids		BAL	4656406	2016/09/12	2016/09/13	Jian (Ken) Wang	
TCLP - Extraction Fluid			4656410	N/A	2016/09/13	Jian (Ken) Wang	
TCLP - Initial and final pH		РН	4656411	N/A	2016/09/13	Jian (Ken)	Wang
Maxxam ID: Sample ID: Matrix: Test Description	CZW640 CS1-18 Soil	Instrumentation	Batch	Extracted	Date Analyzed	Collected: Shipped: Received: Analyst	2016/08/31 2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4654389	2016/09/09	2016/09/12	Viviana Canzonieri
pH CaCl2 EXTRACT	AT	4653671	2016/09/09	2016/09/09	Neil Dassanayake

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

TEST SUMMARY

Maxxam ID:	CZW640 Dup					Collected:	2016/08/31
Matrix:	Soil					Received:	2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
pH CaCl2 EXTRACT		AT	4653671	2016/09/09	2016/09/09	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	CZW641 CS1-19 Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4656068	2016/09/12	2016/09/12	Viviana Ca	nzonieri
Total Metals in TCLP Lead	hate by ICPMS	ICP1/MS	4658002	2016/09/13	2016/09/15	Cristina Pe	etran
PAH Compounds in Leach	nate by GC/MS (SIM)	GC/MS	4658741	2016/09/13	2016/09/14	Lingyun Fe	eng
pH CaCl2 EXTRACT		AT	4653671	2016/09/09	2016/09/09	Neil Dassa	nayake
TCLP - % Solids		BAL	4656406	2016/09/12	2016/09/13	Jian (Ken)	Wang
TCLP - Extraction Fluid			4656410	N/A	2016/09/13	Jian (Ken)	Wang
TCLP - Initial and final pH		PH	4656411	N/A	2016/09/13	Jian (Ken)	Wang
TCLP Zero Headspace Ext	raction		4659866	2016/09/14	2016/09/15	Walt Wan	g
VOCs in ZHE Leachates		GC/MS	4661637	2016/09/15	2016/09/15	Adriana Zu	ırita
Maxxam ID: Sample ID: Matrix:	CZW641 Dup CS1-19 Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Test Description Strong Acid Leachable Me	etals by ICPMS	Instrumentation ICP/MS	Batch 4656068	Extracted 2016/09/12	Date Analyzed 2016/09/12	Analyst Viviana Ca	nzonieri
Test Description Strong Acid Leachable Me Maxxam ID: Sample ID: Matrix:	CZW642 CS1-20 Soil	Instrumentation ICP/MS	Batch 4656068	Extracted 2016/09/12	Date Analyzed 2016/09/12	Analyst Viviana Ca Collected: Shipped: Received:	nzonieri 2016/08/31 2016/09/02
Test Description Strong Acid Leachable Me Maxxam ID: Sample ID: Matrix: Test Description	CZW642 CS1-20 Soil	Instrumentation ICP/MS Instrumentation	Batch 4656068 Batch	Extracted 2016/09/12 Extracted	Date Analyzed 2016/09/12 Date Analyzed	Analyst Viviana Ca Collected: Shipped: Received: Analyst	nzonieri 2016/08/31 2016/09/02
Test Description Strong Acid Leachable Me Maxxam ID: Sample ID: Matrix: Test Description Strong Acid Leachable Me	CZW642 CS1-20 Soil	Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4656068 Batch 4654389	Extracted 2016/09/12 Extracted 2016/09/09	Date Analyzed 2016/09/12 Date Analyzed 2016/09/12	Analyst Viviana Ca Collected: Shipped: Received: Analyst Viviana Ca	nzonieri 2016/08/31 2016/09/02 nzonieri
Test Description Strong Acid Leachable Me Maxxam ID: Sample ID: Matrix: Test Description Strong Acid Leachable Me pH CaCl2 EXTRACT	etals by ICPMS CZW642 CS1-20 Soil etals by ICPMS	Instrumentation ICP/MS Instrumentation ICP/MS AT	Batch 4656068 Batch 4654389 4653671	Extracted 2016/09/12 Extracted 2016/09/09 2016/09/09	Date Analyzed 2016/09/12 Date Analyzed 2016/09/12 2016/09/09	Analyst Viviana Ca Collected: Shipped: Received: Analyst Viviana Ca Neil Dassa	nzonieri 2016/08/31 2016/09/02 nzonieri nayake
Test Description Strong Acid Leachable Me Maxxam ID: Sample ID: Matrix: Test Description Strong Acid Leachable Me pH CaCl2 EXTRACT Maxxam ID: Sample ID: Matrix:	CZW642 CS1-20 Soil etals by ICPMS CZW644 CS1-21 Soil	Instrumentation ICP/MS Instrumentation ICP/MS AT	Batch 4656068 Batch 4654389 4653671	Extracted 2016/09/12 Extracted 2016/09/09 2016/09/09	Date Analyzed 2016/09/12 Date Analyzed 2016/09/12 2016/09/09	Analyst Viviana Ca Collected: Shipped: Received: Analyst Viviana Ca Neil Dassa Collected: Shipped: Received:	nzonieri 2016/08/31 2016/09/02 nzonieri nayake 2016/08/31 2016/09/02
Test Description Strong Acid Leachable Me Maxxam ID: Sample ID: Matrix: Test Description Strong Acid Leachable Me pH CaCl2 EXTRACT Maxxam ID: Sample ID: Matrix: Test Description	CZW642 CS1-20 Soil etals by ICPMS CZW644 CS1-21 Soil	Instrumentation ICP/MS Instrumentation ICP/MS AT Instrumentation	Batch 4656068 Batch 4653671 Batch	Extracted 2016/09/12 Extracted 2016/09/09 2016/09/09 Extracted	Date Analyzed 2016/09/12 Date Analyzed 2016/09/12 2016/09/12 2016/09/09 Date Analyzed	Analyst Viviana Ca Collected: Shipped: Received: Analyst Viviana Ca Neil Dassa Collected: Shipped: Received: Analyst	nzonieri 2016/08/31 2016/09/02 nzonieri nayake 2016/08/31 2016/09/02
Test Description Strong Acid Leachable Me Maxxam ID: Sample ID: Matrix: Test Description Strong Acid Leachable Me pH CaCl2 EXTRACT Maxxam ID: Sample ID: Matrix: Test Description Strong Acid Leachable Me Matrix: Test Description Strong Acid Leachable Me Strong Acid Leachable Me Strong Acid Leachable Me	CZW642 CS1-20 Soil etals by ICPMS CZW644 CS1-21 Soil etals by ICPMS	Instrumentation ICP/MS Instrumentation ICP/MS AT Instrumentation ICP/MS	Batch 4656068 Batch 4654389 4653671 Batch 4654389	Extracted 2016/09/12 Extracted 2016/09/09 2016/09/09 Extracted 2016/09/09	Date Analyzed 2016/09/12 Date Analyzed 2016/09/12 2016/09/09 Date Analyzed 2016/09/12	Analyst Viviana Ca Collected: Shipped: Received: Analyst Viviana Ca Neil Dassa Collected: Shipped: Received: Analyst Viviana Ca	nzonieri 2016/08/31 2016/09/02 nzonieri nayake 2016/08/31 2016/09/02 nzonieri
Test Description Strong Acid Leachable Me Maxxam ID: Sample ID: Matrix: Test Description Strong Acid Leachable Me pH CaCl2 EXTRACT Maxxam ID: Sample ID: Matrix: Test Description Strong Acid Leachable Me pH CaCl2 EXTRACT	CZW642 CS1-20 Soil etals by ICPMS CZW644 CS1-21 Soil	Instrumentation ICP/MS Instrumentation ICP/MS AT Instrumentation ICP/MS AT	Batch 4656068 Batch 4654389 4653671 Batch 4654389 46534389	Extracted 2016/09/12 Extracted 2016/09/09 2016/09/09 Extracted 2016/09/09 2016/09/09	Date Analyzed 2016/09/12 Date Analyzed 2016/09/12 2016/09/09 Date Analyzed 2016/09/12 2016/09/12 2016/09/12 2016/09/12	Analyst Viviana Ca Collected: Shipped: Received: Analyst Viviana Ca Shipped: Received: Analyst Viviana Ca Neil Dassa	nzonieri 2016/08/31 2016/09/02 nzonieri nayake 2016/08/31 2016/09/02 nzonieri nayake
Test Description Strong Acid Leachable Me Maxxam ID: Sample ID: Matrix: Test Description Strong Acid Leachable Me pH CaCl2 EXTRACT Maxxam ID: Sample ID: Maxxam ID: Sample ID: Matrix: Test Description Strong Acid Leachable Me pH CaCl2 EXTRACT Strong Acid Leachable Me pH CaCl2 EXTRACT Maxxam ID: Strong Acid Leachable Me pH CaCl2 EXTRACT Maxxam ID: Sample ID: Maxxam ID: Sample ID: Matrix:	CZW642 CS1-20 Soil etals by ICPMS CZW644 CS1-21 Soil etals by ICPMS CZW645 CS1-22 Soil	Instrumentation ICP/MS Instrumentation ICP/MS AT Instrumentation ICP/MS AT	Batch 4656068 Batch 4653671 Batch 4653671 4653671	Extracted 2016/09/12 Extracted 2016/09/09 2016/09/09 2016/09/09 2016/09/09	Date Analyzed 2016/09/12 Date Analyzed 2016/09/12 2016/09/09 Date Analyzed 2016/09/09 2016/09/12 2016/09/12 2016/09/09	Analyst Viviana Ca Collected: Shipped: Received: Analyst Viviana Ca Neil Dassa Collected: Shipped: Received: Viviana Ca Neil Dassa Collected: Shipped: Received:	nzonieri 2016/08/31 2016/09/02 nzonieri nayake 2016/08/31 2016/09/02 nzonieri nayake 2016/08/31 2016/08/31 2016/08/31 2016/09/02
Test Description Strong Acid Leachable Me Maxxam ID: Sample ID: Matrix: Test Description Strong Acid Leachable Me pH CaCl2 EXTRACT Maxxam ID: Sample ID: Maxxam ID: Sample ID: Matrix: Test Description Strong Acid Leachable Me pH CaCl2 EXTRACT Maxxam ID: Sample ID: Maxxam ID: Sample ID: Maxxam ID: Sample ID: Maxxam ID: Sample ID: Matrix:	CZW642 CS1-20 Soil etals by ICPMS CZW644 CS1-21 Soil etals by ICPMS CZW645 CS1-22 Soil	Instrumentation ICP/MS Instrumentation ICP/MS AT Instrumentation ICP/MS AT Instrumentation ICP/MS AT Instrumentation	Batch 4655068 Batch 46533671 46533671 46533671 46533671	Extracted 2016/09/12 Extracted 2016/09/09 2016/09/09 2016/09/09 2016/09/09 2016/09/09	Date Analyzed 2016/09/12 Date Analyzed 2016/09/12 2016/09/09 Date Analyzed 2016/09/12 2016/09/12 2016/09/12 2016/09/12 2016/09/09	Analyst Viviana Ca Collected: Shipped: Received: Analyst Viviana Ca Neil Dassa Collected: Shipped: Received: Analyst Viviana Ca Neil Dassa Collected: Shipped: Received: Shipped: Received:	nzonieri 2016/08/31 2016/09/02 nzonieri nayake 2016/08/31 2016/09/02 nzonieri nayake 2016/08/31 2016/08/31 2016/09/02

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	CZW645 CS1-22 Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	4655381	2016/09/10	2016/09/12	Zhiyue (Fra	ank) Zhu
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4654389	2016/09/09	2016/09/12	Viviana Ca	nzonieri
PAH Compounds by GC/M	AS (SIM)	GC/MS	4659161	2016/09/13	2016/09/14	Lingyun Fe	eng
Moisture		BAL	4653840	N/A	2016/09/09	Min Yang	
pH CaCl2 EXTRACT		AT	4653671	2016/09/09	2016/09/09	Neil Dassa	nayake
Volatile Organic Compou	nds and F1 PHCs	GC/MS	4650611	N/A	2016/09/08	Denis Reid	
Maxxam ID: Sample ID: Matrix:	CZW646 CS1-23 Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4654389	2016/09/09	2016/09/12	Viviana Ca	nzonieri
pH CaCl2 EXTRACT		AT	4653671	2016/09/09	2016/09/09	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	CZW647 CS1-24 Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4654389	2016/09/09	2016/09/12	Viviana Ca	nzonieri
pH CaCl2 EXTRACT		AT	4653671	2016/09/09	2016/09/09	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	CZW647 Dup CS1-24 Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4654389	2016/09/09	2016/09/12	Viviana Ca	nzonieri
Maxxam ID: Sample ID: Matrix:	CZW648 CS1-25 Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4654389	2016/09/09	2016/09/12	Viviana Ca	nzonieri
pH CaCl2 EXTRACT		AT	4653671	2016/09/09	2016/09/09	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	CZW649 CS10-9 Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	4648303	N/A	2016/09/16	Automate	d Statchk
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	4655381	2016/09/10	2016/09/12	Zhiyue (Fra	ank) Zhu
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4654389	2016/09/09	2016/09/12	Viviana Ca	nzonieri

Page 37 of 63

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

TEST SUMMARY

Maxxam ID:	CZW649	Collected:	2016/08/31
Sample ID: Matrix:	Soil	Received:	2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
PAH Compounds by GC/MS (SIM)	GC/MS	4659161	2016/09/13	2016/09/14	Lingyun Feng
Moisture	BAL	4653840	N/A	2016/09/09	Min Yang
pH CaCl2 EXTRACT	AT	4653671	2016/09/09	2016/09/09	Neil Dassanayake
Volatile Organic Compounds and F1 PHCs	GC/MS	4650611	N/A	2016/09/08	Denis Reid

Maxxam ID:	CZW650
Sample ID:	CS10-5
Matrix:	Soil

 Collected:
 2016/08/31

 Shipped:
 2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4648303	N/A	2016/09/16	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4655381	2016/09/10	2016/09/12	Zhiyue (Frank) Zhu
Strong Acid Leachable Metals by ICPMS	ICP/MS	4656068	2016/09/12	2016/09/13	Viviana Canzonieri
PAH Compounds by GC/MS (SIM)	GC/MS	4659161	2016/09/13	2016/09/14	Lingyun Feng
Moisture	BAL	4654236	N/A	2016/09/09	Min Yang
pH CaCl2 EXTRACT	AT	4654264	2016/09/12	2016/09/12	Neil Dassanayake
Volatile Organic Compounds and F1 PHCs	GC/MS	4650611	N/A	2016/09/08	Denis Reid

Maxxam ID: Sample ID: Matrix:	CZW651 CS10-23 Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4654389	2016/09/09	2016/09/12	Viviana Ca	nzonieri
pH CaCl2 EXTRACT		AT	4653671	2016/09/09	2016/09/09	Neil Dassa	nayake

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

GENERAL COMMENTS

Each	temperature is the	average of up to th	rree cooler temperatures taken at receipt
	Package 1	3.0°C	7
	Package 2	4.3°C	-
	Package 3	4.0°C	1
Addi	tional analyses adde	d on: CS1-10, CS1-	- 19, CS1-17, CS1-3, CS1-11, CS1-5, CS1-16, CS1-14
Sam	ole CZW622-01 : VO	C Analysis: Detect	ion limits were raised due to high moisture content and low weight of soil provided.
Sam	ole CZW624-01 : Me	tals: Due to the s	ample matrix, sample required dilution. Detection limits were adjusted accordingly.
Samı highl	ole CZW630-01 : pH y absorbent nature 1	Analysis: Sample v the sample/fluid ra	was lightweight and absorbed all the extracting fluid when using the prescribed 1:2 extraction ratio. Due to atio was changed to 1:4.
voc	Analysis: Detection I	imits were raised	due to high moisture content and low weight of soil provided.
F2-F4	4 Analysis: Detection	limits were adjust	ed for high moisture content.
PAH	analysis: Detection I	imits were adjuste	a for high moisture content.
Sam	ole CZW631-01 : VO al Analysis:Due to the	C Analysis: Detect	ion limits were raised due to high moisture content and low weight of soil provided. ample required dilution. Detection limit was adjusted accordingly.
PAH	analysis: Detection I	imits were adjuste	d for high moisture content.
Sam	ole CZW633-01 : VO	C Analysis: Detect	ion limits were raised due to high moisture content and low weight of soil provided.
Sam	ole CZW634-01 : VO	C Analysis: Detect	ion limits were raised due to high moisture content and low weight of soil provided.
Samı highl	ole CZW639-01 : pH y absorbent nature t	Analysis: Sample withe sample/fluid ra	was lightweight and absorbed all the extracting fluid when using the prescribed 1:2 extraction ratio. Due to atio was changed to 1:4.
Sam	ole CZW645-01 : pH	Analysis: Sample v	was lightweight and absorbed all the extracting fluid when using the prescribed 1:2 extraction ratio. Due to atio was changed to 1:4
VOC	Analysis: Detection I	imits were raised	due to high moisture content and low weight of soil provided.
F2-F4	4 Analysis: Detection	limits were adjus	ted for high moisture content.
PAH	analysis: Detection I	imits were adjuste	d for high moisture content.
Sam	ole CZW649-01 : pH	Analysis: Sample	was lightweight and absorbed all the extracting fluid when using the prescribed 1:2 extraction ratio. Due to
VOC	Analysis: Detection l	limits were raised	due to high moisture content and low weight of soil provided.
F2-F4	4 Analysis: Detection	limits were adjus	ted for high moisture content.
PAH	analysis: Detection l	imits were adjuste	d for high moisture content.
Resu	its relate only to the	e items tested.	

QUALITY ASSURANCE REPORT

DST Consulting Engineers Inc Client Project #: GV-TB-027105

			Matrix	Matrix Spike		SPIKED BLANK		Method Blank		RPD		Leachate Blank	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS	
4650611	4-Bromofluorobenzene	2016/09/08	107	60 - 140	109	60 - 140	101	%					
4650611	D10-o-Xylene	2016/09/08	101	60 - 130	105	60 - 130	86	%					
4650611	D4-1,2-Dichloroethane	2016/09/08	84	60 - 140	90	60 - 140	94	%					
4650611	D8-Toluene	2016/09/08	101	60 - 140	99	60 - 140	90	%					
4654696	Decachlorobiphenyl	2016/09/10	92	60 - 130	91	60 - 130	88	%					
4655381	o-Terphenyl	2016/09/12	95	60 - 130	96	60 - 130	94	%					
4658741	Leachable D10-Anthracene	2016/09/13	108	50 - 130	105	50 - 130	107	%					
4658741	Leachable D14-Terphenyl (FS)	2016/09/13	91	50 - 130	89	50 - 130	93	%					
4658741	Leachable D8-Acenaphthylene	2016/09/13	95	50 - 130	93	50 - 130	93	%					
4659161	D10-Anthracene	2016/09/14	76	30 - 130	80	30 - 130	85	%					
4659161	D14-Terphenyl (FS)	2016/09/14	75	30 - 130	78	30 - 130	79	%					
4659161	D8-Acenaphthylene	2016/09/14	72	30 - 130	70	30 - 130	70	%					
4661637	Leachable 4-Bromofluorobenzene	2016/09/15	99	70 - 130	100	70 - 130	98	%					
4661637	Leachable D4-1,2-Dichloroethane	2016/09/15	95	70 - 130	101	70 - 130	102	%					
4661637	Leachable D8-Toluene	2016/09/15	103	70 - 130	100	70 - 130	99	%					
4650611	1,1,1,2-Tetrachloroethane	2016/09/08	94	60 - 140	95	60 - 130	<0.050	ug/g	NC	50			
4650611	1,1,1-Trichloroethane	2016/09/08	82	60 - 140	82	60 - 130	<0.050	ug/g	NC	50			
4650611	1,1,2,2-Tetrachloroethane	2016/09/08	89	60 - 140	97	60 - 130	<0.050	ug/g	NC	50			
4650611	1,1,2-Trichloroethane	2016/09/08	82	60 - 140	87	60 - 130	<0.050	ug/g	NC	50			
4650611	1,1-Dichloroethane	2016/09/08	82	60 - 140	82	60 - 130	<0.050	ug/g	NC	50			
4650611	1,1-Dichloroethylene	2016/09/08	83	60 - 140	82	60 - 130	<0.050	ug/g	NC	50			
4650611	1,2-Dichlorobenzene	2016/09/08	101	60 - 140	101	60 - 130	<0.050	ug/g	NC	50			
4650611	1,2-Dichloroethane	2016/09/08	78	60 - 140	83	60 - 130	<0.050	ug/g	NC	50			
4650611	1,2-Dichloropropane	2016/09/08	88	60 - 140	91	60 - 130	<0.050	ug/g	NC	50			
4650611	1,3-Dichlorobenzene	2016/09/08	103	60 - 140	99	60 - 130	<0.050	ug/g	NC	50			
4650611	1,4-Dichlorobenzene	2016/09/08	104	60 - 140	102	60 - 130	<0.050	ug/g	NC	50			
4650611	Acetone (2-Propanone)	2016/09/08	81	60 - 140	92	60 - 140	<0.50	ug/g	NC	50			
4650611	Benzene	2016/09/08	89	60 - 140	91	60 - 130	<0.0060	ug/g	NC	50			
4650611	Bromodichloromethane	2016/09/08	86	60 - 140	89	60 - 130	<0.050	ug/g	NC	50			
4650611	Bromoform	2016/09/08	92	60 - 140	99	60 - 130	<0.050	ug/g	NC	50			
4650611	Bromomethane	2016/09/08	72	60 - 140	71	60 - 140	<0.050	ug/g	NC	50			

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: GV-TB-027105

			Matrix	Spike	SPIKED BLANK		Method Blank		RPD		Leachate	Blank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4650611	Carbon Tetrachloride	2016/09/08	84	60 - 140	83	60 - 130	<0.050	ug/g	NC	50		
4650611	Chlorobenzene	2016/09/08	101	60 - 140	101	60 - 130	<0.050	ug/g	NC	50		
4650611	Chloroethane	2016/09/08	78	60 - 140	79	60 - 130	<0.20	ug/g	NC	50		
4650611	Chloroform	2016/09/08	85	60 - 140	86	60 - 130	<0.050	ug/g	NC	50		
4650611	Chloromethane	2016/09/08	62	60 - 140	62	60 - 140	<0.40	ug/g	NC	50		
4650611	cis-1,2-Dichloroethylene	2016/09/08	92	60 - 140	93	60 - 130	<0.050	ug/g	NC	50		
4650611	cis-1,3-Dichloropropene	2016/09/08	93	60 - 140	96	60 - 130	<0.030	ug/g	NC	50		
4650611	Dibromochloromethane	2016/09/08	91	60 - 140	95	60 - 130	<0.050	ug/g	NC	50		
4650611	Dichlorodifluoromethane (FREON 12)	2016/09/08	60	60 - 140	59 (1)	60 - 140	<0.050	ug/g	NC	50		
4650611	Ethylbenzene	2016/09/08	99	60 - 140	97	60 - 130	<0.010	ug/g	NC	50		
4650611	Ethylene Dibromide	2016/09/08	92	60 - 140	100	60 - 130	<0.050	ug/g	NC	50		
4650611	F1 (C6-C10) - BTEX	2016/09/08					<10	ug/g	NC	30		
4650611	F1 (C6-C10)	2016/09/08	93	60 - 140	97	80 - 120	<10	ug/g	NC	30		
4650611	Gasoline	2016/09/08	93	N/A	97	N/A	<10	ug/g	NC	30		
4650611	Hexane	2016/09/08	88	60 - 140	86	60 - 130	<0.050	ug/g	NC	50		
4650611	Methyl Ethyl Ketone (2-Butanone)	2016/09/08	86	60 - 140	100	60 - 140	<0.50	ug/g	NC	50		
4650611	Methyl Isobutyl Ketone	2016/09/08	89	60 - 140	103	60 - 130	<0.50	ug/g	NC	50		
4650611	Methyl t-butyl ether (MTBE)	2016/09/08	90	60 - 140	94	60 - 130	<0.050	ug/g	NC	50		
4650611	Methylene Chloride(Dichloromethane)	2016/09/08	94	60 - 140	97	60 - 130	<0.050	ug/g	NC	50		
4650611	o-Xylene	2016/09/08	100	60 - 140	99	60 - 130	<0.020	ug/g	NC	50		
4650611	p+m-Xylene	2016/09/08	97	60 - 140	94	60 - 130	<0.020	ug/g	NC	50		
4650611	Styrene	2016/09/08	103	60 - 140	104	60 - 130	<0.050	ug/g	NC	50		
4650611	Tetrachloroethylene	2016/09/08	96	60 - 140	93	60 - 130	<0.050	ug/g	NC	50		
4650611	Toluene	2016/09/08	91	60 - 140	91	60 - 130	<0.020	ug/g	NC	50		
4650611	Total Xylenes	2016/09/08					<0.020	ug/g	1.5	50		
4650611	trans-1,2-Dichloroethylene	2016/09/08	88	60 - 140	87	60 - 130	<0.050	ug/g	NC	50		
4650611	trans-1,3-Dichloropropene	2016/09/08	93	60 - 140	93	60 - 130	<0.040	ug/g	NC	50		
4650611	Trichloroethylene	2016/09/08	93	60 - 140	93	60 - 130	<0.010	ug/g	NC	50		
4650611	Trichlorofluoromethane (FREON 11)	2016/09/08	81	60 - 140	79	60 - 130	<0.050	ug/g	NC	50		
4650611	Vinyl Chloride	2016/09/08	79	60 - 140	77	60 - 130	<0.020	ug/g	NC	50		
4651909	Moisture	2016/09/08							4.4	20		

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: GV-TB-027105

			Matrix	Matrix Spike		SPIKED BLANK		Method Blank		RPD		Leachate Blank	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS	
4652152	Available (CaCl2) pH	2016/09/08			99	97 - 103			0.51	N/A			
4653671	Available (CaCl2) pH	2016/09/09			99	97 - 103			1.4	N/A			
4653840	Moisture	2016/09/09							3.4	20			
4654027	Acid Extractable Antimony (Sb)	2016/09/12	91	75 - 125	102	80 - 120	<0.20	ug/g	NC	30			
4654027	Acid Extractable Arsenic (As)	2016/09/12	106	75 - 125	104	80 - 120	<1.0	ug/g	NC	30			
4654027	Acid Extractable Barium (Ba)	2016/09/12	NC	75 - 125	99	80 - 120	<0.50	ug/g	9.4	30			
4654027	Acid Extractable Beryllium (Be)	2016/09/12	98	75 - 125	97	80 - 120	<0.20	ug/g	NC	30			
4654027	Acid Extractable Cadmium (Cd)	2016/09/12	101	75 - 125	99	80 - 120	<0.10	ug/g	NC	30			
4654027	Acid Extractable Chromium (Cr)	2016/09/12	NC	75 - 125	102	80 - 120	<1.0	ug/g	4.9	30			
4654027	Acid Extractable Cobalt (Co)	2016/09/12	101	75 - 125	101	80 - 120	<0.10	ug/g	10	30			
4654027	Acid Extractable Copper (Cu)	2016/09/12	98	75 - 125	102	80 - 120	<0.50	ug/g	5.0	30			
4654027	Acid Extractable Lead (Pb)	2016/09/12	101	75 - 125	99	80 - 120	<1.0	ug/g	NC	30			
4654027	Acid Extractable Molybdenum (Mo)	2016/09/12	101	75 - 125	100	80 - 120	<0.50	ug/g	NC	30			
4654027	Acid Extractable Nickel (Ni)	2016/09/12	104	75 - 125	106	80 - 120	<0.50	ug/g	2.2	30			
4654027	Acid Extractable Selenium (Se)	2016/09/12	106	75 - 125	105	80 - 120	<0.50	ug/g	NC	30			
4654027	Acid Extractable Silver (Ag)	2016/09/12	101	75 - 125	101	80 - 120	<0.20	ug/g	NC	30			
4654027	Acid Extractable Thallium (TI)	2016/09/12	99	75 - 125	97	80 - 120	<0.050	ug/g	NC	30			
4654027	Acid Extractable Tin (Sn)	2016/09/12	102	75 - 125	98	80 - 120	<1.0	ug/g	NC	30			
4654027	Acid Extractable Uranium (U)	2016/09/12	99	75 - 125	98	80 - 120	<0.050	ug/g	0.45	30			
4654027	Acid Extractable Vanadium (V)	2016/09/12	NC	75 - 125	104	80 - 120	<5.0	ug/g	NC	30			
4654027	Acid Extractable Zinc (Zn)	2016/09/12	NC	75 - 125	102	80 - 120	<5.0	ug/g	NC	30			
4654236	Moisture	2016/09/09							4.5	20			
4654264	Available (CaCl2) pH	2016/09/12			99	97 - 103			1.3	N/A			
4654389	Acid Extractable Antimony (Sb)	2016/09/12	88	75 - 125	96	80 - 120	<0.20	ug/g	NC	30			
4654389	Acid Extractable Arsenic (As)	2016/09/12	88	75 - 125	100	80 - 120	<1.0	ug/g	NC	30			
4654389	Acid Extractable Barium (Ba)	2016/09/12	NC	75 - 125	97	80 - 120	<0.50	ug/g	0.50	30			
4654389	Acid Extractable Beryllium (Be)	2016/09/12	95	75 - 125	97	80 - 120	<0.20	ug/g	NC	30			
4654389	Acid Extractable Cadmium (Cd)	2016/09/12	96	75 - 125	98	80 - 120	<0.10	ug/g	3.8	30			
4654389	Acid Extractable Chromium (Cr)	2016/09/12	NC	75 - 125	103	80 - 120	<1.0	ug/g	4.1	30			
4654389	Acid Extractable Cobalt (Co)	2016/09/12	97	75 - 125	103	80 - 120	<0.10	ug/g	0.043	30			
4654389	Acid Extractable Copper (Cu)	2016/09/12	NC	75 - 125	101	80 - 120	<0.50	ug/g	1.4	30			

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: GV-TB-027105

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		Leachate Blank	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4654389	Acid Extractable Lead (Pb)	2016/09/12	NC	75 - 125	100	80 - 120	<1.0	ug/g	2.6	30		
4654389	Acid Extractable Molybdenum (Mo)	2016/09/12	95	75 - 125	102	80 - 120	<0.50	ug/g	NC	30		
4654389	Acid Extractable Nickel (Ni)	2016/09/12	NC	75 - 125	101	80 - 120	<0.50	ug/g	2.1	30		
4654389	Acid Extractable Selenium (Se)	2016/09/12	97	75 - 125	102	80 - 120	<0.50	ug/g	NC	30		
4654389	Acid Extractable Silver (Ag)	2016/09/12	93	75 - 125	99	80 - 120	<0.20	ug/g	NC	30		
4654389	Acid Extractable Thallium (TI)	2016/09/12	94	75 - 125	97	80 - 120	<0.050	ug/g	NC	30		
4654389	Acid Extractable Tin (Sn)	2016/09/12	89	75 - 125	96	80 - 120	<1.0	ug/g	NC	30		
4654389	Acid Extractable Uranium (U)	2016/09/12	97	75 - 125	100	80 - 120	<0.050	ug/g	1.9	30		
4654389	Acid Extractable Vanadium (V)	2016/09/12	NC	75 - 125	99	80 - 120	<5.0	ug/g	0.59	30		
4654389	Acid Extractable Zinc (Zn)	2016/09/12	NC	75 - 125	107	80 - 120	<5.0	ug/g	5.5	30		
4654696	Aroclor 1242	2016/09/10					<0.010	ug/g	NC	50		
4654696	Aroclor 1248	2016/09/10					<0.010	ug/g	NC	50		
4654696	Aroclor 1254	2016/09/10					<0.010	ug/g	NC	50		
4654696	Aroclor 1260	2016/09/10	100	60 - 130	103	60 - 130	<0.010	ug/g	NC	50		
4654696	Total PCB	2016/09/10	100	60 - 130	103	60 - 130	<0.010	ug/g	NC	50		
4655381	F2 (C10-C16 Hydrocarbons)	2016/09/12	88	50 - 130	86	80 - 120	<10	ug/g	NC	30		
4655381	F3 (C16-C34 Hydrocarbons)	2016/09/12	91	50 - 130	91	80 - 120	<50	ug/g	NC	30		
4655381	F4 (C34-C50 Hydrocarbons)	2016/09/12	87	50 - 130	86	80 - 120	<50	ug/g	NC	30		
4656068	Acid Extractable Antimony (Sb)	2016/09/12	78	75 - 125	97	80 - 120	<0.20	ug/g	1.7	30		
4656068	Acid Extractable Arsenic (As)	2016/09/12	93	75 - 125	95	80 - 120	<1.0	ug/g	2.1	30		
4656068	Acid Extractable Barium (Ba)	2016/09/12	NC	75 - 125	94	80 - 120	<0.50	ug/g	4.4	30		
4656068	Acid Extractable Beryllium (Be)	2016/09/12	91	75 - 125	97	80 - 120	<0.20	ug/g	NC	30		
4656068	Acid Extractable Cadmium (Cd)	2016/09/12	89	75 - 125	96	80 - 120	<0.10	ug/g	2.9	30		
4656068	Acid Extractable Chromium (Cr)	2016/09/12	NC	75 - 125	99	80 - 120	<1.0	ug/g	6.2	30		
4656068	Acid Extractable Cobalt (Co)	2016/09/12	NC	75 - 125	98	80 - 120	<0.10	ug/g	2.4	30		
4656068	Acid Extractable Copper (Cu)	2016/09/12	NC	75 - 125	98	80 - 120	<0.50	ug/g	1.8	30		
4656068	Acid Extractable Lead (Pb)	2016/09/12			101	80 - 120	<1.0	ug/g	4.2	30		
4656068	Acid Extractable Molybdenum (Mo)	2016/09/12	87	75 - 125	98	80 - 120	<0.50	ug/g	NC	30		
4656068	Acid Extractable Nickel (Ni)	2016/09/12	NC	75 - 125	100	80 - 120	<0.50	ug/g	2.8	30		
4656068	Acid Extractable Selenium (Se)	2016/09/12	91	75 - 125	100	80 - 120	<0.50	ug/g	NC	30		
4656068	Acid Extractable Silver (Ag)	2016/09/12	90	75 - 125	98	80 - 120	<0.20	ug/g	NC	30		

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: GV-TB-027105

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	Leachate Blank	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4656068	Acid Extractable Thallium (TI)	2016/09/12	82	75 - 125	100	80 - 120	<0.050	ug/g	0.61	30		
4656068	Acid Extractable Tin (Sn)	2016/09/12	82	75 - 125	94	80 - 120	<1.0	ug/g	0.47	30		
4656068	Acid Extractable Uranium (U)	2016/09/12	90	75 - 125	99	80 - 120	<0.050	ug/g	2.5	30		
4656068	Acid Extractable Vanadium (V)	2016/09/12	NC	75 - 125	96	80 - 120	<5.0	ug/g	5.9	30		
4656068	Acid Extractable Zinc (Zn)	2016/09/12			100	80 - 120	<5.0	ug/g	4.0	30		
4658002	Leachable Arsenic (As)	2016/09/15	104	80 - 120	94	80 - 120	<0.2	mg/L	NC	35	<0.2	mg/L
4658002	Leachable Barium (Ba)	2016/09/15	103	80 - 120	97	80 - 120	<0.2	mg/L	NC	35	<0.2	mg/L
4658002	Leachable Boron (B)	2016/09/15	101	80 - 120	106	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
4658002	Leachable Cadmium (Cd)	2016/09/15	98	80 - 120	96	80 - 120	<0.05	mg/L	NC	35	<0.05	mg/L
4658002	Leachable Chromium (Cr)	2016/09/15	97	80 - 120	92	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
4658002	Leachable Lead (Pb)	2016/09/15	95	80 - 120	94	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
4658002	Leachable Selenium (Se)	2016/09/15	96	80 - 120	97	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
4658002	Leachable Silver (Ag)	2016/09/15	95	80 - 120	95	80 - 120	<0.01	mg/L	NC	35	< 0.01	mg/L
4658002	Leachable Uranium (U)	2016/09/15	96	80 - 120	94	80 - 120	<0.01	mg/L	NC	35	< 0.01	mg/L
4658741	Leachable Benzo(a)pyrene	2016/09/14	110	50 - 130	105	50 - 130	<0.10	ug/L	NC	40		
4659161	1-Methylnaphthalene	2016/09/14	77	50 - 130	77	50 - 130	<0.05	ug/g	NC	50		
4659161	2-Methylnaphthalene	2016/09/14	76	50 - 130	75	50 - 130	<0.05	ug/g	NC	50		
4659161	Acenaphthene	2016/09/14	86	50 - 130	82	50 - 130	<0.05	ug/g	NC	50		
4659161	Acenaphthylene	2016/09/14	78	50 - 130	78	50 - 130	<0.05	ug/g	NC	50		
4659161	Anthracene	2016/09/14	88	50 - 130	76	50 - 130	<0.05	ug/g	NC	50		
4659161	Benzo(a)anthracene	2016/09/14	125	50 - 130	85	50 - 130	<0.05	ug/g	NC	50		
4659161	Benzo(a)pyrene	2016/09/14	114	50 - 130	84	50 - 130	<0.05	ug/g	NC	50		
4659161	Benzo(b/j)fluoranthene	2016/09/14	103	50 - 130	89	50 - 130	<0.05	ug/g	20	50		
4659161	Benzo(g,h,i)perylene	2016/09/14	99	50 - 130	77	50 - 130	<0.05	ug/g	NC	50		
4659161	Benzo(k)fluoranthene	2016/09/14	88	50 - 130	78	50 - 130	<0.05	ug/g	NC	50		
4659161	Chrysene	2016/09/14	115	50 - 130	85	50 - 130	<0.05	ug/g	NC	50		
4659161	Dibenz(a,h)anthracene	2016/09/14	89	50 - 130	69	50 - 130	<0.05	ug/g	NC	50		
4659161	Fluoranthene	2016/09/14	160 (2)	50 - 130	89	50 - 130	<0.05	ug/g	27	50		
4659161	Fluorene	2016/09/14	86	50 - 130	81	50 - 130	<0.05	ug/g	NC	50		
4659161	Indeno(1,2,3-cd)pyrene	2016/09/14	111	50 - 130	88	50 - 130	<0.05	ug/g	NC	50		
4659161	Naphthalene	2016/09/14	79	50 - 130	74	50 - 130	<0.05	ug/g	NC	50		

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: GV-TB-027105

Site Location: MAIN SILT

		Matrix		Matrix Spike		BLANK	Method I	Blank	RP	D	Leachate	Blank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4659161	Phenanthrene	2016/09/14	145 (3)	50 - 130	82	50 - 130	<0.05	ug/g	NC	50		
4659161	Pyrene	2016/09/14	148 (2)	50 - 130	89	50 - 130	<0.05	ug/g	26	50		
4659446	F4G-sg (Grav. Heavy Hydrocarbons)	2016/09/14	77	65 - 135	103	65 - 135	<100	ug/g	NC	50		
4661637	Leachable Benzene	2016/09/15	101	70 - 130	102	70 - 130	<0.020	mg/L	NC	30		
4687569	Leachable Mercury (Hg)	2016/10/05	105	75 - 125	106	80 - 120	<0.0010	mg/L	NC	25	<0.0010	mg/L
4687842	Leachable Arsenic (As)	2016/10/05	103	80 - 120	98	80 - 120	<0.2	mg/L	NC	35	<0.2	mg/L
4687842	Leachable Barium (Ba)	2016/10/05	102	80 - 120	108	80 - 120	<0.2	mg/L	NC	35	<0.2	mg/L
4687842	Leachable Boron (B)	2016/10/05	101	80 - 120	105	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
4687842	Leachable Cadmium (Cd)	2016/10/05	104	80 - 120	101	80 - 120	<0.05	mg/L	NC	35	<0.05	mg/L
4687842	Leachable Chromium (Cr)	2016/10/05	101	80 - 120	103	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
4687842	Leachable Lead (Pb)	2016/10/05	99	80 - 120	102	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
4687842	Leachable Selenium (Se)	2016/10/05	100	80 - 120	99	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
4687842	Leachable Silver (Ag)	2016/10/05	98	80 - 120	100	80 - 120	<0.01	mg/L	NC	35	<0.01	mg/L
4687842	Leachable Uranium (U)	2016/10/05	101	80 - 120	103	80 - 120	<0.01	mg/L	NC	35	<0.01	mg/L

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) The recovery was below the lower control limit. This may represent a low bias in some results for this specific analyte.

(2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

(3) The recovery was above the upper control limit. This may represent a high bias in some results for flagged analytes. For results that were not detected (ND), this potential bias has no impact.

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: MAIN SILT

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Specialist

avisting Carriere

Cristina Carriere, Scientific Services

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

interest internation	1.	Report In	formation (i	f differs from in	nvoice)	Proj	ect Information (w	where applica	ible)	Turnaro	und Time (TAT) Required			
MANY Name: DST GROCELOVO	Compa	ny Name:	tormation (i	anters month	ivence,	Quotation #:	in The	d'a		Regular TA	T (5-7 days) Most analyses			
that Name: OBC Report St	Contact	- Name		Piliter Paran		P O #/ AFF#	15	1		PLEASE PROVIDE A	DVANCE NOTICE FOR RUSH PROJEC	CTS		
iress:	Addres	s:			. 6	Project #:	SV-TB-	02710	15	Rush TAT ((Surcharges will be applied)			
			1-2	-1		Site Location:	Fishth	me		1 Day	2 Days 3-4 Days			
ne: 7055610147Fax:	Phone:			Fax:		Site #:	Main	SIP		THEFT				*
11: glakeedstorarp. com	Email:			1942		Sampled By:	<u>61</u>			Date Required:				
MOE REGULATED DRINKING WATER OF	R WATER INTENDED FOR	HUMAN CONSU	IMPTION MU	IST BE SUBMIT	TED ON THE MAXX	KAM DRINKING WA	TER CHAIN OF CUS	ISTODY		Rush Confirmation	#:			
Regulation 153*	Other Re	gulations				Analysis Req	uested		1 1	LAB	ORATORY USE ONLY			5.0
Table 2 Ind/Comm Coarse	MISA Stor	m Sewer Bylaw		CrVI	REPER	COC	Bin us)	21		Y ID	COOLER TEMPERATURE	s		2
Table 3 Agri/ Other	PWQO Regi	on		/ Hg /		8)	CTA CTA			Present Intact	6 4 4 4 4			
Table FOR RSC (PLEASE CIRCLE) Y / N	Other (Specify)	DAY TAT REQUIR	ED)	Metal	GANIC	- SWH	38			N	>, L, L C			141
de Criteria on Certíficate of Analysis: Y / N	-			SUBM SCLE)	INOR	TALS letals,			TAZE	N	5,3,50			
				U. Ma		III S C			2	in the second				
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME	OF SAMPLING UNTIL D	ELIVERY TO MA	кхам	RED (CIF	TALS &	MIS ME FTALS CPMIS M	TL		VOT AN	N	6,3,30			- Selen
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME	E OF SAMPLING UNTIL D	ELIVERY TO MA	XAM	CONTAINERS S FILTERED (CIF / PHC F1	F2 - F4 153 METALS &	153 ICPMS ME 153 METALS Cr VI, ICPMS M	TCLF	B	DO NOT ANA	COOLING MEDIA PRE	6,3,3°C ISENT: ()1 N		8 0 8 8 8 8	-267-2727 9787 -
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME SAMPLE IDENTIFICATION	E OF SAMPLING UNTIL DI DATE SAMPLED (YYYY/MM/DD)	ELIVERY TO MA TIME SAMPLED (HH:MM)	(XAM MATRIX	# OF CONTAINERS 5 FIELD FILTERED (CIF BTEX/ PHC F1	PHCs F2 - F4 MOCS REG 153 METALS &	REG 153 ICPMS ME REG 153 METALS (Hg, Cr VI, ICPMS M	TCL	PCB	HOLD- DO NOT ANA	NJ COOLING MEDJA PRE	6,3,3°С sent: () / N сомментs			
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME SAMPLE IDENTIFICATION	E OF SAMPLING UNTIL D DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLED (HH:MM)	XAM MATRIX	# OF CONTAINERS 5 FIELD FILTERED (CIF	PHCs F2 - F4 WOCs REG 153 METALS &	REG 153 ICPMS ME REG 153 METALS (Hg, Cr VI, ICPMS M	X Tcut	PCB	HOLD- DO NOT ANA	COOLING MEDIA PRE	6, 3, 3 ⁻ сомментя			
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME SAMPLE IDENTIFICATION CST = 1 CST = 2	E OF SAMPLING UNTIL D DATE SAMPLED (YYYY/MM/DD) Aug 31116	TIME SAMPLED (HH:MM)	MATRIX	# OF CONTAINERS 5 FIELD FILTERED (CIF	Mocs 13 Here 13 Metrals &	REG 153 ICPMS ME REG 153 METALS (Hg, cr vi, ICPMS M	XX Tcut	PCB	HOLD- DO NOT AN	COÓUNG MEDIÀ PRE	6, 3, 3 ⁻ С ssent: (), 1, n сомментs			
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME SAMPLE IDENTIFICATION CST = 1 CST = 2 CST = 3	E OF SAMPLING UNTIL D DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLED (HH:MM) 8:00 8:15 9:00	MATRIX	# OF CONTAINERS 5 FIELD FILTERED (CIF	Mods Price 12 - F4	REG 133 ICPMS ME REG 133 METALS (Hg, cr vi, ICPMS M	XXX TCLI	PCB	02-S	NJ coouing media pre ep-16 16:20	6,3,3°С ssent: 0,1 N сомментs			
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME SAMPLE IDENTIFICATION CST - 1 CST - 2 CST - 3 CT - 4	E OF SAMPLING UNTIL D DATE SAMPLED (YYYY/MM/DD) Aug 3)///6	ELIVERY TO MAX TIME SAMPLED (HH:MM) 8:00 8:15 9:50 9:50 9:15	MATRIX	# OF CONTAINERS : FIELD FILTERED (CIF	3 -	REG 153 ICPMS ME REG 153 METALS (Hg, Cr VI, ICPMS M	XXXX TCL		02-S ugustyna	NF cooung media pre ep-16 16:20 Dobosz				
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME SAMPLE IDENTIFICATION (51 - 1) (51 - 2) (51 - 3) (51 - 4) (51 - 5)	E OF SAMPLING UNTIL D DATE SAMPLED (YYYY/MM/DD) Asg 3]///6	ELIVERY TO MAX TIME SAMPLED (HH:MM) 8:00 8:15 9:00 9:15 9:20	KXAM MATRIX	# OF CONTAINERS : RELEALTERED (CIR RELEALTERED (CIR	A A PHGs 12 - F4 9 0003 0003 1 1 660 43	REG 133 ICPMS ME REG 133 METALS (Hg. Cr VI, ICPMS M	HI XXXXXX	A A A	02-S ugustyna B6I90	NI coouwg medua pre ep-16 16:20 Dobosz	6, 3, 3 ⁻ С sent: (), 1 - N сомментs			
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME SAMPLE IDENTIFICATION (51-1) (51-2) (51-3) (51-4) (51-5) (51-6)	E OF SAMPLING UNTIL D DATE SAMPLED (YYYY/MM/D) A.3 31116	ELIVERY TO MAX TIME SAMPLED (HH:MM) 8:00 8:15 9:50 9:50 9:15 9:20 9:20	XAM MATRIX	8 OF CONTAINERS : FIELD FILTERED (CI	Mode 153 METALS &	REG 133 ICPANS WE REG 133 ICPANS WE PHS_C V1, ICPANS ME	XXXXXX TCL		02-S ugustyna B6I90	NI cooung media pre ep-16 16:20 Dobosz IIIIIII IIIII 77				
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME SAMPLE IDENTIFICATION CST - 1 CST - 2 CST - 3 CST - 4 CST - 5 CST - 6 CST - 7	COF SAMPLING UNTIL D DATE SAMPLED (YYYY/MM/DD) Aug 3)///6	ELIVERY TO MAX TIME SAMPLED (HH:MM) 8:00 8:15 9:00 9:15 9:20 9:20 9:20 9:00	CXAM MATRIX	# 00 CONTAINERS	PHCs P2 - F4 PHCs P2 - F4 PHCs P2 - F4 PHCs P4	REG 153 ICPMS ME REG 153 METALS (Mg. Cr VI, ICPMS M	X XX XX XX ICH		02-S ugustyna B6I90	NI cooung media pre ep-16 16:20 Dobosz IIIIIIIIIIIIII 77 IV-1242				
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME SAMPLE IDENTIFICATION CST-1 CST-2 CST-3 CST-4 CST-5 CST-6 CST-7 CST-7	E OF SAMPLING UNTIL D DATE SAMPLED (YYYY/MM/DD) Aug 3)///6	ELIVERY TO MAX TIME SAMPLED (HH:MM) 8:00 8:15 9:50 9:15 9:50 9:15 9:20 9:00 10:00 10:30	CXAM MATRIX Soll () () () () () () () () () (10 CONTAINERS 10 CONTAINERS 10 CONTAINERS 10 CONTAINERS 10 CONTAINERS	Max PHS:R2 - F4 Mods Mods Mods Mods	REG 133 ICPMS ME	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		02-S ugustyna B6190	NI cooling media pre ep-16 16:20 Dobosz 11111111177 1V-1242 2Ceived	COMMENTS			
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME SAMPLE IDENTIFICATION CST-1 CST-2 CST-3 CST-4 CST-5 CST-6 CST-7 CST-7 CST-7 CST-7	E OF SAMPLING UNTIL D DATE SAMPLED (YYYY/MM/DD) Asg 3]///6	ELIVERY TO MAX TIME SAMPLED (HH:MM) 8:00 8:15 9:50 9:15 9:50 9:15 9:20 9:30 0:00 10:30 10:35	XXAM MATRIX SSII	a of contrakers here of the c	Mocs Precision of the second s	Refe 133 ICPMS ME	H X X X X X X X X X X X X X X X X X X X		02-S ugustyna B6I90 EN	NI cooung media pre ep-16 16:20 Dobosz IUIIII III III 77 IV-1242 PCEived	COMMENTS			
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME SAMPLE IDENTIFICATION CST-1 CST-2 CST-3 CST-4 CST-4 CST-5 CST-6 CST-7 CST-7 CST-7 CST-7 CST-7 CST-7	E OF SAMPLING UNTIL D DATE SAMPLED (YYYY/MM/DD) Asg 31/16	ELIVERY TO MAX TIME SAMPLED (HH:MM) 8:00 8:15 9:50 9:15 9:50 9:15 9:50 9:15 9:00 10:30 10:35 10:40		a of contrakers relation of the contrakers relation of the contrakers relation of the contrakers relation of the contrakers	Mocs 2: F4	REG 13 ICPMS ME	H X X X X X X X X X X X X X X X X X X X		02-S ugustyna B6I90 EN	N cooung media pre ep-16 16:20 Dobosz IIIIII IIIII 77 IV-1242 PCCeived	I Sudbury			

Image: Index Name: Construct Name: Cons	
Contract Name: Po. 0: Affres:	
Address: 935 Guested Statustion Prone: Fax: Fa	
Inter: Str Str Str Str Date Required: Inter: Fax: Str Str Str Str Str Inter: Str Str Str </td <td></td>	
Interest Step Step Date Required Mode Records of control of the control of control of control of control of the required of the required of the control of the required of the control of the required of the control of the required of the required of the control of the required of	
Mail: Sampled By: Mode Date Required: MODE REGULATED DRIVING WATER OR WATER OF WATER OF AUXANTER OF AN ACTIVE DE SUBMITIED ON THE MAXXAM DRIVING WATER CHANGE WATER CHAN	8
MOR RECURRING WATER OF WATER OF SOR MUMAN CONSUMPTION MUST BE SUBMITTED ON THE MAXXAM DIRUNG WATER (LANN OF CUSTODY Ruch Confirmation #: Regulation 153. Other Regulations Analysis Requested Lable Confirmation #: Table 2 Ind/Comm Conse India 100 YEAL India 200 YEAL India 200 YEAL Table 2 Ind/Comm Conse India 200 YEAL India 200 YEAL India 200 YEAL India 200 YEAL Table 2 India 200 YEAL Table 2 India 200 YEAL Table 2 India 200 YEAL FOR RSC (PLEASE CIRCLE) Y / N India 200 YEAL SAMPLE DENTIFICATION DATE SAMPLED India 200 YEAL YEAL YEAL India 200 YEAL YEAL India 200 YEAL C S 1- 12 India 200 YEAL India 200 YEAL YEAL YEAL YEAL India 200 YEAL C S 1- 12 India 200 YEAL India 200 YEAL YEAL YEAL YEAL YEAL </td <td></td>	
Shale 1 Reg/Park Med/ Fine LdBORTORY Use ONLY Table 2 Ind/Comm Coarse MISA Storm Reguester Misa Table 2 Ind/Comm Coarse Misa Storm Reguester Misa Table 2 Ind/Comm Coarse Misa Storm Sever Bylaw PW000 Region Ork r(Specify) Regions Misa Storm Sever Bylaw PW100 Region Misa Storm Sever Bylaw Other (Specify) Regions Misa Storm Sever Bylaw Other (Specify) Regions Misa Storm Sever Bylaw Other (Specify) Regions Misa Storm Sever Bylaw Other (Specify) Reg Start Reguester Misa Storm Sever Bylaw Other (Specify) Reg Start Reguester Misa Storm Sever Bylaw Storm Reguester V / N Reg Start Reguester Misa Storm Sever Bylaw Misa Storm Sever Bylaw Misa Storm Reguester V / N Reg Start Reguester Good Geventration Reguester Storm Reguester Misa Storm Sever Bylaw Misa Storm Reguester Misa Storm Sever Bylaw Good Geventration Regard Sever Storm Reguester <t< td=""><td></td></t<>	
Table 2 Ind/Comm Coarse MISA Storm Sever By/SW WO Storm Sever By/SW WO <td>2.</td>	2.
Indice Image of the section Image of the	
ROR RSC (PLEASE CIRCLE) Y / N REG SSB (MIN. 3 DAY TAT REQUIRED) HE WY OVER THE OF ANALYSIS Y / N SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME OF SAMPLING UNTIL DELIVERY TO MAXXAM	
Adde Criteria on Certificate of Analysis: Y Y N SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME OF SAMPLED (WYW/MM/DD) TIME SAMPLED (HHMM) MATRIX N SAMPLE IDENTIFICATION DATE SAMPLED (WYW/MM/DD) TIME SAMPLED (HHMM) MATRIX Y Y C <s1-11< td=""> Aug 31/16 10:45 Suc X X X X X C<s1-12< td=""> 10:55 X X X X X X X C<s1-15< td=""> 10:55 X X X X X X X C<s1-15< td=""> 11:05 X X X X X X X C<s1-16< td=""> 11:10 X X X X X X X</s1-16<></s1-15<></s1-15<></s1-12<></s1-11<>	· ·
SAMPLES MUST BE KEPT COOL (< 10°C) FROM TIME OF SAMPLING UNTIL DELIVERY TO MAXXAM W W U H <th< td=""><td></td></th<>	
SAMPLE IDENTIFICATION DATE SAMPLED (YYYY/MA/DD) TIME SAMPLED (IHH:MM) MATRIX SO 90 90 90 90 90 90 90 90 90 90 90 90 90	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
CSI-13 10:55 AA AA AA CSI-13 10:55 X X X CSI-14 11:00 X X CSI-15 11:05 X X CSI-16 11:10 X X	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
CSI-15 (1.05 X X I I I I I I I I I I I I I I I I I	
CSI-16 11:10 X X X X	
	*
	2
CSI-19	
CSI-20 ILLEVILLEVILLEVILLEVILLEVILLEVILLEVILLE	
RELINQUISHED BY: (Signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (Signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM) MAXXAM JOB #	· *
XX100/G/alle WINKER 1/15 S-K- 1810/09/02 16:20	

1

 \mathbb{R}^{n}

×

	* Report Informat	ion (if differs from invoice)	CHAIN OF CUSTODY RECOR Project Information (where applicable)	D 3325U Page of	-	-	
npany Name: DST	Company Name:		Quotation #:	Regular TAT (5-7 days) Most analyses	The second second		
itact Name: <u>GLalQ</u>	Contact Name:	· · · · ·	P.O. #/ AFE#:	PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS	s		
tress: <u>NBS Regert</u>	Address:		Project #: GV-TB-027105	Rush TAT (Surcharges will be applied)			
Ine: JOE SCINILI Fax:	Ohene		Site Location: Hugh the Sea	1 Day 2 Days 3-4 Days	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	
11: 9/alecclstoraul	Fmail:	Fax:	site #: Mainsite	A CONTRACT OF A CONTRACT. OF A CONTRACT OF A CONTRACT. OF A CONTRACT OF A CONTRACT. OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT. OF A CONTRACT OF A CONTRACT OF A CONTRACT. OF A CONTRACT OF A CONTRACT. OF A CONTRACT OF A CONTRACT. OF A CONTRACT			
MOE REGULATED DRINKING WA	FER OR WATER INTENDED FOR HUMAN CONSUMPTION			Date Required:			
Regulation 153 *	Other Regulations		Analysis Requested	Rush Confirmation #:			
Table 1 Res/Park Med/Fine	CCME Sanitary Sewer Bylaw	REFER TO	O BACK OF	LABORATORY USE ONLY CUSTODY SEAL		2.1	
able 3 Agri/ Other	PWQO Region	Hg/Cr	and a state of the	Y /D COOLER TEMPERATURES			
OR RSC (PLEASE CIRCLE) V / N	Other (Specify)	ED Etals / I	VS-B)	N C 1 107			
e Criteria on Certificate of Analysis: y	REG 558 (MIN. 3 DAY TAT REQUIRED)	LE) Milt LE) Milter LE) Milter LES	als, HV	E 1 C 1 C 1			
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM	TIME OF SAMPLING UNTIL DELIVERY TO MAXXAM	D (CIRC) D (AS Met	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.4	
		5 H H H F Z				ter .	
SAMPLE IDENTIFICATION	DATE SAMPLED TIME SAMPLED	ONTA PHC F PHC F 2 - F4 3 ME 3 ICP	N'ICA	COOLING MEDIA PRESENT: 0 / N			
SAMPLE IDENTIFICATION	DATE SAMPLED (YYYY/MM/DD) (HH:MM) MATRIX	# DF CONTR FIELD FILTER BTEX/ PHC F PHCs F2 - F4 PHCs F2 - F4 VOCs REG 153 ME REG 153 ICP	REG 133 ME HALLS CY VI IC	COOLING MEDIA PRESENT: 20 7 N		25h	
SAMPLE IDENTIFICATION $(51 - 2)$	DATE SAMPLED TIME SAMPLED MATRID (YYYY/MM/DD) (HH:MM) MATRID Ars 31/16 17:50 Soit	# OF CONTY # OF CONTY FIELD FILTE BTEX/ PHC F PHCs F2 - F4 PHCs F2 - F4 Ref 153 ME Ref 153 ME	Rec 13 ME (NE, GV), IC	COOLING MEDIA PRESENT. ··· D·· / ·· N·························		5. 	
SAMPLE IDENTIFICATION	DATE SAMPLED (YYYY/MM/DD) TIME SAMPLED (HH:MM) MATRID Ars 31116 17:50 50:1 17:55 1		REG 15 ME (HL, Cr.V. IC X X X X X X X X X X X X X X X X X X X	COOLING MEDIA PRESENT. D / N COMMENTS			
SAMPLE IDENTIFICATION	DATE SAMPLED (YYYY/MM/DD) TIME SAMPLED (HH:MM) MATRID A:531116 17:50 501 . 17:55 . 2:00	RED FLORING RELOFICION RELOFICION RELOFICION NO N	Recission Harris Are HAHS ACC	COOUNG MEDIA PRESENT: D -7 - N COMMENTS 5		10 40 × 10	
SAMPLE IDENTIFICATION CS1-27 CS1-22 CS1-22 CS1-24 CS1-24	DATE SAMPLED (YYYY/MM/DD) TIME SAMPLED (HH:MM) MATRID Arg 31116 17:50 501 11:55 2:00 12:00		Rec 15 ME (ML, Cr V), IC MHHS X X X X X X X X X X X X X X X X X X	COOLING MEDIA PRESENT. D 7 N COMMENTS			
SAMPLE IDENTIFICATION CS1-21 CS1-22 CS1-23 CS1-24 CS1-24 CS1-25	DATE SAMPLED (YYYY/MM/DD) Arss 31116 17:50 501 17:55 2.00 12:05 12:05 12:07	H OF CONT HELO FUTO HELO FUTO	REG 15 ME REG 15 ME	COOLING MEDIA PRESENT. D / N COMMENTS			
SAMPLE IDENTIFICATION CS1-27 CS1-22 CS1-22 CS1-23 CS1-24 CS1-25 CS1-25 CS1-25 CS10-9	DATE SAMPLED (YYYY/MM/DD) A-55 31116 11:50 501 11:55 2:00 12:155 12:02 12:155 12:02 12:03 12:03 10:35	вое сонт Карана вое сонт <td>Recission Recission</td> <td>COOLING MEDIA PRESENT.</td> <td></td> <td></td>	Recission Recission	COOLING MEDIA PRESENT.			
SAMPLE IDENTIFICATION C51-21 C51-22 C51-23 C51-23 C51-25 C51-25 C510-9 C510-9	DATE SAMPLED (YYYY/MM/DD) Arg 31116 17:50 501 77:55 02:00 12:105 12:105 10:35 77 9:20 7	Processor Processor		COOLING MEDIA PRESENT. D / N COMMENTS			
$\frac{(51-2)}{(51-2)}$ $\frac{(51-2)}{(51-2)}$ $\frac{(51-2)}{(51-2)}$ $\frac{(51-2)}{(51-2)}$ $\frac{(51-2)}{(51-2)}$ $\frac{(51-2)}{(51-2)}$ $\frac{(51-2)}{(51-2)}$	DATE SAMPLED (YYYY/MM/DD) A-55 31116 17:50 501 17:55 2.00 12:05 12:05 10:35 10:35 12:00	Image: Control Image: Control Image: Contro	REG 153 ME HEL CS 103 ME HEL CS 10	cooling media present. D / N COMMENTS			
$\frac{(51-2)}{(51-2)}$ $\frac{(51-2)}{(51-2)}$ $\frac{(51-2)}{(51-2)}$ $\frac{(51-2)}{(51-2)}$ $\frac{(51-2)}{(51-2)}$ $\frac{(51-2)}{(51-2)}$	DATE SAMPLED (YYYY/MM/DD) A+531116 17:50 501 1/155 2.00 12:05 12:05 12:07 10:35 7 9:20 12:00	Recontraction Recontraction		cooling media present: D / N COMMENTS			
SAMPLE IDENTIFICATION (51-2) (51-22) (51-23) (51-25)	DATE SAMPLED (YYYY/MM/DD) A-55 31116 11:50 501 11:55 2:00 12:00 12:05 10:35 10:35 12:00 12:00 12:00	Ref Ref <th ref<="" td="" th<=""><td></td><td>cooling media present: D / N COMMENTS</td><td></td><td></td></th>	<td></td> <td>cooling media present: D / N COMMENTS</td> <td></td> <td></td>		cooling media present: D / N COMMENTS		

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: GV-TB-027105 Your C.O.C. #: 59246, 59252

Attention:Geoffrey Lake

DST Consulting Engineers Inc Sudbury - Standing Offer 885 Regent Street Suite 3-1B Sudbury, ON P3E 5M4

> Report Date: 2016/10/07 Report #: R4194488 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B6I9078 Received: 2016/09/02, 16:20

Sample Matrix: Soil # Samples Received: 11

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	1	N/A	2016/09/12	CAM SOP-00301	EPA 8270D m
Methylnaphthalene Sum	4	N/A	2016/09/13	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	3	2016/09/09	2016/09/09	CAM SOP-00408	R153 Ana. Prot. 2011
Hot Water Extractable Boron	7	2016/09/12	2016/09/12	CAM SOP-00408	R153 Ana. Prot. 2011
Free (WAD) Cyanide	9	2016/09/09	2016/09/12	CAM SOP-00457	OMOE E3015 m
Free (WAD) Cyanide	1	2016/09/09	2016/09/13	CAM SOP-00457	OMOE E3015 m
Conductivity	2	2016/09/09	2016/09/09	CAM SOP-00414	OMOE E3530 v1 m
Conductivity	8	2016/09/12	2016/09/12	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	10	2016/09/10	2016/09/12	CAM SOP-00436	EPA 3060/7199 m
Petroleum Hydrocarbons F2-F4 in Soil (2)	5	2016/09/08	2016/09/12	CAM SOP-00316	CCME CWS m
Mercury (TCLP Leachable) (mg/L)	1	N/A	2016/10/03	CAM SOP-00453	EPA 7470A m
Strong Acid Leachable Metals by ICPMS	4	2016/09/09	2016/09/12	CAM SOP-00447	EPA 6020B m
Strong Acid Leachable Metals by ICPMS	4	2016/09/12	2016/09/12	CAM SOP-00447	EPA 6020B m
Strong Acid Leachable Metals by ICPMS	3	2016/09/12	2016/09/13	CAM SOP-00447	EPA 6020B m
Total Metals in TCLP Leachate by ICPMS	2	2016/09/14	2016/09/15	CAM SOP-00447	EPA 6020B m
Total Metals in TCLP Leachate by ICPMS	1	2016/10/03	2016/10/03	CAM SOP-00447	EPA 6020B m
Moisture	11	N/A	2016/09/09	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Leachate by GC/MS (SIM)	2	2016/09/15	2016/09/16	CAM SOP-00318	EPA 8270D m
PAH Compounds in Soil by GC/MS (SIM)	5	2016/09/08	2016/09/09	CAM SOP-00318	EPA 8270D m
pH CaCl2 EXTRACT	4	2016/09/09	2016/09/09	CAM SOP-00413	EPA 9045 D m
pH CaCl2 EXTRACT	7	2016/09/12	2016/09/12	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	2	N/A	2016/09/12	CAM SOP-00102	EPA 6010C
Sodium Adsorption Ratio (SAR)	8	N/A	2016/09/13	CAM SOP-00102	EPA 6010C
TCLP - % Solids	2	2016/09/13	2016/09/14	CAM SOP-00401	EPA 1311 Update I m
TCLP - % Solids	1	2016/09/30	2016/10/01	CAM SOP-00401	EPA 1311 Update I m
TCLP - Extraction Fluid	2	N/A	2016/09/14	CAM SOP-00401	EPA 1311 Update I m
TCLP - Extraction Fluid	1	N/A	2016/10/01	CAM SOP-00401	EPA 1311 Update I m
TCLP - Initial and final pH	2	N/A	2016/09/14	CAM SOP-00401	EPA 1311 Update I m
TCLP - Initial and final pH	1	N/A	2016/10/01	CAM SOP-00401	EPA 1311 Update I m

Page 1 of 34

Your Project #: GV-TB-027105 Your C.O.C. #: 59246, 59252

Attention:Geoffrey Lake

DST Consulting Engineers Inc Sudbury - Standing Offer 885 Regent Street Suite 3-1B Sudbury, ON P3E 5M4

> Report Date: 2016/10/07 Report #: R4194488 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B6I9078 Received: 2016/09/02, 16:20

Sample Matrix: Soil # Samples Received: 11

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
TCLP Zero Headspace Extraction	1	2016/09/14	2016/09/15	CAM SOP-00430	EPA 1311 m
Volatile Organic Compounds and F1 PHCs	5	N/A	2016/09/08	CAM SOP-00230	EPA 8260 m
VOCs in ZHE Leachates	1	2016/09/15	2016/09/15	CAM SOP-00226	EPA 8260C m

Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.

Maxxam Analytics is accredited for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Soils are reported on a dry weight basis unless otherwise specified.

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Augustyna Dobosz, Project Manager Email: ADobosz@maxxam.ca Phone# (905)817-5700 Ext:5798

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 34

DST Consulting Engineers Inc Client Project #: GV-TB-027105

CCME PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID		CZW655	CZW656	CZW657	CZW658	CZW664		
Sampling Date		2016/08/31	2016/08/31	2016/08/31	2016/08/31	2016/08/31		
		15:15	15:25	15:35	15:45	15:40		
COC Number		59246	59246	59246	59246	59252		
	UNITS	CS3-2	CS3-3	CS3-4	CS3-5	CS30-5	RDL	QC Batch
Inorganics								
Moisture	%					9.0	1.0	4654156
Volatile Organics		-		-		-	•	
Acetone (2-Propanone)	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	4650611
Benzene	ug/g	<0.0060	<0.0060	0.0065	<0.0060	0.60	0.0060	4650611
Bromodichloromethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Bromoform	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Bromomethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Carbon Tetrachloride	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Chlorobenzene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Chloroform	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Dibromochloromethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
1,2-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
1,3-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
1,4-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
1,1-Dichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
1,2-Dichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
1,1-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
cis-1,2-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
trans-1,2-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
1,2-Dichloropropane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	<0.030	<0.030	<0.030	0.030	4650611
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	4650611
Ethylbenzene	ug/g	<0.010	<0.010	<0.010	0.087	0.23	0.010	4650611
Ethylene Dibromide	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Hexane	ug/g	<0.050	<0.050	<0.050	<0.050	0.11	0.050	4650611
Methylene Chloride(Dichloromethane)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Methyl Isobutyl Ketone	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	4650611
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	4650611
Methyl t-butyl ether (MTBE)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Styrene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
1,1,1,2-Tetrachloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
1,1,2,2-Tetrachloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Tetrachloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Toluene	ug/g	<0.020	<0.020	0.021	0.16	1.7	0.020	4650611
RDL = Reportable Detection Limit			ļ		ļ		Į	ļ
QC Batch = Quality Control Batch								

DST Consulting Engineers Inc Client Project #: GV-TB-027105

CCME PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID		CZW655	CZW656	CZW657	CZW658	CZW664		
Sampling Date		2016/08/31	2016/08/31	2016/08/31	2016/08/31	2016/08/31		
		15:15	15:25	15:35	15:45	15:40		
COC Number		59246	59246	59246	59246	59252		
	UNITS	CS3-2	CS3-3	CS3-4	CS3-5	CS30-5	RDL	QC Batch
1,1,1-Trichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
1,1,2-Trichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
Trichloroethylene	ug/g	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	4650611
Vinyl Chloride	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	4650611
p+m-Xylene	ug/g	<0.020	<0.020	0.036	0.23	0.67	0.020	4650611
o-Xylene	ug/g	<0.020	<0.020	0.027	0.21	0.46	0.020	4650611
Total Xylenes	ug/g	<0.020	<0.020	0.063	0.45	1.1	0.020	4650611
Chloroethane	ug/g	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	4650611
Chloromethane	ug/g	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	4650611
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4650611
F1 (C6-C10)	ug/g	<10	<10	<10	<10	<10	10	4650611
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	<10	10	4650611
Gasoline	ug/g	<10	<10	<10	<10	<10	10	4650611
F2-F4 Hydrocarbons		-			-			
F2 (C10-C16 Hydrocarbons)	ug/g	92	25	<10	<10	<10	10	4652643
F3 (C16-C34 Hydrocarbons)	ug/g	140	<50	<50	<50	<50	50	4652643
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	<50	<50	<50	50	4652643
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes	Yes		4652643
Surrogate Recovery (%)								
o-Terphenyl	%	97	98	97	98	97		4652643
4-Bromofluorobenzene	%	101	103	103	103	103		4650611
D10-o-Xylene	%	94	98	95	94	95		4650611
D4-1,2-Dichloroethane	%	83	82	81	82	81		4650611
D8-Toluene	%	94	95	93	93	94		4650611
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

DST Consulting Engineers Inc Client Project #: GV-TB-027105

O.REG 153 METALS & INORGANICS PKG (SOIL)

Maxxam ID		CZW654		CZW655		CZW656		CZW657		
Sampling Date		2016/08/31 15:05		2016/08/31 15:15		2016/08/31 15:25		2016/08/31 15:35		
COC Number		59246		59246		59246		59246		
	UNITS	CS3-1	RDL	CS3-2	QC Batch	CS3-3	QC Batch	CS3-4	RDL	QC Batch
Calculated Parameters										
Sodium Adsorption Ratio	N/A	0.54		0.56	4648725	0.32	4648725	0.60		4648725
Inorganics	•			ł	ł	4	ł	ł		
Conductivity	mS/cm	0.029	0.002	0.026	4656429	0.090	4656429	0.020	0.002	4653945
Free Cyanide	ug/g	0.05	0.02	0.02	4654535	0.03	4653560	0.02	0.01	4653560
Moisture	%	4.5	1.0	3.0	4654155	6.8	4654156	5.4	1.0	4654156
Available (CaCl2) pH	рН	5.93		6.48	4654216	7.52	4653668	6.78		4653668
Chromium (VI)	ug/g	<0.2	0.2	<0.2	4655652	<0.2	4655651	<0.2	0.2	4655651
Metals										
Hot Water Ext. Boron (B)	ug/g	0.056	0.050	0.084	4655973	0.065	4653935	0.059	0.050	4653935
Acid Extractable Antimony (Sb)	ug/g	1.5	0.20	1.1	4656068	1.3	4654375	0.26	0.20	4654375
Acid Extractable Arsenic (As)	ug/g	4.8	1.0	5.6	4656068	8.1	4654375	5.9	1.0	4654375
Acid Extractable Barium (Ba)	ug/g	63	0.50	40	4656068	140	4654375	38	0.50	4654375
Acid Extractable Beryllium (Be)	ug/g	<0.20	0.20	<0.20	4656068	0.39	4654375	<0.20	0.20	4654375
Acid Extractable Cadmium (Cd)	ug/g	0.99	0.10	0.52	4656068	1.1	4654375	0.30	0.10	4654375
Acid Extractable Chromium (Cr)	ug/g	25	1.0	21	4656068	28	4654375	23	1.0	4654375
Acid Extractable Cobalt (Co)	ug/g	13	0.10	12	4656068	18	4654375	11	0.10	4654375
Acid Extractable Copper (Cu)	ug/g	32	0.50	50	4656068	44	4654375	81	0.50	4654375
Acid Extractable Lead (Pb)	ug/g	770	1.0	280	4656068	540	4654375	260	1.0	4654375
Acid Extractable Molybdenum (Mo)	ug/g	0.52	0.50	0.57	4656068	0.76	4654375	0.52	0.50	4654375
Acid Extractable Nickel (Ni)	ug/g	22	0.50	19	4656068	26	4654375	22	0.50	4654375
Acid Extractable Selenium (Se)	ug/g	<0.50	0.50	<0.50	4656068	0.73	4654375	0.63	0.50	4654375
Acid Extractable Silver (Ag)	ug/g	0.28	0.20	<0.20	4656068	0.24	4654375	0.22	0.20	4654375
Acid Extractable Thallium (Tl)	ug/g	<0.050	0.050	<0.050	4656068	0.072	4654375	<0.050	0.050	4654375
Acid Extractable Tin (Sn)	ug/g	6.1	1.0	3.6	4656068	4.6	4654375	6.3	1.0	4654375
Acid Extractable Uranium (U)	ug/g	0.17	0.050	0.20	4656068	0.40	4654375	0.36	0.050	4654375
Acid Extractable Vanadium (V)	ug/g	17	5.0	16	4656068	23	4654375	21	5.0	4654375
Acid Extractable Zinc (Zn)	ug/g	610	5.0	210	4656068	350	4654375	140	5.0	4654375
Acid Extractable Mercury (Hg)	ug/g	0.10	0.050	0.078	4656068	0.14	4654375	0.13	0.050	4654375
RDL = Reportable Detection Limit										
laas										

QC Batch = Quality Control Batch

DST Consulting Engineers Inc Client Project #: GV-TB-027105

O.REG 153 METALS & INORGANICS PKG (SOIL)

Maxxam ID		CZW658		CZW659		CZW660	CZW660		
Sampling Date		2016/08/31 15:45		2016/08/31 15:55		2016/08/31 16:05	2016/08/31 16:05		
COC Number		59246	<u> </u>	59246		59246	59246		
	UNITS	CS3-5	QC Batch	CS3-6	RDL	CS3-7	CS3-7 Lab-Dup	RDL	QC Batch
Calculated Parameters									
Sodium Adsorption Ratio	N/A	0.71	4648725	0.69		0.85			4648725
Inorganics	<u> </u>								
Conductivity	mS/cm	0.023	4653945	0.019	0.002	0.012		0.002	4656429
Free Cyanide	ug/g	0.02	4653560	0.02	0.01	0.06	0.05	0.04	4654535
Moisture	%	6.1	4654156	1.6	1.0	1.8		1.0	4654155
Available (CaCl2) pH	рН	6.85	4653668	5.52		4.81			4654216
Chromium (VI)	ug/g	<0.2	4655651	<0.2	0.2	<0.2	<0.2	0.2	4655652
Metals	+				•				
Hot Water Ext. Boron (B)	ug/g	0.091	4653935	0.066	0.050	<0.050		0.050	4655973
Acid Extractable Antimony (Sb)	ug/g	0.64	4654375	0.53	0.20	1.2		0.20	4656068
Acid Extractable Arsenic (As)	ug/g	6.8	4654375	10	1.0	9.5		1.0	4656068
Acid Extractable Barium (Ba)	ug/g	60	4654375	37	0.50	62		0.50	4656068
Acid Extractable Beryllium (Be)	ug/g	0.25	4654375	<0.20	0.20	0.22		0.20	4656068
Acid Extractable Cadmium (Cd)	ug/g	0.71	4654375	0.57	0.10	2.2		0.10	4656068
Acid Extractable Chromium (Cr)	ug/g	25	4654375	20	1.0	27		1.0	4656068
Acid Extractable Cobalt (Co)	ug/g	13	4654375	12	0.10	15		0.10	4656068
Acid Extractable Copper (Cu)	ug/g	46	4654375	69	0.50	72		0.50	4656068
Acid Extractable Lead (Pb)	ug/g	350	4654375	490	1.0	1200		1.0	4656068
Acid Extractable Molybdenum (Mo)	ug/g	0.62	4654375	0.66	0.50	1.4		0.50	4656068
Acid Extractable Nickel (Ni)	ug/g	23	4654375	20	0.50	19		0.50	4656068
Acid Extractable Selenium (Se)	ug/g	0.75	4654375	<0.50	0.50	0.96		0.50	4656068
Acid Extractable Silver (Ag)	ug/g	0.27	4654375	<0.20	0.20	0.23		0.20	4656068
Acid Extractable Thallium (TI)	ug/g	0.061	4654375	<0.050	0.050	0.30		0.050	4656068
Acid Extractable Tin (Sn)	ug/g	4.8	4654375	2.9	1.0	7.7		1.0	4656068
Acid Extractable Uranium (U)	ug/g	0.39	4654375	0.19	0.050	0.39		0.050	4656068
Acid Extractable Vanadium (V)	ug/g	21	4654375	14	5.0	16		5.0	4656068
Acid Extractable Zinc (Zn)	ug/g	270	4654375	260	5.0	330		5.0	4656068
Acid Extractable Mercury (Hg)	ug/g	0.16	4654375	0.074	0.050	0.20		0.050	4656068
RDL = Reportable Detection Limit	<u> </u>								

Lab-Dup = Laboratory Initiated Duplicate

DST Consulting Engineers Inc Client Project #: GV-TB-027105

O.REG 153 METALS & INORGANICS PKG (SOIL)

Maxxam ID		CZW661		CZW662	CZW662	CZW663		
Sampling Date		2016/08/31 16:15		2016/08/31 16:25	2016/08/31 16:25	2016/08/31 16:35		
COC Number		59246		59246	59246	59246		
	UNITS	CS3-8	QC Batch	CS3-9	CS3-9 Lab-Dup	CS3-10	RDL	QC Batch
Calculated Parameters								
Sodium Adsorption Ratio	N/A	0.61	4648725	0.69		0.36		4648725
Inorganics	·							
Conductivity	mS/cm	0.038	4656429	0.018		0.062	0.002	4656429
Free Cyanide	ug/g	0.09	4654535	0.09		0.05	0.02	4654535
Moisture	%	4.6	4654155	8.1		16	1.0	4654236
Available (CaCl2) pH	рН	4.13	4654216	5.01		6.67		4654216
Chromium (VI)	ug/g	<0.2	4655652	<0.2		<0.2	0.2	4655652
Metals	·							
Hot Water Ext. Boron (B)	ug/g	0.083	4655973	0.079	0.068	0.094	0.050	4655973
Acid Extractable Antimony (Sb)	ug/g	0.69	4656068	6.6		1.2	0.20	4656068
Acid Extractable Arsenic (As)	ug/g	11	4656068	6.1		5.4	1.0	4656068
Acid Extractable Barium (Ba)	ug/g	64	4656068	130		83	0.50	4656068
Acid Extractable Beryllium (Be)	ug/g	0.28	4656068	<0.20		<0.20	0.20	4656068
Acid Extractable Cadmium (Cd)	ug/g	0.89	4656068	1.5		1.5	0.10	4656068
Acid Extractable Chromium (Cr)	ug/g	26	4656068	30		25	1.0	4656068
Acid Extractable Cobalt (Co)	ug/g	16	4656068	9.5		12	0.10	4656068
Acid Extractable Copper (Cu)	ug/g	73	4656068	110		44	0.50	4656068
Acid Extractable Lead (Pb)	ug/g	680	4656068	1700		490	1.0	4656068
Acid Extractable Molybdenum (Mo)	ug/g	1.0	4656068	0.69		0.76	0.50	4656068
Acid Extractable Nickel (Ni)	ug/g	21	4656068	17		23	0.50	4656068
Acid Extractable Selenium (Se)	ug/g	0.65	4656068	0.71		0.57	0.50	4656068
Acid Extractable Silver (Ag)	ug/g	0.24	4656068	0.45		0.24	0.20	4656068
Acid Extractable Thallium (Tl)	ug/g	0.13	4656068	0.25		0.10	0.050	4656068
Acid Extractable Tin (Sn)	ug/g	10	4656068	39		3.8	1.0	4656068
Acid Extractable Uranium (U)	ug/g	0.31	4656068	0.21		0.14	0.050	4656068
Acid Extractable Vanadium (V)	ug/g	22	4656068	19		15	5.0	4656068
Acid Extractable Zinc (Zn)	ug/g	250	4656068	420		540	5.0	4656068
Acid Extractable Mercury (Hg)	ug/g	0.25	4656068	0.56		0.087	0.050	4656068
RDL = Reportable Detection Limit QC Batch = Quality Control Batch								

Lab-Dup = Laboratory Initiated Duplicate

DST Consulting Engineers Inc Client Project #: GV-TB-027105

Maxxam ID		CZW664		
Sampling Date		2016/08/31 15:40		
COC Number		59252		
	UNITS	CS30-5	RDL	QC Batch
Metals				
Acid Extractable Antimony (Sb)	ug/g	0.71	0.20	4654375
Acid Extractable Arsenic (As)	ug/g	6.2	1.0	4654375
Acid Extractable Barium (Ba)	ug/g	57	0.50	4654375
Acid Extractable Beryllium (Be)	ug/g	0.27	0.20	4654375
Acid Extractable Cadmium (Cd)	ug/g	0.86	0.10	4654375
Acid Extractable Chromium (Cr)	ug/g	23	1.0	4654375
Acid Extractable Cobalt (Co)	ug/g	13	0.10	4654375
Acid Extractable Copper (Cu)	ug/g	51	0.50	4654375
Acid Extractable Lead (Pb)	ug/g	380	1.0	4654375
Acid Extractable Molybdenum (Mo)	ug/g	0.68	0.50	4654375
Acid Extractable Nickel (Ni)	ug/g	22	0.50	4654375
Acid Extractable Selenium (Se)	ug/g	0.89	0.50	4654375
Acid Extractable Silver (Ag)	ug/g	0.27	0.20	4654375
Acid Extractable Thallium (Tl)	ug/g	0.059	0.050	4654375
Acid Extractable Tin (Sn)	ug/g	3.3	1.0	4654375
Acid Extractable Uranium (U)	ug/g	0.42	0.050	4654375
Acid Extractable Vanadium (V)	ug/g	19	5.0	4654375
Acid Extractable Zinc (Zn)	ug/g	270	5.0	4654375
RDL = Reportable Detection Limit				-
QC Batch = Quality Control Batch				

O.REG 153 METALS PACKAGE (SOIL)

DST Consulting Engineers Inc Client Project #: GV-TB-027105

O.REG 153 PAHS (SOIL)

Maxxam ID		CZW655			CZW656	CZW657	CZW658	CZW664		
Sampling Date		2016/08/31			2016/08/31	2016/08/31	2016/08/31	2016/08/31		
Sumpling Bute		15:15			15:25	15:35	15:45	15:40		
COC Number		59246			59246	59246	59246	59252		
	UNITS	CS3-2	RDL	QC Batch	CS3-3	CS3-4	CS3-5	CS30-5	RDL	QC Batch
Calculated Parameters										
Methylnaphthalene, 2-(1-)	ug/g	0.12	0.0071	4648303	0.0071	<0.0071	0.013	<0.0071	0.0071	4648303
Polyaromatic Hydrocarbons										
Acenaphthene	ug/g	<0.0050	0.0050	4653337	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	4653284
Acenaphthylene	ug/g	<0.0050	0.0050	4653337	<0.0050	0.0064	<0.0050	<0.0050	0.0050	4653284
Anthracene	ug/g	<0.0050	0.0050	4653337	<0.0050	0.0051	<0.0050	<0.0050	0.0050	4653284
Benzo(a)anthracene	ug/g	<0.0050	0.0050	4653337	<0.0050	0.016	0.012	0.010	0.0050	4653284
Benzo(a)pyrene	ug/g	<0.0050	0.0050	4653337	0.0051	0.016	0.013	0.010	0.0050	4653284
Benzo(b/j)fluoranthene	ug/g	0.0069	0.0050	4653337	<0.0050	0.023	0.017	0.014	0.0050	4653284
Benzo(g,h,i)perylene	ug/g	0.0080	0.0050	4653337	<0.0050	0.010	0.0073	0.0061	0.0050	4653284
Benzo(k)fluoranthene	ug/g	<0.0050	0.0050	4653337	<0.0050	0.0082	0.0056	0.0050	0.0050	4653284
Chrysene	ug/g	0.0054	0.0050	4653337	<0.0050	0.015	0.011	0.0096	0.0050	4653284
Dibenz(a,h)anthracene	ug/g	<0.0050	0.0050	4653337	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	4653284
Fluoranthene	ug/g	0.0059	0.0050	4653337	<0.0050	0.031	0.025	0.018	0.0050	4653284
Fluorene	ug/g	<0.0050	0.0050	4653337	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	4653284
Indeno(1,2,3-cd)pyrene	ug/g	0.0061	0.0050	4653337	<0.0050	0.012	0.0086	0.0073	0.0050	4653284
1-Methylnaphthalene	ug/g	0.052	0.0050	4653337	<0.0050	<0.0050	0.0057	<0.0050	0.0050	4653284
2-Methylnaphthalene	ug/g	0.067	0.0050	4653337	0.0071	<0.0050	0.0074	0.0057	0.0050	4653284
Naphthalene	ug/g	<0.050 (1)	0.050	4653337	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	4653284
Phenanthrene	ug/g	0.020	0.0050	4653337	<0.0050	0.0083	0.011	0.0065	0.0050	4653284
Pyrene	ug/g	0.0064	0.0050	4653337	<0.0050	0.026	0.020	0.016	0.0050	4653284
Surrogate Recovery (%)	Surrogate Recovery (%)									
D10-Anthracene	%	96		4653337	70	66	70	68		4653284
D14-Terphenyl (FS)	%	87		4653337	69	65	72	68		4653284
D8-Acenaphthylene	%	95		4653337	78	70	75	70		4653284
RDL = Reportable Detection L	imit									
QC Batch = Quality Control Ba	atch									

(1) DL was raised due to matrix interference.

	1	0714/054		
Maxxam ID		CZW654		
Compling Data		2016/08/31		
		15:05		
COC Number		59246		
	UNITS	CS3-1	RDL	QC Batch
Charge/Prep Analysis				
Amount Extracted (Wet Weight) (g)	N/A	25	N/A	4659866
Volatile Organics				
Leachable Benzene	mg/L	<0.020	0.020	4661637
Surrogate Recovery (%)				
Leachable 4-Bromofluorobenzene	%	98		4661637
Leachable D4-1,2-Dichloroethane	%	102		4661637
Leachable D8-Toluene	%	98		4661637
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				
N/A = Not Applicable				

O.REG 558 TCLP VOLATILE ORGANICS (SOIL)

	CZW654	CZW660	CZW660				
	2016/08/31	2016/08/31	2016/08/31				
	15:05	16:05	16:05				
	59246	59246	59246				
UNITS	CS3-1	CS3-7	CS3-7 Lab-Dup	RDL	QC Batch		
Polyaromatic Hydrocarbons							
ug/L	<0.10	<0.10	<0.10	0.10	4662879		
Surrogate Recovery (%)							
%	111	105	107		4662879		
%	99	96	98		4662879		
%	88	85	87		4662879		
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							
Lab-Dup = Laboratory Initiated Duplicate							
	UNITS ug/L % % % t n Ouplicate	CZW654 2016/08/31 15:05 59246 UNITS CS3-1 ug/L <0.10 % 111 % 99 % 88 t n Duplicate	CZW654 CZW660 2016/08/31 2016/08/31 15:05 16:05 59246 59246 UNITS CS3-1 CS3-7 ug/L <0.10	CZW654 CZW660 CZW660 2016/08/31 2016/08/31 2016/08/31 15:05 16:05 16:05 59246 59246 59246 UNITS CS3-1 CS3-7 ug/L <0.10	CZW654 CZW660 CZW660 CZW660 I 2016/08/31 2016/08/31 2016/08/31 16:05 16:05 16:05 16:05 16:05 16:05 16:05 16:05 16:05 16:05 16:05 10:05		

O.REG 558 TCLP BENZO(A)PYRENE

Maxxam ID		CZW654	CZW660		CZW662			
Sampling Data		2016/08/31	2016/08/31		2016/08/31			
Sampling Date		15:05	16:05		16:25			
COC Number		59246	59246		59246			
	UNITS	CS3-1	CS3-7	QC Batch	CS3-9	RDL	QC Batch	
Inorganics								
Final pH	рН	4.96	4.97	4659661	4.94		4684466	
Initial pH	рН	6.33	5.76	4659661	5.12		4684466	
TCLP - % Solids	%	100	100	4659655	100	0.2	4684452	
TCLP Extraction Fluid	N/A	FLUID 1	FLUID 1	4659660	FLUID 1		4684465	
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

O.REG 558 TCLP LEACHATE PREPARATION (SOIL)

Maxxam ID		CZW654	CZW660		CZW662				
Sampling Data		2016/08/31	2016/08/31		2016/08/31				
		15:05	16:05		16:25				
COC Number		59246	59246		59246				
	UNITS	CS3-1	CS3-7	QC Batch	CS3-9	RDL	QC Batch		
Metals									
Leachable Mercury (Hg)	mg/L			4684972	<0.0010	0.0010	4684972		
Leachable Arsenic (As)	mg/L	<0.2	<0.2	4659917	<0.2	0.2	4685887		
Leachable Barium (Ba)	mg/L	<0.2	<0.2	4659917	0.2	0.2	4685887		
Leachable Boron (B)	mg/L	0.2	0.2	4659917	0.3	0.1	4685887		
Leachable Cadmium (Cd)	mg/L	<0.05	<0.05	4659917	<0.05	0.05	4685887		
Leachable Chromium (Cr)	mg/L	<0.1	<0.1	4659917	<0.1	0.1	4685887		
Leachable Lead (Pb)	mg/L	0.3	<0.1	4659917	0.3	0.1	4685887		
Leachable Selenium (Se)	mg/L	<0.1	<0.1	4659917	<0.1	0.1	4685887		
Leachable Silver (Ag)	mg/L	<0.01	<0.01	4659917	<0.01	0.01	4685887		
Leachable Uranium (U)	mg/L	<0.01	<0.01	4659917	<0.01	0.01	4685887		
RDL = Reportable Detection L	RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch									

O.REG 558 TCLP METALS (SOIL)

RESULTS OF ANALYSES OF SOIL

Maxxam ID		CZW664	
Sampling Date		2016/08/31	
		15:40	
COC Number		59252	
	UNITS	CS30-5	QC Batch
Inorganics	UNITS	CS30-5	QC Batch
Inorganics Available (CaCl2) pH	pH	CS30-5 6.73	QC Batch 4653668

DST Consulting Engineers Inc Client Project #: GV-TB-027105

TEST SUMMARY

Maxxam ID: CZW654 Sample ID: CS3-1 Matrix: Soil Collected: 2016/08/31 Shipped: Received: 2016/09/02

Instrumentation	Batch	Extracted	Date Analyzed	Analyst
ICP	4655973	2016/09/12	2016/09/12	Suban Kanapathippllai
TECH	4654535	2016/09/09	2016/09/12	Xuanhong Qiu
AT	4656429	2016/09/12	2016/09/12	Neil Dassanayake
IC/SPEC	4655652	2016/09/10	2016/09/12	Sally Coughlin
ICP/MS	4656068	2016/09/12	2016/09/13	Viviana Canzonieri
ICP1/MS	4659917	2016/09/14	2016/09/15	Cristina Petran
BAL	4654155	N/A	2016/09/09	Min Yang
GC/MS	4662879	2016/09/15	2016/09/16	Lingyun Feng
AT	4654216	2016/09/12	2016/09/12	Neil Dassanayake
CALC/MET	4648725	N/A	2016/09/13	Automated Statchk
BAL	4659655	2016/09/13	2016/09/14	Jian (Ken) Wang
	4659660	N/A	2016/09/14	Jian (Ken) Wang
PH	4659661	N/A	2016/09/14	Jian (Ken) Wang
	4659866	2016/09/14	2016/09/15	Walt Wang
GC/MS	4661637	2016/09/15	2016/09/15	Adriana Zurita
	Instrumentation ICP TECH AT IC/SPEC ICP/MS ICP1/MS BAL GC/MS AT CALC/MET BAL PH PH GC/MS	Instrumentation Batch ICP 4655973 TECH 4654535 AT 4656429 IC/SPEC 4655652 ICP/MS 4656068 ICP1/MS 4659917 BAL 4654155 GC/MS 4662879 AT 4654216 CALC/MET 4659655 BAL 4659655 PH 4659661 GC/MS 4661637	Instrumentation Batch Extracted ICP 4655973 2016/09/12 TECH 4655435 2016/09/09 AT 4656429 2016/09/12 IC/SPEC 4655652 2016/09/12 ICP/MS 4656068 2016/09/12 ICP1/MS 4659917 2016/09/14 BAL 4654155 N/A GC/MS 4662879 2016/09/15 AT 4654216 2016/09/12 CALC/MET 4648725 N/A BAL 4659655 2016/09/13 PH 4659661 N/A GC/MS 4661637 2016/09/14	Instrumentation Batch Extracted Date Analyzed ICP 4655973 2016/09/12 2016/09/12 TECH 4654535 2016/09/12 2016/09/12 AT 4656429 2016/09/12 2016/09/12 IC/SPEC 4655652 2016/09/12 2016/09/12 ICP/MS 4656068 2016/09/12 2016/09/13 ICP1/MS 4659917 2016/09/14 2016/09/15 BAL 4654155 N/A 2016/09/16 AT 4654216 2016/09/12 2016/09/12 GC/MS 4662879 2016/09/12 2016/09/13 BAL 4654216 2016/09/12 2016/09/13 GALC/MET 4648725 N/A 2016/09/13 BAL 4659655 2016/09/13 2016/09/14 PH 4659661 N/A 2016/09/14 PH 4659866 2016/09/14 2016/09/15 GC/MS 4661637 2016/09/15 2016/09/15

Maxxam ID:	CZW655
Sample ID:	CS3-2
Matrix:	Soil

Collected:	2016/08/31
Shipped:	
Received:	2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4648303	N/A	2016/09/12	Automated Statchk
Hot Water Extractable Boron	ICP	4655973	2016/09/12	2016/09/12	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	4654535	2016/09/09	2016/09/12	Xuanhong Qiu
Conductivity	AT	4656429	2016/09/12	2016/09/12	Neil Dassanayake
Hexavalent Chromium in Soil by IC	IC/SPEC	4655652	2016/09/10	2016/09/12	Sally Coughlin
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4652643	2016/09/08	2016/09/12	(Kent) Maolin Li
Strong Acid Leachable Metals by ICPMS	ICP/MS	4656068	2016/09/12	2016/09/13	Viviana Canzonieri
Moisture	BAL	4654155	N/A	2016/09/09	Min Yang
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4653337	2016/09/08	2016/09/09	Jett Wu
pH CaCl2 EXTRACT	AT	4654216	2016/09/12	2016/09/12	Neil Dassanayake
Sodium Adsorption Ratio (SAR)	CALC/MET	4648725	N/A	2016/09/13	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MS	4650611	N/A	2016/09/08	Denis Reid

Maxxam ID: CZW65 Sample ID: CS3-3	6				Collected: 2016/08/31 Shipped:
Matrix: Soil					Received: 2016/09/02
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4648303	N/A	2016/09/13	Automated Statchk
Hot Water Extractable Boron	ICP	4653935	2016/09/09	2016/09/09	Jolly John
Free (WAD) Cyanide	TECH	4653560	2016/09/09	2016/09/12	Christine Pham
Conductivity	AT	4656429	2016/09/12	2016/09/12	Neil Dassanayake
Hexavalent Chromium in Soil by IC	IC/SPEC	4655651	2016/09/10	2016/09/12	Sally Coughlin
Petroleum Hydrocarbons F2-F4 in S	Goil GC/FID	4652643	2016/09/08	2016/09/12	(Kent) Maolin Li
Strong Acid Leachable Metals by IC	PMS ICP/MS	4654375	2016/09/09	2016/09/12	Cristina Petran

Page 15 of 34

DST Consulting Engineers Inc Client Project #: GV-TB-027105

TEST SUMMARY

Maxxam ID:	CZW656
Sample ID:	CS3-3
Matrix:	Soil

Collected: 2016/08/31 Shipped: Received: 2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	4654156	N/A	2016/09/09	Min Yang
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4653284	2016/09/08	2016/09/09	Lingyun Feng
pH CaCl2 EXTRACT	AT	4653668	2016/09/09	2016/09/09	Surinder Rai
Sodium Adsorption Ratio (SAR)	CALC/MET	4648725	N/A	2016/09/13	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MS	4650611	N/A	2016/09/08	Denis Reid

Maxxam ID:	CZW657
Sample ID:	CS3-4
Matrix:	Soil

Collected: 2016/08/31 Shipped: Received: 2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4648303	N/A	2016/09/13	Automated Statchk
Hot Water Extractable Boron	ICP	4653935	2016/09/09	2016/09/09	Jolly John
Free (WAD) Cyanide	TECH	4653560	2016/09/09	2016/09/12	Christine Pham
Conductivity	AT	4653945	2016/09/09	2016/09/09	Neil Dassanayake
Hexavalent Chromium in Soil by IC	IC/SPEC	4655651	2016/09/10	2016/09/12	Sally Coughlin
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4652643	2016/09/08	2016/09/12	(Kent) Maolin Li
Strong Acid Leachable Metals by ICPMS	ICP/MS	4654375	2016/09/09	2016/09/12	Cristina Petran
Moisture	BAL	4654156	N/A	2016/09/09	Min Yang
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4653284	2016/09/08	2016/09/09	Lingyun Feng
pH CaCl2 EXTRACT	AT	4653668	2016/09/09	2016/09/09	Surinder Rai
Sodium Adsorption Ratio (SAR)	CALC/MET	4648725	N/A	2016/09/12	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MS	4650611	N/A	2016/09/08	Denis Reid

Maxxam ID:	CZW658
Sample ID:	CS3-5
Matrix:	Soil

Collected: 2016/08/31 Shipped: Received: 2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4648303	N/A	2016/09/13	Automated Statchk
Hot Water Extractable Boron	ICP	4653935	2016/09/09	2016/09/09	Jolly John
Free (WAD) Cyanide	TECH	4653560	2016/09/09	2016/09/12	Christine Pham
Conductivity	AT	4653945	2016/09/09	2016/09/09	Neil Dassanayake
Hexavalent Chromium in Soil by IC	IC/SPEC	4655651	2016/09/10	2016/09/12	Sally Coughlin
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4652643	2016/09/08	2016/09/12	(Kent) Maolin Li
Strong Acid Leachable Metals by ICPMS	ICP/MS	4654375	2016/09/09	2016/09/12	Cristina Petran
Moisture	BAL	4654156	N/A	2016/09/09	Min Yang
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4653284	2016/09/08	2016/09/09	Lingyun Feng
pH CaCl2 EXTRACT	AT	4653668	2016/09/09	2016/09/09	Surinder Rai
Sodium Adsorption Ratio (SAR)	CALC/MET	4648725	N/A	2016/09/12	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MS	4650611	N/A	2016/09/08	Denis Reid

DST Consulting Engineers Inc Client Project #: GV-TB-027105

TEST SUMMARY

Maxxam ID:	CZW659
Sample ID:	CS3-6
Matrix:	Soil

Collected: 2016/08/31 Shipped: Received: 2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	4655973	2016/09/12	2016/09/12	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	4654535	2016/09/09	2016/09/12	Xuanhong Qiu
Conductivity	AT	4656429	2016/09/12	2016/09/12	Neil Dassanayake
Hexavalent Chromium in Soil by IC	IC/SPEC	4655652	2016/09/10	2016/09/12	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	4656068	2016/09/12	2016/09/13	Viviana Canzonieri
Moisture	BAL	4654155	N/A	2016/09/09	Min Yang
pH CaCl2 EXTRACT	AT	4654216	2016/09/12	2016/09/12	Neil Dassanayake
Sodium Adsorption Ratio (SAR)	CALC/MET	4648725	N/A	2016/09/13	Automated Statchk

Maxxam ID:	CZW660
Sample ID:	CS3-7
Matrix:	Soil

Collected:	2016/08/31
Shipped:	
Received:	2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	4655973	2016/09/12	2016/09/12	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	4654535	2016/09/09	2016/09/13	Xuanhong Qiu
Conductivity	AT	4656429	2016/09/12	2016/09/12	Neil Dassanayake
Hexavalent Chromium in Soil by IC	IC/SPEC	4655652	2016/09/10	2016/09/12	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	4656068	2016/09/12	2016/09/12	Viviana Canzonieri
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	4659917	2016/09/14	2016/09/15	Cristina Petran
Moisture	BAL	4654155	N/A	2016/09/09	Min Yang
PAH Compounds in Leachate by GC/MS (SIM)	GC/MS	4662879	2016/09/15	2016/09/16	Lingyun Feng
pH CaCl2 EXTRACT	AT	4654216	2016/09/12	2016/09/12	Neil Dassanayake
Sodium Adsorption Ratio (SAR)	CALC/MET	4648725	N/A	2016/09/13	Automated Statchk
TCLP - % Solids	BAL	4659655	2016/09/13	2016/09/14	Jian (Ken) Wang
TCLP - Extraction Fluid		4659660	N/A	2016/09/14	Jian (Ken) Wang
TCLP - Initial and final pH	PH	4659661	N/A	2016/09/14	Jian (Ken) Wang

Maxxam ID: CZW660 Dup Sample ID: CS3-7 Matrix: Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Free (WAD) Cyanide	TECH	4654535	2016/09/09	2016/09/13	Xuanhong	Qiu
Hexavalent Chromium in Soil by IC	IC/SPEC	4655652	2016/09/10	2016/09/12	Sally Coug	hlin
PAH Compounds in Leachate by GC/MS (SIM)	GC/MS	4662879	2016/09/15	2016/09/16	Lingyun Fe	eng

Maxxam ID: Sample ID: Matrix:	CZW661 CS3-8 Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hot Water Extractable Bor	on	ICP	4655973	2016/09/12	2016/09/12	Suban Kan	apathippllai
Free (WAD) Cyanide		TECH	4654535	2016/09/09	2016/09/12	Xuanhong	Qiu
Conductivity		AT	4656429	2016/09/12	2016/09/12	Neil Dassa	nayake
Hexavalent Chromium in S	oil by IC	IC/SPEC	4655652	2016/09/10	2016/09/12	Sally Cough	hlin

Moisture

pH CaCl2 EXTRACT

Sodium Adsorption Ratio (SAR)

DST Consulting Engineers Inc Client Project #: GV-TB-027105

TEST SUMMARY

Maxxam ID:	CZW661
Sample ID:	CS3-8
Matrix:	Soil

Collected: Shipped:	2016/08/31
Received:	2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4656068	2016/09/12	2016/09/12	Viviana Canzonieri
Moisture	BAL	4654155	N/A	2016/09/09	Min Yang
pH CaCl2 EXTRACT	AT	4654216	2016/09/12	2016/09/12	Neil Dassanayake
Sodium Adsorption Ratio (SAR)	CALC/MET	4648725	N/A	2016/09/13	Automated Statchk

Maxxam ID:	CZW662
Sample ID:	CS3-9
Matrix:	Soil

Collected: 2016/08/31 Shipped: Received: 2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	4655973	2016/09/12	2016/09/12	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	4654535	2016/09/09	2016/09/12	Xuanhong Qiu
Conductivity	AT	4656429	2016/09/12	2016/09/12	Neil Dassanayake
Hexavalent Chromium in Soil by IC	IC/SPEC	4655652	2016/09/10	2016/09/12	Sally Coughlin
Mercury (TCLP Leachable) (mg/L)	CV/AA	4684972	N/A	2016/10/03	Ron Morrison
Strong Acid Leachable Metals by ICPMS	ICP/MS	4656068	2016/09/12	2016/09/12	Viviana Canzonieri
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	4685887	2016/10/03	2016/10/03	Cristina Petran
Moisture	BAL	4654236	N/A	2016/09/09	Min Yang
pH CaCl2 EXTRACT	AT	4654216	2016/09/12	2016/09/12	Neil Dassanayake
Sodium Adsorption Ratio (SAR)	CALC/MET	4648725	N/A	2016/09/13	Automated Statchk
TCLP - % Solids	BAL	4684452	2016/09/30	2016/10/01	Walt Wang
TCLP - Extraction Fluid		4684465	N/A	2016/10/01	Walt Wang
TCLP - Initial and final pH	РН	4684466	N/A	2016/10/01	Walt Wang

Maxxam ID: Sample ID: Matrix:	CZW662 Dup CS3-9 Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst		
Hot Water Extractable Bo	oron	ICP	4655973	2016/09/12	2016/09/12	Suban Kan	apathippllai	
Maxxam ID: Sample ID: Matrix:	CZW663 CS3-10 Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst		
Hot Water Extractable Bo	oron	ICP	4655973	2016/09/12	2016/09/12	Suban Kan	apathippllai	
Free (WAD) Cyanide		TECH	4654535	2016/09/09	2016/09/12	Xuanhong Qiu		
Conductivity		AT	4656429	2016/09/12	2016/09/12	Neil Dassa	nayake	
Hexavalent Chromium in	Soil by IC	IC/SPEC	4655652	2016/09/10	2016/09/12	Sally Coug	hlin	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4656068	2016/09/12	2016/09/12	Viviana Ca	nzonieri	

N/A

N/A

2016/09/12

2016/09/09

2016/09/12

2016/09/13

Min Yang

Neil Dassanayake

Automated Statchk

4654236

4654216

4648725

BAL

AT

CALC/MET

TEST SUMMARY

Maxxam ID:	CZW664
Sample ID:	CS30-5
Matrix:	Soil

Collected:	2016/08/31
Received:	2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4648303	N/A	2016/09/13	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4652643	2016/09/08	2016/09/12	(Kent) Maolin Li
Strong Acid Leachable Metals by ICPMS	ICP/MS	4654375	2016/09/09	2016/09/12	Cristina Petran
Moisture	BAL	4654156	N/A	2016/09/09	Min Yang
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4653284	2016/09/08	2016/09/09	Lingyun Feng
pH CaCl2 EXTRACT	AT	4653668	2016/09/09	2016/09/09	Surinder Rai
Volatile Organic Compounds and F1 PHCs	GC/MS	4650611	N/A	2016/09/08	Denis Reid

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	3.0°C
Package 2	4.3°C
Package 3	4.0°C

Additional analyses requested on CS3-1, per client.

Sample CZW654-01 : SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Sample CZW655-01 : SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Sample CZW656-01 : SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Sample CZW657-01 : SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Sample CZW658-01 : SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Sample CZW659-01 : SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Sample CZW660-01 : SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Sample CZW661-01 : SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Sample CZW662-01 : SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Sample CZW663-01 : SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

DST Consulting Engineers Inc Client Project #: GV-TB-027105

			Matrix	Spike	SPIKED BLANK		ANK Method Blank		RPD		Leachate Blank	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4650611	4-Bromofluorobenzene	2016/09/08	107	60 - 140	109	60 - 140	101	%				
4650611	D10-o-Xylene	2016/09/08	101	60 - 130	105	60 - 130	86	%				
4650611	D4-1,2-Dichloroethane	2016/09/08	84	60 - 140	90	60 - 140	94	%				
4650611	D8-Toluene	2016/09/08	101	60 - 140	99	60 - 140	90	%				
4652643	o-Terphenyl	2016/09/12	106	60 - 130	110	60 - 130	99	%				
4653284	D10-Anthracene	2016/09/09	108	50 - 130	86	50 - 130	77	%				
4653284	D14-Terphenyl (FS)	2016/09/09	96	50 - 130	86	50 - 130	80	%				
4653284	D8-Acenaphthylene	2016/09/09	94	50 - 130	91	50 - 130	80	%				
4653337	D10-Anthracene	2016/09/08	101	50 - 130	100	50 - 130	104	%				
4653337	D14-Terphenyl (FS)	2016/09/08	95	50 - 130	95	50 - 130	94	%				
4653337	D8-Acenaphthylene	2016/09/08	94	50 - 130	90	50 - 130	88	%				
4661637	Leachable 4-Bromofluorobenzene	2016/09/15	99	70 - 130	100	70 - 130	98	%				
4661637	Leachable D4-1,2-Dichloroethane	2016/09/15	95	70 - 130	101	70 - 130	102	%				
4661637	Leachable D8-Toluene	2016/09/15	103	70 - 130	100	70 - 130	99	%				
4662879	Leachable D10-Anthracene	2016/09/16	106	50 - 130	104	50 - 130	104	%				
4662879	Leachable D14-Terphenyl (FS)	2016/09/16	94	50 - 130	93	50 - 130	90	%				
4662879	Leachable D8-Acenaphthylene	2016/09/16	86	50 - 130	86	50 - 130	85	%				
4650611	1,1,1,2-Tetrachloroethane	2016/09/08	94	60 - 140	95	60 - 130	<0.050	ug/g	NC	50		
4650611	1,1,1-Trichloroethane	2016/09/08	82	60 - 140	82	60 - 130	<0.050	ug/g	NC	50		
4650611	1,1,2,2-Tetrachloroethane	2016/09/08	89	60 - 140	97	60 - 130	<0.050	ug/g	NC	50		
4650611	1,1,2-Trichloroethane	2016/09/08	82	60 - 140	87	60 - 130	<0.050	ug/g	NC	50		
4650611	1,1-Dichloroethane	2016/09/08	82	60 - 140	82	60 - 130	<0.050	ug/g	NC	50		
4650611	1,1-Dichloroethylene	2016/09/08	83	60 - 140	82	60 - 130	<0.050	ug/g	NC	50		
4650611	1,2-Dichlorobenzene	2016/09/08	101	60 - 140	101	60 - 130	<0.050	ug/g	NC	50		
4650611	1,2-Dichloroethane	2016/09/08	78	60 - 140	83	60 - 130	<0.050	ug/g	NC	50		
4650611	1,2-Dichloropropane	2016/09/08	88	60 - 140	91	60 - 130	<0.050	ug/g	NC	50		
4650611	1,3-Dichlorobenzene	2016/09/08	103	60 - 140	99	60 - 130	<0.050	ug/g	NC	50		
4650611	1,4-Dichlorobenzene	2016/09/08	104	60 - 140	102	60 - 130	<0.050	ug/g	NC	50		
4650611	Acetone (2-Propanone)	2016/09/08	81	60 - 140	92	60 - 140	<0.50	ug/g	NC	50		
4650611	Benzene	2016/09/08	89	60 - 140	91	60 - 130	<0.0060	ug/g	NC	50		
4650611	Bromodichloromethane	2016/09/08	86	60 - 140	89	60 - 130	<0.050	ug/g	NC	50		
4650611	Bromoform	2016/09/08	92	60 - 140	99	60 - 130	<0.050	ug/g	NC	50		

Page 21 of 34

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: GV-TB-027105

			Matrix	Matrix Spike		SPIKED BLANK		Method Blank		RPD		Leachate Blank	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS	
4650611	Bromomethane	2016/09/08	72	60 - 140	71	60 - 140	<0.050	ug/g	NC	50			
4650611	Carbon Tetrachloride	2016/09/08	84	60 - 140	83	60 - 130	<0.050	ug/g	NC	50			
4650611	Chlorobenzene	2016/09/08	101	60 - 140	101	60 - 130	<0.050	ug/g	NC	50			
4650611	Chloroethane	2016/09/08	78	60 - 140	79	60 - 130	<0.20	ug/g	NC	50			
4650611	Chloroform	2016/09/08	85	60 - 140	86	60 - 130	<0.050	ug/g	NC	50			
4650611	Chloromethane	2016/09/08	62	60 - 140	62	60 - 140	<0.40	ug/g	NC	50			
4650611	cis-1,2-Dichloroethylene	2016/09/08	92	60 - 140	93	60 - 130	<0.050	ug/g	NC	50			
4650611	cis-1,3-Dichloropropene	2016/09/08	93	60 - 140	96	60 - 130	<0.030	ug/g	NC	50			
4650611	Dibromochloromethane	2016/09/08	91	60 - 140	95	60 - 130	<0.050	ug/g	NC	50			
4650611	Dichlorodifluoromethane (FREON 12)	2016/09/08	60	60 - 140	59 (1)	60 - 140	<0.050	ug/g	NC	50			
4650611	Ethylbenzene	2016/09/08	99	60 - 140	97	60 - 130	<0.010	ug/g	NC	50			
4650611	Ethylene Dibromide	2016/09/08	92	60 - 140	100	60 - 130	<0.050	ug/g	NC	50			
4650611	F1 (C6-C10) - BTEX	2016/09/08					<10	ug/g	NC	30			
4650611	F1 (C6-C10)	2016/09/08	93	60 - 140	97	80 - 120	<10	ug/g	NC	30			
4650611	Gasoline	2016/09/08	93	N/A	97	N/A	<10	ug/g	NC	30			
4650611	Hexane	2016/09/08	88	60 - 140	86	60 - 130	<0.050	ug/g	NC	50			
4650611	Methyl Ethyl Ketone (2-Butanone)	2016/09/08	86	60 - 140	100	60 - 140	<0.50	ug/g	NC	50			
4650611	Methyl Isobutyl Ketone	2016/09/08	89	60 - 140	103	60 - 130	<0.50	ug/g	NC	50			
4650611	Methyl t-butyl ether (MTBE)	2016/09/08	90	60 - 140	94	60 - 130	<0.050	ug/g	NC	50			
4650611	Methylene Chloride(Dichloromethane)	2016/09/08	94	60 - 140	97	60 - 130	<0.050	ug/g	NC	50			
4650611	o-Xylene	2016/09/08	100	60 - 140	99	60 - 130	<0.020	ug/g	NC	50			
4650611	p+m-Xylene	2016/09/08	97	60 - 140	94	60 - 130	<0.020	ug/g	NC	50			
4650611	Styrene	2016/09/08	103	60 - 140	104	60 - 130	<0.050	ug/g	NC	50			
4650611	Tetrachloroethylene	2016/09/08	96	60 - 140	93	60 - 130	<0.050	ug/g	NC	50			
4650611	Toluene	2016/09/08	91	60 - 140	91	60 - 130	<0.020	ug/g	NC	50			
4650611	Total Xylenes	2016/09/08					<0.020	ug/g	1.5	50			
4650611	trans-1,2-Dichloroethylene	2016/09/08	88	60 - 140	87	60 - 130	<0.050	ug/g	NC	50			
4650611	trans-1,3-Dichloropropene	2016/09/08	93	60 - 140	93	60 - 130	<0.040	ug/g	NC	50			
4650611	Trichloroethylene	2016/09/08	93	60 - 140	93	60 - 130	<0.010	ug/g	NC	50			
4650611	Trichlorofluoromethane (FREON 11)	2016/09/08	81	60 - 140	79	60 - 130	<0.050	ug/g	NC	50			
4650611	Vinyl Chloride	2016/09/08	79	60 - 140	77	60 - 130	<0.020	ug/g	NC	50			
4652643	F2 (C10-C16 Hydrocarbons)	2016/09/12	103	50 - 130	106	80 - 120	<10	ug/g	NC	30			

Page 22 of 34

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: GV-TB-027105

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPD Leach		Leachate	chate Blank	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS	
4652643	F3 (C16-C34 Hydrocarbons)	2016/09/12	102	50 - 130	106	80 - 120	<50	ug/g	NC	30			
4652643	F4 (C34-C50 Hydrocarbons)	2016/09/12	103	50 - 130	105	80 - 120	<50	ug/g	NC	30			
4653284	1-Methylnaphthalene	2016/09/09	94	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40			
4653284	2-Methylnaphthalene	2016/09/09	86	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40			
4653284	Acenaphthene	2016/09/09	109	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40			
4653284	Acenaphthylene	2016/09/09	100	50 - 130	98	50 - 130	<0.0050	ug/g	NC	40			
4653284	Anthracene	2016/09/09	137 (2)	50 - 130	85	50 - 130	<0.0050	ug/g	NC	40			
4653284	Benzo(a)anthracene	2016/09/09	144 (2)	50 - 130	101	50 - 130	<0.0050	ug/g	44 (3)	40			
4653284	Benzo(a)pyrene	2016/09/09	127	50 - 130	98	50 - 130	<0.0050	ug/g	35	40			
4653284	Benzo(b/j)fluoranthene	2016/09/09	120	50 - 130	106	50 - 130	<0.0050	ug/g	51 (3)	40			
4653284	Benzo(g,h,i)perylene	2016/09/09	84	50 - 130	86	50 - 130	<0.0050	ug/g	20	40			
4653284	Benzo(k)fluoranthene	2016/09/09	108	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40			
4653284	Chrysene	2016/09/09	136 (2)	50 - 130	99	50 - 130	<0.0050	ug/g	38	40			
4653284	Dibenz(a,h)anthracene	2016/09/09	85	50 - 130	85	50 - 130	<0.0050	ug/g	NC	40			
4653284	Fluoranthene	2016/09/09	203 (2)	50 - 130	99	50 - 130	<0.0050	ug/g	40 (3)	40			
4653284	Fluorene	2016/09/09	118	50 - 130	96	50 - 130	<0.0050	ug/g	NC	40			
4653284	Indeno(1,2,3-cd)pyrene	2016/09/09	100	50 - 130	94	50 - 130	<0.0050	ug/g	1.2	40			
4653284	Naphthalene	2016/09/09	86	50 - 130	90	50 - 130	<0.0050	ug/g	NC	40			
4653284	Phenanthrene	2016/09/09	198 (2)	50 - 130	97	50 - 130	<0.0050	ug/g	19	40			
4653284	Pyrene	2016/09/09	177 (2)	50 - 130	101	50 - 130	<0.0050	ug/g	40 (3)	40			
4653337	1-Methylnaphthalene	2016/09/09	93	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40			
4653337	2-Methylnaphthalene	2016/09/09	90	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40			
4653337	Acenaphthene	2016/09/09	101	50 - 130	102	50 - 130	<0.0050	ug/g	NC	40			
4653337	Acenaphthylene	2016/09/09	96	50 - 130	97	50 - 130	<0.0050	ug/g	NC	40			
4653337	Anthracene	2016/09/09	91	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40			
4653337	Benzo(a)anthracene	2016/09/09	105	50 - 130	103	50 - 130	<0.0050	ug/g	NC	40			
4653337	Benzo(a)pyrene	2016/09/09	99	50 - 130	102	50 - 130	<0.0050	ug/g	NC	40			
4653337	Benzo(b/j)fluoranthene	2016/09/09	97	50 - 130	107	50 - 130	<0.0050	ug/g	NC	40			
4653337	Benzo(g,h,i)perylene	2016/09/09	100	50 - 130	107	50 - 130	<0.0050	ug/g	NC	40			
4653337	Benzo(k)fluoranthene	2016/09/09	96	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40			
4653337	Chrysene	2016/09/09	102	50 - 130	106	50 - 130	<0.0050	ug/g	NC	40			
4653337	Dibenz(a,h)anthracene	2016/09/09	99	50 - 130	97	50 - 130	<0.0050	ug/g	NC	40			

Page 23 of 34

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: GV-TB-027105

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	Leachate	Blank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4653337	Fluoranthene	2016/09/09	105	50 - 130	107	50 - 130	<0.0050	ug/g	NC	40		
4653337	Fluorene	2016/09/09	99	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40		
4653337	Indeno(1,2,3-cd)pyrene	2016/09/09	113	50 - 130	124	50 - 130	<0.0050	ug/g	NC	40		
4653337	Naphthalene	2016/09/09	89	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40		
4653337	Phenanthrene	2016/09/09	98	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40		
4653337	Pyrene	2016/09/09	105	50 - 130	107	50 - 130	<0.0050	ug/g	NC	40		
4653560	Free Cyanide	2016/09/12	110	75 - 125	107	80 - 120	<0.01	ug/g	NC	35		
4653668	Available (CaCl2) pH	2016/09/09			99	97 - 103			1.8	N/A		
4653935	Hot Water Ext. Boron (B)	2016/09/09	108	75 - 125	105	75 - 125	<0.050	ug/g	NC	40		
4653945	Conductivity	2016/09/09			99	90 - 110	<0.002	mS/cm	0.21	10		
4654155	Moisture	2016/09/09							6.7	20		
4654156	Moisture	2016/09/09							NC	20		
4654216	Available (CaCl2) pH	2016/09/12			98	97 - 103			0.88	N/A		
4654236	Moisture	2016/09/09							4.5	20		
4654375	Acid Extractable Antimony (Sb)	2016/09/13	79	75 - 125	104	80 - 120	<0.20	ug/g	22	30		
4654375	Acid Extractable Arsenic (As)	2016/09/13	85	75 - 125	103	80 - 120	<1.0	ug/g	4.1	30		
4654375	Acid Extractable Barium (Ba)	2016/09/13	NC	75 - 125	106	80 - 120	<0.50	ug/g	0.43	30		
4654375	Acid Extractable Beryllium (Be)	2016/09/13	102	75 - 125	105	80 - 120	<0.20	ug/g	NC	30		
4654375	Acid Extractable Cadmium (Cd)	2016/09/13	95	75 - 125	99	80 - 120	<0.10	ug/g	13	30		
4654375	Acid Extractable Chromium (Cr)	2016/09/13	NC	75 - 125	105	80 - 120	<1.0	ug/g	7.0	30		
4654375	Acid Extractable Cobalt (Co)	2016/09/13	NC	75 - 125	104	80 - 120	<0.10	ug/g	2.2	30		
4654375	Acid Extractable Copper (Cu)	2016/09/13	NC	75 - 125	106	80 - 120	<0.50	ug/g	4.4	30		
4654375	Acid Extractable Lead (Pb)	2016/09/13	NC	75 - 125	98	80 - 120	<1.0	ug/g	1.2	30		
4654375	Acid Extractable Mercury (Hg)	2016/09/13	94	75 - 125	104	80 - 120	<0.050	ug/g				
4654375	Acid Extractable Molybdenum (Mo)	2016/09/13	92	75 - 125	104	80 - 120	<0.50	ug/g	7.8	30		
4654375	Acid Extractable Nickel (Ni)	2016/09/13	103	75 - 125	105	80 - 120	<0.50	ug/g	1.3	30		
4654375	Acid Extractable Selenium (Se)	2016/09/13	79	75 - 125	102	80 - 120	<0.50	ug/g	NC	30		
4654375	Acid Extractable Silver (Ag)	2016/09/13	97	75 - 125	104	80 - 120	<0.20	ug/g	NC	30		
4654375	Acid Extractable Thallium (TI)	2016/09/13	89	75 - 125	95	80 - 120	<0.050	ug/g	NC	30		
4654375	Acid Extractable Tin (Sn)	2016/09/13	98	75 - 125	100	80 - 120	<1.0	ug/g	23	30		
4654375	Acid Extractable Uranium (U)	2016/09/13	95	75 - 125	99	80 - 120	<0.050	ug/g	1.5	30		
4654375	Acid Extractable Vanadium (V)	2016/09/13	NC	75 - 125	103	80 - 120	<5.0	ug/g	2.3	30		

Page 24 of 34

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: GV-TB-027105

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	Leachate	Blank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4654375	Acid Extractable Zinc (Zn)	2016/09/13	NC	75 - 125	103	80 - 120	<5.0	ug/g	1.7	30		
4654535	Free Cyanide	2016/09/13	NC	75 - 125	99	80 - 120	<0.01	ug/g	NC	35		
4655651	Chromium (VI)	2016/09/12	56 (4)	75 - 125	84	80 - 120	<0.2	ug/g	NC	35		
4655652	Chromium (VI)	2016/09/12	23 (5)	75 - 125	84	80 - 120	<0.2	ug/g	NC	35		
4655973	Hot Water Ext. Boron (B)	2016/09/12	111	75 - 125	110	75 - 125	<0.050	ug/g	NC	40		
4656068	Acid Extractable Antimony (Sb)	2016/09/12	78	75 - 125	97	80 - 120	<0.20	ug/g	1.7	30		
4656068	Acid Extractable Arsenic (As)	2016/09/12	93	75 - 125	95	80 - 120	<1.0	ug/g	2.1	30		
4656068	Acid Extractable Barium (Ba)	2016/09/12	NC	75 - 125	94	80 - 120	<0.50	ug/g	4.4	30		
4656068	Acid Extractable Beryllium (Be)	2016/09/12	91	75 - 125	97	80 - 120	<0.20	ug/g	NC	30		
4656068	Acid Extractable Cadmium (Cd)	2016/09/12	89	75 - 125	96	80 - 120	<0.10	ug/g	2.9	30		
4656068	Acid Extractable Chromium (Cr)	2016/09/12	NC	75 - 125	99	80 - 120	<1.0	ug/g	6.2	30		
4656068	Acid Extractable Cobalt (Co)	2016/09/12	NC	75 - 125	98	80 - 120	<0.10	ug/g	2.4	30		
4656068	Acid Extractable Copper (Cu)	2016/09/12	NC	75 - 125	98	80 - 120	<0.50	ug/g	1.8	30		
4656068	Acid Extractable Lead (Pb)	2016/09/12			101	80 - 120	<1.0	ug/g	4.2	30		
4656068	Acid Extractable Mercury (Hg)	2016/09/12	NC	75 - 125	107	80 - 120	<0.050	ug/g				
4656068	Acid Extractable Molybdenum (Mo)	2016/09/12	87	75 - 125	98	80 - 120	<0.50	ug/g	NC	30		
4656068	Acid Extractable Nickel (Ni)	2016/09/12	NC	75 - 125	100	80 - 120	<0.50	ug/g	2.8	30		
4656068	Acid Extractable Selenium (Se)	2016/09/12	91	75 - 125	100	80 - 120	<0.50	ug/g	NC	30		
4656068	Acid Extractable Silver (Ag)	2016/09/12	90	75 - 125	98	80 - 120	<0.20	ug/g	NC	30		
4656068	Acid Extractable Thallium (Tl)	2016/09/12	82	75 - 125	100	80 - 120	<0.050	ug/g	0.61	30		
4656068	Acid Extractable Tin (Sn)	2016/09/12	82	75 - 125	94	80 - 120	<1.0	ug/g	0.47	30		
4656068	Acid Extractable Uranium (U)	2016/09/12	90	75 - 125	99	80 - 120	<0.050	ug/g	2.5	30		
4656068	Acid Extractable Vanadium (V)	2016/09/12	NC	75 - 125	96	80 - 120	<5.0	ug/g	5.9	30		
4656068	Acid Extractable Zinc (Zn)	2016/09/12			100	80 - 120	<5.0	ug/g	4.0	30		
4656429	Conductivity	2016/09/12			100	90 - 110	<0.002	mS/cm	1.2	10		
4659917	Leachable Arsenic (As)	2016/09/15	95	80 - 120	98	80 - 120	<0.2	mg/L	NC	35	<0.2	mg/L
4659917	Leachable Barium (Ba)	2016/09/15	NC	80 - 120	100	80 - 120	<0.2	mg/L	NC	35	<0.2	mg/L
4659917	Leachable Boron (B)	2016/09/15	97	80 - 120	107	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
4659917	Leachable Cadmium (Cd)	2016/09/15	96	80 - 120	97	80 - 120	<0.05	mg/L	NC	35	<0.05	mg/L
4659917	Leachable Chromium (Cr)	2016/09/15	95	80 - 120	97	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
4659917	Leachable Lead (Pb)	2016/09/15	92	80 - 120	95	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
4659917	Leachable Selenium (Se)	2016/09/15	95	80 - 120	99	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L

Page 25 of 34

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: GV-TB-027105

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	Leachate	Blank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4659917	Leachable Silver (Ag)	2016/09/15	93	80 - 120	95	80 - 120	<0.01	mg/L	NC	35	<0.01	mg/L
4659917	Leachable Uranium (U)	2016/09/15	93	80 - 120	94	80 - 120	<0.01	mg/L	NC	35	<0.01	mg/L
4661637	Leachable Benzene	2016/09/15	101	70 - 130	102	70 - 130	<0.020	mg/L	NC	30		
4662879	Leachable Benzo(a)pyrene	2016/09/16	105	50 - 130	103	50 - 130	<0.10	ug/L	NC	40		
4684972	Leachable Mercury (Hg)	2016/10/03	105	75 - 125	100	80 - 120	<0.0010	mg/L	NC	25	<0.0010	mg/L
4685887	Leachable Arsenic (As)	2016/10/03	104	80 - 120	104	80 - 120	<0.2	mg/L	NC	35	<0.2	mg/L
4685887	Leachable Barium (Ba)	2016/10/03	107	80 - 120	103	80 - 120	<0.2	mg/L	NC	35	<0.2	mg/L
4685887	Leachable Boron (B)	2016/10/03	100	80 - 120	119	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
4685887	Leachable Cadmium (Cd)	2016/10/03	107	80 - 120	103	80 - 120	<0.05	mg/L	NC	35	<0.05	mg/L
4685887	Leachable Chromium (Cr)	2016/10/03	100	80 - 120	104	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
4685887	Leachable Lead (Pb)	2016/10/03	98	80 - 120	101	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
4685887	Leachable Selenium (Se)	2016/10/03	101	80 - 120	102	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
4685887	Leachable Silver (Ag)	2016/10/03	96	80 - 120	108	80 - 120	<0.01	mg/L	NC	35	<0.01	mg/L
4685887	Leachable Uranium (U)	2016/10/03	100	80 - 120	102	80 - 120	<0.01	mg/L	NC	35	<0.01	mg/L

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) The recovery was below the lower control limit. This may represent a low bias in some results for this specific analyte.

(2) The recovery was above the upper control limit. This may represent a high bias in some results for this specific analyte. For results that were not detected (ND), this potential bias has no impact.

(3) Duplicate results exceeded RPD acceptance criteria due to the sample heterogeneity. The variability in the results for this analytes may be more pronounced.

(4) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The matrix spike was reanalyzed to confirm result.

(5) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

DST Consulting Engineers Inc Client Project #: GV-TB-027105

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Specialist

avisting Carriere

Cristina Carriere, Scientific Services

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Omegany Name: DST Object TAX (5-7 days) Most analyses ontack Name: Address: Address: Propertie Propertie ontack Name: Address: Propertie Propertie Propertie Propertie ontack Name: Address: Properitie Properitie <th>samm Name DST Confour TAILS #WL Confour Vance Confour Vance Page 4 Page 4<th>Invoice Information</th><th>Report Informati</th><th>on (if differs from invoice)</th><th>Project Information (where applicable)</th><th>/ Turnaround Time (TAT) Required</th><th></th></th>	samm Name DST Confour TAILS #WL Confour Vance Confour Vance Page 4 Page 4 <th>Invoice Information</th> <th>Report Informati</th> <th>on (if differs from invoice)</th> <th>Project Information (where applicable)</th> <th>/ Turnaround Time (TAT) Required</th> <th></th>	Invoice Information	Report Informati	on (if differs from invoice)	Project Information (where applicable)	/ Turnaround Time (TAT) Required	
Market Dispersion Consect Lines P.O. W. AF8:	Mark None George LARS Contract Name PO Al ATR PROVIDE ALLOWER MODELED RUDATIONS None BBS Record ALLOWER MODELED RUDATIONS Address Site Location Intel Transmission None BBS Record ALLOWER MODELED RUDATIONS Address Site Location Intel Transmission None RASE OF LOCATIONS Market NUTL COLLEGE RUDATIONS Market NUTL COLLEGE RUDATIONS Market NUTL COLLEGE RUDATIONS Market NUTL COLLEGE RUDATIONS None Record ALLOWER NUTL COLLEGE RUDATIONS Market NU	mainy Name OST Charles Tak	Company Name:	Q	uotation #:	Regular TAT (5-7 days) Most analyses	6 - C C C C C C C C
Mink Hall SECTE Larks Address: Projet 6. Interview BSS FREGORY ST Prone: Fax: Site Location: Interview More: Fax: Site Location: Interview Date Required: More: Fax: Site Location: Interview Date Required: More: Fax: Site Location: Site Location: Interview More: Fax: Site Location: Site Location: Interview More: Fax: Site Location: Site Location: Interview More: Fax: Site Location: Site Location: Site Location: Tork: Fax: More: Site Location: Site Lo	At Norm: SECONSTRUCTION: Project 8: Project 8: Project 8: Project 8: Site Controls Project 8: Project 8: Project 8: Project 8: Site Controls Project 8: Project 8: Project 8: Project 8: Site Controls Project 8: Project 8: Project 8: Project 8: Site Controls Project 8: Project 8: Project 8: Project 8: Site Controls Project 8: Project 8: Project 8: Project 8: Site Controls Project 8: Project 8: Project 8: Project 8: Project 8: Project 8: Project 8: Project 8: Project 8: Project 8: Project 8: Project 8: Project 8: Project 8: Project 8: Pro		Contact Name	- 5 [*] P	.0. #/ AFE#:	PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS	
CC_S_S_F_C_COLOR	CDC3 FOOD FOOD <th< th=""><th>Idraes' 885 PEGALE</th><th>Address:</th><th>P</th><th>roject #:</th><th>Rush TAT (Surcharges will be applied)</th><th></th></th<>	Idraes' 885 PEGALE	Address:	P	roject #:	Rush TAT (Surcharges will be applied)	
Prome: Fax: State # mail:	Part Fact Step # Date Regulardi PARKE CELLATED DURUNE VALUE NOT CONTROL NAME OF	000 100001 0		Si	ite Location:	1 Day 2 Days 3-4 Days	1
Instit Dampled By: Dampled By: Date Required: MOL RECOUNTED DRINKING WATER OR WATE	H Data Required Data Required Mode Becalized Account Instant Demodel for Data Required Mode Becalized Account Mode Telescon Account </th <th>none: 705 5610147 Fax:</th> <th>Phone: .</th> <th>Fax: Si</th> <th>ite#:</th> <th></th> <th></th>	none: 705 5610147 Fax:	Phone: .	Fax: Si	ite#:		
Mode Redulated on 153 Other Regulation 153 Other Regulations Analysis Regulated LABORATORY USE ON N Trable 1 Implementation 153 Other Regulations Analysis Regulated LABORATORY USE ON N Trable 2 Implementation 153 Other Regulations Analysis Regulated LABORATORY USE ON N Trable 3 Open/Other Open/Other Open/Other Sector Bylow Implementation 153 Trable 3 Open/Other Open/Other Sector Bylow Implementation 153 Cool Carter Trable 3 Open/Other Sector Bylow Implementation 153 Open/Other Sector Bylow Implementation 153 Trable 3 Open/Other Sector Bylow Implementation 153 Open/Other Sector Bylow Implementation 153 Trable 3 Open/Other Sector Bylow Implementation 153 Open/Other Sector Bylow Implementation 153 Tork R5 (DEREASE CIRCLE) Y / N Implementation 156 Implementation 156 Implementation 157 Implementation 157 Sample IDENTIFICATION DATE SAMED THE SAMED	Mode RECURLATED DURINING WATER OF WATER OF MURTING TO RECURRENCE WATER OF WATER OF MURTING WATER CLUMIN OF CLUSTOOT Plush Centimisation # Regulation 133 Chef Regulation 133	nail: glake edstaroup.	Com Email:	Si	ampled By:	Date Required:	
Regulation 133 Optice Regulations Analytic Requested LABORATORY USE ONLY Table 1 Ber/Zark Med/File CCME Santary Sever Bylaw Color Color of the c	Regulation 133 Other Regulations Analytic Regulation Laboratory Server Bylaw Laboratory Server Bylaw Table 2 Intel (Comm Counter Table 2 Intel (Comm Counter Table 2 Intel (Comm Counter Table 2 Intel (Counter Table 2) Intel (C	MOE REGULATED DRINKING WATER O	R WATER INTENDED FOR HUMAN CONSUMPTIO	N MUST BE SUBMITTED ON THE MAXXAM D	PRINKING WATER CHAIN OF CUSTODY	Rush Confirmation #:	
Maile 1 Bee/Park Med/f/Bre COSTONY SEAL COOLER TEMPERATURES Table 2 Ind/Comm Coarse MISA Storm Severe Bylavi 00 Table 3 Gar/ Other MiSA Storm Severe Bylavi 00 00 Table 3 Gar/ Other Other (Specify) 00 00 00 00 SAMPLES MUST BE REPT COOL (< 10 °C) FROM TIME OF SAMPLING UNTIL DELIVERY TO MAXAMM	Table 1 Inder/Park Mod/ Final CCXE Some Server Bylaw Table 2 Ind/Comm Course Mod/ Server Bylaw Inder/Park Course Inder/Park Course Course <t< td=""><td>Regulation 153</td><td>Other Regulations</td><td>1</td><td>Analysis Requested</td><td>LABORATORY USE ONLY</td><td>4*</td></t<>	Regulation 153	Other Regulations	1	Analysis Requested	LABORATORY USE ONLY	4*
Index 3 Legon on the control (Specify) Pable Other (Specify) Por RSC (PLEASE CIRCLE) Y / N SAMPLE SAMPLED Intel SAMPLED SAMPLE IDENTIFICATION DATE SAMPLED Other (Specify) Intel SAMPLED POR SSC (PLEASE CIRCLE) Y / N SAMPLE IDENTIFICATION DATE SAMPLED Other (Specify) Intel SAMPLED POR SSC (PLEASE CIRCLE) Y / N SAMPLE IDENTIFICATION DATE SAMPLED (PT YVY) NAV/DD) Intel SAMPLED (PT YVY) NA	I Hole 3 I Hole 3 <thi 3<="" hole="" th=""> <thi 3<="" hole="" th=""> I</thi></thi>	Table 1 Res/Park Med/ Fine Table 2 Ind/Comm Coarse	CCME Sanitary Sewer Bylaw	REFER TO BA	ACK OF	CUSTODY SEAL Y / D Present Intact	
FOR RSC (PLEASE CIRCLE) Y / N REG 558 (MIN. 3 DAY TAT REQUIRED) N<	FOR BSC [PLEASE CIRCLE] Y / N BEG SSB (MIN.3 DAVTAT REQUIRED) UN	Table	Other (Specify)	NICS	12- B	N SZZ	
Interface of Analysis: Y / NNUMPER COLC (< 10°C) FROM TIME OF SAMPLING UNTIL DELIVERY TO MAXXAM	UNDER CEPT COOL (< 10 °C) FROM TIME OF SAMPEID	FOR RSC (PLEASE CIRCLE) Y / N	REG 558 (MIN. 3 DAY TAT REQUIRED)	E) Me	vis, HV	N 53,5°C.	1
SAMPLES MUST BE KEPT COOL (< 10°C) FROM TIME OF SAMPLED UNTIL DELIVERY TO MAXXAM SAMPLE IDENTIFICATION Date SAMPLED (HHMM) MATRIX H <td>SAMPLES MUST DE KEPT COOL (< 10 °C) FROM TIME OF SAMPLED MATRIX SAMPLED MATRIX MATRIX MATRIX SAMPLED MATRIX SAMPLED MATRIX SAMPLED MATRIX MATRIX SAMPLED MATRIX SAMPLED MATRIX MATRIX SAMPLED MATRIX SAMPLED MATRIX MATRIX MATRIX SAMPLED MATRIX MATRIX SAMPLED MATRIX</td> <td>clude Criteria on Certificate of Analysis: Y / N</td> <td></td> <td>RS SUE (CIRCL S & IN META</td> <td>S Met</td> <td>N 6,3,3°C</td> <td></td>	SAMPLES MUST DE KEPT COOL (< 10 °C) FROM TIME OF SAMPLED MATRIX SAMPLED MATRIX MATRIX MATRIX SAMPLED MATRIX SAMPLED MATRIX SAMPLED MATRIX MATRIX SAMPLED MATRIX SAMPLED MATRIX MATRIX SAMPLED MATRIX SAMPLED MATRIX MATRIX MATRIX SAMPLED MATRIX MATRIX SAMPLED MATRIX	clude Criteria on Certificate of Analysis: Y / N		RS SUE (CIRCL S & IN META	S Met	N 6,3,3°C	
SAMPLE IDENTIFICATION DATE SAMPLED (YYY/MM/DD) THE SAMPLED (HH:MM) MATRIX O	SAMPLE IDENTIFICATION DATE SAMPLED (YYY/I/M/DD) TIME SAMPLED (HH.MM) TIME SAMPLED (HM.MM) TIME SAMPLED (HM.MM) TIME SAMPLED (HM.MM) TIM	SAMPLES MUST BE KEPT COOL (< 10 $^{\circ}$ C) FROM TIME	OF SAMPLING UNTIL DELIVERY TO MAXXAM	TAINE FERED C F1. F4 METAI	LICPUNIC LICPUNIC	COOLING MEDIA PRESENT: 2 1 N	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C53-1 Augustyna Dobosz C53-2 I5:15 C53-3 I5:25 C53-4 I5:35 C53-5 I5:45 C53-5 I5:45 C53-6 I5:55 C53-7 I5:65 C53-8 I6:15 C53-8 I6:15 C53-9 I6:25 C53-10 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SAMPLE IDENTIFICATION	DATE SAMPLED (YYYY/MM/DD) TIME SAMPLED (HH:MM) MATR	RELO FILI FIELD FILI BITEX/ PHH BITEX/ PHH BITEX/ PHH BITEX/ PHH BITEX 153 I	He. C. VI (He. C. VI) 770 770 770 770 770 770	COMMENTS	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CS3-Z IS: IS Augustyna Dobosz CS3-3 IS: 25 XXXXX IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	CS3 - 1	AUG 31/16 15:05 Sou	- X.		502 G	
3 CS 3 -3 15:25 X X Images synta Dobosz 4 CS 3 -4 15:35 X X B619078 5 CS 3 -5 .15:45 X X TSP ENV-1243 6 CS 3 -6 .15:55 X X Received in Sudbury 8 CS 3 -8 .16:15 X X X Received in Sudbury	CS 3 - 3 IS:25 X X Image: Second seco	2 CS3 -Z	15:15		Au	02-Sep-16 16:20	
4 CS3 - 4 IS-35 X X B619078 5 CS3 - 5 . IS-45 X X TSP ENV-1243 6 CS3 - 6 . IS-55	CS3 - 4 IS-35 IS-45 B6J9078 CS3 - 5 IS-45 IS-55 IS-45 TSP CS3 - 6 IS-55 IS-55 IS-45 IS-45 CS3 - 7 I6-65 IS-55 IS-45 IS-45 CS3 - 7 I6-65 IS-55 IS-45 IS-45 CS3 - 7 I6-65 IS-55 IS-45 IS-45 CS3 - 8 I6-15 IS-55 IS-45 IS-45 CS3 - 9 I6-15 IS-55 IS-45 IS-45 CS3 - 9 I6-25 IS-45 IS-45 IS-45 RELINQUISHED BY: (Signature/Print) DATE: (YYY/MM/DD) TIME: (HH:MM) MAXXAM JOB #* RELINQUISHED BY: (Signature/Print) DATE: (YYY/MM/DD) TIME: (HH:MM) MAXXAM JOB #*	CS3-3	15:25				
5 CS3-5 . I5:4S XX TSP ENV-1243 6 CS3-6 . IS:55	CS3-5 I5:45 XX TSP ENV-1243 CS3-6 I5:55 IS:55 IS:65 IS:65 IS:65 CS3-7 I6:65 IS:65 IS:65 IS:65 IS:65 CS3-8 I6:15 IS:65 IS:65 IS:65 IS:65 CS3-9 I6:25 IS:65 IS:65 IS:65 IS:65 RELINQUISHED BY: (Signature/Print) DATE: (YYY/MM/DD) TIME: (HH:MM) MAXXAM JOB #* RELINQUISHED BY: (Signature/Print) DATE: (YYY/MM/DD) TIME: (HH:MM) MAXXAM JOB #*	4 CS3 -4	15:35			B6I9078	
⁶ CS3 - 6 7 CS3 - 7 8 CS3 - 7 16:65 16:15	CS3-6 IS:55 Received in Sudbury CS3-7 I6:65 Received in Sudbury CS3-8 I6:15 I6:25 CS3-9 I6:35 I6:35 CS3-10 I6:35 Ifference RELINQUISHED BY: (Signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (Signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM)	5 CS3-5	15:45		X X TSP	ENV-1243 O	1. 1. 1. 1. 1.
CS3-7 16:05 Received in Sudbury	CS 3 - 7 16:65 Received in Sudbury CS 3 - 8 16:15 16:25 CS 3 - 9 16:25 16:35 CS 3 - 10 16:35 16:35 RELINQUISHED BY: (Signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (Signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM)	· cs3 -6	15:55	X	XXIIII	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16:15 X X	CS 3 - 8 I6:15 CS 3 - 9 I6:25 CS 3 - 10 I6:35 RELINQUISHED BY: (Signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (Signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM) RELINQUISHED BY: (Signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (Signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM)	103-7	15:05	X	X 1 Rore	ived in Sudbury	· •
	CS 3 - 9 IG-25 CS 3 - 10 IG-35 RELINQUISHED BY: (signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM) RELINQUISHED BY: (signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM) RELINQUISHED BY: (signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (signature/Print)	B CSZ-8	16:15		X		
(53 - 9) // // 25 / X X X	CS 3-10 IG:35	(53-9	16:25	X		A State of the second s	
16:35 X X	RELINQUISHED BY: (signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM) MAXXAM JOB #*	0/183-10	16:35				
RELINQUISHED BY: (Signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (Signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM) MAXXAM JOB #*	2 2/2 / / / Daillan 27 1/ 115 R. L. 15ak Fred Die Lata 18'10	RELINQUISHED BY: (Signature/Print)	DATE: (YYYY/MM/DD) TIME: (HH:MM)	RECEIVED BY: (Signature/Print)	DATE: (YYYY/MM/DD) TIME: (HH:MM)	MAXXAM JOB #*	

1

19 1.8

×

1	Invoice Information	R	eport Information (if differ	from invoice)		Project Inform	mation (where a	RECORD	59252	Page of	-	
Company Na	Ime: DST CONSULTI	NG ENG Company Name	22		Quotat	ion #	Marton (Where a	ipplicable)	Regular To	und Time (TAT) Required		
Contact Nam	" GEOFF LAKE	Contact Name:		16	P.O. #/	AFE#:	Carletter T			DVANCE NOTICE FOR DUCU PROVINCE		
Address:	885 Kecan	VT ST Address:		anite and	Project	#: GV-	TB-02	7105	Rush TAT (Surcharges will be applied)		
Phone: 70	5 5G1 0147 Fax:	Phone	19 1 <u> </u>		Site Loo	ation: Ob	House		1 Day	2 Days 3-4 Days		\$
Email:	lake edst group. a	Com Email:	Fax	¢	Site #:							
	MOE REGULATED DRINKING WAT	FER OR WATER INTENDED FOR HUMAN	CONSUMPTION MUST BE S		Sample	ву:		and the second second	Date Required:			
Tables	Regulation 153	Other Regulation	s		Analys	s Requested	N OF CUSTODY		Rush Confirmation	#: •		3.4
Table 2 Table 3 Table FOR RSC	Coarse	COVIE Santiary Sewer MISA Storm Sewer PWQO Region Other (Specify) REG 558 (MIN. 3 DAY TAT R	Bylaw Bylaw EQUIRED)		FFER TO BACK OF COC (B - SMH 'sp	Presection (ZE	CUSTODY SEAL Y / D Present Intact	COOLER TEMPERATURES		
SAMPLES	MUST BE KEPT COOL (< 10 °C) FROM 1	TIME OF SAMPLING UNTIL DELIVERY T DATE SAMPLED (YYYY/MM/DD) TIME SAT (HH:N	MATRIX ON TAILERD (CIR, S MATRIX MATRIX MPLED MATRIX MM)	BTEX/ PHC F1 PHCs F2 - F4 VOCs REG 153 METALS & I	REG 153 ICPMS MET REG 153 METALS (Hg, Cr VI, ICPMS Me	TerPli	PAHS	HQLD- DO NOT ANAL	COOLING MEDIA PRESI	6,3,3°C		
2 230	30-5	Are 31/16 15:	to Soil	XX.	X	XXX	X	E	2	1.1		
3	- Arabana						100		- new month	sector in the		1 m
4	and the second s		• •	-				*	A state of the	2442		1
5	13355											
6					2 4 ¹				A			
7					-		2		11 2		·	
8		· · · · · · · · · · · · · · · · · · ·					Recei	ved in-	Sudhury	- Martin -		
9	*							No. S. Laws	puuvory.	- ANT THE		
										,24+		

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: GV-TB-027105 Site Location: LIGHTHOUSE Your C.O.C. #: 59249, 59251

Attention:Geoffrey Lake

DST Consulting Engineers Inc Sudbury - Standing Offer 885 Regent Street Suite 3-1B Sudbury, ON P3E 5M4

> Report Date: 2016/10/06 Report #: R4192889 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B6I9079 Received: 2016/09/02, 16:20

Sample Matrix: Soil # Samples Received: 12

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Mercury (TCLP Leachable) (mg/L)	3	N/A	2016/09/12	CAM SOP-00453	EPA 7470A m
Mercury (TCLP Leachable) (mg/L)	1	N/A	2016/10/03	CAM SOP-00453	EPA 7470A m
Strong Acid Leachable Metals by ICPMS	11	2016/09/09	2016/09/12	CAM SOP-00447	EPA 6020B m
Strong Acid Leachable Metals by ICPMS	1	2016/09/09	2016/09/13	CAM SOP-00447	EPA 6020B m
Total Metals in TCLP Leachate by ICPMS	3	2016/09/09	2016/09/12	CAM SOP-00447	EPA 6020B m
Total Metals in TCLP Leachate by ICPMS	1	2016/10/03	2016/10/03	CAM SOP-00447	EPA 6020B m
PAH Compounds in Leachate by GC/MS (SIM)	3	2016/09/09	2016/09/09	CAM SOP-00318	EPA 8270D m
pH CaCl2 EXTRACT	12	2016/09/08	2016/09/08	CAM SOP-00413	EPA 9045 D m
TCLP - % Solids	3	2016/09/08	2016/09/09	CAM SOP-00401	EPA 1311 Update I m
TCLP - % Solids	1	2016/09/30	2016/10/01	CAM SOP-00401	EPA 1311 Update I m
TCLP - Extraction Fluid	3	N/A	2016/09/09	CAM SOP-00401	EPA 1311 Update I m
TCLP - Extraction Fluid	1	N/A	2016/10/01	CAM SOP-00401	EPA 1311 Update I m
TCLP - Initial and final pH	3	N/A	2016/09/09	CAM SOP-00401	EPA 1311 Update I m
TCLP - Initial and final pH	1	N/A	2016/10/01	CAM SOP-00401	EPA 1311 Update I m
TCLP Zero Headspace Extraction	2	2016/09/14	2016/09/15	CAM SOP-00430	EPA 1311 m
VOCs in ZHE Leachates	2	2016/09/15	2016/09/15	CAM SOP-00226	EPA 8260C m

Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.

Maxxam Analytics is accredited for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: GV-TB-027105 Site Location: LIGHTHOUSE Your C.O.C. #: 59249, 59251

Attention:Geoffrey Lake

DST Consulting Engineers Inc Sudbury - Standing Offer 885 Regent Street Suite 3-1B Sudbury, ON P3E 5M4

> Report Date: 2016/10/06 Report #: R4192889 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B6I9079 Received: 2016/09/02, 16:20

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Augustyna Dobosz, Project Manager Email: ADobosz@maxxam.ca Phone# (905)817-5700 Ext:5798

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

CCME ICPMS & ICP METALS (SOIL)

Maxxam ID		CZW665		CZW666	CZW666	CZW667		CZW668		
Sampling Data		2016/08/31		2016/08/31	2016/08/31	2016/08/31		2016/08/31		
		01:00		01:10	01:10	01:15		01:20		
COC Number		59249		59249	59249	59249		59249		
	UNITS	CS2-1	RDL	CS2-2	CS2-2 Lab-Dup	CS2-3	RDL	CS2-4	RDL	QC Batch
Metals										
Acid Extractable Antimony (Sb)	ug/g	0.23	0.20	1.4	1.7	2.3	0.20	0.32	0.20	4654375
Acid Extractable Arsenic (As)	ug/g	2.0	1.0	6.5	6.8	6.7	1.0	3.0	1.0	4654375
Acid Extractable Barium (Ba)	ug/g	51	0.50	480	480	410	0.50	75	0.50	4654375
Acid Extractable Beryllium (Be)	ug/g	0.30	0.20	0.46	0.47	0.35	0.20	<0.20	0.20	4654375
Acid Extractable Cadmium (Cd)	ug/g	0.19	0.10	3.0	3.4	0.42	0.10	0.65	0.10	4654375
Acid Extractable Chromium (Cr)	ug/g	8.9	1.0	23	24	26	1.0	6.8	1.0	4654375
Acid Extractable Cobalt (Co)	ug/g	5.8	0.10	17	17	8.8	0.10	3.9	0.10	4654375
Acid Extractable Copper (Cu)	ug/g	24	0.50	75	78	83	0.50	23	0.50	4654375
Acid Extractable Lead (Pb)	ug/g	14	1.0	8600	8500	12000	5.0	100	1.0	4654375
Acid Extractable Molybdenum (Mo)	ug/g	2.4	0.50	5.9	6.3	7.0	0.50	1.2	0.50	4654375
Acid Extractable Nickel (Ni)	ug/g	3.5	0.50	11	11	4.8	0.50	4.5	0.50	4654375
Acid Extractable Selenium (Se)	ug/g	0.98	0.50	1.2	1.2	1.9	0.50	<0.50	0.50	4654375
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	0.35	0.29	0.40	0.20	<0.20	0.20	4654375
Acid Extractable Thallium (Tl)	ug/g	<0.050	0.050	0.12	0.11	0.12	0.050	0.11	0.050	4654375
Acid Extractable Tin (Sn)	ug/g	1.3	1.0	5.2	6.5	7.8	1.0	2.6	1.0	4654375
Acid Extractable Uranium (U)	ug/g	0.64	0.050	0.63	0.62	1.0	0.050	0.44	0.050	4654375
Acid Extractable Vanadium (V)	ug/g	120	5.0	140	140	130	5.0	57	5.0	4654375
Acid Extractable Zinc (Zn)	ug/g	53	5.0	1700	1800	930	5.0	71	5.0	4654375
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										
Lab-Dup = Laboratory Initiated Duplic	ate									

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: LIGHTHOUSE

CCME ICPMS & ICP METALS (SOIL)

Maxxam ID		CZW669		CZW670	CZW671	CZW672	CZW673	CZW674		
Sampling Date		2016/08/31		2016/08/31	2016/08/31	2016/08/31	2016/08/31	2016/08/31		
		01:30		01:45	02:06	02:30	02:40	03:00		
COC Number		59249		59249	59249	59249	59249	59249		
	UNITS	CS2-5	RDL	CS2-6	CS2-7	CS2-8	CS2-9	CS2-10	RDL	QC Batch
Metals										
Acid Extractable Antimony (Sb)	ug/g	1.1	0.20	1.2	0.40	0.73	0.70	0.79	0.20	4654375
Acid Extractable Arsenic (As)	ug/g	5.5	1.0	6.3	4.3	9.0	4.4	9.8	1.0	4654375
Acid Extractable Barium (Ba)	ug/g	320	0.50	210	82	150	160	110	0.50	4654375
Acid Extractable Beryllium (Be)	ug/g	1.3	0.20	0.29	0.29	0.38	0.51	0.49	0.20	4654375
Acid Extractable Cadmium (Cd)	ug/g	1.2	0.10	8.7	0.73	0.86	0.92	0.75	0.10	4654375
Acid Extractable Chromium (Cr)	ug/g	22	1.0	21	7.7	11	21	13	1.0	4654375
Acid Extractable Cobalt (Co)	ug/g	10	0.10	11	7.2	13	19	12	0.10	4654375
Acid Extractable Copper (Cu)	ug/g	61	0.50	210	26	180	55	47	0.50	4654375
Acid Extractable Lead (Pb)	ug/g	4100	5.0	3100	53	1000	1900	1200	1.0	4654375
Acid Extractable Molybdenum (Mo)	ug/g	4.6	0.50	2.9	2.1	2.4	3.4	3.9	0.50	4654375
Acid Extractable Nickel (Ni)	ug/g	8.6	0.50	8.3	5.1	8.3	16	8.2	0.50	4654375
Acid Extractable Selenium (Se)	ug/g	4.8	0.50	0.83	1.2	1.0	1.4	1.6	0.50	4654375
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	0.53	<0.20	<0.20	<0.20	<0.20	0.20	4654375
Acid Extractable Thallium (Tl)	ug/g	0.050	0.050	0.16	0.083	0.16	0.079	0.088	0.050	4654375
Acid Extractable Tin (Sn)	ug/g	2.1	1.0	18	1.9	4.6	3.0	3.8	1.0	4654375
Acid Extractable Uranium (U)	ug/g	1.5	0.050	0.45	0.69	0.54	0.69	0.64	0.050	4654375
Acid Extractable Vanadium (V)	ug/g	140	5.0	85	100	96	150	160	5.0	4654375
Acid Extractable Zinc (Zn)	ug/g	1500	5.0	910	84	260	610	290	5.0	4654375
RDL = Reportable Detection Limit QC Batch = Quality Control Batch										

CCME ICPMS & ICP METALS (SOIL)

	CZW675	CZW676		
	2016/08/31	2016/08/31		
	03:10	03:10		
	59251	59251		
UNITS	CS2-11	CS20-11	RDL	QC Batch
ug/g	0.49	0.31	0.20	4654375
ug/g	2.8	2.5	1.0	4654375
ug/g	100	81	0.50	4654375
ug/g	0.24	0.23	0.20	4654375
ug/g	0.78	0.53	0.10	4654375
ug/g	8.4	7.2	1.0	4654375
ug/g	8.3	7.4	0.10	4654375
ug/g	44	35	0.50	4654375
ug/g	1200	720	1.0	4654375
ug/g	2.0	2.2	0.50	4654375
ug/g	5.5	4.6	0.50	4654375
ug/g	0.53	0.71	0.50	4654375
ug/g	<0.20	<0.20	0.20	4654375
ug/g	0.067	0.072	0.050	4654375
ug/g	5.4	3.4	1.0	4654375
ug/g	0.46	0.50	0.050	4654375
ug/g	120	120	5.0	4654375
ug/g	490	330	5.0	4654375
	UNITS Ug/g Ug/g Ug/g Ug/g Ug/g Ug/g Ug/g Ug/	CZW675 2016/08/31 03:10 59251 UNITS CS2-11 ug/g ug/g 0.49 ug/g 0.49 ug/g 0.24 ug/g 0.24 ug/g 0.78 ug/g 0.24 ug/g 0.253 ug/g 0.46 ug/g 0.46 ug/g 120 u	CZW675 CZW676 2016/08/31 2016/08/31 03:10 03:10 59251 59251 UNITS CS2-11 CS20-11 ug/g 0.49 0.31 ug/g 2.8 2.5 ug/g 0.24 0.23 ug/g 0.78 0.53 ug/g 8.3 7.4 ug/g 44 35 ug/g 1200 720 ug/g 5.5 4.6 ug/g 0.53 0.71 ug/g 0.53 0.71 ug/g 0.667 0.072 ug/g 5.4 3.4 ug/g 0.46 0.50 ug/g 120 120 ug/g 120 120 ug/g 120 330	CZW675 CZW676 2016/08/31 2016/08/31 03:10 03:10 59251 59251 UNITS CS2-11 CS20-11 ug/g 0.49 0.31 0.20 ug/g 2.8 2.5 1.0 ug/g 0.24 0.23 0.20 ug/g 0.78 0.53 0.10 ug/g 8.4 7.2 1.0 ug/g 8.3 7.4 0.10 ug/g 2.0 2.2 0.50 ug/g 6.53 0.70 1.0 ug/g 8.3 7.4 0.10 ug/g 4.4 35 0.50 ug/g 2.0 2.2 0.50 ug/g 5.5 4.6 0.50 ug/g 0.53 0.71 0.50 ug/g 0.67 0.072 0.050 ug/g 0.46 0.50 0.50 ug/g 0.46 0.50 0.50

O.REG 558 TCLP VOLATILE ORGANICS (SOIL)

Maxxam ID		CZW666	CZW668		
Sampling Date		2016/08/31	2016/08/31		
		01:10	01:20		
COC Number		59249	59249		
	UNITS	CS2-2	CS2-4	RDL	QC Batch
Charge/Prep Analysis					
Amount Extracted (Wet Weight) (g)	N/A	25	25	N/A	4659866
Volatile Organics					
Leachable Benzene	mg/L	<0.020	<0.020	0.020	4661637
Leachable Carbon Tetrachloride	mg/L	<0.020	<0.020	0.020	4661637
Leachable Chlorobenzene	mg/L	<0.020	<0.020	0.020	4661637
Leachable Chloroform	mg/L	<0.020	<0.020	0.020	4661637
Leachable 1,2-Dichlorobenzene	mg/L	<0.050	<0.050	0.050	4661637
Leachable 1,4-Dichlorobenzene	mg/L	<0.050	<0.050	0.050	4661637
Leachable 1,2-Dichloroethane	mg/L	<0.050	<0.050	0.050	4661637
Leachable 1,1-Dichloroethylene	mg/L	<0.020	<0.020	0.020	4661637
Leachable Methylene Chloride(Dichloromethane)	mg/L	<0.20	<0.20	0.20	4661637
Leachable Methyl Ethyl Ketone (2-Butanone)	mg/L	<1.0	<1.0	1.0	4661637
Leachable Tetrachloroethylene	mg/L	<0.020	<0.020	0.020	4661637
Leachable Trichloroethylene	mg/L	<0.020	<0.020	0.020	4661637
Leachable Vinyl Chloride	mg/L	<0.020	<0.020	0.020	4661637
Surrogate Recovery (%)	•	-	-		
Leachable 4-Bromofluorobenzene	%	98	98		4661637
Leachable D4-1,2-Dichloroethane	%	102	103		4661637
Leachable D8-Toluene	%	99	99		4661637
RDL = Reportable Detection Limit					
QC Batch = Quality Control Batch					
N/A = Not Applicable					

O.REG 558 TCLP BENZO(A)PYRENE

Maxxam ID		CZW666	CZW668	CZW674							
Sampling Date		2016/08/31	2016/08/31	2016/08/31							
		01:10	01:20	03:00							
COC Number		59249	59249	59249							
	UNITS	CS2-2	CS2-4	CS2-10	RDL	QC Batch					
Polyaromatic Hydrocarbons											
Leachable Benzo(a)pyrene	ug/L	<0.10	<0.10	<0.10	0.10	4654029					
Surrogate Recovery (%)											
Leachable D10-Anthracene	%	103	100	104		4654029					
Leachable D14-Terphenyl (FS)	%	98	92	91		4654029					
Leachable D8-Acenaphthylene % 107 103 108 4654029											
RDL = Reportable Detection Limit											
QC Batch = Quality Control Batch											

O.REG 558 TCLP LEACHATE PREPARATION (SOIL)

Maxxam ID		CZW666	CZW668		CZW669		CZW674		
Sampling Date		2016/08/31	2016/08/31		2016/08/31		2016/08/31		
		01:10	01:20		01:30		03:00		
COC Number		59249	59249		59249		59249		
	UNITS	CS2-2	CS2-4	QC Batch	CS2-5	QC Batch	CS2-10	RDL	QC Batch
Inorganics									
Final pH	рН	4.91	4.83	4653725	4.92	4684466	4.84		4653725
Initial pH	рН	6.12	5.33	4653725	5.38	4684466	5.43		4653725
TCLP - % Solids	%	100	100	4653723	100	4684452	100	0.2	4653723
TCLP Extraction Fluid	N/A	FLUID 1	FLUID 1	4653724	FLUID 1	4684465	FLUID 1		4653724
RDL = Reportable Detection L	imit								
QC Batch = Quality Control Ba	atch								

O.REG 558 TCLP METALS (SOIL)

	CZW666	CZW668		CZW669		CZW674		
	2016/08/31	2016/08/31		2016/08/31		2016/08/31		
	01:10	01:20		01:30		03:00		
	59249	59249		59249		59249		
UNITS	CS2-2	CS2-4	QC Batch	CS2-5	QC Batch	CS2-10	RDL	QC Batch
mg/L	<0.0010	<0.0010	4653964	<0.0010	4684972	<0.0010	0.0010	4653964
mg/L	<0.2	<0.2	4654455	<0.2	4685887	<0.2	0.2	4654455
mg/L	1.0	<0.2	4654455	0.5	4685887	<0.2	0.2	4654455
mg/L	0.2	0.2	4654455	0.3	4685887	0.2	0.1	4654455
mg/L	<0.05	<0.05	4654455	<0.05	4685887	<0.05	0.05	4654455
mg/L	<0.1	<0.1	4654455	<0.1	4685887	<0.1	0.1	4654455
mg/L	14	<0.1	4654455	2.7	4685887	<0.1	0.1	4654455
mg/L	<0.1	<0.1	4654455	<0.1	4685887	<0.1	0.1	4654455
mg/L	<0.01	<0.01	4654455	<0.01	4685887	<0.01	0.01	4654455
mg/L	<0.01	<0.01	4654455	<0.01	4685887	<0.01	0.01	4654455
imit					· · · · · · · · · · · · · · · · · · ·			
	UNITS mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	CZW666 2016/08/31 01:10 59249 UNITS CS2-2 mg/L <0.0010	CZW666 CZW668 2016/08/31 2016/08/31 01:10 01:20 01:10 01:20 59249 59249 UNITS CS2-2 mg/L <0.0010	CZW666 CZW668 2016/08/31 2016/08/31 01:10 01:20 59249 59249 UNITS CS2-2 CS2-4 mg/L <0.0010	CZW666 CZW668 CZW669 2016/08/31 2016/08/31 2016/08/31 01:10 01:20 01:30 59249 59249 59249 UNITS CS2-2 CS2-4 QC Batch CS2-5 mg/L <0.0010	CZW666 CZW668 CZW669 I 2016/08/31 2016/08/31 2016/08/31 2016/08/31 1 01:10 01:20 01:30 01:30 1 59249 59249 59249 59249 0 UNITS CS2-2 CS2-4 QC Batch CS2-5 QC Batch mg/L <0.0010	CZW666 CZW668 CZW669 CZW674 2016/08/31 2016/08/31 2016/08/31 2016/08/31 2016/08/31 01:10 01:20 01:30 03:00 59249 59249 59249 59249 UNITS CS2-2 CS2-4 QC Batch CS2-5 QC Batch CS2-10 mg/L <0.0010	CZW666 CZW668 CZW669 CZW674 2016/08/31 2016/08/31 2016/08/31 2016/08/31 2016/08/31 01:10 01:20 01:30 03:00 03:00 59249 59249 59249 59249 59249 UNITS CS2-2 CS2-4 QC Batch CS2-5 QC Batch CS2-10 RDL mg/L <0.0010

QC Batch = Quality Control Batch

RESULTS OF ANALYSES OF SOIL

Maxxam ID		CZW665	CZW666	CZW667	CZW668	CZW669	CZW670	CZW671	
Sampling Date		2016/08/31	2016/08/31	2016/08/31	2016/08/31	2016/08/31	2016/08/31	2016/08/31	
		01:00	01:10	01:15	01:20	01:30	01:45	02:06	
COC Number		59249	59249	59249	59249	59249	59249	59249	
	UNITS	CS2-1	CS2-2	CS2-3	CS2-4	CS2-5	CS2-6	CS2-7	QC Batch
Inorganics									
Available (CaCl2) pH	рН	3.94	4.55	4.07	3.68	4.63	4.45	6.41	4652152
OC Batch - Quality Contro	l Patch							-	

Maxxam ID		CZW672	CZW673	CZW674	CZW675	CZW675	CZW676	
Sampling Date		2016/08/31	2016/08/31	2016/08/31	2016/08/31	2016/08/31	2016/08/31	
		02:30	02:40	03:00	03:10	03:10	03:10	
COC Number		59249	59249	59249	59251	59251	59251	
	UNITS	CS2-8	CS2-9	CS2-10	CS2-11	CS2-11 Lab-Dup	CS20-11	QC Batch
Inorganics								
Available (CaCl2) pH	рH	3.98	4.24	4.20	3.88	3.86	3.90	4652152
QC Batch = Quality Control Ba	itch	<u> </u>	<u> </u>	<u> </u>	<u> </u>	I	I	

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: LIGHTHOUSE

TEST SUMMARY

Maxxam ID:	CZW665	Collected:	2016/08/31
Sample ID:	CS2-1	Shipped:	
Matrix:	Soil	Received:	2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4654375	2016/09/09	2016/09/12	Cristina Petran
pH CaCl2 EXTRACT	AT	4652152	2016/09/08	2016/09/08	Neil Dassanayake

Maxxam ID:	CZW666	Collected:	2016/08/31
Sample ID:	CS2-2	Shipped:	
Matrix:	Soil	Received:	2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury (TCLP Leachable) (mg/L)	CV/AA	4653964	N/A	2016/09/12	Magdalena Carlos
Strong Acid Leachable Metals by ICPMS	ICP/MS	4654375	2016/09/09	2016/09/13	Cristina Petran
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	4654455	2016/09/09	2016/09/12	John Bowman
PAH Compounds in Leachate by GC/MS (SIM)	GC/MS	4654029	2016/09/09	2016/09/09	Mitesh Raj
pH CaCl2 EXTRACT	AT	4652152	2016/09/08	2016/09/08	Neil Dassanayake
TCLP - % Solids	BAL	4653723	2016/09/08	2016/09/09	Jian (Ken) Wang
TCLP - Extraction Fluid		4653724	N/A	2016/09/09	Jian (Ken) Wang
TCLP - Initial and final pH	PH	4653725	N/A	2016/09/09	Jian (Ken) Wang
TCLP Zero Headspace Extraction		4659866	2016/09/14	2016/09/15	Walt Wang
VOCs in ZHE Leachates	GC/MS	4661637	2016/09/15	2016/09/15	Adriana Zurita

Maxxam ID: Sample ID:	CZW666 Dup CS2-2					Collected: Shipped:	2016/08/31
Matrix:	Soil					Received:	2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4654375	2016/09/09	2016/09/13	Cristina Pe	tran
Maxxam ID: Sample ID:	CZW667 CS2-3					Collected: Shipped:	2016/08/31
watrix:	5011					Received:	2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4654375	2016/09/09	2016/09/12	Cristina Pe	tran
pH CaCl2 EXTRACT		AT	4652152	2016/09/08	2016/09/08	Neil Dassa	nayake

Maxxam ID: CZW668 Sample ID: CS2-4 Matrix: Soil					Collected: 2016/08/31 Shipped: Received: 2016/09/02
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury (TCLP Leachable) (mg/L)	CV/AA	4653964	N/A	2016/09/12	Magdalena Carlos
Strong Acid Leachable Metals by ICPMS	ICP/MS	4654375	2016/09/09	2016/09/12	Cristina Petran
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	4654455	2016/09/09	2016/09/12	John Bowman
PAH Compounds in Leachate by GC/MS (SIM)	GC/MS	4654029	2016/09/09	2016/09/09	Mitesh Raj
pH CaCl2 EXTRACT	AT	4652152	2016/09/08	2016/09/08	Neil Dassanayake
TCLP - % Solids	BAL	4653723	2016/09/08	2016/09/09	Jian (Ken) Wang
TCLP - Extraction Fluid		4653724	N/A	2016/09/09	Jian (Ken) Wang

Page 11 of 20

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

TEST SUMMARY

Maxxam ID: Sample ID: Motrixi	CZW668 CS2-4 Soil					Collected: Shipped:	2016/08/31
Iviatrix:	2011					Received:	2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
TCLP - Initial and final pH		РН	4653725	N/A	2016/09/09	Jian (Ken)	Wang
TCLP Zero Headspace Ext	raction		4659866	2016/09/14	2016/09/15	Walt Wan	g
VOCs in ZHE Leachates		GC/MS	4661637	2016/09/15	2016/09/15	Adriana Z	urita
Maxxam ID: Sample ID: Matrix:	CZW669 CS2-5 Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Mercury (TCLP Leachable	e) (mg/L)	CV/AA	4684972	N/A	2016/10/03	Ron Morri	ison
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4654375	2016/09/09	2016/09/12	Cristina Pe	etran
Total Metals in TCLP Lead	chate by ICPMS	ICP1/MS	4685887	2016/10/03	2016/10/03	Cristina Pe	etran
pH CaCl2 EXTRACT		AT	4652152	2016/09/08	2016/09/08	Neil Dassa	anayake
TCLP - % Solids		BAL	4684452	2016/09/30	2016/10/01	Walt Wan	g
TCLP - Extraction Fluid			4684465	N/A	2016/10/01	Walt Wan	g
TCLP - Initial and final pH		РН	4684466	N/A	2016/10/01	Walt Wan	g
Maxxam ID: Sample ID: Matrix: Test Description	CZW670 CS2-6 Soil	Instrumentation	Batch	Extracted	Date Analyzed	Collected: Shipped: Received: Analyst	2016/08/31 2016/09/02
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4654375	2016/09/09	2016/09/12	Cristina Pe	etran
pH CaCl2 EXTRACT		AT	4652152	2016/09/08	2016/09/08	Neil Dassa	anayake
Maxxam ID: Sample ID: Matrix:	CZW671 CS2-7 Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4654375	2016/09/09	2016/09/12	Cristina Pe	etran
pH CaCl2 EXTRACT		AT	4652152	2016/09/08	2016/09/08	Neil Dassa	anayake
Maxxam ID: Sample ID: Matrix:	CZW672 CS2-8 Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4654375	2016/09/09	2016/09/12	Cristina Pe	etran
pH CaCl2 EXTRACT		AT	4652152	2016/09/08	2016/09/08	Neil Dassa	anayake

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: LIGHTHOUSE

TEST SUMMARY

Maxxam ID: Sample ID:	CZW673	Collected:	2016/08/31
Matrix:	Soil	Received:	2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4654375	2016/09/09	2016/09/12	Cristina Petran
pH CaCl2 EXTRACT	AT	4652152	2016/09/08	2016/09/08	Neil Dassanayake

Maxxam ID:	CZW674	Collected:	2016/08/31
Sample ID:	CS2-10	Shipped:	
Matrix:	Soil	Received:	2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury (TCLP Leachable) (mg/L)	CV/AA	4653964	N/A	2016/09/12	Magdalena Carlos
Strong Acid Leachable Metals by ICPMS	ICP/MS	4654375	2016/09/09	2016/09/12	Cristina Petran
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	4654455	2016/09/09	2016/09/12	John Bowman
PAH Compounds in Leachate by GC/MS (SIM)	GC/MS	4654029	2016/09/09	2016/09/09	Mitesh Raj
pH CaCl2 EXTRACT	AT	4652152	2016/09/08	2016/09/08	Neil Dassanayake
TCLP - % Solids	BAL	4653723	2016/09/08	2016/09/09	Jian (Ken) Wang
TCLP - Extraction Fluid		4653724	N/A	2016/09/09	Jian (Ken) Wang
TCLP - Initial and final pH	PH	4653725	N/A	2016/09/09	Jian (Ken) Wang

Maxxam ID:	CZW675	Collected:	2016/08/31
Sample ID:	CS2-11	Shipped:	
Matrix:	Soil	Received:	2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4654375	2016/09/09	2016/09/12	Cristina Petran
pH CaCl2 EXTRACT	AT	4652152	2016/09/08	2016/09/08	Neil Dassanayake

Maxxam ID: Sample ID: Matrix:	CZW675 Dup CS2-11 Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
pH CaCl2 EXTRACT		AT	4652152	2016/09/08	2016/09/08	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	CZW676 CS20-11 Soil					Collected: Shipped: Received:	2016/08/31 2016/09/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4654375	2016/09/09	2016/09/12	Cristina Petran
pH CaCl2 EXTRACT	AT	4652152	2016/09/08	2016/09/08	Neil Dassanayake

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: LIGHTHOUSE

GENERAL COMMENTS

					-									
Fooh.	+		ic the		~f	· + ~	thraa	~~~!~~	+	noroturoc	takan	~ +	racai	~ +
гаси	remu	perature	is me	average	01 11) ()	Intee	cooler	renn	Deraintes	такен	ы	recen	
				~·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0. or p					00.00.00		~ ~		~ ~

Package 1	3.0°C
Package 2	4.3°C
Package 3	4.0°C
0	

TCLP benzo(a)pyrene and TCLP metals were analyzed for CS2-4, CS, 2-2, CS2-10, per client request

Results relate only to the items tested.

Maxxam Job #: B6I9079 Report Date: 2016/10/06

QUALITY ASSURANCE REPORT

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: LIGHTHOUSE

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RP	D	Leachate	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4654029	Leachable D10-Anthracene	2016/09/09	102	50 - 130	99	50 - 130	101	%				
4654029	Leachable D14-Terphenyl (FS)	2016/09/09	94	50 - 130	97	50 - 130	97	%				
4654029	Leachable D8-Acenaphthylene	2016/09/09	107	50 - 130	102	50 - 130	101	%				
4661637	Leachable 4-Bromofluorobenzene	2016/09/15	99	70 - 130	100	70 - 130	98	%				
4661637	Leachable D4-1,2-Dichloroethane	2016/09/15	95	70 - 130	101	70 - 130	102	%				
4661637	Leachable D8-Toluene	2016/09/15	103	70 - 130	100	70 - 130	99	%				
4652152	Available (CaCl2) pH	2016/09/08			99	97 - 103			0.51	N/A		
4653964	Leachable Mercury (Hg)	2016/09/12	104	75 - 125	102	80 - 120	<0.0010	mg/L	NC	25	<0.0010	mg/L
4654029	Leachable Benzo(a)pyrene	2016/09/09	96	50 - 130	99	50 - 130	<0.10	ug/L	NC	40		
4654375	Acid Extractable Antimony (Sb)	2016/09/13	79	75 - 125	104	80 - 120	<0.20	ug/g	22	30		
4654375	Acid Extractable Arsenic (As)	2016/09/13	85	75 - 125	103	80 - 120	<1.0	ug/g	4.1	30		
4654375	Acid Extractable Barium (Ba)	2016/09/13	NC	75 - 125	106	80 - 120	<0.50	ug/g	0.43	30		
4654375	Acid Extractable Beryllium (Be)	2016/09/13	102	75 - 125	105	80 - 120	<0.20	ug/g	NC	30		
4654375	Acid Extractable Cadmium (Cd)	2016/09/13	95	75 - 125	99	80 - 120	<0.10	ug/g	13	30		
4654375	Acid Extractable Chromium (Cr)	2016/09/13	NC	75 - 125	105	80 - 120	<1.0	ug/g	7.0	30		
4654375	Acid Extractable Cobalt (Co)	2016/09/13	NC	75 - 125	104	80 - 120	<0.10	ug/g	2.2	30		
4654375	Acid Extractable Copper (Cu)	2016/09/13	NC	75 - 125	106	80 - 120	<0.50	ug/g	4.4	30		
4654375	Acid Extractable Lead (Pb)	2016/09/13	NC	75 - 125	98	80 - 120	<1.0	ug/g	1.2	30		
4654375	Acid Extractable Molybdenum (Mo)	2016/09/13	92	75 - 125	104	80 - 120	<0.50	ug/g	7.8	30		
4654375	Acid Extractable Nickel (Ni)	2016/09/13	103	75 - 125	105	80 - 120	<0.50	ug/g	1.3	30		
4654375	Acid Extractable Selenium (Se)	2016/09/13	79	75 - 125	102	80 - 120	<0.50	ug/g	NC	30		
4654375	Acid Extractable Silver (Ag)	2016/09/13	97	75 - 125	104	80 - 120	<0.20	ug/g	NC	30		
4654375	Acid Extractable Thallium (Tl)	2016/09/13	89	75 - 125	95	80 - 120	<0.050	ug/g	NC	30		
4654375	Acid Extractable Tin (Sn)	2016/09/13	98	75 - 125	100	80 - 120	<1.0	ug/g	23	30		
4654375	Acid Extractable Uranium (U)	2016/09/13	95	75 - 125	99	80 - 120	<0.050	ug/g	1.5	30		
4654375	Acid Extractable Vanadium (V)	2016/09/13	NC	75 - 125	103	80 - 120	<5.0	ug/g	2.3	30		
4654375	Acid Extractable Zinc (Zn)	2016/09/13	NC	75 - 125	103	80 - 120	<5.0	ug/g	1.7	30		
4654455	Leachable Arsenic (As)	2016/09/12	101	80 - 120	98	80 - 120			NC	35	<0.2	mg/L
4654455	Leachable Barium (Ba)	2016/09/12	NC	80 - 120	98	80 - 120			NC	35	<0.2	mg/L
4654455	Leachable Boron (B)	2016/09/12	100	80 - 120	114	80 - 120			NC	35	<0.1	mg/L
4654455	Leachable Cadmium (Cd)	2016/09/12	102	80 - 120	102	80 - 120			NC	35	<0.05	mg/L

Maxxam Job #: B6I9079 Report Date: 2016/10/06

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: LIGHTHOUSE

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPD		Leachate	Blank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4654455	Leachable Chromium (Cr)	2016/09/12	101	80 - 120	98	80 - 120			NC	35	<0.1	mg/L
4654455	Leachable Lead (Pb)	2016/09/12	95	80 - 120	97	80 - 120			NC	35	<0.1	mg/L
4654455	Leachable Selenium (Se)	2016/09/12	105	80 - 120	102	80 - 120			NC	35	<0.1	mg/L
4654455	Leachable Silver (Ag)	2016/09/12	98	80 - 120	99	80 - 120			NC	35	<0.01	mg/L
4654455	Leachable Uranium (U)	2016/09/12	100	80 - 120	99	80 - 120			NC	35	<0.01	mg/L
4661637	Leachable 1,1-Dichloroethylene	2016/09/15	99	70 - 130	95	70 - 130	<0.020	mg/L	NC	30		
4661637	Leachable 1,2-Dichlorobenzene	2016/09/15	102	70 - 130	102	70 - 130	<0.050	mg/L	NC	30		
4661637	Leachable 1,2-Dichloroethane	2016/09/15	95	70 - 130	101	70 - 130	<0.050	mg/L	NC	30		
4661637	Leachable 1,4-Dichlorobenzene	2016/09/15	103	70 - 130	103	70 - 130	<0.050	mg/L	NC	30		
4661637	Leachable Benzene	2016/09/15	101	70 - 130	102	70 - 130	<0.020	mg/L	NC	30		
4661637	Leachable Carbon Tetrachloride	2016/09/15	109	70 - 130	108	70 - 130	<0.020	mg/L	NC	30		
4661637	Leachable Chlorobenzene	2016/09/15	103	70 - 130	103	70 - 130	<0.020	mg/L	NC	30		
4661637	Leachable Chloroform	2016/09/15	98	70 - 130	101	70 - 130	<0.020	mg/L	NC	30		
4661637	Leachable Methyl Ethyl Ketone (2-Butanone)	2016/09/15	93	60 - 140	106	60 - 140	<1.0	mg/L	NC	30		
4661637	Leachable Methylene Chloride(Dichloromethane)	2016/09/15	92	70 - 130	92	70 - 130	<0.20	mg/L	NC	30		
4661637	Leachable Tetrachloroethylene	2016/09/15	102	70 - 130	99	70 - 130	<0.020	mg/L	NC	30		
4661637	Leachable Trichloroethylene	2016/09/15	100	70 - 130	99	70 - 130	<0.020	mg/L	NC	30		
4661637	Leachable Vinyl Chloride	2016/09/15	96	70 - 130	88	70 - 130	<0.020	mg/L	NC	30		
4684972	Leachable Mercury (Hg)	2016/10/03	105	75 - 125	100	80 - 120	<0.0010	mg/L	NC	25	<0.0010	mg/L
4685887	Leachable Arsenic (As)	2016/10/03	104	80 - 120	104	80 - 120	<0.2	mg/L	NC	35	<0.2	mg/L
4685887	Leachable Barium (Ba)	2016/10/03	107	80 - 120	103	80 - 120	<0.2	mg/L	NC	35	<0.2	mg/L
4685887	Leachable Boron (B)	2016/10/03	100	80 - 120	119	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
4685887	Leachable Cadmium (Cd)	2016/10/03	107	80 - 120	103	80 - 120	<0.05	mg/L	NC	35	<0.05	mg/L
4685887	Leachable Chromium (Cr)	2016/10/03	100	80 - 120	104	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
4685887	Leachable Lead (Pb)	2016/10/03	98	80 - 120	101	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
4685887	Leachable Selenium (Se)	2016/10/03	101	80 - 120	102	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
4685887	Leachable Silver (Ag)	2016/10/03	96	80 - 120	108	80 - 120	<0.01	mg/L	NC	35	<0.01	mg/L

Maxxam Job #: B6I9079 Report Date: 2016/10/06

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: LIGHTHOUSE

			Matrix	Matrix Spike SPIKED BLANK Method Blank RPD Lead							Leachate I	Blank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4685887	Leachable Uranium (U)	2016/10/03	100	80 - 120	102	80 - 120	<0.01	mg/L	NC	35	<0.01	mg/L
N/A = Not A	pplicable											
Duplicate: P	aired analysis of a separate portion of the same	sample. Used to	evaluate the	variance in	the measurem	ient.						
Matrix Spike	: A sample to which a known amount of the ana	lyte of interest h	nas been adde	ed. Used to e	evaluate samp	le matrix inte	erference.					
Leachate Bla	ank: A blank matrix containing all reagents used i	n the leaching p	rocedure. Use	ed to detern	nine any proce	ess contamin	ation.					
Spiked Blank	: A blank matrix sample to which a known amou	nt of the analyte	e, usually from	n a second so	ource, has bee	en added. Us	ed to evaluate	method a	ccuracy.			
Method Blar	nk: A blank matrix containing all reagents used in	the analytical p	procedure. Us	ed to identif	y laboratory c	ontaminatio	n.					
Surrogate: A	A pure or isotopically labeled compound whose b	ehavior mirrors	the analytes	of interest. l	Jsed to evalua	te extractior	n efficiency.					
NC (Matrix S recovery cal	pike): The recovery in the matrix spike was not c culation (matrix spike concentration was less tha	alculated. The re n 2x that of the	elative differe native sample	nce betwee concentrat	n the concent ion).	ration in the	parent sample	and the s	piked amount	was too sma	ll to permit a r	eliable
NC (Duplicat	e RPD): The duplicate RPD was not calculated. Th	e concentratior	n in the sampl	e and/or du	plicate was to	o low to perr	mit a reliable R	PD calcula	ntion (one or b	oth samples ·	< 5x RDL).	

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Site Location: LIGHTHOUSE

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Specialist

avisting Carriere

Cristina Carriere, Scientific Services

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

M Dureau V	eritas Group Company CAN	1 FCD-01191/2	5 017-5715	ion rree, a	00-505-0	200 .			CH	AIN OF	CUSTOR	Y REC	ORD	59249	Page of _2	
	Invoice Information	10.000	Report In	formation	(if differ	rs from i	nvoice)	- CONTRACT		Project Inform	nation (wher	e applicat	le)	Turnaround Time (TAT) Required		
ompany Name:	DST CONSOLT	WG EMG Compa	ny Name:					1 Jane	Quotatio	on #:	in the			Regular TAT (5-7 days) Most analyses		
ontact Name:	GEOFF LAK	S . Contac	t Name:						P.O. #/ A	FE#:	1			PLEASE PROVIDE AD	ANCE NOTICE FOR RUSH PROJE	
ddress:	885 REGENT	ST. Addres	s:				to let		Project #	gv-	TB-0	2710	5	Rush TAT (Su	urcharges will be applied)	
						4			Site Loca	ition: Lis	htho u	se	ana an	1 Day	2 Days 3-4 Days	
hone: 705	561 0147-Fax:	Phone			Fi	ax:			Site #:				400			
mail: <u>5</u>	ake @ dst group	Email:					-		Sampled	By: SZ			1.012	Date Required:		
	MOE REGULATED DRINKING WATE	R OR WATER INTENDED FOR	HUMAN CONSL	IMPTION N	UST BE	SUBMIT	TED ON		M DRINKIN	G WATER CHA	N OF CUSTO	ργ		Rush Confirmation #	an in marketing and	
1	Regulation 153	Other R	gulations						Analysis	Requested				LABO	ATORY USE ONLY	
Table 1	Res/Park Med/ Fine	CCME San	tary Sewer Bylav	V		2		REFER	TO BACK OF	-				CUSTODY SEAL		
Table 3	Agri/ Other		on			Hg / C		T	T	dis	40		-	Present Intact	COULER TEMPERATURE	
Table	· The second	Other (Specify)			9	tals /		NICS	vs - B)	B	3			N	5,1,2%	
FOR RSC (PLE/	ASE CIRCLE) Y / N	REG 558 (MIN. 3	DAY TAT REQUIR	ED)	TTIME	E) Me		ORGA	als, HV	Year			ZE	N	53,50	
clude Criteria on	Certificate of Analysis: Y /	N-			RS SUI	CIRCI		S & IN	S Met	300			ANAL	N	63 74/	
SAMPLES MU	ST BE KEPT COOL (< 10 °C) FROM T	IME OF SAMPLING UNTIL D	ELIVERY TO MA	XAM	TAINE	C F1	F4	METAL	METAL ICPM	20			NOT	COOLING MEDIA PRESE	NT: Q / N	
	SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED	MATRIX	F CON	X/ PH	5.F2 -	153 1	5 153 h	7 F	Ha		D-DC			
100.0		(1111/MIM/00)	(PIPI:IVIIVI)	<i>c</i> .	0#	BTE	Hd	REG	REC (Hg	2F			HO		COMMENTS	
62-	1	Aug 31/16	1:00	Jour				X	>	X	X		01	1.6-	· · · · · · · · · · · · · · · · · · ·	
CS2.	-2		1:10	1				X		X	X	A	uquet	-Sep-16 16:20	0	
CSZ	-3	/	1:15								X	1/1/1		na Dobosz	E	
CS2	-4		1:20					X		X	X		· B619	079	100	
· CS7 ·	-5		130							X	X	TSP	F	NINT	~	
0.62	-6		1.45					X	-		X			V-1243	<u> </u>	
507	7		2:06					16	2	1	$\mathbf{\nabla}$	1 3	2	lici		
-> -	0		2:30	1					7		Q.	-	secer	keq iu 2n	dbury	
CS Z	-8		2.00	1					X		4	-	3 55	1	and the second	
CS 2	- 7		2:70	1		-		X	×	A	X	-	the second		A - Contra	
° CSZ	-10	Þ	3100	¢.		1		X			X			A Comment		
RELINQU	ISHED BY: (Signature/Print)	DATE: (YYYY/MM/DD)	TIME: (HH:M	M)	RE	CEIVED	BY: (Sign	ature/Prin	:)	DATE: (YYY	(/MM/DD)	TIME:	(HH:MM)	M	AXXAM JOB #	
			the second se		5	· · · · · · · · · · · · · · · · · · ·	and the	Letter in the		ISDU. IN	1 /157	11	110			

1

4

38

1257-252 1257-252

Page 19 of 20

11	Invoice Information	•	Report I	nformation (if differs fr	om invoi	ce)			Project I	nformati	on (whe	re applic	cable)		Turnaround Time (TAT) Required	
Company Nam	E DST Causer	WE ENCO COMPA	v Name:				nin i		Quotatio	on #:	ALST M	1		-		Regular TAT (5-7 days) Most analyses	
Contact Name	Conse lass	Contac	Name		hitte	2011	-		P.O. #/ A	.FE#:	10-	B				PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS	
Address:	865 REGAN	Addres		-					Project #	. Gu	I-TB	-07	2710	20		Rush TAT (Surcharges will be applied)	
-									Site Loca	ition: L	1541	ho	مى			1 Day 2 Days 3-4 Days	
Phone: 705	561 0147 Fax:	Phone:	1		Fax:	1.1		$-\frac{m}{2}$	Site #:					14.10			
Email: 31	ake C dst group. a	Email:				Billio			Sampled	By:	iL	-11h	115		1. Alter	Date Required:	
	MOE REGULATED DRINKING WATE	R OR WATER INTENDED FOR	HUMAN CONS	UMPTION M	UST BE SUE	BMITTED	ON THE I	MAXXAN	M DRINKIN	G WATER	CHAIN O	F CUSTO	ŪΥ			Rush Confirmation #:	
	Regulation 153	Other Re	gulations		- inv		TT		Analysis	Request	ed	-	TT			LABORATORY USE ONLY	
Table 1 Table 2 Table 3	Ind/Comm Coarse	MISA Stor PWQO Regi	n Sewer Bylaw		D als / Hg / CrVI					out, Dest		1000			-	Y/O COOLER TEMPERATURES Present Intact N S,Z,Z^2C	
FOR RSC (PLEASE CIRCLE) Y / N	REG 558 (MIN. 3 1	AY TAT REQUI	RED)	MITTEI			SRGAN	Is, HW	22					ZE	N) 5356	
Include Criteria	on Certificate of Analysis: Y 🚽	N	Internet and		IS SUB	-		S & INC	s S Meta	S					ANALY	N La Crec	
SAMPLES	MUST BE KEPT COOL (< 10 °C) FROM T	IME OF SAMPLING UNTIL D	LIVERY TO MA	ХХАМ	TAINE	C F1 F4		CPMS	METAL.	917					D NOT	COOLING MEDIA PRESENT: D / N	No. A.
	SAMPLE IDENTIFICATION	DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLEE (HH:MM)	MATRIX	# OF CON	BTEX/ PH	vocs	REG 153 REG 153	REG 153 (Hg, Cr VI	F	d se				HOLD- DI	COMMENTS	N. P
1 CS.	2 - 11	Aug 31/16	3:10	Soil		-		X		XX	(1	-	+		ē.
2 CS 2	20-11	Av6 31/16	3:10	Soil				X		XX			1.1		1		3,-
3	and the second second	A LANDAR AND A LANDAR	1000	1													A. A.
4			and the set			+						*		*			
5 -	A LATER THE A	an in a dealer a															
6			200					1						-			
7								-	1	1		1.	2		Re	ceived in Sudbury	
8																	
9		top												14	a the		
10						13					-				-		
RELIN	IQUISHED BY: (Signature/Print)	DATE: (YYYY/MM/DD)	TIME: (HH:	(MN)	RECEI	VED BY:	(Signatur	e/Print))	DATE:	(YYYY/N	IM/DD)	TIN	1E: (HH:/	MM)	MAXXAM JOB #	

Your Project #: GV-TB-027105 Site Location: DUMPS Your C.O.C. #: 59253

Attention:Geoffrey Lake

DST Consulting Engineers Inc Sudbury - Standing Offer 885 Regent Street Suite 3-1B Sudbury, ON P3E 5M4

> Report Date: 2016/09/13 Report #: R4166029 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6I9080 Received: 2016/09/02, 16:20

Sample Matrix: Soil # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydrocarbons F2-F4 in Soil (1)	2	2016/09/10	2016/09/10	CAM SOP-00316	CCME CWS m
Strong Acid Leachable Metals by ICPMS	2	2016/09/09	2016/09/12	CAM SOP-00447	EPA 6020A m
Acid Extractable Metals Analysis by ICP	2	2016/09/09	2016/09/12	CAM SOP-00408	EPA 6010C m
Moisture	2	N/A	2016/09/09	CAM SOP-00445	Carter 2nd ed 51.2 m
Volatile Organic Compounds and F1 PHCs	2	N/A	2016/09/10	CAM SOP-00230	EPA 8260 m

Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.

Maxxam Analytics is accredited for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Augustyna Dobosz, Project Manager Email: ADobosz@maxxam.ca Phone# (905)817-5700 Ext:5798

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 1 Page 1 of 11

CCME PETROLEUM HYDROCARBONS (SOIL)

	-				-	
Maxxam ID		CZW677		CZW678		
Sampling Data		2016/09/01		2016/09/01		
		10:30		02:30		
COC Number		59253		59253		
	UNITS	EAST DUMP	RDL	WEST DUMP	RDL	QC Batch
Inorganics						
Moisture	%	33	1.0	54	1.0	4653933
Volatile Organics						
Benzene	ug/g	<0.036	0.036	<0.048	0.048	4652068
Ethylbenzene	ug/g	<0.060	0.060	<0.080	0.080	4652068
Toluene	ug/g	<0.12	0.12	<0.16	0.16	4652068
p+m-Xylene	ug/g	<0.12	0.12	<0.16	0.16	4652068
o-Xylene	ug/g	<0.12	0.12	<0.16	0.16	4652068
Total Xylenes	ug/g	<0.12	0.12	<0.16	0.16	4652068
F1 (C6-C10)	ug/g	<60	60	<80	80	4652068
F1 (C6-C10) - BTEX	ug/g	<60	60	<80	80	4652068
F2-F4 Hydrocarbons						
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	<20	20	4655454
F3 (C16-C34 Hydrocarbons)	ug/g	300	50	190	100	4655454
F4 (C34-C50 Hydrocarbons)	ug/g	330	50	<100	100	4655454
Reached Baseline at C50	ug/g	Yes		Yes		4655454
Surrogate Recovery (%)						
o-Terphenyl	%	102		104		4655454
4-Bromofluorobenzene	%	98		94		4652068
D10-o-Xylene	%	95		94		4652068
D4-1,2-Dichloroethane	%	99		100		4652068
D8-Toluene	%	99		98		4652068
RDL = Reportable Detection L	imit					
QC Batch = Quality Control Ba	atch					

CCME ICPMS & ICP METALS (SOIL)

Maxxam ID		CZW677	CZW678		
Sampling Date		2016/09/01	2016/09/01		
		10:30	02:30		
COC Number		59253	59253		
	UNITS	EAST DUMP	WEST DUMP	RDL	QC Batch
Metals					
Acid Extractable Antimony (Sb)	ug/g	0.77	0.89	0.20	4654375
Acid Extractable Arsenic (As)	ug/g	11	3.2	1.0	4654375
Acid Extractable Barium (Ba)	ug/g	190	110	0.50	4654375
Acid Extractable Beryllium (Be)	ug/g	0.28	<0.20	0.20	4654375
Acid Extractable Cadmium (Cd)	ug/g	1.8	1.7	0.10	4654375
Acid Extractable Chromium (Cr)	ug/g	30	7.0	1.0	4654375
Acid Extractable Cobalt (Co)	ug/g	5.8	1.8	0.10	4654375
Acid Extractable Copper (Cu)	ug/g	42	46	0.50	4654375
Acid Extractable Lead (Pb)	ug/g	190	240	1.0	4654375
Acid Extractable Sulphur (S)	ug/g	970	1800	50	4654379
Acid Extractable Molybdenum (Mo)	ug/g	1.5	2.7	0.50	4654375
Acid Extractable Nickel (Ni)	ug/g	20	6.8	0.50	4654375
Acid Extractable Selenium (Se)	ug/g	1.0	1.1	0.50	4654375
Acid Extractable Silver (Ag)	ug/g	<0.20	0.37	0.20	4654375
Acid Extractable Thallium (Tl)	ug/g	0.13	<0.050	0.050	4654375
Acid Extractable Tin (Sn)	ug/g	6.6	57	1.0	4654375
Acid Extractable Uranium (U)	ug/g	0.56	0.28	0.050	4654375
Acid Extractable Vanadium (V)	ug/g	42	<5.0	5.0	4654375
Acid Extractable Zinc (Zn)	ug/g	120	130	5.0	4654375
RDL = Reportable Detection Limit					
QC Batch = Quality Control Batch					

TEST SUMMARY

Maxxam ID: Sample ID:	CZW677 FAST DUMP	Collected: Shipped:	2016/09/01
Matrix:	Soil	Received:	2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4655454	2016/09/10	2016/09/10	Barbara Wowk
Strong Acid Leachable Metals by ICPMS	ICP/MS	4654375	2016/09/09	2016/09/12	Cristina Petran
Acid Extractable Metals Analysis by ICP	ICP	4654379	2016/09/09	2016/09/12	Azita Fazaeli
Moisture	BAL	4653933	N/A	2016/09/09	Min Yang
Volatile Organic Compounds and F1 PHCs	GC/MS	4652068	N/A	2016/09/10	John Wu

Maxxam ID: CZW678 Sample ID: WEST DUMP Matrix: Soil
 Collected:
 2016/09/01

 Shipped:
 2016/09/02

 Received:
 2016/09/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4655454	2016/09/10	2016/09/10	Barbara Wowk
Strong Acid Leachable Metals by ICPMS	ICP/MS	4654375	2016/09/09	2016/09/12	Cristina Petran
Acid Extractable Metals Analysis by ICP	ICP	4654379	2016/09/09	2016/09/12	Azita Fazaeli
Moisture	BAL	4653933	N/A	2016/09/09	Min Yang
Volatile Organic Compounds and F1 PHCs	GC/MS	4652068	N/A	2016/09/10	John Wu

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	3.0°C
Package 2	4.3°C
Package 3	4.0°C

Sample CZW677-01 : VOCF1 Analysis: Detection limits were raised due to high moisture content and low weight of soil provided.

Sample CZW678-01 : F24 Analysis : Detection limits were adjusted for high moisture content .

VOCF1 Analysis: Detection limits were raised due to high moisture content and low weight of soil provided.

Results relate only to the items tested.

Maxxam Job #: B6l9080 Report Date: 2016/09/13

QUALITY ASSURANCE REPORT

DST Consulting Engineers Inc Client Project #: GV-TB-027105

Site Location: DUMPS

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4652068	4-Bromofluorobenzene	2016/09/09	100	60 - 140	100	60 - 140	96	%		
4652068	D10-o-Xylene	2016/09/09	99	60 - 130	96	60 - 130	99	%		
4652068	D4-1,2-Dichloroethane	2016/09/09	99	60 - 140	99	60 - 140	97	%		
4652068	D8-Toluene	2016/09/09	101	60 - 140	102	60 - 140	98	%		
4655454	o-Terphenyl	2016/09/10	109	60 - 130	109	60 - 130	106	%		
4652068	Benzene	2016/09/09	88	60 - 140	93	60 - 130	<0.0060	ug/g	NC	50
4652068	Ethylbenzene	2016/09/09	92	60 - 140	98	60 - 130	<0.010	ug/g	NC	50
4652068	F1 (C6-C10) - BTEX	2016/09/09					<10	ug/g	NC	30
4652068	F1 (C6-C10)	2016/09/09	87	60 - 140	94	80 - 120	<10	ug/g	NC	30
4652068	o-Xylene	2016/09/09	92	60 - 140	99	60 - 130	<0.020	ug/g	NC	50
4652068	p+m-Xylene	2016/09/09	88	60 - 140	94	60 - 130	<0.020	ug/g	NC	50
4652068	Toluene	2016/09/09	89	60 - 140	95	60 - 130	<0.020	ug/g	NC	50
4652068	Total Xylenes	2016/09/09					<0.020	ug/g	NC	50
4653933	Moisture	2016/09/09							2.5	20
4654375	Acid Extractable Antimony (Sb)	2016/09/13	79	75 - 125	104	80 - 120	<0.20	ug/g	22	30
4654375	Acid Extractable Arsenic (As)	2016/09/13	85	75 - 125	103	80 - 120	<1.0	ug/g	4.1	30
4654375	Acid Extractable Barium (Ba)	2016/09/13	NC	75 - 125	106	80 - 120	<0.50	ug/g	0.43	30
4654375	Acid Extractable Beryllium (Be)	2016/09/13	102	75 - 125	105	80 - 120	<0.20	ug/g	NC	30
4654375	Acid Extractable Cadmium (Cd)	2016/09/13	95	75 - 125	99	80 - 120	<0.10	ug/g	13	30
4654375	Acid Extractable Chromium (Cr)	2016/09/13	NC	75 - 125	105	80 - 120	<1.0	ug/g	7.0	30
4654375	Acid Extractable Cobalt (Co)	2016/09/13	NC	75 - 125	104	80 - 120	<0.10	ug/g	2.2	30
4654375	Acid Extractable Copper (Cu)	2016/09/13	NC	75 - 125	106	80 - 120	<0.50	ug/g	4.4	30
4654375	Acid Extractable Lead (Pb)	2016/09/13	NC	75 - 125	98	80 - 120	<1.0	ug/g	1.2	30
4654375	Acid Extractable Molybdenum (Mo)	2016/09/13	92	75 - 125	104	80 - 120	<0.50	ug/g	7.8	30
4654375	Acid Extractable Nickel (Ni)	2016/09/13	103	75 - 125	105	80 - 120	<0.50	ug/g	1.3	30
4654375	Acid Extractable Selenium (Se)	2016/09/13	79	75 - 125	102	80 - 120	<0.50	ug/g	NC	30
4654375	Acid Extractable Silver (Ag)	2016/09/13	97	75 - 125	104	80 - 120	<0.20	ug/g	NC	30
4654375	Acid Extractable Thallium (TI)	2016/09/13	89	75 - 125	95	80 - 120	<0.050	ug/g	NC	30
4654375	Acid Extractable Tin (Sn)	2016/09/13	98	75 - 125	100	80 - 120	<1.0	ug/g	23	30
4654375	Acid Extractable Uranium (U)	2016/09/13	95	75 - 125	99	80 - 120	<0.050	ug/g	1.5	30
4654375	Acid Extractable Vanadium (V)	2016/09/13	NC	75 - 125	103	80 - 120	<5.0	ug/g	2.3	30

Maxxam Job #: B6I9080 Report Date: 2016/09/13

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: GV-TB-027105

Site Location: DUMPS

			Matrix Spike		SPIKED	BLANK	Method Blank		RPC)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4654375	Acid Extractable Zinc (Zn)	2016/09/13	NC	75 - 125	103	80 - 120	<5.0	ug/g	1.7	30
4654379	Acid Extractable Sulphur (S)	2016/09/12	NC	75 - 125	101	80 - 120	<50	ug/g	0.065	30
4655454	F2 (C10-C16 Hydrocarbons)	2016/09/10	109	50 - 130	105	80 - 120	<10	ug/g	NC	30
4655454	F3 (C16-C34 Hydrocarbons)	2016/09/10	108	50 - 130	106	80 - 120	<50	ug/g	NC	30
4655454	F4 (C34-C50 Hydrocarbons)	2016/09/10	109	50 - 130	107	80 - 120	<50	ug/g	NC	30
Duplicate: Pa	ired analysis of a separate portion of the same sample.	Jsed to evaluate t	he variance in t	he measurem	ent.					

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

auistin Camiere

Cristina Carriere, Scientific Services

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

CAM FCE	0-01191/2	03-017-3779 10	in Free, of	00-563-6	266		DD		CH	AIN O	F CUSTO	DY RECO	RD	59253 Page of
Invoice Information	" and and a	Report Inf	ormation	(if differ	s from i	invoice	2)			Project I	nformation (whe	ere applicable)		Turnaround Time (TAT) Required
Impany Name: 15T	Comp	any Name:							Quotatio	n #:	the tests			Regular TAT (5-7 days) Most analyses
ontact Name: GLGKQ	. Conta	ct Name:	1	-	H 41	-	• 6		P.O. #/ A	FE#:	. in	234		PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS
idress: 895 Regent 5	Addre	ss:							Project #:	GI	V-TB-0	27105	+	Rush TAT (Surcharges will be applied)
Sidburg	A DAMAGE TO THE OWNER					2		2411	Site Locat	tion: D	umps.	A CONTRACTOR		1 Day 2 Days 3-4 Days
ione: 7055610147 Fax:	Phone	: <u></u>		Fi	ax: .,				Site #:				1	
nail: glakeedstyrorf.com	Email:								Sampled	ву:	3.2	and and the		Date Required:
MOE REGULATED DRINKING WATER OF	WATER INTENDED FO	R HUMAN CONSUL	APTION N	AUST BE	SUBMIT	TED O	N THE	MAXXAN	1 DRINKING	G WATER	CHAIN OF CUSTO			Rush Confirmation #:
Regulation 158	Other R	egulations			-	-		1	Analysis	Request	ed		-	LABORATORY USE ONLY
Table 1 Res/Park Med/ Fine	MISA Sto	itary Sewer Bylaw rm Sewer Bylaw			· ·			REFER TO	D BACK OF		240			CUSTODY SEAL Y / 100 COOLER TEMPERATURES
Table 3 Agri/ Other	PWQO Res	ion			Hg /				2		24		-	Present Intact
Table	Other (Specify)	1		LED	letais /		-	ANICS	WS - B	2			- 202	N 5,7.2°C
POR ROC (PLEASE CIRCLE) T / N	REG 558 (MIN. 3	DAY TAT REQUIRE	D) .	TIMBL	TE) N			NORG	tals, H	0	tt l		LYZE	N 5,3,5°C
sude Criteria on Certificate of Analysis: Y / N=				ERS SI	o (CIRC		1	S MET	uls MS Me				T ANA	N 6,3,3°C
SAMPLES MUST BE KEPT COUL (< 10°C) FROM TIME	OF SAMPLING UNTIL L	DELIVERY TO MAX	CAIVI	NTAIN	HC F1	- F4		META ICPM	META	I9	TII		ON OC	COOLING MEDIA PRESENT: Ø 7 N
SAMPLE IDENTIFICATION	DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLED (HH:MM)	MATRIX	OF CO	TEX/ P	HCs F2	ocs	EG 153	EG 153 lg, Cr \	40			D-DID-E	COMMENTS
Feel D D	Salll	1030	- 1	#	N I	V	2	X	RI (+				Ĩ	(Flort C. C. C. L.)
Last Dump	ept 111	0120	10.1			\odot	-				×		1	Son T Cal D
West Dump	Dep+1110	a.30	1/00		1			-	-	In			1	
and a second sec	AND BELL	Y	-					-						
			1.1.1		-	-	1	2						· · · · · · · · · · · · · · · · · · ·
and the second s					-	-							02	-Sep-16 16:20
		a strange							2.1			Aug	usty	a Dobosz
	*								-		11	nugun		
					1		Ree	eiv	ed in	Su	dhucy	Tan	D019	080
						1.					onni	ISP 3	E	NV-1243
		122.2						1						Contraction of the local sector
RELINQUISHED BY: (Signature/Print)	DATE: (YYYY/MM/DD)	TIME: (HH:MM	1)	RE	CEIVED	BY: (S	ignatur	e/Print)		DATE:	(YYYY/MM/DD)	TIME: (HH:	:MM)	MAXXAM JOB #
	the second se				1					1				

4

5 *

2.

127

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Project name: DUMPS Client ID: EAST DUMP

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

DST Consulting Engineers Inc Client Project #: GV-TB-027105 Project name: DUMPS Client ID: WEST DUMP

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: GV-TB-027107

Attention:Geoffrey Lake

DST Consulting Engineers Inc Sudbury - Standing Offer 885 Regent Street Suite 3-1B Sudbury, ON P3E 5M4

Your C.O.C. #: 581859-01-01, 581859-02-01, 581859-03-01, 581859-04-01, 581859-05-01, 581859-06-01

Report Date: 2016/10/28 Report #: R4227179 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6M4185

Received: 2016/10/17, 11:14

Sample Matrix: Soil # Samples Received: 48

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	4	N/A	2016/10/26	CAM SOP-00301	EPA 8270D m
Petroleum Hydro. CCME F1 & BTEX in Soil (1)	4	N/A	2016/10/25	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (2)	4	2016/10/24	2016/10/25	CAM SOP-00316	CCME CWS m
Mercury (TCLP Leachable) (mg/L)	7	N/A	2016/10/27	CAM SOP-00453	EPA 7470A m
Strong Acid Leachable Metals by ICPMS	34	2016/10/25	2016/10/25	CAM SOP-00447	EPA 6020B m
Strong Acid Leachable Metals by ICPMS	13	2016/10/25	2016/10/26	CAM SOP-00447	EPA 6020B m
Strong Acid Leachable Metals by ICPMS	1	2016/10/26	2016/10/26	CAM SOP-00447	EPA 6020B m
Total Metals in TCLP Leachate by ICPMS	7	2016/10/26	2016/10/27	CAM SOP-00447	EPA 6020B m
Moisture	4	N/A	2016/10/24	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Leachate by GC/MS (SIM)	1	2016/10/27	2016/10/27	CAM SOP-00318	EPA 8270D m
PAH Compounds in Leachate by GC/MS (SIM)	6	2016/10/27	2016/10/28	CAM SOP-00318	EPA 8270D m
PAH Compounds in Soil by GC/MS (SIM)	4	2016/10/25	2016/10/26	CAM SOP-00318	EPA 8270D m
pH CaCl2 EXTRACT	47	2016/10/25	2016/10/25	CAM SOP-00413	EPA 9045 D m
pH CaCl2 EXTRACT	1	2016/10/26	2016/10/26	CAM SOP-00413	EPA 9045 D m
TCLP - % Solids	7	2016/10/25	2016/10/26	CAM SOP-00401	EPA 1311 Update I m
TCLP - Extraction Fluid	7	N/A	2016/10/26	CAM SOP-00401	EPA 1311 Update I m
TCLP - Initial and final pH	7	N/A	2016/10/26	CAM SOP-00401	EPA 1311 Update I m
TCLP Zero Headspace Extraction	7	2016/10/25	2016/10/26	CAM SOP-00430	EPA 1311 m
VOCs in ZHE Leachates	7	2016/10/26	2016/10/26	CAM SOP-00226	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported:

Your Project #: GV-TB-027107

Attention:Geoffrey Lake

DST Consulting Engineers Inc Sudbury - Standing Offer 885 Regent Street Suite 3-1B Sudbury, ON P3E 5M4

Your C.O.C. #: 581859-01-01, 581859-02-01, 581859-03-01, 581859-04-01, 581859-05-01, 581859-06-01

Report Date: 2016/10/28 Report #: R4227179 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6M4185

Received: 2016/10/17, 11:14

unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

(1) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated. (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Augustyna Dobosz, Project Manager Email: ADobosz@maxxam.ca Phone# (905)817-5700 Ext:5798

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 54

DST Consulting Engineers Inc Client Project #: GV-TB-027107

O.REG 153 ICPMS METALS (SOIL)

Maxxam ID		DGP151	DGP151		DGP152	DGP153	DGP153		
Sampling Date		2016/10/13	2016/10/13		2016/10/12	2016/10/13	2016/10/13		
		09:00	09:00		16:00	09:10	09:10		
COC Number		581859-01-01	581859-01-01		581859-01-01	581859-01-01	581859-01-01		
	UNITS	CS1-26	CS1-26 Lab-Dup	QC Batch	CS1-27	CS1-28	CS1-28 Lab-Dup	RDL	QC Batch
Metals									
Acid Extractable Antimony (Sb)	ug/g	0.41	0.47	4716498	2.5	2.9	2.6	0.20	4716460
Acid Extractable Arsenic (As)	ug/g	7.3	7.2	4716498	4.3	13	12	1.0	4716460
Acid Extractable Barium (Ba)	ug/g	240	230	4716498	140	170	170	0.50	4716460
Acid Extractable Beryllium (Be)	ug/g	0.57	0.56	4716498	0.59	1.0	1.0	0.20	4716460
Acid Extractable Boron (B)	ug/g	6.8	6.9	4716498	5.1	<5.0	<5.0	5.0	4716460
Acid Extractable Cadmium (Cd)	ug/g	1.1	1.2	4716498	0.56	1.3	1.4	0.10	4716460
Acid Extractable Chromium (Cr)	ug/g	42	40	4716498	110	18	19	1.0	4716460
Acid Extractable Cobalt (Co)	ug/g	14	14	4716498	31	11	11	0.10	4716460
Acid Extractable Copper (Cu)	ug/g	88	89	4716498	70	68	74	0.50	4716460
Acid Extractable Lead (Pb)	ug/g	130	130	4716498	680	950	930	1.0	4716460
Acid Extractable Molybdenum (Mo)	ug/g	1.4	1.6	4716498	0.89	2.7	2.8	0.50	4716460
Acid Extractable Nickel (Ni)	ug/g	29	29	4716498	91	25	24	0.50	4716460
Acid Extractable Selenium (Se)	ug/g	1.3	1.4	4716498	0.56	4.7	4.6	0.50	4716460
Acid Extractable Silver (Ag)	ug/g	0.27	0.30	4716498	<0.20	0.27	0.29	0.20	4716460
Acid Extractable Thallium (Tl)	ug/g	0.094	0.084	4716498	0.11	0.35	0.33	0.050	4716460
Acid Extractable Uranium (U)	ug/g	1.9	1.9	4716498	0.41	0.84	0.86	0.050	4716460
Acid Extractable Vanadium (V)	ug/g	55	53	4716498	79	31	30	5.0	4716460
Acid Extractable Zinc (Zn)	ug/g	230	230	4716498	290	540	530	5.0	4716460
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									

Lab-Dup = Laboratory Initiated Duplicate

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP154		DGP155		DGP156		
Sampling Date		2016/10/13 09:15		2016/10/13 09:20		2016/10/13 09:30		
COC Number		581859-01-01		581859-01-01		581859-01-01		
	UNITS	CS1-29	QC Batch	CS1-30	QC Batch	CS1-31	RDL	QC Batch
Metals								
Acid Extractable Antimony (Sb)	ug/g	0.57	4716460	3.7	4716498	0.45	0.20	4716588
Acid Extractable Arsenic (As)	ug/g	2.9	4716460	4.8	4716498	4.9	1.0	4716588
Acid Extractable Barium (Ba)	ug/g	22	4716460	140	4716498	140	0.50	4716588
Acid Extractable Beryllium (Be)	ug/g	<0.20	4716460	<0.20	4716498	<0.20	0.20	4716588
Acid Extractable Boron (B)	ug/g	<5.0	4716460	5.7	4716498	<5.0	5.0	4716588
Acid Extractable Cadmium (Cd)	ug/g	0.35	4716460	0.78	4716498	1.6	0.10	4716588
Acid Extractable Chromium (Cr)	ug/g	2.7	4716460	27	4716498	24	1.0	4716588
Acid Extractable Cobalt (Co)	ug/g	0.68	4716460	17	4716498	5.4	0.10	4716588
Acid Extractable Copper (Cu)	ug/g	6.8	4716460	30	4716498	49	0.50	4716588
Acid Extractable Lead (Pb)	ug/g	59	4716460	570	4716498	160	1.0	4716588
Acid Extractable Molybdenum (Mo)	ug/g	0.65	4716460	0.74	4716498	1.2	0.50	4716588
Acid Extractable Nickel (Ni)	ug/g	2.8	4716460	36	4716498	19	0.50	4716588
Acid Extractable Selenium (Se)	ug/g	0.68	4716460	0.76	4716498	1.0	0.50	4716588
Acid Extractable Silver (Ag)	ug/g	<0.20	4716460	<0.20	4716498	0.32	0.20	4716588
Acid Extractable Thallium (TI)	ug/g	<0.050	4716460	0.22	4716498	0.078	0.050	4716588
Acid Extractable Uranium (U)	ug/g	0.10	4716460	0.20	4716498	0.39	0.050	4716588
Acid Extractable Vanadium (V)	ug/g	<5.0	4716460	59	4716498	41	5.0	4716588
Acid Extractable Zinc (Zn)	ug/g	12	4716460	150	4716498	120	5.0	4716588
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP157		DGP158		DGP159		
Sampling Date		2016/10/13		2016/10/13		2016/10/13		
		09:40		09:50		10:00		
COC Number		581859-01-01		581859-01-01		581859-01-01		
	UNITS	CS1-32	QC Batch	CS1-33	QC Batch	CS1-34	RDL	QC Batch
Metals								
Acid Extractable Antimony (Sb)	ug/g	0.47	4716498	0.39	4716460	0.56	0.20	4716588
Acid Extractable Arsenic (As)	ug/g	7.4	4716498	5.3	4716460	9.2	1.0	4716588
Acid Extractable Barium (Ba)	ug/g	270	4716498	57	4716460	170	0.50	4716588
Acid Extractable Beryllium (Be)	ug/g	<0.20	4716498	<0.20	4716460	0.32	0.20	4716588
Acid Extractable Boron (B)	ug/g	5.6	4716498	<5.0	4716460	7.2	5.0	4716588
Acid Extractable Cadmium (Cd)	ug/g	1.2	4716498	0.74	4716460	1.8	0.10	4716588
Acid Extractable Chromium (Cr)	ug/g	12	4716498	7.2	4716460	12	1.0	4716588
Acid Extractable Cobalt (Co)	ug/g	6.1	4716498	2.1	4716460	3.3	0.10	4716588
Acid Extractable Copper (Cu)	ug/g	85	4716498	22	4716460	150	0.50	4716588
Acid Extractable Lead (Pb)	ug/g	130	4716498	56	4716460	47	1.0	4716588
Acid Extractable Molybdenum (Mo)	ug/g	1.3	4716498	1.1	4716460	1.2	0.50	4716588
Acid Extractable Nickel (Ni)	ug/g	14	4716498	7.7	4716460	28	0.50	4716588
Acid Extractable Selenium (Se)	ug/g	0.73	4716498	1.4	4716460	1.8	0.50	4716588
Acid Extractable Silver (Ag)	ug/g	0.21	4716498	<0.20	4716460	0.35	0.20	4716588
Acid Extractable Thallium (Tl)	ug/g	0.090	4716498	0.060	4716460	0.088	0.050	4716588
Acid Extractable Uranium (U)	ug/g	0.24	4716498	0.80	4716460	1.1	0.050	4716588
Acid Extractable Vanadium (V)	ug/g	15	4716498	6.2	4716460	8.5	5.0	4716588
Acid Extractable Zinc (Zn)	ug/g	280	4716498	31	4716460	94	5.0	4716588
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

O.REG 153 ICPMS METALS (SOIL)

Maxxam ID		DGP160	DGP199	DGP200		DGP201	DGP201		
Sampling Date		2016/10/13 10:10	2016/10/13 10:20	2016/10/13 10:25		2016/10/13 10:30	2016/10/13 10:30		
COC Number		581859-01-01	581859-02-01	581859-02-01		581859-02-01	581859-02-01		
	UNITS	CS1-35	CS1-36	CS1-37	QC Batch	CS1-38	CS1-38 Lab-Dup	RDL	QC Batch
Metals									
Acid Extractable Antimony (Sb)	ug/g	<0.20	0.51	0.54	4716498	<0.20	<0.20	0.20	4716588
Acid Extractable Arsenic (As)	ug/g	2.2	4.6	4.7	4716498	2.4	2.5	1.0	4716588
Acid Extractable Barium (Ba)	ug/g	81	190	120	4716498	48	45	0.50	4716588
Acid Extractable Beryllium (Be)	ug/g	0.33	<0.20	<0.20	4716498	0.28	0.26	0.20	4716588
Acid Extractable Boron (B)	ug/g	<5.0	<5.0	<5.0	4716498	<5.0	<5.0	5.0	4716588
Acid Extractable Cadmium (Cd)	ug/g	0.20	0.53	0.52	4716498	0.19	0.18	0.10	4716588
Acid Extractable Chromium (Cr)	ug/g	92	4.9	3.6	4716498	62	60	1.0	4716588
Acid Extractable Cobalt (Co)	ug/g	46	1.1	0.85	4716498	41	41	0.10	4716588
Acid Extractable Copper (Cu)	ug/g	54	12	8.1	4716498	41	39	0.50	4716588
Acid Extractable Lead (Pb)	ug/g	14	44	56	4716498	14	14	1.0	4716588
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	1.3	1.0	4716498	0.51	0.54	0.50	4716588
Acid Extractable Nickel (Ni)	ug/g	130	4.1	3.0	4716498	100	100	0.50	4716588
Acid Extractable Selenium (Se)	ug/g	<0.50	1.4	0.97	4716498	<0.50	<0.50	0.50	4716588
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	<0.20	4716498	<0.20	<0.20	0.20	4716588
Acid Extractable Thallium (Tl)	ug/g	<0.050	0.055	0.075	4716498	<0.050	<0.050	0.050	4716588
Acid Extractable Uranium (U)	ug/g	0.11	0.36	0.19	4716498	0.17	0.16	0.050	4716588
Acid Extractable Vanadium (V)	ug/g	160	5.8	5.1	4716498	160	150	5.0	4716588
Acid Extractable Zinc (Zn)	ug/g	100	34	20	4716498	67	65	5.0	4716588
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									

Lab-Dup = Laboratory Initiated Duplicate

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP202	DGP203	DGP204		DGP205		
Sampling Date		2016/10/13 10:40	2016/10/13 10:50	2016/10/13 11:00		2016/10/13 11:10		
COC Number		581859-02-01	581859-02-01	581859-02-01		581859-02-01		
	UNITS	CS1-39	CS1-40	CS1-41	QC Batch	CS1-42	RDL	QC Batch
Metals								
Acid Extractable Antimony (Sb)	ug/g	0.50	0.44	<0.20	4716498	0.62	0.20	4716460
Acid Extractable Arsenic (As)	ug/g	8.1	7.5	1.5	4716498	2.7	1.0	4716460
Acid Extractable Barium (Ba)	ug/g	130	180	40	4716498	120	0.50	4716460
Acid Extractable Beryllium (Be)	ug/g	0.46	0.31	<0.20	4716498	<0.20	0.20	4716460
Acid Extractable Boron (B)	ug/g	<5.0	7.8	<5.0	4716498	<5.0	5.0	4716460
Acid Extractable Cadmium (Cd)	ug/g	1.0	1.5	0.22	4716498	0.74	0.10	4716460
Acid Extractable Chromium (Cr)	ug/g	51	31	18	4716498	13	1.0	4716460
Acid Extractable Cobalt (Co)	ug/g	7.8	12	3.5	4716498	2.5	0.10	4716460
Acid Extractable Copper (Cu)	ug/g	51	150	13	4716498	24	0.50	4716460
Acid Extractable Lead (Pb)	ug/g	83	83	14	4716498	110	1.0	4716460
Acid Extractable Molybdenum (Mo)	ug/g	1.9	1.3	<0.50	4716498	1.0	0.50	4716460
Acid Extractable Nickel (Ni)	ug/g	24	47	9.3	4716498	10	0.50	4716460
Acid Extractable Selenium (Se)	ug/g	1.1	1.4	<0.50	4716498	0.99	0.50	4716460
Acid Extractable Silver (Ag)	ug/g	0.22	0.27	<0.20	4716498	<0.20	0.20	4716460
Acid Extractable Thallium (Tl)	ug/g	0.068	0.086	0.051	4716498	0.12	0.050	4716460
Acid Extractable Uranium (U)	ug/g	0.49	2.4	0.50	4716498	0.31	0.050	4716460
Acid Extractable Vanadium (V)	ug/g	39	38	18	4716498	14	5.0	4716460
Acid Extractable Zinc (Zn)	ug/g	96	190	35	4716498	270	5.0	4716460
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP206		DGP207	DGP208		DGP245		
Sampling Date		2016/10/13 11:20		2016/10/13 11:30	2016/10/12 16:10		2016/10/13 16:20		
COC Number		581859-02-01		581859-02-01	581859-02-01		581859-03-01		
	UNITS	CS1-43	QC Batch	CS1-44	CS1-45	QC Batch	CS1-46	RDL	QC Batch
Metals									
Acid Extractable Antimony (Sb)	ug/g	1.1	4716588	0.96	0.43	4716498	0.46	0.20	4716460
Acid Extractable Arsenic (As)	ug/g	3.1	4716588	5.6	2.0	4716498	4.2	1.0	4716460
Acid Extractable Barium (Ba)	ug/g	97	4716588	230	110	4716498	170	0.50	4716460
Acid Extractable Beryllium (Be)	ug/g	<0.20	4716588	0.24	<0.20	4716498	0.20	0.20	4716460
Acid Extractable Boron (B)	ug/g	6.6	4716588	5.1	<5.0	4716498	13	5.0	4716460
Acid Extractable Cadmium (Cd)	ug/g	0.59	4716588	9.4	0.24	4716498	1.5	0.10	4716460
Acid Extractable Chromium (Cr)	ug/g	7.4	4716588	18	5.6	4716498	32	1.0	4716460
Acid Extractable Cobalt (Co)	ug/g	1.2	4716588	3.8	1.3	4716498	12	0.10	4716460
Acid Extractable Copper (Cu)	ug/g	18	4716588	41	17	4716498	62	0.50	4716460
Acid Extractable Lead (Pb)	ug/g	100	4716588	140	29	4716498	170	1.0	4716460
Acid Extractable Molybdenum (Mo)	ug/g	1.0	4716588	1.1	0.63	4716498	1.3	0.50	4716460
Acid Extractable Nickel (Ni)	ug/g	5.0	4716588	15	9.0	4716498	30	0.50	4716460
Acid Extractable Selenium (Se)	ug/g	1.0	4716588	1.0	0.89	4716498	0.97	0.50	4716460
Acid Extractable Silver (Ag)	ug/g	<0.20	4716588	<0.20	<0.20	4716498	0.33	0.20	4716460
Acid Extractable Thallium (Tl)	ug/g	0.054	4716588	0.10	<0.050	4716498	0.084	0.050	4716460
Acid Extractable Uranium (U)	ug/g	0.19	4716588	0.43	0.28	4716498	0.62	0.050	4716460
Acid Extractable Vanadium (V)	ug/g	6.7	4716588	20	<5.0	4716498	39	5.0	4716460
Acid Extractable Zinc (Zn)	ug/g	120	4716588	190	13	4716498	210	5.0	4716460
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP246		DGP247		DGP248	DGP249		
Sampling Date		2016/10/13		2016/10/12		2016/10/12	2016/10/12		
		08:50		13:00		13:10	13:20		
COC Number		581859-03-01		581859-03-01		581859-03-01	581859-03-01		
	UNITS	CS2-12	QC Batch	CS2-13	QC Batch	CS2-14	CS2-15	RDL	QC Batch
Metals									
Acid Extractable Antimony (Sb)	ug/g	0.60	4716588	0.24	4716498	0.53	0.46	0.20	4716460
Acid Extractable Arsenic (As)	ug/g	8.3	4716588	1.7	4716498	5.7	17	1.0	4716460
Acid Extractable Barium (Ba)	ug/g	100	4716588	27	4716498	70	68	0.50	4716460
Acid Extractable Beryllium (Be)	ug/g	0.31	4716588	<0.20	4716498	<0.20	<0.20	0.20	4716460
Acid Extractable Boron (B)	ug/g	<5.0	4716588	6.0	4716498	<5.0	<5.0	5.0	4716460
Acid Extractable Cadmium (Cd)	ug/g	0.83	4716588	0.60	4716498	0.67	0.38	0.10	4716460
Acid Extractable Chromium (Cr)	ug/g	31	4716588	2.7	4716498	7.3	43	1.0	4716460
Acid Extractable Cobalt (Co)	ug/g	12	4716588	4.0	4716498	3.3	8.7	0.10	4716460
Acid Extractable Copper (Cu)	ug/g	53	4716588	24	4716498	21	13	0.50	4716460
Acid Extractable Lead (Pb)	ug/g	120	4716588	61	4716498	60	34	1.0	4716460
Acid Extractable Molybdenum (Mo)	ug/g	1.0	4716588	0.55	4716498	0.79	3.7	0.50	4716460
Acid Extractable Nickel (Ni)	ug/g	23	4716588	3.3	4716498	10	20	0.50	4716460
Acid Extractable Selenium (Se)	ug/g	0.86	4716588	0.69	4716498	1.1	0.82	0.50	4716460
Acid Extractable Silver (Ag)	ug/g	0.30	4716588	<0.20	4716498	1.3	0.23	0.20	4716460
Acid Extractable Thallium (Tl)	ug/g	0.082	4716588	<0.050	4716498	0.067	0.10	0.050	4716460
Acid Extractable Uranium (U)	ug/g	0.31	4716588	0.18	4716498	0.25	0.36	0.050	4716460
Acid Extractable Vanadium (V)	ug/g	44	4716588	9.7	4716498	16	160	5.0	4716460
Acid Extractable Zinc (Zn)	ug/g	180	4716588	170	4716498	87	110	5.0	4716460
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP250	DGP278		DGP279		DGP280		
Sampling Date		2016/10/12	2016/10/12		2016/10/12		2016/10/12		
COC Number		581859-03-01	581859-04-01		581859-04-01		581859-0/-01		
	UNITS	CS2-16	CS2-17	OC Batch	CS2-18	OC Batch	CS2-19	RDL	OC Batch
Metals						-		I	-
Acid Extractable Antimony (Sb)	ug/g	0.31	0.31	4716498	0.30	4716588	0.21	0.20	4716498
Acid Extractable Arsenic (As)	ug/g	9.2	4.1	4716498	4.9	4716588	1.8	1.0	4716498
Acid Extractable Barium (Ba)	ug/g	87	51	4716498	73	4716588	32	0.50	4716498
Acid Extractable Beryllium (Be)	ug/g	0.51	0.34	4716498	<0.20	4716588	<0.20	0.20	4716498
Acid Extractable Boron (B)	ug/g	<5.0	<5.0	4716498	<5.0	4716588	5.2	5.0	4716498
Acid Extractable Cadmium (Cd)	ug/g	0.69	0.28	4716498	1.1	4716588	0.81	0.10	4716498
Acid Extractable Chromium (Cr)	ug/g	61	58	4716498	8.4	4716588	11	1.0	4716498
Acid Extractable Cobalt (Co)	ug/g	17	19	4716498	6.3	4716588	1.8	0.10	4716498
Acid Extractable Copper (Cu)	ug/g	27	48	4716498	55	4716588	22	0.50	4716498
Acid Extractable Lead (Pb)	ug/g	19	170	4716498	61	4716588	17	1.0	4716498
Acid Extractable Molybdenum (Mo)	ug/g	4.8	1.3	4716498	1.0	4716588	1.9	0.50	4716498
Acid Extractable Nickel (Ni)	ug/g	24	62	4716498	9.4	4716588	8.5	0.50	4716498
Acid Extractable Selenium (Se)	ug/g	1.6	0.72	4716498	0.90	4716588	1.2	0.50	4716498
Acid Extractable Silver (Ag)	ug/g	1.1	<0.20	4716498	<0.20	4716588	<0.20	0.20	4716498
Acid Extractable Thallium (Tl)	ug/g	0.081	0.081	4716498	<0.050	4716588	<0.050	0.050	4716498
Acid Extractable Uranium (U)	ug/g	0.76	0.38	4716498	0.50	4716588	0.11	0.050	4716498
Acid Extractable Vanadium (V)	ug/g	130	210	4716498	51	4716588	6.2	5.0	4716498
Acid Extractable Zinc (Zn)	ug/g	140	170	4716498	98	4716588	160	5.0	4716498
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP281		DGP282		DGP283		
Sampling Date		2016/10/13 13:10		2016/10/12 10:00		2016/10/12 10:10		
COC Number		581859-04-01		581859-04-01		581859-04-01		
	UNITS	CS2-20	QC Batch	CS3-11	QC Batch	CS3-12	RDL	QC Batch
Metals								
Acid Extractable Antimony (Sb)	ug/g	0.44	4716498	0.69	4716460	<0.20	0.20	4716498
Acid Extractable Arsenic (As)	ug/g	2.6	4716498	4.3	4716460	4.6	1.0	4716498
Acid Extractable Barium (Ba)	ug/g	110	4716498	51	4716460	27	0.50	4716498
Acid Extractable Beryllium (Be)	ug/g	0.22	4716498	<0.20	4716460	<0.20	0.20	4716498
Acid Extractable Boron (B)	ug/g	<5.0	4716498	<5.0	4716460	<5.0	5.0	4716498
Acid Extractable Cadmium (Cd)	ug/g	0.76	4716498	0.24	4716460	0.23	0.10	4716498
Acid Extractable Chromium (Cr)	ug/g	7.7	4716498	15	4716460	17	1.0	4716498
Acid Extractable Cobalt (Co)	ug/g	8.7	4716498	6.2	4716460	10	0.10	4716498
Acid Extractable Copper (Cu)	ug/g	47	4716498	15	4716460	12	0.50	4716498
Acid Extractable Lead (Pb)	ug/g	1000	4716498	130	4716460	25	1.0	4716498
Acid Extractable Molybdenum (Mo)	ug/g	1.9	4716498	<0.50	4716460	<0.50	0.50	4716498
Acid Extractable Nickel (Ni)	ug/g	5.1	4716498	16	4716460	15	0.50	4716498
Acid Extractable Selenium (Se)	ug/g	0.57	4716498	<0.50	4716460	<0.50	0.50	4716498
Acid Extractable Silver (Ag)	ug/g	<0.20	4716498	<0.20	4716460	<0.20	0.20	4716498
Acid Extractable Thallium (TI)	ug/g	0.17	4716498	<0.050	4716460	<0.050	0.050	4716498
Acid Extractable Uranium (U)	ug/g	0.51	4716498	0.12	4716460	0.13	0.050	4716498
Acid Extractable Vanadium (V)	ug/g	110	4716498	13	4716460	13	5.0	4716498
Acid Extractable Zinc (Zn)	ug/g	300	4716498	100	4716460	61	5.0	4716498
RDL = Reportable Detection Limit	•	•		•			•	
QC Batch = Quality Control Batch								

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP284	DGP285		DGP286		DGP287		
Sampling Date		2016/10/12	2016/10/12		2016/10/12		2016/10/12		
		10:20	10:30		10:40		10:50		
COC Number		581859-04-01	581859-04-01		581859-04-01		581859-04-01		
	UNITS	CS3-13	CS3-14	QC Batch	CS3-15	QC Batch	CS3-16	RDL	QC Batch
Metals									
Acid Extractable Antimony (Sb)	ug/g	0.54	0.58	4716588	1.7	4718485	2.6	0.20	4716588
Acid Extractable Arsenic (As)	ug/g	12	3.7	4716588	9.1	4718485	36	1.0	4716588
Acid Extractable Barium (Ba)	ug/g	220	51	4716588	95	4718485	520	0.50	4716588
Acid Extractable Beryllium (Be)	ug/g	0.37	0.28	4716588	0.44	4718485	2.1	0.20	4716588
Acid Extractable Boron (B)	ug/g	6.5	13	4716588	<5.0	4718485	9.5	5.0	4716588
Acid Extractable Cadmium (Cd)	ug/g	1.7	0.89	4716588	1.9	4718485	1.8	0.10	4716588
Acid Extractable Chromium (Cr)	ug/g	32	16	4716588	32	4718485	29	1.0	4716588
Acid Extractable Cobalt (Co)	ug/g	16	7.0	4716588	20	4718485	18	0.10	4716588
Acid Extractable Copper (Cu)	ug/g	130	140	4716588	88	4718485	200	0.50	4716588
Acid Extractable Lead (Pb)	ug/g	110	200	4716588	240	4718485	1800	1.0	4716588
Acid Extractable Molybdenum (Mo)	ug/g	2.3	0.60	4716588	0.90	4718485	3.3	0.50	4716588
Acid Extractable Nickel (Ni)	ug/g	22	20	4716588	31	4718485	31	0.50	4716588
Acid Extractable Selenium (Se)	ug/g	1.9	1.7	4716588	1.6	4718485	1.5	0.50	4716588
Acid Extractable Silver (Ag)	ug/g	0.24	0.48	4716588	0.67	4718485	0.76	0.20	4716588
Acid Extractable Thallium (TI)	ug/g	0.099	0.085	4716588	0.094	4718485	0.52	0.050	4716588
Acid Extractable Uranium (U)	ug/g	4.4	1.5	4716588	0.98	4718485	0.89	0.050	4716588
Acid Extractable Vanadium (V)	ug/g	25	9.7	4716588	24	4718485	30	5.0	4716588
Acid Extractable Zinc (Zn)	ug/g	260	150	4716588	230	4718485	970	5.0	4716588
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									

DST Consulting Engineers Inc Client Project #: GV-TB-027107

O.REG 153 ICPMS METALS (SOIL)

Maxxam ID		DGP288	DGP289		DGP290	DGP291	DGP292		
Sampling Date		2016/10/12 11:10	2016/10/12 11:20		2016/10/12 11:30	2016/10/12 11:40	2016/10/12 11:50		
COC Number		581859-05-01	581859-05-01		581859-05-01	581859-05-01	581859-05-01		
	UNITS	CS3-17	CS3-18	QC Batch	CS3-19	CS3-20	CS3-21	RDL	QC Batch
Metals									
Acid Extractable Antimony (Sb)	ug/g	0.26	0.24	4716498	<0.20	0.64	0.48	0.20	4716588
Acid Extractable Arsenic (As)	ug/g	4.2	28	4716498	5.4	3.1	20	1.0	4716588
Acid Extractable Barium (Ba)	ug/g	85	53	4716498	20	36	76	0.50	4716588
Acid Extractable Beryllium (Be)	ug/g	<0.20	0.42	4716498	<0.20	<0.20	0.25	0.20	4716588
Acid Extractable Boron (B)	ug/g	<5.0	<5.0	4716498	<5.0	<5.0	<5.0	5.0	4716588
Acid Extractable Cadmium (Cd)	ug/g	0.55	0.71	4716498	0.27	0.36	1.4	0.10	4716588
Acid Extractable Chromium (Cr)	ug/g	19	350	4716498	18	18	16	1.0	4716588
Acid Extractable Cobalt (Co)	ug/g	3.1	17	4716498	9.7	9.0	9.9	0.10	4716588
Acid Extractable Copper (Cu)	ug/g	24	26	4716498	25	27	47	0.50	4716588
Acid Extractable Lead (Pb)	ug/g	25	160	4716498	18	150	45	1.0	4716588
Acid Extractable Molybdenum (Mo)	ug/g	0.87	<0.50	4716498	<0.50	0.59	1.9	0.50	4716588
Acid Extractable Nickel (Ni)	ug/g	9.6	170	4716498	22	19	29	0.50	4716588
Acid Extractable Selenium (Se)	ug/g	0.79	1.0	4716498	<0.50	<0.50	0.85	0.50	4716588
Acid Extractable Silver (Ag)	ug/g	<0.20	0.25	4716498	<0.20	<0.20	0.67	0.20	4716588
Acid Extractable Thallium (Tl)	ug/g	<0.050	0.075	4716498	<0.050	<0.050	0.12	0.050	4716588
Acid Extractable Uranium (U)	ug/g	0.36	0.36	4716498	0.093	0.23	0.43	0.050	4716588
Acid Extractable Vanadium (V)	ug/g	12	38	4716498	13	11	23	5.0	4716588
Acid Extractable Zinc (Zn)	ug/g	56	52	4716498	77	99	130	5.0	4716588
RDL = Reportable Detection Limit									
OC Batch - Quality Control Batch									

QC Batch = Quality Control Batch

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP293		DGP302		DGP303		
Sampling Date		2016/10/12 12:00		2016/10/12 14:30		2016/10/13 13:40		
COC Number		581859-05-01		581859-06-01		581859-06-01		
	UNITS	CS3-22	QC Batch	CS2-21	QC Batch	CS2-22	RDL	QC Batch
Metals								
Acid Extractable Antimony (Sb)	ug/g	0.60	4716588	0.23	4716460	0.26	0.20	4716498
Acid Extractable Arsenic (As)	ug/g	6.5	4716588	2.9	4716460	4.5	1.0	4716498
Acid Extractable Barium (Ba)	ug/g	37	4716588	84	4716460	46	0.50	4716498
Acid Extractable Beryllium (Be)	ug/g	<0.20	4716588	<0.20	4716460	<0.20	0.20	4716498
Acid Extractable Boron (B)	ug/g	<5.0	4716588	<5.0	4716460	<5.0	5.0	4716498
Acid Extractable Cadmium (Cd)	ug/g	0.90	4716588	0.62	4716460	0.14	0.10	4716498
Acid Extractable Chromium (Cr)	ug/g	19	4716588	9.9	4716460	23	1.0	4716498
Acid Extractable Cobalt (Co)	ug/g	16	4716588	5.4	4716460	8.5	0.10	4716498
Acid Extractable Copper (Cu)	ug/g	78	4716588	23	4716460	31	0.50	4716498
Acid Extractable Lead (Pb)	ug/g	31	4716588	320	4716460	180	1.0	4716498
Acid Extractable Molybdenum (Mo)	ug/g	0.52	4716588	1.7	4716460	2.3	0.50	4716498
Acid Extractable Nickel (Ni)	ug/g	14	4716588	6.4	4716460	19	0.50	4716498
Acid Extractable Selenium (Se)	ug/g	<0.50	4716588	0.84	4716460	<0.50	0.50	4716498
Acid Extractable Silver (Ag)	ug/g	<0.20	4716588	<0.20	4716460	<0.20	0.20	4716498
Acid Extractable Thallium (Tl)	ug/g	<0.050	4716588	0.12	4716460	0.077	0.050	4716498
Acid Extractable Uranium (U)	ug/g	0.19	4716588	0.72	4716460	0.35	0.050	4716498
Acid Extractable Vanadium (V)	ug/g	16	4716588	64	4716460	170	5.0	4716498
Acid Extractable Zinc (Zn)	ug/g	340	4716588	120	4716460	82	5.0	4716498
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP304		DGP305		DGP306		
Sampling Date		2016/10/12 10:00		2016/10/13 13:10		2016/10/12 11:40		
COC Number		581859-06-01		581859-06-01		581859-06-01		
	UNITS	CS3-110	QC Batch	CS2-200	QC Batch	CS3-200	RDL	QC Batch
Metals								
Acid Extractable Antimony (Sb)	ug/g	1.2	4716588	0.38	4716460	0.41	0.20	4716588
Acid Extractable Arsenic (As)	ug/g	2.9	4716588	2.5	4716460	3.2	1.0	4716588
Acid Extractable Barium (Ba)	ug/g	53	4716588	86	4716460	31	0.50	4716588
Acid Extractable Beryllium (Be)	ug/g	<0.20	4716588	0.24	4716460	<0.20	0.20	4716588
Acid Extractable Boron (B)	ug/g	<5.0	4716588	<5.0	4716460	<5.0	5.0	4716588
Acid Extractable Cadmium (Cd)	ug/g	0.19	4716588	0.76	4716460	0.30	0.10	4716588
Acid Extractable Chromium (Cr)	ug/g	14	4716588	6.8	4716460	18	1.0	4716588
Acid Extractable Cobalt (Co)	ug/g	5.3	4716588	10	4716460	9.2	0.10	4716588
Acid Extractable Copper (Cu)	ug/g	13	4716588	45	4716460	35	0.50	4716588
Acid Extractable Lead (Pb)	ug/g	150	4716588	560	4716460	150	1.0	4716588
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	4716588	1.8	4716460	<0.50	0.50	4716588
Acid Extractable Nickel (Ni)	ug/g	13	4716588	5.5	4716460	19	0.50	4716588
Acid Extractable Selenium (Se)	ug/g	<0.50	4716588	0.69	4716460	<0.50	0.50	4716588
Acid Extractable Silver (Ag)	ug/g	<0.20	4716588	<0.20	4716460	<0.20	0.20	4716588
Acid Extractable Thallium (Tl)	ug/g	<0.050	4716588	0.16	4716460	<0.050	0.050	4716588
Acid Extractable Uranium (U)	ug/g	0.13	4716588	0.57	4716460	0.13	0.050	4716588
Acid Extractable Vanadium (V)	ug/g	11	4716588	110	4716460	12	5.0	4716588
Acid Extractable Zinc (Zn)	ug/g	100	4716588	280	4716460	100	5.0	4716588
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP307		
Sampling Date		2016/10/13 11:00		
COC Number		581859-06-01		
	UNITS	CS1-410	RDL	QC Batch
Metals				
Acid Extractable Antimony (Sb)	ug/g	0.22	0.20	4716460
Acid Extractable Arsenic (As)	ug/g	1.7	1.0	4716460
Acid Extractable Barium (Ba)	ug/g	40	0.50	4716460
Acid Extractable Beryllium (Be)	ug/g	<0.20	0.20	4716460
Acid Extractable Boron (B)	ug/g	<5.0	5.0	4716460
Acid Extractable Cadmium (Cd)	ug/g	0.14	0.10	4716460
Acid Extractable Chromium (Cr)	ug/g	18	1.0	4716460
Acid Extractable Cobalt (Co)	ug/g	3.6	0.10	4716460
Acid Extractable Copper (Cu)	ug/g	12	0.50	4716460
Acid Extractable Lead (Pb)	ug/g	13	1.0	4716460
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	0.50	4716460
Acid Extractable Nickel (Ni)	ug/g	10	0.50	4716460
Acid Extractable Selenium (Se)	ug/g	<0.50	0.50	4716460
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	4716460
Acid Extractable Thallium (Tl)	ug/g	<0.050	0.050	4716460
Acid Extractable Uranium (U)	ug/g	0.73	0.050	4716460
Acid Extractable Vanadium (V)	ug/g	20	5.0	4716460
Acid Extractable Zinc (Zn)	ug/g	36	5.0	4716460
RDL = Reportable Detection Limit		•	•	
QC Batch = Quality Control Batch				

O.REG 153 ICPMS METALS (SOIL)

DST Consulting Engineers Inc Client Project #: GV-TB-027107

O.REG 153 PAHS (SOIL)

Maxxam ID		DGP160		DGP199			DGP200		DGP201		
Sampling Date		2016/10/13 10:10		2016/10/13 10:20			2016/10/13 10:25		2016/10/13 10:30		
COC Number		581859-01-01		581859-02-01			581859-02-01		581859-02-01		
	UNITS	CS1-35	RDL	CS1-36	RDL	QC Batch	CS1-37	RDL	CS1-38	RDL	QC Batch
Inorganics											
Moisture	%	17	1.0	59	1.0	4715914	70	1.0	23	1.0	4715297
Calculated Parameters	•	<u>.</u>	•								
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	0.0071	<0.014	0.014	4714848	<0.021	0.021	<0.0071	0.0071	4714848
Polyaromatic Hydrocarbons	•	<u>.</u>	•								
Acenaphthene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Acenaphthylene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Anthracene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Benzo(a)anthracene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Benzo(a)pyrene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Benzo(b/j)fluoranthene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	0.040	0.015	<0.0050	0.0050	4717063
Benzo(g,h,i)perylene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Benzo(k)fluoranthene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Chrysene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	0.021	0.015	<0.0050	0.0050	4717063
Dibenz(a,h)anthracene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Fluoranthene	ug/g	<0.0050	0.0050	0.012	0.010	4717063	0.027	0.015	<0.0050	0.0050	4717063
Fluorene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Indeno(1,2,3-cd)pyrene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
1-Methylnaphthalene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
2-Methylnaphthalene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Naphthalene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Phenanthrene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Pyrene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	0.021	0.015	0.0065	0.0050	4717063
Surrogate Recovery (%)											
D10-Anthracene	%	85		78		4717063	75		88		4717063
D14-Terphenyl (FS)	%	82		83		4717063	81		87		4717063
D8-Acenaphthylene	%	79		78		4717063	76		82		4717063
RDL = Reportable Detection L QC Batch = Quality Control Ba	.imit atch							-			

DST Consulting Engineers Inc Client Project #: GV-TB-027107

O.REG 153 PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID		DGP160		DGP199		DGP200		DGP201		
Sampling Date		2016/10/13 10:10		2016/10/13 10:20		2016/10/13 10:25		2016/10/13 10:30		
COC Number		581859-01-01		581859-02-01		581859-02-01		581859-02-01		
	UNITS	CS1-35	RDL	CS1-36	RDL	CS1-37	RDL	CS1-38	RDL	QC Batch
BTEX & F1 Hydrocarbons										
Benzene	ug/g	<0.040	0.040	<0.10	0.10	<0.20	0.20	<0.020	0.020	4715933
Toluene	ug/g	<0.040	0.040	<0.10	0.10	<0.20	0.20	<0.020	0.020	4715933
Ethylbenzene	ug/g	<0.040	0.040	<0.10	0.10	<0.20	0.20	<0.020	0.020	4715933
o-Xylene	ug/g	<0.040	0.040	<0.10	0.10	<0.20	0.20	<0.020	0.020	4715933
p+m-Xylene	ug/g	<0.080	0.080	<0.20	0.20	<0.40	0.40	<0.040	0.040	4715933
Total Xylenes	ug/g	<0.080	0.080	<0.20	0.20	<0.40	0.40	<0.040	0.040	4715933
F1 (C6-C10)	ug/g	44	20	<50	50	<100	100	<10	10	4715933
F1 (C6-C10) - BTEX	ug/g	44	20	<50	50	<100	100	<10	10	4715933
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	<20	20	<30	30	<10	10	4716027
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	150	100	160	150	<50	50	4716027
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	<100	100	<150	150	<50	50	4716027
Reached Baseline at C50	ug/g	Yes		Yes		Yes		Yes		4716027
Surrogate Recovery (%)										
1,4-Difluorobenzene	%	112		111		112		113		4715933
4-Bromofluorobenzene	%	96		93		93		97		4715933
D10-Ethylbenzene	%	94		92		98		103		4715933
D4-1,2-Dichloroethane	%	95		94		95		96		4715933
o-Terphenyl	%	98		96		96		93		4716027
RDL = Reportable Detection L	imit									
QC Batch = Quality Control Ba	atch									

DST Consulting Engineers Inc Client Project #: GV-TB-027107

O.REG 558 TCLP BENZO(A)PYRENE

Maxxam ID		DGP152	DGP152	DGP157	DGP205	DGP245	DGP281		
Sampling Data		2016/10/12	2016/10/12	2016/10/13	2016/10/13	2016/10/13	2016/10/13		
		16:00	16:00	09:40	11:10	16:20	13:10		
COC Number		581859-01-01	581859-01-01	581859-01-01	581859-02-01	581859-03-01	581859-04-01		
	UNITS	CS1-27	CS1-27 Lab-Dup	CS1-32	CS1-42	CS1-46	CS2-20	RDL	QC Batch
Polyaromatic Hydrocarbons									
Leachable Benzo(a)pyrene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	4720772
Surrogate Recovery (%)		•		•			•		
Leachable D10-Anthracene	%	104	105	94	103	95	107		4720772
Leachable D14-Terphenyl (FS)	%	101	98	69	81	79	96		4720772
Leachable D8-Acenaphthylene	%	86	89	88	89	87	89		4720772
RDL = Reportable Detection Lim	it	•	•	•	•		•	<u> </u>	

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Maxxam ID		DGP302	DGP305		
Sampling Data		2016/10/12	2016/10/13		
		14:30	13:10		
COC Number		581859-06-01	581859-06-01		
	UNITS	CS2-21	CS2-200	RDL	QC Batch
Polyaromatic Hydrocarbons					
Leachable Benzo(a)pyrene	ug/L	<0.10	<0.10	0.10	4720772
Surrogate Recovery (%)					
Leachable D10-Anthracene	%	102	108		4720772
Leachable D14-Terphenyl (FS)	%	94	95		4720772
Leachable D8-Acenaphthylene	%	89	90		4720772
RDL = Reportable Detection Lim	it				
QC Batch = Quality Control Batc	h				

DST Consulting Engineers Inc Client Project #: GV-TB-027107

O.REG 558 TCLP BENZENE (SOIL)

Maxxam ID		DGP152	DGP157	DGP205	DGP245	DGP281		
Sampling Date		2016/10/12 16:00	2016/10/13 09:40	2016/10/13 11:10	2016/10/13 16:20	2016/10/13 13:10		
COC Number		581859-01-01	581859-01-01	581859-02-01	581859-03-01	581859-04-01		
	UNITS	CS1-27	CS1-32	CS1-42	CS1-46	CS2-20	RDL	QC Batch
Charge/Prep Analysis								
Amount Extracted (Wet Weight) (g)	N/A	25	25	25	25	25	N/A	4716626
Volatile Organics								
Leachable Benzene	mg/L	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	4715261
Surrogate Recovery (%)		-			-	-	-	
Leachable 4-Bromofluorobenzene	%	97	97	96	99	98		4715261
Leachable D4-1,2-Dichloroethane	%	101	100	103	104	102		4715261
Leachable D8-Toluene	%	99	99	100	98	97		4715261
RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable								

Maxxam ID		DGP302	DGP305		
Sampling Date		2016/10/12 14:30	2016/10/13 13:10		
COC Number		581859-06-01	581859-06-01		
	UNITS	CS2-21	CS2-200	RDL	QC Batch
Charge/Prep Analysis					
Amount Extracted (Wet Weight) (g)	N/A	25	25	N/A	4716626
Volatile Organics	•				
Leachable Benzene	mg/L	<0.020	<0.020	0.020	4715261
Surrogate Recovery (%)					
Leachable 4-Bromofluorobenzene	%	98	100		4715261
Leachable D4-1,2-Dichloroethane	%	107	103		4715261
Leachable D8-Toluene	%	97	99		4715261
RDL = Reportable Detection Limit QC Batch = Quality Control Batch					
N/A = Not Applicable					

DST Consulting Engineers Inc Client Project #: GV-TB-027107

O.REG 558 TCLP LEACHATE PREPARATION (SOIL)

Maxxam ID		DGP152	DGP157	DGP205	DGP245	DGP281	DGP302		
Sampling Date		2016/10/12 16:00	2016/10/13 09:40	2016/10/13 11:10	2016/10/13 16:20	2016/10/13 13:10	2016/10/12 14:30		
COC Number		581859-01-01	581859-01-01	581859-02-01	581859-03-01	581859-04-01	581859-06-01		
	UNITS	CS1-27	CS1-32	CS1-42	CS1-46	CS2-20	CS2-21	RDL	QC Batch
Inorganics									
Final pH	рН	5.21	4.98	4.93	4.96	4.91	4.89		4717866
Initial pH	рН	8.27	5.47	5.16	6.08	5.48	5.09		4717866
TCLP - % Solids	%	100	100	100	100	100	100	0.2	4717858
TCLP Extraction Fluid	N/A	FLUID 1		4717865					
RDL = Reportable Detection	Limit								

QC Batch = Quality Control Batch

Maxxam ID		DGP305		
Sampling Date		2016/10/13		
		13:10		
COC Number		581859-06-01		
	UNITS	CS2-200	RDL	QC Batch
Inorganics				
Final pH	рН	4.90		4717866
Initial pH	рН	5.63		4717866
TCLP - % Solids	%	100	0.2	4717858
TCLP Extraction Fluid	N/A	FLUID 1		4717865
RDL = Reportable Detection L	imit.			
QC Batch = Quality Control Ba	atch			

DST Consulting Engineers Inc Client Project #: GV-TB-027107

O.REG 558 TCLP METALS (SOIL)

Maxxam ID		DGP152	DGP157	DGP205	DGP245	DGP281	DGP302		
Sampling Date		2016/10/12	2016/10/13	2016/10/13	2016/10/13	2016/10/13	2016/10/12		
Sampling Date		16:00	09:40	11:10	16:20	13:10	14:30		
COC Number		581859-01-01	581859-01-01	581859-02-01	581859-03-01	581859-04-01	581859-06-01		
	UNITS	CS1-27	CS1-32	CS1-42	CS1-46	CS2-20	CS2-21	RDL	QC Batch
Metals									
Leachable Mercury (Hg)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0010	4720302
Leachable Arsenic (As)	mg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.2	4718914
Leachable Barium (Ba)	mg/L	0.6	0.5	0.3	0.3	0.2	0.3	0.2	4718914
Leachable Boron (B)	mg/L	0.2	0.2	0.2	0.3	0.2	<0.1	0.1	4718914
Leachable Cadmium (Cd)	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	4718914
Leachable Chromium (Cr)	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	4718914
Leachable Lead (Pb)	mg/L	0.3	<0.1	<0.1	<0.1	0.3	0.1	0.1	4718914
Leachable Selenium (Se)	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	4718914
Leachable Silver (Ag)	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	4718914
Leachable Uranium (U)	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	4718914
RDL = Reportable Detection	Limit								

QC Batch = Quality Control Batch

Maxxam ID DGP305 2016/10/13 Sampling Date 13:10 581859-06-01 COC Number UNITS CS2-200 RDL QC Batch Metals Leachable Mercury (Hg) mg/L < 0.0010 0.0010 4720302 Leachable Arsenic (As) 0.2 4718914 mg/L <0.2 Leachable Barium (Ba) mg/L <0.2 4718914 0.2 Leachable Boron (B) mg/L <0.1 0.1 4718914 Leachable Cadmium (Cd) mg/L < 0.05 0.05 4718914 Leachable Chromium (Cr) < 0.1 0.1 4718914 mg/L Leachable Lead (Pb) 4718914 mg/L 0.1 0.1 Leachable Selenium (Se) 4718914 mg/L < 0.1 0.1 Leachable Silver (Ag) < 0.01 0.01 4718914 mg/L Leachable Uranium (U) 4718914 mg/L < 0.01 0.01 RDL = Reportable Detection Limit QC Batch = Quality Control Batch

DST Consulting Engineers Inc Client Project #: GV-TB-027107

RESULTS OF ANALYSES OF SOIL

Maxxam ID		DGP151	DGP152	DGP152	DGP153		DGP154	DGP155	
Sampling Date		2016/10/13 09:00	2016/10/12 16:00	2016/10/12 16:00	2016/10/13 09:10		2016/10/13 09:15	2016/10/13 09:20	
COC Number		581859-01-01	581859-01-01	581859-01-01	581859-01-01		581859-01-01	581859-01-01	
	UNITS	CS1-26	CS1-27	CS1-27	CS1-28	QC Batch	CS1-29	CS1-30	QC Batch
		<u> </u>		Lan-Duh					
Inorganics	<u> </u>			Lab-Dup					
Inorganics Available (CaCl2) pH	рН	5.99	7.14	7.18	5.63	4715433	3.39	4.90	4715437

Lab-Dup = Laboratory Initiated Duplicate

Maxxam ID		DGP156	DGP157		DGP158	DGP159	DGP160	
Sampling Date		2016/10/13 09:30	2016/10/13 09:40		2016/10/13 09:50	2016/10/13 10:00	2016/10/13 10:10	
COC Number		581859-01-01	581859-01-01		581859-01-01	581859-01-01	581859-01-01	
	UNITS	CS1-31	CS1-32	QC Batch	CS1-33	CS1-34	CS1-35	QC Batch
Inorganics								
Available (CaCl2) pH	pН	3.40	4.44	4715437	3.26	5.39	4.93	4715433

Maxxam ID		DGP199	DGP200	DGP201	DGP202		DGP203	DGP204	
Sampling Date		2016/10/13 10:20	2016/10/13 10:25	2016/10/13 10:30	2016/10/13 10:40		2016/10/13 10:50	2016/10/13 11:00	
COC Number		581859-02-01	581859-02-01	581859-02-01	581859-02-01		581859-02-01	581859-02-01	
	UNITS	CS1-36	CS1-37	CS1-38	CS1-39	QC Batch	CS1-40	CS1-41	QC Batch
Inorganics									
Inorganics Available (CaCl2) pH	рН	3.26	3.31	5.35	4.08	4715437	6.30	6.91	4715433

Maxxam ID		DGP205		DGP206		DGP207	DGP207	DGP208		
Sampling Data		2016/10/13		2016/10/13		2016/10/13	2016/10/13	2016/10/12		
Sampling Date		11:10		11:20		11:30	11:30	16:10		
COC Number		581859-02-01		581859-02-01		581859-02-01	581859-02-01	581859-02-01		
	UNITS	CS1-42	QC Batch	CS1-43	QC Batch	CS1-44	CS1-44 Lab-Dup	CS1-45	QC Batch	
Inorganics										
Available (CaCl2) pH	рН	3.81	4718486	3.85	4716478	3.93	3.93	4.79	4715437	
QC Batch = Quality Control Batch										

DST Consulting Engineers Inc Client Project #: GV-TB-027107

RESULTS OF ANALYSES OF SOIL

Maxxam ID		DGP245		DGP246		DGP247		DGP248	
Sampling Data		2016/10/13		2016/10/13		2016/10/12		2016/10/12	
Sampling Date		16:20		08:50		13:00		13:10	
COC Number		581859-03-01		581859-03-01		581859-03-01		581859-03-01	
	LINUTC	661 46	OC Batak	CC2 12	00.0.4.4	CC2 12	OC Datak	662.44	00.0.4.4
	UNITS	CS1-46	QC Batch	CSZ-12	QC Batch	CS2-13	QC Batch	CS2-14	QC Batch
Inorganics		C31-46	QC Batch	C32-12	QC Batch	CS2-13	QC Batch	CS2-14	QC Batch
Inorganics Available (CaCl2) pH	pH	5.49	4716478	4.75	4715437	4.55	4715433	3.30	4716478

Report Date: 2016/10/28

DST Consulting Engineers Inc Client Project #: GV-TB-027107

RESULTS OF ANALYSES OF SOIL

Maxxam ID				DGP24	19		DGP2	50		DGP2	78	DG	P279		
Sampling Date			20	016/10 13:20	0/12 0		2016/10 13:3	0/12 0		2016/10 13:5	0/12 0	2016, 14	/10/12 4:00		
COC Number			582	1859-0	3-01	ľ,	581859-0	03-01		581859-0	04-01	58185	9-04-01		
		U	INITS	CS2-1	5 QC	Batch	CS2-1	L6 (QC Batch	CS2-1	.7	CS	2-18	QC Ba	tch
Inorganics															
Available (CaCl2) pl	Н		рН	3.82	471	.5433	4.58	3	4715437	4.65		2.	.99	47154	133
QC Batch = Quality	Contr	ol Batc	h												
Maxxam ID				DGP28	30		DGP2	81		DGP28	32	DG	P283		
Sampling Date			20	016/10)/12		2016/10	0/13		2016/10)/12	2016,	/10/12		
			F.0/	14:20	0		13:1	.0		10:0	0	10	0:10		
		U	NITS	CS2-1	9 OC	Batch	CS2-2	20	OC Batch	CS3-1	1	58185 CS	9-04-01 3-12	OC Ba	tch
Inorganics								-						_	
Available (CaCl2) pl	Н		pН	5.40	471	5437	4.07	7	4716478	5.86		4.	.70	47154	37
QC Batch = Quality	Contr	ol Batc	h		I										
	1		0.000	~ ^	1		D205	İ		00000	i	1	0.000	_	
			2016/1	0/12		2016	1P285		20	GP286			DGP28	3/	
Sampling Date			10:2	20		2010	0:30		20.	10:40			10:50) 12	
COC Number			581859-	04-01		58185	59-04-01		581	859-04-01		5	81859-0	4-01	
		UNITS	CS3-2	13	QC Batch	CS	3-14	QC Ba	tch	CS3-15	QC Ba	atch	CS3-1	6	QC Bato
Inorganics															
Available (CaCl2) pH		рН	4.83	3	4715433	6	5.64	47154	437	4.83	47164	478	4.71		471543
QC Batch = Quality Contr	rol Bat	ch													
xxam ID)GP288		DGP289			DGP290		GP291	DG	6P292	D	GP293	
alian Data		20	16/10/12	20	16/10/12		20)16/10/	12 20	16/10/12	2016	5/10/1	2 201	.6/10/1	.2
			11:10		11:20			11:30		11:40	1	1:50		12:00	
: Number		581	859-05-02	1 581	859-05-01		581	1859-05	-01 581	859-05-01	58185	59-05-0	01 5818	359-05-	01
	UNIT	S	CS3-17		CS3-18	QC Ba	atch	CS3-19		CS3-20	CS	53-21	C	:\$3-22	QC
rganics	<u> </u>	<u> </u>				<u> </u>									
	pH		3.64		5.00	47154	437	6.15		6.33	3	3.34		4.66	47
Batch = Quality Control Ba	atch														
Maxxam ID			DGP3	02		DG	iP303		0	GP304			DGP30)5	
Sampling Date			2016/1 14:3	0/12 80		2016 1	5/10/13 3:40		20:	L6/10/12 10:00			2016/10 13:10	/13)	
	1		F010F0	06-01		58185	59-06-01		581	859-06-01		5	81859-0	6-01	
COC Number			581859-	00 01		00100									
COC Number		UNITS	CS2-2	21	QC Batch	CS	52-22	QC Ba	tch C	S3-110	QC Ba	atch	CS2-20	00	QC Bato
COC Number		UNITS	CS2-2	21	QC Batch	CS	52-22	QC Ba	itch C	S3-110	QC Ba	atch	CS2-20	00	QC Bato

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP306	DGP307	
Sampling Date		2016/10/12 11:40	2016/10/13 11:00	
COC Number		581859-06-01	581859-06-01	
	UNITS	CS3-200	CS1-410	QC Batch
Inorganics				
Inorganics Available (CaCl2) pH	pН	6.30	6.93	4715433

RESULTS OF ANALYSES OF SOIL

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID: Sample ID: Matrix:	DGP151 CS1-26 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Tec	lu
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP151 Dup CS1-26 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Tec	lu
Maxxam ID: Sample ID: Matrix:	DGP152 CS1-27 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Mercury (TCLP Leachable) (mg/L)	CV/AA	4720302	N/A	2016/10/27	Magdalen	a Carlos
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Ca	nzonieri
Total Metals in TCLP Lead	hate by ICPMS	ICP1/MS	4718914	2016/10/26	2016/10/27	Cristina Pe	etran
PAH Compounds in Leach	nate by GC/MS (SIM)	GC/MS	4720772	2016/10/27	2016/10/27	Mitesh Ra	j
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	nayake
TCLP - % Solids		BAL	4717858	2016/10/25	2016/10/26	Walt Wan	g
TCLP - Extraction Fluid			4717865	N/A	2016/10/26	Walt Wan	g
TCLP - Initial and final pH		РН	4717866	N/A	2016/10/26	Walt Wan	g
TCLP Zero Headspace Ext	raction		4716626	2016/10/25	2016/10/26	Walt Wan	g
VOCs in ZHE Leachates		GC/MS	4715261	2016/10/26	2016/10/26	Karen Huy	nh
Maxxam ID: Sample ID: Matrix:	DGP152 Dup CS1-27 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PAH Compounds in Leach	nate by GC/MS (SIM)	GC/MS	4720772	2016/10/27	2016/10/28	Mitesh Ra	j
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP153 CS1-28 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Ca	nzonieri
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	nayake

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID: Sample ID: Matrix:	DGP153 Dup CS1-28 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Ca	nzonieri
Maxxam ID: Sample ID: Matrix:	DGP154 CS1-29 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Ca	nzonieri
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP155 CS1-30 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Tec	lu
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP156 CS1-31 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Tec	lu
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix: Test Description	DGP157 CS1-32 Soil	Instrumentation	Batch	Extracted	Date Analyzed	Collected: Shipped: Received: Analyst	2016/10/13 2016/10/17
Mercury (TCLP Leachable	e) (mg/L)	CV/AA	4720302	N/A	2016/10/27	Magdalena	a Carlos
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Tec	lu
Total Metals in TCLP Lead	hate by ICPMS	ICP1/MS	4718914	2016/10/26	2016/10/27	Cristina Pe	tran
PAH Compounds in Leach	nate by GC/MS (SIM)	GC/MS	4720772	2016/10/27	2016/10/28	Mitesh Raj	i
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	nayake
TCLP - % Solids		BAL	4717858	2016/10/25	2016/10/26	Walt Wang	g
TCLP - Extraction Fluid			4717865	N/A	2016/10/26	Walt Wang	g
TCLP - Initial and final pH		РН	4717866	N/A	2016/10/26	Walt Wang	5
TCLP Zero Headspace Ext	raction		4716626	2016/10/25	2016/10/26	Walt Wang	5
VOCs in ZHE Leachates		GC/MS	4715261	2016/10/26	2016/10/26	Karen Huy	nh

Moisture

DST Consulting Engineers Inc Client Project #: GV-TB-027107

TEST SUMMARY

Maxxam ID: Sample ID:	DGP158 CS1-33					Collected: Shipped:	2016/10/13
Matrix:	Soil					Received:	2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	tals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Ca	nzonieri
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP159 CS1-34 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Met	tals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/26	Daniel Tec	lu
pH CaCl2 EXTRACT	•	AT	4715433	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID:	DGP160					Collected:	2016/10/13
Sample ID: Matrix:	CS1-35 Soil					Shipped: Received:	2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	4714848	N/A	2016/10/26	Automate	d Statchk
Petroleum Hydro. CCME F	1 & BTEX in Soil	HSGC/MSFD	4715933	N/A	2016/10/25	Georgeta I	Rusu
Petroleum Hydrocarbons R	F2-F4 in Soil	GC/FID	4716027	2016/10/24	2016/10/25	Zhiyue (Fra	ank) Zhu
Strong Acid Leachable Met	tals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Tec	lu
Moisture		BAL	4715914	N/A	2016/10/24	Prgya Pano	chal
PAH Compounds in Soil by	GC/MS (SIM)	GC/MS	4717063	2016/10/25	2016/10/26	Mitesh Ra	
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID:	DGP199					Collected:	2016/10/13
Sample ID: Matrix:	CS1-36 Soil					Shipped: Received:	2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	4714848	N/A	2016/10/26	Automate	d Statchk
Petroleum Hydro. CCME F	1 & BTEX in Soil	HSGC/MSFD	4715933	N/A	2016/10/25	Georgeta I	Rusu
Petroleum Hydrocarbons F	F2-F4 in Soil	GC/FID	4716027	2016/10/24	2016/10/25	Zhiyue (Fra	ank) Zhu
Strong Acid Leachable Met	tals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Tec	lu
Moisture		BAL	4715914	N/A	2016/10/24	Prgya Pano	chal
PAH Compounds in Soil by	GC/MS (SIM)	GC/MS	4717063	2016/10/25	2016/10/26	Mitesh Raj	
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP200 CS1-37 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	4714848	N/A	2016/10/26	Automate	d Statchk
Petroleum Hydro. CCME F	1 & BTEX in Soil	HSGC/MSFD	4715933	N/A	2016/10/25	Georgeta I	Rusu
Petroleum Hydrocarbons F	F2-F4 in Soil	GC/FID	4716027	2016/10/24	2016/10/25	Zhiyue (Fra	ank) Zhu
Strong Acid Leachable Me	tals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Tec	lu

N/A

2016/10/24

Min Yang

4715297

BAL

DST Consulting Engineers Inc Client Project #: GV-TB-027107

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	DGP200 CS1-37 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PAH Compounds in Soil b	v GC/MS (SIM)	GC/MS	4717063	2016/10/25	2016/10/26	Mitesh Ra	i
nH CaCl2 EXTRACT	<i>y 00,000</i> (000)	ΔΤ	4715437	2016/10/25	2016/10/25	Neil Dassa	navake
pri cuciz Extract			4713437	2010/10/25	2010/10/25	Nell Dussu	hayake
Maxxam ID: Sample ID: Matrix:	DGP201 CS1-38 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	4714848	N/A	2016/10/26	Automate	d Statchk
Petroleum Hydro. CCME	F1 & BTEX in Soil	HSGC/MSFD	4715933	N/A	2016/10/25	Georgeta	Rusu
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	4716027	2016/10/24	2016/10/25	Zhiyue (Fra	ank) Zhu
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teo	lu
Moisture		BAL	4715297	N/A	2016/10/24	Min Yang	
PAH Compounds in Soil b	y GC/MS (SIM)	GC/MS	4717063	2016/10/25	2016/10/26	Mitesh Ra	j
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix: Test Description	DGP201 Dup CS1-38 Soil	Instrumentation	Batch	Extracted	Date Analyzed	Collected: Shipped: Received: Analyst	2016/10/13 2016/10/17
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Tec	lu
Maxxam ID: Sample ID: Matrix:	DGP202 CS1-39 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP203 CS1-40 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP204 CS1-41 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Tec	lu
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	navake

DST Consulting Engineers Inc Client Project #: GV-TB-027107

TEST SUMMARY

Maxxam ID:	DGP205
Sample ID:	CS1-42
Matrix:	Soil

Collected:	2016/10/13
Received:	2016/10/17

Collected: 2016/10/13 Shipped: 2016/10/17 Received: 2016/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury (TCLP Leachable) (mg/L)	CV/AA	4720302	N/A	2016/10/27	Magdalena Carlos
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Canzonieri
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	4718914	2016/10/26	2016/10/27	Cristina Petran
PAH Compounds in Leachate by GC/MS (SIM)	GC/MS	4720772	2016/10/27	2016/10/28	Mitesh Raj
pH CaCl2 EXTRACT	AT	4718486	2016/10/26	2016/10/26	Neil Dassanayake
TCLP - % Solids	BAL	4717858	2016/10/25	2016/10/26	Walt Wang
TCLP - Extraction Fluid		4717865	N/A	2016/10/26	Walt Wang
TCLP - Initial and final pH	РН	4717866	N/A	2016/10/26	Walt Wang
TCLP Zero Headspace Extraction		4716626	2016/10/25	2016/10/26	Walt Wang
VOCs in ZHE Leachates	GC/MS	4715261	2016/10/26	2016/10/26	Karen Huynh

Maxxam ID:	DGP206
Sample ID:	CS1-43
Matrix:	Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teclu
pH CaCl2 EXTRACT	AT	4716478	2016/10/25	2016/10/25	Neil Dassanayake

Maxxam ID:	DGP207	Collected:	2016/10/13
Matrix:	Soil	Received:	2016/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teclu
pH CaCl2 EXTRACT	AT	4715437	2016/10/25	2016/10/25	Neil Dassanayake

Maxxam ID: Sample ID: Matrix:	DGP207 Dup CS1-44 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	inayake
Maxxam ID: Sample ID:	DGP208 CS1-45					Collected: Shipped:	2016/10/12
Matrix:	Soil					Received:	2016/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teclu
pH CaCl2 EXTRACT	AT	4715437	2016/10/25	2016/10/25	Neil Dassanayake

DST Consulting Engineers Inc Client Project #: GV-TB-027107

TEST SUMMARY

Maxxam ID:	DGP245
Sample ID:	CS1-46
Matrix:	Soil

Collected: 2016/10/13 Shipped: Received: 2016/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury (TCLP Leachable) (mg/L)	CV/AA	4720302	N/A	2016/10/27	Magdalena Carlos
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Canzonieri
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	4718914	2016/10/26	2016/10/27	Cristina Petran
PAH Compounds in Leachate by GC/MS (SIM)	GC/MS	4720772	2016/10/27	2016/10/28	Mitesh Raj
pH CaCl2 EXTRACT	AT	4716478	2016/10/25	2016/10/25	Neil Dassanayake
TCLP - % Solids	BAL	4717858	2016/10/25	2016/10/26	Walt Wang
TCLP - Extraction Fluid		4717865	N/A	2016/10/26	Walt Wang
TCLP - Initial and final pH	PH	4717866	N/A	2016/10/26	Walt Wang
TCLP Zero Headspace Extraction		4716626	2016/10/25	2016/10/26	Walt Wang
VOCs in ZHE Leachates	GC/MS	4715261	2016/10/26	2016/10/26	Karen Huynh

Maxxam ID:	DGP246
Sample ID:	CS2-12
Matrix:	Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teclu
pH CaCl2 EXTRACT	AT	4715437	2016/10/25	2016/10/25	Neil Dassanayake

Maxxam ID:	DGP247
Sample ID:	CS2-13
Matrix:	Soil

Collected:	2016/10/12
Shipped:	
Received:	2016/10/17

Collected: 2016/10/13 Shipped: Received: 2016/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teclu
pH CaCl2 EXTRACT	AT	4715433	2016/10/25	2016/10/25	Neil Dassanayake

Maxxam ID:	DGP248	Collected:	2016/10/12
Sample ID:	CS2-14	Shipped:	
Matrix:	Soil	Received:	2016/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Canzonieri
pH CaCl2 EXTRACT	AT	4716478	2016/10/25	2016/10/25	Neil Dassanayake

Maxxam ID: Sample ID: Matrix:	DGP249 CS2-15 Soil					Collected: 2016/10/12 Shipped: Received: 2016/10/17	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Canzonieri	
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassanavake	

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID: Sample ID: Matrix:	DGP250 CS2-16 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT	,	AT	4715437	2016/10/25	2016/10/25	Neil Dassa	navake
Maxxam ID: Sample ID: Matrix:	DGP278 CS2-17 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP279 CS2-18 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teclu	
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP280 CS2-19 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teclu	
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP281 CS2-20 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Mercury (TCLP Leachable) (mg/L)	CV/AA	4720302	N/A	2016/10/27	Magdalen	a Carlos
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teo	lu
Total Metals in TCLP Lead	hate by ICPMS	ICP1/MS	4718914	2016/10/26	2016/10/27	Cristina Pe	etran
PAH Compounds in Leach	ate by GC/MS (SIM)	GC/MS	4720772	2016/10/27	2016/10/28	Mitesh Ra	j
pH CaCl2 EXTRACT		AT	4716478	2016/10/25	2016/10/25	Neil Dassa	nayake
TCLP - % Solids		BAL	4717858	2016/10/25	2016/10/26	Walt Wan	g
TCLP - Extraction Fluid			4717865	N/A	2016/10/26	Walt Wan	g
TCLP - Initial and final pH		PH	4717866	N/A	2016/10/26	Walt Wan	g
TCLP Zero Headspace Ext	raction		4716626	2016/10/25	2016/10/26	Walt Wan	g
VOCs in ZHE Leachates		GC/MS	4715261	2016/10/26	2016/10/26	Karen Huy	'nh

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID: Sample ID: Matrix:	DGP282 CS3-11 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Ca	nzonieri
pH CaCl2 EXTRACT	· ·	AT	4715437	2016/10/25	2016/10/25	Neil Dassa	navake
Maxxam ID: Sample ID: Matrix:	DGP283 CS3-12 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP284 CS3-13 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teclu	
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP285 CS3-14 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Tec	lu
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP286 CS3-15 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4718485	2016/10/26	2016/10/26	Daniel Teo	lu
pH CaCl2 EXTRACT		AT	4716478	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP287 CS3-16 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	nayake

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID: Sample ID: Matrix:	DGP288 CS3-17 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	inayake
Maxxam ID: Sample ID: Matrix:	DGP289 CS3-18 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT	· ·	AT	4715437	2016/10/25	2016/10/25	Neil Dassa	inayake
Maxxam ID: Sample ID: Matrix:	DGP290 CS3-19 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	inayake
Maxxam ID: Sample ID: Matrix:	DGP291 CS3-20 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	inayake
Maxxam ID: Sample ID: Matrix:	DGP292 CS3-21 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teo	du
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	inayake
Maxxam ID: Sample ID: Matrix:	DGP293 CS3-22 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	inayake

DST Consulting Engineers Inc Client Project #: GV-TB-027107

TEST SUMMARY

Maxxam ID:	DGP302
Sample ID:	CS2-21
Matrix:	Soil

Collected: 2016/10/12 Shipped: Received: 2016/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury (TCLP Leachable) (mg/L)	CV/AA	4720302	N/A	2016/10/27	Magdalena Carlos
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Canzonieri
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	4718914	2016/10/26	2016/10/27	Cristina Petran
PAH Compounds in Leachate by GC/MS (SIM)	GC/MS	4720772	2016/10/27	2016/10/28	Mitesh Raj
pH CaCl2 EXTRACT	AT	4716478	2016/10/25	2016/10/25	Neil Dassanayake
TCLP - % Solids	BAL	4717858	2016/10/25	2016/10/26	Walt Wang
TCLP - Extraction Fluid		4717865	N/A	2016/10/26	Walt Wang
TCLP - Initial and final pH	PH	4717866	N/A	2016/10/26	Walt Wang
TCLP Zero Headspace Extraction		4716626	2016/10/25	2016/10/26	Walt Wang
VOCs in ZHE Leachates	GC/MS	4715261	2016/10/26	2016/10/26	Karen Huynh

Maxxam ID:	DGP303
Sample ID:	CS2-22
Matrix:	Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teclu
pH CaCl2 EXTRACT	AT	4715437	2016/10/25	2016/10/25	Neil Dassanayake

Maxxam ID:	DGP304
Sample ID:	CS3-110
Matrix:	Soil

Collected:	2016/10/12
Shipped:	
Received:	2016/10/17

Collected: 2016/10/13 Shipped: Received: 2016/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teclu
pH CaCl2 EXTRACT	AT	4715433	2016/10/25	2016/10/25	Neil Dassanayake

Maxxam ID:	DGP305
Sample ID:	CS2-200
Matrix:	Soil

Collected: 2016/10/13 Shipped: Received: 2016/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury (TCLP Leachable) (mg/L)	CV/AA	4720302	N/A	2016/10/27	Magdalena Carlos
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Canzonieri
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	4718914	2016/10/26	2016/10/27	Cristina Petran
PAH Compounds in Leachate by GC/MS (SIM)	GC/MS	4720772	2016/10/27	2016/10/28	Mitesh Raj
pH CaCl2 EXTRACT	AT	4716478	2016/10/25	2016/10/25	Neil Dassanayake
TCLP - % Solids	BAL	4717858	2016/10/25	2016/10/26	Walt Wang
TCLP - Extraction Fluid		4717865	N/A	2016/10/26	Walt Wang
TCLP - Initial and final pH	PH	4717866	N/A	2016/10/26	Walt Wang
TCLP Zero Headspace Extraction		4716626	2016/10/25	2016/10/26	Walt Wang
VOCs in ZHE Leachates	GC/MS	4715261	2016/10/26	2016/10/26	Karen Huynh

DST Consulting Engineers Inc Client Project #: GV-TB-027107

TEST SUMMARY

Maxxam ID:	DGP306
Sample ID:	CS3-200
Matrix:	Soil

Collected: 2016/10/12 Shipped: Received: 2016/10/17

Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teclu
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassanayake
Maxxam ID: Sample ID: Matrix:	DGP307 CS1-410 Soil					Collected: 2016/10/13 Shipped: Received: 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Canzonieri
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassanayake

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	2.7°C
Package 2	2.0°C
Package 3	2.0°C

Sample DGP160-01 : F1/BTEX Analysis: Detection limits were adjusted for sample weight .

Sample DGP199-01 : F1/BTEX Analysis: Detection limits were adjusted for high moisture content and sample weight. F2-F4 Analysis: Detection limits were adjusted for high moisture content.

PAH analysis: Detection limits were adjusted for high moisture content.

Sample DGP200-01 : F1/BTEX Analysis: Detection limits were adjusted for high moisture content and sample weight. F2-F4 Analysis: Detection limits were adjusted for high moisture content.

PAH analysis: Detection limits were adjusted for high moisture content.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

DST Consulting Engineers Inc Client Project #: GV-TB-027107

			Matrix	Spike	SPIKED	SPIKED BLANK		Method Blank		RPD		Leachate Blank	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS	
4715261	Leachable 4-Bromofluorobenzene	2016/10/26	100	70 - 130	100	70 - 130	98	%					
4715261	Leachable D4-1,2-Dichloroethane	2016/10/26	101	70 - 130	99	70 - 130	100	%					
4715261	Leachable D8-Toluene	2016/10/26	100	70 - 130	98	70 - 130	100	%					
4715933	1,4-Difluorobenzene	2016/10/24	112	60 - 140	114	60 - 140	114	%					
4715933	4-Bromofluorobenzene	2016/10/24	96	60 - 140	96	60 - 140	94	%					
4715933	D10-Ethylbenzene	2016/10/24	102	60 - 140	94	60 - 140	94	%					
4715933	D4-1,2-Dichloroethane	2016/10/24	94	60 - 140	94	60 - 140	95	%					
4716027	o-Terphenyl	2016/10/25	102	60 - 130	100	60 - 130	101	%					
4717063	D10-Anthracene	2016/10/25	87	50 - 130	98	50 - 130	102	%					
4717063	D14-Terphenyl (FS)	2016/10/25	87	50 - 130	93	50 - 130	96	%					
4717063	D8-Acenaphthylene	2016/10/25	79	50 - 130	83	50 - 130	83	%					
4720772	Leachable D10-Anthracene	2016/10/27	104	50 - 130	103	50 - 130	105	%					
4720772	Leachable D14-Terphenyl (FS)	2016/10/27	96	50 - 130	94	50 - 130	94	%					
4720772	Leachable D8-Acenaphthylene	2016/10/27	94	50 - 130	92	50 - 130	91	%					
4715261	Leachable Benzene	2016/10/26	91	70 - 130	97	70 - 130	<0.020	mg/L	NC	30			
4715297	Moisture	2016/10/24							0	20			
4715433	Available (CaCl2) pH	2016/10/25			99	97 - 103			0.52	N/A			
4715437	Available (CaCl2) pH	2016/10/25			98	97 - 103			0.013	N/A			
4715914	Moisture	2016/10/24							3.3	20			
4715933	Benzene	2016/10/24	98	60 - 140	97	60 - 140	<0.020	ug/g	NC	50			
4715933	Ethylbenzene	2016/10/24	110	60 - 140	112	60 - 140	<0.020	ug/g	NC	50			
4715933	F1 (C6-C10) - BTEX	2016/10/24					<10	ug/g	NC	30			
4715933	F1 (C6-C10)	2016/10/24	88	60 - 140	82	80 - 120	<10	ug/g	NC	30			
4715933	o-Xylene	2016/10/24	106	60 - 140	106	60 - 140	<0.020	ug/g	NC	50			
4715933	p+m-Xylene	2016/10/24	98	60 - 140	99	60 - 140	<0.040	ug/g	NC	50			
4715933	Toluene	2016/10/24	104	60 - 140	101	60 - 140	<0.020	ug/g	NC	50			
4715933	Total Xylenes	2016/10/24					<0.040	ug/g	NC	50			
4716027	F2 (C10-C16 Hydrocarbons)	2016/10/25	100	50 - 130	99	80 - 120	<10	ug/g	NC	30			
4716027	F3 (C16-C34 Hydrocarbons)	2016/10/25	100	50 - 130	99	80 - 120	<50	ug/g	NC	30			
4716027	F4 (C34-C50 Hydrocarbons)	2016/10/25	102	50 - 130	101	80 - 120	<50	ug/g	NC	30			
4716460	Acid Extractable Antimony (Sb)	2016/10/26	87	75 - 125	101	80 - 120	<0.20	ug/g	10	30			
4716460	Acid Extractable Arsenic (As)	2016/10/26	NC	75 - 125	99	80 - 120	<1.0	ug/g	2.8	30			

Page 39 of 54

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: GV-TB-027107

			Matrix	Spike	SPIKED BLANK		Method Blank		RPD		Leachate Blank	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4716460	Acid Extractable Barium (Ba)	2016/10/26	NC	75 - 125	96	80 - 120	<0.50	ug/g	1.9	30		
4716460	Acid Extractable Beryllium (Be)	2016/10/26	91	75 - 125	96	80 - 120	<0.20	ug/g	2.4	30		
4716460	Acid Extractable Boron (B)	2016/10/26	83	75 - 125	95	80 - 120	<5.0	ug/g	NC	30		
4716460	Acid Extractable Cadmium (Cd)	2016/10/26	95	75 - 125	101	80 - 120	<0.10	ug/g	7.8	30		
4716460	Acid Extractable Chromium (Cr)	2016/10/26	NC	75 - 125	102	80 - 120	<1.0	ug/g	4.0	30		
4716460	Acid Extractable Cobalt (Co)	2016/10/26	94	75 - 125	100	80 - 120	<0.10	ug/g	0.21	30		
4716460	Acid Extractable Copper (Cu)	2016/10/26	NC	75 - 125	101	80 - 120	<0.50	ug/g	8.8	30		
4716460	Acid Extractable Lead (Pb)	2016/10/26	NC	75 - 125	101	80 - 120	<1.0	ug/g	2.0	30		
4716460	Acid Extractable Molybdenum (Mo)	2016/10/26	90	75 - 125	101	80 - 120	<0.50	ug/g	4.2	30		
4716460	Acid Extractable Nickel (Ni)	2016/10/26	NC	75 - 125	100	80 - 120	<0.50	ug/g	3.5	30		
4716460	Acid Extractable Selenium (Se)	2016/10/26	89	75 - 125	101	80 - 120	<0.50	ug/g	1.7	30		
4716460	Acid Extractable Silver (Ag)	2016/10/26	98	75 - 125	105	80 - 120	<0.20	ug/g	NC	30		
4716460	Acid Extractable Thallium (TI)	2016/10/26	90	75 - 125	99	80 - 120	<0.050	ug/g	4.1	30		
4716460	Acid Extractable Uranium (U)	2016/10/26	92	75 - 125	100	80 - 120	<0.050	ug/g	2.2	30		
4716460	Acid Extractable Vanadium (V)	2016/10/26	NC	75 - 125	97	80 - 120	<5.0	ug/g	1.7	30		
4716460	Acid Extractable Zinc (Zn)	2016/10/26	NC	75 - 125	100	80 - 120	<5.0	ug/g	2.0	30		
4716478	Available (CaCl2) pH	2016/10/25			99	97 - 103			0.059	N/A		
4716498	Acid Extractable Antimony (Sb)	2016/10/25	91	75 - 125	99	80 - 120	<0.20	ug/g	NC	30		
4716498	Acid Extractable Arsenic (As)	2016/10/25	97	75 - 125	100	80 - 120	<1.0	ug/g	1.4	30		
4716498	Acid Extractable Barium (Ba)	2016/10/25	NC	75 - 125	99	80 - 120	<0.50	ug/g	4.1	30		
4716498	Acid Extractable Beryllium (Be)	2016/10/25	97	75 - 125	97	80 - 120	<0.20	ug/g	NC	30		
4716498	Acid Extractable Boron (B)	2016/10/25	89	75 - 125	93	80 - 120	<5.0	ug/g	NC	30		
4716498	Acid Extractable Cadmium (Cd)	2016/10/25	101	75 - 125	99	80 - 120	<0.10	ug/g	0.98	30		
4716498	Acid Extractable Chromium (Cr)	2016/10/25	NC	75 - 125	95	80 - 120	<1.0	ug/g	3.9	30		
4716498	Acid Extractable Cobalt (Co)	2016/10/25	NC	75 - 125	96	80 - 120	<0.10	ug/g	3.6	30		
4716498	Acid Extractable Copper (Cu)	2016/10/25	NC	75 - 125	102	80 - 120	<0.50	ug/g	1.6	30		
4716498	Acid Extractable Lead (Pb)	2016/10/25	NC	75 - 125	99	80 - 120	<1.0	ug/g	0.52	30		
4716498	Acid Extractable Molybdenum (Mo)	2016/10/25	94	75 - 125	98	80 - 120	<0.50	ug/g	NC	30		
4716498	Acid Extractable Nickel (Ni)	2016/10/25	NC	75 - 125	96	80 - 120	<0.50	ug/g	0.58	30		
4716498	Acid Extractable Selenium (Se)	2016/10/25	94	75 - 125	98	80 - 120	<0.50	ug/g	NC	30		
4716498	Acid Extractable Silver (Ag)	2016/10/25	98	75 - 125	102	80 - 120	<0.20	ug/g	NC	30		
4716498	Acid Extractable Thallium (Tl)	2016/10/25	88	75 - 125	96	80 - 120	<0.050	ug/g	NC	30		

Page 40 of 54

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: GV-TB-027107

			Matrix	Spike	SPIKED BLANK		Method Blank		RPD		Leachate Blank	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4716498	Acid Extractable Uranium (U)	2016/10/25	91	75 - 125	96	80 - 120	<0.050	ug/g	2.2	30		
4716498	Acid Extractable Vanadium (V)	2016/10/25	NC	75 - 125	96	80 - 120	<5.0	ug/g	4.1	30		
4716498	Acid Extractable Zinc (Zn)	2016/10/25	NC	75 - 125	110	80 - 120	<5.0	ug/g	1.2	30		
4716588	Acid Extractable Antimony (Sb)	2016/10/25	79	75 - 125	98	80 - 120	<0.20	ug/g	NC	30		
4716588	Acid Extractable Arsenic (As)	2016/10/25	95	75 - 125	102	80 - 120	<1.0	ug/g	NC	30		
4716588	Acid Extractable Barium (Ba)	2016/10/25	NC	75 - 125	98	80 - 120	<0.50	ug/g	6.2	30		
4716588	Acid Extractable Beryllium (Be)	2016/10/25	97	75 - 125	98	80 - 120	<0.20	ug/g	NC	30		
4716588	Acid Extractable Boron (B)	2016/10/25	91	75 - 125	95	80 - 120	<5.0	ug/g	NC	30		
4716588	Acid Extractable Cadmium (Cd)	2016/10/25	97	75 - 125	99	80 - 120	<0.10	ug/g	NC	30		
4716588	Acid Extractable Chromium (Cr)	2016/10/25	NC	75 - 125	102	80 - 120	<1.0	ug/g	4.0	30		
4716588	Acid Extractable Cobalt (Co)	2016/10/25	NC	75 - 125	101	80 - 120	<0.10	ug/g	0.97	30		
4716588	Acid Extractable Copper (Cu)	2016/10/25	NC	75 - 125	99	80 - 120	<0.50	ug/g	5.6	30		
4716588	Acid Extractable Lead (Pb)	2016/10/25	NC	75 - 125	101	80 - 120	<1.0	ug/g	5.3	30		
4716588	Acid Extractable Molybdenum (Mo)	2016/10/25	95	75 - 125	97	80 - 120	<0.50	ug/g	NC	30		
4716588	Acid Extractable Nickel (Ni)	2016/10/25	NC	75 - 125	100	80 - 120	<0.50	ug/g	1.7	30		
4716588	Acid Extractable Selenium (Se)	2016/10/25	93	75 - 125	98	80 - 120	<0.50	ug/g	NC	30		
4716588	Acid Extractable Silver (Ag)	2016/10/25	102	75 - 125	100	80 - 120	<0.20	ug/g	NC	30		
4716588	Acid Extractable Thallium (Tl)	2016/10/25	93	75 - 125	97	80 - 120	<0.050	ug/g	NC	30		
4716588	Acid Extractable Uranium (U)	2016/10/25	96	75 - 125	99	80 - 120	<0.050	ug/g	NC	30		
4716588	Acid Extractable Vanadium (V)	2016/10/25	NC	75 - 125	98	80 - 120	<5.0	ug/g	2.6	30		
4716588	Acid Extractable Zinc (Zn)	2016/10/25	NC	75 - 125	100	80 - 120	<5.0	ug/g	1.7	30		
4717063	1-Methylnaphthalene	2016/10/25	84	50 - 130	82	50 - 130	<0.0050	ug/g	NC	40		
4717063	2-Methylnaphthalene	2016/10/25	69	50 - 130	75	50 - 130	<0.0050	ug/g	NC	40		
4717063	Acenaphthene	2016/10/25	82	50 - 130	84	50 - 130	<0.0050	ug/g	NC	40		
4717063	Acenaphthylene	2016/10/25	75	50 - 130	80	50 - 130	<0.0050	ug/g	NC	40		
4717063	Anthracene	2016/10/25	78	50 - 130	84	50 - 130	<0.0050	ug/g	NC	40		
4717063	Benzo(a)anthracene	2016/10/25	88	50 - 130	89	50 - 130	<0.0050	ug/g	NC	40		
4717063	Benzo(a)pyrene	2016/10/25	88	50 - 130	90	50 - 130	<0.0050	ug/g	NC	40		
4717063	Benzo(b/j)fluoranthene	2016/10/25	82	50 - 130	88	50 - 130	<0.0050	ug/g	NC	40		
4717063	Benzo(g,h,i)perylene	2016/10/25	92	50 - 130	78	50 - 130	<0.0050	ug/g	NC	40		
4717063	Benzo(k)fluoranthene	2016/10/25	83	50 - 130	90	50 - 130	<0.0050	ug/g	NC	40		
4717063	Chrysene	2016/10/25	90	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40		

Page 41 of 54

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: GV-TB-027107

			Matrix	Spike	SPIKED BLANK		Method Blank		RPD		Leachate Blank	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4717063	Dibenz(a,h)anthracene	2016/10/25	89	50 - 130	83	50 - 130	<0.0050	ug/g	NC	40		
4717063	Fluoranthene	2016/10/25	93	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40		
4717063	Fluorene	2016/10/25	79	50 - 130	83	50 - 130	<0.0050	ug/g	NC	40		
4717063	Indeno(1,2,3-cd)pyrene	2016/10/25	91	50 - 130	84	50 - 130	<0.0050	ug/g	NC	40		
4717063	Naphthalene	2016/10/25	76	50 - 130	80	50 - 130	<0.0050	ug/g	NC	40		
4717063	Phenanthrene	2016/10/25	85	50 - 130	84	50 - 130	<0.0050	ug/g	NC	40		
4717063	Pyrene	2016/10/25	99	50 - 130	103	50 - 130	<0.0050	ug/g	NC	40		
4718485	Acid Extractable Antimony (Sb)	2016/10/26	84	75 - 125	98	80 - 120	<0.20	ug/g	NC	30		
4718485	Acid Extractable Arsenic (As)	2016/10/26	103	75 - 125	96	80 - 120	<1.0	ug/g	NC	30		
4718485	Acid Extractable Barium (Ba)	2016/10/26	NC	75 - 125	103	80 - 120	<0.50	ug/g	4.0	30		
4718485	Acid Extractable Beryllium (Be)	2016/10/26	103	75 - 125	97	80 - 120	<0.20	ug/g	NC	30		
4718485	Acid Extractable Boron (B)	2016/10/26	97	75 - 125	99	80 - 120	<5.0	ug/g				
4718485	Acid Extractable Cadmium (Cd)	2016/10/26	103	75 - 125	95	80 - 120	<0.10	ug/g	NC	30		
4718485	Acid Extractable Chromium (Cr)	2016/10/26	NC	75 - 125	98	80 - 120	<1.0	ug/g	0.72	30		
4718485	Acid Extractable Cobalt (Co)	2016/10/26	107	75 - 125	99	80 - 120	<0.10	ug/g	2.3	30		
4718485	Acid Extractable Copper (Cu)	2016/10/26	103	75 - 125	100	80 - 120	<0.50	ug/g	3.3	30		
4718485	Acid Extractable Lead (Pb)	2016/10/26	103	75 - 125	97	80 - 120	<1.0	ug/g	0.33	30		
4718485	Acid Extractable Molybdenum (Mo)	2016/10/26	104	75 - 125	96	80 - 120	<0.50	ug/g	NC	30		
4718485	Acid Extractable Nickel (Ni)	2016/10/26	104	75 - 125	99	80 - 120	<0.50	ug/g	2.5	30		
4718485	Acid Extractable Selenium (Se)	2016/10/26	106	75 - 125	100	80 - 120	<0.50	ug/g	NC	30		
4718485	Acid Extractable Silver (Ag)	2016/10/26	104	75 - 125	96	80 - 120	<0.20	ug/g	NC	30		
4718485	Acid Extractable Thallium (TI)	2016/10/26	103	75 - 125	95	80 - 120	<0.050	ug/g	NC	30		
4718485	Acid Extractable Uranium (U)	2016/10/26	103	75 - 125	93	80 - 120	<0.050	ug/g	2.3	30		
4718485	Acid Extractable Vanadium (V)	2016/10/26	NC	75 - 125	99	80 - 120	<5.0	ug/g	1.4	30		
4718485	Acid Extractable Zinc (Zn)	2016/10/26	NC	75 - 125	100	80 - 120	<5.0	ug/g	3.4	30		
4718486	Available (CaCl2) pH	2016/10/26			98	97 - 103			0.17	N/A		
4718914	Leachable Arsenic (As)	2016/10/27	97	80 - 120	102	80 - 120			NC	35	<0.2	mg/L
4718914	Leachable Barium (Ba)	2016/10/27	NC	80 - 120	97	80 - 120			NC	35	<0.2	mg/L
4718914	Leachable Boron (B)	2016/10/27	94	80 - 120	99	80 - 120			NC	35	<0.1	mg/L
4718914	Leachable Cadmium (Cd)	2016/10/27	100	80 - 120	98	80 - 120			NC	35	<0.05	mg/L
4718914	Leachable Chromium (Cr)	2016/10/27	97	80 - 120	100	80 - 120			NC	35	<0.1	mg/L
4718914	Leachable Lead (Pb)	2016/10/27	94	80 - 120	97	80 - 120			NC	35	<0.1	mg/L

Page 42 of 54

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: GV-TB-027107

			Matrix	Matrix Spike		SPIKED BLANK		Method Blank		RPD		Blank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4718914	Leachable Selenium (Se)	2016/10/27	99	80 - 120	101	80 - 120			NC	35	<0.1	mg/L
4718914	Leachable Silver (Ag)	2016/10/27	95	80 - 120	94	80 - 120			NC	35	<0.01	mg/L
4718914	Leachable Uranium (U)	2016/10/27	98	80 - 120	100	80 - 120			NC	35	<0.01	mg/L
4720302	Leachable Mercury (Hg)	2016/10/27	113	75 - 125	110	80 - 120	<0.0010	mg/L	NC	25	<0.0010	mg/L
4720772	Leachable Benzo(a)pyrene	2016/10/28	93	50 - 130	94	50 - 130	<0.10	ug/L	NC	40		
N/A = Not A	pplicable											
Duplicate: I	Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.											

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

DST Consulting Engineers Inc Client Project #: GV-TB-027107

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

auistin Camiere

Cristina Carriere, Scientific Services

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

1ax	Xam	Maxxam Analytics International Corpor	ation o/a Maxxam Ana	alytics												CHAIN	OF CUS	TODY RECORD		
A Burgeren Variation	es Oroup Campany	6740 Campobello Road, Mississauga,	Ontario Canada L5N 2	2L8 Tel (905) 817-5	700 Toll-free:800	-563-6266 Fax	(905) 817-	5777 www.r	naxxam.ca			-					1	I abaantaari	P Inc. Only:	age 1 of
	INV	OICE TO:			REPO	RT TO:					_	PROJE	CT INFOR	MATION:				Laboratory	Use Only:	and and the
pany Name #4	47464 DST Cor	sulting Engineers Inc 3-	Company	y Name:						Quotation	#	B618	302	¥	1			Maxxam Job #:	Bottle)rder #:
ition Ar	ccounts Payable		Attention	Geoffre	ey Lake	1.1				P.O.#							-			
88	85 Regent Street	Suite 3-1B	Address							Project.						45			- 581	859
S	udbury ON P3E	5M4				2 C				Project Na	ame	-					- 1	COC #:	Project M	lanager:
(7	705) 523-6680	Fax: (705) 523-669	Tel:	(705) 5	23-6680 x258	Fax				Site #:							1 1 11		Augustyn	a Dobos:
ap	p@dstgroup.com		Email	glake@	dstgroup.com	1				Sampled	By				141			C#581859-01-01		
IOE REGUL	ATED DRINKING	WATER OR WATER INTENDE	D FOR HUMAN C	ONSUMPTION	MUST BE				ANA	ALYSIS RE	QUESTER	PLEASE	BE SPEC	IFIC)				Turnaround Time (T	AT) Required:	
	- SUBMITTED OI	N THE MAXXAM DRINKING WA	TER CHAIN OF	CUSTODY			9		5	54	0							Please provide advance n	otice for rush projects	
Regulation 1	153 (2011)	Other Regulati	ons	Special In	structions	2ge	Ŧ		1	2	B	t,					Regular (Standard) TAT:		
	s/Park Medium/	Fine CCME Sanitary Ser	wer Bylaw			< G S	5		t	2.	2	21					Standard TA	T ± 5.7 Working days for most las	fe	
ible 2 Ind	d/Comm Coarse	Reg 558 Storm Sewe	r Bylaw			Cr Cr	5		10	5	Ü	R	15				Please note	Standard TAT for certain lasts su	ch as 800 and Dinvins/F	urant am
ble 3 🗌 Ag	ri/Other For RSC	MISA Municipality				Hg H			5	S	0	Q	. 1				days - conta	t your Project Manager for details		
ble		PWQO				erec Is /	2	1000		21		5	N	ч			Job Specif	ic Rush TAT (if applies to entir	e submission)	
		Other				Filte	2	T	2	2	C	G	L	T			Date Requin	ed:	Time Required	
	Include Criteria	on Certificate of Analysis (Y/N)?		1		M	3	0	e	4	5	E	Q	T		52.	Rush Confir	mation Number	(call lab for #)	
Sample Ba	arcode Label	Sample (Location) Identification	Date Sampler	Time Sampled	Matrix	μ. 	H		2	4	F	S	5	2			of Bottles		Comments	
			co '		-							1		2.2	1		á –	ŕ		
		CS1-26	Oct 13 .	0900	5		X	X						•			1			
			2016	7	-		1.1										1 × 1			
		CS1-27	OLT 12	16.00	<			1	~		1						E			
		1 million 2011 1 million 2011	2016	1000	1		X	X	N	X	×						5			
			0 3		-													2,		
		CS1-28	Vals	0910	S		X	X									1			
			2010	Contraction.			14	N						-				D	to Cudh	
		CS1-29	Oct 13	0915	C	1								1 1			1	Received	IU ZUAN	ury
			2016	0115	2		X	X									1			
					<	,													and many loss from a linear	
		CS1-30	il	0920	C		X	X							2 de 1	1111	1	Mark Avenue and a state of the		
					210		1	1			-				1.2	10.36	34			
		CS1-31	4	0230	<		V	X								10000	11			
			n	0130)		1	N								8		1		
		001.00		Daulo	C								1		- 120		.,1	17-Oct-	16 11:14	
		051-32	u	0440	\supset	1 . A	X	X	X	X	X				1	-	17	Augustume D	ohorz	
					-					1	/	-	-	-				Augustylla D		1
		CS1-33 *	11	0950	5	3	V	X									2)
			R	0150	\mathcal{I}		N	N										B6M4185		/
		CS1-34		10.01	5		101	1.0									2	VD7 DVV	11/7	
		001-04	ч	1000	0		X	X									2	KP/ ENV	-1167	
					1			1									.1			
		CS1-35	U	1010	5		Y	X				X	X	X			4			
	r				~		1	14				1	1					100 Mar		
REL	INQUISHED BY: (SA	Date: (YY/MM/DD) T	ime	RECEIV	ED BY: (Signat	ure/Print)		Date	: (YY/MM/	(00	Time		# jars used not submit	and			Laboratory Use On	Custody Seal	Yes
5	- Unelill	Somwhodder 16/	10/17 10	00 151	/Bro	Uka Fro	mer		, 2011	1011	71	1.74				Ime Sens	tive T	TLIC 7 2 7	Present	105
~				dill	the AI	18 un	a		0.1	diele		0.17					2.	1172	Intrast	-
				ASU	11124 S	ukuu	TK'		2010	0110/1	8 1	0:13	-		-		-	Liter C	Interes Marca	Valle
CHE DEDEMARCH	BILITY OF THE RELINC	UISHER TO ENSURE THE ACCURACY C	F THE CHAIN OF CUS	TODY RECORD AN	INCOMPLETE CH4	UN OF CUSTOD	MAY RES	ULT IN ANA	LYTICAL T	AT DELAYS	SA	MPLES MU	IST BE KE	PT COOL (<	10° C) FR	OM TIME	OF SAMPLIN	S UNTIL DELIVERY TO MAXXA	White: Maxxam	T Ellow:

Image: Product ID (Conclusion) Product To Monotony Line (Conclusion)			or Hor Gampobeno Ro	ad Mississauga (Untario Canal	da LSN 2	ca tel (905) 817-	5700 Toll-free 800	0-563-6266 Fax	c (905) 817-	5777 www.	такхат с	1									Page 2 of
Market Distance Distance Distance Distance Distance Distance Market Distance Distance Distance Distance Distance Distance Distance Market Distance Distance Distance Distance Distance Distance Distance Distance Market Distance Distance Distance Distance Distance Distance Distance Distance Distance Market Distance Distance Distance Distance Distance Distance Distance Distance Distance Market Distance Distance Distance Distance Distance Distance Distance<			NVOICE TO:					REPO	RT TO:						PROJE	CT INFORM	ATION:				Laboratory Use	Only:
Non-	mpany Na	me #4/464 DSTC	onsulting Engineer	s Ing_s		Company	Name:						Quotation	1#	B618	02	e 1.				Maxxam Job #:	Bottle Order #:
Both Highen Solid	ttention:	Accounts Payabl	le		/	Attention	Geoffr	ey Lake	1.1.1				P.O.#									
Statuty Unit Cost Page Manager Image Manager	ddress	885 Regent Stree	et Suite 3-1B		A	Address							Project						4) (4)			581859
mail		Sudbury ON P3E	= 5M4						0				Project N	ame							COC #:	Project Manager:
Image: The second sec	'el	(705) 523-6680	Fax.	705) 523-669	10 1	Tel	(705)	i23-6680 x258	Fax:				Site #					<		I COMP		
Mode Recurstor Subscription Transaction Transaction <t< td=""><td>mail:</td><td>ap@dstgroup.co</td><td>m</td><td></td><td>E</td><td>Email:</td><td>glake(</td><td>dstgroup.con</td><td>n</td><td></td><td></td><td></td><td>Sampled</td><td>By</td><td></td><td></td><td></td><td></td><td></td><td>300000</td><td>C#581859-02-01</td><td>Augustyna Dobesz</td></t<>	mail:	ap@dstgroup.co	m		E	Email:	glake(dstgroup.con	n				Sampled	By						300000	C#581859-02-01	Augustyna Dobesz
Image: State of the s	MOE RI	EGULATED DRINKING SUBMITTED (G WATER OR WAT	ER INTENDED	D FOR HU	MAN CO	ONSUMPTION	I MUST BE				AN	ALYSIS RE	QUESTED	(PLEASE	BE SPECIF	IC)	_		Contractory of	Turnaround Time (TAT) R	lequired:
The set of th	Page	lation 152 (2011)	CAN BE AND	0.0	I EN OTAN		001001		(e)	5		N	(1)			4				Regular (S	Please provide advance notice to Standard) TAT:	or rush projects
Table 0 Binder Trie - Strategy Binder Trie - St	Table 1	Res/Res/		Other Regulatio	ons		Special II	structions	= cic	7		¥.	Ž	Q.	8	×.				(will be applie	ed if Rush TAT is not specified)	X
The set is a set of year in	Table 2			Sanitary Sew	ver Bylaw				ese C	E		E	2	5	S	1				Standard TA	T = 5-7 Working days for most tests	10
The manual process The Standard Process of the Standard Proces of the Standard Process of the Standard P	Table 3	Agri/Other For RS		Storm Sewer	Bylaw				g / (50		2	R	5	1	12			1	Please note:	Standard TAT for certain tests such as B	OD and Dioxins/Furans are > :
Image: Construction of Certification of Cer	Table		D PWQ0			-			pa H /	-		-	0	0	4-	1	to			days - contac	It your Project Manager for details.	
Include Criteria on Certificate of Analysis (VNP) The Bengion Marrie Service Lation Service Lation<			Other						tals	S	T	8	~	0		C.	T			Job Specif	Ic Rush TAT (if applies to entire subm	nission)
Barriel Barriel Law Data Barriel Marx Barriel Marx Law Law <thlaw< thr=""> CS1-33 <t< td=""><td></td><td>Include Criteria</td><td>a on Certificate of A</td><td>alusic (V/M)2</td><td></td><td></td><td></td><td></td><td>Me</td><td>T</td><td>0</td><td>J</td><td>2</td><td>7</td><td>N</td><td>e</td><td>4</td><td></td><td></td><td>Bush Confirm</td><td>nd Tim</td><td>ne Required</td></t<></thlaw<>		Include Criteria	a on Certificate of A	alusic (V/M)2					Me	T	0	J	2	7	N	e	4			Bush Confirm	nd Tim	ne Required
Description	Sar	nole Barcode Label	Sample (Location)	Identification	1 200		THE CONTRACT		- UL	A		1-	J	P.	0	di la	0				(0	all lab for #)
CS1-36 Ox 10 to IO 20 S V			ownpre (cocarion)	communication	Date Sar	mpled	Time sampled	Matrix					2		-	~		1	1522	# of Bottles	Comme	ents
CS1-37 II IO25 S V	t		CS1-3	36	Uck 13	ella	1020	\leq		V	/				1	1.	1			1		
CS1-37 II IO25 S V V V V 4 CS1-38 II IO30 S V V V V 4 CS1-38 II IO40 S V V V V 4 CS1-39 II IO40 S V V V 1 1 CS1-40 IV IO50 S V V V 1 Received in Sudbury CS1-41 IV IO00 S V V V 2 2 2 CS1-42 IV IVIO S V V V 2 2 2 CS1-43 IV IVIO S V V V 2 2 2 2 CS1-43 IV IVIO S V V V V 2 2 2 2 CS1-44 IVIO IVIO V V V V 3 3 2 2 2 2 2					2	010		-		- 10 A							~	. 1		1		
Image: CS1-38 Image: CS1-39 Image: CS1-39<	2		CS1-3	37	10		1025	<		1	1	÷.			1	1	1				3	
CS1-38 I [030] S I					H		1005	2		V	V				V	1				4		
CS1-33 N [0.50] S V V 4 CS1-39 I [0.40] S V I 1 CS1-40 IV (050) S V I 1 CS1-40 IV (050) S V I 1 CS1-40 IV (050) S V I I CS1-41 IV (050) S V I I CS1-42 IV IV V IV IV IV CS1-43 IV IV V IV IV IV CS1-43 IV IV IV IV IV IV CS1-44 IV IV IV IV IV IV IV CS1-44 IV								~		1					1	1	/	-		1		
CS1.39 II IO40 S V II II CS1.40 II IO50 S V II II CS1.40 II IO50 S V III III CS1.41 III IIIO0 S V IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2		CS1-3	8	ıt		1030	S		1	1		80		/	1	1			4		
CS1-39 II IO40 S V I I CS1-40 II IO50 S V I I Received in Sudbury CS1-41 II IO00 S V I I Received in Sudbury CS1-41 II IIO0 S V V I I CS1-42 II IIO S V V I I CS1-43 II IIOO S V V I I CS1-43 II IIOO S V V I I CS1-43 II IIOO S V I I I CS1-44 II IIOO S V I I I CS1-45 Ocg14 IOIO S V I I I Would W Date: (YVIMMOD) Time RECEIVED BY: (Signature/Print) Date: (YVIMMOD) Time I I Would W Mathemature/Propertities IOIO I I I											-									<i>r</i>		
CS1-40 I IOS V V IOS IOS<	1		CS1-3	9			1040	S		1	/									1		
CS1-40 II IOSO G V II II Received in Sudbury CS1-41 II IIOO G V IIOO G V IIOO IIOO G IIOO IIOO </td <td></td> <td></td> <td></td> <td></td> <td>11</td> <td></td> <td></td> <td>2</td> <td></td> <td>V</td> <td>V</td> <td></td>					11			2		V	V											
CS140 I IOS0 S V I I Received in Sudbury CS141 II IIOO S V IIOO II	5		CS1.4	0	_			0		/	/							1	-			
CS141 II IIOO S V IIOO II			0314	.0	10		1050	5		V	\checkmark							3 (j. 17)	188.0	. 1	Received in	Sudhury
CS1-41 II II 00 S V V II II II III III III III III III III III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII								4.52						-				- 100	1119		VECCIAED III	JUUDUIY
CS1-42 II U10 S V V V V R Z CS1-43 II IIZO S V V V II R Z CS1-43 II IIZO S V V III III CS1-43 II IIZO S V III III IIII CS1-44 II IIZO S V IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	R.		CS1-4	1	16		1100	5		1/	/					. 1				1		÷.
CS1-42 II U10 Sint V V Sint Z CS1-43 II IIZO Sint V IIZO IIZO CS1-43 II IIZO Sint V IIZO IIZO CS1-43 II IIZO Sint V IIZO IIZO CS1-44 II IIZO Sint V IIZO IIZO CS1-44 II IIZO Sint V IIZO IIZO CS1-45 OggiZ IGIO Sint V IIZO III CS1-45 OggiZ IGIO Sint V IIZO III VMULUE Date: (YYIMM/DD) Time RECEIVED BY: (Signature/Print) Date: (YYIMM/DD) Time WorldW Sint VIII II/IO Signature/Print) Date: (YYIMM/DD) Time WorldW Sint VIIII Date: (YYIMM/DD) Time IIIII IIIIII WorldW Sint VIIII II/IO Sint VIIIII IIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	_				u	-		/		V				_				Î			- is minimum about an	and had a sea a
CS1-43: II II ZO S V V V V II II CS1-43: II II ZO S V II II II CS1-44 II II ZO S V III II III CS1-44 II II ZO S V III III III CS1-45 Oct Z III III III III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			CS1-4	2			1110	1	A	./		1	/					100		1		*
CS1-43· II II ZO S V II II CS1-43· II II ZO S V II II CS1-44 II II ZO S V II II CS1-44 II II ZO S V III III CS1-45 Oct 2 III III III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				-	11		1110	5	. ₹.	V	V	V	V	V				191	-184	Z		100
CS1-43: II II ZO S V II II CS1-43: II II ZO S V II II CS1-44 II II ZO S V II II CS1-44 II II ZO S V II II CS1-45 Oct II III III III III III III CS1-45 Oct III III III IIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				<i></i>		-		-		1	/				_							r11
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8		CS1-4	3-	fi -		1120	5	17	V	1							- 1		1		
CS1-44 I I/30 S V I CS1-45 O g_1Z I/610 S V I I CS1-45 O g_1Z I/610 S V I I RELEVACUISHED BY: (stinature/Prigt) Date: (YY/MM/DD) Time # jars used and int submitted I Vol.LW Small I/61/0/17 I/000 S- Brazer Time Senature # jars used and int submitted Time Senature Custody Seal Yes No The RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE COURSE THE	-				-					1											9	
CS1-45 O gr Z 2004 1010 S V Image: (YY/MM/DD) S Image: (YY/MM/DD) S Image: (YY/MM/DD) S Image: (YY/MM/DD) Time Bias used and not submitted Image: (YY/MM/DD) Time Bias used and not submitted Image: (YY/MM/DD) Time Castody Seal Yes Not Image: The RESPONSED TV OF THE REVIDENCE THE COURSE TH	0		CS1-4	4	1		1130	C			./									1		
CS1-45 Orginature/Print Date: (YY/MM/DD) Time RECEIVED BY: (Signature/Print) Date: (YY/MM/DD) Time Image: State of the second state of the seco	_				6		1.20	2		v	V		-14									
Details Orginature/Printy Date: (YY/MM/DD) Time RECEIVED BY: (Signature/Print) Date: (YY/MM/DD) Time # jars used and not submitted Multiple Smith (III) IIII) Date: (YY/MM/DD) Time RECEIVED BY: (Signature/Print) Date: (YY/MM/DD) Time # jars used and not submitted Laboratory Use Only Multiple Smith (III) IIII) Date: (YY/MM/DD) Time # jars used and not submitted Time Sensitive Custody Seal Yes N Multiple Smith (III) USA Smith (IIII) Smith (IIII) Date: (YY/MM/DD) Time Sensitive Time Sensitive Custody Seal Yes N The RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE COURSE THE COUR	2		CSL	5	_	-		6		1	1											1
Dete: Date: (Y/MM/DD) Time RECEIVED BY: (Signature/Print) Date: (Y/MM/DD) Time # jars used and not submitted Laboratory Use Only Workful Workful I/// / / / / / / / / / / / / / / / / /			631-4	5	0	CT 12	1010	\supset		V	V									3		
Worked Similar Image: The Responsibility of the Residue The Residue The Responsibility of the Responsing	-	RELINQUISHED BY: 19	anature/Print)	Date: (Y	Y/MM/DD)	Tim	ne	RECEIVE	D BY: (Signate	(Print)		Data	/////							5		
Image: Normal with the Responsibility of the Residue to ensure the social conception region of the Residue to ensure the social conception region of the residue to ensure the social conception region of the residue to ensure the social conception region of the residue to ensure the social conception region of the residue to ensure the social conception region of the residue to ensure the social conception region of the residue to ensure the social conception region of the residue to ensure the social conception region of the residue to ensure the social conception region of the residue to ensure the social conception region of the residue to ensure the social conception region of the residue to ensure the social conception region of the residue to ensure the social conception region of the residue to ensure the social conception region of the residue to ensure the social conception region of the residue to ensure the social conception region of the residue to ensure the social conception region of the residue to ensure the residue to ensur	Ĩ	SIAL IGH	Somethin 1/11	1/10	112	inn	1 72	12	O BT. (Signati	ure/rint)		Date:	(TY/MM/D	0)	Time	# j	ars used a of submitte	d .			Laboratory Use Only	
THE RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE SOCIED ON DECOMPOSITICO OF THE SOCIED ON DECOMPOSITICO OF THE SOCIED		Sumaly	Wndeci	16/10	(IT	1000	0 0-F	Drug	dey 1-10	gper		1016	/10/1	17	11.14			D	me Sensi	tive Ter	nperature (°C) on Receipt	stody Seal Yes N
THE RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE SOURDACY OF THE CHANNER OF STREAM OF THE SOURDACY OF THE SO				12.			case	will N	unu	un		2011	40/10		1011	2				6.	1 1 2 200	Present
	IS THE RES	PONSIBILITY OF THE RELINC	QUISHER TO ENSURE TH	E ACCURACY OF	THE CHAIN C	AF CUSTO	A JI	1114	Surqu	INVE		Lerp	10/10		10.1	>	1993 A. 1993	-			2,2,2	Intact 🗸

Amires	Section Brand Correlation	6740 Campobello Road, Mississauga,	Ontario Canada L5N	2L8 Tel (905) 817-5	5700 Toll-free BOB	563-6266 Fax	(905) 817-	5777 www	таххат.са	3									Page 3 of	
	IN	IVOICE TO:			REPO	RT TO:						PROJE	CT INFOR	MATION:				Laboratory U	se Only:	
ipariy Nar	ne #47464 DST Co	onsulting Engineers Inc.	Compan	y Name		19				Quotation	1#:	B618	02				Maxxam Job #: Bottle Order			
ntion.	Accounts Payabl	e	Attentior	Geoffre	ey Lake				_	P.O.#									T TELEVISION OF THE	
55	885 Regent Stree	et Suite 3-1B	Address							Project:						+			581859	
	Sudbury ON P3E	5M4						_		Project N	ame:						1	COC #:	Project Manager:	
	(705) 523-6680	Fax (705) 523-669	90 Tel	(705) 5	23-6680 x258	Fax.				Site #:									Augusturga Dribosz	
ail	ap@dstgroup.co	m	Email	glake@	@dstgroup.con	n				Sampled	Ву	_			(v)			C#581859-03-01	nagasiyna boboac	
MOE RE	EGULATED DRINKING SUBMITTED (G WATER OR WATER INTENDE	D FOR HUMAN (CUSTODY	IMUST BE				AN	ALYSIS RE	QUESTED) (PLEASE	BE SPECI	FIC)		-	ALC: NOT THE OWNER	Turnaround Time (TA Please provide advance not	T) Required: ice for rush projects	
Requi	ation 153 (2011)	Other Regulat				(e)	3			13			14	-			Regular (S	standard) TAT:	And the Descal Later Activation	
Table 1	Res/Park Mertium		ons D days	Special In	istructions	< cic	E		5	2	Q.		×				(will be applie	id if Rush TAT is not specified).		
Table 2	Ind/Comm Coarse	Reg 558 Storm Seve	r Bulaw			Gr	52		E	2	-						Standard TA	\dot{T} = 5-7 Working days for most tests	7	
Table 3	Agri/Other For RS	C MISA Municipality	- appear			d (ple	~		U	6	3					· ·	Please note: days - contac	Standard TAT#6r certain tests such t your Project Manager for details.	as BOD and Dioxins/Furans are >	
Table	- 1	PWQO				s / I	2		2	0	0			1 (e.)			Job Specifi	c Rush TAT (if applies to entire	submission)	
		Other				Filte	0	t	2	9	2						Date Require	d	_ Time Required	
	Include Criteria	on Certificate of Analysis (Y/N)?		1		≥ N N	J	Q	2	1	2					- 23 -	Rush Confirm	nation Number	(call int for #)	
San	npie Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	L.	4		F	2	2.	de				· ^	# of Bottles	C	omments	
		CS1-46	Oct 13	1620	5		1	1	1	./	./			-	-	1.0	-7	Ţ		
			2016	10 20	/		~	V	V	V	V				÷		6			
		CSTAT CW															5	N) C		
		10.																No -	DAMPLE	
		CS148 5																×1.	C	
							-											100	Sample	
6		CS149 5			- N													ikla	SAMAIE	
-		2 60																100	Stringe	
i l		CS150													a der	143.0		No	SAMPLE	
-		10000 100	Q-13	-	212										1,6	2175	12	100	210 4	
8		CS2-12	7010	0900			\checkmark													
			0.0	0000	1.5.4			/	-								1			
		CS2-13	Uall	1300	5	\$ ¥	1	V							- 25 I		12			
			2010				1	1									-			
E.		CS2-14	11	1310	5			1									7	Dest	1.1	
-				Received and	2				/								V	Keceive	I IN Sudbury	
6	¥	CS2-15	N.	13 7.0	5			1									7		J	
1			250				-	1		24							C		and the second second second	
		CS2-16	14	13 30	5		V										7			
_	1	1		10 20	/												C		4.3	
	RELINQUISHED BY: (SH	gefature/Print) Date: (YY/MM/DD) T	ime	RECEIV	ED BY: (Signat	ture/Print)		Date	: (YY/MM/E	(00)	Time	#	jars used a not submitt	and			Laboratory Use Only		
_	Diwondell	S wodel 6/1	0/1 + 10	08 24	1-11	Sladley	Lappe	~	, 201	10/1	71	1.14				lime Sensi	tive Ter	nperature (°C) on Receipt	Custody Seal Yes N	
				Ask	ithe R	ilker	mai	0	204	1. 1.		10 11	2				£,5	170 212,20	Intact	
IS THE RES	PONSIBILITY OF THE RELIN	OUISHER TO ENSURE THE ACCURACY O	E THE CHAIN OF CUS		MOHT TE CHA	IN OF CUSTOD	quu		KOR	10/1	1 - B	(Drl	2					6.6164		

ABurns	Contraction Contractor	6740 Campobello Road, Mississauga, (Ontario Canada LSN 3	2L8 Tel (905) 817-5	700 Toll-free 800	-563-6266 Fax	(905) 817-	5777 www	maxxam.ca	3								rob / neoonb	Page 4 of
		NVOICE TO:			REPO	RT TQ:						PROJEC	CT INFORM	ATION:				Laboratory Use	Only:
ompany Nar	e #47464 DST C	onsulting Engineers Inc 🖡	Compan	y Name:						Quotation	r#:	B618	02	z.				Maxxam Job #: 👘 😁	Bottle Order #:
ttention.	Accounts Payab	le	Attention	Geoffre	ey Lake					PO#									
ddress	885 Regent Stre	et Suite 3-1B	Address							Project.									581859
	Sudbury ON P3	= 5M4				40				Project N	ame							COC #:	Project Manager:
el.	(705) 523-6680	Fax (705) 523-669	0 Tel:	(705) 5	23-6680 x258	Fax				Site #					. K				Augustyna Dobosz
mail:	ap@usigroup.co		Email	glake@	astgroup.con	n				Sampled	By				. 90			C#581859-04-01	
MOE RE	GULATED DRINKIN SUBMITTED	G WATER OR WATER INTENDED ON THE MAXXAM DRINKING WA	TER CHAIN OF	CONSUMPTION	MUST BE		3		AN	ALYSIS RE	QUESTED	PLEASE	BE SPECIF	IC)			VIE AS	Tumaround Time (TAT) Please provide advance notice	Required: or rush projects
Regu	ation 153 (2011)	Other Regulation	ons	Special In	structions	cle)	3		S	12	0		5				Regular (S	Standard) TAT:	N
Table 1	Res/Park Mediu	m/Fine CCME Sanitary Sev	ver Bylaw		and donoria.	< ar	2x		7	9.	2		- e1 ⁸				(will be applie	ed if Rush TAT is not specified);	
Table 2	Ind/Comm Coarse	Reg 558 Storm Sewer	Bylaw			ease			E	2	3					à.	Standard TA	T = 5-7 Working days for most tests.	
Table 3	Agri/Other For R	SC MISA Municipality				d) p	2		5	3	2		•				days - contac	t your Project Manager for details.	SOD and Dioxins/Furians are > 5
Table	-	PWQ0				erec	5		-	-	~				- 1		Job Specif	ic Rush TAT (if applies to entire sub	mission}
_		Other				d Fit	3	-	E	9	2				* - s		Date Require	d Ti	ne Required:
_	Include Criteri	a on Certificate of Analysis (Y/N)?				l lai	A	T	S	3	1						Rush Contin	nation Number	call lab for #)
San	ple Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix			A	12	P	R				10 - Juli		# of Bottles	Com	ients
8		CS2-17	Oca 12	13 50	5			/						5 ^{11 0}			10	1	
			2016		/			V.							1		1 -		
	e	CS2-18	u	1400	5		1	/									1	1. d	
					-												1	2	
ġ.		CS2-19	15	14 20	5			1							-		2		
		No a state of the late of the late	0.3				1	- /			/								
		CS2-20	2016	13:10	5.		V	V	~	V	1						Z		
1		CS3-11	OUTIZ	10.00	5		1	1								27	1		
-		510907 1070	2010	1000	2										0.67	14	. 1	Deceived in	Sudhury
8		CS3-12	is a	10 10	5		1	1	1						1.0	Q115	2	Keceiven u	Juddary
				10	<u> </u>												~	4.1	
 1 		CS3-13	10	1020	S	÷.,	1	1							2.		21	and and and and a second se	
			-		-				-							3	e).		P
		CS3-14 -	ic.	1030	S		V	~)		
			P.												-				
8 I.		CS3-15	17	1040	S		V	V									1		
_			u					-		- 14									
		CS3-16	10	1050	S		V	1									1		
	r						-						4				1		K 0
-	RELINDUSHED BY: (S	unature/Print) Date: (1	Y/MM/DD) T	ime //	RECEIV	ED BY: (Signat	ure/Print)		Date	: (YY/MM/	(DC)	Time	# j	ars used an ot submitte	nd d			Laboratory Use Only	
	NAM	Down dell 16/1	0/17 10	00 5-1	15.	indley F	Emp.e		, 201	6/10/	17	11.14	K I		T	me Sensi	Ter	mperature (°C) on Receipt	Discourt Yes N
	(Ash	the Ru	allina	Lille	N	~ 1	1 1	0	1 4 17	2				C.	2.2.2"	Integrity V
I IS THE RES	PONSIBILITY OF THE RELI	KOUISHER TO ENSURE THE ACCURACY OF	THE CHAIN OF CUR		HOHZ 114	8///C	UL4		201	6/10/1	0	10,1	2	0001	and the second				nuadi 🖌

	1	NVOICE TO:			REPO	DRT TO:			(Institution of the	T		PROJEC	TINEOR	AATION-			1	Laboratori Une (Page 5 of
ompany Nam	#47464 DST C	onsulting Engineers Inc.	Comp	n. Manual		1.						R6180	12	MATION.				Laboratory Use C	Shiy:
ttention:	Accounts Payab	le	- Compa	Geoffre Geoffre	ev Lake					Quotation	n#:	00100	12 .		•			Maxxam Job #:	Bottle Order #:
ddress	885 Regent Stre	et Suite 3-1B	Addres	*	ay name					PO#			-			é.	-		
	Sudbury ON P3	E 5M4								Project						- A-	-	COC #:	581859
et:	(705) 523-6680	Fax (705) 523-669	0 Tel	(705) 5	523-6680 x25	8 Fax				Project N	ame						1		Project manager
nail	ap@dstgroup.co	m	Email	glake@	dstgroup.com	m				Sampled	By						- 1000	C#581850.05.01	Augustyna Dobos
MOE RE	GULATED DRINKIN	G WATER OR WATER INTENDED	FOR HUMAN	CONSUMPTION	MUST BE				AN	ALYSIS RE	EQUESTED	PLEASE 8	BE SPECIF	IC)			1	Turnaround Time (TAT) Re	equired
CAPS N	SUBMITTED	ON THE MAXXAM DRINKING WA	TER CHAIN OF	CUSTODY		(S			15							A-SHOTA	Please provide advance notice fo	r rush projects
Regul	ation 153 (2011)	Other Regulation	ons	Special Ir	nstructions	sircle	Ŧ		5	x	0		1				Regular (S	itandard) TAT:	
Table 1	Res/Park Mediu	m/Fine CCME Sanitary Sew	er Bylaw			Se c	to		t	2	-		S)				Standard TAT	T = 5-7 Working days for most tests	
Table 2 Table 3	Ind/Comm Coars	e Reg 558 Storm Sewer	Bylaw			plea 3 / C	2		S	(A)	3		÷ .			6	Please note.	Standard TAT for certain tests such as BI	OD and Dioxins/Furans are
Table		MISA Municipality		1) pa	X		2	3	B	100		*	•		days - contact	t your Project Manager for delails.	
	_	Otter				itter	-	T	2	2	2						Job Specific	c Rush TAT (if applies to entire subm	nission)
_	Include Criteri	a on Certificate of Analysis (V/N)?		-		Me	Q	0	20	2	2					~	Rush Confirm	nation Number	le required
Sam	ple Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	- #	14		5	4	10						# of Bottles	(ca	all lab for #)
			Q. 1 17	Time outpicts			- /	1			<u></u>							Comme	1115
		CS3-17	7.14	1010	>		V	V					- 8		1		1	1	
			Curt				-	1	-						<u></u>		1.2.1		
	c	CS3-18	10	1120	S		V										· ·	· *	
				1120	-													i de la companya de l	
		CS3-19			S		1	1							12			2. C	
			C C	1130															
		CS3-20	-	i m	2		1	1										Received in	a Sudbury
				1140	10		V	V										necciveun	1300001
		CS3.21	10	11:50	0		1	1		_									
		033-21	1.	1150	5		~	V							1	聴い。		The state of the s	
				12:00	***		1	/							36.4	185	-		
		CS3-22	10	1200	S			V											
-		101		-	-			_											
		CS323 5 W				8.10		-9							12	3		No SA	MALE
		1 - 1			8	~		-							_	्यान्तु		100 1	1. 4.00
		CS2-24 500				17												Ala Cam	DIE
		/														1.27		100 21	
		CS3-25 5W																11. 2.	DIF
										-164								No Am	100
		CS3-26 5~																11 0	i.c
	F																- 2	No Sum	Le
	RELINQUIBIED BY: (SI	grature/Print) Date: (Y	Y/MM/DD)	Time	RECEIV	ED BY: (Signati	ure/Print)		Date	(YY/MM/D	(00)	Time	#	ars used	and			Laboratory Use Only	
<	Wildel	woddel 16/1	0/17 10	00 /51	Ba	db. Fr	mier	23	1011	lolr.	1 1	1:14	n	ot submit	ted	Time Sens	itive Terr	operature (°C) on Receipt Cus	stody Seal Yes
	-	C ALL		Ser	ittle 1	allen	Lai	0.	2	1-11							2,2	H.C 2,2,2%	Present 🗸
				0110	45/12 124	L CUN	11111	IM	2016	Glinli	8 .1	0 1/2						2,2,2 -	Intact /

Лa	Xxam	Maxam Analytics Internat 6740 Campobello Road, M	ional Corporatio Ississauga, Ont	on ora Maxxam An tario Canada L5N	siytics 21,8 Tel (905) 817-5	700 Toli-free 800	563-6266 Fax	(905) 817-	5777 www.	тахкалт са							CHAIN	OF CUS	TODY RECORD	Prosteril
	II	IVOICE TO:				REPO	RT TO:						PROJECT	INFORMA	ATION:	_			Laboratory Use	Only:
npany Nar	me #47464 DST Co	onsulting Engineers Inc	N. I.	Compan	v Name		\$. ²				Ountation		B6180	2					Maxxam Job #:	Bottle Order #:
intion.	Accounts Payabl	e	<i>.</i>	Attention	Geoffre	ey Lake					PO#		5. <u>1990</u> - 1990							
Iress	885 Regent Stre	et Suite 3-1B		Address							Project						10			581859
	Sudbury ON P3E	5M4									Project Na	me	5					1	COC #:	Project Manager:
əl;	(705) 523-6680	Fax (705) 523-6690	Tel	(705) 5	23-6680 x258	Fax				Site #:							INDI		Anna Anna
nail	ap@dstgroup.co	m		Email	glake@	dstgroup.con	١				Sampled I	Зy							C#581859-06-01	Augustyna boodsz
MOE RE	EGULATED DRINKING	G WATER OR WATER I	INTENDED F	OR HUMAN	ONSUMPTION	MUST BE			r	ANA	LYSIS RE	QUESTED	(PLEASE BE	E SPECIFIC	C)				Turnaround Time (TAT) F	Required:
지하는 별 것이	SUBMITTED	ON THE MAXXAM DRIN	IKING WATE	ER CHAIN OF	CUSTODY	a Setting	ŝ	la			6	0						Regular (S	Please provide advance notice fi	or rush projects
Regu	ulation 153 (2011)	Ott	er Regulations	5	Special In	structions	- zirce	2		5	2	2						(will be applie	id if Rush TAT is net specified).	
Table 1	Res/Park Mediur	n/Fine CCME	Sanitary Sewer	Bylaw			Se Se	E		4	1 -	3		84. T				Standard TA	T = 5-7 Working days for most tests	4
Table 2	Ind/Comm Coarse	Reg 558	Storm Sewer By	ylaw			plea g / C	r		3	ž	J					÷.	Please note.	Standard TAT for certain tests such as E	BOD and Dioxins/Furans are >
Table 3			nicipality) H/			C	30	0			2	•		usys - comac	1 your Project Manager for details.	
		Other					tals	2		A	0	0			8			Date Require	d Tr	mission) ne Required
	Include Criteri	Contificate of Applie			-		Me	2	#	3	J	2						Rush Confirm	nation Number	L
Sa	mpie Barcode Label	Sample (Location) Iden	tication	Data Comolod	Time Samelad	Matrix	Ĕ	A	8	1	h	F.						# of Botties	Comm	call (ab for #)
	(ripro pariotras canas)	Gampie (Coconari) (dei)	inniai (ch i	A = 17	Time Sampled	initial initial				1	. /							-	ŕ	
		CS2-21		20110	15:30	5			V	V	1	/						2	/	
_				2010	5w				1							<u></u>	_	-	/	
	e	007-22	-	Oct 13	13:40	S			V									AI		
_		LSC		2016	1.21.12	-												au		
		007 110		Oct 12		<		./	1									1	×,	
		(33-110		7616	1000	5		V	V											
				Out 13		0		1	1		1	1						-		
		CSZ - 200	C	7616	13:10	S		1	~	1	~	~						2	Received in	Sudhum
				07		-			2	/									NECCIVEU III	Sucoury
51		CS3-200		all	11.40	5		V		1				- 1		· det	Sa			-
		-		0 . 7	1. 10											14	5.192	1	1	
8		CS1-410)	OCTIS	11.00	S		1	1								5.97.4	1		
_		001 10		2016	1.	-		~			~		,					10		
		MANAMA	Λ	get 1	N.A.A	4	8	11	N	ni	X	X	1			38		D,	Ju	2
		AAN DUP.		13 ton	1040	ppe.	1 · 1	11/	2	V	5	N		0				10		1
		Aca 7.		V			11.												4	
		56-3																	HOLD	
											- 14									
_	BELINQUISHED BY: (S	gnatute/Print)	Date: (YY)	/MM/DD)	Time	RECEIV	ED BY: (Signat	ure/Print)		Date	(YY/MM/E	00)	Time	# ia	ars used an	nd			Laboratory Use Only	
7	SIA.II.	11 Southing	16/10	117 10	00 R (IR-	- T-			20	linte	1	11 Sect.	no	t submitte	d T	ime Sensi	ive Te	mperature ("C) on Receipt	ustody Seal Yes
6	JUNA	le indel	1010	11 10	- ar	1 TOTas	De TRA	py .		, 200	-/101r		1.14					2,	2,4% 2,2,2%	Present
					Avu	the R	Art	ZUKC	14m	201	2/101	18 1	OB						z.2.2°C	Intact
IS THE RES	SPONSIBILITY OF THE RELIN	QUISHER TO ENSURE THE A	CCURACY OF T	HE CHAIN OF CUS	TODY RECORD AN	INCOMPLETE ORA	IN OF CUSTOD	MAY RES	ULT IN ANA	LYTICAL T	TDELAYS	SAN	PLES MUST	BE KEPT (COOL (< 10	C)FRO	OM TIME C	F SAMPLING	UNTIL DELIVERY TO MAXXAM	White: Maxxam Yellow: C
																		RE	FER LACTR	

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

or fingerprinting be required, please contact the laboratory.
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

or fingerprinting be required, please contact the laboratory.

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

or fingerprinting be required, please contact the laboratory.

DST Consulting Engineers Inc Client Project #: GV-TB-027107 Client ID: CS1-38

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

or fingerprinting be required, please contact the laboratory.

Your Project #: GV-TB-027107

Attention:Geoffrey Lake

DST Consulting Engineers Inc Sudbury - Standing Offer 885 Regent Street Suite 3-1B Sudbury, ON P3E 5M4

Your C.O.C. #: 581859-01-01, 581859-02-01, 581859-03-01, 581859-04-01, 581859-05-01, 581859-06-01

Report Date: 2016/10/28 Report #: R4227179 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6M4185

Received: 2016/10/17, 11:14

Sample Matrix: Soil # Samples Received: 48

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	4	N/A	2016/10/26	CAM SOP-00301	EPA 8270D m
Petroleum Hydro. CCME F1 & BTEX in Soil (1)	4	N/A	2016/10/25	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (2)	4	2016/10/24	2016/10/25	CAM SOP-00316	CCME CWS m
Mercury (TCLP Leachable) (mg/L)	7	N/A	2016/10/27	CAM SOP-00453	EPA 7470A m
Strong Acid Leachable Metals by ICPMS	34	2016/10/25	2016/10/25	CAM SOP-00447	EPA 6020B m
Strong Acid Leachable Metals by ICPMS	13	2016/10/25	2016/10/26	CAM SOP-00447	EPA 6020B m
Strong Acid Leachable Metals by ICPMS	1	2016/10/26	2016/10/26	CAM SOP-00447	EPA 6020B m
Total Metals in TCLP Leachate by ICPMS	7	2016/10/26	2016/10/27	CAM SOP-00447	EPA 6020B m
Moisture	4	N/A	2016/10/24	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Leachate by GC/MS (SIM)	1	2016/10/27	2016/10/27	CAM SOP-00318	EPA 8270D m
PAH Compounds in Leachate by GC/MS (SIM)	6	2016/10/27	2016/10/28	CAM SOP-00318	EPA 8270D m
PAH Compounds in Soil by GC/MS (SIM)	4	2016/10/25	2016/10/26	CAM SOP-00318	EPA 8270D m
pH CaCl2 EXTRACT	47	2016/10/25	2016/10/25	CAM SOP-00413	EPA 9045 D m
pH CaCl2 EXTRACT	1	2016/10/26	2016/10/26	CAM SOP-00413	EPA 9045 D m
TCLP - % Solids	7	2016/10/25	2016/10/26	CAM SOP-00401	EPA 1311 Update I m
TCLP - Extraction Fluid	7	N/A	2016/10/26	CAM SOP-00401	EPA 1311 Update I m
TCLP - Initial and final pH	7	N/A	2016/10/26	CAM SOP-00401	EPA 1311 Update I m
TCLP Zero Headspace Extraction	7	2016/10/25	2016/10/26	CAM SOP-00430	EPA 1311 m
VOCs in ZHE Leachates	7	2016/10/26	2016/10/26	CAM SOP-00226	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported:

Your Project #: GV-TB-027107

Attention:Geoffrey Lake

DST Consulting Engineers Inc Sudbury - Standing Offer 885 Regent Street Suite 3-1B Sudbury, ON P3E 5M4

Your C.O.C. #: 581859-01-01, 581859-02-01, 581859-03-01, 581859-04-01, 581859-05-01, 581859-06-01

Report Date: 2016/10/28 Report #: R4227179 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6M4185

Received: 2016/10/17, 11:14

unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

(1) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated. (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Augustyna Dobosz, Project Manager Email: ADobosz@maxxam.ca Phone# (905)817-5700 Ext:5798

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 54

DST Consulting Engineers Inc Client Project #: GV-TB-027107

O.REG 153 ICPMS METALS (SOIL)

Maxxam ID		DGP151	DGP151		DGP152	DGP153	DGP153		
Sampling Date		2016/10/13	2016/10/13		2016/10/12	2016/10/13	2016/10/13		
		09:00	09:00		16:00	09:10	09:10		
COC Number		581859-01-01	581859-01-01		581859-01-01	581859-01-01	581859-01-01		
	UNITS	CS1-26	CS1-26 Lab-Dup	QC Batch	CS1-27	CS1-28	CS1-28 Lab-Dup	RDL	QC Batch
Metals									
Acid Extractable Antimony (Sb)	ug/g	0.41	0.47	4716498	2.5	2.9	2.6	0.20	4716460
Acid Extractable Arsenic (As)	ug/g	7.3	7.2	4716498	4.3	13	12	1.0	4716460
Acid Extractable Barium (Ba)	ug/g	240	230	4716498	140	170	170	0.50	4716460
Acid Extractable Beryllium (Be)	ug/g	0.57	0.56	4716498	0.59	1.0	1.0	0.20	4716460
Acid Extractable Boron (B)	ug/g	6.8	6.9	4716498	5.1	<5.0	<5.0	5.0	4716460
Acid Extractable Cadmium (Cd)	ug/g	1.1	1.2	4716498	0.56	1.3	1.4	0.10	4716460
Acid Extractable Chromium (Cr)	ug/g	42	40	4716498	110	18	19	1.0	4716460
Acid Extractable Cobalt (Co)	ug/g	14	14	4716498	31	11	11	0.10	4716460
Acid Extractable Copper (Cu)	ug/g	88	89	4716498	70	68	74	0.50	4716460
Acid Extractable Lead (Pb)	ug/g	130	130	4716498	680	950	930	1.0	4716460
Acid Extractable Molybdenum (Mo)	ug/g	1.4	1.6	4716498	0.89	2.7	2.8	0.50	4716460
Acid Extractable Nickel (Ni)	ug/g	29	29	4716498	91	25	24	0.50	4716460
Acid Extractable Selenium (Se)	ug/g	1.3	1.4	4716498	0.56	4.7	4.6	0.50	4716460
Acid Extractable Silver (Ag)	ug/g	0.27	0.30	4716498	<0.20	0.27	0.29	0.20	4716460
Acid Extractable Thallium (Tl)	ug/g	0.094	0.084	4716498	0.11	0.35	0.33	0.050	4716460
Acid Extractable Uranium (U)	ug/g	1.9	1.9	4716498	0.41	0.84	0.86	0.050	4716460
Acid Extractable Vanadium (V)	ug/g	55	53	4716498	79	31	30	5.0	4716460
Acid Extractable Zinc (Zn)	ug/g	230	230	4716498	290	540	530	5.0	4716460
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									

Lab-Dup = Laboratory Initiated Duplicate

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP154		DGP155		DGP156		
Sampling Date		2016/10/13 09:15		2016/10/13 09:20		2016/10/13 09:30		
COC Number		581859-01-01		581859-01-01		581859-01-01		
	UNITS	CS1-29	QC Batch	CS1-30	QC Batch	CS1-31	RDL	QC Batch
Metals								
Acid Extractable Antimony (Sb)	ug/g	0.57	4716460	3.7	4716498	0.45	0.20	4716588
Acid Extractable Arsenic (As)	ug/g	2.9	4716460	4.8	4716498	4.9	1.0	4716588
Acid Extractable Barium (Ba)	ug/g	22	4716460	140	4716498	140	0.50	4716588
Acid Extractable Beryllium (Be)	ug/g	<0.20	4716460	<0.20	4716498	<0.20	0.20	4716588
Acid Extractable Boron (B)	ug/g	<5.0	4716460	5.7	4716498	<5.0	5.0	4716588
Acid Extractable Cadmium (Cd)	ug/g	0.35	4716460	0.78	4716498	1.6	0.10	4716588
Acid Extractable Chromium (Cr)	ug/g	2.7	4716460	27	4716498	24	1.0	4716588
Acid Extractable Cobalt (Co)	ug/g	0.68	4716460	17	4716498	5.4	0.10	4716588
Acid Extractable Copper (Cu)	ug/g	6.8	4716460	30	4716498	49	0.50	4716588
Acid Extractable Lead (Pb)	ug/g	59	4716460	570	4716498	160	1.0	4716588
Acid Extractable Molybdenum (Mo)	ug/g	0.65	4716460	0.74	4716498	1.2	0.50	4716588
Acid Extractable Nickel (Ni)	ug/g	2.8	4716460	36	4716498	19	0.50	4716588
Acid Extractable Selenium (Se)	ug/g	0.68	4716460	0.76	4716498	1.0	0.50	4716588
Acid Extractable Silver (Ag)	ug/g	<0.20	4716460	<0.20	4716498	0.32	0.20	4716588
Acid Extractable Thallium (TI)	ug/g	<0.050	4716460	0.22	4716498	0.078	0.050	4716588
Acid Extractable Uranium (U)	ug/g	0.10	4716460	0.20	4716498	0.39	0.050	4716588
Acid Extractable Vanadium (V)	ug/g	<5.0	4716460	59	4716498	41	5.0	4716588
Acid Extractable Zinc (Zn)	ug/g	12	4716460	150	4716498	120	5.0	4716588
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP157		DGP158		DGP159		
Sampling Date		2016/10/13		2016/10/13		2016/10/13		
		09:40		09:50		10:00		
COC Number		581859-01-01		581859-01-01		581859-01-01		
	UNITS	CS1-32	QC Batch	CS1-33	QC Batch	CS1-34	RDL	QC Batch
Metals								
Acid Extractable Antimony (Sb)	ug/g	0.47	4716498	0.39	4716460	0.56	0.20	4716588
Acid Extractable Arsenic (As)	ug/g	7.4	4716498	5.3	4716460	9.2	1.0	4716588
Acid Extractable Barium (Ba)	ug/g	270	4716498	57	4716460	170	0.50	4716588
Acid Extractable Beryllium (Be)	ug/g	<0.20	4716498	<0.20	4716460	0.32	0.20	4716588
Acid Extractable Boron (B)	ug/g	5.6	4716498	<5.0	4716460	7.2	5.0	4716588
Acid Extractable Cadmium (Cd)	ug/g	1.2	4716498	0.74	4716460	1.8	0.10	4716588
Acid Extractable Chromium (Cr)	ug/g	12	4716498	7.2	4716460	12	1.0	4716588
Acid Extractable Cobalt (Co)	ug/g	6.1	4716498	2.1	4716460	3.3	0.10	4716588
Acid Extractable Copper (Cu)	ug/g	85	4716498	22	4716460	150	0.50	4716588
Acid Extractable Lead (Pb)	ug/g	130	4716498	56	4716460	47	1.0	4716588
Acid Extractable Molybdenum (Mo)	ug/g	1.3	4716498	1.1	4716460	1.2	0.50	4716588
Acid Extractable Nickel (Ni)	ug/g	14	4716498	7.7	4716460	28	0.50	4716588
Acid Extractable Selenium (Se)	ug/g	0.73	4716498	1.4	4716460	1.8	0.50	4716588
Acid Extractable Silver (Ag)	ug/g	0.21	4716498	<0.20	4716460	0.35	0.20	4716588
Acid Extractable Thallium (Tl)	ug/g	0.090	4716498	0.060	4716460	0.088	0.050	4716588
Acid Extractable Uranium (U)	ug/g	0.24	4716498	0.80	4716460	1.1	0.050	4716588
Acid Extractable Vanadium (V)	ug/g	15	4716498	6.2	4716460	8.5	5.0	4716588
Acid Extractable Zinc (Zn)	ug/g	280	4716498	31	4716460	94	5.0	4716588
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

O.REG 153 ICPMS METALS (SOIL)

Maxxam ID		DGP160	DGP199	DGP200		DGP201	DGP201		
Sampling Date		2016/10/13 10:10	2016/10/13 10:20	2016/10/13 10:25		2016/10/13 10:30	2016/10/13 10:30		
COC Number		581859-01-01	581859-02-01	581859-02-01		581859-02-01	581859-02-01		
	UNITS	CS1-35	CS1-36	CS1-37	QC Batch	CS1-38	CS1-38 Lab-Dup	RDL	QC Batch
Metals									
Acid Extractable Antimony (Sb)	ug/g	<0.20	0.51	0.54	4716498	<0.20	<0.20	0.20	4716588
Acid Extractable Arsenic (As)	ug/g	2.2	4.6	4.7	4716498	2.4	2.5	1.0	4716588
Acid Extractable Barium (Ba)	ug/g	81	190	120	4716498	48	45	0.50	4716588
Acid Extractable Beryllium (Be)	ug/g	0.33	<0.20	<0.20	4716498	0.28	0.26	0.20	4716588
Acid Extractable Boron (B)	ug/g	<5.0	<5.0	<5.0	4716498	<5.0	<5.0	5.0	4716588
Acid Extractable Cadmium (Cd)	ug/g	0.20	0.53	0.52	4716498	0.19	0.18	0.10	4716588
Acid Extractable Chromium (Cr)	ug/g	92	4.9	3.6	4716498	62	60	1.0	4716588
Acid Extractable Cobalt (Co)	ug/g	46	1.1	0.85	4716498	41	41	0.10	4716588
Acid Extractable Copper (Cu)	ug/g	54	12	8.1	4716498	41	39	0.50	4716588
Acid Extractable Lead (Pb)	ug/g	14	44	56	4716498	14	14	1.0	4716588
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	1.3	1.0	4716498	0.51	0.54	0.50	4716588
Acid Extractable Nickel (Ni)	ug/g	130	4.1	3.0	4716498	100	100	0.50	4716588
Acid Extractable Selenium (Se)	ug/g	<0.50	1.4	0.97	4716498	<0.50	<0.50	0.50	4716588
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	<0.20	4716498	<0.20	<0.20	0.20	4716588
Acid Extractable Thallium (Tl)	ug/g	<0.050	0.055	0.075	4716498	<0.050	<0.050	0.050	4716588
Acid Extractable Uranium (U)	ug/g	0.11	0.36	0.19	4716498	0.17	0.16	0.050	4716588
Acid Extractable Vanadium (V)	ug/g	160	5.8	5.1	4716498	160	150	5.0	4716588
Acid Extractable Zinc (Zn)	ug/g	100	34	20	4716498	67	65	5.0	4716588
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									

Lab-Dup = Laboratory Initiated Duplicate

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP202	DGP203	DGP204		DGP205		
Sampling Date		2016/10/13 10:40	2016/10/13 10:50	2016/10/13 11:00		2016/10/13 11:10		
COC Number		581859-02-01	581859-02-01	581859-02-01		581859-02-01		
	UNITS	CS1-39	CS1-40	CS1-41	QC Batch	CS1-42	RDL	QC Batch
Metals								
Acid Extractable Antimony (Sb)	ug/g	0.50	0.44	<0.20	4716498	0.62	0.20	4716460
Acid Extractable Arsenic (As)	ug/g	8.1	7.5	1.5	4716498	2.7	1.0	4716460
Acid Extractable Barium (Ba)	ug/g	130	180	40	4716498	120	0.50	4716460
Acid Extractable Beryllium (Be)	ug/g	0.46	0.31	<0.20	4716498	<0.20	0.20	4716460
Acid Extractable Boron (B)	ug/g	<5.0	7.8	<5.0	4716498	<5.0	5.0	4716460
Acid Extractable Cadmium (Cd)	ug/g	1.0	1.5	0.22	4716498	0.74	0.10	4716460
Acid Extractable Chromium (Cr)	ug/g	51	31	18	4716498	13	1.0	4716460
Acid Extractable Cobalt (Co)	ug/g	7.8	12	3.5	4716498	2.5	0.10	4716460
Acid Extractable Copper (Cu)	ug/g	51	150	13	4716498	24	0.50	4716460
Acid Extractable Lead (Pb)	ug/g	83	83	14	4716498	110	1.0	4716460
Acid Extractable Molybdenum (Mo)	ug/g	1.9	1.3	<0.50	4716498	1.0	0.50	4716460
Acid Extractable Nickel (Ni)	ug/g	24	47	9.3	4716498	10	0.50	4716460
Acid Extractable Selenium (Se)	ug/g	1.1	1.4	<0.50	4716498	0.99	0.50	4716460
Acid Extractable Silver (Ag)	ug/g	0.22	0.27	<0.20	4716498	<0.20	0.20	4716460
Acid Extractable Thallium (Tl)	ug/g	0.068	0.086	0.051	4716498	0.12	0.050	4716460
Acid Extractable Uranium (U)	ug/g	0.49	2.4	0.50	4716498	0.31	0.050	4716460
Acid Extractable Vanadium (V)	ug/g	39	38	18	4716498	14	5.0	4716460
Acid Extractable Zinc (Zn)	ug/g	96	190	35	4716498	270	5.0	4716460
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP206		DGP207	DGP208		DGP245		
Sampling Date		2016/10/13 11:20		2016/10/13 11:30	2016/10/12 16:10		2016/10/13 16:20		
COC Number		581859-02-01		581859-02-01	581859-02-01		581859-03-01		
	UNITS	CS1-43	QC Batch	CS1-44	CS1-45	QC Batch	CS1-46	RDL	QC Batch
Metals									
Acid Extractable Antimony (Sb)	ug/g	1.1	4716588	0.96	0.43	4716498	0.46	0.20	4716460
Acid Extractable Arsenic (As)	ug/g	3.1	4716588	5.6	2.0	4716498	4.2	1.0	4716460
Acid Extractable Barium (Ba)	ug/g	97	4716588	230	110	4716498	170	0.50	4716460
Acid Extractable Beryllium (Be)	ug/g	<0.20	4716588	0.24	<0.20	4716498	0.20	0.20	4716460
Acid Extractable Boron (B)	ug/g	6.6	4716588	5.1	<5.0	4716498	13	5.0	4716460
Acid Extractable Cadmium (Cd)	ug/g	0.59	4716588	9.4	0.24	4716498	1.5	0.10	4716460
Acid Extractable Chromium (Cr)	ug/g	7.4	4716588	18	5.6	4716498	32	1.0	4716460
Acid Extractable Cobalt (Co)	ug/g	1.2	4716588	3.8	1.3	4716498	12	0.10	4716460
Acid Extractable Copper (Cu)	ug/g	18	4716588	41	17	4716498	62	0.50	4716460
Acid Extractable Lead (Pb)	ug/g	100	4716588	140	29	4716498	170	1.0	4716460
Acid Extractable Molybdenum (Mo)	ug/g	1.0	4716588	1.1	0.63	4716498	1.3	0.50	4716460
Acid Extractable Nickel (Ni)	ug/g	5.0	4716588	15	9.0	4716498	30	0.50	4716460
Acid Extractable Selenium (Se)	ug/g	1.0	4716588	1.0	0.89	4716498	0.97	0.50	4716460
Acid Extractable Silver (Ag)	ug/g	<0.20	4716588	<0.20	<0.20	4716498	0.33	0.20	4716460
Acid Extractable Thallium (Tl)	ug/g	0.054	4716588	0.10	<0.050	4716498	0.084	0.050	4716460
Acid Extractable Uranium (U)	ug/g	0.19	4716588	0.43	0.28	4716498	0.62	0.050	4716460
Acid Extractable Vanadium (V)	ug/g	6.7	4716588	20	<5.0	4716498	39	5.0	4716460
Acid Extractable Zinc (Zn)	ug/g	120	4716588	190	13	4716498	210	5.0	4716460
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP246		DGP247		DGP248	DGP249		
Sampling Date		2016/10/13		2016/10/12		2016/10/12	2016/10/12		
		08:50		13:00		13:10	13:20		
COC Number		581859-03-01		581859-03-01		581859-03-01	581859-03-01		
	UNITS	CS2-12	QC Batch	CS2-13	QC Batch	CS2-14	CS2-15	RDL	QC Batch
Metals									
Acid Extractable Antimony (Sb)	ug/g	0.60	4716588	0.24	4716498	0.53	0.46	0.20	4716460
Acid Extractable Arsenic (As)	ug/g	8.3	4716588	1.7	4716498	5.7	17	1.0	4716460
Acid Extractable Barium (Ba)	ug/g	100	4716588	27	4716498	70	68	0.50	4716460
Acid Extractable Beryllium (Be)	ug/g	0.31	4716588	<0.20	4716498	<0.20	<0.20	0.20	4716460
Acid Extractable Boron (B)	ug/g	<5.0	4716588	6.0	4716498	<5.0	<5.0	5.0	4716460
Acid Extractable Cadmium (Cd)	ug/g	0.83	4716588	0.60	4716498	0.67	0.38	0.10	4716460
Acid Extractable Chromium (Cr)	ug/g	31	4716588	2.7	4716498	7.3	43	1.0	4716460
Acid Extractable Cobalt (Co)	ug/g	12	4716588	4.0	4716498	3.3	8.7	0.10	4716460
Acid Extractable Copper (Cu)	ug/g	53	4716588	24	4716498	21	13	0.50	4716460
Acid Extractable Lead (Pb)	ug/g	120	4716588	61	4716498	60	34	1.0	4716460
Acid Extractable Molybdenum (Mo)	ug/g	1.0	4716588	0.55	4716498	0.79	3.7	0.50	4716460
Acid Extractable Nickel (Ni)	ug/g	23	4716588	3.3	4716498	10	20	0.50	4716460
Acid Extractable Selenium (Se)	ug/g	0.86	4716588	0.69	4716498	1.1	0.82	0.50	4716460
Acid Extractable Silver (Ag)	ug/g	0.30	4716588	<0.20	4716498	1.3	0.23	0.20	4716460
Acid Extractable Thallium (Tl)	ug/g	0.082	4716588	<0.050	4716498	0.067	0.10	0.050	4716460
Acid Extractable Uranium (U)	ug/g	0.31	4716588	0.18	4716498	0.25	0.36	0.050	4716460
Acid Extractable Vanadium (V)	ug/g	44	4716588	9.7	4716498	16	160	5.0	4716460
Acid Extractable Zinc (Zn)	ug/g	180	4716588	170	4716498	87	110	5.0	4716460
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP250	DGP278		DGP279		DGP280		
Sampling Date		2016/10/12	2016/10/12		2016/10/12		2016/10/12		
COC Number		581859-03-01	581859-04-01		581859-04-01		581859-04-01		
	UNITS	CS2-16	CS2-17	OC Batch	CS2-18	OC Batch	CS2-19	RDL	OC Batch
Metals								I	-
Acid Extractable Antimony (Sb)	ug/g	0.31	0.31	4716498	0.30	4716588	0.21	0.20	4716498
Acid Extractable Arsenic (As)	ug/g	9.2	4.1	4716498	4.9	4716588	1.8	1.0	4716498
Acid Extractable Barium (Ba)	ug/g	87	51	4716498	73	4716588	32	0.50	4716498
Acid Extractable Beryllium (Be)	ug/g	0.51	0.34	4716498	<0.20	4716588	<0.20	0.20	4716498
Acid Extractable Boron (B)	ug/g	<5.0	<5.0	4716498	<5.0	4716588	5.2	5.0	4716498
Acid Extractable Cadmium (Cd)	ug/g	0.69	0.28	4716498	1.1	4716588	0.81	0.10	4716498
Acid Extractable Chromium (Cr)	ug/g	61	58	4716498	8.4	4716588	11	1.0	4716498
Acid Extractable Cobalt (Co)	ug/g	17	19	4716498	6.3	4716588	1.8	0.10	4716498
Acid Extractable Copper (Cu)	ug/g	27	48	4716498	55	4716588	22	0.50	4716498
Acid Extractable Lead (Pb)	ug/g	19	170	4716498	61	4716588	17	1.0	4716498
Acid Extractable Molybdenum (Mo)	ug/g	4.8	1.3	4716498	1.0	4716588	1.9	0.50	4716498
Acid Extractable Nickel (Ni)	ug/g	24	62	4716498	9.4	4716588	8.5	0.50	4716498
Acid Extractable Selenium (Se)	ug/g	1.6	0.72	4716498	0.90	4716588	1.2	0.50	4716498
Acid Extractable Silver (Ag)	ug/g	1.1	<0.20	4716498	<0.20	4716588	<0.20	0.20	4716498
Acid Extractable Thallium (Tl)	ug/g	0.081	0.081	4716498	<0.050	4716588	<0.050	0.050	4716498
Acid Extractable Uranium (U)	ug/g	0.76	0.38	4716498	0.50	4716588	0.11	0.050	4716498
Acid Extractable Vanadium (V)	ug/g	130	210	4716498	51	4716588	6.2	5.0	4716498
Acid Extractable Zinc (Zn)	ug/g	140	170	4716498	98	4716588	160	5.0	4716498
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP281		DGP282		DGP283		
Sampling Date		2016/10/13 13:10		2016/10/12 10:00		2016/10/12 10:10		
COC Number		581859-04-01		581859-04-01		581859-04-01		
	UNITS	CS2-20	QC Batch	CS3-11	QC Batch	CS3-12	RDL	QC Batch
Metals								
Acid Extractable Antimony (Sb)	ug/g	0.44	4716498	0.69	4716460	<0.20	0.20	4716498
Acid Extractable Arsenic (As)	ug/g	2.6	4716498	4.3	4716460	4.6	1.0	4716498
Acid Extractable Barium (Ba)	ug/g	110	4716498	51	4716460	27	0.50	4716498
Acid Extractable Beryllium (Be)	ug/g	0.22	4716498	<0.20	4716460	<0.20	0.20	4716498
Acid Extractable Boron (B)	ug/g	<5.0	4716498	<5.0	4716460	<5.0	5.0	4716498
Acid Extractable Cadmium (Cd)	ug/g	0.76	4716498	0.24	4716460	0.23	0.10	4716498
Acid Extractable Chromium (Cr)	ug/g	7.7	4716498	15	4716460	17	1.0	4716498
Acid Extractable Cobalt (Co)	ug/g	8.7	4716498	6.2	4716460	10	0.10	4716498
Acid Extractable Copper (Cu)	ug/g	47	4716498	15	4716460	12	0.50	4716498
Acid Extractable Lead (Pb)	ug/g	1000	4716498	130	4716460	25	1.0	4716498
Acid Extractable Molybdenum (Mo)	ug/g	1.9	4716498	<0.50	4716460	<0.50	0.50	4716498
Acid Extractable Nickel (Ni)	ug/g	5.1	4716498	16	4716460	15	0.50	4716498
Acid Extractable Selenium (Se)	ug/g	0.57	4716498	<0.50	4716460	<0.50	0.50	4716498
Acid Extractable Silver (Ag)	ug/g	<0.20	4716498	<0.20	4716460	<0.20	0.20	4716498
Acid Extractable Thallium (TI)	ug/g	0.17	4716498	<0.050	4716460	<0.050	0.050	4716498
Acid Extractable Uranium (U)	ug/g	0.51	4716498	0.12	4716460	0.13	0.050	4716498
Acid Extractable Vanadium (V)	ug/g	110	4716498	13	4716460	13	5.0	4716498
Acid Extractable Zinc (Zn)	ug/g	300	4716498	100	4716460	61	5.0	4716498
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP284	DGP285		DGP286		DGP287		
Sampling Date		2016/10/12	2016/10/12		2016/10/12		2016/10/12		
		10:20	10:30		10:40		10:50		
COC Number		581859-04-01	581859-04-01		581859-04-01		581859-04-01		
	UNITS	CS3-13	CS3-14	QC Batch	CS3-15	QC Batch	CS3-16	RDL	QC Batch
Metals									
Acid Extractable Antimony (Sb)	ug/g	0.54	0.58	4716588	1.7	4718485	2.6	0.20	4716588
Acid Extractable Arsenic (As)	ug/g	12	3.7	4716588	9.1	4718485	36	1.0	4716588
Acid Extractable Barium (Ba)	ug/g	220	51	4716588	95	4718485	520	0.50	4716588
Acid Extractable Beryllium (Be)	ug/g	0.37	0.28	4716588	0.44	4718485	2.1	0.20	4716588
Acid Extractable Boron (B)	ug/g	6.5	13	4716588	<5.0	4718485	9.5	5.0	4716588
Acid Extractable Cadmium (Cd)	ug/g	1.7	0.89	4716588	1.9	4718485	1.8	0.10	4716588
Acid Extractable Chromium (Cr)	ug/g	32	16	4716588	32	4718485	29	1.0	4716588
Acid Extractable Cobalt (Co)	ug/g	16	7.0	4716588	20	4718485	18	0.10	4716588
Acid Extractable Copper (Cu)	ug/g	130	140	4716588	88	4718485	200	0.50	4716588
Acid Extractable Lead (Pb)	ug/g	110	200	4716588	240	4718485	1800	1.0	4716588
Acid Extractable Molybdenum (Mo)	ug/g	2.3	0.60	4716588	0.90	4718485	3.3	0.50	4716588
Acid Extractable Nickel (Ni)	ug/g	22	20	4716588	31	4718485	31	0.50	4716588
Acid Extractable Selenium (Se)	ug/g	1.9	1.7	4716588	1.6	4718485	1.5	0.50	4716588
Acid Extractable Silver (Ag)	ug/g	0.24	0.48	4716588	0.67	4718485	0.76	0.20	4716588
Acid Extractable Thallium (Tl)	ug/g	0.099	0.085	4716588	0.094	4718485	0.52	0.050	4716588
Acid Extractable Uranium (U)	ug/g	4.4	1.5	4716588	0.98	4718485	0.89	0.050	4716588
Acid Extractable Vanadium (V)	ug/g	25	9.7	4716588	24	4718485	30	5.0	4716588
Acid Extractable Zinc (Zn)	ug/g	260	150	4716588	230	4718485	970	5.0	4716588
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									

DST Consulting Engineers Inc Client Project #: GV-TB-027107

O.REG 153 ICPMS METALS (SOIL)

Maxxam ID		DGP288	DGP289		DGP290	DGP291	DGP292		
Sampling Date		2016/10/12 11:10	2016/10/12 11:20		2016/10/12 11:30	2016/10/12 11:40	2016/10/12 11:50		
COC Number		581859-05-01	581859-05-01		581859-05-01	581859-05-01	581859-05-01		
	UNITS	CS3-17	CS3-18	QC Batch	CS3-19	CS3-20	CS3-21	RDL	QC Batch
Metals									
Acid Extractable Antimony (Sb)	ug/g	0.26	0.24	4716498	<0.20	0.64	0.48	0.20	4716588
Acid Extractable Arsenic (As)	ug/g	4.2	28	4716498	5.4	3.1	20	1.0	4716588
Acid Extractable Barium (Ba)	ug/g	85	53	4716498	20	36	76	0.50	4716588
Acid Extractable Beryllium (Be)	ug/g	<0.20	0.42	4716498	<0.20	<0.20	0.25	0.20	4716588
Acid Extractable Boron (B)	ug/g	<5.0	<5.0	4716498	<5.0	<5.0	<5.0	5.0	4716588
Acid Extractable Cadmium (Cd)	ug/g	0.55	0.71	4716498	0.27	0.36	1.4	0.10	4716588
Acid Extractable Chromium (Cr)	ug/g	19	350	4716498	18	18	16	1.0	4716588
Acid Extractable Cobalt (Co)	ug/g	3.1	17	4716498	9.7	9.0	9.9	0.10	4716588
Acid Extractable Copper (Cu)	ug/g	24	26	4716498	25	27	47	0.50	4716588
Acid Extractable Lead (Pb)	ug/g	25	160	4716498	18	150	45	1.0	4716588
Acid Extractable Molybdenum (Mo)	ug/g	0.87	<0.50	4716498	<0.50	0.59	1.9	0.50	4716588
Acid Extractable Nickel (Ni)	ug/g	9.6	170	4716498	22	19	29	0.50	4716588
Acid Extractable Selenium (Se)	ug/g	0.79	1.0	4716498	<0.50	<0.50	0.85	0.50	4716588
Acid Extractable Silver (Ag)	ug/g	<0.20	0.25	4716498	<0.20	<0.20	0.67	0.20	4716588
Acid Extractable Thallium (Tl)	ug/g	<0.050	0.075	4716498	<0.050	<0.050	0.12	0.050	4716588
Acid Extractable Uranium (U)	ug/g	0.36	0.36	4716498	0.093	0.23	0.43	0.050	4716588
Acid Extractable Vanadium (V)	ug/g	12	38	4716498	13	11	23	5.0	4716588
Acid Extractable Zinc (Zn)	ug/g	56	52	4716498	77	99	130	5.0	4716588
RDL = Reportable Detection Limit									
OC Batch - Quality Control Batch									

QC Batch = Quality Control Batch

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP293		DGP302		DGP303		
Sampling Date		2016/10/12 12:00		2016/10/12 14:30		2016/10/13 13:40		
COC Number		581859-05-01		581859-06-01		581859-06-01		
	UNITS	CS3-22	QC Batch	CS2-21	QC Batch	CS2-22	RDL	QC Batch
Metals								
Acid Extractable Antimony (Sb)	ug/g	0.60	4716588	0.23	4716460	0.26	0.20	4716498
Acid Extractable Arsenic (As)	ug/g	6.5	4716588	2.9	4716460	4.5	1.0	4716498
Acid Extractable Barium (Ba)	ug/g	37	4716588	84	4716460	46	0.50	4716498
Acid Extractable Beryllium (Be)	ug/g	<0.20	4716588	<0.20	4716460	<0.20	0.20	4716498
Acid Extractable Boron (B)	ug/g	<5.0	4716588	<5.0	4716460	<5.0	5.0	4716498
Acid Extractable Cadmium (Cd)	ug/g	0.90	4716588	0.62	4716460	0.14	0.10	4716498
Acid Extractable Chromium (Cr)	ug/g	19	4716588	9.9	4716460	23	1.0	4716498
Acid Extractable Cobalt (Co)	ug/g	16	4716588	5.4	4716460	8.5	0.10	4716498
Acid Extractable Copper (Cu)	ug/g	78	4716588	23	4716460	31	0.50	4716498
Acid Extractable Lead (Pb)	ug/g	31	4716588	320	4716460	180	1.0	4716498
Acid Extractable Molybdenum (Mo)	ug/g	0.52	4716588	1.7	4716460	2.3	0.50	4716498
Acid Extractable Nickel (Ni)	ug/g	14	4716588	6.4	4716460	19	0.50	4716498
Acid Extractable Selenium (Se)	ug/g	<0.50	4716588	0.84	4716460	<0.50	0.50	4716498
Acid Extractable Silver (Ag)	ug/g	<0.20	4716588	<0.20	4716460	<0.20	0.20	4716498
Acid Extractable Thallium (Tl)	ug/g	<0.050	4716588	0.12	4716460	0.077	0.050	4716498
Acid Extractable Uranium (U)	ug/g	0.19	4716588	0.72	4716460	0.35	0.050	4716498
Acid Extractable Vanadium (V)	ug/g	16	4716588	64	4716460	170	5.0	4716498
Acid Extractable Zinc (Zn)	ug/g	340	4716588	120	4716460	82	5.0	4716498
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP304		DGP305		DGP306		
Sampling Date		2016/10/12 10:00		2016/10/13 13:10		2016/10/12 11:40		
COC Number		581859-06-01		581859-06-01		581859-06-01		
	UNITS	CS3-110	QC Batch	CS2-200	QC Batch	CS3-200	RDL	QC Batch
Metals								
Acid Extractable Antimony (Sb)	ug/g	1.2	4716588	0.38	4716460	0.41	0.20	4716588
Acid Extractable Arsenic (As)	ug/g	2.9	4716588	2.5	4716460	3.2	1.0	4716588
Acid Extractable Barium (Ba)	ug/g	53	4716588	86	4716460	31	0.50	4716588
Acid Extractable Beryllium (Be)	ug/g	<0.20	4716588	0.24	4716460	<0.20	0.20	4716588
Acid Extractable Boron (B)	ug/g	<5.0	4716588	<5.0	4716460	<5.0	5.0	4716588
Acid Extractable Cadmium (Cd)	ug/g	0.19	4716588	0.76	4716460	0.30	0.10	4716588
Acid Extractable Chromium (Cr)	ug/g	14	4716588	6.8	4716460	18	1.0	4716588
Acid Extractable Cobalt (Co)	ug/g	5.3	4716588	10	4716460	9.2	0.10	4716588
Acid Extractable Copper (Cu)	ug/g	13	4716588	45	4716460	35	0.50	4716588
Acid Extractable Lead (Pb)	ug/g	150	4716588	560	4716460	150	1.0	4716588
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	4716588	1.8	4716460	<0.50	0.50	4716588
Acid Extractable Nickel (Ni)	ug/g	13	4716588	5.5	4716460	19	0.50	4716588
Acid Extractable Selenium (Se)	ug/g	<0.50	4716588	0.69	4716460	<0.50	0.50	4716588
Acid Extractable Silver (Ag)	ug/g	<0.20	4716588	<0.20	4716460	<0.20	0.20	4716588
Acid Extractable Thallium (Tl)	ug/g	<0.050	4716588	0.16	4716460	<0.050	0.050	4716588
Acid Extractable Uranium (U)	ug/g	0.13	4716588	0.57	4716460	0.13	0.050	4716588
Acid Extractable Vanadium (V)	ug/g	11	4716588	110	4716460	12	5.0	4716588
Acid Extractable Zinc (Zn)	ug/g	100	4716588	280	4716460	100	5.0	4716588
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP307		
Sampling Date		2016/10/13 11:00		
COC Number		581859-06-01		
	UNITS	CS1-410	RDL	QC Batch
Metals				
Acid Extractable Antimony (Sb)	ug/g	0.22	0.20	4716460
Acid Extractable Arsenic (As)	ug/g	1.7	1.0	4716460
Acid Extractable Barium (Ba)	ug/g	40	0.50	4716460
Acid Extractable Beryllium (Be)	ug/g	<0.20	0.20	4716460
Acid Extractable Boron (B)	ug/g	<5.0	5.0	4716460
Acid Extractable Cadmium (Cd)	ug/g	0.14	0.10	4716460
Acid Extractable Chromium (Cr)	ug/g	18	1.0	4716460
Acid Extractable Cobalt (Co)	ug/g	3.6	0.10	4716460
Acid Extractable Copper (Cu)	ug/g	12	0.50	4716460
Acid Extractable Lead (Pb)	ug/g	13	1.0	4716460
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	0.50	4716460
Acid Extractable Nickel (Ni)	ug/g	10	0.50	4716460
Acid Extractable Selenium (Se)	ug/g	<0.50	0.50	4716460
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	4716460
Acid Extractable Thallium (Tl)	ug/g	<0.050	0.050	4716460
Acid Extractable Uranium (U)	ug/g	0.73	0.050	4716460
Acid Extractable Vanadium (V)	ug/g	20	5.0	4716460
Acid Extractable Zinc (Zn)	ug/g	36	5.0	4716460
RDL = Reportable Detection Limit		•	•	
QC Batch = Quality Control Batch				

DST Consulting Engineers Inc Client Project #: GV-TB-027107

O.REG 153 PAHS (SOIL)

Maxxam ID		DGP160		DGP199			DGP200		DGP201		
Sampling Date		2016/10/13 10:10		2016/10/13 10:20			2016/10/13 10:25		2016/10/13 10:30		
COC Number		581859-01-01		581859-02-01			581859-02-01		581859-02-01		
	UNITS	CS1-35	RDL	CS1-36	RDL	QC Batch	CS1-37	RDL	CS1-38	RDL	QC Batch
Inorganics											
Moisture	%	17	1.0	59	1.0	4715914	70	1.0	23	1.0	4715297
Calculated Parameters	•	<u>.</u>	•								
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	0.0071	<0.014	0.014	4714848	<0.021	0.021	<0.0071	0.0071	4714848
Polyaromatic Hydrocarbons	•	<u>.</u>	•								
Acenaphthene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Acenaphthylene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Anthracene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Benzo(a)anthracene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Benzo(a)pyrene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Benzo(b/j)fluoranthene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	0.040	0.015	<0.0050	0.0050	4717063
Benzo(g,h,i)perylene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Benzo(k)fluoranthene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Chrysene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	0.021	0.015	<0.0050	0.0050	4717063
Dibenz(a,h)anthracene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Fluoranthene	ug/g	<0.0050	0.0050	0.012	0.010	4717063	0.027	0.015	<0.0050	0.0050	4717063
Fluorene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Indeno(1,2,3-cd)pyrene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
1-Methylnaphthalene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
2-Methylnaphthalene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Naphthalene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Phenanthrene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	<0.015	0.015	<0.0050	0.0050	4717063
Pyrene	ug/g	<0.0050	0.0050	<0.010	0.010	4717063	0.021	0.015	0.0065	0.0050	4717063
Surrogate Recovery (%)											
D10-Anthracene	%	85		78		4717063	75		88		4717063
D14-Terphenyl (FS)	%	82		83		4717063	81		87		4717063
D8-Acenaphthylene	%	79		78		4717063	76		82		4717063
RDL = Reportable Detection L QC Batch = Quality Control Ba	.imit atch							-			

DST Consulting Engineers Inc Client Project #: GV-TB-027107

O.REG 153 PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID		DGP160		DGP199		DGP200		DGP201		
Sampling Date		2016/10/13 10:10		2016/10/13 10:20		2016/10/13 10:25		2016/10/13 10:30		
COC Number		581859-01-01		581859-02-01		581859-02-01		581859-02-01		
	UNITS	CS1-35	RDL	CS1-36	RDL	CS1-37	RDL	CS1-38	RDL	QC Batch
BTEX & F1 Hydrocarbons										
Benzene	ug/g	<0.040	0.040	<0.10	0.10	<0.20	0.20	<0.020	0.020	4715933
Toluene	ug/g	<0.040	0.040	<0.10	0.10	<0.20	0.20	<0.020	0.020	4715933
Ethylbenzene	ug/g	<0.040	0.040	<0.10	0.10	<0.20	0.20	<0.020	0.020	4715933
o-Xylene	ug/g	<0.040	0.040	<0.10	0.10	<0.20	0.20	<0.020	0.020	4715933
p+m-Xylene	ug/g	<0.080	0.080	<0.20	0.20	<0.40	0.40	<0.040	0.040	4715933
Total Xylenes	ug/g	<0.080	0.080	<0.20	0.20	<0.40	0.40	<0.040	0.040	4715933
F1 (C6-C10)	ug/g	44	20	<50	50	<100	100	<10	10	4715933
F1 (C6-C10) - BTEX	ug/g	44	20	<50	50	<100	100	<10	10	4715933
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	<20	20	<30	30	<10	10	4716027
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	150	100	160	150	<50	50	4716027
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	<100	100	<150	150	<50	50	4716027
Reached Baseline at C50	ug/g	Yes		Yes		Yes		Yes		4716027
Surrogate Recovery (%)										
1,4-Difluorobenzene	%	112		111		112		113		4715933
4-Bromofluorobenzene	%	96		93		93		97		4715933
D10-Ethylbenzene	%	94		92		98		103		4715933
D4-1,2-Dichloroethane	%	95		94		95		96		4715933
o-Terphenyl	%	98		96		96		93		4716027
RDL = Reportable Detection L	imit									
QC Batch = Quality Control Ba	atch									

DST Consulting Engineers Inc Client Project #: GV-TB-027107

O.REG 558 TCLP BENZO(A)PYRENE

Maxxam ID		DGP152	DGP152	DGP157	DGP205	DGP245	DGP281		
Sampling Data		2016/10/12	2016/10/12	2016/10/13	2016/10/13	2016/10/13	2016/10/13		
		16:00	16:00	09:40	11:10	16:20	13:10		
COC Number		581859-01-01	581859-01-01	581859-01-01	581859-02-01	581859-03-01	581859-04-01		
	UNITS	CS1-27	CS1-27 Lab-Dup	CS1-32	CS1-42	CS1-46	CS2-20	RDL	QC Batch
Polyaromatic Hydrocarbons									
Leachable Benzo(a)pyrene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	4720772
Surrogate Recovery (%)		•		•			•		
Leachable D10-Anthracene	%	104	105	94	103	95	107		4720772
Leachable D14-Terphenyl (FS)	%	101	98	69	81	79	96		4720772
Leachable D8-Acenaphthylene	%	86	89	88	89	87	89		4720772
RDL = Reportable Detection Lim	it	•	•	•	•		•	<u> </u>	

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Maxxam ID		DGP302	DGP305		
Sampling Data		2016/10/12	2016/10/13		
		14:30	13:10		
COC Number		581859-06-01	581859-06-01		
	UNITS	CS2-21	CS2-200	RDL	QC Batch
Polyaromatic Hydrocarbons					
Leachable Benzo(a)pyrene	ug/L	<0.10	<0.10	0.10	4720772
Surrogate Recovery (%)					
Leachable D10-Anthracene	%	102	108		4720772
Leachable D14-Terphenyl (FS)	%	94	95		4720772
Leachable D8-Acenaphthylene	%	89	90		4720772
RDL = Reportable Detection Lim	it				
QC Batch = Quality Control Batc	h				

DST Consulting Engineers Inc Client Project #: GV-TB-027107

O.REG 558 TCLP BENZENE (SOIL)

Maxxam ID		DGP152	DGP157	DGP205	DGP245	DGP281		
Sampling Date		2016/10/12 16:00	2016/10/13 09:40	2016/10/13 11:10	2016/10/13 16:20	2016/10/13 13:10		
COC Number		581859-01-01	581859-01-01	581859-02-01	581859-03-01	581859-04-01		
	UNITS	CS1-27	CS1-32	CS1-42	CS1-46	CS2-20	RDL	QC Batch
Charge/Prep Analysis								
Amount Extracted (Wet Weight) (g)	N/A	25	25	25	25	25	N/A	4716626
Volatile Organics								
Leachable Benzene	mg/L	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	4715261
Surrogate Recovery (%)		-			-	-	-	
Leachable 4-Bromofluorobenzene	%	97	97	96	99	98		4715261
Leachable D4-1,2-Dichloroethane	%	101	100	103	104	102		4715261
Leachable D8-Toluene	%	99	99	100	98	97		4715261
RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable								

Maxxam ID		DGP302	DGP305		
Sampling Date		2016/10/12 14:30	2016/10/13 13:10		
COC Number		581859-06-01	581859-06-01		
	UNITS	CS2-21	CS2-200	RDL	QC Batch
Charge/Prep Analysis					
Amount Extracted (Wet Weight) (g)	N/A	25	25	N/A	4716626
Volatile Organics	•				
Leachable Benzene	mg/L	<0.020	<0.020	0.020	4715261
Surrogate Recovery (%)					
Leachable 4-Bromofluorobenzene	%	98	100		4715261
Leachable D4-1,2-Dichloroethane	%	107	103		4715261
Leachable D8-Toluene	%	97	99		4715261
RDL = Reportable Detection Limit QC Batch = Quality Control Batch					
N/A = Not Applicable					

DST Consulting Engineers Inc Client Project #: GV-TB-027107

O.REG 558 TCLP LEACHATE PREPARATION (SOIL)

Maxxam ID		DGP152	DGP157	DGP205	DGP245	DGP281	DGP302		
Sampling Date		2016/10/12 16:00	2016/10/13 09:40	2016/10/13 11:10	2016/10/13 16:20	2016/10/13 13:10	2016/10/12 14:30		
COC Number		581859-01-01	581859-01-01	581859-02-01	581859-03-01	581859-04-01	581859-06-01		
	UNITS	CS1-27	CS1-32	CS1-42	CS1-46	CS2-20	CS2-21	RDL	QC Batch
Inorganics									
Final pH	рН	5.21	4.98	4.93	4.96	4.91	4.89		4717866
Initial pH	рН	8.27	5.47	5.16	6.08	5.48	5.09		4717866
TCLP - % Solids	%	100	100	100	100	100	100	0.2	4717858
TCLP Extraction Fluid	N/A	FLUID 1		4717865					
RDL = Reportable Detection	Limit								

QC Batch = Quality Control Batch

Maxxam ID		DGP305						
Sampling Date		2016/10/13						
		13:10						
COC Number		581859-06-01						
	UNITS	CS2-200	RDL	QC Batch				
Inorganics								
Final pH	рН	4.90		4717866				
Initial pH	рН	5.63		4717866				
TCLP - % Solids	%	100	0.2	4717858				
TCLP Extraction Fluid	N/A	FLUID 1		4717865				
RDL = Reportable Detection Limit								
QC Batch = Quality Control Ba	atch							

DST Consulting Engineers Inc Client Project #: GV-TB-027107

O.REG 558 TCLP METALS (SOIL)

Maxxam ID		DGP152	DGP157	DGP205	DGP245	DGP281	DGP302		
Sampling Date		2016/10/12	2016/10/13	2016/10/13	2016/10/13	2016/10/13	2016/10/12		
Sampling Date		16:00	09:40	11:10	16:20	13:10	14:30		
COC Number		581859-01-01	581859-01-01	581859-02-01	581859-03-01	581859-04-01	581859-06-01		
	UNITS	CS1-27	CS1-32	CS1-42	CS1-46	CS2-20	CS2-21	RDL	QC Batch
Metals									
Leachable Mercury (Hg)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0010	4720302
Leachable Arsenic (As)	mg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.2	4718914
Leachable Barium (Ba)	mg/L	0.6	0.5	0.3	0.3	0.2	0.3	0.2	4718914
Leachable Boron (B)	mg/L	0.2	0.2	0.2	0.3	0.2	<0.1	0.1	4718914
Leachable Cadmium (Cd)	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	4718914
Leachable Chromium (Cr)	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	4718914
Leachable Lead (Pb)	mg/L	0.3	<0.1	<0.1	<0.1	0.3	0.1	0.1	4718914
Leachable Selenium (Se)	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	4718914
Leachable Silver (Ag)	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	4718914
Leachable Uranium (U)	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	4718914
RDL = Reportable Detection	Limit								

QC Batch = Quality Control Batch

Maxxam ID DGP305 2016/10/13 Sampling Date 13:10 581859-06-01 COC Number UNITS CS2-200 RDL QC Batch Metals Leachable Mercury (Hg) mg/L < 0.0010 0.0010 4720302 Leachable Arsenic (As) 0.2 4718914 mg/L <0.2 Leachable Barium (Ba) mg/L <0.2 4718914 0.2 Leachable Boron (B) mg/L <0.1 0.1 4718914 Leachable Cadmium (Cd) mg/L < 0.05 0.05 4718914 Leachable Chromium (Cr) < 0.1 0.1 4718914 mg/L Leachable Lead (Pb) 4718914 mg/L 0.1 0.1 Leachable Selenium (Se) 4718914 mg/L < 0.1 0.1 Leachable Silver (Ag) < 0.01 0.01 4718914 mg/L Leachable Uranium (U) 4718914 mg/L < 0.01 0.01 RDL = Reportable Detection Limit QC Batch = Quality Control Batch

DST Consulting Engineers Inc Client Project #: GV-TB-027107

RESULTS OF ANALYSES OF SOIL

Maxxam ID		DGP151	DGP152	DGP152	DGP153		DGP154	DGP155	
Sampling Date		2016/10/13 09:00	2016/10/12 16:00	2016/10/12 16:00	2016/10/13 09:10		2016/10/13 09:15	2016/10/13 09:20	
COC Number		581859-01-01	581859-01-01	581859-01-01	581859-01-01		581859-01-01	581859-01-01	
	UNITS	CS1-26	CS1-27	CS1-27	CS1-28	QC Batch	CS1-29	CS1-30	QC Batch
		<u> </u>		Lan-Duh					
Inorganics	<u> </u>			Lab-Dup					
Inorganics Available (CaCl2) pH	рН	5.99	7.14	7.18	5.63	4715433	3.39	4.90	4715437

Lab-Dup = Laboratory Initiated Duplicate

Maxxam ID		DGP156	DGP157		DGP158	DGP159	DGP160	
Sampling Date		2016/10/13 09:30	2016/10/13 09:40		2016/10/13 09:50	2016/10/13 10:00	2016/10/13 10:10	
COC Number		581859-01-01	581859-01-01		581859-01-01	581859-01-01	581859-01-01	
	UNITS	CS1-31	CS1-32	QC Batch	CS1-33	CS1-34	CS1-35	QC Batch
Inorganics								
Available (CaCl2) pH	pН	3.40	4.44	4715437	3.26	5.39	4.93	4715433

Maxxam ID		DGP199	DGP200	DGP201	DGP202		DGP203	DGP204	
Sampling Date		2016/10/13 10:20	2016/10/13 10:25	2016/10/13 10:30	2016/10/13 10:40		2016/10/13 10:50	2016/10/13 11:00	
COC Number		581859-02-01	581859-02-01	581859-02-01	581859-02-01		581859-02-01	581859-02-01	
	UNITS	CS1-36	CS1-37	CS1-38	CS1-39	QC Batch	CS1-40	CS1-41	QC Batch
Inorganics									
Inorganics Available (CaCl2) pH	рН	3.26	3.31	5.35	4.08	4715437	6.30	6.91	4715433

Maxxam ID		DGP205		DGP206		DGP207	DGP207	DGP208		
Sampling Data		2016/10/13		2016/10/13		2016/10/13	2016/10/13	2016/10/12		
		11:10		11:20		11:30	11:30	16:10		
COC Number		581859-02-01		581859-02-01		581859-02-01	581859-02-01	581859-02-01		
	UNITS	CS1-42	QC Batch	CS1-43	QC Batch	CS1-44	CS1-44 Lab-Dup	CS1-45	QC Batch	
Inorganics										
Available (CaCl2) pH	рН	3.81	4718486	3.85	4716478	3.93	3.93	4.79	4715437	
QC Batch = Quality Control Batch										
QC Batch = Quality Control Ba	atch									

DST Consulting Engineers Inc Client Project #: GV-TB-027107

RESULTS OF ANALYSES OF SOIL

Maxxam ID		DGP245		DGP246		DGP247		DGP248	
Sampling Data		2016/10/13		2016/10/13		2016/10/12		2016/10/12	
Sampling Date		16:20		08:50		13:00		13:10	
COC Number		581859-03-01		581859-03-01		581859-03-01		581859-03-01	
	LINUTC	661 46	OC Batak	CC2 12	00.0.4.4	CC2 12	OC Datak	662.44	00.0.4.4
	UNITS	CS1-46	QC Batch	CSZ-12	QC Batch	CS2-13	QC Batch	CS2-14	QC Batch
Inorganics		C31-46	QC Batch	C32-12	QC Batch	CS2-13	QC Batch	CS2-14	QC Batch
Inorganics Available (CaCl2) pH	pH	5.49	4716478	4.75	4715437	4.55	4715433	3.30	4716478

Report Date: 2016/10/28

DST Consulting Engineers Inc Client Project #: GV-TB-027107

RESULTS OF ANALYSES OF SOIL

Maxxam ID				DGP24	19		DGP2	50		DGP2	78	DG	P279		
Sampling Date			20	016/10 13:20	0/12 0		2016/10 13:3	0/12 0		2016/10 13:5	0/12 0	2016, 14	/10/12 4:00		
COC Number			582	1859-0	3-01	ľ,	581859-0	03-01		581859-0	04-01	58185	9-04-01		
		U	INITS	CS2-1	5 QC	Batch	CS2-1	L6 (QC Batch	CS2-1	.7	CS	2-18	QC Ba	tch
Inorganics															
Available (CaCl2) pl	Н		рН	3.82	471	.5433	4.58	3	4715437	4.65		2.	.99	47154	133
QC Batch = Quality	Contr	ol Batc	h												
Maxxam ID				DGP28	30		DGP2	81		DGP28	32	DG	P283		
Sampling Date			20	016/10)/12		2016/10	0/13		2016/10)/12	2016,	/10/12		
			F.0/	14:20	0		13:1	.0		10:0	0	10	0:10		
		U	NITS	CS2-1	9 OC	Batch	CS2-2	20	OC Batch	CS3-1	1	58185 CS	9-04-01 3-12	OC Ba	tch
Inorganics								-						_	
Available (CaCl2) pl	Н		pН	5.40	471	5437	4.07	7	4716478	5.86		4.	.70	47154	37
QC Batch = Quality	Contr	ol Batc	h		I										
	1		0.000	~ ^	1		D205	İ		00000	i	1	0.000	_	
			2016/1	0/12		2016	1P285		20	GP286			DGP28	3/	
Sampling Date			10:2	20		2010	0:30		20.	10:40			10:50) 12	
COC Number			581859-	04-01		58185	59-04-01		581	859-04-01		5	81859-0	4-01	
		UNITS	CS3-2	13	QC Batch	CS	3-14	QC Ba	tch	CS3-15	QC Ba	atch	CS3-1	6	QC Bato
Inorganics															
Available (CaCl2) pH		рН	4.83	3	4715433	6	5.64	47154	437	4.83	47164	478	4.71		471543
QC Batch = Quality Contr	rol Bat	ch													
xxam ID)GP288		DGP289			DGP290		GP291	DG	6P292	D	GP293	
alian Data		20	16/10/12	20	16/10/12		20)16/10/	12 20	16/10/12	2016	5/10/1	2 201	.6/10/1	.2
			11:10		11:20			11:30		11:40	1	1:50		12:00	
: Number		581	859-05-02	1 581	859-05-01		581	1859-05	-01 581	859-05-01	58185	59-05-0	01 5818	359-05-	01
	UNIT	S	CS3-17		CS3-18	QC Ba	atch	CS3-19		CS3-20	CS	53-21	C	:\$3-22	QC
rganics	<u> </u>	<u> </u>				<u> </u>									
	pH		3.64		5.00	47154	437	6.15		6.33	3	3.34		4.66	47
Batch = Quality Control Ba	atch														
Maxxam ID			DGP3	02		DG	iP303		0	GP304			DGP30)5	
Sampling Date			2016/1 14:3	0/12 80		2016 1	5/10/13 3:40		20:	L6/10/12 10:00			2016/10 13:10	/13)	
	1		F010F0	06-01		58185	59-06-01		581	859-06-01		5	81859-0	6-01	
COC Number			581859-	00 01		00100									
COC Number		UNITS	CS2-2	21	QC Batch	CS	52-22	QC Ba	tch C	S3-110	QC Ba	atch	CS2-20	00	QC Bato
COC Number		UNITS	CS2-2	21	QC Batch	CS	52-22	QC Ba	itch C	S3-110	QC Ba	atch	CS2-20	00	QC Bato

DST Consulting Engineers Inc Client Project #: GV-TB-027107

Maxxam ID		DGP306	DGP307	
Sampling Date		2016/10/12 11:40	2016/10/13 11:00	
COC Number		581859-06-01	581859-06-01	
	UNITS	CS3-200	CS1-410	QC Batch
Inorganics				
Inorganics Available (CaCl2) pH	pН	6.30	6.93	4715433

RESULTS OF ANALYSES OF SOIL

DST Consulting Engineers Inc Client Project #: GV-TB-027107

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	DGP151 CS1-26 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Tec	lu
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP151 Dup CS1-26 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Tec	lu
Maxxam ID: Sample ID: Matrix:	DGP152 CS1-27 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Mercury (TCLP Leachable) (mg/L)	CV/AA	4720302	N/A	2016/10/27	Magdalen	a Carlos
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Ca	nzonieri
Total Metals in TCLP Lead	hate by ICPMS	ICP1/MS	4718914	2016/10/26	2016/10/27	Cristina Pe	etran
PAH Compounds in Leach	nate by GC/MS (SIM)	GC/MS	4720772	2016/10/27	2016/10/27	Mitesh Ra	j
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	nayake
TCLP - % Solids		BAL	4717858	2016/10/25	2016/10/26	Walt Wan	g
TCLP - Extraction Fluid			4717865	N/A	2016/10/26	Walt Wan	g
TCLP - Initial and final pH		РН	4717866	N/A	2016/10/26	Walt Wan	g
TCLP Zero Headspace Ext	raction		4716626	2016/10/25	2016/10/26	Walt Wan	g
VOCs in ZHE Leachates		GC/MS	4715261	2016/10/26	2016/10/26	Karen Huy	nh
Maxxam ID: Sample ID: Matrix:	DGP152 Dup CS1-27 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PAH Compounds in Leach	nate by GC/MS (SIM)	GC/MS	4720772	2016/10/27	2016/10/28	Mitesh Ra	j
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP153 CS1-28 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Ca	nzonieri
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	nayake

DST Consulting Engineers Inc Client Project #: GV-TB-027107

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	DGP153 Dup CS1-28 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Ca	nzonieri
Maxxam ID: Sample ID: Matrix:	DGP154 CS1-29 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Ca	nzonieri
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP155 CS1-30 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Tec	lu
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP156 CS1-31 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Tec	lu
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix: Test Description	DGP157 CS1-32 Soil	Instrumentation	Batch	Extracted	Date Analyzed	Collected: Shipped: Received: Analyst	2016/10/13 2016/10/17
Mercury (TCLP Leachable	e) (mg/L)	CV/AA	4720302	N/A	2016/10/27	Magdalena	a Carlos
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Tec	lu
Total Metals in TCLP Lead	hate by ICPMS	ICP1/MS	4718914	2016/10/26	2016/10/27	Cristina Pe	tran
PAH Compounds in Leach	nate by GC/MS (SIM)	GC/MS	4720772	2016/10/27	2016/10/28	Mitesh Raj	i
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	nayake
TCLP - % Solids		BAL	4717858	2016/10/25	2016/10/26	Walt Wang	g
TCLP - Extraction Fluid			4717865	N/A	2016/10/26	Walt Wang	g
TCLP - Initial and final pH		РН	4717866	N/A	2016/10/26	Walt Wang	5
TCLP Zero Headspace Ext	raction		4716626	2016/10/25	2016/10/26	Walt Wang	5
VOCs in ZHE Leachates		GC/MS	4715261	2016/10/26	2016/10/26	Karen Huy	nh

Moisture

DST Consulting Engineers Inc Client Project #: GV-TB-027107

TEST SUMMARY

Maxxam ID: Sample ID:	DGP158 CS1-33					Collected: Shipped:	2016/10/13
Matrix:	Soil					Received:	2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	tals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Ca	nzonieri
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP159 CS1-34 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Met	tals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/26	Daniel Tec	lu
pH CaCl2 EXTRACT	•	AT	4715433	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID:	DGP160					Collected:	2016/10/13
Sample ID: Matrix:	CS1-35 Soil					Shipped: Received:	2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	4714848	N/A	2016/10/26	Automate	d Statchk
Petroleum Hydro. CCME F	1 & BTEX in Soil	HSGC/MSFD	4715933	N/A	2016/10/25	Georgeta I	Rusu
Petroleum Hydrocarbons R	F2-F4 in Soil	GC/FID	4716027	2016/10/24	2016/10/25	Zhiyue (Fra	ank) Zhu
Strong Acid Leachable Met	tals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Tec	lu
Moisture		BAL	4715914	N/A	2016/10/24	Prgya Pano	chal
PAH Compounds in Soil by	GC/MS (SIM)	GC/MS	4717063	2016/10/25	2016/10/26	Mitesh Ra	
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID:	DGP199					Collected:	2016/10/13
Sample ID: Matrix:	CS1-36 Soil					Shipped: Received:	2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	4714848	N/A	2016/10/26	Automate	d Statchk
Petroleum Hydro. CCME F	1 & BTEX in Soil	HSGC/MSFD	4715933	N/A	2016/10/25	Georgeta I	Rusu
Petroleum Hydrocarbons F	F2-F4 in Soil	GC/FID	4716027	2016/10/24	2016/10/25	Zhiyue (Fra	ank) Zhu
Strong Acid Leachable Met	tals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Tec	lu
Moisture		BAL	4715914	N/A	2016/10/24	Prgya Pano	chal
PAH Compounds in Soil by	GC/MS (SIM)	GC/MS	4717063	2016/10/25	2016/10/26	Mitesh Raj	
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP200 CS1-37 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	4714848	N/A	2016/10/26	Automate	d Statchk
Petroleum Hydro. CCME F	1 & BTEX in Soil	HSGC/MSFD	4715933	N/A	2016/10/25	Georgeta I	Rusu
Petroleum Hydrocarbons F	F2-F4 in Soil	GC/FID	4716027	2016/10/24	2016/10/25	Zhiyue (Fra	ank) Zhu
Strong Acid Leachable Me	tals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Tec	lu

N/A

2016/10/24

Min Yang

4715297

BAL

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

DST Consulting Engineers Inc Client Project #: GV-TB-027107

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	DGP200 CS1-37 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PAH Compounds in Soil b	v GC/MS (SIM)	GC/MS	4717063	2016/10/25	2016/10/26	Mitesh Ra	i
nH CaCl2 EXTRACT	<i>y 00,000</i> (000)	ΔΤ	4715437	2016/10/25	2016/10/25	Neil Dassa	navake
pri cuciz Extract			4713437	2010/10/25	2010/10/25	Nell Dussu	hayake
Maxxam ID: Sample ID: Matrix:	DGP201 CS1-38 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	4714848	N/A	2016/10/26	Automate	d Statchk
Petroleum Hydro. CCME	F1 & BTEX in Soil	HSGC/MSFD	4715933	N/A	2016/10/25	Georgeta	Rusu
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	4716027	2016/10/24	2016/10/25	Zhiyue (Fra	ank) Zhu
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teo	lu
Moisture		BAL	4715297	N/A	2016/10/24	Min Yang	
PAH Compounds in Soil b	y GC/MS (SIM)	GC/MS	4717063	2016/10/25	2016/10/26	Mitesh Ra	j
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix: Test Description	DGP201 Dup CS1-38 Soil	Instrumentation	Batch	Extracted	Date Analyzed	Collected: Shipped: Received: Analyst	2016/10/13 2016/10/17
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Tec	lu
Maxxam ID: Sample ID: Matrix:	DGP202 CS1-39 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP203 CS1-40 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP204 CS1-41 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Tec	lu
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	navake

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

DST Consulting Engineers Inc Client Project #: GV-TB-027107

TEST SUMMARY

Maxxam ID:	DGP205
Sample ID:	CS1-42
Matrix:	Soil

Collected:	2016/10/13
Received:	2016/10/17

Collected: 2016/10/13 Shipped: Received: 2016/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury (TCLP Leachable) (mg/L)	CV/AA	4720302	N/A	2016/10/27	Magdalena Carlos
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Canzonieri
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	4718914	2016/10/26	2016/10/27	Cristina Petran
PAH Compounds in Leachate by GC/MS (SIM)	GC/MS	4720772	2016/10/27	2016/10/28	Mitesh Raj
pH CaCl2 EXTRACT	AT	4718486	2016/10/26	2016/10/26	Neil Dassanayake
TCLP - % Solids	BAL	4717858	2016/10/25	2016/10/26	Walt Wang
TCLP - Extraction Fluid		4717865	N/A	2016/10/26	Walt Wang
TCLP - Initial and final pH	РН	4717866	N/A	2016/10/26	Walt Wang
TCLP Zero Headspace Extraction		4716626	2016/10/25	2016/10/26	Walt Wang
VOCs in ZHE Leachates	GC/MS	4715261	2016/10/26	2016/10/26	Karen Huynh

Maxxam ID:	DGP206
Sample ID:	CS1-43
Matrix:	Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teclu
pH CaCl2 EXTRACT	AT	4716478	2016/10/25	2016/10/25	Neil Dassanayake

Maxxam ID:	DGP207	Collected:	2016/10/13
Matrix:	Soil	Received:	2016/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teclu
pH CaCl2 EXTRACT	AT	4715437	2016/10/25	2016/10/25	Neil Dassanayake

Maxxam ID: Sample ID: Matrix:	DGP207 Dup CS1-44 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	inayake
Maxxam ID: Sample ID:	DGP208 CS1-45					Collected: Shipped:	2016/10/12
Matrix:	Soil					Received:	2016/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teclu
pH CaCl2 EXTRACT	AT	4715437	2016/10/25	2016/10/25	Neil Dassanayake

DST Consulting Engineers Inc Client Project #: GV-TB-027107

TEST SUMMARY

Maxxam ID:	DGP245
Sample ID:	CS1-46
Matrix:	Soil

Collected: 2016/10/13 Shipped: Received: 2016/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury (TCLP Leachable) (mg/L)	CV/AA	4720302	N/A	2016/10/27	Magdalena Carlos
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Canzonieri
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	4718914	2016/10/26	2016/10/27	Cristina Petran
PAH Compounds in Leachate by GC/MS (SIM)	GC/MS	4720772	2016/10/27	2016/10/28	Mitesh Raj
pH CaCl2 EXTRACT	AT	4716478	2016/10/25	2016/10/25	Neil Dassanayake
TCLP - % Solids	BAL	4717858	2016/10/25	2016/10/26	Walt Wang
TCLP - Extraction Fluid		4717865	N/A	2016/10/26	Walt Wang
TCLP - Initial and final pH	PH	4717866	N/A	2016/10/26	Walt Wang
TCLP Zero Headspace Extraction		4716626	2016/10/25	2016/10/26	Walt Wang
VOCs in ZHE Leachates	GC/MS	4715261	2016/10/26	2016/10/26	Karen Huynh

Maxxam ID:	DGP246
Sample ID:	CS2-12
Matrix:	Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teclu
pH CaCl2 EXTRACT	AT	4715437	2016/10/25	2016/10/25	Neil Dassanayake

Maxxam ID:	DGP247
Sample ID:	CS2-13
Matrix:	Soil

Collected:	2016/10/12
Shipped:	
Received:	2016/10/17

Collected: 2016/10/13 Shipped: Received: 2016/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teclu
pH CaCl2 EXTRACT	AT	4715433	2016/10/25	2016/10/25	Neil Dassanayake

Maxxam ID:	DGP248	Collected:	2016/10/12
Sample ID:	CS2-14	Shipped:	
Matrix:	Soil	Received:	2016/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Canzonieri
pH CaCl2 EXTRACT	AT	4716478	2016/10/25	2016/10/25	Neil Dassanayake

Maxxam ID: Sample ID: Matrix:	DGP249 CS2-15 Soil					Collected: 2016/10/12 Shipped: Received: 2016/10/17	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Canzonieri	
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassanavake	

DST Consulting Engineers Inc Client Project #: GV-TB-027107

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	DGP250 CS2-16 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT	,	AT	4715437	2016/10/25	2016/10/25	Neil Dassa	navake
Maxxam ID: Sample ID: Matrix:	DGP278 CS2-17 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP279 CS2-18 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teclu	
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP280 CS2-19 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teclu	
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP281 CS2-20 Soil					Collected: Shipped: Received:	2016/10/13 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Mercury (TCLP Leachable) (mg/L)	CV/AA	4720302	N/A	2016/10/27	Magdalena Carlos	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teo	lu
Total Metals in TCLP Lead	hate by ICPMS	ICP1/MS	4718914	2016/10/26	2016/10/27	Cristina Petran	
PAH Compounds in Leach	ate by GC/MS (SIM)	GC/MS	4720772	2016/10/27	2016/10/28	Mitesh Ra	j
pH CaCl2 EXTRACT		AT	4716478	2016/10/25	2016/10/25	Neil Dassanayake	
TCLP - % Solids		BAL	4717858	2016/10/25	2016/10/26	Walt Wan	g
TCLP - Extraction Fluid			4717865	N/A	2016/10/26	Walt Wan	g
TCLP - Initial and final pH		PH	4717866	N/A	2016/10/26	Walt Wang	
TCLP Zero Headspace Ext	raction		4716626	2016/10/25	2016/10/26	Walt Wan	g
VOCs in ZHE Leachates		GC/MS	4715261	2016/10/26	2016/10/26	Karen Huy	'nh

DST Consulting Engineers Inc Client Project #: GV-TB-027107

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	DGP282 CS3-11 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Ca	nzonieri
pH CaCl2 EXTRACT	· ·	AT	4715437	2016/10/25	2016/10/25	Neil Dassa	navake
Maxxam ID: Sample ID: Matrix:	DGP283 CS3-12 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP284 CS3-13 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP285 CS3-14 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP286 CS3-15 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4718485	2016/10/26	2016/10/26	Daniel Teo	lu
pH CaCl2 EXTRACT		AT	4716478	2016/10/25	2016/10/25	Neil Dassa	nayake
Maxxam ID: Sample ID: Matrix:	DGP287 CS3-16 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	nayake

DST Consulting Engineers Inc Client Project #: GV-TB-027107

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	DGP288 CS3-17 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT		AT	4715437	2016/10/25	2016/10/25	Neil Dassa	inayake
Maxxam ID: Sample ID: Matrix:	DGP289 CS3-18 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT	· ·	AT	4715437	2016/10/25	2016/10/25	Neil Dassa	inayake
Maxxam ID: Sample ID: Matrix:	DGP290 CS3-19 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	inayake
Maxxam ID: Sample ID: Matrix:	DGP291 CS3-20 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	inayake
Maxxam ID: Sample ID: Matrix:	DGP292 CS3-21 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teo	du
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	inayake
Maxxam ID: Sample ID: Matrix:	DGP293 CS3-22 Soil					Collected: Shipped: Received:	2016/10/12 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teo	lu
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassa	inayake

DST Consulting Engineers Inc Client Project #: GV-TB-027107

TEST SUMMARY

Maxxam ID:	DGP302
Sample ID:	CS2-21
Matrix:	Soil

Collected: 2016/10/12 Shipped: Received: 2016/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury (TCLP Leachable) (mg/L)	CV/AA	4720302	N/A	2016/10/27	Magdalena Carlos
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Canzonieri
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	4718914	2016/10/26	2016/10/27	Cristina Petran
PAH Compounds in Leachate by GC/MS (SIM)	GC/MS	4720772	2016/10/27	2016/10/28	Mitesh Raj
pH CaCl2 EXTRACT	AT	4716478	2016/10/25	2016/10/25	Neil Dassanayake
TCLP - % Solids	BAL	4717858	2016/10/25	2016/10/26	Walt Wang
TCLP - Extraction Fluid		4717865	N/A	2016/10/26	Walt Wang
TCLP - Initial and final pH	PH	4717866	N/A	2016/10/26	Walt Wang
TCLP Zero Headspace Extraction		4716626	2016/10/25	2016/10/26	Walt Wang
VOCs in ZHE Leachates	GC/MS	4715261	2016/10/26	2016/10/26	Karen Huynh

Maxxam ID:	DGP303
Sample ID:	CS2-22
Matrix:	Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716498	2016/10/25	2016/10/25	Daniel Teclu
pH CaCl2 EXTRACT	AT	4715437	2016/10/25	2016/10/25	Neil Dassanayake

Maxxam ID:	DGP304
Sample ID:	CS3-110
Matrix:	Soil

Collected:	2016/10/12
Shipped:	
Received:	2016/10/17

Collected: 2016/10/13 Shipped: Received: 2016/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teclu
pH CaCl2 EXTRACT	AT	4715433	2016/10/25	2016/10/25	Neil Dassanayake

Maxxam ID:	DGP305
Sample ID:	CS2-200
Matrix:	Soil

Collected: 2016/10/13 Shipped: Received: 2016/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury (TCLP Leachable) (mg/L)	CV/AA	4720302	N/A	2016/10/27	Magdalena Carlos
Strong Acid Leachable Metals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Canzonieri
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	4718914	2016/10/26	2016/10/27	Cristina Petran
PAH Compounds in Leachate by GC/MS (SIM)	GC/MS	4720772	2016/10/27	2016/10/28	Mitesh Raj
pH CaCl2 EXTRACT	AT	4716478	2016/10/25	2016/10/25	Neil Dassanayake
TCLP - % Solids	BAL	4717858	2016/10/25	2016/10/26	Walt Wang
TCLP - Extraction Fluid		4717865	N/A	2016/10/26	Walt Wang
TCLP - Initial and final pH	PH	4717866	N/A	2016/10/26	Walt Wang
TCLP Zero Headspace Extraction		4716626	2016/10/25	2016/10/26	Walt Wang
VOCs in ZHE Leachates	GC/MS	4715261	2016/10/26	2016/10/26	Karen Huynh

DST Consulting Engineers Inc Client Project #: GV-TB-027107

TEST SUMMARY

Maxxam ID:	DGP306
Sample ID:	CS3-200
Matrix:	Soil

Collected: 2016/10/12 Shipped: Received: 2016/10/17

Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716588	2016/10/25	2016/10/25	Daniel Teclu
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassanayake
Maxxam ID: Sample ID: Matrix:	DGP307 CS1-410 Soil					Collected: 2016/10/13 Shipped: Received: 2016/10/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable M	etals by ICPMS	ICP/MS	4716460	2016/10/25	2016/10/26	Viviana Canzonieri
pH CaCl2 EXTRACT		AT	4715433	2016/10/25	2016/10/25	Neil Dassanayake

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	2.7°C
Package 2	2.0°C
Package 3	2.0°C

Sample DGP160-01 : F1/BTEX Analysis: Detection limits were adjusted for sample weight .

Sample DGP199-01 : F1/BTEX Analysis: Detection limits were adjusted for high moisture content and sample weight. F2-F4 Analysis: Detection limits were adjusted for high moisture content.

PAH analysis: Detection limits were adjusted for high moisture content.

Sample DGP200-01 : F1/BTEX Analysis: Detection limits were adjusted for high moisture content and sample weight. F2-F4 Analysis: Detection limits were adjusted for high moisture content.

PAH analysis: Detection limits were adjusted for high moisture content.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

DST Consulting Engineers Inc Client Project #: GV-TB-027107

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	Leachate	Blank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4715261	Leachable 4-Bromofluorobenzene	2016/10/26	100	70 - 130	100	70 - 130	98	%				
4715261	Leachable D4-1,2-Dichloroethane	2016/10/26	101	70 - 130	99	70 - 130	100	%				
4715261	Leachable D8-Toluene	2016/10/26	100	70 - 130	98	70 - 130	100	%				
4715933	1,4-Difluorobenzene	2016/10/24	112	60 - 140	114	60 - 140	114	%				
4715933	4-Bromofluorobenzene	2016/10/24	96	60 - 140	96	60 - 140	94	%				
4715933	D10-Ethylbenzene	2016/10/24	102	60 - 140	94	60 - 140	94	%				
4715933	D4-1,2-Dichloroethane	2016/10/24	94	60 - 140	94	60 - 140	95	%				
4716027	o-Terphenyl	2016/10/25	102	60 - 130	100	60 - 130	101	%				
4717063	D10-Anthracene	2016/10/25	87	50 - 130	98	50 - 130	102	%				
4717063	D14-Terphenyl (FS)	2016/10/25	87	50 - 130	93	50 - 130	96	%				
4717063	D8-Acenaphthylene	2016/10/25	79	50 - 130	83	50 - 130	83	%				
4720772	Leachable D10-Anthracene	2016/10/27	104	50 - 130	103	50 - 130	105	%				
4720772	Leachable D14-Terphenyl (FS)	2016/10/27	96	50 - 130	94	50 - 130	94	%				
4720772	Leachable D8-Acenaphthylene	2016/10/27	94	50 - 130	92	50 - 130	91	%				
4715261	Leachable Benzene	2016/10/26	91	70 - 130	97	70 - 130	<0.020	mg/L	NC	30		
4715297	Moisture	2016/10/24							0	20		
4715433	Available (CaCl2) pH	2016/10/25			99	97 - 103			0.52	N/A		
4715437	Available (CaCl2) pH	2016/10/25			98	97 - 103			0.013	N/A		
4715914	Moisture	2016/10/24							3.3	20		
4715933	Benzene	2016/10/24	98	60 - 140	97	60 - 140	<0.020	ug/g	NC	50		
4715933	Ethylbenzene	2016/10/24	110	60 - 140	112	60 - 140	<0.020	ug/g	NC	50		
4715933	F1 (C6-C10) - BTEX	2016/10/24					<10	ug/g	NC	30		
4715933	F1 (C6-C10)	2016/10/24	88	60 - 140	82	80 - 120	<10	ug/g	NC	30		
4715933	o-Xylene	2016/10/24	106	60 - 140	106	60 - 140	<0.020	ug/g	NC	50		
4715933	p+m-Xylene	2016/10/24	98	60 - 140	99	60 - 140	<0.040	ug/g	NC	50		
4715933	Toluene	2016/10/24	104	60 - 140	101	60 - 140	<0.020	ug/g	NC	50		
4715933	Total Xylenes	2016/10/24					<0.040	ug/g	NC	50		
4716027	F2 (C10-C16 Hydrocarbons)	2016/10/25	100	50 - 130	99	80 - 120	<10	ug/g	NC	30		
4716027	F3 (C16-C34 Hydrocarbons)	2016/10/25	100	50 - 130	99	80 - 120	<50	ug/g	NC	30		
4716027	F4 (C34-C50 Hydrocarbons)	2016/10/25	102	50 - 130	101	80 - 120	<50	ug/g	NC	30		
4716460	Acid Extractable Antimony (Sb)	2016/10/26	87	75 - 125	101	80 - 120	<0.20	ug/g	10	30		
4716460	Acid Extractable Arsenic (As)	2016/10/26	NC	75 - 125	99	80 - 120	<1.0	ug/g	2.8	30		

Page 39 of 54

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: GV-TB-027107

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	Leachate	Blank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4716460	Acid Extractable Barium (Ba)	2016/10/26	NC	75 - 125	96	80 - 120	<0.50	ug/g	1.9	30		
4716460	Acid Extractable Beryllium (Be)	2016/10/26	91	75 - 125	96	80 - 120	<0.20	ug/g	2.4	30		
4716460	Acid Extractable Boron (B)	2016/10/26	83	75 - 125	95	80 - 120	<5.0	ug/g	NC	30		
4716460	Acid Extractable Cadmium (Cd)	2016/10/26	95	75 - 125	101	80 - 120	<0.10	ug/g	7.8	30		
4716460	Acid Extractable Chromium (Cr)	2016/10/26	NC	75 - 125	102	80 - 120	<1.0	ug/g	4.0	30		
4716460	Acid Extractable Cobalt (Co)	2016/10/26	94	75 - 125	100	80 - 120	<0.10	ug/g	0.21	30		
4716460	Acid Extractable Copper (Cu)	2016/10/26	NC	75 - 125	101	80 - 120	<0.50	ug/g	8.8	30		
4716460	Acid Extractable Lead (Pb)	2016/10/26	NC	75 - 125	101	80 - 120	<1.0	ug/g	2.0	30		
4716460	Acid Extractable Molybdenum (Mo)	2016/10/26	90	75 - 125	101	80 - 120	<0.50	ug/g	4.2	30		
4716460	Acid Extractable Nickel (Ni)	2016/10/26	NC	75 - 125	100	80 - 120	<0.50	ug/g	3.5	30		
4716460	Acid Extractable Selenium (Se)	2016/10/26	89	75 - 125	101	80 - 120	<0.50	ug/g	1.7	30		
4716460	Acid Extractable Silver (Ag)	2016/10/26	98	75 - 125	105	80 - 120	<0.20	ug/g	NC	30		
4716460	Acid Extractable Thallium (TI)	2016/10/26	90	75 - 125	99	80 - 120	<0.050	ug/g	4.1	30		
4716460	Acid Extractable Uranium (U)	2016/10/26	92	75 - 125	100	80 - 120	<0.050	ug/g	2.2	30		
4716460	Acid Extractable Vanadium (V)	2016/10/26	NC	75 - 125	97	80 - 120	<5.0	ug/g	1.7	30		
4716460	Acid Extractable Zinc (Zn)	2016/10/26	NC	75 - 125	100	80 - 120	<5.0	ug/g	2.0	30		
4716478	Available (CaCl2) pH	2016/10/25			99	97 - 103			0.059	N/A		
4716498	Acid Extractable Antimony (Sb)	2016/10/25	91	75 - 125	99	80 - 120	<0.20	ug/g	NC	30		
4716498	Acid Extractable Arsenic (As)	2016/10/25	97	75 - 125	100	80 - 120	<1.0	ug/g	1.4	30		
4716498	Acid Extractable Barium (Ba)	2016/10/25	NC	75 - 125	99	80 - 120	<0.50	ug/g	4.1	30		
4716498	Acid Extractable Beryllium (Be)	2016/10/25	97	75 - 125	97	80 - 120	<0.20	ug/g	NC	30		
4716498	Acid Extractable Boron (B)	2016/10/25	89	75 - 125	93	80 - 120	<5.0	ug/g	NC	30		
4716498	Acid Extractable Cadmium (Cd)	2016/10/25	101	75 - 125	99	80 - 120	<0.10	ug/g	0.98	30		
4716498	Acid Extractable Chromium (Cr)	2016/10/25	NC	75 - 125	95	80 - 120	<1.0	ug/g	3.9	30		
4716498	Acid Extractable Cobalt (Co)	2016/10/25	NC	75 - 125	96	80 - 120	<0.10	ug/g	3.6	30		
4716498	Acid Extractable Copper (Cu)	2016/10/25	NC	75 - 125	102	80 - 120	<0.50	ug/g	1.6	30		
4716498	Acid Extractable Lead (Pb)	2016/10/25	NC	75 - 125	99	80 - 120	<1.0	ug/g	0.52	30		
4716498	Acid Extractable Molybdenum (Mo)	2016/10/25	94	75 - 125	98	80 - 120	<0.50	ug/g	NC	30		
4716498	Acid Extractable Nickel (Ni)	2016/10/25	NC	75 - 125	96	80 - 120	<0.50	ug/g	0.58	30		
4716498	Acid Extractable Selenium (Se)	2016/10/25	94	75 - 125	98	80 - 120	<0.50	ug/g	NC	30		
4716498	Acid Extractable Silver (Ag)	2016/10/25	98	75 - 125	102	80 - 120	<0.20	ug/g	NC	30		
4716498	Acid Extractable Thallium (Tl)	2016/10/25	88	75 - 125	96	80 - 120	<0.050	ug/g	NC	30		

Page 40 of 54

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: GV-TB-027107

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	Leachate	Blank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4716498	Acid Extractable Uranium (U)	2016/10/25	91	75 - 125	96	80 - 120	<0.050	ug/g	2.2	30		
4716498	Acid Extractable Vanadium (V)	2016/10/25	NC	75 - 125	96	80 - 120	<5.0	ug/g	4.1	30		
4716498	Acid Extractable Zinc (Zn)	2016/10/25	NC	75 - 125	110	80 - 120	<5.0	ug/g	1.2	30		
4716588	Acid Extractable Antimony (Sb)	2016/10/25	79	75 - 125	98	80 - 120	<0.20	ug/g	NC	30		
4716588	Acid Extractable Arsenic (As)	2016/10/25	95	75 - 125	102	80 - 120	<1.0	ug/g	NC	30		
4716588	Acid Extractable Barium (Ba)	2016/10/25	NC	75 - 125	98	80 - 120	<0.50	ug/g	6.2	30		
4716588	Acid Extractable Beryllium (Be)	2016/10/25	97	75 - 125	98	80 - 120	<0.20	ug/g	NC	30		
4716588	Acid Extractable Boron (B)	2016/10/25	91	75 - 125	95	80 - 120	<5.0	ug/g	NC	30		
4716588	Acid Extractable Cadmium (Cd)	2016/10/25	97	75 - 125	99	80 - 120	<0.10	ug/g	NC	30		
4716588	Acid Extractable Chromium (Cr)	2016/10/25	NC	75 - 125	102	80 - 120	<1.0	ug/g	4.0	30		
4716588	Acid Extractable Cobalt (Co)	2016/10/25	NC	75 - 125	101	80 - 120	<0.10	ug/g	0.97	30		
4716588	Acid Extractable Copper (Cu)	2016/10/25	NC	75 - 125	99	80 - 120	<0.50	ug/g	5.6	30		
4716588	Acid Extractable Lead (Pb)	2016/10/25	NC	75 - 125	101	80 - 120	<1.0	ug/g	5.3	30		
4716588	Acid Extractable Molybdenum (Mo)	2016/10/25	95	75 - 125	97	80 - 120	<0.50	ug/g	NC	30		
4716588	Acid Extractable Nickel (Ni)	2016/10/25	NC	75 - 125	100	80 - 120	<0.50	ug/g	1.7	30		
4716588	Acid Extractable Selenium (Se)	2016/10/25	93	75 - 125	98	80 - 120	<0.50	ug/g	NC	30		
4716588	Acid Extractable Silver (Ag)	2016/10/25	102	75 - 125	100	80 - 120	<0.20	ug/g	NC	30		
4716588	Acid Extractable Thallium (Tl)	2016/10/25	93	75 - 125	97	80 - 120	<0.050	ug/g	NC	30		
4716588	Acid Extractable Uranium (U)	2016/10/25	96	75 - 125	99	80 - 120	<0.050	ug/g	NC	30		
4716588	Acid Extractable Vanadium (V)	2016/10/25	NC	75 - 125	98	80 - 120	<5.0	ug/g	2.6	30		
4716588	Acid Extractable Zinc (Zn)	2016/10/25	NC	75 - 125	100	80 - 120	<5.0	ug/g	1.7	30		
4717063	1-Methylnaphthalene	2016/10/25	84	50 - 130	82	50 - 130	<0.0050	ug/g	NC	40		
4717063	2-Methylnaphthalene	2016/10/25	69	50 - 130	75	50 - 130	<0.0050	ug/g	NC	40		
4717063	Acenaphthene	2016/10/25	82	50 - 130	84	50 - 130	<0.0050	ug/g	NC	40		
4717063	Acenaphthylene	2016/10/25	75	50 - 130	80	50 - 130	<0.0050	ug/g	NC	40		
4717063	Anthracene	2016/10/25	78	50 - 130	84	50 - 130	<0.0050	ug/g	NC	40		
4717063	Benzo(a)anthracene	2016/10/25	88	50 - 130	89	50 - 130	<0.0050	ug/g	NC	40		
4717063	Benzo(a)pyrene	2016/10/25	88	50 - 130	90	50 - 130	<0.0050	ug/g	NC	40		
4717063	Benzo(b/j)fluoranthene	2016/10/25	82	50 - 130	88	50 - 130	<0.0050	ug/g	NC	40		
4717063	Benzo(g,h,i)perylene	2016/10/25	92	50 - 130	78	50 - 130	<0.0050	ug/g	NC	40		
4717063	Benzo(k)fluoranthene	2016/10/25	83	50 - 130	90	50 - 130	<0.0050	ug/g	NC	40		
4717063	Chrysene	2016/10/25	90	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40		

Page 41 of 54

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: GV-TB-027107

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	Leachate	Blank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4717063	Dibenz(a,h)anthracene	2016/10/25	89	50 - 130	83	50 - 130	<0.0050	ug/g	NC	40		
4717063	Fluoranthene	2016/10/25	93	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40		
4717063	Fluorene	2016/10/25	79	50 - 130	83	50 - 130	<0.0050	ug/g	NC	40		
4717063	Indeno(1,2,3-cd)pyrene	2016/10/25	91	50 - 130	84	50 - 130	<0.0050	ug/g	NC	40		
4717063	Naphthalene	2016/10/25	76	50 - 130	80	50 - 130	<0.0050	ug/g	NC	40		
4717063	Phenanthrene	2016/10/25	85	50 - 130	84	50 - 130	<0.0050	ug/g	NC	40		
4717063	Pyrene	2016/10/25	99	50 - 130	103	50 - 130	<0.0050	ug/g	NC	40		
4718485	Acid Extractable Antimony (Sb)	2016/10/26	84	75 - 125	98	80 - 120	<0.20	ug/g	NC	30		
4718485	Acid Extractable Arsenic (As)	2016/10/26	103	75 - 125	96	80 - 120	<1.0	ug/g	NC	30		
4718485	Acid Extractable Barium (Ba)	2016/10/26	NC	75 - 125	103	80 - 120	<0.50	ug/g	4.0	30		
4718485	Acid Extractable Beryllium (Be)	2016/10/26	103	75 - 125	97	80 - 120	<0.20	ug/g	NC	30		
4718485	Acid Extractable Boron (B)	2016/10/26	97	75 - 125	99	80 - 120	<5.0	ug/g				
4718485	Acid Extractable Cadmium (Cd)	2016/10/26	103	75 - 125	95	80 - 120	<0.10	ug/g	NC	30		
4718485	Acid Extractable Chromium (Cr)	2016/10/26	NC	75 - 125	98	80 - 120	<1.0	ug/g	0.72	30		
4718485	Acid Extractable Cobalt (Co)	2016/10/26	107	75 - 125	99	80 - 120	<0.10	ug/g	2.3	30		
4718485	Acid Extractable Copper (Cu)	2016/10/26	103	75 - 125	100	80 - 120	<0.50	ug/g	3.3	30		
4718485	Acid Extractable Lead (Pb)	2016/10/26	103	75 - 125	97	80 - 120	<1.0	ug/g	0.33	30		
4718485	Acid Extractable Molybdenum (Mo)	2016/10/26	104	75 - 125	96	80 - 120	<0.50	ug/g	NC	30		
4718485	Acid Extractable Nickel (Ni)	2016/10/26	104	75 - 125	99	80 - 120	<0.50	ug/g	2.5	30		
4718485	Acid Extractable Selenium (Se)	2016/10/26	106	75 - 125	100	80 - 120	<0.50	ug/g	NC	30		
4718485	Acid Extractable Silver (Ag)	2016/10/26	104	75 - 125	96	80 - 120	<0.20	ug/g	NC	30		
4718485	Acid Extractable Thallium (TI)	2016/10/26	103	75 - 125	95	80 - 120	<0.050	ug/g	NC	30		
4718485	Acid Extractable Uranium (U)	2016/10/26	103	75 - 125	93	80 - 120	<0.050	ug/g	2.3	30		
4718485	Acid Extractable Vanadium (V)	2016/10/26	NC	75 - 125	99	80 - 120	<5.0	ug/g	1.4	30		
4718485	Acid Extractable Zinc (Zn)	2016/10/26	NC	75 - 125	100	80 - 120	<5.0	ug/g	3.4	30		
4718486	Available (CaCl2) pH	2016/10/26			98	97 - 103			0.17	N/A		
4718914	Leachable Arsenic (As)	2016/10/27	97	80 - 120	102	80 - 120			NC	35	<0.2	mg/L
4718914	Leachable Barium (Ba)	2016/10/27	NC	80 - 120	97	80 - 120			NC	35	<0.2	mg/L
4718914	Leachable Boron (B)	2016/10/27	94	80 - 120	99	80 - 120			NC	35	<0.1	mg/L
4718914	Leachable Cadmium (Cd)	2016/10/27	100	80 - 120	98	80 - 120			NC	35	<0.05	mg/L
4718914	Leachable Chromium (Cr)	2016/10/27	97	80 - 120	100	80 - 120			NC	35	<0.1	mg/L
4718914	Leachable Lead (Pb)	2016/10/27	94	80 - 120	97	80 - 120			NC	35	<0.1	mg/L

Page 42 of 54

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: GV-TB-027107

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	Leachate	Blank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4718914	Leachable Selenium (Se)	2016/10/27	99	80 - 120	101	80 - 120			NC	35	<0.1	mg/L
4718914	Leachable Silver (Ag)	2016/10/27	95	80 - 120	94	80 - 120			NC	35	<0.01	mg/L
4718914	Leachable Uranium (U)	2016/10/27	98	80 - 120	100	80 - 120			NC	35	<0.01	mg/L
4720302	Leachable Mercury (Hg)	2016/10/27	113	75 - 125	110	80 - 120	<0.0010	mg/L	NC	25	<0.0010	mg/L
4720772	Leachable Benzo(a)pyrene	2016/10/28	93	50 - 130	94	50 - 130	<0.10	ug/L	NC	40		
N/A = Not A	pplicable											
Duplicate: I	Paired analysis of a separate portion of the same	sample. Used to	evaluate the	variance in	the measurem	nent.						

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

DST Consulting Engineers Inc Client Project #: GV-TB-027107

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

auistin Camiere

Cristina Carriere, Scientific Services

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Number of the second	лах	Xam	Maxxam Analytics International Corpor	ation o/a Maxxam An	alytics												CHAIN	OF CUS	TODY RECO	RD		
Marca Marca <th< th=""><th>A Dupleas Varia</th><th>tes Broop Company</th><th>6740 Campobello Road, Mississauga,</th><th>Ontario Canada L5N</th><th>2L8 Tel (905) 817-5</th><th>700 Toll-free:800-</th><th>-563-6266 Fax</th><th>(905) 817-3</th><th>5777 www.r</th><th>naxxam.ca</th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th>1.</th><th>h a set a set 1 la</th><th>o Only</th><th>Page 1</th></th<>	A Dupleas Varia	tes Broop Company	6740 Campobello Road, Mississauga,	Ontario Canada L5N	2L8 Tel (905) 817-5	700 Toll-free:800-	-563-6266 Fax	(905) 817-3	5777 www.r	naxxam.ca			-						1.	h a set a set 1 la	o Only	Page 1
Barry New Methods Description Description <thdescrin< th=""> Descrin Descrin<</thdescrin<>		INV	VOICE TO:			REPOR	RT TO:					_	PROJE	CTINFOR	MATION:				La	boratory Us	se Only:	
Norm Accounts Payable Name Construction Protect	pany Name	#47464 DST Cor	nsulting Engineers Inc 🧩	Compan	y Name:						Quotation	#	B618	302	x. :				Maxxam Jo	3#:	В	ottle Order I
Base BBS Regent Street Stude 3-18 Anserts Product Product Bit Stude 2010	ntion. A	Accounts Payable)	Attention	Geoffre	ey Lake	1.1				P.O.#										11	
Subury ON P3E 544 CODE: Merec (705) 523-6680 Text (705) 523-6680 x259 Fair Separation 133 (705) 523-6680 x259 Fair (705) 523-6680 x259 Fair Separation 133 (705) 523-6680 x259 Fair (705) 523-6680 x259 (705) 523-6680 x259 Fair (705) 523-6680 x259 Fair (705) 523-6680 x259 Fair (705) 523-6680 x259 (705) 523-6680 x259 (705) 523-6680 x259 Fair (705) 523-6680 x259 Fair (705) 523-6680 x259 (706) x23-6680 x259 (706) x23-7680 x23-	8	885 Regent Stree	t Suite 3-1B	Address	s						Project.						45				-	581859
Image: Constraint of the second state of the second st	S	Sudbury ON P3E	5M4				9C				Project Na	ame	-					- 1	COC #:		Pro	ject Manag
Big@dstgroup.com Exam Big@dstgroup.com Big@dstgroup.com Call Big@dstgroup.com Call Big@dstgroup.com OCR EGULATED ON WHEE NOT NUMBER OF RUNATION NUMBER OF	(7	(705) 523-6680	Fax. (705) 523-669	0 Tel:	(705) 5	23-6680 x258	Fax				Site #:					2		1000			Au	ustvna Dob
Interface of the second process of the second proces	a	ap@dstgroup.com	n	Email	glake@	dstgroup.com	1				Sampled B	By				140			C#581859-0	1-01		
SUBJITED ON THE MAXAAN DIRING WATER CALLAN OF CUSTORY The Sequence in Support The Sequence in Sequence	OE REGUL	LATED DRINKING	WATER OR WATER INTENDE	D FOR HUMAN	CONSUMPTION	MUST BE				ANA	ALYSIS RE	QUESTER	PLEASE	BE SPEC	IFIC)				Turna	round Time (TA	T) Required:	
Image: Applications Special instructions Special i		- SUBMITTED O	N THE MAXXAM DRINKING WA	ATER CHAIN OF	CUSTODY		-	9		5	54	0						T WIND	Please prov	de advance notic	ce for rush pro	ects
Dest Dest	Regulation 1	153 (2011)	Other Regulati	ons	Special In	structions	ge	Ŧ		1	NA.	B	t,					Regular (Standard) TAI	:		
Bit Comm Bit Comm <td< td=""><td></td><td>Res/Park Medium</td><td></td><td>wor Bylaw</td><td></td><td></td><td>2 Ci</td><td>5</td><td></td><td>ž</td><td>N.</td><td>2</td><td>21</td><td></td><td>·</td><td></td><td>-</td><td>(will be apple</td><td>ed if Rush TAT is i</td><td>ot specified).</td><td></td><td></td></td<>		Res/Park Medium		wor Bylaw			2 Ci	5		ž	N.	2	21		·		-	(will be apple	ed if Rush TAT is i	ot specified).		
bits 3	ble 2 Inc	nd/Comm Coarse	Reg 558 Storm Sewa	r Bylaw			Cr. as	5		NA	5	ů	2	5				Diana acte	Standard TAT in	hys nor most resis	as 800 and 0	vine Furnit
Determinant Determinant <thdeterminant< th=""> <thdeterminant< th=""></thdeterminant<></thdeterminant<>	ble 3 🔲 Ag	gri/Other For RSC	MISA Municipality				d) BH			5	E	0	D					days - conta	ct your Project Mai	ager for details.	and activity second field	and the second second second second second second second second second second second second second second second
Image: Control of Contro	ble	and the state of t	PWQ0		1		ered Is / I	2	-		2		5	N	ч			Job Speci	ic Rush TAT (if a	pplies to entire r	ubmission)	
Include Criterio on Certificate of Analysis (YN07 The Samplet The Samplet Name: Cartholication of Analysis (YN07 The Samplet Name: Cartholication of Analysis (YN07 Sample Barcose Latel Sample Location Isonthication Date Samplet Time Samplet Matrix X <			Other				Filte	2	T	0	2	C	G	u	T			Date Requin	ed: ibe		Time Require	
Barryle Barcose Latel Sample Location Methication Date Samplet Time Samplet Marix		Include Criteria	on Certificate of Analysis (Y/N)?		4		P N	2	0	e	2	5	F	Q	T		50.	Rush Confir	mation Number		(call lab for #	
CS1-26 O_{ext} O_{ext} O_{ext} X <t< td=""><td>Sample Ba</td><td>Barcode Label</td><td>Sample (Location) Identification</td><td>Date Sampled</td><td>Time Sampled</td><td>Matrix</td><td>Ē</td><td>B</td><td></td><td>F</td><td>R</td><td>F</td><td>0</td><td>F</td><td>2</td><td>S</td><td></td><td>of Bottles</td><td></td><td>Co</td><td>mments</td><td></td></t<>	Sample Ba	Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	Ē	B		F	R	F	0	F	2	S		of Bottles		Co	mments	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				in the complete								-1	-	0	2.7	-		1		ŕ		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			CS1-26	Oct 13	0900	\leq		X	X									1		1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				2011	2	-		IN	1.			_						1 × .				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			CS1-27	OLT 12	11.00	<			1	1								F	10			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			00112	2016	1000	2		X	X	X	X	x						5	1 M			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				0 3		-		-	-			1							1.			
CS1-29 O (x 13) 2016 O (915) S X X I Received in Sudb CS1-30 il 0920 S X X I I CS1-30 il 0920 S X X I I CS1-30 il 0920 S X X I I CS1-31 li 0940 S X X I I CS1-32 il 0940 S X X I I CS1-33 il 0940 S X X I I CS1-33 il 0940 S X X X I I CS1-33 il 0940 S X X X I I I B6M4185 CS1-34 il 0940 S X X I I I I B6M4185 CS1-34 il 0006 X X I I I I CS1-34 il			CS1-28	Vals	0910	S		X	X							~		1				
CS1-29 O_{α} 13 2016 O_{915} S \times \times \times I I Received in SuduCS1-30II O_{420} S \times \times \times I I I CS1-31II O_{430} S \times \times \times I I CS1-32II O_{940} S \times \times \times \times I CS1-32II O_{940} S \times \times \times \times I CS1-33II O_{940} S \times \times \times X \times I CS1-33II O_{940} S \times \times \times X \times I DeboszIII O_{940} S \times \times \times X \times I CS1-33II O_{940} S \times \times \times Z I DeboszIII O_{940} S \times \times X X X CS1-33II O_{950} S X X X Z Z CS1-34II I_{000} S X X X X X X X				2010	0	-		(N	N				-						-			Harres
2016 0119 35 X X X X X I I $CS1-30$ $i1$ 0920 5 X X X I I $CS1-31$ II 0930 5 X X X X I I $CS1-31$ II 0940 5 X <			CS1-29	OCT 13	0915	C		2.8										1	Rec	elved	IU 20	IUUI
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				2016	0115	2		X	X									1				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					States Sector	<'												14			mark for the class	
CS1-31I $\bigcirc A 30$ SXXICS1-32II $\bigcirc 940$ S \checkmark XXXICS1-32II $\bigcirc 940$ S \checkmark XXXXICS1-33II $\bigcirc 940$ S \checkmark XXXXICS1-34II $\bigcirc 006$ SXXIII			CS1-30	il	0920	C		X	X							2.49	"探"	1	the state of the state	and a state of the		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						475		1	1			-				1.2	Q. 18.	76				_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			CS1-31	4	0020	<		V	X									1				
CS1-32IIO940S \times XXXXIII7-Oct-16 11:14CS1-33IIO950SXXII2CS1-34II1000SXXII2CS1-34IIIO00SXXIII0				n	0130	5		4										6				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			001 22		Daulo	6	4									120		.1		17-Oct-1	6 11:14	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			051-32	u	0440	>	8° . 4	X	X	X	X	X				1		17	A 11 m	etamo Del	horz	F
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-					-		-	/	-		+ +		- 110		Augu		HILLIN /	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			CS1-33 *	11	0950	5	3	V	X									2)
CS1-34 4 1006 S X X - 2 KP7 ENV-1167		-		R.	0150	\mathcal{I}		N	N										В	5M4185	(
4 1000 S X X - Z KP/ ENV-1167			CS1-34		10.01	5		1412										7	VD7	EX11 - 1	167	
			001-04	ч	1000	C		X	X									2	KP/	ENV-1	16/	
						1			1										1			
c_{S1-35} (1) (0) (0) (0) (0) (1)			CS1-35	U	1010	5		Y	X				X	X	X			4		Ca.		
		r				<u> </u>		~	14				1									••
* RELINQUISHED BY: (SynpatrurePrint) Date: (YY/MM/DD) Time # Jars used and Laboratory Use Only * NELINQUISHED BY: (SynpatrurePrint) Date: (YY/MM/DD) Time # Jars used and Laboratory Use Only	REL	LINQUISHED BY: (S/	Wature/Print) Date: (YY/MM/DD)	Time	RECEIV	ED BY: (Signat	ture/Print)		Date	: (YY/MM/C	(00	Time		# jars used a not submitt	ed			Labor	atory Use Only	Custody Se	al Ype
J-4/hilled Jon uhdder 16/10/17 1000 /3 15/00/04 France, 2016/10/17 11.14	-	5- Moldel	Somwadder 16/	10/17 W	00 151	/Bro	Wen Fro	more		, 2011	1011	71	1.74				ime Sensi	tive T	LIº	7 2 7 1	Present	105
Hillie self und autolice inits	0				dill	the Al	18 un	a		0.1	durk		0.17					2	11.	2-6	Interest	- /
ASUI DA Succustor 2010/17 10:15 L.L.F. maa					ASH	Int s	ukuu	The l		2010	110/1	8 1	0:13						L x 4 y	e	intact	1
HE RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY RECORD ANNOCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS SAMPLES MUST BE KEPT COOL (<10°C) FROM TIME OF SAMPLING UNTIL DELIVERY TO MAXXAM White: Maxxam	THE RESPONSI	SIBILITY OF THE RELIN	QUISHER TO ENSURE THE ACCURACY C	OF THE CHAIN OF CUS	STODY RECORD AN	INCOMPLETE CHA	AIN OF CUSTOD	Y MAY RES	ULT IN ANA	LYTICAL	AT DELAYS	SA	MPLES MU	IST BE KEI	PT COOL (< 1	10°C)FR	OM TIME C	FSAMPLIN	G UNTIL DELIVE	Y TO MAXXAM	White: Max	cam Yello

Image: Product ID (Conclusion) Product To Monotony Line (Conclusion)			or Hor Gampobeno Ro	ad Mississauga (Untario Canal	da LSN 2	La Tel (905) 817-	5700 Toll-free 800	-563-6266 Fax	(905) 817-	5777 www.	такхат с	1					ж.				Page 2 of
Market Distance Distance Distance Distance Distance Distance Market Distance Distance Distance Distance Distance Distance Market Distance Distance Distance Distance Distance Distance Market Distance Distance Distance Distance Distance Distance Market Distance Distance Distance Distance Distance Distance Market Distance Distance Distance Distance Distance Distance Market Distance Distance Distance Distance Distance Distance Distance Market Distance Distance Distance Distance Distance Distance Distance Distance Market Distance Distance Distance Distance Distance Distance Distance Distance Distance Market Distance Distance Distance Distance Distance Distance Distance Distance Distance Market Distance Distance Distance Distance Distance Distance Distance<			NVOICE TO:					REPO	RT TO:						PROJE	CT INFORM	ATION:				Laboratory Use	Only:
Non- Non-	mpany Na	me #4/464 DSTC	onsulting Engineer	s Ing_s		Company	Name:						Quotation	1#	B618	02	e 1.				Maxxam Job #:	Bottle Order #:
Both Highen Solid	ttention:	Accounts Payabl	le		/	Attention	Geoffr	ey Lake					P.O.#									
Statuty Unit Cost Page Manager Image Manager	ddress	885 Regent Stree	et Suite 3-1B		A	Address							Project						#3			581859
mail mail		Sudbury ON P3E	= 5M4										Project N	ame							COC #:	Project Manager:
Image: The second sec	'el	(705) 523-6680	Fax.	705) 523-669	10 1	Tel	(705) 5	i23-6680 x258	Fax				Site #					<		I COMP		
Mode Recurstor Subscription Transaction Transaction <t< td=""><td>mail:</td><td>ap@dstgroup.co</td><td>m</td><td></td><td>E</td><td>Email:</td><td>glake@</td><td>dstgroup.com</td><td>1</td><td></td><td></td><td></td><td>Sampled</td><td>By</td><td></td><td>_</td><td></td><td></td><td></td><td>300000</td><td>C#581859-02-01</td><td>Augustyna Dobosz</td></t<>	mail:	ap@dstgroup.co	m		E	Email:	glake@	dstgroup.com	1				Sampled	By		_				300000	C#581859-02-01	Augustyna Dobosz
Image: State of the s	MOE RI	EGULATED DRINKING SUBMITTED (G WATER OR WAT	ER INTENDED	D FOR HU	MAN CO	ONSUMPTION	MUST BE				AN	ALYSIS RE	QUESTED	(PLEASE	BE SPECIF	IC)	_		Contractory of	Turnaround Time (TAT) R	equired:
The set of th	Page	lation 152 (2011)	CAN BE AND AND AND AND AND AND AND AND AND AND	0.0	I EN OTAN		001001		(e)	5		N	(1)			4				Regular (S	Please provide advance notice to Standard) TAT:	or rush projects
Table 0 Binder Trie - Strategy Binder Trie - St	Table 1	Res/Res/		Other Regulatio	ons		Special II	structions	- circ	7		¥.	Ž	Q.	8	×.				(will be applie	ed if Rush TAT is not specified)	X
The set is a set of year in	Table 2			Sanitary Sew	ver Bylaw				ese CLC	E		E	2	5	S	1				Standard TA	T = 5-7 Working days for most tests	10
The manual process The Standard Process of the Standard Proces of the Standard Process of the Standard P	Table 3	Agri/Other For RS		Storm Sewer	Bylaw				plea g / (50		2	R	5	1	12			1	Please note:	Standard TAT for certain tests such as B	OD and Dioxins/Furans are > :
Image: Construction of Certification of Cer	Table		D PWQO			-			Pa H	-		-	0	0	4-	1	to			days - contac	It your Project Manager for details.	
Include Criteria on Certificate of Analysis (VNP) The Bengion Marrie Service Lation Service Lation<			Other						tals	S	T	8	~	0		C.	T			Job Specif	Ic Rush TAT (if applies to entire subm	nission)
Barriel Barriel Law Data Barriel Marx Barriel Marx Law Law <thlaw< thr=""> CS1-33 <t< td=""><td></td><td>Include Criteria</td><td>a on Certificate of A</td><td>alusic (V/M)2</td><td></td><td></td><td></td><td></td><td>Me</td><td>T</td><td>0</td><td>J</td><td>2</td><td>7</td><td>N</td><td>e</td><td>4</td><td></td><td></td><td>Bush Confirm</td><td>nd Tim</td><td>Required:</td></t<></thlaw<>		Include Criteria	a on Certificate of A	alusic (V/M)2					Me	T	0	J	2	7	N	e	4			Bush Confirm	nd Tim	Required:
Description Description	Sar	nole Barcode Label	Sample (Location)	Identification	1 200		Tree Courses	11.000	E E	a		1-	J	P.	0	di la	0				(0	all lab for #)
CS1-36 Ox 10 to IO 20 S V			ownpre (cocarion)	communication	Date Sar	mpled	Time sampled	Matrix					2	1	-	~		1	122	# of Bottles	Comme	ents
CS1-37 II IO25 S V	t		CS1-3	36	Uck 13	elle	10 20	\leq			/				1	1.	1			1		
CS1-37 II IO25 S V V V V 4 CS1-38 II IO30 S V V V V 4 CS1-38 II IO40 S V V V V 4 CS1-39 II IO40 S V V V 1 1 CS1-40 IV IO50 S V V V 1 Received in Sudbury CS1-41 IV IO00 S V V V 2 2 2 CS1-42 IV IVIO S V V V 2 2 2 CS1-43 IV IVIO S V V V 2 2 2 2 CS1-43 IV IVIO S V V V V 2 2 2 2 CS1-44 IVIO IVIO V V V V 3 3 2 2 2 2 2					2	010		1		<u> </u>							~	. 1		1		
Image: CS1-38 Image: CS1-38 Image: CS1-38 Image: CS1-38 Image: CS1-38 Image: CS1-38 Image: CS1-38 Image: CS1-38 Image: CS1-38 Image: CS1-38 Image: CS1-38 Image: CS1-38 Image: CS1-38 Image: CS1-38 Image: CS1-38 Image: CS1-38 Image: CS1-38 Image: CS1-39 Image: CS1-39<	2		CS1-3	37	10		1025	<		1	1	÷.			1	1	1				3	
CS1-38 I [030] S I					H		1005	2		V	V				V	1				4		
CS1-33 N [0.50] S V V 4 CS1-39 I [0.40] S V I 1 CS1-40 IV (050) S V I 1 CS1-40 IV (050) S V I 1 CS1-40 IV (050) S V I I CS1-41 IV (050) S V I I CS1-42 IV IV V IV IV IV CS1-43 IV IV V IV IV IV CS1-43 IV IV IV IV IV IV CS1-44 IV IV IV IV IV IV IV CS1-44 IV								~		1					1	1	/	-		1		
CS1.39 II IO40 S V II II CS1.40 II IO50 S V II II CS1.40 II IO50 S V III III CS1.41 III IIIO0 S V IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2		CS1-3	8	ıt		1030	S		1	/		80		/	1	1			4		
CS1-39 II IO40 S V I I CS1-40 II IO50 S V I I Received in Sudbury CS1-41 II IO00 S V I I Received in Sudbury CS1-41 II IIO0 S V V I I CS1-42 II IIO S V V I I CS1-43 II IIOO S V V I I CS1-43 II IIOO S V V I I CS1-43 II IIOO S V I I I CS1-44 II IIOO S V I I I CS1-45 Ocg14 IOIO S V I I I Would W Date: (YVIMMOD) Time RECEIVED BY: (Signature/Print) Date: (YVIMMOD) Time I I Would W Mathemature/Propertities IOIO I I I											-									<i>r</i>		
CS1-40 I ICA D V V I I Received in Sudbury CS1-40 I I IOO S V I I Received in Sudbury CS1-41 II IIOO S V V I I Received in Sudbury CS1-42 II IIIO S V V I IIO CS1-43 II IIZO S V V IIO IIO CS1-43 II IIZO S V IIO IIO IIO CS1-44 II IIZO S V IIO IIO IIO CS1-44 II IIIO S V IIO IIO IIO CS1-45 Dog12 IIOIO S V IIO IIO IIO MaturePeopl Date: (YYMMIDD) Time RECEVED BY: (BinstaurePeopl Date: (YYMMIDD) Time IIO IIO MaturePeopl Date: (YYMMIDD) Time Received and Mitter State IIO IIO IIO	1		CS1-3	9			1040	2		1	/											
CS1-40 II IOSO G V II II Received in Sudbury CS1-41 II IIOO G V IIOO G V IIOO IIOO G IIOO IIOO </td <td></td> <td></td> <td></td> <td></td> <td>11</td> <td></td> <td></td> <td>2</td> <td></td> <td>V</td> <td>V</td> <td></td>					11			2		V	V											
CS140 I IOS0 S V I I Received in Sudbury CS141 II IIOO S V IIOO II	5		CS1.4	0	_			0		/	/							1	-			
CS141 II IIOO S V IIOO II			0314	.0	10		1050	5		V	\checkmark							3 A.	1 Killing	. 1	Received in	Sudhury
CS1-41 II II 00 S V V II II II III III III III III III III III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII														-				- 100	1119		VECCIAED III	Juanaly
CS1-42 II U10 S V V V V R Z CS1-43 II IIZO S V V V II R Z CS1-43 II IIZO S V V III III CS1-43 II IIZO S V III III IIII CS1-44 II IIZO S V IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	R.		CS1-4	1	16		1100	5		1	/					. 1				1		÷.
CS1-42 II U10 Sint V V Sint Z CS1-43 II IIZO Sint V IIZO IIZO CS1-43 II IIZO Sint V IIZO IIZO CS1-43 II IIZO Sint V IIZO IIZO CS1-44 II IIZO Sint V IIZO IIZO CS1-44 II IIZO Sint V IIZO IIZO CS1-45 OggiZ IGIO Sint V IIZO III CS1-45 OggiZ IGIO Sint V IIZO III VMULUE Date: (YYIMM/DD) Time RECEIVED BY: (Signature/Print) Date: (YYIMM/DD) Time WorldW Sint VIII II/IO Signature/Print) Date: (YYIMM/DD) Time WorldW Sint VIIII Date: (YYIMM/DD) Time IIIII IIIIII WorldW Sint VIIII II/IO Sint VIIIII IIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	_				u	-	ES.	/		V				_				Î			- is minimum about an	and have been a series
CS1-43: II II ZO S V V V V II II CS1-43: II II ZO S V II II II CS1-44 II II ZO S V III II III CS1-44 II II ZO S V III III III CS1-45 Oct Z III III III III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			CS1-4	2			1110	1	A	./		1	/					100		1		
CS1-43· II II ZO S V II II CS1-43· II II ZO S V II II CS1-44 II II ZO S V II II CS1-44 II II ZO S V III III CS1-45 Oct 2 III III III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				-	11		110	5	g 4	V	V	V	V	V				191	-18-	Z		
CS1-43: II II ZO S V II II CS1-43: II II ZO S V II II CS1-44 II II ZO S V II II CS1-44 II II ZO S V II II CS1-45 Oct II III III III III III III CS1-45 Oct III III III IIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				<i></i>		-				1	/				_							r
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8		CS1-4	3-	fi -		1120	5		V	1									1		
CS1-44 I I/30 S V I CS1-45 O g_1Z I/610 S V I I CS1-45 O g_1Z I/610 S V I I RELEVACUISHED BY: (stinature/Prigt) Date: (YY/MM/DD) Time # jars used and int submitted I Vol.LW Small I/61/0/17 I/000 S- Brazer Time Senature # jars used and int submitted Time Senature Custody Seal Yes No The RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE COURSE THE	-				-					1											9	
CS1-45 O gr Z 2004 1010 S V Image: (YY/MM/DD) S Image: (YY/MM/DD) S Image: (YY/MM/DD) S Image: (YY/MM/DD) Time Bias used and not submitted Image: (YY/MM/DD) Time Bias used and not submitted Image: (YY/MM/DD) Time Castody Seal Yes Not Image: The RESPONSED TV OF THE REVIDENCE THE COURSE TH	0		CS1-4	4	1		1130	C			./									1		
CS1-45 Orginature/Print Date: (YY/MM/DD) Time RECEIVED BY: (Signature/Print) Date: (YY/MM/DD) Time Image: State of the second state of the seco	_				6		1.30	2		v	V		-14									
Details Orginature/Printy Date: (YY/MM/DD) Time RECEIVED BY: (Signature/Print) Date: (YY/MM/DD) Time # jars used and not submitted Multiple Smith (III) IIII) Date: (YY/MM/DD) Time RECEIVED BY: (Signature/Print) Date: (YY/MM/DD) Time # jars used and not submitted Laboratory Use Only Multiple Smith (III) IIII) Date: (YY/MM/DD) Time # jars used and not submitted Time Sensitive Custody Seal Yes N Multiple Smith (III) USA Smith (IIII) Smith (IIII) Date: (YY/MM/DD) Time Sensitive Time Sensitive Custody Seal Yes N The RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE COURSE THE COUR	2		CSL	5	_	-		6		1	1											1
Dete: Date: (Y/MM/DD) Time RECEIVED BY: (Signature/Print) Date: (Y/MM/DD) Time # jars used and not submitted Laboratory Use Only Workful Workful I/// / / / / / / / / / / / / / / / / /			631-4	5	0	CT 12	1610	\sum		V	V									3		
Worked Similar Image: The Responsibility of the Residue The Residue The Responsibility of the Responsibility of the Responsing	-	RELINQUISHED BY: 19	anature/Print)	Date: (Y	Y/MM/DD)	Tim	ne	RECEIVE	D BY: (Signate	(Print)		Data	/////							5		
Imperature The Responsibility of the Refunction of the social of the socia	Ĩ	SIAL IGH	Somethin 1/11	1/10	112	inn	1 72	12	O DT. (Signat	are/runt)		Date:	(TY/MM/D	0)	Time	# j	ars used a of submitte	d .			Laboratory Use Only	
THE RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE RELINQUISHER TO ENSURE THE SOCIED ON DECOMPOSITION OF THE SOCIED ON DECOMPOSITICO OF THE SOCIED ON DECOMPOSITICO OF THE SOCIED		Sumaly	Wndeci	16/10	(IT	1000	J 0-F	Drag	dey 10	3per		1016	/10/1	17	11.14			D	me Sensi	tive Ter	nperature (°C) on Receipt	stody Seal Yes N
THE RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE SOURDACY OF THE CHANNER OF STREAM OF THE SOURDACY OF THE CHANNER OF STREAM OF THE SOURDACY OF THE CHANNER OF STREAM OF THE SOURDACY OF THE CHANNER OF STREAM OF THE SOURDACY OF THE CHANNER OF STREAM OF THE SOURDACY OF THE CHANNER OF STREAM OF THE SOURDACY OF THE CHANNER OF STREAM OF THE SOURDACY OF THE CHANNER OF STREAM OF THE SOURDACY OF THE CHANNER OF STREAM OF THE SOURDACY OF THE CHANNER OF STREAM OF THE SOURDACY OF THE CHANNER OF STREAM OF THE SOURDACY OF THE CHANNER OF STREAM OF THE SOURDACY OF THE CHANNER OF STREAM OF THE SOURDACY OF THE CHANNER OF STREAM OF THE SOURDACY OF THE CHANNER OF STREAM OF THE SOURDACY OF THE SO				12.			wase	will N	unu	un		2011	40/10		1011	2				6.	1 1 2 200	Present
	IS THE RES	PONSIBILITY OF THE RELINC	QUISHER TO ENSURE TH	E ACCURACY OF	THE CHAIN C	AF CUSTO	A JI	1114	Surqu	INVE		Lerp	10/10		10.1	>	1993 A. 1993	-			2,2,2	Intact 🗸

ABUTUM	Section Brand Correspond	6740 Campobello Road, Mississauga	Ontario Canada L5N	2L8 Tel (905) 817-5	5700 Toll-free 808	3-563-6266 Fax	c (905) 817-	5777 www	таххат.са	3									Page 3 of
	IN	VOICE TO:			REPO	RT TO:						PROJE	CT INFOR	MATION:			1	Laboratory	Use Only:
npany Nan	ne #47464 DST Co	nsulting Engineers Inc.	Compan	y Name		P				Quotation	n#:	B618	02					Maxxam Job #:	Bottle Order #:
tion.	Accounts Payable	9	Attentior	Geoffre	ey Lake				_	P.O.#									
955	885 Regent Stree	et Suite 3-1B	Address				_			Project:						+5			581859
	Sudbury ON P3E	5M4								Project N	ame:						1	COC #:	Project Manager:
	(705) 523-6680	Fax (705) 523-66	90 Tel	(705) 5	23-6680 x258	Fax.		_		Site #:					a.				Augustung Delegan
2	ap@dstgroup.cor	n	Email	glake@	dstgroup.con	n		_		Sampled	Ву	_			345			C#581859-03-01	Mugusiyna Dobosz
MOE RE		WATER OR WATER INTENDE	D FOR HUMAN C	ONSUMPTION	MUST BE				AN	ALYSIS RE	QUESTED	(PLEASE	BE SPECI	FIC)			a little search	Turnaround Time (1 Please provide advance p	AT) Required:
Regul	ation 153 (2011)	Other Regula	ione	Constation		(e)	3			13			14				Regular (S	itandard) TAT:	
Table 1	Res/Park Merium		ions Didau	Special in	structions	- Sid	E		5	2	Q.		×				(will be applie	d if Rush TAT is not specified)	
Table 2	Ind/Comm Coarse	Reg 558 Storm Sew	ar Bulaw			Cr	52		さ	2	2						Standard TAT	t = 5-7 Working days for most les	ts. 7
Table 3	Agri/Other For RS	C MISA Municipality		1		hg/ d)	-		U.	6	3						Please note: . days - contac	Standard TAT#br certain tests su t your Project Manager for details	ch as BOD and Dioxins/Furans are >
Table		PWQO				sred Is /I	2		~	63	0			1 (e)			Job Specifi	c Rush TAT (if applies to entir	e submission)
		Other				Filte	0	t	2	2	2						Date Require	d	Time Required
	Include Criteria	on Certificate of Analysis (Y/N)?		1		≥ N	J	0	3	3	1	~					Rush Confirm	nation Number	(call inb for #)
San	npie Barcode Labei	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	- <u>-</u>	4		F	F	P.	de l					# of Bottles	1	Comments
		CS1-46	Oct 13	1620	5		1	1	1	./	./			-		1.1	-7	Ţ	
			2016	10 20	/			V	V	V	v						6		
		CETAI SU							1									No	SAMPLE
		c3748 50								-	-				-			No	SAMPLE
		csize 5r			1													No	SAMPLE
		CST 50													્ તું કરા	- Sec.		No	SAMPLE
		CS2-12	Ou 13 2016	0850			~	1							14	a	1	5	t.
		CS2-13	0012	1300	5	\$ ¥	1	V					2		×.		2		
		CS2-14	N	1310	5	'n	V	/		÷						2	2	Receive	d in Sudbury
1	×	CS2-15	N.	13 20	5		1	/	[24							2		o m Sudbury
	r	CS2-16	U.	13 30	5		V	1									2		• •
	RELINQUISHED BY: (Sic	Mature/Print) Date:	YY/MM/DD) T	ime	RECEIV	ED BY: (Signat	ture/Print)	_	Date	: (YY/MM/E	DD)	Time	#	jars used a not submitt	and			Laboratory Use Onl	v
	Diwodell	widdel 6/	10/17 10	08 D-f	itta R	eller ulker	rudi	R	2016	10/1	71	10:14	3		1	ime Sensi	Ter Z,2	nperature (°C) on Receipt 44°C 2,2,2°C 2,2,2°C	Custody Seal Yes ! Present
S THE RES	PONSIBILITY OF THE RELIN	QUISHER TO ENSURE THE ACCURACY (F THE CHAIN OF CUS	TODY RECORD, AN	INCOMPLETE CHA	IN OF CUSTOD	Y MAY RESU	ULT IN ANA	LYTICAL T	TDELAYS	SAN	API'ES MUS	T BE KEP	0001/4	10º C) FR	M TIME C	E SAMPLING	UNTIL DELIVERY TO MAXXAN	White: Maxxam Yellow: Cl

ABurns	Contraction Contractor	6740 Campobello Road, Mississauga, (Ontario Canada LSN 3	2L8 Tel (905) 817-5	700 Toll-free 800	-563-6266 Fax	(905) 817-	5777 www	maxxam.ca	3								rob / neoonb	Page 4 of
		NVOICE TO:			REPO	RT TQ:						PROJEC	CT INFORM	ATION:				Laboratory Use	Only:
ompany Nar	e #47464 DST C	onsulting Engineers Inc 🖡	Compan	y Name:						Quotation	r#:	B618	02	z.				Maxxam Job #: 👘 😁	Bottle Order #:
ttention.	Accounts Payab	le	Attention	Geoffre	ey Lake					PO#									CONTRACTOR .
ddress	885 Regent Stre	et Suite 3-1B	Address							Project						*			581859
	Sudbury ON P3	= 5M4				40				Project N	ame							COC #:	Project Manager:
el.	(705) 523-6680	Fax (705) 523-669	0 Tel:	(705) 5	23-6680 x258	Fax.				Site #					х.				Augustyna Dobosz
mail:	ap@usigroup.co		Email	glake@	astgroup.con	n				Sampled	By				. 90			C#581859-04-01	
MOE RE	GULATED DRINKIN SUBMITTED	G WATER OR WATER INTENDED ON THE MAXXAM DRINKING WA	TER CHAIN OF	CONSUMPTION	MUST BE		3		AN	ALYSIS RE	QUESTED	PLEASE	BE SPECIF	IC)			VIE AS	Tumaround Time (TAT) Please provide advance notice	Required: for rush projects
Regu	ation 153 (2011)	Other Regulation	ons	Special In	structions	cle)	3		S	12	0		5				Regular (S	Standard) TAT:	N
Table 1	Res/Park Mediu	m/Fine CCME Sanitary Sev	ver Bylaw		and donoria.	< ar	2x		7	9.	2		- e1 ⁸				(will be applie	ed if Rush TAT is not specified);	
Table 2	Ind/Comm Coarse	Reg 558 Storm Sewer	Bylaw			ease			E	2	3					à.	Standard TA	T = 5-7 Working days for most tests.	800
Table 3	Agri/Other For R	SC MISA Municipality				d) p	2		5	3	2		•				days - contac	t your Project Manager for details.	BOD and Dioxins/Furans are > 0
Table	-	PWQ0				erec	5		-	-	~				- 1		Job Specif	ic Rush TAT (if applies to entire sub	mission)
_		Other				d Fit	3	-	5	9	2				* - s		Date Require	d Ti	me Required:
_	Include Criteri	a on Certificate of Analysis (Y/N)?				l lai	A	T	S	3	1						Rush Contin	nation Number	call lab for #)
San	ple Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix			A	12	P	R				10 - Juli		# of Bottles	Com	nents
8		CS2-17	Vaiz	13 50	5			/						5 ¹¹ 1			10	1	
			2016		/			V.							1		1 -		
	e	CS2-18	u	1400	5		1	/									1	1. d	
					-												1	2	
ġ.		CS2-19	15	14 20	5			1							-		2		
		No a state of the last	0.3				1	- /			/								
		CS2-20	2016	13:10	5.		V	V	~	V	1						Z		
1		CS3-11	OUTIZ	10.00	5		1	1								27	1		
-		510907 1070	2010	1000	2										0.67	14	. 1	Deceived in	Sudhury
8		CS3-12	is.	10 10	5		1	1	1						1.0	Q115	2	Keceiven u	Juddary
				10	9		V								-		~	4	110000
 1 		CS3-13	10	1020	S	÷.,	1	1							2.		21	and and and and a second second second second second second second second second second second second second se	
			-		-				-							3	e).		P
		CS3-14 -	ic.	1030	S		V	~											
			L.												-				
8 I.		CS3-15	17	1040	S		V	V									1		
_			u					-		- 14									
		CS3-16	10	1050	S		V	1									1		
	r						-						4				1		**
-	RELINDUSHED BY: (S	unature/Print) Date: (1	Y/MM/DD) T	ime //	RECEIV	ED BY: (Signat	ure/Print)		Date	: (YY/MM/	(DD)	Time	# j	ars used an ot submitte	nd d			Laboratory Use Only	
	NAM	Down dell 16/1	0/17 10	00 5-1	15.	indley F	Emp.e		, 201	6/10/	17	11.14	K I		T	me Sensi	Ter	mperature (°C) on Receipt	Ustody Seal Yes N
	(Ash	the Ru	allina	Lille	N	~ 1	1 1	0	1 4 17	2				C.	2.2.2"	Interest
I IS THE RES	PONSIBILITY OF THE RELI	KOUISHER TO ENSURE THE ACCURACY OF	THE CHAIN OF CUR		HOHZ 114	8///C	UL4		201	6/10/1	0	10,1	2	0001	and the second				Intel Matter

	1	NVOICE TO:			REPO	ORT TO:				T		PROJEC	TINEOR	AATION-			1	Laboratori Une (Page 5 of
ompany Nam	#47464 DST C	onsulting Engineers Inc.	Comp	n. Nome		1.						R6180	12	MATION.				Laboratory Use C	Jniy:
tention:	Accounts Payab	le		Geoffr	ev Lake					Quotation	n#:	00100	12 .		۰ <u> </u>			Maxxam Job #:	Bottle Order #:
idress	885 Regent Stre	et Suite 3-1B	Addres							PO#			-			2	4		
	Sudbury ON P3	E 5M4								Project							-	COC #:	581859
al:	(705) 523-6680	Fax (705) 523-669	0 Tel	(705) \$	523-6680 x25	8 Fax				Project N	ame						1		Project manager.
nail	ap@dstgroup.co	m	Email	glake@	dstgroup.com	m				Sampled	By							C#581850.05.01	Augustyna Dobos
MOE RE	GULATED DRINKIN	G WATER OR WATER INTENDE	FOR HUMAN	CONSUMPTION	MUST BE				AN	ALYSIS RE	EQUESTED	(PLEASE 8	BE SPECIF	IC)			1	Turnaround Time (TAT) Re	equired
	SUBMITTED	ON THE MAXXAM DRINKING WA	TER CHAIN OF	CUSTODY		(S			15							A-United	Please provide advance notice fo	r rush projects
Regul	ation 153 (2011)	Other Regulati	ons	Special I	structions	sircle	Ŧ		5	x	0		1				Regular (S	itandard) TAT:	
Table 1	Res/Park Mediu	m/Fine CCME Sanitary Sev	er Bylaw			Se c	to		t	2	-		S)			1	Standard TAT	T = 5-7 Working days for most tests	
Table 2 Table 3	Ind/Comm Coars	e Reg 558 Storm Sewer	Bylaw			plea g / C	5		Q	E	3		÷ .			- 6	Please note.	Standard TAT for certain tests such as B	OD and Dioxins/Furans are
Table		MISA Municipality)) pe	N		2	3	B	100		е	•		days - contact	t your Project Manager for details.	
_	_	Other				itter	5	×	2	2	2						Job Specific	c Rush TAT (if applies to entire subm	iission)
	Include Criteri	a on Certificate of Analysis (V/M)2		-		Me	Q.	0	20	2	2						Rush Confirm	iation Number	e Required
Sam	ple Barcode Label	Sample (Location) Identification	Data Sampled	Time Sampled	Mateix	- ±	64		5	4	20						# at Bottles	(ca	ull (ab for #)
-			Quit 17	Time Gampieu	(viditin)			1			<u>^</u>		-	-		-		Comme	ints.
		CS3-17	Ocric	1110	5		V	V					- 8 ²			1.1	· .	1	
+			Cord												5		2.6.5		
	c	CS3-18	10	1120	5		V												
			C.	1120														i i i	
		CS3-19			C		./	1./							- <u>-</u>			2.	
			C	1130)		-												
		C\$3.20	12	- Ann	~		/	/										Racaivod in	Sudbury
		000-20	10	1140	12		V	V										neceiveu ii	Junnal
		062.21	11		2		1	1								1			
		053-21	1ª	11.50	S		~	V							1.	続いの		l'a general de la del anna de la del seral de la del	and the second second second second second second second second second second second second second second second
				12 10 0	174 C		1	1						_	36.4	15.			
		CS3-22	10	1200	S		\vee	V											
		1 = 1			~	-				-									
		CS323 5 W				8.5		*8							2.	1		No SA	MALE
					8		<u> </u>									19-19		100 20	1. 4.50
		CS2-24 5W				17												Ala Cam	OIF
																12		IVO SAM	wice .
		CS3-25 5W																11 2	
										194								No SAMI	nuc
		csale 5w														-			1.2
	r	03,20																No Som	Le
	RELINQUINTED BY: (S	gnature/Print) Date: (Y	Y/MM/DD)	Time	RECEIV	ED BY: (Signati	ure/Print)		Date	: (YY/MM/D	(00	Time	#	ars used	and			Laboratory Use Only	
(Will	Jour Woddel 14/1	0/12 10	00 5-6	R.	dh F		1 242	200	1.15	1 1	1:14	n	ot submit	ted	Time Sens	tive Tem	operature (°C) on Receipt Cut	stody Seal Yes
		1 10/1	117 10	1.	Titt-	OIN IIA	La.	,	LUIL	1011	1	119					2,2	H.C 2,2,29 1	Present 🗸
				1486	ache 5	uenen	11/12	Ma	2.0	cher li	0 .	112						1.2.200	Interior /

лаххат	Maxxam Analytics International Corpora 6740 Campobello Road, Mississauga, C	tion o/a Maxxam Ar Intario Canada L5N	alytics 21,8 Tel (905) 817-	5700 Toli-free 800	7-563-6266 Fax	(905) 817-	5777 www.	maxxam,ca							CHAIN	OF CUS	TODY RECORD	Provident
INVOICE TO:			REPORT TO:						PROJECT INFORMATION:						Laboratory Use Only:			
npany Name: #47464 DST	Consulting Engineers Inc.	Compa	ny Name		\$. ⁻				Quatation		B6180	2					Maxxam Job #:	Bottle Order #:
Accounts Paya	ble	Attentio	Geoffre	ey Lake					PO#		5							1.0.000000000
885 Regent Str	reet Suite 3-1B	Address	5						Project		8				10			581859
Sudbury ON P	3E 5M4								Project Na	ame	5					1	COC #:	Project Manager:
(705) 523-6680)Fax:(705) 523-669	0 Tel	(705) 5	523-6680 x258	B Fax				Site #:							IMBO		Land and Descent
ap@dstgroup.c	com	Email	glake@	dstgroup.com	n				Sampled	By							C#581859-06-01	Augustyna Liobesz
MOE REGULATED DRINKI	NG WATER OR WATER INTENDED	FOR HUMAN	CONSUMPTION	MUST BE				ANA	ALYSIS RE	QUESTED	PLEASE BE	E SPECIFIC	G)				Turnaround Time (TAT)	Required:
SUBMITTED	O ON THE MAXXAM DRINKING WA	TER CHAIN OF	CUSTODY			1.			i.	0			10			Denules (P	Please provide advance notice	for rush projects
Regulation 153 (2011)	Other Regulation	ins	Special Ir	structions	aircle	3		5	2	2						(will be applie	d if Rush TAT is not specified).	
Table 1 Res/Park Med	ium/Fine CCME Sanitary Sew	er Bylaw			Se C	E		4	1 -	2		 1 			·	Standard TA	= 5-7 Working days for most tests	- L
Table 2 Ind/Comm Coar	rse Reg 558 Storm Sewer	Bylaw			g / C	5		G	N S						8	Please note. Standard TAT for certain tests such as BOD and Dioxins/Furans are >		
Table 3 Agri/Other For I	RSC MISA Municipality -				() pe			E	00 00		· · · ·			•		days - contac	- contact your Project Manager for details	
					tals	3		æ	0	0						Job Specifi	c Rush TAT (if applies to entire sub	mission) me Required
			<u> </u>		Me	2	t	3	3	3						Rush Confirm	nation Number:	
Include Crite	ria on Certificate of Analysis (Y/N)?		-	11000	- Ee	3	8	F	ž	N.					· ·	# of Botties	-	call lab for #)
Sample Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix		1			~ /	12			-	- 2			Comr	ments
	CSZ-ZI	OCT 12 2016	14:30	5			~	V	/	/						2	7	
	CSZ-22	Der 13 2016	13:40	5		/	~									al		
	CS3-110	OCT 12 2616	1000	5		V	~							-		1	9.	
	CS2-200	Oct 13 2016	13:10	S		1	/	~	1	~						Z	Received in	Sudbury
	CS3-200	QUI 12 2016	11:40	5		1	~	1						ъ.	Sec.	1		country
	CS1-410	OLT 13 2016	11:00	S		1	/							50	91387 - 1	1		
	BANAMEN	9 yston	alito	L De.	\$° . ¥	V	X	N	A	a	1			35		Re	JW	
	CS2 - 3				ά.				-						2	1	Hold	
									- 14									
RELINQUISHED BY:	(Signatute/Print) Date: (1	Y/MM/DD)	Time	RECEIV	ED BY: (Signat	ture/Print)		Date	(YY/MM/E	00)	Time	# ja	ars used ar	br	-		Laboratory Use Only	
Shadd	ill Sundel 16/1	0/17-10	00 BF	- Brus	110 Fraz	pige .	1	, 201	6/10/F	7	11:14	no	t submitte	d T	ime Sensit	ve Ter Zi	nperature (°C) on Receipt	Present Yes
			Avu	the R	Alt	RHKC	14m	2011	1/10/	18 1	03						Z. Z. Z.C	Intact
IS THE RECOONCIDENTS OF THE RE	UNCHERING TO ENSURE THE ACCURACY OF	THE OWNING OUR	STODY RECORD AN	INCOMPLETE OF	AIN OF CUSTOD	Y MAY RES	JET IN ANA	LYTICAL TA	ThELAVE	SA	PLES MUST	BE KEPT	000 / < 10	C FRO	M TIME O	SAMPLING	UNTIL DELIVERY TO MAXXAM	White: Maxxam Yellow: C

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

or fingerprinting be required, please contact the laboratory.

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

or fingerprinting be required, please contact the laboratory.

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

or fingerprinting be required, please contact the laboratory.

DST Consulting Engineers Inc Client Project #: GV-TB-027107 Client ID: CS1-38

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

or fingerprinting be required, please contact the laboratory.

Appendix D

Sepcies at Risk Survey

Figures

Correspondence

Environment and Climate Change Canada

Environnement et Changement climatique Canada

Environmental Assessment Section Environmental Protection Operations Division 4905 Dufferin Street Toronto, Ontario. M3H 5Y4

October 17, 2016

ECCC File: 2016-013 DST Reference No.: GV-SD-027105

Jennifer Rainville Environmental Technician DST Consulting Engineers Inc. 885 Regent Street, Suite 3-1B Sudbury, Ontario P3E 5M4

Dear Ms. Rainville:

Re: Slate Islands Coast Guard Site, Patterson Island, Lake Superior, Ontario

This is in response to your letter dated October 3, 2016 requesting comments from Environment and Climate Change Canada (ECCC) regarding the Environmental Effects Evaluation to meet requirements of the Canadian Coast Guard under Section 67 of the *Canadian Environmental Assessment Act* 2012 (CEAA 2012). The letter was sent to Rob Dobos, Manager of the Environmental Assessment Section of ECCC Ontario Region regarding the Soil Remediation/Lead Abatement Project at the Canadian Coast Guard site on Patterson Island located in Lake Superior.

ECCC does not possess any information regarding environmentally significant areas, distinctive environmental features, easements or species at risk (SAR) occurrences for this site. However, ECCC is providing advice regarding relevant legislation and permitting to assist with the scoping of the environmental assessment, which should include an assessment of potential impacts to migratory birds in additional to SAR. We can also provide further comments and recommendations regarding impacts and mitigation measures once we receive a more fulsome project description, environmental assessment and environmental effects evaluation for our review.

Species at Risk

ECCC administers and enforces the federal *Species at Risk Act* (SARA), in partnership with the Department of Fisheries and Oceans (DFO), and the Parks Canada Agency. DFO is responsible for aquatic species. Parks Canada is responsible for SARA listed species on Parks Canada land, and ECCC is responsible for terrestrial species off of Parks Canada land.

The purpose of the SARA is to prevent wildlife species from being extirpated or becoming extinct, to provide for the recovery of wildlife species that are extirpated, endangered or threatened as a result of human activity, and to manage species of special concern to prevent them from becoming endangered or threatened. Schedule 1 of the SARA provides a list of wildlife species at risk in Canada that are considered extirpated, endangered, threatened, or of special concern. The SARA provides automatic

protection for individuals and residences of aquatic species and migratory birds protected by the *Migratory Bird Convention Act, 1994* (MBCA), if they are listed as extirpated, endangered or threatened. This protection applies whether these species are on federal, provincial or territorial lands. These protections also apply to all other species listed as extirpated, endangered or threatened which are located on <u>federal lands</u>. Please note that under subsection 79(2) of the SARA, CCG (as the responsible "person") must identify any adverse effects of the project on Schedule 1 listed wildlife species (including Special Concern species) and their critical habitat and, if the project is carried out, must ensure that measures are taken to avoid or lessen those effects and to monitor them. The measures must be taken in a way that is consistent with any applicable recovery strategy and action plans. They must also notify the competent minister for the species (in this case ECCC's minister for terrestrial species not on Parks Canada land).

With respect to SAR, ECCC advises that Critical Habitat for Boreal Woodland Caribou overlaps with the site, therefore the assessment should include a comprehensive consideration of potential impacts to individuals, residences and critical habitat. The assessment should also be scoped to include all SARA listed species with ranges that overlap the area to be impacted by the project, such as Canada Warbler, Common Nighthawk, Eastern Whip-poor will, Olive-sided Flycatcher, and bat species at risk (Northern Myotis, Little Brown Myotis, Tricolored Bat). It will also be important to be very clear on the ownership of the lands where any SAR may be impacted (federal, provincial, or Parks Canada). To assist in the environmental assessment, information on individual SAR and their habitats can be found on our SAR Registry: <u>https://www.registrelep-sararegistry.gc.ca/default.asp?lang=en&n=24F7211B-1</u>.

Permits are required by those persons conducting activities affecting species listed on <u>Schedule 1</u> of SARA as Extirpated, Endangered, or Threatened, that is, activities which contravene the Act's general or critical habitat prohibitions, an Emergency Order issued under s.80 of SARA, or regulations made under subsections 53, 59 or 71. ECCC does not have enough information on the project or its potential effects at this time to advise on the need for SARA permits (or if they can even be issued). It is also important to note that authorizations to carry out prohibited activities can only be issued if the proponent is able to demonstrate in the permit application that the preconditions set out in subsection 73(3) of SARA have been met:

- a) all reasonable alternatives to the activity that would reduce the impact on the species have been considered and the best solution has been adopted;
- b) all feasible measures will be taken to minimize the impact of the activity on the species or its critical habitat or the residences of its individuals; and,
- c) the activity will not jeopardize the survival or recovery of the species.

Migratory Birds

The *Migratory Birds Convention Act, 1994* (MBCA) prohibits the deposit of a substance that is harmful to migratory birds in waters or an area frequented by migratory birds or in a place from which the substance may enter such waters or such an area. The MBCA also prohibits the possession of a migratory bird, nest or egg without lawful excuse. The *Migratory Bird Regulations* prohibit hunting of migratory birds; the term "hunt" is given a broad definition in the regulations which includes attempting in any manner to kill, injure or harass migratory birds. The regulations also prohibit the disturbance, destruction, or taking of a nest, egg or nest shelter of a migratory bird.

2

The environmental effects evaluation should consider impacts on migratory birds as there is a high likelihood that migratory birds are using the project areas for nesting and for various life stage requirements. ECCC advises avoidance as the best approach, and failing that we recommend using the website: http://www.ec.gc.ca/paom-itmb/default.asp?lang=En&n=1B16EAFB-1 for information about avoidance and how to work during the core nesting periods. Information on General Nesting Periods of Migratory Birds in Canada can be found on our website to assist in ensuring the works are conducted when migratory birds are not using the area: https://www.ec.gc.ca/paom-itmb/default.asp?lang=En&n=4F39A78F-1.

Additional recommended links include: Avoidance of Detrimental Effects to Migratory Birds (Incidental Take): <u>http://ec.gc.ca/paom-itmb/default.asp?lang=En&n=C51C415F-1</u>, Determining the Presence of Nests: <u>http://ec.gc.ca/paom-itmb/default.asp?lang=En&n=8D910CAC-1# 03 1</u>, Avoidance Guidelines: <u>http://ec.gc.ca/paom-itmb/default.asp?lang=En&n=AB36A082-1</u>, and Beneficial Management Practices: <u>http://www.ec.gc.ca/paom-itmb/default.asp?lang=En&n=7800177F-1</u>

Federal Contaminated Sites Action Plan (FCSAP)

ECCC administers the FCSAP program on behalf of the Government of Canada. There are three contaminated sites at this location on Patterson Island listed in the FCSAP inventory list, however it is not clear whether FCSAP funds will be used for this project. Could you please confirm if this project will be proceeding with or without funding from FCSAP? If funding is intended to be provided by FCSAP there are specific procedures required that must be followed including, Guidance on Assessing Human Health and Ecological Risks Associated with Contaminated Sites, which can be found at: http://www.federalcontaminatedsites.gc.ca/default.asp?lang=En&n=B15E990A-1

Environmental Protection

The following is provided as general advice to the extent that they are applicable to this project:

Construction Zone:

All construction equipment and machinery to be used on the island should be in clean condition and free of all fluid leaks. Any washing, refuelling or servicing to construction equipment in use on the island should be away from the water on a flat, impermeable stable surface to prevent any deleterious substances from entering the water.

Construction Related Air Emissions:

ECCC suggests that a site specific air pollutant environmental management plan be developed and implemented. Such a plan would identify the objectives to be achieved (e.g., visual inspection, neighbour complaints, quantified maximum concentrations around the site, etc.), the methods to be applied, the people responsible for managing and implementing the plan, and the records to be maintained in order to demonstrate adoption of best management practices (and compliance with regulatory requirements or contractual obligations where applicable). Further specific guidance may be sought in the "Best Practices for the Reduction of Air Emissions from Construction and Demolition Activities" prepared for ECCC by Cheminfo Services (March 2005). A copy of the guidance document is

available at: <u>http://www.bieapfremp.org/Toolbox%20pdfs/EC%20-</u> %20Final%20Code%20of%20Practice%20-%20Construction%20%20Demolition.pdf

ECCC recommends that the proponent should ensure that transportation of the contaminated soil to the mainland is properly contained and secured so that wind does not blow contaminated soil particles into the water. Transportation across the water during storms with heavy rainfall or high winds should be avoided to minimize risk. Transportation using authorized hazardous waste haulers and disposal facilities must comply with Provincial regulations.

Sediment and Erosion:

To prevent suspended sediment, mud, debris, fill, rock dust, etc. associated with construction of the project from entering downstream watercourses and any sensitive habitats, ECCC recommends that an erosion and sediment control plan (ESCP) be developed and implemented that is consistent with the following recommendations and the standards and guidelines referenced below. Implementation of these measures will help to ensure that adverse water quality effects during construction are minimized.

Notwithstanding any requirements ECCC recommends that measures such as the following be implemented by the proponent:

- Minimize areas disturbed by work, for example: vegetated buffers should be left in place adjacent to
 watercourses to the maximum extent possible (at least a 15 m minimum width is recommended);
 only grub areas to be re-graded, phase clearing and grubbing, etc.
- Ensure that silt fences/curtains, sediment traps and/or check dams are installed as appropriate. It has been our experience that straw bale flow check dams are often installed incorrectly and are prone to failure, therefore, we recommend that temporary rock flow check dams be used, particularly at locations conveying substantial volumes of flow.
- Ensure that measures are in place to minimize mud tracking by construction vehicles, and to allow timely cleanup of any tracked mud, dirt and debris along access routes and areas outside of the immediate work area where the above sediment controls would not be in place (and there would also be a potential for nuisance dust).
- Ensure that any temporary mitigation measures are installed prior to commencement of any site clearing, grubbing, excavation, filling or grading works and that they are maintained on a regular basis, prior to and after runoff events. For example:
 - Any accumulated materials should be cleaned out regularly to maintain performance, and prior to removal of mitigation measures.
 - All disturbed areas on land to be restored to natural conditions should be re-vegetated as soon as conditions allow in order to prevent erosion (and restore habitat functions).
 - Land-based measures should not be removed until vegetation has been re-established to a sufficient degree (or surface soils stabilized using other measures) so as to provide adequate erosion protection to disturbed work areas.

In summary, ECCC's comments and recommendations are based on the limited information provided in your letter. Please note that, the responsibility for achieving regulatory compliance and completing an environmental effects evaluation lies solely with the project proponent.

If you have any questions or concerns regarding the comments provided please contact me at 416-739-5910 or via email at sheelagh.hysenaj@canada.ca

5

Regards,

ysenaj eela

Sheelagh Hysenaj Environmental Assessment Officer Environmental Protection Branch Environment and Climate Change Canada, Toronto, Ontario Tel.: (416) 739-5910

cc: R. Dobos, ECCC S. Michajluk, ECCC M. Petrou, ECCC N. Klenavic, ECCC D. Fell, ECCC

From:	Hysenaj, Sheelagh (EC) <sheelagh.hysenaj@canada.ca></sheelagh.hysenaj@canada.ca>
Sent:	Monday, October 17, 2016 3:21 PM
То:	Jennifer A. Rainville
Cc:	Dobos, Rob (EC); Michajluk, Shawn (EC); Petrou, Maria (EC); Klenavic, Nancy (EC); Fell,
	Denise (EC)
Subject:	Slate Islands CCG Site, Soil Remediation/Lead Abatement Project
Attachments:	Slate Islands CCG Site.pdf

Hello Jennifer,

Please find attached Environment and Climate Change Canada's comments on the proposed soil remediation, lead abatement, waste debris removal project at the Slate Islands Canadian Coast Guard site on Patterson Island in Lake Superior. When the Environmental Effects Evaluation has been completed, we would like the opportunity to review the document.

If you have any questions regarding the comments, please contact me at 416-739-5910 or via email.

Regards,

Sheelagh

Sheelagh Hysenaj

Environmental Assessment Officer, Environmental Protection Branch Environment and Climate Change Canada / Government of Canada <u>sheelagh.hysenaj@canada.ca</u> / Tel: 416-739-5910

Agent d'évaluation environnementale, Direction générale de la protection de l'environnement Environnement et Changement climatique Canada / Gouvernement du Canada <u>sheelagh.hysenaj@canada.ca</u> /Tél.: 416-739-5910

Government Gouvernement of Canada du Canada

From:	McNaughton, Kimberly (MNRF) <kimberly.mcnaughton@ontario.ca></kimberly.mcnaughton@ontario.ca>
Sent:	Monday, November 14, 2016 11:08 AM
То:	Jennifer A. Rainville
Cc:	McNaughton, Kimberly (MNRF)
Subject:	FW: Environmental Effects Evaluation Consultation Letter (Slate Island, Lake Superior)
Attachments:	MNR_SAR_BMP_AGGR_CAR_EN.PDF; SlateIslands_ArcticAlpine_SpeciesList2014.pdf

Good afternoon Jennifer,

MNRF has reviewed the information provided, and in turn provide the following comments. Please note that at this time, without knowing the scope and scale of the project, the comments can only be general:

- Timing and types of activities might have impacts on caribou if during calving/nursery period (May 1st – July 30th). The Best Management Practices for aggregates is attached. There may need to be consideration of whether an ESA permit may be required (depending on more detailed information about proposed activities)?
- Timing and types of activities may have impacts on other wildlife.
- Timing and types of activities may impact recreation opportunities (use of the trail form the lighthouse keeper's house to the lighthouse etc.)
- Timing and types of activities may impact recreation opportunities (use of the natural harbour in Sunday Bay)
- Ontario Parks (OP) and Natural Heritage Information Center have inventoried and mapped rare plant communities on park lands at the Slate Islands. There may be arctic alpine disjunct communities associated with the remediation site that should be considered; (see attached report).
- There should be notices posted on the Terrace Bay website as well as at the Terrace Beach/Marina and in Rossport to advise park visitors about this work.
- Through review of the patent information provided, it does not appear that any trees are reserved to the Crown.
- Should there be any improvements/undertakings associated with the shoreline (66'shoreline allowance), authorization from the Crown <u>may</u> be required.

It would be most appropriate for DST /PWGSC to keep MNRF/OP apprised of this project and its details as it proceeds.

Thank you,

Kimberly

Kimberly McNaughton Planner Nipigon District, MNRF 807-887-5113 To: McNaughton, Kimberly (MNRF)
Cc: Chauvin, Chantal (MNRF); Geoffrey Lake
Subject: RE: Environmental Effects Evaluation Consultation Letter (Slate Island, Lake Superior)

Hi Kimberly,

- 1) The original letter of patent has been requested. Once obtained, we'll send it to you.
- 2) The proposed undertaking is as follows: Currently, PWGSC is doing delineation of soils. The soil volumes and remediation methods are undetermined (that information will be decided in the future). Debris removal from dumpsites on DFO property and lead based paint abatement on the exteriors of the site structures. No trees are anticipated to be harvested or cleared.
- 3) So far we've consulted with DFO (who in turn consulted with their inside agencies including Real Property, and Fisheries Protection Group), Environment Canada (who also included Canadian Wildlife Services), Lake Superior National Marine Conservation, the Municipality of Terrace Bay, and INAC. Municipality of Terrace Bay and INAC were sent consultation requests just to be inclusive of any interested parties.
- 4) Yes, consideration will be taken into account regarding timings and impacts on caribou and incorporated into the EEE. The EEE will encompass all the information that we gather from all consulted parties, and will include mitigation measures, and/or required permits with regards to SAR, wildlife, waterways, etc.
- 5) This point was mistakenly put into the letter. Please disregard.
- 6) The work is anticipated to be undertaken in the next fiscal year.

Thanks in advance,

Jennifer A. Rainville Technician

DST Consulting Engineers Inc. 885 Regent Street, Unit 3-1B Sudbury ON, P3E 5M4 Canada

T 1.705.523.6680 ,231 F 1.705.523.6690 www.dstgroup.com **M** 1.705.618.3462

jrainville@dstgroup.com

Please consider the environment before printing this e-mail.

This e-mail may be privileged and/or confidential, and the sender does not waive any related rights and obligations. Any distribution, use or copying of this e-mail or the information it contains by other than an intended recipient is unauthorized. If you received this e-mail in error, please advise me (by return e-mail or otherwise) immediately.

Ce courriel peut être confidentiel et/ou protégé et l'expéditeur ne renonce pas aux droits et obligations qui s'y rapportent. Toute diffusion, utilisation ou copie de ce message ou des renseignements qu'il contient par une personne autre qu'un(e) destinataire désigné(e) est interdite. Si vous recevez ce courriel par erreur, veuillez m'en aviser immédiatement, (par retour de courriel ou par un autre moyen.)

From: McNaughton, Kimberly (MNRF) [mailto:kimberly.mcnaughton@ontario.ca]

Sent: October 19, 2016 4:24 PM

To: Jennifer A. Rainville < jrainville@dstgroup.com >

Cc: Chauvin, Chantal (MNRF) < Chantal.Chauvin@ontario.ca>

Subject: FW: nvironmental Effects Evaluation Consultation Letter (Slate Island, Lake Superior)

Good afternoon Jennifer,

MNRF is currently undertaking review of the attached proposal and have a few initial questions / request for information prior to completing our review of this project...

 To understand whether there would be Forestry requirements or other on this property MNRF will require the original letters patent for the property. This information is available at Thunder Bay Lands Titles Office and information which could be used to search this location is as follows:

patent is MG 1301, Date of the patent is Feb 3, 1882, and the patentee was J C PATTERSON .Requests for patent information can be sent in an email to <u>crownlandregistry@ontario.ca</u>.

Enclosed is a copy of Geowarehouse Search as well as the title instrument to assist with the search. This land has been identified as Federally owned and Provincial Parks Division of MNRF would be the adjacent land owners.

- 2) What exactly is the proposed works being undertaken? Will any trees be harvested/cleared?
- 3) What other agencies have you notified/been in discussions with?
 - a. MNRF does not have well-head information, have you engaged MOECC?
- 4) Have there been considerations for Endangered Species Act with respect to timing of activities, consideration of impacts on caribou, etc?
- 5) Why is there a request for stream thermal regimes for this project? is there any in-water work being planned?
- 6) When is the proponent looking to undertake these activities?

Very much appreciate a clearer understanding of this project.

Kindest regards,

Kimberly McNaughton

From:	lisa.nyman@pc.gc.ca
Sent:	Wednesday, October 19, 2016 10:38 AM
То:	Jennifer A. Rainville
Cc:	Geoffrey Lake; sue.hamel@pc.gc.ca
Subject:	Re: Environmental Effects Evaluation Consultation Letter (Slate Island, Lake Superior)

Good Morning Jennifer,

As the Lake Superior National Marine Conservation works toward formal establishment, I appreciate the opportunity to provide input into projects that that the potential to impact our site. I apologize for the delay in my response. I trust you are consulting with Ontario Parks and that they will be able to provide you with some of the information you are seeking.

The Lake Superior National Marine Conservation Area boundary, when established, will be 400m away from the high water mark of the Slate Islands. The project lands will not be subject to the Canada National Marine Conservation Areas Act, and therefore will not require authorization from Parks Canada. With control measures to ensure water from any excavation does not enter waterways and sediment and erosion controls, I do not have any concerns regarding impacts to the Lake Superior National Marine Conservation Area.

Please consider there is a "highly sensitive classified feature (within 2km)" as identified on Environment Canada's Environmental Sensitivity Atlas for Lake Superior's Canadian Shoreline (1993), and that the Slate Islands are identified as having a globally significant woodland caribou population with rare arctic-alpine plant habitat.

If you have any questions, please don't hesitate to contact me.

Sincerely,

Lisa Nyman

Resource Conservation Manager, Lake Superior National Marine Conservation Area Parks Canada / Government of Canada 22 Third Street, Nipigon, ON P0T 2J0 lisa.nyman@pc.gc.ca / Tel: 807-887-5536

Gestionnaire de la Conservation des Ressources, Aire marine nationale de conservation du Lac-Supérieur Parcs Canada / Gouvernement du Canada 22, rue Third, Nipigon, ON POT 2J0 lisa.nyman@pc.gc.ca / Tél. : 807-887-5536

Time to Connect / Un bon temps pour se rapprocher

From:	"Jennifer A. Rainville" <jrainville@dstgroup.com></jrainville@dstgroup.com>
To:	"lisa.nyman@pc.gc.ca" <lisa.nyman@pc.gc.ca></lisa.nyman@pc.gc.ca>
Cc:	Geoffrey Lake <glake@dstgroup.com></glake@dstgroup.com>
Date:	03/10/2016 09:53 AM
Subject:	Environmental Effects Evaluation Consultation Letter (Slate Island, Lake Superior)

Good morning Ms. Nyman,
Please see the attached letter with regards to an Environmental Effects Evaluation that is being completed at the Slate Island Lighthouse Station in Lake Superior. If you have any questions or concerns, please don't hesitate to contact me. Sincerely,

Jennifer A. Rainville

Field Technician DST Consulting Engineers Inc. 885 Regent Street, Unit 3-1B Sudbury ON, P3E 5M4 Canada T 1.705.523.6680 ,231 F 1.705.523.6690 www.dstgroup.com

M 1.705.618.3462

Please consider the environment before printing this e-mail.

This e-mail may be privileged and/or confidential, and the sender does not waive any related rights and obligations. Any distribution, use or copying of this e-mail or the information it contains by other than an intended recipient is unauthorized. If you received this e-mail in error, please advise me (by return e-mail or otherwise) immediately.

Ce courriel peut être confidentiel et/ou protégé et l'expéditeur ne renonce pas aux droits et obligations qui s'y rapportent. Toute diffusion, utilisation ou copie de ce message ou des renseignements qu'il contient par une personne autre qu'un(e) destinataire désigné(e) est interdite. Si vous recevez ce courriel par erreur, veuillez m'en aviser immédiatement, (par retour de courriel ou par un autre moyen.)[attachment "Consultation Letter (CA).pdf" deleted by Lisa Nyman/NOTES/PC/CA]

From:	Sifton, Jennifer <jennifer.sifton@dfo-mpo.gc.ca></jennifer.sifton@dfo-mpo.gc.ca>
Sent:	Tuesday, October 18, 2016 12:53 PM
То:	Jennifer A. Rainville
Cc:	Geoffrey Lake; Martin Bouwma
Subject:	RE: Environmental Effects Evaluation Consultation Letter (Slate Island, Lake Superior)

Hi Jennifer,

DFO –Real Property did not have any further information to provide.

The response back from Fisheries Protection group was as follows: Fisheries and Oceans Canada has changed the way new project proposals (referrals), reports of potential Fisheries Act violations (occurrences) and information requests are managed in Central and Arctic Region (Alberta, Saskatchewan, Manitoba, Ontario, Nunavut and the Northwest Territories). Please be advised that general information regarding the management of impacts to fish and fish habitat and self-assessment tools (e.g. Measures to Avoid Harm) that enable you to determine Fisheries Act requirements are available at DFO's "Projects Near Water" website at <u>www.dfo-mpo.gc.ca/pnw-ppe/index-eng.html</u>. For all occurrence reports, or project proposals where you have determined, following self-assessment, that you cannot avoid impacts to fish and fish habitat, please submit to <u>fisheriesprotection@dfo-mpo.gc.ca</u>. For general inquiries call 1 855 852-8320.

If you require any additional information, please let me know. Thank you.

Regards,

Jennifer 905-315-5287

From: Sifton, Jennifer
Sent: October-03-16 2:14 PM
To: 'Jennifer A. Rainville'
Cc: Geoffrey Lake; 'Martin Bouwma'
Subject: RE: Environmental Effects Evaluation Consultation Letter (Slate Island, Lake Superior)

Hi Jennifer,

I will forward to the Fisheries Protection Group and Real Property. The requested information isn't information I typically have available to me, but hopefully Fisheries Protection and/or RP will be able to provide you some information.

Regards,

Jennifer 905-315-5287

From: Jennifer A. Rainville [mailto:jrainville@dstgroup.com]
Sent: October-03-16 1:47 PM
To: Sifton, Jennifer
Cc: Geoffrey Lake
Subject: RE: Environmental Effects Evaluation Consultation Letter (Slate Island, Lake Superior)

Hi Jennifer,

The letter was only sent to you. Is there someone else that I should send it to? Let me know, thank you.

Jennifer A. Rainville Field Technician

DST Consulting Engineers Inc. 885 Regent Street, Unit 3-1B Sudbury ON, P3E 5M4 Canada

T 1.705.523.6680 ,231 **F** 1.705.523.6690 <u>www.dstgroup.com</u> **M** 1.705.618.3462

jrainville@dstgroup.com

Please consider the environment before printing this e-mail.

This e-mail may be privileged and/or confidential, and the sender does not waive any related rights and obligations. Any distribution, use or copying of this e-mail or the information it contains by other than an intended recipient is unauthorized. If you received this e-mail in error, please advise me (by return e-mail or otherwise) immediately.

Ce courriel peut être confidentiel et/ou protégé et l'expéditeur ne renonce pas aux droits et obligations qui s'y rapportent. Toute diffusion, utilisation ou copie de ce message ou des renseignements qu'il contient par une personne autre qu'un(e) destinataire désigné(e) est interdite. Si vous recevez ce courriel par erreur, veuillez m'en aviser immédiatement, (par retour de courriel ou par un autre moyen.)

From: Sifton, Jennifer [mailto:Jennifer.Sifton@dfo-mpo.gc.ca]

Sent: October 3, 2016 1:45 PM

To: Jennifer A. Rainville < jrainville@dstgroup.com>

Cc: Geoffrey Lake <<u>glake@dstgroup.com</u>>

Subject: RE: Environmental Effects Evaluation Consultation Letter (Slate Island, Lake Superior)

Hi Jennifer,

Did you send this to anyone else within DFO or just me? Thanks.

Regards,

Jennifer 905-315-5287

From: Jennifer A. Rainville [mailto:jrainville@dstgroup.com]
Sent: October-03-16 9:38 AM
To: Sifton, Jennifer
Cc: Geoffrey Lake
Subject: Environmental Effects Evaluation Consultation Letter (Slate Island, Lake Superior)

Good morning Ms. Sifton,

Please see the attached letter with regards to an Environmental Effects Evaluation that is being completed at the Slate Island Lighthouse Station in Lake Superior.

Please don't hesitate to contact me if you have any questions or concerns. Sincerely,

Jennifer A. Rainville Field Technician

DST Consulting Engineers Inc. 885 Regent Street, Unit 3-1B Sudbury ON, P3E 5M4 Canada

T 1.705.523.6680 ,231 F 1.705.523.6690 www.dstgroup.com **M** 1.705.618.3462

jrainville@dstgroup.com

Please consider the environment before printing this e-mail.

This e-mail may be privileged and/or confidential, and the sender does not waive any related rights and obligations. Any distribution, use or copying of this e-mail or the information it contains by other than an intended recipient is unauthorized. If you received this e-mail in error, please advise me (by return e-mail or otherwise) immediately.

Ce courriel peut être confidentiel et/ou protégé et l'expéditeur ne renonce pas aux droits et obligations qui s'y rapportent. Toute diffusion, utilisation ou copie de ce message ou des renseignements qu'il contient par une personne autre qu'un(e) destinataire désigné(e) est interdite. Si vous recevez ce courriel par erreur, veuillez m'en aviser immédiatement, (par retour de courriel ou par un autre moyen.)

From:	Jon Hall <cao@terracebay.ca></cao@terracebay.ca>
Sent:	Thursday, November 24, 2016 4:17 PM
То:	Jennifer A. Rainville
Cc:	cds@terracebay.ca
Subject:	RE: Environmental Effects Evaluation Consultation Letter (Slate Island, Lake Superior

Jennifer,

Here are links to our official plan and zoning bylaw.

Zoning By-law

http://www.terracebay.ca/uploads/documents/Official%20Plan/_ZBL%20July%2018%202016%20(amended%20-%20complete).pdf

Official Plan

http://www.terracebay.ca/wp-content/uploads/2016/11/135031-Ministers-Modified-OP-Terrace-Bay-2016-08-12.pdf

To answer some of your questions:

Land use designation (if applicable); In the Official Plan the land is designated as Environmental Protection

Property zoning (if applicable);); In the Zoning Bylaw the land is designated as Environmental Protection

Environmentally Significant Areas or distinctive environmental features (e.g. high groundwater level, groundwater wells, streams, rivers, natural corridors, woodlots, springs, water bodies, significant topography, ravines, rock outcrops); All of the Slates are designated caribou habitat

> Lands associated with the Site that may be subject to the Township of Terrace Bay regulations; The slates are only accessible by water and the boat launch at Terrace Bay Beach belongs to us.

Information on any permitting that may be required by the Township of Terrace Bay to proceed with the work specified above; The Ontario Building Code would apply and any permits are applied for through our offices

Information on the occurrence of Species at Risk or their habitats; Not aware of anything and don't have anything in front of me at the moment but I will keep digging.

Information on thermal regimes of water courses associated with the Site; and Not sure we would have this or can help with this

Information on any surface or underground easements on the Site. None that we are aware of or that we can see on our GIS, but this would be a very high level look.

Please do not hesitate to contact myself or Dean if you have further inquiry.

Regards,

Jon Hall

Chief Administrative Officer / Cl Township of Terrace Bay P.O. Box 40, 1 Selkirk Avenue, Terrace Bay, ON POT 2W0 Office: (807) 825-3315, Ext. 232 Fax: (807) 825-9576, Cell: (807) 228-478 www.terracebay.

From: Dean Main [mailto:cds@terracebay.ca]
Sent: Tuesday, November 22, 2016 16:06
To: 'Jonathan Hall'
Subject: FW: Environmental Effects Evaluation Consultation Letter (Slate Island, Lake Superior

Jon:

Please review and provide direction.

Dean

Dean Main Community Development Supervisor Township of Terrace Bay P.O. Box 40, 1 Selkirk Avenue, Terrace Bay, ON POT 2W0 Office: (807) 825-3315, Ext. 230 Fax: (807) 825-9576, Cell: (807) 229-6058 www.terracebay.ca

Find us on Facebook, Follow us on Twitter, Watch us on Youtube!

From: Jennifer A. Rainville [mailto:jrainville@dstgroup.com]
Sent: November-21-16 3:18 PM
To: cds@terracebay.ca
Subject: FW: Environmental Effects Evaluation Consultation Letter (Slate Island, Lake Superior)

Good afternoon Dean,

I'm just following up with the letter I had sent a while back. Do you know when DST can anticipate your response? Thanks in advance,

Jennifer A. Rainville Technician

DST Consulting Engineers Inc. 885 Regent Street, Unit 3-1B Sudbury ON, P3E 5M4 Canada

T 1.705.523.6680 ,231 **F** 1.705.523.6690 <u>www.dstgroup.com</u> **M** 1.705.618.3462

jrainville@dstgroup.com

Please consider the environment before printing this e-mail.

This e-mail may be privileged and/or confidential, and the sender does not waive any related rights and obligations. Any distribution, use or copying of this e-mail or the information it contains by other than an intended recipient is unauthorized. If you received this e-mail in error, please advise me (by return e-mail or otherwise) immediately.

Ce courriel peut être confidentiel et/ou protégé et l'expéditeur ne renonce pas aux droits et obligations qui s'y rapportent. Toute diffusion, utilisation ou copie de ce message ou des renseignements qu'il contient par une personne autre qu'un(e) destinataire désigné(e) est interdite. Si vous recevez ce courriel par erreur, veuillez m'en aviser immédiatement, (par retour de courriel ou par un autre moyen.)

From: Jennifer A. Rainville
Sent: October 3, 2016 9:44 AM
To: 'cds@terracebay.ca' <<u>cds@terracebay.ca</u>>
Cc: Geoffrey Lake <<u>glake@dstgroup.com</u>>
Subject: Environmental Effects Evaluation Consultation Letter (Slate Island, Lake Superior)

Good morning Dean,

Please see the attached letter with regards to an Environmental Effects Evaluation that is being completed at the Slate Island Lighthouse Station in Lake Superior. Please don't hesitate to contact me if you have any questions or concerns. Sincerely,

Jennifer A. Rainville Field Technician

DST Consulting Engineers Inc. 885 Regent Street, Unit 3-1B Sudbury ON, P3E 5M4 Canada

T 1.705.523.6680 ,231 F 1.705.523.6690 www.dstgroup.com **M** 1.705.618.3462

jrainville@dstgroup.com

Photographs

Photograph 1: View from Lighthouse area, facing southeast.

Photograph 2: Typical understory in area of Lighthouse.

Environmental Program Report – Slate Islands Coast Guard Site Patterson Island, Lake Superior, Ontario DST File No.: GV-TB--027105

Photograph 3: Typical understory and ground cover in forested area of Main Site.

Photograph 4: Understory in area of historic dump.

Photograph 5: Open grassy area near Old Dwelling.

Photograph 6: Weathered caribou antler located in area of Old Dwelling.

Appendix E

Environmental Effects Evaluation (EEE)

Travaux publics et Services gouvernementaux Canada

Environmental Effects Evaluation (EEE) Report

Sections 67 of the

Canadian Environmental Assessment Act, 2012

Abatement and Soil Remediation Slate Islands Coast Guard Site Patterson Island, Lake Superior, Ontario PWGSC Project No. R.083149.001 & .004

Prepared by Public Works and Government Services Canada – *Environment Services* 4900 Yonge Street, 11th Floor Toronto, ON M2N 6A6

<February 8, 2017>

TABLE OF CONTENTS

TABLE OF CONTENTS	
PART A: PROJECT INFORMATION	2
PART B: SCOPE OF PROJECT	2
B.1 Project Description	2
Pre-Construction Phase	
Lead/Asbestos Abatement	
Debris Removal	
Soil Remediation (Contingency)	
B.2 Scheduling	4
B.3 Regulatory	4
PART C: SCOPE OF EVALUATION	4
C.1 Environmental Setting	
C.2 Physical Environment	5
C.3 Biological Environment	5
C.4 Socio-economic Environment	7
PART D: COMMUNICATIONS	
D.1 Consideration of Public Concerns	
D.2 Aboriginal Interest	
D.3 Government Co-ordination	
PART E: ENVIRONMENTAL EFFECTS EVALUATION CONCLUSION	
PART F: ACCURACY AND COMPLIANCE MONITORING	
PART G: DETERMINATION	
PART H: SIGNATURE	
PART I: REFERENCES	

LIST OF TABLES

Table 1	Potential Project / Environment Interactions Matrix
Tables 2.1 - 2.9	Potential Project / Valued Ecosystem Interactions and Mitigation
Table 3	Assessment Criteria for Determination of Significance

LIST OF APPENDICES

Appendix A Figures and Photographs

Figure No.A1 Figure No.A2 Figure No.A3 Figure No.A4 Figure No.A5 Photographs	Site Location Site Location Plan Site 1 Plan Site 2 Plan Site 3 Plan Photos 1 to 15
Appendix B	Record of Public Participation Determination
Appendix C	Definitions and Methodologies
Appendix D	Mitigation Table

Environmental Effects Evaluation (EEE) Report

PART A: PROJECT INFORMATION

Project Title:	Abatement and Soil Remediation
Project Location:	Slate Island Coast Guard Site, Patterson Island, Lake Superior, Ontario
Lead Federal Authority:	Department of Fisheries and Oceans
Lead Authority contact:	
Other FA's:	Not Applicable
EEE Assessor contact:	Jennifer Rainville (Author) and Kris Tuuttila (Peer Review), DST
	Consulting Engineers Inc.
ES(D) contact	N/A
information: (if not the	
assessor)	
PWGSC Project Number:	R.083149.001 & .004
Client contact:	Martin Bouwma, Public Works and Government Services Canada

PART B: SCOPE OF PROJECT

B.1 Project Description

The Slate Islands Coast Guard Site is located within the Slate Islands group near the north shore of Lake Superior, approximately 18 km south of the community of Terrace Bay, Ontario. The Site occupies approximately 12.1 ha and is located on Sunday Point, Patterson Island; the largest and most southerly of the Slate Islands. The Site is further sub-divided into three areas, named CS-1 through CS-3, as described below.

The Main Site (CS-1) is located on the south side of Sunday Point. The structural features of this area consist of the main Coast Guard station including the main dwelling, the duplex dwelling, the two-storey old fog alarm building, the former oil house building, the new fog alarm building, the new diesel generator building and various other structures. Most buildings on-site are wood construction with wood clad or shingle siding. A concrete dock is located south of the duplex dwelling. The structures on-Site are connected by concrete pathways. The Site is inhabited seasonally by private lease holders who use the Site as a seasonal home from April to October each year.

The Lighthouse Area (CS-2) is located on the rocky summit of Sunday Point. Structural features of this area consist of the three-storey lighthouse building, a helicopter pad, and a solar shed that supports several solar panels found east of the lighthouse building.

The Old Dwelling Area (CS-3) is located north of CS-1 and CS-2 in a sheltered bay in Sunday Harbour. From the water edge, CS-3 has a sand and gravel beach extending into an area covered by grass. The area surrounding the grassed area is wooded. The structural features of this are include a two-story residential dwelling referred to as the old dwelling building, an outhouse and former boat winch.

The objective of the proposed remediation program is to remove the primary sources of soil contamination at the Site; that is to abate and remove and dispose of exterior lead-containing substances and any debris piles observed at the Site. Interior lead paint abatement and some asbestos abatement will be completed as well. Soil remediation may also be included in the program.

It is anticipated that the lead abatement will be completed using a paint removal gel product or by removing the entire substrate. It is also anticipate that debris removal will be completed using small machinery such as a mini excavator or backhoe, and/or by hand where use of equipment is not feasible, or would otherwise impact species at risk or other environmental features. Machinery, along with any other equipment and materials, would be transported to and from the Site by an approved vessel such as a barge. It is expected that debris (and possibly soil) being removed from the Site would be placed in double lined bulk tote bags, and brought to a vessel by hand or by machinery to be transported to the main land for subsequent disposal.

	Project Components								
Project Phase	Core Project Components	Ancillary Works							
		Other Projects & Activities							
Pre-Construction Phase	Deliver machinery and equipment to Site, and create construction staging areas at CS1 through CS3.	Create an offload area on the shoreline of CS 1 and CS 3. Create a construction staging area at CS 1 and CS 3							
Lead/Asbestos Abatement	Removal of exterior paint on all existing Site buildings using paint removal gel product or the complete removal of the substrate. Offloading of impacted building materials	 Removal of paint on existing Site buildings will be completed in accordance with the Occupational Health and Safety Act, R.S.O. 1990, c. O.1 (OHSA): 1) Ontario Regulation 213/91, Construction Projects, and R.R.O. 1990, 							
	onto barge/boat.	 2) Ontario Regulation 490/09 "Designated Substances". 3) Guideline: Lead on Construction Projects, September 2004 (Revised April 2011). 4) Ontario Regulation 278/05, Asbestos on Construction Projects and in Buildings and Repair Operations enabled under the Occupational Health and Safety Act R.S.O. 1990, Chapter 1. 							
		The disposal of construction waste containing lead and asbestos will be completed in accordance with 1990 R.R.O. Reg. 347- General – Waste Management, as amended under the Environmental Protection Act (Reg. 347).							
		The transport of the waste to the appropriate disposal site will be completed in accordance with the federal Transportation of Dangerous Goods Act (TDGA), 1992 and provincial regulations.							
Debris Removal	Removal of the existing debris at dumpsites located at the Site. Volume reduction and containerization of the	Excavation and removal of surficial debris. Disposal of soils and non-recyclable waste in an approved landfill.							
	debris.	The disposal of non-recyclable waste will be completed in accordance with Reg. 347.							
	Offloading of debris material onto barge/boat.	The transport of the waste to an approved landfill will be completed in accordance with the federal Transportation of Dangerous Goods Act (TDGA), 1992 and provincial regulations.							
Soil Remediation (Contingency)	Removal of contaminated soil around lighthouse, other structures and in dumpsite areas may be completed.	Excavation and removal of contaminated soil. Disposal of soils and non-recyclable waste in an approved landfill.							
	Containerization of impacted soils and offloading of impacted soils onto	The disposal of hazardous waste will be completed in accordance with Reg. 347.							
	barge/boat.	Ine transport of the waste to an approved landfill will be completed in accordance with the federal Transportation of Dangerous Goods Act (TDGA), 1992 and Reg 347.							

Environmental Effects Evaluation (EEE) Report

B.2 Scheduling

The proposed project (i.e. lead abatement and debris removal) is anticipated to be completed in the fiscal year starting April 2017. Consideration will be taken into account for key breeding periods and periods of high usage of migratory birds (generally April 15th to August 15th) that are listed on the Species at Risk Act (SARA) with ranges that overlap the Site. Further consideration will be taken for timing of project activities during sensitive periods of the Boreal Woodland Caribou nursery areas (May 1 to July 14 very low tolerance, July 15 to September 15 low tolerance), winter use areas (December 1 to March 31), travel corridors (April and/or November) as this species is also listed in the SARA, and its critical habitat range overlaps the Site. Considerations will also be taken into account for safe boat access to the Site, based on water levels, and current and wind conditions. According to locals, the ideal season providing calm conditions, is late spring. The timing windows for activities is quite limited. See Tables 2.1 through 2.8 for further information regarding mitigation measures and in what situations approvals/permits would be required.

B.3 Regulatory

The regulatory regimes that must be followed include:

- 1) Federal Level
 - a. Species At Risk Act, 2002
 - i. Potential for permit requirement due to noise disturbance and habitat disturbance during proposed work
 - b. Migratory Bird Convention Act, 1994
 - i. Potential for permit requirement due to noise disturbance, and habitat disturbance during proposed work.
 - c. Transportation of Dangerous Goods Act, 1992
 - d. Fisheries Act, 1985
- 2) Provincial Level
 - a. Occupational Health and Safety Act, R.S.O. 1990, c. O.1 (OHSA):
 - i. Ontario Regulation 213/91, Construction Projects, and R.R.O. 1990,
 - ii. Ontario Regulation 490/09 "Designated Substances".
 - iii. Guideline: Lead on Construction Projects, September 2004 (Revised April 2011)
 - iv. Ontario Regulation 278/05, Asbestos on Construction Projects and in Buildings and Repair Operations enabled under the Occupational Health and Safety Act R.S.O. 1990, Chapter 1.
 - b. Environmental Protection Act, 1990
 - i. Ontario Regulation 347- General Waste Management
 - c. Endangered Species Act, 2007

PART C: SCOPE OF EVALUATION

C.1 Environmental Setting

The Slate Island Coast Guard Site (herein referred to as the "Site") is located on Sunday Point, Patterson Island, which is the largest and most southerly in the Slate Islands group in Lake Superior, Ontario. The town of Terrace Bay is located on the mainland approximately 18.5 km to the northeast. See Figure A1 for the Site location and Figure A2 for Site plan in Appendix A. The Site is approximately 12 hectares in size. The Site consists of three separate sites and are as follows:

- Site 1 consists of a single dwelling, a double dwelling (duplex), former oil house, old fog alarm and generator building, and, new diesel generator and electrical buildings, all located on the south shore of Sunday Point (see attached Figure A3);
- Site 2 consists of the lighthouse and upper heli-pad on the rocky summit on Sunday Point (see attached

Figure A4); and

• Site 3 consists of the assistant lighthouse keeper's house on the north side of Sunday Point (see attached Figure A5).

The Site is inhabited seasonally by private lease holders who use the site as a seasonal home from April to October each year.

C.2 Physical Environment

The Site consists mainly of exposed cobbles, with areas of exposed bedrock in the western region of the Site, along with grassy areas to the north, northeast and northwest of the Site, and an area of fresh cut trees in the northwest region of the Site. Beyond the grassy areas to the north is forested. Soil is shallow on-Site and mainly consists of coarse-textured, dark brown, organic-rich topsoil, with many cobbles (lithic rich). The topography is moderately hilly, with a 20 m steep cliff climbing upwards from the south shore to the lighthouse on the summit. Surface water runoff drains into Lake Superior.

According the Ministry of Northern Development and Mines (MNDM, 2016), the geology of the Site consists of felsic to intermediate metavolcanic rock – dacitic and andesitic flows, tuffs and breccias. Outcrops of basalt flows are present along the shoreline on-Site.

C.3 Biological Environment

The littoral (nearshore) area typically consists of horizontal outcrops of basalt rock, with no visible aquatic vegetation.

Terrestrial vegetation consists of typical Boreal forest species composition, including black spruce, white spruce, jack pine, cedar, black ash, willow and elderberry trees, as well as numerous grasses and shrubs.

Mammals that can be found on Patterson Island include (but are not limited to) Boreal Woodland Caribou, beavers, red foxes, snowshoe hares, muskrat and short tailed weasels.

Great Lakes Arctic-Alpine Bedrock Shoreline vascular plant species are disjunct on the Slate Islands archipelago. According to the Ministry of Natural Resources and Forestry's (MNRF; acronym herein used to refer to organization under previous names) Natural Heritage Information Centre (NHIC), the plant species have a provincial rank of S3, which means it is rare in Ontario, usually 20-100 occurrences in the province. Although considered rare in this particular area, this group of species are not listed as Species at Risk.

The following species are considered Species at Risk (SAR) on the Slate Islands archipelago according to previous SAR studies completed at the Site (DST, 2005), Federal Species at Risk Public Registry (Schedule 1, SARA), Species at Risk in Ontario (SARO) website (Thunder Bay Region), Environment Canada, the Fisheries and Oceans Canada (DFO) Aquatic Species at risk mapping, and the MNRF NHIC mapping:

Mammals:

1) Woodland Caribou (Boreal) (Rangifer tarandus caribou) – Threatened (Federal and Provincial)

The boreal population of Woodland Caribou reside in the boreal forest all year. Only the boreal population are listed as a SAR in Ontario, and in the Species at Risk Act, Schedule 1.

Prior to 1990s, the caribou population on the Slate Islands had reached its highest population density, however a food shortage in the 1990s caused the population to decline. According to Environment Canada the Slate Islands are critical habitat for the caribou.

<u>Environmental Effects Evaluation (EEE) Report</u>

2) Northern Myotis (*Myotis septentrionalis*) – Endangered (Federal, Provincial)

The Northern Myotis is common throughout forested portions of southern Ontario, north to the north shore of Lake Superior, and has been found as far north as Moosonee. This species is typically associated with boreal forest types, roosting under loose bark or in the cavities of trees. Like the Little Brown Myotis, this species hibernates from October or November, through to March or April, selecting humid caves and abandoned mines as hibernacula (MNRF 2011).

3) Little Brown Myotis (*Myotis lucifugus*) – Endangered (Federal, Provincial)

The Little Brown Myotis is common across southern Ontario and as far north as Moose Factory and Favourable Lake, Ontario. It forms summer colonies in attics, abandoned buildings and barns, where it raises its young. It hibernates from October or November through March or April. Humid caves and abandoned mines that stay above freezing throughout the winter are generally selected as hibernacula (MNRF 2011).

4) Tri-colored Bat (*Glyphonycteris sylvestris*) – Endangered (Federal, Provincial)

The Tri-coloured bat is found in a variety of forested habitats during the summer months. It forms day roosts and maternity colonies in older forest and occasionally in barns or other structures. Foraging occurs over water and along streams in the forest. Tri-colored Bats eat flying insects and spiders gleaned from webs. In the fall, they travel to a location where they swarm; it is generally near the cave or underground location where they will overwinter. Caves are generally selected as winter hibernacula (MNRF 2011). This bat is found in southern Ontario and as far north as Espanola near Sudbury.

5.) Eastern Wolf (a.k.a. Algonquin Wolf) (Canis lycaon) - Special Concern (Federal), Threatened (Provincial)

Eastern wolves typically occur in deciduous and mixed forest landscapes with low human density, south of the Boreal Forest Region. Their current distribution is thought to be restricted to mixed coniferous-deciduous forest of central Ontario and southwestern Quebec. According to the SSRA completed by DST in 2005, it was reported that at least two wolves accessed the island when Lake Superior froze over in the winter of 2002/2003.

Birds:

1) Canada Warbler (*Cardinella Canadensis*) – Threatened (Federal), Special Concern (Provincial)

The Canada Warbler is found most abundantly in wet, mixed deciduous-coniferous forest with a well-developed shrub layer. Dense shrub and understory vegetation help conceal Canada Warbler nests that are usually located on or near the ground on mossy logs or roots, along stream banks or on hummocks. Its primary breeding range is in the Boreal Shield, extending north into the Hudson Plains and south into the Mixedwood Plains.

2) Common Nighthawk (Chordeiles minor) - Threatened (Federal), Special Concern (Provincial)

Traditional Common Nighthawk habitat consists of open areas with little to no ground vegetation, such as logged or burned-over areas, forest clearings, rock barrens, peat bogs, lakeshores, and mine tailings.

3) Eastern Whip-poor will (*Caprimulgus vociferous*) – Threatened (Federal, Provincial)

Eastern Whip poor will is usually found in areas with a mix of open and forested areas, such as savannahs, open woodlands or openings in more mature, deciduous, coniferous and mixed forests. It forages in these open areas and uses forested areas for roosting (resting and sleeping) and nesting.

4) Olive Sided Flycatcher (*Contopus cooperi*) – Threatened (Federal), Special Concern (Provincial)

The Olive-sided flycatcher is most often found along natural forest edges and openings. It will use forests that

Environmental Effects Evaluation (EEE) Report

have been logged or burned, if there are ample tall snags and trees to use for foraging perches. Its breeding habitat usually consists of coniferous or mixed forest adjacent to rivers or wetlands. In Ontario, Olive-sided flycatchers commonly nest in conifers such as White and Black Spruce, Jack Pine and Balsam Fir.

Peregrine Falcon (anatum/tundrius) (Falco peregrinus) – Special Concern (Federal and Provincial)

The peregrine falcon can be found in every province and territories except Prince Edward Island, Nunavut, and the island of Newfoundland. It can be found in various types of habitat, from Arctic tundra to coastal areas, and from prairies to urban centres. It nests alone on cliff edges and crevices close to large bodies of water. According to the MNRF's Natural Heritage Information Centre (NHIC) mapping, there have been peregrine falcon occurrences in the area of the Site.

Insects:

Monarch butterfly (danaus plexippus) – Special Concern (Federal and Provincial)

There are three populations of the monarch butterfly: western, central and eastern. The eastern butterfly is the largest group of the three. Their range extends from Central America to southern Canada. In Canada, they are most abundant in southern Ontario and Quebec where milkweed plants and breeding habitat are widespread. Only the caterpillars feed on milkweed plants. Adult butterflies can be found in more diverse habitats where they feed on nectar from a variety of wildflowers.

Aquatic Species:

Deepwater Sculpin – Great Lakes – Western St. Lawrence (*Myoxocephalus thompsonii*) – Special Concern (Federal), Not Listed (Provincial)

The Deepwater Sculpin is a lake-dwelling sculpin of the family Cottidae. It is a bottom-dwelling fish that is found in cold (<7 degrees Celsius), well oxygenated, deep lakes. In the Great Lakes, adults usually live between 60 and 150 meters in depth. Spawning appears to occur during the winter.

Upper Great Lakes Kiyi (Coregonus kiyi kiyi) – Special Concern (Federal and Provincial)

The Kiyi is among the deepest water forms of cisco species found in Canada. It lives in a clear, cold-water environment at depths ranging from 10 meters to 305 meters, with peak abundances found at depths between 130 to 150 meters. Kiyi have been collected over lake bottoms of clay and mud substrates. Spawning generally occurs in the late fall at depths between 91 and 168 meters.

C.4 Socio-economic Environment

The Site is owned and maintained by DFO. The past and current land use is partly residential, and as a station to operate a navigation light. Neighbouring lands are designated as Provincial Park lands and are owned by the MNRF. No negative socio-economic impacts are expected as a result of this project.

C.5 Scoping

This environmental effects evaluation considers the full range of project / environment interactions and the environmental factors that could be affected by the project as defined above and the significance of related effects after mitigation. The environmental effects of a project to be considered include at a minimum, but are not limited to those described under subsection 5(1) and 5(2) of CEAA 2012. The environmental effects considered under this report include:

Table 1: Potential Project / Environment Interactions Matrix

NOTE TO THE ASSESOR: Professional judgment should dictate the ecosystem components that may be evaluated under the <u>Due Diligence</u> columns. Only components that are relevant should be included in the table. Also, if the proposed project involves an activity that will impact non-migratory birds (something that doesn't necessarily require assessment under CEAA 2012) then" Birds/Wildlife" may still be inserted as a Due Diligence Valued Ecosystem Component.

Lead/Asbestos Abatement, Debris Removal and Soil Remediation (Contingency) - Slate Island Coast Guard Site, Patterson Island, Lake Superior

	As per Section $5(1)$					Section 5(1c)				Section 5(2)			Due Diligence				
	AS	As per Section 5(1) Aboriginal Interest Section 5(2)					Due Diligence										
Project Phase / Physical Work/Activity	Fish (Fisheries Act)	Aquatic Species (SARA)	Terrestrial Species (SARA)	Birds (MBCA)	Health and Socio economic	Physical and cultural heritage	Land use	*HAPA Significance	Health and Socio economic	Physical and cultural heritage	HAPA Significance	Water (ground surface, drainage, etc.	Birds / Wildlife / Plant Species	Air	Soil	Health and Socio Economic	
Construction																	
Pre-Construction Phase	Р	Р	Р	-	-	-	-	-	-	-	-	Р	Р	-	Р	-	
Lead/Asbestos Abatement	Р	Р	Р	Р	-	-	-	ŀ	-	-	1	Р	Р	-	Р	Р	
Debris Removal	Р	Р	Р	Р	-	-	-	-	-	-	-	Р	Р	Р	Р	Р	
Soil Remediation	Р	Р	Р	Р	-	-	-	-	-	-	-	Р	Р	Р	Р	Р	

P = Potential Effect of Project on Environment;' - ' = No Interaction

*HAPA – structure, site or thing that is of historical, archaeological, paleontological or architectural significant

Table 2.1 – 2.9*: Potential Project / Valued Ecosystem Interactions and Mitigation Measures (S.2 (1))

Potential Effect: Harmful effects to fish.								
Mitigation								
Mitigation • No work should be undertaken below the water line. • A Sediment and Erosion Control Plan must be developed and implemented. • Erosion control structures (silt fences/curtains, sediment traps and or check dams) are to be used, as appropriate, to prevent erosion and release of sediments and/or sediment laden water during the project activities. These structures are to be installed prior to the commencement of project activities, and are left in place until vegetation is re-established and/or all exposed soils are stabilized. • Polyethylene sheeting is to be used, as appropriate, to prevent surface water contamination from gel applications during lead abatement activities. Selection of a non-toxic, environmentally friendly paint removal product, if available, for lead abatement activities. • Ensure loading/unloading of machinery/equipment/materials does not impact the banks and cause erosion into the water. • Designated travel routes must be established and maintained for machinery and transportation of materials, preferably along existing pathways. • The exposed soil area must be minimized by limiting the area that is exposed at one time and by limiting the time that any one area is exposed. All stockpiled soil must be covered and/or dyked to prevent erosion and release of sediment laden water. Wherever possible, exposed soil is to be replanted or sodded to ensure soil stabilization. • Work must be scheduled to avoid periods of heavy precipitation, when possible to avoid paint removal product runoff during lead abatement, and to avoid sediment erosion during debris and soil removal. • All paint debris and contaminated soils must be disposed of in a provincially approved								
N · · · · · · · · · · · · · · · · · · ·								

			hour environmental emergencies reporting system (1-800-565-1633).					
			- Ensure that machinery arrives on site in a clean condition and is maintained free of fluid leaks, invasive species and noxious weeds.					
Magnitude	Rev	versibility		Geographic Extent	Duration		Frequency	
Small	Rev	versible		Immediate	Short-term		Once	
Residual Effects:	Insignificant							
Monitoring:	Monitoring: Inspection and maintenance of sediment control measures and structures during the course of construction.							
Comments: Work is not anticipated below the water line. Paint debris generated and excavated soil during project activities has the potential to negatively impact adjacent waters and fish/fish habitat for the short-term. Such effects can be avoided through the application of effective mitigation measures.								

Table 2.2 Valued Ecosystem Component – Aquation	c Species (SARA) – Section 5(1)								
Potential Effect: Harmful effects to SAR fish and SA	Potential Effect: Harmful effects to SAR fish and SAR fish habitat								
Potential Interaction	Mitigation								
Due to the proximity of the site buildings and some	\cdot No work should be undertaken below the water line.								
result in debris entering a nearby freshwater	· A Sediment and Erosion Control Plan must be developed and implemented.								
environment, and result in impacts or disturbance to SAR aquatic species.	• Erosion control structures (silt fences/curtains, sediment traps and or check dams) are to be used, as appropriate, to prevent erosion and release of sediments and/or sediment laden water during the project activities. These structures are to be installed prior to the commencement of project activities, and are left in place until								
Potential for contamination of surface water from	vegetation is re-established and/or all exposed soils are stabilized.								
activities.	• Polyethylene sheeting is to be used, as appropriate, to prevent surface water contamination from gel applications during lead abatement activities. Selection of a non-toxic, environmentally friendly paint removal product, if available, for lead abatement activities.								
lead abatement to enter nearby freshwater environment and result in impacts or disturbance to	• Ensure loading/unloading of machinery/equipment/materials does not impact the banks and cause erosion into the water.								
SAR aquatic species.	• Designated travel routes must be established and maintained for machinery and transportation of materials, preferably along existing pathways.								
	\cdot The exposed soil area must be minimized by limiting the area that is exposed at one time and by limiting the time that any one area is exposed. All stockpiled soil must be covered and/or dyked to prevent erosion and release of sediment laden water. Wherever possible, exposed soil is to be replanted or sodded to ensure soil stabilization.								
	\cdot Work must be scheduled to avoid periods of heavy precipitation, when possible to avoid paint removal product runoff during lead abatement, and to avoid sediment erosion during debris and soil removal.								
	• All paint debris and contaminated soils must be disposed of in a provincially approved manner so as to mitigate potential effects generated by leachate entering the adjacent waters.								
	· If any construction debris/material (e.g., domestic waste, paint cans, glass etc.) enter the aquatic environments they must be removed immediately and disposed in a provincially approved manner.								
	- Implement a Spill Prevention and Spill Response Plan for the project activities. Ensure that appropriate inspection personnel and certified inspection personnel are employed through all stages of the project life cycle. Machinery must be checked for leakage of lubricants or fuel and must be in good working order. Refueling must be done at least 30 m from any water body and on an impermeable surface. Basic petroleum spill clean-up equipment must be on-site. All spills or leaks must be promptly contained, cleaned up and reported to the 24-hour environmental emergencies reporting system (1-800-565-1633).								
	- Ensure that machinery arrives on site in a clean condition and is maintained free of fluid leaks, invasive species and noxious weeds.								

Magnitude	Reversibility		Geographic Extent	Duration	Frequency			
Small	Reversible		Immediate	Short-term	Once			
Residual Effects:	-	Insignificant		-				
Monitoring:	Inspection and maintenance of sediment control measures and structures during the course of construction.							
Comments: Work is not anticipated below the water line. Both SAR fish species identified are typically found in deep water. Through the application of appropriate mitigation measures, no impacts to SAR fish species are anticipated.								

Table 2.3 Valued Ecosystem Component – Terrestrial Species (SARA) – Section 5(1)							
Potential Effect: Harmful effect	ets to woodland caribo	ou.					
Potential Interaction		Mitigation	a				
Due to the site overlapping criti woodland caribou, project activ impacts and/or disturbance to th population.	cal habitat of ities may result in ne woodland caribou	• An Overa areas need anticipatec underway.	An Overall Benefit Permit may be required under Endangered Species Act. A thorough review of sensitive areas needs to be undertaken to determine whether significant impacts to the woodland caribou sensitive areas is anticipated, and warrant a permit, according to ECCC. The process to obtain access to sensitive data is underway.				
Project activities might disturb	potential bat habitat.	• Project a sensitive p occurring:	ctivities that produce significant periods when reproduction and re-	noise should be avoided, if possib aring, winter aggregation and fora	ble, during woodland caribou Iging, and seasonal dispersal is		
		 Nursery Areas (May 1 to July 14 very low tolerance, July 15 to September 15 low tolerance) Winter Use areas (December 1 to March 31) Travel Corridors (April and/or November) 					
		• Proponents, contractors and workers must be advised of the potential presence of SAR, and be familiar with the SAR species during the undertaking.					
		• SAR sweeps should be conducted prior to work commencing each day by a qualified individual. SAR sweeps should include wolf dens. If a SAR is encountered, work must stop, the immediate area shall be avoided, and an experienced Biologist must be consulted and/or contact Environment Canada to discuss the way forward.• Once project specific details are finalized, consultation with ECCC and MNRF must occur to discuss and develop project specific mitigation measures that can be implemented for this unique population of caribou and circumstances.					
		\cdot Equipment will be confined to disturbed and regularly travelled portions (trails) of the Site to the extent practical to minimize impacts to habitat.					
		\cdot Ensure all exhaust systems have mufflers installed properly and that all machinery is operating as per specifications, and avoid idling to minimize noise disturbance to woodland caribou.					
		• If/where debris removal from historic dumps will include tree removal, or where tree removal may otherwise occur and have the potential to impact bat maternal roost colonies, surveys for bat maternity snags according to OMNR (2011) should be undertaken by a qualified biologist. If no suitable maternal snags are identified, work may proceed. If suitable maternal snags are identified, these should be retained and debris removal in their vicinity should be done by hand where practical.					
Magnitude	Reversibility		Geographic Extent	Duration	Frequency		
Small	Reversible		Immediate	Short-term	Once		

Residual Effects:	Insignificant			
Ionitoring: None required.				
Comments: The potential exists for the disturbance of woodland caribou due to an increase in noise and dust around the project site. The potential also exists to disturb bat habitat if trees are removed. Such effects are likely to be of short duration and confined to the project site and can be avoided through the application effective mitigation measures.				

Fable 2.4 Valued Ecosystem Component – Birds (MBCA) – Section 5 (1)						
Potential Effect: Disturbance to migratory birds	s and loss of bird habitat.					
Potential Interaction	Mitigation					
Project activities may result in disturbance to migratory birds.	• No migratory birds, nests or eggs can be disturbed or destroyed per the Migratory Birds Convention Act of 1994. If project activities are unavoidable during the core migratory bird breeding season of April 15 th to August 15 th , nesting sweeps should be conducted by a qualified avian biologist if/where vegetation or tree clearing is required.					
Impacts on bird habitat may occur due to potential vegetation clearing of debris removal and soil remediation areas.	· Low impact machinery or low impact removal procedures must be used as part of debris removal phase of construction.					
	\cdot Equipment will be confined to disturbed and regularly travelled portions (trails) of the Site to the extent practical to minimize impacts to potential bird habitat					
	• Proponents, contractors and/or a qualified biologist must complete a nesting sweep prior to commencing work. If one or more nests containing eggs or chicks of migratory birds are spotted or discovered prior to the work, work must stop, the immediate area shall be avoided, and an experienced Avian Biologist must be consulted for advice. The Avian Biologist must develop a species-appropriate buffer zone to work and provide further information on noise levels which may not be exceeded within an appropriate distance to the nest taking into account the species of bird and the area surrounding the nest. Scope and identify the buffer zone in such as a way as it is visible with the use of a fence or colored tape so that the construction crew and the construction supervisor at the site can see it and respect this buffer zone. If one or more nests containing eggs or chicks of migratory birds are spotted or discovered during the work, stop any disruptive activity in the nesting area until the establishment of a buffer zone by an experienced Avian Biologist. This is based on a range of appropriate protection to the species and circumstances and must be maintained until the chicks have naturally left permanently the areas near the nest or that the work is completed. If a buffer zone cannot be established, identify the species of breeding birds and contact Environment Canada to discuss the way forward.					
	 Proponents and Contractors must ensure that food scraps and garbage are not left at the project site. If work is planned during timeframes when SAR birds (see section C.3) may be present, follow up SAR surveys during the timing windows that are appropriate for the specific specie is required. 					
	· Contractors and workers should be familiar with potential SAR if conducting work when they may be present and should contact ECCC SAR biologist if encountered in work Site for advice on how to proceed.					
	· The Contractor must prevent hydrocarbon product releases in and around the project area.					
	Machinery must be checked for leakage of lubricants or fuel and must be in good working order. Refueling must be done at least 30 m from any water body and on an impermeable surface. Basic petroleum spill clean-up equipment must be on-site. All spills or leaks must be promptly contained, cleaned up and reported to the 24-hour environmental emergencies reporting system (1-800-565-1633).					

Magnitude	Rev	versibility	Geographic Extent	Duration	Frequency		
Small	Rev	resible	Immediate	Short-term	Once		
Residual Effects:		Insignificant	asignificant				
Monitoring:	None required						
Comments: The potential exists for the disturbance of migratory birds due to an increase in noise and dust around the project site, and the loss of bird habitat due to							

Comments: The potential exists for the disturbance of migratory birds due to an increase in noise and dust around the project site, and the loss of bird habitat due to vegetation clearing of debris removal and soil remediation areas. Such effects are likely to be of short duration and confined to the project site and can be avoided through the application of effective mitigation measures.

Table 2.5 Valued Ecosystem	Comp	onent – Water				
Potential Effect: Groundwater	and s	surface water co	ontamination			
Potential Interaction			Mitigation			
Contamination of groundwater or surface water from temporarily stored equipment and material during debris removal and soil remediation activities.		 A high-de placement of Temporary Measures to be used, pumping/di Machinery must be don equipment hour enviro 	 A high-density polyethylene (HDPE) liner is required to be placed at any temporary storage site prior to placement of debris and/or contaminated soil. Temporary drainage and pumping are to be used, as appropriate, to keep excavations and site free from water. Measures for managing water flowing onto the Site, as well as water being pumped/diverted from the Site are to be used, such that sediment is filtered out prior to the water entering a waterbody. For example, pumping/diversion of water to a vegetated area, construction of a settling basin or other filtration system. Machinery must be checked for leakage of lubricants or fuel and must be in good working order. Refueling must be done at least 30 m from any water body and on an impermeable surface. Basic petroleum spill clean-up equipment must be on-site. All spills or leaks must be promptly contained, cleaned up and reported to the 24-hour environmental emergencies reporting system (1-800-565-1633). 			
Magnitude	Rev	ersibility		Geographic Extent	Duration	Frequency Significance
Small	Reve	versible		Immediate	Short-term	Once
Residual Effects: Insignificant						
Monitoring: Inspection and maintenand		ce of control measures and structures during the course of construction.				
Comments: The placement of	debris	s and contamin	ated soil on la	nd could impact groundwater.	The HDPE liner eliminates the pa	athway to any groundwater source.

Table 2.6 Valued Ecosystem	Comp	oonent – Birds /	Wildlife / F	Plant Species			
Potential Effect: Disturbance	Potential Effect: Disturbance to wildlife and loss of bird habitat.						
Potential Interaction		Mitigation	n				
Project activities may result in disturbance to wildlife / birds.		 Nesting s required if 	weeps should be conducted activities occur within the conducted	by a qualified avian biologi bre migratory bird season.	st if/where ve	egetation or tree clearing is	
Impacts on wildlife / birds habitat due to potential		e to potential gain access to	 Equipme habitat. 	nt will be confined to access	roads and project areas to 1	ninimize imp	bacts to potential wildlife / bird
waste areas.		0	· Proponer	nts and Contractors must ensu	are that food scraps and gar	bage are not l	left at the project site.
Potential for disturbance to arctic-alpine plant		pine plant	• Disturbances to all birds and wildlife in and near the project area must be minimized. Wildlife sweeps should be conducted each day by a qualified individual prior to work commencing.				
1			· The Contractor and workers must be familiar with proper protocols for protecting wildlife during construction.				
			\cdot The Contractor and workers must be familiar with the arctic-alpine plant species known to be present on the Slate Islands.				
			\cdot The Contractor must prevent hydrocarbon product releases in and around the project area.				
Magnitude	Reve	rsibility	-	Geographic Extent	Duration]	Frequency
Small	Revei	rsible		Immediate	Short-term	(Once
Residual Effects: Insignificant							
Monitoring: None required							
Comments: The potential exists for the disturbance of wildlife and birds due to an increase in noise and dust around the project site. Such effects are likely to be of short duration and confined to the project site and can be avoided through the application of effective mitigation measures.							

Table 2.7 Valued Ecos	system Com	ponent – Air						
Potential Effect: Air P	ollution/Air	Emissions						
Potential Interaction			Mitigation	Mitigation				
Project activities (i.e. soil remediation) may result in fugitive dust emissions.			• A site specific air pollutant environmental management plan that identifies the objectives to be achieved (e.g. visual inspection, neighbor complaints, quantified maximum concentrations around the site), the methods to be applied, the people responsible for managing and implementing the plan, and the records to be maintained in order to demonstrate adoption of best management practices (and compliance with regulatory requirements) should be developed and implemented. The document <i>Best Practices for the Reduction of Air Emissions from Construction and During Demolition Activities</i> (prepared for Environment and Climate Change Canada by Cheminfo Services, 2005), should be consulted in the development of the plan.					
			 Properly of backfill site and re 	\cdot Properly shape and cover stockpiled soils to reduce wind erosion and control fugitive dust emissions. If any use of backfill is required, ensure proper scheduling for delivery of backfill materials to minimize storage time on site and reduce potential for fugitive dust emissions.				
			• Misting of disturbed or travelled areas should be undertaken, as well as installing localized wind fencing/barriers particularly during dry, dusty conditions to avoid generating airborne or surface dust and particulates.					
			• Machinery and equipment must be maintained in good condition, must be equipped with emission controls as applicable, and operate within regulatory requirements, including meeting local authority's emission requirements.					
			· Operators must comply with operating specifications for equipment and machinery.					
			\cdot Vehicles should not be left idling when not in use.					
			• Minimize vehicle traffic on exposed soils and stabilize high traffic areas with clean gravel surface layer or other suitable cover material.					
			\cdot Designated travel routes must be established and maintained for machinery and transportation of materials, preferably along existing pathways.					
Magnitude	Rev	ersibility		Geographic Extent	Dur	ation		Frequency
Small	Reve	ersible		Immediate	Sho	rt-term		Once
Residual Effects:	Residual Effects: Insignificant							
Monitoring:	Monitoring: None required							
Comments: The potent short duration and confi	tial exists for ined to the p	the disturbance roject site and ca	of wildlife a an be avoide	and birds due to an increase in d through the application of e	n noise and offective mit	dust around the pro- igation measures.	oject site	e. Such effects are likely to be of

Table 2.8 Valued Ecosystem	n Comp	onent – Soil (S	urface and a	Subsurface) Quality			
Potential Effect: Erosion and	d contar	nination of soils					
Potential Interaction			Mitigatio	n			
Disturbance to soil from equipment use during project activities.			· Contami disposed o	nated soil that is in excess of at an approved facility.	ss must be stored on site fo	or the shortest time possib	ble, covered, and be
If soil remediation moves for of soil from temporarily store	ward, co	ontamination	· All conta contamina	minated soil remaining in j ted soil.	place on site must be capped	with clean fill to ensure the	ere is no access to
remediation activities.			• Work must be scheduled to avoid periods of heavy precipitation. Erosion control structures (temporary matting, geotextile filter fabric) are to be used, as appropriate, to prevent erosion and release of sediments and/or sediment laden water during the construction phase. These structures are to be left in place until vegetation is re-established and/or all exposed soils are stabilized.				
		\cdot The exposed soil area must be minimized by limiting the area that is exposed at one time and by limiting the time that any one area is exposed. All stockpiled soil must be covered and/or dyked to prevent erosion and release of sediment laden water. Wherever possible, exposed soil is to be replanted or sodded to ensure soil stabilization.					
		• Machinery must be checked for leakage of lubricants or fuel and must be in good working order. Refueling must be done at least 30 m from any water body and on an impermeable surface. Basic petroleum spill clean-up equipment must be on-site. All spills or leaks must be promptly contained, cleaned up and reported to the 24-hour environmental emergencies reporting system (1-800-565-1633).					
			• All hazardous materials and/or waste materials being removed or that is generated must be disposed of in a legal manner according to Regulations (i.e. O. Reg. 347- General - Waste Management, as amended)				
Magnitude	Rev	ersibility	-	Geographic Extent	Duration	Frequency	
Small	Reve	versible		Immediate	Short-term	Once	
Residual Effects:	esidual Effects: Insignificant						
Monitoring:		Inspection and mainten		nce of sediment control m	easures and structures duri	ng the course of construc	ction.
Comments: Construction act duration and confined to the p	tivities of strong stro	could result in th site. The implem	e mobilizat	tion of on-site soils, especial effective mitigation measure	ally during precipitation even ares can reduce such effects to	ts. Such runoff events are l	ikely to be of short

Table 2.9 Valued Eco	osystem Com	ponent – Healt	h and Socio E	conomic			
Potential Effect: Hum	nan exposure	to hazards and	hazardous mat	terials			
Potential Interaction			Mitigation	l			
Contractors and workers maybe be exposed to designated substances and hazardous materials during the project activities.		 The Desig (2016) musical (2016) musical (2	 The Designated Substance and Hazardous Materials survey and associated specifications completed by DST (2016) must be consulted and adhered to during project activities. Appropriate personal protective equipment (PPE) must be used during all project activities. All hazardous materials must be labelled in accordance with WHMIS requirements and transported in accordance with provincial and federal regulations regarding the transportation of dangerous goods including: Federal Transportation of Dangerous Goods Act, 1992 Environmental Protection Act, 1990 - Ontario Regulation 347- General – Waste Management Ensure employees are trained on the identification and handling of designated substances. Undertake work on designated substances containing material and other hazardous materials and chemicals according to the Designated Substance and Hazardous Material Survey information and recommendations or the provincial and federal legislation. In general, the Occupational Health and Safety Act, R.S.O. 1990, c. O.1 (OHSA) should be followed, including: Ontario Regulation 213/91, Construction Projects, and R.R.O. 1990, Ontario Regulation 213/91, Construction Projects, and R.R.O. 1990, 				
Magnitude	Re	versibility		Geographic Extent	Duration	Frequency Significance	
Small	Re	versible		Immediate	Short-term	Once	
Residual Effects:	ts: Insignificant			•			
Monitoring:		None require	d.				
Comments: Hazards of	can be avoide	d through the a	pplication of a	ppropriate mitigations mea	sures.		

Environmental Effects Evaluation (EEE) Report

PART D: COMMUNICATIONS

D.1 Consideration of Public Concerns

The potential for public concern is minimal because the neighboring property to the project Site is owned by the province and maintained by the MNRF. The MNRF has been consulted in this EEE process. Also, the Site is in a remote area, and not publicly accessed. Public consultation was not deemed necessary as part of this screening. A record of public participation determination is found in **Appendix B**.

Notice should be posted on the Terrace Bay and Rossport websites as well as the Terrace Beach/Marina to advice the neighboring park visitors about project activities.

D.2 Aboriginal Interest

PWGSC evaluated the Lead Abatement/Soil remediation project at the Slate Island Coast Guard Site to determine if the environmental effects will result in a significant adverse environmental effect upon aboriginal peoples. It was determined that communications with aboriginal peoples was not required because the project site is not on or near First Nations lands/reserves, and there are no anticipated off site impacts.

D.3 Government Co-ordination

Federal and provincial authorities likely to have an interest in the project were contacted by DST Consulting Engineers Inc. on behalf of Public Works and Government Services Canada, during the course of the environmental effects evaluation. A project description was distributed to these federal and provincial authorities in order to garner expert advice. These authorities included:

- Environment Canada and Climate Change (ECCC);
- Fisheries and Oceans Canada (DFO);
- Lake Superior National Marine Conservation Area of Canada (LSNMCA);
- Ministry of Natural Resources and Forestry (MNRF);
- Township of Terrace Bay;
- Ontario Parks;
- Indigenous and Northern Affairs Canada (INAC; no response to date); and
- Pic River First Nation (no response to date).

As a result of this consultation, EC, DFO, LSNMCA, MNRF, and the Township of Terrace Bay provided expert advice that was considered and incorporated in the environmental effects evaluation.

The Pic River First Nation and INAC have been contacted, however a response has not yet been received. Should the response materially affect the conclusions of this report, an addendum will be issued.

PART E: ENVIRONMENTAL EFFECTS EVALUATION CONCLUSION

Potential impacts of this project are associated with the lead abatement, debris removal and soil remediation phases. It is reasonable to conclude that with appropriate mitigations as listed in Section C, Tables 2.1-2.7 in place and good work practices, environmental effects will be of short duration and the potential zone of influence will be confined to the immediate vicinity of the Site.

PART F: ACCURACY AND COMPLIANCE MONITORING

Site monitoring and compliance monitoring for this project should be completed. The Project Manager and/or designate and Contractor should ensure the mitigation measures are in place and are in proper working order, and should consist of daily or weekly evaluations of mitigation measures in place at the Site.

PART G: DETERMINATION

The federal authority is required to provide a determination of the significance of environmental effects as a result of this project. The decision outlined below is based on the interpretation of environmental effects and mitigation measures described in Part D of this report.

Project Name:	Environmental Program
PWGSC Project #:	R.083149.001 & .004
Location:	Slate Island Coast Guard Site, Patterson Island, Lake Superior, Ontario

The Federal Authority has evaluated the project for significant adverse environmental effects as required under Section 67 of *Canadian Environmental Assessment Act (CEAA), 2012*. On the basis of this evaluation, the department has determined that the decision opposite the "X" applies to the proposed project.

- _____ Project not likely to cause significant adverse environmental effects proceed.
- Project not likely to cause significant adverse environmental effects with mitigation proceed using mitigative measures as determined.
- _____ Inadequate information available further study and assessment is required.
- Project likely to cause significant adverse environmental effects that cannot be justified in the circumstances project will not proceed.
- Project likely to cause significant adverse environmental effects that may be justified in the circumstances refer to the Governor in Council for decision.
Environmental Effects Evaluation (EEE) Report

PART H: SIGNATURE

This document summarizes the results of an environmental effects evaluation related to the above project that has been performed and completed by the Federal Authority in accordance with the *Canadian Environmental Assessment Act*, 2012.

Environmental Specialist:	Date:
(Title, Directorate)	

The above has completed this environmental effects evaluation (EEE) report to the best of their ability and knowledge, and ensures that it meets the requirement of the Canadian Environmental Assessment Act, 2012.

Project Manager: _____ (*Title, Directorate*)

D

The above has read and understood this environmental effects evaluation (EEE) report and acknowledges responsibility for ensuring the implementation of mitigation measures and for ensuring the design and implementation of 'accuracy and compliance monitoring', if any, identified in this report.

Environmental Effects Evaluation (EEE) Report

PART I: REFERENCES

Correctional Service Canada, 2014. *Federal Environmental Assessment of Projects*. Accessed from: http://www.csc-scc.gc.ca/politiques-et-lois/318-11-isd-eng.shtml#s2b3 [Accessed October 2016]

Best Management Practices for Aggregate Activities and Woodland in Ontario. Ministry of Natural Resources, 2016.

Best Practices for the Reduction of Air Emissions from Construction and Demolition Activities, Prepared by Cheminfo Inc., Prepared for Environment Canada, 2005.

Department of Fisheries and Oceans Canada, 2016. Aquatic Species at Risk Maps. Available from: http://www.dfo-mpo.gc.ca/species-especes/fpp-ppp/index-eng.htm

DST Consulting Engineers Inc., 2005. Site Specific Risk Assessment, Canadian Coast Guard Light Station L.L 1111, Slate Islands, Lake Superior, Ontario.

DST Consulting Engineers Inc., 2016. Environmental Program Report, Slate Islands Coast Guard Site, Patterson Island, Lake Superior, Ontario, DFRP No.56027. Draft, December 2016. DST File No.: GV-SD-027105

Environment and Climate Change Canada, 2016. Reducing Risk to Migratory Birds. Accessed from: <u>http://www.ec.gc.ca/paom-itmb/default.asp?lang=En&n=1B16EaFB-1</u> [Accessed October 2016]

Government of Canada, 2016(a). *Canadian Environmental Assessment Act, 2012*. Accessed from: http://laws-lois.justice.gc.ca/eng/acts/c-15.21/index.html [Accessed October 2016]

Government of Canada, 2016(b). *Fisheries Act, 1985.* Accessed from: <u>http://laws-lois.justice.gc.ca/eng/acts/f-14/</u> [Accessed October 2016]

Government of Canada, 2016(a). *Migratory Birds Convention Act, 1994*. Accessed from: <u>http://laws-lois.justice.gc.ca/eng/acts/M-7.01/</u> [Accessed October 2016]

Government of Canada, 2016(b). *Species at Risk Act, 2002*. Accessed from: <u>http://laws-lois.justice.gc.ca/eng/acts/s-15.3/</u> [Accessed October 2016]

Species at Risk Public Registry, 2016. A to Z Species Index. Accessed from: <u>http://www.registrelep-sararegistry.gc.ca/sar/index/default_e.cfm</u> [Accessed October 2016]

Ontario Ministry of Natural Resources, 2011. Bats and Bat Habitats: Guidelines for Wind Power Projects.

Ontario Ministry of Natural Resources, 2014. *Natural Heritage Information Centre*. Available from: <u>http://www.gisapplication.lrc.gov.on.ca/mamnh/Index.html?site=MNR_NHLUPS_NaturalHeritage&viewer=N</u> <u>aturalHeritage&locale=en-US</u> [Accessed November 2016]

Ontario Ministry of Northern Development and Mines, 2016. OGS Earth Quaternary Geology. Available from: <u>http://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth#simple-table-of-contents-4</u> [Accessed November 2016].

APPENDIX A FIGURES AND PHOTOGRAPHS

	٤ TEL (LEGEI	consultin 885 REGENT SUDBURY, 6 (705) 523-66 WWW.0	ng engineers STREET, SUI ONTARIO, P3 80 FAX (70 dstgroup.com	TE 3-1B E 5M4 5) 523-6690
CHELIPAD	NO 1 1.	TES: THIS FIGURE SHAL		JNCTION WITH THE
AUGHTHOUSE	-			
	1	08/02/17	FINAL	CS
/SOLAR SHED	0	05/12/16	FINAL	CS
	REV	DATE	ISSUE	APPROVAL
	PROJI E EV	ECT TITLE: NVIRONM ALUATION COAST PATTEF LAKE S	ENTAL EF I - SLATE I GUARD S SON ISLA UPERIOR,	FECTS SLANDS ITE ND, ON
	DRAW	'ING TITLE: LIGHTHOU SI	JSE AREA TE PLAN	(CS-2)
	DESIG	GNED BY:	SCALE:	SHOWN
The stand when the second second second second second second second second second second second second second s				B 2017
0 7.5 15 m		CS	GV-TE	3-027105
APPROXIMATE SCALE		FI	GURE A4	

	8 TEL (LEGEN	consultir 385 REGENT SUDBURY, (705) 523-66 www.o	D ag engineer STREET, SU DNTARIO, P 80 FAX (7) 1stgroup.col	s ITE 3-1B 3E 5M4 05) 523-6690 m
BOAT WINCH	NOT	TES: THIS FIGURE SHALI ACCOMPANYING TH	. BE READ IN CON CHNICAL REPOR	WUNCTION WITH THE T.
	1	08/02/17	FINAL	CS
	0	05/12/16	FINAL	CS
	REV PROJE		ISSUE	APPROVAL
DOCK WITH HOIST	EV	NVIRONM ALUATION COAST PATTER LAKE SI	ENTAL EI - SLATE GUARD \$ SON ISL/ JPERIOR	FFECTS ISLANDS SITE AND, , ON
	DRAW	ING TITLE:		
	С	DLD DWEL SI	LING SIT TE PLAN	E (CS-3)
1 2 4 Maria La Carta Car	DESIG	GNED BY: JW	SCALE:	SHOWN
	DRAWI	N BY: JR	DATE: FE	EB 2017
0 7.5 15 m	APPRO	OVED BY: CS	PROJEC GV-T	т NO: B-027105
APPROXIMATE SCALE		FIG	GURE A5	

Photograph 1: View of main dwelling and lighthouse in background, facing north.

Photograph 2: View of main site shoreline, facing northeast.

Photograph 3: View of duplex dwelling and surrounding area, facing northwest.

Photograph 4: View of fog alarm building, facing east.

Photograph 5: View of old dwelling, facing north.

Photograph 6: View of shore area of Site and helipad, facing east.

Photograph 7: View of shore area, facing south.

Photograph 8: Overview of Main Site, looking from the lighthouse area, facing south.

Photograph 9: View of lighthouse, facing northwest.

Photograph 10: View of trail leading to lighthouse, facing north.

Environmental Program Report – Slate Islands Coast Guard Site Patterson Island, Lake Superior, Ontario DST File No.: GV-TB--027105

Photograph 11: View of dump area located northwest of the Main Site, facing east.

Photograph 12: View of Main Site and Lighthouse, facing north.

Photograph 13: View of old dwelling and surrounding area, facing south.

APPENDIX B

RECORD OF PUBLIC PARTICIPATION DETERMINATION

Record of Public Participation Determination

		[
Is there an indication that	Describe potential indication and issues	Consider particip	r public ation?
there is an existing or likely public interest in the type, location or potential effects of the project?		□ Yes	X No
There are members of the public with a history of being involved in past proposed projects in the area?		□ Yes	X No
the project has the potential to generate conflict between environmental and social or economic values of concern to the public?		□ Yes	X No
the project may be <u>perceived</u> as having the potential for significant adverse environmental effects? ¹		□ Yes	X No
there is potential to learn from community ecological? knowledge or Aboriginal traditional knowledge?		□ Yes	X No
there is uncertainty about potential direct and indirect environmental effects or the significance of identified effects?		□ Yes	X No
the project has been or will be subject to other public participation processes that would meet the objectives of the Ministerial Guideline http://www.ceaa.gc.ca/013/006/ministerial_gui deline_e.htm		□ Yes	X No
there is any other reason why public participation is or is not appropriate?		□ Yes	X No

Stage of work plan: Early planning phase of screening (pre-scoping)

As a result of the scan above, is public participation under CEAA appropriate in the circumstances? X No

 \square Yes

Additional comments to support determination:

The project is on federally owned property, and neighbouring properties are owned by the province. There are no private owners in the vicinity of the Site. Several studies have been completed on the Site to date that have provided ecological knowledge of the area. The project is anticipated to improve the quality of the Site, and no adverse environmental effects are anticipated as long as mitigation measures are adhered to.

¹ Environmental Effect as per the definition in CEAA (2012) is

[•] Changes to the environment to components of the environment that are within the legislative authority of Parliament (fish as defined by the Fisheries Act, aquatic species under the Species at Risk Act, and migratory birds as defined in the Migratory Birds Convention Act (1994)

[•] Changes to the environment that occur on federal lands, or inter-provincially or outside of Canada.

[•] The effect of any change on health and socio-economic condition, physical and cultural heritage, use of resources for traditional purposes and structures of historical significance are limited with respect to Aboriginal peoples.

APPENDIX C

DEFINITIONS AND METHODOLOGIES

Environment (defined in S.2(1)) – the components of the Earth, and includes land, water and air, including all layers of the atmosphere; and all organic and inorganic matter and living organisms (and the interacting natural systems of those).

Environmental Effects (defined in S.5(1) - 5.(1)) For the purposes of this Act, the environmental effects that are to be taken into account in relation to an act or thing, a physical activity, a designated project or a project are

(a) a change that may be caused to the following components of the environment that are within the legislative authority of Parliament:

(i) fish as defined in section 2 of the Fisheries Act and fish habitat as defined in subsection 34(1) of that Act,

(ii) aquatic species as defined in subsection 2(1) of the Species at Risk Act,

(iii) migratory birds as defined in subsection 2(1) of the Migratory Birds Convention Act, 1994, and

(iv) any other component of the environment that is set out in Schedule 2;

(b) a change that may be caused to the environment that would occur:

(i) on federal lands,

(ii) in a province other than the one in which the act or thing is done or where the physical activity, the designated project or the project is being carried out, or

(iii) outside Canada; and

(c) with respect to aboriginal peoples, an effect occurring in Canada of any change that may be caused to the environment on

(i) health and socio-economic conditions,

(ii) physical and cultural heritage,

(iii) the current use of lands and resources for traditional purposes, or

(iv) any structure, site or thing that is of historical, archaeological, paleontological or architectural significance.

(2) However, if the carrying out of the physical activity, the designated project or the project requires a federal authority to exercise a power or perform a duty or function conferred on it under any Act of Parliament other than this Act, the following environmental effects are also to be taken into account:

(a) a change, other than those referred to in paragraphs (1)(a) and (b), that may be caused to the environment and that is directly linked or necessarily incidental to a federal authority's exercise of a power or performance of a duty or function that would permit the carrying out, in whole or in part, of the physical activity, the designated project or the project; and

(b) an effect, other than those referred to in paragraph (1)(c), of any change referred to in paragraph (a) on

(i) health and socio-economic conditions,

(ii) physical and cultural heritage, or

(iii) any structure, site or thing that is of historical, archaeological, paleontological or architectural significance.

Schedule 2 (3) The Governor in Council may, by order, amend Schedule 2 to add or remove a compo-

nent of the environment.

<u>Federal Authority (defined in S.2(1))</u> – a Minister of the Crown in right of Canada; an agency of the Government of Canada or a parent Crown corporation, as defined in subsection 83(1) of the *Financial Administration Act (FAA)*; or any department or departmental corporation that is set out in Schedule I or II to the FAA.

<u>Federal lands (defined in S.2(1))</u> – defined as follows:

- lands that belong to Her Majesty in right of Canada, or that Canada has power to dispose of, and all waters on and airspace above those lands, other than lands under the administration and control of the Commissioner of Yukon, the Northwest Territories or Nunavut;
- the internal waters of Canada, in any area of the sea not within a province;
- the territorial sea of Canada in any area of the sea not within a province;
- the exclusive economic zone of Canada, and the continental shelf of Canada; and
- reserves, surrendered lands and any other lands that are set apart for the use and benefit of a band and that are subject to the *Indian Act*, and all waters on and airspace above those reserves or lands.

<u>Mitigation measures (defined in S. 2(1))</u> – measures for the elimination, reduction or control of the adverse environmental effects of a designated project, and includes restitution for any damage to the environment cause by those effects through replacement, restoration, compensation or any other means.

<u>Project (defined in S. 66)</u> – a physical activity that is carried out in relation to a physical work and is not a designated project.

Valued Ecosystem Component (defined on Agency - www.ceaa.gc.ca/default.asp?lang=En&n= B7CA71391&offset=3#v) - The environmental element of an ecosystem that is identified as having scientific, social, cultural, economic, historical, archaeological or aesthetic importance.

The value of an ecosystem component may be determined on the basis of cultural ideals or scientific concern. Valued ecosystem components that have the potential to interact with project components should be included in the assessment of environmental effects.

<u>Methodology</u>

The environmental effects evaluation methodology used in this report focuses the evaluation on those environmental components of greatest concern. The Valued Ecological Components (VECs) most likely to be affected by the project as described are indicated in **Table 1**. VECs were selected based on ecological importance to the existing environment (above), the relative sensitivity of environmental components to project influences and their relative social, cultural or economic importance. The potential impacts resulting from these interactions are described below.

Evaluation of Environmental Effects

The VECs selected in Table 1 are addressed in Tables 2.1 through 2.7* in the EEE. The residual effects of the project on the environment are defined. Similarly, the physical works/activities and required mitigation measures are detailed and the significance of residual (post-mitigation) effects is estimated.

The following ratings are based on:

- information provided by the proponent;
- a review of project related activities;
- an appraisal of the environmental setting, and identification of resources at risk;
- the identification of potential impacts within the temporal and spatial bounds; and
- personal knowledge and professional judgment of the assessor.

The significance of project related impacts was determined in consideration of their frequency, the duration and geographical extent of the effects, magnitude relative to natural or background levels, and whether the effects are reversible or are positive or negative in nature. These criteria are indicated in Table 2.

Table 3. Assessment Criteria for Determination of Significance.

	Magnitude, in gen intensity, concent compared with ba	neral terms, may vary among Issues, but is a factor that accounts for size, ration, importance, volume and social or monetary value. It is rated as ackground conditions, protective standards or normal variability.
Magnitude	Small	Relative to natural or background levels
	Moderate	Relative to natural or background levels
	Large	Relative to natural or background levels
Domonsihilitar	Reversible	Effect can be reversed
Reversibility	Irreversible	Effects are permanent
	Immediate	Confined to project site
Geographic Extent	Local	Effects beyond immediate project site but not regional in scale
Latent	Regional	Effects on a wide scale
	Short Term	Between 0 and 6 months in duration
Duration	Medium Term	Between 6 months and 2 years
	Long Term	Beyond 2 years
	Once	Occurs only once
Frequency	Intermittent	Occurs occasionally at irregular intervals
	Continuous	Occurs on a regular basis and regular intervals

APPENDIX D

MITIGATION TABLE

Environmental Component	Reference	Mitigation Measures	Phase	Responsibility	
Adjacent waters and fish/fish habitat	DST	• No work should be undertaken below the water line.	Pre-Construction Phase, Lead Abatement, Debris Removal, Soil Remediation	Pre-Construction Phase, Lead Abatement, Debris Removal, Soil Remediation	
	Environment and Climate Change Canada	A Sediment and Erosion Control Plan must be developed and implemented. Erosion control structures (silt fences/curtains, sediment traps and or check dams) are to be used, as appropriate, to prevent erosion and release of sediments and/or sediment laden water during the project activities. These structures are to be installed prior to the commencement of project activities, and are left in place until vegetation is re-established and/or all exposed soils are stabilized.		•	
	DST	 Polyethylene sheeting is to be used, as appropriate, to prevent surface water contamination from gel applications during lead abatement activities. Selection of a non-toxic, environmentally friendly paint removal product, if available, for lead abatement activities. Ensure loading/unloading of machinery/equipment/materials does not impact the banks and cause erosion into the water. Designated travel routes must be astablished and maintained for machinery and 		General Contractor under the guidance and authority of PWGSC	
	Cheminfo Services Inc.	 Designated daver routes must be established and maintained for materially and transportation of materials, preferably along existing pathways. The exposed soil area must be minimized by limiting the area that is exposed at one time and by limiting the time that any one area is exposed. All stockpiled soil must be covered and/or dyked to prevent erosion and release of sediment laden water. Wherever possible, exposed soil is to be replanted or sodded to ensure soil stabilization. 			
	DST	Work must be scheduled to avoid periods of heavy precipitation, when possible, to avoid paint removal product runoff during lead abatement, and to avoid sediment erosion during debris and soil removal.			
	EPA, 1990., O. Reg. 347 General- Waste Management	EPA, 1990., O. Reg. 347 General- WasteAll paint debris and contaminated soils must be disposed of in a provincially approved manner so as to mitigate potential effects generated by leachate entering the adjacent waters.Waste ManagementAll paint debris and contaminated soils must be disposed of in a provincially approved manner so as to mitigate potential effects generated by leachate entering the adjacent waters.			
	EPA, 1990., O. Reg. 347 General-	• If any construction debris/material (e.g., plastic, food scraps, etc.) enter the aquatic environments they must be removed immediately and disposed in a provincially approved manner.			

Environmental Component	Reference	Mitigation Measures	Phase	Responsibility
	Waste Management			
		Implement a Spill Prevention and Spill Response Plan for the project activities. Ensure that appropriate inspection personnel and certified inspection personnel are employed through all stages of the project life cycle.		
	Environment and Climate Change Canada	• Machinery must be checked for leakage of lubricants or fuel and must be in good working order. Refueling must be done at least 30 m from any water body and on an impermeable surface. Basic petroleum spill clean-up equipment must be on-site. All spills or leaks must be promptly contained, cleaned up and reported to the 24-hour environmental emergencies reporting system (1-800-565-1633).		
		Ensure that machinery arrives on site in a clean condition and is maintained free of fluid leaks, invasive species and noxious weeds.		
	MNRF	• An Overall Benefit Permit may be required under Endangered Species Act. A thorough review of sensitive areas needs to be undertaken to determine whether significant impacts to the woodland caribou sensitive areas is anticipated, and warrant a permit. The process to obtain access to sensitive data is underway.		
	DST	• No work should be undertaken below the water line.	Pre-Construction Phase, Lead Abatement, Debris Removal, Soil Remediation	
	Environment and Climate Change tat	A Sediment and Erosion Control Plan must be developed and implemented.		
SAR fish and SAR fish habitat		Erosion control structures (silt fences/curtains, sediment traps and or check dams) are to be used, as appropriate, to prevent erosion and release of sediments and/or sediment laden water during the project activities. These structures are to be installed prior to the commencement of project activities, and are left in place until vegetation is re-established and/or all exposed soils are stabilized.	Lead Abatement,	General Contractor under the guidance and authority of
	DIT	Polyethylene sheeting is to be used, as appropriate, to prevent surface water contamination from gel applications during lead abatement activities. Selection of a non-toxic, environmentally friendly paint removal product, if available, for lead abatement activities.	Debris Removal, Soil Remediation	PWGSC
	201	• Ensure loading/unloading of machinery/equipment/materials does not impact the banks and cause erosion into the water.		
		\cdot Designated travel routes must be established and maintained for machinery and		

Environmental Component	Reference	Mitigation Measures	Phase	Responsibility
		transportation of materials, preferably along existing pathways.		
	Cheminfo Services Inc.	• The exposed soil area must be minimized by limiting the area that is exposed at one time and by limiting the time that any one area is exposed. All stockpiled soil must be covered and/or dyked to prevent erosion and release of sediment laden water. Wherever possible, exposed soil is to be replanted or sodded to ensure soil stabilization.		
	DST	Work must be scheduled to avoid periods of heavy precipitation, when possible, to avoid paint removal product runoff during lead abatement, and to avoid sediment erosion during debris and soil removal.		
	EPA, 1990., O. Reg. 347 General- Waste Management	All paint debris and contaminated soils must be disposed of in a provincially approved manner so as to mitigate potential effects generated by leachate entering the adjacent waters.		
	EPA, 1990., O. Reg. 347 General- Waste Management	• If any construction debris/material (e.g., plastic, food scraps, etc.) enter the aquatic environments they must be removed immediately and disposed in a provincially approved manner.		
		Implement a Spill Prevention and Spill Response Plan for the project activities. Ensure that appropriate inspection personnel and certified inspection personnel are employed through all stages of the project life cycle.		
	Environment and Climate Change Canada	• Machinery must be checked for leakage of lubricants or fuel and must be in good working order. Refueling must be done at least 30 m from any water body and on an impermeable surface. Basic petroleum spill clean-up equipment must be on-site. All spills or leaks must be promptly contained, cleaned up and reported to the 24-hour environmental emergencies reporting system (1-800-565-1633).		
		Ensure that machinery arrives on site in a clean condition and is maintained free of fluid leaks, invasive species and noxious weeds.		
	MNRF	• An Overall Benefit Permit may be required under Endangered Species Act. A thorough review of sensitive areas needs to be undertaken to determine whether significant impacts to the woodland caribou sensitive areas is anticipated, and warrant a permit. The process to obtain access to sensitive data is underway.		

Environmental Component	Reference	Mitigation Measures	Phase	Responsibility
		• Project activities that produce significant noise should be avoided, if possible, during woodland caribou sensitive periods when reproduction and rearing, winter aggregation and foraging, and seasonal dispersal is occurring:		General Contractor under the guidance and authority of PWGSC
		 Nursery Areas (May 1 to July 14 very low tolerance, July 15 to September 15 low tolerance) Winter Use areas (December 1 to March 31) Travel Corridors (April and/or November) 		
		• Once project specific details are finalized, consultation with ECCC and MNRF must occur to discuss and develop project specific mitigation measures that can be implemented for this unique population of caribou and circumstance.		
	MNRF, Environment and Climate Change Canada, DFO	• Proponents, contractors and workers must be advised of the potential presence of SAR, and be familiar with the SAR species during the undertaking.	Lead Abatement, Debris Removal, Soil Remediation	
Terrestrial SAR habitat		• SAR sweeps should be conducted prior to work commencing each day by a qualified individual. SAR sweeps should include wolf dens. If a SAR is encountered, work must stop, the immediate area shall be avoided, and an experienced Biologist must be consulted and/or contact Environment Canada to discuss the way forward.		
		Equipment will be confined to disturbed and regularly travelled portions (trails) of the Site to the extent practical to minimize impacts to habitat		
		• Ensure all exhaust systems have mufflers installed properly and that all machinery is operating as per specifications, and avoid idling to minimize noise disturbance to woodland caribou.		
		• If/where debris removal from historic dumps will include tree removal, or where tree removal may otherwise occur and have the potential to impact bat maternal roost colonies, surveys for bat maternity snags according to OMNR (2011) should be undertaken by a qualified biologist. If no suitable maternal snags are identified, work may proceed. If suitable maternal snags are identified, these should be retained and debris removal in their vicinity should be done by hand where practical		
		Project activities and vegetation clearing must not take place during the bird breeding season of April 15 th to August 15 th , and/or until fledglings have left parental territories.		
		• No migratory birds, nests or eggs can be disturbed or destroyed per the Migratory Birds Convention Act of 1994. If project activities are unavoidable during the core migratory bird breeding season of April 15 th to August 15 th , nesting sweeps should be conducted by a qualified avian biologist if/where vegetation or tree clearing is		

Environmental Component	Reference	Mitigation Measures	Phase	Responsibility
		 required. Low impact machinery or low impact removal procedures must be used as part of debris removal phase of construction. Equipment will be confined to disturbed and regularly travelled portions (trails) of 		
		the Site to the extent practical to minimize impacts to potential bird habitat • Proponents and contractors must complete a nesting sweep prior to commencing		
Migratory bird/bird habitat C C C C C C C C C C	Environment and Climate Change Canada Correctional Services Canada	work. If one or more nests containing eggs or chicks of migratory birds are spotted or discovered prior to the work, work must stop, the immediate area shall be avoided, and an experienced Avian Biologist must be consulted for the way forward. The Avian Biologist must develop a species-appropriate buffer zone to work and provide further information on noise levels which may not be exceeded within an appropriate distance to the nest taking into account the species of bird and the area surrounding the nest. Scope and identify the buffer zone in such as a way as it is visible with the use of a fence or colored tape so that the construction crew and the construction supervisor at the site can see it and respect this buffer zone. If one or more nests containing eggs or chicks of migratory birds are spotted or discovered during the work, stop any disruptive activity in the nesting area until the establishment of a buffer zone by an experienced Avian Biologist. This is based on a range of appropriate protection to the species and circumstances and must be maintained until the chicks have naturally left permanently the areas near the nest or that the work is completed. If a buffer zone cannot be established, identify the species of breeding birds and contact Environment Canada to discuss the way forward.	Lead Abatement, Debris Removal, Soil Remediation	General Contractor under the guidance and authority of PWGSC
	 Proponents and Contractors must complete a nesting sweep prior to commwork to minimize loss of bird habitat. Proponents and Contractors must ensure that food scraps and garbage are the project site. If work is planned during timeframes when SAR birds (see section C.3) n present, follow up SAR surveys during the timing windows that are appropriate the specific specie is required. 	• Proponents and Contractors must complete a nesting sweep prior to commencing work to minimize loss of bird habitat.		
		• Proponents and Contractors must ensure that food scraps and garbage are not left at the project site.		
		\cdot If work is planned during timeframes when SAR birds (see section C.3) may be present, follow up SAR surveys during the timing windows that are appropriate for the specific specie is required.		
		• Contractors and workers should be familiar with potential SAR if conducting work when they may be present and should contact ECCC SAR biologist if encountered in work Site for advice on how to proceed.		
		\cdot The Contractor must prevent hydrocarbon product releases in and around the project area.		
		\cdot Machinery must be checked for leakage of lubricants or fuel and must be in good		

Environmental Component	Reference	Mitigation Measures	Phase	Responsibility
		working order. Refueling must be done at least 30 m from any water body and on an impermeable surface. Basic petroleum spill clean-up equipment must be on-site. All spills or leaks must be promptly contained, cleaned up and reported to the 24-hour environmental emergencies reporting system (1-800-565-1633).		
		\cdot A high-density polyethylene (HDPE) liner is required to be placed at any temporary storage site prior to placement of debris and/or contaminated soil.		
		\cdot Temporary drainage and pumping are to be used, as appropriate, to keep excavations and site free from water.		
		 A high-density polyethylene (HDPE) liner is required to be placed at any temporary storage site prior to placement of debris and/or contaminated soil. Temporary drainage and pumping are to be used, as appropriate, to keep excavations 		
Groundwater	Correctional Services Canada Environment and Climate Change Canada	 and site free from water. Measures for managing water flowing onto the Site, as well as water being pumped/diverted from the Site are to be used, such that sediment is filtered out prior to the water entering a waterbody. For example, pumping/diversion of water to a vegetated area, construction of a settling basin or other filtration system. 	Lead Abatement, Debris Removal, Soil Remediation	General Contractor under the guidance and authority of PWGSC
		Machinery must be checked for leakage of lubricants or fuel and must be in good working order. Refueling must be done at least 30 m from any water body and on an impermeable surface. Basic petroleum spill clean-up equipment must be on-site. All spills or leaks must be promptly contained, cleaned up and reported to the 24-hour environmental emergencies reporting system (1-800-565-1633).		
Wildlife/Birds and wildlife/ bird habitat and Plant Species Can	Fe/Birds Ilife/ bird and Plant ccies MNRF and Environment and Climate Change Canada	 Nesting sweeps should be conducted by a qualified avian biologist if/where vegetation or tree clearing is required, if activities occur within the core migratory bird season Equipment will be confined to access roads and project areas to minimize impacts to potential wildlife / bird habitat. Proponents and Contractors must ensure that food scraps and garbage are not left at 	Lord	General
		 the project site. Disturbances to all birds and wildlife in and near the project area must be minimized. Wildlife sweeps should be conducted each day by a qualified individual prior to work commencing. The Contractor and workers must be familiar with proper protocols for protecting. 	- Abatement, Debris Removal, Soil Remediation	Contractor under the guidance and authority of
		 wildlife during construction. The Contractor and workers must be familiar with the arctic-alpine plant species known to be present on the Slate Islands 		
		\cdot The Contractor must prevent hydrocarbon product releases in and around the project area.		

Environmental Component	Reference	Mitigation Measures	Phase	Responsibility
Air Emissions	Environment and Climate Change Canada, Cheminfo Services Inc.	 A site specific air pollutant environmental management plan that identifies the objectives to be achieved (e.g. visual inspection, neighbor complaints, quantified maximum concentrations around the site), the methods to be applied, the people responsible for managing and implementing the plan, and the records to be maintained in order to demonstrate adoption of best management practices (and compliance with regulatory requirements) should be developed and implemented. The document <i>Best Practices for the Reduction of Air Emissions from Construction and During Demolition Activities</i> (prepared for Environment and Climate Change Canada by Cheminfo Services, 2005), should be consulted in the development of the plan. Properly shape and cover stockpiled soils to reduce wind erosion and control fugitive dust emissions. If any use of backfill is required, ensure proper scheduling for delivery of backfill materials to minimize storage time on site and reduce potential for fugitive dust emissions. Misting of disturbed or travelled areas should be undertaken, as well as installing localized wind fencing/barriers particularly during dry, dusty conditions to avoid generating airborne or surface dust and particulates. Machinery and equipment must be maintained in good condition, must be equipped with emission controls as applicable, and operate within regulatory requirements, including meeting local authority's emission requirements. Operators must comply with operating specifications for equipment and machinery. Vehicles should not be left idling when not in use. Minimize vehicle traffic on exposed soils and stabilize high traffic areas with clean gravel surface layer or other suitable cover material. 	Lead Abatement, Debris Removal, Soil Remediation	General Contractor under the guidance and authority of PWGSC
Soil Quality	Cheminfo Services Inc.	\cdot Contaminated soil that is in excess must be stored on site for the shortest time possible, covered, and be disposed of at an approved facility.		
		\cdot All contaminated soil remaining in place on site must be capped with clean fill to ensure there is no access to contaminated soil.		
	Cheminfo	\cdot Work must be scheduled to avoid periods of heavy precipitation. Erosion control structures (temporary matting, geotextile filter fabric) are to be used, as appropriate, to prevent erosion and release of sediments and/or sediment laden water during the	Lead Abatement, Debris Removal, Soil Remediation	General Contractor under the

Environmental Component	Reference	Mitigation Measures	Phase	Responsibility
	Services Inc. Environment and Climate Change Canada	 construction phase. These structures are to be left in place until vegetation is re-established and/or all exposed soils are stabilized. The exposed soil area must be minimized by limiting the area that is exposed at one time and by limiting the time that any one area is exposed. All stockpiled soil must be covered and/or dyked to prevent erosion and release of sediment laden water. Wherever possible, exposed soil is to be replanted or sodded to ensure soil stabilization. 		guidance and authority of PWGSC
	Environment and Climate Change Canada	• Machinery must be checked for leakage of lubricants or fuel and must be in good working order. Refueling must be done at least 30 m from any water body and on an impermeable surface. Basic petroleum spill clean-up equipment must be on-site. All spills or leaks must be promptly contained, cleaned up and reported to the 24-hour environmental emergencies reporting system (1-800-565-1633).		
	EPA, 1990., O. Reg. 347 General- Waste Management	• All hazardous materials and/or waste materials being removed or that is generated must be disposed of in a legal manner according to Regulations (i.e. O. Reg. 347- General - Waste Management, as amended)		
Human Health		• The Designated Substance and Hazardous Materials survey and associated specifications completed by DST (2016) must be consulted and adhered to during project activities.	Pre-Construction Phase, Lead Abatement, Debris Removal, Soil Remediation	General Contractor under the guidance and authority of PWGSC
		· Appropriate personal protective equipment (PPE) must be used during all project activities.		
		 All hazardous materials must be labelled in accordance with WHMIS requirements and transported in accordance with provincial and federal regulations regarding the transportation of dangerous goods including: Federal Transportation of Dangerous Goods Act, 1992 Environmental Protection Act,1990 - Ontario Regulation 347- General – Waste Management Ensure employees are trained on the identification and handling of designated substances. Undertake work on designated substances containing material and other hazardous materials and chemicals according to the Designated Substance and Hazardous Material Survey information and recommendations or the provincial and federal legislation. In general, the Occupational Health and Safety Act, R.S.O. 1990, c. O.1 (OHSA) should be followed, including: Ontario Regulation 213/91, Construction Projects, and R.R.O. 1990, 		

Environmental Component	Reference	Mitigation Measures	Phase	Responsibility
		Ontario Regulation 490/09 "Designated Substances".		

Mitigation Table – to be forwarded to proponent

It is reasonable to conclude that with appropriate mitigation in place and good work practices, significant adverse environmental effects will be of short duration and the potential zone of influence will be confined to the immediate vicinity if the work.

Mitigation

 \cdot No work should be undertaken below the water line.

• A Sediment and Erosion Control Plan must be developed and implemented.

• Erosion control structures (silt fences/curtains, sediment traps and or check dams) are to be used, as appropriate, to prevent erosion and release of sediments and/or sediment laden water during the project activities. These structures are to be installed prior to the commencement of project activities, and are left in place until vegetation is re-established and/or all exposed soils are stabilized.

 \cdot Polyethylene sheeting is to be used, as appropriate, to prevent surface water contamination from gel applications during lead abatement activities.

· Selection of a non-toxic, environmentally friendly paint removal product, if available, for lead abatement activities.

• Ensure loading/unloading of machinery/equipment/materials does not impact the banks and cause erosion into the water.

 \cdot Designated travel routes must be established and maintained for machinery and transportation of materials, preferably along existing pathways.

 \cdot The exposed soil area must be minimized by limiting the area that is exposed at one time and by limiting the time that any one area is exposed. All stockpiled soil must be covered and/or dyked to prevent erosion and release of sediment laden water. Wherever possible, exposed soil is to be replanted or sodded to ensure soil stabilization.

 \cdot Work must be scheduled to avoid periods of heavy precipitation, when possible to avoid paint removal product runoff during lead abatement, and to avoid sediment erosion during debris and soil removal.

 \cdot All paint debris and contaminated soils must be disposed of in a provincially approved manner so as to mitigate potential effects generated by leachate entering the adjacent waters.

· If any construction debris/material (e.g., plastic, food scraps, etc.) enter the aquatic environments they must be removed immediately and disposed in a provincially approved manner.

- Implement a Spill Prevention and Spill Response Plan for the project activities. Ensure that appropriate inspection

personnel and certified inspection personnel are employed through all stages of the project life cycle. Machinery must be checked for leakage of lubricants or fuel and must be in good working order. Refueling must be done at least 30 m from any water body and on an impermeable surface. Basic petroleum spill clean-up equipment must be on-site. All spills or leaks must be promptly contained, cleaned up and reported to the 24-hour environmental emergencies reporting system (1-800-565-1633).

- Ensure that machinery arrives on site in a clean condition and is maintained free of fluid leaks, invasive species and noxious weeds.

 \cdot An Overall Benefit Permit may be required under Endangered Species Act. A thorough review of sensitive areas needs to be undertaken to determine whether significant impacts to the woodland caribou sensitive areas is anticipated, and warrant a permit. The process to obtain access to sensitive data is underway.

• Project activities that produce significant noise should be avoided, if possible, during woodland caribou sensitive periods when reproduction and rearing, winter aggregation and foraging, and seasonal dispersal is occurring:

- Nursery Areas (May 1 to July 14 very low tolerance, July 15 to September 15 low tolerance)
- Winter Use areas (December 1 to March 31)
- Travel Corridors (April and/or November)

• Proponents, contractors and workers must be advised of the potential presence of SAR, and be familiar with the SAR species during the undertaking.

 \cdot SAR sweeps should be conducted prior to work commencing each day by a qualified individual. SAR sweeps should include wolf dens. If a SAR is encountered, work must stop, the immediate area shall be avoided, and an experienced Biologist must be consulted and/or contact Environment Canada to discuss the way forward.

• Once project specific details are finalized, consultation with ECCC and MNRF must occur to discuss and develop project specific mitigation measures that can be implemented for this unique population of caribou and circumstance.

 \cdot Equipment will be confined to disturbed and regularly travelled portions (trails) of the Site to the extent practical to minimize impacts to habitat

 \cdot Ensure all exhaust systems have mufflers installed properly and that all machinery is operating as per specifications, and avoid idling to minimize noise disturbance to woodland caribou.

• If/where debris removal from historic dumps will include tree removal, or where tree removal may otherwise occur and have the potential to impact bat maternal roost colonies, surveys for bat maternity snags according to OMNR (2011) should be undertaken by a qualified biologist. If no suitable maternal snags are identified, work may proceed. If suitable maternal snags are identified, these should be retained and debris removal in their vicinity should be done by hand where practical.

 \cdot No migratory birds, nests or eggs can be disturbed or destroyed per the Migratory Birds Convention Act of 1994. If project activities are unavoidable during the core migratory bird breeding season of April 15th to August 15th, nesting sweeps should be conducted by a qualified avian biologist if/where vegetation or tree clearing is required.

· Low impact machinery or low impact removal procedures must be used as part of debris removal phase of construction.

· Tree removal must be avoided during project activities.

 \cdot Equipment will be confined to disturbed and regularly travelled portions (trails) of the Site to the extent practical to minimize impacts to potential bird habitat.

• Proponents and contractors must complete a nesting sweep prior to commencing work. If one or more nests containing eggs or chicks of migratory birds are spotted or discovered prior to the work, work must stop, the immediate area shall be avoided, and an experienced Avian Biologist must be consulted for the way forward. The Avian Biologist must develop a species-appropriate buffer zone to work and provide further information on noise levels which may not be exceeded within an appropriate distance to the nest taking into account the species of bird and the area surrounding the nest. Scope and identify the buffer zone in such as a way as it is visible with the use of a fence or colored tape so that the construction crew and the construction supervisor at the site can see it and respect this buffer zone. If one or more nests containing eggs or chicks of migratory birds are spotted or discovered during the work, stop any disruptive activity in the nesting area until the establishment of a buffer zone by an experienced Avian Biologist. This is based on a range of appropriate protection to the species and circumstances and must be maintained until the chicks have naturally left permanently the areas near the nest or that the work is completed. If a buffer zone cannot be established, identify the species of breeding birds and contact Environment Canada to discuss the way forward.

· Proponents and Contractors must ensure that food scraps and garbage are not left at the project site.

 \cdot If work is planned during timeframes when SAR birds (see section C.3) may be present, follow up SAR surveys during the timing windows that are appropriate for the specific specie is required.

• Contractors and workers should be familiar with potential SAR if conducting work when they may be present and should contact ECCC SAR biologist if encountered in work Site for advice on how to proceed.

· The Contractor must prevent hydrocarbon product releases in and around the project area.

 \cdot Machinery must be checked for leakage of lubricants or fuel and must be in good working order. Refueling must be done at least 30 m from any water body and on an impermeable surface. Basic petroleum spill clean-up equipment must be onsite. All spills or leaks must be promptly contained, cleaned up and reported to the 24-hour environmental emergencies reporting system (1-800-565-1633).

· A high-density polyethylene (HDPE) liner is required to be placed at any temporary storage site prior to placement of debris and/or contaminated soil.

•Temporary drainage and pumping are to be used, as appropriate, to keep excavations and site free from water.

 \cdot Measures for managing water flowing onto the Site, as well as water being pumped/diverted from the Site are to be used, such that sediment is filtered out prior to the water entering a waterbody. For example, pumping/diversion of water to a vegetated area, construction of a settling basin or other filtration system.

• Machinery must be checked for leakage of lubricants or fuel and must be in good working order. Refueling must be done at least 30 m from any water body and on an impermeable surface. Basic petroleum spill clean-up equipment must be onsite. All spills or leaks must be promptly contained, cleaned up and reported to the 24-hour environmental emergencies reporting system (1-800-565-1633). \cdot Nesting sweeps should be conducted by a qualified avian biologist if/where vegetation or tree clearing is required if activities occur within the core migratory bird season.

· Equipment will be confined to access roads and project areas to minimize impacts to potential wildlife / bird habitat.

· Proponents and Contractors must ensure that food scraps and garbage are not left at the project site.

 \cdot Disturbances to all birds and wildlife in and near the project area must be minimized. Wildlife sweeps should be conducted each day by a qualified individual prior to work commencing.

• The Contractor and workers must be familiar with proper protocols for protecting wildlife during construction.

• The Contractor and workers must be familiar with the arctic-alpine plant species known to be present on the Slate Islands.

· The Contractor must prevent hydrocarbon product releases in and around the project area.

• A site specific air pollutant environmental management plan that identifies the objectives to be achieved (e.g. visual inspection, neighbor complaints, quantified maximum concentrations around the site), the methods to be applied, the people responsible for managing and implementing the plan, and the records to be maintained in order to demonstrate adoption of best management practices (and compliance with regulatory requirements) should be developed and implemented. The document *Best Practices for the Reduction of Air Emissions from Construction and During Demolition Activities* (prepared for Environment and Climate Change Canada by Cheminfo Services, 2005), should be consulted in the development of the plan.

 \cdot Properly shape and cover stockpiled soils to reduce wind erosion and control fugitive dust emissions. If any use of backfill is required, ensure proper scheduling for delivery of backfill materials to minimize storage time on site and reduce potential for fugitive dust emissions.

 \cdot Misting of disturbed or travelled areas should be undertaken, as well as installing localized wind fencing/barriers particularly during dry, dusty conditions to avoid generating airborne or surface dust and particulates.

 \cdot Machinery and equipment must be maintained in good condition, must be equipped with emission controls as applicable, and operate within regulatory requirements, including meeting local authority's emission requirements.

· Operators must comply with operating specifications for equipment and machinery.

 \cdot Vehicles should not be left idling when not in use.

 \cdot Minimize vehicle traffic on exposed soils and stabilize high traffic areas with clean gravel surface layer or other suitable cover material.

 \cdot Designated travel routes must be established and maintained for machinery and transportation of materials, preferably along existing pathways.

• Contaminated soil that is in excess must be stored on site for the shortest time possible, covered, and be disposed of at an approved facility.

 \cdot All contaminated soil remaining in place on site must be capped with clean fill to ensure there is no access to contaminated soil.

· Work must be scheduled to avoid periods of heavy precipitation. Erosion control structures (temporary matting, geotextile

filter fabric) are to be used, as appropriate, to prevent erosion and release of sediments and/or sediment laden water during the construction phase. These structures are to be left in place until vegetation is re-established and/or all exposed soils are stabilized.

 \cdot The exposed soil area must be minimized by limiting the area that is exposed at one time and by limiting the time that any one area is exposed. All stockpiled soil must be covered and/or dyked to prevent erosion and release of sediment laden water. Wherever possible, exposed soil is to be replanted or sodded to ensure soil stabilization.

• Machinery must be checked for leakage of lubricants or fuel and must be in good working order. Refueling must be done at least 30 m from any water body and on an impermeable surface. Basic petroleum spill clean-up equipment must be onsite. All spills or leaks must be promptly contained, cleaned up and reported to the 24-hour environmental emergencies reporting system (1-800-565-1633).

· All hazardous materials and/or waste materials being removed or that is generated must be disposed of in a legal manner according to Waste Management Regulations (i.e. O. Reg. 347- General - Waste Management, as amended).

The Designated Substance and Hazardous Materials survey and associated specifications completed by DST (2016) must be consulted and adhered to during project activities.

· Appropriate personal protective equipment (PPE) must be used during all project activities.

· All hazardous materials must be labelled in accordance with WHMIS requirements and transported in accordance with provincial and federal regulations regarding the transportation of dangerous goods including:

- Federal Transportation of Dangerous Goods Act, 1992
- Environmental Protection Act, 1990 Ontario Regulation 347- General Waste Management

- Ensure employees are trained on the identification and handling of designated substances. Undertake work on designated substances containing material and other hazardous materials and chemicals according to the Designated Substance and Hazardous Material Survey information and recommendations or the provincial and federal legislation.

- In general, the Occupational Health and Safety Act, R.S.O. 1990, c. O.1 (OHSA) should be followed, including:

- Ontario Regulation 213/91, Construction Projects, and R.R.O. 1990,
- Ontario Regulation 490/09 "Designated Substances".
- Any and all stipulations of federal, provincial, or municipal authorities and/or their officers must be strictly followed. As a best practice the most stringent standards must be used where applicable. Any discrepancies must be successfully resolved before the pertinent work may begin.

Site monitoring (accuracy and compliance monitoring) may be conducted to verify whether required mitigation measures were implemented. The proponent must provide site access to Responsible Authority officials and/or its agents upon request

Appendix F

Structural Evaluation

Appendix G

Marine Assessment

Attachment 3

Checklist of Mitigation Measures from EEE

Environmental Component	Mitigation Measures	Completed (X)
	No work should be undertaken below the water line.	
	A Sediment and Erosion Control Plan must be developed and implemented.	
	Erosion control structures (silt fences/curtains, sediment traps and or check dams) are to be used, as appropriate, to prevent erosion and release of sediments and/or sediment laden water during the project activities. These structures are to be installed prior to the commencement of project activities, and are left in place until vegetation is re-established and/or all exposed soils are stabilized.	
	Polyethylene sheeting is to be used, as appropriate, to prevent surface water contamination from gel applications during lead abatement activities.	
	Selection of a non-toxic, environmentally friendly paint removal product, if available, for lead abatement activities.	
	Ensure loading/unloading of machinery/equipment/materials does not impact the banks and cause erosion into the water.	
Adjacent waters	Designated travel routes must be established and maintained for machinery and transportation of materials, preferably along existing pathways.	
and fish/fish habitat including SAR fish and SAR	The exposed soil area must be minimized by limiting the area that is exposed at one time and by limiting the time that any one area is exposed. All stockpiled soil must be covered and/or dyked to prevent erosion and release of sediment laden water. Wherever possible, exposed soil is to be replanted or sodded to ensure soil stabilization.	
fish habitat	Work must be scheduled to avoid periods of heavy precipitation, when possible, to avoid paint removal product runoff during lead abatement, and to avoid sediment erosion during debris and soil removal.	
	All paint debris and contaminated soils must be disposed of in a provincially approved manner so as to mitigate potential effects generated by leachate entering the adjacent waters.	
	If any construction debris/material (e.g., plastic, food scraps, etc.) enter the aquatic environments they must be removed immediately and disposed in a provincially approved manner.	
	Implement a Spill Prevention and Spill Response Plan for the project activities. Ensure that appropriate inspection personnel and certified inspection personnel are employed through all stages of the project life cycle.	
	Machinery must be checked for leakage of lubricants or fuel and must be in good working order. Refueling must be done at least 30 m from any water body and on an impermeable surface. Basic petroleum spill clean-up equipment must be on-site. All spills or leaks must be promptly contained, cleaned up and reported to the 24-hour environmental emergencies reporting system (1-800-565-1633). Ensure that machinery arrives on site in a clean condition and is maintained free of fluid leaks, invasive species and noxious weeds.	
Terrestrial SAR habitat	 Project activities that produce significant noise should be avoided, if possible, during woodland caribou sensitive periods when reproduction and rearing, winter aggregation and foraging, and seasonal dispersal is occurring, if the Site is in close proximity to any of the following areas: Nursery Areas (May 1 to July 14 very low tolerance, July 15 to September 15 low tolerance) 	

Environmental Component	Mitigation Measures	Completed (X)
	• Winter Use areas (December 1 to March 31)	
	Travel Corridors (April and/or November)	
	Once project specific details are finalized, consultation with ECCC and MINRF must occur to discuss and develop	
	project specific mitigation measures that can be implemented for this unique population of caribou.	
	species during the undertaking.	
Terrestrial SAR	SAR sweeps should be conducted prior to work commencing each day by a qualified individual. SAR sweeps should	
habitat	include wolf dens. If a SAR is encountered, work must stop, the immediate area shall be avoided, and an experienced	
	Biologist must be consulted and/or contact Environment Canada to discuss the way forward.	
	Equipment will be confined to disturbed and regularly travelled portions (trails) of the Site to the extent practical to minimize impacts to habitat	
	Ensure all exhaust systems have mufflers installed properly and that all machinery is operating as per specifications,	
	and avoid idling to minimize noise disturbance to woodland caribou.	
	If/where debris removal from historic dumps will include tree removal, or where tree removal may otherwise occur and	
	have the potential to impact bat maternal roost colonies, surveys for bat maternity snags according to OMNRF	
	guidelines (2011) should be undertaken by a qualified biologist. If no suitable maternal snags are identified, work may	
	proceed. If suitable maternal snags are identified, these should be retained and debris removal in their vicinity should	
	No migratory hinds, note or aggs can be disturbed or destroyed nor the Migratory Birds Convention Act of 1004. If	
	No inigratory birds, nests of eggs can be disturbed of destroyed per the Migratory Birds Convention Act of 1994. If	
	sweeps should be conducted by a qualified avian biologist if/where vegetation or tree clearing is required	
Migratory bird/bird	Low impact machinery or low impact removal procedures must be used as part of debris removal phase of construction.	
nabitat	Equipment will be confined to disturbed and republic travelled mentions (traile) of the City to the enterty provided to	
	minimize impacts to potential bird habitat.	
	Proponents and contractors must complete a nesting sweep prior to commencing work. If one or more nests containing	
	eggs or chicks of migratory birds are spotted or discovered prior to the work, work must stop, the immediate area shall	
	be avoided, and an experienced Avian Biologist must be consulted for the way forward. The Avian Biologist must	
	develop a species-appropriate buffer zone to work and provide further information on noise levels which may not be	
	exceeded within an appropriate distance to the nest taking into account the species of bird and the area surrounding the	
	nest. Scope and identify the buffer zone in such as a way as it is visible with the use of a fence or colored tape so that	
	the construction crew and the construction supervisor at the site can see it and respect this buffer zone. If one or more	
	nests containing eggs or chicks of migratory birds are spotted or discovered during the work, stop any disruptive	
	activity in the nesting area until the establishment of a buffer zone by an experienced Avian Biologist. This is based on	
	naturally left the areas near the nest or that the work is completed. If a buffer zone cannot be established identify the	

Environmental Component	Mitigation Measures	Completed (X)
	species of breeding birds and contact Environment Canada to discuss the way forward.	
	Proponents and Contractors must ensure that food scraps and garbage are not left at the project site.	
	If work is planned during timeframes when SAR birds may be present, follow up SAR surveys during the timing windows that are appropriate for the specific specie is required.	
Migratory bird/bird habitat	Contractors and workers should be familiar with potential SAR if conducting work when they may be present and should contact ECCC SAR biologist if encountered in work Site for advice on how to proceed.	
	The Contractor must prevent hydrocarbon product releases in and around the project area.	
	Machinery must be checked for leakage of lubricants or fuel and must be in good working order. Refueling must be done at least 30 m from any water body and on an impermeable surface. Basic petroleum spill clean-up equipment must be on-site. All spills or leaks must be promptly contained, cleaned up and reported to the 24-hour environmental emergencies reporting system (1-800-565-1633).	
	A high-density polyethylene (HDPE) liner is required to be placed at any temporary storage site prior to placement of debris and/or contaminated soil.	
	Temporary drainage and pumping are to be used, as appropriate, to keep excavations and site free from water.	
	A high-density polyethylene (HDPE) liner is required to be placed at any temporary storage site prior to placement of debris and/or contaminated soil.	
	Temporary drainage and pumping are to be used, as appropriate, to keep excavations and site free from water.	
Groundwater	Measures for managing water flowing onto the Site, as well as water being pumped/diverted from the Site are to be used, such that sediment is filtered out prior to the water entering a waterbody. For example, pumping/diversion of water to a vegetated area, construction of a settling basin or other filtration system.	
	Machinery must be checked for leakage of lubricants or fuel and must be in good working order. Refueling must be done at least 30 m from any water body and on an impermeable surface. Basic petroleum spill clean-up equipment must be on-site. All spills or leaks must be promptly contained, cleaned up and reported to the 24-hour environmental emergencies reporting system (1-800-565-1633).	
	Equipment will be confined to access roads and project areas to minimize impacts to potential wildlife and plant habitat.	
Wildlife hehitet	Proponents and Contractors must ensure that food scraps and garbage are not left at the project site.	
and Plant Species	Disturbances to all wildlife in and near the project area must be minimized. Wildlife sweeps should be conducted each day by a qualified individual prior to work commencing.	
	The Contractor and workers must be familiar with proper protocols for protecting wildlife during construction.	
	The Contractor and workers must be familiar with the arctic-alpine plant species known to be present on the Slate Islands	

Environmental Component	Mitigation Measures	Completed (X)
	The Contractor must prevent hydrocarbon product releases in and around the project area.	
	A site specific air pollutant environmental management plan that identifies the objectives to be achieved (e.g. visual inspection, neighbor complaints, quantified maximum concentrations around the site), the methods to be applied, the people responsible for managing and implementing the plan, and the records to be maintained in order to demonstrate adoption of best management practices (and compliance with regulatory requirements) should be developed and implemented. The document <i>Best Practices for the Reduction of Air Emissions from Construction and During Demolition Activities</i> (prepared for Environment and Climate Change Canada by Cheminfo Services, 2005), should be consulted in the development of the plan.	
	Properly shape and cover stockpiled soils to reduce wind erosion and control fugitive dust emissions. If any use of backfill is required, ensure proper scheduling for delivery of backfill materials to minimize storage time on Site and reduce potential for fugitive dust emissions.	
Air Emissions	Misting of disturbed or travelled areas should be undertaken, as well as installing localized wind fencing/barriers particularly during dry, dusty conditions to avoid generating airborne or surface dust and particulates.	
	Machinery and equipment must be maintained in good condition, must be equipped with emission controls as applicable, and operate within regulatory requirements, including meeting local authority's emission requirements.	
	Operators must comply with operating specifications for equipment and machinery.	
	Vehicles should not be left idling when not in use.	
	Minimize vehicle traffic on exposed soils and stabilize high traffic areas with clean gravel surface layer or other suitable cover material.	
	Designated travel routes must be established and maintained for machinery and transportation of materials, preferably along existing pathways.	
	If applicable, contaminated soil that is in excess must be stored on Site for the shortest time possible, covered, and be disposed of at an approved facility.	
Soil Quality	All contaminated soil remaining in place on site must be capped with clean fill to ensure there is no access to contaminated soil.	
	Work must be scheduled to avoid periods of heavy precipitation. Erosion control structures (temporary matting, geotextile filter fabric) are to be used, as appropriate, to prevent erosion and release of sediments and/or sediment laden water during the construction phase. These structures are to be left in place until vegetation is re-established and/or all exposed soils are stabilized.	
	The exposed soil area must be minimized by limiting the area that is exposed at one time and by limiting the time that any one area is exposed. All stockpiled soil must be covered and/or dyked to prevent erosion and release of sediment laden water. Wherever possible, exposed soil is to be replanted or sodded to ensure soil stabilization.	
	Machinery must be checked for leakage of lubricants or fuel and must be in good working order. Refueling must be	
	done at least 50 m from any water body and on an impermeable surface. Basic petroleum spill clean-up equipment must be on-site. All spills or leaks must be promptly contained, cleaned up and reported to the 24-hour environmental	

Environmental Component	Mitigation Measures	Completed (X)
	emergencies reporting system (1-800-565-1633).	
Soil Quality	All hazardous materials and/or waste materials being removed or that is generated must be disposed of in a legal manner according to Regulations (i.e. Reg. 347- General - Waste Management, as amended)	
	The Designated Substance and Hazardous Materials survey and associated specifications completed by DST (2017)	
	must be consulted and adhered to during project activities.	
	Appropriate personal protective equipment (PPE) must be used during all project activities.	
	All hazardous materials must be labelled in accordance with WHMIS requirements and transported in accordance with	
	provincial and federal regulations regarding the transportation of dangerous goods including:	
	Federal Transportation of Dangerous Goods Act, 1992	
Human Health	 Environmental Protection Act, 1990 - Regulation 347- General – Waste Management 	
	Ensure employees are trained on the identification and handling of designated substances. Undertake work on	
	designated substances containing material and other hazardous materials and chemicals according to the Designated	
	Substance and Hazardous Material Survey information and recommendations or the provincial and federal legislation.	
	In general, the Occupational Health and Safety Act, R.S.O. 1990, c. O.1 (OHSA) should be followed, including:	
	 Ontario Regulation 213/91, Construction Projects, and R.R.O. 1990, 	
	Ontario Regulation 490/09 "Designated Substances".	

Attachment 5

Marine Assessment Report

SLATE ISLANDS COAST GUARD SITE PATTERSON ISLAND, LAKE SUPERIOR, ONTARIO DFRP NO. 56027 PWGSC NO. R.083149.001 & .004

Marine Assessment

RIGGS ENGINEERING LTD.

1240 Commissioners Road West Suite 205 London, Ontario N6K 1C7

17 February, 2016

Table of Contents

1.	INTRODUCTION1		
2.	SITE	E DESCRIPTION	. 2
3.	MET	THODS	. 8
4.	HYC	DROGRAPHIC CHARTS AND CHS FIELD SHEETS	9
5.	SITE	E RECONNAISSANCE	10
5	5.1	GENERAL INSPECTION	10
5	5.2	UPLAND ACCESS BETWEEN SITE FACILITIES	10
5	5.3	MARINE ACCESS TO THE MAIN SITE	10
5	5.4	MARINE ACCESS TO SUNDAY HARBOUR	11
5	5.5	TOPOGRAPHIC SURVEY AND SPOT SOUNDINGS	11
6.	SITE	ES SERVICING1	14
6	5.1	SERVICING CONSTRAINTS	14
	6.1.	1 Access from the Mainland	14
	6.1.2	2 Access to the Main Site	14
	6.1.	3 Access to Sunday Harbour	15
6	5.2	SERVICING SCENARIOS	15
	6.2.	1 Main Site Scenarios	15
	6.2.2	2 Sunday Harbour Scenario	16
6	5.3	MAINLAND SUPPLY PORTS	16
	6.3.	1 Terrace Bay	16
	6.3.2	2 Rossport	16
	6.3.	3 Redrock	16
	6.3.4	4 Marathon	17
	6.3.	5 Thunder Bay	17
	6.3.	6 Sault Ste Marie, Canada	17
7.	CON	NCLUSIONS	18
7	.1	MARINE SERVICING THE MAIN SITE	18
7	.2	MARINE SERVICING THE OLD DWELLING SITE	18
7	.3	MAINLAND PORTS	19

Appendix A: Sites Photolog

1. Introduction

Public Works and Government Services Canada (PWGSC), on behalf of Fisheries and Oceans Canada (DFO), retained DST Consulting Engineers Inc. (DST)to conduct an environmental program on the Slate Islands Coast Guard Site (GC 1111), Lake Superior. The program is intended to identify the needs for any structural repairs or soil remediation at the site.

DST retained Riggs Engineering Ltd. (Riggs) to conduct a marine assessment as a component of its overall program. The objective of the marine assessment is to evaluate access options for the scope of the remedial works required at the Slate Islands Coast Guard Site.

PWGSC's requirements for the assessment are as follows:

- Conduct a review of available Canadian Hydrographic Survey (CHS) charts for the area;
- Evaluate methods of access to Patterson Island considering no current infrastructure (dock or wharf) is available, and provide a recommendation for the most feasible and cost effective option;
- Determine type(s) of vessel that could meet the needs of the project (excavation and disposal of contaminated soil and possibly building materials) including access to and from the site;
- A report detailing observations made on site, including recommendations and cost estimates for site access options during remediation.

Since survey equipment was necessary for the marine assessment DST requested that Riggs carry out a limited topographical survey of the site.

2. Site Description

The Slate Islands archipelago is located about16 km to the southeast of Terrace Bay in northern Lake Superior. Location of the archipelago is presented in Figure 1.

The Coast Guard site is located at 48° 37' 21" N / -86° 59' 43" W on Sunday Point, Patterson Island, the largest and most southerly in the Slate Islands group in Lake Superior, Ontario. The site currently consists of the following buildings:

- 1. the11 m tall octagonal lighthouse, solar facility and upper heli-pad on the rocky summit of Sunday Point (EL 241 m);
- 2. the old dwelling house and dock on Sunday Harbour to the north; and
- 3. the Main Site buildings (including the lower heli-pad, duplex dwelling, main dwelling, former oil house, old fog alarm building, and new diesel generator buildings on the south shore below the lighthouse summit.

The light station was automated in 1989.

The Slate Islands archipelago, Paterson Island, and Sunday Point are presented in Figures 2 and 3.Ortho-rectified air photos of the Main Site, Old Dwelling Area and the Lighthouse Area are presented in the Figures 4, 5, and 6.

Figure 1: Slate Islands Location

Figure 2: Slate Islands Archipelago

Figure 3: Sunday Point, Patterson Island

Slate Islands Coast Guard Site Marine Assessment

Figure 4: Main Site

Figure 5: Old Dwelling Site

Figure 6: Lighthouse Area

3. Methods

The Slate Island light station sites and nearshore areas were inspected, photographed and surveyed on 31 August 2016. Transport to from the site from Terrace Bay was by 7.3 m Zodiac Bombard vessel chartered by DST from Discovery Charters, Rossport.

Available CHS navigation charts for the area were reviewed.

The Old Dwelling Site, Main Site, the Lighthouse Area and the connecting trail were mapped in GPS to establish a topographic map for the Site.

A GPS base station was established on the heli-pad next to the lighthouse at the summit of Sunday Point and locations at Sunday Harbour and at the Main Site facing Lake Superior were located using a GPS rover assembly.

An aerial drone equipped with a digital camera took aerial images of about the three developed areas that were then compiled into a GPS referenced aerial image incorporating Old Dwelling Site, the Lighthouse Area and the Main Site.

The rover was also used to take spot depth soundings taken offshore along the Main Site from the chartered vessel. Depth soundings off Sunday Harbour beach were located and taken with a GPS equipped Furuno device on the chartered vessel.

In addition, the three Bryson brothers, long-time seasonal residents at the Site who have considerable knowledge of the immediate area, operation of the light station and historical activities there, and local marine conditions were interviewed to gain an understanding of what marine approaches are possible, based on their knowledge and experience at the Site.

4. Hydrographic Charts and CHS Field Sheets

Chart datum (datum) for Lake Superior is EL 183.2 m, 1985 IGLD. The closest CHS gauge to the Slate Islands is at Rossport (#10220).

The Slate Islands are shown on CHS charts15386-A and 2304Oiseau Bay to Jackfish Bay, Lake Superior (1913-1938). The charts provide very coarse depth information for the lake south of Sunday Point in the vicinity of the Main Site and for Sunday Harbour to the north. The shallowest contour on chart 15386-A is 43 m and on chart 2304 water depths less than 5 fathoms (9.14 m) are tinted blue. Some spot depths less than 9 m about Sunday Point are indicated.

The CHS provided the following additional field sheet information:

- 1. 8042-1 Soundings (SOUNDG) 1978 8042 002.pdf;
- 2. 408-1 Soundings (SOUNDG) 1913 408-1.jpg; and
- 3. 406-1 Soundings (SOUNDG), 1913, 406 001.jpg

The above noted field sheets are dated (1978 and 1913) and also do not provide critical depth information close in to either the Main Site or Sunday Harbour docks.

Due to the need for landing and dock approach depths, spot depth soundings were taken and charted off the Main Site and in Sunday Harbour. These are presented in Figure 7 and Figure 8.

5. Site Reconnaissance

5.1 General Inspection

The Site was inspected on August 31, 2016. Photographs of the Site inspection are presented in Appendix A.

5.2 Upland Access between Site Facilities

The Sunday Point summit (EL 221 m) separates the Old Dwelling Site and the lake-facing Main Site complex. The elevation to Sunday Point summit from lake level is about 85 m. A narrow trail over rough terrain connects the three facilities. Due to extreme elevation differences along the trail that are negotiated with stairs at some locations the trail is limited to travel on foot. It is non-negotiable for motorized equipment such as ATV vehicles or tracked machines. This conclusion is backed up with information from the Brysons who said that construction materials and equipment to upgrade the lighthouse in past had to be delivered by helicopter.

5.3 Marine Access to the Main Site

The principal access to the Main Site is on the east side of an existing concrete covered crib dock. The access channel is straight-in off the lake. Berthing is not possible along the west side of the dock due to the presence of rocks and rock outcroppings there.

The Main Site dock and approach to it are susceptible to winds and waves from all directions with long open fetch save those from the north and east.

Depths relative to datum are presented in the attached drawings. The entrance to the Main Site dock east side slip is narrow at about 4 m at the end of the pier and a rock outcropping to the east. Depths along the pier range from 1.7 m below datum at the dock end to less than 1 m depth close to the beach at the inshore end. Depths for the approach to the pier from the lake range from >9.9 m below datum in the lake to 1.7 m below datum just off the end of the pier. Spot soundings are presented in Figure 7.

The Main Site dock is a concrete covered crib about 23.5 m long and 1.5 m wide along the berthing length. The dock width reduces to 1 m at shore end where it joins concrete walkways of the same width to various Site buildings. The dock is outfitted with a boom crane assembly at the offshore end and the dock widens to 2.65 m at that location.

The three Bryson brothers who grew up at the Site with their father, the last lighthouse keeper, and who are currently seasonal residents at the light station, say that a shallow draft 40 ft by 12 ft (12.2 m X 3.6 m) motorized barge brought to the Site by the Canadian Coast Guard supply ship CG2960 Samuel Risley (69.7 m X 13.7 m 1967 GT) would bring in large goods and bulk fuel for the station generators. Supply season was late spring (late May and June) when lake conditions were generally most favorable to access to the Site. The barge operator would drive the shallow draft vessel loaded with fuel and supplies into the Main Site dock slip and run it

aground at the head of the slip. Supplies would then be off loaded and the fuel for the station generators pumped to onsite tanks. With offloading complete the operator would then reverse the barge screw and throttle the engine to refloat the grounded vessel in the slip and return it to the Samuel Risley where it was lifted back aboard and stowed.

An alternate potential approach is to the 35 m wide cobble beach west of the Main Site dock. Barge landing at this location will be very challenging due to the presence of large rocks in the nearshore zone and the presence of a bedrock ridge further offshore. Depths over this ridge are uncertain. As at the Main Site dock this location is exposed to Lake Superior and susceptible to severe wind and wave conditions.

Landings along other Main Site frontage locations are confounded by offshore and inshore rock ridges, outcroppings and large stone boulders.

5.4 Marine Access to Sunday Harbour

Sunday Harbour has good depths and no obstructions leading to a 69.5 m wide pebble and sand beach. Depths for the approach to the dock and beach from out in Sunday Harbour range from 27.7 m below datum offshore to 1.6 m below datum close to shore.

There are no in-water obstructions to hinder vessel access to the beach and an adjacent concrete dock. Spot soundings are presented in Figure 8. The harbour is sheltered from winds and waves except those coming directly out of the northwest.

The Sunday Harbour dock is a concrete covered crib on the south shore extending out from the beach. It has a vessel landing area that is 8.3 m long and is outfitted with a boom crane assembly. The dock with at the vessel landing is 6.3 m wide. The walkway from the dock to the beach is narrow at 1.2 m.

Vessel access to the dock is open and unobstructed and it is sheltered from winds from all directions except the northwest. The beach at Sunday Harbour can also provide easy landings for several types of vessels.

5.5 Topographic Survey and Spot Soundings

Elevations for Site features such as waterline, beaches zones, docks, upland features and buildings at the Main Site and Old Dwelling Site and spot soundings relative to datum for approaches to the docks and possible landing areas are presented on georectified aerial images in Figures 7 and Figure 8, below. Lake Superior chart datum is EL 183.2 m.

Client	
	DST CONSULTING

Scale 1:800

6. Sites Servicing

6.1 Servicing Constraints

6.1.1 Access from the Mainland

The routes from mainland ports to the light station Site is across considerable distances of open Lake Superior and subject to prevailing lake conditions. The closest mainland port is Terrace Bay, 21 km from the Site. Lake conditions driven by weather are can be highly variable in duration and magnitude. Relatively calm conditions lasting for extended periods are few. Extended periods of calm can occur from late-May and through June according to local navigators who know the area. Vessels should be sized to accommodate open lake conditions from mainland to the Site.

6.1.2 Access to the Main Site

The entry channel at the Main Site dock is very narrow at 4m. While depth at the end of the dock is 1.4 m below datum, depths along the slip become very shallow. The head of the slip ends in a narrow rocky beach backed by large stones and an abrupt rise in elevation to flat grounds in front of Main Site buildings. The narrow entry to the slip will allow safe entry only for narrow beam, shallow draft vessels such as the small (3.65 m X 12.2 m) motorized barges used by the Canadian Coast Guard to service the station when it was manned. The load capacity of vessels capable of accessing the Main Site dock will be limited, likely less than 12 tonnes. This will allow for the transportation of relatively small mobile equipment (e.g. backhoe, skid steer, etc.), supplies and waste during the proposed work, though many trips will be required to service the duration of the project (i.e. mobilization, site work, waste removal and demobilization). This smaller barge would need to make trips to and from a larger cargo vessel that can be stationed in nearby deeper water. The Main Site dock is 1.5 m wide and its load capacity is uncertain but likely very limited.

A 35 m wide steep cobble beach west of the Main Site dock may offer an alternate landing location. The beach has some limited wave protection provided by the offshore bedrock ridges that emerge out of the water between the beach and the Main Site dock. There are no insurmountable physical obstructions or rock outcroppings through the wooded area at the top of beach and access to the greater Main Site locations can be cut through the trees. Large rocks in the nearshore may have to be moved to allow close inshore access by a shallow draft barge. Depth over the bedrock ridge located further offshore has not been assessed. Should barge access at this landing be possible, larger capacity barges or landing craft type vessel might be sited close to, or onto the cobble beach to off load a contactor's mobile equipment (skid steers, mini excavators, stone mill, etc.) and bulk building materials for use at the Site. The barge would then reload the mobile equipment upon completion of the upland work and containerized waste can be loaded for transfer to a mainland port either continuously as it is generated or in one loading from a stockpile amassed on the cobble beach.

Access to the Main Site from locations elsewhere along the Main Site shore will be confounded by bedrock ridges in the nearshore zone and upland.

The Main Site is fully exposed to conditions on Lake Superior. The time of year with extended periods of relative calm to permit safe entry and exit of vessels at the dock and/or beach landing is late-May through June according to local navigators. Vessels using this approach will have to make provision safe anchorage elsewhere in times of unsafe lake conditions. The closest safe harbour is Sunday Harbour,

Access to the Main Site from the Sunday Harbour by mobile machinery is not possible due to the rugged nature of the terrain, narrowness of the trail and steepness of elevation in some locations. Some locations along the trail are served by stairs.

The Lighthouse Area on the Sunday Point summit also cannot be reached by mobile machinery from either the Main Site or Sunday Harbour due to the same trail constraints. Waste from this area will likely be consolidated at the Main Site.

6.1.3 Access to Sunday Harbour

Access to Sunday Harbour is wide, deep and unobstructed to both the existing dock on the south side and the 69.5 m wide gravel and sand beach. Sunday Harbour provides protected anchorage under most wind and wave conditions on Lake Superior, save that out of northwest that can blow directly into the bay. Large and small vessels will be afforded generally safe anchorage in Sunday Harbour. There will be no vessel size restrictions in Sunday Harbour.

6.2 Servicing Scenarios

Marine servicing will have two phases; delivery of mobile equipment, supplies and building materials to the Main Site and Old Dwelling Site and recovery of the mobile equipment and containerized waste from both sites for delivery to a mainland port. Waste from the Lighthouse Area will likely be accumulated at the Main Site for transfer offsite. The transportation of supplies, equipment and waste from the Lighthouse Area to the Main Site will likely be via helicopter.

6.2.1 Main Site Scenarios

The Main Site dock approach will necessitate use of narrow beam (<4 m), shallow draft barges with limited capacity of 10 to 12 tonnes, maximum. These vessels will require support of a larger "mother "vessel, likely a large tug that will be able to move the smaller craft to safe anchorage when lake conditions become unsafe. The larger vessel will carry mobile equipment and supplies and finally transport the containerized waste load to a mainland port for transfer to trucks for upland disposal. Considering the volumes of waste estimated to be generated as part of this project and the types of equipment and supplies anticipated, using the Main Site dock alone to service the site and get containerized waste to the "mother" ship could incur 30 barge trips (or more) to the "mother" vessel.

The west cobble beach approach, if accessible, would involve siting of a large barge close to shore or landing it. Mobile equipment and supplies would be offloaded or lifted to shore and be reloaded at the end of the upland work along with containerized waste from the Site. These vessels will require support of a larger vessel, likely a large tug that will be able to move the barge to safe anchorage when lake conditions become unsafe. Waste loading under this scenario can take place as waste is containerized over the onsite work period or be accumulated at the shore and loaded in one session at the end of the work.

6.2.2 Sunday Harbour Scenario

Large capacity vessels and/or barges can be sited in the safe anchorage in Sunday Harbour to accept containerized solid waste and drummed paint waste from the Old Dwelling Area.

6.3 Mainland Supply Ports

6.3.1 Terrace Bay

The Town-owned Terrace Bay floating docks (48°16' 18"N / -87° 07' 01"W) are about 21 km north of the light station on a beach at the mouth of the Aguasabon River. This is the closest mainland marine facility to the Site. The facilities are intended to serve pleasure craft-sized vessels. There is no concrete launch ramp at Terrace Bay. Trailer mounted water craft are launched and retrieved from the sand beach at the floating docks. The facilities are unsuited to berth and load large vessels with deep draft. The beach next to the floating docks could provide landing for shallow draft barges with a drop down landing craft-type bow. Road access from the landing to Hwy 17 is through Town. The route to the light station from Terrace Bay is direct and entirely across deep but open water. Vessels making the journey will be fully exposed to prevailing wind and lake conditions.

6.3.2 Rossport

Rossport harbour (48° 39' 59"N / -87°31' 16"W) is located on the north shore of Lake Superior at the west end of the Schreiber Channel about 46 km northwest of the Site. The municipal marina at the end of Dock St. has a concrete launching ramp and timber crib pier that serves recreational small craft and sailing vessels. Diesel and gasoline is available at the site. The dock is not accessible by land vehicles. A timber crib dock serving commercial fishing vessels is located further west at the end of Superior St. While the docks can berth deep draft vessels there are no lifting facilities available for the loading and offloading of heavy goods and equipment. There is road access from the dock to Highway 17.The route to the light station sites from Rossport is generally direct and for the most part across deep but open water. Vessels traversing this distance will be openly exposed to prevailing lake conditions for the majority of the trip.

6.3.3 Redrock

Redrock Marina (48° 56' 48"N / -88° 15' 13"W) is located on the north shore of Nipigon Bay near the outfall of the Nipigon River about 97 km northwest of the Site. The marina is sheltered within a breakwater. It has a concrete launching ramp and timber crib piers that serve recreational small craft and commercial fishing vessels. Diesel and gasoline is available and the approach is

3 m deep. The docks are not accessible to land vehicles. While the docks are suitable for deeper draft vessels there are no lifting facilities available for the loading and offloading of heavy goods and equipment. There is road access from the dock to Highway 17.The route from Redrock to the light station at Sunday Point on Patterson Island is generally direct and for the most part across deep but unprotected Lake Superior water. Vessels traversing this distance will be openly exposed to prevailing lake conditions for the majority of the trip.

6.3.4 Marathon

Peninsula Harbour at Marathon (48° 43' 07"N / -86° 23' 28"W) is located on the northeast shore of Lake Superior about 46 km east of the Site. The deep water industrial dock once served the Marathon paper mill that is now closed. The dock is also closed and there are no off loading facilities there. There is good road access from the dock to Highway 17. Both facilities are currently owned by Tembec Inc. Dock access can be arranged with Tembec Inc. according to Town officials. Vessels traversing this distance will be openly exposed to prevailing lake conditions for the majority of the trip.

6.3.5 Thunder Bay

The Port of Thunder Bay (48° 25' 29"N / -89°12' 02"W) is located on the west shore of Lake Superior about 167 km west of the Site. It is a large scale industrial-commercial marine facility providing complete marine and dockage services with full intermodal transfer capabilities. The port is operated by the Thunder Bay Port Authority and commercial marine transport, salvage and tug services are available for hire here. The Thunder Bay Coast Guard Base that formerly served the Slate Island light station is now closed. The route to the light station from Thunder Bay to the light station sites at Sunday Point on Patterson Island is generally direct and for the most part across deep but unprotected Lake Superior water. There is good road access from the dock to Highway 17.Vessels traversing this distance will be openly exposed to prevailing lake conditions for a substantial length trip.

6.3.6 Sault Ste. Marie

Sault Ste. Marie (46° 31' 00"N / -84°19' 59"W) is located east of Lake Superior on the St. Mary's River. It is about 315 km southeast of the Site. The former Port of Sault Ste. Marie was divested by the federal government in the 1980s. Port facilities at Sault Ste. Marie now include a large scale industrial-commercial marine facility located west of the Seaway locks that is privately owned and operated by the Algoma Port Authority (Essar Corporation). The former port of Sault Ste. Marie with berthing, salvage tug services, lifting and intermodal capability is located east of the locks and is privately owned and operated by a marine services contractor. The route to the light station sites is generally direct and for the most part across deep but unprotected Lake Superior water. There is good road access from the dock to Highway 17.Vessels traversing this distance will be openly exposed to prevailing lake conditions for the substantially the entire trip.

7. Conclusions

Bidding contractors will need to inspect the potential marine access areas at the Site including soundings to determine landing locations and approaches, what vessels types and combinations to use, and which mainland port to use in order to set a workable marine servicing plan and cost.

7.1 Marine Servicing the Main Site

The Main Site will require marine servicing to get mobile equipment and supplies onto the Site and to retrieve the equipment and get the containerized waste offsite.

The Main Site is fully exposed to open Lake Superior and subject to wind and waves from all directions except north and northwest. Safe access to the Main Site landing will be limited to days when winds and waves are light. Locals say that the best season providing calm conditions is in late spring, late-May through June.

Landing at the Main Site dock can only be achieved with narrow beam, shallow draft, and maneuverable vessels. The flat-bottomed barges carried by Coast Guard supply vessels to supply the light station while it was manned are an example of vessel types needed to service remediation activities from the Main Site dock. The capacity of this size of vessel will be less than 12 tonnes. Mobilizing and demobilizing mobile equipment and removing containerized waste from the Site to a larger support vessel will involve 30 trips or more for a vessel of this size. Additional trips will be required should soil remediation activities be added to the work scope.

It is assumed that waste from the Lighthouse Area will be consolidated and containerized along with Main Site waste for removal offsite. Transportation of equipment, materials and waste to and from the Lighthouse Area will likely be via helicopter.

A potential alternate Main Site landing area is the cobble beach to the west of the Main Site dock. Depths over the approach are uncertain and large stones in the nearshore zone will have to be moved to permit close access to the beach for a large barge with capacity to transfer mobile equipment and supplies and remove the containerized waste from the Site. The area will have to be assessed by potential contactors to be sure that it can be used.

The Main Site cannot be accessed by mobile equipment overland from the Old Dwelling Site.

7.2 Marine Servicing the Old Dwelling Site

The Old Dwelling Site is not as exposed to open lake conditions as is the Main Site location. The Sunday Harbour dock is accessible under wind and wave conditions from all directions except those from the northwest. Safe access to the dock during northwest wind and waves will be limited to days when winds are light. The approach is deep and the sand beach can provide alternate landing. There are no vessel restrictions at Sunday Harbour.

7.3 Mainland Ports

The closest mainland landing area to the Site is Terrace Bay, 21 km to the north. The marine facilities there are limited and suited for pleasure craft and light vessels only. The adjacent beach is protected and could provide a landing for front loading, landing-craft type vessels. The landing has road access through Town to Highway 17.

Other small mainland ports include Rossport and Redrock. These too are small scale facilities serving pleasure craft and light commercial fishing vessels, only.

The closest industrial sized mainland port is at Peninsula Harbour at Marathon, 47 km east of the Site. This deep water harbour that served the Marathon paper mill is currently closed but contractors can negotiate its use with the owner, Tembec Inc.

Other large mainland ports include Thunder Bay, 167 km west of the Site and Sault Ste. Marie, 315 km east of the Site. These are active industrial-commercial ports having a wide range of marine services that could provide suitable vessels and manpower and other marine support to service the proposed work.

Appendix A: Sites Photolog

Slate Island Light Station Complex Sunday Point, Patterson Island Lake Superior, Ontario

Photo #1:Slate Island Light Station.

Photo #3: Main Station dock from lake.

Photo #2: Main Station complex and lighthouse.

Photo #4: Cobble beach east of Main Station

Photo #5: View of Main Station dock from east beach.

Photo #6: View of Main Station dock from upland.

Slate Island Light Station Complex Sunday Point, Patterson Island Lake Superior, Ontario

Photo #7: Entry channel to Main Station dock.

Photo #9:Sunday Harbour light keeper's house.

Photo #11: Dock at Sunday Harbour with lift.

Photo #8: Lift at end of Main Station dock.

Photo #10: Sunday Harbour beach.

Photo #12: View across Sunday Harbour from dock.

Attachment 4

Structural Evaluation Report

STRUCTURAL EVALUATION REPORT

SLATE ISLAND COAST GUARD SITE

FOR

DST CONSULTING ENGINEERS

Ref. No. JML2016070

February 2017

PROJECT TITLE:	Structural Evaluation Slate Island Coast Guard Site
PROJECT LOCATION:	Slate Island
PROJECT NUMBER:	JML2016070
DATE:	February 2017

TABLE OF CONTENTS

EXECUTIVE SUMMARY

- 1. General
- 2. Mandate
- 3. Facility Description
- 4. Recommended Expenditures
- 5. Abatement
- 6. Assessment Summaries

INTRODUCTION

- 1. Background
- 2. Scope
- 3. Cost Estimates
- 4. Priority of Work
- 5. Project Priority System
- 6. Definitions

PART 1.0 STRUCTURAL/ARCHITECTURAL

- 1. Lighthouse
 - 1.1 Foundations
 - 1.2 Superstructure
 - 1.3 Exterior Walls
 - 1.4 Exterior Doors
 - 1.5 Windows
 - 1.6 Steel Lantern
 - 1.7 Floors
 - 1.8 Ceilings and Walls
 - 1.9 Stairs
- 2. Solar Building
 - 2.1 Foundation
 - 2.2 Exterior Walls
- 3. Upper Helicopter Pad
 - 3.1 Foundation
 - 3.2 Concrete Slab
4. Main Dwelling

- 4.1 Foundation
- 4.2 Superstructure
- 4.3 Exterior Walls
- 4.4 Exterior Doors
- 4.5 Windows
- 4.6 Roofing
- 4.7 Floors
- 4.8 Ceiling and Walls
- 4.9 Stairs
- 4.10 Chimney
- 4.11 Fixed Furnishings
- 5. Duplex Dwelling
 - 5.1 Foundation
 - 5.2 Superstructure
 - 5.3 Exterior Walls
 - 5.4 Exterior Doors
 - 5.5 Windows
 - 5.6 Roofing
 - 5.7 Floors
 - 5.8 Ceiling and Walls
 - 5.9 Stairs
 - 5.10 Chimney
 - 5.11 Fixed Furnishings

6. Old Fog Alarm/Generator Building

- 6.1 Foundation
- 6.2 Superstructure
- 6.3 Exterior Walls
- 6.4 Exterior Doors
- 6.5 Windows
- 6.6 Roofing
- 6.7 Floors
- 6.8 Ceilings and Walls
- 6.9 Stairs
- 6.10 Chimney
- 6.11 Fixed Items

7. New Fog Alarm/Electronics Building

- 7.1 Foundation
- 7.2 Exterior Walls

- 7.3 Exterior Doors
- 7.4 Roofing
- 7.5 Ceilings and Walls
- 7.6 Fixed Items
- 8. New Diesel Generator Building
 - 8.1 Foundation
 - 8.2 Exterior Walls
 - 8.3 Exterior Doors
 - 8.4 Roofing
 - 8.5 Ceilings and Walls
 - 8.6 Fixed Items
- 9. Former Oil House
 - 9.1 Superstructure
 - 9.2 Exterior Walls
 - 9.3 Exterior Doors
 - 9.4 Roofing
- 10. Furnace Oil Tank Pad
 - 10.1 Concrete Slab
 - 10.2 Concrete Cradles
- 11. Diesel Tank Pad
 - 11.1 Concrete Slab
 - 11.2 Concrete Cradles
- 12. Diesel Tank Dyke
 - 12.1 Concrete Walls
 - 12.2 Concrete Slab
- 13. Transformer
 - 13.1 Concrete Slab
 - 13.2 Steel Box
- 14. Lower Helicopter Pad
 - 14.1 Concrete Slab

Appendix B: Photographs

Appendix C: Drawings

15.	Lighth	ouse Dock
	151	Concrete Deck
	15.2	Concrete Walls
	15.3	Steel Hoist
16.	Log Re	etaining Wall
	U	
17.	Sidewa	alks
18.	Old Dy	welling
	18.1	Foundation
	18.2	Exterior Walls
	18.3	Exterior Doors
	18.4	Windows
	18.5	Roofing
	18.6	Floors
	18.7	Ceilings and Walls
	18.8	Stairs
	18.9	Chimney
	18.10	Fixed Furnishings
19.	Winch	Pad
	19.1	Concrete Slab
	19.2	Concrete Cradle
	19.3	Steel Winch
20.	Sunday	y Harbour Dock
	20.1	Concrete Deck
	20.2	Concrete Wall
	20.3	Steel Hoist
Summary of R	lecomm	ended Expenditures
APPENDICE	S	
Appen	dix A:	Site Plan

JML ENGINEERING LTD.

EXECUTIVE SUMMARY

1 General

A Level II Building Condition Inspection of the Slate Island Coast Guard Site located on Sunday Point, Patterson Island (part of the Slate Islands), on Lake Superior was carried out on September 1, 2016.

The inspection team consisted of Michael Edmonds, P.Eng, and Bill Warren, Senior Inspector, both of JML Engineering Ltd.

2 Mandate

- To identify and describe existing building and site systems, assess their current condition and provide commentary on the need for a maintenance and repair/replacement program. Commentary will include related costs and priorities. It is not intended to 'upgrade' or 'modernize' the building to a higher level to match the standards found in a newer facility.
- Provide recommendations to ensure that the structure and its systems will reach their maximum life expectancy and maintain the required levels of health and safety.
- Recommend further engineering studies where the cause, extent and/or remediation method required for identified deficiencies cannot be determined visually.
- Identify areas where the building does not comply with current code requirements. Some of these items are a result of continuing changes to the codes since the original design/construction of the building.

3 Facility Description

The Slate Island Coast Guard Site is located on Sunday Point, Patterson Island (part of the Slate Islands), on Lake Superior approximately 18.5 km south of Terrace Bay, Ontario. The facility consists of 20 various structures, three located at the northern shore of Sunday Point on Sunday Harbour, three located on the summit of Sunday Point, and 14 located on the southern shore of Sunday Point.

The facility consists of a lighthouse and various other structures such as dwellings, helicopter pads, docks, generator buildings, and diesel tank pads. The lighthouse was constructed in 1903 and operated as an attended light station for approximately 75 years. The station currently operates as an unattended navigation light.

No.	Name	Construction Date	Condition
1	Lighthouse	1903	Poor
2	Solar Building	2000's	Good
3	Upper Helicopter Pad	Unknown	Good
4	Main Dwelling	1959	Fair
5	Duplex Dwelling	1965	Fair
6	Old Fog Alarm/Generator Building	Early 1900's	Poor
7	New Fog Alarm/Electronics Building	1975	Good
8	New Diesel Generator Building	1975	Good
9	Former Oil House	1920's	Good
10	Furnace Oil Tank Pad	Unknown	Good
11	Diesel Tank Pad	1958	Good
12	Diesel Tank Dyke	Unknown	Good
13	Transformer	Unknown	Fair
14	Lower Helicopter Pad	Unknown	Good
15	Lighthouse Dock	1960's	Fair
16	Log Retaining Wall	1990's	Poor
17	Sidewalks	Unknown	Good
18	Old Dwelling	1894	Fair
19	Winch Pad	Unknown	Good
20	Sunday Harbour Dock	1981	Good

The Slate Islands Lighthouse was reviewed by the Federal Heritage Buildings Review Office in 1990, and was not recommended for designation as a heritage building.

4 Recommended Expenditures

The total estimated Short Term Expenditures (1 to 5 years) cost for this facility is \$310,000.00, as outlined below:

Lighthouse	\$	66,000.00
Solar Building	\$	0.00
Upper Helicopter Pad	\$	0.00
Main Dwelling	\$	28,500.00
Duplex Dwelling	\$	16,500.00
Old Fog Alarm/Generator Building	\$	79,500.00
New Fog Alarm/Electronics Building	\$	4,500.00
New Diesel Generator Building	\$	5,500.00
Former Oil House	\$	2,000.00
Furnace Oil Tank Pad	\$	0.00
Diesel Tank Pad	\$	0.00
Diesel Tank Dyke	\$	0.00
Transformer	\$	5,000.00
Lower Helicopter Pad	\$	0.00
Lighthouse Dock	\$	5,000.00
Log Retaining Wall	\$	20,000.00
Sidewalks	\$	2,000.00
Old Dwelling	\$	71,500.00
Winch Pad	\$	2,000.00
Sunday Harbour Dock	\$	2,000.00
Total Short Term Expenditures	<u>\$</u>	<u>310,000.00 + HST</u>

The total estimated Long Term Expenditures (6 to 25 years) cost for this facility is \$293,000.00, as outlined below:

<u>Total Long Term Expenditures</u>	\$	<u>293,000.00 + HST</u>
Sunday Harbour Dock	<u>\$</u>	0.00
Winch Pad	\$	0.00
Old Dwelling	\$	18,000.00
Sidewalks	\$	0.00
Log Retaining Wall	\$	0.00
Lighthouse Dock	\$	12,000.00
Lower Helicopter Pad	\$	0.00
Transformer	\$	2,000.00
Diesel Tank Dyke	\$	0.00
Diesel Tank Pad	\$	0.00
Furnace Oil Tank Pad	\$	0.00
Former Oil House	\$	18,000.00
New Diesel Generator Building	\$	5,000.00
New Fog Alarm/Electronics Building	\$	5,000.00
Old Fog Alarm/Generator Building	\$	21,000.00
Duplex Dwelling	\$	80,000.00
Main Dwelling	\$	53,000.00
Upper Helicopter Pad	\$	0.00
Solar Building	\$	1,000.00
Lighthouse	\$	78,000.00

5 Abatement

Each structure identified within this report can withstand the recommended abatement activities. In addition, the structures currently have no health and safety concerns with respect to contractors accessing the structures.

6 Assessment Summaries

The following tables summarize the condition, recent repairs/modifications, deficiencies, effective life remaining, recommendations, short term costs, and long term costs for each structure.

JML ENGINEERING LTD.

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies	Effective Life Remaining	Recommendations	Short Term Costs	Long Term Costs
1.1	Foundation	Poor	None	SpallingCrackingVegetative Growth	20+ Years	 Remove Vegetation Concrete Repairs	\$ 2,000	\$ 20,000
1.2	Superstructure	Good	None	• Mildew	20+ Years	Minor Repairs	-	\$ 4,000
1.3	Exterior Walls	Fair	Paint	• Peeling and Cracking Paint	20+ Years	• Clean, Prepare, and Paint	\$ 20,000	\$ 20,000
1.4	Exterior Doors	Poor	None	 Peeling Paint Corroded Hinges No Weather Stripping Out of Plumb Large Gap Below Timber Sill 	None	Replace	\$ 5,000	\$ 1,000
1.5	Windows	Fair	None	Peeling PaintNo SealantCracked Window	20+ Years	 Provide Caulking Prepare and Paint Replace Cracked Window 	\$ 3,500	\$ 1,000
1.6	Steel Lantern	Fair	None	Peeling PaintCorrosion	20+ Years	Clean, Prepare, and Paint	\$ 30,000	\$ 30,000
1.7	Floors	Fair	None	Water DamagedRotten	20+ Years	Replace Flooring	\$ 2,000	-

Slate Island Coast Guard Site Assessment Summary - Lighthouse

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies	Effective Life Remaining	Recommendations	Sł Te Ce	nort erm osts	Lo Te Co	ong erm osts
1.8	Ceilings and Walls	Poor	None	MildewMould	20+ Years	• Clean, Prepare and Paint	\$	2,000	\$	1,000
1.9	Stairs	Interior - Good Exterior - Poor	None	 Interior - Peeling Paint Exterior - Failed Connection, Rotten Bearing Timber, Absence of Handrail 	Interior - 20+ Years Exterior - None	 Interior – Clean, Prepare, and Paint Exterior - Replace 	\$	1,500	\$	1,000
Total Ligh	hthouse						\$	66,000	\$	78,000

Slate Island Coast Guard Site Assessment Summary – Lighthouse (continued)

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies	Effective Life Remaining	Recommendations	Short Term Costs	Long Term Costs
2.1	Foundation	Excellent	None	None	50 Years	None	-	-
2.2	Exterior Walls	Excellent	None	None	50 Years	• Recaulking	-	\$ 1,000
Total Sola	r Building						-	\$ 1,000

Slate Island Coast Guard Site Assessment Summary - Solar Building

Report Section No.	System Description	Condition	Recent Repair	Deficiencies	Effective Life Remaining	Recommendations	Short Term Costs	Long Term Costs
3.1	Foundation	Good	None	Tree Roots	20+ Years	Remove Vegetation	-	-
3.2	Concrete Slab	Good	None	None	20+ Years	None	-	-
Total Upp	er Helicopter Pa	ad					-	-

Slate Island Coast Guard Site Assessment Summary - Upper Helicopter Pad

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies	Effective Life Remaining	Recommendations	Short Term Costs	Long Term Costs
4.1	Foundation	Fair	None	CracksLeaks	20+ Years	Inject Epoxy,Polyurethane Foam	\$ 15,000	\$ 10,000
4.2	Superstructure	Good	None	None	20+ Years	Minor Repairs	-	\$ 2,000
4.3	Exterior Walls	Good	Paint	MildewPeeling PaintCrack in Siding	20+ Years	 Clean and Remove Mildew Prepare and Paint Seal Cracks 	\$ 5,500	\$ 5,000
4.4	Exterior Doors	Poor	Paint	Peeling PaintWearingMissing Caulking	None	Replace	\$ 4,000	\$ 1,000
4.5	Windows	Fair	Paint	Failed SealantsPeeling Paint	20+ Years	 Caulking Prepare and Paint Window Frames 	\$ 1,000	\$ 1,000
4.6	Roofing	Good	Metal Roof	None	20 Years	 New Sealants Replacement of Fasteners New Roof 	-	\$ 31,000
4.7	Floors	Fair	None	Water Damaged SubfloorCracks	20+ Years	Replace Subfloor and Vinyl Flooring at South Entrance	\$ 1,000	-

Slate Island Coast Guard Site Assessment Summary - Main Dwelling

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies	Effective Life Remaining	Recommendations	Short Term Costs	Long Term Costs
4.8	Ceilings and Walls	Good	None	 Cracks in Ceiling Separation of Tiling at Tub Surround 	20+ Years	 Prepare and Paint Ceilings and Walls Replace Tub Surround 	\$ 1,500	-
4.9	Stairs	Good	None	Peeling Paint	20+ Years	• Prepare and Paint Exterior Staircase	\$ 500	-
4.10	Chimney	Good	None	None	20+ Years	None	-	-
4.11	Fixed Furnishings	Good	None	• Failed Caulking	20+ Years	Replace Bathtub Caulking	-	\$ 1,000
Total Mai	in Dwelling						\$ 28,500	\$ 51,000

Slate Island Coast Guard Site Assessment Summary – Main Dwelling (continued)

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies	Effective Life Remaining	Recommendations	Short Term Costs	Long Term Costs
5.1	Foundation	Fair	None	• Cracks	20+ Years	 Retool Mortar Joints Inject Polyurethane Foam in Block Crack 	\$ 10,000	\$ 10,000
5.2	Superstructure	Good	None	None	20+ Years	Minor Repairs	-	\$ 4,000
5.3	Exterior Walls	Good	Paint 2016	Peeling Paint	20+ Years	• Prepare and Paint	-	\$ 5,000
5.4	Exterior Doors	Good	Replaced	Cracked Sealant	10-15 Years	Door Replacement	-	\$ 8,000
5.5	Windows	Fair	Paint	Failed Sealants	20+ Years	New CaulkingPaint	\$ 1,000	\$ 1,000
5.6	Roofing	Good	Metal Roof	None	20 Years	 New Sealants Fastener Replacement New Roof 	-	\$ 51,000
5.7	Floors	Good	None	None	20+ Years	None	-	-
5.8	Ceilings and Walls	Good	None	None	20+ Years	None	-	-

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies	Effective Life Remaining	Recommendations	Short Term Costs	Long Term Costs
5.9	Stairs	Good	Southeast Set Replaced	Peeling Paint	20+ Years	• Prepare and Paint Exterior Staircase	\$ 500	-
5.10	Chimney	Good	Temporary Strapping to Hold Bricks in Place	Cracks	10+ Years	Retool Mortar Joints	\$ 5,000	-
5.11	Fixed Furnishings	Good	None	Failed Caulking	20+ Years	Replace Caulking at Bathtub	-	\$ 1,000
Total Dup	olex Dwelling						\$ 16,500	\$ 80,000

Slate Island Coast Guard Site Assessment Summary - Duplex Dwelling (continued)

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies	Effective Life Remaining	Recommendations	Short Term Costs	Long Term Costs
6.1	Foundation	Fair	None	Cracks in Concrete Slab	20+ Years	• Inject Cracks with Epoxy	\$ 5,000	\$ 10,000
6.2	Superstructure	Good	None	None	20+ Years	Minor Repairs	-	\$ 4,000
6.3	Exterior Walls	Good	Paint	None	20+ Years	• Prepare and Paint	-	\$ 5,000
6.4	Exterior Doors	Fair	Paint	 Peeling and Weathered Paint Missing Weather Stripping Missing Timber Sill 	None	Replace Doors	\$ 2,000	\$ 1,000
6.5	Windows	Fair	Paint	 Failed Window Sealants Peeling and Weathered Paint 	20+ Years	 New Caulking Prepare and Paint Window Frames 	\$ 1,000	\$ 1,000
6.6	Roofing	Poor	None	Fishmouthing and Curling of Shingles	None	 Replace Shingles with Metal Roof Replace Eavesthoughs and Downspouts 	\$ 55,000	-
6.7	Floors	Good	None	None	20+ Years	None	-	-

Slate Island Coast Guard Site Assessment Summary - Old Fog Alarm/Generator Building

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies	Effective Life Remaining	Recommendations	Short Term Costs	Long Term Costs
6.8	Ceilings and Walls	Poor	None	Water DamageHoles	Paneling – None	Replace Areas with Damage	\$ 5,000	-
6.9	Stairs	Fair	None	No HandrailsNarrow Ladder	Ladder – None Stairs – 20+ Years	 Provide Handrail at Stairs Replace Ladder 	\$ 1,500	-
6.10	Chimney	Fair	None	 Crack at Mortar Joints Missing and Broken Bricks Poor Flashing 	10+ Years	 Repair Mortar Joints Missing Brick Broken Brick 	\$ 10,000	-
6.11	Fixed Items	Good	None	None	20+ Years	None	-	-
Total Old	Fog Alarm/Gen	erator Build	ing		•		\$ 79,500	\$ 21,000

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies	Effective Life Remaining	Recommendations	She Ter Co	ort rm sts	Lor Ter Cos	ng em sts
7.1	Foundation	Good	None	None	20+ Years	Minor Repairs		-	\$	2,000
7.2	Exterior Walls	Fair	None	 Failed/Missing Sealants Corrosion at Fasteners 	20+ Years	 Replace Sealants Between Wall and Roof and Wall and Foundation Replace Corroded Fasteners 	\$	1,000	\$	1,000
7.3	Exterior Doors	Fair	None	 Cracked Sealants Ineffective Weather Stripping Peeling Paint 	10-15 Years	 Replace Sealants and Weather Stripping Clean and Paint Door Frames 	\$	2,000	\$	1,000
7.4	Roofing	Fair	None	• Failed Closer Strip	20+ Years	Replace Closer Strip	\$	1,000	\$	1,000
7.5	Ceilings and Walls	Good	None	Cracked Sealants	20+ Years	Replace Sealants	\$	500		-
7.6	Fixed Items	-	-	-	-	-		-		-
Total New	v Fog Alarm/Ele	ectronics Buil	ding				\$	4,500	\$	5,000

Slate Island Coast Guard Site Assessment Summary	- New Fog Alarm/Electronics Building
--	--------------------------------------

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies	Effective Life Remaining	Recommendations	She Ter Co	ort rm sts	Lor Ter Cos	ng rm sts
8.1	Foundation	Fair	None	• Exterior Crack	20+ Years	• Inject Crack with Epoxy	\$	1,000	\$	2,000
8.2	Exterior Walls	Fair	None	• Failed/Missing Sealants	20+ Years	 Replace Sealant Between Walls and Roof and Walls and Foundation Drill and Seal Transite Panel Cracks 	\$	1,000	\$	1,000
8.3	Exterior Doors	Fair	None	 Cracked Sealant Ineffective Weather Stripping Peeling Paint 	10-15 Years	 Replace Sealants and Weather Stripping Clean and Paint Door Frames 	\$	2,000	\$	1,000
8.4	Roofing	Fair	None	• Failed Closer Strip	20+ Years	Replace Closer Strip	\$	1,000	\$	1,000
8.5	Ceiling and Walls	Good	None	Cracked Sealants	20+ Years	Replace Sealants	\$	500		-
Total New	v Diesel Generat	tor Building					\$	5,500	\$	5,000

Slate Island Coast Guard Site Assessment Summary - New Diesel Generator Building

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies	Effective Life Remaining	Recommendations	Sho Ter Cos	ort :m sts	Lo Te Co	ng rm osts
9.1	Superstructure	Good	None	None	20+ Years	Minor Repairs		-	\$	4,000
9.2	Exterior Walls	Fair	Paint	• Peeling Paint	20+ Years	• Prepare and Paint	\$	1,000	\$	1,000
9.3	Exterior Doors	Fair	Paint	Peeling Paint	10-15 Years	Prepare and Paint Door	\$	1,000	\$	2,000
9.4	Roofing	Good	Metal Roof	None	20 Years	 New Sealants at Penetrations Replacement of Fasteners New Roof 		-	\$	11,000
Total For	mer Oil House						\$	2,000	\$	18,000

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies	Effective Life Remaining	Recommendations	Short Term Costs	Long Term Costs		
10.1	Concrete Slab	Fair	None	ScalingErosion	20+ Years	None - Abandoned Pad	-	-		
10.2	Concrete Cradles	Fair	None	ScalingCracks	20+ Years	None - Abandoned Pad	-	-		
Total Fur	Total Furnace Oil Tank Pad									

Slate Island Coast Guard Site Assessment Summary - Furnace Oil Tank Pad

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies	Effective Life Remaining	Recommendations	Short Term Costs	Long Term Costs
11.1	Concrete Slab	Fair	None	ScalingErosion	20+ Years	None – Abandoned Pad	-	-
11.2	Concrete Cradles	Fair	None	• Scaling	20+ Years	None – Abandoned Pad	-	-
Total Dies	-	-						

Slate Island Coast Guard Site Assessment Summary - Diesel Tank Pad

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies	Effective Life Remaining	Recommendations	Short Term Costs	Long Term Costs
12.1	Concrete Walls	Good	None	• Scaling	20+ Years	None - Abandoned	-	-
12.2	Concrete Slab	Fair	None	• Vegetation	20+ Years	None - Abandoned	-	-
Total Dies	-	-						

Slate Island Coast Guard Site Assessment Summary - Diesel Tank Dyke

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies	Effective Life Remaining	Recommendations	Short Term Costs		Long Term Costs	
13.1	Concrete Slab	Fair	None	• Scaling	20+ Years	None		-		-
13.2	Steel Box	Fair	None	Corrosion	20+ Years	• Prepare and Paint	\$	5,000	\$	2,000
Total Transformer										2,000

Slate Island Coast Guard Site Assessment Summary - Transformer

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies	Effective Life Remaining	Recommendations	Short Term Costs	Long Term Costs
14.1	Concrete Slab	Fair	None	ScalingErosion	20+ Years	None	-	-
Total Low	ver Helicopter Pa	ad					-	-

Slate Island Coast Guard Site Assessment Summary - Lower Helicopter Pad

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies	Effective Life Remaining	Recommendations	Short Term Costs	Long Term Costs
15.1	Concrete Deck	Fair	None	ScalingWide Cracks	20+ Years	• Inject Cracks with Epoxy	\$ 5,000	-
15.2	Concrete Walls	Poor	None	ScalingSpallingWide Cracks	20+ Years	None	-	\$ 10,000
15.3	Steel Hoist	Good	Paint	None	20+ Years	 Prepare and Paint Load Rate	-	\$ 2,000
Total Lig	hthouse Dock						\$ 5,000	\$ 12,000

Slate Island Coast	Guard Site	Assessment Summary	- Lighthouse	Dock
---------------------------	-------------------	--------------------	--------------	------

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies	Effective Life Remaining	Recommendations	Short Term Costs	Long Term Costs		
16	Log Retaining Wall	Poor	New Logs West End	• Rotten Logs	None	Construct Permanent Retaining Wall	\$ 20,000	-		
Total Log	Total Log Retaining Wall									

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies	Effective Life Remaining	Recommendations	Short Term Costs	Long Term Costs
17	Sidewalks	Good	None	Cracks	20+ Years	Replace Broken Sidewalk Panel	\$ 2,000	-
Total Side	\$ 2,000	-						

Slate Island Coast Guard Site Assessment Summary - Sidewalks

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies Effective Life Recommendations Remaining		Deficiencies Effective Life Recommendations Remaining		Long Term Costs
18.1	Foundation	Fair	Concrete Repair	Failed Mortar Joints and Voids	20+ Years	 Repair Mortar Joints Repair Foundation Voids 	\$ 7,000	\$ 10,000
18.2	Exterior Walls	Good	Paint	None	20+ Years	• Prepare and Paint	-	\$ 5,000
18.3	Exterior Doors	Good	None	Missing Sealants	10-15 Years	SealantMinor Repairs	\$ 500	\$ 1,000
18.4	Windows	Fair	Paint	Failed Window Sealants	20+ Years	 New Caulking for Windows Minor Repairs 	\$ 500	\$ 1,000
18.5	Roofing	Poor	None	• Fishmouthing and Curling of Shingles	None	 Replace Shingles with Metal Roofing Replace Eavestroughs and Downspouts 	\$ 55,000	-
18.6	Floors	Good	None	None	20+ Years	None	-	-
18.7	Ceilings and Walls	Good	None	None	20+ Years	None	-	-
18.8	Stairs	Good	Exterior Stairs Newly	Peeling Paint	20+ Years	InteriorPrepare and PaintProvide Handrail	\$ 1,000	-

Slate Island Coast Guard Site Assessment Summary -	Old Dwelling
--	---------------------

			Construct ed						
18.9	Chimney	Fair	None	Cracks in Mortar Joints	10+ Years	 Retool Cracked Mortar Joints Replace Chimney Flashing 	\$	7,500	-
18.10	Fixed Furnishings	Good	None	None	20+ Years	Minor Repairs		-	\$ 1,000
Total Old Dwelling									\$ 18,000

Slate Island Coast Guard	Site Assessment Summary -	Old Dwelling (continued)

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies	Effective Life Remaining	Recommendations	Short Term Costs	Long Term Costs
19.1	Concrete Slab	Fair	None	Scaling	20+ Years	None - Abandoned Pad	-	-
19.2	Concrete Cradle	Fair	None	• Scaling	20+ years	None - Abandoned Pad	-	-
19.3	Steel Winch	Fair	None	Corrosion	20+ Years	• Prepare and Paint	\$ 2,000	-
Total Wir	\$ 2,000	-						

Slate Island Coast Guard Site Assessment Summary - Winch Pad

Report Section No.	System Description	Condition	Recent Repairs	Deficiencies	Effective Life Remaining	Recommendations	Short Term Costs	Long Term Costs
20.1	Concrete Deck	Good	None	Narrow Cracks	30+ Years	None	-	-
20.2	Concrete Wall	Good	None	None	30+ Years	None	-	-
20.3	Steel Hoist	Good	None	• Peeling Paint	30+ Years	 Prepare and Paint Load Rate	\$ 2,000	-
Total Sun	\$ 2,000	-						

Slate Island Coast	Guard Site	Assessment Summary	v - Sundav	Harbour	Dock

INTRODUCTION

1 Background

In response to a request received from DST Project Manager, Kris Tuuttila, JML Engineering Ltd. has conducted a Level II Building Condition Inspection in order to evaluate the condition of the Slate Island Coast Guard Site with commentary on the need for a repair/replacement program, with related costs and priorities. The site is located on Sunday Point, Patterson Island (part of the Slate Islands), on Lake Superior approximately 18.5 km south of Terrace Bay, Ontario.

2 Scope

JML Engineering Ltd. has reviewed all exiting data and completed a structural inspection of all components for the various structures at the site. During the site visit, field measurements of various components were taken and representative photos were captured. While on site information was gathered from the tenants.

3 Cost Estimates

Costs indicated are Class "D" (preliminary) estimates, expressed in year 2016 constant dollars (escalation factors not included) and provide an indication (rough order of magnitude) of the project construction. Cost estimates in this report are based on information found within published estimating manuals, historical cost data for similar work in the geographic area, general cost information from material/equipment manufacturers and contractors, and past experiences involving similar work. These costs do not include any project related costs, such as design, construction supervision, and commissioning and project management. All Class "D" estimates provided in this report should be verified prior to project implementation.

4 Priority of Work

The Priority of Work is time related with consideration given to the life cycle of the component.

MANDATORY (Man.)

Mandatory items should typically be done on an urgent basis or within a year, or with consideration given to the life cycle of the component (e.g., to meet life safety regulations, building codes or other applicable standards).

CYCLICAL (Cycl.)

Cyclical items should typically be done within 1 to 5 years, again with consideration given to the life cycle of the component (e.g., component or system replacement) in order to extend the useful life of the building.

OPTIONAL (Opt.)

Optional items should typically be done within 5 years or more, but again with consideration given to the life cycle of the component (e.g., component or system updating) in order to upgrade and add capital value to the building and/or to enhance or maintain design standard/market value.

The replacement time frames normally do not have a direct effect on the operation of the building.

5 **Project Priority System**

As per the Project Priority System, priority ratings are explained below:

PRIORITY A

Emergency: A deficiency or condition which has already occurred and has already or will shortly result in the shutdown of a building/support system.

Examples:

- 1) Labour or Building Code requirements not being met.
- 2) Critical building system has become imperative.

PRIORITY B

Priority B projects are Priority A emergencies that have not yet occurred but could at any time.

 $\underline{B1}$ – Health and Safety – A deficiency that poses an imminent risk to health and/or safety if left uncorrected.

<u>B2 – Operational Efficiency</u> – A condition which threatens operational objectives and results in for Real Property's tenants incurring productivity losses which outweigh the cost of the project.

 $\underline{B3}$ – System Integrity – A condition which will result in the shutdown of a critical support system of a building, if left uncorrected this fiscal year.

PRIORITY C

 $\underline{C1}$ – Health and Safety – A deficiency which poses a potential threat to health and safety if left uncorrected.

 $\underline{C2-Operational\ Efficiency}$ – A deficiency which hampers operational efficiency if left uncorrected.

 $\underline{C3}$ – System Integrity – A condition which will result in increasing costs if left uncorrected.

PRIORITY D

A deficiency which requires repair or replacement but does not threaten building systems, operations or health and safety. Action should be taken where funding can be made available.

D1 – Asset Maintenance

D2 – Appearance/Image

D3 – Other

PRIORITY X

This priority is for projects for which the key factor is a significant financial benefit to Real Property.

<u>X1 – Return within one year</u>

<u>X2 – Return within two years</u>

X3 – Return within three years or more

6 Definitions

The following is an interpretation of common terms used in the report and the Summary of Recommended Expenditures:

Repair/Maintenance (RM)

An estimated dollar value applied to a building element or building system to perform normal regular scheduled superficial maintenance practices and repairs. The intent is to provide a minimum level of maintenance in order for the building or building system to operate and perform suitably through a typical effective life cycle.

Capital Cost (CC)

An estimated dollar value is applied as an investment into a building or portion of the building system for upgrade, refit and/or replacement to extend the life of the facility or to increase tenant comfort.

Engineering Study (ES)

An estimated dollar value for engaging the service of a consultant to conducting an engineering study/analysis of specific portion(s) for remedial actions, upgrades, refits and/or replacements to extend the life of the facility, or to increase tenant comfort.

The following applies to the Executive Summary overall building condition.

Poor

Where the condition of the building requires a substantial investment applied to the structure, building envelope and related electrical/mechanical systems in the immediate future (1-5 years), and to address Building Code requirements, replacement and/or upgrade of building systems to comply with current regulations, Health and Safety issues and deficiencies in the normal operations of the buildings to life cycle the existing building for an additional 20 years. Higher maintenance/repair expenses also reflect this condition.

<u>Fair</u>

Where the condition of the building requires a limited cost investment applied to the structure, building envelope and related electrical/mechanical systems to life cycle the existing building for an additional 20 years. Investment may be offset beyond the 5 year time period and applied to the 6-10 or the 11-15 year time periods. Lower maintenance/repairs expenses also reflect this condition.

Good

Where the condition of the building requires little or no investment required to the structure, building envelope and related electrical/mechanical systems to life cycle the existing building for 20 years. Most Building Code requirements and Health and Safety issues have been addressed. Very low maintenance/repair costs usually reflect this condition.
STRUCTURAL EVALUATION

The site structures consists of the Lighthouse, Solar Building, and Upper Helicopter Pad located on the rocky summit of Sunday Point, the Main Dwelling, Duplex Dwelling, Old Fog Alarm/Generator Building, New Fog Alarm/Electronics Building, New Diesel Generator Building, Former Oil House, Furnace Oil Tank Pad, Diesel Tank Pad, Diesel Tank Dyke, Transformer, Lower Helicopter Pad, Lighthouse Dock, Log Retaining Wall, and Sidewalks located on the southern shore of Sunday Point, and the Old Dwelling, Winch Pad, and Sunday Harbour Dock located on the northern shore of Sunday Point on Sunday Harbour. The location of the structures is shown on JML Engineering Drawing SK-1 titled "Site Plan" found in Appendix A. Photographs of each structure are presented in Appendix B.

A summary spreadsheet of recommended expenditures follows this section.

1 Lighthouse

The Lighthouse was constructed in 1903 and is located on the summit of Sunday Point. The Lighthouse is octagonal and is approximately 12 metres high surmounted by a steel and glass lantern and an external balcony. The Lighthouse contains three levels; ground level, second floor, and the lantern.

The Lighthouse replaced the original lighthouse that was constructed in the 1890's. The original lighthouse was razed by a fire.

1.1 Foundation

The Lighthouse foundation consists of cast-in-place concrete.

1. Condition

The foundation appeared to be in poor condition.

Severe spalling/disintegration was observed along the perimeter of the foundation.

Several wide cracks were observed.

Vegetative growth was observed within the spalled areas.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the foundation.

3. Deficiencies

The spalled and cracked areas will allow the ingress of water, contributing to further deterioration.

The vegetative growth will hold water against the concrete, contributing to further deterioration.

4. Effective Life Remaining

The remaining effective life of the foundation with proper maintenance is approximately 20+ years.

5. Recommendations

Since the observed spalling and cracking of the concrete foundation does not raise structural concerns, rehabilitation is not required at this time. However, for the long term expenditures, an estimated cost of \$20,000 should be allowed for concrete repairs in the 11th year.

The vegetative growth should be removed at an estimated cost of \$2,000.

1.2 Superstructure

The superstructure for the Lighthouse generally consists of 2"x10" and 3"x10" timber joins supported by the 2"x4" timber walls.

1. Condition

Generally, the superstructure appeared to be in good condition.

The superstructure shows no obvious signs of cracking, settlement or movement.

Mildew was observed at a few locations.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the superstructure.

3. Deficiencies

Mildew will fill the Lighthouse with allergens, and may eventually lead to rot in the timbers.

4. Effective Life Remaining

With normal maintenance, the superstructure should continue to perform over the remaining life of the Lighthouse. The effective life remaining is approximately 20+ years.

5. Recommendations

Other than normal maintenance, no major repairs to any of the superstructures are anticipated over the next 5-10 years.

For the long term expenditures, an estimated cost of \$2,000 should be allowed for minor repairs in the 11th and 21st years.

1.3 Exterior Walls

The exterior walls consist of a wood shingle siding veneer. The walls are constructed of 2"x4" timbers at various spacing.

1. Condition

In general, the exterior walls are in fair condition.

The paint on the exterior walls has peeled and cracked.

2. Recent Repairs/Modifications

It appeared the exterior walls had been painted over a few times in the life of the Lighthouse. However, it has probably not been painted in at least 20+ years.

3. Deficiencies

The paint system protects the siding from the elements. Peeling and cracking paint will accelerate deterioration of the siding.

4. Effective Life Remaining

With normal maintenance, the exterior walls should continue to perform over the remaining life of the lighthouse. The effective life remaining is approximately 20+ years.

5. Recommendations

The exterior siding should be thoroughly cleaned, prepared, and painted for an estimated cost of \$20,000.

For the long term expenditures an estimated cost of 20,000 should be allowed for prep & paint of the siding in the 21^{st} year.

1.4 Exterior Doors

There is one exterior door on the north side of the Lighthouse. It is a wood door in a wood frame on a wood sill.

1. Condition

The exterior door appears to be original to the structure, and is in poor condition.

The paint is peeling and is weathered. The hinges are corroded. The door is not operated by a handle, instead the user opens the door by pulling on the lock latch. There is no weather stripping. The door does not appear plumb. There is a large gap below the timber sill.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the door.

3. Deficiencies

Water entry around the perimeter of the door will lead to mould and rot of the frame.

Water entry below the sill will lead to rot.

4. Effective Life Remaining

The existing door has reached its life expectancy.

5. Recommendations

The exiting door/entry way should be replaced for an estimated cost of \$5,000.

For the long term expenditures, an estimated cost of 1,000 should be allowed for minor repairs in the 11^{th} year.

1.5 Windows

There is one wooden frame, casement-type window at the Lighthouse wall, and 12 windows in the lantern.

1. Condition

In general, the Lighthouse wall window is in fair condition. The paint is peeling and cracked. The wood frame is weathered. There did not appear to be any sealant around the frame.

The lantern windows are in fair condition. One window is cracked.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the Lighthouse

wall window.

The crack in the window in the lantern has been covered with duct tape.

3. Deficiencies

Peeling and weathered paint may lead to rot of the window frame. Unsealed joints around the window will allow the penetration of water.

The crack in the lantern window will eventually lengthen or the glass will break.

4. Effective Life Remaining

Since the structure is unoccupied during the winter months, replacement of the windows to achieve improved heat retention is unnecessary. Therefore, with proper maintenance, the existing windows may last the remainder of the expected life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

New caulking should be provided at the lantern wall window frame for an estimated cost of \$500. Since the window is probably not operated, the perimeter of the window could also be sealed.

The lantern wall window frame should be prepared and painted for an estimated cost of \$1,000.

The lantern window should be replaced for an estimated cost of \$2,000.

For the long term expenditures, an estimated cost of \$1,000 should be allowed for minor repairs in the 11th year.

1.6 Steel Lantern

The Lighthouse is surmounted by a steel lantern.

1. Condition

The steel lantern appeared to be in fair condition.

Paint peeling and cracked was observed throughout the interior and exterior of the lantern. Light corrosion was observed throughout, especially on horizontal surfaces such as the window ledges and the steel handrail around the perimeter.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to steel lantern.

3. Deficiencies

Since the paint system has failed, the steel lantern will continue to corrode.

4. Effective Life Remaining

With proper maintenance, the steel lantern may last the remainder of the expected life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

The steel lantern should be thoroughly cleaned, prepared, and painted for an estimated cost of \$30,000.

For the long term expenditures an estimated cost of 30,000 should be allowed for prep & paint of the lantern in the 21^{st} year.

1.7 Floors

The flooring within the Lighthouse is wood.

1. Condition

In general, the flooring appeared to be in fair condition.

The floors are worn, water damaged, and contain medium rot in a few locations.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to the flooring.

3. Deficiencies

The water damaged and rotten flooring should be replaced to prevent further deterioration.

4. Effective Life Remaining

With proper maintenance, the flooring should continue to perform adequately for the remaining life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

The flooring that contains water damage and rot should be replaced for an estimated cost of \$2,000.

1.8 Ceilings and Walls

The existing ceilings and walls consist of wood panels.

1. Condition

The ceilings and walls generally appeared to be in poor condition.

Mould, mildew, and water damage was observed throughout the structure.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to the ceilings or walls.

3. Deficiencies

Mildew and mould will hold moisture on the ceilings and walls and may cause eventual rot.

Mould and mildew will fill the lighthouse with allergens.

4. Effective Life Remaining

With proper maintenance, the existing ceilings and walls should continue to perform adequately for the remaining life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

The ceilings and walls should be thoroughly cleaned to remove the mould and mildew, then prepared and painted, for an estimated cost of \$2,000.

Ventilation can be considered to prevent mould and mildew.

For the long term expenditures an estimated cost of 1,000 should be allowed for prep & paint of the siding in the 11^{th} year.

1.9 Stairs

There is one interior wooden staircase between the ground floor and second floor, and another between the second floor and lantern.

A set of exterior wooden stairs exist at the entrance.

1. Condition

The interior stairs are in good condition. Paint peeling was observed throughout.

The exterior stairs are in poor condition. Paint peeling was observed throughout. The bearing timber is rotten. The connection to the building has failed. The stairs are not level or plumb. There is no handrail.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to either set of stairs.

3. Deficiencies

Peeling paint leaves wood unprotected which will accelerate deterioration.

The failed connection, rotten bearing timber, absence of handrail, and out of plumbness at the exterior stairs compromises the safe use of the stairs.

4. Effective Life Remaining

With proper maintenance, the interior staircase should be effective through the remaining life of the structure. The effective life remaining is approximately 20+ years.

The exterior set of stairs have reached their service life.

5. Recommendations

The exterior staircase should be replaced for an estimated cost of \$1,000.

The interior staircase should be cleaned, prepared, and painted for an estimated cost of \$500.

For the long term expenditures an estimated cost of 1,000 should be allowed for prep & paint of the siding in the 11^{th} year.

2 Solar Building

The Solar Building was constructed in the 2000's and is located on the summit of Sunday Point, just east of the Lighthouse. The building is approximately 6 ft. x 8 ft. and has six solar panels located on the roof.

2.1 Foundation

The Solar Building foundation consists of six - 18" diameter cast-in-place concrete columns that vary in height from approximately 8" to 18". The superstructure is fastened to the foundation through a WT section and 2-3/4" bolts at each column.

1. Condition

The foundation appeared to be in excellent condition.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the foundation.

3. Deficiencies

There were no deficiencies observed.

4. Effective Life Remaining

The remaining effective life of the foundation with proper maintenance is approximately 50 years.

5. Recommendations

There are no recommendations for the Solar Building foundation at this time.

2.2 Exterior Walls

The exterior walls consist of preformed metal siding. The construction of the walls was not confirmed.

1. Condition

The siding appeared to be in excellent condition.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the exterior walls.

3. Deficiencies

There were no deficiencies observed.

4. Effective Life Remaining

The remaining effective life of the exterior walls with proper maintenance is approximately 50 years.

5. Recommendations

For the long term expenditures an estimated cost of 1,000 should be allowed for recaulking of the siding in the 6^{th} year.

3 Upper Helicopter Pad

The Upper Helicopter Pad is located on the summit of Sunday Point, just west of the Lighthouse. It is unknown when the pad was constructed. The pad is approximately 23 ft. x 23 ft. x 6 in. thick.

3.1 Foundation

The Upper Helicopter Pad foundation consists of six - 12" diameter cast-in-place concrete columns that vary in height from approximately 18" to 36". The concrete slab bears upon three columns at the north end, three columns at the midspan, and bedrock at the south end.

1. Condition

The foundation appeared to be in good condition.

Trees and other vegetation have taken hold below the concrete slab around the foundation.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the foundation.

3. Deficiencies

Tree roots could eventually cause damage to the concrete foundation, and may eventually grow into the slab causing damage.

4. Effective Life Remaining

The remaining effective life of the foundation with little maintenance could be approximately 20+ years.

5. Recommendations

The vegetation below the slab should be removed.

3.2 Concrete Slab

The Upper Helicopter Pad consists of a 23 ft. x 23 ft. x 6 in. thick cast-in-place concrete slab.

1. Condition

The concrete slab appeared to be in good condition. Vegetative growth was observed throughout. One light spall was observed on the west edge.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the foundation.

3. Deficiencies

The observed vegetative growth and spall should not lead to further deterioration in the near future.

4. Effective Life Remaining

The remaining effective life of the concrete slab with little maintenance could be approximately 20+ years.

5. Recommendations

There are no recommendations at this time.

4 Main Dwelling

The Main Dwelling was constructed circa 1959 and is located on the southern shore of Sunday Point. The building is single storey with a basement and an attic. The building is approximately 1,200 sq. ft. (not including the basement) and consists of three bedrooms, one bathroom, one kitchen, one living room, and a storage area.

4.1 Foundation

The foundation for the Main Dwelling consists of reinforced, cast-in-place concrete foundation walls and slab. Reinforced, cast-in-place concrete strip footings likely support the foundation walls.

1. Condition

The foundation appeared to be in fair physical and functional condition.

Four medium to wide vertical cracks were observed at the exterior of the foundation walls at the south and west faces of the building. The cracks typically originate at the windows located within the foundation walls. One wide crack was observed near the southeast corner of the building where a concrete parapet wall abuts the foundation.

Numerous narrow to wide vertical and horizontal cracks were observed at the interior of the foundation walls at the south, west, and north faces of the building. Most of the cracks originate at the windows located within the foundation walls, however, some cracks occur elsewhere. Some of the cracks show visible signs of leaking.

Water was observed on the floor at the north foundation wall. The joint between the north foundation wall and concrete slab is leaking.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the foundation.

3. Deficiencies

The cracks in the foundation walls will continue to lengthen/widen. The cracks will allow water to continue to penetrate into the basement, and will expose the reinforcing steel to oxygen causing corrosion, reducing the effective life of the element.

The joint along the north foundation wall will continue to allow seepage of water into the basement.

4. Effective Life Remaining

The remaining effective life of the foundation with proper maintenance is approximately 20+ years.

5. Recommendations

All cracks should be injected with epoxy from inside the building to provide a structural repair that is impervious to water and air. This repair should be done in the next 1-5 years for an estimated cost of \$10,000.

The joint along the north foundation wall should be sealed with polyurethane foam to create a barrier against water. This repair should be done in the next 1-5 years for an estimated cost of \$5,000.

For the long term expenditures, an estimated cost of 10,000 should be allowed for minor repairs in the 16^{th} year.

4.2 Superstructure

The superstructure for the Main Dwelling generally consists of 2"x10" timber joints at 16" ctrs. supported by the foundation walls and an 8"x10" built-up timber beam on steel teleposts at the main floor, and 2"x4" and 2"x6" timber rafters at 24" ctrs. at the roof.

1. Condition

The superstructure shows no obvious signs of cracking, settlement or movement, and therefore is considered to be in good physical and functional condition.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the superstructure.

3. Deficiencies

There did not appear to be any deficiencies at the superstructure.

4. Effective Life Remaining

With normal maintenance, the superstructure should continue to perform over the remaining life of the building. The effective life remaining is approximately 20+ years.

5. Recommendations

Other than normal maintenance, no major repairs to any of the superstructures are

anticipated over the next 5-10 years.

For the long term expenditures, an estimated cost of \$2,000 should be allowed for minor repairs in the 11th and 21st years.

4.3 Exterior Walls

The exterior walls consist of wood siding veneer and drywall on the interior. The construction of the walls was not confirmed.

1. Condition

In general, the exterior walls are in good condition.

Mildew was observed at the wood siding.

Paint peeling was observed at a few locations at the wood siding.

A few cracks were observed in the wood siding.

2. Recent Repairs/Modifications

It appeared the exterior walls had been painted sometime in the last 10 years.

3. Deficiencies

Mildew will hold moisture on the siding and may necessitate eventual replacement of the siding.

Peeling paint will allow water to penetrate to the base material.

Cracks in the siding will allow the ingress of water and may eventually lead to mould growth or rot.

4. Effective Life Remaining

With normal maintenance, the exterior walls should continue to perform over the remaining life of the buildings. The effective life remaining is approximately 20+ years.

5. Recommendations

The exterior siding should be thoroughly cleaned to remove the mildew, then prepared and painted, for an estimated cost of \$5,000.

The cracks in the siding should be sealed for an estimated cost of \$500.

For the long term expenditures an estimated cost of 5,000 should be allowed for prep & paint of the siding in the 11^{th} year.

4.4 Exterior Doors

There is one exterior door on the north side of the building. It is a wood door with a large window mounted in a wood frame and a wood sill.

There is an exterior door on the south side of the building that has been closed off with plywood.

1. Condition

The door on the north side of the building appeared to be in poor condition. Most of the paint on the door has peeled or is weathered. The paint at the timber sill is in poor condition. Caulking is missing. The door handle is discoloured. The door did not appear plumb, and the lower corner on the handle side of the door was worn.

The opening for the exterior door at the south side of the building has been closed off with plywood. The joints around the plywood are not sealed. The paint at the timber sill is in poor condition.

2. Recent Repairs/Modifications

The existing doors appear original to the building.

It did not appear any recent repairs or modifications had been made to the northern door, except the trim had been painted in the last 10 years.

The southern door was replaced with plywood to prevent snow from accumulating inside the door during winter months.

3. Deficiencies

Peeling and weathered paint at the timber door and timber sill may lead to eventual rot. Wearing of the door and missing caulking allows the ingress of water.

Water entry at the closed off southern door will lead to eventual rot.

4. Effective Life Remaining

The existing doors have reached their life expectancy.

5. Recommendations

The existing doors should be replaced for an estimated cost of \$4,000.

For the long term expenditures, an estimated cost of \$1,000 should be allowed for minor repairs in the 11th year.

4.5 Windows

There are 12 wooden frame, hung windows at the exterior walls and four wooden frame windows at the foundation walls.

1. Condition

In general, the windows are in fair condition.

The sealants at all windows have failed.

The paint is peeling and weathered at all foundation windows.

2. Recent Repairs/Modifications

The existing windows appear original to the building.

It appeared the window frames at the exterior walls had been painted in the last 10 years.

3. Deficiencies

Failed window sealants will allow the ingress of water, leading to mould problems or rot.

Peeling and weathered paint may lead to the eventual rot of the window frame.

4. Effective Life Remaining

Since the structure is unoccupied during the winter months, replacement of the windows to achieve improved heat retention is unnecessary. Therefore, with proper maintenance, the existing windows may last the remainder of the expected life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

New caulking should be provided at all windows for an estimated cost of \$500.

The window frames should be prepared and painted for an estimated cost of \$500.

For the long term expenditures, an estimated cost of \$1,000 should be allowed for minor repairs in the 11th year.

4.6 Roofing

The roof of the Main Dwelling is cross-gabled and clad in preformed metal over asphalt shingles. 1. Condition

The preformed metal roof appeared to be in good condition.

2. Recent Repairs/Modifications

Photos within the XCG report titled "Enhanced Phase 1 Environmental Assessment Canadian Coast Guard Light Station L.L. 1111, Slate Islands, Lake Superior, Ontario" dated April 2, 2001 show the preformed metal roof. Therefore, the existing asphalt shingles had been re-covered sometime prior to 2001.

3. Deficiencies

There did not appear to be any deficiencies at the preformed metal roof.

4. Effective Life Remaining

Since the existing asphalt shingles were re-covered with preformed metal sometime prior to 2001, it can be assumed that the roofing material is roughly halfway through its 40 year design life.

5. Recommendations

Minor maintenance such as providing new sealants at penetrations and replacement of fasteners may be required in the next 6-10 years for an estimated cost of \$1,000.

For the long term expenditures, an estimated cost of 30,000 should be allowed for roof replacement in the 21^{st} year.

4.7 Floors

The flooring within the Main Dwelling is vinyl tiling.

1. Condition

In general, the flooring appeared to be in fair condition.

There are several cracks in the tiling in the living room.

Nine tiles have been removed at the southern entrance, exposing the water-damaged subfloor.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to the flooring.

3. Deficiencies

The water damaged subfloor should be replaced to prevent further deterioration. The vinyl flooring should be replaced in this area to eliminate a potential tripping hazard.

4. Effective Life Remaining

With proper maintenance, the existing tiling should continue to perform adequately for the remaining life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

The subfloor that contains water damage and the removed tiling should be replaced at the southern entrance for an estimated cost of \$1,000.

4.8 Ceilings and Walls

The existing ceilings and walls consist of drywall.

1. Condition

The ceilings and walls generally appeared to be in good condition.

The paint has peeled at a few locations at the interior walls.

The ceiling has cracked at a few locations in the living room and kitchen.

The tiling at the tub surround is separating from the wall.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to the ceilings or walls.

3. Deficiencies

The cracks in the ceiling may indicate leaks in the asphalt shingle roof system prior to the roof being re-covered with preformed metal.

Separation of the tiling at the tub surround will allow the ingress of water and may lead to mould or rot.

4. Effective Life Remaining

With proper maintenance, the existing ceilings and walls should continue to perform adequately for the remaining life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

The existing ceilings and walls should be prepared and painted for an estimated cost of \$500.

The tub surround should be replaced for an estimated cost of \$1,000.

4.9 Stairs

There is one wooden staircase inside the building between the main floor and the basement.

A set of exterior wooden stairs exist at the southern entrance.

1. Condition

Both sets of stairs appear to be in good condition.

The paint is peeling at the exterior staircase.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to either set of stairs.

3. Deficiencies

Peeling paint leaves wood unprotected which will accelerate deterioration.

4. Effective Life Remaining

With proper maintenance, the staircases should be effective through the remaining life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

The exterior staircase should be prepared and painted for an estimated cost of \$500.

4.10 Chimney

There is an existing brick chimney in the basement.

1. Condition

The chimney appeared to be in good condition.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to the chimney.

3. Deficiencies

There did not appear to be any deficiencies at the chimney.

4. Effective Life Remaining

The chimney should be effective through the remaining life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

There are no recommendations at this time.

4.11 Fixed Furnishings

The fixed furnishings include a laminate counter, wood cupboards, a toilet, a bathtub, and a vanity.

1. Condition

The furnishing generally appeared to be in good condition.

The caulking at the bathtub has failed.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to the fixed furnishings.

3. Deficiencies

Failed caulking will allow the ingress of water and lead to eventual mould or rot.

4. Effective Life Remaining

With proper maintenance, the fixed furnishings should be effective through the remaining life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

The caulking should be replaced at the bathtub.

For the long term expenditures, an estimated cost of 1,000 should be allowed for minor repairs in the 6^{th} year.

5 Duplex Dwelling

The Duplex Dwelling was constructed circa 1965 and is located on the southern shore of Sunday Point. The building is two storeys with a walk-out basement as the first floor. The building is approximately 31 ft. x 64 ft. or 2,000 sq. ft. (not including the basement), and consists of two units comprising of three bedrooms, one bathroom, one kitchen, and one living room.

5.1 Foundation

The foundation for the Duplex Dwelling consists of masonry block foundation walls and a reinforced, cast-in-place concrete slab. Reinforced, cast-in-place concrete strip footings likely support the foundation walls. It is unknown if the masonry walls are reinforced or hollow.

1. Condition

The foundation appeared to be in fair physical and functional condition.

Six medium to wide step cracks (ie. cracks through the mortar joints) were observed at the exterior of the masonry foundation walls at the north and west faces of the building. The cracks typically originate at the windows located within the foundation walls. Two medium to wide splitting failure cracks (ie. vertical cracks through the masonry block and mortar joints) were observed at the exterior of the north masonry foundation wall.

One full width (ie. north/south) wide crack and a few associated narrow cracks were observed at the concrete slab at the east end of the west unit.

2. Recent Repairs/Modifications

Caulking had been used to seal the foundation wall cracks approximately 20 years ago. The caulking has failed.

3. Deficiencies

The cracks in the foundation walls appear stable. However, the cracks will allow water to continue to penetrate into the basement, and will expose any reinforcing steel to oxygen causing corrosion, reducing the effective life of the element.

The crack in the concrete slab appears stable, and should not deteriorate further.

4. Effective Life Remaining

The remaining effective life of the foundation with proper maintenance is approximately 20+ years.

5. Recommendations

The mortar joints that contain cracks should be retooled. Since the masonry blocks may be hollow, the crack in the block should be sealed with polyurethane foam. This repair should be done in the next 1-5 years for an estimated cost of \$10,000.

For the long term expenditures, an estimated cost of 10,000 should be allowed for minor repairs in the 16^{th} year.

5.2 Superstructure

The superstructure for the Duplex Dwelling generally consists of $2^{\circ}x10^{\circ}$ timber joins at 16° ctrs supported by the foundation walls and a 6° x10° built-up timber beam on steel teleposts at the second floor.

1. Condition

The superstructure shows no obvious signs of cracking, settlement or movement, and therefore is considered to be in good physical and functional condition.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the superstructure.

3. Deficiencies

There did not appear to be any deficiencies at the superstructure.

4. Effective Life Remaining

With normal maintenance, the superstructure should continue to perform over the remaining life of the building. The effective life remaining is approximately 20+ years.

5. Recommendations

Other than normal maintenance, no major repairs to any of the superstructures are anticipated over the next 5-10 years.

For the long term expenditures, an estimated cost of 2,000 should be allowed for minor repairs in the 11^{th} and 21^{st} years.

5.3 Exterior Walls

The exterior walls consist of wood siding veneer and drywall on the interior. The construction of the walls was not confirmed.

1. Condition

In general, the exterior walls are in good condition.

Paint peeling was observed at a few locations at the wood siding at the east, west, and north faces.

Weathering was observed at the east, west, and north faces.

2. Recent Repairs/Modifications

It appeared the south wall had been painted sometime in the summer of 2016. The north wall was in the process of being painted at the time of inspection.

3. Deficiencies

Peeling paint will allow water to penetrate to the base material.

4. Effective Life Remaining

With normal maintenance, the exterior walls should continue to perform over the remaining life of the buildings. The effective life remaining is approximately 20+ years.

5. Recommendations

For the long term expenditures an estimated cost of 5,000 should be allowed for prep & paint of the siding in the 11^{th} year.

5.4 Exterior Doors

There are four exterior doors on the south side of the building: two at each corner. Two are at ground level, and two are at the second floor, accessed by timber stairs. All of the doors are wood with two windows. The door at the southwest corner at ground level also contains a dog door. Each door also includes a storm door.

1. Condition

All of the doors appeared to be in good condition.

Some of the sealant at the door trim is cracked.

2. Recent Repairs/Modifications

The doors do not appear original to the structure.

3. Deficiencies

Cracked sealant will allow water penetration.

4. Effective Life Remaining

With normal maintenance, the exterior doors should continue to perform for the next 10-15 years.

5. Recommendations

For the long term expenditures, an estimated cost of 8,000 should be allowed for door replacement in the 11^{th} year.

5.5 Windows

There are 18 wooden frame, hung windows at the exterior walls on the second floor, and 10 wooden frame windows at the foundation walls.

1. Condition

In general, the windows are in fair condition.

The sealants at some windows have cracked and failed.

The paint is peeling and weathered at the foundation windows.

2. Recent Repairs/Modifications

The existing windows appear original to the building.

It appeared the window frames at the exterior walls had been painted recently.

3. Deficiencies

Failed window sealants will allow the ingress of water, leading to mould problems or rot.

Peeling and weathered paint may lead to the rot of the window frame.

4. Effective Life Remaining

Since the structure is unoccupied during the winter months, replacement of the windows to achieve improved heat retention is unnecessary. Therefore, with proper maintenance, the existing windows may last the remainder of the expected life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

New caulking should be provided at all windows for an estimated cost of \$500.

The window frames should be prepared and painted for an estimated cost of \$500.

For the long term expenditures, an estimated cost of \$1,000 should be allowed for minor repairs in the 11th year.

5.6 Roofing

The roof of the Duplex Dwelling is cross-hipped and clad in preformed metal over asphalt shingles.

1. Condition

The preformed metal roof appeared to be in good condition.

2. Recent Repairs/Modifications

Photos within the XCG report titled "Enhanced Phase 1 Environmental Assessment Canadian Coast Guard Light Station L.L. 1111, Slate Islands, Lake Superior, Ontario" dated April 2, 2001 show the preformed metal roof. Therefore, the existing asphalt shingles had been re-covered sometime prior to 2001.

3. Deficiencies

There did not appear to be any deficiencies at the preformed metal roof.

4. Effective Life Remaining

Since the existing asphalt shingles were re-covered with preformed metal sometime prior to 2001, it can be assumed that the roofing material is roughly halfway through its 40 year design life.

5. Recommendations

Minor maintenance such as providing new sealants at penetrations and replacement of fasteners may be required in the next 6-10 years for an estimated cost of \$1,000.

For the long term expenditures, an estimated cost of 50,000 should be allowed for roof replacement in the 21^{st} year.

5.7 Floors

The flooring within the Duplex Dwelling is vinyl tiling.

1. Condition

In general, the flooring appeared to be in good condition.

2. Recent Repairs/Modifications

The flooring appeared original to the structure.

It did not appear any repairs or modifications had been done to the flooring.

3. Deficiencies

No deficiencies were observed at the flooring.

4. Effective Life Remaining

With proper maintenance, the existing tiling should continue to perform adequately for the remaining life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

There are no recommendations at this time.

5.8 Ceilings and Walls

The existing ceilings and walls consist of drywall.

1. Condition

The ceilings and walls appeared to be in good condition.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to the ceilings or walls.

3. Deficiencies

There were no deficiencies observed.

4. Effective Life Remaining

With proper maintenance, the existing ceilings and walls should continue to perform adequately for the remaining life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

There are no recommendations at this time.

5.9 Stairs

There are two interior wooden staircases, one in each unit, between the main floor and the second floor.

There are two exterior wooden staircases, one for each unit, providing access to the second floor entrances on the south side of the building.

1. Condition

All staircases appeared to be in good condition.

Paint peeling was observed at the exterior southeast corner staircase.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to either interior set of stairs.

The stairs at the exterior southeast corner appear to be new construction.

The stairs at the exterior southwest corner appear to be original to the structure. The mid rail at the landing has been replaced.

3. Deficiencies

Peeling paint leaves wood unprotected which will accelerate deterioration.

4. Effective Life Remaining

With proper maintenance, the staircases should be effective through the remaining life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

The exterior staircase should be prepared and painted for an estimated cost of \$500.

5.10 Chimney

There are two existing masonry block chimneys in the basement, one in each unit.

1. Condition

The east chimney appeared to be in good condition.

The west chimney appeared to be in fair condition. Bed joint cracks (ie. cracks through the horizontal mortar joints) were observed in the chimney above the roof line.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to either chimney.

Temporary strapping has been provided at the west chimney to hold bricks in place.

3. Deficiencies

The cracks in the mortar bed joints will allow water penetration.

4. Effective Life Remaining

The chimney should be effective through the remaining life of the structure with proper maintenance. The effective life remaining is approximately 10+ years.

5. Recommendations

The mortar joints that contain cracks should be retooled. This repair should be done for an estimated cost of \$5,000.

5.11 Fixed Furnishings

The fixed furnishings include a laminate counter in each kitchen, wood cupboards in each kitchen, two toilets, two bathtubs, and two sinks.

1. Condition

The furnishing generally appeared to be in good condition.

The caulking at the bathtubs has failed.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to the fixed furnishings.

3. Deficiencies

Failed caulking will allow the ingress of water and lead to mould or rot.

4. Effective Life Remaining

With proper maintenance, the fixed furnishings should be effective through the remaining life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

The caulking should be replaced at the bathtub.

For the long term expenditures, an estimated cost of 1,000 should be allowed for minor repairs in the 6^{th} year.

6 Old Fog Alarm/Generator Building

The Old Fog Alarm/Generator Building was constructed in the early 1900's and is located on the southern shore of Sunday Point. The building is two storeys and does not have a basement. The building is approximately 44 ft. x 37 ft., or 1,600 sq. ft. (not including the second floor).

6.1 Foundation

The foundation for the Old Fog Alarm/Generator Building consists of a reinforced, cast-in-place concrete slab. Reinforced, cast-in-place concrete strip footings likely support the building's exterior walls.

1. Condition

The foundation appeared to be in fair physical and functional condition.

Numerous medium to wide random cracks were observed at the concrete slab around the existing generators.

Paint peeling and wear was observed throughout the concrete slab.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the foundation.

3. Deficiencies

The cracks in the concrete slab will continue to lengthen and widen over time. Water or spilled fuels can leach through the cracks. Water entry into the cracks will accelerate deterioration through the freeze/thaw cycle.

4. Effective Life Remaining

The remaining effective life of the foundation is approximately 20+ years.

5. Recommendations

All cracks should be injected with epoxy from inside the building to provide a structural repair that is impervious to water and air. This repair should be done in the next 1-5 years for an estimated cost of \$5,000.

For the long term expenditures, an estimated cost of 10,000 should be allowed for minor repairs in the 16^{th} year.

6.2 Superstructure

The roof construction consists of 2"x4" timber rafters @ 24" ctrs. and 2"x6" timber ceiling joists at 24" ctrs.

1. Condition

The superstructure shows no obvious signs of cracking, settlement or movement, and therefore is considered to be in good physical and functional condition.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the superstructure.

3. Deficiencies

There did not appear to be any deficiencies at the superstructure.

4. Effective Life Remaining

With normal maintenance, the superstructure should continue to perform over the remaining life of the building. The effective life remaining is approximately 20+ years.

5. Recommendations

Other than normal maintenance, no major repairs to any of the superstructures are anticipated over the next 5-10 years.

For the long term expenditures, an estimated cost of \$2,000 should be allowed for minor repairs in the 11th and 21st years.

6.3 Exterior Walls

The exterior walls consist of wood shingle siding veneer on rough sawn 2"x6" timbers at 24" ctrs.

1. Condition

In general, the exterior walls are in good condition.

2. Recent Repairs/Modifications

It appeared the exterior walls had been painted sometime in the last few years.

3. Deficiencies

No deficiencies were observed at the exterior walls.

4. Effective Life Remaining

With normal maintenance, the exterior walls should continue to perform over the remaining life of the buildings. The effective life remaining is approximately 20+ years.

5. Recommendations

For the long term expenditures an estimated cost of 5,000 should be allowed for prep & paint of the siding in the 11^{th} year.

6.4 Exterior Doors

There are two exterior doors, one at the east side of the building, and one at the west side of the building.

The east door is a double wide, wooden door mounted in a wood frame with a wood sill.

The west door is a single wooden door mounted to the structure at an opening in the wall. There is no frame or sill.

1. Condition

The east door appeared to be in fair condition. Some paint peeling was observed. The door, sill, and timber below the sill appeared weathered. The weather stripping at the door is ineffective.

The west door appeared to be in fair condition. There is no weather stripping at the door. Since there is no sill, rainwater may accumulate at this entrance.

2. Recent Repairs/Modifications

The doors appear original to the building. The exterior of the doors appear to have been painted in the last few years.

3. Deficiencies

Peeling and weathered paint at the timber door and timber sill may lead to rot.

Missing or ineffective weather stripping will allow the ingress of water.

The missing timber sill will allow water to run off the door into the building.

4. Effective Life Remaining

The existing doors have reached their design life.

5. Recommendations

The existing doors should be replaced to provide properly weather sealed entrances, for an estimated cost of \$2,000.

For the long term expenditures, an estimated cost of \$1,000 should be allowed for minor repairs in the 11th year.

6.5 Windows

There are 13 wooden frame, hung windows, four wooden frame fixed (decorative) windows, and one wooden frame fixed (picture) window at the exterior walls.

1. Condition

In general, the windows are in fair condition.

The sealants at all windows have failed.

The paint is peeling and weathered at all windows.

2. Recent Repairs/Modifications

The existing windows appear original to the building.

It appeared the window frames at the exterior walls had been painted in the last 10 years.

3. Deficiencies

Failed window sealants will allow the ingress of water, leading to eventual mould problems or rot.

Peeling and weathered paint may lead to the eventual rot of the window frame.

4. Effective Life Remaining

Since the structure is unoccupied during the winter months, replacement of the windows to achieve improved heat retention is unnecessary. Therefore, with proper maintenance, the existing windows may last the remainder of the expected life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

New caulking should be provided at all windows for an estimated cost of \$500.

The window frames should be prepared and painted for an estimated cost of \$500.

For the long term expenditures, an estimated cost of 1,000 should be allowed for minor repairs in the 11^{th} year.

6.6 Roofing

The roof is gabled and clad in asphalt shingles.

1. Condition

The asphalt shingles appeared to be in poor condition.

Fishmouthing and curling of the asphalt shingles was observed in numerous locations. Moss growth was observed in numerous locations.

The eavestroughs are in poor condition, and no downspouts are provided.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the roofing.

3. Deficiencies

Fishmouthing and curling of the asphalt shingles allows the ingress of water into the building.

4. Effective Life Remaining

The existing asphalt shingles have reached their effective life.

The existing eavestroughs have reached their effective life.

5. Recommendations

The asphalt single roofing should be removed and replaced with preformed metal roofing, similar to the other buildings at the site, for an estimated cost of approximately \$50,000. The existing roof structure can withstand this rehabilitation effort.

New eavestroughs and downspouts should be provided for an estimated cost of \$5,000.
6.7 Floors

The flooring within the upper level consists of hardwood.

2. Condition

In general, the flooring appeared to be in good condition.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to the flooring.

3. Deficiencies

No deficiencies were observed at the flooring.

4. Effective Life Remaining

With proper maintenance, the existing hardwood flooring should continue to perform adequately for the remaining life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

There are no recommendations at this time.

6.8 Ceilings and Walls

The existing ceilings and walls consist of wood panels.

1. Condition

The ceilings and walls generally appeared to be in poor condition.

The paint has peeled at a many locations at the interior walls.

There is a hole in the ceiling within the main area at the ground floor.

Evidence of water damage was observed at several locations at the upper floor, especially near the chimneys.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to the ceilings or walls.

3. Deficiencies

The water damage indicates that the roof is leaking.

4. Effective Life Remaining

The panelling has reached its design life.

5. Recommendations

The ceilings and walls that contain holes or water damage should be replaced at an estimated cost of \$5,000.

6.9 Stairs

There is one wooden staircase and one wooden ladder inside the building between the main floor and the second floor.

1. Condition

Both sets of stairs appear to be in fair condition.

The stairs do not include a handrail.

The ladder was narrower than current standards. The rungs and siderails do not meet current standards. The ladder does not project into the opening above.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to either set of stairs.

3. Deficiencies

The lack of handrail and narrowness of the ladder creates unsafe climbing environments.

4. Effective Life Remaining

With proper maintenance, the staircase should be effective through the remaining life of the structure. The effective life remaining is approximately 20+ years.

The ladder has reached its effective life.

5. Recommendations

A handrail should be provided at the stairs for an estimated cost of \$500.

The ladder should be replaced for an estimated cost of \$1,000.

6.10 Chimney

There are two existing brick chimneys.

1. Condition

The chimneys appeared to be in fair condition.

Voids at the mortar joints were observed at a few locations.

One brick is missing and one brick is broken at the north chimney.

The flashing around each chimney is in poor condition.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to the chimney.

3. Deficiencies

Crack at the mortar joints, missing/broken bricks, and poor flashing allow the ingress of water into the building.

4. Effective Life Remaining

The chimneys should be effective through the remaining life of the structure, with proper rehabilitation and maintenance. The effective life remaining is approximately 10+ years.

5. Recommendations

The voids at the mortar joints, the missing brick, and the broken brick should be repaired with a concrete repair mortar for an estimated cost of \$5,000.

The flashing at the chimneys should be replaced in combination with the roof replacement, for an estimated cost of \$5,000.

6.11 Fixed Items

The fixed furnishings include three generators, a control panel, and a steel boiler.

1. Condition

The furnishing generally appeared to be in good condition.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to the fixed furnishings.

3. Deficiencies

No deficiencies were observed.

4. Effective Life Remaining

With proper maintenance, the fixed items should be effective through the remaining life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

There are no recommendations at this time.

7 New Fog Alarm/Electronics Building

The New Fog Alarm/Electronics Building was constructed circa 1975 and is located on the southern shore of Sunday Point. The building is one storey and does not have a basement. The building is approximately 20 ft. x 12 ft., or 240 sq. ft.

7.1 Foundation

The foundation for the Main Dwelling consists of a reinforced, cast-in-place concrete slab.

3. Condition

The foundation appeared to be in good physical and functional condition.

4. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the foundation.

3. Deficiencies

No deficiencies were observed at the foundation.

4. Effective Life Remaining

The remaining effective life of the foundation is approximately 20+ years.

5. Recommendations

For the long term expenditures, an estimated cost of 2,000 should be allowed for minor repairs in the 16^{th} year.

7.2 Exterior Walls

The exterior walls consist of transite (hard asbestos board).

1. Condition

In general, the exterior walls are in fair condition.

The sealant between the top of the walls and the roof has failed. There is no sealant between the bottom of the walls and the concrete foundation.

Light corrosion was observed at most of the fasteners.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modification had been made to the exterior walls.

3. Deficiencies

The failed/missing sealants will allow the penetration of water.

Corrosion will continue to progress at the fasteners.

4. Effective Life Remaining

With normal maintenance, the exterior walls should continue to perform over the remaining life of the buildings. The effective life remaining is approximately 20+ years.

5. Recommendations

The sealant should be replaced between the walls and roof, and sealant should be provided between the walls and the foundation, at an estimated cost of \$500.

The corroded fasteners should be replaced for an estimated cost of \$500.

For the long term expenditures an estimated cost of \$1,000 should be allowed for new sealant at the siding in the 11th year.

7.3 Exterior Doors

There are two exterior doors, one at the east side of the building, and one at the north side of the building.

Both doors are steel doors in wood frames.

1. Condition

The doors appeared to be in fair condition.

The sealants around the doors have cracked, and the weather stripping is ineffective.

Light corrosion was observed at the bottom of the doors.

Paint peeling was observed at the door frames.

2. Recent Repairs/Modifications

The doors appear original to the building. It did not appear any recent repairs or modifications have been made to the exterior doors.

3. Deficiencies

The cracked sealants and ineffective weather stripping allows the ingress of water.

Peeling paint allows corrosion of the element.

4. Effective Life Remaining

With proper maintenance, the exterior doors should last the remainder of the expected life of the structure. The effective life remaining is approximately 10-15 years.

5. Recommendations

The sealants and weather stripping around the doors should be replaced for an estimated cost of \$1,000.

The door frames and door should be wire brush cleaned and painted for an estimated cost of \$1,000.

For the long term expenditures, an estimated cost of 1,000 should be allowed for minor repairs in the 11^{th} year.

7.4 Roofing

The roof is gabled and clad in transite.

1. Condition

The transite roofing appeared to be in fair condition.

The closer strip beneath the roofing has failed.

Some moss growth was observed at the roof.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the roofing.

3. Deficiencies

The failed closer strip will allow the ingress of water.

4. Effective Life Remaining

The roofing should last the expected remaining life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

The closer strip should be replaced for an estimated cost of \$1,000.

For the long term expenditures, an estimated cost of \$1,000 should be allowed for minor repairs in the 11th year.

7.5 Ceilings and Walls

The existing ceilings and walls consist of transite.

1. Condition

The ceilings and walls generally appeared to be in good condition.

The sealant at the joints between panels has cracked a few locations.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to the ceilings or walls.

3. Deficiencies

The cracked sealants allow water entry into the building.

4. Effective Life Remaining

The transite panels should last the design life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

The sealants should be replaced for an estimated cost of \$500.

7.6 Fixed Items

There is an electrical panel within the building.

8 New Diesel Generator Building

The New Diesel Generator Building was constructed circa 1975 and is located on the southern shore of Sunday Point. The building is one storey and does not have a basement. The building is approximately 20 ft. x 12 ft., or 240 sq. ft.

8.1 Foundation

The foundation for the Main Dwelling consists of a reinforced, cast-in-place concrete slab.

1. Condition

The foundation appeared to be in fair physical and functional condition.

There are a few narrow cracks in the concrete slab inside the building.

There is one wide crack at the northwest corner of the foundation.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the foundation.

3. Deficiencies

The exterior crack will allow the penetration of water and allow deterioration to progress.

4. Effective Life Remaining

The remaining effective life of the foundation is approximately 20+ years.

5. Recommendations

The exterior crack should be injected with epoxy for an estimated cost of \$1,000.

For the long term expenditures, an estimated cost of 2,000 should be allowed for minor repairs in the 16^{th} year.

8.2 Exterior Walls

The exterior walls consist of transite (hard asbestos board).

1. Condition

In general, the exterior walls are in fair condition.

The sealant between the top of the walls and the roof has failed. There is no sealant between the bottom of the walls and the concrete foundation.

The transite is cracked at the door in three locations.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modification had been made to the exterior walls.

3. Deficiencies

The failed/missing sealants will allow the penetration of water.

The cracks will lengthen over time and allow the penetration of water.

4. Effective Life Remaining

With normal maintenance, the exterior walls should continue to perform over the remaining life of the buildings. The effective life remaining is approximately 20+ years.

5. Recommendations

The sealant should be replaced between the walls and roof, and sealant should be provided between the walls and the foundation, at an estimated cost of \$500.

The ends of the cracks in the transite panels should be drilled, and the cracks sealed for an estimated cost of \$500.

For the long term expenditures an estimated cost of \$1,000 should be allowed for new sealant at the siding in the 11th year.

8.3 Exterior Doors

There is one exterior door at the west side of the building.

The door is a steel door in a wood frame.

1. Condition

The door appeared to be in fair condition.

The sealant around the door has cracked, and the weather stripping is ineffective.

Light corrosion was observed at the top and bottom of the door.

Paint peeling was observed at the door and door frame.

2. Recent Repairs/Modifications

The door appears original to the building. It did not appear any recent repairs or modifications have been made to the exterior door.

3. Deficiencies

The cracked sealant and ineffective weather stripping allows the ingress of water.

Peeling paint allows corrosion of the element.

4. Effective Life Remaining

With proper maintenance, the exterior doors should last the remainder of the expected life of the structure. The effective life remaining is approximately 10-15 years.

5. Recommendations

The sealants and weather stripping around the doors should be replaced for an estimated cost of \$1,000.

The door frames and door should be wire brush cleaned and painted for an estimated cost of \$1,000.

For the long term expenditures, an estimated cost of 1,000 should be allowed for minor repairs in the 11^{th} year.

8.4 Roofing

The roof is gabled and clad in transite.

1. Condition

The transite roofing appeared to be in fair condition.

The closer strip beneath the roofing has failed.

Some moss growth was observed at the roof.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the roofing.

3. Deficiencies

The failed closer strip will allow the ingress of water.

4. Effective Life Remaining

The roofing should last the expected remaining life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

The closer strip should be replaced for an estimated cost of \$1,000.

For the long term expenditures, an estimated cost of \$1,000 should be allowed for minor repairs in the 11th year.

8.5 Ceilings and Walls

The existing ceilings and walls consist of transite.

1. Condition

The ceilings and walls generally appeared to be in good condition.

The sealant at the joints between panels has cracked a few locations.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to the ceilings or walls.

3. Deficiencies

The cracked sealants allow water entry into the building.

4. Effective Life Remaining

The transite panels should last the design life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

The sealants should be replaced for an estimated cost of \$500.

8.6 Fixed Items

There are three generators and several control panels inside the building.

9 Former Oil House

The former oil house was constructed in the 1920's and is located on the southern shore of Sunday Point. The building is essentially a shed, is one storey, and does not have a basement or foundation. The building is approximately 16 ft. x 12 ft., or 192 sq. ft.

9.1 Superstructure

The superstructure for the former oil house generally consists of 2"x4" timber rafters at 24" ctrs supported by the exterior walls that consist of 2"x4" timbers at 24" ctrs.

1. Condition

The superstructure shows no obvious signs of cracking, settlement or movement, and therefore is considered to be in good physical and functional condition.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the superstructure.

3. Deficiencies

There did not appear to be any deficiencies at the superstructure.

4. Effective Life Remaining

With normal maintenance, the superstructure should continue to perform over the remaining life of the building. The effective life remaining is approximately 20+ years.

5. Recommendations

Other than normal maintenance, no major repairs to any of the superstructures are anticipated over the next 5-10 years.

For the long term expenditures, an estimated cost of \$2,000 should be allowed for minor repairs in the 11th and 21st years.

9.2 Exterior Walls

The exterior walls consist of 2" x 6" timbers.

1. Condition

In general, the exterior walls are in fair condition.

Paint peeling was observed throughout

2. Recent Repairs/Modifications

The exterior walls have been painted at some point since original construction.

3. Deficiencies

Peeling paint removes the protective coating from the timber, allowing deterioration to progress.

4. Effective Life Remaining

With normal maintenance, the exterior walls should continue to perform over the remaining life of the buildings. The effective life remaining is approximately 20+ years.

5. Recommendations

The exterior walls should be prepared and painted, for an estimated cost of \$1,000.

For the long term expenditures an estimated cost of \$1,000 should be allowed for preparation and painting in the 11th year.

9.3 Exterior Doors

There is one, double exterior door at the east side of the building.

The door is a wood door in a wood frame.

1. Condition

The door appeared to be in fair condition.

Paint peeling was observed at the door and door frame.

There is no weather stripping or sealant at the door.

2. Recent Repairs/Modifications

The door appears original to the building. The door has been painted at some point since original construction.

3. Deficiencies

Peeling paint removes the protective coating from the timber, allowing deterioration to progress.

4. Effective Life Remaining

The effective remaining life of the door is likely 10-15 years.

5. Recommendations

Sealants and weather stripping at the door will not extend the life of the door or the structure.

The door should be prepared and painted, for an estimated cost of \$1,000.

For the long term expenditures an estimated cost of 2,000 should be allowed for a new door in the 11^{th} year.

9.4 Roofing

The roof of the former oil house is gabled and clad in preformed metal over asphalt shingles.

1. Condition

The preformed metal roof appeared to be in good condition.

2. Recent Repairs/Modifications

Photos within the XCG report titled "Enhanced Phase 1 Environmental Assessment Canadian Coast Guard Light Station L.L. 1111, Slate Islands, Lake Superior, Ontario" dated April 2, 2001 show the preformed metal roof. Therefore, the existing asphalt shingles had been re-covered sometime prior to 2001.

3. Deficiencies

There did not appear to be any deficiencies at the preformed metal roof.

4. Effective Life Remaining

Since the existing asphalt shingles were re-covered with preformed metal sometime prior to 2001, it can be assumed that the roofing material is roughly halfway through its 40 year design life.

5. Recommendations

Minor maintenance such as providing new sealants at penetrations and replacement of fasteners may be required in the next 6-10 years for an estimated cost of \$1,000.

For the long term expenditures, an estimated cost of 10,000 should be allowed for roof replacement in the 21^{st} year.

10 Furnace Oil Tank Pad

The Furnace Oil Tank Pad is located on the southern shore of Sunday Point, just north of the Duplex Dwelling. It is unknown when the pad was constructed. The pad is approximately 9 ft. x 9 ft. x 6 in. thick and contains four concrete cradles.

10.1 Concrete Slab

The Furnace Oil Tank Pad consists of a six inch thick, reinforced, cast-in-place concrete pad.

1. Condition

The concrete slab appeared to be in fair condition.

Light to severe scaling was observed at the concrete slab.

Erosion was observed below the slab.

Trees and other vegetation have taken hold around the concrete slab.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the foundation.

3. Deficiencies

Scaling will allow water to remain on the concrete surface, furthering deterioration.

Erosion will eventually undermine the slab.

4. Effective Life Remaining

The remaining effective life of the foundation with little maintenance could be approximately 20+ years.

5. Recommendations

Since the pad is abandoned, there are no recommendations at this time.

10.2 Concrete Cradles

The pad contains four concrete cradles that were once used for diesel tanks.

1. Condition

The concrete cradles appeared to be in fair condition.

Light to medium scaling was observed at the cradles.

Narrow to medium cracks were observed.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the foundation.

3. Deficiencies

Scaling will allow water to site on the concrete surface, furthering deterioration.

Cracks will allow the ingress of water, furthering deterioration.

4. Effective Life Remaining

The remaining effective life of the concrete cradles with little maintenance could be approximately 20+ years.

5. Recommendations

Since the pad is abandoned, there are no recommendations at this time.

The Diesel Tank Pad is located on the southern shore of Sunday Point, northeast of the New Diesel Generator Building. It was constructed circa 1958. The pad is approximately 30 ft. x 15 ft. x 6 in. thick and contains six concrete cradles.

11.1 Concrete Slab

The Diesel Tank Pad consists of a six inch thick, reinforced, cast-in-place concrete pad.

1. Condition

The concrete slab appeared to be in fair condition.

Light scaling was observed throughout the concrete slab.

Erosion was observed below the slab.

Trees and other vegetation have taken hold around the concrete slab.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the foundation.

3. Deficiencies

Scaling will allow water to remain on the concrete surface, furthering deterioration.

Erosion will eventually undermine the slab.

4. Effective Life Remaining

The remaining effective life of the foundation with little maintenance could be approximately 20+ years.

5. Recommendations

Since the pad is abandoned, there are no recommendations at this time.

11.2 Concrete Cradles

The pad contains six concrete cradles that were once used for diesel tanks.

1. Condition

The concrete cradles appeared to be in fair condition.

Light scaling was observed at the cradles.

Vegetation growth was observed at the cradles.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the foundation.

3. Deficiencies

Scaling will allow water to site on the concrete surface, furthering deterioration.

4. Effective Life Remaining

The remaining effective life of the concrete cradles with little maintenance could be approximately 20+ years.

5. Recommendations

Since the pad is abandoned, there are no recommendations at this time.

12 Diesel Tank Dyke

The Diesel Tank Dyke is located on the southern shore of Sunday Point, north of the New Fog Alarm/Electronics Building. It was constructed circa 1970. The dyke is a concrete containment area and is approximately 30 ft. x 10.5 ft. x 3.5 ft. deep.

12.1 Concrete Walls

The Diesel Tank Dyke consists of four inch thick, reinforced, cast-in-place concrete walls.

1. Condition

The concrete walls appeared to be in good condition.

Light scaling was observed throughout the concrete walls.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the foundation.

3. Deficiencies

Scaling will allow water to site on the concrete surface, furthering deterioration.

4. Effective Life Remaining

The remaining effective life of the foundation with little maintenance could be approximately 20+ years.

5. Recommendations

Since the dyke is abandoned, there are no recommendations at this time.

12.2 Concrete Slab

The base of the dyke consists of a reinforced, cast-in-place concrete slab.

1. Condition

The concrete slab appeared to be in fair condition.

Vegetation growth was observed at the slab.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the foundation.

3. Deficiencies

Vegetation roots will cause further deterioration of the slab.

4. Effective Life Remaining

The remaining effective life of the concrete slab with little maintenance could be approximately 20+ years.

5. Recommendations

Since the dyke is abandoned, there are no recommendations at this time.

13 Transformer

The Transformer is located on the southern shore of Sunday Point, north of the New Fog Alarm/Electronics Building, construction date unknown. The Transformer is located inside a steel box on a 6 ft. x 6 ft. x 6 in. thick, reinforced, cast-in-place concrete foundation.

13.1 Concrete Slab

The concrete foundation for the Transformer is a reinforced, cast-in-place concrete slab.

1. Condition

The concrete slab appeared to be in fair condition.

Medium scaling was observed throughout the concrete slab.

Trees and other vegetation have taken hold around the concrete slab.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the foundation.

3. Deficiencies

Scaling will allow water to site on the concrete surface, furthering deterioration.

4. Effective Life Remaining

The remaining effective life of the foundation with little maintenance could be approximately 20+ years.

5. Recommendations

There are no recommendations at this time.

13.2 Steel Box

The Transformer is contained within a steel box.

1. Condition

The steel box appeared to be in fair condition.

Light corrosion and paint peeling was observed throughout the box.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the foundation.

3. Deficiencies

Corrosion will continue at an accelerated rate unless remedial action is taken.

4. Effective Life Remaining

The remaining effective life of the steel box with little maintenance could be approximately 20+ years.

5. Recommendations

The steel box should be prepared and painted, at an estimated cost of \$5,000.

For the long term expenditures, an estimated cost of 2,000 should be allowed for repainting in the 11^{th} year.

14 Lower Helicopter Pad

The Lower Helicopter Pad is located on the southern shore of Sunday Point, just east of the New Diesel Generator Building. It is unknown when the pad was constructed. The pad is approximately 20 ft. x 24 ft. x 6 in. thick.

14.1 Concrete Slab

The Lower Helicopter Pad consists of a 20 ft. x 24 ft. x 6 in. thick cast-in-place concrete slab.

1. Condition

The concrete slab appeared to be in fair condition.

Light to medium scaling was observed throughout the concrete slab.

Erosion was observed below the slab.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the foundation.

3. Deficiencies

Scaling will allow water to remain on the concrete surface, furthering deterioration.

Erosion will eventually undermine the slab.

4. Effective Life Remaining

The remaining effective life of the concrete slab with little maintenance could be approximately 20+ years.

5. Recommendations

There are no recommendations at this time.

15 Lighthouse Dock

The Lighthouse Dock is located on the southern shore of Sunday Point. It was constructed in the 1960's. The concrete dock extends approximately 110 ft. from the shore, is 5 ft. wide along most of its length, and at the outer end is 19 ft. wide. The outer end of the dock contains concrete walls on two sides, and contains a steel hoist.

15.1 Concrete Deck

The concrete deck is typically five feet wide, and consists of reinforced, cast-in-place concrete. The outer end is 19 ft. wide.

1. Condition

The concrete deck appeared to be in fair condition.

Light to medium scaling was observed throughout the concrete dock.

Wide cracks were observed at a few locations.

Light spalling was observed at the outer end. Ponding water was observed within the spalls.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the concrete deck.

3. Deficiencies

Scaling and spalling will allow water to remain on the concrete surface, furthering deterioration.

Wide cracks will allow the ingress of water, furthering deterioration.

4. Effective Life Remaining

The remaining effective life of the concrete deck with little maintenance could be approximately 20+ years.

5. Recommendations

To prevent the existing cracks from widening or lengthening, the cracks should be injected with epoxy for an estimated cost of \$5,000.

15.2 Concrete Walls

The outer end of the dock is partially enclosed by concrete walls.

1. Condition

The concrete walls appeared to be in fair to poor condition.

Light to medium scaling was observed throughout the concrete dock.

Wide cracks were observed at a few locations.

Severe spalling was observed at several locations.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the concrete dock.

3. Deficiencies

Scaling and spalling will allow water to remain on the concrete surface, furthering deterioration.

Wide cracks will allow the ingress of water, furthering deterioration.

4. Effective Life Remaining

The remaining effective life of the concrete dock with little maintenance could be approximately 20+ years.

5. Recommendations

Since the concrete walls continue to perform as intended (as a wave break), and the existing deterioration does not pose an immediate risk to users or to the overall lifespan of the structure, no remedial action is recommended at this time.

For the long term expenditures, an estimated cost of \$10,000 should be allowed for repairs to the walls in the 11th year.

15.3 Steel Hoist

There is a steel hoist at the end of the dock.

1. Condition

The hoist appeared to be in good condition.

2. Recent Repairs/Modifications

The hoist appeared to have been painted recently.

3. Deficiencies

No deficiencies were observed at the steel hoist.

4. Effective Life Remaining

The steel hoist should continue to remain effective through the expected service life of the dock. The effective life remaining is approximately 20+ years.

5. Recommendations

For the long term expenditures, an estimated cost of 2,000 should be allowed for preparation and painting in the 11^{th} year.

The hoist should be load rated.

16 Log Retaining Wall

There is an existing retaining wall constructed of horizontal logs located just south of the Duplex Dwelling. The wall was constructed in the 1990's, and replaced the original masonry wall that had failed. The wall is approximately 60 ft. long x 3 ft. high.

1. Condition

The retaining wall appeared to be in fair to poor condition.

The logs were observed to contain medium to severe rot.

2. Recent Repairs/Modifications

It appeared that new logs were installed vertically at the west end of the wall to provide additional stability.

3. Deficiencies

The logs will continue to rot over time.

4. Effective Life Remaining

The log retaining wall has reached its design life.

5. Recommendations

A more permanent retaining wall should be constructed, A concrete retaining wall solution should be provided at an estimated cost of \$20,000.

17 Sidewalks

There are two concrete sidewalks at the site. One sidewalk leads from the Lighthouse Dock to the Main Dwelling and Old Fog Alarm/Generator Building. The second sidewalks leads from the first sidewalk to the Duplex Dwelling.

1. Condition

The sidewalks appeared to be in good condition.

The sidewalk is cracked and broken at one location.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the sidewalks

3. Deficiencies

The cracked and broken sidewalk panel will not affect its performance.

4. Effective Life Remaining

The remaining effective life of the concrete sidewalks with little maintenance could be approximately 20+ years.

5. Recommendations

The broken sidewalk panel should be replaced at an estimated construction cost of \$2000.

The Old Dwelling was constructed circa 1894 and is located on the northern shore of Sunday Point on Sunday Harbour. The building is two storeys with a basement and an attic. The building is approximately 1,000 sq. ft. (not including the basement) and consists of five bedrooms, one bathroom, one kitchen, one living room, and a storage area.

18.1 Foundation

The foundation for the Old Dwelling consists of stone and mortar foundation walls.

1. Condition

The foundation appeared to be in fair physical and functional condition.

The mortar joints appeared to have failed a few locations.

A stone was missing in the foundation wall at one location.

A large void in the west wall was covered over by timber.

2. Recent Repairs/Modifications

It appeared that concrete had been used in the past to repair voids in the wall.

3. Deficiencies

Failed mortar joints and voids within the wall will allow the ingress of water and contribute to further deterioration of the foundation.

4. Effective Life Remaining

The remaining effective life of the foundation with proper maintenance is approximately 20+ years.

5. Recommendations

The failed mortar joints should be repaired with a cementitious repair mortar for an estimated cost of \$2,000.

The voids in the foundation wall should be repaired with concrete for an estimated cost of \$5,000.

For the long term expenditures, an estimated cost of 10,000 should be allowed for minor repairs in the 16^{th} year.

18.2 Exterior Walls

The exterior walls consist of wood shingle siding veneer. The construction of the walls was not confirmed.

1. Condition

In general, the exterior walls are in good condition.

2. Recent Repairs/Modifications

It appeared the exterior walls had been painted sometime in the last few years.

3. Deficiencies

No deficiencies were observed at the exterior walls.

4. Effective Life Remaining

With normal maintenance, the exterior walls should continue to perform over the remaining life of the buildings. The effective life remaining is approximately 20+ years.

5. Recommendations

For the long term expenditures an estimated cost of 5,000 should be allowed for prep & paint of the siding in the 11^{th} year.

18.3 Exterior Doors

There is one exterior door on the west side of the building. It is a wood door with a large window mounted in a wood frame and a wood sill. There is also a storm door at the west entrance.

There is an exterior door on the south side of the building that has been closed off with plywood.

1. Condition

Both doors appeared to be in good condition.

Sealant was missing at both doors.

2. Recent Repairs/Modifications

The existing doors appear original to the building.

The door appeared to have been painted sometime in the last 10 years.

3. Deficiencies

Missing sealants allow the ingress of water.

4. Effective Life Remaining

The doors should continue to perform for the remaining life of the structure. The effective life remaining is approximately 10-15 years.

5. Recommendations

Sealant should be provided at the doors for an estimated cost of \$500.

For the long term expenditures, an estimated cost of \$1,000 should be allowed for minor repairs in the 11th year.

18.4 Windows

There are 11 wooden frame, hung windows and two wooden frame, fixed (decorative) windows at the exterior walls.

1. Condition

In general, the windows are in fair condition.

The sealants at all windows have failed.

2. Recent Repairs/Modifications

The existing windows appear original to the building.

It appeared the window frames at the exterior walls had been painted in the last 10 years.

3. Deficiencies

Failed window sealants will allow the ingress of water, leading to mould problems or rot.

4. Effective Life Remaining

Since the structure is unoccupied during the winter months, replacement of the windows to achieve improved heat retention is unnecessary. Therefore, with proper maintenance, the existing windows may last the remainder of the expected life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

New caulking should be provided at all windows for an estimated cost of \$500.

For the long term expenditures, an estimated cost of \$1,000 should be allowed for minor repairs in the 11th year.

18.5 Roofing

The roof of the Old Dwelling is cross-gabled and clad in asphalt shingles.

1. Condition

The asphalt shingles appeared to be in poor condition.

Fishmouthing and curling of the asphalt shingles was observed in numerous locations. Moss growth was observed in a few locations.

There were no eavestroughs or downspouts.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the roofing.

3. Deficiencies

Fishmouthing and curling of the asphalt shingles allows the ingress of water into the building.

4. Effective Life Remaining

The existing asphalt shingles have reached their effective life.

5. Recommendations

The asphalt single roofing should be removed and replaced with preformed metal roofing, similar to the other buildings at the site, for an estimated cost of approximately \$50,000.

New eavestroughs and downspouts should be provided for an estimated cost of \$5,000.

18.6 Floors

The flooring within the Old Dwelling includes vinyl tiling and hardwood at the main floor, and sawn timber at the upper floor.

1. Condition

In general, the flooring appeared to be in good condition.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to the flooring.

3. Deficiencies

There were no deficiencies observed at the flooring.

4. Effective Life Remaining

With proper maintenance, the existing flooring should continue to perform adequately for the remaining life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

There are no recommendations at this time.

18.7 Ceilings and Walls

The existing ceilings and walls consist of drywall at the main floor and wood panelling at the upper floor.

1. Condition

The ceilings and walls generally appeared to be in good condition.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to the ceilings or walls.

3. Deficiencies

There were no deficiencies observed at the ceilings and walls.

4. Effective Life Remaining

With proper maintenance, the existing ceilings and walls should continue to perform adequately for the remaining life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

There are no recommendations at this time.

18.8 Stairs

There is one wooden staircase inside the building between the main floor and the upper floor.

A set of exterior wooden stairs exist at the west entrance.

1. Condition

Both sets of stairs appear to be in good condition.

The paint is peeling at the interior staircase. There is no handrail.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to the interior set of stairs.

The exterior stairs appear newly constructed.

3. Deficiencies

Peeling paint leaves wood unprotected which will accelerate deterioration.

4. Effective Life Remaining

With proper maintenance, the staircases should be effective through the remaining life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

The interior staircase should be prepared and painted for an estimated cost of \$500.

A handrail should be provided at the interior staircase for an estimated cost of \$500.

18.9 Chimney

There is one existing brick chimney.

1. Condition

The chimney appeared to be in fair condition.
A few of the mortar joints appeared cracked.

The flashing around the chimney is in poor condition.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to the chimney.

3. Deficiencies

The cracks in the mortar joints and deteriorated flashing will allow the ingress of water.

4. Effective Life Remaining

With proper maintenance, the chimney should be effective through the remaining life of the structure. The effective life remaining is approximately 10+ years.

5. Recommendations

The cracked mortar joints should be retooled for an estimated cost of \$5,000.

The flashing at the chimney should be replaced in combination with the roof replacement, for an estimated cost of \$2,500.

18.10 Fixed Furnishings

The fixed furnishings include a laminate counter, wood cupboards, a toilet, a bathtub, and a vanity.

1. Condition

The furnishing generally appeared to be in good condition.

2. Recent Repairs/Modifications

It did not appear any repairs or modifications had been done to the fixed furnishings.

3. Deficiencies

There were no deficiencies observed.

4. Effective Life Remaining

With proper maintenance, the fixed furnishings should be effective through the remaining life of the structure. The effective life remaining is approximately 20+ years.

5. Recommendations

For the long term expenditures, an estimated cost of 1,000 should be allowed for minor repairs in the 6^{th} year.

19 Winch Pad

The Winch Pad is located on the northern shore of Sunday Point on Sunday Harbour, just north of the Old Dwelling. It is unknown when the pad was constructed. The pad is approximately 4 ft. x 10 ft. x 6 in. thick and contains one concrete cradle and one steel winch.

19.1 Concrete Slab

The Winch Pad consists of a six inch thick, reinforced, cast-in-place concrete pad.

1. Condition

The concrete slab appeared to be in fair condition.

Light to medium scaling was observed at the concrete slab.

Vegetative growth was observed at the concrete slab.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the foundation.

3. Deficiencies

Scaling will allow water to remain on the concrete surface, furthering deterioration.

4. Effective Life Remaining

The remaining effective life of the foundation with little maintenance could be approximately 20+ years.

5. Recommendations

Since the pad is abandoned, there are no recommendations at this time.

19.2 Concrete Cradle

The pad contains one concrete cradle that was once used for an oil tank.

1. Condition

The concrete cradles appeared to be in fair condition.

Light to medium scaling was observed at the cradles.

Vegetative growth was observed at the concrete cradle.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the foundation.

3. Deficiencies

Scaling will allow water to site on the concrete surface, furthering deterioration.

4. Effective Life Remaining

The remaining effective life of the concrete cradles with little maintenance could be approximately 20+ years.

5. Recommendations

Since the pad is abandoned, there are no recommendations at this time.

19.3 Steel Winch

The pad contains one steel winch that is used for bring boats onto the beach.

1. Condition

The steel winch appeared to be in fair condition.

Light corrosion was observed throughout the winch.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the foundation.

3. Deficiencies

Without a protection system, the steel will continue to corrode.

4. Effective Life Remaining

The remaining effective life of the winch with little maintenance could be approximately 20+ years.

5. Recommendations

The steel winch should be prepared and painted for an estimated cost of \$2,000.

20 Sunday Harbour Dock

The Sunday Harbour Dock is located on the northern shore of Sunday Point on Sunday Harbour. It was constructed in 1981. The concrete dock extends approximately 60 ft. from the shore. The outer end of the dock contains a concrete wall, a set of concrete stairs, and a steel hoist.

20.1 Concrete Deck

The width of the concrete deck varies along it length, and consists of reinforced, cast-in-place concrete.

1. Condition

The concrete deck appeared to be in good condition.

A few narrow cracks with efflorescence were observed.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the concrete deck.

3. Deficiencies

Narrow cracks will allow the penetration of water.

4. Effective Life Remaining

The remaining effective life of the concrete deck with little maintenance could be approximately 30+ years.

5. Recommendations

There are no recommendations at this time.

20.2 Concrete Wall

The outer end of the dock is enclosed by a concrete wall.

1. Condition

The concrete wall appeared to be in good condition.

Vegetative growth was observed.

2. Recent Repairs/Modifications

It did not appear any recent repairs or modifications had been made to the concrete wall.

3. Deficiencies

There were no deficiencies observed.

4. Effective Life Remaining

The remaining effective life of the concrete wall with little maintenance could be approximately 30+ years.

5. Recommendations

There are no recommendations at this time.

20.3 Steel Hoist

There is a steel hoist at the end of the dock.

1. Condition

The hoist appeared to be in good condition.

Paint peeling was observed.

2. Recent Repairs/Modifications

There did not appear to be any repairs or modifications made to the steel hoist.

3. Deficiencies

The paint will continue to peel eventually leading to corrosion of the steel.

4. Effective Life Remaining

The steel hoist should continue to remain effective through the expected service life of the dock. The effective life remaining is approximately 30+ years.

5. Recommendations

The steel hoist should be prepared and painted for an estimated cost of \$2,000.

The hoist should be load rated.

Slate Island Coast Guard Site

Summary of Recommended Expenditures

Level II Building Condition Report Sep-16

Structural and Architectural

Short Term Expenditures Long Term Expenditures Report Systems Type of Priority of Project Section Description Expendi-Year Years Work Priority No. tures 1 2 3 4 5 6-10 11-15 16-20 21-25 System Lighthouse 1.1 Foundation RM \$2,000 \$20,000 Opt. C3 1.2 Superstructure RM \$2,000 \$2,000 Opt. D1 **Exterior Walls** RM \$20,000 D2 1.3 \$20,000 Cycl. 1.4 **Exterior Doors** RM \$5,000 \$1,000 Man. C1 ..5 Windows RM \$2,500 \$1,000 \$1,000 Man. C3 Steel Lantern RM \$30,000 \$30,000 Opt. D2 1.6 .7 Floors RM \$2,000 Cycl. C1 ..8 Ceilings and Walls RM \$2,000 \$1,000 B1 Man. .9 Stairs RM \$1,500 \$1,000 Cycl. C1 Lighthouse Period Totals \$9,500 \$22,500 \$2,000 \$0 \$32,000 \$0 \$26,000 \$0 \$52,000 Lighthouse Total Expenditures **Total Short Term Expenditure** Total Long Term Expenditures \$66,000 \$78,000 Solar Building Foundation 2.1 .2 **Exterior Walls** RM \$1,000 Opt. D1 Solar Building Period Totals \$0 \$0 \$0 \$0 \$0 \$1,000 \$0 \$0 \$0 Solar Building Total Expenditures Total Short Term Expenditures \$0 Total Long Term Expenditures \$1,000 Upper Helicopter Pad Foundation .1 3.2 **Concrete Slab** Upper Helicopter Pad Period Totals \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 **Upper Helicopter Pad Total Expenditures Total Short Term Expenditures** Total Long Term Expenditures Main Dwelling Foundation RM \$15,000 \$10,000 Cycl. C3 4.1 4.2 RM \$2,000 \$2,000 Superstructure Opt. D1 4.3 **Exterior Walls** RM \$5,500 \$5,000 Cycl. D2 4.4 **Exterior Doors** RM \$4,000 \$1,000 Man. C3 4.5 Windows RM \$500 \$500 \$1,000 Man. C3 СС \$1,000 \$30,000 4.6 Roofing Opt. D1 4.7 Floors RM \$1,000 Cycl. D2 4.8 Ceilings and Walls RM \$1,000 \$500 D2 Cycl. 4.9 Stairs RM \$500 D2 Opt. 4.10 Chimney RM

4.11	Fixed Furnishings	RM						\$1,000				Opt.	D2
	Main Dwelling F	Period Totals	\$4,500	\$2,000	\$15,000	\$500	\$6,500	\$2,000	\$9,000	\$10,000	\$32,000		
Main Dwelling Total Expenditures		Total Short Term Expenditures			\$28,500	Tota	Long Term B	Expenditures	\$53,000				
5	Duplex Dwelling												
5.1	Foundation	RM			\$10,000					\$10,000		Cycl.	C3
5.2	Superstructure	RM							\$2,000		\$2,000	Opt.	D1
5.3	Exterior Walls	RM						\$5,000				Opt.	D2
5.4	Exterior Doors	CC						\$8,000				Opt.	D2
5.5	Windows	RM	\$500			\$500			\$1,000			Man.	C3
5.6	Roofing	CC						\$1,000			\$50,000	Opt.	D1
5.7	Floors	RM											
5.8	Ceilings and Walls	RM											
5.9	Stairs	RM				\$500						Cycl.	D2
5.10	Chimney	RM	\$5,000									Man.	C3
5.11	Fixed Furnishings	RM						\$1,000				Opt.	
	Duplex Dwelling F	Period Totals	\$5,500	\$0	\$10,000	\$1,000	\$0	\$15,000	\$3,000	\$10,000	\$52,000		
Duplex Dwelling Total Expenditures		Expenditures	Total Short Term Expenditures		\$16,500	Total Long Term Expenditures			\$80,000				
6	Old Fog Alarm/Generator Building												
6.1	Foundation	RM			\$5,000					\$10,000		Cycl.	D1
6.2	Superstructure	RM							\$2,000		\$2,000	Opt.	D1
6.3	Exterior Walls	RM							\$5,000			Opt.	D2
6.4	Exterior Doors	CC		\$2,000					\$1,000			Opt.	D2
6.5	Windows	RM	\$500			\$500			\$1,000			Man.	C3
6.6	Roofing	СС	\$55,000									Man.	C3
6.7	Floors	RM											
6.8	Ceilings and Walls	RM		\$5,000								Cycl.	D2
6.9	Stairs	RM	\$1,500									Man.	C1
6.10	Chimney	RM	\$10,000									Man.	C3
6.11	Fixed Items												
	Old Fog Alarm/Generator Building F	Period Totals	\$67,000	\$7,000	\$5,000	\$500	\$0	\$0	\$9,000	\$10,000	\$2,000		
	Old Fog Alarm/Generator Building Total E	Expenditures	s Total Short Term Expenditures			\$79,500	Tota	Long Term B	Expenditures	\$21,000			
7	New Fog Alarm/Electronics Building												
7.1	Foundation	RM								\$2,000		Opt.	D1
7.2	Exterior Walls	RM	\$500			\$500			\$1,000			Man.	C3
7.3	Exterior Doors	RM	\$1,000			\$1,000			\$1,000			Man.	D1
7.4	Roofing	RM	\$1,000						\$1,000			Man.	C3
7.5	Ceilings and Walls	RM	\$500									Man.	D1
7.6	Fixed Items												
	New Fog Alarm/Electronics Building F	Period Totals	\$3,000	\$0	\$0	\$1,500	\$0	\$0	\$3,000	\$2,000	\$0		
	New Fog Alarm/Electronics Building Total E	Expenditures		Total	Short Term E	Expenditures	\$4,500	Tota	Long Term E	Expenditures	\$5,000		
8	New Diesel Generator Building												
8.1	Foundation	RM	\$1,000							\$2,000		Man.	D1

8.2	Exterior Walls	RM	\$1,000						\$1,000			Man.	C3
8.3	Exterior Doors	RM	\$1,000			\$1,000			\$1,000			Man.	D1
8.4	Roofing	RM	\$1,000						\$1,000			Man.	C3
8.5	Ceilings and Walls	RM	\$500									Man.	D1
8.6	Fixed Items												
	New Diesel Generator Building F	Period Totals	\$4,500	\$0	\$0	\$1,000	\$0	\$0	\$3,000	\$2,000	\$0		
	New Diesel Generator Building Total B	Expenditures		Total	Short Term E	Expenditures	\$5,500	Total	Long Term E	Expenditures	\$5,000		
9	Former Oil House												
9.1	Superstructure	RM							\$2,000		\$2,000	Opt.	D1
9.2	Exterior Walls	RM				\$1,000			\$1,000			Cycl.	D2
9.3	Exterior Doors	RM				\$1,000			\$2,000			Cycl.	D2
9.4	Roofing	CC						\$1,000			\$10,000	Opt.	D1
	Former Oil House F	Period Totals	\$0	\$0	\$0	\$2,000	\$0	\$1,000	\$5,000	\$0	\$12,000		
	Former Oil House Total I	Expenditures		Total	Short Term E	Expenditures	\$2,000	Total	Long Term E	Expenditures	\$18,000		
10	Furnace Oil Tank Pad												
10.1	Concrete Slab												
10.2	Concrete Cradles												
	Furnace Oil Tank Pad F	Period Totals	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0		
Furnace Oil Tank Pad Total Expenditures			Total Short Term Expenditures				\$0	Total	Long Term E	xpenditures	\$0		
11	Diesel Tank Pad												
11.1	Concrete Slab												
11.2	Concrete Cradles												
	Diesel Tank Pad F	Period Totals	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0		
Diesel Tank Pad Total Expenditures				Total	Short Term E	Expenditures	\$0	Total	Long Term E	Expenditures	\$0		
12	Diesel Tank Dyke												
12.1	Concrete Walls												
12.2	Concrete Slab												
	Diesel Tank Dyke I	Period Totals	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0		
	Diesel Tank Dyke Total B	Expenditures	Total Short Term Expenditures				\$0	Total	Long Term E	Expenditures	\$0		
13	Transformer												
13.1	Concrete Slab												
13.2	Steel Box	RM		\$5,000					\$2,000			Cycl.	D1
	- Transformer I	Period Totals	\$0	\$5,000	\$0	\$0	\$0	\$0	\$2,000	\$0	\$0		
Transformer Total Expenditures				Total	Short Term E	Expenditures	\$5,000	Total	Long Term E	xpenditures	\$2,000		
14	Lower Helicopter Pad												
14.1	Concrete Slab												
	Lower Helicopter Pad F	Period Totals	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0		
	Lower Helicopter Pad Total	Expenditures		Total	Short Term E	Expenditures	\$0	Total	Long Term E	Expenditures	\$0		
15	Lighthouse Dock										-		
15.1	Concrete Deck	RM		\$5,000								Cycl.	C3
15.2	Concrete Walls	RM							\$10,000			Opt.	C3
15.3	Steel Hoist	RM							\$2,000			Opt.	D1

	Lighthouse Doc	k Period Totals	\$0	\$5,000	\$0	\$0	\$0	\$0	\$12,000	\$0	\$0		
Lighthouse Dock Total Expenditures		s Total Short Term Expenditures			\$5,000	Total Long Term Expenditures			\$12,000				
16	Log Retaining Wall	CC	\$20,000									Man.	C1
	Log Retaining Wa	ll Period Totals	\$20,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0		
	Log Retaining Wall Tota	al Expenditures		Total	Short Term I	Expenditures	\$20,000	Tota	Long Term I	Expenditures	\$0		
17	Sidewalks	RM	\$2,000										
	Sidewalk	s Period Totals	\$2,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0		
Sidewalks Total Expenditures			Total Short Term Expenditures				\$2,000	Tota	Long Term I	Expenditures	\$0		
18	Old Dwelling												
18.1	Foundation	RM	\$7,000							\$10,000		Man.	C3
18.2	Exterior Walls	RM							\$5,000			Opt.	D2
18.3	Exterior Doors	RM	\$500						\$1,000			Man.	D2
18.4	Windows	RM	\$500						\$1,000			Man.	C3
18.5	Roofing	CC	\$55,000									Man.	C3
18.6	Floors												
18.7	Ceilings and Walls												
18.8	Stairs	RM	\$500			\$500						Man.	D2
18.9	Chimney	RM	\$7,500									Man.	C3
18.10	Fixed Furnishings	RM						\$1,000				Opt.	D1
	Old Dwellin	g Period Totals	\$71,000	\$0	\$0	\$500	\$0	\$1,000	\$7,000	\$10,000	\$0		
Old Dwelling Expenditures		Total Short Term Expenditures				\$71,500	Tota	Long Term I	Expenditures	\$18,000			
19	Winch Pad												
19.1	Concrete Slab												
19.2	Concrete Cradle												
19.3	Steel Winch	RM				\$2,000						Cycl.	D1
	Winch Pa	d Period Totals	\$0	\$0	\$0	\$2,000	\$0	\$0	\$0	\$0	\$0		
Winch Pad Total Expenditures		s Total Short Term Expenditures				\$2,000	Tota	Long Term I	Expenditures	\$0			
20	Sunday Harbour Dock												
20.1	Concrete Deck												
20.2	Concrete Wall												
20.3	Steel Hoist					\$2,000							
Sunday Harbour Dock Period Totals			\$0	\$0	\$0	\$2,000	\$0	\$0	\$0	\$0	\$0		
	Sunday Harbour Dock Tota	al Expenditures		Total	Short Term I	Expenditures	\$2,000	Tota	Long Term I	Expenditures	\$0		
		Period Totals	\$187,000	\$41,500	\$32,000	\$11,000	\$38,500	\$20,000	\$79,000	\$44,000	\$150,000		
				Total S	hort Term I	Ependitures	\$310.000	Total L	ong Term Ex	xpenditures	\$293,000		

APPENDIX A Site Plan

APPENDIX B Photographs

Lighthouse

Photo 1: View of Lighthouse looking east.

Photo 2: Severe spalling and vegetative growth at foundation.

Photo 3: Wide crack at foundation.

Photo 4: Lighthouse floor and wall construction.

Photo 5: Cracked and peeling paint at exterior siding.

Photo 6: Exterior door.

Photo 7: Entrance to Lighthouse.

Photo 8: Peeling paint and missing sealants at Lighthouse wall window.

Photo 9: Cracked window at lantern.

Photo 10: Peeling paint and light corrosion at lantern.

Photo 11: Peeling paint and light corrosion at lantern.

Photo 12: Peeling paint and light corrosion at lantern.

Photo 13: Peeling paint and light corrosion at lantern.

Photo 14: Water damage and medium rot at wood flooring.

Photo 15: Mold, mildew, and water damage at wood ceiling.

Photo 16: Mold and mildew at wood walls.

Photo 17: Peeling paint at stair and handrail.

Photo 18: Severe rot at stair bearing timber.

Photo 19: Out of level stair without handrail.

Photo 20: Gap below timber sill.

Solar Building

Photo 1: View of Solar Building looking southeast.

Photo 2: View of Solar Building looking north.

Photo 3: Solar Building foundation.

Upper Helicopter Pad

Photo 1: View of Upper Helicopter Pad looking northwest.

Photo 2: View of Upper Helicopter Pad looking east.

Photo 3: Vegetative growth below concrete slab.

Photo 4: Spall at west edge of slab.

Main Dwelling

Photo 1: View of Main Dwelling looking northwest.

Photo 2: View of Main Dwelling looking northeast.

Photo 3: View of Main Dwelling looking southeast.

Photo 4: View of Main Dwelling looking southwest.

Photo 5: Typical foundation crack at exterior.

Photo 6: Typical foundation crack at interior indicating leaks.

Photo 7: Leak at north foundation wall.

Photo 8: Typical main floor construction.

Photo 9: Typical roof construction.

Photo 10: Mildew at wood siding.

Photo 11: Cracks at wood siding.

Photo 12: Northern door in poor condition.

Photo 13: Southern door closed off by plywood. Paint peeling at staircase.

Photo 14: Failed caulking at window.

Photo 15: Peeling paint and weathered window frame at foundation walls.

Photo 16: Preformed metal roofing over asphalt shingles.

Photo 17: Cracks in vinyl flooring in living room.

Photo 18: Vinyl flooring removed exposing water damaged subfloor at southern entrance.

Photo 19: Paint peeling at interior wall at northern entrance.

Photo 20: Crack at ceiling at northern entrance.

Photo 21: Tub surround separating from wall within bathroom.

Photo 22: Staircase from basement to main floor.

Photo 24: Counter and cupboards within kitchen.

Photo 25: Toilet, bathtub, and vanity within bathroom.

Photo 26: Failed sealant at bathtub within bathroom.

Duplex Dwelling

Photo 1: View of Duplex Dwelling looking northwest.

Photo 2: View of Duplex Dwelling looking southeast.

Photo 3: Typical step cracking at foundation wall.

Photo 4: Typical splitting failure cracking at foundation wall.

Photo 5: Wide crack at concrete slab.

Photo 6: Typical second floor construction.

Photo 7: Typical weathering and paint peeling at siding.

Photo 8: Typical exterior door.

Photo 9: Typical sealant failure and paint peeling at windows.

Photo 10: Typical flooring within living room.

Photo 11: Typical interior stairway.

Photo 12: Southeast exterior stairway.

Photo 13: Southwest exterior stairway.

Photo 14: Typical kitchen.

Photo 15: Typical bathroom. Failed sealant at bathtub.

Old Fog Alarm/Generator Building

Photo 1: View of Old Fog Alarm/Generator Building looking southwest.

Photo 2: View of Old Fog Alarm/Generator Building looking southeast.

Photo 3: View of Old Fog Alarm/Generator Building looking northeast.

Photo 4: Cracks at concrete slab.

Photo 5: Typical roof construction.

Photo 6: Weathering and peeling paint, ineffective weather stripping at east door.

Photo 7: No weather stripping or sill at west door.

Photo 8: Typical wooden frame hung window.

Photo 9: Typical wooden frame fixed (decorative) window.

Photo 10: Tpical wooden frame fixed (picture) window.

Photo 11: Typical paint peeling and failed sealants at windows.

Photo 12: Typical fishmouthing, curling and moss growth at shingles.

Photo 13: Typical fishmouthing, curling and moss growth at shingles.

Photo 14: No downspout.

Photo 15: Hardwood flooring at second level.

Photo 16: Typical paint peeling and hole in ceiling.

Photo 17: Water damage at ceiling at second level.

Photo 18: Water damage at walls at second level.

Photo 19: Water damage at ceiling at second level.

Page 10

Photo 22: Nonstandard ladder.

Photo 23: Voids at mortar joints and poor flashing at chimney.

Photo 24: Missing brick, broken brick, and poor flashing at chimney.

Photo 25: Three generators and control panel.

Photo 26: Steel boiler.

New Fog Alarm/Electronics Building

Photo 1: View of New Fog Alarm/Electronics Building looking southwest.

Photo 2: View of New Fog Alarm/Electronics Building looking southeast.

Photo 3: View of New Fog Alarm/Electronics Building looking north.

Photo 4: Missing sealant between wall and foundation. Light corrosion at fasteners.

Photo 5: Cracked sealant between wall and roof.

Photo 6: Cracked sealant, ineffective weather stripping, and peeling paint at door frame.

Photo 7: Failed closer strip below roof.

Photo 8: Cracked sealant at interior panels.

Photo 9: Electrical panel.

New Diesel Generator Building

Photo 1: View of New Diesel Generator Building looking southwest.

Photo 2: View of New Diesel Generator Building looking southeast.

Photo 3: View of New Diesel Generator Building looking north.

Photo 4: Cracks at foundation slab.

Photo 5: Wide crack at northwest corner of foundation slab. Missing sealant between wall and foundation.

Photo 6: Cracked sealant between wall and roof.

Photo 7: Cracks in siding (typical).

Photo 8: Cracked sealant at door frame.

Photo 9: Paint peeling and light corrosion at door.

Photo 10: Failed closer strip below roof.

Photo 11: Cracked sealant at interior.

Photo 12: Generator and control panels.

Former Oil House

Photo 1: View of Former Oil House looking northwest.

Photo 2: View of Former Oil House looking northeast.

Photo 3: Superstructure.

Photo 4: Paint peeling at exterior walls and door.

Photo 5: Preformed metal roofing over asphalt shingles.

Furnace Oil Tank Pad

Photo 1: View of Furnace Oil Tank Pad looking east.

Photo 2: Typical scaling and erosion at concrete slab.

Photo 3: Typical scaling and cracking at concrete cradles.

Diesel Tank Pad

Photo 1: View of Diesel Tank Pad looking north.

Photo 2: Typical scaling at concrete slab.

Photo 3: Vegetative growth.

Diesel Tank Dyke

Photo 1: View of Diesel Tank Dyke looking southeast.

Photo 2: View of Diesel Tank Dyke looking northeast.

Photo 3: Vegetative growth at concrete slab.

Transformer

Photo 1: View of Transformer looking north.

Photo 2: View of Transformer looking northeast.

Photo 3: Light corrosion and paint peeling at steel box. Medium scaling at concrete slab.

Lower Helicopter Pad

Photo 1: View of Lower Helicopter Pad looking southeast.

Photo 2: View of Lower Helicopter Pad looking west.

Photo 3: Light scaling and erosion.

Lighthouse Dock

Photo 1: View of Lighthouse Dock looking south.

Photo 2: View of steel hoist.

Photo 3: Typical wide cracks at concrete deck.

Photo 4: Spalling at concrete deck.

Photo 5: Severe spalling and wide cracks at concrete walls.

Photo 6: Light to medium scaling at concrete walls.

Log Retaining Wall

Photo 1: View of Log Retaining Wall looking northwest.

Photo 2: Medium to severe rot at logs.

Photo 3: View of vertical logs at west end.

Sidewalks

Photo 1: View of Sidewalk looking southwest toward the Lighthouse Dock.

Photo 2: View of Sidewalk looking northwest toward the Duplex Dwelling.

Photo 3: View of Sidewalk looking east toward the Main Dwelling.

Photo 4: Cracked and broken Sidewalk panel.

Old Dwelling

Photo 1: View of Old Dwelling looking southeast.

Photo 2: View of Old Dwelling looking southwest.

Photo 3: View of Old Dwelling looking northwest.

Photo 4: Typical stone and mortar foundation wall.

Photo 5: Cracked and failed mortar at foundation wall.

Photo 6: Missing stone at foundation wall.

Photo 7: Previous repair at foundation wall.

Photo 8: Void in foundation wall covered by plywood.

Photo 9: Typical exterior door, windows, siding.

Photo 10: View of kitchen.

Photo 11: View of living room.

Photo 12: View of bathroom.

Photo 13: Typical bedroom.

Photo 14: Deteriorated flashing and cracked mortar at chimney.

Winch Pad

Photo 1: View of Winch Pad looking northeast.

Photo 2: Light corrosion at winch.

Photo 3: Vegetative growth at cradle and slab.

Sunday Harbour Dock

Photo 1: View of Sunday Harbour Dock looking southwest.

Photo 2: View of Sunday Harbour Dock looking west.

Photo 3: Narrow cracks with efflorescence and vegetative growth.

Photo 4: Paint peeling at steel hoist.

Attachment 6

Deconstruction/Disassembly Material Audit Form

DECONSTRUCTION/DISASSEMBLY MATERIAL AUDIT FORM

Material Category	Unit	Total Quantity	Disposed Amount	Disposed Amount	Reused Amount	Reused Amount	Recycled Amount	Recycled Amount	Material Destination
		of Waste	Projected	Actual	Projected	Actual	Projected	Actual	
				Actual		Actual		Actual	
Wood (excluding									
doors)									
Drywall/Gypsum									
Metal									
Electrical									
Composites									
(Blinds, Shingles,									
Vapour Barrier, Vinyl Flooring									
Ceramic Tiles)									
Carpet & Pad									
Ceiling Tiles									
Windows									
Doors (Metal and									
wood)									
Washroom Fixtures									
Concrete									
Mechanical									
Equipment									
(HVAC, boiler, etc.)									
Miscellaneous						-			
Waste (insulation,									
rubber mats, vinyi									
mouluing)									