Appendix A

Geotechnical Information

Appendix A - Part I

Geotechnical Investigation Report

Support of New Chalets on the Rideau Canal, Ottawa, Ontario

National Capital Commission (NCC)

Support of New Chalets on the Rideau Canal, Ottawa, Ontario

Geotechnical Investigation Report

Prepared by :

Camilo Perez, Jr. Eng.

Verified by :

i

Yaya Coulibaly, P. Eng. Project Manager

900, De la Carrière Blvd, suite 100, Gatineau, Québec J8Y 6T5 - T 819 778 3143 | F 819 770 1373 - www.lvm.ca

TABLE OF CONTENT

1	SITE	AND PROJECT DESCRIPTION	. 2		
	1.1	Project description	. 2		
	1.2	Site description	. 2		
	1.3	Local geology	. 3		
2	INVE	STIGATION PROCEDURES (FIELD WORK)	. 4		
	2.1	Location of the boreholes	. 4		
	2.2	field work	.4		
	2.3	laboratory testing	.4		
3	NATU	RE AND PROPERTIES OF SUBSOIL	. 5		
	3.1	Gravel pad	. 5		
	3.2	Natural deposit (granular deposit)	. 5		
4	DISC	JSSION AND RECOMMENDATIONS	. 7		
	41	General remarks	7		
	4.2	Foundation	. 7		
	4.2.1	Ultimate Limit State (ULS)	. 8		
	4.2.2	Serviceability Limit State (SLS)	. 8		
	4.2.3	Helical Piers	. 9		
	4.3	Seismic Geotechnical Data	. 9		
	4.3.1	Site Class	. 9		
	4.3.2 Spectral Response Acceleration				
Та	bles a	nd figures			
Fię	gure 1 :	Old Bronson site	2		
Fię	gure 2 :	Local geology	3		
Та	ble 1:	Borehole Summary	5		
Та	ble 2:	Sieve Analysis of the Gravel Pad	5		
Та		Sieve Analysis of Natural Deposit	b		
	hla 1.	Geotechnical Parameters – Granular Deposit	ס פ		
Та	blo 5 ·	Spectral Acceleration and PCA	٥		
10	DIE J .		9		
Ap	pendio	res			
Ap	pendix	1 Limitations of the Investigation			

- Appendix 2 Explanation Notes on the Boring Log, Boring Logs
- Appendix 3 Laboratory Tests
- Appendix 4 Plan of Borehole Locations

Property and Confidentiality

This engineering document is the property of LVM and is protected under Copyright Law. It can only be used for the purposes mentioned herewith. Any reproduction or adaptation, either partial or total, is strictly prohibited without the express written authorization of LVM.

If tests have been done, the results of these tests are valid only for the sample described in the present report.

Testing (either in the field or in laboratory) has been completed by sub-contractors duly qualified according to the purchasing procedure of our quality manual. For more information, please contact your project engineer.

Register of revisions and emissions					
Revision No Date Description of the modification and/or of the emission					
0A	2011-06-16	Draft Report			

INTRODUCTION

National Capital Commission (NCC) awarded a contract to LVM to carry out a geotechnical investigation required to determine the soil bearing capacity at 4 existing gravel pads along the Rideau Canal in Ottawa, Ontario.

The purpose of the investigation was to determine the nature and properties of soils at the site by means of four (4) boreholes with sampling.

The investigation was performed in accordance to our proposal dated April 28th, 2011 (O/Ref.:11-0090-033).

This report contains a description of the site, the methodology used during the site investigation as well as a detailed description of the soil nature and their properties. It also contains a section where geotechnical recommendations are provided for the design of the project. The recommendations provided in this report are according to the "National Building Code of Canada, 2010" (NBC 2010).

The specific limitations of the investigation, outlined in Appendix 1, should be read jointly with this report.

1 SITE AND PROJECT DESCRIPTION

1.1 **PROJECT DESCRIPTION**

Based on the information provided by the NCC, geotechnical services were required to investigate future chalet construction sites located in the Rideau Canal.

1.2 SITE DESCRIPTION

The study sites are located on the Rideau Canal in Ottawa, Ontario. It consists of four (4) gravel pads used to support chalets on the Rideau Canal Skateway (RCS) throughout the winter. Those pads are located along the canal at four (4) access points: National Art Center (NAC), Concord, Old Bronson and New Bronson.

The study sites are usually underwater in the summer when the canal water level is high enough to allow sailing. Otherwise, in winter, the gravel pads are shown and support the chalets. The sites are accessible by stairs and/or ramps from the roads beside them. Figure 1 shows the chalets after the snow melt, just before being removed from the Canal.

CHALETS ON THE RIDEAU CANAL NATIONAL CAPITAL COMMISSION O/Ref.: 033-P027899-0101-GE-0001-0A

1.3 LOCAL GEOLOGY

The local geology is illustrated on the geological map "Generalized Bedrock Geology" number 1508A, and the geological map "Surficial Geology" number 1506A Ottawa – Hull area, produced by the Geological Survey of Canada. Within the area studied, three stratigraphic units are present and consist of different granular deposits followed by rock in depth which can also be divided in three stratigraphic units. Figure 2 shows the Rideau Canal (in red) along with the stratigraphic units it crosses.

Clay and silt underlying erosional terraces; upper part of marine deposits removed to variable depths by fluvial erosion so in places clay is uniform blue-grey; unit includes lenses, bars and channel fills of sand and pockets of nonmarine silt that were formed during terrace (or channel) cutting

6b

Medium grained stratilied sand with some silt; in the form of fluvial terraces and

channels cut in marine clay, and bars and spits within abandoned channels

PALEOZOIC

E as

Limestone, dolomite, sandstone, and locally shale; relatively flat lying; mainly occurring as bare, tabular outcrops; includes areas thinly veneered by unconsolidated Quaternary sediments up to 1 m (3 ft) thick

17	BILLINGS FORMATION: black shale with some brown shale
16	EASTVIEW FORMATION: dark grey almost black limestone
15	OTTAWA FORMATION: limestone with some shaly partings: some sandstone in basal part

CHALETS ON THE RIDEAU CANAL NATIONAL CAPITAL COMMISSION O/Ref.: 033-P027899-0101-GE-0001-0A

2 INVESTIGATION PROCEDURES (FIELD WORK)

2.1 LOCATION OF THE BOREHOLES

The site survey to determine the borehole locations was carried out by LVM representatives. The four (4) borehole locations are shown on the site plans included in Appendix 4.

2.2 FIELD WORK

The fieldwork was performed on April 27th to 28th, 2011. A total of four (4) borehole samples were carried out under the full time supervision of a geotechnical technician from LVM. The boreholes were identified from BH-01-11 to BH-04-11.

The four (4) boreholes with continuous sampling were conducted using a soil sampler on a tripod, under the full time supervision of a geotechnical technician of LVM. The location and the implantation of the boreholes were performed by LVM and NCC representatives and are shown on sites plans in Appendix 4. Soil sampling has been obtained by driving a 51 mm diameter split spoon sampler, in accordance with the Standard Penetration Test (SPT) procedure (ASTM D1586).

The subsoil details are presented in the individual borehole logs in Appendix 2.

2.3 LABORATORY TESTING

All recovered samples were carefully preserved and transported to LVM's laboratory for identification, laboratory testing and classification. All soil samples were examined by a geotechnical engineer and were classified in accordance with the requirements specified in ASTM D2488. Five (5) representative soil samples from the boreholes were submitted for grain size analysis. The complete laboratory test results are presented in Appendix 3 and are also included on the borehole logs in Appendix 2.

All geotechnical samples recovered from boreholes which were not consumed during laboratory analysis will be stored for a period of 6 months from the date of completion of the fieldwork; after which, they will be destroyed unless written instructions on the sample storage and/or disposition are received by LVM.

3 NATURE AND PROPERTIES OF SUBSOIL

The following paragraphs present a summary of the different soil layers encountered in the boreholes. The locations of the four (4) boreholes are presented on the plans n° 033-P027899-0101-GE-0001-00 to 033-P027899-0101-GE-0004-00 in Appendix 4. The detailed borehole logs are presented in Appendix 2.

Borehole n ^o	Site	Gravel pad (m)	Natural deposit (m)	End of borehole (m)	
BH-01-11	Old Bronson	0,00 - 0,91	0.91 – 2.74	2.74	
BH-02-11	Concord	0,00 – 1,52	1,52 - 4.57	4.57	
BH-03-11	NAC	0.00 - 0,86	**	2.74	
BH-04-11	New Bronson	0.00 - 0.30	0.30-4.88	4.88	
* Gravel pad directly on bedrock					

Table 1: Borehole Summary

3.1 GRAVEL PAD

Directly on the surface of all the boreholes, a gravel pad was intercepted with a thickness varying between 30 mm and 1500 mm. The capacity of this gravel pad varies between loose to compact.

One (1) sieve analysis was done based on a representative samples. Table 2 shows the results of the analysis.

Table 2:	Sieve Analysis of the Gravel Pad
----------	----------------------------------

Borehole n ^o	Depth (m)	Gravel > 4.75 mm (%)	Sand < 4.75 mm and > 75 μm (%)	Silt and Clay < 75 µm (%)	Classification (USCS)
BH-04-11	0.30 – 0.91	51	40	9	GW-GM

According to the grain size distribution, the tested sample is sand with gravel and some silt. According to the Unified Soil Classification System (USCS), the deposit is classified as a GW-GM.

3.2 NATURAL DEPOSIT (GRANULAR DEPOSIT)

A natural deposit of water-saturated gray silty sand with gravel was intercepted in all the boreholes immediately beneath the gravel pad at the exception of the BH-03-11 (NAC site). This deposit was intercepted on an approximate thickness of 5 m.

Four (4) sieve analyses were done based on a representative samples. Table 3 shows the results of the analysis.

Borehole nº	Depth (m)	Gravel > 4.75 mm (%)	Sand < 4.75 mm and > 75 μm (%)	Silt and Clay < 75 µm (%)	Classification (USCS)	
BH-01-11	1.52 – 2.13	37	46	17	SM	
BH-02-11	1.52 – 2.13	24	72	4	SW	
BH-02-11	2.74 – 3.35	20	60	20	SM	
BH-04-11	1.83 – 2.44	9	26	65	SM	

Table 3: Sieve Analysis of Natural Deposit

According to the grain size distribution, the tested sample is sand with traces of silt and clay. According to the USCS, the deposit is classified as a SM or SW.

Standard penetration index (N) was recorded 13 times in this layer. It generally varies from 2 to 31. The compactness of this deposit is generally qualified from very loose on surface and becomes compact at a deeper level.

Figure 3 : Site Location Distribution of Standard Penetration Index (N), Natural Deposit

(According to the Canadian foundation engineering manual - Second edition)

CHALETS ON THE RIDEAU CANAL NATIONAL CAPITAL COMMISSION O/Ref.: 033-P027899-0101-GE-0001-0A

4 DISCUSSION AND RECOMMENDATIONS

4.1 GENERAL REMARKS

On the basis of the information gathered from the boreholes, the subsurface stratigraphy is mainly characterized by the presence of a granular pad of varying thickness depending on the site studied, followed by a natural granular deposit (Old Bronson, New Bronson and Concord site) or bedrock (NAC site). The granular deposit mainly consists of silty sand with gravel, with a compactness varying from very loose to dense.

Based on given information, the project consists of installing new chalets on the Rideau Canal during winter, which requires new footings.

According to the available data and the information carried out from the boreholes, our geotechnical commentaries and recommendations are presented in the following sections.

4.2 FOUNDATION

The following recommendations are based on the directives of the NBC 2010 which recommends the use of the limits states method for calculation of the foundations.

The limits states represent the conditions of a structure beyond of which it ceases to fulfill the function for which it was designed. In the NBC 2010, the limits states are divided into two (2) groups:

- The ultimate limit state which correspond to the mechanisms of collapse and rupture of the structures; they are notions of safety of the works. As an example, the ultimate limit state for the foundation could be a shearing failure of the soil.
- The serviceability limit state corresponds to the mechanisms which limit the proposed use of the structure. These mechanisms are usually associated with movements which stop or limit a structure to fulfill its purpose. As an example, the serviceability limit states for a foundation can be some excessive movements and settlements.

A secure foundation design has to satisfy these two (2) requirements. The ultimate limit states and serviceability limit states are presented in the next paragraphs.

4.2.1 Ultimate Limit State (ULS)

According to the site stratigraphy, previously described, the loads of the chalets will be transferred to the granular deposit (loose) encountered below the existing gravel pads, using conventional shallow footings.

$$q_{ult} = q' N_q S_q + 0.5\gamma' B N_\gamma S_\gamma + c' N_c S_c$$

The following geotechnical parameters can be used for the ultimate limit states (ULS) calculation.

Table 4:	Geotechnical Parameters – Granular Deposit

PARAMETERS	GRANULAR DEPOSIT
Effective soil cohesion (c')	0 kPa
Effective angle of internal friction (ϕ ')	30°
Wet unit weight of soil (γ)	18 kN/m³
Submerged unit weight of soil (γ')	8 kN/m³
Bearing capacity factor (N _c)	33
Bearing capacity factor (N _q)	21
Bearing capacity factor (N_{γ})	19

For example, for vertical and centered loads on foundations placed on the granular deposit (loose), a geotechnical resistance of 100 kPa can be used at the ultimate limit state (ULS) for a square footings of 2.0 m width.

According to the NBC 2010, a resistance factor of 0.5 must be applied to the value of the ultimate bearing capacity in order to obtain a factored resistance.

4.2.2 Serviceability Limit State (SLS)

In the case of foundations supported by a granular deposit of loose compactness, a serviceability pressure of 40 kPa is recommended to design square footing of a maximum width of 2 m.

By not exceeding this constraint and under conventional footings, the total settlement generated by such pressure should be lower than 25 mm, and the differential settlements should be lower than 20 mm, as long as the maximum width of the footing is 2 m.

These settlement values suppose that surfaces at the level of the footing would be exempt of any mud or any remolded soil, before installing the footing.

Moreover, serviceability pressure is defined as the pressure that can be transmitted to the soil by a footing without considering the soil weight. Therefore, the weight of the soil above the footing will not be included in the calculation of the pressure transmitted by the foundation.

4.2.3 Helical Piers

An alternative to conventional foundations is the use of helical piers as the foundation support for the chalets. A 'Helical Pier Foundation System' comprises large diameter steel helices on the end of small diameter solid steel shafts. The steel helices are screwed into the ground to the level of competent bearing soil, and the foundation is constructed at the top of the shaft.

Helical piers are relatively easy to install and can be done with light equipment such as small backhoe or skid-steer. This type of foundation system is well suited to sites with limited access where soft soils overlie competent bearing soils. The bearing capacity that can be obtained by these kinds of system will be provided by the supplier.

4.3 SEISMIC GEOTECHNICAL DATA

4.3.1 Site Class

The parameters used for the calculation of earthquake load and effects have been determined using the general stratigraphy of the site. Considering the information obtained from the borehole, the site class «D» must be used for the Old Bronson, New Bronson and Concord location, and a site class «C» can be used for the NAC location.

4.3.2 Spectral Response Acceleration

The values of spectral response acceleration for different periods and the values of Peak Ground Acceleration (PGA) for different municipalities are indicated in the NBC 2010. The data is presented in Table 5.

Area of the			SEISMIC DATA		
study site	Sa(0.2)	Sa(0.5)	Sa(1.0)	Sa(2.0)	PGA (g)
Ottawa	0.66	0.32	0.13	0.044	0.42

Table 5 : Spectral Acceleration and PGA

CHALETS ON THE RIDEAU CANAL NATIONAL CAPITAL COMMISSION O/Ref.: 033-P027899-0101-GE-0001-0A

Appendix 1

Limitations of the Investigation

SCOPE OF THE GEOTECHNICAL STUDY

1.0 Characteristics of soil and rock

The soil and rock characteristics described in this report originate from geotechnical investigations conducted within a given period and correspond to the nature of the terrain only at the specific locations where these investigations were carried out.

Soil and rock formations have natural variations. The limits between the different formations presented in the sounding logs must therefore be considered as transitions between the formations rather than set boundaries. The precision of these limits depends on the type and number of soundings, the sounding methods used, as well as sampling frequency and methods.

The descriptions of the samples taken are based on recognized identification and classification methods used in geotechnics. They can call into play the judgement and interpretation of the personnel who carried out the examination of materials and can be presumed to be accurate and correct in keeping with current best practices in the field of geotechnics. Finally, if tests were carried out, the results of these tests apply solely to the samples tested, as described in this report.

The properties of the soil and rock can undergo significant modifications in the wake of construction activities such as excavation, blasting, pile driving or drainage activities, carried out on the site under study or an adjacent site. They can also be indirectly modified by the exposure of the soil or rock to freezing or weather stresses.

2.0 Groundwater

The groundwater conditions presented in this report apply only to the site under study. The accuracy and representation of these conditions must be interpreted based on the type of instrumentation used, as well as the period, duration, and number of observations carried out. These conditions can vary depending on precipitation, the seasons and, ultimately, the tides. They can also vary as a result of construction activities or the modification of physical elements on the site under study or in its vicinity. The problematic of ferrous ochre and its effects is not covered in this report.

3.0 Use of the report

The comments and recommendations contained in this report are intended primarily for the project's design team. The number of soundings required to identify all of the underground conditions that could impact construction costs, techniques, the choice of equipment and planning of operations could be greater than the number required for design purposes. All contractors bidding on or carrying out the work on the site under study must undertake their own interpretation of the results of the soundings and, if need be, carry out their own investigations to determine how site conditions could influence their operations or work methods.

Any modifications to the design, position and elevation of the works must be quickly communicated to LVM, allowing the validity of the recommendations presented to be verified. Complementary site or laboratory work could ultimately be required.

This report cannot be reproduced, in whole or in part, without the authorization of LVM.

4.0 Project tracking

The interpretation of the on-site and laboratory results obtained, as well as the recommendations presented in this report, apply solely to the site under study and to the information available about the project at the time this report was drafted.

Information available concerning the site and groundwater conditions increases as construction work progresses. As site conditions were interpreted and correlated between sounding points, LVM should be allowed to verify these conditions, during site visits conducted as work progresses, in order to confirm the information provided by the drillings soundings. If it is not possible for us to conduct these verifications, LVM shall assume no responsibility for geotechnical interpretations by third parties concerning recommendations contained in this report, particularly if the design has been modified or if site conditions different from those described in this report are encountered. The identification of such changes requires experience and must be carried out by an experienced geotechnical engineer.

5.0 Environment

The information contained in this report does not cover the environmental aspects of the site conditions, as these aspects were not included in the study mandate.

Appendix 2

Explanation Notes on the Boring Log, Boring Logs

EXPLANATION NOTE ON SOUNDING LOGS

The following sounding logs summarize soils and rock geotechnical properties as well as ground water conditions, as collected during field work and/or obtained from laboratory tests. This note explains the different symbols and abbreviations used in these logs.

5	TRATIGRA	PHIC UNITS	
Elevation/Depth:	Reference or to a ber location of geological surface. C	to the geodesic elevation of the soil inch mark of arbitrary elevation, at the f the sounding. Depth of the different boundaries as measured from ground on the left, the scale is in meters while t it is in foot.	TOP SOIL BACKFILL
Description of the		la its inteet.	GRAVEL
stratigraphic units:	The proposed of the proposed o	ortion of the different elements of the d according to the size of the particles, lowing the classification hereafter. The ompactness of cohesionless soils is y the "N" index of the Standard n Test. The consistency of cohesive ined by their shear resistance.	This column during the g and depth) a
Classification		Particle size (mm)	Type and n
Clay Clay and silt (undiffere Sand Gravel Cobble Boulder	ntiated)	< 0.002 < 0.08 0.08 to 5 5 to 80 80 to 300 > 300	Sub-sample
Descriptive termine	ology	Proportion (%)	Condition:
"Traces" (tr.) "Some" (s.) Adjective (ex.: sandy "And" (ex.: sand and	v, silty) gravel)	1 to 10 10 to 20 20 to 35 35 to 50	Condition.
	gravory	Oten dend Denstertion Test in den	Size:
<u>Compactness of cohe</u> <u>soils</u>	<u>sionless</u>	Standard Penetration Test index ("N" value), ASTM D-1586 (blows for a 300mm penetration)	"N" index
Very loose		0 to 4	
Compact		4 to 10 10 to 30	
Dense Verv dense		30 to 50 > 50	
Consistency of cobes	ivo soils	Undrained shear strength (kPa)	
Verv soft	146 30113		
Soft		12 to 25	
Firm		25 to 50	
Stiff Verv stiff		50 to 100	
Hard		> 200	RQD index:
Plasticity of cohesiv	e soils	Liquid limit (%)	
Low		< 30	
Medium High		30 to 50 > 50	
Sensitivity of cohesiv	ve soils	$\underline{S_t} = (\underline{C_u}/\underline{C_{ur}})$	Results:
Low		S _t < 2	
Medium		$2 < S_t < 4$	
HIGN Extra-sensitive		4 < 5t < 8 8 < 5, < 16	
Quick (sensitive)	clay	St > 16	
Classification of I	ock	<u>RQD (%)</u>	Graph:
Very poor qualit	у	< 25	
Poor quality		25 to 50	
Fair quality		50 10 75 75 to 90	
Excellent qualit	y	90 to 100	

SYMBOLS						
TOP SOIL		SAND		COBBLE		
BACKFILL		SILT		BOULDER	0000	
GRAVEL		CLAY		ROCK		

WATER LEVEL

This column shows the ground water level, as measured at a given time during the geotechnical investigation. The details of the installation (type and depth) are also illustrated in this column.

SAMPLES

Type and number: Each sample is labelled in accordance with the number of this column and the given notation refers to samples types.

-sample: When a sample contains two or more different stratigraphic units, it is sometimes necessary to separate it and create sub-samples. This column allows for the identification of the latter and the association to *in situ* or laboratory measurements to these sub-samples.

> The position, length and condition of each sample are shown in this column. The symbol shows the condition of the sample, following the legend given on the sounding log.

This column indicates the split spoon sampler size.

The standard penetration index shown in this column is expressed with the letter "N". This index is obtained with the Standard Penetration Test. It corresponds to the number of blows required to drive the last 300mm of the split spoon, using a 622 Newton hammer falling freely from a height of 762mm (ASTM D-1586). For a 610mm long split spoon, the "N" index is obtained by adding the number of blows required for the driving of the 2nd and 3rd 150mm of the split spoon. Refusal (R) indicates a number of blows greater than 100. A set of numbers such as 28-30-50/60mm indicates that the number of blows required to drive the 1st and 2nd 150mm of the split spoon are respectively 28 and 30. Moreover, it indicates that 50 blows were necessary to get a penetration of 60mm, whereupon the test was suspended.

Rock Quality Designation index: This index is defined as the ratio between the total length of all rock cores of 100mm and more in length over the total length of the core run. The RQD index is an indirect measurement of the number of "natural" fractures and of the amount of the alteration in a rock mass.

TESTS

This column shows, for the corresponding depth, the results of tests carried out in the field or in the laboratory (shear strength, dynamic penetration, Atterberg limits with the cone, etc.). For more information, please refer to the legend in the upper part of the sounding log. However, an abbreviation indicating the type of analysis performed is shown next to the sample tested.

This graph shows the undrained shear strength resistance of cohesive soils, as measured *in situ* or in the laboratory (NQ 2501-200). It is also used to present the Dynamic Cone Penetration Test (NQ 2501-145) results.

Moreover, this graph is used for the representation of the water content and Atterberg limits test results.

	e.		VM	Clier	nt : N	ation	al Ca	pit	tal	Co	mn	nissio	on			BORE	HOL ile n°:	E R	EP(DRT 9-0101	
	3-							•								Boreho	ole n°: Date:		BH 2011	-01-11 -04-27	
F	roje	ct: C	halets on Rideau Cana	al											Coc	ordinates (m):	Nort Eas	h st	502851 36769	18.8 (Y) 92.8 (X)	
L	.ocat	ion: O	ttawa, Ontario, (Brons	on site)											Arb Bec	itrary E Irock:	levatio m En	n d dept	(h:	0.00 (Z) 2.74 m	
s	Samp	ole cor	ndition							Orę	gano	oleptic s	is ual	exar aspe	nination: ct: Non-existent(N); Disseminated(D); Soaked(S)						
	<u>//</u>	<u> Inta</u>	ct Remoulded		ost		L Co	re					Odor:	Non	I-exis	tent(N); Light(L); Mediu	um(M); P	ersisten	t(P)		
s	S	Split Sp	e poon	L Consist	ency	Limits		О.М.	. Org	anic I	Matter	(%)				Water Le	vel				
P	M S	Piston 1	n Tube Tube	W _L Liquid I W _P Plastic	Limit (Limit	%) (%)		к UW	Unit	meab Weig	ility (c ght (ki	:m/s) N/m³)				N Std Pene N _c Dyn. Pen	tration tes etration te	st (blows est (blow	/300mm) /s/300mm	n) ●	
T	A A	Rock co Auger	bre	I _P Plastici I _L Liquidit	ty Ind y Inde	ex (%) ex		A U	Abs Unia	orptic axial (on (l/m Comp	nin. m) ressive stre	ength	(MPa	ι)	σ' _P Preconso SCI Soil Corre	lidation F osivity Inc	ressure lex	(kPa)	2	
P	IA W	Bulk sa LVM Me	mple ega-Sampler	W Natural GS Grain S	Wate ize A	er Content nalysis	t (%)	RQD AC	Roc Che	k Qua mical	ality D I Anal <u>y</u>	esignation ysis	(%)			Undrained she	ar strenç	yth ्र	30 300	alor	
F	G	Frozen	ground	S Hydrom R Refusa	neter a I	analysis		P∟ E _M	Lim Pre:	it Pre ssure	ssure meter	(kPa) Modulus (MPa)			C _U Undisturb C _{UR} Remould	oed (kPa) ed (kPa)				
				VBS Methyle	ene Bl t of R	ue Value ods		E, SPo	Moo Seg	dulus regat	of sub	ograde read	ction(m²/H °	MPa) C)							
Γ		c	LITHOLOGY			(m)				SA	МР	LES				FIELD AND			RY TE		
TH - H	TH - m	- no - no		DCK	OLS	EVEL	AND BER	MPLE	TION	ш	ERY %	0mm	RQD	Org Ex	ano. am					[∞] w∟ ⊣	
DEP	DEP	EVATI	DESCRIPTIO	N	SYMB	TER L / DA		JB-SA	IDNO	SIZI	ECOVE	ws/15	N" or	2	a	RESULTS		0 40	60 80	100 120	
						WA		เร			Ē	Blo	-	Ö	Visu		20	DR DYNAI	MIC PENET	TRATION 100 120	
1	- - - 2-	-0.91	Gravel pod: Grey grave sand.	el with	• • • •	4 4															
4	א -1 ר	0.91	Probable natural depo sand with gravel, moist.	o sit: Grey	0 0 0		SS-1				33	10-22 19-13	41								
6	; ; ;	1.52	saturated		• •		SS-2		$\left \right\rangle$		83	17-15 17-48	32			GS					
7	- 2	-2.13 2.13	Grey silty sand with trac	es of			SS-3			4	100										
8	»- -	-2.74	gravel, saturated.																		
10	-3	2.74	End of borehole																		
11	- - 2- -																				
14	/-4 ⊦																				
16	, -5																				
17	r- - -																				
Ļ		arka																			
		ai n5.																			
В	Boreł	nole typ	be: Auger sampler hole	•		Borir	ng equip	ome	nt: T	ripo	bd				_						
I P	repa	ared bv	C. Perez, B.Sc.A.			Appro	oved by	:								2011-06-07	Page:	1	of	1	

X:\Style_LVMLogLog_Forage_LVM_AN sty- Printed : 2011-06-07 11h

Vertical Scale = 1 : 50

			Clien	ıt :	_		_	_	_						BORE	HOL	EF	RE	PO	RT	
				N	ation	al Ca	ipit	al	Со	mn	nissio	on			Boreho	ole nº: Dle nº: Date:	P(0278 E 20	399- 3H-(11-(0101)2-11)4-27	
Projec	t: C	halets on Rideau Cana	al											Coc	rdinates (m):	North Eas	ו t	503 36	1153 894(3.3 (Y) 3.4 (X)	
Locatio	on: O	ttawa, Ontario, (Conco	ord site)											Arb Bed	i trary rock:	Elevation m End	ו dep	th:	0. 4	00 (Z) ⊦.57 m	I
Samp	le cor	ndition							Orç	gano	leptic s	isual	exan aspec	nina ct: N	tion: on-existent(N); Dissem	inated(D);	Soake	ed(S)			
Samp	<u> </u>	ct <u>Kemoulded</u> e	Tests	ost		L Co	re					Odor:	Non	-exist	ent(N); Light(L); Medi	um(IVI); Pe	rsister	1t(P)			
SS TM	Split Sp Thin wa	oon II Tube	L Consist	ency .imit (Limits %)		о.м. к	Orga Perr	anic N neabi	Matter ility (ci	(%) m/s)				Water Le	evel etration tes	t (blow	/s/300r	mm)		
PS RC	Piston T Rock co	Tube pre	W _P Plastic	Limit y Ind	(%) ex (%)		UW A	Unit Abs	Weig orptio	ght (kN on (I/m	l/m³) in. m)				N _c Dyn. Per σ' _P Preconso	netration te plidation P	st (blov	ws/300 e (kPa))	•	
ТА МА	Auger Bulk sa	mple	IL Liquidity W Natural	y Inde Wate	ex er Content	t (%)	u RQD	Unia Roc	axial (k Qua	Compr ality D	essive stre esignation	ength 1 (%)	(MPa	.)	SCI Soil Corr	osivity Ind	ex		, ^{ge}	4	
PW FG	LVM Me Frozen	ega-Sampler ground	GS Grain S S Hydrom	ize A leter a	nalysis analysis		AC P _L	Che Limi	mical t Pres	Analy ssure	vsis (kPa)				Undrained she	e <mark>ar streng</mark> bed (kPa)	th خ	je ⁿ ▲	2 ³⁰⁰¹		
			R Refusal	ne Bl	ue Value		E _M E,	Pres Mod	ssurei Iulus (meter of sub	Modulus (grade rea	MPa) ction (MPa)		C _{UR} Remould	ed (kPa)	L	Δ			
		LITHOLOGY	WR Weight	of R			SPo	Seg	regati SA	ion Pa	<u>tential (m</u>	<u>m²/H ዓ</u>	<u>C)</u>		FIELD AND		RATC	DRY	TES	 TS	
# Ε + +	е - е	SOIL OR BEDRO	оск	s'	EL (m	д ж	PLE	NO		۲ %	E	aD	Orga Ex	ano. am		N	ATURAL AN Wp L		ER COI	ITENT NL	
DEPT	/ATIOI	DESCRIPTIO	N	MBOI	ER LEV / DAT	rpe an Umbe	3-SAM	ILION	SIZE	COVER	rs/150r	" or R(RESULTS	20	40	60	80 1	00 120	
	ELEY			S	WATI	fΖ	SUE	8		Ű.	Blow	N"	Odor	Visua		UNDRA O	INDED R DYNA	SHEAF	STRE	NGTH (ki ATION	Pa
	0.00	Gravel Pad : Grey sand	ly gravel,	o · o				\backslash									40				T
1-		moist.		ہ ہ		SS-1		\land		25	2-3 4-5	7									
3				0 0																	
4-				0		SS-2		\mathbb{N}		17	2-1 2-2	3									Π
5 -	-1.52 1.52	Probable natural depo	sit : Grey	•				$\left\{ \right\}$													
6- -2		gravely sand, saturated.		o 6 0 (SS-3		X		25	3-6 2-1	8			GS						\parallel
8-				e U		SS-4		\bigvee		25	1-1 1-1	2									
9				•				\square													
10 ⁻³				0 Ø		SS-5		X		25	1-1 2-5	3			GS			+++++			╫
11-	-3.35 3.35	Grey clayed silt, saturate	ed.	····				\square		50	4-5										
12-						55-6		\square		50	6-5										
14-						SS-7		\mathbb{N}		75	7-5 5-5	10									
15	-4.57 4.57	End of borehole		///				\square													
16- - 5																					╢
17-																					
- 19-																					
Rema	rks:			•	1		•			1											<u></u>
Boreho	ole tvr	e: Auger sampler hole	•		Borin	ng eauir	ome	nt: T	ripo	bd											
Prepa	red by	C. Perez. B.Sc.A.			Appro	oved by	<i>'</i> :		•						2011-06-07	Page:	1	(of	1	

Vertical Scale = 1 : 50

					Clien	nt :											BOREF	IOL	ER	EPC	ORT	
						Ν	ation	al Ca	ıpit	al	Со	mn	nissio	n			Fi Boreho	le n°: le n°: Date:	P02	27899 BH 2011)-0101 -03-11 -04-28	
Pro	ijec	st: Cl	halets on Rideau Cana	1												Coc	ordinates (m):	North Eas ^t	1 5 t	03185	59.6 (Y) 93.6 (X)	
Loc	ati	ion: O f	ttawa, Ontario, (NAC s	ite)			Í								ArbitraryElevation0.00 (Z)Bedrock:0.86 mEnd depth:2.74 m							
Sar	mp	le con	Idition								Orç	gano	oleptic s	soil e /isual	exar aspe	mination: ect: Non-existent(N); Disseminated(D); Soaked(S)						
Ľ∠ Sar	 mp	<u>∠ Inta</u> ole typ	ct Remoulded	Tes	ts	ost	Core Odor: Non-								<pre>on-existent(N); Light(L); Medium(M); Persistent(P) _</pre>							
SS TM		Split Sp Thin wa	oon Nil Tube	L W,	Consist Liauid I	ency	y Limits O.M. Organic Matter (%) t (%) K Permeability (cm/s)							 Water Level N Std Penetration test (blows/300mm) 								
PS RC		Piston T Bock cr	Tube	W _P	Plastic	Limit ((%) ex (%)		UW	Unit Abs	t Weig	ght (kl	N/m³) nin m)				N _c Dyn. Pene √ _ Preconsol	tration te	st (blows	/300mm kPa)	ı) •	
ТА	TA Auger IL Liquidity Ind MA Bulk sample W Natural Wate			y Inde Wate	er Content	(%)		Unia Roc	axial (Compi	ressive stre	ength	(MPa	ι)	SCI Soil Corro	sivity Inde	essure ((1 64)	.6 ⁴			
PW	PW LVM Mega-Sampler GS Grain Size / FG Frozen ground S Hydrometer			ize A	nalysis	(/0;	AC	Che	emical	I Analy	ysis /bDal	(/0)			Undrained shea	ar strengt	th _¢ ể ^ể	, _ ₂₀₀ 0	8			
		F102611	ground	R	Refusal		Emit Pressure (KPA) Emit Pressure (KPA) Emit Pressuremeter Modulus (MPA)							C _U Undisturbed (kPa) ▲ ■ C _{UR} Remoulded (kPa) △ □								
┠┬	Т			WR	Weight	t of Re	ue value ods	1	⊧, <u>SP</u> ₀	Seg	inedat	tion Pc	otential (mr	m²/H ·	MPa) C)							
l ∉ ;	ε	ε					EL (m)		<u>س</u>	z	S#	MP %	LES E		Org	ano.	FIELD AND	LABOH	ATOH TURAL V AND Wp	ATER C LIMITS (* W	STS ONTENT WL	
EPTH .	SOIL OR BEDR)CK N		MBOLS	R LEVE	E ANC	SAMP	IDITIO	SIZE SIZE OVERY s/150m or RQ					am	RESULTS	20 40 60 80 100 120					
	 ۲	DEP				SYN	VATEF	TYP NU	SUB	CON	0,	REC	Blows	:. 	Ddor	isual		UNDRA OI	INDED SH R DYNAM	EAR STE	RATION	
\vdash	\downarrow	0.00	Gravel Pad : stone, sar	nd and	silt.	1	>		<u> </u>	┼╻	\vdash		_			>		20	40 6	0 80	100 120	
		••••	,	u c	0	000																
2-		-0.86					RC-1					29		57								
3-1	· [0.86 -1.22	Rock : Limestone			Ē																
4 5-		1.22	Limestone with carbona	te.		Ē	: - -				1											
6						Ē		50.0						70								
7-	1					Ħ	•	RC-2				100		70								
8		-2 74				E	- - -															
9- 10-3	, - ,	2.74	End of borehole								-											
11		ľ																				
12		ľ																				
13_4	•	ľ																				
14																						
15. 16																						
- 5 17-	6																		++++++			
18																						
1 9 -																						
Rer	ma	.rks:																				
Bor	'neh	ole tyr	be: Diamond Core Drill				Borin	ıg equir	ome	nt: T	Fripo	od										
Pre	ena	ured by	S. Séguin, tech				Appro	oved by	/:								2011-06-07	Page:	1	of	1	

X:\Style_LVM\LogLog_Forage_LVM_AN.sty- Printed : 2011-06-07 11h

Vertical Scale = 1 : 50

	National (Capital	Comr	nission		BOREF Fi Boreho	P027899-0101 e n°: BH-04-11
					C	ordinatos (m):	Date: 2011-04-28
Project: Chalets on Rideau Canal						ordinales (III).	East 367506.1 (X)
Location: Ottawa, Ontario, (New Bronson site					Ar Be	bitrary El drock: n	evation 0.00 (Z) n End depth: 4.88 m
Sample condition			Organo	oleptic soil e	xamir	nation:	
Intact Remoulded Lo	st	Core		Odor:	Ispect: Non-exi	stent(N); Light(L); Mediu	m(M); Persistent(P)
Sample type Tests		0 1 0		- (0/)		¥ Watas Law	-1
SS Split Spoon L Consister TM Thin wall Tube WL Liquid Liq	mit (%)	С.М. Ор К Ре	ermeability (r (%) cm/s)		N Std Penet	ration test (blows/300mm)
PS Piston Tube W _P Plastic L BC Bock core L Plasticit	imit (%) (Index (%)	UW Un	hit Weight (k	N/m³) nin, m)		N _c Dyn. Pene d '₋ Preconsol	tration test (blows/300mm)
TA Auger IL Liquidity	Index	U Un	niaxial Comp	ressive strength	MPa)	SCI Soil Corro	sivity Index
MA Bulk sample W Natural PW LVM Mega-Sampler GS Grain Si	Vater Content (%) ze Analysis	RQD Ro AC Ch	ock Quality I nemical Anal	Designation (%) lysis		Undrained shea	ar strength je ^k je ^{kar}
FG Frozen ground S Hydrome	eter analysis	P _L Lin	mit Pressure	(kPa)		Cu Undisturbe	ed (kPa)
VBS Methyler	ne Blue Value	E _r Mo	odulus of sul	bgrade reaction (I	/IPa)		u (rfa) 🛆 🖬
	of Rods	SP _o Se	egregation P	otential (mm²/H ୩ । ୮୮୦	2)		
	E I	щ,			Organo	FIELD AND	ADURATORY LESTS NATURAL WATER CONTENT AND LIMITS (%) WD W WI
	30LS ATE AND	BER AMPL	ERV CE	50mr	Exam		
	SYME TER I D.	NUM S-BL	EC O	ws/1 N" or	2 0	RESULTS	UNDRAINDED SHEAR STRENGTH (kP
	M N	0	´		Odd Visi		OR DYNAMIC PENETRATION 20 40 60 80 100 120
0.00 Gravel Pad : Gravel with some	<u>ج</u> و				-		
1- sand and traces of silt, moist.	. ¹⁰ .		7				
2-	SS	-1	21	5-6 11-10 17		GS	
3-1							
4 -1.37	•						
5- 1.37 Grey slit with some clay, saturated.	ss	-2	33	²⁻² 4			
61.83			7				
7- clay and traces of gravel, saturated.	SS	-3	71	¹⁻³ 2-3 5			
8 -2.44 2.44 Sandy silt with some clay and							
9- traces of gravel, saturated.	SS-	-4	58	15-4 4-11 8			
10-3	1 · · · · · · · · · · · · · · · · · · ·						
11-	ss ss	-5	71	¹¹⁻¹⁵ 16-17 31			
12-							
13-4	SS	-6	58	⁷⁻¹⁶ 11-10 27			
14							
15-	ss.	-7	92	⁷⁻⁹ 11-12 20			
16 -4.88 5 4.88 End of borehole.	··/•/						
17-							
18							
19-							
Remarks:			_11		I		
Borehole type: Diamond Core Drill	Boring eq	uipment:	Tripod			T	
Prepared by: S Séquin tech	Approved	by C P	erez .lr.	Fna		2011-06-07	Page: 1 of 1

Vertical Scale = 1 : 50

Appendix 3

Laboratory Tests

Client : National Capital Project : Geotechnical En the Rideau Cana Location : Ottawa, Ontaric	Commission gineering / Quality Control Testing ; al	Project # : P027899-0101 Chalet on Client ref. : Report # : 1 Rev. 0
		Page 1 of 1
s	ampling	Specification # 1
Sampling # : 1 Your sampling # : Material : Source; location : Fro	m borehole	Reference : Use : Calibre : Class :
Sampling location : BH-	01-11, SS-2; 1.52 - 2.13 m	Sampling date : 2011-04-28 By : Sylvain Séguin, tech. Date received : 2011-05-03
	Siava analysis (ASTM C	136)
% PASSING		100/
SIEVE (mm) REOUIREMENTS RESULT	Silt and clay S	iand Gravel
106 75 50 37,5 26,5 13,2 80 9,5 2,36 2,36 53 1,18 0,600 38 0,300 30 0,150 22 0,075	0,01 0,1	Image: state of the state
Maximum dry density	Optimum moisture Retained 5 mm	Cobble : Sand :
kg/m ³	% %	Gravel : Silt and day :
	Dther testing	Required Result
(x		
	Remarks	
RESULTS WITH AN ASTERISK DO NO	OT MEET REQUIREMENTS.	
Prepared by :	Date : 2011-05-06 Approv	Perez, ing. jr Date :

Client : National Capital Project : Geotechnical Eng the Rideau Cana Location : Ottawa, Ontario	Commission gineering / Quality Control Testi I	Project # : P027899-0101 ng ; Chalet on Client ref. : Report # : 2 Rev. 0 Page 1 of 1 Specification # 1
Sampling # : 2 Your sampling # : Material : Source; location : Fron Sampling location : BH-(n borehole)2-11, SS-3; 1.52 - 2.13 m	Reference : Use : Calibre : Class : Sampling date : 2011-04-28 By : Sylvain Séguin, tech. Date received : 2011-05-03
	Sieve analysis (AS	M C136)
% PASSING		
Interview REQUIREMENTS RESULT 106 75 50 37,5 26,5 19 100 13,2 91 9,5 88 4,75 75 2,36 52 1,18 31 0,600 18 0,300 10 0,150 6 0,075 3,7	Silt and clay x Gradation x	Sand Gravel 100 90 80 70 80 70 60 50 50 50 50 50 50 50 100 100 100 100 100 100 100 100 100 100 100 100
Maximum dry density	Optimum moisture Retained 5 r	nm Cobble : Sand :
kg/m ³	% %	Gravel : Silt and clay :
(ther testing	Required Result
	Remarks	
RESULTS WITH AN ASTERISK DO NO	T MEET REQUIREMENTS.	
Prepared by :	Date : 2011-05-06	amilo Perez, ing. jr

Client : National Capital Project : Geotechnical Eng the Rideau Canal Location : Ottawa, Ontario	Commission ineering / Quality Control Testing ; (Project # : halet on Client ref. : Report # :	P027899-0101 3 Rev. 0 Page 1 of 1
Sa	mpling	Specificatio	n # 1
Sampling # : 3 Your sampling # : Material : Source; location : Sampling location : BH-0	borehole 2-11, SS-5; 2.74 - 3.35 m	Reference : Use : Calibre : Class : Sampling date : 2011-04-2 By : Sylvain Sé Date received : 2011-05-0	8 guin, tech. 3
	Sieve analysis (ASTM C	36)	
STOLE (THE AND A PASSING		,	
106 75 100 75 50 37,5 26,5 19 100 13,2 95 92 4,75 79 2,36 63 1,18 48 0,600 38 0,300 30 30 0,150 0,075 19,6 19,6	One one cov Section Spec. limits Section 0,01 0,1	1 10 ieve (mm)	100 90 80 70 80 60 80 50 80 50 80 50 80 40 80 90 80 70 80 90 90 90 90 90 90 90 90 90 90 90 90 90
		Proportions from siev	e analysis (%)
Maximum dry density	Optimum moisture Retained 5 mm	Cobble :	Sand :
kg/m ³	% %	Gravel :	Silt and clay :
•	ther testing	Required	Result
	Remarks		
RESULTS WITH AN ASTERISK DO NOT	MEET REQUIREMENTS.		
Prepared by :	Date : 4 2011-05-06 Camilo	d by : aile Programmerez, ing. jr	Date : 2011-05-06

Client Project Location	: Nationa Geotech the Ride : Ottawa,	l Capital (nical Eng au Canal Ontario	Commission ineering / Quality (Control Testin	g ; Ch	alet	on C R	Projection Client Cliepor	ct# ref. t#	:	P027 4 Page	7 899-(Re : 1 c)101 ev. 0 of 1	
			molina			_		Śr	ecifi	catio	n #	1		\preccurlyeq
Sampling # Your sampli Material Source; loca Sampling lo	ing # ation cation	: 4 : : From : BH-04	borehole +11, SS-1; 0.30 - 0.91	m		Refé Use Calii Clas Sam By	erence bre s upling date	e :	2011 Sylva 2011	-04-2 ain Se	28 éguin, 13	tech.		_
<u></u>			Siava	anabicie (AST)		<u> </u>	s received		2011				· ·	\prec
T	% PASS		Sievea	Inalysis (ASTA	1 C13	0)			•••					
SIEVE (mm)	70 PASS	DECI II T	Silt and claw		Same					Gra	vel			
106 75 50 37,5 26,5 19 13,2 9,5 4,75 2,36 1,18 0,600 0,300 0,150		100 88 79 68 48 34 26 21 16 12	× Grada → Spec. ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	tion limits 0,1	Sie	× * 1)	×	10				100 90 80 (%) 60 50 60 50 40 40 30 20 10 0	
0,075		8,4	Cu: 69,2 Cc:	3,6 FM : :	3,55		D ₁₀ : 0,:	105	D ₃₀ :	: 1	,647	D ₆₀ :	7,264	<u>+</u>
					$\supset l$		Propo	rtions	; from	siev	/e ana	nlysis ('	%)	
Max	kimum dry densi	ity	Optimum moisture	Retained 5 mr	n [Cobble :				Sand	:		
	kg/m ³		%	%		_	Gravel :				Silt ar	id day :	-	
		O	her testing	· · · · · · · · · · · · · · · · · · ·			Re	əquir	eđ			Res	ult	
				Pamarke										
				kemarks										
RESULTS W	/ITH AN ASTERI	<u>sk do not</u>	MEET REQUIREMENTS											
Prepared	by :	0	Date :	Арр	roved	by :	/	1	S			Date :		
Jean-Pierre	Lavoie, chef d'	équipe	e 2011-05-	06 Ca n	nilo Pe	erez,	ing. jr	<u>k</u>	Va.	-	20	11-03	5-06	j

Client Project Location	: Nation : Geot the I : Otta	onal Capital technical Eng Rideau Cana wa, Ontario	Commission Jineering / Quality	Control Testin	g ; Cha	Proje Jet on Client Repo	ct#: tref.: rt#:	P027899-0101 5 Rev. 0 Page 1 of 1
Sampling a Your samp Material Source; loo Sampling a	# bling # cation location	Sa : : : From : BH-0	mpling 1 borehole 4-11, SS-3; 1.83 -2.44 r Sieve :	n analysis (ASTI	4 C136	Sampling date : By : Date received :	2011-04 Sylvain S 2011-05	-28 Séguin, tech. -03
	%	PASSING				1		· · · ·
106 75 50 37,5 26,5 19 13,2 9,5 4,75 2,36 1,18 0,600 0,300 0,150 0,075		100 97 94 91 89 86 83 79 74 64,0	× Grada Spec. 	ation limits .x · · · · · · · · · · · · · · · · · · ·	- *	1 (mm)	10	90 80 70 60 50 50 40 100 100 100
Ма	aximum dry o	lensity	Optimum moisture	Retained 5 m	ᆔ┝	Cobble :	s trom sie	sand :
	kg/m³	·	%	%	儿	Gravel :		Silt and day :
		0	ther testing	•		Requir	red	Result
	£							
				Remarks				
Prepared	d by		Date :	Apj	proved b	γ: 	76_	Date :
Jean-Pierr	re Lavoie, ch	ef d'équipe	2011-05-	06 Ca i	nilo Per	ez, ing. jr	7	2011-05-06

EQ-09-IM-229 rev. 00 (06-03)

Appendix 4 Plan of Borehole Locations

Appendix A - Part II Geotechnical Study Rideau Canal - Ottawa: Echo Drive Retaining Walls

Geotechnical Study

Rideau Canal – Ottawa

Echo Drive Retaining Walls

Final report

05-19999-5000

November 2010

Our parent company, AECOM, is evolving to better serve its global clients. As a part of this evolution, Tecsult has adopted the AECOM brand and changed its name to AECOM Tecsult Inc. AECOM provides a blend of global reach, local knowledge, innovation and technical excellence in delivering solutions that enhance and sustain the world's built, natural and social environments. Though our name is changing, our commitment to the success of your projects and organization remains strong.
This report was prepared by AECOM Tecsult Inc. with the cooperation of the professionals specifically listed below:

November 12, 2010

Bacit Mokhtari, M.A.Sc. Geotechnics

November 12, 2010

Mostafa Tayae, Eng. Geotechnical project engineer

/hc.

 $k:\label{eq:loss} k:\label{eq:loss} k:\label{eq:loss} k:\label{eq:loss} b.\label{eq:loss} k:\label{eq:loss} b.\label{eq:loss} b.\label{e$

Table of Contents

1	INTRODUCTION	1
2	REFERENCES	1
<mark>3</mark> 3.1 3.2	FIELD INVESTIGATION. Site reconnaissance. Subsurface exploration	1 1
4 4.1	GEOTECHNICAL CONDITIONS. Stratigraphy	3 3
4.2	4.1.2 Native Soils Hydrogeologic conditions	4 6
5	GEOTECHNICAL RECOMMENDATIONS	7
5.1	Bearing capacity for shallow foundations	7
5.2	Deep foundations	8
5.3	Earth anchors	88 0
5.4 5.5	Soli susceptible to trost action	סס פ
5.6	Geotechnical parameters for the earth pressure on the wall	9
APPE	NDIX 1 BOREHOLE LOCATION PLAN	

- APPENDIX 2 BOREHOLE LOGS
- APPENDIX 3 GEOTECHNICAL LABORATORY TEST RESULTS
- **APPENDIX 4 PHOTOS**

TABLES

Table 1	Drilled Boreholes	2
Table 2	Thickness of Fill	3
Table 3	Grain Size Properties of the Fill Material	4
Table 4	Water Content and Atterberg Limits for the Fill Material	4
Table 5	Grain Size Properties of the Native Soils	5
Table 6	Water Content and Atterberg Limits for the Native Soils	5
Table 7	Geotechnical parameters for the calculation of the active and	
	passive earth pressure on the walls	9
	• •	

FIGURES

Figure 1	Undrained shear strength profile	6
Figure 2	Figure extrait from NAVFAC (7.2-67)1	0

1 Introduction

The services of AECOM Tecsult Inc. (AECOM) were retained by Public Works and Government Services Canada for the geotechnical study related to the repair or replacement of canal retaining walls at Patterson Creek and Echo Drive on the Rideau Canal in Ottawa.

This report concerns the Echo Drive section and the purpose of this geotechnical study is to provide:

- Field Exploration: consisting of subsurface investigation by drilling and field testing;
- Laboratory analyses on representative soil samples collected during the subsurface exploration;
- Engineering analysis of the surface and subsurface conditions observed;
- Conclusions and recommendations for the geotechnical issues concerning Echo Drive retaining wall between station 14+50 and 19+50;
- Preparation of this report which includes the items discussed above.

The geotechnical study for the canal wall at Patterson Creek is the subject of a separate report.

2 References

The following documents have been consulted:

- I. Canadian Foundation Engineering Manual (CFEM 2006);
- II. Subsurface investigation, Rideau Canal (Ottawa Reach), Retaining wall at Patterson Creek section and Echo Drive Section, No SF-4636, 23 June 2000, McRosite Genest St-Louis.

3 Field investigation

The field investigation conducted specifically for this study consisted of subsurface exploration by means of drilling 5 (five) boreholes and field testing in the boreholes (standard penetration testing -SPT and Field vane test (FVT)). The purpose of the field investigation was to obtain information on the geotechnical characteristics of the soil underlying the study area in order to proceed with the geotechnical design of the new retaining wall or the stabilization of the existing retaining wall, as well as to provide recommendations regarding the fill materials behind the retaining wall.

3.1 Site reconnaissance

Reconnaissance of the site was conducted between August 12th and 17th, 2010 by a geotechnical engineer from AECOM. The purpose of the site reconnaissance was to identify backfill and foundations features which could affect the stability of the retaining wall at Echo Drive between stations 14+50 and 19+50 approximately.

3.2 Subsurface exploration

The subsurface exploration consisted in drilling and sampling of 5 (five) boreholes with field testing in the boreholes (standard penetration testing -SPT and Field vane test (FVT)). The exploration was conducted under the supervision of a geotechnical engineer from AECOM who directed the field testing, the sampling program and logged the subsurface conditions encountered. The objective of the drilling program was to provide an accurate profile of the subsurface soils and relevant information on the engineering characteristics of the fill and native soils. The boreholes were designated E-1 through E-5 and were advanced up to depth of 15,24 meters below existing grade. Drilling was conducted using a "CME 55" type drilling machine operated by "Succession Forage Downing Ltée".

Borehole number	Depth of the borehole (m)	Station/ Location	Surface elevation (m)
E-1	14.02	14+70	65.03
E-2	10.80	17+40	66.36
E-3	15.24	17+65	65.73
E-4	15.24	18+45	65.22
E-5	15.24	19+35	65.18

Table 1	Drilled	Boreholes
	Dillieu	DUICHUICS

Initially, the borehole E-2 has been planned to be drilled at station 16+50. Difficulties to access to that location and to reroute safely pedestrian traffic forced its relocation.

Samples were obtained at 0,61 m or 1,6 m intervals using a split spoon sampler. The split spoon was used to carry out the standard penetration tests (SPT) and was driven into the soil using an automatic hammer. The number of hammer blows to advance the sampler for each 15 cm drive was noted and used to determine the standard penetration resistance (SPT or N value) of the soil at that given location and depth. The Field vane test (FVT) was used to determine the undrained shear strength.

Samples retrieved during drilling were visually classified in the field, labelled, sealed in plastic containers, and taken to laboratory for testing.

The location of the boreholes is shown on the location plan presented in Appendix 1. Detailed logs of the boreholes are presented in Appendix 2. All of the boreholes were backfilled manually with auger cuttings following the completion of the drilling.

4 Geotechnical Conditions

Table 2

4.1 Stratigraphy

4.1.1 Fill Material

The study area is underlain by a layer of heterogeneous fill that is up to 5,49 meters thick. The fill materials consist of a heterogeneous mixture of silty gravely sand with other manmade materials (some wood) mixed in. Some clayey beds could be encountered.

In borehole E-2, E-3 and E-4, boulders have been encountered starting from depth 0,61 m approximately to 3,05 m. The progression of the augers during drilling has been very difficult because of these boulders.

The standard penetration resistance (N value) has been measured fifteen (15) times in the fill materials. The N values vary between 2 and 15. Some refusals have been noted because of the wood, gravels or boulders presence in the fill materials. The density was qualified as loose.

Table 2 contains the thickness of the fill at the location of the completed boreholes of this study.

Thickness of Fill

Borehole number	Thickness of fill (m)
E-1	5,49
E-2	5,49
E-3	4,57
E-4	4,27
E-5	3,96

Six (6) grain size tests (NQ 2501-025) were carried out on representative samples for the fill material respectively. All samples have been taken at 0.00 m except CF-3 in borehole E-2 which has been sampled at 3,66 m. Table 3 presents the grain size results and the classification of soils. The complete laboratory test results are presented in Appendix 3.

Soil sample	Gravel % (5-80 mm)	Sand % (0.08-5 mm)	Silt % (0.08-0.002 mm)	Clay % (< 0.002 mm)	Classification USCS
E-1: CF-1	8,4	49,1	27,5	5	SM
E-2: CF-1	34,0	54,8	11,2		SP-SM
E-2: CF-3	8,3	55,6	28,8 7,3		SM
E-3: CF-1	28,4	59,6	12,0		SM
E-4: CF-1	18,0	60,8	21,2		SM
E-5: CF-1	31,2	42,4	18,4 8,0		SM

 Table 3
 Grain Size Properties of the Fill Material

Water content tests and the Atterberg limits tests were conducted on samples E-1: CF-1, E-2: CF-3, E-3: CF-1 and E-5: CF-1. These results are presented in table 4.

Soil Sample	Water Content (%)	Liquid Limit (WL) (%)	Plastic Limit (WP) (%)	Plasticity Index (Ip)	Liquidity Index (I∟)	Classificatio n USCS
E-1: CF-1	7,7	21,0	16,8	4,2	-2,15	SM
E-2: CF-3	43,3	38,3	29,9	8,4	1,59	SM
E-3: CF-1	2,6	17,0	14,9	2,2	-5,68	SM
E-5: CF-1	4,8	20,0	13,4	6,6	-1,31	SM

 Table 4
 Water Content and Atterberg Limits for the Fill Material

The results show that generally the soils are classified as SM (silty sands, sand-silt mixtures) according to the USCS. The liquid limits are between 17,0% and 38,3% and the plastic limits are varying between 13,4% and 29,9%. The water content values vary between 2,6% and 43,3%. The highest value of the water content corresponds to the bottom of the backfill layer where more fine particles constitute soils. The plasticity index varies between 2,2 and 8,4 confirming that soils are not or very lightly plastic.

4.1.2 Native Soils

Native soils are encountered under the backfill layer. It consists of a greenish silty clay or mixture of clay and silt with traces of sand. It is generally stiff, lightly moist and fissured (it is commonly called crust). The thicknesses of this greenish clay are 1,52 m at the borehole E-1, 1,83 m at the borehole E-3, 1,58 m at the borehole E-4 and 1,91 at the borehole E-5. This crust has not been detected at the borehole E-2. Bellow this layer, the gray silty clay or mixture of clay and silt, moist to very moist and plastic to very plastic is found down to 15,24 m depth approximately. At the bottom of the boreholes E-1, E-3 and E-4, this clay is becoming consolidated as shown and described in the boreholes logs.

The native soils extend to the depth of exploration in all of the boreholes. Bedrock was not reached in any of the boreholes completed for this study even if refusal has been noted in the borehole E-1 at depth 14,02 m.

The standard penetration resistance (N value) has been measured twenty one (21) times in the native soils. The N values were between 1 and 10. The highest values coincide with the crust. The lowest values correspond to the soft, plastic and gray clay.

Three (3) grain size tests (NQ 2501-025) were carried out on representative samples for the native soils at respectively 5,49 m, 4,57 m and 4,27 m depth (respectively E-1: CF-4, E-3: CF-3 and E-4: CF-4). The results and the soils classification are given in table 5. The complete laboratory test results are presented in Appendix 3.

Soil sample	Gravel % (5-80 mm)	Sand % (0.08-5 mm)	Silt % (0.08-0.002 mm)	Clay % (< 0.002 mm)	Classification USCS
E-1: CF-4	0,0	3,9	35,9	60,2	CL-CH
E-3: CF-3	0,0	9,6	38,9	51,5	CL-CH
E-4: CF-4	0,0	3,5	37,6	58,9	CL-CH

 Table 5
 Grain Size Properties of the Native Soils

The water content and the Atterberg limits were conducted on the same samples. The results are presented in table 6.

Soil Sample	Water Content (%)	Liquid Limit (WL) (%)	Plastic Limit (WP) (%)	Plasticity Index (Ip)	Liquidity Index (I∟)
E-1: CF-4	46,6	68,1	30,4	37,8	0,43
E-3: CF-3	39,5	58,5	26,3	32,2	0,41
E-4: CF-4	48,0	64,2	24,8	39,4	0,59

 Table 6
 Water Content and Atterberg Limits for the Native Soils

The water content is varying from 39,5% to 48,0%. The plasticity index is varying from 32,2% to 39,4% which means that this clayey layer is plastic to very plastic. Based on the USCS, the soils are classified as CL-CH (inorganic clay with medium to high plasticity).

Four field vane tests (FVT) were carried out in the boreholes each of boreholes E-1, E-2, E-3 and E-5 in order to determine the undrained shear strength profile. The results are presented in figure 1.

Figure 1 Undrained shear strength profile

4.2 Hydrogeologic conditions

The borehole E-4 has been equipped with a piezometer in order to read the water table elevation. The screen is installed at the bottom of the borehole (see the log in appendix 2). On August 17^{th} , the water table elevation in that borehole was at 4,05 m depth from the ground elevation.

At the end of drilling operations in the boreholes E-1, E-2, E-3 and E-5, the water table stabilised between 1,0 m and 1,5 depths from the ground elevation. However, the dissipation was probably not completed.

5 Geotechnical Recommendations

5.1 Bearing capacity for shallow foundations

The foundations of the new wall should set on the same horizon than the existing one which coincides with the top of the stiff clay (crust). In order to allow for the removal of any disturbed clay soils during the process of demolition, these elevations could be slightly deeper. Therefore, the bottom of the foundations should be at the elevations varying between 59,54 m (5,49 m depth) and 61,22 m (3,96 m depth) according to the boreholes E-1, E-3, E-4 and E-5.

The ultimate bearing capacity (q_u) can be calculated by the following equations given in the Canadian Foundation Engineering Manual, section 10.2.

$$q_U = C N_c S_c + q_s N_q S_{q+} \frac{1}{2} \gamma B . N \gamma$$

- q_u: ultimate bearing capacity;
- C : Soil cohesion = Cu undrained shear strength of the clay (kPa) (value is measured within a depth corresponding to D+2B);
- B : width of foundation (m) ;
- D : depth of the foundation in reference to the initial natural ground level (m) ;
- q_s : vertical stress acting at the elevation of the base of foundation (kPa);
- N_{γ} , N_c , N_q bearing capacity factors; ($N_c = 2+\pi$, $N_{\gamma} = 0$ et $N_q = 1$);
- γ: soil unit weight;
- S_c , S_q , S_γ : factors for foundation shape, ($S_q = S_c = S_{\gamma}=1$ for continuous footing).
- D = approximately 4.3 m;
- Existing ground surface elevation between 65.0 m and 66.3 m.
- C_u=55 kPa;
- qa: allowable bearing capacity, $qa = \frac{qu}{rs}$
- FS: Factor of safety, FS=2, reference table 8.3 of Canadian Foundation Engineering Manual, section 8.

For foundation widths varying from 3,0 m to 5,0 m, the influence zone of foundation (solicited soils) will reach respectively 9,5 m to 13,5 m. The minimum undrained shear strength measured in that horizon is about $C_u = 55$ kPa as shown in figure 1. Therefore, the ultimate bearing capacity will be:

 $\begin{array}{l} q_u = 5.14 \ x \ C_u + q_s; \\ q_s = 4.3 \ x \ \gamma_h; \\ \gamma_h = 17.5 \ k N/m^3 \ \text{since average } w_n \ \text{is around} \ 45\%; \end{array}$

Then q_s ≈ 75 kPa; q_u ≈ 360 kPa

The allowable bearing capacity is finally:

q_a = 180 kPa.

5.2 Deep foundations

If it is decided to proceed with deep foundations, the most suitable ones are the steel and driven H-piles. If the piles are driven until refusal into the dense till or the rock, which correspond to 15 m to 20 m depths, the geotechnical capacity of these piles will be equal to the their structural capacity.

5.3 Earth anchors

One of the proposed solutions is to stabilize the wall using the earth anchors in clay. The bond capacity in this case is calculated as follow:

Bond Capacity = $\alpha_c \times C_u$ / SF

 α_c is empirical coefficient which is equal to 0,4 in this case;

 C_u is the undrained shear stress of the clay in the concerned horizon. A value of 65 kPa is taken according to the vane tests;

SF is the safety factor, equal to 2,5 according to the Canadian Manual of Foundations Therefore,

Bond Capacity ≈ 10 kPa

5.4 Soil susceptible to frost action

The encountered subgrade fills and native soils in all boreholes are frost susceptible. Some frost action can be expected. To prevent any frost action behind the new wall, the soil behind the retaining wall should be excavated and replaced by non-frost susceptible compacted granular fill materials.

The foundation footings should be insulated to be protected against frost action.

5.5 Excavation during rehabilitation

During the works, the slopes of the excavations should be safe: 1,5H:1V minimum. The bottom of the excavations and the slopes should be dewatered by building a coffer dam in the river side, and by excavating trenches and pumping continuously in the other side. The pumped water should be discharged away enough from the work site to not feed again the pumped water table.

5.6 Geotechnical parameters for the earth pressure on the wall

The geotechnical parameters to be considered for the soil placed behind the wall are given in the table 7:

Parameters			
Int	ernal friction angle, Φ (°)	30	
	Cohesion, c' (kPa)	0	
Βι	ılk unit weight, γ (kN/m³)	21	
Friction angle at the interference wall- soil, $\delta_{s}\left(^{\circ}\right)$			
Friction coefficient for sliding resistance			
Static condition At rest earth pressure coefficient, K ₀		0,5	
	active earth pressure coefficient, K _a		
passive earth pressure coefficient, K _p		(2)*	
In case of earthquakes active earth dynamic pressure coefficient, Kae		(3)*	
	active earth dynamic pressure coefficient. Kne	(4)*	

Table 7 Geotechnical parameters for the calculation of the active and passive earth pressure on the walls

*See sections below

(1)
$$K_a = \frac{\cos^2(\Phi - \theta)}{\cos(\theta)^2 \cos(\delta_s + \theta) (1 + \sqrt{\frac{\sin(\delta_s + \Phi)\sin(\Phi - \beta)}{\cos(\delta_s + \theta)\cos(\beta - \theta)}})^2}$$

With the values listed in the table above, Ka = 0,48.

(2) The K_p value has been determined based on the following figure. For example, for $\phi = 25$, $\beta/\phi = -0.2$ and $\delta/\phi = -0.3$, K_p = R (K_p pour $\delta/\phi = -1$) with R a reduction factor presented in the table on the up left side from the figure. In this example, R = 0.711 and (Kp pour $\delta/\phi = -1$) = 3.62. Finally, Kp = 0.711 x 3.62 or kp = 2.58.

$$(3) K_{ae} = \frac{\cos^2(\Phi - \theta - \psi)}{\cos(\psi)\cos^2(\theta)\cos^2(\theta)\cos(\delta_s + \theta + \psi)(1 + \sqrt{\frac{\sin(\delta_s + \Phi)\sin(\Phi - \beta - \psi)}{\cos(\delta_s + \theta + \psi)\cos(\beta - \theta)}})^2}$$

$$(4) K_{pe} = \frac{\cos^2(\Phi + \theta - \psi)}{\cos(\psi)\cos^2(\theta)\cos(\delta_s - \theta + \psi)(1 - \sqrt{\frac{\sin(\delta_s + \Phi)\sin(\Phi + \beta - \psi)}{\cos(\delta_s - \theta + \psi)\cos(\beta - \theta)}})^2}$$

- β : slope embankment to the horizontal plane (°) ;
- θ slope of the wall (°);
- ψ seismic corposant :

$$\psi = \operatorname{atan} \left(\frac{k_h}{1 - k_v} \right)$$

• k_h and k_v are the respective horizontal and vertical acceleration coefficients.

Appendix 1

Borehole Location Plan

Borehole Logs

Appendix 3

Geotechnical Laboratory Test Results

Appendix 4

Photos

Drilling the borehole E-2

Tpical sample of the backfill material (From borehole E-1)

Typical sample of greenish clay (crust, from borehole E-5)

Typical sample of gray and plastic silty clay (from borehole E-4)

Piezometer cover, backfilling and asphalting the hole after drilling (borehole E-4)

Appendix A - Part III

Report on subsurface Investigation Rideau Canal (Ottawa Reach) Retaining Wall at Patterson Creek Section and Echo Drive REPORT ON

SUBSURFACE INVESTIGATION

RIDEAU CANAL (OTTAWA REACH)

1-taritage Canalo

RETAINING WALL

АΤ

PATTERSON CREEK SECTION

AND

ECHO DRIVE SECTION

то

PUBLIC WORKS AND GOVERNMENT

SERVICES CANADA

Report No. SF-4636 June 23, 2000

VUCTA

McROSTIE GENEST ST-LOUIS

& ASSOCIATES LTD. - CONSULTING ENGINEERS & ASSOCIÉS LTÉE - INGÉNIEURS CONSEILS OTTAWA CANADA

TABLE OF CONTENTS

PAGE №

1.	TERMS OF REFERENCE 1
2.	BRIEF SITE DESCRIPTIONS 2
3.	CONCLUSIONS AND RECOMMENDATIONS (PATTERSON CREEK SECTION)
	3.1Generalized Subsurface Conditions33.2Condition of Existing Wall33.3Quality of Concrete43.4Remedial Work Requirements53.5Details of the Investigation8
4.	CONCLUSIONS AND RECOMMENDATIONS (ECHO DRIVE SECTION)104.1Generalized Subsurface Conditions104.2Condition of Existing Wall104.3Quality of Concrete114.4Remedial Work Requirements134.5Details of the Investigation14
5.	STATEMENT OF LIMITATIONS

PLATE №

RIDEAU CANAL WALLS - SITE PLAN		1	
RIDEAU CANAL WALLS - PATTERSON CREEK SECTION		2	
RIDEAU CANAL WALLS - ECHO DRIVE SECTION		3	
BOREHOLES - PATTERSON CREEK SECTION	. 4	to	19
BOREHOLES - ECHO DRIVE SECTION	20	to	33

⊂ van

APPENDIX

SITE PHOTOGRAPHS	A'
CORE PHOTOGRAPHS	'B'
TYPICAL WALL SECTIONS	'C'
LABORATORY TEST RESULTS	D'
UNDRAINED SHEAR STRENGTH WITH DEPTH	'E'
STATEMENT OF LIMITATIONS	'F'

McROSTIE GENEST ST-LOUIS

& ASSOCIATES LTD. — CONSULTING ENGINEERS — 1755 WOODWARD DRIVE, SUITE 201 TEL: (613) 228-7088 & ASSOCIÉS LTÉE — INGÉNIEURS CONSEILS — 1755, PROMENADE WOODWARD, BUREAU 201 FAX: (613) 228-0986 OTTAWA, ONTARIO K2C 0P9

1. <u>TERMS OF REFERENCE</u>

We were requested and authorized by Mr. Jim Richardson, P.Eng. of Public Works and Government Services Canada, to carry out a subsurface investigation in Ottawa along the Rideau Canal, focused on the Patterson Creek and Echo Drive sections of the canal retaining wall.

The investigation was to be carried out in accordance with our work and cost proposal dated March 9, 2000, and the scope of work prepared by PWGSC. On March 2nd, 2000, we had visited both sites with Mr. Eric Sunstrum, P.Eng. and Mr. Luc Bériault, P.Eng., both of PWGSC, to review the locations to be tested, discuss the terms of reference and agree on the scope of work.

The field and geotechnical investigations of wall sections at Patterson's Creek and Echo Drive were to provide the necessary date, information and recommendations needed to carry out the design for repairing the walls.

The number, depth and location of the boreholes were determined by Heritage Canals but needed to be modified due to the findings.

Environmental concerns are beyond the scope of this geotechnical study.

2. BRIEF SITE DESCRIPTIONS

The Patterson Creek site is on the west side of the canal and comprises approximately 152 metres of retaining wall. It is more precisely located along the Queen Elizabeth Driveway and starts 22 metres south of Patterson Bridge going south.

The Echo Drive site is on the east side of the canal over a distance of approximately 158 metres. This section of wall is located at about 390 metres south of the University of Ottawa Nicholas Street pedestrian underpass tunnel.

The canal walls are gravity retaining walls dating back to the early 1930's. Typical wall sections provided to us by PWGSC are included in Appendix 'C' for completeness.

We understand that patching of the walls has been done on a semi-regular basis in the past, but the deterioration of the walls and coping is accelerating. Several wall sections have been previously refaced, replaced or rebuilt.

3. <u>CONCLUSIONS AND RECOMMENDATIONS</u> (PATTERSON CREEK SECTION)

3.1 Generalized Subsurface Conditions

At the Patterson Creek site, subsurface conditions can be generalized as consisting of a thick layer of unselected fill, topsoil and organic silt behind the existing retaining wall founded on a hard to very stiff fissured brownish gray clay crust. Below the desiccated crust, the clay becomes stiff and changes in colour to gray. At a depth of fifteen (15) metres, silt containing some sand layers was encountered. Based on borehole information from the area, normally the silt layer is underlain by glacial till (mixture of clay, silt, sand, gravel, cobbles, boulders and rock blocks) in turn underlain by bedrock. As inferred from the probing or dynamic cone testing, the till would start at a depth of approximately twenty-five (25) metres. Based on geological mapping, the bedrock below the site would consist of a black shale of the Billings Formation at a depth of at least twenty-eight (28) metres from the ground surface according to the results of the probing information.

Details of soil and groundwater conditions encountered at the site are shown on accompanying Plates.

3.2 Condition of Existing Wall

As shown on the photographs, included in Appendix 'A' of this report, the very upper part of the wall in this section is in relatively good condition. Deterioration and delamination of concrete can however be observed at the summer water level, approximately 200mm in dimension, where the surface

of the concrete can also be seen to be darker in colour. The lower portion of the wall seems to be generally in good condition.

It should be pointed out that this wall leans outwards, likely responsible for the visible longitudinal cracking in the asphalt pavement along the bicycle path. The rebars are visible at one location where the coping shows signs of spalling. There are signs of staining on the wall up to the summer water levels.

3.3 Quality of Concrete

We were requested to carry out a cursory study of the concrete characteristics as they relate to air content, alkali-aggregate potential reactivity and compressive strength.

The cores were examined, logged and photographed with the results shown in Appendix 'B'. The concrete can generally be described as well consolidate with large limestone and granitic aggregate. We would not expect any entrained air in concrete of this vintage.

The cores were cut and prepared for compressive strength testing. The intact concrete gave results ranging between 34.6MPa and 59.6MPa at this site with an average of 43.2MPa. Details are included in Appendix 'D'.

Samples were also forwarded to Montreal for specialized petrographic analysis, arranged through a local testing agency, Les Laboratoires Outaouais Inc. We visited the site with a concrete engineer from the same firm that carried out the petrographic analysis in order to get an overall appreciation of the condition of the concrete in the field. Based on the observations made during the site visit, the exposed concrete surfaces do not show any evidence of alkali-aggregate reaction.

The coarse aggregate in the concrete is essentially composed of granitic and limestone rocks. The fine aggregate is mostly composed of feldspars, quartz and rock fragments.

As part of the petrographic analysis, a visual examination of the cores was performed, on concrete samples from boreholes N^o 00-2H and 00-4H with no apparent signs of alkali-aggregate reaction detected. We were informed, however, that there were signs of secondary reaction products that could be identified by a scanning electron microscope or by X-ray diffraction analysis, if required.

As indicated on the petrographic analysis record in Appendix 'D', both the coarse and fine aggregate have a low alkali-aggregate reactivity potential.

Based on the limited amount of testing on the concrete cores to evaluate the potential for alkali-aggregate reaction to occur and assuming that the tests were performed on samples representative of the entire site, the overall potential for such occurrence is considered low.

3.4 <u>Remedial Work Requirements</u>

At the Patterson Creek site, the existing retaining wall is leaning towards the Rideau Canal and a crack has developed in the asphalt bicycle path behind the

Page Nº 6

wall. Since the backfill behind the wall is <u>unselected</u> and has poor drainage characteristics as well as being frost acting, the most probable causes for the distress, would be a combination of differential groundwater pressures versus canal water levels and horizontal frost pressures from within the backfill.

Replacing the old wall with a new wall supported on the natural clay soils including removal of the unselected fill behind the wall is recommended.

The new wall should be made to bear on the clay crust at the same elevation as the old wall or just slightly deeper, in order to allow for the removal of any disturbed clay soils by the process of demolition. Furthermore, since the natural clay becomes softer with depth, it is important to take advantage of the presence of even a small portion of the clay crust.

The new backfill behind the wall needs to be free-draining and weep holes should be placed through the new wall. A material meeting the gradation characteristics of OPSS Granular 'B' (Type I) would be acceptable.

The designers will no doubt take into consideration the high levels of chlorides found in the groundwater in their design. These concentrations are likely attributable to de-icing chemicals being used during the winter months. Detailed results are given in Appendix 'D'.

The following soil parameters can be used for the design of the new retaining wall.

- soil density 21.0kN/m³
- active earth pressure coefficient Ka = 0.35
- triangular distribution
- allowance for surcharge
- relief of hydrostatic pressure by drainage

A small batter should be placed on the face of the new retaining wall in order to reduce the effect or appearance caused by any lateral movement that will occur.

The allowable bearing pressure under a retaining wall or any other foundation system is dependent on the width of the loaded area and the variation in undrained shear strength in the clay below the footing.

Based on a few assumptions including founding the new wall just slightly deeper than the existing foundations, a maximum allowable bearing value of 200kPa can be used for design for a wall base in the range of 1.8m to 2.4m. For a wider base, this value would need to be reduced.

The above value of bearing pressure is based on a statistical analysis of vane shear strength versus geodetic elevation which can be found in Appendix 'E' of this report.

Pile type foundations for a new wall would also be an alternative but not considered economical and thus not recommended.

The toe of the existing retaining wall at this site does not have sufficient soil cover for frost protection. We recommend that suitable polystyrene insulation be placed beneath the new wall and extended into the canal over a short distance in order to provide frost protection equivalent to 1.8m of soil cover. Presently the soil cover is slightly greater than one metre.

Another alternative that might be considered, but only if the canal width can be narrowed somewhat, would be the placing of a new wall attached to the face of the existing wall after the removal of all loose concrete. This alternative would, however, require the removal of the unselected fill behind the wall or else, the same condition would likely repeat itself after only a few years.

Also, before considering this alternative as an option, it would be necessary to study in greater detail the potential alkali-aggregate reactivity since the financial consequences would be enormous should there be even small reactions between new concrete and the existing wall. The variability in the aggregate used can be seen on the core photographs in Appendix 'B', thus reinforcing the need for further testing if this option is even considered.

3.5 Details of the Investigation

Six (6) vertical boreholes were put down at the site, two (2) of which were drilled through the wall coping and four (4) of which were put down 1200mm behind the back of the retaining wall. Two (2) horizontal holes were also drilled in order to determine the thickness of the wall at a given geodetic elevation. The location of the boreholes is shown on Plate N^o 2 of this report.

All of the field work was carried out by specialized drilling contractors under continuous technical supervision by our technical staff.

At the location of the vertical boreholes down through the wall, the existing hand rail was cut to accommodate the drilling equipment and reinstated to its existing condition by welding followed by painting. All borings through the wall, vertical and horizontal, were reinstated by filling with non-shrink grout.

During the field work, barricades, flashers and all necessary safety equipment were in place to protect pedestrians. The Rideau Canal office in Smiths Falls
and the National Capital Commission in Ottawa had been notified prior to the commencement of the field work.

All of the vertical boreholes at this site were put down by Marathon Drilling using a track-mounted CME-55 drill rig equipped with hollow stem augers and a special platform. The horizontal boreholes were performed by Capital Cutting and Coring using portable electric drilling equipment.

Standard penetration resistance tests were performed simultaneously with all split barrel sampling. The undrained shear strength of the underlying clay was measured by means of a field vane. Pocket penetrometer tests were also performed at the end of the split barrel upon retrieval. The walls were cored in NQ-size using diamond bits in the case of the vertical holes. The horizontal holes were cored using 75mm ø equipment.

Perforated pipes were placed in all the boreholes behind the wall for groundwater monitoring purposes. Once groundwater levels and samples had been taken, the asphalt was neatly cut at the borehole locations, crushed stone was added and compacted, followed by hot mix paving.

All soil samples and concrete cores were brought to our laboratory to be examined and tested. Moisture content determinations and visual classifications were made on all retrieved soil samples. The concrete cores were examined by an engineer and some samples were tested in our laboratory. Special testing was also performed by a specialized laboratory. Routine chemical test were performed on groundwater samples.

4. <u>CONCLUSIONS AND RECOMMENDATIONS</u> (ECHO DRIVE SECTION)

4.1 Generalized Subsurface Conditions

At the Echo Drive site, subsurface conditions can be generalized as consisting of sand and gravel as well as clay and wood behind the existing retaining wall founded on a hard to very stiff brownish gray clay crust or on a fine sand layer just above the clay. Behind the existing wall, during the drilling work, obstructions were encountered, including wood; possibly an old timber crib filled with unselected fill consisting of sand, gravel and clay. Below the desiccated crust, the clay becomes stiff and changes in colour to gray. At a depth of between sixteen (16) and seventeen (17) metres, silt was encountered. The silt layer is generally underlain by glacial till (mixture of clay, silt, sand, gravel, cobbles, boulders and rock blocks) that veneers bedrock. As inferred from the probing or dynamic cone testing, the till layer would be relatively thin at this site unless a large boulder was encountered at the bottom of the borehole. Based on geological mapping, the bedrock below the site would consist of a black shale of the Billings Formation at a depth of at least twenty-one (21) metres from the ground surface according to the results of the probing information.

Details of the soil and groundwater conditions encountered at the site are shown on accompanying Plates.

4.2 <u>Condition of Existing Wall</u>

A visual inspection of this section shows that for some portion of the studied area, degradation of the concrete can be observed in the first 650mm (approximately) from the top of the wall. As shown on our photographs in Report Nº SF-4636

Page Nº 11

Appendix 'A', the deteriorated concrete alternates with portions where concrete is found to be in good condition. Also, at each vertical joint, severe cracking and/or deterioration of the concrete can be observed. The reinforcing steel in the wall can be seen at several locations where the concrete is badly deteriorated. There are signs of staining on the wall up to the summer water levels.

4.3 Quality of Concrete

We were requested to carry out a cursory study of the concrete characteristics as they relate to air content, alkali-aggregate potential reactivity and compressive strength.

The cores were examined, logged and photographed with the results shown in Appendix 'B'. The concrete can generally be described as well consolidated with large granitic and limestone aggregate as well as other sedimentary rock aggregates.

The cores were cut and prepared for compressive strength testing. The intact concrete gave results ranging between 35.2MPa and 63.9MPa at this site with an average of 44.9MPa. Details are included in Appendix 'D'.

Samples were also forwarded to Montreal for specialized petrographic analysis and air content testing, arranged through a local testing agency, Les Laboratoires Outaouais Inc.

We visited the site with a concrete engineer from the firm that carried out the petrographic analysis in order to get an overall appreciation of the condition of the concrete in the field. Based on the observations made during the site

-

visit, the exposed concrete surfaces do not show any evidence of alkaliaggregate reaction.

The coarse aggregate in the concrete is essentially composed of sedimentary rocks like shale, siltstone and limestone as well as some granitic rocks. The fine aggregate is mostly composed of feldspars, quartz, rock fragments and limestone particles.

As part of the petrographic analysis, a visual examination of the cores was performed on a concrete sample from borehole N^o 00-102H with only minute signs of alkali-aggregate reaction detected. We were also informed that the amount and severity of the reaction was low and that there were also secondary reaction products found that could be identified by a scanning electron microscope or by X-ray diffraction analysis, if required.

As indicated on the petrographic analysis record in Appendix 'D', the coarse aggregate has a medium to high alkali-aggregate reactivity potential.

A sample from this site was also tested for microscopical determination of air content with a result showing 4.0% but with a high spacing factor indicating the presence of entrapped air rather than entrained air.

Based on the limited amount of testing on concrete cores from this site in order to evaluate the potential for alkali-aggregate reactions to occur and assuming that the tests were performed on representative samples, the overall potential for such occurrences is considered medium to high. However, it must be noted that the amount and severity of any alkali-aggregate reaction to date is low given consideration to the age of the concrete.

h

ij

4.4 Remedial Work Requirements

At the Echo Drive site, the existing retaining wall is badly deteriorated over the entire study area. The backfill behind the wall is variable and likely not very efficient with respect to drainage.

Replacing the old wall with a new wall supported on the natural clay soils including removal of the unselected fill and timber cribs likely in place behind the wall is recommended.

The new wall should be made to bear on the clay crust at the same elevation as the old wall or just slightly deeper, in order to allow for the removal of any disturbed clay soils by the process of demolition. Furthermore, since the natural clay becomes softer with depth, it is important to take advantage of the presence of even a small portion of the clay crust.

The new backfill behind the wall needs to be free draining and weep holes should be placed through the new wall. A material meeting the gradation characteristics of OPSS Granular 'B' (Type I) would be acceptable.

The designers will no doubt take into consideration the high levels of chlorides found in the groundwater in their design. These concentrations are likely attributable to de-icing chemicals being used during the winter months. Detailed results are given in Appendix 'D'.

At the Echo Drive site, it would be useful to research any available archive information in an attempt to discover how the wall was built, including the probable presence of a timber crib since we had serious difficulties in getting some of the boreholes down through the fill behind the retaining wall. The allowable bearing pressure under a retaining wall or any other foundation system is dependent on the width of the loaded area and the variation in undrained shear strength in the clay below the footing.

Based on a few assumptions including founding the new wall just slightly deeper than the existing foundations, a maximum allowable bearing value of 200kPa can be used for design for a wall base in the range of 1.8m to 2.4m. For a wider base, this value would need to be reduced.

The above value of bearing pressure is based on a statistical analysis of vane shear strength versus geodetic elevation which can be found in Appendix 'E' of this report.

Pile type foundations for a new wall would also be an alternative but not considered economical and thus not recommended.

The toe of the existing retaining wall at this site does not have sufficient soil cover for frost protection. We recommend that suitable polystyrene insulation be placed beneath the new wall and extended into the canal over a short distance in order to provide frost protection equivalent to 1.8m of soil cover. Presently the soil cover is slightly greater than one metre.

4.5 Details of the Investigation

Nine (9) vertical holes were put down at the site, one (1) of which was drilled through the wall coping down into the underlying soil. In the vertical boreholes placed at various distances behind the wall, five (5) additional attempts were needed to deepen the holes, due to obstructions being encountered at shallow depths. One (1) horizontal hole was also drilled in which is ?

order to determine the thickness of the wall at a given geodetic elevation. The location of the boreholes is shown on Plate N^2 3 of this report.

All of the field work was carried out by specialized drilling contractors under continuous technical supervision by our technical staff.

At the location of the vertical boreholes, down through the wall, the existing hand rail was cut to allow access for the drilling equipment. After completion of the drilling the concrete wall was filled with non-shrink grout. The hand rail was welded back into position and painted. The horizontal holes through the wall were also filled with non-shrink grout.

During the field work, barricades, flashers and all necessary protection for pedestrians were in place. The National Capital Commission and the Rideau Canal office were made aware of our activities.

All of the vertical holes at this site were put down by Marathon Drilling using a track-mounted CME-55 drill rig equipped with hollow stem augers and a special platform except borehole N^o 00-102 which was done by Capital Cutting and Coring because of access difficulties with the CME-55 equipment. The horizontal boreholes were also performed by Capital Cutting and Coring using portable electric drilling equipment.

Standard penetration resistance tests were performed simultaneously with all split barrel sampling. The undrained shear strength of the underlying clay was measured by means of a field vane. Pocket penetrometer tests were also carried out at the end of the split barrel in the field. One (1) vertical hole through the wall was diamond core drilled in NQ-size, and the other was drilled using 75mm ϕ electric equipment as were both horizontal holes. In one (1) vertical borehole behind the wall, it was necessary to drill casing with a diamond shoe in order to advance the borehole down through the unselected fill layers and wood.

Perforated pipes were placed in all the vertical holes behind the wall in which advancement was possible. Groundwater levels and samples were taken, the asphalt was neatly cut at the borehole locations, crushed stone was added and compacted followed by hot mix paving.

All soil samples and concrete cores were brought to our laboratory to be examined and tested. Moisture content determinations and visual classifications were made on all retrieved soil samples. The concrete cores were examined by an engineer and some samples were tested in our laboratory. Special testing was also performed by a specialized laboratory. Routine chemical tests were performed on groundwater samples.

5. STATEMENT OF LIMITATIONS

The 'Statement of Limitations' in Appendix 'F' forms an integral part of this report.

This report prepared by:-

musel Allows

Michel W. St-Louis, P.Eng. McRostie Genest St-Louis & Associates Ltd.

	NOTES:
ĺ	
DNCRETE WALL	
	LEGEND:
	BOREHOLE LOCATION
V	BH 101
·	
	g
ļ	5
	5
ł	4
	3
l	2
	1
	NO. REVISION DATE
	MCROSTIE GENEST ST-LOUIS
	& ASSOCIATES L'ID. & ASSOCIÉS LTÉE
	CONSULTING ENGINEERS INGÉNIEURS CONSEILS
	OTTAWA CANADA
	CLIENT :
	Heritage Canais and Canayx historiques at Iroyaux Engineering Works d'Ingénieria National Centre al Cantre d'expertise national
	Exportise
	TITLE:
	RIDEAU CANAL WALLS
	ECHO DRIVE SECTION
	DRAWN BY: GIAMBERARDINO, V.N.
	CHECKED BY: ST. LOUIS, M
2	
to the second se	JOB NUMBER: E-7928
FD	
	PLAIE NO. 3 U

BOREHOLES

PATTERSON CREEK SECTION

RIDEAU CANAL WALL, PATTERSON CRE	EK A	AREA	B.M.(ELEV 66.55m)geodetic: Tablet No.		BOREHOL	E NO: 00-	1	
			3616 in canal wall at sta. 2598.		FRUJELI	$N_{\rm c} = 1920$		
START DATE: 00/05/01					FOULDATIC			
SAMPLE TYPE REMOULDED	4	SHELBY TUB	E SPLIT-SPOON PROBING		ECOVERT	VANE Cu (kPa)	<u> </u>	<u> </u>
E SMALL PEN. SPT	TYPE	ENO	SOIL		80 A VANE 80	160 240 Cu REMOULDED 160 240	320 (kPa) ▲ 320	llon(m)
(kPa) (N)	SAMPLE	SAMPL	DESCRIPTION		PLASTIC	N.C.	LIQUID	ELEVAI
8.0	×	8	stiff			40 60		- - E
			silty gray CLAY					
9.0			Bottom of hole	56.27				- 56.(
				,				- - - -
10.0								- 55.0
							· · · · · · · · · · · · · · · · · · ·	
- 11.0								- 54./
								- - - -
- 12.0					·····			-
								- - -
- 13.0								52.
- 14.0								 51.
								50
MODOCTIE CET	រាធ	<u> </u>	LOGGED BY: JML		CO	PLETION DEF	PTH: 8.7 m	1
MCRUSHE GEI	1 N 🗗 -	10 10	REVIEWED BY: E.	S	C01	APLETE: 00/0	05/01	0.4
l Ottawa	i. C	anada	Fig. No: 5.				Page	<u> </u>

IDEAU	CANAL WALL, PA	TTERSON (CREE	k ari	EA	B.M.(ELEV 66.55m)ge	odetic: Tablet No.		BOREHOLE	NO: 00-	2	
T 107 7						Solo in canal wall at	sta. 2098.		FRUJEUT N	61 73 m		
	TYDE		uerd	<u></u>	רו מע דוות				COVERY			
				/ 						ANE Cu (kPa)1	<u></u>	
H(m)	SMALL PEN	I. SPT	E TYPE	LE NO	RECOVER	SOIL	/ ROCK		80 A VANE Cu 80	160 240 REMOULDED 160 240	320 (kPa) ▲ 320	
DEPT	(kPa)	(N)	SAMPL	SAMP	CORE	DESC	CRIPTION		PLASTIC	M.C.	LIQUID	1
8.0		.	\ge	3	- 5×C	medi	ium soft		20	40 60	80	+
						to silty or	soft cov. CLAX					Ē
						Bottor	n of hole	56.63				E
- 9.0												ŕ
											-	Ē
											•••	
- 10.0												
												ŀ
												ŀ
												F
- 11.0												Ē
												. F
												-
- 12.0						*						-
												Ē
- 13.0												-
]		•						
- 14.0			1									F
												F
					 !							Ē
- 15.0												-
												F
												Ē
16.0					•							
. <u></u>	McR0S'	TIE GI	EN	ES	r st-	-LOUIS	LOGGED BY: JML		COMPLI	TION DEPTH	l: 8,1 m	1
		0++~~		~~. Can	ada					112: 00/05/	Pope	7

RIDEAU	CANAL WALL, PATTERSON CR	REEK AR	EA	B.M.(ELEV 66.55m)ge	eodetic: Tablet No.	TEST HOLE I	10: 00-3
	ATE: 00/05/02			S616 in canal wall a	t sta. 2598.	PRUJECT NO	5 E-1928
SAMPLE			FI BY TUB		PROBING		
DEPTH(m)	COMMENTS	SAMPLE TYPE		S(DESCF	OIL RIPTION	• PROBING 20 40	(Blows/30cm) � 60 80
24.0				SOIL with medium re	sistance		
26.0				to penetratic	n,		
- 27.0				SOIL with high resiste	38.32 Ince		
- 28.0				to penetratio	ole 36.52		
			_	Probing refu	isal		
- 30.0							
- 31.0				,			
32.0							
	McROSTIE GE	NEST	ſ ST-	-LOUIS	REVIEWED BY: BAS	COMPLET COMPLET	110N DEPTH: <u>28.2 m</u> TE: 00/05/02
	* / •	a					

-

RIDEAU	CANAL WALL, PATTER	SON CR	REEK	AREA	B.M.(ELEV 66.55m)geodetic: T	abiet No.	BOREHOLI	E NO: 00-	-4	
					3616 in canal wall af sta. 25	598.	PROJECT	NO: E-792	8	
TART D	ATE: 00/05/01					. <u> </u>	ELEVATIO	N: 64.71 m		
SAMPLE		DED		Shelby Ti	BE SPLIT-SPOON PR					
(e	CHALL DEN	നന	TYPE	92 .	SOIL	,	80 ▲ VANE C	ANE CU (KPG) <u>160 240</u> CU REMOULDED	320 (kPa) ▲	1/m/
EPTH(SMALL PEN.	5P1 (N)	MPLE .	AMPLE	DESCRIPTI	ON	PLASTIC	160 240 M.C.	LIQUID	
	(KI U)	(11)	SA	N N			20	40 60	80	
8.0			X	8	stiff silty gray CLAY					
					Bottom of hol	le 56.01				[5
- 9.0										L - -
- 10.0				-						. <u> </u> - -
- 11.0							• • • • • • • • • • • • • • • • • • •			···· 4 - - - -
						-				
- 12.0										
-										
- 13.0										· •
										- - - -
- 14,0										
-										
- 15.0										
-										
16.0						D. D.Y. 111			70.07	-
	McROSTH	7 (FE	NE	ST SI	'-LOUIS	U BY: JML	COM	LETION DEP	IH: 8./ m	1
	TICLEVOIT	n Am			TI C C T C IKEVIEW	AFD RISE 2	COMF	1LETE: 00/0	3/01	

3516 in cond well of sto. 2598. PROJUCT NO. 2-7928 SIART DATE: 00/05/04 SIART DATE: 00/05/0	47755	RIDEAU	CANAL WALL, PATT	ERSON C	REEK	AREA		B.M.(ELEV 66.55m)ge	eodetic: Tablet No.		BOREHOLE	NO: 00-5	
SIAM: UAE: 60/05/04 [][LUXAIDIN EAZ: m SAMPLE TYPE SEMOULDED-AUGE/SHELEY TURE []][N KOKURE 1][][N KOK								3616 in canal wall a	ıt sta. 2598.	· · · · · · · · ·	PROJECT N	0: E-7928	
SAMPE (YPE) ■RECOURCE-ACCE (SMER) TO A Sprint Sector Imple Constraints		START	DATE: 00/05/04			7					ELEVATION:	64.62 m	
E SMALL PEN. SPT E E S 100 (kPa) (N) N N N 100 N) N N N 100 N) N N N 100 N) N N 100 N N 100 N	<u> </u>	SAMPL		ULDED-AL)GER/_	_]SHEL₽Y ⊂	(TUB 불					NE Cu (kPa) 15 160 240 320	- Ê
Em (kPa) (N) Em DESCRIPTION Paster A.C. Used Em Paster A.C. Used Em Stiff Stiff <td></td> <td>H H</td> <td>SMALL PEN.</td> <td>SPT</td> <td>∐ ⊔</td> <td>N 20</td> <td>(FCO)</td> <td>SOIL</td> <td>J / ROCK</td> <td></td> <td>A VANE CI 80</td> <td>160 240 320</td> <td>NOE</td>		H H	SMALL PEN.	SPT	∐ ⊔	N 20	(FCO)	SOIL	J / ROCK		A VANE CI 80	160 240 320	NOE
8.3 .	~~~~	DEPT	(kPa)	(N)	SAMPL	SAMPI	% CUKL	DES	CRIPTION				ELEVAT
	14070	8.0										40 60 80	
Silly gray CLAY									stiff				-
Boltom of hole 55.72 Boltom of hole 55.72 10.0								silty	gray CLAY				56.0
		-				1		Datt	am of bala	55 72			-
	v.7m	- 9.0						Boll	om of noie	00.7 <i>2</i>			
													55.0
	T078 .	10.0											
		-											-
		-											
		-											- 34.0
	-	- 11.0											· · È
		- [-
													- 53.0
	-4.1								·				È
		- 12.0 -											
)												F
		-											52.0
	1												-
- 14.0 - 14.0 - 15.0 - 15.0		-											-
- 14.0 - 15.0 - 15.0 - 16.0 McROSTIE GENEST ST-LOUIS LOGGED BY: JML REVIEWED BY: E.S. COMPLETION DEPTH: 8.9 m REVIEWED BY: E.S. COMPLETION DEPTH: 8.9 m													
- 14.0 - 15.0 - 15.0 - 16.0 McRoSTIE GENEST ST-LOUIS LOGGED BY: JML REVIEWED BY: E.S. COMPLETION DEPTH: 8.9 m REVIEWED BY: E.S. COMPLETIE: 00/05/04													
- 15.0 - 15.0 - 16.0 MCROSTIE GENEST ST-LOUIS LOGGED BY: JML REVIEWED BY: E.S. COMPLETION DEPTH: 8.9 m REVIEWED BY: E.S. COMPLETE: 00/05/04	700 (* 11	- 14.0											þ
- 15.0 - 15.0 - 16.0 MCROSTIE GENEST ST-LOUIS LOGGED BY: JML REVIEWED BY: E.S. COMPLETION DEPTH: 8.9 m COMPLETION DEPTH: 8.9 m		E											Ē
- 15.0 - 15.0 - 16.0 MCROSTIE GENEST ST-LOUIS LOGGED BY: JML REVIEWED BY: E-S. COMPLETION DEPTH: 8.9 m COMPLETION DEPTH: 8.9 m			-										50.0
- 15.0 - 15.0 - 16.0 MCROSTIE GENEST ST-LOUIS LOGGED BY: JML REVIEWED BY: E-S. COMPLETION DEPTH: 8.9 m COMPLETION DEPTH: 8.9 m	/ * 1												-
McROSTIE GENEST ST-LOUIS		- 15.0 -											
- Horizon depth: 8.9 m McROSTIE GENEST ST-LOUIS													Ē
Image: marked base in the second s													49.0
MCROSTIE GENEST ST-LOUIS LOGGED BY: JML COMPLETION DEPTH: 8.9 m REVIEWED BY: E.S. COMPLETE: 00/05/04)	16.0											-
			McROST	IE GF	ENF	ST S	ST	-LOUIS	LOGGED BY: JML		COMPLE	TION DEPTH: 8.9 r	n
Ottawa. Canada Fig. No: 15. Page 2 of 2				Ottaw	ra. (anad	<u>a</u>		Fig. No: 15	· · · · ·		Page	e 2 of 2

RIDEAU	CANAL WALL,	PATTER	SON CR	EEK	AREA	B.M.(ELEV 66.55m)ge	eodetic: Tablet No),	BOREHOL	E NO:	00-6	,	
		(0.4				3616 in canal wall a	t sta. 2598.			NU: E-	/928		
START	DATE: 00/05/	701 Посмони					PROPINC		PECOVERY		<u>אר אר</u>		
SAMPL	E IYPE	REMOUL	DED		ISHELBY INE		PROBING		I B	VANE Cu (kPa) KA		
				ų L	9	Cu			80	160 2 Du REMOU!	40 3	20 /σ}▲	je je
ا¥	SMALL	PEN. S	SPT	Г ш	<u>u</u>	21	JIL		80	160 2	40 3	20	
DEPT	(kPa)	((N)	SAMPL	SAMP	DESCF	RIPTION		PLASTIC	M.C.		Liquid —-I	FI FVA
8.0				\rightarrow	8		·			40	<u>50 i</u>	50	-
						stiff							_
						silty gray	CLAY						-
								55.05					-5
				1		Bottom	of hole	55.95					F
- 9.0													F
													ļ.
										-	i :		
													F
- 10 0					.								E
10.0													-
													F
													<u> </u> 5
,													F
- 11.0									······		-		F
													F
													Ē
												1	E
													E
12.0												· . ·	-
												i I	-
											1 1		
-				ļ									F
120								•	:				F
- 13.0													F
													E
													Ŀ
.											-		ŧ
- 											-		F
-													F
-													F
-													Ę.
-													Ē
15.0	•											-	Ē
-													F
-													F
_ _													-
-													ţ
16.0				-									_
16.0	MARC	ገረፈ፲	r CF	NF	<u><u><u></u></u> <u></u> <u></u> </u>		LOGGED BY: JM	L	СОМ	PLETION	DEPTH:	8.7 m	

RIDEAU	CANAL WALL, PATT	ERSON C	REE	< ARE	A	B.M.(ELEV 66.55m)ge	odetic: Tablet No.	В	OREHOLE	NO: 00-	-2H	
						3616 in canal wail a	t sta. 2598.	P	ROJECT N	10: E-7928	<u> </u>	
TART L	DATE: 00/04/19							_ <u>[</u>	LEVATION			
SAMPLE	E TYPE 📕 REMO	ULDED-AU	IGER	∕] SH	elby tube	SPLIT-SPOON	NW-CASING			INQ CORE		т-
(m)	SMALL PEN.	SPT	TYPE	E NO	ECOVERY	SOIL	, / ROCK		80 • VANE C 80	ANE CU (KPO) 160 240 U REMOULDED 160 240	320 (kPo)▲ 320	
DEPTH	(kPa)	(N)	SAMPLE	SAMPL	% CORE R	DES	CRIPTION		PLASTIC	M.C.	LIQUID I 80	
0.0			-		8×				20	40 60		┣ <u></u> - - -
						(CONCRETE					
- 1.0					;							
						En	SOIL Id of hole	<u> </u>				.
- 2.0												
						~						
- 3.0												
- 4.0												
			ĺ									
- 3.0 - - -												- - - - - - -
- 6.0									· · · · · · · · · · · · · · · · · · ·			
-		·										
- 7.0												
_ _ _												·
8.0						· · ·					TI. * *	Ŀ
	McROST	TE G	ΕN	ES	T ST-	-LOUIS	LOGGED BY: JML		COMP	LETION DEP	1n: •.• 4/19	—
i			'				Fig No. 19	· ·····			Poge	<u> </u>

RIDEAU	CANAL WALL, PATT	ERSON C	REE	K AR	EA	B.M.(ELEV 66.55m)geodetic: Tablet No.	B	OREHOLE NO: 00-4H	
TART	DATE: 00/04/19					5010 in cului wuli ui sic. 2550.		LEVATION:	
SAMPE		ULDED-AU	GER	∕]sh	ELBY TUDI		NO REC	OVERY NQ CORE	
DEPTH(m)	SMALL PEN. (kPa)	SPT (N)	SAMPLE TYPE	SAMPLE NO	CORE RECOVERY	SOIL / ROCK DESCRIPTION		■ VANE Cu (kPa) ■ 80 160 240 320 ▲ VANE Cu REMOULDED (kPa) ▲ 80 160 240 320 PLASTIC M.C. LIQUID	
0.0		··							_
		·				CONCRETE			
- 1.0						SOIL End of hole	<u>1.17</u> 1.32		- - -
- 2.0									
_ 2.0									
- 4.0									
- 5.0							·		
-									
- 6.0									
- - 									
8.0	McROST	TE GI	 7.N	L ES	 T_ST-	-LOUIS		COMPLETION DEPTH: *.*	<u> </u>
1	***^*¢\NI	∎© L⊥. arettΩ	 19	Car	rada 1ada	Fig. No: 19.	<u>.</u>	Page	1

BOREHOLES

ECHO DRIVE SECTION

76278	RIDEAU	J CANAL WAL	l, ECHO	DRIVE A	REA			B.M.(ELEV 69.61m)geod	.: CITY OF OTTAWA	1	BOREHOLE	NO: 00-	-101	
	START		5/04					COR OF HAWTHORNE &	MAIN	·	FIFVATION:	64.97 m		
	SAMPI	E TYPE	REMOU	LDED-AU	GER	∕]sh	elby tub		NW-CASING		OVERY	NO COR		1
n (1996)	DEPTH(m)	SMALL (kPa)	PEN. 3	SPT (N)	SAMPLE TYPE	SAMPLE NO	% CORE RECOVERY	SOIL DESCI	/ ROCK RIPTION		10 V/ 80 ▲ VANE Cu 80 PLASTIC	ANE Cu (kPa 160 240 1 REMOULDEL 160 240 M.C. 40 60) 13 320) (kPa) ▲ 320 LIQUID 80	ELEVATION(m)
भग्रु: । - सन्द्रा	- 8.0 							sti silty gr	ff av. CLAY					
9797) 1949 -	- - - - - - - - - - - - - - - - - - -	10,10,20		2 2	\mathbb{Z}	3		Bottom	n of hole	54.87				
स स्था- . फ	- - - - - - -													- - - - - - 54.0
 	- 12.0													- - - - 53.0
¥1₩X	- - 	-												- - - - - - - - - - - -
	- - - - - - - - -									÷				51.0
500 b	- - - - - - - - - - -													- - - - - - - - -
	16.0								LOGGED BY: JML	; 	Сомри	TION DEP	(H: 10.1 m	- - - 49.0 1
		McR	OSTI	E GE	:NI	4'S'	ľ ST-	-LOUIS 🖁	REVIEWED BY: E.S.		COMPL	ETE: 00/05	5/04	
	00/06/14	09:08PH (NQ-STD)		Ottaw	<u>a, (</u>	Car	ada		Fig. No: 21.		1		Page	2 of 2

TAXT DATE: 00/05/09 Intel: 10/05/09	NDEAU CANAL WALL, ECHO DRIVE /	ARE/	4		B.M.(ELEV 69.61m)geod.: CITY OF OTTAWA		BOREHOLE NO: 00-102B	
AMPLE TYPE BERGUNDED-AUGS/ SHELPT TURE SOUL ROCK ROCKET No CORE No CORE <t< td=""><td>START DATE: 00/05/09</td><td></td><td></td><td></td><td>COR OF HAWTHORNE & MAIN</td><td></td><td>ELEVATION: 65.08 m</td><td></td></t<>	START DATE: 00/05/09				COR OF HAWTHORNE & MAIN		ELEVATION: 65.08 m	
SMALL PEN. SPT E Solid SOIL ROCK (kPa) (k)		1 330	Zish	FIRY THR		D REC		
30 30 40 60 89 6 1.0 SOIL SOIL SOIL 63.78 20 Bottom of, hole 63.78 Power auger refusal 6 30 60 40 6 40	Image: Small pen. spt Image: Small pen. spt	SAMPLE TYPE	SAMPLE NO	CORE RECOVERY	SOIL / ROCK DESCRIPTION		Image: Wane Cu (kPa) m 80 160 240 320 ▲ VANE Cu REMOULDED (kPa) ▲ 80 160 240 320 PLASTIC M.C. LIQUID	FI FVATION(m)
SOIL SEE. B.H. No. 00-102A Bottom of hole 63.78 Power cuger refusal 3.0 6.0 6.0 7.2 MCROSTIE GENEST ST-LOUIS	0.0			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/		20 40 60 80	- 65
220 300 400 500 600 600 700 MCROSTIE GENEST ST-LOUIS	- 1.0				SOIL SEE. B.H. No. 00-102A Bottom of hole 63. Power guger refusal	78		
4.0 4.0 5.0 6.0 7.0 MCROSTIE GENEST ST-LOUIS	· 2.0				Tower duger Terusur			
4.0 5.0 6.0 7.0 MCROSTIE GENEST ST-LOUIS	- 3.0							- - - - - -
-5.0 -6.0 -7.0	- 4.0							- - - - - - - - - - - - -
-6.0 -7.0 -7.0 MCROSTIE GENEST ST-LOUIS	- 5.0							
-7.0 8.0 McROSTIE GENEST ST-LOUIS	- 6.0				-			
8.0 McROSTIE GENEST ST-LOUIS	- 7.0							
MCROSTIE GENEST ST-LOUIS	80							F
REVIEWED BILE. COMPLETE: 00/05/09	MeROSTIE GE	EN:	ESI	ST-	-LOUIS	-	COMPLETION DEPTH: 1.3 m COMPLETE: 00/05/09	

	RIDEAL	I CANAL WALL, ECHO	D DRIVE A	REA			B.M.(ELEV 69.61m)geod.: CITY OF OTTAWA	BOREHOLE NO: 00-102C							
							PLATE No.25 ON S.W. COR.OF BLDG.AT N.E.	PROJECT NO: E-7928							
	START	DATE: 00/05/09					COR. OF HAWTHORNE & MAIN.	ELEVATION: 65.08 m							
777W	SAMPL	E TYPE REMO	ULDED-AUK	GER/		ELBY TUB	E SPLIT-SPOON NW-CASING IN NO RE								
. ت.)EPTH(m)	SMALL PEN.	SPT	MPLE TYPE	AMPLE NO	DRE RECOVERY	SOIL / ROCK DESCRIPTION	80 160 240 33 ▲ VANE CU REMOULDED (KF 80 160 240 33 PLASTIC M.C.							
		(KI U)	(11)	SA	S	с х		20 40 60 8	, 그 그						
कर.)	- 0.0 - - -														
	- - - - - -								- - - - - - - - - - - - - - - - - - -						
							SOIL see B.H. No. 00-102A								
-1. p	- 2.0								63.0						
-71. 3	3.0	sample lost	3 8 5	$\left \right $	1		62.08 medium dense		62.0						
28 6 70.	- - - - - - - -	drove S.B. to 3.9 290,270,270	0m 4 5	\mathbb{N}			silty fine SAND		51.0						
97/87)			5 6	\mathbb{N}	2										
879-9	5.0	135,125,125	12 10	\mathbb{X}	4		very stiff		- 60.0						
<u>,,,,,,,</u>	- - - - -						fissured brownish gray CLAY		- 59.0						
، دينه	-														
÷							58.03 stiff silty gray CLAY								
		10,10,10	2/60cm	١	5		Borehole continued 57.08								
	8.0	McROST	IE GE	NI	EST	ST-	LOGGED BY: JML REVIEWED BY: E.S.	COMPLETION DEPTH: COMPLETE: 00/05/09	8.8 m 9						
1990 - S	00/05/14 0	19:08PM (NG-STD)	Ottawa	a, (Can	ada	Fig. No: 25.		Page 1 of 2						
RIDEAU	CANAL WAL	L, ECHO	DRIVE	AREA			B.M.(ELEV 69.61r	n)geod.: CIT	Y OF OTTAWA		BOREHO	DLE NO:	00-1	02C	
---------	------------	---------	----------	--------------	----------------	---	------------------	--------------	--------------------	-----------	----------	------------	-------------------	------------	---------------
					PLATE No.25 ON	PLATE No.25 ON S.W. COR.OF BLDG.AT N.E.			PROJECT NO: E-7928						
START D	ATE: 00/05	5/09					COR. OF HAWTHO	RNE & MAIN	·		ELEVAT	ON: 65.0)8 m		
SAMPLE	TYPE	RENOL	ULDED-AL	JGER	∕SHE	lby tub	e 🖾split-spo	יא 📕 אס	W-CASING	III NO RE	COVERY		CORE		-
			-	Ŀ		RY			-,		80	160 VANE C	u (kPo)⊠ 240 ∷	320	
Ω	COLATI	DEM	സ്ത	l <u>₹</u> l	오	3AO	S	M. / 1	ROCK		A VA	TE Cu REM	DULDED ()	(Pa) ▲	
ΞĹ	SMALL	PEN.	SPT	<u> </u>	닐	REC					80	160	240	320	
	(kPa)		(N)	M	AME	OR OR	DE	CSCRIF	TION		PLASTI	с м.	Ċ.	LIQUID	12
	(111 ~)		(1)	SA	S	ن لا	2.		11010		<u>├</u>	40	÷0.		7
8.0				\mathbf{k}	-				.			•			ار
				M	2			stiff						1	È.
								illy aray (Y AY						Ę
							2	any gruy c	2LAT					:	F
					1	ł		ottom of		56.79	- * ****				F
- 9.0							1	onom of	note	50.20					Ŀ.
															Ŀ
														· ;	Ł
														:	F
															E
- 10.0														+ + +	E
															r ì
															F
														- <u> </u>	F
-					Í										F
- 11 0															Ę
															<u> </u> ;
															F
													} i	1	F
					1									:	F
											i				F
- 12.0														: '	:
												i		•	F
															þ
															F
					ł										F
- 13.0														i i	F
									-					1	Ę
									-						E
															F
										•					F
- 14.0															F
															F
															F
					ļ										. F
															È
_ 15 0															E
- 13.0														:	-
															F
											i		<u> </u>	<u>.</u>	F
															F
16.0													! ! : .	. !	F
10.0	<u></u>			<u>ון</u>	 10m	стр	LOUUC	LOGGFI	D BY: JML		CON	PLETION	DEPTH	8.8 m	F
	McK	O211	E GE	TNF	J.C.L	ST-	-FOOI2	REVIEW	ED BY: E.S.		CON	IPLETE: (0/05/0	9	
			Att arr	~ (1	da		Cta N.	20						0

RIDEAU CANAL WALL, ECHO DRIVE AREA						B.M.(ELEV 69.61m)geod.: CITY OF OTTAWA BOREHOLE NO: 00-103				
TART						COR. OF HAWTHORNE & MAIN.	ELEVATION	: 65.01 m		
	F TYPE	JLDEDAU	IGER	ŹISHI	ELBY TUB		O RECOVERY	NO CORE		
					<u> </u>			/ANE Cu (kPa) 🛙		
(ڀ	SMALL PEN. 3	SPT	TYPE	R F	ECOVER	SOIL / ROCK	80 ▲ VANE (80	160 240 32 Cu REMOULDED (kPc 160 240 32	0 b)▲ 0	
DEPT	(kPa)	(N)	SAMPLE	SAMPL	CORE R	DESCRIPTION	PLASTIC	M.C. L		
0.0			Ľ		*		20	40 60 80)	
0.0	×.	N. N.				UNABLE TO AUGER STRAIGHT				
		`				DOREHOLE MOVED			· · · F	
						· · · · · ·				
- 1.0							····· [·		- <u>-</u> -	
Í									Ē	
						1 de la construcción de la constru La construcción de la construcción d			÷F	
· 2.0									· [_	
									· F	
									ŀF	
. 3.0									F	
0.0										
									Ē	
									. L	
4.0									Ē	
									ļ	
									F	
			1							
- 5.0	:								· ··· · - -	
									: [
									-	
- 6.0										
									· · · i = [
	\checkmark			1					ļ	
- 7.0										
									ļ	
									F	
8.0			 זיאר			LOGGED BY: JMI	1COMPI	ETION DEPTH: *	<u> </u>	
	MCRUSTL	M: (+M	.NI	51	`ST-					

en es	RIDEAL	U CANAL WALL, ECHO	DRIVE AR	A		B.M.(ELEV 69.61m)geod.: CITY OF OTTAWA	BOREHOLE NO: 00-103C		
	CTADT					PLATE No.25 ON S.W. COR.OF BLDG.AT N.E.	PROJECT NO: E-7928		
	START	DATE: 00/05/08				COR. OF HAWTHORNE & MAIN.	ELEVATION: 65.01 m		
<i></i>	SAMPI	LE IYPE REMOUL	LDED-AUGE		IELBY TUB	E SPLIT-SPOON NW-CASING IN NO RE			
 .)EPTH(m)	SMALL PEN. S	SPT	AMPLE NO	DRE RECOVERY	SOIL / ROCK DESCRIPTION	BU VANE Cut (krd) Mail Solution Solution <thsolution< th=""> Solution</thsolution<>	VAIIUN(III)	
	<u>د</u>		11) [J	5 5	20 %	DECOMI HON		Ľ	
	0.0 	Reamed NW casing h	o 2.85m	+		NOTICE THAT AT THE L		5.0	
en e						CRUST CLAT TO BEAR OF			
-1	- 1.0 - - -			1		STIFF CLAY FOUND 9.0 m SOIL		i4.0	
	- - 2.0					FILL SAND AND GRAVEL W/		53.0	
Piro,						PIECES OF CRISHED			
<u> </u>	- 3.0	_	8 4	5	-	62.16		52.0	
		Reamed NW casing to	3.80m –			· · · · · · · · · · · · · · · · · · ·		~• •	
- ' van	- ¥.0	WL Reamed NW casing to	6	6		FILL sand, gravel, clay with		.n.0 ₹	
Proba	- - - 5.0		6	,		some wood Water level May 13/00 elev 60.63m	• • • • • • • • • • • • • • • • • • •	50.0	
		3/1	7 8 5cm	8					
***	- - 6.0 - -	Reamed NW casing to 20,20,20 2	6.0m	9		59.01	-5	i9.0	
	- - - 7.0			1		medium soft silty gray CLAY		58_A	
		Reamed NW casing to	7.60m						
	8.0	20,20,20 1/	60cm	10		Borehole continued 57.01			
		McROSTIE	GEN	EST] ST-	LOUIS LOGGED BY: JML REVIEWED BY: E.S.	COMPLETION DEPTH: 20.95 m COMPLETE: 00/05/08		
الستعام	00/06/21 0	7:22PM (NQ-STD)	niawa.	van	aua	jrig. No: 50.	Page 1 of	5	

	RIDEAU CANAL WALL, ECHO DRIVE AREA						B.M.(ELEV 6	9.61m)geod	.: CITY OF OTTAW	A	BOREHOLE NO	BOREHOLE NO: 00-103C		
		D. TE 00 (05 (00	· · ·				PLATE No.25	ON S.W. CI	OR.OF BLDG.AT N.	Ę	PROJECT NO:	PRUJECT NU: E-7928		
	START	DATE: 00/05/08			71		COR. OF HAV	NTHORNE &	MAIN.		ELEVATION: 0			
	SAMPL	LE ITPE KEM	UULDED-AU	GER/ T T	_ <u></u>	LUI IUU	e Modeli	-SPOUN	NW-LASING			Cu (kPa) 5		
~~~~	DEPTH(m)	SMALL PEN. (kPa)	. SPT (N)	AMPLE TYPE	AMPLE NO	ORE RECOVERY		SOIL DESCI	/ ROCK RIPTION		80 16 ▲ VANE Cu R 80 16 PLASTIC	0 240 3 EMOULDED (k 0 240 3 M.C.	20 Pa)▲ 20 LIQUID	EVATION(m)
		()	()	3	S	2 %					2040	60	80	
<del>الدر</del> ر	. 8.0	Reamed NW casing	to 9.0m	X	10			mediu silty or	um soft av CLAY					_ 57.0
<del></del>	-	incarneo fini casing	10 3.011					siny gro	JY OLAT				:	
	9.0	30,30,30	2/60cm	$\mathbb{X}$	11					56.01			· · · · · · · · · · · · · · · · · · ·	- 56.0
~~~,	- 10.0	Reamed NW casing	to 10.40m										· · · · · · · · ·	- 55.0 -
w"Av7	-	30,30,30	1/60cm	X	12									
		Reamed NW casing	to 12.00m	۱.										
	- 12.0	20,20,20	1/60cm		13			stiff very : silty ar	to stiff av CLAY					- 53.0
6	- - - - - -	Reamed NW casing	to 13.50m					, g.						52.0
		30,30,30	1/60cm		14									51.0
V*7%		Reamed NW casing	to 15.00m)										
8771	- - - - -	40,40,40	72	X	15									-
لتدهر								Borehole	e continued	49.01				-
	16.0			<u> </u> אדד	 3	പറന		1	OGGED BY: JML			DN DEPTH:	20.95 r	<u>r</u>
		MCROSI	IE GE	N	וכי	ST-	-FOOI2	R	REVIEWED BY: E .S.		COMPLETE	: 00/05/0	8	
(10/06/21 0	17-72PM (NO-STO)	Ottawa	<u>a, (</u>	Can	ada 🔤		F	ig. No: 31.				Page 2	2 of 3

;

	RIDEAU CANAL WALL, ECHO DRIVE AREA							B.M.(ELEV 69.61m)ge	od.: CITY OF OTTAWA		BOREHOLE NO: 00-	<u>102H</u>	
	·							PLATE No.25 ON S.W.	COR.OF BLDG.AT N.E.		PROJECT NO: E-7928		
	START	DATE: 00/0	4/19					COR. OF HAWTHORNE	& MAIN.		ELEVATION:		
, .	SAMPLE TYPE REMOULDED-AUGER SHELBY TUBE						ielby tub F	E SPLIT-SPOON	NW-CASING				
sinit.	DEPTH(m)	SMALL (kPa)	PEN.	SPT (N)	SAMPLE TYPE	SAMPLE NO	% CORE RECOVERY	SOII DES	. / ROCK CRIPTION		80 160 240 ▲ VANE Cu REMOULDED 80 160 240 PLASTIC M.C.	320 (kPa) ▲ 320 LIQUID	ELEVATION(m)
C2 20	. 0.0								, · · · · · · · · · · · · · · · · ·				0.0
 .	- 1.0							. (CONCRETE				
								n	SOIL	1.48			F
	- 2.0							En	d of hole	1.60			2.0
	• 												
/277	- 3.0							. + JA	har holder ().				
میں۔ میں	- - - - - - - - - - - - - - - - - - -							Mad mark					- - - - -
,	5.0							Top of war Top of how	U 64.98 m 6 62,44 m				-
	Ē						1	Hale Sall	La. 2.54m	fam			F F
17° 2 73.	- 6.0							top of .	sall	¢			- -
*	- - - -												- - -
	- 7.0 - - - - -												
·····	È .											$- \overline{f_{n}}$	
	8.0	<u>ו</u> ער זו	000		יזאר				LOGGED BY: JML		COMPLETION DEPTH	<u>/</u> l: *.*	8.0
	MCROSTIE GENEST ST-						r st	-LOOI2	REVIEWED BY: E.S.		COMPLETE: 00/04	(19	/
	00/05/14	09:09PK (NO-510)		Ottaw	a,	Can	<u>iada</u>		Fig. No: 33,			Page 1	1_01/
	//	The second second											

-

APPENDIX 'A'

SITE PHOTOGRAPHS

Looking South from B.H. 1

Looking South from B.H. 2

Rideau Canal Walls Patterson Creek Area

Looking South from B.H. 4

Typical face of wall at B.H. 4

Rideau Canal Walls Echo Drive Area

Typical deterioration at top of wall, looking at North end of studied area

Typical deterioration at top of wall, looking South from B.H. 102

Rideau Canal Walls Echo Drive Area

Typical deterioration at joint, close to B.H. 103

Typical deterioration at joint, looking South from B.H. 103

APPENDIX 'B'

CORE PHOTOGRAPHS

Patterson Creek Area

Vertical Hole

HOLE		2
------	--	---

ĵ

at geodetic elevation 64.73m

Top of wall at geodetic elevation 64.73m Vertical hole drilled through wall

> *Depth* 0.00m - 1.46m 1.46m - 2.92m 2.92m - 3.20m

Core Recovery 99% 100% 100%

Well consolidated concrete. Typical 20mm to 50mm nominal granitic and limestone coarse aggregate with a few 75mm large limestone aggregate.

Compressive strength on concrete between 2.65m and 2.74m : 39.8MPa

្រំខ្ល E-7928 7728 Ridow Came wallt B.H. 00-2 B.H. OD-2 Courd Riber Cause walls FROM 0000 FROM 2.92m 70 No Case - 48 m 2.92m 70 3.20m 3 2gm 12000 200 McROSTIE GENEST ST-LOUIS & ASSOCIATES LTD. & ASSOCIÉS LTÉE. CONSULTING ENGINEERS INGÉNIEURS CONSEILS OTTAWA CANADA

Patterson Creek Area

Vertical Hole

HOLE: 5

at geodetic elevation 64.62m

Top of wall at geodetic elevation 64.62m Vertical hole drilled through wall

Depth							
0.00m - 1.50m							
1.50m - 2.02m							
2.29m - 3.30m							

Core Recovery 97% 81% 58%

Well consolidated concrete.

- From 0.00m to 0.30m : 20mm nominal limestone coarse aggregate.
- From 0.30m to 3.30m : Typical 20mm to 50mm nominal limestone and granitic coarse aggregate with a few 100mm large limestone aggregate. Highly fractured zone between 0.30m and 1.00m, and between 2.02m and 3.30m.

Compressive strength on concrete between 1.71m and 1.80m : 59.6MPa

MCROSTIE GENEST ST-LOUIS & ASSOCIATES LTD. & ASSOCIÉS LTÉE. CONSULTING ENGINEERS INGÉNIEURS CONSEILS OTTAWA CANADA

Patterson Creek Area

Horizontal Hole

HOLE : 2H at geodetic elevation 63.33m

Top of wall at geodetic elevation 64.73m Horizontal hole drilled at 1.40m from top of wall

Drilled length: 1.30m

Concrete from 0m to 1.17m. Recovery 79%. Well consolidated concrete. Typical 50mm nominal granitic coarse aggregate. Near horizontal soil infilled fracture between 0.83m and 1.17m.

Compressive strength on concrete between 0.18m and 0.29m : 34.6MPa

Soil from 1.17m to 1.30m. Recovery 0%.

				n an air air Tartain	
	alsian fagr case - F394 (47) - Xanada	2791) 1112	·		
1. i . i					
	E-7928 RIDERU CANAL CORE SIZE - 7	WALLS FRO	H.H. #2 m = 000m 1/30-		
		ەر (,	Alaster Marcheller and a service of the service of		
		8 			
		and the second			

MCROSTIE GENEST ST-LOUIS & ASSOCIATES LTD. & ASSOCIÉS LTÉE. CONSULTING ENGINEERS INGÉNIEURS CONSEILS OTTAWA CANADA

Patterson Creek Area

Horizontal Hole

HOLE : 4H at geodetic elevation 62.86m

Top of wall at geodetic elevation 64.66m Horizontal hole drilled at 1.80m from top of wall

Drilled length: 1.32m

Concrete from 0m to 1.17m. Recovery 100%. Well consolidated concrete. Typical 50mm nominal granitic coarse aggregate with some 100mm large aggregate.

Compressive strength on concrete between 0.91m and 1.06m : 38.8MPa

Soil from 1.17m to 1.32m. Recovery 0%.

McROSTIE GENEST ST-LOUIS & ASSOCIATES LTD. & ASSOCIÉS LTÉE. CONSULTING ENGINEERS INGÉNIEURS CONSEILS OTTAWA CANADA

Echo Drive Area

Vertical Hole

HOLE : 101 at geodetic elevation 64.97m

Top of wall at geodetic elevation 64.97m Vertical hole drilled through wall

Depth	Core Recovery
0.00m - 1.52m	98%
1.52m - 3.02m	98%
3.02m - 4.26m	89%

Well consolidated concrete. Typical 25mm to 50mm granitic and limestone coarse aggregate with several 100mm to 200mm large limestone aggregate. Piece of wood at end of concrete core, $\pm 0.10m$ in length.

Compressive strength on concrete between 0.74m and 0.83m : 63.9MPa

CONSEILS

CANADA

OTTAWA

Echo Drive Area

Vertical Hole

HOLE : 102 at geodetic elevation 64.98m

Top of wall at geodetic elevation 64.98m Vertical hole drilled through wall

> *Depth* 0.00m - 0.69m 0.69m - 1.65m 1.65m - 2.01m 2.01m - 3.02m 3.02m - 4.06m

Core Recovery 99% 100% 97% 96% 100%

Well consolidated concrete. Typical 25mm to 50mm granitic and limestone coarse aggregate with several 100mm to 200mm large limestone aggregate.

Compressive strength on concrete between 0.16m and 0.27m : 43.2MPa Compressive strength on concrete between 3.12m and 3.25m : 35.2MPa

Echo Drive Area

Horizontal Hole

HOLE: 102H at geodetic elevation 62.44m

Top of wall at geodetic elevation 64.98m Horizontal hole drilled at 2.54m from top of wall

Drilled length: 1.60m

Concrete from 0m to 1.48m. Recovery 100%. Well consolidated concrete. Typical 50mm nominal granitic and limestone coarse aggregate with a few 120mm large aggregate.

Compressive strength on concrete between 0.35m and 0.49m : 37.2MPa

Soil from 1.48m to 1.60m. Recovery 0%.

McROSTIE GENEST ST-LOUIS & ASSOCIATES LTD. & ASSOCIÉS LTÉE. CONSULTING ENGINEERS INGÉNIEURS CONSEILS OTTAWA CANADA

APPENDIX 'C'

TYPICAL WALL SECTIONS

Patterson Creek Area

Typical Section

Echo Drive Area

Typical Section

APPENDIX 'D'

LABORATORY TEST RESULTS

a construction and the second states and the

COM of d	IPRESS rilled co (CAN/CS)	ON TI ONCRETE A A23.2-1	ESTING e cores 4C)	IVIC. & AS CONS	KUSTI. SSOCIATI SULTING EN OTTAW	E GEIN ES LTD IGINEERS IA - ONTA	LOI OI & ASSO INGÉNIEUR RIO - CAN	L-LOU CIÉS LT RS CONSI	
DATE :	June 15,	2000							
CLIENT :	RIDEAU	CANAL		PROJECT : RIDEAU CANAL WALLS PROJECT No.: E-7928					
DATE CAST: SPECIFIED : 28 DAYS ·	STRENG	TH AT		DATE CORED : May 03 to 09, 2000 DATE REC'D :					
MAXIMUM J	AGGREG/	ATE :	mm	MOIST CONE	TURE NITION :	Moist As rec	DRY		
CORE No.	DIAM. (mm)	5	CORR. FACTOR	COMPRI STREM	ESSIVE IGTH	@ AGE	FAILURE MODE	TESTED BY	CHECKE
2	47.0	2.045	1.000	39.8	MPa			fm	[.m.n
5	46.5	2.087	1.000	59.6	MPa			Im	(.14. /
101	46.6	2.017	1.000	63.9	MPa			fh	(m.n
102 - A	68.2	1.716	0.978	43.2	MPa			fm	1-1-1-
102 - B	69.0	2.001	1.000	35.2	MPa			fm	len
CORE No.	USE OF	CONCR		RE LOCAT	ION	:	COMI	MENTS	
2	Depth =	2.65 to 2.	74m			Pattersor	Creek		
/	Depth =	1.71 to 1.	80m			Pattersor	ı Creek		
5	101 Depth = 0.74 to 0.83m						/e		
5 101	Depth =	0.74 to 0.	0311						
5 101 102 - A	Depth = Depth =	0.74 to 0. 0.16 to 0.	27m			Echo Driv	/e		···· · · · ·

20 APR 1999

(1771).

1727

TIE G ates L 3 engine awa - C	GEN ltd ieers onta	EST S & ASSO INGÉNIEUI RIO - CAN	Γ-LOU CIÉS LTI RS CONSE NADA		
		•			
PROJECT : RIDEAU CANAL WALLS PROJECT No.: E-7928					
): April : April	ril 19, 2 ril 19, 2	2000 2000			
MOISTURE MOIST DRY CONDITION : AS RECEIVED V					
FAI	VLURE MODE	TESTED BY	CHECKED		
		fr.	am.n.		
		An	Inn.		
		In	In.		
COMMENTS					
Patterson Creek					
Patterson Creek					
Drive					
		FAILU			

,

20 APR 1999

20

etter

COARSE AGGREGATES

Borehole n°. Depth	:	2H Mid section of core
Thin sections identification	:	202 A and B
Macroscopic identification	:	Granitic rocks, rarely limestone
Description	:	Represents 90 % to 95 % of all coarse aggregates. Colour pink to light grey, generally massive structure with medium to coarse grain size, granular texture.

Microscopic description

MINERALOGY	FORM	DIMENSION (mm)	PERCENTAGE (%)
Plagioclase	Irregular shape Sometimes with alteration	1,0 to 4,0	20-30
K-Feldspars	Irregular shape, usually microcline and rarely perthite	0,5 to 3,0	25-30
Quartz	Undulatory extinction Subrounded to irregular	0,5 to 5,0	30-40
Microcristalline quartz	Rounded	< 0,1	0-2
Biotite or hornblende	Elongated	0,5 to 2,0	2-5

Petrographic alkali-aggregate reactivity potential

į

:

- Potentially reactive phase: Microcristalline quartz and quartz with undulatory extinction.
- > Reactivity potential: Low

FINE AGGREGATES

Borehole n°. Depth	: :	2H Mid section of core
Thin sections identification	:	202 A and B
Macroscopic identification	:	Granitic sand

:

Microscopic description

MINERALOGY	FORM	DIMENSION (mm)	PERCENTAGE (%)					
Feldspars (including	Subangular	0,5 to 3,0	35-40					
Rock fragments (usually same nature as coarse aggregates)	Subangular to subrounded Limestone and rare quartzite particles	2,0 to 5,0	25-30					
Quartz	Undulatory extinction Subangular	0,5 to 2,0	25-30					
Mafic minerals (biotite, amphibole and pyroxene)	Usually elongated	0,5 à 2,0	5-10					

Petrographic alkali-aggregate reactivity potential

- > Potentially reactive phase: Microcristalline quartz (mostly in rock fragments)
- > Reactivity potential: Low

Reference nº : rep-113

COARSE AGGREGATES

Borehole n°. Depth	:	102H Mid section of core
Thin sections identification	:	201 A and B
Macroscopic identification	:	Mostly sedimentary rock fragments
Description	:	Sedimentary rocks, colour light to dark brown, no evidence of stratification, small grain size.

Microscopic description

MINERALOGY	FORM	DIMENSION (mm)	PERCENTAGE (%)
Shale, argillite or siltstone	Rounded to subrounded	5-15	50-55
Limestone	Rounded to subrounded	5-15	30-35
Quartzite	Rounded to subrounded	5-10	5-10
Others	Rounded to subrounded Sandstone and granitic rock fragments	5-10	5-10

Petrographic alkali-aggregate reactivity potential

- > Potentially reactive phase: Microcristalline quartz abundant in argillite and siltstone.
- > Reactivity potential: Medium to high

Member of Group Registered ISO 9	e Qualitas inc. 001 (1994)						
MICROSCOPICAL DETERMINATION OF PARAMETERS OF THE AIR-VOID SYSTEM IN HARDENED CONCRETE							
ASTM C 457 STANDARD, PROCEDURE B							
File n°: B5523-004 Project: D-00104 Sampling date: Date received : Test date: Concrete specimen:	2000-05-10 2000-05-19 cylinder √	core	Client: Les Laboratoires Outaouais inc. Supplier: Formula: Sample. n°: 102H LBL n°: 00-PB-203 Specimen orientation: □ horizontal Surface de la plaque (cm²): 95				
· · · · · · · · · · · · · · · · · · ·				۰۰ ، بربر		· · · · · · · · · · · · · · · · · · ·	
		TEST F	ESULTS				
Т	otal	Paste	Void	Void	Number of		
si	stops		intersected	stops	traverse		
	500	405	134	60	19		
	(1,3875 III	AIR-VOID P					
:	Air cont	lent (%)	Paste co	ntent (%)			
	fresh conc.	hard. conc.	theorical	hard. conc.			
		4,0	L	27,0	·		
Spacing	Specific surf.	Chord	Ratio	Length of	number of		
factor (µm)	(mm ⁻¹)	avg. (µm)	<u>P/A</u>	trav. (mm)	voids/mm		
944	5, 6	711	6,750	2381	0,06		
1	Parameters		Results	Specifications	Standard		
Obse	Observed surface (cm ²)			71	ASTM C 457		
Total le	Total length of traverse (mm)			2286	ASTM C 457		
	Total stops			1350	ASTM C 457		
Test executed by:		Sc.A.	Verified by :		inard, Eng. M.Sc		

0.1830

This report of analysis can only be reproduced in its entirety unless otherwise authorized in writing by Laboratolre de Béton Itée The results are representative of the sample submitted for analysis.

,'

3420 East, St-Joseph blvd., Montreal (Quebec) H1X 1W6 Telephone: (514) 255-0613 Fax :: (514) 252-0071

WATER ANALYSIS .

JOB NO: E-7928

1000

JOB NAME: RIDEAU CANAL WALLS

	BOREHOLE ND.	WATER LEVEL	DATE SAMPLED	DATE TESTED	CONDUCTIVITY MICROMHOS/CM	SOLUBLE SULPHATE CONTENT (SO4)P.P.M.	SOL CHLC CDN (CL)	UBLE DRIDES DTENT P.P.M.	pH.
	001	1.01m	May 9 2000	May 26 2000	1100	80+/-10%	6064	-/-10%	7.8
	00-3	5.00m	May 9 2000	May 26 2000	950 -	75+/-25%	4544	-/-10%	8.2
~~	00-4	0.60m	May 9 2000	May 26 2000	900	100+/-10%	4504	-/-10%	8.0
	00-5	0.54m	May 9 2000	May 26 2000	900	80+/-10%	303-	-/-10%	7.9
- 0	00-103	4.38m	May 9 2000	May 26 2000	850	90+/-10%	262+/-10%		8.1
~~~									
arv n									
	FLATE NO.:								
	MCROSTIE GENEST ST-LOUIS & ASSOCIATES LTD CONSULTING ENGINEERS OTTAWA, CANADA								

2010330-316-5177057652001-5662648765-

### APPENDIX 'E'

# UNDRAINED SHEAR STRENGTH WITH DEPTH

### **Patterson Creek Section**



A

### **Echo Drive Section**



r:

### **APPENDIX 'F'**

## **STATEMENT OF LIMITATIONS**

-

· · ·
#### STATEMENT OF LIMITATIONS

Conclusions and recommendations contained in this report are based on factual information obtained at specific borehole, auger hole or test pit locations. Variations in subsurface conditions (soil and groundwater) between and beyond locations tested may be found at the time of construction.

Our report contains engineering recommendations on geotechnical aspects of the project based on our interpretation of subsurface information obtained and present project requirements in accordance with locations, elevations and alignments stated in our report. Since all details of design may not have been known to us, certain assumptions may have been necessary for analysis purposes during the preparation of this report. The actual conditions may, however, vary from those assumed, in which case specific changes and modifications may be required to our recommendations.

We recommend, therefore, that we be retained during the final design stage to review the design drawings and to verify that they are consistent with our recommendations or the assumptions made in our analysis. We also recommend that we be retained during construction to confirm that subsurface conditions over the site do not differ significantly from those encountered at tested locations. In cases where our recommendations are not followed, our company's responsibility is limited to properly interpreting subsurface details at test locations.

It must be recorded that all recommendations contained in this report are provided for the guidance of the design engineers as they pertain to this particular project. Contractors bidding on, or undertaking any work on this project, should examine the factual results of the investigation, satisfy themselves as to the adequacy of this information for construction and make their own interpretation of the factual data as it affects their proposed construction techniques, safety, schedule and equipment capabilities. •••

P 171

רייקע ביינגע ביינגע בייגע ב

Can,

کم .

*х*ъ

nacy.

<del>۳۷</del>

ата. .

R⁻¹¹ %

Tag.

S-59,

بەرىتى 1

54 54

Appendix A - Part 4

Echo Drive Geotechnical Data Report for the Ottawa Walls Project



# Echo Drive Geotechnical Data Report for the Ottawa Walls Project

Colonel By Drive near Echo Drive And Concord Street Ottawa Ontario

AECOM Consultants Inc.



minitia



### **Table of Contents**

Introd	duction	. 1
Site a	and Project Description	. 1
Field	Investigation	. 2
3.1	Geotechnical Drilling	. 2
3.2	Laboratory Testing	3
Subs	urface Conditions	. 3
4.1	Asphaltic Concrete	. 3
4.2	Topsoil	. 3
4.3	Fill Soils	. 4
4.4	Sediments	. 4
4.5	Silty Clay or Silt and Clay	. 4
4.6	Silt and Sand	5
Grou	ndwater	5
Limita	ation of the Investigation	6
	Introd Site a Field 3.1 3.2 Subs 4.1 4.2 4.3 4.4 4.5 4.6 Grou Limita	Introduction Site and Project Description Field Investigation 3.1 Geotechnical Drilling 3.2 Laboratory Testing Subsurface Conditions 4.1 Asphaltic Concrete 4.2 Topsoil 4.3 Fill Soils 4.4 Sediments 4.5 Silty Clay or Silt and Clay 4.6 Silt and Sand Groundwater

### **Figure Index**

Figure 1	Site Location Map
Figure 2	Borehole Location Map

### Table Index

Table 3.1	Borehole Location and Elevation	3
Table 4.1	Geotechnical Laboratory Analysis	5

### **Appendix Index**

Appendix A	Borehole Logs, Notes on Borehole and Test Pit Logs

Appendix B Laboratory Analysis



### 1. Introduction

GHD was retained by AECOM Consultants Inc. (Client) to undertake a Geotechnical Field Investigation for the proposed rehabilitation of the Ottawa Walls (Project) to be located along Colonel By Drive, near Echo Drive and Concord Street in Ottawa, Ontario (Site).

The purpose of the investigation was to complete a geotechnical field investigation at the Site in order to summarize the subsurface conditions found at the four borehole locations specified by the Client. This report has been prepared with the understanding that GHD is not the geotechnical engineer for the project and the report is a presentation of the data derived from the field investigation and results of the Client approved Laboratory Testing Program.

The scope of work for this investigation was agreed to, as outlined in our Subconsultant Agreement for Professional Services dated October 30, 2017 and was amended to include the additional work at Echo Drive as per our proposal (Ref No: 11149792Dumas-3). In general, the scope of work for GHD consisted of the following activities:

- Underground Utility Clearances | For BH13, BH18 and BH19, GHD obtained clearance of both public and privately owned services on the Site. For BH14, a private utility locating subcontractor was contracted to provide the clearance of both public and privately owned services on the Site.
- Geotechnical Drilling | GHD retained a drilling subcontractor to drill four boreholes to varying depths across the Site. Two of the boreholes were drilled to approximately 20 meters below the existing ground surface (mbgs), one of which was advanced in the shoulder of the road, and the other in the Rideau Canal Eastern Pathway. Two boreholes were drilled in the Rideau Canal, one was advanced to a depth of approximately 7.5 mbgs and the other to 10 mbgs.
- Fieldwork Supervision | GHD field staff logged the soil at the four borehole locations based on the soil samples that were recovered.
- Laboratory Testing | GHD performed five grain size analyses and six Atterberg limits tests in our geotechnical laboratory.
- Reporting | GHD prepared this Geotechnical Data Report based on the results of the fieldwork and laboratory testing.

Geotechnical recommendations, hydrogeological investigation, Permit to Take Water (PTTW), or submittals for an Environmental Activity and Sector Registry (EASR) were not part of GHD's scope of work for this Geotechnical Field Investigation. Assessments of the environmental quality of the soils were not part of the scope of work for this Geotechnical Investigation.

### 2. Site and Project Description

The Site is located between Concord Street North and Main Street in Ottawa, Ontario. A civic address for the Site was not provided by the Client. The location of the Site is shown on the Site Location Map as Figure 1 at the end of this report. The nearby boroughs are known as Sandy Hill and Old Ottawa East.



The Site consists of three staggered elevations, one being Colonel By Drive with an approximate elevation of 66.31 masl as surveyed at BH18, the second being the Rideau Canal Eastern Pathway which is approximately 1.3 m lower in elevation than Colonel By Drive with an approximate elevation of 65.04 masl as surveyed at BH19 and third, the Rideau Canal bed which is approximately three to five meters lower in elevation than the pathway with elevations of 61.73 and 60.47 in boreholes BH13 and BH14 respectively. It is bound to the north and west sides by the Rideau Canal, followed by single-family residential dwellings. It is bound to the east and south by Colonel By Drive, followed by low-rise apartment buildings.

The Site includes the eastern part of the Rideau Canal and the area between the canal and Colonel By Drive including a primary concrete retaining wall at the edge of the canal, followed by the Rideau Canal Eastern Pathway, followed by a secondary retaining wall which is approximately one meter in height, this is followed by a grassed strip leading to the metal guardrail which lies between the road and the pathway, followed by Colonel By Drive.

The project was undertaken to provide the field observations and laboratory data to the Client.

### 3. Field Investigation

#### 3.1 Geotechnical Drilling

The fieldwork component of this Geotechnical Investigation consisted of the advancement of a total of four boreholes, labelled as boreholes BH13, BH14, BH18 and BH19. Boreholes BH13 and BH14 were advanced to approximately 10 and 7.5 meters below the water-sediment interface respectively. Boreholes BH18 and BH19 were advanced to approximately 20 mbgs. The preliminary locations of the boreholes were provided by the Client and adjusted based on underground service locates and field conditions. These locations are shown on the Borehole Location Plan, as Figure 2 at the end of this report.

The borehole drilling for this investigation was done over four days, with various equipment and over an extended duration based on site conditions, access and permits. BH13 was advanced on May 9, 2018 with a track mounted drill rig adapted for geotechnical sampling, which was mounted on a barge. This borehole was advanced into the overburden using wash-boring equipment. BH14 was advanced from the ice surface on February 14, 2018 with portable Cathead equipment adapted for geotechnical sampling. Borehole BH14 was advanced into the overburden by first imbedding an outer casing into the soft surficial material. Below this, sampling took place within the open hole. BH18 was advanced on April 20, 2018 with a truck mounted drill rig, adapted for geotechnical sampling. This borehole was advanced into the overburden using hollow-stem continuous-flight auger equipment. BH19 was advanced on April 16, 2018 with a geoprobe adapted for geotechnical sampling. This borehole was advanced into the overburden using direct push casing.

Standard Penetration Tests (SPTs) were performed at regular intervals using a 50 mm diameter split-spoon sampler and a 63.5 kg hammer free falling from a distance of 760 mm, to collect soil samples. The number of drops required to drive the sampler 0.3 m is recorded on the borehole logs as "N" value. Field Vane Tests (FVTs) were performed at regular intervals to measure the undrained shear strength of the native clayey soils. Boreholes were backfilled with auger cuttings and bentonite hole-plug as applicable upon completion.



The elevations of the boreholes were determined by GHD's field staff using level and rod method, in combination with elevations, which were provided by JD Barnes who were hired directly by the Client. It should be noted that depth to base of canal for BH13 was measured from the barge deck, down to where the casing contacted competent material up to the water surface. Top of barge deck was then compensated over to the canal wall cap, which was then surveyed relative to existing nearby elevation data. The elevation of BH14 was determined in a similar way by measuring from the ice surface down to where the casing met competent material and then measured to existing nearby elevation data provided by JD Barnes.

Table 3.1 below provides the measured borehole locations and elevations.

Location	Northing	Easting	Elevation (masl)
BH13	5029498	446750	61.73
BH14	5029325	446663	60.47
BH18	5029460	446733	66.31
BH19	5029421	446710	65.04

#### Table 3.1 Borehole Location and Elevation

Note: Coordinates are in UTM Zone 18 NAD 83

#### 3.2 Laboratory Testing

The laboratory testing component of this Geotechnical Field Investigation consisted of five grain size analyses and six Atterberg limits. The results of the grain size analyses were used in the descriptions below, and the Atterberg limits results are plotted on the Borehole Logs.

### 4. Subsurface Conditions

General descriptions of the subsurface conditions are summarized in the following sections, with a graphical representation of each borehole on the Borehole Logs, attached as Appendix A at the end of this report. Notes on Boreholes are also provided in Appendix A.

#### 4.1 Asphaltic Concrete

The surface of the Rideau Canal Eastern Pathway has a continuous asphalt pavement structure. Borehole BH19 was advanced through the asphaltic concrete surface. The asphalt was approximately 50 mm thick in the tested location.

#### 4.2 Topsoil

Borehole BH18 was advanced into a grassed boulevard strip on the shoulder of Colonel By Drive. Topsoil was encountered at this location and had an approximate thickness of 100 mm. It was described as silt and organics, dark brown in colour and moist.



#### 4.3 Fill Soils

Fill soils were found to be underlying the topsoil and asphalt surface, at BH18 and BH19 respectively. The fill at BH18 was described as a sand trace gravel fill, which became finer grained with depth and had an organic rich seam at approximately 3.5 mbgs. The fill was described as compact to loose, brown in colour and moist. In BH19 the fill was described in three layers, the first being the granular pavement consisting of silty sand and gravel, grey in colour and damp, with an approximate thickness of 350 mm. The next layer was a gravel and sand, compact, dark brown in colour and damp. The final layer of fill was described as a sandy silt with some organics, loose, dark greyish brown and moist, with some pieces of ash or coal recovered at approximately 3.5 mbgs.

#### 4.4 Sediments

Boreholes BH13 and BH14 were advanced into the canal bed, the surface of which was covered with sediment. The sediment was described as silty sand with trace or some gravel and organics, loose to very loose, dark grey and wet. The layer was found to be thickest in BH13, with an approximate thickness of 2.0 m, and thinnest in BH14 with an approximate thickness of 0.5 m.

#### 4.5 Silty Clay or Silt and Clay

A native silty clay or clay and silt deposit was encountered in all of the boreholes. The silty clay was found to have a stiff to very stiff brownish grey to dark brown crust in BH18 and BH19. The crust varied in thickness however, in both locations it ended at an approximate elevation of 60 and 59 masl in BH18 and BH19 respectively.

Below the crust in BH18 and BH19 and in general for BH13 and BH14, the silty clay was described as stiff in consistency, brownish-grey or grey in colour, and was recovered in a moist to wet condition. BH13, BH14 and BH18 were described as having trace sand or sand seams which were observed starting at approximately 55.7, 55.7 and 59.3 masl in BH13, BH14 and BH18, respectively and persisted with depth. BH13, BH18 and BH19 were described as having organic staining present, which was observed starting between 57.7, 54.8 and 58.9 masl in BH13, BH18 and BH19 respectively and persisted with depth.

The silty clay extended to an approximate elevation of 48 masl in BH19. This was the only borehole where soil sampling took place to this depth and was the only borehole that penetrated the full depth of this layer.

Atterberg limit testing was completed on three representative samples from boreholes BH18 and BH19 from approximately 6.9 and 14.0 mbgs in BH18 and 5.3 and 12.8 mbgs in BH19. The samples analyzed in BH18 were SS9, SS11 and SS13 at depths of 6.9-7.5, 8.4-9.0 and 13.0-13.6 mbgs respectively. The samples analyzed in BH19 were SS6, SS8 and SS11 at depths of 5.3-5.9, 7.6-8.2 and 12.2-12.8 mbgs respectively. In general the material varies between borehole location and borehole depth such that the material is one of silty clay, clay and silt, silt and clay, or clayey silt, however all Atterberg results indicate a classification of low plasticity clay. The results of the Geotechnical Laboratory Analysis is presented in Table 4.1 below.



Sample ID and Depth (mbgs)	% Gravel	% Sand	% Silt	% Clay	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content	USCS
BH18- SS9, 6.9-7.5	0	2	30	68	32	24	8	40	CL Lean Clay
BH18- SS11 8.4-9.0	0	6	57	37	32	23	9	27	CL Lean Clay
BH18- SS13 13.0- 13.6	0	4	48	48	32	19	13	33	CL Lean Clay
BH19- SS6 5.3- 5.9	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	32	22	11	49	CL
BH19- SS8 7.6-8.2	0	9	62	29	32	16	16	26	CL Lean Clay
BH19- SS11 12.2- 12.8	0	1	34	65	32	18	16	47	CL Lean Clay

#### Table 4.1 Geotechnical Laboratory Analysis

#### 4.6 Silt and Sand

A native sand and silt trace gravel and clay deposit was encountered in BH19 at an approximate elevation of 48 masl. This is the only borehole location which was sampled to this elevation and in which this layer was encountered. This sand and silt layer was described as compact, grey and wet.

### 5. Groundwater

No boreholes had monitoring wells installed however, some interpretations were made based on moisture contents of soil samples from BH18 and BH19. BH18 had a moisture content taken from SS9 at an approximate elevation of 59.0 masl which had a moisture content of 40.5 percent in a silty clay material which could be interpreted to be below the water table. BH19 had a moisture content taken from SS6 at an approximate elevation of 59.5 masl, which had a moisture content of 49.5 percent in a silty clay material which could also be interpreted to be below the water table. Additionally, BH13 and BH14 were drilled in the canal, in which the summer water elevation is 64.1 masl.

It should be noted that levels above are interpreted and are subject to seasonal fluctuations and in response to precipitation and snowmelt events. A hydrogeological investigation, PTTW, submittals for an EASR, or quantity estimates were not part of GHD's scope of work for this geotechnical investigation.



### 6. Limitation of the Investigation

This report is intended solely for AECOM Consultants Inc. and is prohibited for use by others without GHD's prior written consent. This report is considered GHD's professional work product and shall remain the sole property of GHD. Any unauthorized reuse, redistribution of or reliance on the report shall be at the Client and recipient's sole risk, without liability to GHD. Client shall defend, indemnify and hold GHD harmless from any liability arising from or related to Client's unauthorized distribution of the report. No portion of this report may be used as a separate entity; it is to be read in its entirety and shall include all supporting drawings and appendices.

The data presented in this report are in accordance with our present understanding of the project, the current site use, ground surface elevations and conditions, and are based on the scope of work approved by the Client and described in the report. The services were performed in a manner consistent with that level of care and skill ordinarily exercised by members of Geotechnical Engineering professions currently practicing under similar conditions in the same locality. No other representations, and no warranties or representations of any kind, either expressed or implied, are made. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

The information provided in this report is based on the subsurface at the time of the study.

It is recommended that GHD be retained during construction of all foundations and during earthwork operations to confirm the conditions of the subsoil are actually similar to those observed during our study. The intent of this requirement is to verify that conditions encountered during construction are consistent with the findings in the report and that inherent knowledge developed as part of our study is correctly carried forward to the construction phases.

It is important to emphasize that a soil investigation is, in fact, a random sampling of a site and the comments included in this report are based on the results obtained at the four test hole locations only. The subsurface conditions confirmed at these four test locations may vary at other locations. Soil and groundwater conditions between and beyond the test locations may differ both horizontally and vertically from those encountered at the test locations and conditions may become apparent during construction, which could not be detected or anticipated at the time of our investigation. Should any conditions at the site be encountered which differ from those found at the test locations, we request that we be notified immediately. If changed conditions are identified during construction, no matter how minor, this report shall be considered invalid until sufficient review and written assessment of said conditions by GHD is completed.



All of Which is Respectfully Submitted,

GHD

even Wheeler

Steven Wheeler, BSc

Gerardo Cardenas, P. Eng.



Source: MNRF NRVIS, 2018. Produced by GHD under licence from Ontario Ministry of Natural Resources and Forestry, © Queen's Printer 2018 Coordinate System: GCS WGS 1984



AECOM CONSULTANTS INC. RIDEAU CANAL EASTERN PATHWAY SITE 3 OTTAWA WALLS PROJECT SITE LOCATION MAP 11149792-A1 Jun 25, 2018

FIGURE 1

GIS File: Q:\GIS\PROJECTS\11149000s\11149792\Layouts\INT001\11149792-A1(INT001)GIS-OT006.mxd



- Source: MNRF NRVIS, 2017. Produced by GHD under licence from Ontario Ministry of Natural Resources and Forestry, © Queen's Printer 2018. Aerial: Image ©2018 Google







AECOM CONSULTANTS INC. RIDEAU CANAL EASTERN PATHWAY SITE 3 OTTAWA WALLS PROJECT

### BOREHOLE AND COREHOLE LOCATION PLAN

### FIGURE 2

11149792-A1 Jun 25, 2018

## Appendices

# Appendix A Borehole Logs <u>Notes on Borehole and</u> Test Pit Logs

REFERENCE No.:         11149792-A1         ENCLOSURE No.:         1														_				
		G	<u>a</u>	BOREHOLE No.:	BH1	3						во	RE	HO	LE	LO	G	
				ELEVATION:	61.7	3 m						Page	»:	1	of _	1		
CLIE	ENT: AI	ЕСОМ	Consultants Inc.								~~~	Calit	LE	GE	ND			
PRO	JECT:	Geote	chnical Investigation								SS GS	Auge	r Sam	ple				
LOC	ATION:	Ottav	va Walls							Ø	ST	Shelb	y Tub	e				
DES	CRIBED	BY:	S. Wheeler	CHECKED BY:		B. Vaz	zhbakł	nt		▼_ ○		Water Water	r Leve r conte	il ent (%	)			
DAT	E (STAR	T):	9 May 2018	DATE (FINISH): _		9 Ma	y 201	8		-	H N	Atterb	berg liv	mits (°	, %) x hase	d on		
SC	ALE		STR		•	N	Split S Penet	Spoon	samp	ble based	lon							
Depth BGS	Elevation (m)	Stratigraphy	DE SOIL	Penetration Index / RQD	∆ □ S	Cu Cu	Dynar Shear Shear Sensi Shear Pocke	nic Co r Strei r Strei itivity ' r Strei et Per	ne sa ngth b ngth b Value ngth b ietrom	imple ased c ased c of Soil ased c neter	on Fiel on Lab	ld Va Var	ine ie					
meters	61.73		GF	ROUND SURFACE			%	ppm	Ν	10	50k 0 21	SCAL Pa	E FO 100kP	R TES a 1( 50	50kPa 60 7	3ULTS 200k 0 8(	S (Pa ) 90	)
			SEDIMENTS- Silty sand	d trace gravel and organics, /et		SS1	2/24		2	•			_	-				
-			*Only coarse gravel pie	ces recovered, assumed soft	K	SS2	2/24		4	•			+	+	+	Ħ		
- 2.0	59.6		sediments with graver in			004	0/24		5					_				
	00.0		SILTY CLAY- Grey, stil	f, moist	Ê	554	8/24		5	•		<b>^</b>	+	+		$\square$		
					Ě	555	24/24	ł	2	•			-	$\pm$				
- 4.0			*Organic staining noted	in samples		SS6	24/24	ł	2	•		S=1	5.5	+				
			* <b>*</b> · · · · · · · · · · · · · · · · · · ·			FV2						—-S=	10.5	$\pm$		$\square$		
			empty. Followed with s	by tube sample which returned olit spoon to obtain sample.		ST/SS	4/24						_	_				
- 6.0			*Becoming Silt and Cla	y, trace sand, wet	K	SS7	5/24	١	NH(2	4)		-	+	+	+	$\square$		
-			No recovery		É	558	0/24		1	-				$\pm$	$\square$			
- 80						SS9	10/24	t /	VH(2	4)		_		+				
0.0			*Limited recovery		X	SS10	0.5/2	4 ۱	VH(2	4)			+	$\pm$		$\square$		
-			*Becoming silty clay, m	oist		SS11	24/24	t /	VH(2	4)			_					
- 10.0	51.7		End of borehole	at approximately 10.1 m depth	, X	SS12	24/24	1	3	•		-	+	+	+	$\square$		
					'								+	$\pm$				_
													+	+				
- 12.0													$\pm$	+		$\square$		
L													_	-				
													_	+		$\square$		
14.0													_	-				
													_	_				
16.0													+	+	+	$\models$		
														_				
													+	+				
. 18.0													$\pm$	$\pm$		$\square$		
3													_	_				
												+	+	$\mp$	+	$\models$		
20.0													$\pm$	$\pm$	$\square$	$\square$		
-													$\mp$	$\pm$		$\models$		_
													-	$\pm$		$\square$		
22.0												$\mp$	$\pm$	$\pm$	$\pm \exists$	$\square$		
NOTES																		
*Pocke	aicates F et Pen va	eid Va lues to	be used by GHD only															
*Elevat	ions sur	/eyed	by GHD Field Staff															

REFERENCE No.:         11149792-A1         ENCLOSURE No.:         2																
		G		BOREHOLE No.:	BH1	4						во	RE	IOL	ELC	DG
				ELEVATION:	60.47	7 m						Page	1	of	_1	-
CLIE	ENT: AI	ЕСОМ	Consultants Inc.								~~	0.111.0	<u>LE(</u>	GEND	)	
PRC	JECT:	Geote	chnical Investigation								GS	Auger	poon Samp	e		
LOC	ATION:	Ottav	va Walls								ST	Shelb	, Tube			
DES	CRIBED	BY:	S. Wheeler	CHECKED BY:		B. Vaz	hbak	nt		Ţ		Water	Level	+ (9/)		
DAT	E (STAR	T):	14 February 20	18 DATE (FINISH):		14 Febr	uary 2	2018		Ē	-	Atterb	erg lim	its (%)		
SC	ALE		STRATIGRAPHY SAMPLE DATA									Penet Split S Penet	ration I poon s ration I	ndex ba sample ndex bas	sed on	
Depth BGS	Elevation (m)	Stratigraphy	Virtaing DESCLIDION OL Recovery OVC								Cu Cu	Shear Shear Sensit Shear Pocke	Streng Streng ivity Va Streng t Pene	ith base of base alue of S of base tromete	d on Fi d on La oil d on	eld Vane ab Vane
meters	60.47		GF	ROUND SURFACE			%	ppm	Ν	1	50k	SCAL	E FOR	TEST F	ESUL a 20	TS ^{0kPa}
	59.9		SEDIMENTS- Silty san	d some gravel, some organics		SS1	50		5	•		30	40			
-	59.1		SILTY CLAY- Trace or	ganics, dark grey-brown, stiff,	_`\X	SS2	71		2	•						
- 2.0			*Organics and ash cinc	lers from 0.7-0.8 m		FV1	100		2	• 4 S	=4.3					
			CLAY and SILT-Dark	grey, firm, damp	$-\square$	FV2	100		4	• 4	-2.0	,				
			*Poopming trace and	200mg	$\square$	SS5	100		5	• 4						
- 4.0			becoming trace sands	seams		SS6	100		6	•4						
			*Becoming wet			SS7	100		5	• 4						
					Ä	SS8	0		PH							
- 6.0					Ĥ	559 5510	0		РН							
_						FV3					—S	=4.6				
	52.8		End of borobol	at approvigately 7.7 m dopth	X	SS11	4		4	•						
8.0																
-																
- 10.0																
10.0																
-																
- 12.0																
हु — 14.0																
107																
ריפה																
% — 16.0																
10.0																
													_		_	
ž 20 0																
AZ-AT													_		_	
22.0																
NOTES וות ל FV inc	NOTES: *FV indicates Field Vane Test															
Pocke	t Pen va	lues to	be used by GHD only													
*PH ind	dicates P	ush Ha	ammer													

REFERENCE No.:         11149792-A1         ENC												SUR	EN	o.:		3		
		G		BOREHOLE No.: BH18								BC	DR	EH	OL	E L(	OG	
				ELEVATION: 6	6.3 [°]	1 m						Pag	e:	1	of	_1	-	
CLIE	NT: AE	ЕСОМ	Consultants Inc.								100	0	L	EG	END	)	-	
PRO	JECT:	Geote	chnical Investigation								GS	Aug	er Sa	on ample	•			
LOC	ATION:	Ottav	va Walls								ST	Shel	lby T	ube				
DES	CRIBED	BY:	S. Wheeler	CHECKED BY:		B. Vaz	zhbakł	nt		<b>⊻</b> ∘	-	Wate	er Le er cor	vel ntent	(%)			
DAT	E (STAR	T):	20 April 2018	DATE (FINISH):		20 Ap	ril 201	8		-	⊣ N	Atte	rberg etrati	limit on In	s (%) dex ba	ased or	n	
SC/	ALE		STR	ATIGRAPHY		SAM		DATA			N	Split	t Spo etratio	on sa on Ind	ample dex bas	sed on		
Depth BGS	Elevation (m)	Stratigraphy	DE SOIL	SCRIPTION OF . AND BEDROCK	State	Type and Number	Recovery	OVC	Penetration Index / RQD	C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C </td <td>d on F d on L d on L d on d on</td> <td>ield V ab Va</td> <td>/ane ane</td>					d on F d on L d on L d on d on	ield V ab Va	/ane ane	
meters	66.31		GR	OUND SURFACE			%	ppm	Ν	1	50H	SCA	LE F 100	OR 1 kPa	EST F 150kP	RESUL 20 70	TS J0kPa 80	90
	66.2		TOPSOIL- Silt and org	anics, dark brown, moist	$\square$	GS1												_
-		$\bigotimes$	FILL- Sand trace grave	a, compact, brown, moist		SS1	13/24	ļ	11		•		_			+	+-	-
- 2.0		$\bigotimes$	*Becoming silty, damp			SS2	15/24	ţ	12		•					-	$\pm$	
		$\bigotimes$	*Becoming Sand and S	ilt		SS3	14/24	ļ.	5	•						_	+	
_		$\bigotimes$	*Becoming moist, dark	grey organic seam, approximatley	$' \mid X$	SS4	4/24		2	•			_			+	+	
- 4.0			*Becoming Sandy Silt			SS5	15/24	ł	3	•						_	+	
_	61.7	ĨЙ	SILTY CLAY- Brownis	h grey, very stiff, damp		SS6	24/24	ļ	5	•			_				+	-
						SS7	24/24	1	4	•					•		_	
- 6.0						SS8	24/24	ţ	6	•				<b></b>			+-	-
-		*Becoming grey with trace sand	SS9	17/24	ţ	4	•			н¢				-				
- 80			*Becoming stiff and mo	ist		SS10	24/24	1	2	•						_	$\pm$	
0.0			*Becoming Silt and Cla	y, wet		SS11	24/24	1	WH(2	24)		ю	-			—	+	
-					M	FV1				-			 			_	+	
- 10.0						ST1	24/24	1					_			—	+	-
_					M	FV2							5=6				_	
			*Black staining present			SS12	24/24	1 .	WHO	4)							+	
- 12.0			*Remould test could no	t be completed		F\/3										_	=	
-			*Becoming Clay and Sil	t		5513	24/24		WHO	A)			-			—	+	
- 14 0			*Remould test could no	t be completed		EV/4		r	v v i i(2	-)	•						$\pm$	
14.0					≝	000							_			_	+	
-	51.1		Began DCPT a	at approximately 15.2 m depth		GS2				•			_			+	+	
- 16.0			Dogun Don na							+						_	-	
										+						+	+	
																—	_	
- 18.0											H					$\pm$	$\pm$	
-											$\overline{\}$					<u> </u>	Ŧ	
													$\mathbf{r}$			$\pm$	$\pm$	
- 20.0																+	+	-
-	45.0		5057 · · ·									7	-			—	=	
- 22.0			DCPT ended a	at approximately 21.3 m depth												+	+	
																$\pm$	$\pm$	
NOTES *FV ind	: licates Fi	ield Va	ine Test															
*Pocke *Elevat	t Pen va	lues to	be used by GHD only by GHD Field Staff															
		-,	-,															

REFERENCE No.:         11149792-A1         ENCLOSURE No.:         4																		
	BOREHOLE No.: BH19														OL	ΕL	00	G
				ELEVATION:	65.0	94 m						Pag	e: _	1	o	f _1	_	
CLIE	ENT: AE	ЕСОМ	Consultants Inc.										L	EG	ENI	2		
PRO	JECT:	Geote	chnical Investigation								SS  GS	Split	Spoo er Sai	on mole				
LOC	ATION:	Ottav	va Walls								ST	Shel	by Tu	ibe				
DES	CRIBED	BY:	S. Wheeler	CHECKED BY:		B. Va	zhbakł	nt		Ţ		Wate	er Lev	/el				
DAT	E (STAR	T):	16 April 2018	DATE (FINISH):		16 Ap	oril 201	8			-	Wate Atte	er con rberg	tent ( limits	(%) 5 (%)			
SC/	ALE		STR	ATIGRAPHY		SA	MPLE D	DATA		•	N	Pen Split	etratic Spoc	on Inc on sa	dex ba mple	ased o	'n	
	ç	hy					~				Си	Dyna	amic (	Cone	samp		' Fiold	Vana
Depth BGS	Elevatic (m)	Stratigrap	DE SOIL	DESCRIPTION OF SOIL AND BEDROCK ND OVC Penetratio										ength Valu ength ength	base base base base base	ed on Soil ed on er	Lab	Vane
meters	65.04		GR	OUND SURFACE			%	ppm	N		50	SCA ^{kPa}	LE F(	DR T	EST 150kl	RESU	LTS 00kP	a
	65.0 64.6	$\boxtimes$	<b>ASPHALT-</b> Approxima	tely 0.05 m thick		GS1					0 2			50	60		80	90
_	04.0	$\bigotimes$	FILL-Granular paveme	nt, approximately 0.35 m thick		SS1	4/24		18		•							
2.0		$\bigotimes$	FILL-Graver and Sand,	uark brown, compact, damp		SS2	3/24		10		•						+	
- 2.0	62.8	$\bigotimes$	FILL-Sandy silt, some	organics, dark grey-brown,		553	5/24		4	•							+	
-		$\bigotimes$	loose, moist			600	11/2	1	1(2/								-	
4.0	61.4	<b>XX</b>	SILTY CLAY- Dark bro	own, stiff, damp		1 504	14/24	+	1(24	·)			-S=3.2	2				
4.0						FV1											+	
-					Ľ	SS5	24/24	1	3	•						-	+	
- 6.0	58.0		*Becoming light brown		2	SS6	24/24	4 '	WH(2	4)		▲	1	0				
0.0	50.9		CLAYEY SILT - Trace	sand, dark grey, stiff, wet,		SS7	24/24	4 1	WH(2	4)							_	
-			organic staining		Í	FV2							_S=4				+	
- 8.0			*Becoming light grey			SS8	24/24	1 ¹	WH(2	4)	+	0	+			_	+	
			*Remould test could no	t be completed	ľ	FV3												
-	55.9		SILTY CLAY- Dark gre	ey, stiff, wet, organic staining		SS9	24/24	4 '	WH(2	4)							+	
- 10.0			Ũ							.,			S=	4.7		_	+	_
							0.1/0									_	+	
_			*Demovale to stand and		Z	5510	24/24	ł	VVH(2	(4)								
- 12.0			"Remould test could no	t be completed		FV5								<u> </u>			_	
			*Becoming trace sand		Ľ	SS11	24/24	4 '	WH(2	4)	+		+	-0		_	+	
																-	+	
ಹ_– 14.0			*Remould test could no	t be completed	I	FV6								▲				
25/1			*Becoming Clay and Sil	t, grey, loose, wet														
GD						SS12	18/24	1	1	•							+	
<mark>ଜ</mark> ୍ଜ – 16.0					ŕ											_	+	
	10 0					0012	0/24		10									
	46.0	XX-	SILT AND SAND -Trac	e clay, grey, compact, wet	Ê	0013	0/24	_	10									
b. 20 – 18.0		11			Ĕ	SS14	18/24	1	17		•						+	
		12	*Becoming trace gravel		Ľ	SS15	24/24	1	8	-						-	+	_
НОН	45.0		*Becoming some clay		Þ	SS16	8/24		14		•					-	+	_
ᇏᅳ 20.0	45.2		End of borehole	at approximately 19.8 m deptl	h													
A1 - E																	+	
9792-													$\rightarrow$		+		+	
[†] [†] [†]													+		+	+	+	_
*FV ind *Pocke *Elevat	licates Fi et Pen val tions surv	ield Va lues to /eyed l	ne Test be used by GHD only by GHD Field Staff															



#### Notes on Borehole and Test Pit Reports

#### Soil description :

Each subsurface stratum is described using the following terminology. The relative density of granular soils is determined by the Standard Penetration Index ("N" value), while the consistency of clayey sols is measured by the value of undrained shear strength (Cu).

	Classification	(Unified sys	stem)			Terminolo	ogy				
Clay	< 0.002 mm										
Silt	0.002 to 0.075 mm										
Cond	0.075 to 1.75 mm	fine	0.075 to 4.25 mm		"tra	ce" mo"	1-10%				
Sand	0.075 to 4.75 mm	nne	0.075 to 4.25 mm		SOI	ne otivo (oilty, condy)	10-20%				
		meaium	0.425 to 2.0 mm		adje	ective (slity, sandy	) 20-35%				
		coarse	2.0 to 4.75 mm		"and	0	35-50%				
Gravel	4.75 to 75 mm	fine coarse	4.75 to 19 mm 19 to 75 mm								
Cobbles Boulders	75 to 300 mm >300 mm										
Relati gra	ve density of nular soils	Standa inde	ard penetration ex "N" value		Consi cohe	istency of sive soils	Undraine strengt	ed shear h (Cu)			
		(BLO\	NS/ft – 300 mm)				(P.S.F)	(kPa)			
					Ve	ery soft	<250	<12			
V	ery loose		0-4			Soft	250-500	12-25			
	Loose		4-10			Firm	500-1000	25-50			
(	Compact		10-30			Stiff	1000-2000	50-100			
	Dense		30-50		Ve	erv stiff	2000-4000	100-200			
Ve	erv dense		>50			Hard	>4000	>200			
	Rock quality	designatio	n	7		STRATIGRAPH	IC LEGEND				
"RQI	O" (%) Value		Quality				•				
	<25	,	Very poor			00	20				
	25-50		Poor		0000000	Gravel	Cobbles& boulders				
	50-75		Fair		Sand	Clavel C		Bedrock			
	75-90		Good			7777		000000			
	>90		Excellent				$\sim \sim$				
					Silt	Clay	Organic soil	Fill			
Samples: Type and Num The type of sam SS: Split spoon SSE, GSE, AGE	<b>ber</b> nple recovered is shown o E: Environmental sampling	on the log by t g	the abbreviation listed he ST: S PS: P	ereafter. The nun helby tube riston sample (Os	nbering of samples is terberg)	sequential for each AG RC GS	type of sample. :: Auger :: Rock core :: Grab sample				
Recovery The recovery, s	hown as a percentage, is	the ratio of le	ength of the sample obta	ined to the distan	ce the sampler was o	driven/pushed into the	e soil				
RQD											
The "Rock Qual the run.	lity Designation" or "RQD'	" value, expre	essed as percentage, is t	he ratio of the tot	al length of all core fr	agments of 4 inches	(10 cm) or more to the	ne total length o			
IN-SITU TEST	TS:										
N: Standard per	netration index			N _c : Dynamic	cone penetration in	dex	k: Permeat	oility			
R: Refusal to pe	enetration			Cu: Undı Pr:	rained shear strength Pressure meter	I	ABS: Absorption (F	Packer test)			
LABORATOR	RY TESTS:										
I Divid in the			1					O.V.: Organic			
Ip: Plasticity inde	ex	H: Hy	Grain size analysis	A: Atterbe	rg iimits		n II cone	vapor			
Wn: Plastic limit	ł	GSA:	Grain Size analysis	w: vvater c	aht	CHEM: Chemic	ni cone sal analysis				
wp. r idolic iillii	L Contraction of the second seco			Y. OHIL WEI	9		ai anaiyoio				

GHD PS-020.01-IA- Notes on Borehole and Test Pit Reports - Rev. 0 - 07/01/2015

# Appendix B Laboratory Analysis



Clier	nt:	Aecom Consultants Inc.			Lab No.:	G-18-002			
Proje	ect, Site:	Ottawa Walls Project / R	ideau Canal		Project No.:	11149792-A	1		
E	Borehole No.: Depth:	27.5' -	8 • 29.5'		Sample No.: Enclosure:				
Percent Passing	00 90 80 70 60 50 40 30 20 10 0.001	0.01	0.1 Diam	eter (mm)				0 10 20 30 40 50 60 70 80 90 100	Percent Retained
				Sand		Gravel			
		Partic	Fine cle-Size Limits	e Mediu as per USCS (ASTM	Im Coarse	Fine C	oarse		
		Soil Description		Gravel (%)	Sand (%)	Clay & S	Silt (%)		
		Silt and Clay, trace Sand		0	6	94	1		
		Clay-size particles (<0.002 m	nm):		-	37	%		
Rem	arks:								
Perfo	ormed by:	D. U	Jmutoni		Date:	June 14	, 2018		
Verif	ied by:	E. E	Bennett		Date:	June 15	5, 2018		



Client:		Aecom Consu	Itants Inc.		Lab No.:	G-18-002		
Project, Site:		Ottawa Walls Project / Rideau Canal			_Project No.:	11149792-A	1	
Borehole No.: Depth:			18 42.5' - 44.5'	Sample No.: Enclosure:		SS13 -		
10 9 8 6 6 6 4 4 3 2 2 1		0.01	0.1 Dian	• • • • • • • • • • • • • • • • • • •				0 10 20 30 40 50 50 50 60 70 80 90 100 00
				Sand		Gravel		
		Clay & Silt	Fin	e Medium Coarse		Fine Coarse		
	Soil Description         Clay and Silt, trace Sand		Bas per USCS (ASTM D-2487)           Gravel (%)         Sand (%)           0         4		Clay & Silt (%) 96			
Remarks:					,0			
Perfo	rmed by:		D. Umutoni		Date:	June 1	4, 2018	
Verified by:		E. Bennett		Date:	June 15, 2018			



Client: Project, Site:		Aecom Consul	tants Inc.		Lab No.:	G-18-002		
		Ottawa Walls Project / Rideau Canal			_Project No.:	11149792-A		
Borehole No.: Depth:		18 22.5' - 24.5'			Sample No.: Enclosure:	SS9 -		
Percent Passing	100 90 80 70 60 50 40 30 20 10 0 0.001	0.01						0 10 20 30 40 50 50 60 60 70 80 90 100
	0.001	Diameter (mm)						100
		Clay & Silt	Fin	Sand e Mediu	um Coarse	Gravel	oarse	
	Particle-Size I		Particle-Size Limits	e Limits as per USCS (ASTM D-2487)				
		Soil Description		Gravel (%) Sand (%		Clay & Silt (%)		
	Silty Clay, trace Sand			0 2		98		
	Clay-size particles (<0.002 mm):					68	%	
Rem	narks: 							_
Perf	ormed by:		D. Umutoni		Date:	June 14	4, 2018	
Verified by:		E. Bennett		Date:	June 15, 2018			



Client: Project, Site:		Aecom Consultants Inc.			Lab No.:	G-18-002	
		Ottawa Walls Project / Rideau Canal			Project No.:	11149792-A1	
Borehole No.: Depth:		19 40' -	Sample No.: Enclosure:		SS11 -		
Percent Passing	100 90 80 70 60 50 40 30 20 10 0.001	0.01	0.1 Diam				0 10 20 30 40 50 60 70 80 90 100
	0.001	0.001 0.01		eter (mm)		10	100
		Clay & Silt Fine Particle-Size Limits a		Sand Medium Coarse as per USCS (ASTM D-2487)		Gravel Fine Coa	irse
	Soil Description			Gravel (%)	Sand (%)	Sand (%) Clay & Silt	
	Silty Clay, trace Sand Clay-size particles (<0.002 mm):			0 1		99 65 %	
Ren	narks:						
Per	formed by:	D. U	Imutoni		Date:	June 14,	2018
Verified by:		E. B		Date: June 15, 201		2018	



Client: Project, Site:		Aecom Consultants Inc.			Lab No.:	G-18-002			
		Ottawa Walls Project / Rideau Canal			_Project No.:	11149792-A1			
Borehole No.: Depth:		le No.: 19			Sample No.:	SS8			
		25' - 27	Enclosure:	Enclosure:	<u>.</u>				
Percent Passing	100       90       80       70       60       50       40       30       20								Percent Retained
		001	01			10		90	)
		Diameter (mm)							
		Clay & Silt	Fine	Sand ne Medium Coarse		Gravel Fine Coarse		r.	
		Particle-	Size Limits	as per USCS (ASTM	I D-2487)				
		Soil Description		Gravel (%)	Sand (%)	Clay & Silt (%)			
		Clayey Silt, trace Sand		0 9		91			
	Clay-size particles (<0.002 mm):				-	2	29 %		
Rer	narks:								
Per	formed by:	D. Um	utoni		Date:	Date: June 14, 2018			
Verified by:		E. Bennett			Date:	June 15, 2018			



# about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

#### Steven Wheeler Steven.Wheeler@ghd.com 613-727-0510

Gerardo Cardenas Gerardo.Cardenas@ghd.com 613-727-0510

www.ghd.com