FINAL STUDY REPORT

Study Title

Magnitude of the Residue of Clomazone in/on Canola Raw Agricultural and Processed Commodities Following One Preemergence Application of Clomazone 360 g/L CS (2013)

Test Guidelines

Canadian PMRA Regulatory Directive DIR98-02 and 2010-05 SANCO 3029/99 rev. 4. 11/07/00

Study Director and Report Author Testing Facility

Sandra J. Carringer The Carringers, Inc. 1003 Palace Ct. Apex, NC 27502

Study Completion Date

June 26, 2014

Sponsor

Cheminova A/S P. O. Box 9 DK-7620, Lemvig Denmark

Performing Laboratories

Analytical Phase

Morse Laboratories, LLC 1525 Fulton Avenue Sacramento, CA 95825 Laboratory Project ID: 69869 ABC Laboratories, Inc. 7200 E. ABC Lane Columbia, MO 65202 Laboratory Project ID: 69869

<u>Field Phase</u> See Page 10 for Field Test Sites

> TCI Study Number TCI-13-366

Total Number of Pages 245

STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

Study Title: Magnitude of the Residue of Clomazone in/on Canola Raw Agricultural and Processed Commodities Following One Preemergence Application of Clomazone 360 g/L (2013)

No claim of CBI is made for any information contained in this document on the basis of the definition of CBI in the PCPA 2002.

Company:	Cheminova A/S
Company Representative:	Paul Whatling
Title:	Director of Regulatory Science Cheminova, Inc. Agent for Cheminova A/S
Date:	June 26,2014
Signature:	Palchetting

These data are the property of Cheminova A/S, and, as such, are considered to be confidential for all purposes other than compliance with PCPA 2002. Submission of these data in compliance with PCPA 2002 does not constitute a waiver of any right to confidentiality, which may exist under any other statute or any other country.

GOOD LABORATORY PRACTICE COMPLIANCE STATEMENT

This study was conducted in compliance with U.S. EPA FIFRA (40 CFR Part 160) Good Laboratory Practice Standards, which are consistent with the OECD Principles of Good Laboratory Practice (ENV/MC/CHEM(98)17).

The following is a detailed description of all differences between the practices used in the study and those required by 40 CFR 160. None of the items listed impact the quality and integrity of the study.

- 1. Weather data were generally not collected following strict adherence to Good Laboratory Practice Standards. [40 CFR 160.1]
- 2. Maintenance pesticides, test system maintenance, pesticide histories, percent slope of the test sites, seeding of crop, sample weights, GPS coordinates, crop growth stages, and soil characterization data were not always obtained under GLPs for field test sites. [40 CFR 160.1]
- 3. In Trials TCI-13-366-01 and -06 notebooks, a correction on the ICMS Test and Reference Item Use Log was not made according to GLPs. For Trial TCI-13-366-02, data on page 19 of the field trial notebook for the original trial site were not initialed and dated at the time of entry and on Form 28B of the notebook, data were not initialed at the time of entry. For Trials TCI-13-366-04 and -10, an entry on page 1 of the notebook was not dated, and some entries on page 12 of Trial -04 field trial notebook were not initialed and dated at the time of entry. Additionally, some harvesting information was recorded late on pages 21, 22, and 24 of the field trial notebook. For Trial TCI-13-366-07, some entries on page 20 were dated, but not initialed at the time of entry. For Trial TCI-13-366-10, data recorded on ICMS calibration form were not initialed and dated at the time of entry. For Trial TCI-13-366-11, a non-GLP timing device was used to measure the sprayer pass times for calibration and application. [40 CFR 160.130(e)]

Study Director:

Sandra J. Carringer The Carringers, Inc.

Sponsor/Submitter: alwhatty

Paul Whatling Director of Regulatory Science, Cheminova, Inc. Agent for Cheminova A/S

26 Jun 2014 Study Completion Date

ine 26,2014

QUALITY ASSURANCE UNIT STATEMENT OF INSPECTIONS

The Quality Assurance Unit of The Carringers, Inc. conducted inspections and reported to the Study Director and the Testing Facility Management as indicated below:

Trial Site/Facility	Type of Inspection	Date of Inspection	Date Reported to Study Director	Date Reported to Testing Facility Management
All	Protocol	25-Apr-13	25-Apr-13	25-Apr-13
All	Field Data	13-16-Jan-14	16-Jan-14	16-Jan-14
All	Draft Study Report	17, 20-21-May-14	21-May-14	21-May-14
All	Final Study Report	25-Jun-14	25-Jun-14	25-Jun-14

The Quality Assurance Unit of ABC Laboratories, Inc. conducted inspections and reported to the Study Director and the Testing Facility Management as indicated below:

Type of Inspection	Date of Inspection	Date Reported to Study Director	Date Reported to Testing Facility Management
In Process	18-Mar-14	19-Mar-14	19-Mar-14
Sample Receival Information	24-Jul-13, 30-Aug-13	14-Mar-14	14-Mar-14
Raw Data	24-30-Apr-14	21-May-14	21-May-14
Raw Data	21-27-Apr-14	22-May-14	22-May-14
Draft Analytical Report	01-02-May-14	27-May-14	27-May-14
Draft Analytical Report and Raw Data	09-10-Jun-14	25-Jun-14	25-Jun-14
Final Analytical Report	24-Jun-14	25-Jun-14	25-Jun-14

<u>QUALITY ASSURANCE UNIT STATEMENT OF INSPECTIONS</u> (continued)

The Quality Assurance Unit of each field test site conducted inspections and reported to the Study Director and the Testing Facility Management as indicated below:

Trial Site	Type of Inspection	Date of Inspection	Date Reported to Study Director	Date Reported to Testing Facility Management
TCI-13-366-01	Application	29-May-13	03-Jun-13	03-Jun-13
	Field Notebook/Raw Data	27-Sep-13	04-Oct-13	04-Oct-13
TCI-13-366-02	Application (Original)	03-Jun-13	17-Jun-13	17-Jun-13
	Application (Restart)	11-Jun-13	17-Jun-13	17-Jun-13
	Field Notebook/Raw Data	03-Dec-13	18-Dec-13	18-Dec-13
TCI-13-366-03	Sampling	13-Sep-13	19-Sep-13	19-Sep-13
	Field Notebook/Raw Data	05-Dec-13	18-Dec-13	18-Dec-13
TCI-13-366-04	Sampling	07-Sep-13	08-Oct-13	08-Oct-13
· · · · · · · · · · · · · · · · · · ·	Field Notebook/Raw Data	12-Dec-13	18-Dec-13	18-Dec-13
TCI-13-366-05	Application	28-May-13	29-May-13	29-May-13
	Field Notebook/Raw Data	27-Nov-13	02-Dec-13	02-Dec-13
TCI-13-366-06	Application	25-May-13	29-May-13	29-May-13
	Field Notebook/Raw Data	05-Nov-13	06-Nov-13	06-Nov-13
TCI-13-366-07	Application	25-May-13	29-May-13	29-May-13
	Field Notebook/Raw Data	27-Sep-13	04-Oct-13	04-Oct-13
TCI-13-366-08	Application	25-May-13	29-May-13	29-May-13
-	Field Notebook/Raw Data	23-Sep-13	26-Sep-13	26-Sep-13
TCI-13-366-09	Sampling	13-Sep-13	08-Oct-13	08-Oct-13
	Field Notebook/Raw Data	13-Dec-13	18-Dec-13	18-Dec-13
TCI-13-366-10	Calibration/Application	12-Jun-13	17-Jun-13	17-Jun-13
	Field Notebook/Raw Data	13-Dec-13	18-Dec-13	18-Dec-13
TCI-13-366-11	Application	28-May-13	10-Jun-13	10-Jun-13
	Field Notebook/Raw Data	13-Dec-13	18-Dec-13	18-Dec-13
TCI-13-366-12	Sampling	19-Sep-13	08-Oct-13	08-Oct-13
	Field Notebook/Raw Data	13-Dec-13	18-Dec-13	18-Dec-13

P. Rese

Ralph P. Kose The Carringers, Inc. Manager, Quality Assurance

25 June 2014 Date

CERTIFICATION OF AUTHENTICITY

We, the undersigned, hereby declare that this study was performed under our supervision according to the procedure described herein, and that this report provides a true and accurate record of the results obtained.

Report By:

h

Sandra J. Carringer Study Director The Carringers, Inc.

26 Jun 2014 Date

Approved By:

Richard D. Carringer, Ph.D. Testing Facility Management The Carringers, Inc.

JUNE- 2014 Date

Cheminova A/S

ABBREVIATIONS AND SYMBOLS

ai	active ingredient
А	acre
ACDS	Agricultural Chemicals Development Services, Inc.
Avg	average
°C	degrees Celsius
CAN	Canada
DAA	days after application
DBH	days before harvest
EPA	Environmental Protection Agency
°F	degrees Fahrenheit
FIFRA	Federal Insecticide, Fungicide, and Rodenticide Act
g	gram
gal.	gallon
GLP	Good Laboratory Practice
HPLC	high-performance liquid chromatography
ID	identification
lb	pound
1	liter
LOD	limit of detection
LOQ	limit of quantitation
μg	microgram
μL	microliter
mL	milliliter
MS/MS	mass spectrometric/ mass spectrometric
M. W.	molecular weight
n	number of replicates
NA	not applicable
ND	not detected; no observable chromatographic response
No.	number
PHI	preharvest interval
PMRA	Pesticide Management Regulatory Agency
ppm	parts per million
RAC	raw agricultural commodity
Ref.	reference
SD	standard deviation
SOP	standard operating procedure
Trt	treatment
U.S.	United States
USA	United States of America
UTC	untreated control
UV	ultraviolet
/	per (as in gallons per acre)
<	less than
>	greater than

TABLE OF CONTENTS

<u>I</u>	Page
STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS	2
GOOD LABORATORY PRACTICE COMPLIANCE STATEMENT	3
QUALITY ASSURANCE UNIT STATEMENT OF INSPECTIONS	4
CERTIFICATION OF AUTHENTICITY	6
ABBREVIATIONS AND SYMBOLS	7
STUDY INFORMATION PAGE	9
CITATION	12
STUDY PURPOSE	12
EXECUTIVE SUMMARY	12
COMPLIANCE	14
A. Background Information	14
B. Experimental Design	15
1. Study Site Information	15
2. Sample Handling and Preparation of Field Samples	20
3. Analytical Methodology	20
C. Results and Discussion	21
D. Conclusion	25
E. Statistics and Data Integrity	25
F. Protocol, amendments, and deviations	26
G. Archiving	26
H. References	26

LIST OF TABLES

Table 1.	Test Compound Nomenclature.	15
Table 2.	Physicochemical Properties.	15
Table 3.	Trial Site Conditions.	17
Table 4.	Study Use Pattern for Clomazone	18
Table 5.	Trial Numbers and Geographical Locations.	19
Table 6.	Summary of Method Recoveries of Clomazone from Canola	22
Table 7.	Summary of Storage Conditions	22
Table 8.	Residue Data from Crop Field Trials with Clomazone 360 g/L CS - Canola	24
Table 9.	Summary of Residue Data from Crop Field Trials with Clomazone	25

LIST OF FIGURES

Figure 1.	Geographic Location	of the Test Sites	. 19
-----------	---------------------	-------------------	------

LIST OF APPENDICES

Appendix A - Test Substance Information	28
Appendix B - Detailed Study Site Information	31
Appendix C - Analytical Summary Report	80
Appendix D - Protocol, Amendments, and Deviations	218
Appendix E - Critical Dates	242

STUDY INFORMATION PAGE

TCI Study Number:	TCI-13-366
Study Title:	Magnitude of the Residue of Clomazone in/on Canola Raw Agricultural and Processed Commodities Following One Preemergence Application of Clomazone 360 g/L CS (2013)
Purpose:	This study was conducted to determine the magnitude and decline of residues of clomazone in or on canola raw agricultural commodities (RAC) following one pre-emergence application of Clomazone 360 g/L CS at 0.42 kg ai/ha. The magnitude of residues of clomazone in or on canola processed commodities (PC) was also to be determined following one pre-emergence application at an exaggerated $5\times$ rate if residues were found above the limit of quantitation (LOQ). All residues were <loq; therefore, the processing phase was not conducted.</loq;
Test Substance:	Clomazone 360 g/L CS 2-(2-chlorobenzyl)-4,4-dimethyl-1,2-oxazolidin-3-one or 2-(2- chlorobenzyl)-4,4-dimethylisoxazolidin-3-one (IUPAC)
Study Director/Author & Testing Facility:	Sandra J. Carringer The Carringers, Inc. 1003 Palace Ct. Apex, NC 27502 Tel: 919-387-0825 Fax: 919-387-4161 e-mail: scarringer@carringers.com
Study Sponsor:	Cheminova A/S P.O. Box 9 DK-7620, Lemvig Denmark
Sponsor's Rep.:	Faith Womack Cheminova, Inc. 1600 Wilson Boulevard, Suite 700 Arlington, VA 22209
Study Initiation Date: Experimental Start Date: Experimental Completion Date: Study Completion Date:	May 1, 2013 (protocol signed) May 25, 2013 (first application) May 19, 2014 (last instrumentation date) See date of Study Director's signature on page 3

<u>STUDY INFORMATION PAGE</u> (continued)

The Carringers, Inc. Personnel Assistant Project Manager:

Pamela Bruss

Field Facilities

Laboratory Project ID / Trial No.	Principal Investigator ¹	Company	Facility Address
			Box 67 Station Main
TCI 13 366 01			2375 Saskatchewan Ave. E.
TCI-13-300-01			Portage la Prairie, Manitoba,
TCI-13-300-00	Kelly Tiller	ICMS, Inc.	Canada R1N 3B2
TCI-13-300-07			Tel: 204-857-6609
101-13-300-08			Fax: 204-239-4478
			e-mail: tiller@icms-inc.com
			334 Packham Ave.
			Saskatoon, Saskatchewan
TCI-13-366-02	Greg Whittington	ICMS Inc	Canada S7N 2T1
TCI-13-366-03	Greg whittington	ICMS, Inc.	Tel: 306-956-3855
			Fax: 306-956-3856
			e-mail: whittington@icms-inc.com
TCI 13 366 04			334 Packham Ave.
TCI 13 366 00			Saskatoon, Saskatchewan
TCI 13 366 10	Dean Ngombe	ICMS Inc	Canada S7N 2T1
TCI-13-300-10 TCI 13 366 11	Deali Ngoliloc	iewis, inc.	Tel: 306-956-3855
TCI-13-300-11 TCI 13 366 12			Fax: 306-956-3856
101-15-500-12			e-mail: ngombe@icms-inc.com
			Box 3270
			54474 Range Road 215
			Fort Saskatchewan, Alberta
TCI-13-366-05	Taryn Williams	ICMS, Inc.	Canada T8L 2T2
	·		Tel: 708-992-7983
			Fax: 780-992-8499
			e-mail: willliams@icms-inc.com

¹Other field personnel are listed in the detailed study site information (Appendix B).

<u>STUDY INFORMATION PAGE</u> (continued)

Processing Facility¹

Trial No.	Principal Investigator	Company	Facility Address
TCI-13-366-06	Dick Dusek	GLP Technologies	22723 State Highway 6 South Navasota, TX 77868 Tel: 936-825-2184 Fax: 936-825-7929 e-mail: ddusek@glptech.net

¹Samples were shipped and held at GLP Technologies for possible processing; however, the processing phase was not conducted since all residues were <LOQ.

Analytical Facility¹

Trial No.	Principal Investigator ²	Company	Facility Address
All Trials	Carol Rodgers	ABC Laboratories, Inc. 01-Nov-13 to Present	7200 E. ABC Lane Columbia MO 65202 Tel: 573-777-6054 Fax: 573-777-6033 e-mail: rodgersc@abclabs.com
	Jeri Willoh	Morse Laboratories, LLC 01-May-13 to 10-Oct-13 ³	1525 Fulton Avenue Sacramento, CA 95825 Tel: 916-481-3141 Fax: 916-481-2959 e-mail: willohj@morselabs.com

¹ Morse was a wholly owned subsidiary of ABC Laboratories. In the fall of 2013, the Morse site in California was closed. This study was transferred to the ABC Laboratories site in Missouri.

² Other analytical personnel are listed in the analytical summary report (Appendix C).

³ During the interim between Principal Analytical Investigator's (i.e., October 11, 2013 to October 31, 2013), analytical phase oversight was provided by Management.

CITATION

Carringer, S. [06/26/2014]. Magnitude of the Residue of Clomazone in/on Canola Raw Agricultural and Processed Commodities Following One Preemergence Application of Clomazone 360 g/L CS (2013). TCI Study Number TCI-13-366. Unpublished study prepared by The Carringers, Inc., 245 pages.

STUDY PURPOSE

This study was conducted to determine the magnitude and decline of residues of clomazone in or on canola raw agricultural commodities (RAC) following one pre-emergence application of Clomazone 360 g/L CS at 0.42 kg ai/ha. The magnitude of residues of clomazone in or on canola processed commodities (PC) was also to be determined following one pre-emergence application at an exaggerated $5 \times$ rate if residues were found above the limit of quantitation (LOQ). Residues were <LOQ in all samples; therefore, the processing study was not conducted.

EXECUTIVE SUMMARY

Field trial data have been generated for clomazone on canola. Twelve canola trials were conducted in Canada in PMRA Zones/Regions 5 (one trial), 7 (two trials), and 14 (nine trials) during the 2013 growing season. The number and geographic locations of field trials are adequate to support a Canadian tolerance for residues of clomazone in canola.

One untreated control (Trt 1) and one treated plot (Trt 2) were established at each test site. At Trial -06, two additional treated plots (Trt 3 and Trt 4) were established to produce seed for the possible processing phase. The $1 \times$ (Trt 2) rate treated plots received one pre-emergence soil-applied broadcast application of Clomazone 360 g/L CS at the maximum proposed label use rate of 0.42 kg ai/ha ±5%. At Trial -06, the $3 \times$ (Trt 3) and $5 \times$ (Trt 4) rate treated plots received one pre-emergence broadcast application at 1.26 and 2.1 kg ai/ha ±5%, respectively. Applications were made after the canola was planted, but before emergence. The spray volume ranged from 47 to 104 liters per hectare (l/ha) with three trials selected to target a low spray volume of 47 l/ha ±10%. Spray additives were not included in the spray mixes.

At all test sites, one untreated control RAC sample and duplicate treated canola RAC samples were cut/harvested from each treated plot at maturity 90 to 122 days after the application (DAA). Some trials cut and threshed samples on the same day; however, at four sites (including one decline trial), the crop was cut/swathed and dried for 5 to 14 days and then threshed. Two trials (Trials -04 and -05) also collected treated samples 3-4, 7-8, 14-15, and 21 days after normal harvest maturity to assess residue decline. At Trial -06, duplicate RAC samples were also collected from the $5 \times$ rate treated plot (Trt 4), and one untreated control (Trt 1) and one $5 \times$ (Trt 4) rate treated bulk grain samples were also collected for possible processing. Since adequate seed were collected from Trt 4, seed from Trt 3 were not collected.

The RAC samples for residue analysis weighed at least 0.5 kg except for the treated samples from Trial -11 which weighed 0.20 and 0.25 kg due to poor crop emergence and crop stand. This did not impact the study since the crop that was present at this site was healthy and normal, and the sample weight collected was adequate for analysis. The bulk grain samples for the processing phase weighed at least 30 kg. All samples were collected without bias from 12 locations in the plots avoiding the edges of the treated plot. Samples were placed in freezer storage within 3.13

hours after collection. Frozen RAC samples were shipped via ACDS freezer trucks with Morse Laboratories, LLC as the original destination; however, due to the announced closing of the Morse facility in Sacramento, the destination was changed in transit and the samples were delivered to ABC Laboratories, Inc. for analysis.

The analytical method used for the determination of clomazone in canola RAC samples was the method found in Eurofins-GAB GmbH Study Code 20061401/01-RVP Final Report, entitled "Validation of an Analytical Method for the Determination of Clomazone in Potatoes and Oilseed Rape," dated January 17, 2007, with ABC Laboratories method modifications, dated April 23, 2014. The method was validated according to SANCO guidelines on canola seed prior to sample analysis. Concurrent procedural control samples were analyzed in conjunction with each analytical set for quality control purposes. These samples were extracted and analyzed according to the same procedure as the study samples. The validated limit of quantitation (LOQ) was 0.02 ppm for clomazone and the limit of detection (LOD) was estimated to be 0.007 ppm (1/3 the LOQ). The overall range, mean, standard deviation, and relative standard deviation for method validation and concurrent procedural recoveries are summarized below:

Summary of Method Recoveries of Clomazone from Canola								
Matrix	Fortification Level in ppm (mg/kg)	Sample Size (n)	Range of Recoveries (%)	Mean (%) ± std. dev. (RSD)				
Method Validation Fortifications - Clomazone								
	0.02	5	66-95	81 ± 12 (14)				
Canola Seed	0.5	5	73-92	81 ± 7.0 (8.6)				
	0.02-0.5	10	66-95	81 ± 9.0 (11)				
Concurrent Fortifications - Clomazone								
Canola Seed	0.02-0.5	12	68-112	95 ± 12 (12)				

<u>Storage Stability</u>: The canola RAC samples were stored frozen (below freezing at the field sites and at -25 °C to -10 °C at the analytical laboratory) for 166 to 203 days. The frozen storage stability of clomazone residues in canola seed has been demonstrated for at least 6 months in a previous study ((Fiedler E. (2007): Determination of the Storage Stability of Clomazone in Potatoes and Oil Seed Rape at approximately -20 °C. Eurofins-GAB GmbH, Niefern-Öschelbronn, DEU Study No.: 20054075/01-RSS; CHA Doc. No.: 83 CAZ). Additional freezer storage stability testing initiated in this study has been transferred to another study for completion and reporting. The data generated to date indicate that residues should not be impacted by 6.7 months of freezer storage.

<u>Residue Levels in RAC Fractions</u>: The results from these trials show that following one preemergence application of Clomazone 360 g/L CS at the maximum proposed label use rate of 0.42 kg ai/ha \pm 5%, residues of clomazone ranged from not detected (ND) to <LOD in all canola samples collected 90 to 122 DAA. The results from these trials show that following one preemergence application of Clomazone 360 g/L CS at a 5× exaggerated rate application of 2.1 kg ai/ha \pm 5%, residues of clomazone ranged from <LOD to <LOQ in the canola samples collected 122 DAA.

<u>Residue Decline Data:</u> Two trial sites (Trials -04 and -05) collected additional treated samples 3-4, 7-8, 14-15, and 21 days after normal harvest maturity. At all sampling events at both sites, residues in the seed were <LOD indicating that residues do not increase with longer preharvest intervals.

COMPLIANCE

The study was conducted according to the GLP standards of 40 CFR Part 160 and/or OECD Principles of Good Laboratory Practice. Signed and dated GLP, Quality Assurance, and Data Confidentiality statements are provided. No GLP deviations occurred which impact the validity of the study.

A. BACKGROUND INFORMATION

The Clomazone 360 g/L CS test substance used in this study contained a nominal 360 g ai/L clomazone in a capsule suspension (CS) formulation. Clomazone 360 g/L CS is a herbicide currently being developed by Cheminova A/S for agricultural use in controlling weeds in a variety of crops.

Based on EPA's review of available plant metabolism data, the Agency concluded that the residue of concern in food/feed items is clomazone, and the residue of concern for tolerance enforcement is clomazone *per se*. As such, all plant magnitude of the residue studies are required to measure residue of this analyte in all matrices.

The purpose of this study was to determine the magnitude and decline of residues of clomazone in or on canola raw agricultural commodities (RAC) following one pre-emergence application of Clomazone 360 g/L CS at 0.42 kg ai/ha. The magnitude of residues of clomazone in or on canola processed commodities (PC) was also to be determined following one pre-emergence application at an exaggerated $5\times$ rate if residues were found above the limit of quantitation (LOQ). Residues were <LOQ in all samples; therefore, the processing study was not conducted.

This report provides a summary of the procedures followed during the field and analytical portions of this study. It also reports the results of the sample analyses and draws conclusions from these results. The results from this study may be used to establish Maximum Residue Limits for clomazone in/on canola raw agricultural and processed commodities in Canada.

See Table 1 for the test compound nomenclature and Table 2 for the physicochemical properties of the test compound.

Detailed information regarding the test substance, including the GLP certificate of analysis, is presented in Appendix A (Test Substance Information).

Table 1. Test Compound Nomen	clature.
Compound	Chemical Structure
	C1 CH 2 O Me Me
	Clomazone
Common name	Clomazone
IUPAC name	2-(2-chlorobenzyl)-4,4-dimethyl-1,2-oxazolidin-3-one or 2-(2-chlorobenzyl)-4,4-dimethylisoxazolidin-3-one
CAS name	2-[(2-chlorophenyl)methyl]-4,4-dimethyl-3-isoxazolidinone
CAS #	81777-89-1
End-use product/EP	Clomazone 360 g/L CS

Table 2. Physicochemical Properties.							
Parameter	Value	Reference ^a					
Melting point/range	25 °C, broad range	MRID 00144241					
pH	6.89 ± 14 (supernatant of slurry)	MRID 00144241					
Density	1.187 g/mL	MRID 00144241					
Water solubility (mg/L at unspecified C)	1100 mg/L	MRID 00144241					
Solvent solubility (mg/L at unspecified C)	>200 mg/L in Tenneco 500-100 4.5-5.0 mg/L in Isopar M >90mg/L in refined soybean oil Infinite in dimethyl formamide Infinite in cyclohexanone	MRID 00144241					
Vapour pressure at 25 °C	1.92 x 10 ⁻² Pa (1.44 x 10 ⁻⁴ mm Hg)	MRID 00144241					
Dissociation constant (pKa)	N/A neither acidic nor basic	MRID 00144241					
Octanol/water partition coefficient Log(Kow)	$350 (\log p = 2.54)$	MRID 00144241					
UV/visible absorption spectrum	Not Available	Not Applicable					

^aData have been submitted to EPA and this is the EPA MRID number.

B. EXPERIMENTAL DESIGN

1. <u>Study Site Information</u>

Field data tables detailing the field phase of this study are included in Appendix B. A summary of the procedures used during the field phase is given below.

Field trial data have been generated for clomazone on canola. Twelve canola trials were conducted in Canada in PMRA Zones/Regions 5 (one trial), 7 (two trials) and 14 (nine trials) during the 2013 growing season. Climate, soil types, and other conditions were typical of areas where Clomazone 360 g/L CS may be used to control weeds in canola.

One untreated control (Trt 1) and one treated plot (Trt 2) were established at each test site. At Trial -06, two additional treated plots (Trt 3 and Trt 4) were established to produce seed for the possible processing phase. The untreated control and treated plots were laid out and properly identified. The treated plots were a minimum of 19 rows ranging in size from 90 to 360 square meters. The treated plots were separated from the untreated plots by a minimum of 30 meters. At the processing trial, the treated plots were separated by at least 10 meters.

The 1× (Trt 2) rate treated plots received one pre-emergence soil-applied broadcast application of Clomazone 360 g/L CS at the maximum proposed label use rate of 0.42 kg ai/ha \pm 5%. At Trial -06, the 3× (Trt 3) and 5× (Trt 4) rate treated plots received one pre-emergence broadcast application at 1.26 and 2.1 kg ai/ha \pm 5%, respectively.

The application techniques and spray volumes were adequate to ensure uniform coverage as required. The spray volume ranged from 47 to 104 liters per hectare (l/ha) with three trials selected to target a low spray volume of 47 l/ha $\pm 10\%$. Spray additives were not included in the spray mixes. Applications were made using commercial or simulated commercial ground spray equipment which was calibrated prior to each application with the volume/time method.

Phytotoxicity was observed at Trials -01, -02, -03, -06, -07, and -08 shortly after emergence. In all cases, the crop response was short lived, and the crops recovered fully.

The test crops were grown and maintained according to typical agricultural practices for the geographical regions for canola. Irrigation was not used in keeping with normal commercial practice for canola. The conditions at each test site are summarized in Table 3; the use pattern assayed is summarized in Table 4; and the number of trials and locations established in this study are presented in Table 5 and Figure 1. Detailed field data are presented in Appendix B including experimental period weather data compared to historical data. Air temperatures were generally normal during the growing season. Precipitation amounts were generally less than normal at many of the test sites except for the month of June where rainfall was greater than normal in May and July, and at Trial -02, rainfall was less than normal in July and August. At Trial -06, rainfall was greater than normal in May and normal for all other months. There were no abnormal events that adversely impacted crop yields or crop growth and development.

At all test sites, one untreated control RAC sample and duplicate treated canola RAC samples were cut/harvested from each treated plot at maturity 90 to 122 days after the application (DAA). Some trials cut and threshed samples on the same day; however, at four sites (including one decline trial), the crop was cut/swathed and dried for 5 to 14 days and then threshed. At Trial -06, duplicate RAC samples were also collected from the $5\times$ rate treated plot (Trt 4), and one untreated control (Trt 1) and one $5\times$ (Trt 4) rate treated bulk grain samples were also collected for possible processing. Since adequate seed were collected from Trt 4, seed from Trt 3 were not collected. At two sites (Trials -04 and -05), treated samples were also collected 3-4, 7-8, 14-15, and 21 days after normal harvest maturity to assess residue decline.

The RAC samples for residue analysis weighed at least 0.5 kg except for treated samples from Trial -11 which weighed 0.20 and 0.25 kg due to poor crop emergence and crop stand. This did not adversely impact the study since the crop that was present was healthy and normal, and the sample weights collected were adequate for analysis. The bulk grain samples for the processing phase weighed at least 30 kg. All samples were collected without bias from at least twelve separate areas avoiding the edges of ends of the treated plot. The duplicate treated samples were collected by making separate passes through the treated plots. The untreated plots were harvested before the treated plots to avoid contamination.

Table 3. Trial Site Conditions.								
	Se	oil characte	eristics		Meteorological Data			
Trial Identification (City, Province, Country/Year)	Туре	%OM*	pH*	CEC* (meq/ 100 g)	Overall (Monthly) Rainfall Range (mm)	Overall Temp Range (Monthly Mean Min/Max) (°C)		
TCI-13-366-01 (Portage la Prairie, MB, CAN/2013)	Silty Clay Loam	4.49	7.94	41.3	38.3 - 100.6	5 / 26		
TCI-13-366-02 (Dundurn, SK, CAN/2013)	Loam	2.4	6.3	9.21	28.0 - 73.5	8 / 26		
TCI-13-366-03 (Saskatoon, SK, CAN/2013)	Silty Clay	5.62	7.87	31.8	14.7 - 115.9	5 / 26		
TCI-13-366-04 (Hepburn, SK, CAN/2013)	Loam	4.1	7.4	18.2	14.7 - 115.9	5 / 26		
TCI-13-366-05 (Josephburg, AB, CAN/2013)	Loam	6.2	5.8	30	8.5 - 100.5	5 / 24		
TCI-13-366-06 (Carberry, MB, CAN/2013)	Sandy Loam	1.88	7.02	15.6	51.0 - 84.2	5 / 25		
TCI-13-366-07 (Shilo, MB, CAN/2013)	Sand	1.29	6.37	9.45	22.6 - 149.2	4 / 25		
TCI-13-366-08 (Brandon, MB, CAN/2013)	Silty Clay	2.74	7.89	33.8	47.8 - 149.2	4 / 25		
TCI-13-366-09 (Alvena, SK, CAN/2013)	Loam	2.2	6.5	20.5	14.7 - 115.9	7 / 26		
TCI-13-366-10 (Wakaw, SK, CAN/2013)	Loam	4.5	7.8	NA	20.0 - 181.6	5 / 25		
TCI-13-366-11 (Waldheim, SK, CAN/2013)	Loam	2.1	7.5	18.8	14.7 - 115.9	5 / 26		
TCI-13-366-12 (Aberdeen, SK, CAN/2013)	Clay Loam	3.8	7.7	25.4	14.7 - 115.9	5 / 26		

These parameters are optional except in cases where their value affects the use pattern for the chemical.

Detailed site information, including maintenance chemical information and weather conditions, is provided in Appendix B.

Table 4. Study Use Pattern for Clomazone.										
		Application								
Trial Identification (City, Province, Country/Year)	EPa	Trt No.	Appl. Timing	Rate, kg ai/ha	RTI ^b (days)	Volume L/ha ^c	Method	Total Rate, kg ai/ha	Tank Mix Adjuvant	
TCI-13-366-01 (Portage la Prairie, MB, CAN/2013)	Clomazone 360 g/L CS	2	Pre- emergence	0.436	NA	103	Soil- applied Broadcast	0.436	None	
TCI-13-366-02 (Dundurn, SK, CAN/2013)	Clomazone 360 g/L CS	2	Pre- emergence	0.425	NA	48	Soil- applied Broadcast	0.425	None	
TCI-13-366-03 (Saskatoon, SK, CAN/2013)	Clomazone 360 g/L CS	2	Pre- emergence	0.436	NA	104	Soil- applied Broadcast	0.436	None	
TCI-13-366-04 (Hepburn, SK, CAN/2013)	Clomazone 360 g/L CS	2	Pre- emergence	0.421	NA	100	Soil- applied Broadcast	0.421	None	
TCI-13-366-05 (Josephburg, AB, CAN/2013)	Clomazone 360 g/L CS	2	Pre- emergence	0.420	NA	47	Soil- applied Broadcast	0.420	None	
		2	Pre- emergence	0.419	NA	99		0.419		
TCI-13-366-06 (Carberry, MB, CAN/2013)	Clomazone 360 g/L CS	3	Pre- emergence	1.26	NA	99	Soil- applied Broadcast	1.26	None	
0111(2015)		4	Pre- emergence	2.11	NA	99		2.11		
TCI-13-366-07 (Shilo, MB, CAN/2013)	Clomazone 360 g/L CS	2	Pre- emergence	0.433	NA	48	Soil- applied Broadcast	0.433	None	
TCI-13-366-08 (Brandon, MB, CAN/2013)	Clomazone 360 g/L CS	2	Pre- emergence	0.424	NA	100	Soil- applied Broadcast	0.424	None	
TCI-13-366-09 (Alvena, SK, CAN/2013)	Clomazone 360 g/L CS	2	Pre- emergence	0.424	NA	101	Soil- applied Broadcast	0.424	None	
TCI-13-366-10 (Wakaw, SK, CAN/2013)	Clomazone 360 g/L CS	2	Pre- emergence	0.404	NA	96	Soil- applied Broadcast	0.404	None	
TCI-13-366-11 (Waldheim, SK, CAN/2013)	Clomazone 360 g/L CS	2	Pre- emergence	0.433	NA	103	Soil- applied Broadcast	0.433	None	
TCI-13-366-12 (Aberdeen, SK, CAN/2013)	Clomazone 360 g/L CS	2	Pre- emergence	0.414	NA	99	Soil- applied Broadcast	0.414	None	

^aEP = End-use Product. ^bRTI = Retreatment Interval. ^cL/ha = liters/hectare.

Table 5. Trial Number	ers and Geographical Locations.						
PMRA	Canola						
Growing Region	Requested ^a	Submitted					
1							
1A							
5	1	1					
5A							
5B							
7	2	2					
7A							
9							
11							
12							
14	9	9					
Total	12	12					

^aThe requested number and geographic distribution of field trials for a canola study according to PMRA Regulatory Directive DIR98-02 and 2010-05.

Figure 1. Geographic Location of the Test Sites

2. <u>Sample Handling and Preparation of Field Samples</u>

The canola RAC samples were placed on dry ice or in freezer storage within 3.13 hours after collection from the field. All samples were maintained frozen at the field facilities and were shipped 3 to 38 days later via ACDS freezer truck with Morse Laboratories, LLC as the original destination; however, due to the announced closing of the Morse facility in Sacramento, the destination was changed in transit and the samples were delivered to ABC Laboratories, Inc. for analysis.

All canola RAC samples were received frozen from the field and were stored in a freezer (-25 °C to -10 °C) prior to homogenization and analysis. Canola samples were ground with dry ice to a homogeneous consistency in a Robot Coupe RSI 10Y vertical cutter/grinder. For large samples, representative subsamples were prepared from the ground samples for analysis. The ground samples were placed in frozen storage immediately after grinding. The dry ice was allowed to sublime prior to weighing the samples for extraction.

3. <u>Analytical Methodology</u>

The analytical report detailing the analytical phase of this study is included in Appendix C. A summary of the procedures used during the analytical phase is given below.

The analytical method used for the determination of clomazone in canola RAC samples was the method found in Eurofins-GAB GmbH Study Code 20061401/01-RVP Final Report, entitled "Validation of an Analytical Method for the Determination of Clomazone in Potatoes and Oilseed Rape," dated January 17, 2007, with ABC Laboratories method modifications, dated April 23, 2014. The method modification eliminated several post extraction steps including several filtration steps and performance of GPC cleanup. A study conducted at the laboratory comparing the original method and the modified method demonstrated equivalence. These data are presented in the analytical report (Appendix C).

To summarize, residues of clomazone were extracted from a 25-g seed sample by homogenization with acetone, acetonitrile, Calflo E, and Celite. An aliquot of the sample was centrifuged, and the supernatant filtered through a $0.45-\mu$ PTFE filter. An aliquot of the filtered sample was combined with acetonitrile:water (1:1, v/v) and submitted for HPLC analysis. Determination and quantitation for clomazone were conducted using high performance liquid chromatography (HPLC) with triple quadrupole mass spectrometric (LC-MS/MS) detection.

Reference substances were used in the study to generate data for both instrument and method performance. Quantitation of residues in all samples was achieved using a validated software application to create a standard curve based on linear regression. The regression functions were used to calculate a best-fit line (from a set of standard concentrations in ng/mL versus peak response) and to determine concentrations of the analyte found during sample analysis from the calculated best-fit line. Weighting (1/x) was used in the generation of standard curves. The performance of the instrument was evaluated during each injection set. For this study, the correlation coefficient (r) for each calibration curve was equal to or greater than 0.990 (r^2 equal to or greater than 0.98). The performance of the analytical method was evaluated during each sample set by fortifying control matrix with reference standard.

The limit of quantitation (LOQ) in this study was 0.02 ppm and was the lowest level at which control samples were fortified during this study. The limit of detection (LOD) was defined as approximately 1/3 the LOQ or 0.007 ppm.

Detailed information regarding the reference substance, including the GLP certificate of analysis, is presented in Appendix C (Analytical Summary Report). This appendix also includes detailed analytical data such as supporting raw data necessary for re-calculations, representative chromatograms, and example calculations.

C. RESULTS AND DISCUSSION

Analytical Method:

Canola RAC samples were analyzed for residues of clomazone using the analytical method found in Eurofins-GAB GmbH Study Code 20061401/01-RVP Final Report, entitled "Validation of an Analytical Method for the Determination of Clomazone in Potatoes and Oilseed Rape," dated January 17, 2007, with ABC Laboratories method modifications, dated April 23, 2014. The method was validated according to SANCO guidelines on canola seed prior to sample analysis. The fortification levels were 0.02 (LOQ) and 0.5 ppm. Method validation recoveries ranged 66 to 95% (mean = $81\% \pm 9.0$, n = 10).

The clomazone method was judged acceptable for use in this study. The recoveries from the method validation fortified samples demonstrate acceptable precision. Because the method used triple quadrupole mass spectrometric (LC-MS/MS) detection, it is considered specific for the analyte targeted. The correlation coefficient (r) of the calibration curve (>0.990) generated during method validation demonstrated a valid relationship (linear regression) between standard concentration and instrument response. These data indicated that the method would perform well during the course of this study.

Procedural recovery control samples were analyzed in conjunction with each analytical set for quality control purposes. Fortification levels ranged from 0.02 to 0.5 ppm for clomazone. These samples were extracted and analyzed according to the same procedure as the study samples. Acceptable concurrent recovery data were obtained. Concurrent recoveries ranged from 68-112% (mean = $95\% \pm 12$, n=12). The method recoveries are presented in Table 6.

Recoveries for procedural control samples were corrected, if needed, for apparent residues detectable in the associated controls. Residues in treated samples were not corrected for procedural recovery results or for apparent residues in the associated control samples.

Table 6. Summary of Method Recoveries of Clomazone from Canola.								
Matrix	Fortification Level in ppm (mg/kg)	Sample Size (n)	Recoveries (%)	Range (%) Mean (%) ± std. dev. (RSD)				
Method Validation Fortifications – Clomazone								
	0.02	5	90, 95, 77, 66, 76	66-95 81 ± 12 (14)				
Canola Seed	0.5	5	81, 92, 81, 73, 78	73-92 81 ± 7.0 (8.6)				
	Overall	10		66-95 81 ± 9.0 (11)				
Concurrent For	Concurrent Fortifications – Clomazone							
Canola Seed	0.02 0.5	7 5	81, 90, 92, 94, 100, 94, 68 95, 109, 112, 99, 100	68-112 95 ± 12 (12)				

Apparent residues of clomazone were below the LOD (<0.007 ppm) in/on all untreated control canola samples. No interferences were noted in control samples.

Storage Stability:

The maximum storage interval from collection to analysis for the RAC samples was 203 days (Table 7). The frozen storage stability of clomazone residues in canola seed has been demonstrated for at least 6 months in a previous study (Ref No. 1). Additional freezer storage stability testing initiated in this study has been transferred to another study for completion and reporting. The data generated to date indicate that residues should not be impacted by 6.7 months of freezer storage.

Table 7. Summary of Storage Conditions.							
Matrix (RAC or Extract)	Storage Temperature (°C)	Actual Storage Duration (days)	Limit of Demonstrated Storage Stability				
Canola Seed	Frozen at Field Test Sites ~ -25 °C to -10 °C at the Laboratory	166 - 203 days (5.5 - 6.7 months)	6 month (Ref. No. 1)				

Residue Levels in RAC Fractions:

The results from these trials show that following one pre-emergence application of Clomazone 360 g/L CS at the maximum proposed label use rate of 0.42 kg ai/ha \pm 5%, residues of clomazone were less than the LOD in the canola samples collected at normal crop maturity, 90 to 122 DAA. Following one pre-emergence application of Clomazone 360 g/L CS at a 5× rate of 2.1 kg ai/ha, residues ranged <LOD to <LOQ. Since residues were <LOQ in all samples collected, including samples from the 5× exaggerated rate treatment, the processing phase was not conducted.

These data are presented in Table 8 and summarized in Table 9.

Residue Decline Data:

Two trials (Trials -04 and -05) also collected treated samples 3-4, 7-8, 14-15, and 21 days after normal harvest maturity to assess residue decline. In both cases, residues were <LOD at all sampling events indicating that residues do no increase with longer PHI.

Residue Definition:

Based on EPA's review of available plant metabolism data, the Agency concluded that the residue of concern in food/feed items is clomazone, and the residue of concern for tolerance enforcement is clomazone *per se*. As such, all plant magnitude of the residue studies are required to measure residue of this analyte in all matrices.

Cultural Practices and Environmental Conditions:

The residue trials in canola were not adversely impacted by the farming practices or environmental conditions. The crops were grown and maintained according to typical agricultural practices for the geographical region. The sites selected provided an appropriate range of soil types, and the crop varieties selected were typical for commercial production in the area.

The trial period temperatures and precipitation amounts, as well as the historical weather data for each test site, are provided in Appendix B. Data show that the air temperatures were generally within normal ranges with typical variations. Precipitation amounts were generally less than normal at many of the test sites except for the month of June where rainfall was above normal at all sites except for Trials -01, -02, and -06. At Trial -01, rainfall was greater than normal in May and July, and at Trial -02, rainfall was less than normal in July and August. At Trial -06, rainfall was greater than normal in May and normal for all other months. This did not have an adverse impact on crop growth and development and yields were in the normal range. Irrigation was not used to supplement rainfall which is typical agronomic practice for canola.

There was phytotoxicity observed at Trials -01, -02, -03, -06, -07, and -08 shortly after emergence. In all cases, the crop response was short lived, and the crops recovered fully.

The number and geographic distribution of the canola trials are adequate to support a tolerance for residues of clomazone in/on canola. Data on clomazone residues in/on canola were provided from a total of 12 trials conducted in the PMRA Zones/Regions 5 (one trial), 7 (two trials) and 14 (nine trials) during the 2013 growing season.

The residue results from the crop field trials with clomazone are presented in Table 8 and are summarized in Table 9. The percent moisture was determined for one canola seed sample from each site. Percent moisture data are presented in Table 4 in the analytical report (Appendix C).

Table 8. Residue Data from Crop Field Trials with Clomazone 360 g/L CS – Canola								
Trial Identification (City, Province, Country/Year)	PMRA Region	Crop/ Variety	Total Rate, kg ai/ha	PHI ^a (days)	Trt No.	Commodity	Clomazone Residues (ppm)	
TCI-13-366-01 (Portage la Prairie, MB, CAN/2013)	5	Canola / Dekalb RR 73-75	0.436	93	2	Seed	<lod, <lod<="" td=""></lod,>	
TCI-13-366-02 (Dundurn, SK, CAN/2013)	7	Canola / Pioneer 45H31	0.425	93	2	Seed	ND, ND	
TCI-13-366-03 (Saskatoon, SK, CAN/2013)	7	Canola / Liberty Link L130	0.436	109	2	Seed	<lod, nd<="" td=""></lod,>	
				101	2	Seed	ND, ND	
				104	2	Seed	<lod, nd<="" td=""></lod,>	
TCI-13-366-04 (Hepburn, SK, CAN/2013)	14	Canola / Pioneer 45H31	0.421	108	2	Seed	<lod, <lod<="" td=""></lod,>	
				115	2	Seed	<lod, nd<="" td=""></lod,>	
				122	2	Seed	ND, ND	
				100	2	Seed	<lod, <lod<="" td=""></lod,>	
		Canola / L135C		104	2	Seed	ND, ND	
TCI-13-366-05 (Josephburg, AB, CAN/2013)	14		0.420	108	2	Seed	ND, ND	
				115	2	Seed	ND, ND	
				121	2	Seed	ND, ND	
TCI-13-366-06	14	Canola /	0.419	122	2	Seed	ND, <lod< td=""></lod<>	
(Carberry, MB, CAN/2013)	14	Dekalb 73-75	2.11	122	4	Seed	<loq, <lod<="" td=""></loq,>	
TCI-13-366-07 (Shilo, MB, CAN/2013)	14	Canola / Dekalb 73-75	0.433	90	2	Seed	ND, ND	
TCI-13-366-08 (Brandon, MB, CAN/2013)	14	Canola / Dekalb 73-75	0.424	90	2	Seed	ND, ND	
TCI-13-366-09 (Alvena, SK, CAN/2013)	14	Canola / Liberty Link L130	0.424	102	2	Seed	ND, ND	
TCI-13-366-10 (Wakaw, SK, CAN/2013)	14	Canola / Liberty Link L130	0.404	100	2	Seed	ND, ND	
TCI-13-366-11 (Waldheim, SK, CAN/2013)	14	Canola / Pioneer 45H31	0.433	101	2	Seed	ND, ND	
TCI-13-366-12 (Aberdeen, SK, CAN/2013)	14	Canola / Liberty Link L130	0.414	112	2	Seed	ND, <lod< td=""></lod<>	

^aPHI=Preharvest Interval. For clomazone, the LOQ is 0.02 ppm and the LOD is 0.007 ppm (1/3 the LOQ). ND = no detectable peak.

Table 9.	Fable 9. Summary of Residue Data from Crop Field Trials with Clomazone.										
		Total			Residue Levels (ppm)						
Commodity	EP ^a	Appl. Rate kg ai/ha	Analyte	PHI (days)	n ^b	Min. ^b	Max. ^b	HAFT ^b	Median ^b (STMdR)	Mean ^b (STMR)	Std. Dev. ^b
Canola Seed	Clomazone 360 g/L CS	0.42	Clomazone	90-122	24	ND	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.000</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.000</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.000</td></lod<></td></lod<>	<lod< td=""><td>0.000</td></lod<>	0.000

EP = End-use Product

b

n = number of individual specimens,

Min = minimum individual specimen residue,

Max = maximum individual specimen residue,

HAFT = Highest Average residue from one Field Trial; (requested when the raw commodity has associated commercially processed commodities on which tolerances/MRLs could be set),

Median (STMdR) = supervised trial median residue,

Mean (STMR) = supervised trial mean residue,

Std Dev = standard deviation of mean

The LOQ is 0.02 ppm and the LOD is 0.007 ppm (1/3 the LOQ). ND = no detectable peak.

For statistical analysis, ¹/₂ the LOD (0.0035 ppm) was used for residues <LOD.

D. CONCLUSION

The residue data produced from the treated plots of this study are appropriate for setting tolerances for the agricultural practices studied. The field practices for this study were consistent and appropriate to obtain good residue samples. Samples were properly taken, stored, and shipped at frozen temperatures. Samples were analyzed for residues using a well-controlled appropriate method. No unusual weather phenomena, agricultural, or analytical practices were experienced during the conduct of this study that significantly impacted the study.

Canola samples were analyzed within 203 days (6.7 months) of collection. Freezer storage stability for canola, indicate that clomazone residues are stable in frozen storage for at least 6 months. Additional freezer storage stability testing initiated in this study has been transferred to another study for completion and reporting. The data generated to date indicate that residues should not be impacted by 6.7 months of freezer storage.

E. STATISTICS AND DATA INTEGRITY

Statistical treatment of the data included determination of the minimum and maximum for the residue data and mean and standard deviation for the procedural recovery data. Validated software program Microsoft Office Excel® 2010 was used to develop these data. At the analytical laboratory, statistical methods used were limited to regression analysis and calculations of the mean, range, and standard deviation. Microsoft Excel® 2007-2010 and validated software program, Applied BioSystems/MDS Sciex Analyst software (version 1.5) were employed to develop all statistical data (Appendix C).

Several measures were taken to ensure the quality and integrity of the study. Quality assurance inspected the field and analytical procedures for compliance with good laboratory practices. The inspection dates are provided in the quality assurance unit statement. Study samples and test and reference substances were maintained in secured storage. Freezer temperatures were continuously monitored and recorded.

F. PROTOCOL, AMENDMENTS, AND DEVIATIONS

All protocol deviations that occurred during the conduct of this study were reported and reviewed by the Study Director. A copy of the protocol and amendments and a list of deviations are provided in Appendix D. None of the changes had an impact on the validity of the study.

G. ARCHIVING

Upon completion of the study, samples of the applicable test and reference substances will be retained by the Sponsor for as long as the quality of the materials affords evaluation or for the duration of the registration, whichever occurs first. All raw data associated with the study (field and analytical portions) are retained in the Sponsor's permanent archival facility, EPL Archives, Inc., 45610 Terminal Drive, Sterling, VA 20166 along with the protocol, protocol amendments, and the final report.

H. REFERENCES

 Fiedler E. (2007): Determination of the Storage Stability of Clomazone in Potatoes and Oil Seed Rape at approximately - 20 °C. Eurofins-GAB GmbH, Niefern-Öschelbronn, DEU Study No.: 20054075/01-RSS; CHA Doc. No.: 83 CAZ. APPENDICES

Appendix A - Test Substance Information

Test Compound

Common Name:	Clomazone
IUPAC Name:	2-(2-chlorobenzyl)-4,4-dimethyl-1,2-oxazolidin-3-one or 2-(2-chlorobenzyl)-4,4-dimethylisoxazolidin-3-one
CAS Name:	2-[(2-chlorophenyl)methyl]-4,4-dimethyl-3- isoxazolidinone
CAS Number:	81777-89-1

Formulations

End-use Product	Clomazone 360 g/L CS
Formulation Type	capsule suspension (CS)
Nominal A.I. Content	360 g ai/L
Lot Number	0001023789
GLP Certified Active	355 g ai/L (used for spray mix calculations)
Concentration	
Date of Analysis	21-Mar-12
Expiration Date	21-Mar-14

Clomazone 360 g/L CS was the formulated test substance for this study. Characterization and purity was determined prior to the use in this study. The stability of the Clomazone 360 g/L CS test substance under the conditions of use has been verified.

The characterization of the test substance was conducted at Cheminova A/S. The GLP Certification of Analysis is presented below:

Cheminova A/S P.O. Box 9 DK-7620 Lemvig Denmark Phone (+45) 96 90 96 90 Fax (+45) 96 90 96 91 www.cheminova.com CVR-No. DK12 76 00 43

Page 1 of 1

Certificate of Analysis

TEM 103-05

Test substance certified:

Test substance:	Clomazone 360 g/L CS				
CHA Code No.:	6710				
Batch No .:	0001023789				
Origin of test substance:	Laboratory Pilot plant X Commercial				

Analysis:

Content of Clomazone:	33.2% w/w (355 g/L)	
Identified by:	¹ H-NMR and ¹³ C-NMR Spectroscopy and UV spectroscopy	
Quantified by:	Gas Chromatography (VAM 124-01)	
Date of analysis:	March 21, 2012	

Information of the test substance:

Appearance:	Whitish liquid.	Whitish liquid.			
Storage:	Ambient temperature in the dark				
Density:	1.07 g/mL at 20°C (according to the recipe)				
Expiry date:	March 21, 2014				

Information of analyte(s):

Common name:	Clomazone
CAS name:	3-Isoxazolidinone, 2-[(2-chlorophenyl)methyl]-4,4-dimethyl-
CAS No.:	81777-89-1
Molecular formula:	C ₁₂ H ₁₄ CINO ₂
Molecular mass:	239.7 g/mol
Structure formula:	

Statement of GLP Compliance

The identification and quantification were performed at Cheminova A/S and conducted according to FIFRA Good Laboratory Practice Standards, 40 CFR Part 160 and the OECD Principles of Good Laboratory Practices.

Date Name

Appendix B - Detailed Study Site Information

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-01, Portage la Prairie, Manitoba

Personnel

Principal Investigator:	Kelly Tiller
Affiliation:	ICMS, Inc.
Investigator Street Address:	Box 67 Station Main, 2375 Saskatchewan Ave. E.
Investigator City, Province, Country, Zip Code:	Portage la Prairie, Manitoba, Canada, R1N 3B2
Other Personnel Involved in the Trial:	Clint Ritskes and Katelynn Chabot

Plot Information

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-01, Portage la Prairie, Manitoba (continued)

Weather Information

Source of Test Site Temperature Data:	Environment Canada: Southport, Manitoba (Trial Data) Environment Canada: Portage la Prairie, Manitoba (Historical Data)
Distance of Temperature Data from the Test Site:	~5 km (Trial Data) ~3 km (Historical Data)
Source of Test Site Precipitation Data:	Environment Canada: Southport, Manitoba (Trial Data) Environment Canada: Portage la Prairie, Manitoba (Historical Data)
Distance of Precipitation Data from the Test Site:	~5 km (Trial Data) ~3 km (Historical Data)
Type of Irrigation Used:	None
Was weather normal during the trial period:	Νο
Describe any unusual weather:	Rainfall was greater in May and July, and less in June. Air temperatures were near normal.
Were yields and crop growth and development normal:	Yes

WEATHER PERIOD	Mean Min Temp (C)	Mean Min 30 yr Average Temp (C)	Mean Max Temp (C)	Mean Max 30 yr Average Temp (C)	Total Rainfall (MM)	Total Rainfall 30 yr Average (MM)	Total Irrigation (MM)
May 2013	5	5	17	19	96.5	47.8	0.0
June 2013	12	11	24	23	47.0	75.8	0.0
July 2013	14	13	25	25	100.6	75.2	0.0
August 2013	14	12	26	25	63.8	70.3	0.0
September 2013	10	6	22	18	38.3	53.9	0.0

Maintenance Pesticides and Fertilizers

OTHER CHEMICALS APPLIED DURING THE TEST YEAR		
TO THE TEST CROP:	RATE / UNITS	DATE
32-16-2 Fertilizer	250 lb/A	16-May-13
Roundup (glyphosate)	0.45 kg ai/ha	28-Jun-13

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-01, Portage la Prairie, Manitoba (continued)

Application Information

Application No.:	1
Plot ID/Trt No.:	2
Application Date:	29-May-13
Retreatment Interval:	Not Applicable
Application Timing:	Pre-emergence
Crop Stage:	Pre-emergence
Wind Speed at Appl. (km/h):	0.0 - 11.0
Application Type:	Soil-applied Broadcast
Application Equipment:	ATV Mounted Offset Sprayer
Test Substance (Lot No.):	Clomazone (0001023789)
Adjuvant Name/ Rate (% v/v):	None
Calibration Date:	29-May-13
Method of Calibration:	measured output of nozzles
Rate (kg ai/ha):	0.436
Spray Volume (I/ha):	103

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-01, Portage la Prairie, Manitoba (continued)

SAMPLE NO.	Trt. No.	PHI (DAYS)	Harvest Date	Sampling Date	FRACTION	Growth Stage	Sample Size (kg)	Shipping Date	Date Received at Lab
01	1	NA	30-Aug-13	12-Sep-13	Canola Seed	BBCH 89	1.0	23-Sep-13	10-Oct-13
02	2	93	30-Aug-13	12-Sep-13	Canola Seed	BBCH 89	0.7	23-Sep-13	10-Oct-13
03	2	93	30-Aug-13	12-Sep-13	Canola Seed	BBCH 89	0.7	23-Sep-13	10-Oct-13
Maximum Number of Hours from Sampling until Freezing:						0.42			
Field Sample Storage Conditions (ambient, frozen):						Frozen			
Shipping Carrier:						ACDS #121530			
Ship	ping De	stinati	on:		Morse Laboratories, LLC 1525 Fulton Avenue Sacramento, CA 95825				
Shipping Conditions (ambient, frozen):						Frozen			

Sample and Shipping Information

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-02, Dundurn, Saskatchewan

Personnel

Principal Investigator:	Greg Whittington
Affiliation:	ICMS, Inc.
Investigator Street Address:	334 Packham Ave.
Investigator City, Province, Country, Zip Code:	Saskatoon, Saskatchewan, Canada, S7N 2T1
Other Personnel Involved in the Trial:	Bryn Rees, Brittany Johnson, and Michael Babyn

Plot Information

ot Applicable (near Evans Road)
undurn, Saskatchewan, Canada, S0K 1K0
M. #314
ot Applicable
anola
oneer 45H31
-Jun-13
m x 30 m
m
ot Applicable
.24 cm
ot Applicable
am
4
3
21
Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-02, Dundurn, Saskatchewan (continued)

Weather Information

Source of Test Site Temperature Data:	Outlook PFRA: Outlook, Saskatchewan (Trial and Historical Data)			
Distance of Temperature Data from the Test Site:	47.30 km (Trial and Historical Data)			
Source of Test Site Precipitation Data:	Outlook PFRA: Outlook, Saskatchewan (Trial and Historical Data)			
Distance of Precipitation Data from the Test Site:	47.30 km (Trial and Historical Data)			
Type of Irrigation Used:	None			
Was weather normal during the trial period:	No			
Describe any unusual weather:	Temperatures were normal. Rainfall was slightly lower in July and August			
Were yields and crop growth and development normal:	Yes			

Weather Period	Mean Min Temp (C)	Mean Min 30 yr Average Temp (C)	Mean Max Temp (C)	Mean Max 30 yr Average Temp (C)	Total Rainfall (mm)	Total Rainfall 30 yr Average (mm)	Total Irrigation (MM)
June 2013	10	10	22	23	73.5	63.7	0.0
July 2013	11	12	24	25	28.0	57.1	0.0
August 2013	11	11	26	25	28.8	38.3	0.0
September 2013	8	6	23	19	35.7	26.0	0.0

OTHER CHEMICALS APPLIED DURING THE TEST YEAR							
TO THE TEST CROP:	RATE / UNITS	DATE					
90-40-00-15 Fertilizer	335 kg/ha	16-May-13					

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-02, Dundurn, Saskatchewan (continued)

Application No.:	1
Plot ID/Trt No.:	2
Application Date:	11-Jun-13
Retreatment Interval:	Not Applicable
Application Timing:	Pre-emergence
Crop Stage:	Pre-emergence
Wind Speed at Appl. (km/h):	1.0 - 3.0
Application Type:	Soil-applied Broadcast
Application Equipment:	ATV-mounted CO ₂ sprayer
Test Substance (Lot No.):	Clomazone (0001023789)
Adjuvant Name/ Rate (% v/v):	None
Calibration Date:	11-Jun-13
Method of Calibration:	measured output of nozzles
Rate (kg ai/ha):	0.425
Spray Volume (l/ha):	48

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-02, Dundurn, Saskatchewan (continued)

SAMPLE NO.	Trt. No.	PHI (DAYS)	Harvest Date	Sampling Date	FRACTION	Growth Stage	Sample Size (kg)	Shipping Date	Date Received at Lab	
01	1	NA	12-Sep-13	12-Sep-13	Canola Seed	BBCH 88-89	0.7	24-Sep-13	10-Oct-13	
02	2	93	12-Sep-13	12-Sep-13	Canola Seed	BBCH 88-89	0.6	24-Sep-13	10-Oct-13	
03	2	93	12-Sep-13	12-Sep-13	Canola Seed	BBCH 88-89	0.5	24-Sep-13	10-Oct-13	
Maxi	mum N	umber	of Hours from	Sampling unt	til Freezing:	2.18 (placed in transport freezer)				
Field	Sampl	e Stora	age Conditions	s (ambient, fro	zen):	Frozen				
Shipping Carrier:						ACDS #131933				
Shipping Destination:						Morse Laboratories, LLC 1525 Fulton Avenue Sacramento, CA 95825				
Ship	ping Co	nditior	is (ambient, fr	ozen):		Frozen				

Sample and Shipping Information

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-03, Saskatoon, Saskatchewan

Personnel

Principal Investigator:	Greg Whittington
Affiliation:	ICMS, Inc.
Investigator Street Address:	334 Packham Ave.
Investigator City, Province, Country, Zip Code:	Saskatoon, Saskatchewan, Canada, S7N 2T1
Other Personnel Involved in the Trial:	Bryn Rees and Michael Babyn

PMRA Region Number:	7
Test Site Street Address:	Not Applicable
City, Province, Country, Zip Code:	Saskatoon, Saskatchewan, Canada, S7K 3J6
County:	R.M. #344
PMRA Crop Group:	Not Applicable
Test System:	Canola
Variety:	Liberty Link L130
Planting Date of Crop:	22-May-13
Number Treated Plot(s) (excluding controls):	1
Size of Treated Plot(s):	3 m x 30 m
Distance between UTC and Trt Plot:	69 m
Distance between Trt Plots:	Not Applicable
Rows per Treated Plot:	19
Row Spacing:	15.24 cm
Plant Spacing in Row:	Not Applicable
Soil Texture:	Silty Clay
Soil % Organic Matter:	5.62
Soil pH:	7.87
CEC (meq/100 g):	31.8

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-03, Saskatoon, Saskatchewan (continued)

Weather Information

Source of Test Site Temperature Data:	Environment Canada: Saskatoon RCS/SRC, Saskatchewan (Trial and Historical Data)
Distance of Temperature Data from the Test Site:	19.0 km (Trial and Historical Data)
Source of Test Site Precipitation Data:	Environment Canada: Saskatoon RCS/SRC, Saskatchewan (Trial and Historical Data)
Distance of Precipitation Data from the Test Site:	19.0 km (Trial and Historical Data)
Type of Irrigation Used:	None
Was weather normal during the trial period:	No
Describe any unusual weather:	Temperatures were normal. Rainfall was below average in May, July, August, and September.
Were yields and crop growth and development normal:	Yes

Weather Period	Mean Min Temp (C)	Mean Min 30 yr Average Temp (C)	Mean Max Temp (C)	Mean Max 30 yr Average Temp (C)	Total Rainfall (MM)	Total Rainfall 30 yr Average (mm)	Total Irrigation (MM)
May 2013	5	5	21	19	15.2	41.5	0.0
June 2013	10	9	21	23	115.9	60.5	0.0
July 2013	11	12	24	25	35.2	57.3	0.0
August 2013	11	10	26	25	14.7	35.4	0.0
September 2013	7	5	23	18	14.9	28.9	0.0

OTHER CHEMICALS APPLIED DURING THE TEST YEAR							
TO THE TEST CROP:	RATE / UNITS	DATE					
90-40-00-15 Fertilizer	335 kg/ha	14-May-13					
Liberty (glufosinate-ammonium)	2.0 kg ai/ha	24-Jun-13					
Centurion (clethodim)	0.18 kg ai/ha	24-Jun-13					
Amigo (vegetable oil surfactant)	0.12 kg ai/ha	24-Jun-13					

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-03, Saskatoon, Saskatchewan (continued)

Application No.:	1
Plot ID/Trt No.:	2
Application Date:	27-May-13
Retreatment Interval:	Not Applicable
Application Timing:	Pre-emergence
Crop Stage:	Pre-emergence
Wind Speed at Appl. (km/h):	1.0 - 3.0
Application Type:	Soil-applied Broadcast
Application Equipment:	ATV-mounted CO ₂ sprayer
Test Substance (Lot No.):	Clomazone (0001023789)
Adjuvant Name/ Rate (% v/v):	None
Calibration Date:	27-May-13
Method of Calibration:	measured output of nozzles
Rate (kg ai/ha):	0.436
Spray Volume (I/ha):	104

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-03, Saskatoon, Saskatchewan (continued)

SAMPLE NO.	Trt. No.	PHI (DAYS)	Harvest Date	Sampling Date	FRACTION	Growth Stage	Sample Size (kg)	Shipping Date	Date Received at Lab	
01	1	NA	13-Sep-13	13-Sep-13	Canola Seed	BBCH 89	0.7	24-Sep-13	10-Oct-13	
02	2	109	13-Sep-13	13-Sep-13	Canola Seed	BBCH 89	0.6	24-Sep-13	10-Oct-13	
03	2	109	13-Sep-13	13-Sep-13	Canola Seed	BBCH 89	0.7	24-Sep-13	10-Oct-13	
Maxi	mum N	umber	of Hours from	n Sampling unt	il Freezing:	0.10				
Field	Sampl	e Stora	ge Conditions	s (ambient, fro	zen):	Frozen				
Shipping Carrier:						ACDS #131934				
Shipping Destination:						Morse Labo 1525 Fulton Sacramento	ratories, L Avenue , CA 9582	LC 25		
Ship	ping Co	ondition	s (ambient, fr	ozen):	Frozen					

Sample and Shipping Information

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-04, Hepburn, Saskatchewan

Personnel

Principal Investigator:	Dean Ngombe
Affiliation:	ICMS, Inc.
Investigator Street Address:	334 Packham Ave.
Investigator City, Province, Country, Zip Code:	Saskatoon, Saskatchewan, Canada, S7N 2T1
Other Personnel Involved in the Trial:	Brittany Johnson, Greg Whittington, Evan Megyesi, Michael Babyn, and Brij Verma

14
Box 124
Hepburn, Saskatchewan, Canada, S0K 1Z0
R.M. #404
Not Applicable
Canola
Pioneer 45H31
27-May-13
1
6 m x 60 m
30 m
Not Applicable
40
15.22 cm
Not Applicable
Loam
4.1
7.4
18.2

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-04, Hepburn, Saskatchewan (continued)

Weather Information

Source of Test Site Temperature Data:	Environment Canada: Saskatoon RCS, Saskatchewan (Trial and Historical Data)
Distance of Temperature Data from the Test Site:	45 km (Trial and Historical Data)
Source of Test Site Precipitation Data:	Environment Canada: Saskatoon RCS, Saskatchewan (Trial and Historical Data)
Distance of Precipitation Data from the Test Site:	45 km (Trial and Historical Data)
Type of Irrigation Used:	None
Was weather normal during the trial period:	No
Describe any unusual weather:	Temperatures were slightly above normal. Rainfall was less than normal with the exception of June that had 1.9 times higher precipitation than normal.
Were yields and crop growth and development normal:	Yes

Weather Period	Mean Min Temp (C)	Mean Min 30 yr Average Temp (C)	Mean Max Temp (C)	Mean Max 30 yr Average Temp (C)	Total Rainfall (mm)	Total Rainfall 30 yr Average (mm)	Total Irrigation (MM)
May 2013	5	5	21	19	15.2	43.6	0.0
June 2013	10	9	21	23	115.9	60.5	0.0
July 2013	11	12	24	25	35.2	57.3	0.0
August 2013	11	10	26	25	14.7	35.4	0.0
September 2013	7	5	23	18	14.9	30.6	0.0

OTHER CHEMICALS APPLIED DURING THE TEST YEAR						
TO THE TEST CROP:	RATE / UNITS	DATE				
Roundup Transorb (glyphosate)	1.507 kg ai/ha	15-Jul-13				

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-04, Hepburn, Saskatchewan (continued)

Application No.:	1
Plot ID/Trt No.:	2
Application Date:	29-May-13
Retreatment Interval:	Not Applicable
Application Timing:	Pre-emergence
Crop Stage:	Pre-emergence
Wind Speed at Appl. (km/h):	6.0 - 8.0
Application Type:	Soil-applied Broadcast
Application Equipment:	ATV-mounted CO ₂ sprayer
Test Substance (Lot No.):	Clomazone (0001023789)
Adjuvant Name/ Rate (% v/v):	None
Calibration Date:	29-May-13
Method of Calibration:	measured output of nozzles
Rate (kg ai/ha):	0.421
Spray Volume (l/ha):	100

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-04, Hepburn, Saskatchewan (continued)

Sample and Shipping Information

Е No.		AYS)					SAMPLE		Date
SAMPL	Trt. No.	a) IHe	Harvest Date	SAMPLING DATE	FRACTION	GROWTH STAGE	Size (kg)	SHIPPING DATE	RECEIVED AT LAB
01	1	NA	07-Sep-13	07-Sep-13	Canola Seed	BBCH 89	1.1	24-Sep-13	10-Oct-13
02	2	101	07-Sep-13	07-Sep-13	Canola Seed	BBCH 89	0.5	24-Sep-13	10-Oct-13
03	2	101	07-Sep-13	07-Sep-13	Canola Seed	BBCH 89	0.5	24-Sep-13	10-Oct-13
04	2	104	10-Sep-13	10-Sep-13	Canola Seed	BBCH 89	0.5	24-Sep-13	10-Oct-13
05	2	104	10-Sep-13	10-Sep-13	Canola Seed	BBCH 89	0.6	24-Sep-13	10-Oct-13
06	2	108	14-Sep-13	14-Sep-13	Canola Seed	BBCH 89	0.5	24-Sep-13	10-Oct-13
07	2	108	14-Sep-13	14-Sep-13	Canola Seed	BBCH 89	0.5	24-Sep-13	10-Oct-13
08	2	115	21-Sep-13	21-Sep-13	Canola Seed	BBCH 89	0.5	24-Sep-13	10-Oct-13
09	2	115	21-Sep-13	21-Sep-13	Canola Seed	BBCH 89	0.5	24-Sep-13	10-Oct-13
10	2	122	28-Sep-13	28-Sep-13	Canola Seed	BBCH 89	0.8	04-Nov-13	15-Nov-13
11	2	122	28-Sep-13	28-Sep-13	Canola Seed	BBCH 89	0.7	04-Nov-13	15-Nov-13
Maximum Number of Hours from Sampling until Freezing:			0.50						
Field Sample Storage Conditions (ambient, frozen):			Frozen						
Shipping Carrier:				ACDS #131927, #131905					
Shipping Destination:					Morse Laboratories, LLC 1525 Fulton Avenue Sacramento, CA 95825				

Shipping Conditions (ambient, frozen):

Frozen

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-05, Josephburg, Alberta

Personnel

Principal Investigator:	Taryn Williams
Affiliation:	ICMS, Inc.
Investigator Street Address:	Box 3270, 54474 Range Road 215
Investigator City, Province, Country, Zip Code:	Fort Saskatchewan, Alberta, Canada, T8L 2T2
Other Personnel Involved in the Trial:	Jennifer Oliver, Abby Czibere, and Ji Cui

PMRA Region Number:	14
Test Site Street Address:	54474 Range Road 215
City, Province, Country, Zip Code:	Josephburg, Alberta, Canada, T8L 2T2
County:	Strathcona
PMRA Crop Group:	Not Applicable
Test System:	Canola
Variety:	L135C
Planting Date of Crop:	28-May-13
Number Treated Plot(s) (excluding controls):	1
Size of Treated Plot(s):	6 m x 45 m
Distance between UTC and Trt Plot:	361 m
Distance between Trt Plots:	Not Applicable
Rows per Treated Plot:	39
Row Spacing:	15.24 cm
Plant Spacing in Row:	2.54 cm
Soil Texture:	Loam
Soil % Organic Matter:	6.2
Soil pH:	5.8
CEC (meq/100 g):	30

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-05, Josephburg, Alberta (continued)

Weather Information

Source of Test Site Temperature Data:	Environment Canada: Edmonton Namao, Alberta (Trial and Historical Data)
Distance of Temperature Data from the Test Site:	26 km (Trial and Historical Data)
Source of Test Site Precipitation Data:	Environment Canada: Edmonton Namao, Alberta (Trial and Historical Data)
Distance of Precipitation Data from the Test Site:	26 km (Trial and Historical Data)
Type of Irrigation Used:	None
Was weather normal during the trial period:	No
Describe any unusual weather:	Temperatures were normal, but with the exception of June, all other months had below average rainfall.
Were yields and crop growth and development normal:	Yes

Weather Period	Mean Min Temp (C)	Mean Min 30 yr Average Temp (C)	Mean Max Temp (C)	Mean Max 30 yr Average Temp (C)	Total Rainfall (MM)	Total Rainfall 30 yr Average (mm)	Total Irrigation (MM)
May 2013	5	5	21	17	36.0	44.7	0.0
June 2013	9	9	20	21	100.5	88.6	0.0
July 2013	10	11	22	22	66.5	95.7	0.0
August 2013	10	10	24	21	67.5	74.8	0.0
September 2013	6	5	21	16	8.5	39.6	0.0

*The last seed samples were collected early in the day on Oct 1 after drying in the plots since cutting on Sep 26. Oct data, therefore, were not included above.

OTHER CHEMICALS APPLIED DURING THE TEST YEAR							
TO THE TEST CROP:	RATE / UNITS	DATE					
28-7-10-35-0.5 Cu-0.1 Zn Fertilizer	279.4 lb/A	08-May-13					
11-52-0 Fertilizer	30 kg/ha	17-May-13					
Liberty 150 SL (glufosinate-ammonium)	1.6 L/A	17-Jun-13					

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-05, Josephburg, Alberta (continued)

Application No.:	1
Plot ID/Trt No.:	2
Application Date:	28-May-13
Retreatment Interval:	Not Applicable
Application Timing:	Pre-emergence
Crop Stage:	Pre-emergence
Wind Speed at Appl. (km/h):	0.0 - 7.0
Application Type:	Soil-applied Broadcast
Application Equipment:	ATV mounted CO ₂ Sprayer
Test Substance (Lot No.):	Clomazone (0001023789)
Adjuvant Name/ Rate (% v/v):	None
Calibration Date:	28-May-13
Method of Calibration:	measured output of nozzles
Rate (kg ai/ha):	0.420
Spray Volume (l/ha):	47

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-05, Josephburg, Alberta (continued)

Sample and Shipping Information

PLE No.	Tor	(DAYS)	Habyrot	CANDUNG.		CROWTH		Supplus	
SAMI	No.	PHI	DATE		FRACTION	STAGE	SIZE (KG)		AT LAB
01	1	NA	05-Sep-13	19-Sep-13	Canola Seed	BBCH 84	1.4	26-Sep-13	10-Oct-13
02	2	100	05-Sep-13	19-Sep-13	Canola Seed	BBCH 84	0.9	26-Sep-13	10-Oct-13
03	2	100	05-Sep-13	19-Sep-13	Canola Seed	BBCH 84	1.0	26-Sep-13	10-Oct-13
04	2	104	09-Sep-13	19-Sep-13	Canola Seed	BBCH 86-87	0.9	26-Sep-13	10-Oct-13
05	2	104	09-Sep-13	19-Sep-13	Canola Seed	BBCH 86-87	1.0	26-Sep-13	10-Oct-13
06	2	108	13-Sep-13	19-Sep-13	Canola Seed	BBCH 87-89	0.9	26-Sep-13	10-Oct-13
07	2	108	13-Sep-13	19-Sep-13	Canola Seed	BBCH 87-89	0.9	26-Sep-13	10-Oct-13
08	2	115	20-Sep-13	01-Oct-13	Canola Seed	BBCH 89	1.3	06-Nov-13	15-Nov-13
09	2	115	20-Sep-13	01-Oct-13	Canola Seed	BBCH 89	1.3	06-Nov-13	15-Nov-13
10	2	121	26-Sep-13	01-Oct-13	Canola Seed	BBCH 89	1.3	06-Nov-13	15-Nov-13
11	2	121	26-Sep-13	01-Oct-13	Canola Seed	BBCH 89	1.3	06-Nov-13	15-Nov-13
Maximum Number of Hours from Sampling until Freezing:			1.53						
Field Sample Storage Conditions (ambient, frozen):				Frozen					
Shipping Carrier:				ACDS #122849, #134664					
Shipping Destination:				Morse Labo 1525 Fultor Sacramento	oratories, Ll n Avenue o, CA 9582	LC 25			

Shipping Conditions (ambient, frozen):

Frozen

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-06, Carberry, Manitoba

Personnel

Principal Investigator:	Kelly Tiller
Affiliation:	ICMS, Inc.
Investigator Street Address:	Box 67 Station Main, 2375 Saskatchewan Ave. E.
Investigator City, Province, Country, Zip Code:	Portage la Prairie, Manitoba, Canada, R1N 3B2
Other Personnel Involved in the Trial:	Katelynn Chabot and Clint Ritskes

PMRA Region Number:	14
Test Site Street Address:	Highway #5
City, Province, Country, Zip Code:	Carberry, Manitoba, Canada, R0K 0H0
County:	R.M. of North Cypress
PMRA Crop Group:	Not Applicable
Test System:	Canola
Variety:	Dekalb 73-75
Planting Date of Crop:	22-May-13
Number Treated Plot(s) (excluding controls):	3
Size of Treated Plot(s):	8 m x 100 m
Distance between UTC and Trt Plot:	183 m
Distance between Trt Plots:	10 m
Rows per Treated Plot:	54
Row Spacing:	15 cm
Plant Spacing in Row:	5 cm
Soil Texture:	Sandy Loam
Soil % Organic Matter:	1.88
Soil pH:	7.02
CEC (meq/100 g):	15.6

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-06, Carberry, Manitoba (continued)

Weather Information

Source of Test Site Temperature Data:	Environment Canada: Carberry, MB (Trial Data) Environment Canada: Glenboro, MB(Historical Data)
Distance of Temperature Data from the Test Site:	~8 km (Trial Data) ~30 km (Historical Data)
Source of Test Site Precipitation Data:	Environment Canada: Carberry, MB (Trial Data) Environment Canada: Glenboro, MB(Historical Data)
Distance of Precipitation Data from the Test Site:	~8 km (Trial Data) ~30 km (Historical Data)
Type of Irrigation Used:	None
Was weather normal during the trial period:	Yes
Describe any unusual weather:	None
Were yields and crop growth and development normal:	Yes

Weather Period	Mean Min Temp (C)	Mean Min 30 yr Average Temp (C)	Mean Max Temp (C)	Mean Max 30 yr Average Temp (C)	Total Rainfall (mm)	Total Rainfall 30 yr Average (MM)	Total Irrigation (MM)
May 2013	5	5	17	20	84.2	55.9	0.0
June 2013	10	10	23	24	72.6	75.9	0.0
July 2013	11	12	24	26	68.2	76.8	0.0
August 2013	11	11	25	25	68.8	70.2	0.0
September 2013	9	6	22	19	51.0	51.3	0.0

OTHER CHEMICALS APPLIED DURING THE TEST YEAR					
TO THE TEST CROP:	RATE / UNITS	DATE			
46-0-0 Fertilizer	150 kg/ha	03-Jun-13			
Roundup (glyphosate)	0.45 kg ai/ha	17-Jun-13			
Reglone (diquat as dibromide salt)	0.41 kg ai/ha	20-Sep-13			

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-06, Carberry, Manitoba (continued)

Application No.:	1	1	1
Plot ID/Trt No.:	2	3	4
Application Date:	25-May-13	25-May-13	25-May-13
Retreatment Interval:	Not Applicable	Not Applicable	Not Applicable
Application Timing:	Pre-emergence	Pre-emergence	Pre-emergence
Crop Stage:	Pre-emergence	Pre-emergence	Pre-emergence
Wind Speed at Appl. (km/h):	0.0 - 8.0	0.0 - 8.0	0.0 - 8.0
Application Type:	Soil-applied Broadcast	Soil-applied Broadcast	Soil-applied Broadcast
Application Equipment:	ATV CO ₂ Offset Sprayer	ATV CO ₂ Offset Sprayer	ATV CO ₂ Offset Sprayer
Test Substance (Lot No.): Clomazone (0001023789)		Clomazone (0001023789)	Clomazone (0001023789)
Adjuvant Name/ Rate (% v/v):	None	None	None
Calibration Date:	25-May-13	25-May-13	25-May-13
Method of Calibration:	measured output of nozzles	measured output of nozzles	measured output of nozzles
Rate (kg ai/ha):	0.419	1.26	2.11
Spray Volume (l/ha):	99	99	99

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-06, Carberry, Manitoba (continued)

Sample and Shipping Information

SAMPLE NO.	Trt. No.	PHI (DAYS)	Harvest Date	Sampling Date	FRACTION	Growth Stage	Sample Size (kg)	Shipping Date	DATE Received AT LAB
01	1	NA	24-Sep-13	24-Sep-13	Canola Seed	BBCH 89	1.0	01-Nov-13	15-Nov-13
02	2	122	24-Sep-13	24-Sep-13	Canola Seed	BBCH 89	1.0	01-Nov-13	15-Nov-13
03	2	122	24-Sep-13	24-Sep-13	Canola Seed	BBCH 89	1.0	01-Nov-13	15-Nov-13
04	4	122	24-Sep-13	24-Sep-13	Canola Seed	BBCH 89	0.8	01-Nov-13	15-Nov-13
05	4	122	24-Sep-13	24-Sep-13	Canola Seed	BBCH 89	0.9	01-Nov-13	15-Nov-13
06	1	NA	24-Sep-13	24-Sep-13	Canola Seed (Bulk)	BBCH 89	31.6	01-Nov-13	19-Nov-13
07	4	122	24-Sep-13	24-Sep-13	Canola Seed (Bulk)	BBCH 89	31.0	01-Nov-13	19-Nov-13

RAC

Maximum Number of Hours from Sampling until Freezing:	Placed immediately in transport freezer
Field Sample Storage Conditions (ambient, frozen):	Frozen
Shipping Carrier:	ACDS #121544
Shipping Destination:	Morse Laboratories, LLC 1525 Fulton Avenue Sacramento, CA 95825
Shipping Conditions (ambient, frozen):	Frozen

Processing

Maximum Number of Hours from Sampling until Freezing:	Placed immediately in transport freezer
Field Sample Storage Conditions (ambient, frozen):	Frozen
Shipping Carrier:	ACDS #121529
Shipping Destination:	GLP Technologies 22723 State Highway 6 South Navasota, TX 77868
Shipping Conditions (ambient, frozen):	Frozen

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-07, Shilo, Manitoba

Personnel

Principal Investigator:	Kelly Tiller
Affiliation:	ICMS, Inc.
Investigator Street Address:	Box 67 Station Main, 2375 Saskatchewan Ave. E.
Investigator City, State, Country, Zip Code:	Portage la Prairie, Manitoba, Canada, R1N 3B2
Other Personnel Involved in the Trial:	Katelynn Chabot and Clint Ritskes

PMRA Region Number:	14
Test Site Street Address:	P. O. Box 760
City, State, Country, Zip Code:	Shilo, Manitoba, Canada, R0K 0H0
County:	R.M. of Cornwallis
PMRA Crop Group:	Not Applicable
Test System:	Canola
Variety:	Dekalb 73-75
Planting Date of Crop:	22-May-13
Number Treated Plot(s) (excluding controls):	1
Size of Treated Plot(s):	3 m x 30 m
Distance between UTC and Trt Plot:	36 m
Distance between Trt Plots:	Not Applicable
Rows per Treated Plot:	20
Row Spacing:	15 cm
Plant Spacing in Row:	5 cm
Soil Texture:	Sand
Soil % Organic Matter:	1.29
Soil pH:	6.37
CEC (meq/100 g):	9.45

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-07, Shilo, Manitoba (continued)

Weather Information

Source of Test Site Temperature Data:	Environment Canada: Brandon Airport, Manitoba (Trial and Historical Data)
Distance of Temperature Data from the Test Site:	~20 km (Trial and Historical Data)
Source of Test Site Precipitation Data:	Environment Canada: Brandon Airport, Manitoba (Trial and Historical Data)
Distance of Precipitation Data from the Test Site:	~20 km (Trial and Historical Data)
Type of Irrigation Used:	None
Was weather normal during the trial period:	Yes
Describe any unusual weather:	None
Were yields and crop growth and development normal:	Yes

WEATHER PERIOD	Mean Min Temp (C)	Mean Min 30 yr Average Temp (C)	Mean Max Temp (C)	Mean Max 30 yr Average Temp (C)	Total Rainfall (MM)	Total Rainfall 30 yr Average (mm)	Total Irrigation (MM)
May 2013	4	4	17	19	59.2	52.7	0.0
June 2013	10	9	24	23	149.2	74.4	0.0
July 2013	11	11	24	25	47.8	75.8	0.0
August 2013	10	10	25	25	68.4	69.2	0.0
September 2013	7	4	22	18	22.6	50.1	0.0

OTHER CHEMICALS APPLIED DURING THE TEST YEAR				
TO THE TEST CROP:	RATE / UNITS	DATE		
46-0-0 Fertilizer	150 lb/A	03-Jun-13		
Roundup (glyphosate)	0.45 kg ai/ha	18-Jun-13		
Roundup (glyphosate)	0.45 kg ai/ha	29-Jun-13		

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-07, Shilo, Manitoba (continued)

Application No.:	1
Plot ID/Trt No.:	2
Application Date:	25-May-13
Retreatment Interval:	Not Applicable
Application Timing:	Pre-emergence
Crop Stage:	Pre-emergence
Wind Speed at Appl. (km/h):	0.0 - 9.0
Application Type:	Soil-applied Broadcast
Application Equipment:	ATV Mounted Offset Sprayer
Test Substance (Lot No.):	Clomazone (0001023789)
Adjuvant Name/ Rate (% v/v):	None
Calibration Date:	25-May-13
Method of Calibration:	measured output of nozzles
Rate (lb ai/A):	Not Applicable
Rate (kg ai/ha):	0.433
Spray Volume (I/ha):	48

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-07, Shilo, Manitoba (continued)

No.		(sv					SAMPLE		DATE
SAMPLE	Trt. No.	⊿a) IHA	Harvest Date	Sampling Date	FRACTION	GROWTH STAGE	SAMPLE SIZE (KG)	Shipping Date	RECEIVED AT LAB
01	1	NA	23-Aug-13	05-Sep-13	Canola Seed	BBCH 89	0.5	23-Sep-13	10-Oct-13
02	2	90	23-Aug-13	05-Sep-13	Canola Seed	BBCH 89	0.7	23-Sep-13	10-Oct-13
03	2	90	23-Aug-13	05-Sep-13	Canola Seed	BBCH 89	0.8	23-Sep-13	10-Oct-13
Maximum Number of Hours from Sampling until Freezing:					1.75				
Field Sample Storage Conditions (ambient, frozen):					Frozen				
Shipping Carrier:					ACDS #121543				
Shipping Destination:			Morse Labo 1525 Fulton Sacramento	ratories, L Avenue , CA 9582	LC 25				
Shipping Conditions (ambient, frozen):					Frozen				

Sample and Shipping Information

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-08, Brandon, Manitoba

Personnel

Principal Investigator:	Kelly Tiller
Affiliation:	ICMS, Inc.
Investigator Street Address:	Box 67 Station Main, 2375 Saskatchewan Ave. E.
Investigator City, State, Country, Zip Code:	Portage la Prairie, Manitoba, Canada, R1N 3B2
Other Personnel Involved in the Trial:	Clint Ritskes and Katelynn Chabot

PMRA Region Number:	14
Test Site Street Address:	NW 23-11-19W
City, State, Country, Zip Code:	Brandon, Manitoba, Canada, R7A 5Y3
County:	R.M. of Elton
PMRA Crop Group:	Not Applicable
Test System:	Canola
Variety:	Dekalb 73-75
Planting Date of Crop:	22-May-13
Number Treated Plot(s) (excluding controls):	1
Size of Treated Plot(s):	3 m x 30 m
Distance between UTC and Trt Plot:	36 m
Distance between Trt Plots:	Not Applicable
Rows per Treated Plot:	20
Row Spacing:	15 cm
Plant Spacing in Row:	5 cm
Soil Texture:	Silty Clay
Soil % Organic Matter:	2.74
Soil pH:	7.89
CEC (meq/100 g):	33.8

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-08, Brandon, Manitoba (continued)

Weather Information

Source of Test Site Temperature Data:	Environment Canada: Brandon Airport, Manitoba (Trial and Historical Data)
Distance of Temperature Data from the Test Site:	~3 km (Trial and Historical Data)
Source of Test Site Precipitation Data:	Environment Canada: Brandon Airport, Manitoba (Trial and Historical Data)
Distance of Precipitation Data from the Test Site:	~3 km (Trial and Historical Data)
Type of Irrigation Used:	None
Was weather normal during the trial period:	No
Describe any unusual weather:	There was more rainfall in June.
Were yields and crop growth and development normal:	Yes

WEATHER PERIOD	Mean Min Temp (C)	Mean Min 30 yr Average Temp (C)	Mean Max Temp (C)	Mean Max 30 yr Average Temp (C)	Total Rainfall (MM)	Total Rainfall 30 yr Average (MM)	Total Irrigation (MM)
May 2013	4	4	17	19	59.2	52.7	0.0
June 2013	10	9	24	23	149.2	74.4	0.0
July 2013	11	11	24	25	47.8	75.8	0.0
August 2013	10	10	25	25	68.4	69.2	0.0

OTHER CHEMICALS APPLIED DURING THE TEST YEAR				
TO THE TEST CROP:	RATE / UNITS	DATE		
46-0-0 Fertilizer	150 lb/A	03-Jun-13		
Roundup (glyphosate)	0.54 kg ai/ha	18-Jun-13		

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-08, Brandon, Manitoba (continued)

Application No.:	1
Plot ID/Trt No.:	2
Application Date:	25-May-13
Retreatment Interval:	Not Applicable
Application Timing:	Pre-emergence
Crop Stage:	Pre-emergence
Wind Speed at Appl. (km/h):	0.0 - 8.0
Application Type:	Soil-applied Broadcast
Application Equipment:	ATV Mounted Offset Sprayer
Test Substance (Lot No.):	Clomazone (0001023789)
Adjuvant Name/ Rate (% v/v):	None
Calibration Date:	25-May-13
Method of Calibration:	measured output of nozzles
Rate (kg ai/ha):	0.424
Spray Volume (l/ha):	100

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-08, Brandon, Manitoba (continued)

SAMPLE NO.	Trt. No.	PHI (DAYS)	Harvest Date	Sampling Date	FRACTION	Growth Stage	Sample Size (kg)	Shipping Date	Date Received at Lab	
01	1	NA	23-Aug-13	30-Aug-13	Canola Seed	BBCH 89	1.0	23-Sep-13	10-Oct-13	
02	2	90	23-Aug-13	30-Aug-13	Canola Seed	BBCH 89	0.9	23-Sep-13	10-Oct-13	
03	2	90	23-Aug-13	30-Aug-13	Canola Seed	BBCH 89	1.0	23-Sep-13	10-Oct-13	
Maxi	mum N	umber	of Hours from	n Sampling unt	il Freezing:	1.75				
Field	Sampl	e Stora	age Conditions	s (ambient, fro	zen):	Frozen				
Shipping Carrier:						ACDS #121542				
Shipping Destination:						Morse Laboratories, LLC 1525 Fulton Avenue Sacramento, CA 95825				
Ship	ping Co	nditior	ns (ambient, fr	ozen):	Frozen					

Sample and Shipping Information

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-09, Alvena, Saskatchewan

Personnel

Principal Investigator:	Dean Ngombe
Affiliation:	ICMS, Inc.
Investigator Street Address:	334 Packham Ave.
Investigator City, State, Country, Zip Code:	Saskatoon, Saskatchewan, Canada, S7N 2T1
Other Personnel Involved in the Trial:	Brittany Johnson, Evan Megyesi, and Andrew Smith

PMRA Region Number:	14
Test Site Street Address:	Box 7
City, State, Country, Zip Code:	Alvena, Saskatchewan, Canada, S0K 0E0
County:	R.M. #402
PMRA Crop Group:	Not Applicable
Test System:	Canola
Variety:	Liberty Link L130
Planting Date of Crop:	29-May-13
Number Treated Plot(s) (excluding controls):	1
Size of Treated Plot(s):	3 m x 30 m
Distance between UTC and Trt Plot:	43 m
Distance between Trt Plots:	Not Applicable
Rows per Treated Plot:	19
Row Spacing:	15.24 cm
Plant Spacing in Row:	Not Applicable
Soil Texture:	Loam
Soil % Organic Matter:	2.2
Soil pH:	6.5
CEC (meq/100 g):	20.5

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-09, Alvena, Saskatchewan (continued)

Weather Information

Source of Test Site Temperature Data:	Environment Canada: Saskatoon RCS, Saskatchewan (Trial and Historical Data)			
Distance of Temperature Data from the Test Site:	62.6 km (Trial and Historical Data)			
Source of Test Site Precipitation Data:	Environment Canada: Saskatoon RCS, Saskatchewan (Trial and Historical Data)			
Distance of Precipitation Data from the Test Site:	62.6 km (Trial and Historical Data)			
Type of Irrigation Used:	None			
Was weather normal during the trial period:	No			
Describe any unusual weather:	Temperatures were slightly above normal. Rainfall was less than normal with the exception of June that had 1.9 times higher precipitation than normal.			
Were yields and crop growth and development normal:	Yes			

Weather Period	Mean Min Temp (C)	Mean Min 30 yr Average Temp (C)	Mean Max Temp (C)	Mean Max 30 yr Average Temp (C)	Total Rainfall (mm)	Total Rainfall 30 yr Average (MM)	Total Irrigation (MM)
June 2013	10	9	21	23	115.9	60.5	0.0
July 2013	11	12	24	25	35.2	57.3	0.0
August 2013	11	10	26	25	14.7	35.4	0.0
September 2013	7	5	23	18	14.9	30.6	0.0

OTHER CHEMICALS APPLIED DURING THE TEST YEAR								
TO THE TEST CROP:	RATE / UNITS	DATE						
None	Not Applicable	Not Applicable						

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-09, Alvena, Saskatchewan (continued)

Application No.:	1
Plot ID/Trt No.:	2
Application Date:	03-Jun-13
Retreatment Interval:	Not Applicable
Application Timing:	Pre-emergence
Crop Stage:	Pre-emergence
Wind Speed at Appl. (km/h):	4.0 - 7.0
Application Type:	Soil-applied Broadcast
Application Equipment:	ATV-mounted CO ₂ sprayer
Test Substance (Lot No.):	Clomazone (0001023789)
Adjuvant Name/ Rate (% v/v):	None
Calibration Date:	03-Jun-13
Method of Calibration:	measured output of nozzles
Rate (kg ai/ha):	0.424
Spray Volume (I/ha):	101

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-09, Alvena, Saskatchewan (continued)

MPLE No.	Trt.	(DAYS)	Harvest			Growth	Sample Size	Shipping	Date Received	
SAI	No.	Н	DATE	DATE	FRACTION	STAGE	(кс)	DATE	ат Lab	
01	1	NA	13-Sep-13	13-Sep-13	Canola Seed	BBCH 89	0.9	24-Sep-13	10-Oct-13	
02	2	102	13-Sep-13	13-Sep-13	Canola Seed	BBCH 89	0.9	24-Sep-13	10-Oct-13	
03	2	102	13-Sep-13	13-Sep-13	Canola Seed	BBCH 89	1.4	24-Sep-13	10-Oct-13	
_										
Maxi	mum N	lumber	of Hours from	n Sampling unt	il Freezing:	0.07				
Field	Sampl	e Stora	ge Conditions	s (ambient, fro	zen):	Frozen				
Shipping Carrier:						ACDS #131918				
Shipping Destination:						Morse Laboratories, LLC 1525 Fulton Avenue Sacramento, CA 95825				
Ship	ping Co	ondition	s (ambient, fr	ozen):	Frozen					

Sample and Shipping Information

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-10, Wakaw, Saskatchewan

Personnel

Principal Investigator:	Dean Ngombe
Affiliation:	ICMS, Inc.
Investigator Street Address:	334 Packham Ave.
Investigator City, Province, Country, Zip Code:	Saskatoon, Saskatchewan, Canada, S7N 2T1
Other Personnel Involved in the Trial:	Brittany Johnson, Evan Megyesi, and Brij Verma

PMRA Region Number:	14
Test Site Street Address:	NW 7432 SW 3
City, Province, Country, Zip Code:	Wakaw, Saskatchewan, Canada, S0K 4P0
County	R.M. #401
PMRA Crop Group:	Not Applicable
Test System:	Canola
Variety:	Liberty Link L130
Planting Date of Crop:	12-Jun-13
Number Treated Plot(s) (excluding controls):	1
Size of Treated Plot(s):	3 m x 30 m
Distance between UTC and Trt Plot:	69 m
Distance between Trt Plots:	Not Applicable
Rows per Treated Plot:	19
Row Spacing:	15.24 cm
Plant Spacing in Row:	Not Applicable
Soil Texture:	Loam
Soil % Organic Matter:	4.5
Soil pH:	7.8
CEC (meq/100 g):	Not Available

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-10, Walaw, Saskatchewan (continued)

Weather Information

Source of Test Site Temperature Data:	Environment Canada: Prince Albert A, Saskatchewan (Trial and Historical Data)			
Distance of Temperature Data from the Test Site:	58 km (Trial and Historical Data)			
Source of Test Site Precipitation Data:	Environment Canada: Prince Albert A, Saskatchewan (Trial and Historical Data)			
Distance of Precipitation Data from the Test Site:	58 km (Trial and Historical Data)			
Type of Irrigation Used:	None			
Was weather normal during the trial period:	No			
Describe any unusual weather:	Temperatures were normal. June was a very wet month with 2.5 times more precipitation than normal. August and September were drier than normal.			
Were yields and crop growth and development normal:	Yes			

Weather Period	Mean Min Temp (C)	Mean Min 30 yr Average Temp (C)	Mean Max Temp (C)	Mean Max 30 yr Average Temp (C)	Total Rainfall (mm)	Total Rainfall 30 yr Average (mm)	Total Irrigation (MM)
June 2013	10	9	21	22	181.6	72.6	0.0
July 2013	11	11	23	24	89.6	76.8	0.0
August 2013	10	9	25	23	20.0	58.0	0.0
September 2013	5	4	21	17	20.2	39.5	0.0

OTHER CHEMICALS APPLIED DURING THE TEST YEAR		
TO THE TEST CROP:	RATE / UNITS	DATE
90-40-0-15 Fertilizer	335 lb/A	30-May-13
Poast Ultra (sethoxydim)	1.11 L/ha	09-Jul-13
Merge (surfactant blend)	1 L/100 L	09-Jul-13

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-10, Wakaw, Saskatchewan (continued)

Application No.:	1
Plot ID/Trt No.:	2
Application Date:	12-Jun-13
Retreatment Interval:	Not Applicable
Application Timing:	Pre-emergence
Crop Stage:	Pre-emergence
Wind Speed at Appl. (km/h):	6.0 - 8.0
Application Type:	Soil-applied Broadcast
Application Equipment:	ATV-mounted CO ₂ sprayer
Test Substance (Lot No.):	Clomazone (0001023789)
Adjuvant Name/ Rate (% v/v):	None
Calibration Date:	12-Jun-13
Method of Calibration:	measured output of nozzles
Rate (kg ai/ha):	0.404
Spray Volume (l/ha):	96

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-10, Wakaw, Saskatchewan (continued)

SAMPLE NO.	Trt. No.	PHI (DAYS)	Harvest Date	Sampling Date	FRACTION	Growth Stage	Sample Size (kg)	Shipping Date	Date Received at Lab
01	1	NA	20-Sep-13	20-Sep-13	Canola Seed	BBCH 89	1.1	24-Sep-13	10-Oct-13
02	2	100	20-Sep-13	20-Sep-13	Canola Seed	BBCH 89	1.0	24-Sep-13	10-Oct-13
03	2	100	20-Sep-13	20-Sep-13	Canola Seed	BBCH 89	0.8	24-Sep-13	10-Oct-13
Maximum Number of Hours from Sampling until Freezing:				3.13					
Field Sample Storage Conditions (ambient, frozen):				Frozen					
Shipping Carrier:				ACDS #131916					
Shipping Destination:			Morse Laboratories, LLC 1525 Fulton Avenue Sacramento, CA 95825						
Shipping Conditions (ambient, frozen):			Frozen						

Sample and Shipping Information

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-11, Waldheim, Saskatchewan

Personnel

Principal Investigator:	Dean Ngombe
Affiliation:	ICMS, Inc.
Investigator Street Address:	334 Packham Ave.
Investigator City, Province, Country, Zip Code:	Saskatoon, Saskatchewan, Canada, S7N 2T1
Other Personnel Involved in the Trial:	Brittany Johnson, Greg Whittington, Evan Megyesi, and Michael Babyn

4
ox 310
/aldheim, Saskatchewan, Canada, S0J 0J0
.M. #464
ot Applicable
anola
ioneer 45H31
7-May-13
m x 30 m
6 m
ot Applicable
9
5.22 cm
ot Applicable
bam
1
5
8.8
Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-11, Waldheim, Saskatchewan (continued)

Weather Information

Source of Test Site Temperature Data:	Environment Canada: Saskatoon RCS, Saskatchewan (Trial and Historical Data)
Distance of Temperature Data from the Test Site:	69 km (Trial and Historical Data)
Source of Test Site Precipitation Data:	Environment Canada: Saskatoon RCS, Saskatchewan (Trial and Historical Data)
Distance of Precipitation Data from the Test Site:	69 km (Trial and Historical Data)
Type of Irrigation Used:	None
Was weather normal during the trial period:	No
Describe any unusual weather:	Temperatures were slightly above normal. Rainfall was less than normal with the exception of June that had 1.9 times higher precipitation than normal.
Were yields and crop growth and development normal:	Yes

Weather Period	Mean Min Temp (C)	Mean Min 30 yr Average Temp (C)	Mean Max Temp (C)	Mean Max 30 yr Average Temp (C)	Total Rainfall (mm)	Total Rainfall 30 yr Average (mm)	Total Irrigation (MM)
May 2013	5	5	21	19	15.2	43.6	0.0
June 2013	10	9	21	23	115.9	60.5	0.0
July 2013	11	12	24	25	35.2	57.3	0.0
August 2013	11	10	26	25	14.7	35.4	0.0
September 2013	7	5	23	18	14.9	30.6	0.0

Maintenance Pesticides and Fertilizers

OTHER CHEMICALS APPLIED DURING THE TEST YEAR								
TO THE TEST CROP:	RATE / UNITS	DATE						
Roundup Transorb (glyphosate)	1.507 kg ai/ha	15-Jul-13						

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-11, Waldheim, Saskatchewan (continued)

Application Information

Application No.:	1
Plot ID/Trt No.:	2
Application Date:	28-May-13
Retreatment Interval:	Not Applicable
Application Timing:	Pre-emergence
Crop Stage:	Pre-emergence
Wind Speed at Appl. (km/h):	5.0 - 8.0
Application Type:	Soil-applied Broadcast
Application Equipment:	ATV-mounted CO ₂ sprayer
Test Substance (Lot No.):	Clomazone (0001023789)
Adjuvant Name/ Rate (% v/v):	None
Calibration Date:	28-May-13
Method of Calibration:	measured output of nozzles
Rate (kg ai/ha):	0.433
Spray Volume (l/ha):	103

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-11, Waldheim, Saskatchewan (continued)

SAMPLE NO.	Trt. No.	PHI (DAYS)	Harvest Date	Sampling Date	FRACTION	Growth Stage	Sample Size (kg)	Shipping Date	Date Received at Lab	
01	1	NA	06-Sep-13	06-Sep-13	Canola Seed	BBCH 89	0.5	24-Sep-13	10-Oct-13	
02	2	101	06-Sep-13	06-Sep-13	Canola Seed	BBCH 89	0.2	24-Sep-13	10-Oct-13	
03	2	101	06-Sep-13	06-Sep-13	Canola Seed	BBCH 89	0.25	24-Sep-13	10-Oct-13	
Maxi	mum N	umber	of Hours from	Sampling unt	il Freezing:	1.0				
Field	l Sampl	e Stora	age Conditions	s (ambient, fro	zen):	Frozen				
Shipping Carrier:						ACDS #131920				
Shipping Destination:						Morse Laboratories, LLC 1525 Fulton Avenue Sacramento, CA 95825				
Ship	ping Co	onditior	is (ambient, fr	ozen):	Frozen					

Sample and Shipping Information

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-12, Aberdeen, Saskatchewan

Personnel

Principal Investigator:	Dean Ngombe
Affiliation:	ICMS, Inc.
Investigator Street Address:	334 Packham Ave.
Investigator City, Province, Country, Zip Code:	Saskatoon, Saskatchewan, Canada, S7N 2T1
Other Personnel Involved in the Trial:	Brittany Johnson, Evan Megyesi, and Andrew Smith

Plot Information

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-12, Aberdeen, Saskatchewan (continued)

Weather Information

Source of Test Site Temperature Data:	Environment Canada: Saskatoon RCS, Saskatchewan (Trial and Historical Data)
Distance of Temperature Data from the Test Site:	30 km (Trial and Historical Data)
Source of Test Site Precipitation Data:	Environment Canada: Saskatoon RCS, Saskatchewan (Trial and Historical Data)
Distance of Precipitation Data from the Test Site:	30 km (Trial and Historical Data)
Type of Irrigation Used:	None
Was weather normal during the trial period:	No
Describe any unusual weather:	Temperatures were slightly above normal. Rainfall was less than normal with the exception of June that had 1.9 times higher precipitation than normal.
Were yields and crop growth and development normal:	Yes

Weather Period	Mean Min Temp (C)	Mean Min 30 yr Average Temp (C)	Mean Max Temp (C)	Mean Max 30 yr Average Temp (C)	Total Rainfall (mm)	Total Rainfall 30 yr Average (mm)	Total Irrigation (MM)
May 2013	5	5	21	19	15.2	43.6	0.0
June 2013	10	9	21	23	115.9	60.5	0.0
July 2013	11	12	24	25	35.2	57.3	0.0
August 2013	11	10	26	25	14.7	35.4	0.0
September 2013	7	5	23	18	14.9	30.6	0.0

Maintenance Pesticides and Fertilizers

OTHER CHEMICALS APPLIED DURING THE TEST YEAR								
TO THE TEST CROP:	RATE / UNITS	DATE						
Liberty (glufosinate-ammonium)	1.33 kg ai/ha	18-Jun-13						
Centurion (clethodim)	0.19 kg ai/ha	18-Jun-13						
Amigo (vegetable oil surfactant)	0.5 kg ai/ha	18-Jun-13						

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-12, Aberdeen, Saskatchewan (continued)

Application Information

Application No.:	1
Plot ID/Trt No.:	2
Application Date:	30-May-13
Retreatment Interval:	Not Applicable
Application Timing:	Pre-emergence
Crop Stage:	Pre-emergence
Wind Speed at Appl. (km/h):	5.0 - 8.0
Application Type:	Soil-applied Broadcast
Application Equipment:	ATV-mounted CO ₂ sprayer
Test Substance (Lot No.):	Clomazone (0001023789)
Adjuvant Name/ Rate (% v/v):	None
Calibration Date:	30-May-13
Method of Calibration:	measured output of nozzles
Rate (kg ai/ha):	0.414
Spray Volume (I/ha):	99

Appendix B – Detailed Study Site Information (continued) Test Site TCI-13-366-12, Aberdeen, Saskatchewan (continued)

SAMPLE NO.	Trt. No.	PHI (DAYS)	Harvest Date	Sampling Date	FRACTION	Growth Stage	Sample Size (kg)	Shipping Date	Date Received at Lab	
01	1	NA	19-Sep-13	19-Sep-13	Canola Seed	BBCH 89	1.0	24-Sep-13	10-Oct-13	
02	2	112	19-Sep-13	19-Sep-13	Canola Seed	BBCH 89	1.0	24-Sep-13	10-Oct-13	
03	2	112	19-Sep-13	19-Sep-13	Canola Seed	BBCH 89	1.1	24-Sep-13	10-Oct-13	
Maxi	mum N	umber	of Hours from	Sampling unt	il Freezing:	<0.083				
Field	Sampl	e Stora	ge Conditions	s (ambient, fro	zen):	Frozen				
Shipping Carrier:						ACDS #131922				
Shipping Destination:						Morse Laboratories, LLC 1525 Fulton Avenue Sacramento, CA 95825				
Ship	ping Co	ondition	s (ambient, fr	ozen):		Frozen				

Sample and Shipping Information

Appendix C - Analytical Summary Report

FINAL ANALYTICAL REPORT

STUDY TITLE

Magnitude of the Residue of Clomazone in/on Canola Raw Agricultural and Processed Commodities Following One Preemergence Application of Clomazone 360 g/L CS (2013)

RESIDUE CHEMISTRY TEST GUIDELINES

Canadian PMRA Regulatory Directive DIR98-02 and 2010-05 SANCO 3029/99 rev. 4. 11/07/00

SPONSOR

Cheminova A/S P.O. Box 9 DK-7620 Lemvig Denmark

STUDY DIRECTOR

Sandra J. Carringer The Carringers, Inc. 1003 Palace Court Apex, North Carolina 27502 USA

PERFORMING LABORATORIES

Morse Laboratories, LLC 1525 Fulton Avenue Sacramento, California 95825

ABC Laboratories, Inc. 7200 E. ABC Lane Columbia, Missouri 65202

STUDY IDENTIFICATION

Study No.: TCI-13-366 Morse / ABC Laboratories Study No.: 69869

PRINCIPAL ANALYTICAL INVESTIGATOR/AUTHOR

Carol A. Rodgers

REPORT DATE

June 25, 2014

Page 1 of 137

GLP STATEMENT OF COMPLIANCE

All aspects of this study carried out by **ABC LABORATORIES**, **INC.** were conducted in accordance with the FIFRA Good Laboratory Practice Standards (40 CFR 160).

Ledo へつ

Carol A. Rodgers \mathcal{J} ABC LABORATORIES, INC. Principal Analytical Investigator

Clark D. Chickering ABC LABORATORIES, INC: Director

<u>25Jun/4</u> Date

<u>25 Jun 14</u> Date

QUALITY ASSURANCE STATEMENT

Morse Laboratories, LLC Project Number: <u>69869</u>

Protocol Number: TCI-13-366

Quality Assurance inspections were carried out during the execution of the Study by Quality Assurance personnel according to §40 CFR 160.35 of the EPA Good Laboratory Practice Standards to ensure the integrity of the data. The final analytical report, as submitted to the Study Director, reflects the raw data.

		Date Findings Reported
		to the Study
Phase Inspected	Dates of Inspection	Director/Management
Procedure: Sample		
Weighing	3/18/14	3/19/14
	7/24/13	3/14/14
	8/30/13	3/14/14
Raw Data	4/24/14 through 4/30/14	5/21/14
	4/21/14 through 4/27/14	5/22/14
	6/9/14 through 6/10/14	6/25/14
	5/1/14 through $5/2/14$	5/27/14
Duch Denset	5/1/14 through 5/2/14	5/2//14
Dran Report		
	6/9/14 through 6/10/14	6/25/14
Final Danart	6/24/14	6/25/14
rmai Report	0/24/14	0/23/14

Hiten

Jeri Hofen / Manager, Quality Assurance

255 1012014 Date

Page 4

Title:	Magnitude of the Residue of Clomazone in/on Canola Raw Agricultural and Processed Commodities Following One Preemergence Application of Clomazone 360 g/L CS (2013)
Study No.:	TCI-13-366
Sponsor:	Cheminova A/S P.O. Box 9 DK-7620 Lemvig Denmark
Sponsor Representative:	Faith Womack Cheminova, Inc. 1600 Wilson Boulevard, Suite 700 Arlington, Virginia 22209 USA
Study Director and Testing Facility:	Sandra J. Carringer The Carringers, Inc. 1003 Palace Court Apex, North Carolina 27502 USA
Principal Analytical Investigators ¹ and Performing Laboratory ² :	Carol Rodgers (November 1, 2013 to Present) ABC Laboratories, Inc. 7200 East ABC Lane Columbia, Missouri 65202 USA
	Jeri Willoh (May 1, 2013 to October 10, 2013) Morse Laboratories, LLC 1525 Fulton Avenue Sacramento, California 95825
Date Study Protocol was Signed by the Study Director:	May 1, 2013
Experimental Analysis Initiation Date:	December 5, 2013 (first sample grinding)

ANALYTICAL PHASE IDENTIFICATION

Experimental Analysis Completion Date:

May 19, 2014 (last instrumentation date)

Date Final Analytical Report was Submitted to the Study Director: June 25, 2014

- ¹ During the interim between PAI's (i.e., October 11, 2013 to October 31, 2013), analytical phase oversight was provided by Management.
- ² In October 2013, ABC Laboratories, Inc. announced plans to move operations of its subsidiary, Morse Laboratories, LLC of Sacramento, CA, to ABC Laboratories in Columbia, MO. In conjunction with this move, ABC rolled Morse under the ABC trade name, and discontinued use of the Morse brand. For this study, sample analyses and generation of the final report were performed at ABC Laboratories, Inc.

AUTHENTICATION

This report is an accurate and authentic representation of the conditions and results of the analytical phase of this study.

Carl Rodaus Carol A. Rodgers

Carol A. Rodgers Principal Analytical Investigator

Clark D. Chickering Director

25Jun14 Date

2534 14 Date

TABLE OF CONTENTS

Subject

STUD	Y TITL	Е	1
GLP S	TATEN	IENT OF COMPLIANCE	2
QUAL	ITY AS	SSURANCE STATEMENT	3
ANAL	YTICA	L PHASE IDENTIFICATION	4
AUTH	ENTIC	ATION	6
TABL	E OF C	ONTENTS	7
1	SUMN	1ARY	.10
2	INTRO	DDUCTION	.13
3	SAMP	LE RECEIPT, LOGGING AND STORAGE	.13
4	MATE	RIALS	.13
	4.1	Sample Matrices	13
	4.2	Reference Materials	13
5	PREPA	ARATION OF STANDARD SOLUTIONS	.14
6	METH	ODS	.15
	6.1	Sample Identification	15
	6.2	Sample Preparation	15
	6.3	Summary of Analytical Method	16
	6.4	Instrumentation	16
	•	Calibration/sample analysis	18
	6.5	Calculations	18
	•	Equations	19
	•	Example calculations	20
	6.6	Sample Analysis	21
	6.7	Representative Chromatography	21
	6.8	Statistics	21
7	RESU	LTS AND DISCUSSION	.21
	7.1	Method Validation Results	21
	7.2	Procedural Recovery Results	22

TCI-1	3-366; 698	69	Page 8
	7.3 0	Control and Sample Residue Results	
	7.4 F	Freezer Storage Stability	
	7.5 S	tability of Extracts	
	7.6 I	OQ and LOD	
	7.7 N	Aoisture Determination	
	7.8 P	rotocol/SOP/Method Deviations	25
8	CONCL	USION	
9	DISPOS	ITION OF SAMPLES AND RAW DATA	26
10	STUDY	PERSONNEL	26
11	REFERE	INCES	27
TABI	LE OF AB	BREVIATIONS	30
TABI	LE 1	Sample Chronology Data	31
TABI	LE 2a	Method Validation Recoveries for Clomazone from Canola Seed (Quantitation Ion m/z 240/125)	34
TABI	LE 2b	Method Validation Recoveries for Clomazone from Canola Seed (Confirmation Ion m/z 240/89)	35
TABI	LE 2c	Method Validation Recoveries for Clomazone from Canola Seed (Quantitation/Confirmation Ion Comparisons)	
TABI	LE 3	Laboratory Fortification (Procedural) Recoveries for Clomazone from Canola Seed	37
TABI	LE 4	Residues of Clomazone Found in Canola Seed RAC Samples .	
TABI	LE 5	Comparison of Clomazone Found in Canola Seed RAC Samples (Original Method vs Modified Method)	40
CHRO	OMATOG	RAMS	41
FIGU	RES 1-5	TYPICAL CLOMAZONE HPLC STANDARDS	42
FIGU	FIGURE 6 CLOMAZONE CALIBRATION CURVE		47
FIGU	RES 7-9	CANOLA SEED CONTROL SAMPLES	48
FIGU	RES 10-12	2 CANOLA SEED FORTIFIED CONTROL SAMPLES	51
FIGU	RES 13-22	2 CANOLA SEED TREATED SAMPLES	54
FIGU	RES 23-2 [°]	7 TYPICAL CLOMAZONE HPLC STANDARDS (CONFIRMATORY ION)	64
FIGU	RE 28	CLOMAZONE CALIBRATION CURVE (CONFIRMATORY ION)	69

CANOLA SEED CONTROL SAMPLE (CONFIRMATORY ION)	70
CANOLA SEED FORTIFIED CONTROL SAMPLES (CONFIRMATORY ION)	71
Analytical Method and Modification	73
Eurofins-GAB GmbH Report, Study Code 20061401/01-RVP, entitled, "Validation of an Analytical Method for the Determination of Clomazone in Potatoes and Oilseed Rape" dated January 17, 2007	73
Method Modification to 20061401/01-RVP, dated April 23, 2014	73
ABC Laboratories SOP CD-TM 2.31.6, entitled "Determination of Moisture"	109
Certificates of Analysis	117
Spreadsheets	120
Preparation of Standard Solutions	135
	CANOLA SEED CONTROL SAMPLE (CONFIRMATORY ION) CANOLA SEED FORTIFIED CONTROL SAMPLES (CONFIRMATORY ION) Analytical Method and Modification Eurofins-GAB GmbH Report, Study Code 20061401/01-RVP, entitled, "Validation of an Analytical Method for the Determination of Clomazone in Potatoes and Oilseed Rape" dated January 17, 2007 Method Modification to 20061401/01-RVP, dated April 23, 2014 ABC Laboratories SOP CD-TM 2.31.6, entitled "Determination of Moisture" Certificates of Analysis Spreadsheets Preparation of Standard Solutions

Page 9

1 SUMMARY

This study was conducted to determine the magnitude and decline of residues of clomazone in or on canola raw agricultural commodities (RAC) following one preemergence application of Clomazone 360 g/L CS at 0.42 kg ai/ha, and harvested at normal maturity with additional time points at two trial sites of 3, 7, 14, and 21 ± 1 days after normal maturity. Canola processed commodities (PC) were not analyzed because there were no quantifiable residues (all <LOQ) in the canola seed from the exaggerated rate (5×) plot.

A total of 54 canola seed RAC samples were received at ABC Laboratories from the field test sites on October 10, 2013 and November 15, 2013. All study samples were analyzed for total residues of clomazone.

ANALYTICAL METHOD VALIDATION

The analytical method used to quantify residues of clomazone was validated according to SANCO 3029/99 rev. 4 guidelines on control samples of canola seed prior to analysis of any field samples in this study. The individual recoveries, overall means, standard deviations, and relative standard deviations (RSDs) from the quantitation ion data are summarized below (see Table 2a for more detailed data). Detailed results using confirmation ion data are provided in Table 2b. Comparisons between quantitation and confirmation ion results are provided in Table 2c.

Summary of Clomazone Method Validation Recoveries						
Fortification LevelSample SizeRecoveriesMMatrix(ppm)(n)(%)				Mean Recovery (%) ± std. dev.	RSD (%)	
	0.02	5	90, 95, 77, 66, 76	81 ± 12	14	
Canola seed	0.5	5	81, 92, 81, 73, 78	81 ± 7.0	8.6	
	Overall	10	66 - 95	81 ± 9.0	11	

The method was judged acceptable for use in this study.

PROCEDURAL RECOVERIES

Analytical method performance was monitored through concurrent analysis of freshly fortified control samples along with the field samples. The individual recoveries, overall means, standard deviations, and relative standard deviations are summarized below.

Summary of Clomazone Procedural Recoveries						
Matrix	Fortification Level (ppm)	Sample Size (n)	Recoveries (%)	Mean Recovery (%) ± std. dev. (as applicable)	RSD ^a (%) (as applicable)	
	0.02	7	81, 90, 92, 94, 100, 94, 68	88 ± 11	12	
Canola seed	0.50	5	95, 109, 112, 99, 100	103 ± 7.2	7.0	
	Overall	12	68 - 112	95 ± 12	12	

 $^{a}NA = not applicable.$

Residue values were not corrected for procedural recovery results.

RESIDUE ANALYSIS

The limit of quantitation (LOQ) for clomazone residues in or on canola seed was 0.02 ppm. The limit of detection (LOD) was estimated to be 0.0067 ppm (1/3 the LOQ).

No residues of clomazone >LOQ were found in any of the untreated canola seed RAC samples.

The range of residues found in treated samples, excluding decline samples are summarized below.

Clomazone: Magnitude of the Residue-RAC Range of Residues (ppm)					
SamplingResiduesEventTreatmentFoundMatrix(nominal)NumberFormulation					
Canola seed	Maturity	2	Clomazone 360 g/L CS	ND-<0.02	

^a<0.0067 ppm represents values <LOD; <0.02 ppm represents values <LOQ ^bND = none detected, no chromatographic response.

Clomazone: Residue Decline - RAC								
Matrix	Trial Number	Treatment Number	Formulation	Sampling Event ^b (nominal)	Clomazone (ppm)	Mean Residue (ppm)		
		2		Maturity	ND	ND		
		2		Maturity	ND	ND		
		2		Maturity + 3 days	< 0.0067	<0.0067		
		2		Maturity + 3 days	ND	<0.0007		
Canola	TCI-13-366-04	2	Clomazone	Maturity + 7 days	< 0.0067	<0.0067		
seed	101-13-300-04	2	360 g/L CS	Maturity + 7 days	< 0.0067			
		2		Maturity + 14 days	< 0.0067	<0.0067		
		2		Maturity + 14 days	ND	~0.0007		
		2		Maturity + 21 days	ND	ND		
		2		Maturity + 21 days	ND	ND		
		2		Maturity	< 0.0067	<0.0067		
		2		Maturity	< 0.0067	-0.0007		
		2		Maturity + 3 days	ND	ND ND ND		
		2		Maturity + 3 days	ND			
Canola	TCI-13-366-05	2	Clomazone	Maturity + 7 days	ND			
seed	101 15 500 05	2	360 g/L CS	Maturity + 7 days	ND			
		2		Maturity + 14 days	ND			
		2		Maturity + 14 days	ND			
		2		Maturity + 21 days	ND			
		2		Maturity + 21 days	ND	IND.		

The residues found in treated decline samples are summarized below.

^a<0.0067 ppm represents values <LOD; <0.02 ppm represents values <LOQ

^bDALA = $\hat{d}ays$ after last application.

STORAGE STABILITY

A storage stability study has been conducted to determine the stability of clomazone in rape seed under deep-freezer conditions (Reference 2). Clomazone residues were stable in rape seed for at least 6 months. Additional storage stability testing will be conducted at ABC Laboratories as part of the on-going ABC Laboratories Study No. 81233 to determine the stability of clomazone in canola under deep-freezer conditions for greater than 6 months. The longest storage for canola seed samples in this study was 6.7 months (203 days).

2 INTRODUCTION

This study was conducted to determine the magnitude and decline of residues of clomazone in or on canola raw agricultural commodities (RAC) following one preemergence application of Clomazone 360 g/L CS at 0.42 kg ai/ha, and harvested at normal maturity with additional time points at two trial sites of 3, 7, 14, and 21 ± 1 days after normal maturity. Canola processed commodities (PC) were not analyzed because there were no quantifiable residues (all <LOQ) in the canola seed from the exaggerated rate (5×) plot.

The analytical portion of this study was conducted by ABC Laboratories, Inc. under Morse / ABC Study No. 69869 in accordance with Residue Study Protocol, Study No. TCI-13-366, entitled "Magnitude of the Residue of Clomazone in/on Canola Raw Agricultural and Processed Commodities Following One Preemergence Application of Clomazone 360 g/L CS (2013)". This report contains the following: information on reference materials, experimental details, summary of the analytical methods, calculations, results and discussion, conclusions, residue data, procedural recovery data, storage stability data and representative chromatograms.

3 SAMPLE RECEIPT, LOGGING AND STORAGE

A total of 54 canola seed RAC samples were received at ABC Laboratories from the field test sites on October 10, 2013 and November 15, 2013.

Upon receipt, all study samples were transferred to a limited-access freezer for storage where they remained until they were processed/ground or weighed for analysis. All samples were logged in according to ABC Labs' SOPs using the original sample numbers assigned to them. Freezer storage temperatures were monitored on a daily basis and were at approximately -25 °C to -10 °C.

4 MATERIALS

4.1 Sample Matrices

The sample matrix investigated in this study was canola seed.

4.2 **Reference Materials**

The details of the analytical standards used for this study are provided below. No expired standards were used in this study. Certificates of Analysis are found in Appendix III.

4.2.1 Clomazone

Common Name:
Chemical names:
CAS:

Clomazone

2-[(2-chlorophenyl)methyl]-4,4-dimethyl-3-isoxazolidinone

IUPAC: 2-(2

2-(2-chlorobenzyl)-4,4-dimethyl-1,2-oxazolidin-3-one or 2-(2-chlorobenzyl)-4,4-dimethylisoxazolidin-3-one

Structural Formula:

CAS No.:	81777-89-1
Molecular Weight:	239.70 g/mol
Source:	Cheminova A/S
Purity:	99.7% w/w
Batch No.:	HKA, p. 4204
Receipt Date:	May 14, 2010
Expiration Date:	March 28, 2014; extended to February 11, 2016
Storage:	Freezer (-25 °C to -10 °C)

5 PREPARATION OF STANDARD SOLUTIONS

The concentrations of clomazone standard solutions prepared and used in this study for residue analysis were as follows:

Identification/ Purpose	Standard Solutions	Nominal Concentration
Stock	Clomazone	1000 μg/mL
		100 μg/mL
Fortification	Clomazone	10 µg/mL
		1.0 µg/mL

Identification/ Purpose	Standard Solutions	Nominal Concentration
Intermediate		100 ng/mL
	Clamazana	20 ng/mL
	Ciomazone	5.0 ng/mL
		1.0 μg/mL
Calibration		0.30 ng/mL
		0.15 ng/mL
	Clomazone	0.050 ng/mL
		0.030 ng/mL
		0.010 ng/mL

In accordance with ABC Labs' SOPs, storage stability analyses of standard solutions have been conducted, which demonstrate that the solutions were stable for at least the duration of their use in this study. All standard solutions prepared in this section were stored in the dark, refrigerated (2 °C to 8 °C) when not in use and were not used beyond the period of specified stability.

Details of the preparation of all standard solutions used in this study and their stability when stored as specified are provided in Appendix V.

6 METHODS

6.1 Sample Identification

Identification established in the field was used to uniquely identify each sample in the study. Additional designations such as "+ 0.020," were added to procedural/concurrent recovery samples, as appropriate.

6.2 Sample Preparation

All samples were ground between December 05, 2013 and December 13, 2013.

All samples were ground with dry ice to a homogeneous consistency in a Robot Coupe RSI 10Y vertical cutter/grinder. For large samples, representative subsamples were prepared from the ground samples for analysis.

All ground samples and subsamples were placed in frozen storage immediately after grinding. The dry ice was allowed to sublime prior to weighing the samples for extraction.

All the samples for this study were processed according to ABC Laboratories, SOP# CD-TM 1.11.1, entitled "Procedures for Sample Preparation Equipment."

6.3 Summary of Analytical Method

The full text of the method used in this study, including modifications, can be found in Appendix I.

Samples were analyzed using the method found in Eurofins-GAB GmbH Study Code 20061401/01-RVP Final Report, entitled "Validation of an Analytical Method for the Determination of Clomazone in Potatoes and Oilseed Rape," dated January 17, 2007 (Reference 1), with ABC Laboratories method modifications, dated April 23, 2014. The method modification eliminated several post extraction steps including several filtration steps and performance of GPC cleanup.

Residues of clomazone were extracted from a 25-g seed sample by homogenization with acetone, acetonitrile, Calflo E, and Celite. An aliquot of the sample was centrifuged, and the supernatant filtered through a 0.45- μ PTFE filter. An aliquot of the filtered sample was combined with acetonitrile:water (1:1, v/v) and submitted for HPLC analysis.

Concurrent procedural recoveries demonstrate method suitability particularly at the LOQ, which was the level below which all of the residues in this study were observed. These methods, therefore, are considered to be equivalent. See Appendix I for complete text of the original method.

Determination and quantitation for clomazone were conducted using high performance liquid chromatography (HPLC) with triple quadrupole mass spectrometric (LC-MS/MS) detection. The LOQ for clomazone in canola seed was 0.02 ppm. The limit of detection (LOD) was estimated to be 0.0067 ppm (1/3 the LOQ).

6.4 Instrumentation

All samples were analyzed by HPLC employing triple quadrupole mass spectrometric (MS/MS) detection (LC-MS/MS). Typical conditions were as follows:

• <u>Typical Operating conditions</u>

Instrument:	Applied	l Biosystem	ns/Sciex	API 5000	LC/MS/MS	System
	with	Acquity	UPLC	System	using	Applied
	Biosyste	ems/MDS	Sciex	Analyst	Software f	or data
	collectio	on and syste	em contro	ol (version	1.5).	

HPLC Column: 50 mm \times 2.1 mm i.d. Waters Acquity HSS T3, 1.8 μ particle size

Mobile Phase:

- Component A: 0.1% formic acid in water
- Component B: 0.1% formic acid in methanol

Gradient:

<u>Time (min)</u>	% <u>A</u>	% <u>B</u>
0.0-6.0	80	20
6.0-7.0	10	90
7.01-8.0	80	20

Flow Rate:	0.5 mL/min.
Flow Rate:	0.5 mL/min.

Ionization Mode: Positive (+)

Acquisition Mode: MRM

Source Temperature: 600 °C

Curtain Gas: Nitrogen @ setting of "40"

Collision Gas: Nitrogen @ setting of "10"

Injection Volume: 5 µL

Column Temperature: 40 °C

Autosampler Tray					
Temperature:	10 °C				
Transitions					
Monitored:					
	Ion	, <i>m/<u>z</u></i>	<u>Time, <i>ms</i></u>	<u>CE, v</u>	
	<u>Q1</u>	<u>Q3</u>			
	240.1	125.0	200	31	(quantitation)
	240.1	89.1	200	65	(confirmation)
Retention Time:	~3.9 mi	nutes			

• Calibration/sample analysis

A five-point standard curve was prepared by injecting constant volumes of standard solutions at appropriate concentrations. Constant volume injections were used for sample extracts as well. A curve check standard was typically injected every 3-4 sample injections.

6.5 Calculations

Calculations for instrumental analysis were conducted using a validated software application to create a standard curve based on linear regression. The regression functions were used to calculate a best-fit line (from a set of standard concentrations in ng/mL versus peak response) and to determine concentrations of the analyte found during sample analysis from the calculated best-fit line. Weighting (1/x) was used in the generation of standard curves.

The equation used for the least squares fit is:

y = mx + b

where:

у	=	peak response
m	=	slope
Х	=	ng/mL found for peak of interest
b	=	y-intercept

The standard (calibration) curve generated for each analytical set was used for the quantitation of clomazone in the samples. For this study, the correlation

Page 18

coefficient (R) for each calibration curve for each analyte was equal to or greater than 0.990 (R2 equal to or greater than 0.98).

• Equations

The calculation for ppm found and percent recovery were as follows:

1. The amount of clomazone found (in ppm) in the sample is calculated according to the following equation:

$$ppm = ng/mL \times \frac{HPLC \ FV \ (mL)}{sample \ wt. \ (g)} \times \frac{ext. \ solv. (mL)}{aliq. (mL)} \times HPLC \ dil. \ factor \times \frac{1}{1000}$$

where:

ng/mL	=	ng/mL of analyte found as determined by Analyst
HPLC FV (mL)	=	volume of final extract submitted to instrumentation (10 mL)
sample wt. (g)	=	amount of sample taken through the extraction process (25.0 g)
ext. solv. (mL)	=	volume of extraction solvent added (250 mL)
aliq. (mL)	=	volume of extract taken for analysis (0.10 mL)
HPLC dil. factor	=	dilution of sample extract required to produce an analyte response bracketed by standards
1/1000	=	conversion factor (µg/ng)

2. The percent recovery for fortified control samples was calculated as follows:

% Recovery = $\frac{ppm \ found \ in \ fortified \ control - ppm \ found \ in \ control}{ppm \ added} \times 100$

• Example calculations

1. ABC ID 69869-006, Canola Seed, Set #1 short, TCI-13-366-02-01, Control:

0 peak response $\rightarrow 0.00 \, ng/mL$

 $ppm = 0.00 \text{ ng/mL} \times \frac{10 \text{ mL}}{25.0 \text{ g}} \times \frac{250 \text{ mL}}{0.10 \text{ mL}} \times 1 \times \frac{1}{1000}$

ppm = 0.000

Reported ppm = ND

2. ABC ID 69869-007, Canola Seed, Set #1 short, TCI-13-366-02-01, Fortified Control @ 0.020 ppm:

9944 peak response $\rightarrow 0.0161 \, ng/mL$

$$ppm = 0.0161 \, ng/mL \times \frac{10 \, mL}{25.0 \, g} \times \frac{250 \, mL}{0.10 \, mL} \times 1 \times \frac{1}{1000}$$

ppm = 0.0161

Reported ppm = 0.0161

% Rec. = $\frac{0.0161 \text{ ppm} - 0.000 \text{ ppm}}{0.020 \text{ ppm}} \times 100$

= 81%

3. ABC ID 69869-019, Canola Seed, Set #2, TCI-13-366-06-04, Field Sample:

8103 peak response $\rightarrow 0.00727 \text{ ng/mL}$

 $ppm = 0.00727 \ ng/mL \times \frac{10 \ mL}{25.0 \ g} \times \frac{250 \ mL}{0.10 \ mL} \times 1 \times \frac{1}{1000}$

ppm = 0.00727

Reported ppm = < 0.020

6.6 Sample Analysis

The canola seed samples were analyzed in a group referred to as an "analytical set". The set typically consisted of one control sample, two or three fortified control samples and up to 16 field samples.

Moisture determination was conducted on one canola seed sample per trial following ABC Laboratories SOP# CD-TM 2.31.6, entitled, "Determination of Moisture Content." See Appendix II for the SOP.

6.7 Representative Chromatography

For HPLC analyses, example chromatograms of HPLC standards and the associated calibration curve graph are presented in this report as Figures 1 through 6. Example chromatograms of three untreated control, three fortified control (procedural recovery) samples, and ten treated samples are presented as Figures 7 through 22 for canola seed.

Example confirmation chromatograms of HPLC standards and the associated calibration curve graph are presented in this report as Figures 23 through 28 for confirmatory ion (m/z 240/89). Example confirmation chromatograms of one control and two fortified controls are presented as Figures 29 through 31.

6.8 Statistics

Statistical methods used were limited to calculations of the mean, range, and standard deviation. Microsoft Excel[®] 2007-2010 and validated software program, Applied BioSystems/MDS Sciex Analyst software (version 1.5) were employed to develop all statistical data.

7 **RESULTS AND DISCUSSION**

Data resulting from the analyses in this study are summarized in Tables 2a through 5. Supporting raw data spreadsheets are located in Appendix IV. The chronology of events from sampling to HPLC analysis is presented in Table 1.

7.1 Method Validation Results

The analytical method used to quantify clomazone residues was validated according to SANCO 3029/99 rev. 4 guidelines on control samples of canola seed prior to analysis of any field samples in this study. The individual recoveries, overall means, standard deviations, and relative standard deviations (RSDs) from

the quantitation ion data are summarized below (see Table 2a for more detailed data). Detailed results using confirmation ion data are provided in Table 2b. Comparisons between quantitation and confirmation ion results are provided in Table 2c.

Analytical method performance was monitored through concurrent analysis of freshly fortified control samples along with the field samples.

Summary of Clomazone Method Validation Recoveries							
Fortification LevelSample SizeRecoveriesMean Recovery (%)RMatrix(ppm)(n)(%)± std. dev.()							
	0.02	5	90, 95, 77, 66, 76	81 ± 12	14		
Canola seed	0.5	5	81, 92, 81, 73, 78	81 ± 7.0	8.6		
	Overall	10	66 - 95	81 ± 9.0	11		

The method was deemed acceptable for use in this study. The individual recovery for each fortified control sample was in the range of 70-120% with the exception of one recovery at the 0.02 ppm fortification level (66%). The mean recovery for replicates at each fortification level was in the range of 70-110%, with corresponding RSDs of replicate recovery measurements $\leq 20\%$. The residues found in the control samples were less than the LOQ. Based on the precision and accuracy of the recovery data, this method meets European Commission and U.S. EPA guideline requirements.

Because the method used triple quadrupole mass spectrometric (LC-MS/MS) detection, it is considered specific for the analyte targeted. The correlation coefficient (r) of the calibration curve (>0.995) generated during method validation demonstrated a valid relationship (linear regression) between standard concentration and instrument response. These data indicated that the method would perform well during the course of this study.

7.2 **Procedural Recovery Results**

Analytical method performance was monitored through concurrent analysis of freshly fortified control samples along with the field samples. The individual recoveries, overall means, standard deviations, and relative standard deviations are summarized below.

Summary of Clomazone Procedural Recoveries							
Matrix	Fortification Level (ppm)	Sample Size (n)	Recoveries (%)	Mean Recovery (%) ± std. dev. (as applicable)	RSD ^a (%) (as applicable)		
	0.02	7	81, 90, 92, 94, 100, 94, 68	88 ± 11	12		
Canola seed	0.50	5	95, 109, 112, 99, 100	103 ± 7.2	7.0		
	Overall	12	68 - 112	95 ± 12	12		

 $^{a}NA = not applicable.$

Residue values were not corrected for procedural recovery results.

7.3 Control and Sample Residue Results

The limit of quantitation (LOQ) for clomazone residues in or on canola seed was 0.02 ppm.

No clomazone residues >LOQ were found in any of the untreated canola seed RAC.

The range of residues found in treated samples, excluding RAC decline samples are summarized below.

Clomazone: Magnitude of the Residue-RAC Range of Residues (ppm)							
Matrix	Sampling EventResidues Found (ppm) ^{a,b} Matrix(nominal)NumberFormulation(ppm) ^{a,b}						
Canola seed	Maturity	2	Clomazone 360 g/L CS	ND - <0.02			

^a<0.0067 ppm represents values <LOD; <0.02 ppm represents values <LOQ

^bND = none detected, no chromatographic response.

Clomazone: Residue Decline - RAC (ppm) ^a							
Matrix	Trial Number	Treatment Number	Formulation	Sampling Event ^b (nominal)	Clomazone (ppm)	Mean Residue (ppm)	
	2		Maturity	ND	ND		
		2	Clomazone 360 g/L CS	Maturity	ND	ND	
		2		Maturity + 3 days	< 0.0067	<0.0067	
		2		Maturity + 3 days	ND	<0.0007	
Canola	TCI-13-366-04	2		Maturity + 7 days	< 0.0067	<0.00(7	
seed	101-13-300-04	2		Maturity + 7 days	< 0.0067	<0.0007	
		2		Maturity + 14 days	< 0.0067	<0.0067	
		2		Maturity + 14 days	ND	<0.0007	
		2		Maturity + 21 days	ND	ND	
		2		Maturity + 21 days	ND	IND	

The residues found in treated decline samples are summarized below.

^a<0.0067 ppm represents values <LOD; <0.02 ppm represents values <LOQ ^bDALA = days after last application.

Canola seed	TCI-13-366-05	2	Clomazone 360 g/L CS	Maturity	< 0.0067	< 0.0067
		2		Maturity	< 0.0067	
		2		Maturity + 3 days	ND	ND
		2		Maturity + 3 days	ND	
		2		Maturity + 7 days	ND	ND
		2		Maturity + 7 days	ND	
		2		Maturity + 14 days	ND	ND
		2		Maturity + 14 days	ND	
		2		Maturity + 21 days	ND	ND
		2		Maturity + 21 days	ND	

a < 0.0067 ppm represents values < LOD; < 0.02 ppm represents values < LOQb DALA = days after last application.

Individual clomazone residue results from field samples are provided in Table 4.

7.4 Freezer Storage Stability

A storage stability study has been conducted to determine the stability of clomazone in rape seed (canola) under deep-freezer conditions (Reference 2). Clomazone residues were stable in rape seed for at least 6 months. Additional storage stability testing will be conducted at ABC Laboratories as part of the on-going ABC Laboratories Study No. 81233 to determine the stability of clomazone in canola under deep-freezer conditions for greater than 6 months. The longest storage for canola seed samples in this study was 6.7 months (203 days).

7.5 Stability of Extracts

The storage stability of the extracts (stored refrigerated at 2 °C to 8 °C) was verified by always storing the procedural recovery samples together with the field samples under the same conditions for each analytical set. Reported recovery results indicate that the extracts were stable during each time interval.

7.6 LOQ and LOD

The limit of quantitation (LOQ) in this study was the lowest level at which acceptable recoveries were achieved during the course of the study (0.02 ppm). The limit of detection (LOD) was defined as $\frac{1}{3}$ the respective LOQ or 0.0067 ppm.

7.7 Moisture Determination

Moisture determination was conducted on one canola seed sample from each trial. Results are provided in Table 4.

7.8 **Protocol/SOP/Method Deviations**

Six protocol deviations were issued for this phase of the study. Two deviations, both dated March 18, 2014, documented one method validation recovery (primary ion transition) at 66%, which is less than the required 70%; and that the Day 0 storage stability will be performed independent of the method verification. The third deviation, dated April 21, 2014, documented one method validation recovery (primary ion transition) at 68%, which is less than the required 70%. The fourth deviation, dated June 2, 2014, documented that the clomazone analytical standard was stored at -10 to -25 °C instead of <-20 °C as required by the CoA. The fifth deviation, dated June 11, 2014, documented a comparison of the original and modified methods without preparing a protocol amendment. The sixth deviation, dated June 16, 2014 documented recoveries for the unmodified method of 68% and 64% (primary ion transition).

Two SOP deviations were issued for this phase of the study, both dated May 12, 2012. The first deviation documented that corrections and additions to original data may have been performed on a day other than the day the original entry was prepared. The second deviation documented that statistical analysis was sometimes performed on rounded numbers in Excel.

The deviations described above are considered to have no impact on the integrity of the study.

8 CONCLUSION

The overall recovery ranges, means, standard deviations, and RSD's for the procedural recoveries analyzed and described in this report indicate that the samples were successfully analyzed for clomazone.

Analysis of three samples from Trial 6 using the original method showed that treated sample results from the modified method and the original method were identical. Supporting data is located in Appendix IV.

9 DISPOSITION OF SAMPLES AND RAW DATA

Samples not consumed in this study, which are judged by the Study Director and Sponsor to be preservable under frozen storage conditions, will be kept in storage at ABC Labs until approval is obtained for transfer or disposal.

All original study-related raw data and the final report will be transferred to the Sponsor's permanent archival facility, EPL Archives, Inc., 45610 Terminal Drive, Sterling, VA 20166. Original facility-related data, as well as verified scans of the raw data and an authentic copy of the Final Analytical Report, will be maintained in the archive facilities of ABC Laboratories, Inc. in Columbia, Missouri.

10 STUDY PERSONNEL

The following personnel were responsible for the conduct of the study:

Job Title

Sample Preparation:

Thomas Balko Kerri Chapin Jessica Matwiczak Mark Tunink Stacy Simpson Vickie Stith Sample Prep Technician Principal Sample Prep Technician Sample Prep Technician Supervisor Sample Prep Supervisor Sr. Sample Prep Technician

Extractions:

Elen Tesfai Christine Ehrmann Assistant Chemist Assistant Chemist

Instrumentation:

Jeffery Brendler Marci Staley Scotty Reynolds Ashley Seifert	Senior Chemist Chemist Assistant Chemist Assistant Chemist			
Calculations:				
Liz Hansen	Laboratory Application Analyst			
<u>Data Review</u> :				
Amy Gaines	Chemist			
Principal Analytical Investigator:				
Carol Rodgers	Chemist			
<u>Report Author:</u>				
Carol Rodgers	Chemist			

11 **REFERENCES**

- 1. Fiedler, E., Eurofins-GAB GmbH Study Code 20061401/01-RVP, entitled "Validation of an Analytical Method for the Determination of Clomazone in Potatoes and Oilseed Rape," dated January 17, 2007.
- Fiedler, E., Eurofins-GAB GmbH Report Number 20054075/01-RSS, entitled "Determination of the Storage Stability of Clomazone in Potatoes and Oil Seed Rape at approximately – 20 °C," dated June 28, 2007.
- 3. Canadian Pest Management Regulatory Agency (PMRA) Residue Chemistry Guidelines Section 9, Crop Field Trials, Regulatory Directive 98-02, 1998.
- 4. Canadian Pest Management Regulatory Agency (PMRA) Revisions to the Residue Chemistry Crop Field Trial Requirements, Regulatory Directive DIR2010-05, December 21, 2010.
- European Commission. Residue Guidance Document SANCO 3029/99 rev.
 4. 11/07/00 Generating and Reporting Methods of Analysis.

6. Rodgers, C.A., ABC Laboratories Study No. 81233, entitled "Evaluation of Frozen Storage Stability of Clomazone Residues in or on Canola Raw Agricultural Commodities," Ongoing.
Final Analytical Report TCI-13-366; 69869

Page 29

TABLES

TABLE OF ABBREVIATIONS

Abbreviations used in Tables 1 through 5 are defined below:

DWB	= dry weight basis
Fort.	= fortification
ID	= identification
LOD	= limit of detection
LOQ	= limit of quantitation
MV	= method validation
<i>m/z</i> .	= mass to charge ratio
n	= number
N/A	= not applicable
ND	= not detected
No.	= number
ppm	= parts per million
RAC	= raw agricultural commodity
RSD	= relative standard deviation
Std. Dev.	= standard deviation
Trt.	= treatment

Page 30

															1					
Sampling to Extraction	Interval (days)	183	183	183	166	166	166	186	186	186	192	192	192	189	189	185	185	178	178	171
	Injection Date	17-Mar-14	17-Mar-14	17-Mar-14	26-Feb-14	26-Feb-14	26-Feb-14	19-Mar-14												
F	Extraction Date	14-Mar-14	14-Mar-14	14-Mar-14	25-Feb-14	25-Feb-14	25-Feb-14	18-Mar-14												
Date Sample	Ground/ Composited	05-Dec-13	05-Dec-13	05-Dec-13	05-Dec-13	06-Dec-13	00_Dec_13													
Lab	Receipt Date	10-Oct-13	15_Nov_13																	
:	Sampling Date	12-Sep-13	12-Sep-13	12-Sep-13	12-Sep-13	12-Sep-13	12-Sep-13	13-Sep-13	13-Sep-13	13-Sep-13	7-Sep-13	7-Sep-13	7-Sep-13	10-Sep-13	10-Sep-13	14-Sep-13	14-Sep-13	21-Sep-13	21-Sep-13	78_San_13
-	Sample Type	Control	Treated	Treated																
	Matrix	Canola seed																		
E	Trt No.	1	2	2	1	2	2	1	2	2	1	2	2	2	2	2	2	2	2	c
	Sample Identification	TCI-13-366-01-01	TCI-13-366-01-02	TCI-13-366-01-03	TCI-13-366-02-01	TCI-13-366-02-02	TCI-13-366-02-03	TCI-13-366-03-01	TCI-13-366-03-02	TCI-13-366-03-03	TCI-13-366-04-01	TCI-13-366-04-02	TCI-13-366-04-03	TCI-13-366-04-04	TCI-13-366-04-05	TCI-13-366-04-06	TCI-13-366-04-07	TCI-13-366-04-08	TCI-13-366-04-09	TCI-13-366-04-10

TABLE 1

Sample Chronology Data

(pa)
ıtinu
(con
_
-
Έ1
SLE 1
ABLE 1

Sample Chronology Data

Sampling to Extraction Interval (days)	171	180	180	180	183	183	183	183	171	171	171	171	171	171	171	171
Injection Date	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	21-Mar-14	17-Mar-14	17-Mar-14	17-Mar-14	17-Mar-14							
Extraction Date	18-Mar-14	18-Mar-14	18-Mar-14	18-Mar-14	21-Mar-14	14-Mar-14	14-Mar-14	14-Mar-14	14-Mar-14							
Date Sample Ground/ Composited	09-Dec-13	09-Dec-13	09-Dec-13	09-Dec-13	09-Dec-13	09-Dec-13	10-Dec-13	10-Dec-13	10-Dec-13	10-Dec-13	10-Dec-13	10-Dec-13	05-Dec-13	05-Dec-13	05-Dec-13	05-Dec-13
Lab Receipt Date	15-Nov-13	10-Oct-13	15-Nov-13													
Sampling Date	28-Sep-13	19-Sep-13	1-Oct-13	1-Oct-13	1-Oct-13	1-Oct-13	24-Sep-13	24-Sep-13	24-Sep-13	24-Sep-13						
Sample Type	Treated	Control	Treated	Control	Treated	Treated	Treated									
Matrix	Canola seed															
Trt No.	2	1	7	2	7	7	7	7	2	7	7	7	1	2	7	4
Sample Identification	TCI-13-366-04-11	TCI-13-366-05-01	TCI-13-366-05-02	TCI-13-366-05-03	TCI-13-366-05-04	TCI-13-366-05-05	TCI-13-366-05-06	TCI-13-366-05-07	TCI-13-366-05-08	TCI-13-366-05-09	TCI-13-366-05-10	TCI-13-366-05-11	TCI-13-366-06-01	TCI-13-366-06-02	TCI-13-366-06-03	TCI-13-366-06-04

Final Analytical Report TCI-13-366; 69869

Final Analytical Report TCI-13-366; 69869

Sampling to Extraction Interval (davs)	t 197	4 197	4 197	4 203	4 203	4 203	4 189	4 189	4 189	4 187		+ 187	+ 187 4 187	$\begin{array}{c cccc} + & 187 \\ \hline + & 187 \\ \hline + & 201 \\ \end{array}$	+ 187 + 187 + 187 + 201	+ 187 + 187 + 187 + 201 + 201 + 201	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Injection Date	21-Mar-14	21-Mar-14	21-Mar-14	21-Mar-14	21-Mar-14	21-Mar-14	22-Mar-14	22-Mar-14	22-Mar-14	26-Mar-14		26-Mar-14	26-Mar-14 26-Mar-1	26-Mar-14 26-Mar-12 26-Mar-12	26-Mar-14 26-Mar-14 26-Mar-14 26-Mar-14	26-Mar-14 26-Mar-14 26-Mar-14 26-Mar-14 26-Mar-14	26-Mar-14 26-Mar-12 26-Mar-14 26-Mar-14 26-Mar-14	26-Mar-14 26-Mar-12 26-Mar-14 26-Mar-14 26-Mar-14 26-Mar-14
Extraction	21-Mar-14	26-Mar-14	26-Mar-14	1 1111 07	26-Mar-14	26-Mar-14 26-Mar-14	26-Mar-14 26-Mar-14 26-Mar-14	26-Mar-14 26-Mar-14 26-Mar-14 26-Mar-14	26-Mar-14 26-Mar-14 26-Mar-14 26-Mar-14 26-Mar-14	26-Mar-14 26-Mar-14 26-Mar-14 26-Mar-14 26-Mar-14 26-Mar-14								
Date Sample Ground/	10-Dec-13	10-Dec-13	10-Dec-13	10-Dec-13	10-Dec-13	10-Dec-13	11-Dec-13	11-Dec-13	11-Dec-13	11-Dec-13	11-Dec-13		11-Dec-13	11-Dec-13 11-Dec-13	11-Dec-13 11-Dec-13 11-Dec-13	11-Dec-13 11-Dec-13 11-Dec-13 11-Dec-13	11-Dec-13 11-Dec-13 11-Dec-13 11-Dec-13 11-Dec-13 11-Dec-13	11-Dec-13 11-Dec-13 11-Dec-13 11-Dec-13 11-Dec-13 13-Dec-13
Lab Receipt Date	10-Oct-13		10-Oct-13	10-Oct-13 10-Oct-13	10-Oct-13 10-Oct-13 10-Oct-13	10-Oct-13 10-Oct-13 10-Oct-13 10-Oct-13	10-Oct-13 10-Oct-13 10-Oct-13 10-Oct-13 10-Oct-13	10-Oct-13 10-Oct-13 10-Oct-13 10-Oct-13 10-Oct-13 10-Oct-13										
Sampling Date	5-Sep-13	5-Sep-13	5-Sep-13	30-Aug-13	30-Aug-13	30-Aug-13	13-Sep-13	13-Sep-13	13-Sep-13	20-Sep-13	20-Sep-13		20-Sep-13	20-Sep-13 6-Sep-13	20-Sep-13 6-Sep-13 6-Sep-13	20-Sep-13 6-Sep-13 6-Sep-13 6-Sep-13	20-Sep-13 6-Sep-13 6-Sep-13 6-Sep-13 19-Sep-13	20-Sep-13 6-Sep-13 6-Sep-13 6-Sep-13 19-Sep-13 19-Sep-13
Sample Tyne	Control	Treated	Treated	Control	Treated	Treated	Control	Treated	Treated	Control	Treated		Treated	Treated Control	Treated Control Treated	Treated Control Treated Treated	Treated Control Treated Treated Control	Treated Control Treated Treated Control Treated
Matrix	Canola seed		Canola seed	Canola seed Canola seed	Canola seed Canola seed Canola seed	Canola seed Canola seed Canola seed Canola seed	Canola seed Canola seed Canola seed Canola seed Canola seed	Canola seed Canola seed Canola seed Canola seed Canola seed Canola seed										
Trt No	1	2	2	1	2	2	1	2	2	1	2	(2	1	7 - 7	6 7 7 7	- 7 7 - 7	7 - - 7 - 7
Samule Identification	TCI-13-366-07-01	TCI-13-366-07-02	TCI-13-366-07-03	TCI-13-366-08-01	TCI-13-366-08-02	TCI-13-366-08-03	TCI-13-366-09-01	TCI-13-366-09-02	TCI-13-366-09-03	TCI-13-366-10-01	TCI-13-366-10-02		TCI-13-366-10-03	TCI-13-366-10-03 TCI-13-366-11-01	TCI-13-366-10-03 TCI-13-366-11-01 TCI-13-366-11-02	TCI-13-366-10-03 TCI-13-366-11-01 TCI-13-366-11-02 TCI-13-366-11-03	TCI-13-366-10-03 TCI-13-366-11-01 TCI-13-366-11-02 TCI-13-366-11-03 TCI-13-366-12-01	TCI-13-366-10-03 TCI-13-366-11-01 TCI-13-366-11-02 TCI-13-366-11-03 TCI-13-366-12-01 TCI-13-366-12-02

TABLE 1 (continued) Sample Chronology Data Page 33

TABLE 2a

Method Validation Recoveries for Clomazone from Canola Seed (Quantitation Ion *m/z* 240/125)

Sample Identification	Set No.	Extraction Date	Injection Date	Fort. Level (ppm)	Residues Found ^a (ppm)	% Recovery
TCI-13-366-02-01	MV2	21-Feb-14	21-Feb-14	N/A	ND	N/A
TCI-13-366-02-01	MV2	21-Feb-14	21-Feb-14	N/A	ND	N/A
TCI-13-366-02-01 + 0.020	MV2	21-Feb-14	21-Feb-14	0.020	0.0180	90
TCI-13-366-02-01 + 0.020	MV2	21-Feb-14	21-Feb-14	0.020	0.0189	95
TCI-13-366-02-01 + 0.020	MV2	21-Feb-14	21-Feb-14	0.020	0.0154	77
TCI-13-366-02-01 + 0.020	MV2	21-Feb-14	21-Feb-14	0.020	0.0131	66
TCI-13-366-02-01 + 0.020	MV2	21-Feb-14	21-Feb-14	0.020	0.0151	76
TCI-13-366-02-01 + 0.50	MV2	21-Feb-14	21-Feb-14	0.50	0.406	81
TCI-13-366-02-01 + 0.50	MV2	21-Feb-14	21-Feb-14	0.50	0.458	92
TCI-13-366-02-01 + 0.50	MV2	21-Feb-14	21-Feb-14	0.50	0.403	81
TCI-13-366-02-01 + 0.50	MV2	21-Feb-14	21-Feb-14	0.50	0.366	73
TCI-13-366-02-01 + 0.50	MV2	21-Feb-14	21-Feb-14	0.50	0.389	78

^aFortified control samples are corrected for mean control contribution, if any.

STATISTICS

Fortification Level:	0.020 ppm	0.50 ppm	Overall
Mean Recovery (%):	81	81	81
Std. Dev. (±):	12	7.0	9.0
RSD (%):	14	8.6	11
Range (%):	66 - 95	73 - 92	66 - 95
n:	5	5	10

TABLE 2b

Method Validation Recoveries for Clomazone from Canola Seed (Confirmation Ion *m/z* 240/89)

Sample Identification	Set No.	Extraction Date	Injection Date	Fort. Level (ppm)	Residues Found ^a (ppm)	% Recovery
TCI-13-366-02-01	MV2	21-Feb-14	21-Feb-14	N/A	ND	N/A
TCI-13-366-02-01	MV2	21-Feb-14	21-Feb-14	N/A	ND	N/A
TCI-13-366-02-01 + 0.020	MV2	21-Feb-14	21-Feb-14	0.020	0.0170	85
TCI-13-366-02-01 + 0.020	MV2	21-Feb-14	21-Feb-14	0.020	0.0223	112
TCI-13-366-02-01 + 0.020	MV2	21-Feb-14	21-Feb-14	0.020	0.0163	82
TCI-13-366-02-01 + 0.020	MV2	21-Feb-14	21-Feb-14	0.020	0.0140	70
TCI-13-366-02-01 + 0.020	MV2	21-Feb-14	21-Feb-14	0.020	0.0157	79
TCI-13-366-02-01 + 0.50	MV2	21-Feb-14	21-Feb-14	0.50	0.432	86
TCI-13-366-02-01 + 0.50	MV2	21-Feb-14	21-Feb-14	0.50	0.469	94
TCI-13-366-02-01 + 0.50	MV2	21-Feb-14	21-Feb-14	0.50	0.400	80
TCI-13-366-02-01 + 0.50	MV2	21-Feb-14	21-Feb-14	0.50	0.410	82
TCI-13-366-02-01 + 0.50	MV2	21-Feb-14	21-Feb-14	0.50	0 388	78

^aFortified control samples are corrected for mean control contribution, if any.

STATISTICS

Fortification Level:	0.020 ppm	0.50 ppm	Overall
Mean Recovery (%):	86	84	85
Std. Dev. (±):	16	6.3	11
RSD (%):	18	7.5	13
Range (%):	70 - 112	78 - 94	70 - 112
n:	5	5	10

TABLE 2c

Method Validation Recoveries for Clomazone from Canola Seed (Quantitation/Confirmation Ion Comparisons)

		Quantita (<i>m/z</i> 24	tion Ion 0/125)		Confirmation Ion (m/z 240/89)						
Fortification Level (ppm)	Residues Found ^a (ppm)	Recovery (%)	Mean Recovery ± RSD	Overall Mean ^b ± RSD	Residues Found ^a (ppm)	Recovery (%)	Mean Recovery ± RSD	Overall Mean ^b ± RSD			
0.020	0.0180	90			0.0170	85					
0.020	0.0189	95			0.0223	112					
0.020	0.0154	77	81 ± 14		0.0163	82	86 ± 18				
0.020	0.0131	66			0.0140	70					
0.020	0.0151	76		91 ⊥ 11	0.0157	79		95 ⊥ 12			
0.50	0.406	81		01 ± 11	0.432	86		65 ± 15			
0.50	0.458	92			0.469	94					
0.50	0.403	81	81 ± 8.6		0.400	80	84 ± 7.5				
0.50	0.366	73			0.410	82					
0.50	0.389	78			0.388	78					

^aCorrected for mean control contribution, if any. ^bOverall mean recovery, calculated from all individual results.

TABLE 3

				Fort.	Residues	
	Set	Extraction	Injection	Level	Found ^{a,b}	%
Sample Identification	No.	Date	Date	(ppm)	(ppm)	Recovery
TCI-13-366-02-01	1 short	25-Feb-14	26-Feb-14	N/A	ND	N/A
TCI-13-366-02-01 + 0.020	1 short	25-Feb-14	26-Feb-14	0.020	0.0161	81
TCI-13-366-02-01 + 0.50	1 short	25-Feb-14	26-Feb-14	0.50	0.477	95
TCI-13-366-01-01	2	14-Mar-14	17-Mar-14	N/A	< 0.0067	N/A
TCI-13-366-01-01 + 0.020	2	14-Mar-14	17-Mar-14	0.020	0.0180	90
TCI-13-366-01-01 + 0.50	2	14-Mar-14	17-Mar-14	0.50	0.546	109
TCI-13-366-03-01	4	18-Mar-14	19-Mar-14	N/A	ND	N/A
TCI-13-366-03-01 + 0.020	4	18-Mar-14	19-Mar-14	0.020	0.0184	92
TCI-13-366-03-01 + 0.50	4	18-Mar-14	19-Mar-14	0.50	0.560	112
TCI-13-366-03-01 + 0.020	4	18-Mar-14	19-Mar-14	0.020	0.0187	94
TCI-13-366-07-01	7	21-Mar-14	21-Mar-14	N/A	< 0.0067	N/A
TCI-13-366-07-01 + 0.020	7	21-Mar-14	21-Mar-14	0.020	0.0200	100
TCI-13-366-07-01 + 0.50	7	21-Mar-14	21-Mar-14	0.50	0.495	99
TCI-13-366-07-01 + 0.020	7	21-Mar-14	21-Mar-14	0.020	0.0187	94
TCI-13-366-10-01	8	26-Mar-14	26-Mar-14	N/A	< 0.0067	N/A
TCI-13-366-10-01 + 0.020	8	26-Mar-14	26-Mar-14	0.020	0.0136	68
TCI-13-366-10-01 + 0.50	8	26-Mar-14	26-Mar-14	0.50	0.499	100

Laboratory Fortification (Procedural) Recoveries for Clomazone from Canola Seed

^aFortified control samples are corrected for control contribution, if any. ^bValues <LOD are reported as <0.0067 ppm; values <LOQ are reported as <0.02 ppm.

STATISTICS

Fortification Level:	0.020 ppm	0.50 ppm	Overall
Mean Recovery (%):	88	103	95
Std. Dev. (±):	11	7.2	12
RSD (%):	12	7.0	12
Range (%):	68 - 100	95 - 112	68 - 112
n:	7	5	12

TABLE 4

Residues of Clomazone Found in Canola Seed RAC Samples

Sample Identification	Matrix	Treatment ID	Sampling Event (nominal)	Set No.	% Moisture (DWB)	Residues Found ^a (ppm)
TCI-13-366-01-01	Canola seed	1	Maturity	2	11.87	< 0.0067
TCI-13-366-01-02	Canola seed	2	2 Maturity			< 0.0067
TCI-13-366-01-03	Canola seed	2	Maturity	2		< 0.0067
TCI-13-366-02-01	Canola seed	1	1 Maturity 1		16.59	ND
TCI-13-366-02-02	Canola seed	2	Maturity	1 short		ND
TCI-13-366-02-03	Canola seed	2	2 Maturity			ND
TCI-13-366-03-01	Canola seed	1	Maturity	4	9.83	ND
TCI-13-366-03-02	Canola seed	2	Maturity	4		< 0.0067
TCI-13-366-03-03	Canola seed	2	Maturity	4		ND
TCI-13-366-04-01	Canola seed	1	Maturity	4	20.55	< 0.0067
TCI-13-366-04-02	Canola seed	2	Maturity	4		ND
TCI-13-366-04-03	Canola seed	2	Maturity	4		ND
TCI-13-366-04-04	Canola seed	2	Maturity + 3 days	4		< 0.0067
TCI-13-366-04-05	Canola seed	2	Maturity + 3 days	4		ND
TCI-13-366-04-06	Canola seed	2	Maturity + 7 days	4		< 0.0067
TCI-13-366-04-07	Canola seed	2	Maturity + 7 days	4		< 0.0067
TCI-13-366-04-08	Canola seed	2	Maturity + 14 days	4		< 0.0067
TCI-13-366-04-09	Canola seed	2	Maturity + 14 days	4		ND
TCI-13-366-04-10	Canola seed	2	Maturity + 21 days	4		ND
TCI-13-366-04-11	Canola seed	2	Maturity + 21 days	4		ND
TCI-13-366-05-01	Canola seed	1	Maturity	4	8.92	< 0.0067
TCI-13-366-05-02	Canola seed	2	Maturity	4		< 0.0067
TCI-13-366-05-03	Canola seed	2	Maturity	4		< 0.0067
TCI-13-366-05-04	Canola seed	2	Maturity + 3 days	7		ND
TCI-13-366-05-05	Canola seed	2	Maturity + 3 days	7		ND
TCI-13-366-05-06	Canola seed	2	Maturity + 7 days	7		ND
TCI-13-366-05-07	Canola seed	2	Maturity + 7 days	7		ND
TCI-13-366-05-08	Canola seed	2	Maturity + 14 days	7		ND
TCI-13-366-05-09	Canola seed	2	Maturity + 14 days	7		ND
TCI-13-366-05-10	Canola seed	2	Maturity + 21 days	7		ND
TCI-13-366-05-11	Canola seed	2	Maturity + 21 days	7		ND

^aValues <LOD are reported as <0.0067 ppm; values <LOQ are reported as <0.02 ppm.

TABLE 4 (continued)

Residues of Ciomazone Found in Canola Seeu RAC Samples
--

Sample Identification	Matrix	Treatment ID	Sampling Event (nominal)	Set No.	% Moisture (DWB)	Residues Found ^a (ppm)
TCI-13-366-06-01	Canola seed	1	Maturity	2	18.25	ND
TCI-13-366-06-02	Canola seed	2	Maturity	2		ND
TCI-13-366-06-03	Canola seed	2	Maturity	2		< 0.0067
TCI-13-366-06-04	Canola seed	4	Maturity	2		< 0.02
TCI-13-366-06-05	Canola seed	4	Maturity	2		< 0.0067
TCI-13-366-07-01	Canola seed	1	Maturity	7	13.70	< 0.0067
TCI-13-366-07-02	Canola seed	2	Maturity	7		ND
TCI-13-366-07-03	Canola seed	2	Maturity	7		ND
TCI-13-366-08-01	Canola seed	1	Maturity	7	15.41	ND
TCI-13-366-08-02	Canola seed	2	Maturity	7		ND
TCI-13-366-08-03	Canola seed	2	Maturity	7		ND
TCI-13-366-09-01	Canola seed	1	Maturity	7	8.81	ND
TCI-13-366-09-02	Canola seed	2	Maturity	7		ND
TCI-13-366-09-03	Canola seed	2	Maturity	7		ND
TCI-13-366-10-01	Canola seed	1	Maturity	8	35.28	< 0.0067
TCI-13-366-10-02	Canola seed	2	Maturity	8		ND
TCI-13-366-10-03	Canola seed	2	Maturity	8		ND
TCI-13-366-11-01	Canola seed	1	Maturity	8	18.37	< 0.0067
TCI-13-366-11-02	Canola seed	2	Maturity	8		ND
TCI-13-366-11-03	Canola seed	2	Maturity	8		ND
TCI-13-366-12-01	Canola seed	1	Maturity	8	13.06	ND
TCI-13-366-12-02	Canola seed	2	Maturity	8		ND
TCI-13-366-12-03	Canola seed	2	Maturity	8		<0.0067

^aValues <LOD are reported as <0.0067 ppm; values <LOQ are reported as <0.02 ppm.

TABLE 5

Comparison of Clomazone Found in Canola Seed RAC Samples (Original Method vs Modified Method)

			Ori	ginal			Mo	dified	
Sample	Trt		Extraction	Injection	Residues Found ^{a,b}		Extraction	Injection	Residues Found ^{a,b}
Identification	D	Set No.	Date	Date	(mdd)	Set No.	Date	Date	(mdd)
TCI-13-366-06-01	01	10 long	15-May-14	19-May-14	<0.0067	2	14-Mar-14	17-Mar-14	ND
TCI-13-366-06-02	02	10 long	15-May-14	19-May-14	<0.0067	2	14-Mar-14	17-Mar-14	ND
TCI-13-366-06-03	02	10 long	15-May-14	19-May-14	<0.0067	2	14-Mar-14	17-Mar-14	<0.0067
^a Fortified control samples (^b Values <i are="" od="" reported<="" td=""><td>are corr d as <0</td><td>ected for col 0067 mm. y</td><td>ntrol contribution, i values <1.00 are re</td><td>if any. morted as <0 02 nn</td><td>Ē</td><td></td><td></td><td></td><td></td></i>	are corr d as <0	ected for col 0067 mm. y	ntrol contribution, i values <1.00 are re	if any. morted as <0 02 nn	Ē				

Note: Recoveries for Set No. 10 long were 68 and 64% for the LOQ and 25× LOQ fortifications, respectively.

Final Analytical Report TCI-13-366; 69869

Final Analytical Report TCI-13-366; 69869

Page 41

CHROMATOGRAMS

The following chromatograms may show a variation in the analyte retention times from one set to another due to different instrumentation parameters. In all cases, the analytical standard responses correlate with the respective samples run within an analytical set. For specific instrumentation conditions, see Section 6.4.

FIGURE 1

TYPICAL CLOMAZONE HPLC STANDARD Set #7

Clomazone Standard, 0.3 ng/mL Peak Response (area): 349382

TYPICAL CLOMAZONE HPLC STANDARD Set #7

Clomazone Standard, 0.15 ng/mL Peak Response (area): 179390

FIGURE 3

TYPICAL CLOMAZONE HPLC STANDARD Set #7

Clomazone Standard, 0.05 ng/mL Peak Response (area): 62242

TYPICAL CLOMAZONE HPLC STANDARD Set #7

Clomazone Standard, 0.03 ng/mL Peak Response (area): 40366

FIGURE 5

TYPICAL CLOMAZONE HPLC STANDARD Set #7

Clomazone Standard, 0.01 ng/mL Peak Response (area): 16644

FIGURE 6

CLOMAZONE CALIBRATION CURVE Set #7

Calibration Data

Conc. (ng/mL)	Peak Response
0.03	40366
0.01	16644
0.05	62242
0.15	179390
0.05	60191
0.03	39082
0.15	181232
0.3	349382

Calibration Curve

CANOLA SEED, CONTROL SAMPLE Set #1 short

Sample TCI-13-366-02-01

Peak Response (area): 893 Retention Time: 3.96 minutes Clomazone Reported: None detected^a

CANOLA SEED, CONTROL SAMPLE Set #7

Sample TCI-13-366-07-01

Peak Response (area): 5167 Retention Time: 3.90 minutes Clomazone Reported: <0.0067 ppm

CANOLA SEED, CONTROL SAMPLE Set #7

Sample Name: "60860-080" Sample ID: "TCI-13-366-08-01	" Ei	le: "H 60860 03212014C wiff"
Book Name: "Clamazona" Mass(as): "240.1/125.0 Do"	ie. 1109009052120140.will	
Commont: "" Appotation: ""		
Commission Annotation.		
Sample Thex. 21		1305.
Concentration: N/A		1.565
Concentration: N/A		1.205
Carculated Conc. < 0		1.200
Acq. Date: 3/21/2014		4.4-5
Acq. Time: 11.32.05 PM		1.1e5
Modified: Yes		1.065
Proc. Algorithm: Specify Parameters - MO III		1.000
Noise Percentage: 50		9.0e4
Base. Sub. Window: 1.00 min		
Peak-Split. Factor: 2		8.0e4
Report Largest Peak: No	s	
Min. Peak Height: 100.00 cps	сb	7.0e4
Min. Peak Width: 0.00 sec	ity,	
Smoothing Width: 3 points	nsi	6.0e4
RT Window: 15.0 sec	Ite	
Expected RT: 3.91 min	-	5.0e4
Use Relative RT: No		
		4.0e4
Int. Type: Base To Base		
Retention Time: 3.89 min		3.0e4
Area: 2508 counts		
Height: 8.86e+002 cps		2.0e4
Start Time: 3.86 min		
End Time: 3.97 min		1.0e4
		3 193 49 3 56 3.89 4.13 4 49 4 59
		0.0 0.2 0.4 0.0 0.0 4.0 4.0 4.0 Time min
		Time, min

Sample TCI-13-366-08-01

Peak Response (area): 2508 Retention Time: 3.89 minutes Clomazone Reported: None detected^a

CANOLA SEED, FORTIFIED CONTROL SAMPLE Set #1 short

Sample TCI-13-366-02-01 + 0.020, Fortified Control @ 0.020 ppm

Peak Response (area): 9944 Corrected Clomazone Reported: 0.0161 ppm Percent Recovery: 81%

CANOLA SEED, FORTIFIED CONTROL SAMPLE Set #7

Sample TCI-13-366-07-01 + 0.020, Fortified Control @ 0.020 ppm

Peak Response (area): 28294 Corrected Clomazone Reported: 0.0200 ppm Percent Recovery: 100%

FIGURE 12

CANOLA SEED, FORTIFIED CONTROL SAMPLE Set #7

Sample TCI-13-366-07-01 + 0.50, Fortified Control @ 0.50 ppm

Peak Response (area): 119375 Corrected Clomazone Reported: 0.495 ppm Percent Recovery: 99%

FIGURE 13

CANOLA SEED, TREATED SAMPLE Set #2

Sample TCI-13-366-01-02

Peak Response (area): 3733 Clomazone Reported: <0.0067 ppm

CANOLA SEED, TREATED SAMPLE Set #2

Sample TCI-13-366-06-04

Peak Response (area): 8103 Clomazone Reported: <0.02 ppm

CANOLA SEED, TREATED SAMPLE Set #4

Sample TCI-13-366-03-02

Peak Response (area): 2338 Clomazone Reported: <0.0067 ppm

FIGURE 16

CANOLA SEED, TREATED SAMPLE Set #4

Sample TCI-13-366-04-04

Peak Response (area): 2365 Clomazone Reported: <0.0067 ppm

CANOLA SEED, TREATED SAMPLE Set #4

Sample TCI-13-366-05-03

Peak Response (area): 2806 Clomazone Reported: <0.0067 ppm

FIGURE 18

CANOLA SEED, TREATED SAMPLE Set #7

Sample TCI-13-366-07-02

Peak Response (area): 3281 Clomazone Reported: None detected^a

CANOLA SEED, TREATED SAMPLE Set #7

Sample TCI-13-366-08-03

Peak Response (area): 3214 Clomazone Reported: None detected^a

FIGURE 20

CANOLA SEED, TREATED SAMPLE Set #7

Sample TCI-13-366-09-02

Peak Response (area): 3031 Clomazone Reported: None detected^a

CANOLA SEED, TREATED SAMPLE Set #8

Sample TCI-13-366-10-03

Peak Response (area): 3366 Clomazone Reported: None detected^a

CANOLA SEED, TREATED SAMPLE Set #8

Sample TCI-13-366-11-02

Peak Response (area): 3089 Clomazone Reported: None detected^a

TYPICAL CLOMAZONE HPLC STANDARD Set #MV2 (Confirmatory Ion)

Clomazone Standard, 0.3 ng/mL Peak Response (area): 25033
TYPICAL CLOMAZONE HPLC STANDARD Set #MV2 (Confirmatory Ion)

Clomazone Standard, 0.15 ng/mL Peak Response (area): 11814

TYPICAL CLOMAZONE HPLC STANDARD Set #MV2 (Confirmatory Ion)

Clomazone Standard, 0.05 ng/mL Peak Response (area): 4010

TYPICAL CLOMAZONE HPLC STANDARD Set #MV2 (Confirmatory Ion)

Clomazone Standard, 0.03 ng/mL Peak Response (area): 2603

TYPICAL CLOMAZONE HPLC STANDARD Set #MV2 (Confirmatory Ion)

Clomazone Standard, 0.01 ng/mL Peak Response (area): 1120

FIGURE 28

CLOMAZONE CALIBRATION CURVE Set #MV2 (Confirmatory Ion)

Calibration Data

Conc. (ng/mL)	Peak Response
0.01	1120
0.03	2603
0.03	2374
0.05	4010
0.15	11814
0.3	25033

Calibration Curve

CANOLA SEED, CONTROL SAMPLE Set #MV2 (Confirmatory Ion)

Sample TCI-13-366-02-01

Peak Response (area): 0 Expected Retention Time: 3.90 minutes Clomazone Reported: None detected

FIGURE 30

CANOLA SEED, FORTIFIED CONTROL SAMPLE Set #MV2 (Confirmatory Ion)

Sample TCI-13-366-02-01, Fortified Control @ 0.02 ppm

Peak Response (area): 1565 Corrected Clomazone Reported: 0.0170 ppm Percent Recovery: 85%

FIGURE 31

CANOLA SEED, FORTIFIED CONTROL SAMPLE Set #MV2 (Confirmatory Ion)

Sample TCI-13-366-02-01, Fortified Control @ 0.50 ppm

Peak Response (area): 7723 Corrected Clomazone Reported: 0.469 ppm Percent Recovery: 94% Final Analytical Report TCI-13-366; 69869

APPENDIX I

Analytical Method and Modification

Eurofins-GAB GmbH Report, Study Code 20061401/01-RVP, entitled, "Validation of an Analytical Method for the Determination of Clomazone in Potatoes and Oilseed Rape" dated January 17, 2007

Method Modification to 20061401/01-RVP, dated April 23, 2014

Final Analytical Report TCI-13-366; 69869

DOC. NO. 22 CAZ

Clomazone

Final Report

20061401/01-RVP

Final Report

Validation of an Analytical Method for the Determination of Clomazone in Potatoes and Oilseed Rape

Data Requirement

EC Guidance document on residue analytical methods, SANCO/825/00 rev. 7 (17/03/2004)

Study Director

Ellen Fiedler

Date

17 January 2007

Testing Facility

Sponsor

eurofins-GAB GmbH Eutinger Str. 24 D-75223 Niefern-Öschelbronn Germany Cheminova A/S P.O. Box 9 DK-7620 Lemvig Denmark

Study Identification Codes:

Test item: Clomazone Study code of testing facility: 20061401/01-RVP

Page 1 of 32

Cheminova A/S

Page 74

Clomazone	Final Report	20061401/01-RVP

Statement of Confidentiality

This report contains confidential and proprietary information of Cheminova A/S that must not be disclosed to anyone except the employees of this company or to persons authorized by law or judicial judgement without the expressed and written approval of the sponsor.

Statement of Compliance with the Principles of Good Laboratory Practice

The study described in this analytical report was conducted in compliance with the most recent edition of:

- The Principles of Good Laboratory Practice (GLP), (Chemical Act, attachment 1, Federal Republic of Germany)
- · The OECD Principles of Good Laboratory Practice

The German requirements are based on the OECD Principles of Good Laboratory Practice that are accepted by regulatory authorities throughout the European Community, the United States of America (FDA and EPA) and Japan (MHW, MAFF and MITI) on the basis of intergovernmental agreements.

Head of testing facility: (Dr. Susanne Timmermann / Dr. Hans Eberhardt)

18.1.07 Aul

Date //Signature

Study director: (Ellen Fiedler) ATOLOT Ellen Fiedles Date / Signature

Page 2 of 32

Clomazone	Final Report	20061401/01-RVP

Statement of Quality Assurance Unit

Study code:	20061401/01-RVP
Study title:	Validation of an Analytical Method for the Determination of Clomazone in Potatoes and Oilseed Rape Seed

Study plan, experimental phase, draft report and final report of this study were audited by the Quality Assurance Unit. The dates are given below:

	Date of audit	Date of report
Study Plan:	21 December 2006	21 December 2006
Experimental Phase:	21 December 2006	21 December 2006
Draft Report:	09 January 2007	09 January 2007
Final Report:	17 January 2007	17 January 2007

Quality assurance: (Dietmar Feiter)

17.1. 2007 V Date / Signature

Page 3 of 32

Clomazone

Final Report

20061401/01-RVP

Contents

Title Page	.1	
Statement of Confidentiality		
Statement of Compliance with the Principles of Good Laboratory Practice	.2	
Statement of Quality Assurance Unit	.3	
Contents	.4	
List of Tables	.5	
List of Figures	.5	
1 Summary	.6	
2 Time Schedule	.8	
3 Study Objective	.8	
4 Materials and Methods	.9	
4.1 Test Item	.9	
4.2 Sample Material1	0	
4.3 Procedure for Determination of Clomazone1	0	
4.3.1 Equipment	0	
4.3.2 Reagents1	0	
4.3.3 Extraction Procedure for Potato1	1	
4.3.4 Extraction Procedure for Rape Seed1	2	
4.3.5 Gel Permeation Cleanup1	3	
4.3.6 Silica Gel Cleanup1	3	
4.3.7 Determination of Dry Matter1	3	
4.3.8 Analysis by HPLC-MS/MS	4	
4.3.9 Calculation of Residues 1	6	
5 Deviations from the Study Plan	6	
6 Results1	7	
6.1 Recoveries (Accuracy)1	7	
6.2 Blanks	8	
6.3 Repeatability (Precision)	8	
6.4 Limit of Quantification	8	
6.5 Linearity	8	
6.6 Specificity1	8	
6.7 Matrix Effects	9	
6.8 Stability of Clomazone in Final Sample Extracts	9	
7 Discussion and Conclusions	0	
8 Archiving	0	
9 References	1	
10 Distribution	1	

Page 4 of 32

Clomazone	Final Report	20061401/01-RVP
Appendix A: Calibration	Data	
Appendix B: Mass Spect	rum	

List of Tables

Table 1:	Summary of recoveries	7
Table 2:	Recovery of clomazone from potato and rape seed samples 1	7
Table 3:	Checking for possible matrix effects	9
Table 4:	Checking for stability of clomazone in potato extracts1	9

List of Figures

Figure 1:	Calibration data for analysis of clomazone in acetonitrile/water (1:1) by	
	HPLC/MS-MS, mass transition MRM 240.0 → 124.9 (quantifier)	22
Figure 2:	Calibration data for analysis of clomazone in acetonitrile/water (1:1) by	
	HPLC/MS-MS, mass transition MRM 240.0 → 89.1 (qualifier)	23
Figure 3:	Product ion spectrum of clomazone parent ion $(m/z = 240)$. The daughter	
	ion at $m/z = 124.9$ was used for quantification, the daughter ion at $m/z =$	
	89.1 was used for qualification	24
Figure 4:	Typical chromatogram of a clomazone 10 ng/mL standard in	
	acetonitrile/water (1:1, v/v)	25
Figure 5:	Typical chromatogram of a clomazone recovery sample in potato	
	matrix, fortified at 0.005 mg/kg	26
Figure 6:	Typical chromatogram of a blank potato sample	27
Figure 7:	Typical chromatogram of a clomazone 5 ng/mL standard in	
	acetonitrile/water (1:1, v/v)	28
Figure 8:	Typical chromatogram of a clomazone recovery sample in rape	
	matrix, fortified at 0.005 mg/kg	29
Figure 9:	Typical chromatogram of a blank rape sample	30
Figure 10:	Certificate of analysis for clomazone test substance	31
Figure 11:	GLP certificate of testing facility	32

Page 5 of 32

Clomazone	Final Report	20061401/01-RVP

1 Summary

A method for determination of clomazone in potatoes and oilseed rape seed was successfully validated according to guideline SANCO/825/00 rev. 7.

The principle sample preparation scheme is summarised below:

	Potato	Rape seed	
Extraction:	Cold extraction with acetone/water (2:1)	Cold extraction with acetonitrile/acetone in presence of Calflo E and Celite	
Clean-up:	Liquid-liquid partitioning into cyclohexane/ethyl acetate (1:1), GPC, chromatography on silica gel	GPC, chromatography on silica gel	
Final analysis:	HPLC-MS/MS, APCI post	HPLC-MS/MS, APCI positive ion mode	

Limit of quantification: 0.005 mg/kg

Repeatability:	5 % to 9 % relative standard deviation for potato matrix and 4 % to 8 % relative standard deviation for rape seed matrix.
Blanks:	In untreated control samples of potatoes and rape seed, clomazone was not detectable (< 30% of LOQ).
Specificity:	The method is highly specific for the clomazone parent compound (mass transition from the positive charged molecule ion at $m/z = 240.0$ to the fragment ions $m/z = 124.9$ (quantification) and $m/z = 89.1$ (qualification) in MS/MS mode).
Linearity:	Linear detector response from 1 ng/mL to 150 ng/mL.

Clomazone	Final Report	20061401/01-RVP

Table 1: Summary of recoveries

Mass transition 240.0 → 124.9 (Quantification)				
Matrix	Fortification Level (mg/kg)	n	Mean Recovery ± RSD (%)	Overall Mean Recovery ± RSD (%)
Potato	0.005	5	82 ± 5	94 + 7
	0.05	5	86 ± 9	04 ± /
Descend	0.005	5	91 ± 4	02 + 6
Rape seed	0.05	5	92 ± 8	92 ± 0

Mass transition 240.0 → 89.1 (Qualification)				
Matrix	rix Fortification Level n Mean Recovery (mg/kg) ± RSD (%)		Overall Mean Recovery ± RSD (%)	
Datata	0.005	5	86 ± 5	96 . 7
Polalo	0.05	5	86 ± 9	00 ± /
Dana acad	0.005	5	89 ± 3	90 1 7
Rape seed	0.05	5	88 ± 9	09 ± /

Page 7 of 32

Clor	azone	Final Report	20061401/01-RVP
2	Time Schedule		
	Study initiation date:		20 December 2006
	Start of the experimental pha	se:	21 December 2006
	End of the experimental phas	e:	02 January 2007
	Draft Report:		03 January 2007
	Study completion date:		17 January 2007

3 Study Objective

The aim of the current study was the validation of an analytical method for the determination of clomazone in potato and rape seed to meet the requirements of guideline SANCO/825/00 rev. 7 (17/03/2004).

Page 8 of 32

Clomazone	Final Report	20061401/01-RVP

4 Materials and Methods

4.1 Test Item

General name:	Clomazone
Structure:	
CAS No.:	81777-89-1
Molecular weight:	239.7
Formula:	C ₁₂ H ₁₄ CINO ₂
Supplier:	Cheminova A/S
GAB code:	20061401
Lot number:	HKA p. 4174
Purity:	99.7 %
Certificate of analysis:	05 September 2006
Expiry:	20 August 2008
Storage:	Deep frozen (below -18 °C)

A stock solution of the test item was prepared in acetonitrile (1000 μ g/mL). From this stock solution a 10 μ g/mL dilution and a 1 μ g/mL dilution in acetonitrile were prepared and used for fortification. Another 1 μ g/mL dilution was prepared in acetonitrile/water (1:1) which was used for for the preparation of calibration standards.

All standard solutions were stored refrigerated (4 °C nominally) in the dark.

Page 9 of 32

Clomazone	Final Report	20061401/01-RVP
THE R. LEWIS CO., LANSING MICH.		

4.2 Sample Material

Potato and rape seed matrix not treated with clomazone were taken from control samples of GAB-studies 20054075/F1-FPPO and 20054075/F1-FPRA.

Samples were homogenized with addition of dry ice in a large-scale laboratory mixer. Aliquots of the samples (500 g - 1000 g) were taken as laboratory sub samples.

All samples were stored deep-frozen (nominally at ≤ -18 °C) until analysis.

4.3 Procedure for Determination of Clomazone

4.3.1 Equipment

Analytical balances Automated gel permeation chromatography system (Abimed Cleanup XL) Eppendorf pipettes Hamilton pipettes HPLC with MS/MS detector (ThermoFinnigan TSQ Quantum) Laboratory dispenser (Silent Crusher M, Heidolph) Laboratory standard glassware and equipment Rotary vacuum evaporator (Heidolph Laborota 4000) Thermostated oven Ultrasonic bath

4.3.2 Reagents

Acetone, GC grade (Merck No. 1.00012) Acetonitrile, gradient grade (Baker No. 9012) Acetonitrile, gradient grade (Merck No. 1.00030) Cyclohexane, pestanal (Riedel-de Haën No. 34496) Ethyl acetate, pestanal (Riedel-de Haën No. 34490) Iso-Octane, GC grade (Merck No. 1.15440) Methanol, LC-MS grade (Riedel-de Haën No. 34966) N-Hexane, pestanal (Fluka No. 52749) Toluene, pestanal (Riedel-de Haën No. 34494) Water, for chromatography (Merck No. 1.15333) Water, deionized (prepared at test site)

Page 10 of 32

Clomazone	Final Report	20061401/01-RVP

Eluent 1 (n-hexane/toluene 65:35 (v/v)) Eluent 2 (toluene) Eluent 3 (toluene/acetone 95:5 (v/v))

Calflo E (Ehrenstorfer No. E 10935000) Celite 545 (Merck No. 1.02693) Silica gel 60, 0.063-0.200 mm particle size (Merck No. 1.07734), deactivated with 1.5 % water Sodium chloride, p.a. (Riedel-de Haën No. 31434) Sodium sulfate, anhydrous (Merck No. 1.06649)

Folded filters 595 ½ (Schleicher & Schuell No. 10311647) Glass fibre filters 691 (VWR No. 516-0036) Polyethylene frits (Varian No. 12131021) Single use filters Bulk GHP Acrodisc, 0.45 μm GHP membrane (Pall No. 4562) Single use filters Minisart SRP 15, 0.45 μm PTFE membrane (Sartorius No. 17559)

4.3.3 Extraction Procedure for Potato

25 g (weight W) of the pre-homogenized sample is accurately weighed into a 500 mL glass bottle. In case of recovery experiments the fortification standard solution is added at this step.

80 mL water is added to the sample in order to adjust the total water content to 100 g. Afterwards the sample is allowed to stand for five minutes.

200 mL acetone and 35 g sodium chloride are added and the sample is homogenized for 2 min at high speed with a laboratory dispenser. Then 100 mL cyclohexane/ethyl acetate (1:1, v/v) is added and mixed again for 1 min. After extraction the sample is allowed to stand for several minutes so that the phases can separate.

200 mL (V_{R1}) of the upper organic phase is measured out using a graduated cylinder and filtered through a cellulose folded filter filled with 100 g anhydrous sodium sulphate. The eluate is collect in a 500 mL round-bottom flask. The filter cake and graduated cylinder is rinsed four times with each \approx 20 mL ethyl acetate/cyclohexane (1:1, v/v). The combined filtrate is rotary-evaporated (40 °C water bath temperature) to an aqueous oily residue (\approx 1 mL).

Page 11 of 32

Clomazone	Final Report	20061401/01-RVP

The residue is reconstituted in 7.5 mL ethyl acetate and sonicated to dissolve the residue completely. 7.5 mL cyclohexane are added to obtain a total extract volume of 15 mL (V_{R2}). Finally 5 g of a mixture of sodium sulphate/sodium chloride (1:1, w/w) is added and the mixture and swirled. After the salt mixture has settled the extract is filtered through a single-use 0.45 μ m membrane filter (0.45 μ m into a glass vial for GPC injection.

4.3.4 Extraction Procedure for Rape Seed

25 g (weight W) of the pre-homogenized sample is accurately weighed into a 500 mL glass bottle. In case of recovery experiments the fortification standard solution is added at this step.

25 mL acetone, 225 mL acetonitrile, 20 g Calflo E and 10 g Celite 545 are added and the mixture is homogenised for 2 min at high speed using a laboratory dispenser.

The suspension with suction is filtered through a glass fiber filter in a Buchner porcelain funnel. Vacuum is gently applied to obtain a minimum of 120 mL filtrate.

The filtrate is filtered through a dry fluted cellulose filter paper covered with 3 g Calflo E into a measuring cylinder. 80 mL of filtrate (volume V_{R1}) is transferred to a 500 mL round-bottom flask rinsing the measuring cylinder twice with each 20 mL acetone. The solvent is removed by rotary evaporation (water bath temperature 40 °C) until an oily residue of approx. 1 mL remains.

The residue is reconstituted in 7.5 mL ethyl acetate and sonicated to dissolve the residue completely. 7.5 mL cyclohexane are added to obtain a total extract volume of 15 mL (V_{R2}). Finally 5 g of a mixture of sodium sulphate/sodium chloride (1:1, w/w) is added and the mixture and swirled. After the salt mixture has settled the extract is filtered through a single-use 0.45 μ m membrane filter into a glass vial for GPC injection.

Page 12 of 32

Clomazone		Final Report	20061401/01-RVP
4.3.5	Gel Permeation Cle	anup	
	Each extract from 4 conditions:	4.3.3 and 4.3.4 is purified u	using the following GPC
	Column: Glass column (25 mm 50 g BioBeads S-X3, 2		580 mm length) filled with 0 mesh (BioRad)
	Flow rate:	5 mL/min ethyl acetate/cyclo	hexane (1:1, v/v)
	Injection volume:	4 mL (V _{R3})	
	Collection program:	gram: collect 19.0 – 29.0 min	

Collect the GPC fraction in a 100 mL round-bottom flask and rotary evaporate to ≈ 1 mL (bath temperature 40 °C). Add 5 mL isooctane and rotary-evaporate to ≈ 1 mL (40 °C), then dissolve residue in 5 mL isooctane.

4.3.6 Silica Gel Cleanup

Preparation of chromatographic columns: In a 5 mL syringe tube with PE frit on the bottom 1.0 g of deactivated silica gel (1.5 % water) is added. Another PE frit is put on the top of the silica gel and a 5 mm layer of anhydrous sodium sulphate is added. The column is rinsed with 5 mL hexane.

The isooctane solution from 4.3.5 is transferred onto the silica gel column. The flask is rinsed with 1 mL hexane and the rinse is added to the column. Afterwards the flask is rinsed with 4 mL eluent 1 (n-hexane/toluene 65:35) which is applied to the column followed by another 4 mL of eluent 1. Then the columns are rinsed with 2 x 4 mL eluent 2 (toluene). All eluates so far are discarded.

Now 50 mL round bottom flasks are placed under the columns and the analyte is eluted with 2 x 4 mL eluent 3 (toluene/acetone 95:5). The collected eluates are evaporated to near dryness (40 °C water bath temperature), the remaining solvent is removed with a slight stream of nitrogen. The residue is reconstituted with 2 mL acetonitrile/water (1:1, v/v) and filtered over 0.45 μ m PTFE filters into the HPLC vial.

4.3.7 Determination of Dry Matter

Dry matter of potato matrix was determined by weighing about 50 g sample into an aluminium dish and determining the loss of water after drying overnight at 105 °C in a laboratory oven. The water content of potato matrix was determined to be 82%.

Page 13 of 32

Clomazone		Final Report	20061401/01-RVP
4.3.8	Analysis by HPLC-	-MS/MS	
	HPLC system:	Thermo Surveyor MS pump	with autosampler
	Column:	Thermo HyPurity Aquastar, mean particle size (No. 22 guard column	, 150 mm x 3 mm i.d., 5 μm 2505-153030) and Aquastar
	Injection volume:	10 µL	
	Flow rate:	0.5 mL/min	
	Temperature:	40 °C	
	Mobile phase:	A: water B: methanol	

Time (min)	% A	% B	Gradient
0.00	80	20	-
6.00	10	90	linear
7.00	10	90	-

Washing the column with 100 % acetonitrile for 2 minutes and afterwards equilibration at initial conditions for 2.5 minutes.

Retention time:	Clomazone: approx. 6.1 min		
Detector:	ThermoFinnigan TSQ Quantum triple quadrupole system		
	Ionization mode:	APCI	
	Source polarity:	positive	
	Vaporizer temperature:	400 °C	
	Capillary temperature:	250 °C	
	Capillary offset:	35 V	
	Sheath gas flow:	37 units	
	Auxiliary gas flow:	off	
	Collision gas:	Argon 2.0 mTorr	
	Quadrupole 1 peak width:	0.7 amu	
	Quadrupole 3 peak width:	0.7 amu	
	Scan time:	0.1 sec	
	Scan width:	0.1 amu	

Page 14 of 32

Final Analytical Report TCI-13-366; 69869

Page 88

Clomazone	Final Report	20061401/01-RVP

Source and detection parameters for MS/MS experiment	Source and detection	parameters f	for MS/MS	experiments
--	----------------------	--------------	-----------	-------------

Compound	Parent	Collision	Fragment ions
	m/z	energy (V)	(m/z)
Clomazone	240.0	42	89.1
	240.0	21	124.9

Quantification:

Peak areas of fragment ions, external standards in acetonitrile/water (1:1, v/v)

Mass transition $240 \rightarrow 124.9$ was used for quantification.

Mass transition 240 \rightarrow 89.1 was used for confirmation.

At the beginning of the sequence, a calibration curve was constructed by injecting standard solutions within the range from 1 ng/mL to 150 ng/mL (11 calibration points). Injections of sample extracts were interspersed with injections of standards after 2-4 samples to verify the detector response and to adjust the determined concentration to the nominal concentration, if necessary.

GAB

Clomazone		Final Report	20061401/01-RVP		
4.3.9	3.9 Calculation of Residues				
	Residi equati	ues of clomazone in potato and rape seed are c on:	alculated by the following		
		$\mathbf{R} = \frac{\mathbf{c} \cdot \mathbf{V}_{\text{Ex}} \cdot \mathbf{V}_{\text{R2}} \cdot \mathbf{V}_{\text{End}} \cdot \mathbf{f}}{\mathbf{V}_{\text{R1}} \cdot \mathbf{V}_{\text{R3}} \cdot \mathbf{W} \cdot 1000}$			
	R	Residue (mg/kg)			
	с	Concentration in final extract (ng/mL)			
	V _{ex}	Volume of organic extract after extraction / j 285 mL for potato (100 mL water + 200 mL empirical volume shrinking) respectively 25 mL acetone + 225 mL acetonitrile)	partition: acetone – 15 mL 50 mL for rape seeds (25		
	V_{R1}	Aliquot of V_{Ex} used for further analysis (200 rape seeds)	0 mL for potato, 80 mL for		
	V_{R2}	Volume of solution for GPC (15 mL)			

- Aliquot of VR2 injected onto GPC column (4 mL) V_{R3}
- Final volume for HPLC analysis (2 mL) V_{End}
- f Dilution factor of final extract prior to HPLC-MS/MS measurement
- W Sample weight (25 g)

5 **Deviations from the Study Plan**

The study was performed according to the study plan dated 20 December 2006.

Page 16 of 32

Clomazone	Final Report	20061401/01-RVP

6 Results

6.1 Recoveries (Accuracy)

Recoveries were obtained by fortification of potato and rape seed samples with the test item prior to extraction. The results are given in Table 2.

Mass transition 240.0 \rightarrow 124.9 (Quantification)				
Matrix	Fortification Level (mg/kg)	Recovery (%)	Mean Recovery ± RSD (%)	Overall Mean Recovery ± RSD (%)
Potato	0.005	85 / 85 / 80 / 76 / 86	82 ± 5	84 ± 7
	0.05	89 / 86 / 89 / 73 / 93	86 ± 9	
Rape seed	0.005	88 / 87 / 94 / 96 / 92	91 ± 4	02 1 6
	0.05	101 / 81 / 87 / 94 / 95	92 ± 8	92 ± 6

Overall mean recovery calculated from individual recoveries.

Mass transition 240.0 \rightarrow 89.1 (Confirmation)				
Matrix	Fortification Level (mg/kg)	Recovery (%)	Mean Recovery ± RSD (%)	Overall Mean Recovery ± RSD (%)
Potato	0.005	88 / 89 / 84 / 80 / 91	86 ± 5	
	0.05	87 / 86 / 90 / 73 / 92	86 ± 9	80±/
Dana cood	0.005	88 / 87 / 89 / 93 / 90	89 ± 3	00.7
rcape seed	0.05	102 / 79 / 86 / 87 / 88	88 ± 9	1 89±7

Overall mean recovery calculated from individual recoveries.

Page 17 of 32

Clomazone	Final Report	20061401/01-RVP
		the second se

6.2 Blanks

Two untreated control samples were analysed from each matrix. Residues of clomazone were not detectable (i.e. < 30 % of LOQ, see also chromatograms in Appendix C).

6.3 Repeatability (Precision)

The relative standard deviations (RSD) for each fortification level and each commodity was 4 % to 9 % RSD so the requirements of guideline SANCO/825/00 rev. 7 (17/03/2004) are fulfilled (≤ 20 % RSD).

6.4 Limit of Quantification

The limit of quantification is defined as the lowest fortification level with mean recoveries ranging between 70 % and 110 % at a relative standard deviation not exceeding 20 % and blanks not exceeding 30 %. These conditions were fulfilled at the 0.005 mg/kg fortification level for potato and rape seed.

6.5 Linearity

For analysis of clomazone by HPLC/MS-MS the detector response was linear within the range from 1 ng/mL to 150 ng/mL with a correlation coefficient of $r^2 > 0.999$ (see Figure 1 in Appendix A).

6.6 Specificity

A highly specific detection system was used (MS/MS). The retention time of clomazone in solvent matched the retention time in extracts from fortified samples. No significant peak interferences occurred at the retention time of clomazone.

The analytical method can be therefore regarded as highly specific for clomazone parent compound. Since detection is performed by MS/MS, an additional confirmatory method is not necessary according to guideline SANCO/825/00.

Page 18 of 32

Clomazone	Final Report	20061401/01-RVP

6.7 Matrix Effects

To check possible ion enhancement or suppression effects in HPLC/MS-MS analysis, blank extracts from each matrix were spiked with standard solutions. The test item concentration was then quantified against standards in acetonitrile/water (1:1). The results are summarized in Table 3.

Table 3: Checking for possible matrix effects

Sample	Clomazone nominal	Clomazone dete	ermined (ng/mL)	% of nominal			
	(ng/mL)	Quantifier	Qualifier	Quantifier	Qualifier		
Detete	10	9.97	10.46	100	105		
Potato	100	97.2	93.8	97	94		
Rape	5	4.98	4.95	100	99		
seed 50		49.6	49.0	99	98		

Quantifier: mass transition 240.0 → 124.9, Qualifier: mass transition 240.0 → 89.1

This indicates that matrix effects are not significant for potato and rape seed, so the quantification could be performed against standards prepared in acetonitrile/water (1:1, v/v).

6.8 Stability of Clomazone in Final Sample Extracts

All rape samples were analysed within 24 hours after extraction, so the storage stability of clomazone in final rape seed extracts was not tested.

Some potato extracts were stored for up to 8 days at approximately 4 °C until analysis. Therefore the storage stability was tested by spiking extracts from untreated samples with the test item at 10 ng/mL and 100 ng/mL, followed by analysis after 8 days of storage at approximately 4 °C.

The measured concentration of clomazone after 8 days was 100 % of the added amount for both fortification levels and both mass transitions. So clomazone can be regarded as stable in final potato extracts for 8 days.

Table 4: Checking for stability of clomazone in potato extracts

Fortification level	Clomazone determined after 8 days storage (ng/mL)				
(potato matrix)	Quantifier	Qualifier			
10 ng/mL	10.06 / 10.01	10.01 / 9.99			
100 ng/mL	100.7 / 100.0	99.7 / 99.3			

Page 19 of 32

Clomazone	Final Report	20061401/01-RVP

7 Discussion and Conclusions

A residue method for determination of clomazone in plant material was developed and successfully validated. The analytical method fulfils all requirements of guideline SANCO/825/00 rev. 7:

- Validation of the method demonstrated that it is specific to clomazone with a LOQ of 0.005 mg/kg in potato and rape seed.
- The results of this study indicate that the recovery efficiency and repeatability were within acceptable limits of 70 % - 110 % for mean recovery and < 20 % RSD at each fortification level.
- Interferences from the control matrix used to validate at the limit of quantification were not detectable.

8 Archiving

For the periods demanded by the principles of GLP the following documents and materials will be archived:

- Study plan, raw data, comments of the sponsor on the draft report and the final report (15 years).
- · All documentation generated by the Quality Assurance Unit (15 years).
- A sample of the test item.

All documents and materials will be stored in the archives of eurofins-GAB GmbH. The premises for storing the documents and materials are settled according to the principles of Good Laboratory Practice in the organization of the testing facility.

Page 20 of 32

Clomazone	Final Report	20061401/01-RVP

9 References

SANCO/825/00 rev. 7, Guidance document on residue analytical methods, European Commission – Directorate General Health and Consumer Protection, 17/03/2004.

10 Distribution

Study Plan	
Original:	Testing facility (1 x)
	Sponsor (1 x)
Final Report	
Original:	Testing facility (1 x)
	Sponsor (1 x)
Raw Data	
Original:	Testing facility
Final Report Original: Raw Data Original:	Testing facility (1 x) Sponsor (1 x) Testing facility

Page 21 of 32

Clomazone Final Report 20061401/01-RVP

Appendix A: Calibration Data

Clomazone	Peak area	Calculated
(ng/mL)		concentration (ng/mL)
150	10 669 898	149.109
125	8 890 168	124.238
100	7 268 954	101.582
80	5 742 836	80.255
60	4 288 029	59.924
40	2 919 414	40.798
20	1 486 794	20.778
10	763 172	10.665
5	368 779	5.154
2	144 811	2.024
1	71 513	0.999

Peak areas refer to the area of the fragment ion (m/z = 124.9)

Figure 1: Calibration data for analysis of clomazone in acetonitrile/water (1:1) by HPLC/MS-MS, mass transition MRM 240.0 \rightarrow 124.9 (quantifier)

Page 22 of 32

Clomazone	Peak area	Calculated
(ng/mL)		concentration (ng/mL)
150	3 295 898	150.313
125	2 737 443	124.844
100	2 203 935	100.513
80	1 742 806	79.483
60	1 292 961	58.967
40	881 528	40.203
20	454 066	20.708
10	223 968	10.214
5	110 862	5.056
2	43 002	1.961
1	21 718	0.990

Peak areas refer to the area of the fragment ion (m/z = 89.1)

Figure 2:	Calibration	data	for	analysis	of	clomazone	in	acetonitrile/water	(1:1)	by
	HPLC/MS-I	MS, n	ass t	ransition]	MR	M 240.0 \rightarrow 8	39.1	(qualifier)		

Page 23 of 32

Appendix B: Mass Spectrum

Figure 3: Product ion spectrum of clomazone parent ion (m/z = 240). The daughter ion at m/z = 124.9 was used for quantification, the daughter ion at m/z = 89.1 was used for qualification.

Page 24 of 32

Clomazone	Final Report	20061401/01-RVP
	A CONTRACTOR OF A CONTRACTOR O	

Appendix C: Chromatograms

Figure 4: Typical chromatogram of a clomazone 10 ng/mL standard in acetonitrile/water (1:1, v/v)

Page 25 of 32

Figure 5: Typical chromatogram of a clomazone recovery sample in potato matrix, fortified at 0.005 mg/kg

Page 26 of 32

Figure 6: Typical chromatogram of a blank potato sample

Page 27 of 32

Figure 7: Typical chromatogram of a clomazone 5 ng/mL standard in acetonitrile/water (1:1, v/v)

Page 28 of 32

Figure 8: Typical chromatogram of a clomazone recovery sample in rape matrix, fortified at 0.005 mg/kg

Page 29 of 32

Figure 9: Typical chromatogram of a blank rape sample

Page 30 of 32

Page 104

Clomazone	Final Report	20061401/01-RVP

Appendix D: Certificates

		с <i>п</i> ,					CERT:	IFICA	CVII-No. C	K 1276 00 43
		•								
AR	TICLE	IDENTI	FICATIO	12						
Art	icle Name	B 1	Clonazone					Reg. De	pt. Code:	
Man	nifacture	C i	Cheminova	A/S				Batch N	0.: EKA, 1	2. 4174
Cri	gin of F	roduction:	Conmercia	1	Pilot	plant	'	Laborat	ory X	
P H	TSICAL									
Tec Pro	duct	; Pre	paration of chnical Prod	uct [; Analy Stand	tical ard	X; 1	lquid	; Solid	X ; Colo Whit
Rec	ormended	Storage C	onditions							
Anb In In	ient tem refriger deep fre	perature i ator	n the dark	<u>x</u>	Expiry D The arti- of analy	ate: cle is sis/las	stable a t date o	t least f reanaly	2 years als when a	from date tored at
лđđ	litional (Conversion			recomment	cen con	0101088.			
10		NGREDI	ANT IDS		CATIO	w				
Con	mon Name	/ISO-Name:	Clomazon	e		System	atic Nam	e: 3-Isos	azolidinon	a, 2-[[2-
CAS	No.:		\$1777-89	-1				chlore dimeth	phenyl)met wl.	hyl]-4,4-
Rmp	irical P	ormalar	C32H14C1N) ₂	St	ructura	1 Portul	h:	ß	ñ
Mol	iecular ¥	eight:	239.76					H ₄ C		\uparrow
Ide	estified 1	by means o	đ i						0.0	~
			INGR X]; "	X ;	ω	X	S X ;	Other Met	hods:
A N	ALTTI	TAL DAT								
Cer λna λna	lytical i	arity/Cont Method: GC Report (in	ent of a.i. /HPLC profil cl. amendmen	: 99.7% Ling hts): RB	w/w 8P 315-03	L				
Dat	e of ana	lysis/		0404	20	-		1		-
-10	or article	a stored a	t -	Chen	inova A/	8			+	
						_				
9.5	PCON	LIANCE								
Che	identif: minova A	S and con	d determinat ducted in ac	cordanc	e with B	Content PIFBA Ga	of activ	e ingredi story Pra Pra	lent were p Actice Star	erformed and dards, 40 (
Par rec	t 160 and ords, stu	dy plans.	test articl	of Good les, ref	erence s	amples.	and rep	All raw d ort are s	tata, docum retained in	entation, the GLP
arç	hives of Sc	Cheminova	A/S, Decanas	rie.			0	1	K	
Dat	ः ज्य	Thomas	5, 2004		Sign	lature:	JUM	1) Q		640

Figure 10: Certificate of analysis for clomazone test substance

Page 31 of 32

Page 105

mazone	Final Report	20061401/01-1
	MINISTERIUM FÜR UMWELT UND V	ERKEHR
196	Z A BADEN-WURTTEMBERG	
	Ministerium für Unzweit und Verbehr Backer-Winternberg, Pf. 10.34.39, 70022 Statuert	
	Gute Laborpraxis / Good Laboratory Practice	
	GLP-Bescheinigung / Statement of GLP Compliance	
	(gemäß /according to § 19b Chemikaliengesetz)	
Eine GLP-Inaj GLP-Grundsä 88/320/EG wu	pektion zur Oberwachung der Einhaltung der Assessment of conformity with GLP tize gemäß Chemikaliengesetz bzw. Richtlinie kaliengesetz and Directive 88/320/E urde durchgeführt in:	according to Chemi- EC at:
	Prüfeinrichtung/Test facility Prüfstandort/Test site	
	GAB Biotechnologie GmbH / GAB Analytik GmbH	
	Eutinger Straße 24	
-	75223 Niefern-Oscheibronn (Unverwechselbere Bezeichnung und Adresse/Unegulyocal name and address)	
	Contraction of the second seco	
	(gemä\$/according Chem/VWV-GLP Nr.5.3/OECD guidence)	
1	Prüfungen zur Bestimmung der physika- Iisch-chemischen Eigenschaften und Rückständen Gehaltsbestimmungen	nung von
4	Ökotoxikologische Prüfungen zur Be- stimmung der Auswirkungen auf aquati- sche und terrestrische Organismen und natürliche Ökosyst	nung der okosmen Jeme
5	Prüfungen zum Verhalten im Boden, im 8 Analytische Prüfungen Wasser und in der Luft; Prüfungen zur Bioakkumulation und zur Metabolisierung	an biologi-
	Zuordnung der Prüfkategorien innerhalb der Prüfeinrichtung:	
GAB-Biotec	chnologie GmbH: Prüfkategorien 1, 4, 5, 7. GAB Analytik GmbH : Pr	üfkategorien 1, 5, 6, 8.
	Datum der Inspektion/Date of Inspection {Tag. Monat. Jaholday, month. year}	
	15.09.2003	
Die/Der gena sich im nation regelmäßig a	nnte Prüfelninchtung/Prüfstandort befindet The above mentioned test facilityhes salen GLP-Überwachungsverfahren und wind national GLP Compliance Programm uf Einhaltung der GLP-Grundsätze Überwacht. a reguter basis.	t site is included in the e and is inspected on
Auf der Grund bestätigt, des ort die oben g GLP-Grundst	dage des inspektionsberichtes wird hiermit sin diseer Prüfeinrichtungrüssem Prüfstand- senannten Prüfungen unter Einhaltung der stade durchgeführt werden können.	be confirmed, that this the aforementioned playof GLP.
	Hofmann Stuttgart, 08.12.2003 49.05/200	4 (Namensänderung)
	(name and yunktion der verantwortichen Person/Name and function of responsible per Ministerium für Umwelt und Verkehr Baden-Württemberg Komponitation 2, 20042, Stutters 2	son)
	Normerpratz 9, 70162 Stutigart (Name und Adresse der GLP-Überwachungsbehörde/Name and address of GLP Monitoring	Authority)
Korneeplatz 9 70182 Stungert S-Bolon: Haltestelle Haup U1, U4, U9, U14, Bus 40	Telefas Zental / Presentale (70 11) 126 – 181 / 228 (harden for the second	67 Telefax (97 11) I 26 – 10 99 (Studtwitte Hallestelle Österreichischer Platz

Figure 11: GLP certificate of testing facility

Page 32 of 32

Page 106

www.abclabs.com

better insight better outcomes 4780 Discovery Drive • Columbia, Missouri 65201

800.538.5227

7200 E. ABC Lane · Columbia, Missouri 65202

23 April 2014

Method Modifications to Eurofins-GAB GmbH Method, "Validation of an Analytical Method for the Determination of Clomazone in Potatoes and Oilseed Rape," found in Eurofins-GAB GmbH Study Code 20061401/01-RVP, dated January 17, 2007

Applicability: Analysis of canola seed with an LOQ of 0.02 ppm

Reasons for Modification:

- 1. To change the concentration of linearity standards
- 2. To modify the apparatus used for the study
- 3. To document modifications to the method
- 4. To provide calculations used for the study

Modifications to the applicable sections:

4 Materials and Methods

4.1 Test Item

Add the following to the end of the section:

4.1.1 Preparation of Intermediate and Linearity Standards:

The following concentrations of intermediate and calibration standard solutions were stored in the dark typically at 2 °C to 8 °C.

- 100 ng/mL: 1.0 mL of a 1.0-μg/mL intermediate standard solution was transferred to a to a 10-mL volumetric flask and brought to volume with acetonitrile:water (1:1, v/v). The contents were mixed well.
- 20 ng/mL: 0.20 mL of a 1.0-µg/mL intermediate standard solution was transferred to a to a 10-mL volumetric flask and brought to volume with acetonitrile:water (1:1, v/v). The contents were mixed well.
- 5.0 ng/mL: 0.50 mL of a 100-ng/mL intermediate standard solution were transferred to a to a 10-mL volumetric flask and brought to volume with acetonitrile:water (1:1, v/v). The contents were mixed well.
- 0.30 ng/mL: 0.15 mL of a 20-ng/mL intermediate standard solution were transferred to a to a 10-mL volumetric flask and brought to volume with acetonitrile:water (1:1, v/v). The contents were mixed well.

Page 1 of 3

- 0.15 ng/mL: 0.30 mL of a 5.0-ng/mL intermediate standard solution were transferred to a to a 10-mL volumetric flask and brought to volume with acetonitrile:water (1:1, v/v). The contents were mixed well.
- 0.050 ng/mL: 0.10 mL of a 5.0-ng/mL intermediate standard solution were transferred to a to a 10-mL volumetric flask and brought to volume with acetonitrile:water (1:1, v/v). The contents were mixed well.
- 0.030 ng/mL: 1.0 mL of a 0.30-ng/mL calibration standard solution were transferred to a to a 10-mL volumetric flask and brought to volume with acetonitrile:water (1:1, v/v). The contents were mixed well.
- 0.010 ng/mL: 0.667 mL of a 0.15-ng/mL calibration standard solution were transferred to a to a 10-mL volumetric flask and brought to volume with acetonitrile:water (1:1, v/v). The contents were mixed well.

4.3 **Procedure for Determination of Clomazone**

4.3.1 Equipment

Add the following apparatus:

Centrifuge

4.3.4 Extraction Procedure for Rape Seed

Replace this Section with the following:

- 1. Weigh 25-g sample into a quart glass jar
- 2. Add 25 mL acetone, 225 mL ACN, 10 g Calflo E, and 10 g Celite 545 and homogenize for 2 minutes at high speed.
- 3. Place a small aliquot (about 5 mL) in a glass tube and centrifuge at ~2500 rpm for about 5 minutes.
- 4. Filter the supernatant through a 0.45 µ PTFE filter into a glass tube.
- 5. Combine 0.1 mL of filtered sample plus 9.9 mL of 1:1 ACN/water in a glass tube and place in a vial for HPLC analysis.
- 4.3.5 Gel Permeation Cleanup

This Section was deemed unnecessary and was omitted.

Page 2 of 3

4.3.6 Silica Gel Cleanup

This Section was deemed unnecessary and was omitted.

4.3.9 Calculation of Residues

Replace this Section with the following:

A standard curve is generated in Analyst by plotting the standard concentration (in ng/mL) on the x-axis and the respective peak response (area) on the y-axis and using linear regression to calculate a best-fit line. Weighting (1/x) was used in the generation of standard curves.

The calculations for ppm found are:

1. The amount of clomazone found (in ppm) in the sample is calculated according to the following equation:

$$ppm = ng/mL \times \frac{HPLC \ FV \ (mL)}{sample \ wt. \ (g)} \times \frac{ext. \ solv. \ (mL)}{aliq. \ (mL)} \times HPLC \ dil. \ factor \times \frac{1}{1000}$$

where:

ng/mL	=	ng/mL of analyte found as determined by Analyst
HPLC FV (mL)	=	volume of final extract submitted to instrumentation (10 mL)
sample wt. (g)	=	amount of soil sample taken through the extraction process (25.0 g)
ext. solv. (mL)	=	volume of extraction solvent added (250 mL)
aliq. (mL)	=	volume of extract taken for analysis (0.10 mL)
HPLC dil. factor	=	dilution of sample extract required to produce an analyte response bracketed by standards
1/1000	=	conversion factor (µg/ng)

2. The percent recovery for fortified control samples was calculated as follows:

% Recovery = $\frac{ppm \ found \ in \ fortified \ control - \ ppm \ found \ in \ control}{ppm \ added} \times 100$

Page 3 of 3

Page 109

APPENDIX II

ABC Laboratories SOP CD-TM 2.31.6, entitled "Determination of Moisture"

Page 110

CD-TM 2.31.6

abe	S	TANDARD OPERATIN PROCEDURE	IG	
better insight better outcomes	Determination of	Moisture Content		
EFFECTIVE DATE: DE	IC 27 2013	REVISION DUE DATE:	NOV 0.9 2040	
			NUV ZZ 2016	
Prepared by/Date:	A.	1/. 21.	Nu 13	
Quality Assurance Signatur	e/Date:	is Hughes 217	OU. 2013	
Management Signature/Dat	Management Signature/Date:			
	Mar Indser	Nott for Joe Troxell 221	VOV 2013	
Revision History:				
CD-TM 2.31.6 1) Triennial Review 2) Updated signature pag CD-TM 2.31.5 1) Biennial Review CD-TM 2.31.4 1) Biennial Review CD-TM 2.31.3 1) Updated Safety Sectio 2) Editorial Changes CD-TM 2.31.2 1) Biennial Update CD-TM 2.31.1 1) Title Change 2) Change equation in Se 3) Minor Corrections CD-TM 2.31.0 1) New format	n rection 7.4.3			

Page 1 of 7

CD-TM 2.31.6

1.0 Purpose

To describe the mathematical determination of a sample's moisture content based upon water loss from a dried sample.

2.0 Scope

This Standard Operating Procedure (SOP) applies to any sample matrix that may lose water as a result of heat exposure.

3.0 Responsibility

All personnel that utilize dry weight, moisture content analysis, or correction factors based upon moisture content are responsible for following this SOP.

4.0 Equipment and Materials

- 4.1 Appropriate balance
- 4.2 Drying oven
- 4.3 Moisture analyzer

5.0 Safety

All applicable safety rules and precautions must be followed.

6.0 General

- 6.1 When calculating chemical concentrations in soils or sediments or when adjusting soil moisture for soil studies, it is necessary to determine the quantitative dry weight of the substrate.
- 6.2 The quantitative dry weight of a soil or crop sample is necessary in the determination of correction factors for the normalization of the residue concentration results.
- 6.3 This SOP lists the accepted method when using an oven to dry the samples. Alternatively, a moisture analyzer may be used (see SOP EQ-2 2).

7.0 Procedure

- 7.1 The moisture content of any sample (e.g., soil, sediment, or crop materials) is determined by recording the water loss of the sample after a specific dehydration period.
 - 7.1.1 Water loss is determined by comparing the wet sample weight versus the weight of the dried sample.
 - 7.1.2 The same balance should be used throughout for all samples in a given set, if possible. All sample weights will be recorded on suitable data sheets with entries dated and initialed.

Page 2 of 7

- 7.2 A labeled aluminum weigh boat or other suitable container (e.g., a glass beaker) is weighed and its weight is recorded.
 - 7.2.1 The sample is added to the weigh boat and the combined weight is recorded.
 - 7.2.2 Wet samples are typically dried either for 24 hours or overnight at temperatures ranging between 100-110°C (105 ±5°C).
 - 7.2.3 After the drying period, the samples are cooled in a desiccator, weighed again, and the dry weight is recorded.
 - 7.2.4 Extremely wet (muddy) samples should be air dried for 24 hours prior to oven drying.
- 7.3 When it is necessary to demonstrate that the samples are at a constant dry weight, at least 10% of the samples should be placed back into the drying oven for a second drying period (minimum of 4 hours or overnight), cooled, and weighed.
 - 7.3.1 This second dry weight is also recorded.
 - 7.3.2 If the first and second dry weights vary by more than 1% of the dry sample weight, all of the samples are returned to the oven for another drying period, cooled, weighed, and these weights are also recorded.
 - 7.3.3 If sample dry weights do not vary by more than 1%, a constant dry weight has been achieved.
- 7.4 When the time constraints are not compatible with the data requirements for the conduct of specific projects, the dehydration time required may be greatly reduced through the use of a preheated (100-110°C) vacuum oven.
 - 7.4.1 A vacuum pump is attached to the oven, which is evacuated for the duration of the dehydration period.
 - 7.4.2 A dehydration period of at least 4 hours is recommended. Following dehydration, the vacuum is released by slowly bleeding ambient laboratory air into the oven. The sample is then cooled in a desiccator and weighed. Multiple drying steps are not necessary following reduced pressure thermal dehydration.
 - 7.4.3 When nondestructive determinations of sample moisture are required, the percent moisture may be determined by directly weighing the tared sample container containing the wet sample. It is necessary to know the dry weight of the sample within the system to use this nondestructive method.
- 7.5 Moisture Determination Wet Weight Basis

Moisture content may be calculated by hand or through a suitable computer data reduction program.

Page 3 of 7

Moisture content on a wet weight basis is calculated as follows:

% Moisture=
$$\left(\frac{B-C}{B-A}\right) x 100$$

where

- A = Weight of weigh boat (g) B = Weight of weigh boat + wet soil (g) C = Weight of weigh boat + dry soil (g)
- 7.6 Moisture Determination Dry Weight Basis
 - 7.6.1 Some analyses are calculated on a dry weight basis, i.e., the percentage of moisture based on the dry soil weight or gravimetric water content.
 - 7.6.2 The laboratory procedure for determining this value is the same as that for any of the wet weight basis determinations; only the calculation is different.
 - 7.6.3 Moisture content on a dry weight basis is calculated as follows:

% Moisture=
$$\left(\frac{B-C}{C-A}\right) x 100$$

where A = Weight of weigh boat (g) B = Weight of weigh boat + wet soil (g) C = Weight of weigh boat + dry soil (g)

- 7.6.4 Example 1 Gravimetric Moisture Determination
 - 7.6.4.1 750 g (wet weight) of soil are used in a study.
 - 7.6.4.2 Triplicate aliquots are taken for moisture analysis.
 - 7.6.4.3 The average wet weight per sample is 5.00 g.
 - 7.6.4.4 After drying, the average weight per sample is 4.00 g.
 - 7.6.4.5 Thus the average weight of the water in the sample was 1.00 g.
 - 7.6.4.6 The percent moisture for the soil follows.

$$\frac{(5.00 \text{ g} - 4.00 \text{ g})}{4.00 \text{ g}} \times 100\% = \frac{1.00 \text{ g}}{4.00 \text{ g}} \times 100\% = 0.25 \times 100\% = 25\%$$

- 7.7 Using Moisture Values as Correction Factors
 - 7.7.1 Often, moisture values are determined for use as correction factors to report results on a dry weight basis, thus normalizing results for variable moisture content.
 - 7.7.2 The wet weight basis and dry weight basis values are used differently as correction factors.

Page 4 of 7

7.7.3 To correct a result such as concentration (ppm) for a wet weight basis moisture determination, use the following formula:

Result,dry weightbasis(ppm) = $\frac{\text{Result on an "as is" basis(ppm)}}{\left(1 - \frac{\% M}{100}\right)}$

7.7.3.1 An equivalent formula is:

where Fraction dryness = (100 - % M)/100

 $Result, dry weightbasis(ppm) = \frac{Result on an "asis" basis(ppm)}{Fraction dryness}$

Note that % M in these cases is on a wet weight basis. Also note that the result being corrected for moisture can be in any relevant units, not just "ppm."

7.7.3.2 To correct a result such as concentration (ppm) for a dry weight basis moisture determination, use the following formula:

 $\frac{\text{Result(ppm)}}{\text{dry weightbasis}} = \frac{\text{Result(ppm)}}{\text{"asis"basis}} \div \left(1 + \frac{\% M}{100}\right)$

Note that % M in this case is on a dry weight basis.

Any mathematically equivalent formula may be used.

- 7.7.4 Example Correction Factor on a Dry Weight Basis
 - 7.7.4.1 A 25-g soil sample with a 25% gravimetric moisture content was analyzed for test material.
 - 7.7.4.2 The soil was extracted with 100 mL (0.10 L) of solvent and (after appropriate cleanup) was determined to have a concentration of 12 mg/L in the extraction solvent.
 - 7.7.4.3 The calculation of the concentration of the test material in the soil (mg/kg dry soil weight) is as follows.

$$\frac{25 \text{ g wet wt.}}{1.25} = 20 \text{ g dry weight}$$

$$\frac{12 \text{ mg/L} \times 0.10 \text{ L}}{20 \text{ g soil}} = \frac{1.2 \text{ mg}}{20 \text{ g}} = 0.06 \text{ mg/g}$$

So, the soil concentration is $0.06 \text{ mg/g x } 10^3 \text{ g/kg} = 60 \text{ mg/kg}.$

Page 5 of 7

7.8 Using Moisture Values to Hydrate Soils

For soil testing purposes, the moisture valves are used to determine how to hydrate an air dry soil or sediment to the proper hydration level required by the testing guidelines.

- 7.8.1 Example 1 Soil Hydration with Dried Soil
 - 7.8.1.1 2.0 kg (2000 g) of soil (wet weight) are needed for a test.
 - 7.8.1.2 Soil moisture will be adjusted to 35%.
 - 7.8.1.3 Therefore, the total weight of the components, soil and water, will equal the weight of dry soil (the basis for 100% calculation) plus the weight of water (35% of the dry soil weight) for a total of 135%.
 - 7.8.1.4 Thus, to calculate the weight of the dry soil the total wet weight is divided by 135% or 1.35.

$$\frac{2000 \text{ g wet soil}}{1.35} = 1481 \text{ g dry weight}$$

- 7.8.1.5 Therefore the hydrated soil (2000 g) is prepared by mixing 1481 g of dry soil with 519 mL (1.0 g/mL) of water.
- 7.8.2 Example 2 Soil Hydration with Inherent Water Content
 - 7.8.2.1 3.20 kg of hydrated soil with a moisture content of 35% of its dry weight is needed for a test.
 - 7.8.2.2 The air-dried soil to be hydrated for the test has a soil moisture of 4% of its dry weight.
 - 7.8.2.3 Figure the dry soil and water constituents of the hydrated soil.

$$\frac{3.20 \text{ kg hydratedsoil}}{1.35} = 2.37 \text{ kg dry soil}$$

3.20 kg hydrated soil - 2.37 kg dry soil = 0.83 kg of water

7.8.2.4 Figure the amount of air dried soil needed to produce 2.37 kg of dry soil

$$2.37 \text{ kg} + (0.04 \text{ x } 2.37 \text{ kg}) = \text{amount of air dried soil needed}$$
$$= 2.46 \text{ kg}$$

7.6.6.5 Figure the amount of inherent water in 2.46 kg of air dried soil

2.46 kg air dried soil - 2.37 Kg dry soil = 0.09 kg inherent water

7.6.6.6

Page 6 of 7

Figure the amount of water to add to 2.46 kg of air dried soil to produce 3.2 kg of hydrated soil with a moisture content of 35% of its dry weight.

0.83 kg water needed - 0.09 kg of inherent water = 0.74 kg of water needed to add to 2.46 kg of air dried soil to produce 3.2 kg of properly hydrated soil.

8.0 Documentation

This should be documented in facility or study records.

9.0 References

SOP EQ-2 2, Mettler Toledo HR73P Halogen Moisture Analyzer

Page 7 of 7

Page 117

APPENDIX III

Certificates of Analysis

Cheminova A/S P. O. Box 9 DK-7620 Lemvig Denmark Phone (+45) 96 90 96 90 Fax (+45) 96 90 98 91 www.chaminova.com CVR-No. DK 12 76 00 43

Page 118

Certificate of Analysis

REF 315-02

Test substance certified:

Test substance:	Analytical standard of Clomazone				
Batch No.:	НКА, р. 4204				
Origin of test substance:	x Laboratory Pilot plant Commercial				

Analysis:

Content:	99.7% w/w
Identified by:	¹ H-NMR, ¹³ C-NMR Spectroscopy, IR Spectroscopy and Mass Spectrometry
Determination of purity by:	High Performance Liquid Chromatography and Gas Chromatography
Date of analysis:	February 11, 2014

Information of the test substance:

Appearance:	White solid
Storage:	< -20°C
Expiry date:	February 11, 2016

Information of analyte(s):

Common name:	Clomazone
CAS name:	3-Isoxazolidinone, 2-[(2-chlorophenyl)methyl]-4,4-dimethyl.
CAS No.:	81777-89-1
Molecular formula:	C ₁₂ H ₁₄ CINO ₂
Molecular mass:	239.70
Structure formula:	

Statement of GLP Compliance

The identification and determination of purity were performed at Cheminova A/S and conducted according to FIFRA Good Laboratory Practice Standards, 40 CFR Part 160 and the OECD Principles of Good Laboratory Practices.

Date

Cheminova A/S

Cheminova A/S P.O. Box 9 DK-7520 Lamvig Denmark (Phone (+45) 95 90 95 90 Fax (+45) 95 90 95 01 www.chemihova.com CVR-No_DK 12 76 00 43

Certificate of Analysis

REF \$15.02

Test substance certified:

Test substance:	Analytical standard of Clomazone
Batch No.:	ΗΚΑ, ρ. 4204
Origin of test substance:	x Laboratory Pilot plant Commercial

Analysis:

Content:	99.7% w/w	
Identified by:	¹ H-NMR, ¹⁹ C-NMR Spectroscopy, IR Spectroscopy and Mass Spectrometry	
Determination of purity by:	High Performance Liquid Chromatography and Gas Chromatography	
Date of analysis:	March 28, 2012	4

Information of the test substance:

	the second se
Appearance:	White solid
Storage:	< -20°C
Expiry date:	March 28, 2014

Information of analyte(s):

Common name:	Clomazone	
CAS name:	3-Isoxazolidinone, 2-[(2-chlorophenyl)methyl]-4,4-dimethyl.	
CAS No.:	81777-89-1	
Molecular formula:	G ₁₂ H ₁₄ CINO ₂	
Molecular mass:	239.70	ŀ
Structure formula:	Lo G	

Statement of GLP Compliance

The identification and determination of purity were performed at Chominova A/S and conducted according to FIFRA Good Laboratory Practice Standards, 40 CFR Part 160 and the OECD Principles of Good Laboratory Practices.

Date

March 28, 2012 Fin M. Willow 4/25/13 CofA Received via email dated april 25, 2013

Page 119

Page 120

APPENDIX IV

Spreadsheets

5 - 5	mdd	rfor %	ntrol Rec				180 90	189 95	154 77	131 66	151 76	.406 81	.458 92	.403 81	.366 73	.389 78										
	erage	ppm co	control co				0.000 0.(0.000 0.(0.000 0.(0.000 0.(0.000 0.0	0.000 0	0.000 0	0.000 0	0.000 0	0.000 0										
	av	eported	ppm c		QN	QN	0.0180	0.0189	0.0154	0.0131	0.0151	0.406	0.458	0.403	0.366	0.389										
		2	bpm		0	0	0.018	0.0189	0.0154	0.0131	0.0151	0.4055	0.458	0.4025	0.3655	0.3885										
		ng/mL	found	0.00	0.00	00.0	0.0180	0.0189	0.0154	0.0131	0.0151	0.0811	0.0916	0.0805	0.0731	0.0777										
		Peak	Resp	0	0	0	6472	6782	5608	4833	5488	27656	31203	27465	24981	26533	10080	3857	17394	10803	48793	103043				
	НРLС	Dil	Fact		-	-	-	-	-	-	-	5 D	5	Ω	Ω	Ω										
	in In	ol Vol	L uL		0	ں ک	0	0	5	5	5	5	5	9	9	9										
	Fina	× F	iq ml		0	0 10	0	0	0 10	0	0	0	0	0 10	0	0 10										
a Seed		mL	solv al		250 0.1	250 0.1	250 0.1	250 0.1	250 0.1	250 0.1	250 0.1	250 0.1	250 0.1	250 0.1	250 0.1	250 0.1										
atrix: Canol		Injection	Date	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14				
< ≥		Extraction	Date		21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14	21-Feb-14										
	Fort	Level	ppm				0.020	0.020	0.020	0.020	0.020	0.50	0.50	0.50	0.50	0.50										
	Samp	٧t	g		25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00										
		Samp	Type	В	υ	υ	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	თ	თ	თ	თ	თ	თ				
		Set	#	MV2	MV2	MV2	020 MV2	20 MV2	20 MV2	20 MV2	20 MV2	0 MV2	0 MV2	0 MV2	0 MV2	0 MV2	MV2	MV2	MV2	MV2	MV2	MV2				
			n	olvent	-02-01	-02-01	-02-01 + 0.0	-02-01 + 0.0	-02-01 + 0.0	-02-01 + 0.0	-02-01 + 0.0	-02-01 + 0.5	-02-01 + 0.5	-02-01 + 0.5	-02-01 + 0.5	-02-01 + 0.5).03 ng/mL	0.01 ng/mL	0.05 ng/mL	0.03 ng/mL).15 ng/mL	0.3 ng/mL	ing			
		Sample	Identificatio	: Injection Sc	TCI-13-366	TCI-13-366	TCI-13-366	TCI-13-366	TCI-13-366	TCI-13-366	TCI-13-366	TCI-13-366	TCI-13-366	TCI-13-366	TCI-13-366	TCI-13-366	std. curve C	std. curve 0	std. curve C	std. curve 0	std. curve 0	std. curve 0	1/x Weight	0.9994438	335831.5	424.2965
очооч TCI-13-366			ABC ID	Injection Solvent	69869-MV13	69869-MV14	69869-MV15	69869-MV16	69869-MV17	69869-MV18	69869-MV19	69869-MV20	69869-MV21	69869-MV22	69869-MV23	69869-MV24	12562-B9	12562-B10	12562-B8	12562-B9	12562-B7	12562-B6		Correlation (r):	Slope (m):	Intercept (b):

File Name: N 69869 02212014B.rdb

69869 TCI-13-366					Residue F (Cor A	tesults - Metl firmatory Tra alvte: Clom	hod Vali ansition) azone	dation						ABC	: Laborato	ries, Inc.	
					ž	atrix: Canola	Seed										
				Samp	Fort			Fin	al Inj	HPLC					average	mqq	
	Sample	Set	Samp	¥	Level Extraction	Injection	Ц Ц	× ۳۲	ol Vol	Ξ	Peak	ng/mL		reported	bpm	corr for	%
ABC ID	Identification	#	Type	D	ppm Date	Date	solv	aliq m	ר ר	Fact	Resp	found	mdd	mdd	control	control R	Sec
ection Solven	it Injection Solvent	MV2	۵			21-Feb-14					0	00.0					
39869-MV13	TCI-13-366-02-01	MV2	ပ	25.00	21-Feb-14	21-Feb-14	250 0	10	0 2	-	0	0.0	0	Q			
59869-MV14	TCI-13-366-02-01	MV2	υ	25.00	21-Feb-14	21-Feb-14	250 0	10	0	-	0	00.0	0	Q			
59869-MV15	TCI-13-366-02-01 + 0.0	02C MV2	ш	25.00	0.020 21-Feb-14	21-Feb-14	250 0	10	0	~	1565	0.0170	0.017	0.0170	0.000	0.0170	85
39869-MV16	TCI-13-366-02-01 + 0.0	02C MV2	ш	25.00	0.020 21-Feb-14	21-Feb-14	250 0	10	с 0	~	1986	0.0223	0.0223	0.0223	0.000	0.0223 1	112
39869-MV17	TCI-13-366-02-01 + 0.0	02C MV2	ш	25.00	0.020 21-Feb-14	21-Feb-14	250 0	10	0	-	1508	0.0163	0.0163	0.0163	0.000	0.0163	82
39869-MV18	TCI-13-366-02-01 + 0.0	02C MV2	ш	25.00	0.020 21-Feb-14	21-Feb-14	250 0	10	0	~	1323	0.0140	0.014	0.0140	0.000	0.0140	20
39869-MV19	TCI-13-366-02-01 + 0.0	02C MV2	ш	25.00	0.020 21-Feb-14	21-Feb-14	250 0	10	с 0	~	1459	0.0157	0.0157	0.0157	0.000	0.0157	79
39869-MV20	TCI-13-366-02-01 + 0.	50 MV2	ш	25.00	0.50 21-Feb-14	21-Feb-14	250 0	10	с 0	с 2	7123	0.0863	0.4315	0.432	0.000	0.432	86
39869-MV21	TCI-13-366-02-01 + 0.	50 MV2	ш	25.00	0.50 21-Feb-14	21-Feb-14	250 0	10	0	5 D	7723	0.0937	0.4685	0.469	0.000	0.469	94
39869-MV22	TCI-13-366-02-01 + 0.	50 MV2	ш	25.00	0.50 21-Feb-14	21-Feb-14	250 0	10	0	5 D	6611	0.0799	0.3995	0.400	0.000	0.400	80
39869-MV23	TCI-13-366-02-01 + 0.	50 MV2	ш	25.00	0.50 21-Feb-14	21-Feb-14	250 0	10	с 0	с 2	6771	0.0819	0.4095	0.410	0.000	0.410	82
39869-MV24	TCI-13-366-02-01 + 0.	50 MV2	ш	25.00	0.50 21-Feb-14	21-Feb-14	250 0	10	с 0	с 2	6419	0.0775	0.3875	0.388	0.000	0.388	78
12562-B9	std. curve 0.03 ng/mL	MV2	თ			21-Feb-14					2603						
12562-B10	std. curve 0.01 ng/mL	MV2	თ			21-Feb-14					1120						
12562-B8	std. curve 0.05 ng/mL	MV2	თ			21-Feb-14					4010						
12562-B9	std. curve 0.03 ng/mL	MV2	თ			21-Feb-14					2374						
12562-B7	std. curve 0.15 ng/mL	MV2	თ			21-Feb-14					11814						
12562-B6	std. curve 0.3 ng/mL	MV2	თ			21-Feb-14					25033						
	1/x Weighting																
orrelation (r)	I: 0.99857503																
Slope (m)	: 80319.05																
Intercept (b)	: 195.594																

File Name: N 69869 02212014B.rdb

69869							Residue	e Results							ABC	Laboratori	es, Inc.	
TCI-13-366							Analyte: (Clomazone	¢,									
							Matrix: Ca	anola Seei	σ									
				Samp F	ort				Final	Ē	ЫС						bpm	
	Sample	Set	Samp	Wt Le	vel Extrac	ction Ir	njection	mL mL	١٥٨	Vol	Ē	Peak	ng/mL	c	sported	o mqq	orr for	%
ABC ID	Identification	#	Type	g pr	om Dat	te	Date	solv aliq	mL	nL	Fact	Resp	found	bpm	bpm	control o	control I	Rec
Injection Solver	nt Injection Solvent	1 short	ш			26	Feb-14					1200 ^a	00.0					
69869-006	TCI-13-366-02-01	1 short	υ	25.00	25-Fe	b-14 26	i-Feb-14	250 0.10	10	ŝ	-	893 ^a	00.0	0	QN			
69869-007	TCI-13-366-02-01 + 0.020	1 short	ш	25.00 0.(020 25-Fe	b-14 26	Feb-14	250 0.10	10	S	-	9944	0.0161	0.0161	0.0161	0.000	0.0161	8
69869-008	TCI-13-366-02-01 + 0.50	1 short	ш	25.00 0	.50 25-Fe	b-14 26	Feb-14	250 0.10	9	S	S	50639	0.0953	0.4765	0.477	0.000	0.477	95
600-69869	TCI-13-366-02-02	1 short	⊢	25.00	25-Fe	b-14 26	Feb-14	250 0.10	10	S	-	1456 ^a	0.00	0	QN			
69869-010	TCI-13-366-02-03	1 short	⊢	25.00	25-Fe	b-14 26	Feb-14	250 0.10	10	S	-	774 ^a	00.0	0	QN			
12562-B9	std. curve 0.03 ng/mL	1 short	თ			26	Feb-14					16858						
12562-B10	std. curve 0.01 ng/mL	1 short	თ			26	-Feb-14					6847						
12562-B8	std. curve 0.05 ng/mL	1 short	თ			26	Feb-14					27779						
12562-B7	std. curve 0.15 ng/mL	1 short	თ			26	Feb-14					77058						
12562-B6	std. curve 0.3 ng/mL	1 short	თ			26	-Feb-14				Ţ	57377						
	1/x Weighting																	
Correlation (r)): 0.99984199																	
Slope (m)): 514199																	
Intercept (b)): 1650.184																	
	^a Concentration assumed to I	be zero	when th	ie peak re:	sponse is t	oelow th	e y-interce	ept.										

File Name: N 69869 02252014A.rdb

ooratories, Inc.		mqq	ppm corr for	introl control Ri			0353 0.0180	0353 0.546 10																		
ABC Lat			ported	ppm co		:0.020	0.0215 0.00	0.550 0.00	:0.020	:0.020	QN	QN	:0.020	:0.020	:0.020											
			ſe	mqq		0.00353	0.0215 (0.55	0.00088	0.000634	0	0	0.00384 <	0.00727	• 000000914											
			ng/mL	found	0.00179	0.00353	0.0215	0.110	0.00088	0.000634	00.0	00.0	0.00384	0.00727	0.000000914 0											
			Peak	Resp	4358	5543	17818	78595	3733	3565	2530^{a}	3124 ^a	5755	8103	3132	25901	9012	38946	106360	104000	206151					
		HPLC	Ō	Fact		-	-	S	-	-	-	-	-	-	-											
		Ē	0	L L		ç	ŝ	ŝ	ç	ç	ŝ	ç	ŝ	ç	ŝ											
	eΓ	Fina	≥ .	E		9	9	9	9	9	10	9	9	9	9											
esults	mazon bla See		ال سا	l√ ali		50 0.1(50 0.1	50 0.1	50 0.10	50 C.1	50 0.10	50 C.1(50 0.1	50 0.10	50 0.10											
sidue R	te: Clo		μ υ	So	14	14 25	14 25	14 25	14 25	14 25	14 25	14 25	14 25	14 25	14 25	14	14	14	14	14	14					ercept
Res	Analy Matrix		Injectio	Date	17-Mar-	17-Mar-	17-Mar-	17-Mar-	17-Mar-	17-Mar-	17-Mar-	17-Mar-	17-Mar-	17-Mar-	17-Mar-	17-Mar-	17-Mar-	17-Mar-	17-Mar-	17-Mar-	17-Mar-					r the y-int
			Extraction	Date		14-Mar-14	14-Mar-14	14-Mar-14	14-Mar-14	14-Mar-14	14-Mar-14	14-Mar-14	14-Mar-14	14-Mar-14	14-Mar-14											se is below
		ort	evel	шd		Ţ	020	0.50	Ţ	Ţ	Ţ	Ţ	Ţ	Ţ	Ţ											suodsa
		Samp	Wt L	9		25.00	25.00 0	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00											e peak r
			Samp	Type	۵	υ	ш	ш	F	⊢	O	⊢	⊢	F	⊢	თ	თ	S	თ	თ	S					when th
			Set	#	5	2	ы	ы	2	2	7	0	ы	2	ы	2	ы	ы	2	2	ы					e zero
			Sample	Identification	t Injection Solvent	TCI-13-366-01-01	TCI-13-366-01-01 + 0.020	TCI-13-366-01-01 + 0.50	TCI-13-366-01-02	TCI-13-366-01-03	TCI-13-366-06-01	TCI-13-366-06-02	TCI-13-366-06-03	TCI-13-366-06-04	TCI-13-366-06-05	std. curve 0.03 ng/mL	std. curve 0.01 ng/mL	std. curve 0.05 ng/mL	std. curve 0.15 ng/mL	std. curve 0.15 ng/mL	std. curve 0.3 ng/mL	1/x Weighting	: 0.99921505	: 683450.3	: 3131.65	^a Concentration assumed to b _t
69869	TCI-13-366			ABC ID	Injection Solven	69869-011	69869-012	69869-013	69869-014	69869-015	69869-016	69869-017	69869-018	69869-019	69869-020	12562-B9	12562-B10	12562-B8	12562-B7	12562-B7	12562-B6		Correlation (r)	Slope (m)	Intercept (b)	

File Name: H 69869 03172014B.rdb

69869							Residue	e Results							ABC	Laboratorie	s, Inc.
TCI-13-366							Analyte: (Clomazor	e .								
				0.000	ţ		Matrix: Ca	anola See	5d Einol								200
	Some of	ţ	00000		out Tota	- united	nination	1		-	22	7000			Totoco		ppill br 0/
	danipie Identification	, 10 10 10	dillac Tyme			acii UII I	Data	IIIL Solv ali		5 =	5 5	Decn	found	800	Icholici	ppill of	ontrol Day
Injection Solver	it Injection Solvent	• 4	с С	ກ			9-Mar-14	200	5	5	5	1927 ^a	0.00				
69869-024	TCI-13-366-03-01	4	0	25.00	18-N	lar-14 1	9-Mar-14	250 0.1	0 10	Ś	.	0	0.00	0	ΩN		
69869-025	TCI-13-366-03-01 + 0.020	4	ш	25.00 0.	020 18-N	lar-14 1	9-Mar-14	250 0.1	10	ы со	- -	15017	0.0184	0.0184	0.0184	0.000 0	0184 92
69869-026	TCI-13-366-03-01 + 0.50	. 4	. ц	25.00 (50 18-N	lar-14 1	9-Mar-14	250 0.1	2 C	ഹ	· v	80247	0.112	0.56	0.560	0.000	0.560 112
69869-027	TCI-13-366-03-01 + 0.020	4	ш	25.00 0.	020 18-M	lar-14 1	9-Mar-14	250 0.1	0	ç	~	15202	0.0187	0.0187	0.0187	0.000 0	0187 94
69869-028	TCI-13-366-03-02	4	F	25.00	18-N	lar-14 1	9-Mar-14	250 0.1	0	S	-	2338	0.000124	0.000124	<0.020		
69869-029	TCI-13-366-03-03	4	⊢	25.00	18-N	lar-14 1	9-Mar-14	250 0.1	0 10	Ŝ	~	1974 ^a	0.00	0	QN		
69869-030	TCI-13-366-04-01	4	U	25.00	18-N	lar-14 1	9-Mar-14	250 0.1	0 10	Ś	-	2686	0.000626	0.000626	<0.020		
69869-031	TCI-13-366-04-02	4	⊢	25.00	18-N	lar-14 1	9-Mar-14	250 0.1	9	ŝ	~	0	0.00	0	QN		
69869-032	TCI-13-366-04-03	4	⊢	25.00	18-N	lar-14 1	9-Mar-14	250 0.1	0 10	Ŝ	-	0	00.0	0	QN		
69869-033	TCI-13-366-04-04	4	F	25.00	18-N	lar-14 1	9-Mar-14	250 0.1	0 10	ŝ	-	2365	0.000163	0.000163	<0.020		
69869-034	TCI-13-366-04-05	4	⊢	25.00	18-N	lar-14 1	9-Mar-14	250 0.1	0	ŝ	-	2085^{a}	00.0	0	QN		
69869-035	TCI-13-366-04-06	4	F	25.00	18-N	lar-14 1	9-Mar-14	250 0.1	0 10	ŝ	-	2551	0.000431	0.000431	<0.020		
69869-036	TCI-13-366-04-07	4	⊢	25.00	18-N	lar-14 1	9-Mar-14	250 0.1	0 10	ŝ	-	2268	0.0000231	0.0000231	<0.020		
69869-037	TCI-13-366-04-08	4	⊢	25.00	18-N	lar-14 1	9-Mar-14	250 0.1	0 10	с	-	2409	0.000226	0.000226	<0.020		
69869-038	TCI-13-366-04-09	4	⊢	25.00	18-N	lar-14 1:	9-Mar-14	250 0.1	0	ŝ	-	0	0.00	0	QN		
69869-039	TCI-13-366-04-10	4	F	25.00	18-N	lar-14 1	9-Mar-14	250 0.1	0	S	-	1900^{a}	0.00	0	QN		
69869-040	TCI-13-366-04-11	4	⊢	25.00	18-N	lar-14 1	9-Mar-14	250 0.1	0	ŝ	~	2159 ^a	00.0	0	QN		
69869-041	TCI-13-366-05-01	4	υ	25.00	18-N	lar-14 1	9-Mar-14	250 0.1	0	ŝ	~	6207	0.00570	0.0057	<0.020		
69869-042	TCI-13-366-05-02	4	⊢	25.00	18-N	lar-14 1:	9-Mar-14	250 0.1	0 10	с	-	2463	0.000304	0.000304	<0.020		
69869-043	TCI-13-366-05-03	4	⊢	25.00	18-N	lar-14 1	9-Mar-14	250 0.1	0	ŝ	-	2806	0.000799	0.000799	<0.020		
12562-B9	std. curve 0.03 ng/mL	4	თ			÷	9-Mar-14					24320					
12562-B10	std. curve 0.01 ng/mL	4	თ			÷	9-Mar-14					10189					
12562-B8	std. curve 0.05 ng/mL	4	თ			÷	9-Mar-14					35346					
12562-B7	std. curve 0.15 ng/mL	4	თ			÷	9-Mar-14					102231					
12562-B8	std. curve 0.05 ng/mL	4	თ			÷	9-Mar-14					34119					
12562-B9	std. curve 0.03 ng/mL	4	თ			÷	9-Mar-14					21370					
12562-B7	std. curve 0.15 ng/mL	4	თ			÷	9-Mar-14					108340					
12562-B6	std. curve 0.3 ng/mL	4	S			÷	9-Mar-14					216722					
	1/x Weighting																
Correlation (r): 0.99843628																
Slope (m): 694314.4																
Intercept (b)): 2251.838																
	^a Concentration assumed to b	e zero	when th	ie peak re	sponse is	below th	e y-interce	ept.									

File Name: H 69869 03182014D.rdb

69869					Residue	e Results							ABC	Laboratories, Inc.	
TCI-13-366					Analyte: (Clomazo	e T								
				Samp Fort	INIATRIX: C8	anola se	ea Fin∂	Ē	ЧРГС					mqq	
	Sample	Set	Samp	Wf Level Extraction	n Injection	mL	۲ ال	<	Ō	Peak	ng/mL	-	eported	ppm corr for	%
ABC ID	Identification	#	Type	g ppm Date	Date	solv al	iq ml	- nL	Fact	Resp	found	bpm	bpm	control control Re	ő
Injection Solver	nt Injection Solvent	7	ш		21-Mar-14					2438^{3}	0.00				
69869-075	TCI-13-366-07-01	7	O	25.00 21-Mar-1	4 21-Mar-14	250 0.1	0	10	-	5167	0.000256	0.000256	<0.020		
69869-076	TCI-13-366-07-01 + 0.020	2	ш	25.00 0.020 21-Mar-1	4 21-Mar-14	250 0.1	0	9	-	28294	0.0203	0.0203	0.0203 0.	000256 0.0200 10	g
69869-077	TCI-13-366-07-01 + 0.50	2	ш	25.00 0.50 21-Mar-1	4 21-Mar-14	250 0.1	0	9	ç	119375	0.0991	0.4955	0.496 0.	000256 0.495 9	66
69869-078	TCI-13-366-07-01 + 0.020	7	ш	25.00 0.020 21-Mar-1	4 21-Mar-14	250 0.1	9	9	-	26772	0.0190	0.019	0.0190 0.	000256 0.0187 9	4
69869-079	TCI-13-366-05-04	2	⊢	25.00 21-Mar-1	4 21-Mar-14	250 0.1	0	6	-	4197 ^a	0.00	0	QN		
69869-080	TCI-13-366-05-05	2	н	25.00 21-Mar-1	4 21-Mar-14	250 0.1	0	9	-	4567 ^a	00.0	0	QN		
69869-081	TCI-13-366-05-06	7	⊢	25.00 21-Mar-1	4 21-Mar-14	250 0.1	0	9	-	3195^{a}	0.00	0	QN		
69869-082	TCI-13-366-05-07	7	⊢	25.00 21-Mar-1	4 21-Mar-14	250 0.1	0	9	-	4533 ^a	0.00	0	QN		
69869-083	TCI-13-366-05-08	7	⊢	25.00 21-Mar-1	4 21-Mar-14	250 0.1	0	9	-	3108^{a}	00.0	0	QN		
69869-084	TCI-13-366-05-09	2	⊢	25.00 21-Mar-1	4 21-Mar-14	250 0.1	0	9	-	4313 ^a	0.00	0	QN		
69869-085	TCI-13-366-05-10	7	⊢	25.00 21-Mar-1	4 21-Mar-14	250 0.1	0	9	-	3530^{a}	00.0	0	QN		
69869-086	TCI-13-366-05-11	2	⊢	25.00 21-Mar-1	4 21-Mar-14	250 0.1	0	9	-	2921 ^a	0.00	0	QN		
69869-087	TCI-13-366-07-02	7	F	25.00 21-Mar-1	4 21-Mar-14	250 0.1	0	9	-	3281 ^a	0.00	0	QN		
69869-088	TCI-13-366-07-03	2	⊢	25.00 21-Mar-1	4 21-Mar-14	250 0.1	0	9	-	2460 ^a	0.00	0	QN		
69869-089	TCI-13-366-08-01	2	υ	25.00 21-Mar-1	4 21-Mar-14	250 0.1	0	9	-	2508^{a}	00.0	0	QN		
69869-090	TCI-13-366-08-02	7	⊢	25.00 21-Mar-1	4 21-Mar-14	250 0.1	0	9	-	3437 ^a	0.00	0	QN		
69869-091	TCI-13-366-08-03	2	⊢	25.00 21-Mar-1	4 21-Mar-14	250 0.1	0	9	-	3214 ^a	0.00	0	QN		
69869-092	TCI-13-366-09-01	7	υ	25.00 21-Mar-1	4 22-Mar-14	250 0.1	0	9	-	3132 ^a	0.00	0	QN		
69869-093	TCI-13-366-09-02	2	⊢	25.00 21-Mar-1	4 22-Mar-14	250 0.1	0	9	-	3031 ^a	00.0	0	QN		
69869-094	TCI-13-366-09-03	7	⊢	25.00 21-Mar-1	4 22-Mar-14	250 0.1	0	9	-	2547 ^a	00.0	0	QN		
12562-B9	std. curve 0.03 ng/mL	2	S		21-Mar-14					40366					
12562-B10	std. curve 0.01 ng/mL	7	თ		21-Mar-14					16644					
12562-B8	std. curve 0.05 ng/mL	7	თ		21-Mar-14					62242					
12562-B7	std. curve 0.15 ng/mL	2	ω		21-Mar-14					179390					
12562-B8	std. curve 0.05 ng/mL	2	თ		21-Mar-14					60191					
12562-B9	std. curve 0.03 ng/mL	7	თ		21-Mar-14					39082					
12562-B7	std. curve 0.15 ng/mL	2	S		22-Mar-14					181232					
12562-B6	std. curve 0.3 ng/mL	2	თ		22-Mar-14					349382					
	1/x Weighting														
Correlation (r): 0.99981051														
Slope (m): 1155268														
Intercept (b): 4871.421														
	^a Concentration assumed to b	e zero	when th	ne peak response is belo	w the y-interce	ept.									

Page 126

File Name: H 69869 03212014C.rdb

69869						Residu	e Result	s						AB(C Laborator	ies, Inc.
TCI-13-366						Analyte:	Clomaz	one								
				,		Matrix: C	anola v	i Sed								
				Samp F	ort			Ē	al Inj	НРГС						mdd
	Sample	Set	Samp	Wt Le	evel Extraction	Injection	ר שך	ر ۲	ol Vol	Ö	Peak	ng/mL		eported	b mdd	corr for %
ABC ID	Identification	#	Type	g pi	pm Date	Date	solv a	liq n	Ju Ju	Fact	Resp	found	bpm	ppm	control	control Rec
Injection Solver	nt Injection Solvent	œ	в			26-Mar-14					2681 ^a	0.00				
69869-095	TCI-13-366-10-01	œ	U	25.00	26-Mar-14	26-Mar-14	250 0.	10	05	-	3740	0.000610	0.00061	<0.020		
69869-096	TCI-13-366-10-01 + 0.020	œ	ш	25.00 0	020 26-Mar-14	26-Mar-14	250 0.	10	05	-	11941	0.0142	0.0142	0.0142	0.000610	0.0136 68
69869-097	TCI-13-366-10-01 + 0.50	ø	ш	25.00 ().50 26-Mar-14	26-Mar-14	250 0.	10	0	Ŝ	63724	0.0999	0.4995	0.500	0.000610	0.499 100
69869-098	TCI-13-366-10-02	ø	F	25.00	26-Mar-14	26-Mar-14	250 0.	10	0 5	-	2859^{a}	00.0	0	QN		
660-69869	TCI-13-366-10-03	ω	⊢	25.00	26-Mar-14	26-Mar-14	250 0.	10	0 5	-	3366 ^a	0.00	0	Q		
69869-100	TCI-13-366-11-01	ø	U	25.00	26-Mar-14	26-Mar-14	250 0.	10	0	-	3614	0.000402	0.000402	<0.020		
69869-101	TCI-13-366-11-02	ø	⊢	25.00	26-Mar-14	26-Mar-14	250 0.	10	0 5	-	3089^{a}	0.00	0	QN		
69869-102	TCI-13-366-11-03	ø	⊢	25.00	26-Mar-14	26-Mar-14	250 0.	10	05	-	2989 ^a	00.0	0	QN		
69869-103	TCI-13-366-12-01	ø	U	25.00	26-Mar-14	26-Mar-14	250 0.	10	05	-	3274^{a}	0.00	0	ΩN		
69869-104	TCI-13-366-12-02	ω	⊢	25.00	26-Mar-14	26-Mar-14	250 0.	10	0 5	-	3263^{a}	0.00	0	Q		
69869-105	TCI-13-366-12-03	ø	F	25.00	26-Mar-14	26-Mar-14	250 0.	10	0	-	3454	0.000136	0.000136	<0.020		
12562-B9	std. curve 0.03 ng/mL	œ	თ			26-Mar-14					22774					
12562-B10	std. curve 0.01 ng/mL	ø	თ			26-Mar-14					9213					
12562-B8	std. curve 0.05 ng/mL	œ	თ			26-Mar-14					32302					
12562-B11	std. curve 0.15 ng/mL	œ	თ			26-Mar-14					94932					
12562-B8	std. curve 0.05 ng/mL	ø	თ			26-Mar-14					33461					
12562-B6	std. curve 0.3 ng/mL	œ	თ			26-Mar-14					183822					
	1/x Weighting															
Correlation (r): 0.99965426															
Slope (m): 603853.9															
Intercept (b): 3371.712															
	^a Concentration assumed to b	e zero	when th	e peak re	sponse is below	the y-interc	ept.									

File Name: H 69869 03262014B.rdb

Samp Fort	(
Set Samp Wt Level Extra	i nii Peak ng/mL
# Type g ppm D	PF-
short B	
short C 25.00 25-F	00.00
short F 25.00 0.020 25-F	2 1 0 0.00 v
short F 25.00 0.50 25-I	0.00 0.00 1 2440 0.0163 0.0163
short T 25.00 25-	0.00 0 0.00 1 2440 0.0163 0.0163 0.5 5 5 12556 0.0979 0.4895 ∩ A
short T 25.00 25-	0.00 0.00 2440 0.0163 0.0163 5 5 12556 0.0979 0.4895 0.4 5 1 0 0.00
short S	u.00 0.00 .40 0.0163 0.0163 v J 12556 0.0979 0.4895 0.4 1 0 0.00 0
short S	J.00 0.00 0.00 1.2556 0.0979 0.4895 0.4 1 0 0.00 0 4208
short S	
short S	,,00 0.00 0.0163 0.0163 0.0163 0.0163 0.0163 0.4895 0.4895 0.4895 0.490 1.200 1.200 0.000 0.00 0.00 0.00 0.00
short S	
	J0 0.00 0.0163 0.0163 0.0163 0.0163 0.0163 0.04895 0.4895 0.00 0 0.000 0 4208 1657 6523 18764 37902
	J0 J. 00 J. 00 J. 0163 J. 0163 J. 0163 0. 014895 0. 4895 0. 000 0 0. 00 0 0 0 0. 00 0 0 0 0 0 0 0 0 0 0 0 0
	, 100 , 1, 00 , 1, 00 , 1, 00 , 1, 1, 0, 0, 0, 1, 1, 0, 0, 0 , 1, 0, 0, 0 , 1, 0, 0, 0 , 1, 0, 0 , 0, 0 , 0, 0 , 0, 0 , 0, 0, 0, 0 , 0

Page 128

File Name: N 69869 02252014A.rdb

C Laboratories, Inc.	mqq	ppm corr for %	control control Rec			0.000 0.0173 87	0.000 0.565 113																		
AB		eported	bpm		QN	0.0173	0.565	QN	QN	QN	QN	<0.020	<0.020	QN											
		-	mqq		0	0.0173	0.565	0	0	0	0	0.000958	0.00289	0											
		ng/mL	found	0.00188	0.00	0.0173	0.113	00.00	00.0	00.0	0.00	0.000958	0.00289	00.0											
	U	ii Peak	ct Resp	1880	$1 1053^{3}$	1 4443	5 20315	1	1 1377 ^a	1 718 ^a	$1 840^3$	1 1726	1 2047	1 705 ^a	7106	3150	9682	25695	25770	52815					
	j HPL		Га																						
	nal In	/ol Vo	nL ul		ő	0	• •	ő	ő	ő	0	0	0	0											
Û , F	Ë	/ mL	aliq r		10	10	10	10	10	10	10	10	10	10											
ssults ransitio nazone a Seec		- E	solv a		250 0.	250 0.	250 0.	250 0.	250 0.	250 0	250 0.	250 0	250 0.	250 0.											
Residue Re nfirmatory T nalyte: Clon atrix: Canol		Injection	Date	17-Mar-14	17-Mar-14	17-Mar-14	17-Mar-14	17-Mar-14	17-Mar-14	17-Mar-14	17-Mar-14	17-Mar-14	17-Mar-14	17-Mar-14	17-Mar-14	17-Mar-14	17-Mar-14	17-Mar-14	17-Mar-14	17-Mar-14					
M A (Co		Extraction	Date	·	14-Mar-14	14-Mar-14	14-Mar-14 1	14-Mar-14	14-Mar-14	14-Mar-14	14-Mar-14	14-Mar-14	4-Mar-14 1	14-Mar-14	-	ſ-	Ţ	.	ſ-	.					
	Fort	evel 1	mqc		``	0.020	0.50		·	`	``	•	`	·											
	àmp	٨t	5		25.00	25.00 0	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00											
	0)	Samp	Type	ш	0	ш	ш	-	+	0	μ	F	-	-	s S	s S	S	s S	s S	s S					
		Set	#	7	0	2	0	2	7	С	0	2	7	7	2	2	2	2	2	2					
		Sample	Identification	Injection Solvent	TCI-13-366-01-01	TCI-13-366-01-01 + 0.020	TCI-13-366-01-01 + 0.50	TCI-13-366-01-02	TCI-13-366-01-03	TCI-13-366-06-01	TCI-13-366-06-02	TCI-13-366-06-03	TCI-13-366-06-04	TCI-13-366-06-05	std. curve 0.03 ng/mL	std. curve 0.01 ng/mL	std. curve 0.05 ng/mL	std. curve 0.15 ng/mL	std. curve 0.15 ng/mL	std. curve 0.3 ng/mL	1/x Weighting	0.99902813	166406.7	1566.267	
69869 TCI-13-366			ABC ID	Injection Solvent	69869-011	69869-012	69869-013	69869-014	69869-015	69869-016	69869-017	69869-018	69869-019	69869-020	12562-B9	12562-B10	12562-B8	12562-B7	12562-B7	12562-B6		Correlation (r):	Slope (m):	Intercept (b):	

^aConcentration assumed to be zero when the peak response is below the y-intercept.

File Name: H 69869 03172014B.rdb

atories, Inc.	ppm 201	control Rec			0.0173 87	0.555 111	0.0173 87																												
ABC Labora	-	control			0.000	0.000	0.000																												
٩		bbm		Q	0.0173	0.555	0.0173	Q	Q	Q	Q	Q	Q	Q	Q	QN	Q	Q	QN	Q	QN	QN	Q												
		mqq		0	0.0173	0.555	0.0173	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0												
		found	0.00	0.00	0.0173	0.111	0.0173	00.0	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00												
		Resp	0	0	4165	20143	4170	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5923	3507	9429	25623	8944	5613	27115	55364				
	HPLC 19	Fact		~	-	ŝ	-	-	-	-	-	~	~	~	~	-	~	-	-	-	~	~	-												
	ы Н	r 8		Ŝ	ç	с	S	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	ç	ŝ	ç	ç	с	с	Ŝ	ç	ъ	с												
	Final	ш Ш		10	10	10	10	9	9	10	9	10	10	9	10	10	9	9	9	9	9	9	9												
tion) ed	1	aliq		0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10												
esults Transi mazoi ila Se	1	Sol√ III		250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250												
Residue R onfirmatory Analyte: Clo Matrix: Canc	acitorial	Date	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14	19-Mar-14				
0) 12	Totan at i an	Date		18-Mar-14	18-Mar-14	18-Mar-14	18-Mar-14	18-Mar-14	18-Mar-14	18-Mar-14	18-Mar-14	18-Mar-14	18-Mar-14	18-Mar-14	18-Mar-14	18-Mar-14	18-Mar-14	18-Mar-14	18-Mar-14	18-Mar-14	18-Mar-14	18-Mar-14	18-Mar-14												
	Fort	ppm ppm			0.020	0.50	0.020																												
	Samp	- D		25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00												
	1	Type	B	υ	ш	ш	ш	⊢	⊢	υ	⊢	⊢	⊢	⊢	⊢	⊢	⊢	F	F	⊢	υ	F	F	თ	თ	თ	თ	S	S	S	თ				
	te	# 04	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4				
		oampre Identification	t Injection Solvent	TCI-13-366-03-01	TCI-13-366-03-01 + 0.020	TCI-13-366-03-01 + 0.50	TCI-13-366-03-01 + 0.020	TCI-13-366-03-02	TCI-13-366-03-03	TCI-13-366-04-01	TCI-13-366-04-02	TCI-13-366-04-03	TCI-13-366-04-04	TCI-13-366-04-05	TCI-13-366-04-06	TCI-13-366-04-07	TCI-13-366-04-08	TCI-13-366-04-09	TCI-13-366-04-10	TCI-13-366-04-11	TCI-13-366-05-01	TCI-13-366-05-02	TCI-13-366-05-03	std. curve 0.03 ng/mL	std. curve 0.01 ng/mL	std. curve 0.05 ng/mL	std. curve 0.15 ng/mL	std. curve 0.05 ng/mL	std. curve 0.03 ng/mL	std. curve 0.15 ng/mL	std. curve 0.3 ng/mL	1/x Weighting	: 0.99610682	: 1/1303.3	: 1201.747
69869 TCI-13-366		ABC ID	Injection Solven	69869-024	69869-025	69869-026	69869-027	69869-028	69869-029	69869-030	69869-031	69869-032	69869-033	69869-034	69869-035	69869-036	69869-037	69869-038	69869-039	69869-040	69869-041	69869-042	69869-043	12562-B9	12562-B10	12562-B8	12562-B7	12562-B8	12562-B9	12562-B7	12562-B6		Correlation (r)	Slope (m)	Intercept (b)

Page 130

File Name: H 69869 03182014D.rdb

69869 FCI-13-366						ğ	Residue Re	sults ransitic	(u						٩	BC Labor	atories,	lnc.
						~ ~	Analyte: Clon /latrix: Canol	a Seed										
	Samnle	teo:	Samn	Samp	Fort	Extraction	Iniection	Ē	E ~	n N V	I HPLC	Deak	lm/m		renorted	muu	ppm corr for	%
ABC ID	Identification	š #	Type	6	ppm	Date	Date		n «	2 년	. Fact	Resp	found	mqq	mdd	control	control	Rec
ection Solver	nt Injection Solvent	7	ш				21-Mar-14					0	0.00					
69869-075	TCI-13-366-07-01	7	υ	25.00		21-Mar-14	21-Mar-14	250 0.	10	0	-	1687	0.000790	0.00079	<0.020			
69869-076	TCI-13-366-07-01 + 0.020	7	ш	25.00	0.020	21-Mar-14	21-Mar-14	250 0.	10	0	-	7233	0.0200	0.02	0.0200	062000.0	0.0192	96
69869-077	TCI-13-366-07-01 + 0.50	7	ш	25.00	0.50	21-Mar-14	21-Mar-14	250 0.	10	0	ч) -	30516	0.101	0.505	0.505 (062000.0	0.504	101
69869-078	TCI-13-366-07-01 + 0.020	7	ш	25.00	0.020	21-Mar-14	21-Mar-14	250 0.	10	0	-	7093	0.0195	0.0195	0.0195 (062000.0	0.0187	94
69869-079	TCI-13-366-05-04	7	⊢	25.00		21-Mar-14	21-Mar-14	250 0.	10	0	-	1148^{a}	0.00	0	QN			
69869-080	TCI-13-366-05-05	7	⊢	25.00		21-Mar-14	21-Mar-14	250 0.	10	0	-	1054^{a}	0.00	0	QN			
69869-081	TCI-13-366-05-06	7	⊢	25.00		21-Mar-14	21-Mar-14	250 0.	10	0	-	1019 ^a	0.00	0	QN			
69869-082	TCI-13-366-05-07	7	⊢	25.00		21-Mar-14	21-Mar-14	250 0.	10	0	-	1342^{a}	0.00	0	QN			
69869-083	TCI-13-366-05-08	7	⊢	25.00		21-Mar-14	21-Mar-14	250 0.	10	0	-	0	0.00	0	QN			
69869-084	TCI-13-366-05-09	7	⊢	25.00		21-Mar-14	21-Mar-14	250 0.	10	0	-	1121 ^a	0.00	0	QN			
69869-085	TCI-13-366-05-10	7	⊢	25.00		21-Mar-14	21-Mar-14	250 0.	10	0	-	1084^{a}	0.00	0	QN			
69869-086	TCI-13-366-05-11	7	⊢	25.00		21-Mar-14	21-Mar-14	250 0.	10	0	-	0	0.00	0	QN			
69869-087	TCI-13-366-07-02	7	⊢	25.00		21-Mar-14	21-Mar-14	250 0.	10	0	-	0	0.00	0	QN			
69869-088	TCI-13-366-07-03	7	⊢	25.00		21-Mar-14	21-Mar-14	250 0.	10	0 7	-	0	0.00	0	Q			
69869-089	TCI-13-366-08-01	2	υ	25.00		21-Mar-14	21-Mar-14	250 0.	10	0	-	0	0.00	0	Q			
69869-090	TCI-13-366-08-02	7	⊢	25.00		21-Mar-14	21-Mar-14	250 0.	10	0	-	1113 ^a	0.00	0	Q			
69869-091	TCI-13-366-08-03	7	⊢	25.00		21-Mar-14	21-Mar-14	250 0.	10	0	-	1101 ^a	0.00	0	QN			
69869-092	TCI-13-366-09-01	7	υ	25.00		21-Mar-14	22-Mar-14	250 0.	10	0	-	0	0.00	0	QN			
69869-093	TCI-13-366-09-02	7	F	25.00		21-Mar-14	22-Mar-14	250 0.	10	0	-	1278 ^a	0.00	0	QN			
69869-094	TCI-13-366-09-03	7	⊢	25.00		21-Mar-14	22-Mar-14	250 0.	10	0	-	0	0.00	0	QN			
12562-B9	std. curve 0.03 ng/mL	7	S				21-Mar-14					10223						
12562-B10	std. curve 0.01 ng/mL	7	თ				21-Mar-14					4562						
12562-B8	std. curve 0.05 ng/mL	2	S				21-Mar-14					15321						
12562-B7	std. curve 0.15 ng/mL	7	თ				21-Mar-14					45071						
12562-B8	std. curve 0.05 ng/mL	7	თ				21-Mar-14					15159						
12562-B9	std. curve 0.03 ng/mL	7	თ				21-Mar-14					9862						
12562-B7	std. curve 0.15 ng/mL	7	თ				22-Mar-14					46131						
12562-B6	std. curve 0.3 ng/mL	7	თ				22-Mar-14					87641						
	1/x Weighting																	
correlation (r): 0.99952482																	
Slope (m): 288698.1																	
Intercept (b	·): 1459.161																	
	^a Concentration assumed to b	e zero	when th	he peak	respon	se is below	the y-interce	ъ.										

Page 131

File Name: H 69869 03212014C.rdb

aboratories, Inc.	mqq	pm corr for %	itrol control Rec			000 0.0149 75	000 0.500 100																		
ABC L		eported p	ppm con		QN	0.0149 0.1	0.500 0.1	QN	QN	QN	<0.020	<0.020	QN	QN	QN										
		Ĕ	bpm		0	0.0149	0.5	0	0	0	0.0000674	0.00144	0	0	0										
		ng/mL	found	00.0	0.00	0.0149	0.100	00.0	0.00	0.00	0.0000674	0.00144	0.00	0.00	0.00										
		Peak	Resp	356 ^a	860 ^a	3464	16465	1025 ^a	1142^{a}	1043^{a}	1208	1417	875 ^a	1025^{a}	723^{a}	6308	2660	8529	23773	8588	47334				
	HPLC	Ξ	Fact		-	~	ç	-	-	~	~	-	-	-	-										
	ini H	Ņ	пL		Ŝ	S	S	5	S	ç	ç	Ŝ	ç	ç	S										
	Final	No	mL		10	10	10	10	10	10	10	10	10	9	10										
ttion) ne ed		Ľ	aliq		0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10										
lesults Transi mazoi bla Se		Ę	solv		250	250	250	250	250	250	250	250	250	250	250										
Residue F onfirmatory Analyte: Clo Aatrix: Cano		Injection	Date	26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14				
0		Extraction	Date		26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14	26-Mar-14										
	Fort	evel	mqc			0.020	0.50																		
	Samp	Mt L	9		25.00	25.00 (25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00										
		Samp	Type	В	υ	ш	ш	⊢	F	υ	F	⊢	υ	F	⊢	თ	თ	თ	თ	თ	თ				
		Set	#	8	œ	80	ω	80	œ	8	80	œ	80	80	œ	8	æ	8	œ	ø	80				
		Sample	Identification	nt Injection Solvent	TCI-13-366-10-01	TCI-13-366-10-01 + 0.020	TCI-13-366-10-01 + 0.50	TCI-13-366-10-02	TCI-13-366-10-03	TCI-13-366-11-01	TCI-13-366-11-02	TCI-13-366-11-03	TCI-13-366-12-01	TCI-13-366-12-02	TCI-13-366-12-03	std. curve 0.03 ng/mL	std. curve 0.01 ng/mL	std. curve 0.05 ng/mL	std. curve 0.15 ng/mL	std. curve 0.05 ng/mL	std. curve 0.3 ng/mL	1/x Weighting): 0.9992436	l): 152551.7): 1197.773
69869 TCI-13-366			ABC ID	Injection Solve	69869-095	69869-096	69869-097	69869-098	69869-099	69869-100	69869-101	69869-102	69869-103	69869-104	69869-105	12562-B9	12562-B10	12562-B8	12562-B11	12562-B8	12562-B6		Correlation (I	Slope (m	Intercept (b

^aConcentration assumed to be zero when the peak response is below the y-intercept.

File Name: H 69869 03262014B.rdb

Residue Results Analyte: Clomazone Matrix: Canola Seed

	%	Rec			68	64									
mqq	corr for	control			0.0135	0.322									
	mdd	ntrol			000	000									
	ted	pm co		020	135 0	322 0	020	020							
	repor	с с		- O	0.0	0	0 0	0							
		nqq		0	0.0135	0.3215625	0	0							
	ng/mL	found	0 >	0 V	0.144	0.0343	0 V	0 ~							
	Peak	Respa	2374	2308	2092	2605	2476	2605	0571	0471	6601	38064	4979	t1473	
PLC	D	Fact		100	100 7	000 2	100	100	2	1	ŝ	=	Ľ,	17	
Ē	Vol	η		ю	ŝ	5 10	ŝ	ŝ							
Final	Vol	Ц		0	0	Q	0	0							
GPC	Ш	. aliq		4	4	4	4	4							
6PO	- 40	d m		15	15	15	15	15							
	nL ml	olv alio		50 8(50 8(50 8(50 8(50 8(
	u	ۍ ۵	- 14	-14 2	-14 2	-14 2	-14 2	-14 2	-14	-14	14	-14	4	4	
	Injecti	Date	19-May	19-May	19-May	19-May	19-May	19-May	19-May	19-May	19-May	19-May	19-May	19-May	
	action	ate		ay-14	ay-14	ay-14	ay-14	ay-14							
	EXtra	õ		15-M) 15-M) 15-M	15-M	15-M							
Fort	Level	шdd			0.020	0.50									
Samp	Wt	D		25.00	25.00	25.00	25.00	25.00							
	Samp	Type	ш	O	ш	ш	⊢	⊢	S	S	S	S	S	S	
	Set	#	10 long	10 long	10 long	10 long	10 long	10 long	10 long	10 long	10 long	10 long	10 long	10 long	
	imple	antification	ection Solvent	JI-13-366-06-01 DF=100	XI-13-366-06-01 + 0.020 DF=100	XI-13-366-06-01 + 0.50 DF=10,000	31-13-366-06-02 DF=100	JI-13-366-06-03 DF=100)3 ng/mL)1 ng/mL)5 ng/mL	1 ng/mL	15 ng/mL	ł ng/mL	c Weighting 1955 1739.3
	ഗ്	ď	ent Inj	Ĕ	Ĕ	Ĕ	Ĕ	Ĕ	0.0	0.0	0.0	0	0	0	(r): 0.1 (m): 45 (b): 71
		ABCID	Injection Solv	69869-111	69869-112	69869-113	69869-114	69869-115	12864-B9	12864-B8	12864-B6	12864-B4	12864-B5	12864-B4	Correlation Slope (i Intercept (

File Name: H 69869 05182014C

69869 TCI-13-366

69869 TCH13-366						A Con A A	Residue Re firmatory T nalyte: Clon atrix: Canol	sults ransitio nazone a Seed	Ê									ABC	Labora	tories,	цс.	
				Samp	Fort				0	PC G	PC Fi	nal	ы Н Н	Ŋ						udd	-	
	Sample	Set	Samp	W	Level I	Extraction	Injection	шЦ	Ч	<u>0</u>	Ц	~ [9	<u>م</u> ،	Dil Pe	×	g/mL	Ψ	sported	шdd	corr fo	r %	
ABC ID	Identification	#	Type	ŋ	bpm	Date	Date	solv	aliq	шL	aliq	밀	ш 	act Re	Q	ound	bpm	bpm	control	contro	Rec Rec	
Injection Solven	t Injection Solvent	10 long	ഫ				19-May-14	_						0	No	Peak						
69869-111	TCI-13-366-06-01 DF=100	10 long	O	25.00	~-	5-May-14	19-May-14	F 250	80	15	4	3	` ص	000	οN	Peak	0	<0.020				
69869-112	TCI-13-366-06-01 + 0.020 DF=100	10 long	ш	25.00	0.020 1	5-May-14	19-May-14	F 250	80	15	4	2	` د	00 1823	0.	150 0.01	40625	0.0141	0.000	0.014	2	_
69869-113	TCI-13-366-06-01 + 0.50 DF=10,000	10 long	ш	25.00	0.50 1	5-May-14	19-May-14	1 250	80	15	4	2	5 100	00 564	5 0.(384 0.3	36000	0.360	0.000	0.36	2	
69869-114	TCI-13-366-06-02 DF=100	10 long	⊢	25.00	-	5-May-14	19-May-14	1 250	80	15	4	2	` Ω	0 00	Ν	Peak	0	<0.020				
69869-115	TCI-13-366-06-03 DF=100	10 long	⊢	25.00		5-May-14	19-May-14	1 250	80	15	4	2	` ص	000	οN	Peak	0	<0.020				
12864-B9	0.03 ng/mL	10 long	S				19-May-14	_						514	5							
12864-B8	0.01 ng/mL	10 long	S				19-May-14	_						200	1							
12864-B6	0.05 ng/mL	10 long	S				19-May-14	_						846	0							
12864-B4	0.3 ng/mL	10 long	S				19-May-14	_						3394	5							
12864-B5	0.15 ng/mL	10 long	ი				19-May-14	_						1906	8							
12864-B4	0.3 ng/mL	10 long	S				19-May-14	_						3415	9							
Correlation (r):	1/X vvelgrung : 0.9948																					
Slope (m) Intercept (b)	: 113073.8 : 1298.89																					

File Name: H 69869 05182014C

Page 135

APPENDIX V

Preparation of Standard Solutions

PREPARATION OF STANDARD SOLUTIONS

1 Stock Standard Solutions

Twenty-five (25.0) mg (corrected for purity) of clomazone analytical standard were accurately weighed, quantitatively transferred to a 25-mL volumetric flask, and brought to volume with acetonitrile. The resulting concentration of the solution was 1.0 mg/mL (1000- μ g/mL). They were stored in the dark typically at 2 °C to 8 °C. When stored as indicated, these solutions have shown stability for at least two months. Solution stability is on-going as part of ABC Study Number 81233.

2 Intermediate/Fortification Standard Solutions

The following concentrations of intermediate/fortification standard solutions were stored in the dark typically at 2 °C to 8 °C. When stored as indicated, these solutions have shown stability for at least two months.

- 100 μg/mL: 1 mL of a 1000-μg/mL stock standard solution were transferred to a 10-mL volumetric flask and brought to volume with acetonitrile. The contents were mixed well.
- 10 μ g/mL: 250 μ L of a 1000- μ g/mL stock standard solution were transferred to a 25-mL volumetric flask and brought to volume with acetonitrile. The contents were mixed well.
- 1.0 μg/mL: 2.5 mL of a 10-μg/mL standard solution were transferred to a 25-mL volumetric flask and brought to volume with acetonitrile. The contents were mixed well.

3 Calibration Standards Solutions

The following concentrations of intermediate and calibration standard solutions were stored in the dark typically at 2 °C to 8 °C.

- 100 ng/mL: 1.0 mL of a $1.0-\mu$ g/mL intermediate standard solution was transferred to a to a 10-mL volumetric flask and brought to volume with acetonitrile:water (1:1, v/v). The contents were mixed well.
- 20 ng/mL: 0.20 mL of a $1.0-\mu$ g/mL intermediate standard solution was transferred to a to a 10-mL volumetric flask and brought to volume with acetonitrile:water (1:1, v/v). The contents were mixed well.
- 5.0 ng/mL: 0.50 mL of a 100-ng/mL calibration standard solution were transferred to a to a 10-mL volumetric flask and brought to volume with acetonitrile:water (1:1, v/v). The contents were mixed well.
- 0.30 ng/mL: 0.15 mL of a 20-ng/mL calibration standard solution were transferred to a to a 10-mL volumetric flask and brought to volume with acetonitrile:water (1:1, v/v). The contents were mixed well.
- 0.15 ng/mL: 0.30 mL of a 5.0-ng/mL calibration standard solution were transferred to a to a 10-mL volumetric flask and brought to volume with acetonitrile:water (1:1, v/v). The contents were mixed well.
- 0.050 ng/mL: 0.10 mL of a 5.0-ng/mL calibration standard solution were transferred to a to a 10-mL volumetric flask and brought to volume with acetonitrile:water (1:1, v/v). The contents were mixed well.
- 0.030 ng/mL: 1.0 mL of a 0.30-ng/mL calibration standard solution were transferred to a to a 10-mL volumetric flask and brought to volume with acetonitrile:water (1:1, v/v). The contents were mixed well.
- 0.010 ng/mL: 0.667 mL of a 0.15-ng/mL calibration standard solution were transferred to a to a 10-mL volumetric flask and brought to volume with acetonitrile:water (1:1, v/v). The contents were mixed well.

When stored as indicated, these solutions have shown stability for at least two months.

Appendix D - Protocol, Amendments, and Deviations

Deviations:

SOP deviations have been documented and are maintained in the study file.

The following protocol deviations were documented, but none adversely impacted the study.

Field Phase

TCI-13-366-02: The trial was originally initiated on June 3, 2013; however, the application rate was too low due to improper spray mixture preparation. The original trial site was abandoned and the trial restarted on June 11, 2013.

TCI-13-366-02: Phytotoxicity was not documented at the time it was observed as required by the protocol.

TCI-13-366-04, -09, -10, -11, and -12: The test substance used and amount remaining after the application was not documented in the field trial notebook log at each event; however, this information was documented after the fact using information from the receipt logs and test substance calculation raw data.

TCI-13-366-05: Due to an error with the lap timers, the pass time for the first pass was not captured. A verification pass time was completed after the second pass to verify the first pass time over the same path using the same settings (cruise control on ATV); therefore, this does not adversely impact the study.

TCI-13-366-11: Due to poor crop emergence and a poor stand, the treated samples weighed 0.20 and 0.25 kg rather than 0.5 kg as the protocol required. The crop that was present was healthy.

Analytical Phase

For method validation, the percent recovery for one 0.02 ppm sample was 66% and not within the range of 70-120% as the protocol required. The other protocol requirements, however, were met (mean recovery at each fortification level in the 70-110% range and the RSD at each level of $\leq 20\%$).

The Day 0 storage stability for canola seed was performed independently of the method validation and not in conjunction with method validation as the protocol specified. This does not adversely impact the study since Day 0 was setup along with the other storage samples as required.

For Set 8, the LOQ procedural recovery sample had a recovery of 68% and was not within the range of 70-120% as the protocol required.

The clomazone analytical standard (ABC reference MM-9053-00001) was stored in deep freezer storage at -10 to -25 °C; whereas, the Certificate of Analysis required < -20 °C. This did not adversely impact the study since the temperatures for all freezers used were typically between -15 and -20 °C, and any excursions from the freezer range allowed per ABC SOP were brief in nature and quickly rebounded. The integrity of the compound remained, as demonstrated by response throughout analysis.

A small study comparing the original method and the modified method was performed in this study without outlining this work in the protocol with an amendment. This did not adversely impact the study, but improved the study by providing data to support the changes implemented in the method modifications that were used for field sample analysis.

For the original and modified method comparison, the recoveries for the original method were 68 and 64% (primary ion transition). Since these data were not used for residue reporting, this does not adversely impact the study.

PROTOCOL AMENDMENT IV

I. <u>STUDY IDENTIFICATION:</u>

STUDY No.: TCI-13-366

TITLE: Magnitude of the Residue of Clomazone in/on Canola Raw Agricultural and Processed Commodities Following One Preemergence Application of Clomazone 360 g/L CS (2013)

STUDY DIRECTOR: Sandra J. Carringer

II. <u>CHANGE</u>

D.4.0 ANALYTICAL PARAMETERS, Storage Stability, Page 16.

Storage Stability: The freezer stability of clomazone in canola seed initiated in this study (0-day analyses completed and two additional stability sets fortified) will be transferred to a new study for completion and reporting of the stability evaluation.

III. <u>REASON FOR CHANGE:</u>

The storage interval needed to support stability could not be assessed in this study and meet the report submission timelines. The additional freezer storage stability for clomazone in canola seed will be assessed and reported in a separate freezer stability study conducted as ABC Laboratories, Inc. (Study No. 81233).

IV. <u>EFFECT ON STUDY:</u>

Storage stability testing will not be concluded or reported in this study, but will be concluded and reported in a separate freezer stability study at ABC Laboratories, Inc. (Study No. 81233).

V. <u>APPROVALS:</u>

Study Director:__

~ de Sandra J. Carringer

The Carringers, Inc.

Testing Facility

Date: 25-APR-2014

Date: 26 APR 2014

Management: \overline{R}

Richard D. Carringer, Ph.D. The Carringers, Inc.

Womack Date: 4-22-2014 Sponsor's Representative Jath Faith Womack

Faith Womack Cheminova, Inc.

Study No. TCI-13-366 Page 1 of 1

PROTOCOL AMENDMENT III

I. **STUDY IDENTIFICATION:**

STUDY No .: TCI-13-366

Magnitude of the Residue of Clomazone in/on Canola Raw Agricultural TITLE: and Processed Commodities Following One Preemergence Application of Clomazone 360 g/L CS (2013)

STUDY DIRECTOR: Sandra J. Carringer

II. CHANGE:

Section D.4.0 ANALYTICAL PARAMETERS, Method of Analysis, page 15, changes to the following:

Method of Analysis: Sample analysis will be based on the method found in Eurofins-GAB GmbH Report, Study Code 20061401/01-RVP, entitled "Validation of an Analytical Method for the Determination of Clomazone in Potatoes and Oilseed Rape".

Any method modifications that are necessary will be approved by the Study Director and documented in the study file. The analytical method used will be described in the final report and a copy of the method of analysis will be included in the final analytical report.

III. **REASON FOR CHANGE:**

The Eurofins method is specific for oilseed rape/canola.

IV. **EFFECT ON STUDY:**

The change in this amendment does not adversely impact the study.

V. **APPROVALS:**

Study Director: Sandra J. Carringer

The Carringers, Inc.

Testing Facility Management:

Richard D. Carringer, Ph.D

The Carringers, Inc.

Cheminova, Inc.

Date: 07 R6201

Date: 07-FEB-2014

Sponsor's

Representativo Faith Womack

Womach Date: February 4, 2014

Study No. TCI-13-366 Page 1 of 1

PROTOCOL AMENDMENT II

I. <u>STUDY IDENTIFICATION:</u>

STUDY No.: TCI-13-366

TITLE: Magnitude of the Residue of Clomazone in/on Canola Raw Agricultural and Processed Commodities Following One Preemergence Application of Clomazone 360 g/L CS (2013)

STUDY DIRECTOR: Sandra J. Carringer

II. <u>CHANGE:</u>

Section C.4.0 PROCESSED FRACTION SAMPLE STORAGE AND SHIPPING, Page 13 and Section D.1.0 PRINCIPAL ANALYTICAL INVESTIGATOR AND ANALYTICAL LABORATORY, page 14.

The Principal Analytical Investigator and analytical laboratory changes to the following:

Carol Rodgers – Principal Analytical Investigator ABC Laboratories, Inc. 7200 E. ABC Lane Columbia MO 65202 Tel: 573-777-6054 Fax: 573-777-6033 e-mail: rodgersc@abclabs.com

III. <u>REASON FOR CHANGE</u>:

Morse Laboratories, LLC is closing, and the analytical phase is transferring to ABC Laboratories. The original Principal Analytical Investigator will not be moving to ABC Laboratories.

IV. <u>EFFECT ON STUDY:</u>

The change in this amendment does not adversely impact the study.

V. <u>APPROVALS:</u>

Study Director:

Sandra J. Carringer The Carringers, Inc.

Date: 01 NOUZO13

Testing Facility , Management:

Richard D. Carringer, Ph.D.

Date: 01-NOV-2013

The Carringers, Inc.

Sponsor's Representative:

I. WomachDate: Detaber 31, 2013

Faith Womack Cheminova, Inc.

PROTOCOL AMENDMENT I

I. <u>STUDY IDENTIFICATION:</u>

STUDY No.: TCI-13-366

TITLE: Magnitude of the Residue of Clomazone in/on Canola Raw Agricultural and Processed Commodities Following One Preemergence Application of Clomazone 360 g/L CS (2013)

STUDY DIRECTOR: Sandra J. Carringer

II. <u>CHANGE:</u>

Section B.1.0 PRINCIPAL FIELD INVESTIGATORS AND TRIAL IDENTIFICATIONS, Pages 6-7. The Principal Field Investigator for Trials -04, -09, -10, -11, and -12 changes to the following:

		EPA	Trial
Principal Field Investigator	Crop	Region	Identification
Dean Ngombe	14	SK	TCI-13-366-04
ICMS			
334 Packham Ave.			RAC/Decline Trial
Saskatoon, SK			
Canada S7N 2T1			
Tel: 306-956-3855 (Office)/306-260-3061 (Cell)			
Fax: 306-956-3856			
e-mail: ngombe@icms-inc.com		- - -	
Dean Ngombe	14	SK	TCI-13-366-09
ICMS			TCI-13-366-10
334 Packham Ave.			TCI-13-366-11
Saskatoon, SK			TCI-13-366-12
Canada S7N 2T1			
Tel: 306-956-3855 (Office)/306-260-3061 (Cell)			RAC Trials
Fax: 306-956-3856			
e-mail: ngombe@icms-inc.com		· ····································	e av j j j

III. <u>REASON FOR CHANGE:</u>

This change is made at the request of the field facility management.

IV. EFFECT ON STUDY:

The change in this amendment does not adversely impact the study.

Study No. TCI-13-366 Page 2 of 2

PROTOCOL AMENDMENT I

V. <u>APPROVALS:</u>	
Study Director: Aarth Sandra J. Carringen The Carringers, Inc.	Date: 21 A-5 2013
Testing Facility Management: Richard D. Carringer, Ph.D. The Carringers, Inc.	Date: 21-AU6-2013
Sponsor's Representatives Lith A. Womack Faith Womack	Date: <u>August 21</u> , 2013

Cheminova, Inc.

Cheminova A/S

Study No. TCI-13-366 Page 1 of 17

RESIDUE STUDY PROTOCOL STUDY NO. TCI-13-366

STUDY TITLE

Magnitude of the Residue of Clomazone in/on Canola Raw Agricultural and Processed Commodities Following One Preemergence Application of Clomazone 360 g/L CS (2013)

RESIDUE CHEMISTRY TEST GUIDELINE

Canadian PMRA Regulatory Directive DIR98-02 and 2010-05 SANCO 3029/99 rev. 4. 11/07/00

STUDY DIRECTOR/TESTING FACILITY

Sandra J. Carringer The Carringers, Inc. 1003 Palace Ct. Apex, NC 27502 Tel: 919-387-0825 Fax: 919-387-4161 e-mail: scarringer@carringers.com

SPONSOR'S REPRESENTATIVE

Faith Womack Cheminova, Inc. 1600 Wilson Boulevard, Suite 700 Arlington, VA 22209 Tel: 703-373-8883 (ext 4) Fax: 703-373-8887 e-mail: faith.womack@cheminova.com

PROTOCOL APPROVAL:

ante

Sandra J. Carringer Study Director, The Carringers, Inc.

PROTOCOL ACCEPTANCE:

Faith Womack

Sponsor's Representative, Cheminova, Inc.

PROTOCOL ACKNOWLEDGEMENT:

(d). (m Co

Richard D. Carringer, Ph.D. Testing Facility Management, The Carringers, Inc.

Ralph P. Rose

Quality Assurance Unit, The Carringers, Inc.

Richard D. Carringer, Ph.D. The Carringers, Inc. 1003 Palace Ct. Apex, NC 27502 Tel: 919-387-0825 Fax: 919-387-4161

TESTING FACILITY MANAGEMENT

e-mail: rcarringer@carringers.com

SPONSOR

Cheminova A/S P.O. Box 9 DK-7620, Lemvig DENMARK

Date: May 1, 2013

mack Date: April 30, 2013

Date: 11-MAY - 2013

Date: 01 May 2013

TABLE OF CONTENTS

A.	BAC	KGROUND INFORMATION	3
	1.0	PURPOSE OF THE STUDY	3
	2.0	TEST SYSTEMS	3
	3.0	JUSTIFICATION FOR SELECTION OF THE TEST SYSTEMS	3
	4.0	TEST SUBSTANCE NOMENCLATURE	3
	5.0	STUDY SCHEDULE	4
	6.0	GOOD LABORATORY PRACTICE COMPLIANCE	4
	7.0	AMENDMENTS TO AND DEVIATIONS FROM THIS PROTOCOL	4
	8.0	DATA REPORTING AND RETENTION	4
	9.0	QUALITY ASSURANCE	5
	10.0	CONFIDENTIALITY	5
	11.0	STATISTICAL METHODS	5
B.	FIEL	D PHASE	6
	1.0	PRINCIPAL FIELD INVESTIGATORS AND TRIAL IDENTIFICATIONS	6
	2.0	TEST SUBSTANCE RECEIPT, STORAGE, AND CONTAINER HANDLING	G7
	3.0	TEST SITE SELECTION AND CULTURAL PRACTICES	7
	4.0	EXPERIMENTAL DESIGN	8
	5.0	APPLICATION OF TEST SUBSTANCE	9
	6.0	SAMPLING	10
	7.0	CROP DESTRUCTION	12
C.	PRO	CESSING PHASE	12
	1.0	PRINCIPAL PROCESSING INVESTIGATOR AND PROCESSING	
			12
	2.0	PROCESSING	12
	3.0	PROCESSED FRACTIONS	13
	4.0	PROCESSED FRACTION SAMPLE STORAGE AND SHIPPING	13
	5.0	PROCESSING REPORT	14
_	6.0	RAW DATA RETENTION	14
D.	ANA	LYTICAL PHASE	14
	1.0	PRINCIPAL ANALYTICAL INVESTIGATOR AND ANALYTICAL LABORATORY	14
	2.0	TEST SYSTEM INFORMATION	
	3.0	REFERENCE SUBSTANCE	15
	4.0	ANALYTICAL PARAMETERS	15
	5.0	GENERAL	16
	6.0	ANALYTICAL REPORT	16
	7.0	RAW DATA RETENTION	17

A. BACKGROUND INFORMATION

1.0 PURPOSE OF THE STUDY

This study is being conducted to determine the magnitude and decline of residues of clomazone in or on canola raw agricultural commodities (RAC) following one preemergence application of Clomazone 360 g/L CS at 0.42 kg ai/ha. The magnitude of residues of clomazone in or on canola processed commodities (PC) will also be determined following one preemergence application at an exaggerated rate (a $3 \times$ or $5 \times$ rate if possible) if residues are found above the limit of quantitation (LOQ) following the exaggerated application rate or as directed by the Study Director. The results from this study may be used to establish Maximum Residue Limits for clomazone in/on canola raw agricultural and processed commodities in Canada.

2.0 TEST SYSTEMS

Field Phase: Twelve canola trials will be established in Canada in PMRA Zones/Regions 5 (one trial), 7 (two trials) and 14 (nine trials). The canola will be grown on soil types and under cultural practices typical for commercial canola production.

Processing Phase: One canola test site will be established in PMRA Zone/Region 14 for processing. The variety will be one typical for the area. Canola will be processed following commercial processing procedures to generate meal and refined oil <u>only if residues are found above the LOQ in the seed at the processing trial.</u>

Analytical Phase: Samples of canola seed collected from untreated control plots and from plots treated with Clomazone 360 g/L CS will be analyzed at the analytical laboratory for residues of clomazone. Samples of canola meal and refined oil will also be analyzed for residues of clomazone if the processing phase is conducted.

3.0 JUSTIFICATION FOR SELECTION OF THE TEST SYSTEMS

Selection of the 12 trial sites in PMRA Regions 5, 7, and 14 will fulfill the requirements for canola as specified in PMRA Regulatory Directive DIR98-02 and 2010-05.

Common Name	Clomazone
Company Experimental Name	6710
IUPAC Name	2-(2-chlorobenzyl)-4,4-dimethyl-1,2-oxazolidin-3-one or 2-(2-chlorobenzyl)-4,4-dimethylisoxazolidin-3-one
CAS name	2-[(2-chlorophenyl)methyl]-4,4-dimethyl-3-isoxazolidinone
CAS Number	81777-89-1
End-use Product	Clomazone 360 g/L CS
Formulation Type	capsule suspension (CS)
Nominal A.I. Content	360 g ai/L
Lot Number	0001023789
GLP Certified Active Concentration	355 g ai/L (use for spray mix calculations)
Date of Analysis	21-Mar-12
Expiration Date	21-Mar-14

4.0 TEST SUBSTANCE NOMENCLATURE

5.0 STUDY SCHEDULE

Proposed Experimental Start Date (1st field application): May 2013 Proposed Analytical Phase Initiation Date: September 2013 Proposed Analytical Termination Date: March 2014 Proposed Study Completion Date: June 2014

6.0 GOOD LABORATORY PRACTICE COMPLIANCE

This study will be conducted in accordance with EPA Good Laboratory Practice (GLP) Standards for FIFRA (Federal Insecticide, Fungicide and Rodenticide Act) as defined in 40 CFR Part 160 and/or OECD Principles of Good Laboratory Practice. The Standard Operating Procedures (SOPs) of the field, processing, and analytical facilities for specific study procedures must meet the requirements of 40 CFR, Part 160, FIFRA GLP Standards and/or OECD Principles of Good Laboratory Practice. A statement of compliance with EPA/FIFRA and/or OECD GLP Standards will be included in each field trial notebook, processing study files, and analytical study files. The final report will contain a statement of compliance with EPA/FIFRA and/or OECD GLP Standards signed by the Study Director and the Sponsor.

Weather data collection, soil characterization, general land preparation (i.e., tillage, mowing, irrigation, etc.), application of maintenance chemicals during the test, and documentation of chemical history do not require generation under GLPs as long as it is clearly stated as such.

7.0 AMENDMENTS TO AND DEVIATIONS FROM THIS PROTOCOL

Planned changes to the protocol will be documented in the form of protocol amendments, which will be signed by the Study Director and the Sponsor's Representative. Any deviation from the protocol will be documented, stating the reasons for the action(s) and the likely consequences of the action(s). Deviations will be reported to the Study Director so that corrective action can be recommended and documented. The Study Director will sign all protocol deviations and report to the Sponsor's Representative all deviations that adversely impact the study.

8.0 DATA REPORTING AND RETENTION

The Principal Field Investigators (PFI) will complete a field trial notebook, which will be prepared by The Carringers, Inc. (TCI). The processing and analytical facilities will prepare reports that summarize the processing and analytical phases of the study. The testing facility, TCI, will prepare a final report that presents and summarizes the field, processing, and analytical results. The final report will be prepared in accordance with PR Notice 2011-3 (or latest version) or comparable PMRA guideline document, and will contain all information required by, and will be handled per, 40 CFR § 160.185 and/or ENV/MC/CHEM(98)17. TCI's Quality Assurance Unit (QAU) will inspect the final report before issuing the document. Any corrections or additions to the final report will be issued in accordance with 40 CFR § 160.185 (c) and/or ENV/MC/CHEM(98)17 § 9.1.4.

Upon completion of this study, all study records (original raw data), protocol and amendments and the final study report and any amendments, will be transferred to temporary archival storage at TCI and then transferred to the Sponsor's permanent archival facility (to be determined and outlined in the study report). Alternately, data may be transferred directly to an alternate location approved by the Sponsor and as directed by the Study Director.

9.0 QUALITY ASSURANCE

TCI's QAU will have overall responsibility for monitoring the field, processing, and analytical phases of the study. Reports will be submitted to the Study Director and the Testing Facility Management. TCI's QAU will ensure that the individual facilities, equipment, personnel, methods, practices, records, and controls, are designed and function in conformance with 40 CFR Part 160 and/or ENV/MC/CHEM(98)17, the protocol and relevant SOPs. TCI QAU will conduct, as necessary, inspections of the field test sites, processing facility, and analytical facility and prepare written reports of its findings.

The QAU of each field, processing, and analytical testing facility will conduct GLPrequired inspections and audits at intervals adequate to ensure the integrity of the study. The field, processing, and analytical test site's QAU will prepare a report of each Quality Assurance inspection, listing details of the operation(s) observed, as well as the information specified by 40 CFR §160.35 (b)(3)(54 FR 34070, 17 August 1989) and/or ENV/MC/CHEM(98)17. Any problems that are likely to affect the integrity of the study will be brought to the attention of the Study Director immediately by telephone, fax, or email. QAU reports will be sent to the Study Director and Testing Facility Management. Inspection dates will be recorded in the Quality Assurance Certification Statement page of the Field Trial Notebook or reports.

10.0 CONFIDENTIALITY

All information regarding the test substance, samples, test plots, processing, sample analysis, and analytical results must be kept strictly confidential. Test plots are to be considered as restricted access areas with measures taken to exclude unauthorized persons from the test area. No plot designations in or around the test area will be made that identify the treatments, chemical, or Sponsor. No raw data, worksheets, data or information summaries, reports, or other information related to this study may be revealed or released to any third party without prior notification and authorization of the Sponsor.

11.0 STATISTICAL METHODS

No statistical analysis of data will be required for the field, processing, or analytical portions of the study other than mean, standard deviation and regression analysis. Additional statistical methods may be used in generation of data for the final study report. These will be described and noted in the report.

B. FIELD PHASE

1.0 PRINCIPAL FIELD INVESTIGATORS AND TRIAL IDENTIFICATIONS

	PMRA		Trial
Principal Field Investigator	Zones/Region	Province	Identification
Kelly Tiller	5	MB	TCI-13-366-01
ICMS, Inc.			
Mail: Box 67, Station Main			RAC Trial
Shipping: 2375 Saskatchewan Ave. E.			
Portage la Prairie, MB			
Canada R1N 3B2			
Tel: 204-857-6609 (Office)/204-871-5031 (Cell)			
Fax: 204-239-4478			
E-mail: tiller@icms-inc.com			
Greg Whittington	7	SK	TCI-13-366-02
ICMS, Inc.			TCI-13-366-03
334 Packham Ave.			
Saskatoon, SK			RAC Trial
Canada S7N 2T1			
Tel: 306-956-3855 (Office)/306-220-5696 (Cell)			
Fax: 306-956-3856			
E-mail: whittington@icms-inc.com			
Brittany Johnson	14	SK	TCI-13-366-04
ICMS, Inc.			
334 Packham Ave.			RAC/Decline Trial
Saskatoon, SK			
Canada S7N 2T1			
Tel: 306-956-3855 (Office)/306-260-3061 (Cell)			
Fax: 306-956-3856			
E-mail: johnson@icms-inc.com			
Taryn Williams	14	AB	TCI-13-366-05
ICMS, Inc.			
Box 3270, 54474 Range Road 215			RAC/Decline Trial
Fort Saskatchewan, AB			
Canada T8L 2T2			
Tel: 780-992-7983 (Office) / 780-722-2044 (Cell)			
Fax: 780-992-8499			
E-mail: williams@icms-inc.com			
Kelly Tiller	14	MB	TCI-13-366-06
ICMS, Inc.			
Mail: Box 67, Station Main			RAC/Processing
Shipping: 2375 Saskatchewan Ave. E.			Trial
Portage la Prairie, MB			
Canada R1N 3B2			
Tel: 204-857-6609 (Office)/204-871-5031 (Cell)			
Fax: 204-239-4478			
E-mail: tiller@icms-inc.com			

	PMRA		Trial
Principal Field Investigator	Zones/Region	Province	Identification
Kelly Tiller	14	MB	TCI-13-366-07
ICMS, Inc.			TCI-13-366-08
Mail: Box 67, Station Main			
Shipping: 2375 Saskatchewan Ave. E.			RAC Trials
Portage la Prairie, MB			
Canada R1N 3B2			
Tel: 204-857-6609 (Office)/204-871-5031 (Cell)			
Fax: 204-239-4478			
E-mail: tiller@icms-inc.com			
Brittany Johnson	14	SK	TCI-13-366-09
ICMS, Inc.			TCI-13-366-10
334 Packham Ave.			TCI-13-366-11
Saskatoon, SK			TCI-13-366-12
Canada S7N 2T1			
Tel: 306-956-3855 (Office)/306-260-3061 (Cell)			RAC Trials
Fax: 306-956-3856			
E-mail: johnson@icms-inc.com			

2.0 TEST SUBSTANCE RECEIPT, STORAGE, AND CONTAINER HANDLING

The following data should be documented for the test substance: lot/batch numbers(s) received; expiration date, if provided; condition upon receipt; date(s) of receipt; amount of test substance received, used, and remaining after the last application; description of storage location; and the amount and distribution of unused test substance.

The test substance will be stored under label conditions in a temperature monitored pesticide storage area adequate to preserve the identity, strength, purity, and stability of the test substance.

It is not necessary to return remaining test substance. The remaining test substance may be maintained or disposed of according to state and local regulations at trial completion. Retain the test substance containers until notified by the Study Director that you may discard the containers. The empty test substance containers do not need to be stored in an environmentally controlled area.

3.0 TEST SITE SELECTION AND CULTURAL PRACTICES

Site Selection: Each test site will be typical for the intended use of Clomazone 360 g/L CS on canola and will be representative of commercial canola producing areas for each selected zone/region of Canada with respect to crop variety, cultural practices, soil type, and climatic conditions.

One or more of the following criteria should be employed for trials conducted in the same state/province and/or PMRA region by the same Principal Field Investigator to be considered unique:

Different varieties of the same crop Different soil types (for seed treatment or soil-applied treatments only) Geographic separation (≥ 40 kilometers and/or different counties) Temporal separation (significantly different trial periods; e.g., Spring vs. Fall) **Pesticide Use History:** For each test site, chemical and cropping data will be made available for the previous two years. Only those areas where clomazone has not been used in the 1 year prior to this study will be designated as test sites for the field phase of this study.

Soil Characterization: Soil characterization data are not required for the test site; however, at a minimum the soil type (non-GLP) will be recorded in the field notebook. The percent organic matter, pH, and cation exchange capacity of the soil should be provided if available.

Cultural Practices: The canola will be grown per typical agronomic practices. Adequate and timely irrigation for normal plant growth and development should be maintained throughout the trial period if typical for the region. All cultural practices, e.g. cultivation operations, irrigation (methods, dates, source of water, and approximate amounts), and fertilization, will be documented. Provide cultural practices used prior to the start of the trial if possible.

Maintenance Pesticide Application: During the current growing season, test plots will not be treated with any maintenance pesticides that contain clomazone. All maintenance pesticides will be documented.

Weather: A summary of the trial period and historical weather data should be provided for the months associated with the trial period (first application to final sampling). Data should be provided from the nearest reliable weather station within 40 kilometers of the trial site (if possible). The source of the data, the distance from the test site, and the units of measurement must be clearly identified.

4.0 EXPERIMENTAL DESIGN

Plot Number and Sizes:

RAC Trials and RAC Decline Trials: There will be two plots (Treatments 1 and 2) for these trials. Treatment 1 is the untreated control plot. Treatment 2 is the 0.42 kg ai/ha rate treated plot.

RAC/PC Trial (Trial -06): There will be four plots (Treatments 1, 2, 3, and 4) for this trial. Treatment 1 is the untreated control plot. Treatment 2 is the $1 \times$ rate treated plot at 0.42 kg ai/ha. Treatment 3 is the $3 \times$ rate treated plot at 1.26 kg ai/ha. Treatment 4 is the $5 \times$ rate treated plot at 2.1 kg ai/ha.

The size of the control and treated plots will be determined by the PFI. The plots must be large enough to ensure fulfillment of minimum sampling and sample size requirements. The suggested treated plot size is a minimum of 90 m² for trials collecting RAC samples and larger for Trials -04 and -05 where decline samples will be collected and for Trial -06 where bulk samples for processing will be collected. For processing Trial -06, all treated plots (Trt 2, Trt 3, and Trt 4) should be large enough to collect the 30 kg for processing in the event that the exaggerated rates cause crop injury.

Plot Separation: The distance between the nearest treated and untreated plots should be at least 30 meters to ensure that the untreated plots do not become contaminated during the

conduct of the study. The distance between the treated plots should be at least 10 meters. Where possible, the control plot should be upslope and upwind of the treated plot.

Test Site Diagram: A detailed plot diagram is required and will include the following: plot locations, plot orientations, plot dimensions, control plot location relative to treated plot, distance between plots (buffer zones), topographic slope (direction and percent), direction of prevailing wind, plot orientation with respect to north (north arrow), permanent markers (physical markers or GPS coordinates), and any other physical features in the landscape that define the test site. Provide GPS coordinates if available. The location of the permanent markers (physical markers or GPS coordinates) should be documented on the plot map, with plot corners identified in the diagram with sufficient detail such that plots may be re-located with a reasonable degree of accuracy.

Plot Identification: The plots should be clearly identified, with a unique number (such as Study No. and Trt No.), by labeled stakes or other means.

5.0 APPLICATION OF TEST SUBSTANCE

Trt. No.	Application Type	Rate kg ai/ha ¹	Spray Volume l/ha ²	Application Timing	Spray Additive
1		Control			
2	Soil-applied Broadcast	0.42	47-189 ³	Preemergence	None
3 ⁴	Soil-applied Broadcast	1.26	47-189 ³	Preemergence	None
4 ⁴	Soil-applied Broadcast	2.1	47-189 ³	Preemergence	None

Treatment Summary:

¹The application rate may vary $\pm 5\%$.

²The spray volume may vary $\pm 10\%$.

³Trials TCI-13-366-02, -05, and -07 must target 47 l/ha spray volume.

⁴Trial TCI-13-366-06 only.

Number and Timing of Applications: Each treated plot will receive one (1) application. The preemergence application is a soil-applied broadcast spray application that will be made after planting but prior to crop emergence. A record of test material usage will be recorded and provided in the raw data.

Phytotoxicity: Phytotoxicity that occurs during the study must be documented. None is expected. No documentation of phytotoxicity will be accepted as indicating none was present.

Spray Additives: None.

Calibration: The applications will be made using commercial or research broadcast ground spray equipment. Equipment will be cleaned and calibrated prior to the application (within one calendar day). Calibration will be based on the speed and distance traveled and the total spray output at a given operating speed and pressure over a measured amount of time (i.e., seconds or minutes). A complete description of the calibration methods, application methods, equipment, and application dates will be included in the raw data.

Application Verification: To verify the application rate, the direction and time of each sprayer pass over the treated area will be documented. It is intended that the application

be within $\pm 5\%$ of the target rate. If the application variance exceeds $\pm 5\%$ of the target rate, the Study Director or his designee will decide on the acceptability of the rate at the time of application.

Environmental and Crop Data at Application: Do not make applications when the wind direction would place the untreated control plot downwind of the treated plot or when the wind speed is in excess of 8 km/hr (if possible). At the time of the application, air temperature, relative humidity, wind speed and direction, and soil temperature (5 and 10 cm) at the test site will be measured and recorded.

6.0 SAMPLING

Sampling Summary:

Trt No.	Sample No. ¹	Matrix	Timing	Sample Size
1 (UTC)	01	Canola Seed	Normal Crop Maturity	0.5 kg
2	02	Canola Seed	Normal Crop Maturity	0.5 kg
2	03	Canola Seed	Normal Crop Maturity	0.5 kg
TC1 (1 1		1 1 1 1 1 1 1	· 1 1 1 1 /	

RAC Trials - (Trials -01, -02, -03, -07, -08, -09, -10, -11, -12)

¹The trial number will precede the sample number listed above to make each sample identification unique (TCI-13-366-01-01, TCI-13-366-01-02, etc.).

RAC/Decline Trials - (Trials -04 and -05)

Trt No.	Sample No. ¹	Matrix	Timing	Sample Size
1 (UTC)	01	Canola Seed	Normal Crop Maturity	0.5 kg
2	02-03	Canola Seed	Normal Crop Maturity	0.5 kg
2	04-05	Canola Seed	3 Days After Normal Crop Maturity	0.5 kg
2	06-07	Canola Seed	7 Days After Normal Crop Maturity	0.5 kg
2	08-09	Canola Seed	14 Days After Normal Crop Maturity	0.5 kg
2	10-11	Canola Seed	21 Days After Normal Crop Maturity	0.5 kg

¹The trial number will precede the sample number listed above to make each sample identification unique (TCI-13-366-04-01, TCI-13-366-04-02, etc.).

RAC/PC Trial – (Trial -06)

Trt No.	Sample No. ¹	Matrix	Timing	Sample Size
1 (UTC)	01	Canola Seed	Normal Crop Maturity	0.5 kg
2	02-03	Canola Seed	Normal Crop Maturity	0.5 kg
$3 \text{ or } 4^2$	04-05	Canola Seed	Normal Crop Maturity	0.5 kg
1 (UTC)	06	Canola Seed	Normal Crop Maturity	30 kg
$2, 3, \text{ or } 4^2$	07	Canola Seed	Normal Crop Maturity	30 kg

¹The trial number will precede the sample number listed above to make each sample identification unique (TCI-13-366-06-01, TCI-13-366-06-02, etc.).

²Collect samples from the 5× rate treated plot (Treatment 4), if possible. If there is crop phytotoxicity in the $5\times$ rate plot to the extent that sampling is not possible, the $3\times$ rate plot (Treatment 3) should be sampled. If there is crop phytotoxicity in the $3\times$ rate plot to the extent that sampling is not possible, the $3\times$ rate plot (Treatment 3) should be sampled. If there is crop phytotoxicity in the $3\times$ rate plot to the extent that sampling is not possible, the $1\times$ rate plot (Treatment 2) should be sampled for processing. If Treatment 2 is used for processing, samples -04 and -05 may not be available for collection.

Schedule: RAC samples and samples for processing will be collected from the untreated and treated plots at normal crop maturity. At decline trials -04 and -05 treated seed samples will also be collected 3 (\pm 1), 7 (\pm 1), 14 (\pm 2) and 21 (\pm 2) days after normal harvest (DANH).

Sample Size: <u>RAC Samples:</u> Collect at least 0.5 kg per sample. <u>Processing Samples</u> (Samples 06 and 07): Collect at least 30 kg per sample.

Number of Samples: See tables above.

Sampling Procedures: All samples should be collected without bias and should be commercially acceptable. All equipment used for sampling will be cleaned prior to its use. The untreated control plot will be sampled first followed by the low rate (Trt 2) and then high rate (Trt 3 or Trt 4 if applicable) treated plot (at processing trial -06 only).

Samples may be collected either by swathing/cutting canola at 40-60% seed color change and then threshing the cut material when the plants and seed have dried down, or collected by straight-cutting (direct harvesting) mature plants. Only one harvest method may be used per trial.

When swathing/cutting is used (recommended for the Decline trials) the date of cutting will follow the decline pattern (i.e. normal maturity, 3, 7, 14, 21 days after normal maturity), and samples may be threshed and frozen as conditions permit. Samples cut on multiple dates may be threshed on the same day, but field drying time (time between cutting and threshing) should not exceed 14 days for any given cut sample. Thresh samples in order from earliest cut date to latest cut date. Each sample obtained in this manner must be collected by cutting plants from at least 12 separate areas of each plot.

In the case of samples collected by straight-cutting, duplicate treated samples must be collected by making two separate passes through the plot or by alternating sample buckets under the combine discharge chute (at least 12x each) as the combine moves through the plot. Each sample will be collected from at least twelve (12) separate areas of each plot.

Do not sample from the edges or ends of the treated plot.

Post-harvest Sample Handling: Collect, transport, and store control and treated samples using all necessary precautions to prevent contamination. RAC samples will be placed into labeled plastic-lined cloth residue sample bags (or other approved bag) (with the preprinted sample labels provided). Alternate bags/boxes are acceptable for the large processing samples. Keep all samples cool until they can be transferred to a freezer. Freeze all samples within 4 hours after they are collected. Once frozen, the samples must not be allowed to thaw at any time prior to preparation for analysis. Sample maintenance, storage, and chain of custody records will be retained with the raw data.

Sample Shipping: RAC samples for residue analysis will be shipped frozen and with proper chain of custody documentation via ACDS freezer trucks, on dry ice via overnight carrier (only if approved by the Study Director), or via field test site personnel to the following:

Jeri Willoh – Principal Analytical Investigator Morse Laboratories, LLC 1525 Fulton Avenue Sacramento, CA 95825 Tel: 916-481-3141/ Fax: 916-481-2959 e-mail: willohj@morselabs.com It is acceptable to pack control and treated samples in the same box(es), as long as there is adequate separation to avoid contamination. If overnight carrier is used, use insulated shipping boxes containing at a minimum an approximate ratio of 1 kg of dry ice: 0.5 kg of sample.

Samples for processing will be shipped frozen under chain of custody via ACDS freezer trucks to the following processor:

Dick Dusek–Principal Processing Investigator GLP Technologies 22723 State Highway 6 South Navasota, TX 77868 Tel: 936-825-2184 / Fax: 936-825-7929 e-mail: ddusek@glptech.net

Field personnel will notify the laboratory by telephone, fax, or e-mail when samples are shipped. An exact copy of the sample shipping pages will also be faxed or e-mailed to the Study Director when samples are shipped. Documentation of sample shipment will be retained with the raw data.

7.0 CROP DESTRUCTION

Crop destruction is required for this study. Treated crop remaining after collection of all samples is to be destroyed to prevent its potential consumption by humans or livestock. Document the date and method of crop destruction in the field trial notebook.

C. PROCESSING PHASE

1.0 PRINCIPAL PROCESSING INVESTIGATOR AND PROCESSING LABORATORY

Dick Dusek–Principal Processing Investigator GLP Technologies 22723 State Highway 6 South Navasota, TX 77868 Tel: 936-825-2184 / Fax: 936-825-7929 e-mail: ddusek@glptech.net

2.0 PROCESSING

Samples will be stored frozen until the Study Director authorizes the processing phase. If residues are not found in the 5× rate treated samples, the processing phase may not be conducted.

<u>If processing is authorized</u>, samples will be processed according to current facility SOPs which simulate commercial practices. Details of the procedure used to process the canola will be included in a processing report.

3.0 PROCESSED FRACTIONS

Trt No.	RAC Sample No. ¹	Matrix	Processed Fraction Sample No.	Sample Size ²
1	06	Whole Seed ³	08	0.5 kg
1	06	Meal	09	1 kg
1	06	Refined Oil	10	~800 g
2, 3, or 4 ⁴	07	Whole Seed ³	11	0.5 kg
2, 3, or 4^4	07	Whole Seed ³	12	0.5 kg
2, 3, or 4^4	07	Meal	13	1 kg
2, 3, or 4^4	07	Meal	14	1 kg
2, 3, or 4 ⁴	07	Refined Oil	15	~800 g
2, 3, or 4^4	07	Refined Oil	16	~800 g

Samples to be collected at the processing facility include the following:

¹The trial number will precede the sample number listed above to make each sample identification unique (TCI-13-366-06-08, TCI-13-366-06-09, etc.).

²The sample sizes listed in the table above are minimum size/weight requirements to be collected. Sample sizes greater than the amounts listed above will not be considered deviations to the study protocol.

³Seed samples will be collected immediately prior to sample processing and placed in freezer storage.

⁴Samples will be collected from the $5\times$ rate treated plot (Treatment 4), if possible. If there is crop phytotoxicity in the $5\times$ rate plot to the extent that sampling is not possible, the $3\times$ rate plot (Treatment 3) will be sampled. If there is crop phytotoxicity in the $3\times$ rate plot to the extent that sampling is not possible, the $1\times$ rate plot (Treatment 2) will be sampled. The actual treatment received and processed will be documented in the study files and report.

4.0 PROCESSED FRACTION SAMPLE STORAGE AND SHIPPING

The RAC and processed fraction samples will be packaged, labeled, frozen, and maintained under frozen conditions during storage prior to shipment at the processor facilities according to the appropriate SOP. Frozen RAC and processed fraction samples will be properly packaged and shipped to the following:

Jeri Willoh – Principal Analytical Investigator Morse Laboratories, LLC 1525 Fulton Avenue Sacramento, CA 95825 Tel: 916-481-3141/Fax: 916-481-2959 e-mail: willohj@morselabs.com

Shipping should be done according to the processing facilities shipping SOP or other approved shipping SOP. Briefly, samples may be shipped by freezer truck such as ACDS, Inc., or by Federal Express with overnight delivery (if directed by the Study Director). If overnight carrier is used, use insulated shipping boxes containing at a minimum an approximate ratio of 1 kg of dry ice: 0.5 kg of sample. The laboratory's sample receiving and preparation manager should be notified of the shipping date as soon as possible after shipment.

5.0 **PROCESSING REPORT**

The processing report will include, but is not limited to the following:

- 1. A title page
- 2. A table of contents
- 3. A GLP compliance statement
- 4. QA Statement of Inspection
- 5. A short description of sample handling, storage, etc.
- 6. A description of the processing procedures and comparisons to commercial processes
- 7. A material balance of the crop processed and yield of fractions
- 8. A description of any deviations that occurred

The original, signed final processing report will be submitted to the Study Director.

6.0 RAW DATA RETENTION

The processing facility will maintain a copy of the signed processing report, protocol and amendments, and all documents (letters, memos, notes, etc.) pertaining to the study. Upon completion of the processing phase, the original or verified copy of relevant processing data will be transferred to the testing facility, TCI. Those data and records include, but are not limited to the following:

- 1. Original laboratory notebooks and/or raw data forms
- 2. Copies of the SOPs used in processing
- 3. Original receipt and chain of custody for samples
- 4. Certified copies of sample storage records
- 5. Original work sheets and calibration records
- 6. List of applicable SOPs used during the processing phase

D. ANALYTICAL PHASE

1.0 PRINCIPAL ANALYTICAL INVESTIGATOR AND ANALYTICAL LABORATORY

Jeri Willoh – Principal Analytical Investigator Morse Laboratories, LLC 1525 Fulton Avenue Sacramento, CA 95825 Tel: 916-481-3141/ Fax: 916-481-2959 e-mail: willohj@morselabs.com

2.0 TEST SYSTEM INFORMATION

Test System/Crop: Canola

Substrate(s) To Be Analyzed: Canola seed will be analyzed from all field sites. Meal and refined oil will be analyzed if the processing phase is conducted.

Sample Preparation Procedure for Substrates: Each sample, as needed, will be prepared for analysis by grinding in the presence of dry ice or liquid nitrogen.

Sample Storage and Handling: Samples will be kept frozen (< -10 °C) until they are to be prepared and analyzed.

3.0 REFERENCE SUBSTANCE

Reference Substances (Analytical Standard) Identification: The reference substance used in this study will be an analytical grade of the compound clomazone (CAS No. 81777-89-1). The reference substance lot number and certificate of standard purity will be included in the study raw data file. The reference substance will be obtained from the sponsor or obtained from a commercial source.

Reference Substance Solubility: The method utilized for the analysis of samples in conjunction with this study will be verified over a range of fortification levels (μ g of material added) anticipated to encompass field-incurred residues. Providing all sample analyses are conducted within the appropriate range, solubility considerations are not an issue for the purposes of this study.

Reference Substance Stability: The analytical standard label information will include an expiration date, and the material will not be used beyond that date. Fresh standard solutions will be prepared as specified in the analytical method. If data demonstrating the stability of analytical standard solutions are not available, these data will be generated by comparing the analytical response of aged standard solutions to those of freshly prepared standard solutions.

Reference Substance Handling: Analytical standard will be stored in separate airtight containers as stated on the label or certificate of analysis when not in use.

4.0 ANALYTICAL PARAMETERS

Analyte to be Determined: Clomazone

Method of Analysis: Sample analysis will be based on the method found in FMC Report No. P-2640 entitled "Residue Analytical Method for the Determination of Clomazone in/on Crop and Processed Part Matrices of Corn, Cottonseed, Soybean, and Tobacco". Any method modifications that are necessary will be approved by the Study Director and documented in the study file. The analytical method used will be described in the final report and a copy of the method of analysis will be included in the final analytical report.

Limit of Quantitation: Target = 0.02 ppm. The actual LOQ will be documented in the final study report.

Method Validation: The method of analysis will be validated on canola seed before any treated canola seed samples are analyzed. <u>Validation for canola meal and canola refined oil will be conducted only if the processing phase is conducted.</u>

Validation for clomazone for each matrix will consist of analyzing two untreated control samples, five untreated control samples fortified at the limit of quantification (LOQ), and five untreated control samples fortified at 25× the LOQ. Acceptable individual recoveries will be in the range of 70 to 120% with the mean recovery at each fortification level in the range of 70 to 110% and an RSD at each level of \leq 20%. Control sample residues should not exceed 30% of the LOQ.

Routine Analysis: Samples will be analyzed in groups or sets consisting of the number of treated field samples which can effectively be managed through the analytical procedure at one time plus at least one control sample and at least one fortified recovery sample. Fortification levels will range from the LOQ to a level that encompasses the highest residues found. Acceptable recoveries will be in the range of 70 to 120%.

Storage Stability: Storage stability will be determined on canola seed to further support freezer storage stability of residues. If the processing phase is conducted, the processed commodities (meal and refined oil) will be analyzed within 30 days of processing if possible. If analyses are not conducted within 30 days, freezer storage stability data will be required and generated for these matrices as outlined below.

Method verification analyses will serve as zero day analyses; therefore, storage stability sets must be setup on the same day as method verification. One (1) additional set of samples per matrix will be analyzed for storage stability at one time point to include the longest sample storage interval. One (1) additional set of fortified and unfortified samples will be included as contingency samples.

Each stability set will be comprised of 1 control sample, 2 procedural control samples fortified with a known quantity of clomazone, and 2 stored samples fortified with a known quantity of clomazone. The target fortification level will be $25 \times$ the LOQ.

Moisture Determination: The percent moisture will be determined for one canola seed sample from each site and for one meal sample (if generated).

Sample Retention: Samples will be retained in frozen storage by Morse Laboratories until the Sponsor and Study Director approves disposal. The Quality Assurance Unit of Morse Laboratories will verify sample disposal.

5.0 GENERAL

Bias Control: Representative sub-samples from homogeneous mixtures of each sample will be taken for analysis. Analytical recovery analyses from each untreated control sample fortified with the appropriate analyte will be conducted with each batch of samples analyzed to assure accurate and precise recovery of the test substance from the samples. At least one untreated control sample will be analyzed with each batch of samples analyzed to demonstrate that there is no significant interference from the sample matrix or analytical reagents.

Statistical Methods: Statistical treatment of the analytical data generated in this study will be limited to regression analysis and measurements of central tendency and dispersion.

Required Analytical SOPs: A list of applicable standard operating procedures will be supplied in the study raw data.

6.0 ANALYTICAL REPORT

The analytical report will include, but is not limited to the following:

- 1. A title page
- 2. A table of contents
- 3. A GLP compliance statement

- 4. A QA statement of inspections
- 5. A description of the analytical standards
- 6. A short description of sample handling, storage, etc.
- 7. Discussion of results
- 8. Description of deviations
- 9. Summary tables of recoveries obtained during method validation or verification with each substrate
- 10. Summary tables of analytical method recoveries during sample analysis
- 11. Summary tables of the results of sample analyses
- 12. Copies of representative chromatograms of untreated control, treated samples, analytical method fortified samples, and analytical standards. OPPTS 860.1000 (5) Requirements for Magnitude of the Residue Studies should be followed for the number of chromatograms to include in the analytical report.
- 13. Certificates of analysis for the reference materials
- 14. A copy of the analytical method including the make and model of equipment, column used, various temperatures used, etc.
- 15. A comprehensive list of all modifications made to the method of analysis and the reasons (justification) for the modifications.

The original, signed final analytical report will be submitted to the Study Director.

7.0 RAW DATA RETENTION

The analytical facility will maintain a copy of the signed analytical report, protocol and amendments, and all documents (letters, memos, notes, etc.) pertaining to the study. All records pertaining to the analytical portion of this study will be submitted to the Study Director with the issuance of the final study report unless directed otherwise by the Study Director.

Appendix E - Critical Dates

Agricultural Commodities	o/L, CS (2013)
in the Analysis for Clomazone in/on Canola Raw	ne Pre-emergence Application of Clomazone 360 g
Dates for Critical Events	Following O

	Ĩ	ollowing Une F	re-emergei	nce Aj	pplication o	I CIOMA	s voc anozi	1/1 LO (201	(C1		
Trial ID.					RAC Cutting/		Date	Date			Days in
(City, Province,	;		Ē	Trt	Sampling	DALA	Shipped	Received	Extraction	Analysis	Frozen
Country/Year)	Appli. Dates	Sample No.	Sample Type	No.	Date	(days)	to Lab	At Lab	Date	Date	Storage
TCI-13-366-01	29-May-13	TCI-13-366-01-01	Canola Seed	1	30-Aug-13 / 12-Sep-13	NA	23-Sep-13	10-Oct-13	14-Mar-14	17-Mar-14	183
(Portage la Prairie, MB, CAN/2013)		TCI-13-366-01-02	Canola Seed	2	30-Aug-13 / 12-Sep-13	93	23-Sep-13	10-Oct-13	14-Mar-14	17-Mar-14	183
		TCI-13-366-01-03	Canola Seed	2	30-Aug-13 / 12-Sep-13	93	23-Sep-13	10-Oct-13	14-Mar-14	17-Mar-14	183
TCI-13-366-02	11-Jun-13	TCI-13-366-02-01	Canola Seed	1	12-Sep-13	NA	24-Sep-13	10-Oct-13	25-Feb-14	26-Feb-14	166
(Dundurn, SK.		TCI-13-366-02-02	Canola Seed	2	12-Sep-13	93	24-Sep-13	10-Oct-13	25-Feb-14	26-Feb-14	166
CAN/2013)		TCI-13-366-02-03	Canola Seed	2	12-Sep-13	93	24-Sep-13	10-Oct-13	25-Feb-14	26-Feb-14	166
TCI-13-366-03	27-May-13	TCI-13-366-03-01	Canola Seed	1	13-Sep-13	NA	24-Sep-13	10-Oct-13	18-Mar-14	19-Mar-14	186
(Saskatoon, SK,		TCI-13-366-03-02	Canola Seed	2	13-Sep-13	109	24-Sep-13	10-Oct-13	18-Mar-14	19-Mar-14	186
ČAN/2013)		TCI-13-366-03-03	Canola Seed	2	13-Sep-13	109	24-Sep-13	10-Oct-13	18-Mar-14	19-Mar-14	186
TCI-13-366-04	29-May-13	TCI-13-366-04-01	Canola Seed	1	07-Sep-13	NA	24-Sep-13	10-Oct-13	18-Mar-14	19-Mar-14	192
(Hepburn, SK,		TCI-13-366-04-02	Canola Seed	2	07-Sep-13	101	24-Sep-13	10-Oct-13	18-Mar-14	19-Mar-14	192
CAN/2013)		TCI-13-366-04-03	Canola Seed	2	07-Sep-13	101	24-Sep-13	10-Oct-13	18-Mar-14	19-Mar-14	192
		TCI-13-366-04-04	Canola Seed	2	10-Sep-13	104	24-Sep-13	10-Oct-13	18-Mar-14	19-Mar-14	189
		TCI-13-366-04-05	Canola Seed	2	10-Sep-13	104	24-Sep-13	10-Oct-13	18-Mar-14	19-Mar-14	189
		TCI-13-366-04-06	Canola Seed	2	14-Sep-13	108	24-Sep-13	10-Oct-13	18-Mar-14	19-Mar-14	185
		TCI-13-366-04-07	Canola Seed	2	14-Sep-13	108	24-Sep-13	10-Oct-13	18-Mar-14	19-Mar-14	185
		TCI-13-366-04-08	Canola Seed	2	21-Sep-13	115	24-Sep-13	10-Oct-13	18-Mar-14	19-Mar-14	178
		TCI-13-366-04-09	Canola Seed	2	21-Sep-13	115	24-Sep-13	10-Oct-13	18-Mar-14	19-Mar-14	178
		TCI-13-366-04-10	Canola Seed	2	28-Sep-13	122	04-Nov-13	15-Nov-13	18-Mar-14	19-Mar-14	171
		TCI-13-366-04-11	Canola Seed	2	28-Sep-13	122	04-Nov-13	15-Nov-13	18-Mar-14	19-Mar-14	171
¹ Days in Frozen Storag NA = Not applicable.	ge is the number of	f days between samplin;	g and extraction.								

Dates for Critical Events in the Analysis for Clomazone in/on Canola Raw Agricultural Commodities

	Followi	ng One Pre-em	ergence Ap	plicat	tion of Clon	azone S	360 g/L CS	(2013) (cc	ontinued)		
Trial ID. (Citv, Province,				Trt	RAC Cutting/ Sampling	DALA	Date Shipped	Date Received	Extraction	Analvsis	Days in Frozen
Country/Year)	Appli. Dates	Sample No.	Sample Type	No.	Date	(days)	to Lab	At Lab	Date	Date	Storage ¹
TCI-13-366-05 (Josephburg, AB,	28-May-13	TCI-13-366-05-01	Canola Seed	1	05-Sep-13/ 19-Sep-13	NA	26-Sep-13	10-Oct-13	18-Mar-14	19-Mar-14	180
CAN/2013)		TCI-13-366-05-02	Canola Seed	2	05-Sep-13/ 19-Sep-13	100	26-Sep-13	10-Oct-13	18-Mar-14	19-Mar-14	180
		TCI-13-366-05-03	Canola Seed	2	05-Sep-13/ 19-Sep-13	100	26-Sep-13	10-Oct-13	18-Mar-14	19-Mar-14	180
		TCI-13-366-05-04	Canola Seed	2	09-Sep-13/ 19-Sep-13	104	26-Sep-13	10-Oct-13	21-Mar-14	21-Mar-14	183
		TCI-13-366-05-05	Canola Seed	2	09-Sep-13/ 19-Sep-13	104	26-Sep-13	10-Oct-13	21-Mar-14	21-Mar-14	183
		TCI-13-366-05-06	Canola Seed	2	13-Sep-13/ 19-Sep-13	108	26-Sep-13	10-0ct-13	21-Mar-14	21-Mar-14	183
		TCI-13-366-05-07	Canola Seed	2	13-Sep-13/ 19-Sep-13	108	26-Sep-13	10-Oct-13	21-Mar-14	21-Mar-14	183
		TCI-13-366-05-08	Canola Seed	2	20-Sep-13/ 01-Oct-13	115	06-Nov-13	15-Nov-13	21-Mar-14	21-Mar-14	171
		TCI-13-366-05-09	Canola Seed	2	20-Sep-13/ 01-Oct-13	115	06-Nov-13	15-Nov-13	21-Mar-14	21-Mar-14	171
		TCI-13-366-05-10	Canola Seed	2	26-Sep-13/ 01-Oct-13	121	06-Nov-13	15-Nov-13	21-Mar-14	21-Mar-14	171
		TCI-13-366-05-11	Canola Seed	2	26-Sep-13/ 01-Oct-13	121	06-Nov-13	15-Nov-13	21-Mar-14	21-Mar-14	171
TCI-13-366-06	25-May-13	TCI-13-366-06-01	Canola Seed	1	24-Sep-13	NA	01-Nov-13	15-Nov-13	14-Mar-14	17-Mar-14	171
(Carberry, MB,		TCI-13-366-06-02	Canola Seed	2	24-Sep-13	122	01-Nov-13	15-Nov-13	14-Mar-14	17-Mar-14	171
		TCI-13-366-06-03	Canola Seed	2	24-Sep-13	122	01-Nov-13	15-Nov-13	14-Mar-14	17-Mar-14	171
		TCI-13-366-06-04	Canola Seed	4	24-Sep-13	122	01-Nov-13	15-Nov-13	14-Mar-14	17-Mar-14	171
		TCI-13-366-06-05	Canola Seed	4	24-Sep-13	122	01-Nov-13	15-Nov-13	14-Mar-14	17-Mar-14	171
	25-May-13	TCI-13-366-06-06	Canola Seed	1	24-Sep-13	NA	01-Nov-13	19-Nov-13	D.11. C.		
		TCI-13-366-06-07	Canola Seed	4	24-Sep-13	122	01-Nov-13	19-Nov-13	DUIK JAI	npie tor Process	sing
¹ Days in Frozen Stora; NA = Not applicable.	ge is the number o	f days between samplin	g and extraction.								

Dates for Critical Events in the Analysis for Clomazone in/on Canola Raw Agricultural Commodities Following One Pre-emergence Annlication of Clomazone 360 o/L CS (2013) (continued)

	FULLOWL	IIB OIIE FIE-EII	lergence Af	plica	LIULI UL CIULI	alluzulle .	DOU B/T CC	DD) (CTN7) ((naniiinii		
Trial ID.					RAC Cutting/		Date	Date			Davs in
(City, Province, Country/Year)	Appli. Dates	Sample No.	Sample Type	Trt No.	Sampling Date	DALA (days)	Shipped to Lab	Received At Lab	Extraction Date	Analysis Date	Frozen Storage ¹
TCI-13-366-07 (Shilo, MB,	25-May-13	TCI-13-366-07-01	Canola Seed	1	23-Aug-13/ 05-Sep-13	NA	23-Sep-13	10-Oct-13	21-Mar-14	21-Mar-14	197
CAN/2013)		TCI-13-366-07-02	Canola Seed	2	23-Aug-13/ 05-Sep-13	90	23-Sep-13	10-Oct-13	21-Mar-14	21-Mar-14	197
		TCI-13-366-07-03	Canola Seed	2	23-Aug-13/ 05-Sep-13	90	23-Sep-13	10-Oct-13	21-Mar-14	21-Mar-14	197
TCI-13-366-08 (Brandon, MB.	25-May-13	TCI-13-366-08-01	Canola Seed	1	23-Aug-13 / 30-Aug-13	NA	23-Sep-13	10-0ct-13	21-Mar-14	21-Mar-14	203
CAN/2013)		TCI-13-366-08-02	Canola Seed	2	23-Aug-13/ 30-Aug-13	06	23-Sep-13	10-0ct-13	21-Mar-14	21-Mar-14	203
		TCI-13-366-08-03	Canola Seed	2	23-Aug-13/ 30-Aug-13	06	23-Sep-13	10-Oct-13	21-Mar-14	21-Mar-14	203
TCI-13-366-09	03-Jun-13	TCI-13-366-09-01	Canola Seed	1	13-Sep-13	NA	24-Sep-13	10-Oct-13	21-Mar-14	22-Mar-14	189
(Alvena, SK,		TCI-13-366-09-02	Canola Seed	2	13-Sep-13	102	24-Sep-13	10-Oct-13	21-Mar-14	22-Mar-14	189
CAIN/2013)		TCI-13-366-09-03	Canola Seed	2	13-Sep-13	102	24-Sep-13	10-Oct-13	21-Mar-14	22-Mar-14	189
TCI-13-366-10	12-Jun-13	TCI-13-366-10-01	Canola Seed	1	20-Sep-13	NA	24-Sep-13	10-Oct-13	26-Mar-14	26-Mar-14	187
(Wakaw, SK,		TCI-13-366-10-02	Canola Seed	2	20-Sep-13	100	24-Sep-13	10-Oct-13	26-Mar-14	26-Mar-14	187
CAN/2013)		TCI-13-366-10-03	Canola Seed	2	20-Sep-13	100	24-Sep-13	10-Oct-13	26-Mar-14	26-Mar-14	187
TCI-13-366-11	28-May-13	TCI-13-366-11-01	Canola Seed	1	06-Sep-13	NA	24-Sep-13	10-Oct-13	26-Mar-14	26-Mar-14	201
(Waldheim, SK,		TCI-13-366-11-02	Canola Seed	2	06-Sep-13	101	24-Sep-13	10-Oct-13	26-Mar-14	26-Mar-14	201
CAIN/2013)		TCI-13-366-11-03	Canola Seed	2	06-Sep-13	101	24-Sep-13	10-Oct-13	26-Mar-14	26-Mar-14	201
TCI-13-366-12	30-May-13	TCI-13-366-12-01	Canola Seed	1	19-Sep-13	NA	24-Sep-13	10-Oct-13	26-Mar-14	26-Mar-14	188
(Aberdeen, SK,		TCI-13-366-12-02	Canola Seed	2	19-Sep-13	112	24-Sep-13	10-Oct-13	26-Mar-14	26-Mar-14	188
CIN/ZULI)		TCI-13-366-12-03	Canola Seed	2	19-Sep-13	112	24-Sep-13	10-Oct-13	26-Mar-14	26-Mar-14	188
¹ Days in Frozen Stora NA = Not applicable.	ge is the number of	f days between samplin	g and extraction.								

Cheminova A/S