#### PUBLIC SERVICES AND PROCUREMENT CANADA

### KINGSTON MILLS LOCKS 46 TO 49 REHABILITATION INVESTIGATIVE GEOTECHINCAL REPORT

JUNE 27, 2018



SUITE 300 2611 QUEENSVIEW DRIVE OTTAWA, ON, CANADA K2B 8K2

Tel.: +1 613 829-2800 Fax: +1 613 829-8299 WSP.COM

vsp

## vsp

## TABLE OF CONTENTS

| 1     | INTRODUCTION                                 | 1  |
|-------|----------------------------------------------|----|
| 1.1   | Context                                      | 1  |
| 1.2   | Project and Site Description                 | 1  |
| 1.2.1 | Project Description                          | 1  |
| 1.2.2 | Site Description                             | 2  |
| 1.2.3 | Summary of Original Lock Construction        | 2  |
| 2     | INVESTIGATIVE METHODLOGY                     | 3  |
| 2.1   | Desktop Study                                | 3  |
| 2.1.1 | Published surficial and bedrock geology maps | 3  |
| 2.1.2 | Previous Geotechnical Investigations         | 3  |
| 2.2   | Supplemental Investigation                   | 5  |
| 2.2.1 | Coring Investigation                         | 5  |
| 2.2.2 | Borehole and Test Pit Investigation          | 5  |
| 2.2.3 | Laboratory Testing Program                   | 5  |
| 3     | SUBSURFACE CONDITIONS                        | 6  |
| 3.1   | Soil Conditions                              | 6  |
| 3.1.1 | Topsoil and Organics                         | 6  |
| 3.1.2 | Pavement Structure – Kingston Mills Road     | 6  |
| 3.1.3 | Fill                                         | 6  |
| 3.1.4 | Till                                         | 7  |
| 3.1.5 | Auger Refusal and Bedrock                    | 7  |
| 3.1.6 | Summary                                      | 8  |
| 3.2   | Groundwater Conditions                       | 8  |
| 4     | CLOSURE                                      | 10 |

## wsp

#### TABLES

| TABLE 3.1 | MEASURED TOPSOIL THICKNESS 6 |
|-----------|------------------------------|
| TABLE 3.2 | RESULTS OF GRAIN SIZE        |
|           | ANALYSES FOR FILL7           |
| TABLE 3.3 | GLACIAL TILL7                |
| TABLE 3.4 | GROUNDWATER LEVEL DATA BY    |
|           | INVESTIGATION8               |
| TABLE 3.5 | DATA LOGGER INFORMATION –    |
|           | CHANGES IN WATER LEVEL       |

#### APPENDICES

- A LOCATION OF BOREHOLES
- B PHOTOS
- C WSP INVESTIGATION
- C-1 Coring Investigation
- C-2 Borehole and Test Pit Investigation
- C-3 Test Pit Sketches and Photos
- C-4 Laboratory Testing Results
- C-5 Groundwater Data
- D BEDROCK LOCATION
- E SUMMARY TABLE

## **1 INTRODUCTION**

#### 1.1 CONTEXT

WSP Canada Inc. (WSP) was retained by Public Services and Procurement Canada (PSPC) to complete an assessment of the Kingston Mills Lockstation, part of the Rideau Canal waterway system, and provide recommendations and design requirements to complete proposed rehabilitation work. As part of the assessment and design process, a review of the available geotechnical information was undertaken and supplementary geotechnical field investigations were completed. Results of a detailed review of all available historical information, a supplemental field investigation and design analysis are presented in the ensuing paragraphs

This report was prepared in accordance with professional services agreement No. EQ754-171828/A with PSPC as the intended recipient. A disclosure of this report to third parties can only be made by the intended recipient who will assume responsibility for such a disclosure. The information, data, and opinions expressed in this report reflect WSP's best judgement in light of the information available at the time of preparation of the report. Any use of the report by third parties reliance upon, or decisions made based upon information provided in this report, are the responsibility of such third parties and specifically WSP accepts no responsibility for damages, if any, suffered by any third parties as a result of decisions made or actions taken based on information contained in this report. This limitations statement is considered part of this report.

#### 1.2 PROJECT AND SITE DESCRIPTION

#### 1.2.1 PROJECT DESCRIPTION

The project site is located approximately in the county of Frontenac, 7.8 km northeast of The City of Kingston near Kingston Mills, Ontario. Access to project site is north of Highway 401, west of Highway 15, westerly on Kingston Mills Road (County Road 21) to the project site.

WSP's overall scope includes design of rehabilitation works for the locks and associated structures which have been identified as being in relatively poor condition.

WSP's geotechnical scope of work included the following:

- Review of existing historical geotechnical information;
- Drilling of six exploratory boreholes within the study area;
- Drilling four exploratory boreholes and two hand augers holes within the project area;
- Excavating three exploratory test pits near selected retaining and chamber walls;
- Coring the exterior walls of selected retaining walls;
- In-situ soil sampling and testing, including Standard Penetration Testing (SPT);
- Obtaining soil samples and rock core samples for additional review and laboratory testing;
- Laboratory testing;
- Geotechnical analysis; and
- Compiling all results into a single, concise report.

#### 1.2.2 SITE DESCRIPTION

The existing lock station consists of a set of four locks, divided into two areas separated by a turning basin. The northern most lock (Lock 46), acts as a turning basin from Cranberry Lake while the south set of locks (Lock 47 through 49), provide access to the St. Lawrence River.

The topography of the land consists of steep hills with flat areas cut into or filled on top of the existing hillsides. The ground slopes downward to the south from approximately elevation 90.5 m to elevation 87.0 m at the top of the first set of locks. The ground continues to slope downwards to the south at the second set of locks to approximately elevation 86.1 m downwards past the railroad bridge to approximately elevation 78.8 m.

#### 1.2.3 SUMMARY OF ORIGINAL LOCK CONSTRUCTION

Upon review of historical documents and site observations from supplemental work completed by WSP staff, the lock components are generally constructed on bedrock with some sections partially constructed on oak sills. Additional discussion on lock construction is presented in the ensuing paragraphs.

Lock 46 are built partially on bedrock and partially on oak sills. The oak sills support components of the structure upstream of the breast wall, where bedrock is not present. Site observations note that timbers are visible in the stream adjacent to the shore at the west upstream embankment, possibly from original construction of the Lockstation. The section of chamber floor in front of the breast wall towards the downstream gate was noted to be constructed on bedrock. Bedrock is also present behind the chamber walls. A centre bearing swing bridge is present and installed over this lock, with the centre pier and east abutment on bedrock immediately behind the west and east walls of the chamber lock, respectively. The east rest abutment that is utilized when the bridge is open to traffic is partially constructed on top of the east chamber wall.

Locks 47 and 48 are constructed within a blasted/excavated bedrock outcrop area. The west side walls of Locks 47 and 48 are built directly against the bedrock while the east side walls of Locks 47 and 48 were built elevated on bedrock and have the back of the walls exposed. The original bedrock floors in Locks 47 and 48 were overlaid in the past with concrete directly over bedrock in an apparent attempt to seal the bedrock and prevent water infiltration towards the breast walls.

At Lock 49, available information indicates that more than 70% of the lock is constructed on timber rafts placed on top of the fill with the north section of the lock supported by bedrock. The downstream end of Lock 49 was modified and repaired very shortly after original construction with some very significant structural interventions required in the years following construction. The past repairs appear to focus on the concern of global stability and resilience to settlement. The most recent major intervention was in 1972 when lower wingwalls and monoliths were dismantled, backfill replaced and masonry grouted.

## 2 INVESTIGATIVE METHODLOGY

#### 2.1 DESKTOP STUDY

#### 2.1.1 PUBLISHED SURFICIAL AND BEDROCK GEOLOGY MAPS

A review of available geological mapping (GSC Map M2227) noted that native soil in the general study area consists of shallow till and rock ridges. Precambrian bedrock in the area is of the Grenville Formation consisting of granite-gneiss.

#### 2.1.2 PREVIOUS GEOTECHNICAL INVESTIGATIONS

To develop a thorough understanding of the existing site conditions in addition to determining where additional boreholes were to be placed, the following reports information was provided to WSP by PSPC for review:

#### Site Investigation Services Limited, 1977 - Swing Bridge at Kingston Mills

A geotechnical investigation was carried out to assess the soil and rock conditions behind the east abutment of the swing bridge at the Kingston Mills Lock station. A total 10 boreholes were advanced at selected locations in near the east abutment. Borehole locations from the investigation are presented on a borehole plan in Appendix A and also included on a site plan appended to the full report included in Appendix D.

Based on the results of the investigation, the following observations were reported:

South of the Swing Bridge:

- Overburden near the lock wall consisted of topsoil over clayey silt fill to a depth of 910 mm
- Bedrock was encountered within 910 mm of the top of the lock wall.
- Bedrock is exposed 4.57 to 6.1m from the wall line

North of the Swing Bridge

- At boreholes E and J, overburden consisted of topsoil over a native stony sandy clayey silt till.
- Bedrock was encountered at elevation 87.93 (2.9 m below the top of the concrete wall at boreholes E and J)
- At boreholes G, H, and I rockfill was encountered at approximately 1.5 m below grade.
- At borehole J, bedrock was observed at elevation 87.5.

#### Golder Associates, 1979 - Borehole Results - Kingston Mills Lock Station Rideau Canal, Kingston Ontario

The purpose of the geotechnical investigation was to provide supplemental information to Public Services and Procurement Canada on the condition of the soils underlying Lock 49.

Two boreholes were advanced within Lock 49:

- One at the upstream Sill.
- One at the downstream Sill.

<u>Trow Ontario Ltd., 1990 – Geotechnical Investigation – Grouting Test Program, Locks 47 and 48, Kingston Mills Locks, Kingston, Ontario</u>

A geotechnical investigation was carried out to assess the construction of lock 47 and 48. A total of 20 horizontal and 6 vertical boreholes were advanced through the structures as part of the investigation. A grouting program was also completed to assess the condition of the grouting techniques used in the rehabilitation of the locks. A detailed discussion on the extent of the grouting program can be found in Appendix D.

#### Quontacon Associates, 1999 - Kingston Mills Swing Bridge, Rideau Canal, Geotechnical Investigation

A geotechnical investigation was commissioned by Public Services and Procurement Canada to obtain an assessment of the foundations of the existing swing bridge (Lock 46) at the Kingston Mills Lockstation. A total of 14 vertical boreholes and cores were advanced within the study limits. The boreholes were placed at select locations as indicated below:

- 6 boreholes to obtain core samples within the abutments and pivot pier foundations
- 1 borehole through the bridge deck and concrete counter weight
- 4 boreholes near the bridge abutments (1 per quadrant of the bridge)
- 2 boreholes near the concrete pivot pier adjacent to the circular track
- 1 borehole through the concrete counterweight at the west end of the bridge.

Further details on the investigation and recommendations can be found in Appendix D.

#### Jacques Whitford, 2005 - Geotechnical Investigation for the Kingston Mills Lock No. 46, Kingston, Ontario

A geotechnical investigation was completed at Lock 46. A total of 11 cores were extracted at select locations to assess the material properties of the structure.

#### <u>Golder Associates, 2015 – Geotechnical Investigation, Proposed Structural Rehabilitation – Kingston Mills Swing</u> <u>Bridge, Kingston, Ontario</u>

Addition investigative work was completed to provide recommendations for the proposed rehabilitation of the swing bridge. A desktop study was completed which included a review of additional historical reports (not documented above):

- J.D. Lee Engineering Limited, 1976 The foundation condition of the swing bridge at Kingston Mills, Ontario
- J.D. Lee Engineering Limited, 1977 Swing Bridge at Kingston Mills

The field program consisted of

- Three horizontal boreholes
- One vertical borehole
- Four test pits
- In situ testing and a laboratory testing program

In general, soil conditions encountered consisted of 2.5 m to 3 m of fill over bedrock. A more detailed explanation of site conditions within the limits of the lock station is presented in Section 3.

Please refer to the full report presented in Appendix D.

#### 2.2 SUPPLEMENTAL INVESTIGATION

A geotechnical investigation was completed by WSP in April and October 2017. The investigation included selective coring of the existing stone, borehole drilling, test pitting, installation of monitoring wells, laboratory testing of selected soil samples, geotechnical analysis and preparation of this report.

#### 2.2.1 CORING INVESTIGATION

A total of 33 core holes (CH 1 through CH 33) were placed at selected locations within the study area as shown in Appendix A. Cores were advanced with diamond tipped coring equipment supplied by CCC Geotechnical and Environmental Drilling Ltd. Of Ottawa, Ontario.

During the field investigation, all drilling operations were supervised on a full-time basis by a member of WSP's geotechnical staff who logged the depths at which different soil strata were encountered and processed and transported samples to our accredited laboratory facilities in Ottawa.

#### 2.2.2 BOREHOLE AND TEST PIT INVESTIGATION

A total of 4 boreholes (BH 17-1 through 3 and BH 17-6), 2 hand auger holes (HA 17-4 and 17-5) and 3 test pits (TP 17-1 through 17-3) where placed at key locations within the study areas in consultation with the structural team as shown in Appendix A.

Prior to the start of drilling and excavating activities, utility clearances were obtained for all borehole and test pitting locations. Boreholes were advanced with CME hydraulic drilling equipment. Test pits were excavated using a rubber tire backhoe. All equipment and operating staff was supplied by Canadian Environmental Drilling and Contracting Inc. of Ivernary, Ontario. Soil samples were obtained at selected intervals using split spoon sampling techniques in conjunction with Standard Penetration Testing (SPT). Field shear vane testing was completed in areas where cohesive soil was encountered.

Standpipe piezometers were installed at all borehole locations to permit the ongoing measurement of stabilized groundwater levels within the study area. Records of each piezometer installation completed are presented as drawings in the attached borehole logs presented in Appendix C.

During the field investigation, all drilling operations were supervised on a full-time basis by a member of WSP's geotechnical staff who logged the depths at which different soil strata were encountered as well as processed and transported samples to our accredited laboratory facilities in Ottawa.

#### 2.2.3 LABORATORY TESTING PROGRAM

All recovered samples were visually reviewed and a laboratory testing program was carried out on selected soil samples which included natural moisture content, particle size analysis and Atterberg limits (plasticity) testing. Laboratory index testing results are presented on the individual borehole logs and are included in Appendix C.

Samples of the stone masonry and rock from the current WSP coring investigation was also tested for the following parameters:

- Percent Absorption
- Bulk Specific Gravity.
- Compressive Strength
- Uniaxial Compression

## **3 SUBSURFACE CONDITIONS**

#### 3.1 SOIL CONDITIONS

A summary of subsurface conditions encountered within the study limits is presented in the ensuing sections. A detailed description of the soil stratigraphy encountered at each borehole location is shown on the borehole log sheets shown in Appendix C and D. Please note that the factual descriptions shown in each borehole logs takes precedence over the generalized (and simplified) descriptions presented below.

#### 3.1.1 TOPSOIL AND ORGANICS

Topsoil was encountered at the ground surface at the majority of all the boreholes and test pit locations. The topsoil thickness varied from 30 mm to 330 mm.

The measured topsoil thicknesses where encountered are summarized below.

#### Table 3.1 Measured Topsoil Thickness

| LOCATION | <b>TOPSOIL THICKNESS</b> |  |  |
|----------|--------------------------|--|--|
| Lock 46  | 30 mm to 330 mm          |  |  |
| Lock 47  | 80 mm to 270 mm          |  |  |
| Lock 48  | 160 mm to 240 mm         |  |  |
| Lock 49  | 170 mm                   |  |  |

#### 3.1.2 PAVEMENT STRUCTURE – KINGSTON MILLS ROAD

Historical boreholes were advanced through the pavement structure of Kingston Mills Road during the 1977 investigation completed by Site Investigation Service, the 2000 investigation completed by Quontacon Associates and the 2015 investigation completed by Golder Associates.

East of Lock 46, four boreholes (77 G through I and 15-101) were advanced through the existing pavement platform. Field observations noted a flexible pavement structure (asphalt over granular fill). The asphalt thickness was observed to be a consistent 100 mm and generally supported by sand fill over clayey sandy silt to silty clay some sand fill that extended to depths ranging from 1.2 to 1.5m from surface within the westbound lane and extended to 2.7 m within the eastbound lane.

West of Lock 46, two boreholes were advanced through the existing pavement structure (00 C3 and C4). Conditions observed during the field investigation noted the presence of a composite pavement structure (asphalt over concrete). Asphalt thickness was observed to vary from 38 mm to 50 mm. The concrete base extended to depths ranging from 300 to 400 mm below the surface.

#### 3.1.3 FILL

Fill material was also encountered beyond Kingston Mills Road throughout the project limits in all the current boreholes and in most of the previous boreholes. The depth of fill encountered in the various boreholes (both current and previous) ranged from surface to 4.6 m from surface.

The fill material includes a range of soil and rock materials, but is most typically described as ranging from silt with clay and varying amounts of gravel and sand to silty sand. Fill is often, by nature, a heterogeneous material and has

likely been placed as part of multiple previous projects in the area. It should, therefore, be anticipated that variability will exist in the fill material (i.e. materials other than those described in the borehole logs could be encountered during construction).

SPT 'N' values within the fill material typically ranged from 3 blows to 29 blows per 305 mm of penetration through most of the project, indicating a loose to compact consistency soil.

Grain size curves for selected samples of fill material from the 2017 WSP Investigation is presented in Appendix B. A summary of these grain size distributions is also presented in the table below.

| Doddinov e No | () N.      | GRAIN SIZE DISTRIBUTION |        |        |        |  |  |
|---------------|------------|-------------------------|--------|--------|--------|--|--|
| BOREHOLE NO.  | SAMPLE NO. | % Gravel                | % Sand | % Silt | % Clay |  |  |
|               | 2          | 0                       | 8      | 92     |        |  |  |
| 15-1A*        | 3          | 2                       | 6      | 92     |        |  |  |
|               | 4          | 0                       | 7      | 93     |        |  |  |
| 17-1          | SS4        | 9                       | 14     | 56     | 21     |  |  |
| 17-2          | SS3        | 9                       | 47     | 37     | 7      |  |  |
| 17-3          | SS3        | 6                       | 24     | 60     | 9      |  |  |
| 17.6          | SS4        | 9                       | 44     | 41     | 6      |  |  |
| 17-0          | SS6        | 2                       | 22     | 58     | 18     |  |  |
| TP17-2        | GRAB 2     | 2                       | 89     | 9      |        |  |  |
|               | GRAB 3     | 3                       | 33     | 53     | 12     |  |  |
| TP17-3        | GRAB 3     | 48                      | 34     | 18     |        |  |  |

Table 3.2 Results of Grain Size Analyses for Fill

Note\*: Approximate grain size distribution values interpreted from review of graphical chart available.

#### 3.1.4 TILL

Glacial till was reported to have been encountered during the 1977 Site Investigation Services. The glacial till consists of a heterogeneous mixture of gravel, sandy clayey silt till.

#### Table 3.3 Glacial Till

| Investigation                     | Borehole | Depth Encountered (m) | Thickness (m) |
|-----------------------------------|----------|-----------------------|---------------|
|                                   | 77-E     | 250 mm - 2.7 m        | 2.45          |
| Site Investigation Service - 1977 | 77-F     | 230 mm - 2.3 m        | 2.07          |
|                                   | 77-J     | 1.8 m - 2.7 m         | 0.90          |

#### 3.1.5 AUGER REFUSAL AND BEDROCK

Auger refusal was encountered at 14 boreholes (12 at Lock 46, 1 at Lock 48 and 1 at Lock 49) drilled as part of previous investigations at depths ranging from of 100 mm to 2.7 m from surface. Bedrock was cored at boreholes 17- 1, 17-2, and 17-3 during the WSP investigation using 'NQ' sized diamond coring equipment. A summary of the elevation as which bedrock was encountered in the WSP investigations as well as within historical investigations is presented in Appendix F.

The rock encountered in the cored holes consisted of fresh granite. Rock Quality Designation (RQD) ranged from 0 to 100% (indicating a rock quality of "very poor" to "excellent"). Generally, the RQD values increase with depth (i.e. is typically "very poor" to "poor" quality near surface, and becomes "fair" to "excellent" quality with depth. When analyzing the rock quality results within the Kingston Mills Lock station, the RQD values were general observed to be good to excellent once encountered (one exception was at BH 17-2 where the RQD was observed to be 27%) and decreased in RQD value with depth.

Results of the testing are presented in Appendix C and D respectively.

#### 3.1.6 SUMMARY

A summary of the sub-surface conditions noted in the historical information review encountered at the various boreholes is presented in Appendix E.

#### 3.2 GROUNDWATER CONDITIONS

Groundwater measurements were obtained (by others) in various boreholes in 1979 and 2015. In addition, monitoring wells and data loggers were installed in the boreholes drilled as part of this investigation, and stabilized groundwater levels were obtained from during drilling and from site visits completed between the months of October and November 2017. All data logging devices have been left in the drilled boreholes as part of an ongoing groundwater monitoring program to assess fluctuations in the stabilized groundwater levels over the winter months. To date, groundwater data has been collected and processed from October to November 2017 and from November 2017 to May 2018. A final round of data collection will be completed in August 2018. A graphical representation of the groundwater information collected to date is presented in Appendix B.

A summary of the groundwater levels measured at the various boreholes and monitoring wells (in the current investigation as well as reported in previous investigations) is presented in the table below.

| вн     |      | Ground               | T / H /·                  |                               | Meas           | ured Gro       | undwater Elevation/Dept |                | th (m)         |                |      |
|--------|------|----------------------|---------------------------|-------------------------------|----------------|----------------|-------------------------|----------------|----------------|----------------|------|
|        | Lock | Surface<br>Elevation | Installation<br>Depth (m) | Soll Type at<br>Response Zone | 1979 20        | se Zone 1979   |                         |                | 2017           |                | 2018 |
|        |      | (m)                  | Deptii (iii)              | Response Lone                 | 14 -<br>May    | 14 -<br>May    | 4-Oct                   | 12-<br>Oct     | 30-<br>Nov     | 17-<br>May     |      |
| 15-101 | 46   | 91.9                 | N/A                       | Bedrock                       |                | 88.65/<br>3.25 |                         |                |                |                |      |
| 17-1   | 46   | 90.5                 | 1.93 – 3.45               | Silt to Silty Sand Fill       |                |                | 86.92/<br>3.58          | 88.33/<br>2.17 | 88.49/<br>2.01 | 88.67/<br>1.83 |      |
| 17-2   | 46   | 90.5                 | 1.21 – 2.43               | Silty Sand Fill               |                |                | 87.73/<br>2.77          | 88.33/<br>2.17 | 88.19/<br>2.31 |                |      |
| 17-3   | 47   | 86.1                 | 1.01 – 2.28               | Silt Fill                     |                |                | 83.02/<br>3.08          | 84.12/<br>1.98 | 84.12/<br>1.98 | 85.19/<br>0.91 |      |
| 17-6   | 49   | 78.8                 | 5.2 – 6.7                 | Silt Fill/Sand Till           |                |                | 72.22/<br>6.58          | 74.96/<br>3.84 | 75.06/<br>3.74 | 75.61/<br>3.19 |      |
| 79-1   | 49   | 75.18                | N/A                       | Silty<br>Sand/Gravel/Boulder  | 76.20/<br>1.02 |                |                         |                |                |                |      |

#### Table 3.4 Groundwater Level Data By Investigation

| Borehole<br>Location | Lock | Stabilized Static<br>Water Level (m) | Date                    | Depth of<br>Fluctuation<br>(Elevation) | Change Water<br>Level (m)                                                                                                                                                                                            |
|----------------------|------|--------------------------------------|-------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |      | 87.87                                | Oct 19/17 to Oct 20/17  | 88.29 - 87.90                          | 0.39                                                                                                                                                                                                                 |
|                      | 46   | 88.43                                | Octo 29/17 to Oct 30/17 | 87.90 - 88.87                          | 0.97                                                                                                                                                                                                                 |
|                      |      | 87.46                                | Nov 8/17 to Nov 14/17   | 88.87 - 87.82                          | 1.05                                                                                                                                                                                                                 |
| 17-1                 |      | 87.14                                | Dec 10/17 to Dec 11//17 | 87.25 - 87.72                          | 0.47                                                                                                                                                                                                                 |
|                      |      | 07.14                                | Jan 11/18 to Jan 12/18  | 87.07 - 88.07                          | 1.00                                                                                                                                                                                                                 |
|                      |      | 87.08                                | Feb 21/18 to Feb 26/18  | 87.14 - 87.77                          | 0.63                                                                                                                                                                                                                 |
|                      |      | 87.89                                | Mar 29/18 to Apr 5/18   | 87.10 - 87.81                          | 0.71                                                                                                                                                                                                                 |
| 17-2                 | 46   | 88.34                                | Oct 29/17 to Oct 31/17  | 88.34 - 88.08                          | 0.26                                                                                                                                                                                                                 |
|                      |      |                                      | Oct 29/17 to Oct 31/17  | 83.99 - 84.95                          | 0.96                                                                                                                                                                                                                 |
|                      |      |                                      | Nov 2/17 to Nov 3/17    | 83.99 - 84.61                          | 0.62                                                                                                                                                                                                                 |
|                      |      |                                      | Nov 6/17 to Nov 7/17    | Nov 6/17 to Nov 7/17 83.99 – 84.68     |                                                                                                                                                                                                                      |
|                      |      |                                      | Dec 5/18 84.03 – 84.2   |                                        | 0.25                                                                                                                                                                                                                 |
|                      | 47   | 84.00                                | Jan 11/18 to Jan 12/18  | 84.00 - 85.10                          | 1.10                                                                                                                                                                                                                 |
|                      |      |                                      | Jan 24/18               | 84.00 - 84.47                          | 0.47                                                                                                                                                                                                                 |
| 17.3                 |      |                                      | Jan 27/18               | 84.00 - 84.67                          | 0.67                                                                                                                                                                                                                 |
| 17-5                 |      |                                      | Feb 14/18               | 84.00 - 84.66                          | 0.66                                                                                                                                                                                                                 |
|                      |      |                                      | Feb 19/18 to Feb 28/18  | 84.01 - 84.86                          | 0.85                                                                                                                                                                                                                 |
|                      |      |                                      | Mar 30/18 to Mar 31/18  | 84.02 - 84.31                          | 0.29                                                                                                                                                                                                                 |
|                      |      |                                      | Apr 3/18 to Apr 5/18    | 83.99 - 84.71                          | $\begin{array}{c} 1.00\\ 0.63\\ 0.71\\ 0.26\\ 0.96\\ 0.62\\ 0.69\\ 0.25\\ 1.10\\ 0.47\\ 0.67\\ 0.66\\ 0.85\\ 0.29\\ 0.72\\ 0.76\\ 0.25\\ 1.67\\ 0.25\\ 1.67\\ 0.37\\ 0.30\\ 0.31\\ 0.22\\ 0.45\\ 0.27\\ \end{array}$ |
|                      |      |                                      | Apr 12/18 to Apr 19/18  | 84.02 - 84.78                          | 0.76                                                                                                                                                                                                                 |
|                      |      |                                      | Apr 28/18               | 84.03 - 84.28                          | 0.25                                                                                                                                                                                                                 |
|                      |      |                                      | May 17/18               | 83.99 - 85.66                          | 1.67                                                                                                                                                                                                                 |
|                      |      | 74.48                                | Oct 29/17 to Oct 30/17  | 74.48 - 74.85                          | 0.37                                                                                                                                                                                                                 |
|                      |      | 74.55                                | Nov 9/17 to Nov 12/17   | 74.85 - 74.55                          | 0.30                                                                                                                                                                                                                 |
|                      | 40   | 74.94                                | Jan 10/18 to Jan 25/18  | 74.81 - 75.12                          | 0.31                                                                                                                                                                                                                 |
| 17.6                 |      | 75.12                                | Feb 18/18 to Mar 14/18  | 74.96 - 75.18                          | 0.22                                                                                                                                                                                                                 |
| 1/-0                 | 47   | 74.87                                | Apr 4/18                | 74.92 - 75.37                          | 0.45                                                                                                                                                                                                                 |
|                      |      | 75.27                                | Apr 8/18 to Apr 17/18   | 75.00 - 75.27                          | 0.27                                                                                                                                                                                                                 |
|                      |      | 75.24                                | May 4/18                | 75.34 – 75.73                          | 0.39                                                                                                                                                                                                                 |
|                      |      |                                      | May 17/18               | 75.28 - 75.55                          | 0.27                                                                                                                                                                                                                 |

A summary of depth and dates where a notable change in static water levels were recorded is shown in the table below: **Table 3.5** Data Logger Information – Changes In Water Level

*Note:* Maximum change in water level shown within date range indicated. Gap in data from November 15 to November 30 due to removal and installation of data logger

### 4 CLOSURE

Fieldwork for this assignment was completed by trained WSP technicians, under the direct supervision of C.Hendry P.Eng. and S.Lapain P.Eng. Review of information and preparation of this Investigative Geotechnical Report was carried out by S.Lapain P.Eng. The report was reviewed by C.Hendry, P.Eng.

We trust this information satisfies the requirements of the Public Services and Procurement Canada at this time. Should you have any questions on the contents of this report, please do not hesitate to contact the undersigned.

Sincerely,

0

Shawn Lapain, P.Eng. Geotechnical Engineer

S. M. LAPAIN 100176160 27 20.8 BOUINCE OF ONTARIO

Chris Hendry, P.Eng. Senior Geotechnical Engineer



# A LOCATION OF BOREHOLES



PWGSC-B1 (1000 x 707) PLOTTED BY: SHAWN.LAPAIN DATE PLOTTED: Mar 09, 2018 LAYOUT NAME: 01 FILE NAME: 171-02359-00\_46-49Plan\_v0.3\_20180215.dwg





PWGSC-B1 (1000 x 707) PLOTTED BY: SHAWN.LAPAIN DATE PLOTTED: Mar 09, 2018 LAYOUT NAME: 02 FILE NAME: 171-02359-00\_46-49Plan\_v0.3\_20180215.dwg









# **B** PHOTOS











#### 171-02359-00 General Site Conditions

Lock 46 East Side – Sluice Tunnel



Lock 46 West Side – Sluice Tunnel









#### 171-02359-00 General Site Conditions

Lock 46 East Side of Lock – Southeast Wing wall



Lock 46 West Side of Lock – Southwest Wing wall





















#### 171-02359-00 General Site Conditions



Kingston Mills Lock Station Rehabilitation Project No. 171-02359-00 Parks Canada



#### 171-02359-00 General Site Conditions

Lock 47 East Side – Sluice Tunnel



Lock 47 West Side – Sluice Tunnel









#### 171-02359-00 General Site Conditions

Lock 47 East Side – Buttress/Vertical Wall



Lock 47 West Side – Buttress/Vertical Wall









#### 171-02359-00 General Site Conditions

Lock 48 East Side – Chamber Wall



Lock 48 West Side – Chamber Wall





#### 171-02359-00 General Site Conditions

Lock 48 East Side – Sluice Tunnel



Lock 48 West Side – Sluice Tunnel








#### Kingston Mills Lock Station Rehabilitation Locks 46 to 49 Kingston Mills, Ontario

#### 171-02359-00 General Site Conditions





#### Kingston Mills Lock Station Rehabilitation Locks 46 to 49 Kingston Mills, Ontario

#### 171-02359-00 General Site Conditions

Lock 49 East Side – Chamber Wall



Lock 49 West Side – Chamber Wall





#### Kingston Mills Lock Station Rehabilitation Locks 46 to 49 Kingston Mills, Ontario

#### 171-02359-00 General Site Conditions





# C WSP INVESTIGATION

### **APPENDIX**

## **C-1** CORING INVESTIGATION











|                          | עו         | CILIZ          |
|--------------------------|------------|----------------|
|                          | Date Cored | April 21, 2017 |
|                          | Lock       | 47             |
| Location                 |            | Chamber Wall   |
| Section                  |            | 47W-CHW1       |
| Direction Core Extracted |            | Horizontal     |
|                          | Tested     | Yes            |
| Total Hole Depth 480 mm  |            |                |
| General Notes:           |            |                |
| Limestone 0 – 480 mm     |            |                |

Core Location at West Chamber Wall





CH 7



| Date Cored               |                                                                                 |  |
|--------------------------|---------------------------------------------------------------------------------|--|
| Lock                     | Chamber Wall                                                                    |  |
| Location                 | 48                                                                              |  |
| Section                  | Chamber Wall                                                                    |  |
| Direction Core Extracted |                                                                                 |  |
| Tested                   | No                                                                              |  |
| Total Hole Depth 480 mm  |                                                                                 |  |
| General Notes:           |                                                                                 |  |
| Limestone 0 – 480 mm     |                                                                                 |  |
|                          | Date Cored<br>Lock<br>Location<br>Section<br>Core Extracted<br>Tested<br>480 mm |  |

ID

Core Location at West Chamber Wall





| ID                       |            | CH 8           |
|--------------------------|------------|----------------|
|                          | Date Cored | April 21, 2017 |
|                          | Lock       | 48             |
|                          | Location   | Chamber Wall   |
| Section                  |            | 48W-CHW1       |
| Direction Core Extracted |            | Horizontal     |
|                          | Tested     | Yes            |
| Total Hole Depth 480 mm  |            |                |
| General Notes:           |            |                |
| Limestone 0 – 480 mm     |            |                |





**Core Location at West Chamber Wall** 

|                          | ID         | CH 9           |
|--------------------------|------------|----------------|
|                          | Date Cored | April 21, 2017 |
|                          | Lock       | 48             |
| Location                 |            | Chamber Wall   |
| Section                  |            | 48W-CHW1       |
| Direction Core Extracted |            | Horizontal     |
|                          | Tested     | Yes            |
| Total Hole Depth480 mm   |            |                |
| General Notes:           |            |                |
| Limestone 0 – 480 mm     |            |                |



manipalan in



| ID                       |  | CH 10          |
|--------------------------|--|----------------|
| Date Cored               |  | April 21, 2017 |
| Lock                     |  | 48             |
| Location                 |  | Chamber Wall   |
| Section                  |  | 48E-CHW1       |
| Direction Core Extracted |  | Horizontal     |
| Tested                   |  | No             |
| Total Hole Depth 480 mm  |  |                |
| General Notes:           |  |                |
| Limestone 0 – 480 mm     |  |                |



| ID                       |        | CH 11          |
|--------------------------|--------|----------------|
| Date Cored               |        | April 21, 2017 |
| Lock                     |        | 48             |
| Location                 |        | Chamber Wall   |
| Section                  |        | 48E-CHW2       |
| Direction Core Extracted |        | Horizontal     |
|                          | Tested | Yes            |
| Total Hole Depth 440 mm  |        |                |
| General Notes:           |        |                |
| Limestone 0 – 440 mm     |        |                |

**Core Location at East Chamber Wall** 





|                          | ID         | CH 12          |
|--------------------------|------------|----------------|
|                          | Date Cored | April 21, 2017 |
| Lock                     |            | 48             |
| Location                 |            | Chamber Wall   |
| Section                  |            | 48E-CHW2       |
| Direction Core Extracted |            | Horizontal     |
|                          | Tested     | Yes            |
| Total Hole Depth 480 mm  |            |                |
| General Notes:           |            |                |
| Limestone 0 – 480 mm     |            |                |

Core Location at East Chamber Wall



Kingston Mills Lockstation – Locks 46 to 49 Rehabilitation



| ID                       |  | CH 13          |
|--------------------------|--|----------------|
| Date Cored               |  | April 21, 2017 |
| Lock                     |  | 47             |
| Location                 |  | Breast Wall    |
| Section                  |  | 47-BRE4        |
| Direction Core Extracted |  | Horizontal     |
| Tested No                |  | No             |
| Total Hole Depth480 mm   |  |                |
| General Notes:           |  |                |
| Limestone 0 – 480 mm     |  |                |

**Core Location at Breast Wall** 





| Core Location at | Breast | Wall |
|------------------|--------|------|
|------------------|--------|------|

| ID                       |            | CH 14       |
|--------------------------|------------|-------------|
|                          | Date Cored |             |
|                          | Lock       | 48          |
| Location                 |            | Breast Wall |
| Section                  |            | 48-BRE3     |
| Direction Core Extracted |            | Horizontal  |
| Tested                   |            | Yes         |
| Total Hole Depth 480 mm  |            |             |
| General Notes:           |            |             |
| Limestone 0 – 480 mm     |            |             |





**Core Location at Lock Floor** 

| ID                       |            | CH 15          |
|--------------------------|------------|----------------|
|                          | Date Cored | April 21, 2017 |
|                          | Lock       | 47             |
|                          | Location   | Floor          |
| Section                  |            | 47 FLR         |
| Direction Core Extracted |            | Vertical       |
| Tested                   |            | NO             |
| Total Hole Depth 480 mm  |            |                |
| General Notes:           |            |                |
| Concrete 0 – 270 mm      |            |                |
| Granite 0 – 480 mm       |            |                |





|                          | ID     | CH 16          |  |  |
|--------------------------|--------|----------------|--|--|
| Date Cored               |        | April 21, 2017 |  |  |
| Lock                     |        | 48             |  |  |
| Location                 |        | Floor          |  |  |
|                          | 48 FLR |                |  |  |
| Direction Core Extracted |        | Vertical       |  |  |
| Tested                   |        | No             |  |  |
| Total Hole Depth 590 mm  |        |                |  |  |
| General Notes:           |        |                |  |  |
| Concrete 0 -240 mm       |        |                |  |  |
| Granite 240 – 590 mm     |        |                |  |  |

**Core Location at Lock Floor** 





| ID                       |     | CH 17             |  |
|--------------------------|-----|-------------------|--|
| Date Cored               |     | April 21, 2017    |  |
| Lock                     |     | 47                |  |
| Location                 |     | Gate Recess Floor |  |
| Section                  |     | 47-GRF3           |  |
| Direction Core Extracted |     | Vertical          |  |
| Tested                   |     | Yes               |  |
| Total Hole Depth         | 370 |                   |  |
| General Notes:           |     |                   |  |
| Limestone 0 – 370 mm     |     |                   |  |

Core Location at Gate Recess Floor





| <b>Core Location</b> a | at Gate | Recess | Floor |
|------------------------|---------|--------|-------|
|------------------------|---------|--------|-------|

|                          | 10     | CU 19             |  |
|--------------------------|--------|-------------------|--|
| D                        |        | CH 18             |  |
| Date Cored               |        | April 21, 2017    |  |
| Lock                     |        | 48                |  |
| Location                 |        | Gate Recess Floor |  |
| Section                  |        | 48-GRF2           |  |
| Direction Core Extracted |        | Vertical          |  |
| Tested                   |        | Yes               |  |
| <b>Total Hole Depth</b>  | 540 mm |                   |  |
| General Notes:           |        |                   |  |
| Limestone 0 – 540 mm     |        |                   |  |





|                          | CH 19    |                |
|--------------------------|----------|----------------|
| Date Cored               |          | April 21, 2017 |
|                          | Lock     | 47             |
|                          | Location | Chamber Wall   |
|                          | 47E-CHW1 |                |
| Direction Core Extracted |          | Horizontal     |
| Tested                   |          | No             |
| Total Hole Depth         | 440 mm   |                |
| General Notes:           |          |                |
| Limestone 0 – 440 mm     |          |                |





**Core Location at East Pier** 

|                          | CH 20  |                |
|--------------------------|--------|----------------|
| Date Cored               |        | April 21, 2017 |
| Lock                     |        | 47             |
| Location                 |        | Pier           |
| Section                  |        | 47E-PIE6       |
| Direction Core Extracted |        | Horizontal     |
| Tested                   |        | Yes            |
| Total Hole Depth         | 480 mm |                |
| General Notes:           |        |                |
| Limestone 0 – 480 mm     |        |                |





| [                        |              |                |
|--------------------------|--------------|----------------|
|                          | CH 21        |                |
| Date Cored               |              | April 21, 2017 |
|                          | 48           |                |
|                          | Chamber Wall |                |
| Section                  |              | 48E-CHW2       |
| Direction Core Extracted |              | Horizontal     |
|                          | Tested       | Yes            |
| Total Hole Depth         | 470 mm       |                |
| General Notes:           |              |                |
| Limestone 0 – 470 mm     |              |                |







|                          | CH 23        |                |  |  |
|--------------------------|--------------|----------------|--|--|
| Date Cored               |              | April 21, 2017 |  |  |
| Lock                     |              | 47             |  |  |
|                          | Chamber Wall |                |  |  |
| Section 47W-CHW          |              |                |  |  |
| Direction Core Extracted |              | Vertical       |  |  |
| Tested                   |              | Yes            |  |  |
| Total Hole Depth 460 mm  |              |                |  |  |
| General Notes:           |              |                |  |  |
| Limestone 0 – 420 mm     |              |                |  |  |
| Mortar 420 – 460 mm      |              |                |  |  |





|  | Core | Location | at | West | Chamber | Wal |
|--|------|----------|----|------|---------|-----|
|--|------|----------|----|------|---------|-----|

|                          | CH 24        |                |
|--------------------------|--------------|----------------|
| Date Cored               |              | April 21, 2017 |
|                          | 47           |                |
|                          | Chamber Wall |                |
| Section                  |              | 47W-CHW1       |
| Direction Core Extracted |              | Vertical       |
| Tested                   |              | Yes            |
| <b>Total Hole Depth</b>  | 410 mm       |                |
| General Notes:           |              |                |
| Limestone 0 – 410 mm     |              |                |





**Core Location at West Chamber Wall** 

|                          | CH 25   |                |
|--------------------------|---------|----------------|
| Date Cored               |         | April 21, 2017 |
|                          | 48      |                |
| Location                 |         | Chamber Wall   |
|                          | Section | 48W-CHW1       |
| Direction Core Extracted |         | Vertical       |
| Tested                   |         | Yes            |
| Total Hole Depth 400 mm  |         |                |
| General Notes:           |         |                |
| Limestone 0 – 400 mm     |         |                |





**Core Location at West Chamber Wall** 

| <b>ID</b> CH 26              |  |                |  |  |
|------------------------------|--|----------------|--|--|
| Date Cored                   |  | April 21, 2017 |  |  |
| Lock 48                      |  |                |  |  |
| Location Chamber Wall        |  |                |  |  |
| Section 48W-CHW1             |  |                |  |  |
| Direction Core Extracted     |  | Vertical       |  |  |
| Tested No                    |  |                |  |  |
| Total Hole Depth430 mm       |  |                |  |  |
| General Notes:               |  |                |  |  |
| Limestone 0 – 410 mm         |  |                |  |  |
| Mortar/concrete 410 – 430 mm |  |                |  |  |





**Core Location at West Chamber Wall** 

|                          | ID         | CH 27          |
|--------------------------|------------|----------------|
|                          | Date Cored | April 21, 2017 |
|                          | Lock       | 48             |
|                          | Location   | Chamber Wall   |
|                          | Section    | 48W-CHW1       |
| Direction Core Extracted |            | Vertical       |
|                          | Tested     | Yes            |
| Total Hole Depth         | 500 mm     |                |
| General Notes:           |            |                |
| Limestone 0 – 500 mm     |            |                |





**Core Location at West Chamber Wall** 

|                              | ID       | CH 28          |  |  |
|------------------------------|----------|----------------|--|--|
| Date Cored                   |          | April 21, 2017 |  |  |
|                              | Lock     | 49             |  |  |
|                              | Location | Chamber Wall   |  |  |
|                              | Section  | 49W-CHW2       |  |  |
| Direction Core Extracted     |          | Vertical       |  |  |
|                              | Tested   | Yes            |  |  |
| Total Hole Depth             | 460mm    |                |  |  |
| General Notes:               |          |                |  |  |
| Limestone 0 – 400 mm         |          |                |  |  |
| Mortar/concrete 400 – 460 mm |          |                |  |  |





**Core Location at West Chamber Wall** 

|                          | ID         | CH 29          |  |  |
|--------------------------|------------|----------------|--|--|
|                          | Date Cored | April 21, 2017 |  |  |
|                          | Lock       | 49             |  |  |
|                          | Location   | Chamber Wall   |  |  |
|                          | Section    | 49W-CHW1       |  |  |
| Direction Core Extracted |            | Vertical       |  |  |
|                          | Tested     | No             |  |  |
| Total Hole Depth         | 460 mm     |                |  |  |
| General Notes:           |            |                |  |  |
| Limestone 0 – 400 mm     |            |                |  |  |
| Mortar 400 – 460 mm      |            |                |  |  |





**Core Location at West Chamber Wall** 

|                          | ID         | CH 30          |
|--------------------------|------------|----------------|
|                          | Date Cored | April 21, 2017 |
|                          | Lock       | 49             |
|                          | Location   | Chamber Wall   |
|                          | Section    | 49W-CHW1       |
| Direction Core Extracted |            | Vertical       |
|                          | Tested     | Yes            |
| Total Hole Depth         | 460 mm     |                |
| General Notes:           |            |                |
| Limestone 0 – 460 mm     |            |                |




|  | Core | Location | at East | Chamber | Wall |
|--|------|----------|---------|---------|------|
|--|------|----------|---------|---------|------|

|                     | ID             | CH 31          |
|---------------------|----------------|----------------|
|                     | Date Cored     | April 21, 2017 |
|                     | Lock           | 49             |
|                     | Location       | Chamber Wall   |
|                     | Section        | 49E-CHW2       |
| Direction           | Core Extracted | Vertical       |
|                     | Tested         | Yes            |
| Total Hole Depth    | 460 mm         |                |
| General Notes:      | •              |                |
| Limestone 0 – 460 ı |                |                |





Core Location at East Chamber Wall

|                      | ID                                       | CH 32          |  |  |  |  |  |  |  |  |  |  |
|----------------------|------------------------------------------|----------------|--|--|--|--|--|--|--|--|--|--|
|                      | Date Cored                               | April 21, 2017 |  |  |  |  |  |  |  |  |  |  |
|                      | Lock                                     | 47             |  |  |  |  |  |  |  |  |  |  |
|                      | Location                                 | Chamber Wall   |  |  |  |  |  |  |  |  |  |  |
|                      | Section                                  | 47E-CHW2       |  |  |  |  |  |  |  |  |  |  |
| Direction            | Core Extracted                           | Vertical       |  |  |  |  |  |  |  |  |  |  |
|                      | Tested                                   | Yes            |  |  |  |  |  |  |  |  |  |  |
| Total Hole Depth     | 430 mm                                   |                |  |  |  |  |  |  |  |  |  |  |
| General Notes:       | Total Hole Depth 430 mm   General Notes: |                |  |  |  |  |  |  |  |  |  |  |
| Limestone 0 – 430 mm |                                          |                |  |  |  |  |  |  |  |  |  |  |





Core Location at East Chamber Wall

|                     | ID             | CH 33          |
|---------------------|----------------|----------------|
|                     | Date Cored     | April 21, 2017 |
|                     | Lock           | 48             |
|                     | Location       | Chamber Wall   |
|                     | Section        | 48E-CHW2       |
| Direction           | Core Extracted | Vertical       |
|                     | Tested         | Yes            |
| Total Hole Depth    | 460 mm         |                |
| General Notes:      |                |                |
| Limestone 0 – 460 i | mm             |                |



## Kingston Mills Lockstation Rehabilitation of Locks 46 to 49 Results of Laboratory Testing

| Б     | Core        |                                         |         |                                                                                         |         |        |         |        |         |        |         | Per       | cent Water    | Absorp  | otion (%)            |     |         |      |         |      |      |          |         |                                         | Commonto |
|-------|-------------|-----------------------------------------|---------|-----------------------------------------------------------------------------------------|---------|--------|---------|--------|---------|--------|---------|-----------|---------------|---------|----------------------|-----|---------|------|---------|------|------|----------|---------|-----------------------------------------|----------|
| U     | Orientation | С                                       | Block 1 | С                                                                                       | Block 2 | С      | Block 3 | С      | Block 4 | С      | Block 5 | С         | Block 6       | С       | Block 7              | С   | Block 8 | С    | Block 9 | Min  | Max  | Avg      | Std Dev | Classification                          | Comments |
| CH 8  | Horizontal  | W                                       | 0.09    | W                                                                                       | 0.11    | W      | 0.09    | W      | 0.10    | W      | 0.10    | W         | 0.12          | -       | -                    | -   | -       | -    | -       | 0.09 | 0.12 | 0.10     | 0.01    | Type III                                |          |
| CH 9  | Horizontal  | W                                       | 0.03    | W                                                                                       | 0.05    | W      | 0.06    | W      | 0.06    | W      | 0.06    | W         | 0.07          | W       | 0.07                 | -   | -       | -    | -       | 0.03 | 0.07 | 0.06     | 0.01    | Type III                                |          |
| CH 11 | Horizontal  | W                                       | 0.08    | W                                                                                       | 0.11    | W      | 0.08    | W      | 0.08    | W      | 0.07    | -         | -             | -       | -                    | -   | -       | -    | -       | 0.07 | 0.11 | 0.08     | 0.01    | Type III                                |          |
| CH 12 | Horizontal  | D                                       | 0.09    | D                                                                                       | 0.10    |        | 0.09    | D      | 0.07    | -      | 0.08    | D         | 0.12          | W       | 0.12                 | -   | -       | -    | -       | 0.07 | 0.12 | 0.10     | 0.02    | Type III                                |          |
| CH 14 | Horizontal  | -                                       | -       | -                                                                                       | -       | W      | 0.13    | W      | 0.12    | W      | 0.07    | W         | 0.06          | W       | 0.07                 | -   | -       | -    | -       | 0.06 | 0.13 | 0.09     | 0.03    | Type III                                |          |
| CH 17 | Vertical    | D                                       | 0.09    | D                                                                                       | 0.08    | D      | 0.06    | D      | 0.06    | D      | 0.08    |           | 0.12          | -       | -                    | -   | -       | -    | -       | 0.06 | 0.12 | 0.08     | 0.02    | Type III                                |          |
| CH 18 | Vertical    | W                                       | 0.09    | W                                                                                       | 0.10    | W      | 0.11    | W      | 0.11    | W      | 0.09    | -         | -             | -       | -                    | -   | -       | -    | -       | 0.09 | 0.11 | 0.10     | 0.01    | Type III                                |          |
| CH 21 | Horizontal  | D                                       | 0.08    | D                                                                                       | 0.07    | D      | 0.06    | D      | 0.08    | D      | 0.08    | -         | -             | -       | -                    | -   | -       | -    | -       | 0.06 | 0.08 | 0.07     | 0.01    | Type III                                |          |
| CH 22 | Horizontal  | W                                       | 0.16    | W                                                                                       | 0.15    | W      | 0.15    | W      | 0.15    | W      | 0.13    | -         | 0.15          | -       | -                    | -   | -       | -    | -       | 0.13 | 0.16 | 0.15     | 0.01    | Type III                                |          |
| CH 27 | Vertical    | w                                       | 0.14    | W                                                                                       | 0.11    | W      | 0.11    | w      | 0.04    | W      | 0.09    | -         | -             | -       | -                    | -   | -       | -    | -       | 0.04 | 0.14 | 0.10     | 0.03    | Type III                                |          |
| CH 31 | Vertical    | D                                       | 0.22    | D                                                                                       | 0.09    | D      | 0.13    | D      | 0.08    | D      | 0.13    | -         | -             | -       | -                    | -   | -       | -    | -       | 0.08 | 0.22 | 0.13     | 0.05    | Type III                                |          |
|       |             |                                         |         |                                                                                         |         |        | -       |        |         |        | -       |           |               |         |                      | 1   |         |      | Min     | 0.0  | 0.1  | 0.1      |         | , , , , , , , , , , , , , , , , , , ,   |          |
|       |             | +                                       |         |                                                                                         |         | +      |         | +      |         |        |         | +         |               |         |                      | ΔII | Samples |      | Мах     | 0.1  | 0.2  | 0.1      |         | Type III                                |          |
|       |             |                                         |         |                                                                                         |         |        |         |        |         |        |         |           |               |         |                      |     | Campies |      | Ava     | 0.1  | 0.1  | 0.1      |         | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          |
|       |             |                                         |         |                                                                                         |         |        |         |        |         |        |         |           |               |         |                      |     |         |      |         | 0.1  | 0.1  | 0.1      |         |                                         |          |
|       | Core        | C Block 1 C Block 2 C Block 3 C         |         |                                                                                         |         |        |         |        |         |        |         | Bu        | lk Specific ( | iravity | (ka/m <sup>3</sup> ) |     |         |      |         |      |      |          |         |                                         |          |
| ID    | Orientation | С                                       | Block 1 | С                                                                                       | Block 2 | С      | Block 3 | С      | Block 4 | С      | Block 5 | C         | Block 6       |         | Block 7              | С   | Block 8 | С    | Block 9 | Min  | Мах  | Ava      | Std Dev | Classification                          | Comments |
| CH 8  | Horizontal  | W                                       | 2730    | Ŵ                                                                                       | 2750    | W      | 2740    | W      | 2730    | W      | 2730    | W         | 2740          | -       | -                    | -   | -       | -    | -       | 2730 | 2750 | 2737     | 7       | Type III                                |          |
| CH 9  | Horizontal  | W                                       | 2370    | 2370                                                                                    | 2730    | W      | 2710    | W      | 2720    | -      | 2730    | -         | 2720          | -       | -                    | -   | -       | 2370 | 2730    | 2621 | 159  | Type III |         |                                         |          |
| CH 11 | Horizontal  | W                                       | 2740    | 2370     W     2370     W     2730     W       2740     W     2710     W     2740     W |         |        |         |        |         | W      | 2720    | -         | -             | -       | -                    | -   | -       | -    | -       | 2710 | 2740 | 2728     | 12      | Type III                                |          |
| CH 12 | Horizontal  | D                                       | 2720    | D                                                                                       | 2720    | -      | 2710    | D      | 2730    | -      | 2710    | D         | 2720          | W       | 2720                 | -   | -       | -    | -       | 2710 | 2730 | 2719     | 6       | Type III                                |          |
| CH 14 | Horizontal  | -                                       | -       | -                                                                                       | -       | W      | 2720    | W      | 2720    | W      | 2730    | W         | 2860          | W       | 2720                 | -   | -       | -    | -       | 2720 | 2860 | 2750     | 55      | Type III                                |          |
| CH 17 | Vertical    | D                                       | 2740    | D                                                                                       | 2720    | D      | 2710    | D      | 2720    | D      | 2710    |           | 2710          | -       | -                    | -   | -       | -    | -       | 2710 | 2740 | 2718     | 11      | Type III                                |          |
| CH 18 | Vertical    | W                                       | 2720    | W                                                                                       | 2720    | W      | 2720    | W      | 2730    | W      | 2740    | -         | -             | -       | -                    | -   | -       | -    | -       | 2720 | 2740 | 2726     | 8       | I ype III                               |          |
|       | Horizontal  | D<br>W                                  | 2720    | W                                                                                       | 2720    | D<br>W | 2720    | D<br>W | 2720    | D<br>W | 2720    | -         | - 2740        | -       |                      | -   | -       | -    |         | 2720 | 2720 | 2728     | 0       | Type III                                |          |
| CH 27 | Vertical    | W                                       | 2730    | W                                                                                       | 2750    | W      | 2770    | W      | 2730    | W      | 2720    | -         | -             | -       | -                    | -   | -       | -    | -       | 2720 | 2740 | 2720     | 18      | Type III                                |          |
| CH 31 | Vertical    | D                                       | 2710    | D                                                                                       | 2730    | D      | 2720    | D      | 2720    | D      | 2740    | -         | -             | -       | -                    | -   | -       | -    | -       | 2710 | 2740 | 2724     | 10      | Type III                                |          |
|       |             |                                         |         |                                                                                         |         |        |         |        |         |        |         |           |               |         |                      |     |         |      | Min     | 2370 | 2720 | 2621     |         | 51                                      |          |
|       |             |                                         |         |                                                                                         |         |        |         |        |         |        |         |           |               |         |                      | All | Samples |      | Max     | 2730 | 2860 | 2750     |         | Type III                                |          |
|       |             |                                         |         |                                                                                         |         |        |         |        |         |        |         |           |               |         |                      |     | 1       |      | Avg     | 2685 | 2751 | 2719     |         |                                         |          |
|       | Note:       | Note: C Test Condition (W=Wet, D = Dry) |         |                                                                                         |         |        |         |        |         | +      |         | + +       |               | +       |                      |     |         | +    |         |      |      | -        |         |                                         |          |
|       |             |                                         |         |                                                                                         |         |        |         |        |         |        |         | +         |               | +       |                      |     |         | +    |         |      |      |          |         |                                         |          |
|       |             |                                         |         |                                                                                         |         |        |         |        |         |        |         | +         |               |         |                      |     |         |      |         |      |      | 1        |         |                                         |          |
|       |             |                                         |         |                                                                                         |         |        |         |        |         |        | l       | 44        |               | -11     |                      |     |         |      |         |      |      |          |         |                                         |          |
|       |             |                                         |         |                                                                                         |         |        |         |        |         |        |         |           |               |         |                      |     |         |      |         |      |      |          |         |                                         |          |
|       |             |                                         |         |                                                                                         |         |        |         |        |         |        |         |           |               |         |                      |     |         |      |         |      |      |          |         |                                         |          |
|       |             |                                         |         |                                                                                         |         |        |         |        |         |        |         |           |               |         |                      |     |         |      |         |      |      |          |         |                                         |          |
|       |             |                                         |         |                                                                                         |         |        |         |        |         | +      |         | +         |               |         |                      |     |         | +    |         |      |      |          |         |                                         |          |
|       |             |                                         |         |                                                                                         |         |        |         |        |         |        |         | +         |               |         |                      |     |         | +    |         |      |      |          |         |                                         |          |
|       |             |                                         |         |                                                                                         |         |        |         |        |         |        |         | +         |               |         |                      |     |         |      |         |      |      |          |         |                                         |          |
|       |             | +                                       |         |                                                                                         |         |        |         | +      |         |        |         | $\dagger$ |               |         |                      |     |         |      |         |      |      |          |         |                                         |          |
|       |             |                                         |         |                                                                                         |         |        |         |        |         |        |         |           |               |         |                      |     |         |      |         |      |      |          |         |                                         |          |

WSP Project: 171-02359-00

## Kingston Mills Lockstation Rehabilitation of Locks 46 to 49 Results of Laboratory Testing

|       |             |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |         |          |          |                  |     |             |       |           |      |              |             |        |          |       | _    |      |     |           |          |     |     |         |                |          |
|-------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|----------|----------|------------------|-----|-------------|-------|-----------|------|--------------|-------------|--------|----------|-------|------|------|-----|-----------|----------|-----|-----|---------|----------------|----------|
|       |             |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |         |          |          |                  |     |             |       |           |      |              |             |        |          |       |      |      |     |           |          |     |     |         |                |          |
| ID    | Core        |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |         |          | -        | 1                |     |             |       | -         | C    | omp          | ressive S   | rength | (MPa)    | -     | 1    |      |     |           |          |     |     |         |                | Comments |
|       | Orientation | С                                                                                                                                                      | T Bloc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :k 1  | СТ      | Block 2  | СТ       | Block 3          | С   | T Block 4   | СТ    | Block 5   | С    | Τ            | Block 6     | СТ     | Block 7  | СТ    | Bloo | ck 8 | С   | T Block 9 | Min      | Max | Avg | Std Dev | Classification |          |
| CH 8  | Horizontal  | W                                                                                                                                                      | ** 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6     | W **    | 123      | W **     | 112              | W   | ** 121      | W *   | * 99      | -    | -            | -           |        | -        |       | -    | -    | -   |           | 99       | 146 | 120 | 15      | Type III       |          |
| CH 9  | Horizontal  | W                                                                                                                                                      | ** 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8     | W **    | 157      | W **     | 136              | W   | ** 180      | W *   | * 137     | -    | -            | -           |        | -        |       | -    | -    | -   |           | 118      | 180 | 146 | 21      | Type III       |          |
| CH 11 | Horizontal  | W                                                                                                                                                      | ** 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7     | W **    | 19       | W *      | 42               | W   | ** 88       | W *   | 66        | -    | -            | -           |        | -        |       | -    | -    | -   |           | 19       | 97  | 62  | 29      | Type III       |          |
| CH 12 | Horizontal  | D                                                                                                                                                      | ** 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3     | D **    | 192      |          | -                | D   | ** 167      |       | -         | D    | **           | 114         | W **   | 189      |       | -    | -    | -   |           | 113      | 192 | 155 | 35      | Type III       |          |
| CH 14 | Horizontal  | -                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |         | -        | W **     | 7                | W   | ** 135      | W *   | 228       | W    | **           | 213         | W *    | 216      |       | -    | -    | -   |           | 7        | 228 | 160 | 83      | Type III       |          |
| CH 17 | Vertical    | D                                                                                                                                                      | * 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3     | D **    | 149      | D **     | 140              | D   | ** 75       | D *   | 149       | -    | -            | -           |        | -        |       |      | -    | -   |           | 38       | 149 | 110 | 45      | Type III       |          |
| CH 18 | Vertical    | W                                                                                                                                                      | ** 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .4    | W **    | 166      | W *      | 135              | W   | * 115       | W *   | 45        | -    | -            | -           |        | -        |       |      | -    | -   |           | 45       | 166 | 121 | 41      | Type III       |          |
| CH 21 | Horizontal  | D                                                                                                                                                      | ** 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4     | D **    | 136      | D **     | 121              | D   | ** 103      | D *   | 18        | -    | -            | -           |        | -        |       |      | -    | -   |           | 18       | 154 | 106 | 47      | Type III       |          |
| CH 22 | Horizontal  | W                                                                                                                                                      | ** 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 135   | 128     | ** 92    | W *      | <sup>•</sup> 110 | -   | -           | -     |           | -    |              |             | -      | -        |       | 92   | 155  | 124 | 22        | Type III |     |     |         |                |          |
| CH 27 | Vertical    | W                                                                                                                                                      | ** 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3     | W *     | 31       | W *      | 47               | W   | * 35        | W *   | * 90      | -    | -            | -           |        | -        |       | -    | -    | -   |           | 31       | 98  | 60  | 28      | Type III       |          |
| CH 31 | Vertical    | D                                                                                                                                                      | ** 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3     | D **    | 95       | D *      | 9                | D   | * 51        | D *   | 42        | -    | -            | -           |        | -        |       | -    | -    | -   |           | 9        | 133 | 66  | 43      | Type III       |          |
|       |             |                                                                                                                                                        | D ** 133 D ** 95 D * 9 D * 51 D * 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |         |          |          |                  |     |             |       |           |      |              |             |        |          |       | Min  | 7    | 97  | 60        |          |     |     |         |                |          |
|       |             |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |         |          |          |                  |     |             |       |           |      |              |             |        |          | All S | ampl | es   |     | Max       | 118      | 228 | 160 |         | Type III       |          |
|       |             |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |         |          |          |                  |     |             |       |           |      |              |             |        |          | _     |      |      |     | Avg       | 54       | 154 | 112 |         |                |          |
|       | Note:       | С                                                                                                                                                      | C     Test Condition (W=Wet, D = Dry)     Avg     54     154     112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |         |          |          |                  |     |             |       |           |      |              |             |        |          |       |      |      |     |           |          |     |     |         |                |          |
|       |             | C Test Condition (W=Wet, D = Dry)   T Test Orientation                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |         |          |          |                  |     |             |       |           |      |              |             |        |          |       |      |      |     |           |          |     |     |         |                |          |
|       |             | T Test Orientation   Image: Sample Tested Parallel to Core Axis     * Sample Tested Parallel to Core Axis   Image: Sample Tested Parallel to Core Axis |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |         |          |          |                  |     |             |       |           |      |              |             |        |          |       |      |      |     |           |          |     |     |         |                |          |
|       |             | **                                                                                                                                                     | Sample Tested Parallel to Core Axis   Image: Core |       |         |          |          |                  |     |             |       |           |      |              |             |        |          |       |      |      |     |           |          |     |     |         |                |          |
|       |             |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C170  | 0 / C17 | 0M-17    | includ   | as tostin        | n n | arallel and | nerne | ndicular  | n t  | hei          | rift of the | ston   | -<br>The |       |      |      |     |           |          |     |     |         |                |          |
|       |             | $\left  \right $                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ld n  | ot ho i | dontifio | d in th  | o condoi         | y p |             | Tooti | na was 4  |      | ne i<br>sfor |             | otod h | oth      |       |      |      |     |           |          |     |     |         |                |          |
|       |             | $\left  \right $                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | iu ne |         |          |          | e sanus          |     | sampies.    | 162[] | ny was ti | iere |              | e compi     | eleu D |          |       |      |      |     |           |          |     |     |         |                |          |
|       |             |                                                                                                                                                        | paralle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | anc   | a perpe | endicula | ar to th | <u>ne core a</u> | XIS |             |       |           |      |              |             |        |          |       |      |      |     | I         |          |     |     |         |                |          |



# **C-2** BOREHOLE AND TEST PIT INVESTIGATION



Project: Kingston Mills Lockstation Rehabilitation

Client: Parks Canada

Project Location: Kingston Mills, Ontario

#### DRILLING DATA Rig Type:Portable

Project No.: 171-012359-00

Method: Solid Stem Auger

Date Started: 10/4/2017 Supervisor: D.R.

| Datum            | n: Geodetic                                                                   |              |      |         |            |           |                | Boreł            | ole Di          | amete          | r: 150 | mm                  |     |                |        | S      | upervi | sor: I         | D.R         |        |               |
|------------------|-------------------------------------------------------------------------------|--------------|------|---------|------------|-----------|----------------|------------------|-----------------|----------------|--------|---------------------|-----|----------------|--------|--------|--------|----------------|-------------|--------|---------------|
| BH Lo            | cation: N 4905453 E 384954                                                    |              | •    |         |            | i         |                | Core             | Diame           | ter:           |        |                     |     | 1              |        | R      | eviewe | er: C          | Н.          |        |               |
|                  | SOIL PROFILE                                                                  |              | s    | AMPL    | .ES        | ~         |                | DYNA<br>RESIS    | MIC CO<br>TANCE | NE PEN<br>PLOT |        | TION                |     | DIAST          |        | URAL   |        |                | F           | REMA   | RKS           |
| (m)              |                                                                               | L L          |      |         |            | ATER      |                | 2                | 0 4             | 0 6            | 0 8    | 30 1                | 00  | LIMIT          | C MOIS | TURE   | LIQUID | a) EN.         | NIT (       | ANI    | )             |
| ELEV             | DECODIDION                                                                    | PLO          | ~    |         | SM E       | AW C      | No             | SHEA             | R STI           | RENG           | TH (kl | Pa)                 |     | W <sub>P</sub> | \      | N<br>> | WL     | KP. (KP.       | RAL U       | GRAIN  | SIZE<br>JTION |
| DEPTH            | DESCRIPTION                                                                   | ATA          | 1BEF | ш       | BLO<br>0.3 |           | VATI           |                  |                 |                | +      | FIELD V<br>& Sensit | ANE | WA             | FER CC |        | F (%)  | 00<br>00<br>00 | IATUF<br>(† | (%)    | )             |
| 90.5             |                                                                               | STR          | NUN  | ТҮР     | ż          | GRO       |                |                  | 5 5             | 0 7            | 5 1    | 00 1                | 25  | 2              | 5 5    | 0 7    | 75     |                | 2           | GR SA  | SI CL         |
| - 90.0           | TOPSOIL (70 mm)                                                               | XX           |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
| F                | SILT with clay, some sand, trace                                              | $\bigotimes$ | 1    | SS      | 10         |           | Backf          | l<br>ill         |                 |                |        |                     |     | 0              |        |        |        |                |             |        |               |
| F                | dense (FILL)                                                                  | $\bigotimes$ |      |         |            |           | 90-            | l –              |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
| -                |                                                                               | $\bigotimes$ |      |         |            | loi lo    | Ā              |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
| E_               |                                                                               | $\boxtimes$  |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
| E                |                                                                               | $\bigotimes$ | 2    | SS      | 10         |           | -Bento         | <b>l</b><br>nite |                 |                |        |                     |     |                | 0      |        |        |                |             |        |               |
| E I              |                                                                               | $\boxtimes$  |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  |                                                                               | $\bigotimes$ |      |         |            |           | 89-            |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  |                                                                               | $\bigotimes$ | 3    | 22      | 5          |           | Sand           |                  |                 |                |        |                     |     |                | 0      |        |        |                |             |        |               |
| <u> </u>         |                                                                               | $\boxtimes$  | 5    | 00      |            | ਾ⊒ਾ       | - 1            |                  |                 |                |        |                     |     |                | 0      |        |        |                |             |        |               |
| <b> </b>         |                                                                               | $\bigotimes$ | -    |         |            | 日日        | W.L.<br>Oct 12 | 88.5 m<br>2017   | 1               |                |        |                     |     |                |        |        |        |                |             |        |               |
| E                |                                                                               | $\mathbb{X}$ |      |         |            | E         |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
| F                |                                                                               | $\bigotimes$ | 4    | SS      | 6          |           | 88-            |                  |                 |                |        |                     |     |                | 0      |        |        |                |             | 9 14 3 | 56 21         |
| F                |                                                                               | $\bigotimes$ |      |         |            | 日日        | Scree          | n<br>I           |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
| -87.5            |                                                                               | $\bigotimes$ |      |         | 100        |           | . –            |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
| E <sup>3.1</sup> | SILTY SAND trace gravel and clay,<br>some organics, grev, wet, dense          | $\bigotimes$ | 5    | SS      | over       |           |                |                  |                 |                |        |                     |     | 0              |        |        |        |                |             |        |               |
| - 87.0           | (FILL)                                                                        | $\bigotimes$ |      | 0.0.0.0 | 25         | . • 🗖 • • | Ponto          | nito             |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
| 3.6              | bedding                                                                       |              |      | CORE    |            |           | Dento          |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  | TCB 100%                                                                      |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  |                                                                               |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  | SCR - 100%                                                                    |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  | RQD - 80%<br>END OF BOREHOLE                                                  |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  | Notes:                                                                        |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  | 1) Borehole terminated at 3.6 m                                               |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  | below the existing surface elevation<br>2) 50 mm monitoring well installed at |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  | 3.45 m below the existing ground                                              |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  | surface.<br>3) Date Groundwater Depth                                         |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  | 10/4/2017 2.59 m                                                              |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  | 10/12/2017 5.58 m<br>10/12/2017 2.17 m                                        |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  | 11/30/2017 2.01 m                                                             |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  |                                                                               |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  |                                                                               |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  |                                                                               |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  |                                                                               |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  |                                                                               |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  |                                                                               |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  |                                                                               |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  |                                                                               |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  |                                                                               |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  |                                                                               |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  |                                                                               |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  |                                                                               |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  |                                                                               |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  |                                                                               |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  |                                                                               |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |
|                  |                                                                               |              |      |         |            |           |                |                  |                 |                |        |                     |     |                |        |        |        |                |             |        |               |

 $\bigcirc$   ${}^{\pmb{8}=3\%}$  Strain at Failure



Project: Kingston Mills Lockstation Rehabilitation

Client: Parks Canada

Project Location: Kingston Mills, Ontario

Datum: Geodetic

#### DRILLING DATA

Rig Type:CME 55

Method: Solid Stem Auger

Borehole Diameter: 150 mm

Project No.: 171-012359-00

Date Started: 10/6/2017 Supervisor: D.R

Reviewer: C.H.

BH Location: N 4905454 E 384975

| BH Lo  | ocation: N 4905454 E 384975            |              |             |       |      | -             | -       | Core          | Diame                                     | ter:           |            |                     |           |                |             | R      | eviewe  | er: C.    | .H.        |       |       |
|--------|----------------------------------------|--------------|-------------|-------|------|---------------|---------|---------------|-------------------------------------------|----------------|------------|---------------------|-----------|----------------|-------------|--------|---------|-----------|------------|-------|-------|
|        | SOIL PROFILE                           |              | S           | SAMPL | ES   | ~             |         | DYNA<br>RESIS | MIC CO                                    | NE PEN<br>PLOT |            | TION                |           |                | NAT         | URAL   |         |           | F          | REMA  | RKS   |
| (m)    |                                        | F            |             |       |      | TER           |         | 2             | 20 4                                      | 0 6            | 0 8        | 0 1                 | 00        | LIMIT          | MOIS<br>CON | TURE   | LIMIT   | , EN      | NIT (      | AN    | ID    |
| FLEV   |                                        | PLO          |             |       | S    | 4W 0          | Z       | SHEA          | AR STI                                    | RENG           | TH (kF     | Pa)                 | 1         | W <sub>P</sub> | \           | N<br>7 | WL      | KP<br>(KP | AL UI      | GRAIN |       |
| DEPTH  | DESCRIPTION                            | ATA          | BEF         |       | 0.3  | UNI<br>DITIO  | ITA/    | O UI          | NCONF                                     | INED           | +          | FIELD V<br>& Sensit | ANE       | \w/A           |             |        | τ (0/.) | 00<br>00  | ATUR<br>(H | (%    | b)    |
| 00 5   |                                        | STR/         | N<br>N<br>N | LγPi  | ż    | ONO<br>CON    | ELE     |               | UICK 11<br>25 5                           | RIAXIAL<br>0 7 | . ×<br>510 | LAB V/<br>00 1      | ANE<br>25 | 2              | 5 5         | 50 7   | 75      |           | Ż          | GP SA | SI (1 |
| 90.5   | -TOPSOIL (90 mm)                       | 11/1         | -           |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            | ON OA |       |
|        | SILTY SAND trace gravel and clay,      | $\bigotimes$ | 1           | SS    | 9    |               |         |               |                                           |                |            |                     |           | 0              |             |        |         |           |            |       |       |
|        | brown, moist, soft to stiff (FILL)     | $\bigotimes$ | '           |       |      |               | -Bento  | I<br>nite     |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        |                                        | $\bigotimes$ | }—          |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        |                                        | $\bigotimes$ |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        |                                        | $\bigotimes$ | 2           | SS    | 3    |               | Sand    |               |                                           |                |            |                     |           | 0              |             |        |         |           |            |       |       |
|        |                                        | $\bigotimes$ |             |       |      |               | •       |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        |                                        | $\bigotimes$ |             |       |      |               | 89-     |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        |                                        | $\bigotimes$ |             |       |      | l E           |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        |                                        | $\bigotimes$ | 3           | SS    | 4    |               | Scree   | n             |                                           |                |            |                     |           | 0              |             |        |         |           |            | 9 47  | 37 7  |
|        |                                        | $\bigotimes$ |             |       |      | l∶ <b>∏</b> ∙ | :  -    |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
| 88 1   |                                        | $\bigotimes$ |             |       | 100  |               | W. L. 8 | 38.3 m        | 1                                         |                |            |                     |           |                |             |        |         |           |            |       |       |
| - 2.4  | GRANITE slightly weathered to          | Ŵ            | 4           | 55    | over |               | Oct 12  | ., 2017       |                                           |                |            |                     |           | 0              |             |        |         |           |            |       |       |
|        | fresh, thin to medium bedding, close   | $\bigotimes$ |             |       | 25   |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        | Jointing                               | K            | 1           |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        | TCR - 100%                             | $\gg$        | 1           | CODE  |      |               |         | 1             |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        | TGR - 100 //                           | $\mathbb{K}$ |             | CORE  | 1    |               | -Bento  | nite<br>I     |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        | SCR - 42%                              | $\bigcirc$   |             |       |      |               | 87-     |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        | RQD - 27%                              | K            |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
| - 86.5 | Concrete/Masonry observed              | $\mathbb{Z}$ |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
| 4.0    | END OF BOREHOLE                        |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        | Notes:                                 |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        | 1) Rorehole terminated at 3.06 m       |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        | below the existing surface elevation   |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        | 2) 50 mm monitoring well installed at  |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        | surface.                               |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        | 3) Date Groundwater Depth              |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        | 10/6/2017 2.77 m                       |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        | 10/12/2017 2.17 m<br>11/30/2017 2.31 m |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        | 1.00.2011 2.0111                       |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        |                                        |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        |                                        |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        |                                        |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
| à      |                                        |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
| Ť      |                                        |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        |                                        |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        |                                        |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
| 2      |                                        |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
| o<br>o |                                        |              |             |       |      |               | 1       |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        |                                        |              |             |       |      |               | 1       |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
| 5      |                                        |              |             |       |      |               | 1       |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
| 8      |                                        |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        |                                        |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        |                                        |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        |                                        |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        |                                        |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        |                                        |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
|        |                                        |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
| 5      |                                        |              |             |       |      |               |         |               |                                           |                |            |                     |           |                |             |        |         |           |            |       |       |
| - I    |                                        | i i          | 1           | 1     | 1    | 1             | 1       | 1             | L. C. |                |            | 1                   | 1         | 1              |             | 1      | 1       | 1         |            |       |       |



Project: Kingston Mills Lockstation Rehabilitation

Client: Parks Canada

Project Location: Kingston Mills, Ontario

Datum: Geodetic

BH Location: N 4905334 E 384932

#### DRILLING DATA

Rig Type:CME 55

Method: Solid Stem Auger

Borehole Diameter: 150 mm

Project No.: 171-012359-00

Date Started: 10/4/2017 Supervisor: D.R

Reviewer: C.H.

| _    | BH Lo | ocation: N 4905334 E 384932                 |              |          |        |            |      | _        | Core          | Diame   | ter:           |              |                     |              |                |                | R    | eviewe    | er: C.   | Н.         |                |       |
|------|-------|---------------------------------------------|--------------|----------|--------|------------|------|----------|---------------|---------|----------------|--------------|---------------------|--------------|----------------|----------------|------|-----------|----------|------------|----------------|-------|
|      |       | SOIL PROFILE                                |              | s        | SAMPL  | ES         |      |          | DYNA<br>RESIS | MIC CO  | NE PEI<br>PLOT |              | TION                |              | DI AOT         | NAT            | URAL |           |          | F          | REMA           | RKS   |
|      | (m)   |                                             | -            |          |        |            | TER  |          | 2             | 20 4    | 0 6            | 8 0          | 80 1                | 00           | LIMIT          | IC MOIS<br>CON | TURE | LIQUID    | Ľ,       | NIT W      | AN             | D     |
|      |       |                                             | PLO          |          |        | ы          | AW V | z        | SHE           | AR STI  | I<br>RENG      | i<br>TH (kf  | Pa)                 | 1            | W <sub>P</sub> | 1              | N    | WL        | (kPa     | AL UN      | GRAIN          | SIZE  |
| Ē    | EPTH  | DESCRIPTION                                 | ATA          | BER      |        | BLO<br>0.3 | IND  | E AT     | οU            | NCONF   | INED           | ÷            | FIÉLD V<br>& Sensit | ANE<br>ivity | 10/0           |                |      |           | PO<br>DD | ATUR<br>(K | 013 TKIB<br>(% | )     |
|      | 00.4  |                                             | STR/         | ΝΩ       | ΥPE    | z          | SR0  | LE/      | • Q           | UICK TF | RIAXIAL        | . X<br>15 11 | LAB V/<br>00 1      | ANE<br>25    |                | 1ER UU         | 50 7 | (%)<br>'5 |          | ž          |                |       |
| E    | 86.1  | TOPSOIL (80 mm)                             | 51/2-        | 2        | -      | :          |      | ш<br>96- | -             |         |                |              |                     |              | -              |                | 1    | Ē         |          |            | GR SA          | SI CL |
| E    | 0:1   | SILT with sand, trace clay and              | $\bigotimes$ | 1        | 88     | 5          |      | 00       |               |         |                |              |                     |              |                | 0              |      |           |          |            |                |       |
| E    |       | gravel, brown, moist, loose to              | $\bigotimes$ | 1        | 00     | 5          |      | -Bento   | nite          |         |                |              |                     |              |                | Ū              |      |           |          |            |                |       |
| E    |       | compact (TIEE)                              | $\bigotimes$ |          |        |            |      | Dento    |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| E    |       |                                             | $\bigotimes$ |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| E    | -     |                                             | $\bigotimes$ | 2        | SS     | 4          |      | . 85-    |               |         |                |              |                     |              |                | 0              |      |           |          |            |                |       |
| F    |       |                                             | $\bigotimes$ |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| F    |       |                                             | $\bigotimes$ |          |        |            | ŀ ⊟: |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| F    |       | occasional cobbles                          | $\bigotimes$ | 3        | SS     | 100        |      | Scree    | n             |         |                |              |                     |              |                | 0              |      |           |          |            | 6 24           | 60 9  |
| F    |       |                                             | $\bigotimes$ |          |        | 50         |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| Þ    | -     |                                             | $\boxtimes$  |          |        | \mm/       |      | W. L. 8  | 34.1 m        | <br>    |                |              |                     |              |                |                |      |           |          |            |                |       |
| F    | 83.8  | GPANITE Fresh Moderately close              | $\bigotimes$ |          | 1 22 / | 100        | ŀΗ   | . Oct 12 | , 2017<br>I   |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| F    | 2.5   | jointing, Medium to thin bedding            | $\bigotimes$ | <u> </u> | _ 33 / | over       |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| F    |       |                                             | K//          |          |        | 0          |      | -        |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| F    |       | TCR - 100%                                  | $\bigotimes$ | 1        | CORE   |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| F    | _     | SCR - 89%                                   | K            |          |        |            |      | -Bento   | nite—         |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| F    |       |                                             | $\bigotimes$ |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| E    |       | RQD - 94%<br>GRANITE Fresh Moderately close | K            | 2        | CORE   |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| E    | 02.2  | jointing, Medium to thin bedding            | $\gg$        | -        |        |            |      | _        |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| ┢    | 3.9   |                                             |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
|      |       | TCR - 100%                                  |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
|      |       | \$CR - 92%                                  |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
|      |       | POD 75%                                     |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
|      |       | END OF BOREHOLE                             |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
|      |       | Notes <sup>.</sup>                          |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
|      |       |                                             |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
|      |       | below the existing surface elevation        |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
|      |       | 2) 50 mm monitoring well installed at       |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
|      |       | surface.                                    |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
|      |       | 3) Date Groundwater Depth                   |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
|      |       | 10/5/2017 3.08 m                            |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
|      |       | 10/12/2017 1.98 m<br>11/30/2017 1.98 m      |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| 6/18 |       |                                             |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| 4/2  |       |                                             |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| GDT  |       |                                             |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| PL.( |       |                                             |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| 5    |       |                                             |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| S.G  |       |                                             |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| MILL |       |                                             |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| NO   |       |                                             |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| GST  |       |                                             |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| КN   |       |                                             |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| MA   |       |                                             |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| ATT  |       |                                             |              |          |        |            |      | 1        |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| 0    |       |                                             |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| ĽŎ   |       |                                             |              |          |        |            |      | 1        |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| SOIL |       |                                             |              |          |        |            |      |          |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |
| NSP  |       |                                             |              |          |        |            |      | 1        |               |         |                |              |                     |              |                |                |      |           |          |            |                |       |

Shallow/ Single Installation  $\underline{\nabla}$   $\underline{\nabla}$  Deep/Dual Installation  $\underline{\nabla}$   $\underline{\nabla}$ 



Project: Kingston Mills Lockstation Rehabilitation

Client: Parks Canada

Project Location: Kingston Mills, Ontario

Rig Type:Hand Dug

Project No.: 171-012359-00

Date Started: 10/6/2017 Supervisor: D.R

Datum: Geodetic

#### DRILLING DATA

Method: Solid Stem Auger

Borehole Diameter: 150 mm

Reviewer: C.H.

BH Location: N 4905285 E 384907

| BH Location: N 4905285 E 384907                                                                                                                                                                                                                |        |       |                          |              |          | Core I                         | Diame                             | ter:                                  |                            |                                                 |                          |   | R | eviewe                         | er: C.                    | Н.                                     |                                         |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|--------------------------|--------------|----------|--------------------------------|-----------------------------------|---------------------------------------|----------------------------|-------------------------------------------------|--------------------------|---|---|--------------------------------|---------------------------|----------------------------------------|-----------------------------------------|---|
| SOIL PROFILE                                                                                                                                                                                                                                   |        | SAMPL | ES                       |              |          | DYNAI<br>RESIS                 | MIC CO<br>TANCE                   | NE PEN<br>PLOT                        |                            | TION                                            |                          |   |   |                                |                           | F                                      | REMARKS                                 | ٦ |
| (m)<br>ELEV<br>DEPTH DESCRIPTION                                                                                                                                                                                                               | JUMBER | ΥPE   | N" <u>BLOWS</u><br>0.3 m | SROUND WATER | ELVATION | 2<br>SHEA<br>0 UN<br>• QU<br>2 | 0 4<br>AR STI<br>NCONF<br>JICK TF | 0 6<br>RENG<br>INED<br>RIAXIAL<br>0 7 | 0 8<br>TH (kF<br>+<br>5 1/ | Pa)<br>FIELD V/<br>& Sensiti<br>LAB V/<br>00 11 | ANE<br>vity<br>ANE<br>25 |   |   | LIQUID<br>LIMIT<br>WL<br>T (%) | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT W<br>(KN/m <sup>3</sup> ) | AND<br>GRAIN SIZE<br>DISTRIBUTIC<br>(%) |   |
| 82.6 0<br>- 80 A SILTY SAND AND GRAVEL some XX                                                                                                                                                                                                 |        |       |                          | 00           | ш        | -                              |                                   |                                       |                            |                                                 |                          |   |   | 1                              |                           |                                        | GR SA SI                                |   |
| 0.0   02.0   Organics, brown, moist, loose (160     0.2   organics, brown, moist, loose (160     hym) (FILL)   END OF TEST PIT     Notes:   1) Hand dug test pit terminated at 160 mm below the existing surface elevation on inferred boulder |        | GRAB  |                          |              |          |                                |                                   |                                       |                            |                                                 |                          | 0 |   |                                |                           |                                        |                                         |   |



Project: Kingston Mills Lockstation Rehabilitation

Client: Parks Canada

Project Location: Kingston Mills, Ontario

DRILLING DATA Rig Type:Hand Dug

Project No.: 171-012359-00

Date Started: 10/6/2017

Method: Solid Stem Auger

Borehole Diameter: 150 mm

Supervisor: D.R

Datum: Geodetic

| BH Lo | ocation: N 4905251 E 384887        |     |     |       |          |          |      | Core I         | Diame           | ter:           |      |                       |     |                 |        | R     | eviewe          | er: C | .H.    |            |    |
|-------|------------------------------------|-----|-----|-------|----------|----------|------|----------------|-----------------|----------------|------|-----------------------|-----|-----------------|--------|-------|-----------------|-------|--------|------------|----|
|       | SOIL PROFILE                       |     | S   | SAMPL | ES       |          |      | DYNAN<br>RESIS | VIC CO<br>TANCE | NE PEN<br>PLOT |      | TION                  |     |                 | ΝΔΤ    |       |                 |       | _      | REMARKS    | "  |
| (***) |                                    | L   |     |       |          | TER      |      | 2              | 0 4             | 0 6            | 8 0  | 0 1                   | 00  | PLASTI<br>LIMIT |        | TURE  | LIQUID<br>LIMIT | z.    | IIT W  | AND        | •  |
| (m)   |                                    | 5   |     |       | SI ⊨     | WA<br>NS | z    | SHEA           |                 |                |      |                       | ī   | WP              | 001    | N     | $W_{\text{L}}$  | (KPa) | T UN   | GRAIN SIZ  | E  |
| DEPTH | DESCRIPTION                        | TAF | ËR  |       | 0.3      |          | ATIC |                | CONF            | INED           | +    | FIELD V.<br>& Sensiti | ANE |                 |        | 0     |                 | ŠŐ.   | NAUT X | DISTRIBUTI | NC |
|       |                                    | TRA | NME | ΥPE   | ші<br>5, | ROL      | Ъ    | • QI           | JICK TF         |                | . ×  | LAB VA                | ANE | WA              | TER CO | ONTEN | Г (%)           | 1     | ¥      | (70)       |    |
| 78.8  |                                    | s,  | z   | ŕ     | <u> </u> | ΟÕ       | Ξ    | 2              | 5 5             | 0 /            | 5 10 | 00 12                 | 25  | 2               | 5 5    | 50 i  | /5<br>          |       |        | GR SA SI   | CL |
| 0.1   | organics, brown, moist, loose (100 |     |     | GRAÐ  |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       | END OF TEST PIT                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       | Notes:                             |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       | 1) Hand dug test pit terminated at |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       | 100 mm below the existing surface  |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       | elevation on inferred boulder      |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 | 1     |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 | 1     |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 | 1     |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 | 1     |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 | 1     |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 |       |        |            |    |
|       |                                    |     |     |       |          |          |      |                |                 |                |      |                       |     |                 |        |       |                 | 1     |        |            |    |



Project: Kingston Mills Lockstation Rehabilitation

Client: Parks Canada

Project Location: Kingston Mills, Ontario

Datum: Geodetic

#### DRILLING DATA

Rig Type:CME 55

Method: Solid Stem Auger

Borehole Diameter: 150 mm

Project No.: 171-012359-00

Date Started: 10/5/2017 Supervisor: D.R

BH Location: N 4905251 E 384897

| BH Lo      | cation: N 4905251 E 384897                                               |              |          |       |     |        |             |            | Core             | Diame  | eter:           |        |          |                     |                |        | R      | eviewe | er: C    | .Н.           |      |          |    |
|------------|--------------------------------------------------------------------------|--------------|----------|-------|-----|--------|-------------|------------|------------------|--------|-----------------|--------|----------|---------------------|----------------|--------|--------|--------|----------|---------------|------|----------|----|
|            | SOIL PROFILE                                                             |              | s        | SAMPL | ES  | ~      |             |            | DYNA<br>RESI     | MIC CC | NE PEN          |        | TION     |                     |                | _ NAT  | URAL   |        |          | F             | RE   | MARKS    |    |
| (m)        |                                                                          | F            |          |       |     | ATER   | ~           |            |                  | 20 4   | 10 60           | 3 0    | 80 1     | 00                  | LIMIT          | C MOIS | STURE  | LIMIT  | a) EN    | NIT V         |      | AND      | _  |
| ELEV       | DESCRIPTION                                                              | PLO          | ~        |       | 3 m | Ń      | NOI         | NOI        | SHE              | AR ST  | RENG            | ΓH (kl | Pa)      |                     | W <sub>P</sub> |        | w<br>0 | WL     | ч<br>КП  | ZAL U<br>KN/m | DIST | AIN SIZE | NN |
| DEPTH      | DESCRIPTION                                                              | ATA          | ABEF     | ш     | BLO | INN    | IDIT        | VAT        |                  |        | INED<br>RIAXIAI | +      | & Sensit | ANE<br>ivity<br>ANE | WA             | TER CO | ONTEN  | T (%)  | 90<br>00 | ATUF          |      | (%)      |    |
| 78.8       |                                                                          | STR          | ΝΩ       | Ľ     | ż   | GRO    | co          | ELE        | <b>–</b> "       | 25 5   | 50 75           | 5 1    | 00 1     | 25                  | 2              | 5 5    | 50 7   | 75     |          | <b>[</b>      | GR S | A SI (   | CL |
| 78.0       | TOPSOIL (100mm)                                                          | XX           |          |       |     | g      | M           |            |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
| F 0.1      | SAND AND SILT trace gravel and                                           | $\bigotimes$ | 1        | SS    | 13  |        |             | -          | -                |        |                 |        |          |                     | 0              |        |        |        |          |               |      |          |    |
| <b>–</b>   | (wood fragement at 5.79m) (FILL)                                         | $\mathbb{X}$ |          |       |     | 2      | 23          |            |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
| E I        |                                                                          | $\bigotimes$ |          |       |     |        | 22          | 70         |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
| E I        |                                                                          | $\bigotimes$ |          |       |     | Ø      |             | /8-        |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
|            |                                                                          | $\mathbb{X}$ | 2        | SS    | 9   | Ø      | 5           |            |                  |        |                 |        |          |                     | 0              |        |        |        |          |               |      |          |    |
|            |                                                                          | $\bigotimes$ |          |       |     | 6      | Ø           | -          | -                |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
|            |                                                                          | $\bigotimes$ |          |       |     | 6      | Ŕ           |            |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
|            |                                                                          | $\bigotimes$ | 2        | 22    | 7   | Ŕ      | Ŕ           | 77-        |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
| E_         |                                                                          | $\bigotimes$ | Ŭ        |       | '   | B      | ß           |            |                  |        |                 |        |          |                     | '              |        |        |        |          |               |      |          |    |
| <b>F</b>   |                                                                          | $\bigotimes$ |          |       |     |        | Ŕ           | -Backf     | ill              |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
| F          |                                                                          | $\bigotimes$ |          |       |     |        |             | -          | 1                |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
| F          |                                                                          | $\bigotimes$ | 4        | SS    | 9   | R      | R           |            |                  |        |                 |        |          |                     | 0              |        |        |        |          |               | 94   | 4 41     | 6  |
| F          |                                                                          | $\bigotimes$ |          |       |     | Å.     | M           | 76-        |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
| _          |                                                                          | $\bigotimes$ |          |       |     | -X     | M           |            |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
|            |                                                                          | $\bigotimes$ |          |       | _   | A      | M           |            |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
|            |                                                                          | $\bigotimes$ | 5        | SS    | 5   | A      | R           | _          |                  |        |                 |        |          |                     |                | 0      |        |        |          |               |      |          |    |
| 75 0       |                                                                          | $\bigotimes$ |          |       |     | -23    |             |            |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
| - 3.8      | SILT with sand, some clay, trace                                         | ₩            |          |       |     | - 23   | 42          | 75-<br>W I | <br>75.0 r       | <br>1  |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
| <b>F</b>   | gravel, brown, wet, loose to very                                        | $\mathbb{X}$ | 6        | SS    | 3   | Q      | PA<br>A     | Oct 12     | 2, 201           | 7      |                 |        |          |                     |                | 0      |        |        |          |               | 2 2  | 2 58     | 18 |
| F          |                                                                          | $\bigotimes$ |          |       |     | 101    | 10          | -          | 4                |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
| F          |                                                                          | $\bigotimes$ |          |       |     |        |             | -Bento     | <b> </b><br>nite |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
| E I        |                                                                          | $\mathbb{X}$ |          |       |     |        |             | 74         |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
|            |                                                                          | $\bigotimes$ | 7        | SS    | 12  | ٠.     | °•          | 74-        |                  |        |                 |        |          |                     |                | 0      |        |        |          |               |      |          |    |
|            |                                                                          | $\otimes$    |          |       |     | -      | `           | -Sand      |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
|            |                                                                          | $\mathbb{X}$ | -        |       |     | - :  E | <b>=</b> :: | -          | -                |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
|            |                                                                          | $\bigotimes$ | 8        | 22    | 21  | E      |             |            |                  |        |                 |        |          |                     |                | 0      |        |        |          |               |      |          |    |
| F          |                                                                          | $\otimes$    | Ŭ        | 00    | 21  | E      |             | 73-        |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
| 72.7       |                                                                          | $\mathbb{X}$ | $\vdash$ |       |     | ┨┊╞    | =           | -Scree     | 'n               |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
| _ 6.1      | SILTY SAND trace gravel and clay,                                        | 14/          |          |       |     | ⁻ :∶E  | <u> </u>    |            |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
| F          | grey wet, loose to dense                                                 |              | 9        | SS    | 10  |        |             | -          | 1                |        |                 |        |          |                     | ⊢              | -10    |        |        |          |               |      |          |    |
| <u>∞</u> E |                                                                          |              |          |       |     |        | =           |            |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
| 14/20      |                                                                          |              |          |       |     |        |             | 72-        |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
|            |                                                                          |              |          |       |     |        |             |            |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
|            |                                                                          |              |          |       |     |        |             | _          |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
|            |                                                                          |              |          |       |     |        |             | -Bento     | nite             |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
|            |                                                                          |              |          |       |     |        |             |            |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
|            |                                                                          |              | 10       | SS    | 4   |        |             | 71-        |                  |        |                 |        |          |                     |                | 0      |        |        |          |               |      |          |    |
| ≥<br>≤70.6 |                                                                          |              |          |       |     |        |             |            |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
| 8.2        | END OF BOREHOLE                                                          |              |          |       |     |        |             |            |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
| Ž          | Notes:                                                                   |              |          |       |     |        |             |            |                  |        |                 |        |          |                     |                |        |        |        | 1        |               |      |          |    |
| MA I       | 1) Borehole terminated at 8.22 m<br>below the existing surface elevation |              |          |       |     |        |             |            |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
|            | 2) 50 mm monitoring well installed at                                    |              |          |       |     |        |             |            |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
|            | 6.7 m below the existing ground surface                                  |              |          |       |     |        |             |            |                  |        |                 |        |          |                     |                |        |        |        | 1        |               |      |          |    |
|            | 3) Date Groundwater Depth                                                |              |          |       |     |        |             |            |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
|            | 10/5/2017 6.58 m                                                         |              |          |       |     |        |             |            |                  |        |                 |        |          |                     |                |        |        |        | 1        |               |      |          |    |
|            | 10/12/2017 3.84 m                                                        |              |          |       |     |        |             |            |                  |        |                 |        |          |                     |                |        |        |        |          |               |      |          |    |
| 5          | 11/30/2011 3.1411                                                        | 1            |          |       |     |        |             |            | 1                | 1      | 1               |        | 1        | 1                   | L              |        | 1      | 1      | I        | L             |      |          |    |

**GROUNDWATER ELEVATIONS** 

Shallow/ Single Installation  $\underline{\nabla}$   $\underline{\nabla}$  Deep/Dual Installation  $\underline{\nabla}$   $\underline{\nabla}$ 

<u>GRAPH</u> <u>NOTES</u> + <sup>3</sup>, × <sup>3</sup>: Numbers refer to Sensitivity



Project: Kingston Mills Lockstation Rehabilitation

Client: Parks Canada

Project Location: Kingston Mills, Ontario

DRILLING DATA Rig Type:Backhoe

Method: Rubber Tire Backhoe

Project No.: 171-012359-00

Date Started: 10/18/2017 Supervisor: D.R.

| Datu                            | n: Geodetic                          |              |               | Borehole Diameter: 150 mm Supervisor: D.R |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|---------------------------------|--------------------------------------|--------------|---------------|-------------------------------------------|------------|------------|------|---------------|-----------------|----------------|-----------|-----------------------|--------------|----------------|----------|--------|-------------|----------|------------|-------------|
| BH Location: N 4905328 E 384930 |                                      |              |               |                                           |            |            | Core | Diame         | ter:            |                |           |                       |              |                | R        | eviewe | er: C.      | Н.       |            |             |
|                                 | SOIL PROFILE                         |              | S             | SAMPL                                     | ES         | ~          |      | DYNA<br>RESIS | MIC CO<br>TANCE | NE PEN<br>PLOT |           | FION                  |              |                | _ NAT    | URAL   |             |          | μ          | REMARKS     |
| (m)                             |                                      | F            |               |                                           |            | TEF.       |      | 2             | 0 4             | 0 6            | 0 8       | 0 1                   | 00           | LIMIT          | C MOIS   | TURE   | LIMIT       | EN.      | NIT (      | AND         |
| ELEV                            |                                      | PL0          |               |                                           | SN E       | o W⊿       | NO   | SHEA          | AR STI          | RENG           | TH (kF    | Pa)                   |              | W <sub>P</sub> |          | w      | WL          | (KPa     | AL UI      | GRAIN SIZE  |
| DEPTH                           | DESCRIPTION                          | ATA          | BER           |                                           | BLO<br>0.3 | IND        | ATI. | o u           | NCONF           | INED           | ÷         | FIÉLD V.<br>& Sensiti | ANE<br>ivity |                |          |        | T (0/)      | DO<br>DO | ATUR<br>(K | (%)         |
|                                 |                                      | TR/          | MUM           | γPE                                       | ž          | NON<br>NON | ΓĒ   |               | JICK TF         | RIAXIAL        | ×<br>5 1( | LAB VA                | ANE<br>25    | 2              | 1ER UU   | 50 50  | I (%)<br>75 |          | ž          |             |
| 86.1                            | TOPSOIL (70mm)                       | 1.32         | $\frac{2}{2}$ | GRAB                                      | -          | 00         | ш    | -             |                 |                |           |                       |              |                | <u> </u> |        |             |          |            | GR SA SI CL |
| E 98:1                          | SILT with clay some sand trace       | $\mathbb{K}$ |               | GRA                                       |            |            | 86-  |               |                 |                |           |                       |              |                |          |        |             | 1        |            |             |
| E                               | gravel, brown, moist                 | $\bigotimes$ |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
| E                               |                                      | $\bigotimes$ |               |                                           |            |            | _    |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
| F                               |                                      | $\bigotimes$ | ╞             |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
| <b>F</b>                        |                                      | $\bigotimes$ |               | GRAE                                      |            |            |      |               |                 |                |           |                       |              |                | 0        |        |             |          |            |             |
| F                               |                                      | $\bigotimes$ | 3             | GRAE                                      |            |            | 85-  |               |                 |                |           |                       |              |                | 0        |        |             | 1        |            |             |
| F                               |                                      | $\otimes$    |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
| F 84 4                          |                                      | $\bigotimes$ |               |                                           |            |            | _    |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
| 1.7                             |                                      | ŕÝ           | ᡟᢩ᠆           | FRAE                                      |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 | Notes:                               |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 | 1) Borehole terminated at 1.74 m     |              | 1             |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 | below the existing surface elevation |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 | below surface                        |              | 1             |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
| ω                               |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
| 26/1                            |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
| Т<br>4                          |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
| 5                               |                                      |              | 1             |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
| ЪГ                              |                                      |              | 1             |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
| G                               |                                      |              | 1             |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
| LS.C                            |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
| ML                              |                                      |              | 1             |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
| NO                              |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
| GST                             |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
| X<br>X<br>X                     |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
| MA                              |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
| TTA                             |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
| Ģ                               |                                      |              | 1             |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
| 9                               |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
|                                 |                                      |              | 1             |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
| ы<br>К                          |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |
| SN                              |                                      |              |               |                                           |            |            |      |               |                 |                |           |                       |              |                |          |        |             |          |            |             |

**GROUNDWATER ELEVATIONS** 



Project: Kingston Mills Lockstation Rehabilitation

Client: Parks Canada

Project Location: Kingston Mills, Ontario

Datum: Geodetic

#### DRILLING DATA

Rig Type:Backhoe

Method: Rubber Tire Backhoe

Borehole Diameter: 150 mm

Project No.: 171-012359-00

Date Started: 10/18/2017 Supervisor: D.R

Reviewer: C.H.

| BH Location: N 4905266 E 384916<br>SOIL PROFILE SAMPLES |                                      |              |    |       |         |            | _   | Core           | Diame           | eter:          |             |         |     |                 |        | R     | eviewe | er: C. | Н.         |       |        |
|---------------------------------------------------------|--------------------------------------|--------------|----|-------|---------|------------|-----|----------------|-----------------|----------------|-------------|---------|-----|-----------------|--------|-------|--------|--------|------------|-------|--------|
|                                                         | SOIL PROFILE                         |              | 5  | SAMPL | ES      |            |     | DYNAM<br>RESIS | MIC CO<br>TANCE | NE PEN<br>PLOT |             | TION    |     |                 | ΝΛΤ    |       |        |        | L          | REN   | ARKS   |
|                                                         |                                      |              |    |       |         | Ë          |     | 2              | 0 4             | .0 6           |             | 30 1    | 0   | PLASTI<br>LIMIT | MOIS   | TURE  | LIQUID | ż      | ΓM         | A     | ND     |
| (m)                                                     |                                      | 5            |    |       | ର ୮     | NS NS      | z   |                |                 |                |             |         |     | W <sub>P</sub>  | CON    | W     | WL     | (kPa)  | L UN       | GRA   | N SIZE |
| DEPTH                                                   | DESCRIPTION                          | A P          | Ë  |       | 0.3 LOV |            | OL  |                | AR STI          | INED           | іп (кі<br>+ | FIELD V | ANE |                 |        | o     |        | (OCK   | URA<br>(KN | DISTR | BUTION |
|                                                         |                                      | RAT          | MB | 붠     |         | no i       | EVA | • QI           | JICK TF         | RIAXIAL        | . ×         | LAB VA  | NE  | WA              | TER CO | ONTEN | Г (%)  | ē.     | NAT        | (     | %)     |
| 78.7                                                    |                                      | ST           | β  | Σ     | ż       | <u>к</u> 0 | E   | 2              | 5 5             | 0 7            | 5 1         | 00 1:   | 25  | 2               | 5 5    | 50 7  | 75     |        |            | GR SA | SI CL  |
| - 79:9                                                  | TOPSOIL (170 mm)                     | <u>×1 //</u> |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
| 0.2                                                     | SILTY SAND some clay, some           | $\boxtimes$  | 1  | GRAB  |         |            | _   |                |                 |                |             |         |     | 0               |        |       |        |        |            |       |        |
| - 78.2                                                  | cobble, brown, moist                 | $\bigotimes$ | -  |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            | 2 80  | (9)    |
| - <b>/0.5</b>                                           | _ SAND trace slit and gravel, brown, | 敓            | 2  | GRAB  |         |            | 78- |                |                 |                |             |         |     | Ŭ               |        |       |        |        |            | 2 03  | (9)    |
| -                                                       | SANDY SILT some clay, trace          | $\boxtimes$  | 3  | GRAB  |         |            |     |                |                 |                |             |         |     |                 | 2      |       |        |        |            | 3 33  | 53 12  |
| 77.6                                                    | gravel, some sand, frequent cobbles  | $\bigotimes$ |    | -     |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
| 1.1                                                     | and boulders, brown, moist           |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         | END OF TESTPIT                       |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         | Notes:                               |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         | 1) Testait terminated at 1.1 m below |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         | the existing surface elevation       |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         | 2) bedrock encountered at 1.1 m      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         | below surface                        |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
| /18                                                     |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
| 1/26                                                    |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
| È                                                       |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
| ٥<br>ا                                                  |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
| RPI                                                     |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
| <u>a</u>                                                |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
| S.                                                      |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
| Ž                                                       |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
| STC                                                     |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
| 2<br>Z                                                  |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
| Y                                                       |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
| È                                                       |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
| 0                                                       |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
| ö                                                       |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
|                                                         |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
| SC                                                      |                                      |              |    |       |         |            |     |                |                 |                |             |         |     |                 |        |       |        |        |            |       |        |
| Ś                                                       |                                      |              |    |       |         |            |     |                |                 | 1              |             |         |     |                 | ]      |       |        |        |            |       |        |



Project: Kingston Mills Lockstation Rehabilitation

Client: Parks Canada

DRILLING DATA Rig Type:Backhoe

Project No.: 171-012359-00

| Proje                     | ct Location: Kingston Mills, Ontario |              |      |       |             |              | Method: Rubber Tire Backhoe Date Started: 10/18/2017 |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|---------------------------|--------------------------------------|--------------|------|-------|-------------|--------------|------------------------------------------------------|----------------|-----------------|----------------|--------|-----------------|--------------|-------|--------|--------------|--------|---------------|--------|-------------|--------------|---|
| Datum: Geodetic           |                                      |              |      |       |             |              |                                                      | Boreh          | ole Di          | amete          | r: 150 | mm              |              |       |        | S            | upervi | sor: [        | D.R    |             |              |   |
| BH Lo                     | ocation: N 4905249 E 384901          |              |      |       |             |              |                                                      | Core           | Diame           | ter:           |        |                 |              |       |        | R            | eviewe | er: C.        | Н.     |             |              | _ |
|                           | SOIL PROFILE                         |              | s    | SAMPL | ES          |              |                                                      | DYNAI<br>RESIS | MIC CO<br>TANCE | NE PEN<br>PLOT |        | TION            |              |       | _ NAT  | URAL         |        |               | F      | REM         | ARKS         |   |
| (m)                       |                                      | от           |      |       | (0)         | 'ATER<br>S   |                                                      | 2              | 0 4             | 06             | 08     | 0 1             | 00           | LIMIT |        | TURE<br>TENT | LIQUID | - PEN.<br>Pa) | UNIT W | AN<br>GRAIN | ND<br>I SIZE |   |
|                           | DESCRIPTION                          | APL          | н    |       | 0 <u>00</u> | ND V<br>TION | TION                                                 | SHEA           |                 |                | TH (kF | Pa)<br>FIELD V. | ANE          | •••p  |        | o            |        | Cu) (K        | (KN/n  | DISTRI      | BUTION       |   |
| DEPIR                     |                                      | RAT          | IMBE | 붠     |             | NDI          | EVA                                                  | • QI           | JICK TF         |                | ×      | & Sensiti       | ivity<br>ANE | WA    | FER CO | ONTEN        | T (%)  | 800           | NATI   | (%          | 6)           |   |
| 78.8                      |                                      | ST           | z    | ≽     | Ž           | В С<br>С     | Ш                                                    | 2              | 5 5             | 0 7            | 5 10   | 00 12           | 25           | 2     | 55     | 50 7         | 75     |               |        | GR SA       | SI CL        | - |
| - 7 <b>8</b> .0/<br>- 0.2 | SANDY GRAVEL some silt brown         | XX           | 1    | GRAB  |             |              |                                                      |                |                 |                |        |                 |              | 0     |        |              |        |               |        |             |              |   |
|                           | moist                                | $\mathbb{N}$ |      |       |             |              | -                                                    |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
| _                         |                                      | $\otimes$    | 2    | GRAB  |             |              |                                                      |                |                 |                |        |                 |              | 0     |        |              |        |               |        |             |              |   |
| _                         |                                      | $\otimes$    |      |       |             |              | 78-                                                  |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
| _                         |                                      | $\mathbb{X}$ | 3    | GRAB  |             |              |                                                      |                |                 |                |        |                 |              | 0     |        |              |        |               |        | 48 34       | (18)         |   |
| _                         |                                      | $\bigotimes$ |      |       |             |              | -                                                    |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
| 77.2                      |                                      | $\boxtimes$  |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
| 1.6                       | END OF TEST PIT                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           | Notes:                               |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           | 1) Borehole terminated at 1.6 m      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           | below the existing surface elevation |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           | on bedrock                           |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              | 1 |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              | 1 |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              |   |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              | 1 |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              | 1 |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              | 1 |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              | 1 |
|                           |                                      |              |      |       |             |              |                                                      |                |                 |                |        |                 |              |       |        |              |        |               |        |             |              | 1 |

WSP SOIL LOG - OTTAWA KINGSTON MILLS.GPJ SPL.GDT 4/26/18



# **C-3** TEST PIT SKETCHES AND PHOTOS



500 Test Pits NAME: FILE 2018 12, Feb ADRIAN.MEUNIER DATE PLOTTED: ВҮ: PLOTTED -A4Vrt



Test Pit #1 – Top of wall and buttress



Test Pit #1 – Top of wall and buttress



Test pit #1 – Layer of grout at bedrock





Test Pit #2 – Buttress and back of chamber wall



Test Pit #2 - Buttress and back of chamber wall







Test Pit #3 – Grouted rubble at base of chamber wall



Test Pit #3 – Monolith #4 and back of lock chamber wall



# wsp



Test Pit #4 – Back of chamber wall



Test Pit #4 – Back of chamber wall



WSP-A4Vrt PLOTTED BY: ADRIAN.MEUNIER DATE PLOTTED: Feb 12, 2018 FILE NAME: 500 Test Pits 01.dwg



Test Pit #5 - Rubble behind wall to face of bedrock outcrop



Test Pit #5 - Rubble behind wall to face of bedrock outcrop

## **APPENDIX**

# **C-4** LABORATORY TESTING RESULTS



| Clie            | Client:                                          |                   |      | Parks Canada |      |                                |        |      |               |        |       |                        | Lab     | no.:  |       |       |     |        | OL   | 229  | -6 |    |                                                   |                  |      |   |                 |  |
|-----------------|--------------------------------------------------|-------------------|------|--------------|------|--------------------------------|--------|------|---------------|--------|-------|------------------------|---------|-------|-------|-------|-----|--------|------|------|----|----|---------------------------------------------------|------------------|------|---|-----------------|--|
| Pro             | ject                                             | /Site:            |      |              |      | ł                              | Kingst | on N | /ills         | Re     | habi  | litati                 | on      |       |       |       | Pro | ject   | no.: |      |    |    | 171-0                                             | )235             | 9-00 | ) |                 |  |
|                 | Bore<br>Dep                                      | ehole no.:<br>th: |      |              |      |                                |        | 0.47 | TP 2<br>7-0.5 | 57m    |       |                        |         |       |       |       | Sam | iple n | 0.:  |      |    |    | GS                                                | 2                |      |   |                 |  |
| Percent Passing | 100   90   80   70   60   50   40   30   20   10 |                   |      |              |      |                                |        | ]    |               | 1      |       |                        |         |       |       |       |     |        |      |      |    |    | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80 | Percent Retained |      |   |                 |  |
|                 | 10 -<br>0 -<br>0.0                               | 001               |      |              |      | 0.01                           |        |      |               | 1      | 0.1   | Diam                   | eter (m | (m)   |       | 1     |     |        |      |      | 1  | 0  |                                                   |                  |      |   | 90<br>100<br>00 |  |
|                 | I                                                |                   |      |              |      |                                |        |      |               | -      |       |                        |         |       | Sand  | 1     |     |        |      |      | Gr |    | ravel                                             |                  |      |   |                 |  |
|                 |                                                  |                   |      | CI           | ay   | & Silt                         |        |      |               |        |       | Fine                   | )       | Ţ     | N     | Iediu | um  | Co     | arse |      | Fi | ne |                                                   | Coa              | rse  |   |                 |  |
|                 |                                                  |                   |      |              |      |                                |        |      | U             | Inifie | ed So | oil C                  | lassif  | icati | on \$ | Syst  | em  |        |      |      |    |    |                                                   |                  |      |   |                 |  |
|                 |                                                  | Pr                | reor |              |      |                                | Gra    | vel  |               | ;      | Sanc  | ł                      |         | Cla   | y &   | Silt  |     |        |      | Silt | t  |    |                                                   | Cla              | lay  |   |                 |  |
|                 | Percent<br>%<br>1.7                              |                   |      |              | 89.1 |                                |        |      | 9.3           |        |       | -                      |         |       |       |       | -   |        |      |      |    |    |                                                   |                  |      |   |                 |  |
| Rer             | Remarks:                                         |                   |      |              |      |                                |        |      |               |        |       |                        |         |       |       |       |     |        |      |      |    |    |                                                   |                  |      |   |                 |  |
| Per             | erformed by: N.K                                 |                   |      |              |      | N.Kı                           | Krebs  |      |               |        | _     | Date: October 31, 2017 |         |       |       |       |     |        |      |      |    |    |                                                   |                  |      |   |                 |  |
| Ver             | /erified by:                                     |                   |      |              |      | N.Krebs Date: October 31, 2017 |        |      |               |        |       |                        |         |       |       |       |     |        |      |      |    |    |                                                   |                  |      |   |                 |  |



| Client:              |            | Parks          | Canada                 |                               | Lab no.:                      |                        | OL 229-8    |                                             |  |
|----------------------|------------|----------------|------------------------|-------------------------------|-------------------------------|------------------------|-------------|---------------------------------------------|--|
| Project/Sit          | te:        | Kingston Mills | Rehabilitat            | ion                           | Project no.:                  | 1                      | 71-02359-00 |                                             |  |
| Boreho               | le no.:    | TP:            | 3                      |                               | Sample no.:                   |                        | GS 3        |                                             |  |
| Depth:               |            | 1-2n           | n                      |                               |                               |                        |             |                                             |  |
| Percent Passing      |            |                |                        |                               |                               |                        |             | 0<br>10<br>20<br>30<br>40<br>50<br>50<br>50 |  |
| 40                   |            |                |                        |                               |                               |                        |             | 60<br>70                                    |  |
| 20 -                 |            |                |                        |                               |                               |                        |             | 90                                          |  |
| 0.001                | 0.1        | )1             | 0.1<br>Diam            | eter (mm)                     |                               | 10                     |             | 100                                         |  |
|                      | Clay &     | Silt           |                        | Sand                          |                               | G                      | ravel       |                                             |  |
|                      |            |                | Fine<br>Jnified Soil C | e Medi<br>Classification Syst | um Coarse<br>em               | Fine                   | Coarse      |                                             |  |
|                      |            | Crovel         | Sand                   | Clay & Silt                   |                               | 2:14                   | Clay        | I                                           |  |
| Percent<br>%<br>48.2 |            |                | 33.5                   | 18.3                          |                               | -                      | -<br>-      |                                             |  |
| Remarks:             |            | 1 large        | , un-represe           | ntative 3" stone              | omitted from sa               | ample                  |             |                                             |  |
| Performed            | l by:      | N.K            | rebs                   |                               | <b>Date:</b> October 31, 2017 |                        |             |                                             |  |
| Verified by          | <b>/</b> : | N.K            | rebs                   |                               | Date:                         | Date: October 31, 2017 |             |                                             |  |



| Client:                                                   |              | Parks (                        | Canada                 |             | Lab no.:     |      | OL 229-1         |                                                                     |  |
|-----------------------------------------------------------|--------------|--------------------------------|------------------------|-------------|--------------|------|------------------|---------------------------------------------------------------------|--|
| Project/Site:                                             |              | Kingston Mills                 | Rehabilitat            | ion         | Project no.: | 1    | 71-02359-00      |                                                                     |  |
| Borehole no.:<br>Depth:                                   |              | 17-1<br>2.25-2.8               | 5m                     |             | Sample no.:  |      | SS4              |                                                                     |  |
| 100<br>90<br>80<br>70<br>60<br>50<br>40<br>30<br>20<br>10 |              |                                |                        |             |              |      |                  | 0<br>10<br>20<br>30<br>40<br>50<br>50<br>60<br>60<br>70<br>80<br>90 |  |
| 0.001                                                     | 0.01         |                                | 0.1<br>Diam            | eter (mm)   |              | 10   |                  | 100 <u>100</u>                                                      |  |
|                                                           | Clay & S     | ilt                            |                        | Sand        |              | G    | ravel            |                                                                     |  |
|                                                           |              | U                              | Fine<br>Inified Soil ( | e Medi      | em Coarse    | Fine | Coarse           |                                                                     |  |
|                                                           |              | Gravel                         | Sand                   | Clay & Silt |              | Silt | Clay             | ]                                                                   |  |
|                                                           | Percent<br>% | 9.3                            | 13.6                   | 77.1        | 5            | 6.1  | t Clay<br>1 21.0 |                                                                     |  |
| Remarks:<br>                                              |              |                                |                        |             |              |      |                  |                                                                     |  |
| Performed by:                                             |              | N.Kı                           | rebs                   |             | Date:        |      | November 7, 2017 |                                                                     |  |
| Verified by:                                              |              | N.Krebs Date: November 7, 2017 |                        |             |              |      |                  |                                                                     |  |



| Client                                                          | :                   |          | Parks (        | Canada               |                                | Lab no.:               |      | OL 229-2       |                                                               |  |
|-----------------------------------------------------------------|---------------------|----------|----------------|----------------------|--------------------------------|------------------------|------|----------------|---------------------------------------------------------------|--|
| Projec                                                          | :t/Site:            |          | Kingston Mills | Rehabilitat          | ion                            | Project no.:           | 1    | 71-02359-00    |                                                               |  |
| Bo                                                              | orehole no.:        |          | 17-2           |                      |                                | Sample no.:            |      | SS3            |                                                               |  |
| De                                                              | epth:               |          | 1.5-2.1        | m                    |                                |                        |      |                |                                                               |  |
| 100<br>90<br>80<br>70<br>60<br>50<br>50<br>50<br>40<br>30<br>20 |                     |          |                |                      |                                |                        |      |                | 0<br>10<br>20<br>30<br>40<br>50<br>50<br>60<br>60<br>70<br>80 |  |
| 10                                                              |                     |          |                |                      |                                |                        |      |                | 90                                                            |  |
| (                                                               | ) <u> </u>          | 0.01     |                | 0.1<br>Diam          | eter (mm)                      |                        | 10   |                | 100<br>100                                                    |  |
|                                                                 |                     | Clav & S | ilt            |                      | Sand                           |                        | G    | ravel          |                                                               |  |
|                                                                 |                     |          | U              | Fine<br>Fined Soil ( | e Medic<br>Classification Syst | um Coarse<br>em        | Fine | Coarse         |                                                               |  |
|                                                                 |                     |          |                |                      |                                |                        |      |                |                                                               |  |
|                                                                 | Ba                  | roont    | Gravel         | Sand                 | Clay & Silt                    |                        | Silt | Clay           |                                                               |  |
|                                                                 | Percent<br>%<br>9.1 |          |                |                      | 43.6                           | 3                      | 36.6 | 7.0            |                                                               |  |
| Rema                                                            | rks:                |          |                |                      |                                |                        |      |                |                                                               |  |
|                                                                 |                     |          |                |                      |                                |                        |      |                |                                                               |  |
| Perfor                                                          | med by:             |          | N.Kı           | rebs                 |                                | Date: November 7, 2017 |      |                |                                                               |  |
| Verifie                                                         | ed by:              |          | N.Kı           | rebs                 |                                | Date:                  | No   | vember 7, 2017 |                                                               |  |







| Client:                                 |                     |          | Parks (                        | Canada      |             | Lab no.:        |      | OL 229-4         |                                                   |
|-----------------------------------------|---------------------|----------|--------------------------------|-------------|-------------|-----------------|------|------------------|---------------------------------------------------|
| Project                                 | t/Site:             |          | Kingston Mills                 | Rehabilitat | ion         | Project no.:    | 1    | 71-02359-00      |                                                   |
| Вог                                     | rehole no.:         |          | 17-6                           |             |             | Sample no.:     |      | SS4              |                                                   |
| Dej                                     | pth:                |          | 2.25-2.8                       | 5m          |             |                 |      |                  |                                                   |
| 100<br>90<br>70<br>60<br>50<br>40<br>30 |                     |          |                                |             |             |                 |      |                  | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>60<br>70 |
| 20<br>10                                |                     |          |                                |             |             |                 |      |                  | 90                                                |
| 0<br>0.                                 | .001                | 0.01     |                                | 0.1<br>Diam | eter (mm)   |                 | 10   |                  | 100 <u>100</u>                                    |
|                                         |                     | Clay & S | :14                            |             | Sand        |                 | G    | iravel           |                                                   |
|                                         |                     |          |                                | Find        | e Media     | um Coarse<br>em | Fine | Coarse           |                                                   |
|                                         |                     |          |                                |             |             |                 |      |                  |                                                   |
|                                         | Bo                  | roont    | Gravel                         | Sand        | Clay & Silt |                 | Silt | Clay             | ]                                                 |
|                                         | Percent<br>%<br>9.4 |          |                                |             | 46.5        | 4               | 0.5  | 6.0              |                                                   |
| Remar                                   | ks:                 |          |                                |             |             |                 |      |                  |                                                   |
| Perfor                                  | med by:             |          | N.Kı                           | rebs        |             | Date:           | No   | November 8, 2017 |                                                   |
| Verifie                                 | d by:               |          | N.Krebs Date: November 8, 2017 |             |             |                 |      |                  |                                                   |



| Client:                                                                        |             | Parks Canada         |                                 | Lab no.:               |      | OL 229-5    |                                                                            |  |
|--------------------------------------------------------------------------------|-------------|----------------------|---------------------------------|------------------------|------|-------------|----------------------------------------------------------------------------|--|
| Project/Site:                                                                  | Kingsto     | on Mills Rehabilitat | tion                            | Project no.:           | 1    | 71-02359-00 |                                                                            |  |
| Borehole no.:                                                                  |             | 17-6<br>6.1-6.7m     |                                 | Sample no.:            |      | SS9         |                                                                            |  |
| 100<br>90<br>80<br>70<br>60<br>60<br>50<br>40<br>40<br>30<br>20<br>10<br>0.001 | 0.01        | 0.1 Dian             | heter (mm)                      |                        |      |             | 0<br>10<br>20<br>30<br>40<br>50<br>50<br>60<br>60<br>70<br>80<br>90<br>100 |  |
|                                                                                | Clay & Silt |                      | Sand                            |                        | Gi   | avel        |                                                                            |  |
|                                                                                | -           | Unified Soil         | e Mediu<br>Classification Syste | m Coarse               | Fine | Coarse      |                                                                            |  |
|                                                                                | Gra         | vel Sand             | Clay & Silt                     | s                      | Silt | Clay        | ]                                                                          |  |
| Perc<br>%                                                                      | ent 2.      | 1 22.0               | 75.9                            | 5                      | 7.9  | 18.0        |                                                                            |  |
| Remarks:                                                                       |             |                      |                                 |                        |      |             |                                                                            |  |
| Performed by:                                                                  |             | N.Krebs              |                                 | Date: November 8, 2017 |      |             |                                                                            |  |
| Verified by:                                                                   |             | N.Krebs              |                                 | Date: November 8, 2017 |      |             |                                                                            |  |


#### Particle-Size Analysis of Soils (ASTM D422)





#### Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)





#### Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)





#### Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)





## **C-5** GROUNDWATER DATA











1150

### Figure SWL-1: Static Water Levels and Groundwater Temperature BH17-3 (2017/2018)



Temperature







# D BEDROCK LOCATION









# E SUMMARY TABLE

#### Kingston Mills Lock Station Rehabilitation Locks 46 Kingston Mills, Ontario

#### 171-02359-00

Simplified Soil Strata

| Borehole No. | Borehole No. Simplified Stratigraphy (Depth) |                |            |                             |               |                 |               |                |                  |                    |                     |
|--------------|----------------------------------------------|----------------|------------|-----------------------------|---------------|-----------------|---------------|----------------|------------------|--------------------|---------------------|
| (Elevation)  | Asphalt                                      | Conc           | Topsoil    | Structure                   | Fill (Rubble) | Fill (Soil)     | Fill (Rock)   | Till           | Auger<br>Refusal | Bedrock<br>(Cored) | Inferred<br>Bedrock |
| 77-A (30.9)  |                                              |                | 0 - 250 mm |                             |               |                 |               |                | 250 mm           |                    | 250 mm              |
| 77-B (30.8)  |                                              |                | 0 - 330 mm |                             |               |                 |               |                | 330 mm           |                    | 330 mm              |
| 77-C (30.4)  |                                              |                | 0 - 300 mm |                             |               | 300 mm - 760 mm |               |                | 760 mm           |                    | 760 mm              |
| 77-D (30.1)  |                                              |                | 0 - 300 mm |                             |               | 300 mm - 910 mm |               |                | 910 mm           |                    | 910 mm              |
| 77-E (28.3)  |                                              |                | 0 - 250 mm |                             |               |                 |               | 250 mm - 2.7 m | 2.7 m            |                    | 2.7 m               |
| 77-F (28.7)  |                                              |                | 0 - 230 mm |                             |               |                 |               | 230 mm - 2.3 m | 2.3 m            |                    | 2.3 m               |
| 77-G (91.9)  | 0 - 100 mm                                   |                |            |                             |               | 100 mm - 1.5 m  | 1.5 m - 2.4 m |                | 2.4 m            |                    |                     |
| 77-H (91.8)  | 0 - 100 mm                                   |                |            |                             |               | 100 mm - 1.2 m  | 1.2 m - 1.4 m |                | 1.4 m            |                    |                     |
| 77-I (91.8)  | 0 - 100 mm                                   |                |            |                             |               | 100 mm - 1.3 m  |               |                |                  |                    |                     |
| 77-J (90.7)  |                                              |                | 0 - 150 mm |                             |               | 150 mm - 1.8 m  |               | 1.8 m - 2.7 m  |                  | 2.7 m - 4.3 m      |                     |
| 77-K (90.5)  |                                              |                | 0 - 100 mm |                             |               | 100 mm - 4.9 m  |               |                | 4.9 m            |                    | 4.9 m               |
| 77-L (90.4)  |                                              |                | 0 - 100 mm |                             |               | 100 mm - 2.0 m  |               |                | 2.0 m            |                    | 2.0 m               |
| 00-C1 (92.1) |                                              | 0 - 1.5 m      |            | 1.5 m - 2.4 m               |               |                 |               |                |                  | 2.4 m - 3.0 m      |                     |
| 00-C2 (92.1) |                                              | 0 - 3.8 m      |            |                             |               |                 |               |                |                  |                    |                     |
| 00-C3 (91.9) | 0 - 50 mm                                    | 50 mm - 300 mm |            |                             |               |                 |               |                |                  |                    |                     |
| 00-C4 (91.9) | 0 - 38 mm                                    | 38 mm - 400 mm |            |                             |               |                 |               |                |                  |                    |                     |
| 00-C5 (90.4) |                                              | 0 - 1.7 m      |            |                             |               |                 |               | 1.7 m - 2.3 m  |                  |                    |                     |
| 00-C6 (90.4) |                                              | 0 - 1.4 m      |            |                             |               |                 |               | 1.4 m - 1.9 m  |                  |                    |                     |
| 00-C7 (N/A)  |                                              |                |            |                             |               |                 |               |                |                  |                    |                     |
| 00-C8 (N/A)  |                                              |                |            |                             |               |                 |               |                |                  |                    |                     |
| 05-1 (85.9)  |                                              | 0 - 690 mm     |            | 690 mm - 1.7 m <sup>1</sup> |               |                 |               |                |                  |                    |                     |
| 05-2 (N/A)   |                                              |                |            |                             |               |                 |               |                |                  |                    |                     |
| 05-3 (86.8)  |                                              | 0 - 760 mm     |            | 760 mm - 1.7 m <sup>1</sup> |               |                 |               |                |                  |                    |                     |
| 05-4 (N/A)   |                                              |                |            |                             |               |                 |               |                |                  |                    |                     |
| 05-5 (N/A)   |                                              |                |            |                             |               |                 |               |                |                  |                    |                     |
| 05-6 (N/A)   |                                              |                |            |                             |               |                 |               |                |                  |                    |                     |
| 05-7 (N/A)   |                                              |                |            |                             |               |                 |               |                |                  |                    |                     |
| 05-8 (N/A)   |                                              |                |            |                             |               |                 |               |                |                  |                    |                     |
| 05-9 (N/A)   |                                              |                |            |                             |               |                 |               |                |                  |                    |                     |
| 05-10 (N/A)  |                                              |                |            |                             |               |                 |               |                |                  |                    |                     |
| 05-11 (N/A)  |                                              |                |            |                             |               |                 |               |                |                  |                    |                     |
| 05-9 (89.7)  |                                              | 0 - 790 mm     |            | 790 mm - 1.6 m <sup>1</sup> |               |                 |               |                |                  |                    |                     |

#### Kingston Mills Lock Station Rehabilitation Locks 46 Kingston Mills, Ontario

### 171-02359-00

Simplified Soil Strata

| Borehole No.            |            | Simplified Stratigraphy (Depth) |           |                         |                              |                |             |      |                  |                    |                     |  |  |
|-------------------------|------------|---------------------------------|-----------|-------------------------|------------------------------|----------------|-------------|------|------------------|--------------------|---------------------|--|--|
| (Elevation)             | Asphalt    | Conc                            | Topsoil   | Structure               | Fill (Rubble)                | Fill (Soil)    | Fill (Rock) | Till | Auger<br>Refusal | Bedrock<br>(Cored) | Inferred<br>Bedrock |  |  |
| 05-11 (86.0)            |            |                                 |           | 0 - 410 mm              | 410 mm - 860 mm <sup>1</sup> |                |             |      |                  |                    |                     |  |  |
| 15-TP1 (N/A)            |            |                                 |           |                         |                              |                |             |      |                  |                    |                     |  |  |
| 15-TP1A (90.6)          |            |                                 | 0 - 30 mm |                         |                              | 30 mm - 3.0 m  |             |      | 3.0 m            |                    |                     |  |  |
| 15-TP2 (N/A)            |            |                                 |           |                         |                              |                |             |      |                  |                    |                     |  |  |
| 15-TP2A (90.6)          |            |                                 | 0 - 30 mm |                         |                              | 30 mm - 1.4 m  |             |      | 1.4 m            |                    |                     |  |  |
| 15-101 (91.9)           | 0 - 100 mm |                                 |           |                         |                              | 100 mm - 2.7 m |             |      |                  | 2.7 m - 5.1 m      |                     |  |  |
| 15-202 (86.6)           |            |                                 |           | 0 - 660 mm              | 660 mm - 2.1 m               |                |             |      |                  | 2.1 m - 3.4 m      |                     |  |  |
| 15-203 (86.6)           |            |                                 |           | 0 - 310 mm              | 310 mm - 1.6 m               |                |             |      |                  | 1.6 m - 2.6 m      |                     |  |  |
| 15-204 (86.6)           |            |                                 |           | 0 - 510 mm              | 510 mm - 2.8 m               |                |             |      |                  | 2.8 m - 4.0 m      |                     |  |  |
| 17- CH1                 |            |                                 |           | 0 - 490 mm <sup>1</sup> |                              |                |             |      |                  |                    |                     |  |  |
| 17- CH2                 |            |                                 |           | 0 - 470 mm <sup>1</sup> |                              |                |             |      |                  |                    |                     |  |  |
| 17- CH3 (Turning Basin) |            |                                 |           | 0 - 410 mm <sup>1</sup> |                              |                |             |      |                  |                    |                     |  |  |
| BH 17-1 (89.8)          |            |                                 | 0 - 70 mm |                         |                              | 70 mm - 3.5 m  |             |      |                  | 3.5 m -3.6 m       |                     |  |  |
| BH 17-2 (89.8)          |            |                                 | 0 - 90 mm |                         |                              | 90 mm - 2.4 m  |             |      |                  | 2.4 m - 4.0 m      |                     |  |  |



#### Kingston Mills Lock Station Rehabilitation Locks 47 Kingston Mills, Ontario

#### 171-02359-00 Simplified Soil Strata

| Borehole No.   | Simplified Stratigraphy (Depth) |                         |               |                    |  |  |  |  |  |
|----------------|---------------------------------|-------------------------|---------------|--------------------|--|--|--|--|--|
| (Elevation)    | Topsoil                         | Structure               | Fill (Soil)   | Bedrock<br>(Cored) |  |  |  |  |  |
| 90-H1 (84.9)   |                                 | 0 - 3.0 m               | 3.0 m - 3.2 m |                    |  |  |  |  |  |
| 90-H2 (81.3)   |                                 | 0 - 1.9 m               |               | 1.9 m - 3.0 m      |  |  |  |  |  |
| 90-H3 (85.2)   |                                 | 0 - 3.6 m               | 3.6 m - 3.7 m |                    |  |  |  |  |  |
| 90-H4 (82.8)   |                                 | 0 - 3.8 m               | 3.8 m - 3.9 m |                    |  |  |  |  |  |
| 90-H5 (80.5)   |                                 | 0 - 2.2 m               | 2.2 m - 3.8 m |                    |  |  |  |  |  |
| 90-H13 (85.3)  |                                 | 0 - 3.9 m               |               |                    |  |  |  |  |  |
| 90-H14 (82.9)  |                                 | 0 - 3.8 m               |               |                    |  |  |  |  |  |
| 90-H15 (79.9)  |                                 | 0 - 3.8 m               | 3.8 - 4.2 m   |                    |  |  |  |  |  |
| 90-V1 (86.0)   |                                 | 0 - 5.9 m               |               | 5.9 m - 7.5 m      |  |  |  |  |  |
| 90-V4 (86.0)   |                                 | 0 - 5.7 m               |               | 5.7 m - 7.1 m      |  |  |  |  |  |
| 90-V5 (86.0)   |                                 | 0 - 7.4 m               |               | 7.4 m - 8.9 m      |  |  |  |  |  |
| 17- CH4        |                                 | 0 - 470 mm <sup>1</sup> |               |                    |  |  |  |  |  |
| 17- CH5        |                                 | 0 - 480 mm <sup>1</sup> |               |                    |  |  |  |  |  |
| 17- CH6        |                                 | 0 - 500 mm <sup>1</sup> |               |                    |  |  |  |  |  |
| 17- CH13       |                                 | 0 - 480 mm <sup>1</sup> |               |                    |  |  |  |  |  |
| 17- CH15       |                                 | 0 - 370 mm <sup>1</sup> |               |                    |  |  |  |  |  |
| 17- CH17       |                                 | 0 - 370 mm <sup>1</sup> |               |                    |  |  |  |  |  |
| 17- CH19       |                                 | 0 - 440 mm <sup>1</sup> |               |                    |  |  |  |  |  |
| 17- CH20       |                                 | 0 - 480 mm <sup>1</sup> |               |                    |  |  |  |  |  |
| 17- CH23       |                                 | 0 - 460 mm <sup>1</sup> |               |                    |  |  |  |  |  |
| 17- CH24       |                                 | 0 - 410 mm <sup>1</sup> |               |                    |  |  |  |  |  |
| 17- CH32       |                                 | 0 - 430 mm <sup>1</sup> |               |                    |  |  |  |  |  |
| BH 17-3 (86.1) | 0 - 80 mm                       |                         | 80 mm - 2.3 m | 2.3 m - 3.3 m      |  |  |  |  |  |



#### Kingston Mills Lock Station Rehabilitation Locks 48 Kingston Mills, Ontario

#### 171-02359-00 Simplified Soil Strata

| Borehole No.   | Simplified Stratigraphy (Depth) |                           |                |               |                    |  |  |  |  |
|----------------|---------------------------------|---------------------------|----------------|---------------|--------------------|--|--|--|--|
| (Elevation)    | Topsoil                         | Structure                 | Fill (Soil)    | Auger Refusal | Bedrock<br>(Cored) |  |  |  |  |
| 90-H6 (81.7)   |                                 | 0 - 2.0 m                 |                |               |                    |  |  |  |  |
| 90-H7 (77.6)   |                                 | 0 - 2.0 m                 |                |               | 2.0 m - 3.0 m      |  |  |  |  |
| 90-H8 (82.01)  |                                 | 0 - 3.9 m                 |                |               | 3.9 m - 4.2 m      |  |  |  |  |
| 90-H9 (79.6)   |                                 | 0 - 3.6 m                 |                |               | 3.6 m - 4.2 m      |  |  |  |  |
| 90-H10 (76.3)  |                                 | 0 - 1.3 m                 |                |               |                    |  |  |  |  |
| 90-H16 (81.7)  |                                 | 0 - 3.0 m                 |                |               |                    |  |  |  |  |
| 90-H17 (72.6)  |                                 | 0 - 3.6 m                 |                |               | 3.6 m - 3.8 m      |  |  |  |  |
| 90-H18 (82.0)  |                                 | 0 - 3.8 m                 |                |               |                    |  |  |  |  |
| 90-H19 (79.4)  |                                 | 0 - 3.8 m                 |                |               |                    |  |  |  |  |
| 90-H20 (77.0)  |                                 | 0 - 3.7 m                 |                |               |                    |  |  |  |  |
| 90-V2 (N/A)    |                                 |                           |                |               |                    |  |  |  |  |
| 90-V3 (82.6)   |                                 | 0 - 4.4 m                 |                |               | 4.4 m - 6.7 m      |  |  |  |  |
| 90-V5 (N/A)    |                                 |                           |                |               |                    |  |  |  |  |
| 90-V6 (82.6)   |                                 | 0 - 7.0 m                 |                |               | 7.0 m - 8.6 m      |  |  |  |  |
| 17- CH7        |                                 | 0 - 480 mm <sup>1</sup>   |                |               |                    |  |  |  |  |
| 17- CH8        |                                 | 0 - 480 mm <sup>1</sup>   |                |               |                    |  |  |  |  |
| 17- CH9        |                                 | 0 - 480 mm <sup>1</sup>   |                |               |                    |  |  |  |  |
| 17- CH10       |                                 | 0 - 480 mm <sup>1</sup>   |                |               |                    |  |  |  |  |
| 17- CH11       |                                 | 0 - 440 mm <sup>1</sup>   |                |               |                    |  |  |  |  |
| 17- CH12       |                                 | 0 - 480 mm <sup>1</sup>   |                |               |                    |  |  |  |  |
| 17- CH14       | 0 - 240 mm                      | 240 - 590 mm <sup>1</sup> |                |               |                    |  |  |  |  |
| 17- CH16       |                                 | 0 - 540 mm <sup>1</sup>   |                |               |                    |  |  |  |  |
| 17- CH18       |                                 | 0 - 540 mm <sup>1</sup>   |                |               |                    |  |  |  |  |
| 17- CH21       |                                 | 0 - 470 mm <sup>1</sup>   |                |               |                    |  |  |  |  |
| 17- CH22       |                                 | 0 - 480 mm <sup>1</sup>   |                |               |                    |  |  |  |  |
| 17- CH25       |                                 | 0 - 400 mm <sup>1</sup>   |                |               |                    |  |  |  |  |
| 17- CH26       |                                 | 0 - 430 mm <sup>1</sup>   |                |               |                    |  |  |  |  |
| 17- CH27       |                                 | 0 - 500 mm <sup>1</sup>   |                |               |                    |  |  |  |  |
| HA 17-4 (82.6) |                                 |                           | 0 - 160 mm     | 160 mm        |                    |  |  |  |  |
| TP 17-3 (78.8) | 0 - 160 mm                      |                           | 160 mm - 1.6 m |               |                    |  |  |  |  |

#### 171-02359-00 Simplified Soil Strata

| Borehole No.                    | Simplified Stratigraphy (Depth) |            |               |                         |               |                |                 |             |                  |                    |
|---------------------------------|---------------------------------|------------|---------------|-------------------------|---------------|----------------|-----------------|-------------|------------------|--------------------|
| (Elevation)                     | Conc                            | Topsoil    | Fill (Rubble) | Fill (Soil)             | Clay          | Silt           | Sand            | Till        | Auger<br>Refusal | Bedrock<br>(Cored) |
| 79-01 (72.4)                    | 0 - 1.6 m                       |            | 1.6 m - 1.9 m | 1.9 m - 3.6 m           | 3.6 m - 6.4 m | 6.4 m - 10.4 m | 10.4 m - 28.8 m |             |                  | 28.8 m - 32.8 m    |
| 79-02 (76.8)                    |                                 |            |               | 0 - 4.8 m               | 4.8 m - 8.5 m |                |                 |             |                  |                    |
| 17- CH28 (N/A)                  |                                 |            |               | 0 - 460 mm <sup>1</sup> |               |                |                 |             |                  |                    |
| 17- CH29 (N/A)                  |                                 |            |               | 0 - 460 mm <sup>1</sup> |               |                |                 |             |                  |                    |
| 17- CH30 (N/A)                  |                                 |            |               | 0 - 460 mm <sup>1</sup> |               |                |                 |             |                  |                    |
| 17- CH31 (N/A)                  |                                 |            |               | 0 - 460 mm <sup>1</sup> |               |                |                 |             |                  |                    |
| 17- CH33 (N/A)                  |                                 |            |               | 0 - 460 mm <sup>1</sup> |               |                |                 |             |                  |                    |
| HA 17-5 (78.8)                  |                                 |            |               | 0 - 100 mm              |               |                |                 |             | 100 mm           |                    |
| BH 17-6 (78.8)                  |                                 |            | 0 - 100 mm    | 100 mm - 6.1 m          |               |                |                 | 6.1 - 8.2 m |                  |                    |
| TP 17-2 (78.7)                  |                                 | 0 - 170 mm |               | 170 mm - 1.1 m          |               |                |                 |             |                  |                    |
| TP 17-3 (78.8)                  |                                 |            | 0 - 160 mm    |                         |               |                | 160 mm - 1.6 m  |             |                  |                    |
| TP 17-4 (N/A) - Structural Hole |                                 |            |               |                         |               |                |                 |             |                  |                    |
| TP 17-5 (N/A) - Structural Hole |                                 |            |               |                         |               |                |                 |             |                  |                    |