Appendix A
 Data Reports

Appendix A-1 Data Memorandum

Data Memorandum
 Wood Waste Remediation Project

Prepared for Public Works and Government Services Canada

Data Memorandum
 Wood Waste Remediation Project

Prepared for

Public Works and Government Services Canada

Prepared by
Anchor QEA, LLC

TABLE OF CONTENTS

1 Introduction and Background 1
2 Sampling Methods 3
2.1 Surface Sediment Sampling and DGT Analysis 3
2.1.1 Sampling Vessel, Navigation, and Positioning 3
2.1.2 Sample Collection and Processing 3
2.1.3 DGT Testing 4
2.1.4 Bioassay Toxicity Testing 4
2.1.5 Analytical Program - Risk Management Plan Chemistry Testing 5
2.2 Subsurface Sediment Sampling 5
2.2.1 Sampling Vessel, Navigation, and Positioning 5
2.2.2 Sample Collection and Processing 5
2.2.3 Analytical Programs - Leave Surface and Risk Management Plan Chemistry Testing 7
2.3 Diver Transect Surveys, Supplemental DGT Analysis, and Surface Water Depth Profiles 8
2.3.1 Survey Methods, Navigation, and Positioning 8
2.3.2 Diver Observations, Core Collection, and Core Processing 8
2.3.3 DGT Collection, Processing, and Testing 9
2.3.4 Surface Water Depth Profiling 9
3 Data Quality Assessment 10
3.1 Field Data Quality 10
3.2 Analytical Data Quality 10
3.3 Sample Completeness 10
3.4 DGT Data Quality 10
4 Investigation Results 11
4.1 DGT Porewater Sulphide 11
4.2 Wood Waste Surface Coverage and Thickness 11
4.3 Bioassay Toxicity Testing 13
4.4 Risk Management Plan Surface Sediment Chemistry 14
4.5 Post-Dredge Leave Surface Chemistry. 14
4.6 Diver Surveys 15
4.7 Surface Water Profiles 16
5 Statistical Evaluation 17
6 Potential Data Needs for Future Remedial Planning 18
6.1 Toxicity Testing 18
6.2 Surface Sediment Conditions 18
6.3 Seasonal Surface Water Trends 19
7 References 20

TABLES

Table 1	Surface Sediment Sample Summary
Table 2	Subsurface Sediment Sample Summary
Table 3	Dive Survey Summary Observations
Table 4	Surface Water Profile Results
Table 5	DGT Analytical Results Summary
Table 6	Analytical Results Summary

FIGURES

Figure $1 \quad$ Esquimalt Harbour Sites and Vicinity Map
Figure 2 Sample and Survey Locations
Figure 3 DGT Porewater Sulphide Results
Figure $4 \quad$ Wood Waste Percent Cover in Esquimalt Harbour
Figure $5 \quad$ Wood Waste Thickness in Esquimalt Harbour
Figure 6 Beggiatoa Coverage in Esquimalt Harbour

APPENDICES

Appendix A	Field Data
Appendix B	Laboratory Reports
Appendix C	Data Validation Reports
Appendix D	Bioassay Report
Appendix E	Statistical Evaluation

ABBREVIATIONS

BC	British Columbia
cm	centimetre
DGPS	differential global positioning system
DGT	diffusive gradients in thin films
EGL	Anchor QEA Environmental Geochemistry Laboratory
m	metre
mg / L	milligram per litre
NAD	North American Datum
PAH	polycyclic aromatic hydrocarbon
PCB	polychlorinated biphenyl Aroclor
PEL	probable effects level
PSEP	Puget Sound Estuary Program
PWGSC	Public Works and Government Services Canada
R/V	Risk Management Plan
RMP	Sampling and Analysis Plan
SAP	Total organic carbon
TOC	Universal Transverse Mercator
UTM	Wood Waste Management Areas
WWMA	Wood Waste Remediation Project
WWRP	

1 Introduction and Background

This data memorandum presents the sediment sampling and dive survey results for the Wood Waste Remediation Project (WWRP). The WWRP includes wood-impacted areas in the central and northern portions of Esquimalt Harbour, Esquimalt, British Columbia (BC; Figure 1). Sediment sampling and diver surveys were performed in accordance with the Public Works and Government Services Canada-approved Sampling and Analysis Plan (SAP; Anchor QEA 2018a) and Supplemental SAP (Anchor QEA 2018b).

The purpose of the sampling was to obtain data to develop and implement a risk management and/or remediation strategy that addresses ecological risks associated with sediments historically affected by wood debris. This data memorandum provides a summary of the field activities conducted in Fall 2018 and the associated data results from those studies. The Remedial Options Analysis Memorandum (Anchor QEA 2019a) is a companion document that includes more detailed information about the site background and data interpretations relevant to potential remediation. The Treatability Recommendations Report (Anchor QEA 2019b) summarizes the results of the benchscale treatability study.

Sampling activities occurred over two sampling events in October and December of 2018. Sediment collection, testing, and/or observations were conducted at 52 surface locations, 16 subsurface locations, 11 diver transects, 11 surface water locations, and 10 diver-collected surface sediment locations within a range of wood debris-impacted areas of Esquimalt Harbour.

As outlined in the SAP and Supplemental SAP, sediment sampling and diver survey locations were selected to fulfill one or more of the following objectives:

- Refine the spatial extent of porewater sulphide concentrations
- Further delineate wood waste surface coverage and thickness
- Characterize the post-dredge "leave surface" in areas with significant wood waste at depth to inform considerations for potential dredging
- Evaluate surface water chemistry to establish baseline conditions
- Provide representative sediment from areas with elevated porewater sulphide to conduct bench-scale treatability studies
- Support Risk Management Plan (RMP) sediment characterization efforts

The data memorandum is organized as follows:

- Section 2, Sampling Methods: This section describes the sampling methods used in this program, including any modifications from the SAPs
- Section 3, Data Quality Assessment: This section describes information on data quality including sample completeness and quality control measures
- Section 4, Investigation Results: This section provides a summary of diffusive gradients in thin films (DGT) porewater sulphide concentrations and chemical and bioassay results, including observations from the diver surveys
- Section 5, Statistical Evaluation: This section provides a summary of the results of the multivariate statistical evaluation to assess patterns in bioassay results, DGT porewater sulphide, and wood waste in Esquimalt Harbour
- Section 6, References: This section provides the references cited in this report

Appendices include field data (logs, photographs; Appendix A), laboratory data reports (Appendix B), data validation reports (Appendix C), bioassay report (Appendix D), and statistical evaluation (Appendix E).

2 Sampling Methods

Sampling was conducted in accordance with the Public Works and Government Services Canadaapproved SAP and Supplemental SAP which provide the sample design, target sampling locations, procedures for sample collection and processing, data QC, and data reporting requirements. Daily field logs, collection logs, processing logs, photographs, and chain-of-custody forms are provided in Appendix A.

2.1 Surface Sediment Sampling and DGT Analysis

Surface sediment sampling and DGT analysis was conducted from October 1 to 5, 2018.

2.1.1 Sampling Vessel, Navigation, and Positioning

Surface sediment sample collection was conducted aboard the research vessel (R/V) Sadie, operated by the subcontractor Coastline Technologies Inc. Horizontal positioning was determined by the sampling vessel's onboard differential global positioning system (DGPS). Coordinates were recorded on grab collection logs in northing and easting as metres (m) to the nearest degree using Universal Transverse Mercator (UTM) Zone 10 Grid, North American Datum (NAD) 83 (Appendix A).

Water depth was measured to the nearest centimeter using a lead line from the bow. Observed tide heights based on the permanent Fisheries and Oceans Canada tide Gauge in Victoria, BC (Gauge 7120), were used to calculate the mudline elevation in Chart Datum by multiplying the water depth by -1 , then adding the tidal elevation at time of collection.

2.1.2 Sample Collection and Processing

Forty-nine surface sediment grabs were collected and processed within the Wood Waste study area using a Power Grab in accordance with the SAP (Figure 2). Two reference sediment locations were collected in outer Esquimalt Harbour away from wood waste impacted areas. Surface samples were collected from the 0 - to 10 -centimetre (cm) biologically active zone at each sampling station. All accepted grabs were taken within three attempts except at the following locations:

- EHWW-05 was accepted on the fourth attempt due to wood waste and anthropogenic debris stuck in the Power Grab jaws.
- EHWW-21 was not collected after three attempts due to submerged rocky outcrops.
- EHWW-23 was accepted on the fifth attempt due to sand substrates that winnowed from the grab upon retrieval.

Immediately upon accepting the grab and to minimize potential hydrogen sulphide volatilization, sediment volume was collected for ex situ DGT testing and bioassay testing according to the SAP. One to three DGTs were analyzed per location at different exposure durations ($0.5-2$, 2 , 24-hour).

After pulling aliquots for DGT testing and bioassay archive, all surface grabs ${ }^{1}$ were logged for major lithological features, classified according to ASTM International Method D-2488, and photographed (Appendix A). Field measurements of sediment pH , temperature, and salinity were collected using handheld meters.

At select RMP chemistry testing locations, an aliquot of sediment volume was placed in a decontaminated stainless-steel bowl and mixed until homogeneous in color and texture using a decontaminated stainless-steel spoon. The sample was then spooned into laboratory-supplied jars for analyses.

Chain-of-custody forms were logged by the processing staff (Appendix A) and were relinquished via courier or overnight shipping to their respective laboratory:

- DGT samples - Anchor QEA Environmental Geochemistry Laboratory (EGL) in Portland, Oregon, USA
- Bioassay samples - Nautilus Environmental in Burnaby, BC
- RMP chemistry samples - AGAT in Burnaby, BC

Actual grab collection dates, attempts, station coordinates, mudline elevations, primary sample sediment lithology, wood debris abundance, sample ID, and Sample type are provided as Table 1.

2.1.3 DGT Testing

At several locations in October 2018, multiple DGTs were deployed for different time periods. Shorter exposure periods were used for sampling locations with anticipated high porewater sulphide concentrations and longer exposures were used for sampling locations with anticipated low porewater sulphide concentrations. Ex situ DGTs were analyzed at Anchor QEA's Environmental Geochemistry Laboratory via optical densitometry as summarized in the SAP.

2.1.4 Bioassay Toxicity Testing

Bioassay samples were collected from each DGT sampling location and archived for potential testing. Following receipt of the DGT results but within the 56-day hold time, 17 representative samples were triggered for the 48-hour bivalve larval development bioassay test (Table 1). Samples were selected to represent a range of DGT porewater sulphide results, wood waste abundance, wood waste type, and geographical locations across the investigation area.

Testing on all 17 samples was conducted according to procedures developed by Southern California Coastal Water Research Project (SCCWRP; 2009), incorporating screened chambers to separate the larvae from the sediment to reduce bias from physical impacts from fine wood particles. For

[^0]comparison purposes, 3 of the 17 samples were also tested following procedures described by the Puget Sound Estuary Program (PSEP; 1995) utilizing the resuspension method. A summary of test methods and results of the bioassay testing are included as Appendix D.

2.1.5 Analytical Program - Risk Management Plan Chemistry Testing

At select locations to support Phase 3 Harbour-Wide Risk Management, a surface sample was collected and analyzed for polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyl Aroclors (PCBs), metals, and dioxin/furans (Table 1). While these data are reported here, updates to the harbour-wide description of the nature and extent of sediment contamination is included in the updated RMP.

2.2 Subsurface Sediment Sampling

Subsurface sediment sampling was conducted from December 16 to 19, 2018.

2.2.1 Sampling Vessel, Navigation, and Positioning

Subsurface sediment borings were conducted aboard a support barge provided by Mercury Transport. Horizontal positioning was determined using a handheld DGPS. Coordinates were recorded on boring logs in northing and easting as metres to the nearest degree using UTM Zone 10 Grid, NAD 83 (Appendix A).

Water depth was measured to the nearest decimal foot ${ }^{2}$ using a lead line through a moon pool located in the centre of the barge. Observed tide heights based on the permanent Fisheries and Oceans Canada tide Gauge in Victoria, BC (Gauge 7120) were using to calculate the mudline elevation in lower low water large tides by multiplying the water depth by -1 , then adding the tidal elevation at time of collection.

2.2.2 Sample Collection and Processing

Sixteen subsurface borings were collected and processed within the Wood Waste investigation area (Figure 2) using sonic boring collection methods in accordance with procedures described in the Supplemental SAP. Sonic borings utilized a Geoprobe Sonic Drill Rig operated by Drillwell, Inc. Borings collected for bench-scale treatability testing utilized the Geoprobe DT45 Sampling System, in which borings are collected within 3 -inch-diameter rigid plastic core tubes.

All accepted cores met target penetration goals (1 m below wood deposits) except for EHWW-57 which contained wood waste until bedrock. Many locations were accepted with less than 75% recovery due to difficulty retaining coarse wood debris and very soft, water saturated silt sediments.

[^1]All proposed boring locations and supplemental location EHWW-61 were collected, but supplemental locations EHWW-62, $-63,-64$, and -65 were not collected due to time constraints. Two locations were adjusted from target due to obstructions:

- Location EHWW-44 was located 85 m from target due to a stationary barge that prevented collection at the target location.
- EHWW-57 was located 22 m from target due to rocky outcrops in the vicinity.

Sediment borings were processed aboard the barge in accordance with the Supplemental SAP. All cores were logged for major lithological features, classified according to ASTM International Method D-2488, and photographed (Appendix A). Leave surface samples were collected at 0 to 0.5 m and 0.5 to 1.0 m below wood waste. If no wood waste was observed, samples were collected from 0 to 0.5 m and 1.0 m below mudline. At select locations a surface sample from 0 to 0.5 m below mudline was collected to support Phase 3 Harbour-Wide Risk Management. Sediment samples were placed in decontaminated stainless-steel bowls and mixed until homogenous in color and texture using a decontaminated stainless-steel spoon. The sample was then spooned into laboratorysupplied jars for analyses.

Core tubes collected for bench-scale treatability testing were subsectioned to approximately 0.75 m , capped, sealed in a Mylar bag with oxygen-absorbing packets, and placed on ice for transport to Anchor QEA's EGL. To facilitate bench-scale treatability testing additional surface water volume from Esquimalt Harbour was collected using a peristaltic pump and polyethylene tubing lowered to the middle of the water column at location EHWW-59 (mid-harbour). Four 20-litre plastic containers were filled and transported on ice to Anchor QEA's EGL along with the sediment cores.

Chain-of-custody forms were logged by the processing staff (Appendix A) and were relinquished via courier to AGAT in Burnaby, BC. Core tubes and water containers for bench-scale treatability testing were delivered by Anchor QEA field staff to Anchor QEA's EGL in Portland, OR. Actual core collection dates, station coordinates, mudline elevations, attempts, core penetration and recovery, Sample ID, sample intervals, sample lithology, wood debris abundance, and sample type are provided as Table 2.

2.2.2.1 Sampling Modifications

All target sample intervals were collected as prescribed in the Supplemental SAP with the following modifications:

- No RMP surface interval was collected at EHWW-16 due to poor recovery within wood waste
- No RMP surface interval was collected at EHWW-58 due to poor recovery in surface interval within wood waste
- RMP surface interval was collected at EHWW-36 to replace surface interval that was not collected at EHWW-58
- Opportunistic RMP surface interval was collected at EHWW-40 due to substantial wood fibres
- No RMP surface interval was collected at EHWW-44 due to insufficient sample volume and prioritization of the $17-$ to $67-\mathrm{cm}$ leave surface sample.
- The RMP surface interval sample depth at EHWW- 53 was 0 to 16 cm to prioritize sample volume for the 16 - to $66-\mathrm{cm}$ leave surface sample.
- No wood was encountered at EHWW-56, therefore samples were collected from 0 to 0.5 (analyzed) and 0.5 to 1.0 m (archived) below mudline
- No leave surface intervals were collected at EHWW-57 since wood waste was present down to bedrock

Cores for bench-scale treatability were collected at all proposed locations with the following modifications:

- Cores were not collected at EHWW-44 due to time and safety constraints due to an anchored barge
- Cores were collected at EHWW-59 to replace cores that were not collected at EHWW-44
- Additional cores were collected at EHWW-55 to obtain material within dense wood waste deposits

2.2.3 Analytical Programs - Leave Surface and Risk Management Plan Chemistry Testing

Subsurface leave surface sample intervals were analyzed using a tiered approach according to the Supplemental SAP. The first sample interval (0 to 0.5 m below wood waste) was initially analyzed for metals, PAHs, PCBs, dioxins/furans, bulk sulphides, ammonia, total volatile sulphides, grain size, total solids, and total organic carbon. Samples collected from 0.5 to 1 m below wood waste were archived. Upon receipt of preliminary data, two additional samples from the 0.5 - to $1-\mathrm{m}$ sample interval were triggered for total solids and metals analysis due to a Canadian Council of Ministers of the Environment guidance (CCME 1999) probable effects level (PEL) exceedance of cadmium.

At select locations to support Phase 3 Harbour-Wide Risk Management, a surface interval sample (0 to 0.5 m) was collected and analyzed for PAHs, PCB Aroclors, metals, and dioxin/furans. While these data are reported here, updates to the harbour-wide sediment contamination nature and extent description is included in the updated RMP.

A subset of surface and leave surface samples received additional geotechnical testing including Atterberg limits and moisture content to capture the range of physical conditions observed. A list of all samples collected, and their respective analyses are summarized in Table 2.

2.3 Diver Transect Surveys, Supplemental DGT Analysis, and Surface Water Depth Profiles

Diver transect surveys, supplemental DGT analysis, and surface water depth profiles were conducted from December 17 to 19, 2018.

2.3.1 Survey Methods, Navigation, and Positioning

Eleven 200-m diver transect surveys were conducted within the Wood Waste study area. Surveys were conducted by Hemmera using the R/N Reservoir Dog according to methods outlined in the Supplemental SAP. Each transect was delineated with a 200 m weighted line and transect endpoints were georeferenced using a handheld DGPS.

All diver transects were collected as prescribed in the Supplemental SAP except for Transect 63, which was not collected due to a weather delay.

2.3.2 Diver Observations, Core Collection, and Core Processing

Diver observations were made at 25 m intervals ($0,25,50,75,100,125,150,175$, and 200 m) along each transect. At each of the transect observation locations, a 1 m by 1 m quadrat was places on the sediment surface and the diver noted the following observation:

- Substrate type (e.g. Silt, sand, woody waste)
- Wood waste percent cover and wood waste type
- Marine vegetation (\% cover)
- Beggiatoa sp. (\% cover)
- Diatoms (\% cover)

The abundance of mobile invertebrates and fish were also documented as they were encountered along the transect. All transects were recorded using an underwater video camera. Video stills from the underwater camera are included in Appendix A.

To delineate the thickness of wood waste deposits, five diver cores were taken at 50 m intervals $(0,50,100$, $150,200 \mathrm{~m}$) along each transect to a maximum depth of 1.0 m . Coring utilized either a PVC ($0.8 \mathrm{~m} \times 0.05 \mathrm{~m}$ diameter) or clear Lexan ($1 \mathrm{~m} \times 0.05 \mathrm{~m}$ diameter) tube pushed into the sediment by hand until refusal or maximum penetration was achieved. The core tube was capped, removed from the sediment, and a second cap was placed on the bottom to ensure the contents were not lost. Diver cores were processed aboard the dive vessel in accordance with the Supplemental SAP. All cores were logged for major lithological features, classified according to ASTM International Method D-2488, and photographed (Appendix A).

Diver cores were collected from all transects and locations with the following exceptions:

- Transect 59 at 0 m due to no recovery
- Transect 59 at 150 m due to no recovery
- Transect 61 at $0 m$ due to no recovery
- Transect 67 at 0 m due to no recovery
- Transect 68 at 0 m due to refusal (bedrock outcropping)
- Transect 68 at 200 m due to refusal (bedrock outcropping)
- Transect 69 at 200 m due to no recovery
- Transect 70 at 200 m due to no recovery

A summary of observations along each transect are provided as Table 3.

2.3.3 DGT Collection, Processing, and Testing

Additional diver cores were collected at pre-determined locations along certain transects to collect sediment volume for DGT analysis (Table 3). Cores collected for DGT analysis utilized a PVC shortcore (0.3 m by 0.1 m diameter) collected as described in Section 2.3.2. Cores for DGT analysis were processed aboard the dive vessel in accordance with the Supplemental SAP. DGTs were delivered by Anchor QEA field staff to Anchor QEA's EGL in Portland, Oregon.

All proposed DGT samples were collected except at the following:

- EHWW-51 was not collected due to refusal of the core tube
- EHWW-60 was not collected due to a weather delay

A summary of diver cores collected for DGT testing including coordinates and Sample IDs are included in Table 2.

2.3.4 Surface Water Depth Profiling

To assess surface water conditions throughout the Esquimalt Harbour wood debris areas, a handheld YSI water quality SONDE meter was deployed from the dive support vessel in the vicinity of each dive transect location (Figure 2). Standard water quality parameters were measured through the water column (pH , conductivity, salinity, dissolved oxygen, temperature, oxidation reduction potential, and turbidity). Water quality parameters at each location are provided in Table 4.

Water quality parameters were collected approximately every metre from 0.5 m below the water surface to as close to mudline as practicable. Logistical constraints during diving operations resulted in fewer measurements at Transects 67, 68, 69, and 70.

Additionally, total free sulphides in surface water were measured using a handheld colorimetric testing kit. Utilizing a peristaltic pump and $1 / 4$-inch polyethylene tubing attached to the YSI water quality SONDE, samples of water were taken for sulphide analysis at approximately 0.5 m below the surface, mid-water column, and as close to mudline as practicable.

3 Data Quality Assessment

This section provides information on data quality, including field and laboratory QC measures and completeness. The laboratory data reports are provided in Appendix B.

3.1 Field Data Quality

Field data consisted of field duplicates and matrix spike/matrix spike duplicate samples collected at a frequency of one per twenty samples. Field duplicates were collected by collecting additional volume from the sample homogenate and placing into a separate laboratory container with unique sample identification. Three field duplicate samples were collected and were analyzed for metals, PAHs, total PCB Aroclors, and dioxin/furans. The relative percent differences between the field duplicate and parent sample results fell within project requirements for 98% of analyses. The few detected results with relative percent differences greater than 50% indicate potential sample heterogeneity and data results were qualified as estimated (J-qualified).

3.2 Analytical Data Quality

The laboratory followed the specified analytical methods, and all requested analyses were completed within holding times. The laboratory followed its own standard operating procedures and did not report any internal QC discrepancies.

3.3 Sample Completeness

Completeness goals were met for this project. All analytical chemistry data were useable as reported or as qualified.

3.4 DGT Data Quality

Ex Situ DGTs were analyzed at Anchor QEA's Environmental Geochemistry Laboratory via optical densitometry as summarized in the SAP. Many DGTs were saturated, in which the absorptive capacity of the DGT membrane to adhere sulphides was exceeded.

For each sample location where multiple DGTs were deployed, the following result acceptance approach was applied:

- For locations with multiple DGT treatments, the non-saturated DGT value was accepted, if available
- If a 2-hour and 24 -hour result were non-saturated, the 24 -hour result was accepted since the 2-hour result may not have had enough time to diffuse to the gel membrane.
- If a 0.5 -hour and 2 -hour result are not-saturated, the results were averaged.
- If all DGTs were saturated, the result was reported as E-qualified, which indicates that the concentration exceeds the maximum value on the calibration curve.

4 Investigation Results

This section summarizes the DGT, bioassay, and chemistry sediment testing results, wood waste observations, and biophysical observations.

4.1 DGT Porewater Sulphide

The DGT porewater sulphide results for both October 2018 surface grab sampling (Section 2.1.3) and December 2018 Supplemental Sampling (Section 2.3.3) are provided as Table 5. Appendix B contains photographs of the laboratory processed DGTs. Porewater sulphide concentrations range from 0.3 to >206 milligrams per litre (mg / L) across the Wood Waste study area. The DGT concentrations were interpolated across the study area using Inverse Distance Weighted GIS methods and are presented in Figure 3. For locations with data points from both October and December, only the non-saturated value was included in the Inverse Distance Weighted GIS method (if available).

The interpolations indicate a porewater sulphide concentration gradient with the highest concentrations in isolated areas west of Richards Island in Thetis Cove and in the northwest reaches of the North Harbour between McCarthy Island and Cole Island (Figure 3). Porewater sulphide concentrations were lowest south and west of Inskip Islands.

Porewater sulphide concentrations were lower in December 2018 than in October 2018 at four locations (EHWW-08, EHWW-27, EHWW-39, and EHWW-50). Two locations contained higher concentrations in December 2018 than in October 2018 (EHWW-41, EHWW-43). Concentration trends were not discernable at two locations due to saturated DGT measurements from October 2018 (EHWW-24, EHWW-25)

4.2 Wood Waste Surface Coverage and Thickness

A range of wood waste coverage, thickness, and type was observed across the study area as part of the sediment grabs, borings, and diver surveys. The wood waste observations from this study were combined with those from previous investigations conducted by SNC Lavalin (2016) and Hemmera (2018) to further delineate and refine the spatial distribution of wood waste within Esquimalt Harbour. Using GIS interpolation methods, wood waste percent cover and thickness were projected across the study area (Figures 4 and 5, respectively).

Wood waste deposits within the study area have been grouped into Preliminary Wood Waste Management Areas (WWMA) and are summarized by the following characteristics:

WWMA - 1, Esquimalt Harbour North

- Wood waste observations predominantly include wood fibres, bark and wood fragments, and submerged logs.
- About $65,000 \mathrm{~m}^{2}$ exceeds 10% wood waste coverage in surface sediment. Surface sediment has 100% wood waste coverage in a localized area (at two survey locations out of a total of 101).
- Relatively thin deposits of wood-waste-impacted sediment (average thickness is 0.4 m ; up to 0.6 m maximum thickness). Area of sediment with greater than 0.2 m of wood waste is $106,000 \mathrm{~m}^{2}$.
- WWMA-1 also contains a very soft layer of fine-grained, flocculent suspended sediments that appears to have a high fraction of organics and accumulates just above the more competent sediment surface. This sediment was hard to sample using traditional sediment sampling equipment, but was noted by divers as a layer similar to fluidized mud.
- Total organic carbon (TOC) concentration up to 12% and an average of 6% in all samples.
- Seasonal Beggiatoa mats from 50% to 96% coverage in the southern portion of the WWMA and none in the northern portion of the WWMA.
- Porewater sulphide concentrations exceed $10 \mathrm{mg} / \mathrm{L}$ in the entire WWMA, with more than half of the samples exceeding $50 \mathrm{mg} / \mathrm{L}$ and 75% of samples exceeding $30 \mathrm{mg} / \mathrm{L}$.

WWMA - 2, Esquimalt Harbour Central

- Wood waste observations predominantly include wood fibres, bark and wood fragments, and submerged logs.
- About $60,000 \mathrm{~m}^{2}$ of the area exceeds 10% wood waste in surface sediment. Surface sediment has 100% wood waste at one survey location (out of 66 total survey locations).
- Relatively thin deposits of sediment with wood waste (average thickness of 0.4 m ; up to 0.9 m maximum thickness). Area of sediment with wood waste thicker than 0.2 m is $126,000 \mathrm{~m}^{2}$.
- WWMA-1 also contains a very soft layer of fine-grained, flocculent suspended sediments that appears to have a high fraction of organics and accumulates just above the more competent sediment surface. This sediment was hard to sample using traditional sediment sampling equipment, but was noted by divers as a layer similar to fluidized mud.
- TOC ranges up to 31% with an average of 16% for all samples in the area.
- Seasonal Beggiatoa mats from 50% to 100% for much of the WWMA.
- Porewater sulphide concentrations exceed $10 \mathrm{mg} / \mathrm{L}$ in the entire WWMA with 70% of the samples exceeding $30 \mathrm{mg} / \mathrm{L}$.

WWMA - 3, Richards Island South

- Wood waste observations predominantly include substantial fine wood fibres, large bark and wood fragments, and submerged logs.
- Nearly the entire area ($33,000 \mathrm{~m}^{2}$) exceeds 10% wood waste in surface sediment. Surface sediment has 100% wood waste at one survey location (out of 30 total survey locations).
- Relatively thick deposits of sediment with wood waste (average thickness of 1.1 m ; up to 2.4 m maximum thickness). The entire area $\left(39,000 \mathrm{~m}^{2}\right)$ contains sediment with wood waste thicker than 0.2 m .
- TOC ranges up to 24% with an average of 10% for all samples in the area
- Seasonal Beggiatoa mats from 50% to 100% for much of the WWMA.
- Porewater sulphide concentrations exceed $10 \mathrm{mg} / \mathrm{L}$ in the entire WWMA with 67% of the samples exceeding $30 \mathrm{mg} / \mathrm{L}$.

WWMA - 4, Inskip Island West

- Wood waste observations predominantly include large bark fragments, small and large wood fragments, and submerged logs.
- About $111,000 \mathrm{~m}^{2}$ of the area exceeds 10% wood waste in surface sediment. Surface sediment has 100% wood waste at four survey locations (out of 57 total survey locations).
- Relatively thick deposits of sediment with wood waste (average thickness of 0.7 m ; up to 2.0 m maximum thickness). The area of sediment with wood waste thicker than 0.2 m is about $128,000 \mathrm{~m}^{2}$.
- TOC was 16% in one sample (no other samples tested).
- Seasonal Beggiatoa mats from 13% to 100% for much of the WWMA.
- Porewater sulphide concentrations are high but slightly lower than WWMAs 1 through 3 with values up to $37 \mathrm{mg} / \mathrm{L}$ and 18% of samples exceeding $30 \mathrm{mg} / \mathrm{L}$.

WWMA - 5, Inskip Island East

- Wood waste observations predominantly include large bark fragments, small and large wood fragments, submerged logs, and fine fibres.
- About $58,000 \mathrm{~m}^{2}$ of the area exceeds 10% wood waste in surface sediment. Surface sediment has 100% wood waste at six survey locations (out of 57 survey locations).
- Relatively thick deposits of sediment with wood waste (up to 3.6 m). The area of sediment with wood waste thicker than 0.2 m is $107,000 \mathrm{~m}^{2}$.
- TOC ranges up to 35% with an average of 7% in all samples in the area.
- Seasonal Beggiatoa mats were not observed in the WWMA but may be present based on data from adjacent areas.
- Seasonal sulphide concentrations are high but slightly lower than WWMAs 1 through 3, with 17% of samples exceeding $30 \mathrm{mg} / \mathrm{L}$.

4.3 Bioassay Toxicity Testing

The results of the 48-hour bivalve (M. galloprovincialis) larval survival and development test are included in Appendix D. For samples run via the screen tube method, no statistical differences were present when comparing combined proportional normal (percent normal alive) against the reference
locations, indicating no adverse effects (Table 6; Appendix D). Although the relevant endpoint for toxicity evaluation is normal survival, some significant differences were observed at select locations (EHWW-06, -15, -22, and -50) for proportion normal relative to one or both reference sites.

As part of the screen tube test procedure, overlying and interstitial water was measured for total sulphides and ammonia at the start and end of testing (48 hour). Concentrations of total sulphides in interstitial water were considerably lower than those measured in the field using the DGTs. It is possible that the bioassay chambers were not able to reproduce similar sulphide concentrations that were present in the field due to the relatively small sediment sample volume $(100 \mathrm{~g})$, incidental aeration during chamber preparation, and the need to exclude coarse wood pieces due to the size of the chamber.

Three locations were analyzed via the resuspension method (PSEP method; EHWW-11, EHWW-39, and EHWW-50) to compare performance between the screen tube and resuspension methodologies. Statistical differences for combined normal survival results compared to one or more reference locations were present for all resuspension method samples. Samples run via the resuspension methodology exhibited a 9% to 20% reduction of average combined normal survival compared with the results using the screen tube method. Proportion normal was very similar between the screen tube and resuspension methods, but survival was lower for each sample in the resuspension method, likely because some larvae become entrained (physically smothered) by the fine-grained wood and sediment particles (Section 2.1.4). The presence of this fine grained, flocculent layer with high water content may contribute to reduced larval survival at the Study Area.

4.4 Risk Management Plan Surface Sediment Chemistry

Table 6 presents the results of the RMP surface sediment chemistry. Results are screened against the PEL screening level. No concentrations were greater than $6 x$ PEL. PEL exceedances were observed at six locations for Cadmium (less than 2x PEL), two locations for total dioxin/furan Toxic Equivalents Quotient (less than $3 \times$ PEL), three locations for total PCB Aroclors (less than $2 \times$ PEL) and one location for pyrene (less than $2 x$ PEL).

4.5 Post-Dredge Leave Surface Chemistry

Table 6 presents the results of the leave surface samples screened against the Canadian Council of Ministers of the Environment guidance (CCME 1999) PEL screening level. No concentrations were greater than $6 x$ PEL. Six leave surface samples had PEL exceedances for cadmium (less than $2 x$ PEL).

Two locations had PEL exceedances for cadmium in the surface 0-0.5 m RMP surface sediment interval and underlying leave surface sample (EHWW-53, and -54). To confirm that cadmium concentrations did not increase further with depth, the second leave surface archive sample was
triggered for metals analysis at these locations. The tier 2 results were below PEL, indicating that cadmium does not increase with depth.

4.6 Diver Surveys

The biophysical results of the subtidal diver surveys are summarized below. Visual observations along each transect including thickness of wood waste deposits extrapolated from the diver cores are provided in Table 3 and incorporated into Figures 4 and 5. A photolog of relevant observations along each transect is included in Appendix A. Observations of Beggiatoa (percent cover) from these surveys and previous (Hemmera 2018) surveys are provided as Figure 6.

Key observations from the diver surveys are summarized below:

- The subtidal habitat within the study area was characterized by soft sediment composed of silt (97.5\%) with occasional cobble (1.0\%), boulder (0.5%), and bedrock (1.0\%) observed. Sparse shell hash was observed in 8.1% of transects with an average percent cover of approximately 4.9%.
- A nepheloid layer was observed at some areas of the study area. This layer is described as a layer of suspended sediment particles at the sediment-water interface.
- Wood waste was observed in 34 quadrats (34\%). When observed, the average percent cover of wood waste was 54.1%. Spatially, the wood waste was concentrated on transects $61,66,68$, and 69 . Wood waste was generally sparse, patchy, or absent on the other transects.
- Diatomaceous mats were observed throughout the study area, in 76.8% of quadrats. Average percent cover when observed was approximately 54.6% and 41.9% of the study area was covered by diatoms.
- Beggiatoa mats were observed in 25.3% of quadrats, and where observed, average percent cover was 9.0%. Beggiatoa was almost exclusively observed in quadrats that contained diatom mats but rarely associated with quadrats that contained wood waste at the surface. Observations of Beggiatoa coverage in December 2018 were considerably less in areas previously observed to have substantial coverage in September 2016 (Figure 6), suggesting a seasonal trend of these species within the harbour. Beggiatoa generally form at the transition zone between oxygenated and anoxic environments (Ecology 2013) and the shift to fall weather (change in circulation and increase in storms) may increase the mixing of harbour surface waters, which could reduce the presence of Beggiatoa.
- Generally, vegetation was sparse within the study area and was observed in 14% of quadrats. Where present, vegetation consisted of unidentified red bladed and red filamentous algaes (average percent cover: 1\% and 15\% respectively), split kelp (Saccharina groenlandica, 25\%), grass kelp (Ulva intestinalis, 5\%), sea lettuce (Ulva lactuca, 20\%), and unidentified brown algaes (7.75\%).
- Invertebrates were observed occasionally within the study area, in approximately 26.3% of quadrats. The invertebrate species observed included acorn barnacles (Balanus glandula), Nuttal's cockle (Clinocardium nuttallii), graceful crabs (Metacarcinus gracilis), Dungeness crabs (Metacarcinus magister), red rock crabs (Cancer magister), hermit crabs (Pagarus spp.), unidentified Pandalid shrimp, turban snails (Tegula spp.), giant rock scallop (Crassadoma gigantea), giant plumose anemones (Metridium farcimen), and unidentified anemones. No vertebrate fish were observed during the field studies.

4.7 Surface Water Profiles

Table 4 presents the results of the surface water profiles from the dive transects. Parameters were generally similar throughout the water column with some lower readings of specific conductance and salinity at the surface ($0.5-\mathrm{m}$ depth). Dissolved oxygen generally showed a mild decreasing trend with depth at most locations.

5 Statistical Evaluation

Patterns among bioassay results, DGT porewater sulphide, and wood waste (percent cover, wood waste thickness) in Esquimalt Harbour were evaluated utilizing a multivariate statistical approach. Statistical evaluations included factor analysis for mixed data, principal components analysis, hierarchical clustering, and k-means clustering. A summary of the statistical methods, approach, and results are provided as Appendix E.

The results of the statistical evaluation indicate the following:

- No patterns were observed between bulk sulphide measured in the lab and porewater sulphide measured with DGT.
- No significant patterns were apparent using factor analysis for mixed data or hierarchical clustering.
- Principal components analysis and k-means clustering did demonstrate some evident relationships between wood thickness, porewater sulphide, and toxicity.
- K-means analysis indicate that the relationship between toxicity and wood thickness may be stronger than that between toxicity and porewater sulphide, though neither relationship is tightly correlated.

6 Potential Data Needs for Future Remedial Planning

Following additional study and completion of a pilot study in the wood waste remediation area, a Remedial Action Plan and Risk Management Plan will be developed for wood waste areas. Additional data collection may be beneficial to planning cleanup and restoration activities. The existing information provides a better understanding of the current condition of the Site, but other studies could provide insights into toxicity, surface sediment conditions, and seasonal trends.

6.1 Toxicity Testing

The larvae toxicity testing conducted in wood waste areas using standard testing procedures did not reproduce the high porewater sulphide concentrations observed in in-situ samples. This may have resulted from an insufficient equilibration period to replicate sulphide-producing conditions or an insufficient sample volume that replicates field conditions. The existing bioassay results may not have accurately characterized toxicity in these samples. The 48-hour bivalve larvae combined mortality and abnormality test was selected as part of this study as bivalve larvae tends to be one of the most sensitive organisms in the test; however, the following bioassay testing could be conducted to fully assess the toxicity of wood waste sediments:

- Acute 10-day amphipod mortality test (Rhepoxynius abronius, Ampelisca abdita, or Eohaustorius estuarius)
- Chronic 20-day juvenile survival and growth test (Neanthes arenaceodentata)
- Acute 48-hour bivalve larvae combined mortality and abnormality test (Mytilus galloprovincialis or Dendraster excentricus)

Similarly, testing methods could be modified to better define the relationship between wood waste conditions, sulphide concentration, and toxicity on benthic organisms. Modifications to the existing bioassay testing methods may include:

- Increased sediment sample volume to allow for a more representative sediment sample that incorporates larger wood waste fragments
- Longer incubation period before test initiation to allow for sulphide conditions to stabilize (in the bench scale treatability testing, measurable sulphides were not generated until weeks after setup [Anchor QEA 2019b]).

6.2 Surface Sediment Conditions

The wood waste pilot study is anticipated to be conducted in fiscal year 2019/2020, which should provide information on the constructability of placing sand and amended sand as well as the effectiveness of amended sand at controlling porewater sulphide concentrations. Following this pilot study, additional sediment testing will help inform future cleanup and restoration activities at the site. Depending on the success of the material placement, measurement of certain geotechnical
parameters may be useful to inform the constructability of material placement in each WWMA. Similarly, specific sediment conditions, such as porewater sulphide, bulk sediment sulphides, and TOC, may be useful in assigning cleanup technologies to each area.

6.3 Seasonal Surface Water Trends

Surface water conditions may vary seasonally, which can affect porewater sulphide concentrations in parts of Esquimalt Harbour. Surface water column profiles measured in December 2018 could be repeated quarterly to assess the potential for seasonal trends. Prior to planning and designing a preferred cleanup remedy for the site, it is important to understand the potential for Esquimalt Harbour to naturally have low dissolved oxygen and oxidation reduction potential in the summer and fall, which may be more of a function of lack of surface water circulating and mixing and/or contribution of higher organic and possibly nutrient loads to surface water. This pattern could contribute to anoxic sediments and increases in porewater sulphide that may not necessarily only be the result of wood waste degradation. Surface water profiling should utilize a handheld YSI water quality SONDE (or similar field instrument) deployed from a vessel and lowered through the water column. Water quality measurements in the water column should include pH , conductivity, salinity, dissolved oxygen, temperature, oxidation reduction potential, and turbidity.

7 References

Anchor QEA (Anchor QEA, LLC), 2018a. Sampling and Analysis Plan, Wood Debris Remediation and Habitat Restoration Support. Esquimalt Harbour Remediation Project. Prepared for Public Works and Government Services Canada. September 2018.

Anchor QEA, 2018b. Sampling and Analysis Plan, Supplemental Sampling and Bench-Scale Testing, Wood Debris Remediation and Habitat Restoration Support. Esquimalt Harbour Remediation Project. Prepared for Public Works and Government Services Canada. December 2018.

Anchor QEA, 2019a. Remedial Options Analysis Memorandum, Wood Waste Remediation Project. Prepared for Public Works and Government Services Canada. March 2019.

Anchor QEA, 2019b. Treatability Recommendations Report, Wood Waste Remediation Project. Prepared for Public Works and Government Services Canada. March 2019.

Canadian Council of Ministers of the Environment (CCME), 1999. "Canadian Sediment Quality Guidelines for the Protection of Aquatic Life." Canadian Environmental Quality Guidelines. Updated 2001. Available at: http://ceqg-rcqe.ccme.ca/download/en/317.

Ecology (Washington State Department of Ecology), 2013. Wood Waste Cleanup, Identifying, Assessing, and Remediating Wood Waste in Marine and Freshwater Environments. Publication No. 09-09-044. September 2013.

Hemmera, 2018. Department of National Defence Esquimalt Harbour Wood Waste Assessment, Characterization and Management Plan. Prepared for Public Services and Procurement Canada. March 1, 2018.

PSEP (Puget Sound Estuary Program), 1995. Recommended guidelines for conducting laboratory bioassays on Puget Sound sediments. Prepared for US Environmental Protection Agency, Region 10, Office of Puget Sound, Seattle, WA. Final Report, July 1995.

SNC Lavalin, 2016. Sediment Investigation, Plumper Bay Remediation Project, Esquimalt Harbour. Prepared for Defence Construction Canada. December 2016.

Southern California Coastal Watershed Research Program (SCCWRP), 2009. Sediment Quality Assessment Draft Technical Support Manual. Prepared by the State Water Board, SCCWRP, Costa Mesa, CA. May 2009.

Tables

Table 1
Surface Sediment Sample Summary

Table 1
Surface Sediment Sample Summary

Station ID	Collection Date	Sample Type	Sampling Coordinates ${ }^{1}$		Mudline Elevation (metres CD)	Attempts	Accepted Attempt	Primary Lithology (USCS Symbol) ${ }^{2}$	Wood Debris Abundance and Description ${ }^{2,3}$	Sample ID	Sample Type			Sample Interval (cm)
			Northing (metres)	Easting (metres)							DGT Porewater Sulphide	$\begin{array}{\|c\|} \text { RMP } \\ \text { Chemistry }^{4} \\ \hline \end{array}$	48-hour Larval Bioassay	
EHWW-29	10/4/2018	Surface Grab	5366040	467114	-8.09	1	1	ML	None	EHWW-29-SG-000010	X		X	
EHWW-30	10/3/2018	Surface Grab	5365365	467632	-11.46	1	1	ML	Trace, bark fragments up to 5 cm	EHWW-30-SG-000010	X	x		
EHWW-31	10/2/2018	Surface Grab	5366463	466834	-4.50	1	1	ML	None	EHWW-31-SG-000010	x		X	
EHWW-32	10/4/2018	Surface Grab	5365191	467385	-11.51	1	1	ML	None	EHWW-32-SG-000010	x			
EHWW-33	10/3/2018	Surface Grab	5365321	467258	-11.55	1	1	ML	None	EHWW-33-SG-000010	X	x		
EHWW-34	10/4/2018	Surface Grab	5365516	467689	-3.07	1	1	GM	Trace	EHWW-34-SG-000010	x			
EHWW-35	10/4/2018	Surface Grab	5365445	467542	-8.68	2	2	ML	Occasional, bark fragments	EHWW-35-SG-000010	X			
EHWW-36	10/5/2018	Surface Grab	5365842	467880	-2.62	1	1	ML	Substantial, large bark fragments, decomposed fibres	EHWW-36-SG-000010	X			
EHWW-37	10/5/2018	Surface Grab	5365577	467969	0.05	1	1	SP-SM	None	EHWW-37-SG-000010	X			
EHWW-38	10/3/2018	Surface Grab	5365961	467494	-8.51	1	1	ML	M oderate, large bark fragments	EHWW-38-SG-000010	x			
EHWW-39	10/1/2018	Surface Grab	5366174	467644	-5.81	1	1	ML	Moderate, bark and wood fragments	EHWW-39-SG-000010	X	X	X	
	12/19/2018	Diver Core	5366194	467631		1	1			EHWW-39-SC-000010	X			
EHWW-40	10/5/2018	Surface Grab	5366136	467844	-1.01	1	1	Wood Debris	Substantial, decomposed organics, wood fragments and fibres	EHWW-40-SG-000010	X		X	
EHWW-41	10/4/2018	Surface Grab	5366216	467441	-7.56	1	1	ML	Occasional , wood fragments up to 5 cm	EHWW-41-SG-000010	X			
	12/19/2018	Diver Core	5366235	467424		1	1			EHWW-41-SC-000010 EHWW-41-SC-000010 (FD)	X			0-10
EHWW-42	10/2/2018	Surface Grab	5366447	467156	-6.35	1	1	ML	None	EHWW-42-SG-000010	x	x	X	
EHWW-43	10/5/2018	Surface Grab	5366071	467582	-4.98	1	1	ML	Substantial, large fragments, decomposed fibres	EHWW-43-SG-000010	X			
	12/17/2018	Diver Core	5366089	467569		1	1			EHWW-43-SC-000010	X			
EHWW-44	10/4/2018	Surface Grab	5366164	467346	-7.68	1	1	ML	Occasional	EHWW-44-SG-000010	X	x	X	
EHWW-45	10/4/2018	Surface Grab	5366606	467026	-4.88	1	1	ML	Trace, fragments up to 10 cm	EHWW-45-SG-000010	X	x		
EHWW-46	10/4/2018	Surface Grab	5366514	466801	-3.83	1	1	ML	Trace	EHWW-46-SG-000010	X	X		
EHWW-47	10/4/2018	Surface Grab	5366645	466792	-3.61	1	1	ML	M oderate, large bark fragments	EHWW-47-SG-000010	X			
EHWW-48	10/2/2018	Surface Grab	5366348	466788	-3.70	1	1	ML	Occasional, large bark fragments up to 30 cm	EHWW-48-SG-000010 EHWW-148-SG-000010 (FD)	X	X		
	12/19/2018	Diver Core	5366498	466931		1	1			EHWW-49-SC-000010	x			
EHWW-49	10/4/2018	Surface Grab	5366489	466714	-3.37	1	1	ML	Trace, fragments	EHWW-49-SG-000010	X			
EHWW-50	10/2/2018	Surface Grab	5366574	466931	-4.55	1	1	ML	Occasional, large bark fragements	EHWW-50-SG-000010	X		X	
	12/18/2018	Diver Core	5366576	466928		1	1			EHWW-50-SC-000010	X			
EHWW-52	12/19/2018	Diver Core	5366710	466740	--	1	1	ML ${ }^{6}$	None ${ }^{6}$	EHWW-52-SC-000010	X			
EHWW-REF-17 ${ }^{7}$	10/3/2018	Surface Grab	5364438	466983	-12.25	1	1	ML	None	EHWW-REF17-SG-000010	X		X	
EHWW-REF-187	10/3/2018	Surface Grab	5364792	467013	-12.19	1	1	ML	None	EHWW-REF18-SG-000010	X		X	

Table 1

Surface Sediment Sample Summary

1. Horizontal datum: Universal Transverse Mercator Zone 10 Grid, North American Datum 83.
2. From surface grab field logs, unless noted otherwise.
3. Trace: 0% to 5%; Occasional: 5% to 10%; M oderate: 10% to 30%; Substantial: greater than 30%,
4. PCB Aroclors, PAHs, Metals, Dioxin/Furans, TS/TOC.
5. Station not collected after three attempts due to submerged rocky outcrops.
6. Observation from adjacent Dive Transect Survey location 59 at 200 metres.
7. In-harbour reference sediment location for bioassay testing

CD: Chart Datum
cm: centimetre
DGT: diffusive gradients in thin films
FD: field duplicate
PAH: polycyclic aromatic hydrocarbon
PCB: polychlorinated bipheny
RM P: Risk Management Plan
TOC: total organic carbon
TS: total solids
USCS: unified soil classification system
CL: inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
GM: silty gravels
ML: inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity
SP-SM: poorly graded sand with silt

Table 2
Subsurface Sediment Sample Summary

		Sampling Coordinates ${ }^{1}$		$\begin{gathered} \text { Estimated } \\ \text { Mudline } \\ \text { Elevation } \\ \left(\text { metres CD) }{ }^{2}\right. \\ \hline \end{gathered}$	Attempts	Accepted Attempt	Penetration (metres)	Recovery		Sample ID	Sample Interval (centimetres)	Primary Lithology (USCS Symbol)	Wood Debris Abundance	Sample Type				
Station ID	Sample Date	Easting (metres)	Northing (metres)					(metres)	(pct)									
EHWW-03	12/17/2018	467818	5365734	-2.61	1	1	2.29	1.04	45\%	EHWW-03-SC-000050	0-50	ML	Substantial	X				
										EHWW-03-SC-150200	150-200	ML	None		x		x	
										EHWW-03-SC-200250	200-250	ML to CL/ML	None			x		
					$4\left(\right.$ DT45) ${ }^{7}$	2	1.52	0.40	26\%	EHWW-03-SC-2	0-40	--. ${ }^{6}$	--. ${ }^{6}$					x
						3	1.52	0.73	48\%	EHWW-03-SC-3	0-73	-- ${ }^{6}$	--. ${ }^{6}$					x
						4	1.52	0.70	46\%	EHWW-03-SC-4	0-70	--- ${ }^{6}$	-. ${ }^{6}$					X
EHWW-16	12/18/2018	466949	5366367	-5.06	4	4	6.10	4.57	75\%	EHWW-16-SC-152202 EHWW-116-SC-152202 (FD)	152-202	ML	None		X		X	
										EHWW-16-SC-202252	202-252	ML	None			X		
					3 (DT45) ${ }^{7}$	1	1.83	1.75	96\%	EHWW-16-SC-1	0-76	.-. ${ }^{6}$.-. ${ }^{6}$					x
						2	1.52	1.50	98\%	EHWW-16-SC-2	0-69	-- ${ }^{6}$	-- ${ }^{6}$					X
						3	1.22	0.82	67\%	EHWW-16-SC-3	0-70	-- ${ }^{6}$	--. ${ }^{6}$					x
EHWW-24	12/18/2018	467715	5366054	-5.8	1	1	3.05	2.74	90\%	EHWW-24-SC-045095	45-95	ML	None		X			
										EHWW-24-SC-095145	95-145	ML	None			X		
EHWW-36	12/17/2018	467882	5365843	-2.54	1	1	3.96	3.66	92\%	EHWW-36-SC-000050	0-50	ML	Trace	X				
										EHWW-36-SC-183233	183-233	ML	None		x			
										EHWW-36-SC-233-283	233-283	ML to CL/ML	None			X		
EHWW-38	12/17/2018	467497	5365953	-8.45	1	1	9.60	5.49	57\%	EHWW-38-SC-000050	0-50	ML	Occasional	X			x	
										EHWW-38-SC-050100	50-100	ML	None		X		X	
										EHWW-38-SC-100150	100-150	ML	None			x		
EHWW-39	12/18/2018	467649	5366183	-5.53	$\begin{gathered} 2^{8} \\ 4(\mathrm{DT} 45)^{7} \end{gathered}$	1	1.52	1.31	86\%	EHWW-39-SC-035085	35-85	ML	None		X			
										EHWW-39-SC-085135	85-135	ML	None			x		
						2	1.52	0.75	49\%	EHWW-39-SC-1	0-75	-- ${ }^{6}$	-- ${ }^{6}$					X
						3	1.52	1.15	75\%	EHWW-39-SC-2	0-70	--- ${ }^{6}$	--- ${ }^{6}$					x
						4	1.52	1.08	71\%	EHWW-39-SC-3	0-69	-- ${ }^{6}$	-- ${ }^{6}$					x
EHWW-40	12/18/2018	467844	5366143	-1.14	1	1	3.35	2.90	86\%	EHWW-40-SC-000050	0-50	ML	Substantial	X				
										EHWW-40-SC-060110	60-110	ML	None		X			
										EHWW-40-SC-110160	110-160	ML to CL/ML	None			x		

Table 2
Subsurface Sediment Sample Summary

Station ID	Sample Date	Sampling Coordinates ${ }^{1}$		$\begin{gathered} \text { Estimated } \\ \text { Mudline } \\ \text { Elevation } \\ \left(\text { metres CD) }{ }^{2}\right. \\ \hline \end{gathered}$	Attempts	Accepted Attempt	Penetration (metres)	Recovery		Sample ID	Sample Interval (centimetres)	Primary Lithology (USCS Symbol)	Wood Debris Abundance	Sample Type				
		Easting (metres)	Northing (metres)					(metres)	(pct)							$\begin{aligned} & \text { ed } \\ & \frac{0}{6} \\ & \hline \end{aligned}$	" ¢ ¢ ¢ 8 8 8	
WW-44	12/19/2018	467424	5366130	-8.82	1	1	3.96	3.05	77\%	EHWW-44-SC-017067	17-67	ML	None		X			
W-44										EHWW-44-SC-067117	67-117	ML	None			x		
EHWW-53	12/19/2018	466781	5366538	-3.39	1	1	4.57	3.96	87\%	EHWW-53-SC-000016	0-16	ML	Moderate	x				
										EHWW-53-SC-016066	16-66	ML	None		x			
										EHWW-53-SC-066116	66-116	ML	None			X		
EHWW-54	12/18/2018	466883	5366256	-4.8	1	1	3.66	2.59	71\%	EHWW-54-SC-000050	0-50	ML	Moderate to Substantial	x				
										EHWW-54-SC-055105	55-105	ML	None		X			
										EHWW-54-SC-105155	105-155	ML	None			X		
EHWW-55	12/19/2018	467399	5365788	-9.26	1	1	5.18	2.44	47\%	EHWW-55-SC-110160	110-160	ML	None		X			
										EHWW-55-SC-160210	160-210	ML	None			x		
					5 (DT45) 7	1	1.52	0.19	12\%	EHWW-55-SC-1	0-19	-- ${ }^{6}$	-- ${ }^{6}$					X
						3	1.52	0.13	9\%	EHWW-55-SC-2	0-13	--. ${ }^{6}$	-.- ${ }^{6}$					x
EHWW-56	12/17/2018	467952	5365692	-1.5	2	2	1.83	1.22	67\%	EHWW-56-SC-000050	0-50	ML	None		X^{9}			
										EHWW-56-SC-050100	50-100	ML	None			x		
EHWW-57	12/17/2018	467530	5365730	-6.16	3	3	1.22	0.61	50\%	EHWW-57-SC-000050	0-50	ML	Substantial	x				
					3 (DT45) ${ }^{7}$	1	0.91	0.22	24\%	EHWW-57-SC-1	0-22	-- ${ }^{6}$	-- ${ }^{6}$					x
						2	1.22	0.50	41\%	EHWW-57-SC-2	0-50	-- ${ }^{6}$	-- ${ }^{6}$					X
						3	1.22	0.53	43\%	EHWW-57-SC-3	0-53	-- ${ }^{6}$	-- ${ }^{6}$					X
EHWW-58	12/16/2018	467682	5365811	-6.8	2	2	5.18	1.68	32\%	EHWW-58-SC-361411	361-411	Shell Hash to CL	None		x			
										EHWW-58-SC-411461	411-461	CL	None			X	x	
EHWW-59	12/19/2018	467242	5366018	-8.3	1	1	5.49	3.35	61\%	EHWW-59-SC-038088	38-88	ML	None		X			
										EHWW-59-SC-088138	88-138	ML	None			x		
					3 (DT45) ${ }^{7}$	1	1.52	0.89	58\%	EHWW-59-SC-1	0-64	--. ${ }^{6}$	--. ${ }^{6}$					X
						2	1.52	0.90	59\%	EHWW-59-SC-2	0-67	-- ${ }^{6}$	--. ${ }^{6}$					X
						3	1.52	0.83	54\%	EHWW-59-SC-3	0-67	-- ${ }^{6}$	-- ${ }^{6}$					X
EHWW-65	12/19/2018	466719	5366789	-2.36	3	3	7.01	4.11	59\%	EHWW-65-SC-000050 EHWW-165-SC-000050 (FD)	0-50	ML	None	X				

[^2]
able 2

Subsurface Sediment Sample Summary

Notes

1. Horizontal datum North American Datum of 1983, Universal Transverse Mercator Zone 10 North.
2. Estimated mudline elevation was calculated as a function of measured water depth and observed tide height recorded by Fisheries and Oceans Canada for Station ID: 7120, Victoria, British Columbia.
3. PCB Aroclors, PAHs, Metals, Dioxin/Furans, TS/TOC
4. PCB Aroclors, PAHs, Metals, Dioxin/Furans, TS/TOC, Bulk Sulfides, Ammonia, TVS, Grain Size.
5. Moisture content, atterberg limits.
6. Sediment volume collected for bench scale treatability testing. Core was packaged and transported to Anchor QEA's Geochemistry Laboratory for testing.
7. Cores collected for bench scale treatability testing were collected using the Geoprobe DT45 sampling system into rigid plastic liners.
8. Primary accepted core collected using Geoprobe DT45 system.
9. No wood debris was observed at this location, $0-0.5 \mathrm{~m}$ interval selected for Leave Surface Chemistry suite testing.

AL: Atterberg limits
CD: Chart Datum
D/F: dioxin/furan
FD: field duplicate
GS: grain size
MC: moisture content
PAH: polycyclic aromatic hydrocarbon
PCB: polychlorinated biphenyl
pct: percent
SVOC: semivolatile organic compound
TOC: total organic carbon
TS: total solids
TVS: total volatile solids
USCS: unified soil classification system
CL: inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
ML: inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity

Table 3
Dive Survey Summary Observations

$\begin{array}{\|c} \text { Transect } \\ \text { ID } \end{array}$	Transect Survey Date	Distance AlongTransect (m)	$\left\lvert\, \begin{gathered} \text { DGT } \\ \text { Collected } \end{gathered}\right.$	Substrate Type (\%)							Wood Waste	Other Coverage (\% Cover)	
				Silt	Cobble	Boulder	Bedrock	Shell	Surface Coverage (\%)	Depth (m)	Predominant Wood Waste Type	Beggiatoa spp.	Diatoms
59	12/17/2018	0	--	100	0	0	0	5	0	--	--	0	0
		25	--	100	0	0	0	5	0	--	--	0	0
		50	--	100	0	0	0	5	0	0	--	0	10
		75	--	100	0	0	0	1	0	--	--	0	0
		100	--	100	0	0	0	1	0	0	--	0	60
		125	--	100	0	0	0	1	0	--	--	0	10
		150	--	100	0	0	0	0	0	--	--	0	0
		175	x	100	0	0	0	1	0	--	--	0	90
		200	--	100	0	0	0	0	0	0	--	0	100
60	12/18/2018	0	X	100	0	0	0	0	0	>0.1	--	0	50
		25	--	100	0	0	0	0	0	--	--	0	50
		50	--	100	0	0	0	0	0	>0.16	--	0	50
		75	--	100	0	0	0	0	0	--	--	0	50
		100	--	100	0	0	0	0	0	0.13	--	0	75
		125	--	100	0	0	0	0	0	--	--	0	75
		150	--	100	0	0	0	0	0	0.14	--	0	75
		175	--	100	0	0	0	0	0	--	--	0	75
		200	--	100	0	0	0	0	0	>0.2	--	0	50
61	12/19/2018	0	X	100	0	0	0	0	10	--	bark, large wood fragments	0	0
		25	--	100	0	0	0	0	20	--	bark	0	25
		50	--	100	0	0	0	0	0	0.23	--	0	50
		75	--	100	0	0	0	0	0	--	--	0	20
		100	--	100	0	0	0	0	10	0.07	submerged log	0	20
		125	--	100	0	0	0	0	0	--	--	0	10
		150	--	100	0	0	0	0	0	0.25	--	0	50
		175	--	100	0	0	0	0	10	--	bark	0	50
		200	--	100	0	0	0	0	0	0.24	--	0	50

Table 3
Dive Survey Summary Observations

Transect ID	Transect Survey Date	Distance Along Transect (m)	DGT Collected	Substrate Type (\%)							Wood Waste	Other Coverage (\% Cover)	
				Silt	Cobble	Boulder	Bedrock	Shell	Surface Coverage (\%)	$\begin{gathered} \text { Depth } \\ (\mathrm{m}) \\ \hline \end{gathered}$	Predominant Wood Waste Type	Beggiatoa spp.	Diatoms
62	12/19/2018	0	--	100	0	0	0	0	0	0.16	--	0	0
		25	--	100	0	0	0	0	0	--	--	0	0
		50	--	100	0	0	0	0	0	>0.18	--	0	0
		75	--	100	0	0	0	0	0	--	--	0	0
		100	--	100	0	0	0	0	0	>0.23	--	0	10
		125	--	100	0	0	0	0	0	--	--	0	0
		150	--	100	0	0	0	0	0	>0.22	--	0	10
		175	--	100	0	0	0	0	0	--	--	0	10
		200	X	100	0	0	0	0	0	>0.26	--	5	50
64	12/19/2018	0	--	100	0	0	0	0	0	>0.15	--	0	80
		25	--	100	0	0	0	0	0	--	--	0	80
		50	--	100	0	0	0	0	0	0	--	0	80
		75	--	100	0	0	0	0	0	--	--	5	80
		100	X	100	0	0	0	0	0	0	--	5	50
		125	--	100	0	0	0	0	0	--	--	5	80
		150	--	100	0	0	0	0	0	>0.27	--	5	80
		175	--	100	0	0	0	0	0	--	--	5	50
		200	--	100	0	0	0	0	0	0	--	5	50
65	12/19/2018	0	--	100	0	0	0	20	0	0	--	0	20
		25		100	0	0	0	0	0	--	--	10	80
		50	--	100	0	0	0	0	0	0.20	--	5	50
		75	--	100	0	0	0	0	0	--	--	5	80
		100	X	100	0	0	0	0	0	0.21	--	5	80
		125	--	100	0	0	0	0	0	--	--	5	90
		150	--	100	0	0	0	0	0	>0.17	--	5	80
		175	--	100	0	0	0	0	0	--	--	0	90
		200	--	100	0	0	0	0	50	>0.2	bark, large wood fragments	0	50

Table 3

Dive Survey Summary Observations

Transect ID	Transect Survey Date	Distance Along Transect (m)	DGT Collected	Substrate Type (\%)					Wood Waste			Other Coverage (\% Cover)	
				Silt	Cobble	Boulder	Bedrock	Shell	Surface Coverage (\%)	Depth (m)	Predominant Wood Waste Type	Beggiatoa spp.	Diatoms
66	12/18/2018	0	X	100	0	0	0	0	0	>0.05	---	10	80
		25	--	100	0	0	0	0	10	--	bark	0	50
		50	--	100	0	0	0	0	10	>0.02	bark, 1 submerged log	0	80
		75	--	50	0	50	0	0	80	--	bark and small wood fragments	0	0
		100	--	100	0	0	0	0	80	>0.02	70% wood fibres and small wood fragments, 10% large wood fragments and bark	0	0
		125	--	100	0	0	0	0	80	--	60\% small wood fragments, 20% bark and large wood fragments	0	0
		150	--	100	0	0	0	0	80	>0.23	60% small wood fragments, 20% bark and large wood fragments	0	0
		175	--	100	0	0	0	0	80	--	40% small wood fragments, 40% bark and large wood fragments	0	0
		200	--	100	0	0	0	0	80	>0.38	40% small wood fragments, 40% bark and large wood fragments	0	0
67	12/17/2018	0	X	100	0	0	0	0	0	--	--	0	90
		25	--	100	0	0	0	0	0	--	--	0	95
		50	--	100	0	0	0	0	0	>0.05	--	0	95
		75	--	100	0	0	0	0	30	--	bark and large wood fragments	1	80
		100	--	100	0	0	0	0	50	>0.1	10 g	20	30
		125	--	100	0	0	0	0	0	--	--	0	100
		150	--	100	0	0	0	0	25	>0.07	bark and large wood fragments	1	85
		175	--	100	0	0	0	0	0	--	--	5	80
		200	--	100	0	0	0	0	0	>0.2	--	20	40
68	12/18/2018	0	--	0	0	0	100	0	0	--	--	0	20
		25	--	100	0	0	0	0	100	--	bark	0	10
		50	--	100	0	0	0	0	100	>0.13	bark	0	50
		75	--	100	0	0	0	0	0	--	--	50	50
		100	--	100	0	0	0	0	10	>0.28	bark	0	50
		125	--	100	0	0	0	0	0	--	--	30	30
		150	--	100	0	0	0	0	0	>0.04	--	10	30
		175	--	100	0	0	0	0	10	--	bark	0	20
		200	--	0	100	0	0	0	0	--	--	0	80

Table 3
Dive Survey Summary Observations

				Substrate Type (\%)							Wood Waste	Other Coverage (\% Cover)	
$\begin{gathered} \text { Transect } \\ \text { ID } \end{gathered}$	Transect Survey Date	Distance Along Transect (m)	$\begin{gathered} \text { DGT } \\ \text { Collected } \end{gathered}$	Silt	Cobble	Boulder	Bedrock	Shell	Surface Coverage (\%)	Depth (m)	Predominant Wood Waste Type	Beggiatoa spp.	Diatoms
		0	--	100	0	0	0	0	30	>0.37	bark	0	60
		25	x	100	0	0	0	0	85	--	bark	0	0
		50	--	100	0	0	0	0	100	0.04	bark	0	0
		75	--	100	0	0	0	0	50	--	bark	1	0
69	12/17/2018	100	--	100	0	0	0	0	60	>0.09	bark	0	30
		125	--	100	0	0	0	0	60	--	bark	0	0
		150	--	100	0	0	0	0	100	>0.09	bark	0	30
		175	--	100	0	0	0	0	100	--	bark	0	50
		200	--	100	0	0	0	0	70	--	bark	0	60
		0	--	100	0	0	0	0	15	>0.13	bark	0	0
		25	--	100	0	0	0	0	100	--	bark, submerged log	5	0
		50	--	100	0	0	0	0	75	0.17	--	0	0
		75	--	100	0	0	0	0	0	--	bark, submerged log	0	50
70	12/17/2018	100	--	100	0	0	0	0	0	>0.05	--	0	50
		125	--	100	0	0	0	0	10	--	bark	0	30
		150	--	100	0	0	0	0	0	0.19	--	1	60
		175	--	100	0	0	0	0	0	--	--	0	40
		200	X	100	0	0	0	0	60	--	bark	0	40

Table 3
Dive Survey Summary Observations

Transect ID	Marine Vegetation (\% cover)							Number of Species Observed							
	Red Blade	Red Filamentous	Split Kelp	Succulent Seaweed	$\begin{array}{\|l\|l} \text { Grass } \\ \text { Kelp } \end{array}$	Sea Lettuce	Browns	Acorn Barnacle	Nuttal's Cockle	Graceful Rock Crab	Dungeness Crab	Hermit Crab	Turban Snail	Giant Plumose Anemone	Anemone Other
59	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	25	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
61	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 3
Dive Survey Summary Observations

	Marine Vegetation (\% cover)							Number of Species Observed							
$\left\|\begin{array}{c} \text { Transect } \\ \text { ID } \end{array}\right\|$	Red Blade	Red Filamentous	Split Kelp	Succulent Seaweed	$\begin{array}{\|l\|l} \text { Grass } \\ \text { Kelp } \end{array}$	$\begin{array}{\|c\|} \text { Sea } \\ \text { Lettuce } \end{array}$	Browns	Acorn Barnacle	Nuttal's Cockle	Graceful Rock Crab	Dungeness Crab	Hermit Crab	Turban Snail	Giant Plumose Anemone	Anemone Other
62	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
64	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
65	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 3
Dive Survey Summary Observations

$\begin{array}{\|c} \text { Transect } \\ \text { ID } \end{array}$	Marine Vegetation (\% cover)							Number of Species Observed							
	Red Blade	Red Filamentous	Split Kelp	Succulent Seaweed	$\begin{array}{\|l\|l} \text { Grass } \\ \text { Kelp } \end{array}$	Sea Lettuce	Browns	$\begin{array}{\|c\|} \hline \text { Acorn } \\ \text { Barnacle } \\ \hline \end{array}$	Nuttal's Cockle	Graceful Rock Crab	$\begin{gathered} \text { Dungeness } \\ \text { Crab } \end{gathered}$	Hermit Crab	Turban Snail		Anemone Other
66	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	20	0	0	0	0	0	0	0	0	0
67	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
68	0	40	0	0	0	0	0	10	0	0	0	0	0	0	4
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	10	10	0	0	0	0	0	0	0

Table 3
Dive Survey Summary Observations

	Marine Vegetation (\% cover)							Number of Species Observed							
$\left\lvert\, \begin{gathered} \text { Transect } \\ \text { ID } \end{gathered}\right.$	Red Blade	Red Filamentous	Split Kelp	Succulent Seaweed	Grass Kelp	Sea Lettuce	Browns	Acorn Barnacle	Nuttal's Cockle	Graceful Rock Crab	Dungeness Crab	Hermit Crab	Turban Snail	Giant Plumose Anemone	Anemone Other
	0	0	5	0	0	0	0	0	0	1	0	1	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0
	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
69	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	0	0	0	0	5	0	0	1	0	0	0	0	1	0	0
	0	0	50	0	0	0	0	1	0	0	0	0	0	0	0
	0	0	20	0	0	0	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
70	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0

Non-zero results are in BOLD
-: results not reported or not applicable
D: identification
m : metre

Table 4
Surface Water Profile Results

Transect ID	Date Sampled	Water Depth (m)	Sample Depth (m)	pH	Specific Conductance ($\mu \mathrm{S} / \mathrm{cm}$)	Salinity (ppt)	Temp (${ }^{\circ} \mathrm{C}$)	Dissolved Oxygen (mg/L)	$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$	Turbidity (NTU)	Sulphides (mg/L)
59	12/17/2018	4.5	0.5	7.59	51,920	33.79	8.3	6.87	91.9	0	--
			1.5	7.59	52,878	34.50	8.4	6.90	92.7	0	--
			2.5	7.59	53,104	34.65	8.4	6.82	93.0	0	--
			3.5	7.57	53,209	34.75	8.5	6.46	92.8	0.2	--
60	12/18/2018	7.5	0.5	7.61	51,137	33.23	8.3	7.66	105.1	0	ND
			1.5	7.61	52,649	34.33	8.3	7.62	105.2	0	--
			2.5	7.49	52,773	34.42	8.4	7.49	105.4	0	--
			4.0	7.59	53,236	34.77	8.5	7.22	105.7	0	ND
			4.5	7.58	53,257	34.79	8.5	6.96	105.9	0	--
			5.5	7.57	53,324	34.83	8.6	6.90	105.9	0	--
			6.5	7.52	53,396	34.89	8.6	6.82	105.9	0	--
			7.2	7.60	53,441	34.92	8.6	7.00	105.3	0	ND
61	12/19/2018	6.8	0.5	7.65	43,240	27.57	7.9	8.78	118.9	0.7	ND
			1.5	7.60	52,054	33.90	8.4	7.92	121.6	0	--
			2.5	7.60	52,311	34.09	8.4	7.68	121.9	0	--
			3.5	7.58	52,554	34.27	8.5	7.22	122.0	0	ND
			4.5	7.60	52,747	34.41	8.5	7.28	121.7	0	--
			5.5	7.60	52,871	34.50	8.5	7.28	121.6	0	--
			6.5	7.58	52,971	34.57	8.5	7.04	121.4	0	--
			6.8	7.52	53,000	34.60	8.5	6.61	118.5	0.6	ND
62	12/19/2018	6.5	0.5	7.29	47,134	30.53	7.8	8.59	199.4	0.1	ND
			1.5	7.31	52,049	33.87	8.1	8.34	196.8	0	--
			2.5	7.27	52,051	33.90	8.4	7.75	195.7	0	--
			3.5	7.26	52,378	34.14	8.4	7.39	194.4	0	ND
			4.5	7.33	52,701	34.38	8.5	7.02	182.2	0	--
			5.5	7.33	52,817	34.46	8.5	7.00	181.1	0	--
			6.2	7.28	52,977	34.58	8.5	6.06	173.1	0	ND

Table 4
Surface Water Profile Results

Transect ID	Date Sampled	$\begin{array}{\|c} \text { Water Depth } \\ (\mathrm{m}) \end{array}$	Sample Depth (m)	pH	\qquad	$\begin{aligned} & \text { Salinity } \\ & \text { (ppt) } \end{aligned}$	$\begin{gathered} \text { Temp } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { Dissolved Oxygen } \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \\ & \hline \end{aligned}$	Turbidity (NTU)	Sulphides (mg/L)
64	12/19/2018	9.0	0.5	7.63	46,978	30.23	8.1	8.36	113.0	0	ND
			1.5	7.63	52,527	34.22	8.2	8.14	113.2	0	--
			2.5	7.62	52,337	34.10	8.4	8.05	113.7	0	--
			3.5	7.60	52,542	34.26	8.5	7.84	114.4	0	--
			4.5	7.58	52,990	34.59	8.5	7.10	114.7	0	ND
			5.5	7.58	53,020	34.61	8.5	7.09	114.7	0	--
			6.5	7.58	53,119	34.68	8.5	7.09	114.6	0	--
			7.5	7.58	53,305	34.82	8.6	7.00	114.7	0	--
			8.5	7.57	53,352	34.86	8.6	6.93	114.6	0	--
			8.8	7.56	53,376	34.88	8.6	6.79	114.4	0.9	ND
65	12/19/2018	8.0	0.5	7.64	42,697	27.19	7.9	8.57	116.1	0.3	ND
			1.5	7.59	51,560	33.54	8.4	8.08	117.3	0	--
			2.5	7.56	52,152	33.97	8.4	7.79	118.3	0	--
			3.5	7.56	52,692	34.37	8.5	7.62	118.5	0	ND
			4.5	7.58	52,925	34.54	8.5	7.59	118.6	0	--
			5.5	7.59	53,141	34.70	8.5	7.45	118.1	0	--
			6.5	7.58	53,216	34.76	8.6	7.37	118.1	0	--
			7.5	7.53	53,295	34.82	8.6	6.70	118.0	0	ND
66	12/18/2018	6.7	0.5	7.69	47,004	30.25	8.1	8.65	99.6	0	ND
			1.5	7.68	50,884	33.04	8.2	8.44	100.1	0	--
			2.5	7.66	50,936	33.08	8.3	8.27	100.8	0	--
			3.5	7.63	51,554	33.53	8.3	7.92	101.5	0	ND
			4.5	7.58	52,472	34.20	8.4	7.04	102.1	0	--
			5.5	7.57	53,165	34.72	8.5	6.82	102.3	0	--
			6.5	7.56	53,385	34.88	8.6	6.57	102.1	0.2	ND

Table 4
Surface Water Profile Results

$\begin{array}{\|c\|} \hline \text { Transect } \\ \text { ID } \\ \hline \end{array}$	Date Sampled	Water Depth (m)	$\begin{gathered} \text { Sample Depth } \\ (\mathrm{m}) \\ \hline \end{gathered}$	pH	Specific Conductance ($\mu \mathrm{S} / \mathrm{cm}$)	Salinity (ppt)	$\begin{gathered} \text { Temp } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { Dissolved Oxygen } \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \\ & \hline \end{aligned}$	Turbidity (NTU)	Sulphides (mg/L)
67	12/17/2018	9.6	0.5	7.63	50,929	32.99	8.2	7.87	97.5	0	--
			1.5	7.61	52,860	34.42	8.4	7.41	97.9	0	--
			2.5	7.57	53,215	34.74	8.4	6.64	98.2	0	--
			3.5	7.61	53,277	34.79	8.5	7.01	97.8	0	--
			4.5	7.62	53,305	34.82	8.5	7.23	97.7	0	--
			5.5	7.63	53,310	34.82	8.5	7.32	97.6	0	--
			6.5	7.61	53,318	34.83	8.5	7.13	97.7	0	--
			7.5	7.59	53,336	34.84	8.6	6.89	97.9	0	--
			8.5	7.58	53,369	34.87	8.6	6.58	97.7	0	--
			9.0	7.57	53,388	34.89	8.6	6.32	97.1	0	--
68	12/18/2018	11.5	0.5	7.55	51,088	33.19	8.2	7.85	132.2	0	ND
			1.5	7.55	51,411	33.42	8.3	8.18	131.7	0	--
			2.5	7.54	51,879	33.77	8.3	7.31	131.6	0	--
			3.5	7.53	52,205	34.01	8.4	7.58	131.6	0	--
			4.5	7.51	52,558	34.27	8.4	7.00	131.0	0	--
			5.5	7.48	53,092	34.66	8.5	6.66	130.4	0	ND
			6.5	7.49	53,203	34.74	8.5	6.58	124.0	0	--
69	12/17/2018	6.4	0.5	7.61	50,145	33.28	8.2	7.72	102.6	0	--
			1.5	7.60	52,913	34.53	8.3	7.15	103.1	0	--
			2.5	7.58	53,099	34.67	8.4	7.01	103.4	0	--
			3.5	7.59	53,222	34.76	8.5	7.15	103.2	0	--
			4.5	7.60	53,278	34.80	8.5	7.30	103.0	0	--
			5.5	7.60	53,282	34.80	8.5	7.23	100.3	0	--
70	12/17/2018	11.0	0.5	7.38	50,575	35.81	8.1	8.25	211.6	0	--
			1.5	7.38	52,842	34.46	8.3	7.40	208.3	0	--
			2.5	7.38	53,061	34.64	8.4	6.94	204.2	0	--
			3.5	7.40	53,186	34.72	8.5	7.06	201.3	0	--
			4.5	7.43	53,267	34.79	8.5	7.39	196.6	0	--
			5.5	7.43	53,281	34.80	8.5	7.49	192.3	0	--
			6.5	7.43	53,281	34.80	8.5	7.39	188.8	0	--
			7.5	7.43	53,283	34.80	8.5	7.36	186.8	0	--
			8.5	7.43	53,288	34.81	8.5	7.35	186.1	0	--
			9.5	7.43	53,416	34.90	8.6	7.22	185.1	0	--
			10.8	7.44	53,454	34.96	8.6	7.24	181.9	0	--

Surface Water Profile Results

Notes:
--: results not reported or not applicable
$\mu \mathrm{S} / \mathrm{cm}$: microsemens per centimetre
ID: identification
m: metre
mg / L : miligrams per litre
mV : milivolts
ND: non-detect
NTU: Nephelometric Turbidity Unit
ORP: oxidation-reduction potential
ppt: parts per thousand

Table 5
DGT Analytical Results Summary

Notes:

1: Greater than values indicate that the DGT membrane was saturated. Reported values are set to greater than the maximum point on the
calibration curve applied to the DGT exposure duration.
DGT: diffusive gradients in thin films
FD: field duplicate sample
mg / L : milligrams per litre
R: Rejected

Table 6

Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-03 EHWW-03-SC-000050 $\begin{gathered} 12 / 17 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-03 EHWW-03-SC-150200 12/17/2018 $1.5-2 \mathrm{~m}$ N	EHWW-04 EHWW-04-SG-000010 $\begin{gathered} 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \\ \mathrm{~N} \end{gathered}$	EHWW-06 EHWW-06-SG-000010 $\begin{gathered} 10 / 1 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-09 EHWW-09-SG-000010 $\begin{gathered} 10 / 1 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N
Analytes	Method	CCME Marine PEL					
Conventional Parameters (mg/kg)							
Ammonia as nitrogen	SM 4500NH3E	--	--	1 U	--	--	--
Phosphorus	SW6010C	--	1240	579	1190	1260	1490
Sulphide, bulk	CALCULATED ${ }^{1}$	--	24100	5100	--	--	--
Conventional Parameters (pct)							
Loss on ignition	D2974	--	--	1.2	--	--	--
M oisture (water) content	D2216	--	--	23.4	--	--	--
Total organic carbon	AGAT_INOR-181-6027	--	13.6	0.58	--	--	--
Total solids	SM 2540G	--	24	77	--	--	--
Liquid limit	D4318	--	--	31	--	--	--
Plastic limit	D4318	--	--	18	--	--	--
Plasticity index	D4318	--	--	13	--	--	--
Conventional Parameters (standard units)							
pH	SM 4500HB	--	7.2	8.5	7.6	7	7.1
Grain Size (pct)							
Sand and gravel (>\#200 sieve)	SSMA_55.4	--	47	44	--	--	--
Metals (mg/kg)							
Aluminum	SW6010C	--	11500	17600	14500	15700	17700
Antimony	SW6020A	--	0.5	0.4	0.2	0.4	0.4
Arsenic	SW6020A	41.6	7.5	6.3	12	18.4	25.4
Barium	SW6020A	--	35	70.1	45.5	53.2	57
Beryllium	SW6020A	--	0.2	0.3	0.3	0.3	0.3
Bismuth	SW6020A	--	0.5 U				
Cadmium	SW6020A	4.2	1.81	1.18	3.63	3.3	2.63
Calcium	SW6010C	--	29000	39200	7360	7540	8100
Chromium	SW6020A	160	31	35	28	37	37
Cobalt	SW6020A	--	5.4	10.2	4.8	6.6	6.4
Copper	SW6020A	108	56.8	33.8	41.9	66.3	73.8
Iron	SW6010C	--	24300	24900	22700	27400	30400
Lead	SW6020A	112	20.1	4.4	23.6	28.8	27.8
Lithium	SW6020A	--	13.5	24.2	19	21.2	22.8

[^3]
Table 6

Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-10 EHWW-10-SG-000010 $\begin{gathered} 10 / 3 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-14 EHWW-14-SG-000010 $\begin{gathered} 10 / 3 / 2018 \\ 0-0.1 \mathrm{~m} \\ \mathrm{~N} \end{gathered}$	EHWW-16 EHWW-16-SC-152202 12/18/2018 $1.52-2.02 \mathrm{~m}$ N	$\begin{gathered} \text { EHWW-16 } \\ \text { EHWW-116-SC-152202 } \\ 12 / 18 / 2018 \\ 1.52-2.02 \mathrm{~m} \\ \text { FD } \end{gathered}$	EHWW-18 EHWW-18-SG-000010 $\begin{gathered} 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N
Analytes	Method	CCME Marine PEL					
Conventional Parameters (mg/kg)							
Ammonia as nitrogen	SM 4500NH3E	--	--	--	10	1	--
Phosphorus	SW6010C	--	1430	1030	748	751	1150
Sulphide, bulk	CALCULATED ${ }^{1}$	--	--	--	7000	9500	--
Conventional Parameters (pct)							
Loss on ignition	D2974	--	--	--	2.5	2.5	--
M oisture (water) content	D2216	--	--	--	43.6	--	--
Total organic carbon	AGAT_INOR-181-6027	--	--	--	1.17	1.11	--
Total solids	SM 2540G	--	--	--	56	60	--
Liquid limit	D4318	--	--	--	NP	--	--
Plastic limit	D4318	--	--	--	NP	--	--
Plasticity index	D4318	--	--	--	NP	--	--
Conventional Parameters (standard units)							
pH	SM 4500HB	--	7.6	7.4	7.6	7.5	6.6
Grain Size (pct)							
Sand and gravel (>\#200 sieve)	SSMA_55.4	--	--	--	26	--	--
Metals (mg/kg)							
Aluminum	SW6010C	--	16800	16400	12500	13000	12800
Antimony	SW6020A	--	0.7	0.4	0.2	0.2	0.5
Arsenic	SW6020A	41.6	10.3	12.9	8.3	7.4	17.6
Barium	SW6020A	--	73.8	53.2	29.2	29.8	42.9
Beryllium	SW6020A	--	0.4	0.3	0.2	0.2	0.3
Bismuth	SW6020A	--	0.5 U				
Cadmium	SW6020A	4.2	0.66	2.21	4.59	4.61	3.86
Calcium	SW6010C	--	8910	7010	17900	10900	7100
Chromium	SW6020A	160	30	30	25	24	31
Cobalt	SW6020A	--	6.2	5.6	4.9	4.8	5.6
Copper	SW6020A	108	66.7	46.7	17.7	18.3	54.6
Iron	SW6010C	--	29400	27600	17200	17800	22700
Lead	SW6020A	112	32.9	23.3	2.8	2.8	28.1
Lithium	SW6020A	--	24.8	22.5	14.3	14.7	18.3

[^4]
Table 6

Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-19 EHWW-19-SG-000010 $\begin{gathered} 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-24 EHWW-24-SC-045095 12/18/2018 $0.45-0.95 \mathrm{~m}$ N	EHWW-30 EHWW-30-SG-000010 $\begin{gathered} 10 / 3 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-33 EHWW-33-SG-000010 $\begin{gathered} 10 / 3 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-36 EHWW-36-SC-000050 $\begin{gathered} 12 / 17 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N
Analytes	Method	CCME Marine PEL					
Conventional Parameters (mg/kg)							
Ammonia as nitrogen	SM 4500NH3E	--	--	1 U	--	--	--
Phosphorus	SW6010C	--	1060	812	1190	1050	1180
Sulphide, bulk	CALCULATED ${ }^{1}$	--	--	9500	--	--	--
Conventional Parameters (pct)							
Loss on ignition	D2974	--	--	3.5	--	--	--
M oisture (water) content	D2216	--	--	--	--	--	--
Total organic carbon	AGAT_INOR-181-6027	--	--	1.18	--	--	13.5
Total solids	SM 2540G	--	--	60	--	--	26
Liquid limit	D4318	--	--	--	--	--	--
Plastic limit	D4318	--	--	--	--	--	--
Plasticity index	D4318	--	--	--	--	--	--
Conventional Parameters (standard units)							
pH	SM 4500HB	--	7.5	7.8	7.6	7.5	6.9
Grain Size (pct)							
Sand and gravel (>\#200 sieve)	SSMA_55.4	--	--	8	--	--	--
Metals (mg/kg)							
Aluminum	SW6010C	--	13300	14300	16600	17100	15100
Antimony	SW6020A	--	0.5	0.2	0.5	0.5	0.8
Arsenic	SW6020A	41.6	14.5	8.4	15.5	14.9	19.6
Barium	SW6020A	--	42.9	34.4	67.5	57	45.4
Beryllium	SW6020A	--	0.3	0.3	0.3	0.4	0.3
Bismuth	SW6020A	--	0.5 U				
Cadmium	SW6020A	4.2	3.74	3.88	0.92	1.48	3.4
Calcium	SW6010C	--	7770	9080	7910	7390	9110
Chromium	SW6020A	160	29	30	35	33	45
Cobalt	SW6020A	--	5.4	5.6	6.9	6.4	8.7
Copper	SW6020A	108	46.9	18.8	73.8	52.9	91.2
Iron	SW6010C	--	21700	19900	29900	28700	27400
Lead	SW6020A	112	22.3	3	31.7	24.8	40.3
Lithium	SW6020A	--	16.8	18	23.4	24.3	18.1

[^5]
Table 6

Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-36 EHWW-36-SC-183233 12/17/2018 $1.83-2.33 \mathrm{~m}$ N	EHWW-38 EHWW-38-SC-000050 $\begin{gathered} 12 / 17 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-38 EHWW-38-SC-050100 $\begin{gathered} 12 / 17 / 2018 \\ 0.5-1 \mathrm{~m} \end{gathered}$ N	EHWW-39 EHWW-39-SG-000010 $\begin{gathered} 10 / 1 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-39 EHWW-39-SC-035085 $\begin{gathered} 12 / 18 / 2018 \\ 0.35-0.85 \mathrm{~m} \end{gathered}$ N
Analytes	Method	CCME Marine PEL					
Conventional Parameters (mg/kg)							
Ammonia as nitrogen	SM 4500NH3E	--	2	--	1 U	--	1 U
Phosphorus	SW6010C	--	494	915	830	1370	825
Sulphide, bulk	CALCULATED ${ }^{1}$	--	4900	12900	7600	--	6700
Conventional Parameters (pct)							
Loss on ignition	D2974	--	1.5	--	3.6	--	3.2
M oisture (water) content	D2216	--	--	60.5	44.8	--	--
Total organic carbon	AGAT_INOR-181-6027	--	0.35	4.34	1.52	--	1.46
Total solids	SM 2540G	--	72	37	55	--	60
Liquid limit	D4318	--	--	NP	NP	--	--
Plastic limit	D4318	--	--	NP	NP	--	--
Plasticity index	D4318	--	--	NP	NP	--	--
Conventional Parameters (standard units)							
pH	SM 4500HB	--	8.5	7.5	7.8	7.1	7.8
Grain Size (pct)							
Sand and gravel (>\#200 sieve)	SSMA_55.4	--	6	14	5	--	15
Metals (mg/kg)							
Aluminum	SW6010C	--	29100	16100	16200	15900	13400
Antimony	SW6020A	--	0.4	0.4	0.2	0.5	0.2
Arsenic	SW6020A	41.6	6.3	9.2	8.1	18.9	6.4
Barium	SW6020A	--	103	49.5	43.9	57.9	32.7
Beryllium	SW6020A	--	0.5	0.3	0.4	0.3	0.2
Bismuth	SW6020A	--	0.5 U				
Cadmium	SW6020A	4.2	0.31	3.25	3.86	4.52	4.32
Calcium	SW6010C	--	13800	19300	10100	7640	16600
Chromium	SW6020A	160	49	38	33	41	29
Cobalt	SW6020A	--	18.3	6.1	5.7	7.2	5
Copper	SW6020A	108	59.6	46.6	19.5	86.2	18.7
Iron	SW6010C	--	39200	25200	21600	27600	17900
Lead	SW6020A	112	6.1	29.2	5.5	37.1	6.8
Lithium	SW6020A	--	30.9	22.4	21	23	16

[^6]
Table 6

Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-40 EHWW-40-SC-000050 $\begin{gathered} 12 / 18 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-40 EHWW-40-SC-060110 12/18/2018 0.6-1.1 m N	EHWW-42 $\begin{gathered} \text { EHWW-42-SG-000010 } \\ 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \\ \mathrm{~N} \end{gathered}$	EHWW-44 EHWW-44-SG-000010 $\begin{gathered} 10 / 4 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-44 EHWW-44-SC-017067 $\begin{gathered} 12 / 19 / 2018 \\ 0.17-0.67 \mathrm{~m} \end{gathered}$ N
Analytes	Method	CCME Marine PEL					
Conventional Parameters (mg/kg)							
Ammonia as nitrogen	SM 4500NH3E	--	--	1 U	--	--	2
Phosphorus	SW6010C	--	1060	657	1310	898	823
Sulphide, bulk	CALCULATED ${ }^{1}$	--	23700	6700	--	--	8300
Conventional Parameters (pct)							
Loss on ignition	D2974	--	--	4.1	--	--	3.5
M oisture (water) content	D2216	--	--	--	--	--	--
Total organic carbon	AGAT_INOR-181-6027	--	13.4	1.1	--	--	1.49
Total solids	SM 2540G	--	24	75	--	--	57
Liquid limit	D4318	--	--	--	--	--	--
Plastic limit	D4318	--	--	--	--	--	--
Plasticity index	D4318	--	--	--	--	--	--
Conventional Parameters (standard units)							
pH	SM 4500HB	--	6.8	7.8	7.4	7.3	7.5
Grain Size (pct)							
Sand and gravel (>\#200 sieve)	SSMA_55.4	--	80	55	--	--	5
Metals (mg/kg)							
Aluminum	SW6010C	--	10700	8370	15400	14200	16800
Antimony	SW6020A	--	0.6	0.2	0.2	0.3	0.2
Arsenic	SW6020A	41.6	6.8	9.1	12.5	12.9	9.4
Barium	SW6020A	--	28.2	20.3	47.4	43.2	42.8
Beryllium	SW6020A	--	0.2	0.1	0.3	0.3	0.3
Bismuth	SW6020A	--	0.5 U				
Cadmium	SW6020A	4.2	3.43	1.47	4.23	2.73	3.73
Calcium	SW6010C	--	6510	35000	7920	7530	12900
Chromium	SW6020A	160	33	16	30	29	36
Cobalt	SW6020A	--	5	5	5	5.7	6.4
Copper	SW6020A	108	68.5	14	46.8	43.7	23.1
Iron	SW6010C	--	17700	13000	23600	23200	23100
Lead	SW6020A	112	33.4	4.4	26.1	20.3	5.3
Lithium	SW6020A	--	12.9	7.8	19.4	18.1	22.3

[^7]
Table 6

Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-45 EHWW-45-SG-000010 $\begin{gathered} 10 / 4 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-46 EHWW-46-SG-0000010 $\begin{gathered} \text { 10/4/2018 } \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-48 EHWW-48-SG-000010 $\begin{gathered} 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ \mathbf{N}	EHWW-48 EHWW-148-SG-000010 $\begin{gathered} 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \\ \text { FD } \end{gathered}$	EHWW-53 EHWW-53-SC-000016 $\begin{gathered} 12 / 19 / 2018 \\ 0-0.16 \mathrm{~m} \end{gathered}$ N
Analytes	Method	CCME Marine PEL					
Conventional Parameters (mg/ $\mathbf{~ k g}$)							
Ammonia as nitrogen	SM 4500NH3E	--	--	--	--	--	--
Phosphorus	SW6010C	--	1190	1060	1170	1190	999
Sulphide, bulk	CALCULATED ${ }^{1}$	--	--	--	--	--	8700
Conventional Parameters (pct)							
Loss on ignition	D2974	--	--	--	--	--	--
M oisture (water) content	D2216	--	--	--	--	--	--
Total organic carbon	AGAT_INOR-181-6027	--	--	--	--	--	3.32
Total solids	SM 2540G	--	--	--	--	--	52
Liquid limit	D4318	--	--	--	--	--	--
Plastic limit	D4318	--	--	--	--	--	--
Plasticity index	D4318	--	--	--	--	--	--
Conventional Parameters (standard units)							
pH	SM 4500HB	--	7.4	7.3	7.3	7.3	7.8
Grain Size (pct)							
Sand and gravel (>\#200 sieve)	SSMA_55.4	--	--	--	--	--	37
Metals (mg/kg)							
Aluminum	SW6010C	--	14200	13400	16100	15100	12100
Antimony	SW6020A	--	0.2	0.2	0.3	0.3	0.5
Arsenic	SW6020A	41.6	13.6	14	14.9	18.4	11.4
Barium	SW6020A	--	39.9	35.5	43.1	40.9	48.2
Beryllium	SW6020A	--	0.2	0.2	0.3	0.3	0.2
Bismuth	SW6020A	--	0.5 U				
Cadmium	SW6020A	4.2	4.1	4.01	4.4	4.35	4.92
Calcium	SW6010C	--	7800	7080	7550	7750	15400
Chromium	SW6020A	160	33	26	35	35	28
Cobalt	SW6020A	--	5.7	4.8	6.6	6.4	5.1
Copper	SW6020A	108	54.1	42.9	60.8	60.7	43.7
Iron	SW6010C	--	21400	19900	24700	24000	16600
Lead	SW6020A	112	24.2	20.4	25.4	24.1	84.8
Lithium	SW6020A	--	17.6	15.3	20.4	18.6	14.4

[^8]
Table 6

Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-53 EHWW-53-SC-016066 $\begin{gathered} 12 / 19 / 2018 \\ 0.16-0.66 \mathrm{~m} \\ \mathrm{~N} \end{gathered}$	EHWW-53 EHWW-53-SC-066116 $\begin{gathered} 12 / 19 / 2018 \\ 0.66-1.16 \mathrm{~m} \end{gathered}$ N	EHWW-54 EHWW-54-SC-000050 $\begin{gathered} 12 / 18 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-54 EHWW-54-SC-055105 $\begin{gathered} 12 / 18 / 2018 \\ 0.55-1.05 \mathrm{~m} \end{gathered}$ N	EHWW-54 EHWW-54-SC-105155 $\begin{gathered} 12 / 18 / 2018 \\ 1.05-1.55 \mathrm{~m} \\ \mathrm{~N} \end{gathered}$
Analytes	Method	CCME Marine PEL					
Conventional Parameters (mg/kg)							
Ammonia as nitrogen	SM 4500NH3E	--	1 U	--	--	10	--
Phosphorus	SW6010C	--	672	405	947	885	612
Sulphide, bulk	CALCULATED ${ }^{1}$	--	4700	--	6500	7900	--
Conventional Parameters (pct)							
Loss on ignition	D2974	--	1.3	--	--	2.8	--
M oisture (water) content	D2216	--	--	--	--	--	--
Total organic carbon	AGAT_INOR-181-6027	--	0.87	--	3.5	1.41	--
Total solids	SM 2540 G	--	75	82	48	59	58
Liquid limit	D4318	--	--	--	--	--	--
Plastic limit	D4318	--	--	--	--	--	--
Plasticity index	D4318	--	--	--	--	--	--
Conventional Parameters (standard units)							
pH	SM 4500HB	--	8	8.1	7.6	7.9	7.5
Grain Size (pct)							
Sand and gravel (>\#200 sieve)	SSMA_55.4	--	54	--	14	18	--
Metals (mg/kg)							
Aluminum	SW6010C	--	8220	9120	13400	13700	17500
Antimony	SW6020A	--	0.1	0.1	0.2	0.2	0.2
Arsenic	SW6020A	41.6	4.7	5.7	6.9	8.5	8.3
Barium	SW6020A	--	20.8	16.6	35.3	31.4	31.4
Beryllium	SW6020A	--	0.1	0.1	0.3	0.3	0.3
Bismuth	SW6020A	--	0.5 U				
Cadmium	SW6020A	4.2	5.02	1.76	4.44	5.67	3.45
Calcium	SW6010C	--	39400	16000	9220	20200	11700
Chromium	SW6020A	160	15	16	29	29	39
Cobalt	SW6020A	--	3.5	4.8	4.7	5.2	8.6
Copper	SW6020A	108	11.4	12.8	30	20.1	34.4
Iron	SW6010C	--	11300	13500	18400	18700	25700
Lead	SW6020A	112	1.9	1.4	18.1	3.2	3.6
Lithium	SW6020A	--	8.6	9.1	15.9	16.4	21.7

[^9]
Table 6

Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-55 EHWW-55-SC-110160 12/19/2018 1.1-1.6 m N	EHWW-56 EHWW-56-SC-000050 $\begin{gathered} 12 / 17 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-57 EHWW-57-SC-000050 $\begin{gathered} 12 / 17 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-58 EHWW-58-SC-361411 12/16/2018 $3.61-4.11 \mathrm{~m}$ N	EHWW-58 EHWW-58-SC-411461 12/16/2018 $4.11-4.61 \mathrm{~m}$ N
Analytes	Method	CCME Marine PEL					
Conventional Parameters (mg/kg)							
Ammonia as nitrogen	SM 4500NH3E	--	1 U	--	--	1 U	--
Phosphorus	SW6010C	--	975	680	825	577	--
Sulphide, bulk	CALCULATED ${ }^{1}$	--	8500	--	47300	2000	--
Conventional Parameters (pct)							
Loss on ignition	D2974	--	4.5	--	--	1.6	--
M oisture (water) content	D2216	--	--	--	--	--	28.9
Total organic carbon	AGAT_INOR-181-6027	--	1.92	1.75	16.1	0.66	--
Total solids	SM 2540G	--	61	65	21	75	--
Liquid limit	D4318	--	--	--	--	--	53
Plastic limit	D4318	--	--	--	--	--	27
Plasticity index	D4318	--	--	--	--	--	27
Conventional Parameters (standard units)							
pH	SM 4500HB	--	7.9	8.2	7	8.5	--
Grain Size (pct)							
Sand and gravel (>\#200 sieve)	SSMA_55.4	--	3	60	61	45	--
Metals (mg/kg)							
Aluminum	SW6010C	--	16800	7730	8030	22100	--
Antimony	SW6020A	--	0.2	0.2	0.7	0.3	--
Arsenic	SW6020A	41.6	6.2	7.4	12.9	5.7	--
Barium	SW6020A	--	57	19.6	28.5	61.3	--
Beryllium	SW6020A	--	0.3	0.1	0.2	0.4	--
Bismuth	SW6020A	--	0.5 U	0.5 U	0.5 U	0.5 U	--
Cadmium	SW6020A	4.2	2.96	1.25	1.49	0.93	--
Calcium	SW6010C	--	10400	35900	18500	71600	--
Chromium	SW6020A	160	33	16	47	42	--
Cobalt	SW6020A	--	5.8	4	4.3	12	--
Copper	SW6020A	108	24.4	22.3	52.9	43.2	--
Iron	SW6010C	--	23800	12800	43900	32200	--
Lead	SW6020A	112	17.5	5.5	15	4.2	--
Lithium	SW6020A	--	21.5	8.1	10.7	30.3	--

[^10]Table 6
Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-59 EHWW-59-SC-038088 $\begin{gathered} 12 / 19 / 2018 \\ 0.38-0.88 \mathrm{~m} \end{gathered}$ N	EHWW-65 EHWW-65-SC-000050 $\begin{gathered} 12 / 19 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-65 EHWW-165-SC-000050 $\begin{gathered} 12 / 19 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ FD
Analytes	Method	CCME Marine PEL			
Conventional Parameters (mg/kg)					
Ammonia as nitrogen	SM 4500NH3E	--	1 U	--	--
Phosphorus	SW6010C	--	903	617	731
Sulphide, bulk	CALCULATED ${ }^{1}$	--	7500	4600	--
Conventional Parameters (pct)					
Loss on ignition	D2974	--	4.8	--	--
M oisture (water) content	D2216	--	--	--	--
Total organic carbon	AGAT_INOR-181-6027	--	1.63	1.28	1.33
Total solids	SM 2540G	--	55	70	70
Liquid limit	D4318	--	--	--	--
Plastic limit	D4318	--	--	--	--
Plasticity index	D4318	--	--	--	--
Conventional Parameters (standard units)					
pH	SM 4500HB	--	7.8	8	8
Grain Size (pct)					
Sand and gravel (>\#200 sieve)	SSMA_55.4	--	4	46	--
Metals (mg/kg)					
Aluminum	SW6010C	--	15700	8210	8600
Antimony	SW6020A	--	0.2	0.2	0.2
Arsenic	SW6020A	41.6	6.6	7.5	7
Barium	SW6020A	--	44.4	20.2	21.1
Beryllium	SW6020A	--	0.3	0.2	0.1
Bismuth	SW6020A	--	0.5 U	0.5 U	0.5 U
Cadmium	SW6020A	4.2	4.4	4.3	4.92
Calcium	SW6010C	--	12200	8160	7430
Chromium	SW6020A	160	32	18	18
Cobalt	SW6020A	--	5.4	3.8	4
Copper	SW6020A	108	19.3	20.7	21.7
Iron	SW6010C	--	21300	11900	12500
Lead	SW6020A	112	7.6	9.6	10.4
Lithium	SW6020A	--	20	9.4	10.5

[^11]
Table 6

Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-03 EHWW-03-SC-000050 $\begin{gathered} 12 / 17 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-03 EHWW-03-SC-150200 12/17/2018 $1.5-2 \mathrm{~m}$ N	EHWW-04 EHWW-04-SG-000010 $\begin{gathered} 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \\ \mathrm{~N} \\ \hline \end{gathered}$	EHWW-06 EHWW-06-SG-000010 $\begin{gathered} 10 / 1 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-09 EHWW-09-SG-000010 $\begin{gathered} 10 / 1 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N
Analytes	Method	CCME Marine PEL					
Magnesium	SW6010C	--	10100	8330	9400	12000	13400
M anganese	SW6020A	--	179	330	164	176	175
M ercury	SW6020A	0.7	0.31	0.04	0.38	0.39	0.33
Molybdenum	SW6020A	--	20.6	4.9	2.4	10.4	8.9
Nickel	SW6020A	--	21.8	29.5	17.5	24.5	24
Potassium	SW6010C	--	2720	3060	2770	3490	3930
Selenium	SW6020A	--	1.8	2.2	1.7	2.1	2.7
Silver	SW6020A	--	0.5 U				
Sodium	SW6010C	--	34400	6190	21200	33300	37500
Strontium	SW6020A	--	239	309	58	66	69
Thallium	SW6020A	--	0.3	0.3	0.4	0.4	0.4
Tin	SW6020A	--	5.6	0.5	4.5	5.1	4.9
Titanium	SW6010C	--	640	1270	1160	1070	1130
Uranium (Uranium 238)	SW6020A	--	6.5	1.7	1.2	3.9	3
Vanadium	SW6020A	--	57	63	42	59	57
Zinc	SW6020A	271	110	52	80	118	109
Zirconium	SW6020A	--	5.8	9.7	6.5	9.1	8
Semivolatile Organics ($\mu \mathrm{g} / \mathrm{kg}$)							
Benzo(b)pyridine (Quinoline)	BCLM 2015D-PAHS	--	200 U	50 U	100 U	100 U	200 U
Polycyclic Aromatic Hydrocarbons ($\mu \mathrm{g} / \mathrm{kg}$)							
1-M ethylnaphthalene	BCLM 2015D-PAHS	--	20 U	5 U	10 U	10 U	20 U
2-Methylnaphthalene	BCLM 2015D-PAHS	201	20 U	5 U	20	30	30
Acenaphthene	BCLM 2015D-PAHS	88.9	20 U	5 U	10 U	10 U	20 U
Acenaphthylene	BCLM 2015D-PAHS	128	20 U	5 U	10 U	10 U	20 U
Anthracene	BCLM 2015D-PAHS	245	50	4 U	26	38	40
Benzo(a)anthracene	BCLM 2015D-PAHS	693	150	30 U	60	110	110
Benzo(a)pyrene	BCLM 2015D-PAHS	763	100	30 U	70	130	130
Benzo(b)fluoranthene	BCLM 2015D-PAHS	--	260	20 U	110	200	220
Benzo(g,h,i)perylene	BCLM 2015D-PAHS	--	200 U	50 U	100 U	100 U	200 U
Benzo(j)fluoranthene	BCLM 2015D-PAHS	--	80	20 U	50	90	90
Benzo(k)fluoranthene	BCLM 2015D-PAHS	--	120	20 U	50	110	110

[^12]
Table 6

Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-10 EHWW-10-SG-000010 $\begin{gathered} 10 / 3 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-14 EHWW-14-SG-000010 $\begin{gathered} 10 / 3 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-16 EHWW-16-SC-152202 12/18/2018 1.52-2.02 m N	$\begin{gathered} \text { EHWW-16 } \\ \text { EHWW-116-SC-152202 } \\ 12 / 18 / 2018 \\ 1.52-2.02 \mathrm{~m} \\ \text { FD } \end{gathered}$	EHWW-18 $\begin{gathered} \text { EHWW-18-SG-000010 } \\ \text { 10/2/2018 } \\ 0-0.1 \mathrm{~m} \\ \mathrm{~N} \end{gathered}$
Analytes	Method	CCME Marine PEL					
M agnesium	SW6010C	--	10300	10400	5470	5590	10500
Manganese	SW6020A	--	188	178	178	178	163
M ercury	SW6020A	0.7	0.58	0.38	0.05	0.03	0.32
Molybdenum	SW6020A	--	2.1	3	3.2	3.3	19.7
Nickel	SW6020A	--	20.3	19.7	17	17.5	21.6
Potassium	SW6010C	--	2940	3040	1650	1720	2860
Selenium	SW6020A	--	1.1	1.5	2.8	3.9	2.6
Silver	SW6020A	--	0.5 U				
Sodium	SW6010C	--	15600	20500	6920	7350	29800
Strontium	SW6020A	--	61	54	113	71	76
Thallium	SW6020A	--	0.2	0.3	0.7	0.7	0.4
Tin	SW6020A	--	4.3	3.5	0.4	0.4	4.6
Titanium	SW6010C	--	1300	1290	1180	1220	915
Uranium (Uranium 238)	SW6020A	--	1.4	1.4	1.2	1.2	7.2
Vanadium	SW6020A	--	48	45	43	42	57
Zinc	SW6020A	271	86	83	58	48	103
Zirconium	SW6020A	--	8.2	8	7.3	7.5	8.6
Semivolatile Organics ($\mu \mathrm{g} / \mathrm{kg}$)							
Benzo(b)pyridine (Quinoline)	BCLM 2015D-PAHS	--	100 U	100 U	50 U	50	100 U
Polycyclic Aromatic Hydrocarbons ($\mu \mathrm{g} / \mathrm{kg}$)							
1-M ethylnaphthalene	BCLM 2015D-PAHS	--	10 U	10 U	5 U	5 U	10 U
2-Methylnaphthalene	BCLM 2015D-PAHS	201	10	10	9	11	20
Acenaphthene	BCLM 2015D-PAHS	88.9	10	10 U	5 U	5 U	10 U
Acenaphthylene	BCLM 2015D-PAHS	128	10	10 U	5 U	5 U	10 U
Anthracene	BCLM 2015D-PAHS	245	60	27	4 U	4 U	40
Benzo(a)anthracene	BCLM 2015D-PAHS	693	180	70	30 U	30 U	60
Benzo(a)pyrene	BCLM 2015D-PAHS	763	250	90	30 U	30 U	100
Benzo(b)fluoranthene	BCLM 2015D-PAHS	--	330	120	20 U	20 U	150
Benzo(g,h,i)perylene	BCLM 2015D-PAHS	--	100 U	100 U	50 U	50 U	100 U
Benzo(j)fluoranthene	BCLM 2015D-PAHS	--	130	50	20 U	20 U	60
Benzo(k)fluoranthene	BCLM 2015D-PAHS	--	190	60	20 U	20 U	80

[^13]
Table 6

Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-19 EHWW-19-SG-000010 $\begin{gathered} 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \\ \mathrm{~N} \end{gathered}$	EHWW-24 EHWW-24-SC-045095 12/18/2018 $0.45-0.95 \text { m }$ N	EHWW-30 EHWW-30-SG-000010 $\begin{gathered} 10 / 3 / 2018 \\ 0-0.1 \mathrm{~m} \\ \mathrm{~N} \end{gathered}$	EHWW-33 EHWW-33-SG-000010 $\begin{gathered} 10 / 3 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-36 EHWW-36-SC-000050 $\begin{gathered} 12 / 17 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N
Analytes	Method	CCME Marine PEL					
Magnesium	SW6010C	--	8690	6490	10800	10400	11300
M anganese	SW6020A	--	158	198	184	190	225
M ercury	SW6020A	0.7	0.39	0.04	0.58	0.42	0.43
Molybdenum	SW6020A	--	2.7	3.6	2.3	1.9	19.6
Nickel	SW6020A	--	19.1	19.6	22.8	21.7	32.6
Potassium	SW6010C	--	2400	2030	3150	3080	2790
Selenium	SW6020A	--	1.5	1.3	1.2	1.2	2.5
Silver	SW6020A	--	0.5 U				
Sodium	SW6010C	--	18600	7430	20000	18200	30800
Strontium	SW6020A	--	57	63	58	56	83
Thallium	SW6020A	--	0.5	0.5	0.2	0.3	0.5
Tin	SW6020A	--	3.4	0.6	4.6	3.5	28.9
Titanium	SW6010C	--	1130	1260	1250	1300	912
Uranium (Uranium 238)	SW6020A	--	1.3	1.6	1.3	1.2	6.2
Vanadium	SW6020A	--	44	49	52	49	76
Zinc	SW6020A	271	93	55	97	90	158
Zirconium	SW6020A	--	6.3	8.4	7.9	8.3	7.1
Semivolatile Organics ($\mu \mathrm{g} / \mathrm{kg}$)							
Benzo(b)pyridine (Quinoline)	BCLM 2015D-PAHS	--	100 U	50 U	100 U	50 U	200 U
Polycyclic Aromatic Hydrocarbons ($\mu \mathrm{g} / \mathrm{kg}$)							
1-M ethylnaphthalene	BCLM 2015D-PAHS	--	10 U	5 U	10	5	20 U
2-Methylnaphthalene	BCLM 2015D-PAHS	201	20	11	10	13	20
Acenaphthene	BCLM 2015D-PAHS	88.9	10 U	5 U	10	8	20
Acenaphthylene	BCLM 2015D-PAHS	128	10	5 U	10	6	30
Anthracene	BCLM 2015D-PAHS	245	43	4 U	64	30	110
Benzo(a)anthracene	BCLM 2015D-PAHS	693	100	30 U	160	70	380
Benzo(a)pyrene	BCLM 2015D-PAHS	763	120	30 U	200	90	310
Benzo(b)fluoranthene	BCLM 2015D-PAHS	--	190	20 U	230	130	640
Benzo(g,h,i)perylene	BCLM 2015D-PAHS	--	100 U	50 U	100 U	50 U	200 U
Benzo(j)fluoranthene	BCLM 2015D-PAHS	--	80	20 U	100	50	230
Benzo(k)fluoranthene	BCLM 2015D-PAHS	--	100	20 U	130	60	360

[^14]
Table 6

Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-36 EHWW-36-SC-183233 12/17/2018 $1.83-2.33 \mathrm{~m}$ N	EHWW-38 EHWW-38-SC-000050 $\begin{gathered} 12 / 17 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-38 EHWW-38-SC-050100 $\begin{gathered} 12 / 17 / 2018 \\ 0.5-1 \mathrm{~m} \end{gathered}$ N	EHWW-39 EHWW-39-SG-000010 $\begin{gathered} 10 / 1 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-39 EHWW-39-SC-035085 $\begin{gathered} 12 / 18 / 2018 \\ 0.35-0.85 \mathrm{~m} \end{gathered}$ N
Analytes	Method	CCME Marine PEL					
Magnesium	SW6010C	--	14900	9590	7240	11900	6160
M anganese	SW6020A	--	752	197	202	187	185
M ercury	SW6020A	0.7	0.06	0.54	0.08	0.47	0.09
Molybdenum	SW6020A	--	0.5	9.5	4.4	13.2	4.4
Nickel	SW6020A	--	48.1	26	20.7	28.1	17.3
Potassium	SW6010C	--	3490	2790	2290	3420	1830
Selenium	SW6020A	--	0.9	1.5	2.8	2.8	1.7
Silver	SW6020A	--	0.5 U				
Sodium	SW6010C	--	5530	20800	9090	30300	8420
Strontium	SW6020A	--	83	162	82	75	118
Thallium	SW6020A	--	0.1	0.4	0.4	0.5	0.5
Tin	SW6020A	--	0.6	6.5	1.7	8.8	1.3
Titanium	SW6010C	--	1800	1170	1300	1090	1090
Uranium (Uranium 238)	SW6020A	--	0.6	3.8	1.9	4.3	1.7
Vanadium	SW6020A	--	99	61	54	65	46
Zinc	SW6020A	271	88	90	65	149	54
Zirconium	SW6020A	--	11.1	9.6	9.8	8.8	7.3
Semivolatile Organics ($\mu \mathrm{g} / \mathrm{kg}$)							
Benzo(b)pyridine (Quinoline)	BCLM 2015D-PAHS	--	50 U	100 U	50	100 U	50 U
Polycyclic Aromatic Hydrocarbons ($\mu \mathrm{g} / \mathrm{kg}$)							
1-M ethylnaphthalene	BCLM 2015D-PAHS	--	12	10 U	5 U	10 U	5 U
2-Methylnaphthalene	BCLM 2015D-PAHS	201	17	10 U	8	30	9
Acenaphthene	BCLM 2015D-PAHS	88.9	5 U	10 U	5 U	10	5 U
Acenaphthylene	BCLM 2015D-PAHS	128	5 U	10 U	5 U	10	5 U
Anthracene	BCLM 2015D-PAHS	245	4 U	16	4 U	51	4 U
Benzo(a)anthracene	BCLM 2015D-PAHS	693	30 U	60 U	30 U	100	30 U
Benzo(a)pyrene	BCLM 2015D-PAHS	763	30 U	60 U	30 U	100	30 U
Benzo(b)fluoranthene	BCLM 2015D-PAHS	--	20 U	90	20 U	160	20 U
Benzo(g,h,i)perylene	BCLM 2015D-PAHS	--	50 U	100 U	50 U	100 U	50 U
Benzo(j)fluoranthene	BCLM 2015D-PAHS	--	20 U	40 U	20 U	70	20 U
Benzo(k)fluoranthene	BCLM 2015D-PAHS	--	20 U	40	20 U	80	20 U

[^15]
Table 6

Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-40 EHWW-40-SC-000050 $\begin{gathered} 12 / 18 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-40 EHWW-40-SC-060110 12/18/2018 0.6-1.1 m N	EHWW-42 EHWW-42-SG-000010 $\begin{gathered} 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \\ \mathrm{~N} \end{gathered}$	EHWW-44 EHWW-44-SG-000010 $\begin{gathered} 10 / 4 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-44 EHWW-44-SC-017067 12/19/2018 $0.17-0.67 \text { m }$ N
Analytes	Method	CCME Marine PEL					
Magnesium	SW6010C	--	9090	3840	9730	9340	7480
M anganese	SW6020A	--	139	188	166	169	239
M ercury	SW6020A	0.7	0.41	0.08	0.39	0.29	0.07
Molybdenum	SW6020A	--	27	7.4	3	4.1	5.2
Nickel	SW6020A	--	22.7	11.5	19.2	19.4	23.5
Potassium	SW6010C	--	2340	853	2790	2610	2440
Selenium	SW6020A	--	2.1	2.9	1.8	1.6	4.2
Silver	SW6020A	--	0.5 U				
Sodium	SW6010C	--	31900	4130	20600	19600	8840
Strontium	SW6020A	--	69	251	57	56	101
Thallium	SW6020A	--	0.5	0.4	0.4	0.4	0.4
Tin	SW6020A	--	8.9	1.5	4.5	3.3	0.7
Titanium	SW6010C	--	585	873	1200	1140	1380
Uranium (Uranium 238)	SW6020A	--	7.8	1.9	1.6	1.5	2.2
Vanadium	SW6020A	--	58	38	43	48	58
Zinc	SW6020A	271	162	31	90	81	63
Zirconium	SW6020A	--	5.2	4.9	6.2	7.2	10.3
Semivolatile Organics ($\mu \mathrm{g} / \mathrm{kg}$)							
Benzo(b)pyridine (Quinoline)	BCLM 2015D-PAHS	--	200 U	50 U	100 U	100 U	50 U
Polycyclic Aromatic Hydrocarbons ($\mu \mathrm{g} / \mathrm{kg}$)							
1-M ethylnaphthalene	BCLM 2015D-PAHS	--	20 U	5 U	10 U	10 U	5 U
2-Methylnaphthalene	BCLM 2015D-PAHS	201	40	5 U	20	10	5 U
Acenaphthene	BCLM 2015D-PAHS	88.9	60	5 U	10 U	10	5 U
Acenaphthylene	BCLM 2015D-PAHS	128	30	5 U	10 U	10 U	5 U
Anthracene	BCLM 2015D-PAHS	245	110	4 U	25	45	4 U
Benzo(a)anthracene	BCLM 2015D-PAHS	693	420	30 U	60	90	30 U
Benzo(a)pyrene	BCLM 2015D-PAHS	763	210	30 U	70	120	30 U
Benzo(b)fluoranthene	BCLM 2015D-PAHS	--	630	20 U	110	160	20 U
Benzo(g,h,i)perylene	BCLM 2015D-PAHS	--	200 U	50 U	100 U	100 U	50 U
Benzo(j)fluoranthene	BCLM 2015D-PAHS	--	180	20 U	40	50	20 U
Benzo(k)fluoranthene	BCLM 2015D-PAHS	--	260	20 U	60	90	20 U

[^16]
Table 6

Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-45 EHWW-45-SG-000010 $\begin{gathered} 10 / 4 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-46 EHWW-46-SG-000010 $\begin{gathered} 10 / 4 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-48 EHWW-48-SG-000010 $\begin{gathered} 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-48 EHWW-148-SG-000010 $\begin{gathered} 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \\ \text { FD } \end{gathered}$	EHWW-53 EHWW-53-SC-000016 $\begin{gathered} 12 / 19 / 2018 \\ 0-0.16 \mathrm{~m} \end{gathered}$ N
Analytes	Method	CCME Marine PEL					
Magnesium	SW6010C	--	9230	8840	10700	10700	6170
M anganese	SW6020A	--	149	139	179	173	156
M ercury	SW6020A	0.7	0.3	0.31	0.33	0.34	0.55
Molybdenum	SW6020A	--	3.1	4.4	6.7	6.3	7.9
Nickel	SW6020A	--	20.7	18	23.8	23.8	20.1
Potassium	SW6010C	--	2670	2540	3010	2940	1670
Selenium	SW6020A	--	1.6	1.9	2	2.1	1.3
Silver	SW6020A	--	0.5 U				
Sodium	SW6010C	--	21800	20900	25400	27000	11800
Strontium	SW6020A	--	57	52	59	60	103
Thallium	SW6020A	--	0.4	0.5	0.5	0.4	0.7
Tin	SW6020A	--	4	2.8	3.4	3.5	2.9
Titanium	SW6010C	--	1110	1010	1200	1160	891
Uranium (Uranium 238)	SW6020A	--	1.7	2.2	2.6	2.5	3.2
Vanadium	SW6020A	--	48	41	53	52	49
Zinc	SW6020A	271	107	90	121	119	98
Zirconium	SW6020A	--	5	4.4	6.1	5.9	5
Semivolatile Organics ($\mu \mathrm{g} / \mathrm{kg}$)							
Benzo(b)pyridine (Quinoline)	BCLM 2015D-PAHS	--	100 U	100 U	100 U	100 U	50 U
Polycyclic Aromatic Hydrocarbons ($\mu \mathrm{g} / \mathrm{kg}$)							
1-M ethylnaphthalene	BCLM 2015D-PAHS	--	10 U	10 U	10 U	10 U	5 U
2-Methylnaphthalene	BCLM 2015D-PAHS	201	20	20	30	20	11
Acenaphthene	BCLM 2015D-PAHS	88.9	10 U	10 U	10 U	10 U	5 U
Acenaphthylene	BCLM 2015D-PAHS	128	10 U	10 U	10 U	10 U	5 U
Anthracene	BCLM 2015D-PAHS	245	18	17	25	29	10
Benzo(a)anthracene	BCLM 2015D-PAHS	693	60 U	60 U	60 U	90	30
Benzo(a)pyrene	BCLM 2015D-PAHS	763	60 U	60 U	60	110	30
Benzo(b)fluoranthene	BCLM 2015D-PAHS	--	80	60	120	210	60
Benzo(g,h,i)perylene	BCLM 2015D-PAHS	--	100 U	100 U	100 U	100 U	50 U
Benzo(j)fluoranthene	BCLM 2015D-PAHS	--	40 U	40 U	50	90	20
Benzo(k)fluoranthene	BCLM 2015D-PAHS	--	40	40 U	50	100	20

[^17]
Table 6

Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-53 EHWW-53-SC-016066 12/19/2018 0.16-0.66 m N	EHWW-53 EHWW-53-SC-066116 12/ 19/2018 0.66-1.16 m N	EHWW-54 EHWW-54-SC-000050 $\begin{gathered} 12 / 18 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-54 EHWW-54-SC-055105 12/18/2018 $0.55-1.05 \mathrm{~m}$ N	EHWW-54 EHWW-54-SC-105155 12/18/2018 $1.05-1.55 \mathrm{~m}$ N
Analytes	Method	CCME Marine PEL					
Magnesium	SW6010C	--	3510	4470	6890	5500	7920
Manganese	SW6020A	--	131	170	156	193	250
M ercury	SW6020A	0.7	0.04	0.03	0.38	0.04	0.03
Molybdenum	SW6020A	--	5.8	2.2	7.5	3.5	4.2
Nickel	SW6020A	--	10.8	12.6	19.3	19.4	29.8
Potassium	SW6010C	--	942	837	1940	1820	2610
Selenium	SW6020A	--	2	0.4	1	2.4	1.2
Silver	SW6020A	--	0.5 U				
Sodium	SW6010C	--	4490	3210	12200	5720	4390
Strontium	SW6020A	--	278	97	60	113	71
Thallium	SW6020A	--	0.8	0.4	0.5	0.8	0.5
Tin	SW6020A	--	0.2	0.4	2.6	0.4	0.6
Titanium	SW6010C	--	828	1100	1110	1190	1340
Uranium (Uranium 238)	SW6020A	--	2.1	0.8	2.9	1.4	1.3
Vanadium	SW6020A	--	31	35	49	47	58
Zinc	SW6020A	271	33	26	70	53	59
Zirconium	SW6020A	--	4.7	5.9	6.5	7.8	9
Semivolatile Organics ($\mu \mathrm{g} / \mathrm{kg}$)							
Benzo(b)pyridine (Quinoline)	BCLM 2015D-PAHS	--	50 U	--	100 U	50 U	--
Polycyclic Aromatic Hydrocarbons ($\mu \mathrm{g} / \mathrm{kg}$)							
1-Methylnaphthalene	BCLM 2015D-PAHS	--	5 U	--	10 U	5 U	--
2-Methylnaphthalene	BCLM 2015D-PAHS	201	5 U	--	10 U	5 U	--
Acenaphthene	BCLM 2015D-PAHS	88.9	5 U	--	10 U	5 U	--
Acenaphthylene	BCLM 2015D-PAHS	128	5 U	--	10 U	5 U	--
Anthracene	BCLM 2015D-PAHS	245	4 U	--	8 U	4 U	--
Benzo(a)anthracene	BCLM 2015D-PAHS	693	30 U	--	60 U	30 U	--
Benzo(a)pyrene	BCLM 2015D-PAHS	763	30 U	--	60 U	30 U	--
Benzo(b)fluoranthene	BCLM 2015D-PAHS	--	20 U	--	40 U	20 U	--
Benzo(g,h,i)perylene	BCLM 2015D-PAHS	--	50 U	--	100 U	50 U	--
Benzo(j)fluoranthene	BCLM 2015D-PAHS	--	20 U	--	40 U	20 U	--
Benzo(k)fluoranthene	BCLM 2015D-PAHS	--	20 U	--	40 U	20 U	--

[^18]
Table 6

Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-55 EHWW-55-SC-110160 $\begin{gathered} 12 / 19 / 2018 \\ 1.1-1.6 \mathrm{~m} \end{gathered}$ N	EHWW-56 EHWW-56-SC-000050 $\begin{gathered} 12 / 17 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-57 EHWW-57-SC-000050 $\begin{gathered} 12 / 17 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-58 EHWW-58-SC-361411 12/16/2018 $3.61-4.11 \text { m }$ N	EHWW-58 EHWW-58-SC-411461 12/16/2018 $4.11-4.61 \mathrm{~m}$ N
Analytes	Method	CCME Marine PEL					
Magnesium	SW6010C	--	7620	3980	9530	11100	--
M anganese	SW6020A	--	214	130	385	383	--
M ercury	SW6020A	0.7	0.28	0.14	0.29	0.04	--
Molybdenum	SW6020A	--	3.4	3.8	28.6	2.7	--
Nickel	SW6020A	--	21.9	11.9	19.8	34	--
Potassium	SW6010C	--	2350	1060	2620	3000	--
Selenium	SW6020A	--	2.7	0.3	1.9	1.5	--
Silver	SW6020A	--	0.5 U	0.5 U	0.5 U	0.5 U	--
Sodium	SW6010C	--	8620	6390	41700	6340	--
Strontium	SW6020A	--	97	271	193	595	--
Thallium	SW6020A	--	0.3	0.4	0.2	0.2	--
Tin	SW6020A	--	2.8	1.3	3.7	0.4	--
Titanium	SW6010C	--	1330	699	452	1300	--
Uranium (Uranium 238)	SW6020A	--	1.7	1.5	8.4	1.5	--
Vanadium	SW6020A	--	54	32	51	80	--
Zinc	SW6020A	271	72	37	142	64	--
Zirconium	SW6020A	--	10.5	3.7	5.3	7.8	--
Semivolatile Organics ($\mu \mathrm{g} / \mathrm{kg}$)							
Benzo(b)pyridine (Quinoline)	BCLM 2015D-PAHS	--	50 U	50 U	200 U	50 U	--
Polycyclic Aromatic Hydrocarbons ($\mu \mathrm{g} / \mathrm{kg}$)							
1-M ethylnaphthalene	BCLM 2015D-PAHS	--	5 U	5 U	20 U	5 U	--
2-Methylnaphthalene	BCLM 2015D-PAHS	201	5 U	5 U	20 U	5 U	--
Acenaphthene	BCLM 2015D-PAHS	88.9	5 U	5 U	20 U	5 U	--
Acenaphthylene	BCLM 2015D-PAHS	128	5 U	5 U	20 U	5 U	--
Anthracene	BCLM 2015D-PAHS	245	10	4	20 U	4 U	--
Benzo(a)anthracene	BCLM 2015D-PAHS	693	30	30 U	100 U	30 U	--
Benzo(a)pyrene	BCLM 2015D-PAHS	763	30	30 U	100 U	30 U	--
Benzo(b)fluoranthene	BCLM 2015D-PAHS	--	50	30	100	20 U	--
Benzo(g,h,i)perylene	BCLM 2015D-PAHS	--	50 U	50 U	200 U	50 U	--
Benzo(j)fluoranthene	BCLM 2015D-PAHS	--	30	20 U	80 U	20 U	--
Benzo(k)fluoranthene	BCLM 2015D-PAHS	--	20	20 U	80 U	20 U	--

[^19]Table 6
Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-59 EHWW-59-SC-038088 $\begin{gathered} 12 / 19 / 2018 \\ 0.38-0.88 \mathrm{~m} \end{gathered}$ N	EHWW-65 EHWW-65-SC-000050 $\begin{gathered} 12 / 19 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-65 EHWW-165-SC-000050 $\begin{gathered} 12 / 19 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ FD
Analytes	Method	CCME Marine PEL			
M agnesium	SW6010C	--	7220	4090	4160
M anganese	SW6020A	--	190	133	142
M ercury	SW6020A	0.7	0.08	0.22	0.29
Molybdenum	SW6020A	--	3.7	2.7	2.6
Nickel	SW6020A	--	20.2	13.6	13.3
Potassium	SW6010C	--	2190	863	885
Selenium	SW6020A	--	3.5	1	0.8
Silver	SW6020A	--	0.5 U	0.5 U	0.5 U
Sodium	SW6010C	--	9120	5580	5250
Strontium	SW6020A	--	89	49	48
Thallium	SW6020A	--	0.4	0.7	0.8
Tin	SW6020A	--	0.7	1.4	1.6
Titanium	SW6010C	--	1300	859	943
Uranium (Uranium 238)	SW6020A	--	1.8	1.1	1
Vanadium	SW6020A	--	50	38	38
Zinc	SW6020A	271	61	56	58
Zirconium	SW6020A	--	9.3	4	4.3
Semivolatile Organics ($\mu \mathrm{g} / \mathrm{kg}$)					
Benzo(b)pyridine (Quinoline)	BCLM 2015D-PAHS	--	50 U	50 U	50 U
Polycyclic Aromatic Hydrocarbons ($\mu \mathrm{g} / \mathrm{kg}$)					
1-Methylnaphthalene	BCLM 2015D-PAHS	--	5 U	5 U	5 U
2-Methylnaphthalene	BCLM 2015D-PAHS	201	5 U	5 U	5 U
Acenaphthene	BCLM 2015D-PAHS	88.9	5 U	14	5 U
Acenaphthylene	BCLM 2015D-PAHS	128	5 U	5 U	5 U
Anthracene	BCLM 2015D-PAHS	245	4 U	38	4
Benzo(a)anthracene	BCLM 2015D-PAHS	693	30 U	50	30 U
Benzo(a)pyrene	BCLM 2015D-PAHS	763	30 U	50	30 U
Benzo(b)fluoranthene	BCLM 2015D-PAHS	--	20 U	60	20
Benzo(g, h, i)perylene	BCLM 2015D-PAHS	--	50 U	50 U	50 U
Benzo(j)fluoranthene	BCLM 2015D-PAHS	--	20 U	30	20 U
Benzo(k)fluoranthene	BCLM 2015D-PAHS	--	20 U	40	20 U

[^20]Table 6
Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-03 EHWW-03-SC-000050 $\begin{gathered} 12 / 17 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-03 EHWW-03-SC-150200 12/17/2018 1.5-2 m N	EHWW-04 EHWW-04-SG-000010 $\begin{gathered} 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-06 EHWW-06-SG-000010 $\begin{gathered} 10 / 1 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-09 EHWW-09-SG-000010 $\begin{gathered} 10 / 1 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N
Analytes	Method	CCME Marine PEL					
Chrysene	BCLM 2015D-PAHS	846	200 U	50 U	100 U	100 U	200 U
Dibenzo(a,h)anthracene	BCLM 2015D-PAHS	135	20 U	5 U	10 U	10 U	20 U
Fluoranthene	BCLM 2015D-PAHS	1494	500	10 U	160	240	250
Fluorene	BCLM 2015D-PAHS	144	60 U	20 U	40 U	40 U	60 U
Indeno(1,2,3-c,d) pyrene	BCLM 2015D-PAHS	--	60 U	20 U	40 U	40	60 U
Naphthalene	BCLM 2015D-PAHS	391	20 U	5 U	10	10	20 U
Phenanthrene	BCLM 2015D-PAHS	544	80	20 U	60	90	90
Pyrene	BCLM 2015D-PAHS	1398	560	10 U	160	300	260
Dioxins/ Furans ($\mathrm{ng} / \mathrm{kg}$)							
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	E1613	--	0.8 U	0.3 U	0.5 U	0.7 U	0.4 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613	--	3 U	0.4 U	2 U	1 U	2 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	4 U	0.4 U	3 U	4 U	3 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	7	0.4 U	3 U	6 U	2
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	4 U	0.4 U	3 U	4 U	3 U
1,2,3,4,6,7,8-Heptachlo rodibenzo-p-dioxin (HpCDD)	E1613	--	74	0.4 U	25	14	38
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613	--	410	1	181	140	299
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613	--	5.5	0.4	6.1	2.8	11.3
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613	--	12	0.4 U	45	12	36
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	61	0.7	29	30	42
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613	--	182	0.9	76	51	119
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613	--	3	0.4 U	0.5 U	0.5 U	0.8 U
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613	--	2	0.3 U	1	0.7 U	0.8 U
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613	--	1 U	0.3 U	1	0.7 U	0.6 U
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	5	0.2 U	1	0.8 U	2
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	3	0.2 U	1 U	0.7 U	1
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613	--	4 U	0.3 U	1 U	1 U	2 U
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	4	0.2 U	2	2 U	10
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613	--	63	0.6	29	9.1	40
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613	--	2 U	0.5 U	2	0.6 U	2 U
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613	--	27	0.6 U	18	6	28
Total Tetra-Furans	E1613	--	40	0.8	11.2	5	11.3

[^21]Table 6
Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-10 EHWW-10-SG-000010 $\begin{gathered} 10 / 3 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-14 EHWW-14-SG-000010 $\begin{gathered} 10 / 3 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-16 EHWW-16-SC-152202 12/18/2018 1.52-2.02 m N	EHWW-16 EHWW-116-SC-152202 $12 / 18 / 2018$ $1.52-2.02 \mathrm{~m}$ FD	EHWW-18 EHWW-18-SG-000010 $\begin{gathered} 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N
Analytes	Method	CCME Marine PEL					
Chrysene	BCLM 2015D-PAHS	846	200	100 U	50 U	50 U	100 U
Dibenzo(a,h)anthracene	BCLM 2015D-PAHS	135	20	10 U	5 U	5 U	10 U
Fluoranthene	BCLM 2015D-PAHS	1494	340	150	10 U	10 U	110
Fluorene	BCLM 2015D-PAHS	144	40 U	40 U	20 U	20 U	40 U
Indeno(1,2,3-c,d) pyrene	BCLM 2015D-PAHS	--	80	40 U	20 U	20 U	40 U
Naphthalene	BCLM 2015D-PAHS	391	10	10 U	5 U	5 U	10 U
Phenanthrene	BCLM 2015D-PAHS	544	150	60	20 U	20 U	40
Pyrene	BCLM 2015D-PAHS	1398	320	160	10 U	10 U	190
Dioxins/Furans ($\mathbf{~ g / ~ / k g \text {) }}$							
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	E1613	--	0.9 U	0.5 U	0.3 U	0.3 U	0.9 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613	--	5 U	0.6 U	0.6 U	0.4 U	3 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	3	2 U	0.5 U	0.2 U	2 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	4	2 U	0.5 U	0.2 U	7
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	3	2 U	0.5 U	0.2 U	3
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613	--	57	14	0.6 U	0.5 U	70
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613	--	463	104	3.1	1	432
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613	--	5.4	1.5	0.5	0.4	28.3
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613	--	17	13	3.2	0.9	78
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	29	18	1.9	1.7	120
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613	--	116	46	4.1	2.4	168
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613	--	2 U	0.4 U	0.4 U	0.4 U	3
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613	--	2 U	0.9 U	0.3 U	0.4 U	1
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613	--	3 U	0.8 U	0.4 U	0.7 U	2.1
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	10 U	17	0.2 U	0.3 U	3
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	10 U	8	0.2 U	0.3 U	3
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613	--	2 U	3 U	0.3 U	0.4 U	2 U
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	20 U	5	0.2 U	0.3 U	2
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613	--	20	423	0.4 U	0.4 U	73
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613	--	2 U	10	0.9 U	0.5 U	3 U
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613	--	25	196	0.7 U	0.8 U	27
Total Tetra-Furans	E1613	--	14	2.9	0.4 U	0.7	31

[^22]Table 6
Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-19 EHWW-19-SG-000010 $\begin{gathered} 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-24 EHWW-24-SC-045095 $\begin{gathered} 12 / 18 / 2018 \\ 0.45-0.95 \mathrm{~m} \end{gathered}$ N	EHWW-30 EHWW-30-SG-000010 $\begin{gathered} 10 / 3 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-33 EHWW-33-SG-000010 $\begin{gathered} 10 / 3 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-36 EHWW-36-SC-000050 $\begin{gathered} 12 / 17 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N
Analytes	Method	CCME Marine PEL					
Chrysene	BCLM 2015D-PAHS	846	100	50 U	100	60	300
Dibenzo(a, ${ }^{\text {a }}$ anthracene	BCLM 2015D-PAHS	135	10 U	5 U	10	7	20
Fluoranthene	BCLM 2015D-PAHS	1494	190	10 U	330	150	820
Fluorene	BCLM 2015D-PAHS	144	40 U	20 U	40 U	20 U	60 U
Indeno(1,2,3-c,d) pyrene	BCLM 2015D-PAHS	--	40 U	20 U	60	30	110
Naphthalene	BCLM 2015D-PAHS	391	10 U	5 U	10	7	60
Phenanthrene	BCLM 2015D-PAHS	544	60	20 U	170	70	230
Pyrene	BCLM 2015D-PAHS	1398	230	10 U	340	160	1810

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	E1613	--	0.5 U	0.3 U	0.4 U	0.4 U	1 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613	--	1 U	0.4 U	1 U	2 U	2 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	2 U	0.5 U	2 U	0.9 U	3
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	3	0.5 U	2 U	2.1	13
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	2 U	0.5 U	2 U	1	5 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613	--	31	0.7 U	42	25	191
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613	--	249	1.1	314	192	948
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613	--	5.5	0.6	3.3	4.2	14
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613	--	16	0.9	10	10	25
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	35	1.5	29	35.4	120
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613	--	93	1.2	146	71	405
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613	--	1.2	0.4 U	0.6 U	0.6 U	3
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613	--	0.9	0.2 U	0.8 U	2 U	3 U
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613	--	1.5	0.3 U	1.1	1	4
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	2.9	0.2 U	1	1.2	8
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	1.8	0.2 U	1 U	1.3	5
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613	--	1 U	0.3 U	2 U	0.9 U	8 U
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	2	0.2 U	1 U	1.2	6
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613	--	79.3	0.4 U	11	19	134
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613	--	2	0.5 U	2 U	3 U	6
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613	--	27	0.5 U	13	12.7	74
Total Tetra-Furans	E1613	--	12.7	0.6	9	10.6	75

[^23]
Table 6

Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-36 EHWW-36-SC-183233 12/17/2018 $1.83-2.33 \mathrm{~m}$ N	EHWW-38 EHWW-38-SC-000050 12/17/2018 $0-0.5 \mathrm{~m}$ N	EHWW-38 EHWW-38-SC-050100 $\begin{gathered} 12 / 17 / 2018 \\ 0.5-1 \mathrm{~m} \end{gathered}$ N	EHWW-39 EHWW-39-SG-000010 $\begin{gathered} 10 / 1 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-39 EHWW-39-SC-035085 12/18/2018 0.35-0.85 m N
Analytes	Method	CCME Marine PEL					
Chrysene	BCLM 2015D-PAHS	846	50 U	100 U	50 U	100 U	50 U
Dibenzo(a,h)anthracene	BCLM 2015D-PAHS	135	5 U	10 U	5 U	10	5 U
Fluoranthene	BCLM 2015D-PAHS	1494	10 U	90	10 U	240	10 U
Fluorene	BCLM 2015D-PAHS	144	20 U	40 U	20 U	40 U	20 U
Indeno(1,2,3-c,d)pyrene	BCLM 2015D-PAHS	--	20 U	40 U	20 U	40	20 U
Naphthalene	BCLM 2015D-PAHS	391	5 U	10 U	5 U	20	5 U
Phenanthrene	BCLM 2015D-PAHS	544	30	60	20 U	80	20 U
Pyrene	BCLM 2015D-PAHS	1398	10 U	110	10 U	310	10 U

Dioxins/Furans ($\mathbf{~ g / ~ / k g \text {) }}$							
2,3,7,8-Tetrachlo rodibenzo-p-dioxin (TCDD)	E1613	--	0.3 U	0.8	0.3 U	0.6 U	0.3 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613	--	0.4 U	1	0.7 U	5	0.6 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	0.3 U	3 U	0.3 U	4	0.7 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	0.3 U	3	0.3 U	13	0.6 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	0.3 U	3 U	0.3 U	5	0.7 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613	--	0.5 U	16	0.7 U	111	2.6
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613	--	6	105	0.5	712	4
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613	--	0.3 U	2.6	0.3 U	68.5	0.7
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613	--	0.4	6	3.1	137	2.8
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	1.2	11	2.4	189	3.2
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613	--	1.4	45	2	322	5.9
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613	--	0.4 U	3	0.4 U	9.4	0.6 U
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613	--	0.2 U	3	0.2 U	3	1
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613	--	0.3 U	2	0.3 U	5	0.7 U
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	0.2 U	3	0.3 U	6	4
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	0.2 U	3	0.3 U	5	2
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613	--	0.4 U	2 U	0.7 U	4 U	2 U
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	0.2 U	2 U	0.3 U	3	1 U
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613	--	0.4 U	25	0.4 U	71	63
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613	--	0.5 U	3 U	0.5 U	2	2 U
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613	--	0.6 U	0.6 U	2 U	34	14
Total Tetra-Furans	E1613	--	0.4	21.9	0.6	106.7	5.5

[^24]Table 6
Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-40 EHWW-40-SC-000050 $\begin{gathered} 12 / 18 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-40 EHWW-40-SC-060110 12/18/2018 $0.6-1.1 \mathrm{~m}$ N	EHWW-42 EHWW-42-SG-000010 $\begin{gathered} 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-44 EHWW-44-SG-000010 $\begin{gathered} 10 / 4 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-44 EHWW-44-SC-017067 12/19/2018 $0.17-0.67 \mathrm{~m}$ N
Analytes	Method	CCME Marine PEL					
Chrysene	BCLM 2015D-PAHS	846	300	50 U	100 U	100 U	50 U
Dibenzo(a,h)anthracene	BCLM 2015D-PAHS	135	20 U	5 U	10 U	10	5 U
Fluoranthene	BCLM 2015D-PAHS	1494	1030	10	140	170	10 U
Fluorene	BCLM 2015D-PAHS	144	60 U	20 U	40 U	40 U	20 U
Indeno(1,2,3-c,d) pyrene	BCLM 2015D-PAHS	--	70	20 U	40 U	40	20 U
Naphthalene	BCLM 2015D-PAHS	391	110	5 U	10 U	10	5 U
Phenanthrene	BCLM 2015D-PAHS	544	400	20 U	60	50	20 U
Pyrene	BCLM 2015D-PAHS	1398	1120	10	150	350	10 U

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	E1613	--	7.2	0.3 U	0.8 U	0.5 U	0.3 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613	--	22	0.4 U	0.8	1.6	0.4 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	29	0.6 U	3 U	2 U	0.3 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	91	0.6 U	4	11	0.3 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	61	0.5 U	3 U	3	0.3 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613	--	388	0.6	44	76	0.8 U
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613	--	1170	1.3	291	381	1.9
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613	--	230	0.3	7.7	10.1	0.3
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613	--	728	0.4 U	21.2	27.3	1.4
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	1320	1.4	50	120	2.1
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613	--	1430	1.8	109	359	1.2
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613	--	23	0.4 U	2	2	0.4 U
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613	--	13	0.8 U	2 U	1 U	0.3 U
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613	--	24	1 U	2	2	0.3 U
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	14	0.3 U	3	3	0.3 U
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	14	0.3 U	2	1.8	0.3 U
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613	--	10 U	0.6 U	2 U	2 U	0.5 U
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	14	0.7 U	2	1.8	0.3 U
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613	--	95	2.9	53	53	0.6
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613	--	10 U	0.5 U	3 U	4 U	0.7 U
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613	--	16	0.5 U	20	10	0.5 U
Total Tetra-Furans	E1613	--	387	2.2	22	19	0.4

[^25]Table 6
Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-45 EHWW-45-SG-000010 $\begin{gathered} 10 / 4 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-46 EHWW-46-SG-000010 $\begin{gathered} 10 / 4 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-48 EHWW-48-SG-000010 $\begin{gathered} 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-48 EHWW-148-SG-000010 $\begin{gathered} 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ FD	EHWW-53 EHWW-53-SC-000016 $\begin{gathered} 12 / 19 / 2018 \\ 0-0.16 \mathrm{~m} \end{gathered}$ N
Analytes	Method	CCME Marine PEL					
Chrysene	BCLM 2015D-PAHS	846	100 U	100 U	100 U	100	50 U
Dibenzo (a,h)anthracene	BCLM 2015D-PAHS	135	10 U	10 U	10 U	10 U	5 U
Fluoranthene	BCLM 2015D-PAHS	1494	110	100	110 J	530 J	50
Fluorene	BCLM 2015D-PAHS	144	40 U	40 U	40 U	40 U	20 U
Indeno(1,2,3-c,d) pyrene	BCLM 2015D-PAHS	--	40 U	40 U	40 U	40 U	20
Naphthalene	BCLM 2015D-PAHS	391	10 U	10 U	10 U	10 U	5 U
Phenanthrene	BCLM 2015D-PAHS	544	40 U	40 U	40	80	30
Pyrene	BCLM 2015D-PAHS	1398	120	100	130 J	450 J	80
Dioxins/ Furans ($\mathbf{~ (g / k g \text {) }}$							
2,3,7,8-Tetrachlo rodibenzo-p-dioxin (TCDD)	E1613	--	0.3 U	0.2 U	0.3 U	0.2 U	0.8 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613	--	3 U	2 U	0.9	2 U	2 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	3 U	5 U	2 U	3 U	3 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	3 U	4 U	2 U	3 U	4
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	3 U	5 U	2 U	3 U	3 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613	--	98	19	11	22	41
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613	--	1390	149	121	123	227
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613	--	3.1	0.8	1.5	2.4	9.3
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613	--	13	10	14.3	11	10
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	18	16	19	24	12
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613	--	224	74	35 J	74 J	47
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613	--	1.2	0.4 U	1.1	0.5 U	2 U
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613	--	0.6 U	1 U	1.2	0.6 U	3 U
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613	--	0.5 U	1 U	0.5 U	0.5 U	2 U
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	1.1	1 U	0.8 U	2 U	3
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	0.8 U	1 U	0.8	2 U	3 U
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613	--	1 U	0.7 U	1 U	3 U	5 U
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	1 U	6 U	0.9 U	2 U	3 U
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613	--	20	14.5	19	16	55
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613	--	2 U	0.7 U	2 U	2 U	2 U
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613	--	33	10	12	10	4 U
Total Tetra-Furans	E1613	--	10.5	4.1	6.1	4.5	26

[^26]Table 6
Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-53 EHWW-53-SC-016066 $\begin{gathered} 12 / 19 / 2018 \\ 0.16-0.66 \mathrm{~m} \end{gathered}$ N	EHWW-53 EHWW-53-SC-066116 $\begin{gathered} 12 / 19 / 2018 \\ 0.66-1.16 \mathrm{~m} \\ \mathrm{~N} \end{gathered}$	EHWW-54 EHWW-54-SC-000050 $\begin{gathered} 12 / 18 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-54 EHWW-54-SC-055105 12/18/2018 $0.55-1.05 \text { m }$ N	EHWW-54 EHWW-54-SC-105155 $\begin{gathered} 12 / 18 / 2018 \\ 1.05-1.55 \mathrm{~m} \\ \mathrm{~N} \end{gathered}$
Analytes	Method	CCME Marine PEL					
Chrysene	BCLM 2015D-PAHS	846	50 U	--	100 U	50 U	--
Dibenzo(a,h)anthracene	BCLM 2015D-PAHS	135	5 U	--	10 U	5 U	--
Fluoranthene	BCLM 2015D-PAHS	1494	10 U	--	50	10 U	--
Fluorene	BCLM 2015D-PAHS	144	20 U	--	40 U	20 U	--
Indeno(1,2,3-c,d) pyrene	BCLM 2015D-PAHS	--	20 U	--	40 U	20 U	--
Naphthalene	BCLM 2015D-PAHS	391	5 U	--	10 U	5 U	--
Phenanthrene	BCLM 2015D-PAHS	544	20 U	--	40 U	20 U	--
Pyrene	BCLM 2015D-PAHS	1398	10 U	--	60	10 U	
Dioxins/ Furans ($\mathrm{ng} / \mathrm{kg}$)							
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	E1613	--	0.3 U	--	0.4 U	0.3 U	--
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613	--	0.4 U	--	0.9 U	0.4 U	--
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	0.5 U	--	0.9 U	1 U	--
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	0.5 U	--	1.8	0.9 U	--
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	0.5 U	--	0.9 U	0.9 U	--
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613	--	0.7	--	14	1 U	--
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613	--	2	--	82	1.1	--
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613	--	0.3 U	--	5.4	0.3 U	--
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613	--	1.6	--	11.3	1.1	--
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	1.8	--	15.5	2	--
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613	--	2.3	--	14	4	--
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613	--	0.4 U	--	0.9 U	0.4 U	--
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613	--	0.3 U	--	10	0.3 U	--
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613	--	0.4 U	--	1	0.3 U	--
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	0.2 U	--	3	0.2 U	--
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	0.2 U	--	1 U	0.2 U	--
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613	--	0.4 U	--	2 U	0.3 U	--
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	0.3	--	2	0.2 U	--
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613	--	0.4 U	--	62	0.4 U	--
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613	--	0.5 U	--	6 U	0.5 U	--
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613	--	0.5 U	--	5 U	0.5 U	--
Total Tetra-Furans	E1613	--	0.8	--	23.7	0.4 U	--

[^27]Table 6
Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-55 EHWW-55-SC-110160 12/19/2018 1.1-1.6 m N	EHWW-56 EHWW-56-SC-000050 $\begin{gathered} 12 / 17 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-57 EHWW-57-SC-000050 $\begin{gathered} 12 / 17 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-58 EHWW-58-SC-361411 12/16/2018 $3.61-4.11 \text { m }$ N	EHWW-58 EHWW-58-SC-411461 12/16/2018 $4.11-4.61 \mathrm{~m}$ N
Analytes	Method	CCME Marine PEL					
Chrysene	BCLM 2015D-PAHS	846	50 U	50 U	200 U	50 U	--
Dibenzo(a, ${ }^{\text {a }}$ anthracene	BCLM 2015D-PAHS	135	5 U	5 U	20 U	5 U	--
Fluoranthene	BCLM 2015D-PAHS	1494	60	40	290	10 U	--
Fluorene	BCLM 2015D-PAHS	144	20 U	20 U	80 U	20 U	--
Indeno(1,2,3-c,d) pyrene	BCLM 2015D-PAHS	--	20	20 U	80 U	20 U	--
Naphthalene	BCLM 2015D-PAHS	391	5 U	5 U	20 U	5 U	--
Phenanthrene	BCLM 2015D-PAHS	544	40	20 U	80 U	20 U	--
Pyrene	BCLM 2015D-PAHS	1398	60	40	220	10 U	--

Dioxins/Furans (ng/kg)							
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	E1613	-	0.3 U	0.2 U	1 U	0.3 U	--
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613	-	0.6 U	0.6 U	13	0.7 U	--
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	-	0.7 U	0.8 U	6 U	0.3 U	--
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	-	0.7 U	1.7	5 U	0.3 U	--
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	0.7 U	0.7 U	5 U	0.3 U	--
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613	--	1	22.1	43	0.4 U	--
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613	--	7.6	102	308	0.6 U	--
Total Tetrachlo rodibenzo-p-dioxin (TCDD)	E1613	--	0.3 U	4.2	96	0.3 U	--
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613	--	1.8	6.6	114	1.4	--
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	2.5	19.8	104	2.1	--
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613	--	4	48.8	790	2.5	--
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613	--	0.5 U	0.5 U	3 U	0.4 U	--
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613	--	1 U	0.9 U	49	0.3 U	--
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613	--	0.8 U	0.9	30	0.4 U	--
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	0.8 U	1.1	42	0.2 U	--
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	0.8 U	0.8	10	0.2 U	--
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613	--	2 U	2 U	10 U	0.4 U	--
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	0.9 U	1 U	15	0.2 U	--
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613	--	4.3	11.9	65	0.4 U	--
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613	--	1 U	0.8 U	20	0.5 U	--
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613	--	0.8 U	5	10 U	1 U	--
Total Tetra-Furans	E1613	--	1.6	7.6	111	0.4 U	--

[^28]Table 6
Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-59 EHWW-59-SC-038088 $\begin{gathered} 12 / 19 / 2018 \\ 0.38-0.88 \mathrm{~m} \end{gathered}$ N	EHWW-65 EHWW-65-SC-000050 $\begin{gathered} 12 / 19 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-65 $\begin{gathered} \text { EHWW-165-SC-000050 } \\ 12 / 19 / 2018 \\ 0-0.5 \mathrm{~m} \\ \text { FD } \end{gathered}$
Analytes	Method	CCME Marine PEL			
Chrysene	BCLM 2015D-PAHS	846	50 U	50 U	50 U
Dibenzo(a,h)anthracene	BCLM 2015D-PAHS	135	5 U	7	5 U
Fluoranthene	BCLM 2015D-PAHS	1494	10 U	140	20
Fluorene	BCLM 2015D-PAHS	144	20 U	20 U	20 U
Indeno(1,2,3-c,d) pyrene	BCLM 2015D-PAHS	--	20 U	30	20 U
Naphthalene	BCLM 2015D-PAHS	391	5 U	5 U	5 U
Phenanthrene	BCLM 2015D-PAHS	544	20 U	120	20 U
Pyrene	BCLM 2015D-PAHS	1398	10 U	120	20
Dioxins/Furans ($\mathrm{ng} / \mathrm{kg}$)					
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	E1613	--	0.3 U	0.3 U	0.4 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613	--	0.4 U	0.5 U	0.6 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	0.5 U	1 U	1 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	0.5 U	10	1
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	0.5 U	1 U	10
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613	--	1 U	10	10
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613	--	5	61	79
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613	--	0.6	0.8	0.5
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613	--	1.1	0.8	2.2
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613	--	2	8	3
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613	--	4	25J	14 J
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613	--	0.4 U	0.5 U	0.6 U
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613	--	0.4 U	0.8 U	0.5 U
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613	--	0.3 U	0.7 U	1
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	0.3 U	1.3	1.3
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	0.3 U	0.6	0.4 U
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613	--	0.6 U	0.8 U	0.6 U
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613	--	0.3 U	0.6 U	0.9
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613	--	0.8	12	17.5
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613	--	0.5 U	2 U	1 U
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613	--	0.5 U	1 U	0.9 U
Total Tetra-Furans	E1613	--	1	8	7.2

[^29]Page 27 of 37

Table 6
Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-03 EHWW-03-SC-000050 $\begin{gathered} 12 / 17 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-03 EHWW-03-SC-150200 12/17/2018 $1.5-2 \mathrm{~m}$ N	EHWW-04 EHWW-04-SG-000010 $\begin{gathered} 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-06 EHWW-06-SG-000010 $\begin{gathered} 10 / 1 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-09 EHWW-09-SG-000010 $\begin{gathered} 10 / 1 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N
Analytes	Method	CCME Marine PEL					
Total Pentachlorodibenzofuran (PeCDF)	E1613	--	14	0.4	9	2.5	5.2
Total Hexachlorodibenzofuran (HxCDF)	E1613	--	72	0.3 U	21	7	26
Total Heptachlorodibenzofuran (HpCDF)	E1613	--	127	0.9	56	18.8	78
Total Dioxin/Furan TEQ 1998 (Fish) ($U=1 / 2$)	--	21.5	5.6	0.6	3.3	2.5	3.1
PCB Aroclors ($\mu \mathrm{g} / \mathrm{kg}$)							
Aroclor 1016	SW8082	--	--	--	50 U	50 U	50 U
Aroclor 1221	SW8082	--	--	--	50 U	50 U	50 U
Aroclor 1232	SW8082	--	--	--	50 U	50 U	50 U
Aroclor 1242	SW8082	--	50 U				
Aroclor 1248	SW8082	--	--	--	50 U	50 U	50 U
Aroclor 1254	SW8082	709	50 U				
Aroclor 1260	SW8082	--	50 U				
Aroclor 1262	SW8082	--	--	--	50 U	50 U	50 U
Aroclor 1268	SW8082	--	--	--	50 U	50 U	50 U
Total 7 PCB Aroclors ($\mathrm{U}=1 / 2$)	--	189	50 U				

Table 6
Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-10 EHWW-10-SG-000010 $\begin{gathered} 10 / 3 / 2018 \\ 0-0.1 \mathrm{~m} \\ \mathrm{~N} \end{gathered}$	EHWW-14 EHWW-14-SG-000010 $\begin{gathered} 10 / 3 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-16 EHWW-16-SC-152202 12/18/2018 $1.52-2.02 \mathrm{~m}$ N	$\begin{gathered} \text { EHWW-16 } \\ \text { EHWW-116-SC-152202 } \\ 12 / 18 / 2018 \\ 1.52-2.02 \mathrm{~m} \\ \text { FD } \end{gathered}$	EHWW-18 EHWW-18-SG-000010 $\begin{gathered} 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N
Analytes	Method	CCME Marine PEL					
Total Pentachlorodibenzofuran (PeCDF)	E1613	--	5	10	0.4 U	0.7	22
Total Hexachlorodibenzofuran (HxCDF)	E1613	--	20 U	115	0.3 U	0.6	53
Total Heptachlorodibenzofuran (HpCDF)	E1613	--	24	706	0.9 U	0.5	131
Total Dioxin/Furan TEQ 1998 (Fish) ($U=1 / 2$)	--	21.5	7.8	8.8	0.7	0.7	5.6
PCB Aroclors ($\mu \mathrm{g} / \mathrm{kg}$)							
Aroclor 1016	SW8082	--	50 U	50 U	--	--	50 U
Aroclor 1221	SW8082	--	50 U	50 U	--	--	50 U
Aroclor 1232	SW8082	--	50 U	50 U	--	--	50 U
Aroclor 1242	SW8082	--	50 U				
Aroclor 1248	SW8082	--	50 U	50 U	--	--	50 U
Aroclor 1254	SW8082	709	80	50 U	50 U	50 U	50 U
Aroclor 1260	SW8082	--	50	50 U	50 U	50 U	50 U
Aroclor 1262	SW8082	--	50 U	50 U	--	--	50 U
Aroclor 1268	SW8082	--	50 U	50 U	--	--	50 U
Total 7 PCB Aroclors ($\mathrm{U}=1 / 2$)	--	189	255	50 U	50 U	50 U	50 U

Table 6
Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-19 EHWW-19-SG-000010 $\begin{gathered} 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-24 EHWW-24-SC-045095 $\begin{gathered} 12 / 18 / 2018 \\ 0.45-0.95 \mathrm{~m} \end{gathered}$ N	EHWW-30 EHWW-30-SG-000010 $\begin{gathered} 10 / 3 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-33 EHWW-33-SG-000010 $\begin{gathered} 10 / 3 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-36 EHWW-36-SC-000050 $\begin{gathered} 12 / 17 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N
Analytes	Method	CCME Marine PEL					
Total Pentachlorodibenzofuran (PeCDF)	E1613	--	10.2	0.3 U	6.4	6	43
Total Hexachlorodibenzofuran (HxCDF)	E1613	--	47	0.3 U	11	18	217
Total Heptachlorodibenzofuran (HpCDF)	E1613	--	135	0.5 U	24	37	370
Total Dioxin/Furan TEQ 1998 (Fish) ($U=1 / 2$)	--	21.5	3.7	0.6	2.3	2.7	9.4
PCB Aroclors ($\mu \mathrm{g} / \mathrm{kg}$)							
Aroclor 1016	SW8082	--	50 U	--	50 U	50 U	--
Aroclor 1221	SW8082	--	50 U	--	50 U	50 U	--
Aroclor 1232	SW8082	--	50 U	--	50 U	50 U	--
Aroclor 1242	SW8082	--	50 U				
Aroclor 1248	SW8082	--	50 U	--	50 U	50 U	--
Aroclor 1254	SW8082	709	50 U	50 U	150	50 U	50 U
Aroclor 1260	SW8082	--	50 U	50 U	70	50 U	50 U
Aroclor 1262	SW8082	--	50 U	--	50 U	50 U	--
Aroclor 1268	SW8082	--	50 U	--	50 U	50 U	--
Total 7 PCB Aroclors ($\mathrm{U}=1 / 2$)	--	189	50 U	50 U	345	50 U	50 U

Table 6
Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-36 EHWW-36-SC-183233 12/17/2018 1.83-2.33 m N	EHWW-38 EHWW-38-SC-000050 $\begin{gathered} 12 / 17 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-38 EHWW-38-SC-050100 $\begin{gathered} 12 / 17 / 2018 \\ 0.5-1 \mathrm{~m} \end{gathered}$ N	EHWW-39 EHWW-39-SG-000010 $\begin{gathered} 10 / 1 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-39 EHWW-39-SC-035085 12/18/2018 0.35-0.85 m N
Analytes	Method	CCME Marine PEL					
Total Pentachlorodibenzofuran (PeCDF)	E1613	--	0.3 U	18	0.3 U	50	8
Total Hexachlorodibenzofuran (HxCDF)	E1613	--	0.4 U	26	0.7 U	78	14
Total Heptachlorodibenzofuran (HpCDF)	E1613	--	0.5 U	46	0.5 U	134	93
Total Dioxin/Furan TEQ 1998 (Fish) ($U=1 / 2$)	--	21.5	0.6	5.0	0.8	13.1	2.3
PCB Aroclors ($\mu \mathrm{g} / \mathrm{kg}$)							
Aroclor 1016	SW8082	--	--	--	--	50 U	--
Aroclor 1221	SW8082	--	--	--	--	50 U	--
Aroclor 1232	SW8082	--	--	--	--	50 U	--
Aroclor 1242	SW8082	--	50 U				
Aroclor 1248	SW8082	--	--	--	--	50 U	--
Aroclor 1254	SW8082	709	50 U				
Aroclor 1260	SW8082	--	50 U	50 U	50 U	80	50 U
Aroclor 1262	SW8082	--	--	--	--	50 U	--
Aroclor 1268	SW8082	--	--	--	--	50 U	--
Total 7 PCB Aroclors ($\mathrm{U}=1 / 2$)	--	189	50 U	50 U	50 U	230	50 U

Table 6
Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-40 EHWW-40-SC-000050 $\begin{gathered} 12 / 18 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-40 EHWW-40-SC-060110 12/18/2018 $0.6-1.1 \mathrm{~m}$ N	EHWW-42 EHWW-42-SG-000010 $\begin{gathered} 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-44 EHWW-44-SG-000010 $\begin{gathered} 10 / 4 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-44 EHWW-44-SC-017067 12/19/2018 $0.17-0.67 \mathrm{~m}$ N
Analytes	Method	CCME Marine PEL					
Total Pentachlorodibenzofuran (PeCDF)	E1613	--	157	10	11	12	0.3 U
Total Hexachlorodibenzofuran (HxCDF)	E1613	--	223	1	37	39	0.7
Total Heptachlorodibenzofuran (HpCDF)	E1613	--	158	4.2	91	91	1.4
Total Dioxin/Furan TEQ 1998 (Fish) ($U=1 / 2$)	--	21.5	65.2	0.9	4.6	5.0	0.6
PCB Aroclors ($\mu \mathrm{g} / \mathrm{kg}$)							
Aroclor 1016	SW8082	--	--	--	50 U	50 U	--
Aroclor 1221	SW8082	--	--	--	50 U	50 U	--
Aroclor 1232	SW8082	--	--	--	50 U	50 U	--
Aroclor 1242	SW8082	--	50 U				
Aroclor 1248	SW8082	--	--	--	50 U	50 U	--
Aroclor 1254	SW8082	709	50 U				
Aroclor 1260	SW8082	--	50 U				
Aroclor 1262	SW8082	--	--	--	50 U	50 U	--
Aroclor 1268	SW8082	--	--	--	50 U	50 U	--
Total 7 PCB Aroclors ($\mathrm{U}=1 / 2$)	--	189	50 U				

Table 6
Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-45 EHWW-45-SG-000010 $\begin{gathered} 10 / 4 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-46 EHWW-46-SG-000010 $\begin{gathered} 10 / 4 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-48 EHWW-48-SG-000010 $\begin{gathered} 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ N	EHWW-48 EHWW-148-SG-000010 $\begin{gathered} 10 / 2 / 2018 \\ 0-0.1 \mathrm{~m} \end{gathered}$ FD	EHWW-53 EHWW-53-SC-000016 $\begin{gathered} 12 / 19 / 2018 \\ 0-0.16 \mathrm{~m} \end{gathered}$ N
Analytes	Method	CCME Marine PEL					
Total Pentachlorodibenzofuran (PeCDF)	E1613	--	4.5	2	2.6	2.7	16
Total Hexachlorodibenzofuran (HxCDF)	E1613	--	14	12	9	10	34
Total Heptachlorodibenzofuran (HpCDF)	E1613	--	52	27.8	33	29	90
Total Dioxin/Furan TEQ 1998 (Fish) ($U=1 / 2$)	--	21.5	3.3	3.3	2.2	2.7	4.3
PCB Aroclors ($\mu \mathrm{g} / \mathrm{kg}$)							
Aroclor 1016	SW8082	--	50 U	50 U	50 U	50 U	--
Aroclor 1221	SW8082	--	50 U	50 U	50 U	50 U	--
Aroclor 1232	SW8082	--	50 U	50 U	50 U	50 U	--
Aroclor 1242	SW8082	--	50 U				
Aroclor 1248	SW8082	--	50 U	50 U	50 U	50 U	--
Aroclor 1254	SW8082	709	50 U				
Aroclor 1260	SW8082	--	50 U				
Aroclor 1262	SW8082	--	50 U	50 U	50 U	50 U	--
Aroclor 1268	SW8082	--	50 U	50 U	50 U	50 U	--
Total 7 PCB Aroclors ($\mathrm{U}=1 / 2$)	--	189	50 U				

Table 6
Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-53 EHWW-53-SC-016066 12/19/2018 0.16 - 0.66 m N	EHWW-53 EHWW-53-SC-066116 $\begin{gathered} 12 / 19 / 2018 \\ 0.66-1.16 \mathrm{~m} \end{gathered}$ N	EHWW-54 EHWW-54-SC-000050 $\begin{gathered} 12 / 18 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-54 EHWW-54-SC-055105 12/18/2018 0.55-1.05 m N	EHWW-54 EHWW-54-SC-105155 $\begin{gathered} 12 / 18 / 2018 \\ 1.05-1.55 \mathrm{~m} \\ \mathrm{~N} \end{gathered}$
Analytes	Method	CCME Marine PEL					
Total Pentachlorodibenzofuran (PeCDF)	E1613	--	0.5	--	11	0.5	--
Total Hexachlorodibenzofuran (HxCDF)	E1613	--	0.7	--	39	0.3 U	--
Total Heptachlorodibenzofuran (HpCDF)	E1613	--	0.5 U	--	92	0.5 U	--
Total Dioxin/Furan TEQ 1998 (Fish) ($U=1 / 2$)	--	21.5	0.7	--	2.8	0.8	--
PCB Aroclors ($\mu \mathrm{g} / \mathrm{kg}$)							
Aroclor 1016	SW8082	--	--	--	--	--	--
Aroclor 1221	SW8082	--	--	--	--	--	--
Aroclor 1232	SW8082	--	--	--	--	--	--
Aroclor 1242	SW8082	--	50 U	--	50 U	50 U	--
Aroclor 1248	SW8082	--	--	--	--	--	--
Aroclor 1254	SW8082	709	50 U	--	50 U	50 U	--
Aroclor 1260	SW8082	--	50 U	--	50 U	50 U	--
Aroclor 1262	SW8082	--	--	--	--	--	--
Aroclor 1268	SW8082	--	--	--	--	--	--
Total 7 PCB Aroclors ($\mathrm{U}=1 / 2$)	--	189	50 U	--	50 U	50 U	--

Table 6
Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-55 EHWW-55-SC-110160 12/19/2018 $1.1-1.6 \mathrm{~m}$ N	EHWW-56 EHWW-56-SC-000050 $\begin{gathered} 12 / 17 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-57 EHWW-57-SC-000050 $\begin{gathered} 12 / 17 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-58 EHWW-58-SC-361411 12/16/2018 3.61-4.11 m N	EHWW-58 EHWW-58-SC-411461 12/16/2018 4.11-4.61 m N
Analytes	Method	CCME Marine PEL					
Total Pentachlorodibenzofuran (PeCDF)	E1613	--	1 U	4.4	330	0.5	--
Total Hexachlorodibenzofuran (HxCDF)	E1613	--	4	19	437	0.4 U	--
Total Heptachlorodibenzofuran (HpCDF)	E1613	--	5	33.5	509	1	--
Total Dioxin/Furan TEQ 1998 (Fish) ($U=1 / 2$)	--	21.5	1.1	1.6	40.7	0.7 U	--
PCB Aroclors ($\mu \mathrm{g} / \mathrm{kg}$)							
Aroclor 1016	SW8082	--	--	--	--	--	--
Aroclor 1221	SW8082	--	--	--	--	--	--
Aroclor 1232	SW8082	--	--	--	--	--	--
Aroclor 1242	SW8082	--	50 U	50 U	50 U	50 U	--
Aroclor 1248	SW8082	--	--	--	--	--	--
Aroclor 1254	SW8082	709	50 U	50 U	50 U	50 U	--
Aroclor 1260	SW8082	--	50 U	50 U	50 U	50 U	--
Aroclor 1262	SW8082	--	--	--	--	--	--
Aroclor 1268	SW8082	--	--	--	--	--	--
Total 7 PCB Aroclors ($\mathrm{U}=1 / 2$)	--	189	50 U	50 U	50 U	50 U	--

Table 6

Analytical Results Summary

		Location ID Sample ID Sample Date Depth Sample Type	EHWW-59 EHWW-59-SC-038088 12/19/2018 0.38-0.88 m N	EHWW-65 EHWW-65-SC-000050 $\begin{gathered} 12 / 19 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ N	EHWW-65 EHWW-165-SC-000050 $\begin{gathered} 12 / 19 / 2018 \\ 0-0.5 \mathrm{~m} \end{gathered}$ FD
Analytes	Method	CCME Marine PEL			
Total Pentachlorodibenzofuran (PeCDF)	E1613	--	1.5	2.9	3.7
Total Hexachlorodibenzofuran (HxCDF)	E1613	--	0.6	9.4	12.7
Total Heptachlorodibenzofuran (HpCDF)	E1613	--	1.1	20	28
Total Dioxin/Furan TEQ 1998 (Fish) ($\mathrm{U}=1 / 2$)	--	21.5	0.7	1.3	1.8
PCB Aroclors ($\mu \mathrm{g} / \mathrm{kg}$)					
Aroclor 1016	SW8082	--	--	--	--
Aroclor 1221	SW8082	--	--	--	--
Aroclor 1232	SW8082	--	--	--	--
Aroclor 1242	SW8082	--	50 U	50 U	50 U
Aroclor 1248	SW8082	--	--	--	--
Aroclor 1254	SW8082	709	50 U	50 U	50 U
Aroclor 1260	SW8082	--	50 U	50 U	50 U
Aroclor 1262	SW8082	--	--	--	--
Aroclor 1268	SW8082	--	--	--	--
Total 7 PCB Aroclors ($\mathrm{U}=1 / 2$)	--	189	50 U	50 U	50 U

Table 6
Analytical Results Summary
Notes:

1. Sulphide was calculated by subtracting sulphate from total sulphur (method INOR-181-6027, INOR-181-6028, and ARD-181-18009).

Totals are calculated as the sum of all detected results and half of the reporting limit of nondetect results $(U=1 / 2)$. If all results are not detected, the highest limit value is reported as the sum.
Dioxin/furan TEQ values were calculated with 1998 World Health Organization toxicity equivalency factor values for fish.
Total 7 PCB Aroclors is the sum of Aroclor 1016, Aroclor 1221, Aroclor 1232, Aroclor 1242, Aroclor 1248, Aroclor 1254, and Aroclor 1260.
U.S. Environmental Protection Agency Stage 2A data validation was completed by Anchor QEA.

Detected concentration is greater than CCM E M arine PEL screening level

Bold: Detected result

--: results not reported or not applicable
$\mu \mathrm{g} / \mathrm{kg}$: micrograms per kilogram
$\mu \mathrm{g} / \mathrm{L}$: micrograms per litre
CCME: Canadian Council of Ministers of the Environment
FD: field duplicate sample
J: Estimated value
m : metre
$\mathrm{mg} / \mathrm{kg}$: milligrams per kilogram
mg / L : milligrams per litre
N : normal environmental sample
ng/kg: nanograms per kilogram
NP: non-plastic
PCB: polychlorinated biphenyls
pct: percent
PEL: probable effects level
TEQ: Toxic Equivalents Quotient
U: Compound analyzed, but not detected above detection limit

Figures

LEGEND:

- DGT Sample Location
- Diver Observation Location

December Dive Transect
\square Sonic Boring
Sonic Boring, Bench Scale
Contours Chart Datum (1-metre interval)
\square Completed Remediation Projects

Date: 2019/02/25, 4:41 PM I User: js

Publish Date: 2019/02/25, 4:59 PM | User: jsfox

Figure 3

Publish Date: 2019/02/25, 5:15 PM | User: jsfox

ublish Date: 2019/02/25, 5:13 PM | User: jsfox

Publish Date: 2019/02/25, 5:16 PM | User. jsfox

Appendix A
Field Data

Surface Sediment Collection Log

Surface Sediment Collection Log

Surface Sediment Collection Log

Note	$-7.4 m$					
Grab \#	Time	Confirmed Coordinates (datum)		Sample Accept (Y/N)	Recovery Depth (cm)	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc
		NAD 83 (N)	NAD 83 (E)			
1	1530	5366268	.667261	y	30	jewrs close ovelying $\mathrm{H}_{2} \mathrm{O}$

Surface Sediment Collection Log

Surface Sediment Collection Log

Surface Sediment Collection Log

MAJOR CONSTITUENT GROUP NAME. Moisture content, density/consistency, color, major constituent (\%),
Sample Description: minor constituents (\%), plasticity. Amount and shape of minor constituents (e.g., wood, shells). Biota. Sheen, odor. Structure descriptions

meist to uret, very soft grimg	
Moderate usod debis up h h10- (mace shell hash. 90% fime 10%	
B,0assary! EHWW-08-5G-000010 @1535	
Sample Depth: 0-10cm	
Field Measurements: temperature: $11.2{ }^{\circ} \mathrm{C} ; \mathrm{pH}: \ell_{4}$ std units; electrical conductivity/salinity: 710 ppt $\mathrm{mS} / \mathrm{cm} / \mathrm{ppt}$	
Sample Containers: $2 \times D G T$, lx birassay hag	
Analyses:	

Surface Sediment Collection Log

Surface Sediment Collection Log

Surface Sediment Collection Log

Surface Sediment Collection Log

Surface Sediment Collection Log

Surface Sediment Collection Log

MAJOR CONSTITUENT GROUP NAME. Moisture content, density/consistency, color, major constituent (\%),
Sample Description: minor constituents (\%), plasticity. Amount and shape of minor constituents (e.g., wood, shells). Biota. Sheen, odor. Structure descriptions

Surface Sediment Collection Log

Surface Sediment Collection Log

Surface Sediment Collection Log

[^30]
Surface Sediment Collection Log

Surface Sediment Collection Log

Surface Sediment Collection Log

Surface Sediment Collection Log

Surface Sediment Collection Log

Job: EHRP Wood Debris Remediation
Job No: 170553-11.05
Field Staff: FM, MD
Contractor: Coastline

Station: Gtuni -29
Date: $10 / 4 / 18$
Sample Method: Pow ER GRAB
Proposed Coordinates: Lat. 5366037.6
$\frac{\text { Tide Measurements }}{\text { Time: } 1250}$ Long. 467111.1

Sample Acceptability Criteria:

1) Overlying water is present
2) Water has low turbidity

Height: 2. 2
3) Sampler is not overfilled
4) Surface is flat
5) Desired penetration depth

Water Height
DTM Depth Sounder:

Mudline Elevation (datum): calculated after sampling
Notes: $\frac{18.09 \mathrm{~m}}{-8}$

Grab \#	Time	Confirmed Coordinates (datum)		Sample Accept (Y/N)	Recovery Depth (cm)	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc
		NAD 83 (N)	NAD 83 (E)			
1	1250	5366040	467114	4	30	juins Clieset ovehing $\mathrm{H}_{2} \mathrm{C}$

MAJOR CONSTITUENT GROUP NAME. Moisture content, density/consistency, color, major constituent (\%),
Sample Description: minor constituents (\%), plasticity. Amount and shape of minor constituents (e.g., wood, shells). Biota. Sheen, odor. Structure descriptions

Surface Sediment Collection Log

Surface Sediment Collection Log

Surface Sediment Collection Log

$$
\text { A Add ed extra Der to } 24 \text { hour treatment to est saturation }
$$

Surface Sediment Collection Log

Surface Sediment Collection Log

Surface Sediment Collection Log

Sample Description: $\begin{aligned} & \text { MAJOR CONSTITUENT GROUP NAME. Moisture content, density/consistency, color, major constituent (\%), } \\ & \begin{array}{l}\text { minor constituents (\%), plasticity. Amount and shape of minor constituents (egg., wood, shells). Biota. Sheen, } \\ \text { odor. Structure descriptions }\end{array}\end{aligned}$

Sample Depth: í-luem

Analyses:

Surface Sediment Collection Log

Sample Description: MAJOR CONSTITUENT GROUP NAME. Moisture content, density/consistency, color, major constituent (\%), minor constituents (\%), plasticity. Amount and shape of minor constituents (e.g., wood, shells). Biota. Sheen, odor. Structure descriptions

Sample Containers: $1 \times D G^{-T}, 1 \times$ bivarsen $_{2}$

Analyses:

Surface Sediment Collection Log

$$
3 \times D G T: 0.5,2
$$

Surface Sediment Collection Log

Sample Description:	MAJOR CONSTITUENT GROUP NAME. Moisture content, density/consistency, color, major constituent (\%), minor constituents (\%), plasticity. Amount and shape of minor constituents (e.g., wood, shells). Biota. Sheen, odor. Structure descriptions
Decomposed orgenics (woord fryoments \& fibers)	
moist, sotot, brawo/gram,	
Gaceful of arab of sarfuce Muderute-string tiosodar	
EAWN-40-se-900010 0 1 55	
Sample Depth: (r-iOcu	
Field Measurements: temperature: $11.0^{\circ} \mathrm{C} ; \mathrm{pH}: 7.04$ std units; electrical conductivity/salinity: $7 \mathrm{C} \quad \mathrm{mS} / \mathrm{cm} ; \mathrm{ppt}$	
	$2 v, 1)<-1, \text { binegeron }$
Analyses:	

Surface Sediment Collection Log

Surface Sediment Collection Log

Job: EHRP Wood Debris Remediation
Job No: 170553-11.05

Field Staff: EM, MD
Contractor: Coastline

Station: Eltw心-Z 42
Date: $10 / 2 / 18$
Sample Method: Parer CRAB
Proposed Coordinates: Lat. $536,6447.9$
Tide Measurements \quad Sample Acceptability Criteria:
Time:

1) Overlying water is present
2) Water has low turbidity

Height \qquad 3) Sampler is not overfilled
4) Surface is flat
5) Desired penetration depth

Water Height
DTM Depth Sounder:
DTM Lead Line:

MAJOR CONSTITUENT GROUP NAME. Moisture content, density/consistency, color, major constituent (\%),
Sample Description: minor constituents (\%), plasticity. Amount and shape of minor constituents (egg., wood, shells). Biota. Sheen,
$0-10 \mathrm{~cm}$ odor. Structure descriptions

Surface Sediment Collection Log

MAJOR CONSTITUENT GROUP NAME. Moisture content, density/consistency, color, major constituent (\%),
Sample Description: minor constituents (\%), plasticity. Amount and shape of minor constituents (e.g., wood, shells). Biota. Sheen, odor. Structure descriptions

Surface Sediment Collection Log

Sample Description:

MAJOR CONSTITUENT GROUP NAME. Moisture content, density/consistency, color, major constituent (\%),

Surface Sediment Collection Log

Daily Log

Esquimalt Harbour Remediation Project

Notes: Work performed, Phone calls made, Problems Issues Resolutions, Visitors on site, Deviations from the Workplan Safety infractions, Important conimentsinstructions to contractors

Signature:

Daily Log

Esquimalt Harbour Remediation Project

Notes: Work performed, Phone calls made, Problems IssuestResolutions, Visitors on site, Deviations from the Workplan Safety infractions, Important commentslinstructions to contractors

Signature:

Daily Log

Esquimalt Harbour Remediation Project

Notes. Work performed, Phone calls made, Problems 1/sues/Resolutions//Visitors on site, Deviations from the Workplan
Safety infractions, Important/coramentsinstructions to contractors Signature: \qquad

Daily Log

Notes: Work performed, Phone calls made, Problems/ssues/Resolutions, Visitors on site, Deviations from the Workplan Safety infractions, Important comments instructions to contractors Signature: \qquad

Daily Log

Esquimalt Harbour Remediation Project

Equipment on site: 00720 EM Mxtteinneve- arrive on site, (and gear

 1208 finish sampling, return to dock for demob. 1230 Depart CFSA

		On

Notes: Work performed, Phone calls made, Problems Issues/Resolutions, Visitors on site, Deviations from the Workplan Safety infractions, Important comments/instructions to contractors

Signature:

Daily Safety Briefing Form

Date:	$\frac{10 / / / 18}{\text { Project No: }}$Project Name: EHRP Wood Waste.

\square Field Team Medical Conditions for Emergency Purposes (Confidential): \qquad

```
Other:
```


Daily Safety Briefing Form

Date: \qquad
Project No: 170553-11.05
Project Name: EHRP Wood Waste

\square Other:

\qquad

Daily Safety Briefing Form

Date:	$\frac{10 / 3 / 1 \theta}{\text { Project No: }}$170553-11.05 Project Name: EHRP Wood Waste

Person Conducting	Health \& Safety	Project
Meeting:	Officer: \qquad	Manager:
TOPICS COVERED:		
Emergency Procedures and Evacuation Route	Dines of Authority	Lifting Techniques
\square Directions to Hospital	D Communication	\square Slips, Trips, and Falls
HASP Review and Location	\square Site Security	\square Hazard Exposure Routes
\square Safety Equipment Location	\square Vessel Safety Protocols	Fleat and Cold Stress
\square Proper Safety Equipment Use] Work Zones	\square Overhead and Underfoot Hazards
Employee Right-to-Know/ SDS Location	Vehicle Safety and Driving/ Road Conditions	- Chemical Hazards
\square Fire Extinguisher Location	\square Equipment Safety and Operation	\square Flammable Hazards
\square Eye Wash Station Location	\square Proper Use of PPE	\square Biological Hazards
\square Buddy System	\square Decontamination Procedures	\square Eating/Drinking/Smoking
\square Self and Coworker Monitoring	\square Near Miss Reporting Procedures	\square Reviewed Prior Lessons Learned
\square Field Team Medical Conditions	Emergency Purposes (Confidential):	

Other:

\qquad

Daily Safety Briefing Form

Project No: 170553-11.05		
Project Name: EHRP Wood Waste		
Person Conducting Meeting: \qquad	Health \& Safety Officer: \qquad	Project Manager: \qquad
TOPICS COVERED:		
Emergency Procedures and Evacuation Route	\square Lines of Authority	\square Lifting Techniques
\square Directions to Hospital	\square Communication	\square Slips, Trips, and Falls
\square HASP Review and Location	\square Site Security	\square Hazard Exposure Routes
\square Safety Equipment Location	\square Vessel Safety Protocols	\square Heat and Cold Stress
\square Proper Safety Equipment Use	\square Work Zones	\square Overhead and Underfoot Hazards
Employee Right-to-Know/ SDS Location	Vehicle Safety and Driving/ Road Conditions	\square Chemical Hazards
\square Fire Extinguisher Location	\square Equipment Safety and Operation	\square Flammable Hazards
\square Eye Wash Station Location	\square Proper Use of PPE	\square Biological Hazards
\square Buddy System	\square Decontamination Procedures	\square Eating/Drinking/Smoking
\square Self and Coworker Monitoring	\square Near Miss Reporting Procedures	\square Reviewed Prior Lessons Learned
\square Field Team Medical Conditions	Emergency Purposes (Confidential):	

Date:
Project No: 170553-11.05

Project Name: EHRP Wood Waste

Person Conducting Meeting: \qquad	Health \& Safety Officer: \qquad	Project Manager: DD
TOPICS COVERED: \quad		
Emergency Procedures and Evacuation Route	\square Lines of Authority	\square Lifting Techniques
\square Directions to Hospital	\square Communication	\square Slips, Trips, and Falls
\square HASP Review and Location	\square Site Security	Hazard Exposure Routes
\square Safety Equipment Location	\square Vessel Safety Protocols	\square Heat and Cold Stress
\square Proper Safety Equipment Use	\square Work Zones	\square Overhead and Underfoot Hazards
Employee Right-to-Know/ SDS Location	Vehicle Safety and Driving/ Road Conditions	\square Chemical Hazards
\square Fire Extinguisher Location	\square Equipment Safety and Operation	\square Flammable Hazards
\square Eye Wash Station Location	\square Proper Use of PPE	\square Biological Hazards
\square Buddy System	\square Decontamination Procedures	\square Eating/Drinking/Smoking
\square Self and Coworker Monitoring	\square Near Miss Reporting Procedures	\square Reviewed Prior Lessons Learned

Other:
Weather Conditions: __Zin
pagel

pagez

page 3

Page 4

page 5

SAMPLE LOCATION	DGT EXPOSURE DURATION	DGT DEPLOYED (DATE/TIME)	RETRIEVE ON (DATE/TIME)	DGT RETRIEVED (DATE/TIME)	COMMENTS
35	2	$10 / 41455$	10/4 1655.	10/4 1659	$\begin{aligned} & \text { Li+wN } 35-5 G=00010 \mathrm{~A} \\ & \text { c\|l659 } \end{aligned}$
35	24	11456	$10 / 51456$	10/5 1503	रHWW:35-56-000014 (2) 1503
34	2	10/4 1538	10/4 1738.	$10 / 41745$	$\begin{aligned} & \text { EHWW } 34-5 \mathrm{SE}-00000 \mathrm{~A} \\ & \mathrm{C} / 745 \end{aligned}$
34	24	- 1540	10/5 1540	10/5 1537	EHWN-34-SG-000016 e1537
32	24	$10 / 41609$	1015. 1609	10/5 1700	EHNW - 32-5G-00000 © 1700.
25	2	$10 / 5753$	10/5 953.	10151006	EHWW-25-SG000010A@b06
25	24	753	$10 / 6.753 \cdot$	10/6 0753	EHHW-25-3G000010b@0753
23	24	$10 / 50909$	$10 / 60809 \mathrm{mo}$	10/6. 0935	ETHWN-23-SG0001018@0935
23	24		$10 / 6$	am	
40	2	10/50937	10/5 1137.	$10 / 51155$	EHWW-40-5G000010A@1155
40	24	- 0937	10/6.0937.	10/6 0950	EthWN-40-5S--00010b@0950
43	2	10/5 1002	10/5 1202	$10 / 5 \quad 1202$	Eltwu-43-5G- 000010A@12.2
43	24	11003	10/6. 1003	$10 / 61010$	EHMWH-43-5G00001B@1010
36	2	$10 / 5 \quad 1035$	$10 / 5 \quad 1235$	$10 / 51256$	$\begin{aligned} & \text { etWW1-36-56- } \\ & 000010 A @ 1256 \end{aligned}$
36	24	$\pm \quad 1036$	10/6. 1036	$10 / 61045$	EHWW-36-SG0000103@1045
37	24	$10 / 5 \quad 1109$	$10 / 6 \quad 1109$	$1016 \quad 115$	EHLWN-37-SG000010b@115
	24		lota mo		

\qquad -

1 See project SAP/QAPP for analyte lists and test methods
2 Email sample confirmation report to labdata@anchorqea.com

Additional notes/comments:

Relinquished By: EUAN MALCZY	Company. Anchor QEA LLC.	Received By.	Company.	
	$10 / 2 / 2018 \quad \% 1900$			
Signature/Printed Name	Date/Time 心/2	Signature/Printed Name		Date/Time
Relinquished By.	Company.	Received By:	Company:	
Signature/Printed Name	Date/Time	Signature/Printed Name		Date/Time

\qquad of \qquad

1 See project SAP/QAPP for analyte lists and test methods
2 Email sample confirmation report to labdata@anchorqea.com
Additional notes/comments:

Relinquished By :	Company: Anchor QEA LLC.	Received By: \square Milla Davis	Company:	teunnarci
Eliar macenic	$10 / 51181500$		10	1181601
Signature/Printed Name	Date/Time	Signature/Printed Name	Date/Time	

[^31]Additional notes/comments:

Relinquished By: CRen + EVAN MACLzonce	Company: Anchor QEA LLC. $1015 / 18,1510$	Received By: mika devis.	Company:	$\begin{array}{r} \text { Hennmane } \\ 109518 \end{array}$
Signature/Printed Name	Date/Time	Signature/Printed Name		Date/Time
		Received By:	Company:	Nondady ETE
Signature/Printed Name	Date/Time	Signature/Printed Name $4 \rightarrow 0$		Date/Time

1 See project SAP/QAPP for analyte lists and test methods
2 Email sample confirmation report to labdata@anchorqea.com

Additional notes/comments:

Please homogenize sample and subsample necessary volume to send out for PCB and D/F analysis

\qquad of \qquad

1 See project SAP/QAPP for analyte lists and test methods 2 Email sample confirmation report to labdata@anchorqea.com

Additional notes/comments:

Please homogenize sample and subsample necessary volume to send out for PCB and D/F analysis

Relinquished By:	Company. Anchor QEA LLC.	Received By:	Company.
Signature/Printed Name	Date/Time	Signature/Printed Name	Date/Time
Relinquished By.	Company.	Received By.	Company,
Signature/Printed Name	Date/Time	Signature/Printed Name	Date/Time

\qquad

1 See project SAP/QAPP for analyte lists and test methods
2 Email sample confirmation report to labdata@anchorqea.com

Additional notes/comments:

Relinquished By: tion Malcruci	Company: Anchor QEA LLC. $10 / 5 / 8 \quad 1500$			
Signature/Printed Name	DaterTime	Signature/Printed Name		Date/Time
Relinguished-Ry:	Company: \qquad	Received By:	Company:	
$19 \rightarrow+\infty$	$10 / 10 / 18 \quad 0930$			
Signature/Printeaname	Date/Time	Signature/Printed Name		Date/Time

\qquad

1 See project SAP/QAPP for analyte lists and test methods
2 Email sample confirmation report to labdata@anchorqea.com

[^32]

1 See project SAP/QAPP for analyse lists and test methods
2 Email sample confirmation report to labdata@anchorqea.com

Additional notes/comments:
\qquad

\qquad 8

\{ See project SAP/QAPP for analyse lists and test methods
2 Email sample confirmation report to labdata@anchorqea.com

Additional notes/comments:

\qquad 8

1 See project SAP/QAPP for analyse lists and test methods
2 Email sample confirmation report to labdata@anchorqea.com

Additional notes/comments:

\qquad of 8

1 See project SAP/QAPP for analyte lists and test methods
2 Email sample confirmation report to labdata@anchorqea.com

Additional notes/comments:

8

1 See project SAP/QAPP for analyte lists and test methods
2 Email sample confirmation report to labdata@anchorqea.com

Additional notes/comments:

	Company: tan uneket	Received By:	Company:	
	$10 / 10 / 18 \quad 0930$			
Signature/Printed Name	Date/Time			Date/Time

1 See project SAP/QAPP for analyte lists and test methods
2 Email sample confirmation report to labdata@anchorqea.com

Additional notes/comments;

 quo fine, 10% t-sand Substantial organic materiel (wood tringments,
 odor
$150-232 \mathrm{~cm}$: Moist, soft, gray, SANDY SILT (ML), Do\% fine, $30 \% \mathrm{f}$-sand, substantial' shell hash! $232-442 \mathrm{~cm}$: moist, shedstiff, gray, medium plasticity, CLAYEYSICT
(cL/ML), 100% fines
Q. 310 cm : Grades to gray
ul brown mottling u) brown mottling Q 360 cm : Grades to brown wigray mottling
(c) 370 cm : one gravel
(subrumded) (subruunded, 2 cm) $\because 2-$ end of come $C 14.5 \mathrm{ft} / 4.42 \mathrm{~m}$

Daily Log

Esquimalt Harbour Remediation Project

Notes Work performed, Phone calls made, Problems Issues/Resolutions, Visitors on site, Deviations from the Workplan
Safety infractions, Important commentsínstructions to contractors
Signature: \qquad

Daily Log
Esquimalt Harbour Remediation Project

See Notes on bottom of page for detailed logging
Equipment on site:

0950 Attenat\#1 © traw-36, acupted.
 accepted. will switch to DT 45 - to collect bench
DTA1 rejecter insuffivent peary in tile
 from target.
14 attempt w/ 6" barrel to $\sim 13 \mathrm{ft}$, no recovery $2^{\text {in }}$ attempt $w / 4^{\prime \prime}$ barre witheatcher (bent).
\qquad acest \#3, surface interval ont, no leave surface. is attempt on -38 . yids fils, extended. attempt with $4^{\prime \prime}$, no catcher, 37 ft water top large accepted
1730 Em, BiN, RT transit off barge to CFSA
Samples delivered to lab:

	NA

Notes Work performed, Phone calls made, Problems Issues/Resolutions, Visitors on site, Deviations from the Workplan
Safety infractions, Important commentsiinstructions to contractors
Signature:

Daily Log
Esquimalt Harbour Remediation Project

See Notes on bottom of page for detailed logging
Equipment on site:
Equipment on site:

1140	EtHW-03 " At attempt cl pushed to Sf t
	$v 0.5140$

riveted
\#2 N40am recover on 5 IA Push/retaved!
HS 273 cm recover d $n 15 \mathrm{~cm}$ wood debris; retained!
\# 14 N 70 cm relived $v 10-15 \mathrm{~cm}$ nod wis od.
He-like dor, tace sheen in water that washed ut of twee retained,
Chur 57

Notes: Work performed, Phone calls made, Problems Issyes/Resolytions, Visitors on site, Deviations from the Workplan
Safety infractions, Important comments/instructions to contractors
Signature:

Daily Log

Esquimalt Harbour Remediation Project

Notes Work performed, Phone calls made, Problems Issues/Resolutions, Visitors on site, Deviations from the Workplan Safety infractions, Important commentsinstruction seontractors

Daily Log
Dr 45 Bench Core
collection Summery
Esquimalt Harbour Remediation Project collection Summary

See Notes on bottom of page for detailed logging
Equipment on site:
Et+ww-39 All pushed to 5-14
Attempt \#1, accepted, processed as primary core on the barge
Attempt \#2, accepted, Eltww-39-sc-1
labeled as \#1 for bench testing, 75 cm recovery
Attempt \#3 accepted, Eltww-39-5C-2
labelcel as $\# 2$ for bench testing, 115 cm total recovery cut dawn to $N 70 \mathrm{~cm}$ for packoging/transpart.
Attempt $\# 4$ accepted, Et+wW-39-5C-3
labelled as $\# 3$ for bench testing, 108 cm to tool recovery cut down to $N 69 \mathrm{~cm}$ for packasing/tronsort

EHWW-16 All pushed to 5 ft Attempt \#1 accepted, Ettww-16-5C-1
175 cm recovery, cut down to 276 cm for packaging. Attempt $\# 2$ accepted, Ettww-16-5C-2 150 cm recovery, cut down to $\sim 69 \mathrm{~cm}$ for packaging, Attempt \#3 accepted, Ettwiw-16-5c-3
02 cm recovery, cut down to $\pi 70 \mathrm{~cm}$ for packaging

Samples delivered to lab:

	$N A$

Notes Work performed, Phone calls made, Problems Issues/Resolutions, Visitors on site, Deviations from the Workplan safety infractions, Important compeers/ instructions to eon tractors

Signature:

Daily Log
Esquimalt Harbour Remediation Project
2/19/18

See Notes on bottom of page for detailed logging
on
Equipment on site: 0730 depart from br- fy CFSA

80θ	Hf\& 5 mating
$\sim 8: 15$	on station -55

if's maxing
on station - 55
inst push @ Station 55, accepted
Snitch to Dit system, will try tollecit coves to replace -03. first attempt rejected NiPA recovered $2^{\text {nd }}$ attemptrotained, short but have intact surface, went to retain coarse wal sd attempt retained) 4/5 a attempt rejected marvel on.
mob to -5 ? list attemptacepted
DTUS cores 1-3 coccepted
collect water simple for bench testing mob to -65 , divers blocking -53 first two attempted pushes have no recovery, this attempt using catcher, accepted mob to -44 , station neal barge, 1st Rush at 44, accepted finish sampling - 44. EM off beige it deliver samples to cornier. BW/RT demob equipment from barge.
Em retum to CFSA, Load demob gear from CFSA.
Mercury transport will hold dins in Yard in Vancouver during disposal characterization.

Samples del ivered to lab:
ATTAT
see col, samples: dropped off a Ae e coiner.
Notes Work performed, Phone calls made, Problems Issues/Resolutions, Visitors on site, Deviations from the Workplan
Safety infractions, Important comments/instructionsto contractors
Signature:

Daily Log
Esquimalt Harbour Remediation Project
PROJECT NAME:
SITE LOCATION:
WEATHER: WIND FROM:

N	NE	E	SE	S	SW	W	NW
SUNNY	CLOUDY	RAIN		$?$			

COM MINTS
See Notes on bottom of page for detailed logging
Equipment on site:

TIME
Notes on bottom
uipment on site:

Ettww-55 All pushed to 5-ft , 19 cm recovered, in tact surface bat wort retain deer coarse wood. (retained)
\# 2 A few wood fragments retained, (not retained)
\qquad \#4 few berk fragments not retained
few back fragments (not retained)
cones \# 1\&2 shorties) submitted for bench testing.

Ethw -59 All posher toft
1030 \#1. retained, 89 cm recovered, cut to $\sim 64 \mathrm{~cm}$

1030 \#1 retained, 89 cm recovered, cut to $\sim 64 \mathrm{~cm}$ \#2 retained, 90 cm recovered, cut to N 67 cm \#3 retained, 83 cm recovered,' cut to 267 cm

DT45 Bench Core
Collection summary
DATE: $12 / 19 / 18$
PERSONNEL: EM, BW, PT (Hemmera)

LIGHT	MEDIUM	HEAVY
TEMPERATURE:	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$

TEMPERATURE:
${ }^{\circ}{ }^{\circ} \mathrm{F} \quad$.
\square

Daily Safety Briefing Form

Date:	$\frac{12\|\|6\|\| 8}{170553-11.05}$
Project No:	
Project Name:	

Person Conducting Meeting: \qquad Health \& Safety
Officer: Project
Manager: $\quad J D \mid D B$ TOPICS COVERED:
\square Emergency Procedures and Evacuation Route
\square Directions to Hospital
HASP Review and Location
Safety Equipment Location
\square Proper Safety Equipment Use
\square Employee Right-to-Know/ SDS Location
Fire Extinguisher Location
\square Eye Wash Station Location
\square Buddy System
Self and Coworker Monitoring
\square Field Team Medical Conditions for Emergency Purposes (Confidential):
\square Other:

Daily Safety Briefing Form

Date:

121918

Project No: 170553-11.05
Project Name: EHRP Wood Waste

\square Other:

Daily Safety Briefing Form

Person Conducting em
Meeting: Health \& Safety DT
Officer:

Project Manager: DII TOPICS COVERED:
\square Emergency Procedures and Evacuation Route
\square Directions to HospitalHASP Review and Location
Safety Equipment LocationProper Safety Equipment UseEmployee Right-to-Know/ SDS Location
\square Fire Extinguisher LocationEye Wash Station LocationBuddy System
Self and Coworker MonitoringLines of Authority
\square Lifting Techniques
Communication Site Security
Vessel Safety Protocols Work ZonesVehicle Safety and Driving/ Road Conditions
Equipment Safety and Operation
Proper Use of PPEDecontamination ProceduresNear Miss Reporting Procedures
\square Slips, Trips, and Falls Hazard Exposure Routes
\square Heat and Cold StressChemical Hazards
\square Overhead and Underfoot Hazards

Field Team Medical Conditions for Emergency Purposes (Confidential): \qquad

Other: \square

Daily Safety Briefing Form Em

Person Conducting Meeting: \qquad	Health \& Safety Officer: \qquad	Project Manager: \qquad
TOPICS COVERED:		
\square Emergency Procedures and Evacuation Route	\square Lines of Authority	Stifting Techniques
Directions to Hospital	Zommunication	Stips, Trips, and Falls
HASP Review and Location	\square Site Security	\square Hazard Exposure Routes
\square Safety Equipment Location	\square Vessel Safety Protocols	WHeat and Cold Stress
\square Proper Safety Equipment Use	W Work Zones	\square Overhead and Underfoot Hazards
Employee Right-to-Know/ SDS Location	(7)Vicle Safety and Driving/ Road Conditions	\square Chemical Hazards
\square Fire Extinguisher Location	\square Equipment Safety and Operation	\square Flammable Hazards
\square Eye Wash Station Location	\square Proper Use of PPE	\square Biological Hazards
\square Buddy System	\square Decontamination Procedures	\square Eating/Drinking/Smoking
\square Self and Coworker Monitoring	\square Near Miss Reporting Procedures	WReviewed Prior Lessons Learned
\square Field Team Medical Conditions	Emergency Purposes (Confidential):	

\square Other:

Weather Conditions: wind \& Ran
Daily Work Scope: Collect brivoge
Site-specific Hazards: \qquad potentially contaminated Media
Safety Comments:

Abstract

1 See project SAP/QAPP for analyte lists and test methods 2 Email sample confirmation report to labdata(3)anchorqea.com

Additional notes/comments:

\qquad of

\qquad of

Chain of CC dy Rernerl and Laboratory Analysis Request

1 see project SAP/QAPP for analyte lists and test methods
2 Email sample confimation report to labidatacgancharqea.com

Additional notes/comments:
\qquad
\qquad

Company \qquad Recelved by
\qquad of \qquad

\ldots

1 See project SAP/OAPP for analyte lists and test methods
2 Email sample confirmation report to labdata@anchorqea.com
Additional notes/comments: \qquad
Em in man ce
cm ane misc
Received By:
Company: \qquad ,
tod Name
Company: \qquad "

Company
Date/time
Relinquished $8 y$
Date/Time Signature/P ind ed Name
\qquad of \qquad

1 See project SAPIQAPP for analyse lists and test methods
2 Email sample confirmation report to labdatadeanchorqea.com
Additional notes/comments:
\qquad
\qquad

Relinquished By:
Company: \qquad Received By:

Company:
\qquad 1 of \qquad 2

Chain of Cu. \quad y Record and Laboratory Analysis Request

1 See project SAP/QAPP for analyse lists and test methods
2 Email sample confirmation report to labdata,(6)anchorqea.com

Relinquished By:

Aatuononnemeamemes: ReC. ON ICE p, If
\qquad
\qquad

\qquad 2 of \qquad 2

Laboratory: Anchor QEA Geochemistry Laboratory
Project Name: \qquad
Project Number: 170553-11.05 Evan Malczyk
Project Contact 206.219.5891

Phone Number:
\qquad Delivery

Additional notes/comments: Rec ON IC R 1 N
\qquad
\qquad

Relinquished By:
Company: \qquad Received By:
Company:

Signature/Printed Name
\qquad
\qquad

Diver Core Collection and Processing Log

Job: WWRP
Job No. 170553-11.05
Date: $12 / 17 / 2018$
Drive Length $(\mathrm{cm}): 100$
Recovery (cm): 4
\% Recovery: 4\%
Notes

Transect/Sample ID: T59
Distance Along Transect: 50 m
Core Logged By: ERP
Diameter of Core (in): $\backslash 718 / 2.0$
Water Depth: 4.5n
Contractor: Hemmera
Field Staff: Eli Patmont, Mika Davis

Diver Core Collection and Processing Log

Job: WWRP
Job No. $170553-11.05$
Date: $12 / 17 / 2018$
Drive Length $(\mathrm{cm}): 100$
Recovery $(\mathrm{cm}): 1$
$\%$ Recovery: $1 / \%$
Nes:

Transect/Sample ID: 59 EP 2/07/19
Distance Along Transect: 100 m Core Logged By: ERP
Diameter of Core (in): $17 / 8$ / 2.0
Water Depth: 4.5 m
Contractor: Hemmera
Field Staff: Eli Patmont, Mika Davis

				Classification and Remarks (MAJOR Constituent, Minor Constituent, Moisture, Density, Color, Additional Constituents, Sheen, Odor)			
		60	40	0-11 cm SILTV SAND, Soft, wet, dark Grown; 5% shell frugrects, siight H_{2} s-like odor, truce b:otn (worm).	E		
				Bottom of care @llcm			

Diver Core Collection and Processing Log

Job：WWRP
Job No．170553－11．05
Date： $12 / 17 / 2018$
Drive Length（cm）： 100 cm
Recovery（cm）： 0 cm
$\%$ Recovery： 0% ．
Notes：

		$\begin{aligned} & \text { D} \\ & \stackrel{y}{\omega} \\ & \circ \\ & \stackrel{\circ}{\circ} \\ & \stackrel{N}{\omega} \end{aligned}$	\％	Classification and Remarks （MAJOR Constituent．Minor Constituent，Moisture，Density，Color Additional Constituents，Sheen，Odor）	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{⿸ 厂 ⿱ 二 ⿺ 卜 丿 口 ~}{\circ} \end{aligned}$	
				No Recovery		

\qquad

Diver Core Collection and Processing Log
Job: WWRP
Job No. 170553-11.05
Date: $12 / 17 / 20 \mathrm{C8}$
Drive Length $(\mathrm{cm}): 100$
Recovery (cm): 25
Transect/Sample ID: T59
Distance Along Transect: 200 m
Core Logged By: ERP
Diameter of Core (in): (1718 / 2.0
Water Depth: 4.5 m
Contractor: Hemmera
Field Staff: Eli Patmont, Mika Davis

		$\begin{aligned} & \text { D} \\ & \text { D } \\ & \circ \\ & \circ \\ & \stackrel{0}{\circ} \\ & \stackrel{y}{\circ} \end{aligned}$		Classification and Remarks (MAJOR Constituent, Minor Constituent, Moisture, Density, Color, Additional Constituents, Sheen, Odor)		
$\begin{aligned} & E \\ & E \\ & 20 E \\ & 20 E \\ & E \end{aligned}$		30	70	0-25cm SILT u/SAND (mL), moist, soft, dark brown, 5% shell frugments, slight H_{2} s-i.ke odos		

Diver Core Collection and Processing Log

Diver Core Collection and Processing Log

Job: WWRP
Job No. 170553-11.05
Date: $12 / 19 /-18$
Drive Length (cm): 80 cm
Recovery (cm):0
\% Recovery: 0%
Notes:

Transect/Sample ID: TG
Distance Along Transect: On
Core Logged By: ERP
Diameter of Core (in): $17 / 8 / 2,0$
Water Depth: 6.5 m
Contractor: Hemmera
Field Staff: Eli Patmont, Mika Davis
 of \qquad

Diver Core Collection and Processing Log							
Job: WWRP				Transect/Sample ID: T6			
				Job No. 170553-11.05 Distance Along Transect: 100 m			
Date: $12 / 19 / 2018$ Core Logged By: ERP							
Drive Length (cm): 80 Diameter of Core (in): $17 / 8$ / 2.0							
Recovery (cm): 26 Water Depth: 6.5 m							
\% Recovery: 33% Contractor: Hemmera							
Notes: \quad Field Staff: Eli Patmont, Mika Davis							
				Classification and Remarks (MAJOR Constituent, Minor Constituent, Moisture, Density, Color, Additional Constituents, Sheen, Odor)		¢	或
		20 10	80 90	$0-7 \mathrm{~cm}$ SILT w/SAND (ML), moist, soft, olive bown, 5% woad (sticies), 20% woad frugnants, moderate $\mathrm{H}_{2} \mathrm{~S}$-like odor $7-26 \mathrm{~cm}$ SANDY CLAYEV SILT(Mi), moist, olive gray, madernte H_{2} S-like odor.			
$3 \begin{aligned} & 30 \\ & 3 \\ & E \\ & 40 \\ & E \\ & E\end{aligned}$				Bottom of core@26cm	E - E E - -		

Diver Core Collection and Processing Log

Job: WWRP
Job No. $170553-11.05$
Date: $12 / 19 / 2018$
Drive Lehgth $(\mathrm{cm}): 80$
Recovery $(\mathrm{cm}): 18$
\% Recovery: 23%
Notes:

$\frac{\text { Transect/Sample ID: } T 62}{\text { Distance Along Transect: } 50 \mathrm{~m}}$
Core Logged By: ERP
Diameter of Core (in): $17 / 8$ / 2.0
Water Depth: 6.5 n
Contractor: Hemmera
Field Staff: Eli Patmont, Mika Davis

				Classification and Remarks (MAJOR Constituent, Minor Constituent, Moisture, Density, Color, Additional Constituents, Seen, Odor)	$\stackrel{\text { ¢ }}{\text { N/ }}$	兂
$\begin{aligned} & E \\ & E \\ & 10 \\ & E \\ & E \end{aligned}$			100	0-13cm SILT(ML), moist, soft, dark Grown moderate H_{2} S-like ador 13-18 grades to 5% Gark and 5% shall froyments		
				Bottom of care@18cn		

Diver Core Collection and Processing Log							
Job: WWRP				Transect/Sample ID: T62			
\qquad				Core Logged By: ERP			
Drive Length (cm):80 D				Diameter of Core (in): $17 / 8$ / (20)			
Recovery (cm): 26				Water Depth: 6.5 m			
\% Recovery: 33%				Contractor: Hemmera			
Notes: Core Grought up upside down Field Staff: Eli Patmont, Mika Davis							
	W 0 0 0 \circ \circ 0 0			Classification and Remarks (MAJOR Constituent, Minor Constituent, Moisture, Density, Color, Additional Constituents, Sheen, Odor)			
			100	0-20in CLAYEKSILT (Ml), muist, soff, dark braw A_{1} moderate $\mathrm{H}_{2} \mathrm{~S}$-li'ke odor $20-26 \mathrm{~cm}$ grades to 5% wood fragnents and 5% shell fragmeris	=	EHWW-2S-Sc-cuso 10 * *: DGT sumple collected from a separote core at the same location	
				Botton of care \& 26 cm			

Diver Core Collection and Processing Log							
Job: WWRP				Transect/Sample ID: 164	Transect/Sample ID: 164		
Job No. 170553-11.05				Distance Along Transect: 150 m			
Date: $12 / 19 / 2018$				Core Logged By: ERP			
Drive Length (cm):80 cm Din				Diameter of Core (in): $17 / 8$ / 2.0			
Recovery (cm):27 cm W				Water Depth: 9.0 m			
\% Recovery: 34%				Contractor: Hemmera			
Notes:				Field Staff: Eli Patmont, Mika Davis			
	$\overline{0}$ N 0 0 0 0 0 N	믇 N o N N		Classification and Remarks (MAJOR Constituent, Minor Constituent, Moisture, Density, Color, Additional Constituents, Sheen, Odor) $2 / 17 / 19 E P$		$\stackrel{\text { \% }}{\underline{\circ}}$	或
			100	O-25cm SILT(ML), moist, soff, dark Growly 10 moderate it 2 -like odos $10-25 \mathrm{~cm}$ grades to 5% word fragments 25-27 grudes to CLAYEKSILT (ML)	- E - - - - -		
					E E E E E - E E E - - -		

Diver Core Collection and Processing Log

Job: WWRP
Job No. $170553-11.05$
Date: $12 /(9 / 2018$
Drive Length $(\mathrm{cm}): 80$
Recovery $(\mathrm{cm}): 19$
$\%$ Recovery: 24%
Notes:

Transect/Sample ID: T65
Distance Along Transect: 0 m
Core Logged By: ERP
Diameter of Core (in): $17 / 8$ / (2.0)
Water Depth: 7.8 m
Contractor: Hemmera
Field Staff: Eli Patmont, Mika Davis

		$\begin{aligned} & \text { 駦 } \\ & 0 \\ & \circ \\ & \stackrel{\circ}{\circ} \\ & \stackrel{y}{\omega} \end{aligned}$		Classification and Remarks (MAJOR Constituent, Minor Constituent, Moisture, Density, Color, Additional Constituents, Sheen, Odor)			
		10	90	O- 16 cm SANDY SILT (MC), f-sand, wet, very soft, dark brown, 15% shell frogneats $16-19 \mathrm{~cm}$ grades to shed hash	E		
				Bottom of carce 19cm			

\qquad of \qquad 1

Diver Core Collection and Processing Log

Job: WWRP
Job No. 170553-11.05
Date: $12 / 9 / 2018$
Drive Length $(\mathrm{cm}): 80$
Recovery (cm): 24
\% Recovery: 30\%
Notes:

Transect/Sample ID: T65
Distance Along Transect: 50 m
Core Logged By: ERP
Diameter of Core (in): $17 / 8 /(2.0)$
Water Depth: 7.8 m
Contractor: Hemmera
Field Staff: Eli Patmont, Mika Davis

				Classification and Remarks (MAJJOR Constituent, Minor Constituent, Moisture, Density, Color, Additional Constituents, Sheen, Odor)	© E/ ¢	兂
$\begin{aligned} & E E \\ & 10 E \\ & \\ & 10 E \\ & 20 E \end{aligned}$			100 $i 00$	$0-20 \mathrm{~cm}$ SILT(ML), moist, soff, dark brown:15% wood fragnerts, slight $\mathrm{H}_{2} \mathrm{~s}$-like, odor 20-24 cm SILT (μl), noist, solt, darte brown, 10% shell tragneits, moderate its-like odor		
				Bottom of core a 24 cm		

\qquad 1 of \qquad

Diver Core Collection and Processing Log

Job: WWRP Job No. 170553-11.05
Date: $12 / 18 / 2018$
Drive Length (cm) : 80
Recovery (cm): 2 \% Recovery: 3%
Notes:

Transect/Sample ID: 'T66
Distance Along Transect: 50 m
Core Logged By: ERP
Diameter of Core (in): $17 / 8 /(2.0)$
Water Depth:5.On
Contractor: Hemmera
Field Staff: Eli Patmont, Mika Davis
\qquad 1

Diver Core Collection and Processing Log

Job: WWRP
Job No. 170553-11.05
Date: 12/17/2018
Drive Length (cm): 80
Recovery (cm):0
\% Recovery: 0\%
Notes:

Transect/Sample ID: T67
Distance Along Transect: Om
Core Logged By: ERP
Diameter of Core (in): $17 / 8$ / 2.0
Water Depth: 9.6 m
Contractor: Hemmera
Field Staff: Eli Patmont, Mika Davis

				Classification and Remarks (MAJOR Constituent, Minor Constituent, Moisture, Density, Color, Additional Constituents, Sheen, Odor)			
				No Recovery		EHWW-43-5C-00006* *: DG T sample collected from a sepante care at the same locution	

Diver Core Collection and Processing Log							
Job: WWRP				Transect/Sample ID: 767			
Job No. 170553-11.05				Distance Along Transect: 50 m			
Date: $12 / 17 / 2018$ C				Core Logged By: ERP			
Drive Length (cm): 80				Diameter of Core (in): 1718 / (2.0)			
Recovery (cm):5 W				Water Depth:9,6 6			
\% Recovery: 6%				Contractor: Hemmera			
Notes:				Field Staff: Eli Patmont, Mika Davis			
	$\overline{0}$ $\stackrel{0}{0}$ $\stackrel{\circ}{\circ}$ $\stackrel{0}{0}$ $\stackrel{N}{0}$			Classification and Remarks (MAJOR Constituent, Minor Constituent, Moisture, Density, Color, Additional Constituents, Sheen, Odor)		$\stackrel{\text { ® }}{\text { E/ }}$	
E		10	90	0-50m SANDY SILT, whet, soft, dark brown, 5% wood fragmerts, slight $\mathrm{H}_{2} \mathrm{~S}$-like odar	-		
F				Bottom of care@Scm	-		
$10^{-}-$					-		
-					\square		
$15-$					-		
E					-		
E					-		
F					-		
E					-		
-					-		
F					-		
-					-		
-					-		
-							
-							
-							
-							
-							
E							
-							
E							
-							
-							

Diver Core Collection and Processing Log

Diver Core Collection and Processing Log							
Job: WWRP				Distance Along Transect:200 m			
Date: $12 / 17 / 2018$				Core Logged By: ERP			
Drive Length (cm): 80				Diameter of Core (in): $17 / 8$ / (2.0)			
Recovery (cm): 20				Water Depth: 9.6 m			
\% Recovery: 25%				Contractor: Hemmera			
Notes:				Field Staff: Eli Patmont, Mika Davis			
	$\overline{0}$ $\stackrel{0}{0}$ $\stackrel{\circ}{0}$ \circ 0 0 0			Classification and Remarks (MAJOR Constituent, Minor Constituent, Moisture, Density, Color, Additional Constituents, Sheen, Odor)		¢ ¢ ¢ ¢	令
		10	90	$0-20 \mathrm{~cm}$ SANDK SILT(ML), wet very soft, olive gray, 10% wood fragnerts, slight H_{2} s-like odes:			
				Bottom of core@20cm			

Diver Core Collection and Processing Log

Job: WWRP
Jab No. 170553-11.05
Date: 12/18/2018
Drive Length $(\mathrm{cm}): 0$
Recovery (cm): 0
\% Recovery:0\%
Notes:

Transect/Sample ID: T68
Distance Along Transect: $O \mathrm{~m}$
Core Logged By: ERP
Diameter of Core (in): (1718 / 2.0
Water Depth: 1.5 m
Contractor: Hemmera
Field Staff: Eli Patmont, Mika Davis

		$\begin{aligned} & \text { 미 } \\ & \text { on } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{N}{n} \end{aligned}$	\%	Classification and Remarks (MAJOR Constituent, Minor Constituent, Moisture, Density, Color Additional Constituents, Sheen, Odor)		
				Not colleoted		

Diver Core Collection and Processing Log
Job: WWRP
Job No. 170553-11.05
Date: $12 / 18 / 2018$
Transect/Sample ID: T68
Distance Along Transect: 150 m
Drive Length (cm): 100 cm
Core Logged By: ERP
Recovery (cm): 4 cm
Diameter of Core (in): (1718 / 2.0
\% Recovery: 4\%
Notes:
Water Depth: 11.5 m
Contractor: Hemmera

Diver Core Collection and Processing Log							
Job: WWRP				Transect/Sample ID: T69			
Job No. 170553-11.05				Distance Along Transect: Om			
Date: $12 / 17 / 2018$				Core Logged By: ERP			
				Diameter of Core (in): (718) / 2.0			
Recovery (cm):37 W				Water Depth: 6.0 m			
\% Recovery: 37%				Contractor: Hemmera			
Notes:				Field Staff: Eli Patmont, Mika Davis			
			© $\stackrel{0}{4}$ $\stackrel{\circ}{\circ}$ 0 0 0 0	Classification and Remarks (MAJOR Constituent, Minor Constituent, Moisture, Density, Color, Additional Constituents, Sheen, Odor)		$\stackrel{\text { \% }}{\text { \% }}$	矿
		5	45	$0-5 \mathrm{~cm}$ SANOV SILT (MC), wet, soft, dark brown 5% wood fragnents, moderate H_{2}-itike odor $5-30 \mathrm{~cm}$ grades to moist $30-37 \mathrm{~cm}$ grades to 5% shell fruymerts	- - - $=$ - $=$ - $=$		
roE				Bottom of core@37cm			

Diver Core Collection and Processing Log							
Job: WWRP				Transect/Sample ID: T69			
Job No. 170553-11.05 D				Distance Along Transect: 100 m			
Date: 12/17/20)8				Core Logged By: ERP			
Drive Length (cm): 100				Diameter of Core (in): 1718 / 2.0			
Recovery (cm):9				Water Depth: 6.0 m			
\% Recovery: 9\%				Contractor: Hemmera			
Notes:				Field Staff: Eli Patmont, Mika Davis			
$\begin{aligned} & \text { 믕 } \\ & \text { E } \\ & \text { E } \\ & \text { O} \\ & \text { O 言 } \\ & \mathscr{O} \end{aligned}$		$\begin{aligned} & \text { 묻 } \\ & \text { N } \\ & \text { o } \\ & \text { N } \\ & \stackrel{N}{0} \end{aligned}$		Classification and Remarks (MAJOR Constituent, Minor Constituent, Moisture, Density, Color, Additional Constituents, Sheen, Odor)		© ¢ ¢ ¢	
		10	90	O-9 cm SANDV SILT, wet, soft, dark brown, 30% wood frayments, slight $\mathrm{H}_{2} \mathrm{~S}$-like odor	E-		
10 E				Boftom of core@ Clom	- -		

Diver Core Collection and Processing Log							
Job: WWRP				Transect/Sample ID: T69			
Job No. 170553-11.05 D				Distance Along Transect: 150 m			
Date: $12 / 17 / 2018$				Core Logged By: ERP			
Drive Length (cm): 100				Diameter of Core (in): 1718 / 2.0			
				Water Depth: 6.0 m			
\% Recovery: 9%				Contractor: Hemmera			
Notes:							
				Classification and Remarks (MAJOR Constituent, Minor Constituent, Moisture, Density, Color, Additional Constituents, Sheen, Odor)			
		10	90	O-9cm SANDV SILT (ML), wet, soft, dark brown, 5% wood fragments, slight $\mathrm{H}_{2} \mathrm{~S}$-like odor			
$10 E$ E				Bottom ofcore@9cm	- 		

Diver Core Collection and Processing Log

Job: WWRP
Job No. 170553-11.05
Date: 12/17/2018
Drive Length (cm): 100 cm
Recovery (cm): Ocm
\% Recovery: 0\%
Notes:

Transect/Sample ID: T69
Distance Along Transect: 200 m
Core Logged By: ERP
Diameter of Core (in): 71812.0
Water Depth: 6.0m
Contractor: Hemmera
Field Staff: Eli Patmont, Mika Davis

	$\begin{aligned} & \overline{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{O} \\ & 0 . \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \text { 마 } \\ & \stackrel{1}{6} \\ & 0 \\ & \circ \\ & \stackrel{0}{0} \\ & \stackrel{N}{6} \end{aligned}$	$\begin{aligned} & \mathscr{0} \\ & \stackrel{0}{L} \\ & \stackrel{0}{L} \\ & \text { o. } \\ & \stackrel{N}{N} \end{aligned}$	Classification and Remarks (MAJOR Constituent, Minor Constituent, Moisture, Density, Color, Additional Constituents, Sheen, Odor)			颜
				No Recovery	- -		
-							
E							
-							
-							
-							
-							
E							
-							
-							
-							
-							
-							
-							
-							
-							
E							
E							
-							
-							
-							
-							
E							
-							
-							
E							
-							
-							
-							
-							

Diver Core Collection and Processing Log

Job: WWRP
Job No. 170553-11.05
Date: $12 / 17 / 2018$
Drive Length (cm): 100
Recovery (cm): 22
\% Recovery: 22%
Notes: Bottom pluged w/wood

Transect/Sample ID: 770
Distance Along Transect: 50 m
Core Logged By: ERP
Diameter of Core (in): (718 / 2.0
Water Depth: ll. Om
Contractor: Hemmera
Field Staff: Eli Patmont, Mika Davis

Diver Core Collection and Processing Log

Job: WWRP
Job No. $170553-11.05$
Date: $12 / 17 / 2018$
Drive Length $(\mathrm{cm}): 100$
Recovery $(\mathrm{cm}): 5$
$\%$ Recovery: 5%
Notes:

Notes:
Transect/Sample ID: 170
Distance Along Transect: 100 M
Core Logged By: ERP
Diameter of Core (in): (17/8 / 2.0
Water Depth: (1. 0 m
Contractor: Hemmera
Field Staff: Eli Patmont, Mika Davis

Diver Core Collection and Processing Log

Job: WWRP
Job No. $170553-11.05$
Date: $12 / 17(20 / 8$
Drive Length $(\mathrm{cm}): 100$
Recovery $(\mathrm{cm}): 0$
\% Recovery: 0%
Notes:

Transect/Sample ID: T70
Distance Along Transect: 200m
Core Logged By: ERP
Diameter of Core (in): (718 / 2.0
Water Depth: 1.0 m
Contractor: Hemmera
Field Staff: Eli Patmont, Mika Davis

				Classification and Remarks (MAJOR Constituent, Minor Constituent, Moisture, Density, Color, Additional Constituents, Sheen, Odor)		$\begin{aligned} & \stackrel{0}{\circ 口} \\ & \stackrel{E}{E} \\ & \omega \end{aligned}$	硡
 E				No Reconery	E	 *: DGT sample collected from a separate core at the same location	

\qquad

SURFACE WATER PROFILE LOG

Job: Esq	malt	r6owr	Wood	te		Station/T	sect ID:	usect		
Job No.:	+ 170	3-11.05				Date/Tim	510	$17 / 20$		
Field Staff	EP/MD					Field Sta				
Lat/North	:	$N A$	Long/Eas	:		Water De	(m) 4			
WATER Q	ILITY DA									
Depth (m)	pH	Sp. Cond. (mS/cm)	$\begin{gathered} \text { Salinity } \\ \text { (ppt) } \end{gathered}$	Temp (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \mathrm{DO} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{aligned} & \hline \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$	Turbidity (NTU)	Sulfide (mg / L)	(Other)	Comments
0.5	7.59	51920	33.79	8.3	6.87	91.9	0			
1.5	7.59	52878	34.50	8.4	6.90	92.7	0			
2.5	7.59	53104	34,65	8.4	6.82	93.0	0			
3.5	7.57	53209	34.75	8.5	6.46	92.8	0.2			
5										
-										
	\checkmark									
		\bigcirc								
			-							
				\bigcirc						
					\square					
						-				
					8		-			
								-		
									-	
										-

Notes:

SURFACE WATER PROFILE LOG

Job: EHRP WW		Station/Transect ID: T60								
Job No.: $170553-11.05$						Date/Time: 11.16 12/18/18				
Field Staff: EP/MD						Field Staff: -				
Lat/Northing:			Long/Easting:	NA		Water Depth (m) 7.0m 7.5 m				
WATER QUALITY DATA										
Depth (m)	pH	Sp. Cond. ($\mathrm{mS} / \mathrm{cm}$)	Salinity (ppt)	Temp $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{DO} \\ \text { (mg/L) } \end{gathered}$	ORP (mV)	Turbidity (NTU)	Sulfide (mg / L)	(Other)	Comments
0.5	7.61	51137	33.23	8.3	7.66	los. 1	0	0		Sulf collected
1.5	7.61	52644	34.33	8.3	7.62	105. 2	0			Sulf collected
2.5	7.49	52773	34.42	8.4	7.49	105. 4	0			
4.0	7.59	53236	34.77	8.5	7.22	105.7	0	0		Sulf collected
4.5	7.58	53257	34.79	8.5	6.96	105.9	0			Sulf collected
5.5	7.57	53324	34.83	8.6	6.90	105.9	0			
6.5	7.57	53396	34.89	8.6	6.82	105.9	0			
7.2	7.60	53441	34.97	8.6	7.00	105.3	0	0		Sulf aallectert, papticulnte
7.2										
		-								
			\bigcirc							
				-						
					RP)					
								-		
									,	
										-
										-

Notes:

SURFACE WATER PROFILE LOG

Job: EH	WW					Station/T	ect ID:			
Job No.:	0553-	1.05				Date/Time	$40 \quad 12$	12018		
Field Stafi	EP/MD					Field Staf				
Lat/North		A	Long/Easting	: N		Water Dep	(m) θ_{\sim}^{\sim}	6.5 m		
WATER Q	LITY DAT									
$\begin{aligned} & \hline \begin{array}{c} \text { Depth } \\ (\mathrm{m}) \end{array} \\ & \hline \hline \end{aligned}$	pH	Sp. Cond. (mS/cm)	$\begin{aligned} & \begin{array}{c} \text { Salinity } \\ \text { (ppt) } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Temp } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{gathered} \text { DO } \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$	Turbidity (NTU)	$\begin{aligned} & \hline \text { Sulfide } \\ & \text { (mg/L) } \end{aligned}$	(Other)	Comments
0.5	7.65	43240	27.57	7.9	8.78	118.9	0.7	0		Sulf collected
1.5	7.60	52054	33.90	8.4	7.92	121.6	0			
2.5	7.60	52311	34.09	8.4	7.68	121.9	0			
3.5	7.58	52554	34.27	8.5	7.22	127.0	0	0		Sult collected
4.5	7.60	52747	34.41	8.5	7.28	121.7	0			
5.5	7.60	52871	34.50	8.5	7.28	121.6	0			
6.5	7.58	57971	34.57	8.5	7.04	121.4	0			
6.8	7.52	53000	34:60	8.5	6.61	18.5	0.6	0		Sult collected
		-								
			\square							
				-						
									-	
					18					-

Notes:

SURFACE WATER PROFILE LOG

Job: EHR	WW					Station/Tr	ect ID: \uparrow			
Job No.: 1	0553-1	05				Date/Time:	$930 \quad 1$	$19 / 20$		
Field Staff:	EP/MD					Field Staff				
Lat/Northin	NA		Long/East	: NA		Water Dep	(m) 6.5			
WATER QU	LITY DATA									
$\begin{gathered} \hline \text { Depth } \\ (\mathrm{m}) \end{gathered}$	pH	Sp. Cond. ($\mathrm{mS} / \mathrm{cm}$)	Salinity (ppt)	$\begin{aligned} & \text { Temp } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \hline \end{aligned}$	$\begin{gathered} \mathrm{DO} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$	Turbidity (NTU)	Sulfide (mg / L)	(Other)	Comments
0.5	7.29	47134	30,53	7.8	8.59	194.4	0.1	0		Sult collected
1.5	7.31	52049	33.87	8.1	8.34	496.8	0			
2.5	7.27	52051	33.90	8.4	7.75	195.7	0			
3.5	7.26	52378	34.14	8.4	7.39	144.4	0	0		Suif colleated
4.5	7.33	52701	34.38	8.5	7.02	182.2	0			
5.5	7.33	52817	34.46	8.5	7.00	181.1	0			
6.5	7.28	52977	34.58	8.5	6.06	173	0	0		$\sin 1 \mathrm{f}$ ORP:173.1
6.23										
\bigcirc										
	-									
					F	P)				
					-	T			-	
										-
										\bigcirc

Notes:

SURFACE WATER PROFILE LOG

Notes:

SURFACE WATER PROFILE LOG

Job: EHR	WW					Station/T	sect ID: 7			
Job No.: 1	553-11.					Date/Time	2/14/201			
Field Staff	E/MD					Field Staf	-			
Lat/Northi	N		Long/Eastin			Water Dep	(m) 8 m			
WATER Q	LITY DAT									
Depth (m)	pH	Sp. Cond. ($\mathrm{mS} / \mathrm{cm}$)	$\begin{gathered} \begin{array}{c} \text { Salinity } \\ \text { (ppt) } \end{array} \\ \hline \end{gathered}$	Temp (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \text { DO } \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{ORP} \\ & (\mathrm{mV}) \\ & \hline \end{aligned}$	Turbidity (NTU)	Sulfide (mg / L)	(Other)	Comments
0.5	7.64	42697	27.19	7.9	8.57	116.1	0.3	0	6	Sulf Collected
1.5	7.59	51560	33.54	8.4	8.08	117.3	0			Sut collected
25	7.56	5252	33.97	8.4	7.79	118.3	0			
3.5	7.56	52692	34.37	8.5	7.62	118.5	0	0		Sulf Collected
4.5	7.58	52925	34.54	8.5	7.59	118.6	0			
5.5	7.59	53141	34.70	8.5	7.45	118.1	0			
6.5	7.58	53216	34.76	8.6	7.37	118.1	0			
7.5	7.53	53295	34.82	8.6	6.76	118.0	0	0		Sult Colleoted
7.5										
		-								
			-							
					-					
					p)	-				
					1			,		
									-	
										-
										\bigcirc
										\square

Notes:

SURFACE WATER PROFILE LOG

Job: EH	WW					Station/T	sect ID:			
Job No.:	0553 -	1.05				Date/Tim	$500 \quad 12$	2018		
Field Staff	EP/MD					Field Sta	-			
Lat/Northin	:		Long/Easti			Water De	(m) 72			
WATER Q	LITY DA									
Depth (m)	pH	Sp. Cond. ($\mathrm{mS} / \mathrm{cm}$)	Salinity (ppt)	Temp (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \mathrm{DO} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$	Turbidity (NTU)	$\begin{aligned} & \hline \begin{array}{l} \text { Sulfide } \\ \text { (mg/L) } \end{array} \end{aligned}$	(Other)	Comments
0.5	7.69	47004	30.25	8.1	8.65	99.6	0	0		sult
1.5	7.68	50884	33.04	8.2	8.44	(00) 1	0			
2.5	7.66	509.36	33.08	8.3	8.27	100.8	0			
3.5	7.63	51554	3.3 .53	8.3	7.92	10.5	0	0		$\operatorname{sul} f$
4.5	7.58	52472	34.20	8.4	7.04	102.1	0			
5.5	7.57	53165	34.72	8.5	6.82	102.3	0			
6.5	7.56	53385	34.88	8.6	6.57	102.1	0,2	0		Sulf
-										
	-									
				EP						
				(
							-			
									-	
										,
										$\bigcirc \times$

Notes:

SURFACE WATER PROFILE LOG

Notes:

SURFACE WATER PROFILE LOG

Notes:

SURFACE WATER PROFILE LOG

Job: EH						tation/Tr	sect ID:			
Job No.:	$17 / 80$	170553	-11.05			Date/Time	$2 / 17 / 2$	11:24		
Field Staf	P/MD					Field Staff	-			
Lat/North			Long/East	N		Water Dep	(m) 6.4			
WATER Q	LITY DA									
Depth (m)	pH	Sp. Cond. ($\mathrm{mS} / \mathrm{cm}$)	Salinity (ppt)	$\begin{aligned} & \text { Temp } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \hline \end{aligned}$	$\begin{gathered} \text { DO } \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$	Turbidity (NTU)	Sulfide (mg / L)	(Other)	Comments
0.5	7.61	50145	33.28	8.2	7.72	102.6	$\theta 0$			
1.5	7.60	52913	34.53	8.3	7.15	O'3.1	0			
2.5	7.58	53099	34.67	8.4	7.01	103.4	0			
35	7.59	53222	34.76	8.5	6.97	103.2	0			DC: 7.15
4.5	7.60	53278	34.80	8.5	7.30	103.0	0			
5.5	7.60	53282	34.80	8.5	7.23	100.3	0			
6.6										Unable to get, divesse
	-									
			-							
				,						
					20)	-				
					- 4		\bigcirc			
								\square		
									-	
										-
										,
										-

Notes:

SURFACE WATER PROFILE LOG

Job: EHWW Job No.: 170553-11.05						Station/Transect ID: 70 ¢ 70				
						Date/Time: $12 / 17 / 2018$				
Field Staff: EP/MD						Field Staff: -				
Lat/Northing: NA Long/Easting:						Water Depth (m) \mid. 0				
WATER QUALITY DATA										
Depth (m)	pH	$\begin{gathered} \text { Sp. Cond. } \\ (\mathrm{mS} / \mathrm{cm}) \end{gathered}$	Salinity (ppt)	$\begin{aligned} & \text { Temp } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} \text { DO } \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{ORP} \\ & (\mathrm{mV}) \\ & \hline \end{aligned}$	Turbidity (NTU)	$\begin{aligned} & \hline \text { Sulfide } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	(Other)	Comments
0.5	7.36	50575	32.81	8.1	8.25	211.6	0.70			Comments
1.5	7.38	502	34.46	8.3	7.40	208.3	0			So 52842
2.5	7.38	5306/	34.64	8.4	6.94	204.2	0			Sp 52842
3.5	7.40	53186	34.72	8.5	7.06	201.3	0			
4.5	7.43	53267	34.79	8.5	7.39	196.6	0			
5.5	7.43	53281	34.80	8.5	7.49	192.3	0			
6.5	7.43	53281	34.80	8.5	7.39	188.8	0			
7.5	7.43	53283	34.50	8.5	7.36	186.8	0			
8.5	7.43	53288	34.81	8.5	7.35	186.1	0			
9.5	7.43	53416	34.90	8.6	7.22	185.1	0			
10.8	7.44	53454	34.96	8.6	7.24	181.9	0			
		53456	34,93	8.6	7.25	167.5	0		-	
					兂					
					7					

Notes:

Daily Log
Esquimalt Harbour Remediation Project

Notes: Work performed, Phone calls made, Problems Issues/Resolutions, Visitors on site, Deviations from the Workplan Safety infractions, Important comments instructions to contractors

Signature:

Daily Log
Esquimalt Harbour Remediation Project

Notes: Work performed, Phone calls made, Problems Issues/Resolutions, Visitors on site, Deviations from the Workplan
Safety infractions, Important comments Instructions to contractors

Daily Log
Esquimalt Harbour Remediation Project

Notes: Work performed, Phone calls made, Problems Issues/Resolutions, Visitors on site, Deviations from the Workplan
Safety infractions, Important commentstinsfructionstogcontractors
Signature: \qquad
EHWWSO start: $12: 28$

$$
13: 00
$$

Daily Log
Esquimalt Harbour Remediation Project

Notes: Work performed, Phone calls made, Problems Issues/Resolutions, Visitors on site, Deviations from the Workplan Safety infractions, Important, commentsinstructions to contractors

Signature:

Daily Log
Ssquimalt Harbour Remediation Project

Notes: Work performed, Phone calls made, Problems Issues/Resolutions, Visitors on site, Deviations from the Workplan
Safety infractions, Important-commentstinstruction to contractors
Signature: \qquad
DGTeters: pH:7.16 temp: $9.0^{\circ} \mathrm{C}$
sax: 7 Copt

Daily Safety Briefing Form

Date:
Project No:
Project Name: EHRP Wood Waste

Person Conducting Meeting: \qquad MiKa Divis	Heàlth \& Safety Officer: \qquad Chris Torel	Project Manager: \qquad Dan Berlin
TOPICS COVERED:		
Emergency Procedures and Evacuation Route	\square Lines of Authority	\square Lifting Techniques
¢ Directions to Hospital	X Communication	(Slips, Trips, and Falls
\square HASP Review and Location	\square Site Security	\square Hazard Exposure Routes
\ Safety Equipment Location	" Vessel Safety Protocols	\square Heat and Cold Stress
区 Proper Safety Equipment Use	区 Work Zones	\square Overhead and Underfoot Hazards
Employee Right-to-Know/ SDS Location	Vehicle Safety and Driving/ Road Conditions	\square Chemical Hazards
D. Fire Extinguisher Location	\square Equipment Safety and Operation	\square Flammable Hazards
\square Eye Wash Station Location	\1. Proper Use of PPE	\square Biological Hazards
\square Buddy System	\square Decontamination Procedures	\square Eating/Drinking/Smoking
WC Self and Coworker Monitoring	\square Near Miss Reporting Procedures	\square Reviewed Prior Lessons Learned
\square Field Team Medical Conditions for Emergency Purposes (Confidential):		

\square Other:

Weather Conditions: $50^{\circ} \mathrm{F}$, cloudy
Daily Work Scope: Diver trunsects, DGT,
\$ Surface water quality
Site-specific Hazards: Slips, trips, \& falls;
Cold Stiess
Safety Comments:

Attendees		
Printed Name		
End of Day Wellness Check		

Daily Safety Briefing Form

Date:
Project No: 170553-11.05
Project Name: EHRP Wood Waste

Other:

Daily Safety Briefing Form

Date:	$12 / 19 / 2018$
Project No:	170553-11.05
Project Name:	EHRP Wood Waste

Person Conducting Meeting: \qquad Mitea Davis	Health \& Safety Officer: \qquad Chis tonell	Project Manager: \qquad Dan Belin
TOPICS COVERED:		
\square Emergency Procedures and Evacuation Route	\square Lines of Authority	\square Lifting Techniques
\square Directions to Hospital	" $\chi^{\text {communication }}$	\square Slips, Trips, and Falls
\square HASP Review and Location*	\square Site Security	\square Hazard Exposure Routes
\square Safety Equipment Location	V. Vessel Safety Protocols	\square Heat and Cold Stress
" ${ }^{\text {P }}$ Proper Safety Equipment Use	X Work Zones	\square Overhead and Underfoot Hazards
Employee Right-to-Know/ SDS Location	Vehicle Safety and Driving/ Road Conditions	\square Chemical Hazards
\square Fire Extinguisher Location	\square Equipment Safety and Operation	\square Flammable Hazards
\square Eye Wash Station Location	\square Proper Use of PPE	\square Biological Hazards
詯 Buddy System	\square Decontamination Procedures	\square Eating/Drinking/Smoking
Self and Coworker Monitoring	\square Near Miss Reporting Procedures	\square Reviewed Prior Lessons Learned
\square Field Team Medical Condition	mergency Purposes (Confidential):	

\qquad

Diver Core Photographs

Data Memorandum

Data Memorandum

Sonic Boring Photographs

Data Memorandum

Data Memorandum
Wood Waste Remediation Project

Page 7 of 38

Data Memorandum

Surface Grab Photographs

2018/10/01

Page 8 of 61
March 2019

$$
\begin{aligned}
& \text { EHWW-13 } \\
& \text { EHRP Wood waste } \\
& 10 / 3 / 18 \quad 12: 27 \\
& \# 170553-11.05
\end{aligned}
$$

$$
\begin{aligned}
& \text { EHWW-32 } \\
& \text { EHRP Wood was.e } \\
& 10 / 4 / 18 \quad 15: 58 \\
& \text { \# } 170553-11.05
\end{aligned}
$$

$$
\begin{aligned}
& \text { EHWW-36 } \\
& \text { EHRP Wood Waste } \\
& 10 / 5 / 18 \quad 10: 25 \\
& 7170553-11.05
\end{aligned}
$$

$$
\begin{aligned}
& \text { EHWW-36 } \\
& \text { EHRP Wood Waste } \\
& 10 / 5 / 18 \quad 10: 25 \\
& 7170553-11.05
\end{aligned}
$$

$$
\begin{aligned}
& \text { EHWW-40 } \\
& \text { EHRP wood waste } \\
& 1015 / 1809: 25 \\
& \text { \# } 170553-11.05
\end{aligned}
$$

EHWN-46
 EHRP wood waste 10/4/18 0914 \# 170553-11.05

EHWN-REF- 17 EHRP wood waste $10 / 3 / 18$ \#170553-11.05

EHWN-REF- 18 EHRP wood waste 10/3/18 0845
\# 170553-11.85

Diver Survey Photographs

Quadrat 9 Silt with diatoms		
Quansect 59 ; December 17 2018; 09:03 - 09:52 1 Silt with trace shell		

Quadrat 1 No Photo

Quadrat 1 No Photo	Quadrat 2 Silt with diatoms
Quadrat 3 Silt with diatoms	Quadrat 4 Silt with diatoms and bark/large wood fragments
Quadrat 5 Silt with submerged log diatoms and Beggiatoa spp.	Quadrat 6 Silt with diatoms
Quadrat 7 Silt with bark/larger wood fragments, diatoms, and trace Beggiatoa spp.	Quadrat 8 Silt with diatoms and trace Beggiatoa spp.
Quadrat 9 No Photo	
Transect 67; December 17 2018; 13:01-13:46	

Quadrat 1 Silt with bark	Quadrat 2 silt with bark and submerged log and trace Beggiatoa spp.
Quadrat 3 Silt with trace bark	Quadrat 4 Silt with bark and submerged log and diatoms
Quadrat 5 Silt with diatoms	Quadrat 6 No Photo
Quadrat 7 Silt with diatoms and trace Beggiatoa spp.	Quadrat 8 Silt with diatoms
\square Quadrat 9 Silt with bark and diatoms	Incidental Red rock crab (Cancer magister) observed on bark/large wood fragment overlaying silt
Transect 70; Dec 17 2018; 09:03-09:52	

Appendix B
Laboratory Reports

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA 219-800 BURRARD ST VANCOUVER, BC V6Z OB9
 604-671-1831

ATTENTION TO: Cheronne Oreiro

PROJECT: 170553-11.05 EHRP Wood Debris Remediation
AGAT WORK ORDER: 18V394408
SOIL ANALYSIS REVIEWED BY: Andrew Garrard, B.Sc., General Manager
TRACE ORGANICS REVIEWED BY: Andrew Garrard, B.Sc., General Manager
ULTRA TRACE REVIEWED BY: Philippe Morneau, chimiste
DATE REPORTED: Oct 16, 2018
PAGES (INCLUDING COVER): 35
VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (778) 452-4000

*NOTES

VERSION 1: Sample receipt temperature $1^{\circ} \mathrm{C}$.

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

Certificate of Analysis
Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia
GAT WORK ORDER: 18 V 394408 CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

SAMPLED BY:

Certified By:
Aust Comer

Certificate of Analysis
GAT WORK ORDER: 18V394408
PROJECT: 170553-11.05 EHRP Wood Debris Remediation SAMPLING SITE: ATTENTION TO: Cheronne Oreiro SAMPLED BY:

Certificate of Analysis
Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia
AGAT WORK ORDER: 18 V 394408 CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE: SAMPLED BY:

Public Works Metals in Soil											
DATE RECEIVED: 2018-10-06				EHWW-18-SG-000010Sediment$2018-10-02$9606467	EHWW-19-SG-000010Sediment$2018-10-02$9606468	EHWW-42-SG-000010Sediment$2018-10-02$9606469	EHWW-48-SG-000010Sediment$2018-10-02$9606470	DATE REPORTED: 2018-10-16			
Parameter	Unit	SAMPLE D $\begin{array}{r} \text { SA } \\ \text { DAT } \\ \text { G } / \mathrm{S} \end{array}$	IPTION: E TYPE: MPLED: RDL					EHWW-148-SG- 000010 Sediment $2018-10-02$ 9606471	EHWW-06-SG- 000010 Sediment $2018-10-01$ 9606472	EHWW-09-SG- 000010 Sediment $2018-10-01$ 9606473	EHWW-39-SG- 000010 Sediment $2018-10-01$ 9606474
Aluminum	$\mu \mathrm{g} / \mathrm{g}$		10	12800	13300	15400	16100	15100	15700	17700	15900
Antimony	$\mu \mathrm{g} / \mathrm{g}$		0.1	0.5	0.5	0.2	0.3	0.3	0.4	0.4	0.5
Arsenic	$\mu \mathrm{g} / \mathrm{g}$		0.1	17.6	14.5	12.5	14.9	18.4	18.4	25.4	18.9
Barium	$\mu \mathrm{g} / \mathrm{g}$		0.5	42.9	42.9	47.4	43.1	40.9	53.2	57.0	57.9
Beryllium	$\mu \mathrm{g} / \mathrm{g}$		0.1	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Bismuth	$\mu \mathrm{g} / \mathrm{g}$		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Cadmium	$\mu \mathrm{g} / \mathrm{g}$		0.01	3.86	3.74	4.23	4.40	4.35	3.30	2.63	4.52
Calcium	$\mu \mathrm{g} / \mathrm{g}$		10	7100	7770	7920	7550	7750	7540	8100	7640
Chromium	$\mu \mathrm{g} / \mathrm{g}$		1	31	29	30	35	35	37	37	41
Cobalt	$\mu \mathrm{g} / \mathrm{g}$		0.1	5.6	5.4	5.0	6.6	6.4	6.6	6.4	7.2
Copper	$\mu \mathrm{g} / \mathrm{g}$		0.2	54.6	46.9	46.8	60.8	60.7	66.3	73.8	86.2
Iron	$\mu \mathrm{g} / \mathrm{g}$		10	22700	21700	23600	24700	24000	27400	30400	27600
Lead	$\mu \mathrm{g} / \mathrm{g}$		0.1	28.1	22.3	26.1	25.4	24.1	28.8	27.8	37.1
Lithium	$\mu \mathrm{g} / \mathrm{g}$		0.5	18.3	16.8	19.4	20.4	18.6	21.2	22.8	23.0
Magnesium	$\mu \mathrm{g} / \mathrm{g}$		10	10500	8690	9730	10700	10700	12000	13400	11900
Manganese	$\mu \mathrm{g} / \mathrm{g}$		1	163	158	166	179	173	176	175	187
Mercury	$\mu \mathrm{g} / \mathrm{g}$		0.01	0.32	0.39	0.39	0.33	0.34	0.39	0.33	0.47
Molybdenum	$\mu \mathrm{g} / \mathrm{g}$		0.2	19.7	2.7	3.0	6.7	6.3	10.4	8.9	13.2
Nickel	$\mu \mathrm{g} / \mathrm{g}$		0.5	21.6	19.1	19.2	23.8	23.8	24.5	24.0	28.1
Phosphorus	$\mu \mathrm{g} / \mathrm{g}$		5	1150	1060	1310	1170	1190	1260	1490	1370
Potassium	$\mu \mathrm{g} / \mathrm{g}$		5	2860	2400	2790	3010	2940	3490	3930	3420
Selenium	$\mu \mathrm{g} / \mathrm{g}$		0.1	2.6	1.5	1.8	2.0	2.1	2.1	2.7	2.8
Silver	$\mu \mathrm{g} / \mathrm{g}$		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	$\mu \mathrm{g} / \mathrm{g}$		5	29800	18600	20600	25400	27000	33300	37500	30300
Strontium	$\mu \mathrm{g} / \mathrm{g}$		1	76	57	57	59	60	66	69	75
Thallium	$\mu \mathrm{g} / \mathrm{g}$		0.1	0.4	0.5	0.4	0.5	0.4	0.4	0.4	0.5
Tin	$\mu \mathrm{g} / \mathrm{g}$		0.2	4.6	3.4	4.5	3.4	3.5	5.1	4.9	8.8
Titanium	$\mu \mathrm{g} / \mathrm{g}$		1	915	1130	1200	1200	1160	1070	1130	1090
Uranium	$\mu \mathrm{g} / \mathrm{g}$		0.2	7.2	1.3	1.6	2.6	2.5	3.9	3.0	4.3

Certified By:
Cuder Covarl

Certificate of Analysis

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
9606459-9606474 Results are based on the dry weight of the sample
Analysis performed at AGAT Vancouver (unless marked by *)

Certificate of Analysis
AGAT WORK ORDER: 18V394408
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE: SAMPLED BY:

Public Works PAH in Soil Low Level											
DATE RECEIVED: 2018-10-06				EHWW-46-SG-000010Sediment$2018-10-04$9606459	EHWW-45-SG-000010Sediment$2018-10-04$9606460	EHWW-44-SG-000010Sediment$2018-10-04$9606461	EHWW-14-SG-000010Sediment$2018-10-03$9606462	DATE REPORTED: 2018-10-16			
Parameter	Unit	SAMPLE D	RIPTION: E TYPE: MPLED: RDL					RDL	EHWW-33-SG- 000010 Sediment $2018-10-03$ 9606463	RDL	EHWW-30-SG- 000010 Sediment $2018-10-03$ 9606464
Naphthalene	$\mu \mathrm{g} / \mathrm{g}$		0.01	<0.01	<0.01	0.01	<0.01	0.005	0.007	0.01	0.01
2-Methylnaphthalene	$\mu \mathrm{g} / \mathrm{g}$		0.01	0.02	0.02	0.01	0.01	0.005	0.013	0.01	0.01
1-Methylnaphthalene	$\mu \mathrm{g} / \mathrm{g}$		0.01	<0.01	<0.01	<0.01	<0.01	0.005	0.005	0.01	0.01
Acenaphthylene	$\mu \mathrm{g} / \mathrm{g}$		0.01	<0.01	<0.01	<0.01	<0.01	0.005	0.006	0.01	0.01
Acenaphthene	$\mu \mathrm{g} / \mathrm{g}$		0.01	<0.01	<0.01	0.01	<0.01	0.005	0.008	0.01	0.01
Fluorene	$\mu \mathrm{g} / \mathrm{g}$		0.04	<0.04	<0.04	<0.04	<0.04	0.02	<0.02	0.04	<0.04
Phenanthrene	$\mu \mathrm{g} / \mathrm{g}$		0.04	<0.04	<0.04	0.05	0.06	0.02	0.07	0.04	0.17
Anthracene	$\mu \mathrm{g} / \mathrm{g}$		0.008	0.017	0.018	0.045	0.027	0.004	0.030	0.008	0.064
Fluoranthene	$\mu \mathrm{g} / \mathrm{g}$		0.02	0.10	0.11	0.17	0.15	0.01	0.15	0.02	0.33
Pyrene	$\mu \mathrm{g} / \mathrm{g}$		0.02	0.10	0.12	0.35	0.16	0.01	0.16	0.02	0.34
Benzo(a)anthracene	$\mu \mathrm{g} / \mathrm{g}$		0.06	<0.06	<0.06	0.09	0.07	0.03	0.07	0.06	0.16
Chrysene	$\mu \mathrm{g} / \mathrm{g}$		0.1	<0.1	<0.1	<0.1	<0.1	0.05	0.06	0.1	0.1
Benzo(b)fluoranthene	$\mu \mathrm{g} / \mathrm{g}$		0.04	0.06	0.08	0.16	0.12	0.02	0.13	0.04	0.23
Benzo(j)fluoranthene	$\mu \mathrm{g} / \mathrm{g}$		0.04	<0.04	<0.04	0.05	0.05	0.02	0.05	0.04	0.10
Benzo(k)fluoranthene	$\mu \mathrm{g} / \mathrm{g}$		0.04	<0.04	0.04	0.09	0.06	0.02	0.06	0.04	0.13
Benzo(a)pyrene	$\mu \mathrm{g} / \mathrm{g}$		0.06	<0.06	<0.06	0.12	0.09	0.03	0.09	0.06	0.20
Indeno(1,2,3-c,d)pyrene	$\mu \mathrm{g} / \mathrm{g}$		0.04	<0.04	<0.04	0.04	<0.04	0.02	0.03	0.04	0.06
Dibenzo(a,h)anthracene	$\mu \mathrm{g} / \mathrm{g}$		0.01	<0.01	<0.01	0.01	<0.01	0.005	0.007	0.01	0.01
Benzo(g,h,i)perylene	$\mu \mathrm{g} / \mathrm{g}$		0.1	<0.1	<0.1	<0.1	<0.1	0.05	<0.05	0.1	<0.1
Quinoline	$\mu \mathrm{g} / \mathrm{g}$		0.1	<0.1	<0.1	<0.1	<0.1	0.05	<0.05	0.1	<0.1
IACR CCME (Soil)	$\mu \mathrm{g} / \mathrm{g}$		1	<1	1	2	2	0.6	2.0	1	4
B[a]P TPE (Soil)	$\mu \mathrm{g} / \mathrm{g}$		0.1	<0.1	<0.1	0.1	0.1	0.05	0.13	0.1	0.2
Benzo(b+j)fluoranthene	$\mu \mathrm{g} / \mathrm{g}$		0.05	0.06	0.08	0.21	0.17	0.05	0.18	0.05	0.33
Surrogate	Unit	Accept	Limits								
Naphthalene - d8	\%			88	86	90	78		79		81
2-Fluorobiphenyl	\%			94	88	94	81		83		85
P-Terphenyl - d14	\%			96	91	98	83		87		87

Certified By:

Certificate of Analysis
AGAT WORK ORDER: 18V394408
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE: SAMPLED BY:

Certified By:

Certificate of Analysis
AGAT WORK ORDER: 18V394408
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE: SAMPLED BY:

| | | | | Public Works PAH in Soil Low Level |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |

Certified By:
Andur Comal

Certificate of Analysis
AGAT WORK ORDER: 18V394408
PROJECT: 170553-11.05 EHRP Wood Debris Remediation

ATTENTION TO: Cheronne Oreiro
SAMPLED BY

Public Works PAH in Soil Low Leve

DATE RECEIVED: 2018-10-06
DATE REPORTED: 2018-10-16
Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
9606459-9606462 Results are based on dry weight of sample.
PAH detection limits increased due to high sample moisture content.
9606463 Results are based on dry weight of sample.
9606464-9606474 Results are based on dry weight of sample. PAH detection limits increased due to high sample moisture content.
Analysis performed at AGAT Vancouver (unless marked by *)

Certificate of Analysis

GAT WORK ORDER: 18V394408
PROJECT: 170553-11.05 EHRP Wood Debris Remediation

SAMPLED BY:

Certificate of Analysis

GAT WORK ORDER: 18V394408
PROJECT: 170553-11.05 EHRP Wood Debris Remediation

SAMPLED BY:

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
9606459-9606474 Analysis multiple peak pattern method by GC/ECD.
Analysis performed at AGAT Calgary (unless marked by *)

Certificate of Analysis
AGAT WORK ORDER: 18V394408
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

SAMPLED BY:

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 18V394408
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

SAMPLED BY:

Certificate of Analysis

AGAT WORK ORDER: 18V394408
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

SAMPLED BY:

Certified By:

Certificate of Analysis
AGAT WORK ORDER: 18V394408
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

SAMPLED BY:

Dioxins and Furans (Soil, WHO 2005)										
DATE RECEIVED: 2018-10-06								DATE REPORTED: 2018-10-16		
Parameter	Unit	SAMPLE DE SA DAT G/S	IPTION: E TYPE: MPLED: RDL	EHWW-33-SG 000010 Sediment 2018-10-03 9606463	RDL	EHWW-30-SG- 000010 Sediment $2018-10-03$ 9606464	RDL	EHWW-10-SG- 000010 Sediment $2018-10-03$ 9606465	RDL	$\begin{gathered} \text { EHWW-04-SG- } \\ 000010 \\ \text { Sediment } \\ 2018-10-02 \\ 9606466 \end{gathered}$
2,3,7,8-Tetra CDD	$\mathrm{ng} / \mathrm{kg}$		0.4	<0.4	0.4	<0.4	0.9	<0.9	0.5	<0.5
1,2,3,7,8-Penta CDD	$\mathrm{ng} / \mathrm{kg}$		2	<2	1	<1	5	<5	2	<2
1,2,3,4,7,8-Hexa CDD	$\mathrm{ng} / \mathrm{kg}$		0.9	<0.9	2	<2	2	3	3	<3
1,2,3,6,7,8-Hexa CDD	$\mathrm{ng} / \mathrm{kg}$		0.9	2.1	2	<2	2	4	3	<3
1,2,3,7,8,9-Hexa CDD	$\mathrm{ng} / \mathrm{kg}$		1	1	2	<2	2	3	3	<3
1,2,3,4,6,7,8-Hepta CDD	$\mathrm{ng} / \mathrm{kg}$		1	25	2	42	3	57	3	25
Octa CDD	$\mathrm{ng} / \mathrm{kg}$		2	192	4	314	8	463	5	181
2,3,7,8-Tetra CDF	$\mathrm{ng} / \mathrm{kg}$		0.6	<0.6	0.6	<0.6	2	<2	0.5	<0.5
1,2,3,7,8-Penta CDF	$\mathrm{ng} / \mathrm{kg}$		2	<2	0.8	<0.8	2	<2	0.9	1.0
2,3,4,7,8-Penta CDF	$\mathrm{ng} / \mathrm{kg}$		0.6	1.0	0.7	1.1	3	<3	1	1
1,2,3,4,7,8-Hexa CDF	$\mathrm{ng} / \mathrm{kg}$		0.7	1.2	1	1	10	<10	1	1
1,2,3,6,7,8-Hexa CDF	$\mathrm{ng} / \mathrm{kg}$		0.7	1.3	1	<1	10	<10	1	<1
2,3,4,6,7,8-Hexa CDF	$\mathrm{ng} / \mathrm{kg}$		0.7	1.2	1	<1	20	<20	1	2
1,2,3,7,8,9-Hexa CDF	$\mathrm{ng} / \mathrm{kg}$		0.9	<0.9	2	<2	2	<2	1	<1
1,2,3,4,6,7,8-Hepta CDF	$\mathrm{ng} / \mathrm{kg}$		2	19	2	11	1	20	1	29
1,2,3,4,7,8,9-Hepta CDF	$\mathrm{ng} / \mathrm{kg}$		3	<3	2	<2	2	<2	2	2
Octa CDF	$\mathrm{ng} / \mathrm{kg}$		0.9	12.7	2	13	3	25	1	18
Total Tetrachlorodibenzodioxins	$\mathrm{ng} / \mathrm{kg}$		0.4	4.2	0.4	3.3	0.9	5.4	0.5	6.1
Total Pentachlorodibenzodioxins	$\mathrm{ng} / \mathrm{kg}$		2	10	1	10	5	17	2	45
Total Hexachlorodibenzodioxins	$\mathrm{ng} / \mathrm{kg}$		0.9	35.4	2	29	2	29	3	29
Total Heptachlorodibenzodioxins	$\mathrm{ng} / \mathrm{kg}$		1	71	2	146	3	116	3	76
Total PCDDs	$\mathrm{ng} / \mathrm{kg}$		2	313	4	502	8	630	5	337
Total Tetrachlorodibenzofurans	$\mathrm{ng} / \mathrm{kg}$		0.6	10.6	0.6	9.0	2	14	0.5	11.2
Total Pentachlorodibenzofurans	$\mathrm{ng} / \mathrm{kg}$		2	6	0.8	6.4	3	5	1	9
Total Hexachlorodibenzofurans	$\mathrm{ng} / \mathrm{kg}$		0.9	18.0	2	11	20	<20	1	21
Total Heptachlorodibenzofurans	$\mathrm{ng} / \mathrm{kg}$		3	37	2	24	2	24	2	56
Total PCDFs	$\mathrm{ng} / \mathrm{kg}$		3	85	2	63	20	68	2	116
2,3,7,8-Tetra CDD (TEF 1.0)	TEQ			0		0		0		0
1,2,3,7,8-Penta CDD (TEF 1.0)	TEQ			0		0		0		0

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 18V394408
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

SAMPLED BY:

Certificate of Analysis
AGAT WORK ORDER: 18V394408
PROJECT: 170553-11.05 EHRP Wood Debris Remediation

SAMPLING SITE:

ATTENTION TO: Cheronne Oreiro

Certificate of Analysis
AGAT WORK ORDER: 18V394408
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

SAMPLED BY:

Dioxins and Furans (Soil, WHO 2005)										
DATE RECEIVED: 2018-10-06								DATE REPORTED: 2018-10-16		
Parameter	Unit	SAMPLE D SA DAT G/S	IPTION: E TYPE: MPLED: RDL	EHWW-18-SG- 000010 Sediment 2018-10-02 9606467	RDL	EHWW-19-SG- 000010 Sediment $2018-10-02$ 9606468	RDL	EHWW-42-SG- 000010 Sediment $2018-10-02$ 9606469	RDL	$\begin{gathered} \hline \text { EHWW-48-SG- } \\ 000010 \\ \text { Sediment } \\ 2018-10-02 \\ 9606470 \end{gathered}$
2,3,7,8-Tetra CDD	$\mathrm{ng} / \mathrm{kg}$		0.9	<0.9	0.5	<0.5	0.8	<0.8	0.3	<0.3
1,2,3,7,8-Penta CDD	$\mathrm{ng} / \mathrm{kg}$		3	<3	1	<1	0.8	0.8	0.5	0.9
1,2,3,4,7,8-Hexa CDD	$\mathrm{ng} / \mathrm{kg}$		2	<2	2	<2	3	<3	2	<2
1,2,3,6,7,8-Hexa CDD	$\mathrm{ng} / \mathrm{kg}$		2	7	2	3	3	4	2	<2
1,2,3,7,8,9-Hexa CDD	$\mathrm{ng} / \mathrm{kg}$		2	3	2	<2	3	<3	2	<2
1,2,3,4,6,7,8-Hepta CDD	$\mathrm{ng} / \mathrm{kg}$		3	70	2	31	2	44	3	11
Octa CDD	$\mathrm{ng} / \mathrm{kg}$		5	432	3	249	9	291	3	121
2,3,7,8-Tetra CDF	$\mathrm{ng} / \mathrm{kg}$		1	3	0.6	1.2	1	2	0.4	1.1
1,2,3,7,8-Penta CDF	$\mathrm{ng} / \mathrm{kg}$		1	1	0.6	0.9	2	<2	0.6	1.2
2,3,4,7,8-Penta CDF	$\mathrm{ng} / \mathrm{kg}$		0.9	2.1	0.5	1.5	1	2	0.5	<0.5
1,2,3,4,7,8-Hexa CDF	$\mathrm{ng} / \mathrm{kg}$		2	3	0.8	2.9	1	3	0.8	<0.8
1,2,3,6,7,8-Hexa CDF	$\mathrm{ng} / \mathrm{kg}$		1	3	0.8	1.8	1	2	0.8	0.8
2,3,4,6,7,8-Hexa CDF	$\mathrm{ng} / \mathrm{kg}$		1	2	1	2	1	2	0.9	<0.9
1,2,3,7,8,9-Hexa CDF	$\mathrm{ng} / \mathrm{kg}$		2	<2	1	<1	2	<2	1	<1
1,2,3,4,6,7,8-Hepta CDF	$\mathrm{ng} / \mathrm{kg}$		2	73	0.8	79.3	2	53	1	19
1,2,3,4,7,8,9-Hepta CDF	$\mathrm{ng} / \mathrm{kg}$		3	<3	1	2	3	<3	2	<2
Octa CDF	$\mathrm{ng} / \mathrm{kg}$		2	27	4	27	2	20	1	12
Total Tetrachlorodibenzodioxins	$\mathrm{ng} / \mathrm{kg}$		0.9	28.3	0.5	5.5	0.8	7.7	0.3	1.5
Total Pentachlorodibenzodioxins	$\mathrm{ng} / \mathrm{kg}$		3	78	1	16	0.8	21.2	0.5	14.3
Total Hexachlorodibenzodioxins	$\mathrm{ng} / \mathrm{kg}$		2	120	2	35	3	50	2	19
Total Heptachlorodibenzodioxins	$\mathrm{ng} / \mathrm{kg}$		3	168	2	93	2	109	3	35
Total PCDDs	$\mathrm{ng} / \mathrm{kg}$		5	826	3	399	9	478	3	191
Total Tetrachlorodibenzofurans	$\mathrm{ng} / \mathrm{kg}$		1	31	0.6	12.7	1	22	0.4	6.1
Total Pentachlorodibenzofurans	$\mathrm{ng} / \mathrm{kg}$		1	22	0.6	10.2	2	11	0.6	2.6
Total Hexachlorodibenzofurans	$\mathrm{ng} / \mathrm{kg}$		2	53	1	47	2	37	1	9
Total Heptachlorodibenzofurans	$\mathrm{ng} / \mathrm{kg}$		3	131	1	135	3	91	2	33
Total PCDFs	$\mathrm{ng} / \mathrm{kg}$		3	265	4	232	3	181	2	63
2,3,7,8-Tetra CDD (TEF 1.0)	TEQ			0		0		0		0
1,2,3,7,8-Penta CDD (TEF 1.0)	TEQ			0		0		0.833		0.913

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 18V394408
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

SAMPLED BY

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
AGAT WORK ORDER: 18V394408
PROJECT: 170553-11.05 EHRP Wood Debris Remediation

ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

Certified By:

Certificate of Analysis
AGAT WORK ORDER: 18V394408
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

SAMPLED BY:

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 18V394408
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

SAMPLED BY:

Certificate of Analysis

AGAT WORK ORDER: 18V394408
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

SAMPLED BY:

Dioxins and Furans (Soil, WHO 2005)						
DATE RECEIVED: 2018-10-06					DATE REPORTED: 2018-10-16	
			EHWW-148-SG-	EHWW-06-SG-	EHWW-09-SG-	EHWW-39-SG-
		SAMPLE DESCRIPTION:	000010	000010	000010	000010
		SAMPLE TYPE:	Sediment	Sediment	Sediment	Sediment
		DATE SAMPLED:	2018-10-02	2018-10-01	2018-10-01	2018-10-01
Surrogate	Unit	Acceptable Limits	9606471	9606472	9606473	9606474
13C-2378-TCDF	\%	30-140	65	87	80	94
13C-12378-PeCDF	\%	30-140	64	82	74	93
13C-23478-PeCDF	\%	30-140	68	79	85	91
13C-123478-HxCDF	\%	30-140	65	72	66	72
13C-123678-HxCDF	\%	30-140	68	102	69	76
13C-234678-HxCDF	\%	30-140	71	57	68	73
13C-123789-HxCDF	\%	30-140	66	91	73	74
13C-1234678-HpCDF	\%	30-140	53	75	56	59
13C-1234789-HpCDF	\%	30-140	51	73	55	59
13C-2378-TCDD	\%	30-140	88	113	108	127
13C-12378-PeCDD	\%	30-140	71	100	99	105
13C-123478-HxCDD	\%	30-140	70	74	71	74
13C-123678-HxCDD	\%	30-140	82	56	91	89
13C-1234678-HpCDD	\%	30-140	56	78	58	69
13C-OCDD	\%	30-140	38	48	37	45

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
9606459-9606474 The results were corrected based on the surrogate percent recoveries
Analysis performed at AGAT Montreal (unless marked by *)

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

AGA WORK ORDER: 18 V 394408
ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Certified By:

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

AGAT WORK ORDER: 18V394408
ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

Trace Organics Analysis															
RPT Date: Oct 16, 2018			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample Id	Dup \#1	Dup \#2	RPD		Measured Value	Acceptable Limits		Recovery	AcceptableLimits		Recovery	Acceptable Limits	
								Lower	Upper		Lower	Upper		Lower	Upper
Public Works PAH in Soil Low Level															
Naphthalene	69952	9606474	0.023	0.022	NA	<0.005	103\%	80\%	120\%				98\%	50\%	130\%
2-Methylnaphthalene	69952	9606474	0.036	0.041	13.0\%	<0.005	100\%	80\%	120\%				96\%	50\%	130\%
1-Methylnaphthalene	69952	9606474	0.008	0.008	NA	<0.005	102\%	80\%	120\%				100\%	50\%	130\%
Acenaphthylene	69952	9606474	0.013	0.016	NA	<0.005	102\%	80\%	120\%				89\%	50\%	130\%
Acenaphthene	69952	9606474	0.013	0.013	NA	< 0.005	101\%	80\%	120\%				103\%	50\%	130\%
Fluorene	69952	9606474	<0.02	<0.02	NA	<0.02	102\%	80\%	120\%				99\%	50\%	130\%
Phenanthrene	69952	9606474	0.08	0.09	NA	<0.02	101\%	80\%	120\%				95\%	60\%	130\%
Anthracene	69952	9606474	0.051	0.052	1.9\%	< 0.004	101\%	80\%	120\%				107\%	60\%	130\%
Fluoranthene	69952	9606474	0.24	0.26	8.0\%	<0.01	104\%	80\%	120\%				102\%	60\%	130\%
Pyrene	69952	9606474	0.31	0.33	6.2\%	< 0.01	104\%	80\%	120\%				105\%	60\%	130\%
Benzo(a)anthracene	69952	9606474	0.10	0.12	NA	<0.03	101\%	80\%	120\%				100\%	60\%	130\%
Chrysene	69952	9606474	0.09	0.10	NA	<0.05	100\%	80\%	120\%				111\%	60\%	130\%
Benzo(b)fluoranthene	69952	9606474	0.16	0.18	11.8\%	<0.02	100\%	80\%	120\%				100\%	60\%	130\%
Benzo(j)fluoranthene	69952	9606474	0.07	0.07	NA	< 0.02	103\%	80\%	120\%				123\%	60\%	130\%
Benzo(k)fluoranthene	69952	9606474	0.08	0.10	NA	<0.02	101\%	80\%	120\%				89\%	60\%	130\%
Benzo(a)pyrene	69952	9606474	0.10	0.12	NA	<0.03	101\%	80\%	120\%				101\%	60\%	130\%
Indeno(1,2,3-c, d)pyrene	69952	9606474	0.04	0.06	NA	<0.02	99\%	80\%	120\%				61\%	60\%	130\%
Dibenzo(a,h)anthracene	69952	9606474	0.013	0.014	NA	<0.005	100\%	80\%	120\%				62\%	60\%	130\%
Benzo(g,h,i)perylene	69952	9606474	0.05	0.07	NA	< 0.05	98\%	80\%	120\%				66\%	60\%	130\%
Quinoline	69952	9606474	0.07	0.09	NA	<0.05	101\%	80\%	120\%				97\%	50\%	130\%
Naphthalene - d8	69952	9606474	82	87	5.9\%		103\%	80\%	120\%				83\%	50\%	130\%
2-Fluorobiphenyl	69952	9606474	83	91	9.2\%		101\%	80\%	120\%				85\%	50\%	130\%
P-Terphenyl-d14	69952	9606474	87	97	10.9\%		106\%	80\%	120\%				86\%	60\%	130\%

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.
Polychlorinated Biphenyls Analysis [by extended Aroclor list] in Soil

| Aroclor 1242 | 134 | 9606461 | <0.05 | <0.05 | NA | <0.05 | 100% | 70% | 130% | 79% | 70% | 130% | 80% | 50% | 150% |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Aroclor 1254 | 134 | 9606461 | <0.05 | <0.05 | NA | <0.05 | 107% | 70% | 130% | 80% | 70% | 130% | 82% | 50% | 150% |
| Aroclor 1260 | 134 | 9606461 | <0.05 | <0.05 | NA | <0.05 | 112% | 70% | 130% | 79% | 70% | 130% | 80% | 50% | 150% |
| Total Polychlorinated Biphenyls | 134 | 9606461 | <0.05 | <0.05 | NA | <0.05 | 106% | 70% | 130% | 79% | 70% | 130% | 81% | 50% | 150% |

Comments: If the RPD value is NA, the results of the duplicates are under 5 X the RDL and will not be calculated.

Unit 120, 8600 Glenlyon Parkway
Burnaby, British Columbia
CANADA V5J 0B6
TEL (778)452-4000
FAX (778)452-4074
http://www.agatlabs.com

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

AGAT WORK ORDER: 18 V 394408
ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

Ultra Trace Analysis															
RPT Date: Oct 16, 2018			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample Id	Dup \#1	Dup \#2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
								Lower	Upper		Lower	Upper		Lower	Upper
Dioxins and Furans (Soil, WHO 2005)															
2,3,7,8-Tetra CDD	1	9583920	0.9	1.0	NA	<0.1	94\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
1,2,3,7,8-Penta CDD	1	9583920	22.8	23	0.0\%	<0.3	108\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
1,2,3,4,7,8-Hexa CDD	1	9583920	45	46	0.0\%	<0.3	103\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
1,2,3,6,7,8-Hexa CDD	1	9583920	117	113	0.0\%	<0.3	107\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
1,2,3,7,8,9-Hexa CDD	1	9583920	95	94	0.0\%	<0.3	115\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
1,2,3,4,6,7,8-Hepta CDD	1	9583920	3150	3140	0.0\%	<0.4	107\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
Octa CDD	1	9583920	22400	22000	0.0\%	<0.2	107\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
2,3,7,8-Tetra CDF	1	9583920	0.6	0.6	NA	<0.1	113\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
1,2,3,7,8-Penta CDF	1	9583920	2.7	3	0.0\%	<0.1	108\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
2,3,4,7,8-Penta CDF	1	9583920	2.8	3	0.0\%	<0.1	111\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
1,2,3,4,7,8-Hexa CDF	1	9583920	37	36	0.0\%	<0.1	111\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
1,2,3,6,7,8-Hexa CDF	1	9583920	17	17	0.0\%	<0.1	118\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
2,3,4,6,7,8-Неха CDF	1	9583920	34	34	0.0\%	<0.1	111\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
1,2,3,7,8,9-Hexa CDF	1	9583920	<2	<7	NA	<0.1	106\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
1,2,3,4,6,7,8-Hepta CDF	1	9583920	949	948	0.0\%	<0.1	109\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
1,2,3,4,7,8,9-Hepta CDF	1	9583920	63	63	0.0\%	<0.1	115\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
Octa CDF	1	9583920	3960	4020	0.0\%	< 0.1	108\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%

Certified By:

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Aluminum	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Antimony	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Arsenic	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Barium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Beryllium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Bismuth	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Cadmium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Calcium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Chromium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Cobalt	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Copper	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Iron	$\begin{aligned} & \text { MET-181-6106, } \\ & \text { LAB-181-4008 } \end{aligned}$	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Lead	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Lithium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Magnesium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Manganese	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP-MS
Mercury	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Molybdenum	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Nickel	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Phosphorus	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Potassium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Selenium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Silver	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Sodium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Strontium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP-MS
Thallium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Tin	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS

Unit 120, 8600 Glenlyon Parkway
Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Titanium	$\begin{aligned} & \text { MET-181-6106, } \\ & \text { LAB-181-4008 } \end{aligned}$	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Uranium	MET-181-6102,	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Vanadium	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4008 } \end{aligned}$	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Zinc	MET-181-6102,	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Zirconium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
pH 1:2	INOR-181-6031	BC MOE Lab Manual B (pH, Electrometric, Soil)	PH METER

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
2-Methylnaphthalene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
1-Methylnaphthalene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Acenaphthylene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Acenaphthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Fluorene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Phenanthrene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Anthracene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Fluoranthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Pyrene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(a)anthracene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Chrysene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(b)fluoranthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(j)fluoranthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(k)fluoranthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(a)pyrene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Indeno(1,2,3-c,d)pyrene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Dibenzo(a,h)anthracene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(g,h,i)perylene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Quinoline	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
IACR CCME (Soil)	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
B[a]P TPE (Soil)	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Naphthalene - d8	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
2-Fluorobiphenyl	ORG-180-5102	Modified form BCMOE Lab Manual Section D (PAH)	GC/MS
P-Terphenyl - d14	ORG-180-5102	Modified form BCMOE Lab Manual Section D (PAH)	GC/MS
Aroclor 1016	TO-0410	EPA SW-846 8082	GC/ECD
Aroclor 1221	TO-0410	EPA SW-846 8082	GC/ECD
Aroclor 1232	TO-0410	EPA SW-846 8082	GC/ECD
Aroclor 1242	TO-0410	EPA SW-846 8082	GC/ECD
Aroclor 1248	TO-0410	EPA SW-846 8082	GC/ECD

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Aroclor 1254	TO-0410	EPA SW-846 8082	GC/ECD
Aroclor 1260	TO-0410	EPA SW-846 8082	GC/ECD
Aroclor 1262	TO-0410	EPA SW-846 8082	GC/ECD
Aroclor 1268	TO-0410	EPA SW-846 8082	GC/ECD
Total Polychlorinated Biphenyls	TO-0410	EPA SW-846 8082	GC/ECD
Decachlorobiphenyl	TO-0410	EPA SW-846 8082	GC/ECD

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Ultra Trace Analysis			
2,3,7,8-Tetra CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Неха CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDD	HR-151-5400	EPA 1613	HRMS
Octa CDD	HR-151-5400	EPA 1613	HRMS
2,3,7,8-Tetra CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDF	HR-151-5400	EPA 1613	HRMS
2,3,4,7,8-Penta CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDF	HR-151-5400	EPA 1613	HRMS
2,3,4,6,7,8-Hexa CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8,9-Hepta CDF	HR-151-5400	EPA 1613	HRMS
Octa CDF	HR-151-5400	EPA 1613	HRMS
Total Tetrachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total Pentachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total Hexachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total Heptachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total PCDDs	HR-151-5400	EPA 1613	HRMS
Total Tetrachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total Pentachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total Hexachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total Heptachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total PCDFs	HR-151-5400	EPA 1613	HRMS
2,3,7,8-Tetra CDD (TEF 1.0)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDD (TEF 1.0)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDD (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Неха CDD (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Неха CDD (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDD (TEF 0.01)	HR-151-5400	EPA 1613	HRMS
Octa CDD (TEF 0.0003)	HR-151-5400	EPA 1613	HRMS
2,3,7,8-Tetra CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDF (TEF 0.03)	HR-151-5400	EPA 1613	HRMS
2,3,4,7,8-Penta CDF (TEF 0.3)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDF (TEF 0.1)	HR_151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
2,3,4,6,7,8-Hexa CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDF (TEF 0.01)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8,9-Hepta CDF (TEF 0.01)	HR-151-5400	EPA 1613	HRMS
Octa CDF (TEF 0.0003)	HR-151-5400	EPA 1613	HRMS
Total PCDDs and PCDFs (TEQ)	HR-151-5400	EPA 1613	HRMS
13C-2378-TCDF	HR-151-5400	EPA 1613	HRMS
13C-12378-PeCDF	HR-151-5400	EPA 1613	HRMS
13C-23478-PeCDF	HR-151-5400	EPA 1613	HRMS
13C-123478-HxCDF	HR-151-5400	EPA 1613	HRMS

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
13C-123678-HxCDF	HR-151-5400	EPA 1613	HRMS
13C-234678-HxCDF	HR-151-5400	EPA 1613	HRMS
13C-123789-HxCDF	HR-151-5400	EPA 1613	HRMS
13C-1234678-HpCDF	HR-151-5400	EPA 1613	HRMS
13C-1234789-HpCDF	HR-151-5400	EPA 1613	HRMS
13C-2378-TCDD	HR-151-5400	EPA 1613	HRMS
13C-12378-PeCDD	HR-151-5400	EPA 1613	HRMS
13C-123478-HxCDD	HR-151-5400	EPA 1613	HRMS
13C-123678-HxCDD	HR-151-5400	EPA 1613	HRMS
13C-1234678-HpCDD	HR-151-5400	EPA 1613	HRMS
13C-OCDD	HR-151-5400	EPA 1613	HRMS

1 See project SAP/QAPP for analyte lists and test methods
2 Email sample confirmation report to labdata@anchorqea.com

[^33]| Relinquished By. Evan malizua | Company: Anchor QEA LLC.$10 / 4 / 20182080$ | Received By: Company: | | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Signature/Printed Name | Date/Time | Signature/Printed Name | | Date/Time |
| Relinquished By. | Company: | Received By: | Company: | |
| Signature/Printed Name | DaterTime | Signature/Printed Name | | Date/Time |

\square a

Date: $10 / 4 / 2010$

Sediment and Field QC

Laboratory: AGAT
Project Name: EHRP Wood Debris Remediation
Project Number: 170553-11.05
Project Contact: Cheronne Oreiro
Phone Number: 206.971.2680
Shipment Method: Delivery

1 See project SAP/QAPP for analyte lists and test methods
2 Email sample confirmation report to labdata@anchorqea.com
Additional notes/comments:
Please homogenize sample and subsample necessary volume to send out for PCB and D/F analysis

Non-Conformances:

3 temperatures of samples* and average of each cooler: (record differing temperatures on the CoD next to sample ID's) *use Jars when available
(1) $1+0+0=0{ }^{\circ}$
${ }^{\circ} \mathrm{C}(2) 2+Z+Z=Z^{\circ} \mathrm{C}$
(3) \qquad $+$ $+$ \qquad
\qquad ${ }^{\circ} \mathrm{C}$ (4) \qquad $+$ \qquad $=$ \qquad ${ }^{\circ} \mathrm{C}$

Was ice or ice pack present: Yes No Integrity Issues:

\qquad
Additional Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Unit 120, 8600 Glenlyon Parkway

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA 219-800 BURRARD ST VANCOUVER, BC V6Z OB9
 604-671-1831

ATTENTION TO: Cheronne Oreiro

PROJECT: 170553-11.05 EHRP Wood Debris Remediation
AGAT WORK ORDER: 18V422808
SOIL ANALYSIS REVIEWED BY: Dana Solari, Lab Reporter
TRACE ORGANICS REVIEWED BY: Dana Solari, Lab Reporter
ULTRA TRACE REVIEWED BY: Anastasia Kazakova, chimiste
DATE REPORTED: Feb 21, 2019
PAGES (INCLUDING COVER): 31
VERSION*: 4

Should you require any information regarding this analysis please contact your client services representative at (778) 452-4000

```
*NOTES
VERSION 4: Sample receipt temperature 3}\mp@subsup{3}{}{\circ}\textrm{C}\mathrm{ .
Version 4 is issued to report corrected RPD's for Dioxins and Furans. Version 4 is a replacement to all previous versions.
```

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis
AGAT WORK ORDER: 18V422808
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
ATTENTION TO: Cheronne Oreiro
SAMPLING SITE:
SAMPLED BY:

Certified By:

ATTENTION TO: Cheronne Oreiro SAMPLED BY:

Public Works Metals in Soil											
DATE RECEIVED: 2018-12-20				EHWW-36-SC-000050Soil$2018-12-17$9801856	EHWW-03-SC-000050Soil$2018-12-17$9801861	EHWW-57-SC-000050Soil$2018-12-17$9801862	DATE REPORTED: 2019-02-21				
Parameter	Unit	SAMPLE D	RIPTION: E TYPE: MPLED: RDL				EHWW-56-SC- 000050 Soil $2018-12-17$ 9801863	EHWW-38-SC- 000050 Soil $2018-12-17$ 9801864	EHWW-40-SC- 000050 Soil $2018-12-18$ 9801865	EHWW-54-SC- 000050 Soil $2018-12-19$ 9801866	EHWW-65-SC- 000050 Soil $2018-12-19$ 9801867
Vanadium	$\mu \mathrm{g} / \mathrm{g}$		1	76	57	51	32	61	58	49	38
Zinc	$\mu \mathrm{g} / \mathrm{g}$		1	158	110	142	37	90	162	70	56
Zirconium	$\mu \mathrm{g} / \mathrm{g}$		0.1	7.1	5.8	5.3	3.7	9.6	5.2	6.5	4.0
pH 1:2	pH units		0.1	6.9	7.2	7.0	8.2	7.5	6.8	7.6	8.0

Certificate of Analysis

AGAT WORK ORDER: 18V422808
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE: SAMPLED BY:

Public Works Metals in Soil						
DATE RECEIVED: 2018-12-20						DATE REPORTED: 2019-02-21
				HWW-165-SC	HWW-53-SC-	
		PLE D	IPTION:	000050	000016	
			E TYPE:	Soil	Soil	
		DAT	MPLED:	2018-12-19	2018-12-19	
Parameter	Unit	G/S	RDL	9801868	9801869	
Aluminum	$\mu \mathrm{g} / \mathrm{g}$		10	8600	12100	
Antimony	$\mu \mathrm{g} / \mathrm{g}$		0.1	0.2	0.5	
Arsenic	$\mu \mathrm{g} / \mathrm{g}$		0.1	7.0	11.4	
Barium	$\mu \mathrm{g} / \mathrm{g}$		0.5	21.1	48.2	
Beryllium	$\mu \mathrm{g} / \mathrm{g}$		0.1	0.1	0.2	
Bismuth	$\mu \mathrm{g} / \mathrm{g}$		0.5	<0.5	<0.5	
Cadmium	$\mu \mathrm{g} / \mathrm{g}$		0.01	4.92	4.92	
Calcium	$\mu \mathrm{g} / \mathrm{g}$		10	7430	15400	
Chromium	$\mu \mathrm{g} / \mathrm{g}$		1	18	28	
Cobalt	$\mu \mathrm{g} / \mathrm{g}$		0.1	4.0	5.1	
Copper	$\mu \mathrm{g} / \mathrm{g}$		0.2	21.7	43.7	
Iron	$\mu \mathrm{g} / \mathrm{g}$		10	12500	16600	
Lead	$\mu \mathrm{g} / \mathrm{g}$		0.1	10.4	84.8	
Lithium	$\mu \mathrm{g} / \mathrm{g}$		0.5	10.5	14.4	
Magnesium	$\mu \mathrm{g} / \mathrm{g}$		10	4160	6170	
Manganese	$\mu \mathrm{g} / \mathrm{g}$		1	142	156	
Mercury	$\mu \mathrm{g} / \mathrm{g}$		0.01	0.29	0.55	
Molybdenum	$\mu \mathrm{g} / \mathrm{g}$		0.2	2.6	7.9	
Nickel	$\mu \mathrm{g} / \mathrm{g}$		0.5	13.3	20.1	
Phosphorus	$\mu \mathrm{g} / \mathrm{g}$		5	731	999	
Potassium	$\mu \mathrm{g} / \mathrm{g}$		5	885	1670	
Selenium	$\mu \mathrm{g} / \mathrm{g}$		0.1	0.8	1.3	
Silver	$\mu \mathrm{g} / \mathrm{g}$		0.5	<0.5	<0.5	
Sodium	$\mu \mathrm{g} / \mathrm{g}$		5	5250	11800	
Strontium	$\mu \mathrm{g} / \mathrm{g}$		1	48	103	
Thallium	$\mu \mathrm{g} / \mathrm{g}$		0.1	0.8	0.7	
Tin	$\mu \mathrm{g} / \mathrm{g}$		0.2	1.6	2.9	
Titanium	$\mu \mathrm{g} / \mathrm{g}$		1	943	891	
Uranium	$\mu \mathrm{g} / \mathrm{g}$		0.2	1.0	3.2	

Certificate of Analysis
AGAT WORK ORDER: 18V422808
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA SAMPLING SITE:

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
9801856-9801869 Results are based on the dry weight of the sample
Analysis performed at AGAT Vancouver (unless marked by *)

Certificate of Analysis

Total Organic Carbon in Soil (\%)											
DATE RECEIVED: 2018-12-20				EHWW-36-SC-000050Soil$2018-12-17$9801856	EHWW-03-SC-000050Soil$2018-12-17$9801861	EHWW-57-SC-000050Soil$2018-12-17$9801862	$\begin{gathered} \hline \text { EHWW-56-SC- } \\ 000050 \\ \text { Soil } \\ 2018-12-17 \\ 9801863 \end{gathered}$	DATE REPORTED: 2019-02-21			
Parameter	Unit	SAMPLE DE SA DAT G/S	IPTION: E TYPE: MPLED: RDL					EHWW-38-SC- 000050 Soil $2018-12-17$ 9801864	EHWW-40-SC- 000050 Soil $2018-12-18$ 9801865	EHWW-54-SC- 000050 Soil $2018-12-19$ 9801866	EHWW-65-SC- 000050 Soil $2018-12-19$ 9801867
Organic Carbon-Total	\%		0.02	13.5	13.6	16.1	1.75	4.34	13.4	3.50	1.28
Parameter	Unit	SAMPLE DE SA DAT G / S	IPTION: E TYPE: MPLED: RDL	EHWW-165-SC 000050 Soil $2018-12-19$ 9801868	EHWW-53-SC- 000016 Soil $2018-12-19$ 9801869						
Organic Carbon-Total	\%		0.02	1.33	3.32						

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
Analysis performed at AGAT Vancouver (unless marked by *)

Certificate of Analysis

Total Solids in Soil

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
Analysis performed at AGAT Vancouver (unless marked by *)

Certificate of Analysis
AGAT WORK ORDER: 18 V 422808
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

SAMPLED BY:

Certified By:

Certificate of Analysis
AGAT WORK ORDER: 18V422808
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE: SAMPLED BY:

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 18V422808
PROJECT: 170553-11.05 EHRP Wood Debris Remediation

Public Works PAH in Soil Low Leve

DATE RECEIVED: 2018-12-20
DATE REPORTED: 2019-02-21
Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
9801856-9801862 Results are based on dry weight of sample.
PAH detection limits increased due to high sample moisture content.
9801863 Results are based on dry weight of sample.
9801864-9801866 Results are based on dry weight of sample.
PAH detection limits increased due to high sample moisture content.
9801867-9801869 Results are based on dry weight of sample.
Analysis performed at AGAT Vancouver (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 18V422808
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

SAMPLING SITE:

位

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
9801856-9801869 Results are based on the dry weight of the sample.
Analysis performed at AGAT Calgary (unless marked by *)

Certificate of Analysis
AGAT WORK ORDER: 18V422808
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

SAMPLED BY:

Dioxins and Furans (Soil, WHO 2005)										
DATE RECEIVED: 2018-12-20								DATE REPORTED: 2019-02-21		
										EHWW-56-SC-
		SAMPLE DE	IPTION:	000050		000050		000050		000050
		SA	E TYPE:	Soil		Soil		Soil		Soil
		DATE	MPLED:	2018-12-17		2018-12-17		2018-12-17		2018-12-17
Parameter	Unit	G/S	RDL	9801856	RDL	9801861	RDL	9801862	RDL	9801863
2,3,7,8-Tetra CDD	ng/kg		1	<1	0.8	<0.8	1	<1	0.2	<0.2
1,2,3,7,8-Penta CDD	ng/kg		2	<2	3	<3	5	13	0.6	<0.6
1,2,3,4,7,8-Hexa CDD	$\mathrm{ng} / \mathrm{kg}$		1	3	4	<4	6	<6	0.8	<0.8
1,2,3,6,7,8-Hexa CDD	ng/kg		5	13	4	7	5	<5	0.7	1.7
1,2,3,7,8,9-Hexa CDD	ng/kg		5	<5	4	<4	5	<5	0.7	<0.7
1,2,3,4,6,7,8-Hepta CDD	$\mathrm{ng} / \mathrm{kg}$		5	191	2	74	6	43	0.8	22.1
Octa CDD	$\mathrm{ng} / \mathrm{kg}$		10	948	7	410	50	308	7	102
2,3,7,8-Tetra CDF	ng/kg		2	3	1	3	3	<3	0.5	<0.5
1,2,3,7,8-Penta CDF	ng/kg		3	<3	1	2	6	49	0.9	<0.9
2,3,4,7,8-Penta CDF	$\mathrm{ng} / \mathrm{kg}$		3	4	1	<1	5	30	0.7	0.9
1,2,3,4,7,8-Hexa CDF	$\mathrm{ng} / \mathrm{kg}$		4	8	2	5	6	42	0.8	1.1
1,2,3,6,7,8-Hexa CDF	ng/kg		5	5	2	3	5	10	0.7	0.8
2,3,4,6,7,8-Hexa CDF	ng/kg		6	6	3	4	7	15	1	<1
1,2,3,7,8,9-Hexa CDF	ng/kg		8	<8	4	<4	10	<10	2	<2
1,2,3,4,6,7,8-Hepta CDF	$\mathrm{ng} / \mathrm{kg}$		3	134	2	63	6	65	0.8	11.9
1,2,3,4,7,8,9-Hepta CDF	ng/kg		3	6	2	<2	6	20	0.8	<0.8
Octa CDF	$\mathrm{ng} / \mathrm{kg}$		3	74	5	27	10	<10	1	5
Total Tetrachlorodibenzodioxins	$\mathrm{ng} / \mathrm{kg}$		1	14	0.8	5.5	1	96	0.2	4.2
Total Pentachlorodibenzodioxins	ng/kg		2	25	3	12	5	114	0.6	6.6
Total Hexachlorodibenzodioxins	ng/kg		5	120	4	61	6	104	0.8	19.8
Total Heptachlorodibenzodioxins	$\mathrm{ng} / \mathrm{kg}$		5	405	2	182	6	790	0.8	48.8
Total PCDDs	ng/kg		10	1510	7	671	50	1410	7	182
Total Tetrachlorodibenzofurans	$\mathrm{ng} / \mathrm{kg}$		2	75	1	40	3	111	0.5	7.6
Total Pentachlorodibenzofurans	ng/kg		3	43	2	14	6	330	0.9	4.4
Total Hexachlorodibenzofurans	$\mathrm{ng} / \mathrm{kg}$		8	217	4	72	10	437	2	19
Total Heptachlorodibenzofurans	ng/kg		3	370	2	127	6	509	0.8	33.5
Total PCDFs	ng/kg		8	780	5	280	10	1390	2	69
2,3,7,8-Tetra CDD (TEF 1.0)	TEQ			0		0		0		0
1,2,3,7,8-Penta CDD (TEF 1.0)	TEQ			0		0		13.5		0

Certificate of Analysis

AGAT WORK ORDER: 18V422808
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE: SAMPLED BY

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 18V422808
PROJECT: 170553-11.05 EHRP Wood Debris Remediation SAMPLING SITE:

ATTENTION TO: Cheronne Oreiro

Certified By:

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
AGAT WORK ORDER: 18V422808
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
ATTENTION TO: Cheronne Oreiro
SAMPLING SITE:
SAMPLED BY:

Certificate of Analysis

AGAT WORK ORDER: 18V422808
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

SAMPLED BY

Certificate of Analysis

AGAT WORK ORDER: 18V422808
PROJECT: 170553-11.05 EHRP Wood Debris Remediation

ATTENTION TO: Cheronne Oreiro
I NAME: PUBLIC WORKS AND GOVERNMENT SERVCES CANADA SAMPLED BY:

SAMPLING SIT					BY.	
			Dioxins a	Soil, WHO		
DATE RECEIVED: 2018-12-20						D: 2019-02-21
Surrogate	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: Acceptable Limits	$\begin{gathered} \hline \text { EHWW-38-SC- } \\ 000050 \\ \text { Soil } \\ 2018-12-17 \\ 9801864 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { EHWW-40-SC- } \\ 000050 \\ \text { Soil } \\ 2018-12-18 \\ 9801865 \end{gathered}$	$\begin{gathered} \hline \text { EHWW-54-SC- } \\ 000050 \\ \text { Soil } \\ 2018-12-19 \\ 9801866 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { EHWW-65-SC- } \\ 000050 \\ \text { Soil } \\ 2018-12-19 \\ 9801867 \\ \hline \end{gathered}$
13C-2378-TCDF	\%	30-140	85	58	74	67
13C-12378-PeCDF	\%	30-140	81	63	71	66
13C-23478-PeCDF	\%	30-140	90	58	76	71
13C-123478-HxCDF	\%	30-140	74	47	72	66
13C-123678-HxCDF	\%	30-140	75	47	75	66
13C-234678-HxCDF	\%	30-140	78	45	76	69
13C-123789-HxCDF	\%	30-140	73	30	72	65
13C-1234678-HpCDF	\%	30-140	73	60	69	60
13C-1234789-HpCDF	\%	30-140	76	36	72	63
13C-2378-TCDD	\%	30-140	98	67	85	76
13C-12378-PeCDD	\%	30-140	100	64	81	78
13C-123478-HxCDD	\%	30-140	65	42	71	66
13C-123678-HxCDD	\%	30-140	67	47	73	67
13C-1234678-HpCDD	\%	30-140	67	36	65	55
13C-OCDD	\%	30-140	39	44	46	38

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 18V422808
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE: SAMPLED BY

Certificate of Analysis

AGAT WORK ORDER: 18V422808
PROJECT: 170553-11.05 EHRP Wood Debris Remediation

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLED BY:

SAMPLING SITE:

Dioxins and Furans (Soil, WHO 2005)						
DATE RECEIVED: 2018-12-20						DATE REPORTED: 2019-02-21
			EHWW-165-SC-		EHWW-53-SC-	
		SAMPLE DESCRIPTION:	000050		000016	
		SAMPLE TYPE:	Soil		Soil	
		DATE SAMPLED:	2018-12-19		2018-12-19	
Parameter	Unit	G/S RDL	9801868	RDL	9801869	
1,2,3,4,7,8-Hexa CDD (TEF 0.1)	TEQ		0		0	
1,2,3,6,7,8-Hexa CDD (TEF 0.1)	TEQ		0.145		0.353	
1,2,3,7,8,9-Hexa CDD (TEF 0.1)	TEQ		0		0	
1,2,3,4,6,7,8-Hepta CDD (TEF 0.01)	TEQ		0.0998		0.410	
Octa CDD (TEF 0.0003)	TEQ		0.0237		0.0682	
2,3,7,8-Tetra CDF (TEF 0.1)	TEQ		0		0	
1,2,3,7,8-Penta CDF (TEF 0.03)	TEQ		0		0	
2,3,4,7,8-Penta CDF (TEF 0.3)	TEQ		0.306		0	
1,2,3,4,7,8-Hexa CDF (TEF 0.1)	TEQ		0.131		0.331	
1,2,3,6,7,8-Hexa CDF (TEF 0.1)	TEQ		0		0	
2,3,4,6,7,8-Hexa CDF (TEF 0.1)	TEQ		0.0925		0	
1,2,3,7,8,9-Hexa CDF (TEF 0.1)	TEQ		0		0	
1,2,3,4,6,7,8-Hepta CDF (TEF 0.01)	TEQ		0.175		0.552	
1,2,3,4,7,8,9-Hepta CDF (TEF 0.01)	TEQ		0		0	
Octa CDF (TEF 0.0003)	TEQ		0		0	
Total PCDDs and PCDFs (TEQ)	ng/kg TEQ		0.972		1.71	

Certificate of Analysis

AGAT WORK ORDER: 18V422808
PROJECT: 170553-11.05 EHRP Wood Debris Remediation

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro

 SAMPLING SITE: SAMPLED BY:

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
9801856-9801869 The results were corrected based on the surrogate percent recoveries.
Analysis performed at AGAT Montreal (unless marked by *)

Certified By:

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

AGAT WORK ORDER: 18V422808
ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

Comments: RDs are calculated using raw analytical data and not the rounded duplicate values reported.

Certified By:

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

AGAT WORK ORDER: 18V422808
ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

			Tra	-	$a n i$	An	alysi								
RPT Date: Feb 21, 2019				JPLICA			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	
PARAMETER	Batch	Sample	Dup \#1	Dup \#2	RPD	Method Blank	Measured	Acce Lim	ptable nits	Recovery	Acce Lim	ptable its	Recovery	Acce Lim	ptable mits
								Lower	Upper		Lower	Upper		Lower	Upper
Public Works PAH in So															
Naphthalene	70408	9801856	0.067	0.049	31.0\%	< 0.005	103\%	80\%	120\%				90\%	50\%	130\%
2-Methylnaphthalene	70408	9801856	0.023	0.022	NA	< 0.005	105\%	80\%	120\%				91\%	50\%	130\%
1-Methylnaphthalene	70408	9801856	0.009	0.005	NA	<0.005	105\%	80\%	120\%				98\%	50\%	130\%
Acenaphthylene	70408	9801856	0.038	0.031	20.3\%	< 0.005	100\%	80\%	120\%				89\%	50\%	130\%
Acenaphthene	70408	9801856	0.028	0.027	3.6\%	< 0.005	105\%	80\%	120\%				99\%	50\%	130\%
Fluorene	70408	9801856	0.03	0.02	NA	<0.02	100\%	80\%	120\%				95\%	50\%	130\%
Phenanthrene	70408	9801856	0.23	0.32	32.7\%	<0.02	100\%	80\%	120\%				78\%	60\%	130\%
Anthracene	70408	9801856	0.110	0.096	13.6\%	< 0.004	102\%	80\%	120\%				112\%	60\%	130\%
Fluoranthene	70408	9801856	0.82	1.01	20.8\%	<0.01	102\%	80\%	120\%				98\%	60\%	130\%
Pyrene	70408	9801856	1.81	2.52	32.8\%	<0.01	99\%	80\%	120\%				108\%	60\%	130\%
Benzo(a)anthracene	70408	9801856	0.38	0.24	45.2\%	<0.03	101\%	80\%	120\%				86\%	60\%	130\%
Chrysene	70408	9801856	0.32	0.22	NA	<0.05	101\%	80\%	120\%				105\%	60\%	130\%
Benzo(b)fluoranthene	70408	9801856	0.64	0.47	30.6\%	<0.02	101\%	80\%	120\%				78\%	60\%	130\%
Benzo(j)fluoranthene	70408	9801856	0.23	0.16	35.9\%	<0.02	101\%	80\%	120\%				83\%	60\%	130\%
Benzo(k)fluoranthene	70408	9801856	0.36	0.24	40.0\%	<0.02	99\%	80\%	120\%				79\%	60\%	130\%
Benzo(a)pyrene	70408	9801856	0.31	0.19	48.0\%	<0.03	101\%	80\%	120\%				108\%	60\%	130\%
Indeno(1,2,3-c,d)pyrene	70408	9801856	0.11	0.08	NA	<0.02	101\%	80\%	120\%				103\%	60\%	130\%
Dibenzo(a,h)anthracene	70408	9801856	0.029	0.019	NA	<0.005	103\%	80\%	120\%				106\%	60\%	130\%
Benzo(g,h,i)perylene	70408	9801856	0.13	0.09	NA	<0.05	99\%	80\%	120\%				101\%	60\%	130\%
Quinoline	70408	9801856	0.07	0.06	NA	<0.05	89\%	80\%	120\%				112\%	50\%	130\%
Naphthalene - d8	70408	9801856	90	81	10.5\%		104\%	80\%	120\%				90\%	50\%	130\%
2-Fluorobiphenyl	70408	9801856	94	93	1.1\%		101\%	80\%	120\%				94\%	50\%	130\%
P-Terphenyl-d14	70408	9801856	100	100	0.0\%		101\%	80\%	120\%				97\%	60\%	130\%

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.
Polychlorinated Biphenyls Analysis - Soil

Aroclor 1242	173	9801887	<0.05	<0.05	NA	<0.05	114%	70%	130%	124%	70%	130%	118%	50%
150%														
Aroclor 1254	173	9801887	<0.05	<0.05	NA	<0.05	101%	70%	130%	104%	70%	130%	98%	50%
Aroclor 1260	173	9801887	<0.05	<0.05	NA	<0.05	107%	70%	130%	101%	70%	130%	103%	50%
Total Polychlorinated Biphenyls	173	9801887	<0.05	<0.05	NA	<0.05	107%	70%	130%	110%	70%	130%	106%	50%

Comments: If the RPD value is NA, the results of the duplicates are under 5 X the RDL and will not be calculated.

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

AGAT WORK ORDER: 18 V 422808
ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

Ultra Trace Analysis															
RPT Date: Feb 21, 2019			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample Id	Dup \#1	Dup \#2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
								Lower	Upper		Lower	Upper		Lower	Upper
Dioxins and Furans (Soil, WHO 2005)															
2,3,7,8-Tetra CDD	1	9744700	<0.4	<0.3	NA	<0.1	84\%	40\%	130\%	NA	40\%	130\%	81\%	40\%	130\%
1,2,3,7,8-Penta CDD	1	9744700	< 1	<0.6	NA	<0.4	90\%	40\%	130\%	NA	40\%	130\%	87\%	40\%	130\%
1,2,3,4,7,8-Неха CDD	1	9744700	< 1	<0.9	NA	< 0.2	93\%	40\%	130\%	NA	40\%	130\%	89\%	40\%	130\%
1,2,3,6,7,8-Hexa CDD	1	9744700	2	1.6	NA	<0.2	100\%	40\%	130\%	NA	40\%	130\%	95\%	40\%	130\%
1,2,3,7,8,9-Hexa CDD	1	9744700	1	1.7	NA	<0.2	92\%	40\%	130\%	NA	40\%	130\%	88\%	40\%	130\%
1,2,3,4,6,7,8-Hepta CDD	1	9744700	11.2	10.4	7.4\%	<0.3	89\%	40\%	130\%	NA	40\%	130\%	94\%	40\%	130\%
Octa CDD	1	9744700	76	85	11.2\%	<0.1	106\%	40\%	130\%	NA	40\%	130\%	121\%	40\%	130\%
2,3,7,8-Tetra CDF	1	9744700	5.1	5.6	9.3\%	<0.2	100\%	40\%	130\%	NA	40\%	130\%	99\%	40\%	130\%
1,2,3,7,8-Penta CDF	1	9744700	2	2	0.0\%	< 0.1	117\%	40\%	130\%	NA	40\%	130\%	115\%	40\%	130\%
2,3,4,7,8-Penta CDF	1	9744700	2.6	2.6	0.0\%	<0.3	111\%	40\%	130\%	NA	40\%	130\%	113\%	40\%	130\%
1,2,3,4,7,8-Hexa CDF	1	9744700	6.7	7	4.4\%	<0.2	109\%	40\%	130\%	NA	40\%	130\%	108\%	40\%	130\%
1,2,3,6,7,8-Hexa CDF	1	9744700	2.7	3	10.5\%	<0.2	106\%	40\%	130\%	NA	40\%	130\%	115\%	40\%	130\%
2,3,4,6,7,8-Неха CDF	1	9744700	2.8	3	6.9\%	<0.2	111\%	40\%	130\%	NA	40\%	130\%	115\%	40\%	130\%
1,2,3,7,8,9-Hexa CDF	1	9744700	<0.9	<2	NA	<0.2	101\%	40\%	130\%	NA	40\%	130\%	107\%	40\%	130\%
1,2,3,4,6,7,8-Hepta CDF	1	9744700	12.2	12.3	0.8\%	<0.3	111\%	40\%	130\%	NA	40\%	130\%	108\%	40\%	130\%
1,2,3,4,7,8,9-Hepta CDF	1	9744700	2.0	1.9	5.1\%	<0.3	108\%	40\%	130\%	NA	40\%	130\%	105\%	40\%	130\%
Octa CDF	1	9744700	< 1	< 1	NA	<0.1	78\%	40\%	130\%	NA	40\%	130\%	117\%	40\%	130\%

Certified By:

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Aluminum	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Antimony	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Arsenic	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Barium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Beryllium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Bismuth	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Cadmium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Calcium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Chromium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Cobalt	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Copper	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Iron	$\begin{aligned} & \text { MET-181-6106, } \\ & \text { LAB-181-4008 } \end{aligned}$	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Lead	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Lithium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Magnesium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Manganese	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP-MS
Mercury	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Molybdenum	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Nickel	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Phosphorus	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Potassium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Selenium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Silver	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Sodium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Strontium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP-MS
Thallium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Tin	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS

Unit 120, 8600 Glenlyon Parkway
Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA PROJECT: 170553-11.05 EHRP Wood Debris Remediation SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Titanium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Uranium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Vanadium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Zinc	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Zirconium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
pH 1:2	INOR-181-6031	BC MOE Lab Manual B (pH , Electrometric, Soil)	PH METER

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	Modified from BC MOE Lab Manual	GC/MS	
		ORG-180-5133	Section D (PAH)

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

AGAT WORK ORDER: 18V422808 ATTENTION TO: Cheronne Oreiro SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Ultra Trace Analysis			
2,3,7,8-Tetra CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDD	HR-151-5400	EPA 1613	HRMS
Octa CDD	HR-151-5400	EPA 1613	HRMS
2,3,7,8-Tetra CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDF	HR-151-5400	EPA 1613	HRMS
2,3,4,7,8-Penta CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDF	HR-151-5400	EPA 1613	HRMS
2,3,4,6,7,8-Hexa CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8,9-Hepta CDF	HR-151-5400	EPA 1613	HRMS
Octa CDF	HR-151-5400	EPA 1613	HRMS
Total Tetrachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total Pentachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total Hexachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total Heptachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total PCDDs	HR-151-5400	EPA 1613	HRMS
Total Tetrachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total Pentachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total Hexachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total Heptachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total PCDFs	HR-151-5400	EPA 1613	HRMS
2,3,7,8-Tetra CDD (TEF 1.0)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDD (TEF 1.0)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Неха CDD (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDD (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDD (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDD (TEF 0.01)	HR-151-5400	EPA 1613	HRMS
Octa CDD (TEF 0.0003)	HR-151-5400	EPA 1613	HRMS
2,3,7,8-Tetra CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDF (TEF 0.03)	HR-151-5400	EPA 1613	HRMS
2,3,4,7,8-Penta CDF (TEF 0.3)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDF (TEF 0.1)	HR_151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
2,3,4,6,7,8-Hexa CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDF (TEF 0.01)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8,9-Hepta CDF (TEF 0.01)	HR-151-5400	EPA 1613	HRMS
Octa CDF (TEF 0.0003)	HR-151-5400	EPA 1613	HRMS
Total PCDDs and PCDFs (TEQ)	HR-151-5400	EPA 1613	HRMS
13C-2378-TCDF	HR-151-5400	EPA 1613	HRMS
13C-12378-PeCDF	HR-151-5400	EPA 1613	HRMS
13C-23478-PeCDF	HR-151-5400	EPA 1613	HRMS
13C-123478-HxCDF	HR-151-5400	EPA 1613	HRMS

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
13C-123678-HxCDF	HR-151-5400	EPA 1613	HRMS
13C-234678-HxCDF	HR-151-5400	EPA 1613	HRMS
13C-123789-HxCDF	HR-151-5400	EPA 1613	HRMS
13C-1234678-HpCDF	HR-151-5400	EPA 1613	HRMS
13C-1234789-HpCDF	HR-151-5400	EPA 1613	HRMS
13C-2378-TCDD	HR-151-5400	EPA 1613	HRMS
13C-12378-PeCDD	HR-151-5400	EPA 1613	HRMS
13C-123478-HxCDD	HR-151-5400	EPA 1613	HRMS
13C-123678-HxCDD	HR-151-5400	EPA 1613	HRMS
13C-1234678-HpCDD	HR-151-5400	EPA 1613	HRMS
13C-OCDD	HR-151-5400	EPA 1613	HRMS

Chain of C sdy Record and Laboratory Analysis Request
$\underset{\text { coc\# }}{\text { W0. }} 18 V 422808$

1 See project SAP/QAPP for analyte lists and test methods
2 Email sample confirmation report to labdata@anchorqea.com
Additional notes/comments:
Relinquished By: Company: Anchor QEA LLC.

Relinquished By:	Company:	Received By:	Company:	
Signature/Printed Name	Date/Time	Signature/Printed Name		Date/Time

Chain of C. dy Record and Laboratory Analysis Request
W0 18V422808
u^{x}

1 See project SAP/QAPP for analyte lists and test methods
2 Email sample confirmation report to labdata@anchorqea.com
Additional notes/comments:

Relinquished By: Company:_ Company:		
Received By:		
Signature/Printed Name	Date/Time	Signature/Printed Name

जGजルて Laboratories

SAMPLE INTEGRITY RECEIPT FORM - BURNABY Work Order \#_ $18 \vee 422808$

Non-Conformances:
3 temperatures of samples* and average of each cooler: (record differing temperatures on the CoD next to sample ID's) "use lars when available
(1) $\underline{0}+0+3=1$
${ }^{\circ} \mathrm{C}(2) 1+0+0=$ \qquad ${ }^{\circ} \mathrm{C}(3) 0+0+4=2{ }^{\circ} \mathrm{C}$ \qquad
\qquad

Was ice or ice pack present: Yes N No $\quad 2+3+3=3 ;(7) 4 r r_{+}=4 ;(8) 4+2+0=2$
Integrity Issues: (5) $4+4+3=4 \quad ;(6)^{2}+3+3$
\qquad
\qquad
\qquad
\qquad
\qquad

Account Project Manager: \qquad have they been notified of the above issues: Yes No

Whom spoken to: \qquad Date and Time: \qquad

Additional Notes:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Unit 120, 8600 Glenlyon Parkway

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA 219-800 BURRARD ST VANCOUVER, BC V6Z OB9
 604-671-1831

ATTENTION TO: Cheronne Oreiro

PROJECT: 170553-11.05 EHRP Wood Debris Remediation
AGAT WORK ORDER: 18V422820
SOIL ANALYSIS REVIEWED BY: Dana Solari, Lab Reporter
TRACE ORGANICS REVIEWED BY: Dana Solari, Lab Reporter
ULTRA TRACE REVIEWED BY: Philippe Morneau, chimiste
DATE REPORTED: Jan 11, 2019
PAGES (INCLUDING COVER): 39
VERSION*: 4

Should you require any information regarding this analysis please contact your client services representative at (778) 452-4000

```
*NOTES
VERSION 4: Sample receipt temperature 3}\mp@subsup{3}{}{\circ}\textrm{C}\mathrm{ .
Version 4 is issued to report complete results. Version 4 is an amendment to all previous versions.
```

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis
AGAT WORK ORDER: 18V422820
PROJECT: 170553-11.05 EHRP Wood Debris Remediation SAMPLING SITE:

SAMPLED BY
Moisture Content Soil
DATE RECEIVED: 2018-12-20 DATE REPORTED: 2019-01-11

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
Analysis performed at AGAT Vancouver (unless marked by *)

Certificate of Analysis

Comments:
RDL - Reported Detection Limit; G / S - Guideline / Standard
9801887-9801956 Value reported is amount of sample retained on a 75 micron sieve after wash with water and represents proportion by weight particles larger than indicated sieve size
Analysis performed at AGAT Edmonton (unless marked by *)

Certificate of Analysis
Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J OB6
AGAT WORK ORDER: 18V422820 TEL (778)452-4000 FAX (778)452-4074
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

SAMPLED BY:

Public Works Metals in Soil											
DATE RECEIVED: 2018-12-20				EHWW-58-SC-361411Sediment$2018-12-16$9801887	$\begin{gathered} \hline \text { EHWW-36-SC- } \\ 183233 \\ \text { Sediment } \\ 2018-12-17 \\ 9801891 \end{gathered}$	$\begin{gathered} \hline \text { EHWW-03-SC- } \\ 150200 \\ \text { Sediment } \\ 2018-12-17 \\ 9801899 \end{gathered}$	$\begin{gathered} \hline \text { EHWW-38-SC- } \\ 050100 \\ \text { Sediment } \\ 2018-12-17 \\ 9801935 \end{gathered}$	DATE REPORTED: 2019-01-11			
Para		SAMPLE D	IPTION: E TYPE: MPLED: RDI					EHWW-40-SC- 060110 Sediment $2018-12-18$ 9801945	EHWW-39-SC- 035085 Sediment $2018-12-18$ 9801948	EHWW-24-SC- 045095 Sediment $2018-12-18$ 9801952	$\begin{gathered} \hline \text { EHWW-16-SC- } \\ 152202 \\ \text { Sediment } \\ 2018-12-18 \end{gathered}$
Aluminum	$\mu \mathrm{g} / \mathrm{g}$		10	22100	29100	17600	16200	8370	13400	14300	12500
Antimony	$\mu \mathrm{g} / \mathrm{g}$		0.1	0.3	0.4	0.4	0.2	0.2	0.2	0.2	0.2
Arsenic	$\mu \mathrm{g} / \mathrm{g}$		0.1	5.7	6.3	6.3	8.1	9.1	6.4	8.4	8.3
Barium	$\mu \mathrm{g} / \mathrm{g}$		0.5	61.3	103	70.1	43.9	20.3	32.7	34.4	29.2
Beryllium	$\mu \mathrm{g} / \mathrm{g}$		0.1	0.4	0.5	0.3	0.4	0.1	0.2	0.3	0.2
Bismuth	$\mu \mathrm{g} / \mathrm{g}$		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Cadmium	$\mu \mathrm{g} / \mathrm{g}$		0.01	0.93	0.31	1.18	3.86	1.47	4.32	3.88	4.59
Calcium	$\mu \mathrm{g} / \mathrm{g}$		10	71600	13800	39200	10100	35000	16600	9080	17900
Chromium	$\mu \mathrm{g} / \mathrm{g}$		1	42	49	35	33	16	29	30	25
Cobalt	$\mu \mathrm{g} / \mathrm{g}$		0.1	12.0	18.3	10.2	5.7	5.0	5.0	5.6	4.9
Copper	$\mu \mathrm{g} / \mathrm{g}$		0.2	43.2	59.6	33.8	19.5	14.0	18.7	18.8	17.7
Iron	$\mu \mathrm{g} / \mathrm{g}$		10	32200	39200	24900	21600	13000	17900	19900	17200
Lead	$\mu \mathrm{g} / \mathrm{g}$		0.1	4.2	6.1	4.4	5.5	4.4	6.8	3.0	2.8
Lithium	$\mu \mathrm{g} / \mathrm{g}$		0.5	30.3	30.9	24.2	21.0	7.8	16.0	18.0	14.3
Magnesium	$\mu \mathrm{g} / \mathrm{g}$		10	11100	14900	8330	7240	3840	6160	6490	5470
Manganese	$\mu \mathrm{g} / \mathrm{g}$		1	383	752	330	202	188	185	198	178
Mercury	$\mu \mathrm{g} / \mathrm{g}$		0.01	0.04	0.06	0.04	0.08	0.08	0.09	0.04	0.05
Molybdenum	$\mu \mathrm{g} / \mathrm{g}$		0.2	2.7	0.5	4.9	4.4	7.4	4.4	3.6	3.2
Nickel	$\mu \mathrm{g} / \mathrm{g}$		0.5	34.0	48.1	29.5	20.7	11.5	17.3	19.6	17.0
Phosphorus	$\mu \mathrm{g} / \mathrm{g}$		5	577	494	579	830	657	825	812	748
Potassium	$\mu \mathrm{g} / \mathrm{g}$		5	3000	3490	3060	2290	853	1830	2030	1650
Selenium	$\mu \mathrm{g} / \mathrm{g}$		0.1	1.5	0.9	2.2	2.8	2.9	1.7	1.3	2.8
Silver	$\mu \mathrm{g} / \mathrm{g}$		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	$\mu \mathrm{g} / \mathrm{g}$		5	6340	5530	6190	9090	4130	8420	7430	6920
Strontium	$\mu \mathrm{g} / \mathrm{g}$		1	595	83	309	82	251	118	63	113
Thallium	$\mu \mathrm{g} / \mathrm{g}$		0.1	0.2	0.1	0.3	0.4	0.4	0.5	0.5	0.7
Tin	$\mu \mathrm{g} / \mathrm{g}$		0.2	0.4	0.6	0.5	1.7	1.5	1.3	0.6	0.4
Titanium	$\mu \mathrm{g} / \mathrm{g}$		1	1300	1800	1270	1300	873	1090	1260	1180
Uranium	$\mu \mathrm{g} / \mathrm{g}$		0.2	1.5	0.6	1.7	1.9	1.9	1.7	1.6	1.2

Certified By:

ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

Public Works Metals in Soil											
DATE RECEIVED: 2018-12-20				EHWW-58-SC-361411Sediment$2018-12-16$9801887	EHWW-36-SC-183233Sediment$2018-12-17$9801891	EHWW-03-SC-150200Sediment$2018-12-17$9801899	EHWW-38-SC-050100Sediment$2018-12-17$9801935	DATE REPORTED: 2019-01-11			
		SAMPLE D SA DA	IPTION: E TYPE: MPLED:					EHWW-40-SC- 060110 Sediment 2018-12-18	$\begin{gathered} \hline \text { EHWW-39-SC- } \\ 035085 \\ \text { Sediment } \\ 2018-12-18 \end{gathered}$	EHWW-24-SC- 045095 Sediment 2018-12-18	EHWW-16-SC- 152202 Sediment 2018-12-18
Parameter	Unit	G / S	RDL					9801945	9801948	9801952	9801956
Vanadium	$\mu \mathrm{g} / \mathrm{g}$		1	80	99	63	54	38	46	49	43
Zinc	$\mu \mathrm{g} / \mathrm{g}$		1	64	88	52	65	31	54	55	58
Zirconium	$\mu \mathrm{g} / \mathrm{g}$		0.1	7.8	11.1	9.7	9.8	4.9	7.3	8.4	7.3
pH 1:2	pH units		0.1	8.5	8.5	8.5	7.8	7.8	7.8	7.8	7.6

Certificate of Analysis

PROJECT: 170553-11.05 EHRP Wood Debris Remediation

Public Works Metals in Soil
DATE RECEIVED: 2018-12-20

DATE REPORTED: 2019-01-11

Certificate of Analysis

Public Works Metals in Soil				
DATE RECEIVED: 2018-12-20				DATE REPORTED: 2019-01-11
Parameter	Unit	IPTION: E TYPE: MPLED: RDL	WWW-116-SC 152202 Sediment 2018-12-18 9802033	
Vanadium	$\mu \mathrm{g} / \mathrm{g}$	1	42	
Zinc	$\mu \mathrm{g} / \mathrm{g}$	1	48	
Zirconium	$\mu \mathrm{g} / \mathrm{g}$	0.1	7.5	
pH 1:2	pH units	0.1	7.5	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
9801887-9802033 Results are based on the dry weight of the sample
Analysis performed at AGAT Vancouver (unless marked by *)

Certificate of Analysis

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
Analysis performed at AGAT Edmonton (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 18V422820
PROJECT: 170553-11.05 EHRP Wood Debris Remediation

Soil Analysis - Atterberg Limits									
DATE RECEIVED: 2018-12-20									DATE REPORTED: 2019-01-11
Parameter	Unit	SAMPLE D SA DAT G/S	IPTION: E TYPE: MPLED: RDL	EHWW-58-SC 411461 Sediment 2018-12-16 9801889	$\begin{gathered} \hline \text { EHWW-03-SC- } \\ 150200 \\ \text { Sediment } \\ 2018-12-17 \\ 9801899 \end{gathered}$	EHWW-38-SC- 000050 Sediment $2018-12-17$ 9801932	EHWW-38-SC- 050100 Sediment $2018-12-17$ 9801935	$\begin{gathered} \hline \text { EHWW-16-SC- } \\ 152202 \\ \text { Sediment } \\ 2018-12-18 \\ 9801956 \end{gathered}$	
Liquid Limit			1	53	31	NR	NR	NR	
Plastic Limit			1	27	18	NR	NR	NR	
Plasticity Index				27	13	NR	NR	NR	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
9801889-9801899 Plasticity Index is a calculated parameter. The calculated value is the difference between the liquid limit and the plastic limit. 9801932-9801956 Plasticity Index is a calculated parameter. The calculated value is the difference between the liquid limit and the plastic limit. Not reportable due to nature of the sample (oily matrix)
Analysis performed at AGAT Edmonton (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 18V422820
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

SAMPLED BY:

Comments: RDL-Reported Detection Limit; G / S - Guideline / Standard
Analysis performed at AGAT Vancouver (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 18V422820
PROJECT: 170553-11.05 EHRP Wood Debris Remediation

Comments: RDL-Reported Detection Limit; G / S - Guideline / Standard
Analysis performed at AGAT Vancouver (unless marked by *)

Certificate of Analysis

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
Analysis performed at AGAT Vancouver (unless marked by *)

Certificate of Analysis
AGAT WORK ORDER: 18V422820
PROJECT: 170553-11.05 EHRP Wood Debris Remediation

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLED BY: SAMPLING SITE:

Total Solids and Moisture Content in Soil

DATE RECEIVED: 2018-12-20						DATE REPORTED: 2019-01-11
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G/S RDL	EHWW-03-SC- 150200 Sediment $2018-12-17$ 9801899	EHWW-38-SC- 050100 Sediment $2018-12-17$ 9801935	EHWW-16-SC- 152202 Sediment $2018-12-18$ 9801956	
Moisture	\%	0.5	23.4	44.8	43.6	
Total Solids	\%		77	55	56	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
Analysis performed at AGAT Vancouver (unless marked by *)

Certificate of Analysis
AGAT WORK ORDER: 18V422820
PROJECT: 170553-11.05 EHRP Wood Debris Remediation ATTENTION TO: Cheronne Oreiro SAMPLED BY:

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA SAMPLING SITE:

Total Solids in Soil

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
Analysis performed at AGAT Vancouver (unless marked by *)

Certificate of Analysis
AGAT WORK ORDER: 18V422820
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

SAMPLED BY:

Public Works PAH in Soil Low Level											
DATE RECEIVED: 2018-12-20				DATE REPORTED: 2019-01-11							
		SAMPLE D SA DAT	IPTION: E TYPE: MPLED:	$\begin{gathered} \hline \text { EHWW-58-SC- } \\ 361411 \\ \text { Sediment } \\ 2018-12-16 \end{gathered}$	$\begin{gathered} \hline \text { EHWW-36-SC- } \\ 183233 \\ \text { Sediment } \\ 2018-12-17 \end{gathered}$	$\begin{gathered} \hline \text { EHWW-03-SC- } \\ 150200 \\ \text { Sediment } \\ 2018-12-17 \end{gathered}$	$\begin{gathered} \hline \text { EHWW-38-SC- } \\ 050100 \\ \text { Sediment } \\ 2018-12-17 \end{gathered}$	$\begin{gathered} \hline \text { EHWW-40-SC- } \\ 060110 \\ \text { Sediment } \\ 2018-12-18 \end{gathered}$	EHWW-39-SC- 035085 Sediment $2018-12-18$	$\begin{gathered} \hline \text { EHWW-24-SC- } \\ 045095 \\ \text { Sediment } \\ 2018-12-18 \end{gathered}$	$\begin{gathered} \hline \text { EHWW-16-SC- } \\ 152202 \\ \text { Sediment } \\ 2018-12-18 \end{gathered}$
Parameter	Unit	G / S	RDL	9801887	9801891	9801899	9801935	9801945	9801948	9801952	9801956
Naphthalene	$\mu \mathrm{g} / \mathrm{g}$		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2-Methylnaphthalene	$\mu \mathrm{g} / \mathrm{g}$		0.005	<0.005	0.017	<0.005	0.008	<0.005	0.009	0.011	0.009
1-Methylnaphthalene	$\mu \mathrm{g} / \mathrm{g}$		0.005	<0.005	0.012	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Acenaphthylene	$\mu \mathrm{g} / \mathrm{g}$		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Acenaphthene	$\mu \mathrm{g} / \mathrm{g}$		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Fluorene	$\mu \mathrm{g} / \mathrm{g}$		0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Phenanthrene	$\mu \mathrm{g} / \mathrm{g}$		0.02	<0.02	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Anthracene	$\mu \mathrm{g} / \mathrm{g}$		0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Fluoranthene	$\mu \mathrm{g} / \mathrm{g}$		0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01
Pyrene	$\mu \mathrm{g} / \mathrm{g}$		0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01
Benzo(a)anthracene	$\mu \mathrm{g} / \mathrm{g}$		0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Chrysene	$\mu \mathrm{g} / \mathrm{g}$		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(b)fluoranthene	$\mu \mathrm{g} / \mathrm{g}$		0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo(j)fluoranthene	$\mu \mathrm{g} / \mathrm{g}$		0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo(k)fluoranthene	$\mu \mathrm{g} / \mathrm{g}$		0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo(a)pyrene	$\mu \mathrm{g} / \mathrm{g}$		0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Indeno(1,2,3-c,d)pyrene	$\mu \mathrm{g} / \mathrm{g}$		0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dibenzo(a, h)anthracene	$\mu \mathrm{g} / \mathrm{g}$		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Benzo(g,h,i)perylene	$\mu \mathrm{g} / \mathrm{g}$		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Quinoline	$\mu \mathrm{g} / \mathrm{g}$		0.05	<0.05	<0.05	<0.05	0.05	<0.05	<0.05	<0.05	<0.05
IACR CCME (Soil)	$\mu \mathrm{g} / \mathrm{g}$		0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
B[a]P TPE (Soil)	$\mu \mathrm{g} / \mathrm{g}$		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(b+j)fluoranthene	$\mu \mathrm{g} / \mathrm{g}$		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate	Unit	Accept	Limits								
Naphthalene - d8	\%			84	90	90	89	85	83	85	92
2-Fluorobiphenyl	\%			87	83	90	92	86	88	89	92
P-Terphenyl - d14	\%			80	81	80	78	75	81	78	84

Certified By:

Certificate of Analysis

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

Public Works PAH in Soil Low Level					
DATE RECEIVED: 2018-12-20					DATE REPORTED: 2019-01-11
EHWW-116-SC- SAMPLE DESCRIPTION: 152202 SAMPLE TYPE: Sediment Parameter Unit GATE SAMPLED: 2018-12-18 G S RDL 9802033					
Naphthalene	$\mu \mathrm{g} / \mathrm{g}$		0.005	<0.005	
2-Methylnaphthalene	$\mu \mathrm{g} / \mathrm{g}$		0.005	0.011	
1-Methylnaphthalene	$\mu \mathrm{g} / \mathrm{g}$		0.005	<0.005	
Acenaphthylene	$\mu \mathrm{g} / \mathrm{g}$		0.005	<0.005	
Acenaphthene	$\mu \mathrm{g} / \mathrm{g}$		0.005	<0.005	
Fluorene	$\mu \mathrm{g} / \mathrm{g}$		0.02	<0.02	
Phenanthrene	$\mu \mathrm{g} / \mathrm{g}$		0.02	<0.02	
Anthracene	$\mu \mathrm{g} / \mathrm{g}$		0.004	<0.004	
Fluoranthene	$\mu \mathrm{g} / \mathrm{g}$		0.01	<0.01	
Pyrene	$\mu \mathrm{g} / \mathrm{g}$		0.01	<0.01	
Benzo(a)anthracene	$\mu \mathrm{g} / \mathrm{g}$		0.03	<0.03	
Chrysene	$\mu \mathrm{g} / \mathrm{g}$		0.05	<0.05	
Benzo(b)fluoranthene	$\mu \mathrm{g} / \mathrm{g}$		0.02	<0.02	
Benzo(j)fluoranthene	$\mu \mathrm{g} / \mathrm{g}$		0.02	<0.02	
Benzo(k)fluoranthene	$\mu \mathrm{g} / \mathrm{g}$		0.02	<0.02	
Benzo(a)pyrene	$\mu \mathrm{g} / \mathrm{g}$		0.03	<0.03	
Indeno(1,2,3-c,d)pyrene	$\mu \mathrm{g} / \mathrm{g}$		0.02	<0.02	
Dibenzo(a,h)anthracene	$\mu \mathrm{g} / \mathrm{g}$		0.005	<0.005	
Benzo(g,h,i)perylene	$\mu \mathrm{g} / \mathrm{g}$		0.05	<0.05	
Quinoline	$\mu \mathrm{g} / \mathrm{g}$		0.05	0.05	
IACR CCME (Soil)	$\mu \mathrm{g} / \mathrm{g}$		0.6	<0.6	
B[a]P TPE (Soil)	$\mu \mathrm{g} / \mathrm{g}$		0.05	<0.05	
Benzo(b+j)fluoranthene	$\mu \mathrm{g} / \mathrm{g}$		0.05	<0.05	
Surrogate	Unit	Accept	Limits		
Naphthalene - d8	\%			79	
2-Fluorobiphenyl	\%			87	
P-Terphenyl-d14	\%			85	

Certified By:

Certificate of Analysis
Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074
http://www.agatlabs.com

PROJECT: 170553-11.05 EHRP Wood Debris Remediation ATTENTION TO: Cheronne Oreiro SAMPLED BY:

SAMPLING SITE:

Public Works PAH in Soil Low Level
DATE RECEIVED: 2018-12-20
DATE REPORTED: 2019-01-11
Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
9801887-9802033 Results are based on dry weight of sample.
Analysis performed at AGAT Vancouver (unless marked by *)

Certificate of Analysis

Polychlorinated Biphenyls Analysis - Soil											
DATE RECEIVED: 2018-12-20				EHWW-58-SC- 361411 Sediment 2018-12-16 9801887	EHWW-36-SC-183233Sediment$2018-12-17$9801891	EHWW-03-SC-150200Sediment$2018-12-17$9801899	EHWW-38-SC-050100Sediment$2018-12-17$9801935	DATE REPORTED: 2019-01-11			
Parameter	Unit		IPTION: E TYPE: MPLED: RDL					EHWW-40-SC- 060110 Sediment 2018-12-18 0801945	EHWW-39-SC- 035085 Sediment 2018-12-18 9801948	EHWW-24-SC- 045095 Sediment 2018-12-18 9801952	$\begin{gathered} \hline \text { EHWW-16-SC- } \\ 152202 \\ \text { Sediment } \\ 2018-12-18 \end{gathered}$ 9801956
Aroclor 1242	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Aroclor 1254	$\mathrm{mg} / \mathrm{kg}$		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Aroclor 1260	$\mathrm{mg} / \mathrm{kg}$		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Polychlorinated Biphenyls	$\mathrm{mg} / \mathrm{kg}$		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate	Unit	Accept	Limits								
Decachlorobiphenyl	\%			79.8	75.2	78.1	86.7	83.2	84.5	89.2	84.1
Parameter	Unit	SAMPLE	IPTION: E TYPE: MPLED: RDL	$\begin{gathered} \text { EHWW-116-SC } \\ 152202 \\ \text { Sediment } \\ 2018-12-18 \\ 9802033 \\ \hline \end{gathered}$							
Aroclor 1242	$\mathrm{mg} / \mathrm{kg}$		0.05	<0.05							
Aroclor 1254	$\mathrm{mg} / \mathrm{kg}$		0.05	<0.05							
Aroclor 1260	$\mathrm{mg} / \mathrm{kg}$		0.05	<0.05							
Total Polychlorinated Biphenyls Surrogate	mg/kg Unit	Accept	$\begin{aligned} & 0.05 \\ & \text { Limits } \end{aligned}$	<0.05							
Decachlorobiphenyl	\%			84.5							

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
9801887-9802033 Results are based on the dry weight of the sample.
Analysis performed at AGAT Calgary (unless marked by *)

Certificate of Analysis
AGAT WORK ORDER: 18V422820

Dioxins and Furans (Soil, WHO 2005)										
DATE RECEIVED: 2018-12-20								DATE REPORTED: 2019-01-11		
Parameter	Unit	SAMPLE D SA DAT G/S	IPTION: E TYPE: MPLED: RDL	EHWW-58-SC- 361411 Sediment 2018-12-16 9801887	RDL	$\begin{gathered} \hline \text { EHWW-36-SC- } \\ 183233 \\ \text { Sediment } \\ 2018-12-17 \\ 9801891 \end{gathered}$	RDL	$\begin{gathered} \hline \text { EHWW-03-SC- } \\ 150200 \\ \text { Sediment } \\ 2018-12-17 \\ 9801899 \end{gathered}$	RDL	EHWW-38-SC- 050100 Sediment $2018-12-17$ 9801935
2,3,7,8-Tetra CDD	$\mathrm{ng} / \mathrm{kg}$		0.3	<0.3	0.3	<0.3	0.3	<0.3	0.3	<0.3
1,2,3,7,8-Penta CDD	$\mathrm{ng} / \mathrm{kg}$		0.7	<0.7	0.4	<0.4	0.4	<0.4	0.7	<0.7
1,2,3,4,7,8-Hexa CDD	$\mathrm{ng} / \mathrm{kg}$		0.3	<0.3	0.3	<0.3	0.4	<0.4	0.3	<0.3
1,2,3,6,7,8-Hexa CDD	$\mathrm{ng} / \mathrm{kg}$		0.3	<0.3	0.3	<0.3	0.4	<0.4	0.3	<0.3
1,2,3,7,8,9-Hexa CDD	$\mathrm{ng} / \mathrm{kg}$		0.3	<0.3	0.3	<0.3	0.4	<0.4	0.3	<0.3
1,2,3,4,6,7,8-Hepta CDD	$\mathrm{ng} / \mathrm{kg}$		0.4	<0.4	0.5	<0.5	0.4	<0.4	0.7	<0.7
Octa CDD	$\mathrm{ng} / \mathrm{kg}$		0.6	<0.6	3	6	1	1	0.4	0.5
2,3,7,8-Tetra CDF	$\mathrm{ng} / \mathrm{kg}$		0.4	<0.4	0.4	<0.4	0.4	<0.4	0.4	<0.4
1,2,3,7,8-Penta CDF	$\mathrm{ng} / \mathrm{kg}$		0.3	<0.3	0.2	<0.2	0.3	<0.3	0.2	<0.2
2,3,4,7,8-Penta CDF	$\mathrm{ng} / \mathrm{kg}$		0.4	<0.4	0.3	<0.3	0.3	<0.3	0.3	<0.3
1,2,3,4,7,8-Hexa CDF	$\mathrm{ng} / \mathrm{kg}$		0.2	<0.2	0.2	<0.2	0.2	<0.2	0.3	<0.3
1,2,3,6,7,8-Hexa CDF	$\mathrm{ng} / \mathrm{kg}$		0.2	<0.2	0.2	<0.2	0.2	<0.2	0.3	<0.3
2,3,4,6,7,8-Hexa CDF	$\mathrm{ng} / \mathrm{kg}$		0.2	<0.2	0.2	<0.2	0.2	<0.2	0.3	<0.3
1,2,3,7,8,9-Hexa CDF	$\mathrm{ng} / \mathrm{kg}$		0.4	<0.4	0.4	<0.4	0.3	<0.3	0.7	<0.7
1,2,3,4,6,7,8-Hepta CDF	$\mathrm{ng} / \mathrm{kg}$		0.4	<0.4	0.4	<0.4	0.4	0.6	0.4	<0.4
1,2,3,4,7,8,9-Hepta CDF	$\mathrm{ng} / \mathrm{kg}$		0.5	<0.5	0.5	<0.5	0.5	<0.5	0.5	<0.5
Octa CDF	$\mathrm{ng} / \mathrm{kg}$		1	<1	0.6	<0.6	0.6	<0.6	2	<2
Total Tetrachlorodibenzodioxins	$\mathrm{ng} / \mathrm{kg}$		0.3	<0.3	0.3	<0.3	0.3	0.4	0.3	<0.3
Total Pentachlorodibenzodioxins	$\mathrm{ng} / \mathrm{kg}$		0.7	1.4	0.4	0.4	0.4	<0.4	0.7	3.1
Total Hexachlorodibenzodioxins	$\mathrm{ng} / \mathrm{kg}$		0.3	2.1	0.3	1.2	0.4	0.7	0.3	2.4
Total Heptachlorodibenzodioxins	$\mathrm{ng} / \mathrm{kg}$		0.4	2.5	0.5	1.4	0.4	0.9	0.7	2.0
Total PCDDs	$\mathrm{ng} / \mathrm{kg}$		0.7	6.7	3	9	1	4	0.7	8.3
Total Tetrachlorodibenzofurans	$\mathrm{ng} / \mathrm{kg}$		0.4	<0.4	0.4	0.4	0.4	0.8	0.4	0.6
Total Pentachlorodibenzofurans	$\mathrm{ng} / \mathrm{kg}$		0.4	0.5	0.3	<0.3	0.3	0.4	0.3	<0.3
Total Hexachlorodibenzofurans	$\mathrm{ng} / \mathrm{kg}$		0.4	<0.4	0.4	<0.4	0.3	<0.3	0.7	<0.7
Total Heptachlorodibenzofurans	$\mathrm{ng} / \mathrm{kg}$		0.5	1.0	0.5	<0.5	0.5	0.9	0.5	<0.5
Total PCDFs	$\mathrm{ng} / \mathrm{kg}$		1	2	0.6	1.2	0.6	2.5	2	<2
2,3,7,8-Tetra CDD (TEF 1.0)	TEQ			0		0		0		0
1,2,3,7,8-Penta CDD (TEF 1.0)	TEQ			0		0		0		0

Certificate of Analysis

PROJECT: 170553-11.05 EHRP Wood Debris Remediation

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
AGAT WORK ORDER: 18V422820
PROJECT: 170553-11.05 EHRP Wood Debris Remediation

ATTENTION TO: Cheronne Oreiro SAMPLED BY:

Dioxins and Furans (Soil, WHO 2005)						
DATE RECEIVED: 2018-12-20			EHWW-58-SC-		DATE REPORTED: 2019-01-11	
				EHWW-36-SC-	EHWW-03-SC-	EHWW-38-SC-
		SAMPLE DESCRIPTION:	361411	183233	150200	050100
		SAMPLE TYPE:	Sediment	Sediment	Sediment	Sediment
		DATE SAMPLED:	2018-12-16	2018-12-17	2018-12-17	2018-12-17
Surrogate	Unit	Acceptable Limits	9801887	9801891	9801899	9801935
13C-2378-TCDF	\%	30-140	58	54	48	49
13C-12378-PeCDF	\%	30-140	50	47	41	47
13C-23478-PeCDF	\%	30-140	37	56	45	54
13C-123478-HxCDF	\%	30-140	61	74	52	62
13C-123678-HxCDF	\%	30-140	61	80	64	68
13C-234678-HxCDF	\%	30-140	64	76	61	69
13C-123789-HxCDF	\%	30-140	54	63	45	51
13C-1234678-HpCDF	\%	30-140	51	59	47	58
13C-1234789-HpCDF	\%	30-140	45	50	36	44
13C-2378-TCDD	\%	30-140	68	65	55	57
13C-12378-PeCDD	\%	30-140	60	59	48	56
13C-123478-HxCDD	\%	30-140	61	74	54	65
13C-123678-HxCDD	\%	30-140	65	78	70	76
13C-1234678-HpCDD	\%	30-140	47	53	39	48
13C-OCDD	\%	30-140	30	34	32	37

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
AGAT WORK ORDER: 18V422820
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
ATTENTION TO: Cheronne Oreiro
SAMPLING SITE:
SAMPLED BY:

Dioxins and Furans (Soil, WHO 2005)										
DATE RECEIVED: 2018-12-20								DATE REPORTED: 2019-01-11		
Parameter	Unit	SAMPLE D SA DAT G/S	IPTION: E TYPE: MPLED: RDL	EHWW-40-SC- 060110 Sediment $2018-12-18$ 9801945	RDL	EHWW-39-SC- 035085 Sediment $2018-12-18$ 9801948	RDL	EHWW-24-SC- 045095 Sediment $2018-12-18$ 9801952	RDL	$\begin{gathered} \hline \text { EHWW-16-SC- } \\ 152202 \\ \text { Sediment } \\ 2018-12-18 \\ 9801956 \end{gathered}$
2,3,7,8-Tetra CDD	$\mathrm{ng} / \mathrm{kg}$		0.3	<0.3	0.3	<0.3	0.3	<0.3	0.3	<0.3
1,2,3,7,8-Penta CDD	$\mathrm{ng} / \mathrm{kg}$		0.4	<0.4	0.6	<0.6	0.4	<0.4	0.6	<0.6
1,2,3,4,7,8-Hexa CDD	$\mathrm{ng} / \mathrm{kg}$		0.6	<0.6	0.7	<0.7	0.5	<0.5	0.5	<0.5
1,2,3,6,7,8-Hexa CDD	$\mathrm{ng} / \mathrm{kg}$		0.6	<0.6	0.6	<0.6	0.5	<0.5	0.5	<0.5
1,2,3,7,8,9-Hexa CDD	$\mathrm{ng} / \mathrm{kg}$		0.5	<0.5	0.7	<0.7	0.5	<0.5	0.5	<0.5
1,2,3,4,6,7,8-Hepta CDD	$\mathrm{ng} / \mathrm{kg}$		0.5	0.6	0.5	2.6	0.7	<0.7	0.6	<0.6
Octa CDD	$\mathrm{ng} / \mathrm{kg}$		0.9	1.3	2	4	0.9	1.1	0.7	3.1
2,3,7,8-Tetra CDF	$\mathrm{ng} / \mathrm{kg}$		0.4	<0.4	0.6	<0.6	0.4	<0.4	0.4	<0.4
1,2,3,7,8-Penta CDF	$\mathrm{ng} / \mathrm{kg}$		0.8	<0.8	0.9	1.0	0.2	<0.2	0.3	<0.3
2,3,4,7,8-Penta CDF	$\mathrm{ng} / \mathrm{kg}$		1	<1	0.7	<0.7	0.3	<0.3	0.4	<0.4
1,2,3,4,7,8-Hexa CDF	$\mathrm{ng} / \mathrm{kg}$		0.3	<0.3	1	4	0.2	<0.2	0.2	<0.2
1,2,3,6,7,8-Hexa CDF	$\mathrm{ng} / \mathrm{kg}$		0.3	<0.3	1	2	0.2	<0.2	0.2	<0.2
2,3,4,6,7,8-Hexa CDF	$\mathrm{ng} / \mathrm{kg}$		0.7	<0.7	1	<1	0.2	<0.2	0.2	<0.2
1,2,3,7,8,9-Hexa CDF	$\mathrm{ng} / \mathrm{kg}$		0.6	<0.6	2	<2	0.3	<0.3	0.3	<0.3
1,2,3,4,6,7,8-Hepta CDF	$\mathrm{ng} / \mathrm{kg}$		0.4	2.9	1	63	0.4	<0.4	0.4	<0.4
1,2,3,4,7,8,9-Hepta CDF	$\mathrm{ng} / \mathrm{kg}$		0.5	<0.5	2	<2	0.5	<0.5	0.9	<0.9
Octa CDF	$\mathrm{ng} / \mathrm{kg}$		0.5	<0.5	2	14	0.5	<0.5	0.7	<0.7
Total Tetrachlorodibenzodioxins	$\mathrm{ng} / \mathrm{kg}$		0.3	0.3	0.3	0.7	0.3	0.6	0.3	0.5
Total Pentachlorodibenzodioxins	$\mathrm{ng} / \mathrm{kg}$		0.4	<0.4	0.6	2.8	0.4	0.9	0.6	3.2
Total Hexachlorodibenzodioxins	$\mathrm{ng} / \mathrm{kg}$		0.6	1.4	0.7	3.2	0.5	1.5	0.5	1.9
Total Heptachlorodibenzodioxins	$\mathrm{ng} / \mathrm{kg}$		0.5	1.8	0.5	5.9	0.7	1.2	0.6	4.1
Total PCDDs	$\mathrm{ng} / \mathrm{kg}$		0.9	5.2	2	17	0.9	5.3	0.7	12.8
Total Tetrachlorodibenzofurans	$\mathrm{ng} / \mathrm{kg}$		0.4	2.2	0.6	5.5	0.4	0.6	0.4	<0.4
Total Pentachlorodibenzofurans	$\mathrm{ng} / \mathrm{kg}$		1	<1	0.9	8.0	0.3	<0.3	0.4	<0.4
Total Hexachlorodibenzofurans	$\mathrm{ng} / \mathrm{kg}$		0.7	1.0	2	14	0.3	<0.3	0.3	<0.3
Total Heptachlorodibenzofurans	$\mathrm{ng} / \mathrm{kg}$		0.5	4.2	2	93	0.5	<0.5	0.9	<0.9
Total PCDFs	$\mathrm{ng} / \mathrm{kg}$		1	7	2	135	0.5	1.1	0.9	1.0
2,3,7,8-Tetra CDD (TEF 1.0)	TEQ			0		0		0		0
1,2,3,7,8-Penta CDD (TEF 1.0)	TEQ			0		0		0		0

Certified By:

Certificate of Analysis

PROJECT: 170553-11.05 EHRP Wood Debris Remediation

Dioxins and Furans (Soil, WHO 2005)									
DATE RECEIVED: 2018-12-20								REP	D: 2019-01-11
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G/S RDL	EHWW-40-SC- 060110 Sediment $2018-12-18$ 9801945	RDL	EHWW-39-SC- 035085 Sediment $2018-12-18$ 9801948	RDL	EHWW-24-SC- 045095 Sediment $2018-12-18$ 9801952	RDL	EHWW-16-SC- 152202 Sediment $2018-12-18$ 9801956
1,2,3,4,7,8-Hexa CDD (TEF 0.1)	TEQ		0		0		0		0
1,2,3,6,7,8-Hexa CDD (TEF 0.1)	TEQ		0		0		0		0
1,2,3,7,8,9-Hexa CDD (TEF 0.1)	TEQ		0		0		0		0
1,2,3,4,6,7,8-Hepta CDD (TEF 0.01)	TEQ		0.00584		0.0259		0		0
Octa CDD (TEF 0.0003)	TEQ		0.000376		0.00132		0.000343		0.000923
2,3,7,8-Tetra CDF (TEF 0.1)	TEQ		0		0		0		0
1,2,3,7,8-Penta CDF (TEF 0.03)	TEQ		0		0.0311		0		0
2,3,4,7,8-Penta CDF (TEF 0.3)	TEQ		0		0		0		0
1,2,3,4,7,8-Hexa CDF (TEF 0.1)	TEQ		0		0.421		0		0
1,2,3,6,7,8-Hexa CDF (TEF 0.1)	TEQ		0		0.158		0		0
2,3,4,6,7,8-Hexa CDF (TEF 0.1)	TEQ		0		0		0		0
1,2,3,7,8,9-Hexa CDF (TEF 0.1)	TEQ		0		0		0		0
1,2,3,4,6,7,8-Hepta CDF (TEF 0.01)	TEQ		0.0292		0.625		0		0
1,2,3,4,7,8,9-Hepta CDF (TEF 0.01)	TEQ		0		0		0		0
Octa CDF (TEF 0.0003)	TEQ		0		0.00418		0		0
Total PCDDs and PCDFs (TEQ)	ng/kg TEQ		0.0354		1.27		0.000343		0.000923

ATTENTION TO: Cheronne Oreiro SAMPLED BY:

Dioxins and Furans (Soil, WHO 2005)						
DATE RECEIVED: 2018-12-20			EHWW-40-SC-		DATE REPORTED: 2019-01-11	
				EHWW-39-SC-	EHWW-24-SC-	EHWW-16-SC-
		SAMPLE DESCRIPTION:	060110	035085	045095	152202
		SAMPLE TYPE:	Sediment	Sediment	Sediment	Sediment
		DATE SAMPLED:	2018-12-18	2018-12-18	2018-12-18	2018-12-18
Surrogate	Unit	Acceptable Limits	9801945	9801948	9801952	9801956
13C-2378-TCDF	\%	30-140	57	58	56	46
13C-12378-PeCDF	\%	30-140	49	49	48	45
13C-23478-PeCDF	\%	30-140	59	55	56	52
13C-123478-HxCDF	\%	30-140	52	60	65	56
13C-123678-HxCDF	\%	30-140	54	62	73	59
13C-234678-HxCDF	\%	30-140	41	66	73	64
13C-123789-HxCDF	\%	30-140	48	54	56	47
13C-1234678-HpCDF	\%	30-140	50	54	53	49
13C-1234789-HpCDF	\%	30-140	47	47	45	40
13C-2378-TCDD	\%	30-140	68	70	65	57
13C-12378-PeCDD	\%	30-140	64	56	58	56
13C-123478-HxCDD	\%	30-140	59	62	69	59
13C-123678-HxCDD	\%	30-140	66	72	84	63
13C-1234678-HpCDD	\%	30-140	47	49	47	44
13C-OCDD	\%	30-140	32	34	33	33

Certificate of Analysis

Certificate of Analysis

AGAT WORK ORDER: 18V422820
PROJECT: 170553-11.05 EHRP Wood Debris Remediation

ATTENTION TO: Cheronne Oreiro
ATMPL

Dioxins and Furans (Soil, WHO 2005)

Certificate of Analysis

AGAT WORK ORDER: 18V422820
PROJECT: 170553-11.05 EHRP Wood Debris Remediation

Dioxins and Furans (Soil, WHO 2005)
DATE RECEIVED: 2018-12-20 DATE REPORTED: 2019-01-11

| | | EHWW-116-SC- |
| ---: | ---: | :---: | :---: |
| | | |
| SAMPLE DESCRIPTION: | 152202 | |
| SAMPLE TYPE: | Sediment | |
| DATE SAMPLED: | $2018-12-18$ | |

Surrogate	Unit	Acceptable Limits	9802033
13C-2378-TCDF	\%	30-140	57
13C-12378-PeCDF	\%	30-140	49
13C-23478-PeCDF	\%	30-140	40
13C-123478-HxCDF	\%	30-140	64
13C-123678-HxCDF	\%	30-140	63
13C-234678-HxCDF	\%	30-140	65
13C-123789-HxCDF	\%	30-140	55
13C-1234678-HpCDF	\%	30-140	56
13C-1234789-HpCDF	\%	30-140	46
13C-2378-TCDD	\%	30-140	68
13C-12378-PeCDD	\%	30-140	58
13C-123478-HxCDD	\%	30-140	67
13C-123678-HxCDD	\%	30-140	67
13C-1234678-HpCDD	\%	30-140	51
13C-OCDD	\%	30-140	33

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
9801887-9802033 The results were corrected based on the surrogate percent recoveries.
Analysis performed at AGAT Montreal (unless marked by *)

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

AGAT WORK ORDER: 18 V 422820
ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

Soil Analysis															
RPT Date: Jan 11, 2019			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample Id	Dup \#1	Dup \#2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
								Lower	Upper		Lower	Upper		Lower	Upper
Public Works Metals in Soil															
Aluminum	9801891		29100	29300	0.6\%	<10	110\%	70\%	130\%	110\%	90\%	110\%			
Antimony	9801891		0.4	0.4	NA	<0.1	122\%	70\%	130\%	102\%	90\%	110\%			
Arsenic	9801891		6.3	8.1	25.2\%	<0.1	123\%	70\%	130\%	95\%	90\%	110\%			
Barium	9801891		103	102	0.9\%	<0.5	117\%	70\%	130\%	108\%	90\%	110\%			
Beryllium	9801891		0.5	0.5	1.9\%	<0.1	103\%	70\%	130\%	105\%	90\%	110\%			
Bismuth	9801891		<0.5	<0.5	NA	<0.5				100\%	90\%	110\%			
Cadmium	9801891		0.31	0.29	8.1\%	<0.01	115\%	70\%	130\%	107\%	90\%	110\%			
Calcium	9801891		13800	11800	16.0\%	< 10	117\%	70\%	130\%	96\%	90\%	110\%			
Chromium	9801891		49	49	0.5\%	< 1	111\%	70\%	130\%	96\%	90\%	110\%			
Cobalt	9801891		18.3	17.8	2.9\%	<0.1	107\%	70\%	130\%	92\%	90\%	110\%			
Copper	9801891		59.6	56.9	4.5\%	<0.2	104\%	70\%	130\%	92\%	90\%	110\%			
Iron	9801891		39200	38700	1.2\%	< 10	104\%	70\%	130\%	95\%	90\%	110\%			
Lead	9801891		6.1	6.0	1.1\%	<0.1	99\%	70\%	130\%	102\%	90\%	110\%			
Lithium	9801891		30.9	31.0	0.4\%	<0.5				99\%	90\%	110\%			
Magnesium	9801891		14900	14700	1.6\%	< 10	108\%	70\%	130\%	107\%	90\%	110\%			
Manganese	9801891		752	749	0.4\%	<1	111\%	70\%	130\%	107\%	90\%	110\%			
Mercury	9801891		0.06	0.05	22.9\%	<0.01	99\%	70\%	130\%	101\%	90\%	110\%			
Molybdenum	9801891		0.5	0.5	NA	<0.2	112\%	70\%	130\%	104\%	90\%	110\%			
Nickel	9801891		48.1	47.0	2.1\%	<0.5	111\%	70\%	130\%	103\%	90\%	110\%			
Phosphorus	9801891		494	527	6.3\%	< 5	85\%	70\%	130\%	92\%	90\%	110\%			
Potassium	9801891		3490	3560	2.1\%	< 5	124\%	70\%	130\%	98\%	90\%	110\%			
Selenium	9801891		0.9	<0.1	NA	<0.1				100\%	90\%	110\%			
Silver	9801891		<0.5	<0.5	NA	<0.5	126\%	70\%	130\%	105\%	90\%	110\%			
Sodium	9801891		5530	5740	3.7\%	< 5	129\%	70\%	130\%	93\%	90\%	110\%			
Strontium	9801891		83	72	14.5\%	< 1	130\%	70\%	130\%	96\%	90\%	110\%			
Thallium	9801891		0.1	0.1	NA	<0.1	116\%	70\%	130\%	107\%	90\%	110\%			
Tin	9801891		0.6	0.6	NA	<0.2	107\%	70\%	130\%	99\%	90\%	110\%			
Titanium	9801891		1800	1840	2.1\%	<1				92\%	90\%	110\%			
Uranium	9801891		0.6	0.5	NA	<0.2	101\%	70\%	130\%	101\%	90\%	110\%			
Vanadium	9801891		99	98	1.6\%	<1	116\%	70\%	130\%	97\%	90\%	110\%			
Zinc	9801891		88	85	4.1\%	<1	111\%	70\%	130\%	91\%	90\%	110\%			
Zirconium	9801891		11.1	11.2	0.3\%	<0.1				103\%	90\%	110\%			
pH 1:2	9801891		8.5	8.5	0.4\%		98\%	90\%	110\%	100\%	95\%	105\%			

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.
TVS in Soil

LOI	9801887	1.6	1.7	NA	<0.5

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Unit 120, 8600 Glenlyon Parkway
Burnaby, British Columbia
CANADA V5J 0B6
TEL (778)452-4000
FAX (778)452-4074
http://www.agatlabs.com

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:
AGA WORK ORDER: 18V422820
ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

Comments: RDs are calculated using raw analytical data and not the rounded duplicate values reported.

Particle Size by Sieve

Certified By:

Unit 120, 8600 Glenlyon Parkway
Burnaby, British Columbia
CANADA V5J 0B6
TEL (778)452-4000
FAX (778)452-4074
http://www.agatlabs.com

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

AGAT WORK ORDER: 18V422820
ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

			Tra	Or	$a n i$	S An	alysi								
RPT Date: Jan 11, 2019				UPLICAT			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	
PARAMETER	Batch	Sample	Dup \#1	Dup \#2	RPD	Method Blank	Measured	Acce Lim	ptable nits	Recovery	Acce Lim	ptable its	Recovery	Acce Lim	ptable mits
								Lower	Upper		Lower	Upper		Lower	Upper
Public Works PAH in So															
Naphthalene	70402	9795723	0.041	0.024	NA	<0.005	101\%	80\%	120\%				96\%	50\%	130\%
2-Methylnaphthalene	70402	9795723	0.098	0.069	34.7\%	< 0.005	99\%	80\%	120\%				94\%	50\%	130\%
1-Methylnaphthalene	70402	9795723	0.083	0.052	45.9\%	< 0.005	99\%	80\%	120\%				101\%	50\%	130\%
Acenaphthylene	70402	9795723	<0.005	<0.005	NA	< 0.005	100\%	80\%	120\%				97\%	50\%	130\%
Acenaphthene	70402	9795723	<0.005	<0.005	NA	< 0.005	98\%	80\%	120\%				107\%	50\%	130\%
Fluorene	70402	9795723	0.02	<0.02	NA	<0.02	101\%	80\%	120\%				94\%	50\%	130\%
Phenanthrene	70402	9795723	0.06	0.04	NA	<0.02	98\%	80\%	120\%				94\%	60\%	130\%
Anthracene	70402	9795723	<0.004	<0.004	NA	< 0.004	100\%	80\%	120\%				97\%	60\%	130\%
Fluoranthene	70402	9795723	<0.01	<0.01	NA	< 0.01	98\%	80\%	120\%				101\%	60\%	130\%
Pyrene	70402	9795723	0.01	0.01	NA	<0.01	102\%	80\%	120\%				98\%	60\%	130\%
Benzo(a)anthracene	70402	9795723	<0.03	<0.03	NA	<0.03	100\%	80\%	120\%				98\%	60\%	130\%
Chrysene	70402	9795723	<0.05	<0.05	NA	<0.05	99\%	80\%	120\%				101\%	60\%	130\%
Benzo(b)fluoranthene	70402	9795723	0.02	0.02	NA	<0.02	103\%	80\%	120\%				89\%	60\%	130\%
Benzo(j)fluoranthene	70402	9795723	<0.02	<0.02	NA	<0.02	93\%	80\%	120\%				104\%	60\%	130\%
Benzo(k)fluoranthene	70402	9795723	<0.02	<0.02	NA	<0.02	105\%	80\%	120\%				102\%	60\%	130\%
Benzo(a)pyrene	70402	9795723	<0.03	<0.03	NA	<0.03	98\%	80\%	120\%				85\%	60\%	130\%
Indeno(1,2,3-c,d)pyrene	70402	9795723	<0.02	<0.02	NA	<0.02	100\%	80\%	120\%				76\%	60\%	130\%
Dibenzo(a,h)anthracene	70402	9795723	<0.005	<0.005	NA	<0.005	106\%	80\%	120\%				78\%	60\%	130\%
Benzo(g,h,i)perylene	70402	9795723	<0.05	<0.05	NA	< 0.05	100\%	80\%	120\%				69\%	60\%	130\%
Quinoline	70402	9795723	<0.05	<0.05	NA	<0.05	101\%	80\%	120\%				109\%	50\%	130\%
Naphthalene - d8	70402	9795723	91	86	5.6\%		98\%	80\%	120\%				94\%	50\%	130\%
2-Fluorobiphenyl	70402	9795723	89	83	7.0\%		98\%	80\%	120\%				92\%	50\%	130\%
P-Terphenyl-d14	70402	9795723	93	88	5.5\%		100\%	80\%	120\%				99\%	60\%	130\%

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.
Polychlorinated Biphenyls Analysis - Soil

Aroclor 1242	173	9801887	<0.05	<0.05	$N A$	<0.05	114%	70%	130%	124%	70%	130%	118%	50%	150%
Aroclor 1254	173	9801887	<0.05	<0.05	NA	<0.05	101%	70%	130%	104%	70%	130%	98%	50%	150%
Aroclor 1260	173	9801887	<0.05	<0.05	NA	<0.05	107%	70%	130%	101%	70%	130%	103%	50%	150%
Total Polychlorinated Biphenyls	173	9801887	<0.05	<0.05	NA	<0.05	107%	70%	130%	110%	70%	130%	106%	50%	150%

Comments: If the RPD value is NA, the results of the duplicates are under 5 X the RDL and will not be calculated.

Unit 120, 8600 Glenlyon Parkway
Burnaby, British Columbia
CANADA V5J 0B6
TEL (778)452-4000
FAX (778)452-4074
http://www.agatlabs.com

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

AGAT WORK ORDER: 18 V 422820
ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

				tra	ace	Anal	ysis								
RPT Date: Jan 11, 2019				UPLICAT		Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample Id	Dup \#1	Dup \#2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
								Lower	Upper		Lower	Upper		Lower	Upper
Dioxins and Furans (Soil, WHO 2005)															
2,3,7,8-Tetra CDD	1	9801899	< 0.3	<0.3	NA	<0.3	84\%	40\%	130\%	NA	40\%	130\%	84\%	40\%	130\%
1,2,3,7,8-Penta CDD	1	9801899	< 0.4	< 0.4	NA	< 0.4	89\%	40\%	130\%	NA	40\%	130\%	98\%	40\%	130\%
1,2,3,4,7,8-Hexa CDD	1	9801899	<0.4	<0.3	NA	<0.2	97\%	40\%	130\%	NA	40\%	130\%	97\%	40\%	130\%
1,2,3,6,7,8-Неха CDD	1	9801899	< 0.4	< 0.3	NA	< 0.2	95\%	40\%	130\%	NA	40\%	130\%	95\%	40\%	130\%
1,2,3,7,8,9-Неха CDD	1	9801899	< 0.4	<0.3	NA	<0.2	101\%	40\%	130\%	NA	40\%	130\%	101\%	40\%	130\%
1,2,3,4,6,7,8-Hepta CDD	1	9801899	< 0.4	<0.8	NA	<0.4	93\%	40\%	130\%	NA	40\%	130\%	93\%	40\%	130\%
Octa CDD	1	9801899	1	1	0.0\%	< 0.3	105\%	40\%	130\%	NA	40\%	130\%	112\%	40\%	130\%
2,3,7,8-Tetra CDF	1	9801899	<0.4	<0.4	NA	< 0.4	97\%	40\%	130\%	NA	40\%	130\%	97\%	40\%	130\%
1,2,3,7,8-Penta CDF	1	9801899	<0.3	<0.7	NA	<0.2	99\%	40\%	130\%	NA	40\%	130\%	112\%	40\%	130\%
2,3,4,7,8-Penta CDF	1	9801899	<0.3	<0.5	NA	<0.3	102\%	40\%	130\%	NA	40\%	130\%	101\%	40\%	130\%
1,2,3,4,7,8-Hexa CDF	1	9801899	<0.2	<0.6	NA	<0.2	115\%	40\%	130\%	NA	40\%	130\%	110\%	40\%	130\%
1,2,3,6,7,8-Hexa CDF	1	9801899	<0.2	<0.5	NA	<0.2	107\%	40\%	130\%	NA	40\%	130\%	116\%	40\%	130\%
2,3,4,6,7,8-Hexa CDF	1	9801899	<0.2	<0.5	NA	<0.2	110\%	40\%	130\%	NA	40\%	130\%	112\%	40\%	130\%
1,2,3,7,8,9-Hexa CDF	1	9801899	<0.3	< 0.6	NA	< 0.3	99\%	40\%	130\%	NA	40\%	130\%	110\%	40\%	130\%
1,2,3,4,6,7,8-Hepta CDF	1	9801899	0.6	0.7	15.4\%	<0.4	97\%	40\%	130\%	NA	40\%	130\%	108\%	40\%	130\%
1,2,3,4,7,8,9-Hepta CDF	1	9801899	<0.5	<0.4	NA	<0.5	104\%	40\%	130\%	NA	40\%	130\%	111\%	40\%	130\%
Octa CDF	1	9801899	< 0.6	<0.8	NA	< 0.5	97\%	40\%	130\%	NA	40\%	130\%	84\%	40\%	130\%

Certified By:

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Moisture	INOR-181-6030	SSMA Chapter 70 (2nd Ed)	GRAVIMETRIC
Sieve Analysis - 75 microns	INOR-171-6009	KROETSCH 2007; SHEPPARD 2007	SIEVE
Aluminum	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Antimony	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Arsenic	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Barium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Beryllium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Bismuth	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Cadmium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Calcium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Chromium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Cobalt	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Copper	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Iron	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Lead	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Lithium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Magnesium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Manganese	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP-MS
Mercury	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Molybdenum	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Nickel	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Phosphorus	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Potassium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Selenium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Silver	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Sodium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Strontium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP-MS
Thallium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS

Unit 120, 8600 Glenlyon Parkway
Burnaby, British Columbia CANADA V5J 0B6
TEL (778)452-4000
FAX (778)452-4074
http://www.agatlabs.com

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Tin	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4008 } \end{aligned}$	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Titanium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Uranium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Vanadium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Zinc	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Zirconium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
pH 1:2	INOR-181-6031	BC MOE Lab Manual B (pH, Electrometric, Soil)	PH METER
Ammonia, Soluble	Inor-171-6211	Carter \& Gregorich 2007; SM 4500E	AQ-2 DISCRETE ANALYZER
Liquid Limit	INOR-171-6218	ASA 9-31-3	LIQUID LIMIT DEVICE
Plastic Limit	INOR-171-6218	ASA 9-31-3	N/A
Plasticity Index	INOR-171-6218	ASTM D4318-00	N/A
Sulphur - Total	INOR-181-6027	Modified from ASTM E1915-11	COMBUSTION
Sulphate Sulphur	ARD-181-18009; INOR-181-6028	MEND Report 1.20.1 (09); mod from SM 4500-SO4 E	SPECTROPHOTOMETER
LOI	INOR-181-6030	ASTM D2974-07a	GRAVIMETRIC

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
2-Methylnaphthalene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
1-Methylnaphthalene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Acenaphthylene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Acenaphthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Fluorene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Phenanthrene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Anthracene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Fluoranthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Pyrene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(a)anthracene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Chrysene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(b)fluoranthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(j)fluoranthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(k)fluoranthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(a)pyrene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Indeno(1,2,3-c,d)pyrene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Dibenzo(a,h)anthracene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(g,h,i)perylene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Quinoline	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
IACR CCME (Soil)	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
B[a]P TPE (Soil)	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Naphthalene - d8	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
2-Fluorobiphenyl	ORG-180-5102	Modified form BCMOE Lab Manual Section D (PAH)	GC/MS
P-Terphenyl - d14	ORG-180-5102	Modified form BCMOE Lab Manual Section D (PAH)	GC/MS
Aroclor 1242	TO-0410	EPA SW-846 8082	GC/ECD
Aroclor 1254	TO-0410	EPA SW-846 8082	GC/ECD
Aroclor 1260	TO-0410	EPA SW-846 8082	GC/ECD
Total Polychlorinated Biphenyls	TO-0410	EPA SW-846 8082	GC/ECD
Decachlorobiphenyl	TO-0410	EPA SW-846 8082	GC/ECD

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

AGAT WORK ORDER: 18V422820 ATTENTION TO: Cheronne Oreiro SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Ultra Trace Analysis			
2,3,7,8-Tetra CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDD	HR-151-5400	EPA 1613	HRMS
Octa CDD	HR-151-5400	EPA 1613	HRMS
2,3,7,8-Tetra CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDF	HR-151-5400	EPA 1613	HRMS
2,3,4,7,8-Penta CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDF	HR-151-5400	EPA 1613	HRMS
2,3,4,6,7,8-Hexa CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8,9-Hepta CDF	HR-151-5400	EPA 1613	HRMS
Octa CDF	HR-151-5400	EPA 1613	HRMS
Total Tetrachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total Pentachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total Hexachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total Heptachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total PCDDs	HR-151-5400	EPA 1613	HRMS
Total Tetrachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total Pentachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total Hexachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total Heptachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total PCDFs	HR-151-5400	EPA 1613	HRMS
2,3,7,8-Tetra CDD (TEF 1.0)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDD (TEF 1.0)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Неха CDD (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Неха CDD (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDD (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDD (TEF 0.01)	HR-151-5400	EPA 1613	HRMS
Octa CDD (TEF 0.0003)	HR-151-5400	EPA 1613	HRMS
2,3,7,8-Tetra CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDF (TEF 0.03)	HR-151-5400	EPA 1613	HRMS
2,3,4,7,8-Penta CDF (TEF 0.3)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDF (TEF 0.1)	HR_151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
2,3,4,6,7,8-Hexa CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDF (TEF 0.01)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8,9-Hepta CDF (TEF 0.01)	HR-151-5400	EPA 1613	HRMS
Octa CDF (TEF 0.0003)	HR-151-5400	EPA 1613	HRMS
Total PCDDs and PCDFs (TEQ)	HR-151-5400	EPA 1613	HRMS
13C-2378-TCDF	HR-151-5400	EPA 1613	HRMS
13C-12378-PeCDF	HR-151-5400	EPA 1613	HRMS
13C-23478-PeCDF	HR-151-5400	EPA 1613	HRMS
13C-123478-HxCDF	HR-151-5400	EPA 1613	HRMS

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
13C-123678-HxCDF	HR-151-5400	EPA 1613	HRMS
13C-234678-HxCDF	HR-151-5400	EPA 1613	HRMS
13C-123789-HxCDF	HR-151-5400	EPA 1613	HRMS
13C-1234678-HpCDF	HR-151-5400	EPA 1613	HRMS
13C-1234789-HpCDF	HR-151-5400	EPA 1613	HRMS
13C-2378-TCDD	HR-151-5400	EPA 1613	HRMS
13C-12378-PeCDD	HR-151-5400	EPA 1613	HRMS
13C-123478-HxCDD	HR-151-5400	EPA 1613	HRMS
13C-123678-HxCDD	HR-151-5400	EPA 1613	HRMS
13C-1234678-HpCDD	HR-151-5400	EPA 1613	HRMS
13C-OCDD	HR-151-5400	EPA 1613	HRMS

Relinquished By/ Company: Anchor QEA LLC.

Relinquished By:	Company:	Received By:	Company:
Signature/Printed Name	Date/Time	Signature/Printed Name	

\qquad of 2

WDOD WASTE
Chain of C. Jdy Record and Laboratory Analysis Request

COC\#

1 See project SAP/QAPP for analyte lists and test methods
2 Email sample confirmation report to labdata@anchorqea.com
Relinquished By: Company: Anchor QEA LLC.

Relinquished By:	Company:	Received By:	Company:		V117204
Signature/Printed Name	Date/Time	Signature/Printed Name			

(5) (5) $\sqrt{5}$ Laboratories

SAMPLE INTEGRITY RECEIPT FORM - BURNABY
Work Order \# 18V422820
Receiving Basics:
Received From: \qquad Waybill \#: \qquad
Sample Quantities:
Coolers: 8
Containers: \qquad
Time Sensitive Issues:
Earliest Date Sampled: \qquad ALREADY EXCEEDED?
Yes No

Non-Conformances:

3 temperatures of samples* and average of each cooler: (record differing temperatures on the Col next to sample ID's) *use Jars when available
(1) $\underline{0}+\underline{O}+\underline{3}=1{ }^{\circ} \mathrm{C}(2) \underline{1}+\underline{0}+0=1{ }^{\circ} \mathrm{C}(3) \underline{0}+\underline{0}+4=2{ }^{\circ} \mathrm{C}(4) \underline{0}+0+0=0{ }^{\circ} \mathrm{C}$ Was ice or ice pack present: $\widehat{\mathrm{YeS}}$ No Integrity Issues: (5) $4+4+3=4 ;(6)^{2}+3+3=3 ;(7) 4+r_{1}=4 ;(8) 4+2+0=2$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Account Project Manager: \qquad have they been notified of the above issues: Yes No Whom spoken to: \qquad Date and Time:

Additional Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Unit 120, 8600 Glenlyon Parkway

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA 219-800 BURRARD ST VANCOUVER, BC V6Z OB9
604-671-1831
ATTENTION TO: Cheronne Oreiro
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
AGAT WORK ORDER: 18V422891
SOIL ANALYSIS REVIEWED BY: Dana Solari, Lab Reporter
TRACE ORGANICS REVIEWED BY: Dana Solari, Lab Reporter
ULTRA TRACE REVIEWED BY: Philippe Morneau, chimiste
DATE REPORTED: Feb 12, 2019
PAGES (INCLUDING COVER): 33
VERSION*: 5

Should you require any information regarding this analysis please contact your client services representative at (778) 452-4000

```
*NOTES
VERSION 5: Sample receipt temperature 3}\mp@subsup{3}{}{\circ}\textrm{C}\mathrm{ .
Version 5 is issued to report additional analysis of Metals and TS as requested by Cheronne Oreiro. Version 5 is an amendment to all other Versions.
```

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis
AGAT WORK ORDER: 18V422891
PROJECT: 170553-11.05 EHRP Wood Debris Remediation ATTENTION TO: Cheronne Oreiro SAMPLED BY:

SAMPLING SITE:

Particle Size by Sieve

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
9802297-9802498 Value reported is amount of sample retained on a 75 micron sieve after wash with water and represents proportion by weight particles larger than indicated sieve size Analysis performed at AGAT Edmonton (unless marked by *)

Certificate of Analysis
AGAT WORK ORDER: 18V422891
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
ATTENTION TO: Cheronne Oreiro
SAMPLING SITE:
SAMPLED BY:

Certified By:

Certificate of Analysis

PROJECT: 170553-11.05 EHRP Wood Debris Remediation

Public Works Metals in Soil											
DATE RECEIVED: 2018-12-20				EHWW-54-SC-055105Soil$2018-12-18$9802304	$\begin{gathered} \hline \text { EHWW-54-SC- } \\ 105155 \\ \text { Soil } \\ 2018-12-18 \\ 9802456 \end{gathered}$	$\begin{gathered} \hline \text { EHWW-55-SC- } \\ 110160 \\ \text { Soil } \\ 2018-12-19 \\ 9802457 \end{gathered}$	$\begin{gathered} \hline \text { EHWW-59-SC- } \\ 038088 \\ \text { Soil } \\ 2018-12-19 \\ 9802459 \end{gathered}$	DATE REPORTED: 2019-02-12			
		SAMPLE DE SA DAT	IPTION: E TYPE: MPLED:					$\begin{gathered} \hline \text { EHWW-44-SC- } \\ 017067 \\ \text { Soil } \\ 2018-12-19 \end{gathered}$	$\begin{gathered} \hline \text { EHWW-53-SC- } \\ 016066 \\ \text { Soil } \\ 2018-12-19 \end{gathered}$	$\begin{gathered} \hline \text { EHWW-53-SC- } \\ 066116 \\ \text { Soil } \\ 2018-12-19 \end{gathered}$	$\begin{gathered} \text { EHWW-IDW- } \\ \text { SED } \\ \text { Soil } \\ 2018-12-19 \end{gathered}$
Parameter	Unit	G / S	RDL					9802472	9802498	9802502	9802505
Vanadium	$\mu \mathrm{g} / \mathrm{g}$		1	47	58	54	50	58	31	35	64
Zinc	$\mu \mathrm{g} / \mathrm{g}$		1	53	59	72	61	63	33	26	54
Zirconium	$\mu \mathrm{g} / \mathrm{g}$		0.1	7.8	9.0	10.5	9.3	10.3	4.7	5.9	8.6
pH 1:2	pH units		0.1	7.9	7.5	7.9	7.8	7.5	8.0	8.1	7.8

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
9802304-9802505 Results are based on the dry weight of the sample
Analysis performed at AGAT Vancouver (unless marked by *)

Certificate of Analysis
AGAT WORK ORDER: 18V422891
PROJECT: 170553-11.05 EHRP Wood Debris Remediation SAMPLING SITE:

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
Analysis performed at AGAT Edmonton (unless marked by *)

Certificate of Analysis
AGAT WORK ORDER: 18V422891
PROJECT: 170553-11.05 EHRP Wood Debris Remediation ATTENTION TO: Cheronne Oreiro SAMPLED BY:

SAMPLING SITE:

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
Analysis performed at AGAT Vancouver (unless marked by *)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
Analysis performed at AGAT Vancouver (unless marked by *)

Certificate of Analysis

[^34]CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA SAMPLING SITE:

Certificate of Analysis
AGAT WORK ORDER: 18V422891
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
TVS in Soil
DATE RECEIVED: 2018-12-20 DATE REPORTED: 2019-02-12

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
Analysis performed at AGAT Vancouver (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 18V422891
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA SAMPLING SITE:

ATTENTION TO: Cheronne Oreiro

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
Analysis performed at AGAT Vancouver (unless marked by *)

DATE RECEIVED: 2018-12-20

W-54-SCSoil Soil Sole
\qquad -

Certificate of Analysis
AGAT WORK ORDER: 18V422891
PROJECT: 170553-11.05 EHRP Wood Debris Remediation ATTENTION TO: Cheronne Oreiro SAMPLED BY:

Total Solids in Soil

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
Analysis performed at AGAT Vancouver (unless marked by *)

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

SAMPLED BY:

Public Works PAH in Soil Low Level									
DATE RECEIVED: 2018-12-20								DATE REPORTED: 2019-02-12	
Parameter	Unit		RIPTION: E TYPE: MPLED:	$\begin{gathered} \text { EHWW-54-SC- } \\ 055105 \\ \text { Soil } \\ 2018-12-18 \end{gathered}$ 9802304	$\begin{gathered} \text { EHWW-55-SC- } \\ 110160 \\ \text { Soil } \\ 2018-12-19 \end{gathered}$ 9802457	$\begin{gathered} \hline \text { EHWW-59-SC- } \\ 038088 \\ \text { Soil } \\ 2018-12-19 \end{gathered}$ 9802459	EHWW-44-SC- 017067 Soil $2018-12-19$	$\begin{gathered} \text { EHWW-53-SC- } \\ 016066 \\ \text { Soil } \\ 2018-12-19 \end{gathered}$ 9802498	EHWW-IDW- SED Soil 2018-12-19
Naphthalene	$\mu \mathrm{g} / \mathrm{g}$		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2-Methylnaphthalene	$\mu \mathrm{g} / \mathrm{g}$		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1-Methylnaphthalene	$\mu \mathrm{g} / \mathrm{g}$		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Acenaphthylene	$\mu \mathrm{g} / \mathrm{g}$		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Acenaphthene	$\mu \mathrm{g} / \mathrm{g}$		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Fluorene	$\mu \mathrm{g} / \mathrm{g}$		0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Phenanthrene	$\mu \mathrm{g} / \mathrm{g}$		0.02	<0.02	0.04	<0.02	<0.02	<0.02	<0.02
Anthracene	$\mu \mathrm{g} / \mathrm{g}$		0.004	<0.004	0.010	<0.004	<0.004	<0.004	<0.004
Fluoranthene	$\mu \mathrm{g} / \mathrm{g}$		0.01	<0.01	0.06	<0.01	<0.01	<0.01	<0.01
Pyrene	$\mu \mathrm{g} / \mathrm{g}$		0.01	<0.01	0.06	<0.01	<0.01	<0.01	<0.01
Benzo(a)anthracene	$\mu \mathrm{g} / \mathrm{g}$		0.03	<0.03	0.03	<0.03	<0.03	<0.03	<0.03
Chrysene	$\mu \mathrm{g} / \mathrm{g}$		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(b)fluoranthene	$\mu \mathrm{g} / \mathrm{g}$		0.02	<0.02	0.05	<0.02	<0.02	<0.02	<0.02
Benzo(j)fluoranthene	$\mu \mathrm{g} / \mathrm{g}$		0.02	<0.02	0.03	<0.02	<0.02	<0.02	<0.02
Benzo(k)fluoranthene	$\mu \mathrm{g} / \mathrm{g}$		0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02
Benzo(a)pyrene	$\mu \mathrm{g} / \mathrm{g}$		0.03	<0.03	0.03	<0.03	<0.03	<0.03	<0.03
Indeno(1,2,3-c, d) pyrene	$\mu \mathrm{g} / \mathrm{g}$		0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02
Dibenzo(a,h)anthracene	$\mu \mathrm{g} / \mathrm{g}$		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Benzo(g, h, i) perylene	$\mu \mathrm{g} / \mathrm{g}$		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Quinoline	$\mu \mathrm{g} / \mathrm{g}$		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
IACR CCME (Soil)	$\mu \mathrm{g} / \mathrm{g}$		0.6	<0.6	0.8	<0.6	<0.6	<0.6	<0.6
B[a]P TPE (Soil)	$\mu \mathrm{g} / \mathrm{g}$		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(b+j)fluoranthene	$\mu \mathrm{g} / \mathrm{g}$		0.05	<0.05	0.08	<0.05	<0.05	<0.05	<0.05
Surrogate	Unit	Accept	Limits						
Naphthalene - d8	\%			92	85	98	93	87	86
2-Fluorobiphenyl	\%			98	91	103	101	91	89
P-Terphenyl - d14	\%			97	95	102	104	90	79

Certified By:

Certificate of Analysis
AGAT WORK ORDER: 18V422891
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
ATTENTION TO: Cheronne Oreiro SAMPLING SITE: SAMPLED BY

Public Works PAH in Soil Low Level		
DATE RECEIVED: 2018-12-20		DATE REPORTED: 2019-02-12

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
9802304-9802505 Results are based on dry weight of sample.
Analysis performed at AGAT Vancouver (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 18V422891
PROJECT: 170553-11.05 EHRP Wood Debris Remediation

Polychlorinated Biphenyls Analysis - Soil

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
9802304-9802505 Results are based on the dry weight of the sample.
Analysis performed at AGAT Calgary (unless marked by *)

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
AGAT WORK ORDER: 18V422891
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
ATTENTION TO: Cheronne Oreiro
SAMPLING SITE:
SAMPLED BY:

Certified By:

Certificate of Analysis
AGAT WORK ORDER: 18V422891
PROJECT: 170553-11.05 EHRP Wood Debris Remediation ATTENTION TO: Cheronne Oreiro SAMPLED BY:

SAMPLING SITE:

位

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
AGAT WORK ORDER: 18V422891
PROJECT: 170553-11.05 EHRP Wood Debris Remediation

ATTENTION TO: Cheronne Oreiro SAMPLED BY:

Dioxins and Furans (Soil, WHO 2005)						
DATE RECEIVED: 2018-12-20					DATE REPORTED: 2019-02-12	
			EHWW-54-SC-	EHWW-55-SC-	EHWW-59-SC-	EHWW-44-SC-
		SAMPLE DESCRIPTION:	055105	110160	038088	017067
		SAMPLE TYPE:	Soil	Soil	Soil	Soil
		DATE SAMPLED:	2018-12-18	2018-12-19	2018-12-19	2018-12-19
Surrogate	Unit	Acceptable Limits	9802304	9802457	9802459	9802472
13C-2378-TCDF	\%	30-140	56	60	44	39
13C-12378-PeCDF	\%	30-140	47	49	42	36
13C-23478-PeCDF	\%	30-140	61	59	47	41
13C-123478-HxCDF	\%	30-140	64	71	66	59
13C-123678-HxCDF	\%	30-140	72	81	75	63
13C-234678-HxCDF	\%	30-140	69	75	75	70
13C-123789-HxCDF	\%	30-140	53	58	55	52
13C-1234678-HpCDF	\%	30-140	57	57	65	55
13C-1234789-HpCDF	\%	30-140	46	49	48	42
13C-2378-TCDD	\%	30-140	67	68	54	46
13C-12378-PeCDD	\%	30-140	65	63	51	44
13C-123478-HxCDD	\%	30-140	63	70	68	64
13C-123678-HxCDD	\%	30-140	76	85	79	75
13C-1234678-HpCDD	\%	30-140	50	55	54	50
13C-OCDD	\%	30-140	37	34	38	35

Certificate of Analysis

Certificate of Analysis

AGAT WORK ORDER: 18V422891
PROJECT: 170553-11.05 EHRP Wood Debris Remediation

SAMPLING SITE:

ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

Dioxins and Furans (Soil, WHO 2005)				
DATE RECEIVED: 2018-12-20				DATE REPORTED: 2019-02-12
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G/S RDL	EHWW-53-SC- 016066 Soil $2018-12-19$ 9802498	
1,2,3,4,7,8-Hexa CDD (TEF 0.1)	TEQ		0	
1,2,3,6,7,8-Hexa CDD (TEF 0.1)	TEQ		0	
1,2,3,7,8,9-Hexa CDD (TEF 0.1)	TEQ		0	
1,2,3,4,6,7,8-Hepta CDD (TEF 0.01)	TEQ		0.00714	
Octa CDD (TEF 0.0003)	TEQ		0.000585	
2,3,7,8-Tetra CDF (TEF 0.1)	TEQ		0	
1,2,3,7,8-Penta CDF (TEF 0.03)	TEQ		0	
2,3,4,7,8-Penta CDF (TEF 0.3)	TEQ		0	
1,2,3,4,7,8-Hexa CDF (TEF 0.1)	TEQ		0	
1,2,3,6,7,8-Hexa CDF (TEF 0.1)	TEQ		0	
2,3,4,6,7,8-Hexa CDF (TEF 0.1)	TEQ		0.0305	
1,2,3,7,8,9-Hexa CDF (TEF 0.1)	TEQ		0	
1,2,3,4,6,7,8-Hepta CDF (TEF 0.01)	TEQ		0	
1,2,3,4,7,8,9-Hepta CDF (TEF 0.01)	TEQ		0	
Octa CDF (TEF 0.0003)	TEQ		0	
Total PCDDs and PCDFs (TEQ)	ng/kg TEQ		0.0383	

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 18V422891
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

SAMPLED BY:

Dioxins and Furans (Soil, WHO 2005)
DATE RECEIVED: 2018-12-20 DATE REPORTED: 2019-02-12

| | EHWW-53-SC |
| ---: | :---: | :---: |
| SAMPLE DESCRIPTION: | 016066 |
| SAMPLE TYPE: | Soil |

Surrogate	Unit	Acceptable Limits	9802498
$13 C-2378-$ TCDF	$\%$	$30-140$	54
$13 C-12378-P e C D F$	$\%$	$30-140$	45
$13 C-23478-P e C D F$	$\%$	$30-140$	54

13C-23478-PeCDF
13C-123478-HxCDF
13C-123678-HxCDF
30-140
30-140
30-140
$30-140 \quad 78$ 3C-123789-HxCDF

30-140

| $30-140$ | 62 |
| :--- | :--- | 13C-1234678-HpCDF

30-140

| $30-140$ | 52 |
| :--- | :--- | 13C-2378-TCDD

30-140
59 13C-12378-PeCDD

| $30-140$ | 73 |
| :--- | :--- | 13C-123678-HxCDD

30-140
30-140
81 3C-1234678-HpCDD

30-140

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
9802304-9802498 The results were corrected based on the surrogate percent recoveries
Analysis performed at AGAT Montreal (unless marked by *)

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

AGAT WORK ORDER: 18V422891
ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

Soil Analysis															
RPT Date: Feb 12, 2019			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	$\underset{\text { Id }}{\text { Sample }}$	Dup \#1	Dup \#2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
								Lower	Upper		Lower	Upper		Lower	Upper
Sulphide in Soil															
Sulphur - Total	9802488		$\begin{aligned} & 0.95 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.91 \\ & 0.02 \end{aligned}$	$\begin{gathered} 3.8 \% \\ \text { NA } \end{gathered}$	<0.01	$\begin{aligned} & 98 \% \\ & 110 \% \end{aligned}$	80\%	120\%	107\%					
Sulphate Sulphur	9802588					<0.01		80\%	110\%		85\%	115\%			

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.
Public Works Metals in Soil

Aluminum	9801891	29100	29300	0.6\%	<10	110\%	70\%	130\%	110\%	90\%	110\%
Antimony	9801891	0.4	0.4	NA	<0.1	122\%	70\%	130\%	102\%	90\%	110\%
Arsenic	9801891	6.3	8.1	25.2\%	<0.1	123\%	70\%	130\%	95\%	90\%	110\%
Barium	9801891	103	102	0.9\%	<0.5	117\%	70\%	130\%	108\%	90\%	110\%
Beryllium	9801891	0.5	0.5	1.9\%	<0.1	103\%	70\%	130\%	105\%	90\%	110\%
Bismuth	9801891	<0.5	<0.5	NA	<0.5				100\%	90\%	110\%
Cadmium	9801891	0.31	0.29	8.1\%	< 0.01	115\%	70\%	130\%	107\%	90\%	110\%
Calcium	9801891	13800	11800	16.0\%	< 10	117\%	70\%	130\%	96\%	90\%	110\%
Chromium	9801891	49	49	0.5\%	< 1	111\%	70\%	130\%	96\%	90\%	110\%
Cobalt	9801891	18.3	17.8	2.9\%	<0.1	107\%	70\%	130\%	92\%	90\%	110\%
Copper	9801891	59.6	56.9	4.5\%	<0.2	104\%	70\%	130\%	92\%	90\%	110\%
Iron	9801891	39200	38700	1.2\%	< 10	104\%	70\%	130\%	95\%	90\%	110\%
Lead	9801891	6.1	6.0	1.1\%	<0.1	99\%	70\%	130\%	102\%	90\%	110\%
Lithium	9801891	30.9	31.0	0.4\%	<0.5				99\%	90\%	110\%
Magnesium	9801891	14900	14700	1.6\%	< 10	108\%	70\%	130\%	107\%	90\%	110\%
Manganese	9801891	752	749	0.4\%	< 1	111\%	70\%	130\%	107\%	90\%	110\%
Mercury	9801891	0.06	0.05	22.9\%	< 0.01	99\%	70\%	130\%	101\%	90\%	110\%
Molybdenum	9801891	0.5	0.5	NA	< 0.2	112\%	70\%	130\%	104\%	90\%	110\%
Nickel	9801891	48.1	47.0	2.1\%	< 0.5	111\%	70\%	130\%	103\%	90\%	110\%
Phosphorus	9801891	494	527	6.3\%	< 5	85\%	70\%	130\%	92\%	90\%	110\%
Potassium	9801891	3490	3560	2.1\%	< 5	124\%	70\%	130\%	98\%	90\%	110\%
Selenium	9801891	0.9	<0.1	NA	<0.1				100\%	90\%	110\%
Silver	9801891	<0.5	<0.5	NA	<0.5	126\%	70\%	130\%	105\%	90\%	110\%
Sodium	9802505	5720	5760	0.6\%	< 5	129\%	70\%	130\%	93\%	90\%	110\%
Strontium	9801891	83	72	14.5\%	<1	130\%	70\%	130\%	96\%	90\%	110\%
Thallium	9801891	0.1	0.1	NA	<0.1	116\%	70\%	130\%	107\%	90\%	110\%
Tin	9801891	0.6	0.6	NA	<0.2	107\%	70\%	130\%	99\%	90\%	110\%
Titanium	9801891	1800	1840	2.1\%	< 1				92\%	90\%	110\%
Uranium	9801891	0.6	0.5	NA	<0.2	101\%	70\%	130\%	101\%	90\%	110\%
Vanadium	9801891	99	98	1.6\%	<1	116\%	70\%	130\%	97\%	90\%	110\%
Zinc	9801891	88	85	4.1\%	<1	111\%	70\%	130\%	91\%	90\%	110\%
Zirconium	9801891	11.1	11.2	0.3\%	<0.1				103\%	90\%	110\%
pH 1:2	9801891	8.5	8.5	0.4\%		98\%	90\%	110\%	100\%	95\%	105\%

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

AGAT WORK ORDER: 18V422891
ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

Soil Analysis (Continued)															
RPT Date: Feb 12, 2019			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample Id	Dup \#1	Dup \#2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
								Lower	Upper		Lower	Upper		Lower	Upper

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.
TVS in Soil
$9802304 \quad 2.8 \quad 2.8 \quad 0.0 \%<0.5$

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.
TCLP Leachate Metals

Antimony - TCLP Leachate	9802505	2.71	2.58	5.1\%	<0.01				101\%	90\%	110\%	127\%	70\%	130\%
Arsenic - TCLP Leachate	9802505	1.94	1.81	6.9\%	< 0.02	84\%	50\%	150\%	105\%	90\%	110\%	97\%	70\%	130\%
Barium - TCLP Leachate	9802505	1.2	1.1	NA	< 0.5	83\%	50\%	150\%	94\%	90\%	110\%	108\%	70\%	130\%
Beryllium - TCLP Leachate	9802505	1.14	1.13	1.1\%	< 0.02				98\%	90\%	110\%	111\%	70\%	130\%
Boron - TCLP Leachate	9802505	1.4	1.4	NA	< 0.5				100\%	90\%	110\%	94\%	70\%	130\%
Cadmium - TCLP Leachate	9802505	1.06	1.04	2.2\%	< 0.01	83\%	50\%	150\%	98\%	90\%	110\%	101\%	70\%	130\%
Chromium - TCLP Leachate	9802505	0.96	1.02	6.7\%	< 0.01	112\%	50\%	150\%	105\%	90\%	110\%	91\%	70\%	130\%
Copper - TCLP Leachate	9802505	0.96	1.08	11.6\%	< 0.05	57\%	50\%	150\%	98\%	90\%	110\%	88\%	70\%	130\%
Iron - TCLP Leachate	9802505	2	2	NA	< 1				104\%	90\%	110\%	105\%	70\%	130\%
Lead - TCLP Leachate	9802505	2.08	2.01	3.2\%	< 0.01	71\%	50\%	150\%	91\%	90\%	110\%	98\%	70\%	130\%
Mercury - TCLP Leachate	9802505	1.94	1.90	2.1\%	< 0.01	73\%	50\%	150\%	99\%	90\%	110\%	95\%	70\%	130\%
Nickel - TCLP Leachate	9802505	0.96	1.12	15.0\%	< 0.05				102\%	90\%	110\%	89\%	70\%	130\%
Selenium - TCLP Leachate	9802505	1.03	1.03	0.2\%	< 0.05	80\%	50\%	150\%	110\%	90\%	110\%	109\%	70\%	130\%
Silver - TCLP Leachate	9802505	0.29	0.28	1.6\%	< 0.01	140\%	50\%	150\%	99\%	90\%	110\%	110\%	70\%	130\%
Thallium - TCLP Leachate	9802505	5.73	5.60	2.3\%	< 0.01				102\%	90\%	110\%	111\%	70\%	130\%
Uranium - TCLP Leachate	9802505	1.70	1.77	4.0\%	< 0.01				102\%	90\%	110\%			
Vanadium - TCLP Leachate	9802505	1.04	1.15	10.3\%	< 0.05				108\%	90\%	110\%	95\%	70\%	130\%
Zinc - TCLP Leachate	9802505	1.2	1.1	4.9\%	< 0.1	85\%	50\%	150\%	94\%	90\%	110\%	87\%	70\%	130\%
Zirconium - TCLP Leachate	9802505	<0.01	<0.01	NA	< 0.01				105\%	90\%	110\%			

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.
Particle Size by Sieve

Sieve Analysis - 75 microns	362	9805275	14	14	0.0\%	<1	96\%	80\%	120\%	NA			NA		
Soil Analysis - Ammonia															
Saturation Percentage	9802498	9802498	47	47	0.0\%	< 1	94\%	80\%	120\%						
Electrical Conductivity (Sat. Paste)	9802498	9802498	20.4	19.4	5.1\%	<0.05	95\%	90\%	110\%						
Ammonia, Soluble	1904	9802498	<1	<1	NA	< 1	106\%	80\%	120\%	101\%	80\%	120\%	93\%	80\%	120\%
Soluble Chloride															
Chloride, Soluble	9852319	IH20182	1770	1810	2.2\%	<2	90\%	80\%	120\%	100\%	85\%	115\%			
Saturation Percentage	9859855	IH20182	43.5	43.6	0.2\%	< 0.5	99\%	80\%	120\%						

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

AGA WORK ORDER: 18V422891
ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Certified By:

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

AGAT WORK ORDER: 18V422891
ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

Trace Organics Analysis															
RPT Date: Feb 12, 2019			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample Id	Dup \#1	Dup \#2	RPD		Measured Value	Acceptable Limits		Recovery	AcceptableLimits		Recovery	Acceptable Limits	
								Lower	Upper		Lower	Upper		Lower	Upper
Public Works PAH in Soil Low Level															
Naphthalene	70408	9801856	0.067	0.049	31.0\%	<0.005	103\%	80\%	120\%				90\%	50\%	130\%
2-Methylnaphthalene	70408	9801856	0.023	0.022	NA	<0.005	105\%	80\%	120\%				91\%	50\%	130\%
1-MethyInaphthalene	70408	9801856	0.009	0.005	NA	<0.005	105\%	80\%	120\%				98\%	50\%	130\%
Acenaphthylene	70408	9801856	0.038	0.031	20.3\%	<0.005	100\%	80\%	120\%				89\%	50\%	130\%
Acenaphthene	70408	9801856	0.028	0.027	3.6\%	< 0.005	105\%	80\%	120\%				99\%	50\%	130\%
Fluorene	70408	9801856	0.03	0.02	NA	<0.02	100\%	80\%	120\%				95\%	50\%	130\%
Phenanthrene	70408	9801856	0.23	0.32	32.7\%	<0.02	100\%	80\%	120\%				78\%	60\%	130\%
Anthracene	70408	9801856	0.110	0.096	13.6\%	< 0.004	102\%	80\%	120\%				112\%	60\%	130\%
Fluoranthene	70408	9801856	0.82	1.01	20.8\%	<0.01	102\%	80\%	120\%				98\%	60\%	130\%
Pyrene	70408	9801856	1.81	2.52	32.8\%	< 0.01	99\%	80\%	120\%				108\%	60\%	130\%
Benzo(a)anthracene	70408	9801856	0.38	0.24	45.2\%	<0.03	101\%	80\%	120\%				86\%	60\%	130\%
Chrysene	70408	9801856	0.32	0.22	NA	<0.05	101\%	80\%	120\%				105\%	60\%	130\%
Benzo(b)fluoranthene	70408	9801856	0.64	0.47	30.6\%	<0.02	101\%	80\%	120\%				78\%	60\%	130\%
Benzo(j)fluoranthene	70408	9801856	0.23	0.16	35.9\%	< 0.02	101\%	80\%	120\%				83\%	60\%	130\%
Benzo(k)fluoranthene	70408	9801856	0.36	0.24	40.0\%	<0.02	99\%	80\%	120\%				79\%	60\%	130\%
Benzo(a)pyrene	70408	9801856	0.31	0.19	48.0\%	<0.03	101\%	80\%	120\%				108\%	60\%	130\%
Indeno(1,2,3-c, d)pyrene	70408	9801856	0.11	0.08	NA	<0.02	101\%	80\%	120\%				103\%	60\%	130\%
Dibenzo(a,h)anthracene	70408	9801856	0.029	0.019	NA	<0.005	103\%	80\%	120\%				106\%	60\%	130\%
Benzo(g,h,i)perylene	70408	9801856	0.13	0.09	NA	< 0.05	99\%	80\%	120\%				101\%	60\%	130\%
Quinoline	70408	9801856	0.07	0.06	NA	<0.05	89\%	80\%	120\%				112\%	50\%	130\%
Naphthalene - d8	70408	9801856	90	81	10.5\%		104\%	80\%	120\%				90\%	50\%	130\%
2-Fluorobiphenyl	70408	9801856	94	93	1.1\%		101\%	80\%	120\%				94\%	50\%	130\%
P-Terphenyl-d14	70408	9801856	100	100	0.0\%		101\%	80\%	120\%				97\%	60\%	130\%

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.
Polychlorinated Biphenyls Analysis - Soil

Aroclor 1242	173	9801887	<0.05	<0.05	NA	<0.05	114%	70%	130%	124%	70%	130%	118%	50%	150%
Aroclor 1254	173	9801887	<0.05	<0.05	NA	<0.05	101%	70%	130%	104%	70%	130%	98%	50%	150%
Aroclor 1260	173	9801887	<0.05	<0.05	NA	<0.05	107%	70%	130%	101%	70%	130%	103%	50%	150%
Total Polychlorinated Biphenyls	173	9801887	<0.05	<0.05	NA	<0.05	107%	70%	130%	110%	70%	130%	106%	50%	150%

Comments: If the RPD value is NA, the results of the duplicates are under 5 X the RDL and will not be calculated.

Unit 120, 8600 Glenlyon Parkway
Burnaby, British Columbia
CANADA V5J 0B6
TEL (778)452-4000
FAX (778)452-4074
http://www.agatlabs.com

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

AGAT WORK ORDER: 18V422891
ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

Ultra Trace Analysis															
RPT Date: Feb 12, 2019			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample Id	Dup \#1	Dup \#2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
								Lower	Upper		Lower	Upper		Lower	Upper
Dioxins and Furans (Soil, WHO 2005)															
2,3,7,8-Tetra CDD	1	9801899	<0.3	<0.3	NA	<0.3	84\%	40\%	130\%	NA	40\%	130\%	84\%	40\%	130\%
1,2,3,7,8-Penta CDD	1	9801899	<0.4	<0.4	NA	<0.4	89\%	40\%	130\%	NA	40\%	130\%	98\%	40\%	130\%
1,2,3,4,7,8-Hexa CDD	1	9801899	< 0.4	<0.3	NA	<0.2	97\%	40\%	130\%	NA	40\%	130\%	97\%	40\%	130\%
1,2,3,6,7,8-Hexa CDD	1	9801899	< 0.4	<0.3	NA	<0.2	95\%	40\%	130\%	NA	40\%	130\%	95\%	40\%	130\%
1,2,3,7,8,9-Hexa CDD	1	9801899	< 0.4	<0.3	NA	<0.2	101\%	40\%	130\%	NA	40\%	130\%	101\%	40\%	130\%
1,2,3,4,6,7,8-Hepta CDD	1	9801899	<0.4	<0.8	NA	<0.4	93\%	40\%	130\%	NA	40\%	130\%	93\%	40\%	130\%
Octa CDD	1	9801899	1	1	0.0\%	< 0.3	105\%	40\%	130\%	NA	40\%	130\%	112\%	40\%	130\%
2,3,7,8-Tetra CDF	1	9801899	<0.4	<0.4	NA	<0.4	97\%	40\%	130\%	NA	40\%	130\%	97\%	40\%	130\%
1,2,3,7,8-Penta CDF	1	9801899	<0.3	<0.7	NA	<0.2	99\%	40\%	130\%	NA	40\%	130\%	112\%	40\%	130\%
2,3,4,7,8-Penta CDF	1	9801899	<0.3	<0.5	NA	<0.3	102\%	40\%	130\%	NA	40\%	130\%	101\%	40\%	130\%
1,2,3,4,7,8-Hexa CDF	1	9801899	<0.2	<0.6	NA	<0.2	115\%	40\%	130\%	NA	40\%	130\%	110\%	40\%	130\%
1,2,3,6,7,8-Hexa CDF	1	9801899	<0.2	<0.5	NA	<0.2	107\%	40\%	130\%	NA	40\%	130\%	116\%	40\%	130\%
2,3,4,6,7,8-Неха CDF	1	9801899	<0.2	<0.5	NA	<0.2	110\%	40\%	130\%	NA	40\%	130\%	112\%	40\%	130\%
1,2,3,7,8,9-Hexa CDF	1	9801899	<0.3	<0.6	NA	<0.3	99\%	40\%	130\%	NA	40\%	130\%	110\%	40\%	130\%
1,2,3,4,6,7,8-Hepta CDF	1	9801899	0.6	0.7	15.4\%	<0.4	97\%	40\%	130\%	NA	40\%	130\%	108\%	40\%	130\%
1,2,3,4,7,8,9-Hepta CDF	1	9801899	<0.5	<0.4	NA	<0.5	104\%	40\%	130\%	NA	40\%	130\%	111\%	40\%	130\%
Octa CDF	1	9801899	< 0.6	<0.8	NA	<0.5	97\%	40\%	130\%	NA	40\%	130\%	84\%	40\%	130\%

Certified By:

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Sieve Analysis - 75 microns	INOR-171-6009	KROETSCH 2007; SHEPPARD 2007	SIEVE
Aluminum	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Antimony	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Arsenic	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Barium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Beryllium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Bismuth	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Cadmium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Calcium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Chromium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Cobalt	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Copper	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Iron	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Lead	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Lithium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Magnesium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Manganese	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP-MS
Mercury	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Molybdenum	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Nickel	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Phosphorus	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Potassium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Selenium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Silver	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Sodium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Strontium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP-MS
Thallium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Tin	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA PROJECT: 170553-11.05 EHRP Wood Debris Remediation SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Titanium	$\begin{aligned} & \text { MET-181-6106, } \\ & \text { LAB-181-4008 } \end{aligned}$	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Uranium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Vanadium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Zinc	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Zirconium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
pH 1:2	INOR-181-6031	BC MOE Lab Manual B (pH, Electrometric, Soil)	PH METER
Ammonia, Soluble	Inor-171-6211	Carter \& Gregorich 2007; SM 4500E	AQ-2 DISCRETE ANALYZER
Chloride, Soluble	$\begin{aligned} & \text { LAB-181-4022, } \\ & \text { INOR-181-6023 } \end{aligned}$	BC MOE Lab Manual Section B	COLORIMETER
Saturation Percentage	LAB-181-4022	BC MOE Lab Manual Section B	GRAVIMETRIC
Sulphur - Total	INOR-181-6027	Modified from ASTM E1915-11	COMBUSTION
Sulphate Sulphur	ARD-181-18009; INOR-181-6028	MEND Report 1.20.1 (09); mod from SM 4500-SO4 E	SPECTROPHOTOMETER
Antimony - TCLP Leachate	MET-181-6102, LAB-181-4001	EPA 1311 and EPA 6020A	ICP-MS
Arsenic - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Barium - TCLP Leachate	MET-181-6102, LAB-181-4001	EPA 1311 and EPA 6020A	ICP-MS
Beryllium - TCLP Leachate	MET-181-6102, LAB-181-4001	EPA 1311 and EPA 6020A	ICP-MS
Boron - TCLP Leachate	MET-181-6102, LAB-181-4001	EPA 1311 and EPA 6020A	ICP-MS
Cadmium - TCLP Leachate	MET-181-6102, LAB-181-4001	EPA 1311 and EPA 6020A	ICP-MS
Chromium - TCLP Leachate	MET-181-6102, LAB-181-4001	EPA 1311 and EPA 6020A	ICP-MS
Cobalt - TCLP Leachate	MET-181-6102, LAB-181-4001	EPA 1311 and EPA 6020A	ICP-MS
Copper - TCLP Leachate	MET-181-6102, LAB-181-4001	EPA 1311 and EPA 6020A	ICP-MS
Iron - TCLP Leachate	MET-181-6102, LAB-181-4001	EPA 1311 and EPA 6020A	ICP-MS
Lead - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Mercury - TCLP Leachate	MET-181-6102, LAB-181-4001	EPA 1311 and EPA 6020A	ICP/MS
Nickel - TCLP Leachate	MET-181-6102, LAB-181-4001	EPA 1311 and EPA 6020A	ICP-MS
Selenium - TCLP Leachate	MET-181-6102, LAB-181-4001	EPA 1311 and EPA 6020A	ICP-MS
Silver - TCLP Leachate	MET-181-6102, LAB-181-4001	EPA 1311 and EPA 6020A	ICP-MS
Thallium - TCLP Leachate	MET-181-6102, LAB-181-4001	EPA 1311 and EPA 6020A	ICP-MS
Uranium - TCLP Leachate	MET-181-6102, LAB-181-4001	EPA 1311 and EPA 6020A	ICP-MS
Vanadium - TCLP Leachate	MET-181-6102, LAB-181-4001	EPA 1311 and EPA 6020A	ICP-MS

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Zinc - TCLP Leachate	MET-181-6102,	EPA 1311 and EPA 6020A	ICP-MS
Zirconium - TCLP Leachate	LAB-181-4001	MET-181-6102,	EPA 1311 and EPA 6020A

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
2-Methylnaphthalene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
1-Methylnaphthalene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Acenaphthylene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Acenaphthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Fluorene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Phenanthrene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Anthracene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Fluoranthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Pyrene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(a)anthracene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Chrysene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(b)fluoranthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(j)fluoranthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(k)fluoranthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(a)pyrene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Indeno(1,2,3-c,d)pyrene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Dibenzo(a,h)anthracene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(g,h,i)perylene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Quinoline	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
IACR CCME (Soil)	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
B[a]P TPE (Soil)	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Naphthalene - d8	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
2-Fluorobiphenyl	ORG-180-5102	Modified form BCMOE Lab Manual Section D (PAH)	GC/MS
P-Terphenyl - d14	ORG-180-5102	Modified form BCMOE Lab Manual Section D (PAH)	GC/MS
Aroclor 1242	TO-0410	EPA SW-846 8082	GC/ECD
Aroclor 1254	TO-0410	EPA SW-846 8082	GC/ECD
Aroclor 1260	TO-0410	EPA SW-846 8082	GC/ECD
Total Polychlorinated Biphenyls	TO-0410	EPA SW-846 8082	GC/ECD
Decachlorobiphenyl	TO-0410	EPA SW-846 8082	GC/ECD

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

AGAT WORK ORDER: 18 V 422891 ATTENTION TO: Cheronne Oreiro SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Ultra Trace Analysis			
2,3,7,8-Tetra CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDD	HR-151-5400	EPA 1613	HRMS
Octa CDD	HR-151-5400	EPA 1613	HRMS
2,3,7,8-Tetra CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDF	HR-151-5400	EPA 1613	HRMS
2,3,4,7,8-Penta CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDF	HR-151-5400	EPA 1613	HRMS
2,3,4,6,7,8-Hexa CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8,9-Hepta CDF	HR-151-5400	EPA 1613	HRMS
Octa CDF	HR-151-5400	EPA 1613	HRMS
Total Tetrachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total Pentachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total Hexachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total Heptachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total PCDDs	HR-151-5400	EPA 1613	HRMS
Total Tetrachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total Pentachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total Hexachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total Heptachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total PCDFs	HR-151-5400	EPA 1613	HRMS
2,3,7,8-Tetra CDD (TEF 1.0)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDD (TEF 1.0)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Неха CDD (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDD (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDD (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDD (TEF 0.01)	HR-151-5400	EPA 1613	HRMS
Octa CDD (TEF 0.0003)	HR-151-5400	EPA 1613	HRMS
2,3,7,8-Tetra CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDF (TEF 0.03)	HR-151-5400	EPA 1613	HRMS
2,3,4,7,8-Penta CDF (TEF 0.3)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDF (TEF 0.1)	HR_151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
2,3,4,6,7,8-Hexa CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDF (TEF 0.01)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8,9-Hepta CDF (TEF 0.01)	HR-151-5400	EPA 1613	HRMS
Octa CDF (TEF 0.0003)	HR-151-5400	EPA 1613	HRMS
Total PCDDs and PCDFs (TEQ)	HR-151-5400	EPA 1613	HRMS
13C-2378-TCDF	HR-151-5400	EPA 1613	HRMS
13C-12378-PeCDF	HR-151-5400	EPA 1613	HRMS
13C-23478-PeCDF	HR-151-5400	EPA 1613	HRMS
13C-123478-HxCDF	HR-151-5400	EPA 1613	HRMS

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
13C-123678-HxCDF	HR-151-5400	EPA 1613	HRMS
13C-234678-HxCDF	HR-151-5400	EPA 1613	HRMS
13C-123789-HxCDF	HR-151-5400	EPA 1613	HRMS
13C-1234678-HpCDF	HR-151-5400	EPA 1613	HRMS
13C-1234789-HpCDF	HR-151-5400	EPA 1613	HRMS
13C-2378-TCDD	HR-151-5400	EPA 1613	HRMS
13C-12378-PeCDD	HR-151-5400	EPA 1613	HRMS
13C-123478-HxCDD	HR-151-5400	EPA 1613	HRMS
13C-123678-HxCDD	HR-151-5400	EPA 1613	HRMS
13C-1234678-HpCDD	HR-151-5400	EPA 1613	HRMS
13C-OCDD	HR-151-5400	EPA 1613	HRMS

NOD WASTE
$18042 \sim 89$

2 Email sample confirmation report to labdata@anchorqea.com
Additional notes/comments:

	Company: Anchor QEA LLC.	Received By.	Company:	
	121916155			
Signature/Printed Name	DaterTime	Signature/Printed Name		DaterTime

Relinquished By:	Company:	Received By: 0 Company:	
Signature/Printed Name	Date/Time	Signature/Printed V/a/ne	Date/Time

(5 (5) Laboratories

SAMPLE INTEGRITY RECEIPT FORM - BURNABY
Work Order \# $18 \vee 422691$

Receiving Basics:

Received From: \qquad
Sample Quantities:
Coolers: 8
Containers: 58
Time Sensitive Issues:
Earliest Date Sampled: \qquad ALREADY EXCEEDED? Yes

Non-Conformances:
3 temperatures of samples* and average of each cooler: (record differing temperatures on the Col next to sample (D's) *use Jars when available
(1) $0+0+3=1{ }^{\circ} \mathrm{C}(2) 1+0+0=1{ }^{\circ} \mathrm{C}(3) 0+0+4=2{ }^{\circ} \mathrm{C}(4) \underline{0}+0+0=0.0$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Account Project Manager: \qquad have they been notified of the above issues: Yes No Whom spoken to: \qquad Date and Time: \qquad
Additional Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Unit 120, 8600 Glenlyon Parkway

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA 219-800 BURRARD ST VANCOUVER, BC V6Z OB9
604-671-1831
ATTENTION TO: Cheronne Oreiro
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
AGAT WORK ORDER: 18V422993
SOIL ANALYSIS REVIEWED BY: Dana Solari, Lab Reporter
TRACE ORGANICS REVIEWED BY: Alison Sekera, Trace Organics Supervisor
ULTRA TRACE REVIEWED BY: Anastasia Kazakova, chimiste
DATE REPORTED: Jan 15, 2019
PAGES (INCLUDING COVER): 17
VERSION*: 3

Should you require any information regarding this analysis please contact your client services representative at (778) 452-4000

```
*NOTES
VERSION 3: Sample receipt temperature 3}\mp@subsup{3}{}{\circ}\textrm{C}\mathrm{ .
Version 3 is issued to report complete results. Version 3 is an amendment to all previous versions.
```

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 18V422993
PROJECT: 170553-11.05 EHRP Wood Debris Remediation ATTENTION TO: Cheronne Oreiro

SAMPLING SITE:

SAMPLED BY

[^35]
Certificate of Analysis

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
9802785 Analysis multiple peak pattern method by GC/ECD.
Analysis performed at AGAT Calgary (unless marked by *)

Certificate of Analysis

AGA WORK ORDER: 18V422993
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

SAMPLED BY:
Public Works PAH in Water Low Level

Certificate of Analysis
AGAT WORK ORDER: 18V422993
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

SAMPLING SITE:

DATE RECEIVED: 2018-12-20	Public Works PAH in Water Low Level

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
9802785 Sample container inappropriate as per analysis requirements.
Analysis performed at AGAT Vancouver (unless marked by *)

Certificate of Analysis
AGAT WORK ORDER: 18V422993
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

SAMPLED BY:

Certificate of Analysis

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 18V422993
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTENTION TO: Cheronne Oreiro SAMPLING SITE:

SAMPLED BY:

Dioxins and Furans (Water, WHO 2005)
 5)

DATE RECEIVED: 2018-12-20				DATE REPORTED: 2019-01-15
Surrogate	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: Acceptable Limits	EHWW-1DW- WATER Water 2018-12-19 9802785	
13C-2378-TCDF	\%	30-140	41	
13C-12378-PeCDF	\%	30-140	32	
13C-23478-PeCDF	\%	30-140	39	
13C-123478-HxCDF	\%	30-140	66	
$13 \mathrm{C}-123678-\mathrm{HxCDF}$	\%	30-140	72	
13C-234678-HxCDF	\%	30-140	70	
13C-123789-HxCDF	\%	30-140	63	
13C-1234678-HpCDF	\%	30-140	52	
13C-1234789-HpCDF	\%	30-140	57	
13C-2378-TCDD	\%	30-140	48	
13C-12378-PeCDD	\%	30-140	37	
13C-123478-HxCDD	\%	30-140	53	
$13 \mathrm{C}-123678$-HxCDD	\%	30-140	66	
13C-1234678-HpCDD	\%	30-140	51	
13C-OCDD	\%	30-140	30	

DATE RECEIVED: 2018-12-20				DATE REPORTED: 2019-01-15
Surrogate	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: Acceptable Limits	EHWW-1DW- WATER Water 2018-12-19 9802785	
13C-2378-TCDF	\%	30-140	41	
13C-12378-PeCDF	\%	30-140	32	
13C-23478-PeCDF	\%	30-140	39	
13C-123478-HxCDF	\%	30-140	66	
$13 \mathrm{C}-123678-\mathrm{HxCDF}$	\%	30-140	72	
13C-234678-HxCDF	\%	30-140	70	
13C-123789-HxCDF	\%	30-140	63	
13C-1234678-HpCDF	\%	30-140	52	
13C-1234789-HpCDF	\%	30-140	57	
13C-2378-TCDD	\%	30-140	48	
13C-12378-PeCDD	\%	30-140	37	
13C-123478-HxCDD	\%	30-140	53	
$13 \mathrm{C}-123678$-HxCDD	\%	30-140	66	
13C-1234678-HpCDD	\%	30-140	51	
13C-OCDD	\%	30-140	30	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
9802785 The results were corrected based on the surrogate percent recoveries
Analysis performed at AGAT Montreal (unless marked by *)

Certified By:

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

AGA WORK ORDER: 18V422993
ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Certified By:

GET QUALITY ASSURANCE REPORT (VB)
AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditation are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Unit 120, 8600 Glenlyon Parkway
Burnaby, British Columbia
CANADA V5J 0B6
TEL (778)452-4000
FAX (778)452-4074
http://www.agatlabs.com

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

GAT WORK ORDER: 18V422993
ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

GET QUALITY ASSURANCE REPORT (VB)

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

AGAT WORK ORDER: 18 V 422993
ATTENTION TO: Cheronne Oreiro
SAMPLED BY:

Ultra Trace Analysis															
RPT Date: Jan 15, 2019			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	$\underset{\text { Id }}{\text { Sample }}$	Dup \#1	Dup \#2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
								Lower	Upper		Lower	Upper		Lower	Upper
Dioxins and Furans (Water, WHO 2005)															
2,3,7,8-Tetra CDD	1	NA	NA	NA	0.0\%	<1	83\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
1,2,3,7,8-Penta CDD	1	NA	NA	NA	0.0\%	<2	92\%	70\%	130\%	NA	70\%	130\%	NA	70\%	130\%
1,2,3,4,7,8-Hexa CDD	1	NA	NA	NA	0.0\%	<2	100\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
1,2,3,6,7,8-Hexa CDD	1	NA	NA	NA	0.0\%	<2	91\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
1,2,3,7,8,9-Hexa CDD	1	NA	NA	NA	0.0\%	<2	102\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
1,2,3,4,6,7,8-Hepta CDD	1	NA	NA	NA	0.0\%	<2	99\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
Octa CDD	1	NA	NA	NA	0.0\%	< 3	104\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
2,3,7,8-Tetra CDF	1	NA	NA	NA	0.0\%	<0.7	98\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
1,2,3,7,8-Penta CDF	1	NA	NA	NA	0.0\%	< 0.5	116\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
2,3,4,7,8-Penta CDF	1	NA	NA	NA	0.0\%	< 0.4	117\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
1,2,3,4,7,8-Hexa CDF	1	NA	NA	NA	0.0\%	<0.8	112\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
1,2,3,6,7,8-Hexa CDF	1	NA	NA	NA	0.0\%	<0.8	117\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
2,3,4,6,7,8-Неха CDF	1	NA	NA	NA	0.0\%	<0.9	117\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
1,2,3,7,8,9-Неха CDF	1	NA	NA	NA	0.0\%	<2	107\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
1,2,3,4,6,7,8-Hepta CDF	1	NA	NA	NA	0.0\%	< 0.5	113\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
1,2,3,4,7,8,9-Hepta CDF	1	NA	NA	NA	0.0\%	< 1	113\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%
Octa CDF	1	NA	NA	NA	0.0\%	<0.9	76\%	40\%	130\%	NA	40\%	130\%	NA	40\%	130\%

Certified By:

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA PROJECT: 170553-11.05 EHRP Wood Debris Remediation SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Arsenic - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Barium - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001, } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Beryllium - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Boron - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Cadmium - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Chromium - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Cobalt - TCLP Leachate	MET-181-6102, LAB-181-4001	EPA 1311 and EPA 6020A	ICP-MS
Copper - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Iron - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Lead - TCLP Leachate	MET-181-6102, LAB-181-4001	EPA 1311 and EPA 6020A	ICP-MS
Mercury - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP/MS
Nickel - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Selenium - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Silver - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Thallium - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Uranium - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Vanadium - TCLP Leachate	MET-181-6102, LAB-181-4001	EPA 1311 and EPA 6020A	ICP-MS
Zinc - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Zirconium - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Aroclor 1242	TO-0400	EPA SW-846 8082	GC/ECD
Aroclor 1254	TO-0400	EPA SW-846 8082	GC/ECD
Aroclor 1260	TO-0400	EPA SW-846 8082	GC/ECD
Total Polychlorinated Biphenyls	TO-0400	EPA SW-846 8082	GC/ECD
Decachlorobiphenyl	TO-0400	EPA SW-846 8082	GC/ECD
Naphthalene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Quinoline	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Acenaphthylene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Acenaphthene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Fluorene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Phenanthrene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Anthracene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Acridine	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Fluoranthene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Pyrene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(a)anthracene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Chrysene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(b)fluoranthene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(j)fluoranthene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(k)fluoranthene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(a)pyrene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Indeno(1,2,3-c, d)pyrene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Dibenzo(a,h)anthracene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(g,h,i)perylene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
1-Methylnaphthalene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
2-Methylnaphthalene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Naphthalene - d8			GC/MS
2-Fluorobiphenyl	ORG-180-5133	Modified form BCMOE Lab Manual Section D (PAH)	GC/MS
P-Terphenyl - d14	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

AGAT WORK ORDER: 18V422993 ATTENTION TO: Cheronne Oreiro SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Ultra Trace Analysis			
2,3,7,8-Tetra CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDD	HR-151-5400	EPA 1613	HRMS
Octa CDD	HR-151-5400	EPA 1613	HRMS
2,3,7,8-Tetra CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDF	HR-151-5400	EPA 1613	HRMS
2,3,4,7,8-Penta CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDF	HR-151-5400	EPA 1613	HRMS
2,3,4,6,7,8-Hexa CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8,9-Hepta CDF	HR-151-5400	EPA 1613	HRMS
Octa CDF	HR-151-5400	EPA 1613	HRMS
Total Tetrachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total Pentachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total Hexachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total Heptachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total PCDDs	HR-151-5400	EPA 1613	HRMS
Total Tetrachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total Pentachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total Hexachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total Heptachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total PCDFs	HR-151-5400	EPA 1613	HRMS
2,3,7,8-Tetra CDD (TEF 1.0)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDD (TEF 1.0)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Неха CDD (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDD (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDD (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDD (TEF 0.01)	HR-151-5400	EPA 1613	HRMS
Octa CDD (TEF 0.0003)	HR-151-5400	EPA 1613	HRMS
2,3,7,8-Tetra CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDF (TEF 0.03)	HR-151-5400	EPA 1613	HRMS
2,3,4,7,8-Penta CDF (TEF 0.3)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDF (TEF 0.1)	HR_151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
2,3,4,6,7,8-Hexa CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDF (TEF 0.01)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8,9-Hepta CDF (TEF 0.01)	HR-151-5400	EPA 1613	HRMS
Octa CDF (TEF 0.0003)	HR-151-5400	EPA 1613	HRMS
Total PCDDs and PCDFs (TEQ)	HR-151-5400	EPA 1613	HRMS
13C-2378-TCDF	HR-151-5400	EPA 1613	HRMS
13C-12378-PeCDF	HR-151-5400	EPA 1613	HRMS
13C-23478-PeCDF	HR-151-5400	EPA 1613	HRMS
13C-123478-HxCDF	HR-151-5400	EPA 1613	HRMS

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
PROJECT: 170553-11.05 EHRP Wood Debris Remediation
SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
13C-123678-HxCDF	HR-151-5400	EPA 1613	HRMS
13C-234678-HxCDF	HR-151-5400	EPA 1613	HRMS
13C-123789-HxCDF	HR-151-5400	EPA 1613	HRMS
13C-1234678-HpCDF	HR-151-5400	EPA 1613	HRMS
13C-1234789-HpCDF	HR-151-5400	EPA 1613	HRMS
13C-2378-TCDD	HR-151-5400	EPA 1613	HRMS
13C-12378-PeCDD	HR-151-5400	EPA 1613	HRMS
13C-123478-HxCDD	HR-151-5400	EPA 1613	HRMS
13C-123678-HxCDD	HR-151-5400	EPA 1613	HRMS
13C-1234678-HpCDD	HR-151-5400	EPA 1613	HRMS
13C-OCDD	HR-151-5400	EPA 1613	HRMS

1 See project SAP/QAPP for analyte lists and test methods
2 Email sample confirmation report to labdata@anchorqea.com
Additional notes/comments:
\qquad
\qquad

0
0
0
0
0
$\stackrel{\rightharpoonup}{2}$
$\stackrel{\rightharpoonup}{2}$

\qquad
\qquad of \qquad

SAMPLE INTEGRITY RECEIPT FORM - BURNABY

Work Order \#_18V422993

Receiving Basics:

Received From: \qquad Waybill \#: \qquad
Sample Quantities:
Coolers: \qquad Containers: \qquad 1

Time Sensitive Issues:
Earliest Date Sampled:

$$
\operatorname{Dec} 19,2018
$$

ALREADY EXCEEDED? Yes

Non-Conformances:

3 temperatures of samples* and average of each cooler: (record differing temperatures on the CoD next to sample (D's) *use lars when available
(1) $0+0+3=1{ }^{\circ} \mathrm{C}(2) 1+0+1=0{ }^{\circ} \mathrm{C}(3) 0+0+4=2^{\circ} \mathrm{C}(4) \frac{0}{2}+\frac{0}{3}+\frac{0}{3 .}=\frac{0}{0}{ }^{\circ} \mathrm{C}$ Was ice or ice pack present: Xes No (5) $4+4+3=4 ;(6) 2+3+3=3 ;(7) 4+5 r 4 ; 4$ Integrity Issues:

$$
\text { (8) }-4+2+0=2
$$

\qquad
\qquad
\qquad

Account Project Manager: \qquad have they been notified of the above issues: Yes No
Whom spoken to: \qquad Date and Time: \qquad
Additional Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA 219-800 BURRARD ST VANCOUVER, BC V6Z OB9
 604-671-1831

ATTENTION TO: Evan Malczyk/Cheronne Oreiro
PROJECT:
AGAT WORK ORDER: 18 V 423749

SOIL ANALYSIS REVIEWED BY: Dana Solari, Lab Reporter
DATE REPORTED: Dec 31, 2018
PAGES (INCLUDING COVER): 6
VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (778) 452-4000

*NOTES

VERSION 1: Sample receipt temperature $6^{\circ} \mathrm{C}$.

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

Certificate of Analysis

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA
ATTENTION TO: Evan Malczyk/Cheronne Oreiro SAMPLING SITE: SAMPLED BY:

TCLP Leachate Metals							
DATE RECEIVED: 2018-12-21							DATE REPORTED: 2018-12-31
SA01 Disposal SA02 Disposal SA03 Disposal SAMPLE DESCRIPTION: Bin Soil Sample Bin Soil Sample Bin Soil Sample							
Antimony - TCLP Leachate	mg/L		0.01	<0.01	<0.01	<0.01	
Arsenic - TCLP Leachate	mg / L		0.02	<0.02	<0.02	<0.02	
Barium - TCLP Leachate	mg / L		0.5	<0.5	<0.5	<0.5	
Beryllium - TCLP Leachate	mg / L		0.02	<0.02	<0.02	<0.02	
Boron - TCLP Leachate	mg / L		0.5	<0.5	<0.5	<0.5	
Cadmium - TCLP Leachate	mg / L		0.01	0.01	<0.01	<0.01	
Chromium - TCLP Leachate	mg / L		0.01	<0.01	<0.01	<0.01	
Cobalt - TCLP Leachate	mg / L		0.05	<0.05	<0.05	<0.05	
Copper - TCLP Leachate	mg / L		0.05	0.06	0.05	0.08	
Iron - TCLP Leachate	mg / L		1	5	5	5	
Lead - TCLP Leachate	mg / L		0.01	0.03	0.02	0.03	
Mercury - TCLP Leachate	mg / L		0.01	<0.01	<0.01	<0.01	
Nickel - TCLP Leachate	mg / L		0.05	<0.05	<0.05	<0.05	
Selenium - TCLP Leachate	mg / L		0.05	<0.05	<0.05	<0.05	
Silver - TCLP Leachate	mg / L		0.01	<0.01	<0.01	<0.01	
Thallium - TCLP Leachate	mg / L		0.01	<0.01	<0.01	<0.01	
Uranium - TCLP Leachate	mg / L		0.01	<0.01	<0.01	<0.01	
Vanadium - TCLP Leachate	mg / L		0.05	<0.05	<0.05	<0.05	
Zinc - TCLP Leachate	mg / L		0.1	<0.1	<0.1	<0.1	
Zirconium - TCLP Leachate	mg / L		0.01	<0.01	<0.01	<0.01	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
9809296-9809298 Analysis based on "as received"
Analysis performed at AGAT Vancouver (unless marked by *)

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA PROJECT:

SAMPLING SITE:

AGA WORK ORDER: 18 V 423749
ATTENTION TO: Evan Malczyk/Cheronne Oreiro
SAMPLED BY:

Comments: RDs are calculated using raw analytical data and not the rounded duplicate values reported.

Certified By:

GET QUALITY ASSURANCE REPORT (Vi)
Page 3 of 6
AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditation are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA PROJECT:

SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony - TCLP Leachate	MET-181-6102, LAB-181-4001	EPA 1311 and EPA 6020A	ICP-MS
Arsenic - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Barium - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Beryllium - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Boron - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Cadmium - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Chromium - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Cobalt - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Copper - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Iron - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Lead - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Mercury - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP/MS
Nickel - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Selenium - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Silver - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Thallium - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001, } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Uranium - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Vanadium - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS
Zinc - TCLP Leachate	MET-181-6102, LAB-181-4001	EPA 1311 and EPA 6020A	ICP-MS
Zirconium - TCLP Leachate	$\begin{aligned} & \text { MET-181-6102, } \\ & \text { LAB-181-4001 } \end{aligned}$	EPA 1311 and EPA 6020A	ICP-MS

FGFT
 Laboratories

Chain of Custody Record

Report Information	
1．	Name：
\quad Email：	
2．	Name：
\quad Email：	

Requirements（Please Check）

$\square B C$ CSR Soil

\square BC CSR－Water
$\square \mathrm{AL}$ ロDW
$\square \mathrm{IL}$
$\square \mathrm{PL}$ $\square A W$
$\square \mathrm{CL}$ ロIW
$\square R L-L D \square R L-H D$

$$
\square W L-N \square W L-R
$$

Schedule 3.3 （Please Specify） $\square \mathrm{LW}$
CCME (Please Specify)

Other（Please Specify）

Laboratory Use Only

Arrival Temperature： AGAT Job Number：

Turnaround Time Required（TAT）
Regular TAT $\square 5$ to 7 working days
Rush TAT \square Day 2－100\％
\square Day 3－50\％
－Day 4－25\％
Date Required：
PLEASE CONTACT LABORATORY IF RUSH REQUIRED SAMPLE SUBMISSION CUT OFF FOR EFFEGTIVE DATE BY 3 PM
（

(F) (5) 5 Laboratories

SAMPLE INTEGRITY RECEIPT FORM - BURNABY
Work Order \# \square
Receiving Basics:
Received From:

Client

Sample Quantities:
Coolers: \qquad Containers: 3

Time Sensitive Issues:
Earliest Date Sampled: \qquad ALREADY EXCEEDED?

Non-Conformances:
3 temperatures of samples* and average of each cooler: (record differing temperatures on the CoCo next to sample ID's) *use jars when available
(1) $6+6+6=6{ }^{\circ} \mathrm{C}$ (2) \qquad $+\ldots=$ \qquad ${ }^{\circ} \mathrm{C}(3)$ \qquad $+$ $+\ldots=$ \qquad ${ }^{\circ} \mathrm{C}(4)$ \qquad $\ldots+$ \qquad
\qquad

Was ice or ice pack present: Integrity Issues:
\qquad

Appendix C Data Validation Reports

Data Validation Report - EPA Stage 2A

Project: Wood Waste Remediation Project

Project Number: 170553-11.05
This report summarizes the review of analytical results for 15 sediment samples and one field duplicate collected on October 1, 2, 3, and 4, 2018. The samples were collected by Anchor QEA and submitted to AGAT Laboratories (AGAT) in Burnaby, British Columbia, Canada. The samples were analyzed for the following parameters:

- Polycyclic aromatic hydrocarbons (PAHs) by laboratory standard operating procedure ORG-180-5102, section D.
- Polychlorinated biphenyl Aroclors (PCBs) by U.S. Environmental Protection Agency (USEPA) method 8082
- Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCD/F) by USEPA method 1613
- Metals by USEPA methods 6010C and 6020A
- pH by laboratory standard operating procedure INOR-181-6031 which is equivalent to standard method 4500-HB

AGAT sample data group number 18V394408 was reviewed in this report. Sample IDs, matrices, and analyses are presented in Table 1.

Table 1
Sample IDs, Matrices, and Analyses

Sample ID	Lab Sample ID	Matrix	Analyses
EHWW-04-SG-000010	9606466	Sediment	PAHs, PCBs, metals, PCD/F, pH
EHWW-06-SG-000010	9606472	Sediment	PAHs, PCBs, metals, PCD/F, pH
EHWW-09-SG-000010	9606473	Sediment	PAHs, PCBs, metals, PCD/F, pH
EHWW-10-SG-000010	9606465	Sediment	PAHs, PCBs, metals, PCD/F, pH
EHWW-14-SG-000010	9606462	Sediment	PAHs, PCBs, metals, PCD/F, pH
EHWW-148-SG-000010	9606471	Sediment	PAHs, PCBs, metals, PCD/F, pH
EHWW-18-SG-000010	9606467	Sediment	PAHs, PCBs, metals, PCD/F, pH
EHWW-19-SG-000010	9606468	Sediment	PAHs, PCBs, metals, PCD/F, pH
EHWW-30-SG-000010	9606464	Sediment	PAHs, PCBs, metals, PCD/F, pH
EHWW-33-SG-000010	9606463	Sediment	PAHs, PCBs, metals, PCD/F, pH
EHWW-39-SG-000010	9606474	Sediment	PAHs, PCBs, metals, PCD/F, pH
EHWW-42-SG-000010	9606469	Sediment	PAHs, PCBs, metals, PCD/F, pH
EHWW-44-SG-000010	9606461	Sediment	PAHs, PCBs, metals, PCD/F, pH
EHWW-45-SG-000010	9606460	Sediment	PAHs, PCBs, metals, PCD/F, pH
EHWW-46-SG-000010	9606459	Sediment	PAHs, PCBs, metals, PCD/F, pH
EHWW-48-SG-000010	9606470	Sediment	PAHs, PCBs, metals, PCD/F, pH

Data Validation and Qualifications

The following comments refer to the laboratory's performance in meeting the quality assurance/quality control (QC) guidelines outlined in the analytical procedures. Laboratory results were reviewed using the laboratory control limits and the following guidelines:

- Esquimalt Harbour Remediation Project, Sampling and Analysis Plan Wood Debris Remediation and Habitat Restoration Support (SAP; Anchor QEA, 2018)
- USEPA 1986 (SW-846, Third Edition), Test M ethods for Evaluating Solid Waste: Physical/Chemical M ethods.
- USEPA Contract Laboratory Program National Functional Guidelines for High Resolution Superfund Methods Data Review (USEPA 2016)
- USEPA National Functional Guidelines for Superfund Organic M ethods Data Review (USEPA 2017a)
- USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA 2017b)

Unless noted in this report, laboratory results for the samples listed above were within QC criteria.

Field Documentation

Field documentation was checked for completeness and accuracy. The chain-of-custody forms were signed by AGAT at the time of sample receipt. Samples were received within the correct temperature range and in good condition.

Holding Times and Sample Preservation

Samples were appropriately preserved and analyzed within holding times.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the required frequencies. All method blanks were free of target analytes.

Field Quality Control

Field Duplicates

One field duplicate was collected in association with this sample set. Detected results are summarized in Table 2.

Table 2
Field Duplicate Summary

Analyte	EHWW-48-SG-000010	EHWW-148-SG-000010	RPD
Fluoranthene	$0.11 \mu \mathrm{~g} / \mathrm{g}$	$0.53 \mu \mathrm{~g} / \mathrm{g}$	131.3\%
Pyrene	$0.13 \mu \mathrm{~g} / \mathrm{g}$	$0.45 \mu \mathrm{~g} / \mathrm{g}$	110.3\%
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	$12 \mathrm{ng} / \mathrm{kg}$	$10 \mathrm{ng} / \mathrm{kg}$	18.2\%
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	$121 \mathrm{ng} / \mathrm{kg}$	$123 \mathrm{ng} / \mathrm{kg}$	1.6\%
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	$19 \mathrm{ng} / \mathrm{kg}$	$16 \mathrm{ng} / \mathrm{kg}$	17.1\%
Total Heptachlorodibenzofuran (HpCDF)	$33 \mathrm{ng} / \mathrm{kg}$	$29 \mathrm{ng} / \mathrm{kg}$	12.9\%
Total Heptachlorodibenzo-p-dioxin (HpCDD)	$35 \mathrm{ng} / \mathrm{kg}$	$74 \mathrm{ng} / \mathrm{kg}$	71.6\%
Total Hexachlorodibenzofuran (HxCDF)	$9 \mathrm{ng} / \mathrm{kg}$	$10 \mathrm{ng} / \mathrm{kg}$	10.5\%
Total Hexachlorodibenzo-p-dioxin (HxCDD)	$19 \mathrm{ng} / \mathrm{kg}$	$24 \mathrm{ng} / \mathrm{kg}$	23.3\%
Total Pentachlorodibenzo-p-dioxin (PeCDD)	$14.3 \mathrm{ng} / \mathrm{kg}$	$11 \mathrm{ng} / \mathrm{kg}$	26.1\%
Total Tetrachlorodibenzo-p-dioxin (TCDD)	$1.5 \mathrm{ng} / \mathrm{kg}$	$2.4 \mathrm{ng} / \mathrm{kg}$	46.2\%
Total Tetra-Furans	$6.1 \mathrm{ng} / \mathrm{kg}$	$4.5 \mathrm{ng} / \mathrm{kg}$	30.2\%
pH	7.3 unitless	7.3 unitless	0.0\%
Aluminum	$16100 \mu \mathrm{~g} / \mathrm{g}$	$15100 \mu \mathrm{~g} / \mathrm{g}$	6.4\%
Calcium	$7550 \mu \mathrm{~g} / \mathrm{g}$	$7750 \mu \mathrm{~g} / \mathrm{g}$	2.6\%
Iron	$24700 \mu \mathrm{~g} / \mathrm{g}$	$24000 \mu \mathrm{~g} / \mathrm{g}$	2.9\%
Magnesium	$10700 \mu \mathrm{~g} / \mathrm{g}$	$10700 \mu \mathrm{~g} / \mathrm{g}$	0.0\%
Phosphorus	$1170 \mu \mathrm{~g} / \mathrm{g}$	$1190 \mu \mathrm{~g} / \mathrm{g}$	1.7\%
Potassium	$3010 \mu \mathrm{~g} / \mathrm{g}$	$2940 \mu \mathrm{~g} / \mathrm{g}$	2.4\%
Sodium	$25400 \mu \mathrm{~g} / \mathrm{g}$	$27000 \mu \mathrm{~g} / \mathrm{g}$	6.1\%
Titanium	$1200 \mu \mathrm{~g} / \mathrm{g}$	$1160 \mu \mathrm{~g} / \mathrm{g}$	3.4\%
Arsenic	$14.9 \mu \mathrm{~g} / \mathrm{g}$	$18.4 \mu \mathrm{~g} / \mathrm{g}$	21.0\%
Barium	43.1 رg/g	$40.9 \mu \mathrm{~g} / \mathrm{g}$	5.2\%
Cadmium	$4.4 \mu \mathrm{~g} / \mathrm{g}$	$4.35 \mu \mathrm{~g} / \mathrm{g}$	1.1\%
Chromium	$35 \mu \mathrm{~g} / \mathrm{g}$	$35 \mu \mathrm{~g} / \mathrm{g}$	0.0\%
Cobalt	$6.6 \mu \mathrm{~g} / \mathrm{g}$	$6.4 \mu \mathrm{~g} / \mathrm{g}$	3.1\%
Copper	$60.8 \mu \mathrm{~g} / \mathrm{g}$	$60.7 \mu \mathrm{~g} / \mathrm{g}$	0.2\%
Lead	$25.4 \mu \mathrm{~g} / \mathrm{g}$	24.1 /g/g	5.3\%
Lithium	$20.4 \mu \mathrm{~g} / \mathrm{g}$	$18.6 \mu \mathrm{~g} / \mathrm{g}$	9.2\%
Manganese	$179 \mu \mathrm{~g} / \mathrm{g}$	$173 \mu \mathrm{~g} / \mathrm{g}$	3.4\%
Mercury	$0.33 \mu \mathrm{~g} / \mathrm{g}$	$0.34 \mu \mathrm{~g} / \mathrm{g}$	3.0\%
M olybdenum	$6.7 \mu \mathrm{~g} / \mathrm{g}$	$6.3 \mu \mathrm{~g} / \mathrm{g}$	6.2\%
Nickel	$23.8 \mu \mathrm{~g} / \mathrm{g}$	$23.8 \mu \mathrm{~g} / \mathrm{g}$	0.0\%
Selenium	$2 \mu \mathrm{~g} / \mathrm{g}$	$2.1 \mu \mathrm{~g} / \mathrm{g}$	4.9\%
Strontium	$59 \mu \mathrm{~g} / \mathrm{g}$	$60 \mu \mathrm{~g} / \mathrm{g}$	1.7\%
Tin	$3.4 \mu \mathrm{~g} / \mathrm{g}$	$3.5 \mu \mathrm{~g} / \mathrm{g}$	2.9\%
Uranium (Uranium 238)	$2.6 \mu \mathrm{~g} / \mathrm{g}$	$2.5 \mu \mathrm{~g} / \mathrm{g}$	3.9\%
Vanadium	$53 \mu \mathrm{~g} / \mathrm{g}$	$52 \mu \mathrm{~g} / \mathrm{g}$	1.9\%
Zinc	$121 \mu \mathrm{~g} / \mathrm{g}$	$119 \mu \mathrm{~g} / \mathrm{g}$	1.7\%
Zirconium	$6.1 \mu \mathrm{~g} / \mathrm{g}$	$5.9 \mu \mathrm{~g} / \mathrm{g}$	3.3\%

Notes:
$\mu \mathrm{g} / \mathrm{g}$: microgram per gram
ng/kg: nanogram per kilogram

Result values less than five times the reporting limit (RL) may have exaggerated relative percent difference (RPD) values; therefore, the values were not evaluated. All RPD values were within control limits with the exceptions of the fluoranthene, pyrene, and total HpCDD RPD values. Both parent and duplicate results for these analytes were qualified " J " to indicate estimated values. Table 3 summarizes qualified results.

Surrogate Recoveries

Surrogate recoveries were within the laboratory control limits.

Laboratory Control Samples

Laboratory control samples (LCS) were analyzed at the required frequencies or certified reference materials were analyzed in place of LCSs. All LCS recoveries were within laboratory-required control limits.

Matrix Spike and Matrix Spike Duplicate Samples

Matrix spike (MS) and matrix spike duplicate (MSD) samples were analyzed at the required frequency and resulted in recoveries and/or RPD values within laboratory-required control limits.

Laboratory Duplicates

Laboratory duplicates were analyzed at the required frequency. Result values less than five times the RL may have exaggerated RPD values; therefore, the values were not evaluated. All duplicate RPD values were within laboratory control limits.

Certified Reference Material

Certified reference materials (CRM s) were analyzed and reported as QC standards. CRM results were reported as percent recoveries so could not be evaluated based on true values and confidence intervals. CRM s were instead evaluated against laboratory control limits. CRM analyses resulted in recoveries within laboratory control limits.

Reporting Limits

Reporting limits were acceptable as reported. All values were reported using the laboratory reporting limits. Values were reported as undiluted or when diluted, the reporting limit reflects the dilution factor.

Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical methods and all requested sample analyses were completed. Accuracy was acceptable as demonstrated by the
surrogate, LCS, MS/MSD, and CRM recovery values. Precision was acceptable as demonstrated by the MS/MSD and laboratory and field duplicate RPD values, with exceptions noted above. Most data are acceptable as reported, all other data are acceptable as qualified. Table 3 summarizes the qualifiers applied to the sample results reviewed in this report.

Data Qualifier Definitions

J Indicates an estimated value.

Table 3

Data Qualification Summary

Sample ID	Parameter	Analyte	Reported Result	Qualified Result	Reason
$\begin{aligned} & \text { EHWW-48- } \\ & \text { SG-000010 } \end{aligned}$	PAHs	Fluoranthene	$0.11 \mu \mathrm{~g} / \mathrm{g}$	$0.11 \mathrm{j} \mu \mathrm{g} / \mathrm{g}$	Field duplicate RPD above control limit
		Pyrene	$0.13 \mu \mathrm{~g} / \mathrm{g}$	0.13 $\mu \mathrm{g} / \mathrm{g}$	
	PDC/F	Total Heptachlorodibenzo-p-dioxin (HpCDD)	$35 \mathrm{ng} / \mathrm{kg}$	35J ng/kg	
$\begin{aligned} & \text { EHWW-148- } \\ & \text { SG-000010 } \end{aligned}$	PAHs	Benzo(b)fluoranthene	$0.21 \mu \mathrm{~g} / \mathrm{g}$	$0.21 \mathrm{j} \mu \mathrm{g} / \mathrm{g}$	Field duplicate RPD above control limit
		Fluoranthene	$0.53 \mu \mathrm{~g} / \mathrm{g}$	$0.53 \mathrm{~J} \mu \mathrm{~g} / \mathrm{g}$	
		Pyrene	$0.45 \mu \mathrm{~g} / \mathrm{g}$	$0.45 \mathrm{Jg} / \mathrm{g}$	
	PDC/F	Total Heptachlorodibenzo-p-dioxin (HpCDD)	$74 \mathrm{ng} / \mathrm{kg}$	$74 \mathrm{Jg} / \mathrm{kg}$	

Notes:
$\mu \mathrm{g} / \mathrm{g}$: microgram per gram
ng/kg: nanogram per kilogram

References

Anchor QEA, 2018. Sampling and Analysis Plan, Wood Debris Remediation and Habitat Restoration Support, Esquimalt Harbour Remediation Project. September 2018.

USEPA. 1986. Test methods for Evaluating Solid Waste: Physical/Chemical M ethods.
U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA-530/SW-846.

USEPA. 2016. USEPA Contract Laboratory Program National Functional Guidelines for High Resolution Superfund M ethods Data Review. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. EPA 542-B-16-001. April 2016.

USEPA. 2017a. National Functional Guidelines for Superfund Organic Methods Data Review. Office of Superfund Remediation and Technology Innovation. United States Environmental Protection Agency. EPA-540-R-2017-002. January 2017.

USEPA 2017b. National Functional Guidelines for Inorganic Superfund Data Review. Office of Superfund Remediation and Technology Innovation. United States Environmental Protection Agency. EPA-540-R-2017-001. January 2017.

Data Validation Report - EPA Stage 2A

Project: Wood Waste Remediation Project

Project Number: 170553-11.05
This report summarizes the review of analytical results for nine sediment samples and one field duplicate collected on December 17, 18, and 19, 2018. The samples were collected by Anchor QEA and submitted to AGAT Laboratories (AGAT) in Burnaby, British Columbia, Canada. The samples were analyzed for the following parameters:

- Polycyclic aromatic hydrocarbons (PAHs) by laboratory standard operating procedure (SOP) ORG-180-5102, section D.
- Polychlorinated biphenyl Aroclors (PCBs) by U.S. Environmental Protection Agency (USEPA) method 8082
- Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCD/F) by USEPA method 1613
- Metals by USEPA methods 6010C and 6020A
- pH by laboratory SOP INOR-181-6031 which is equivalent to standard method (SM) 4500-HB
- Total organic carbon (TOC) by laboratory SOP INOR-181-6027
- Total solids (TS) by laboratory SOP INOR 181-6024.002 which is equivalent to SM 2540G

AGAT sample data group (SDG) number 18V422808 was reviewed in this report. Sample IDs, matrices, and analyses are presented in Table 1.

Table 1
Sample IDs, Matrices, and Analyses

Sample ID	Lab Sample ID	Matrix	Analyses
EHWW-03-SC-000050	9801861	Sediment	PAHs, PCBs, metals, PCD/F, TOC, TS, pH
EHWW-165-SC-000050	9801868	Sediment	PAHs, PCBs, metals, PCD/F, TOC, TS, pH
EHWW-36-SC-000050	9801856	Sediment	PAHs, PCBs, metals, PCD/F, TOC, TS, pH
EHWW-38-SC-000050	9801864	Sediment	PAHs, PCBs, metals, PCD/F, TOC, TS, pH
EHWW-40-SC-000050	9801865	Sediment	PAHs, PCBs, metals, PCD/F, TOC, TS, pH
EHWW-53-SC-000016	9801869	Sediment	PAHs, PCBs, metals, PCD/F, TOC, TS, pH
EHWW-54-SC-000050	9801866	Sediment	PAHs, PCBs, metals, PCD/F, TOC, TS, pH
EHWW-56-SC-000050	9801863	Sediment	PAHs, PCBs, metals, PCD/F, TOC, TS, pH
EHWW-57-SC-000050	9801862	Sediment	PAHs, PCBs, metals, PCD/F, TOC, TS, pH
EHWW-65-SC-000050	9801867	Sediment	PAHs, PCBs, metals, PCD/F, TOC, TS, pH

Data Validation and Qualifications

The following comments refer to the laboratory's performance in meeting the quality assurance/quality control (QA/QC) guidelines outlined in the analytical procedures. Laboratory results were reviewed using the laboratory control limits and the following guidelines:

- Esquimalt Harbour Remediation Project, Sampling and Analysis Plan Wood Debris Remediation and Habitat Restoration Support (SAP; Anchor QEA, 2018)
- USEPA 1986 (SW-846, Third Edition), Test M ethods for Evaluating Solid Waste: Physical/Chemical M ethods.
- USEPA Contract Laboratory Program National Functional Guidelines for High Resolution Superfund M ethods Data Review (USEPA 2016)
- USEPA National Functional Guidelines for Superfund Organic M ethods Data Review (USEPA 2017a)
- USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA 2017b)

Unless noted in this report, laboratory results for the samples listed above were within QC criteria.

Field Documentation

Field documentation was checked for completeness and accuracy. The chain-of-custody forms were signed by AGAT at the time of sample receipt. Samples were received within the correct temperature range and in good condition.

Holding Times and Sample Preservation

Samples were appropriately preserved and analyzed within holding times.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the required frequencies. All method blanks were free of target analytes.

Field Quality Control

Field Duplicates

One field duplicate was collected in association with this sample set. Detected results are summarized in Table 2.

Table 2

Field Duplicate Summary

Analyte	EHWW-65-SC-000050	EHWW-165-SC-000050	RPD
Total organic carbon	1.28 \%	1.33 \%	3.8\%
Total Solids	70 \%	70 \%	0.0\%
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	$61 \mathrm{ng} / \mathrm{kg}$	$79 \mathrm{ng} / \mathrm{kg}$	25.7\%
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	$12 \mathrm{ng} / \mathrm{kg}$	$17.5 \mathrm{ng} / \mathrm{kg}$	37.3\%
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	$10 \mathrm{ng} / \mathrm{kg}$	$10 \mathrm{ng} / \mathrm{kg}$	0.0\%
Total Heptachlorodibenzofuran (HpCDF)	$20 \mathrm{ng} / \mathrm{kg}$	$28 \mathrm{ng} / \mathrm{kg}$	33.3\%
Total Heptachlorodibenzo-p-dioxin (HpCDD)	$25 \mathrm{ng} / \mathrm{kg}$	$14 \mathrm{ng} / \mathrm{kg}$	56.4\%
Total Hexachlorodibenzofuran (HxCDF)	$9.4 \mathrm{ng} / \mathrm{kg}$	$12.7 \mathrm{ng} / \mathrm{kg}$	29.9\%
Total Tetra-Furans	$8 \mathrm{ng} / \mathrm{kg}$	$7.2 \mathrm{ng} / \mathrm{kg}$	10.5\%
pH	8 SU	8 SU	0.0\%
Aluminum	$8210 \mu \mathrm{~g} / \mathrm{g}$	$8600 \mu \mathrm{~g} / \mathrm{g}$	4.6\%
Calcium	$8160 \mu \mathrm{~g} / \mathrm{g}$	$7430 \mu \mathrm{~g} / \mathrm{g}$	9.4\%
Iron	$11900 \mu \mathrm{~g} / \mathrm{g}$	$12500 \mu \mathrm{~g} / \mathrm{g}$	4.9\%
M agnesium	$4090 \mu \mathrm{~g} / \mathrm{g}$	$4160 \mu \mathrm{~g} / \mathrm{g}$	1.7\%
Phosphorus	$617 \mu \mathrm{~g} / \mathrm{g}$	$731 \mu \mathrm{~g} / \mathrm{g}$	16.9\%
Potassium	$863 \mu \mathrm{~g} / \mathrm{g}$	$885 \mu \mathrm{~g} / \mathrm{g}$	2.5\%
Sodium	$5580 \mu \mathrm{~g} / \mathrm{g}$	$5250 \mu \mathrm{~g} / \mathrm{g}$	6.1\%
Titanium	$859 \mu \mathrm{~g} / \mathrm{g}$	$943 \mu \mathrm{~g} / \mathrm{g}$	9.3\%
Arsenic	$7.5 \mu \mathrm{~g} / \mathrm{g}$	$7 \mu \mathrm{~g} / \mathrm{g}$	6.9\%
Barium	$20.2 \mu \mathrm{~g} / \mathrm{g}$	$21.1 \mu \mathrm{~g} / \mathrm{g}$	4.4\%
Cadmium	$4.3 \mu \mathrm{~g} / \mathrm{g}$	$4.92 \mu \mathrm{~g} / \mathrm{g}$	13.4\%
Chromium	$18 \mu \mathrm{~g} / \mathrm{g}$	$18 \mu \mathrm{~g} / \mathrm{g}$	0.0\%
Cobalt	$3.8 \mu \mathrm{~g} / \mathrm{g}$	$4 \mu \mathrm{~g} / \mathrm{g}$	5.1\%
Copper	$20.7 \mu \mathrm{~g} / \mathrm{g}$	$21.7 \mu \mathrm{~g} / \mathrm{g}$	4.7\%
Lead	$9.6 \mu \mathrm{~g} / \mathrm{g}$	$10.4 \mu \mathrm{~g} / \mathrm{g}$	8.0\%
Lithium	$9.4 \mu \mathrm{~g} / \mathrm{g}$	$10.5 \mu \mathrm{~g} / \mathrm{g}$	11.1\%
Manganese	$133 \mu \mathrm{~g} / \mathrm{g}$	$142 \mu \mathrm{~g} / \mathrm{g}$	6.5\%
M ercury	$0.22 \mu \mathrm{~g} / \mathrm{g}$	$0.29 \mu \mathrm{~g} / \mathrm{g}$	27.5\%
Molybdenum	$2.7 \mu \mathrm{~g} / \mathrm{g}$	$2.6 \mu \mathrm{~g} / \mathrm{g}$	3.8\%
Nickel	$13.6 \mu \mathrm{~g} / \mathrm{g}$	$13.3 \mu \mathrm{~g} / \mathrm{g}$	2.2\%
Selenium	$1 \mu \mathrm{~g} / \mathrm{g}$	$0.8 \mu \mathrm{~g} / \mathrm{g}$	22.2\%
Strontium	$49 \mu \mathrm{~g} / \mathrm{g}$	$48 \mu \mathrm{~g} / \mathrm{g}$	2.1\%
Thallium	$0.7 \mu \mathrm{~g} / \mathrm{g}$	$0.8 \mu \mathrm{~g} / \mathrm{g}$	13.3\%
Tin	$1.4 \mu \mathrm{~g} / \mathrm{g}$	$1.6 \mu \mathrm{~g} / \mathrm{g}$	13.3\%
Uranium (Uranium 238)	$1.1 \mu \mathrm{~g} / \mathrm{g}$	$1 \mu \mathrm{~g} / \mathrm{g}$	9.5\%
Vanadium	$38 \mu \mathrm{~g} / \mathrm{g}$	$38 \mu \mathrm{~g} / \mathrm{g}$	0.0\%
Zinc	$56 \mu \mathrm{~g} / \mathrm{g}$	$58 \mu \mathrm{~g} / \mathrm{g}$	3.5\%
Zirconium	$4 \mu \mathrm{~g} / \mathrm{g}$	$4.3 \mu \mathrm{~g} / \mathrm{g}$	7.2\%

Notes:
$\mu \mathrm{g} / \mathrm{g}$: microgram per gram
$\mathrm{ng} / \mathrm{kg}$: nanogram per gram
RPD: relative percent difference

Result values less than five times the reporting limit (RL) may have exaggerated relative percent difference (RPD) values; therefore, the values were not evaluated. All RPD values were within control limits with the exception of the total HpCDD RPD value. Both parent and duplicate results for this analyte were qualified " "" to indicate estimated values. Table 3 summarizes qualified results.

Surrogate Recoveries

Surrogate recoveries were within the laboratory control limits.

Laboratory Control Samples

Laboratory control samples (LCS) were analyzed at the required frequencies or certified reference materials were analyzed in place of LCSs. All LCS recoveries were within laboratory-required control limits.

Matrix Spike and Matrix Spike Duplicate Samples

Matrix spike (MS) and matrix spike duplicate (MSD) samples were analyzed at the required frequency and resulted in recoveries and/or RPD values within laboratory-required control limits.

Laboratory Duplicates

Laboratory duplicates were analyzed at the required frequency. Result values less than five times the RL may have exaggerated RPD values; therefore, the values were not evaluated. All duplicate RPD values were within laboratory control limits.

Certified Reference Material

Certified reference materials (CRMs) were analyzed and reported as quality control (QC) standards. CRM results were reported as percent recoveries so could not be evaluated based on true values and confidence intervals. CRM s were instead evaluated against laboratory control limits. CRM analyses resulted in recoveries within laboratory control limits.

Reporting Limits

Reporting limits were acceptable as reported. All values were reported using the laboratory reporting limits. Values were reported as undiluted or when diluted, the reporting limit reflects the dilution factor.

Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical methods and all requested sample analyses were completed. Accuracy was acceptable as demonstrated by the surrogate, LCS, MS/MSD, and CRM recovery values. Precision was acceptable as demonstrated by the

MS/MSD and laboratory and field duplicate RPD values, with exceptions noted above. Most data are acceptable as reported, all other data are acceptable as qualified. Table 3 summarizes the qualifiers applied to the sample results reviewed in this report.

Data Qualifier Definitions

J Indicates an estimated value.

Table 3
Data Qualification Summary

Sample ID	Parameter	Analyte	Reported Result	Qualified Result	Reason
EHWW-65-SC- 000050	PCD/F	Total Heptachlorodibenzo- p-dioxin (HpCDD)	$25 \mathrm{ng} / \mathrm{kg}$	$25 \mathrm{Jg} / \mathrm{kg}$	Field duplicate RPD above control limit
EHWW-165-SC- 000050	PCD/F	Total Heptachlorodibenzo- p-dioxin (HpCDD)	$14 \mathrm{ng} / \mathrm{kg}$	$14 \mathrm{~J} \mathrm{ng} / \mathrm{kg}$	Field duplicate RPD above control limit

Notes:
ng/kg: nanogram per kilogram
RPD: relative percent difference

References

Anchor QEA, 2018. Sampling and Analysis Plan, Wood Debris Remediation and Habitat Restoration Support, Esquimalt Harbour Remediation Project. September 2018.

USEPA. 1986. Test methods for Evaluating Solid Waste: Physical/Chemical M ethods.
U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

EPA-530/SW-846.
USEPA. 2016. USEPA Contract Laboratory Program National Functional Guidelines for High Resolution Superfund M ethods Data Review. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. EPA 542-B-16-001. April 2016.

USEPA. 2017a. National Functional Guidelines for Superfund Organic Methods Data Review. Office of Superfund Remediation and Technology Innovation. United States Environmental Protection Agency. EPA-540-R-2017-002. January 2017.

USEPA 2017b. National Functional Guidelines for Inorganic Superfund Data Review. Office of Superfund Remediation and Technology Innovation. United States Environmental Protection Agency. EPA-540-R-2017-001. January 2017.

Data Validation Report - EPA Stage 2A

Project: Wood Waste Remediation Project

Project Number: 170553-11.05
This report summarizes the review of analytical results for fourteen sediment samples and one field duplicate sample collected on December 16, 17, and 18, 2018. The samples were collected by Anchor QEA and submitted to AGAT Laboratories (AGAT) in Burnaby, British Columbia, Canada. The samples were analyzed for the following parameters:

- Polycyclic aromatic hydrocarbons (PAHs) by laboratory standard operating procedure (SOP) ORG-180-5102, section D.
- Polychlorinated biphenyl Aroclors (PCBs) by U.S. Environmental Protection Agency (USEPA) method 8082
- Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCD/F) by USEPA method 1613
- Metals by USEPA methods 6010C and 6020A
- pH by laboratory SOP INOR-181-6031 which is equivalent to standard method (SM) 4500-HB
- Total organic carbon (TOC) by laboratory SOP INOR-181-6027
- Total solids (TS) by laboratory SOP INOR 181-6024.002 which is equivalent to SM 2540G
- Ammonia (NH3) by Standard M ethod (SM) 4500-NH3E
- M oisture by laboratory SOP INOR-181-6030
- Grain size by laboratory SOP IN OR-171-6009
- Atterberg limits by ASTM International method D4318-00
- Sulphide (S2) calculated using methods ASTM International method E1915-11-modified, and SM 4500-SO4E-modified
- Total volatile solids (TVS) by ASTM International method D2974-07a

AGAT sample data group (SDG) number 18V4422820 was reviewed in this report. Sample IDs, matrices, and analyses are presented in Table 1.

Table 1
Sample IDs, Matrices, and Analyses

Sample ID	Lab Sample ID	M atrix	Analyses
EHWW-58-SC-361411	9801887	Sediment	PAHs, PCBs, metals, PCD/F, TOC, TS, pH, S2, NH3, TVS, grain size
EHWW-58-SC-411461	9801889	Sediment	M oisture, Atterberg limits
EHWW-36-SC-183233	9801891	Sediment	PAHs, PCBs, metals, PCD/F, TOC, TS, pH, S2, NH3, TVS, grain size
EHWW-03-SC-000050	9801896	Sediment	S2, grain size
EHWW-03-SC-150200	9801899	Sediment	PAHs, PCBs, metals, PCD/F, TOC, TS, pH, S2, NH3, TVS, grain size, moisture, Atterberg limits

Sample ID	Lab Sample ID	Matrix	Analyses			
EHWW-57-SC-000050	9801925	Sediment	S2, grain size			
EHWW-56-SC-000050	9801928	Sediment	Grain size			
EHWW-38-SC-000050	9801932	Sediment	S2, grain size, moisture, Atterberg limits			
EHWW-38-SC-050100	9801935	Sediment	PAHs, PCBs, metals, PCD/F, TOC, TS, pH, S2, NH3, TVS, grain size, moisture, Atterberg limits			
EHWW-40-SC-000050	9801944	Sediment	S2, grain size			
EHWW-40-SC-060110	9801945	Sediment	PAHs, PCBs, metals, PCD/F, TOC, TS, pH, S2, NH3, TVS,			
grain size				$	$	EHWW-39-SC-035085
---:						
EHWW-24-SC-045095						
9801948						
EHWW-16-SC-152202						
9801952						
Sediment						
SAHs, PCBs, metals, PCD/F, TOC, TS, pH, S2, NH3, TVS,						
grain size						

Data Validation and Qualifications

The following comments refer to the laboratory's performance in meeting the quality assurance/quality control (QA/QC) guidelines outlined in the analytical procedures. Laboratory results were reviewed using the laboratory control limits and the following guidelines:

- Esquimalt Harbour Remediation Project, Sampling and Analysis Plan Wood Debris Remediation and Habitat Restoration Support (SAP; Anchor QEA, 2018)
- USEPA 1986 (SW-846, Third Edition), Test M ethods for Evaluating Solid Waste: Physical/Chemical M ethods.
- USEPA Contract Laboratory Program National Functional Guidelines for High Resolution Superfund M ethods Data Review (USEPA 2016)
- USEPA National Functional Guidelines for Superfund Organic M ethods Data Review (USEPA 2017a)
- USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA 2017b)

Unless noted in this report, laboratory results for the samples listed above were within QC criteria.

Field Documentation

Field documentation was checked for completeness and accuracy. The chain-of-custody forms were signed by AGAT at the time of sample receipt. Samples were received within the correct temperature range and in good condition.

Holding Times and Sample Preservation

Samples were appropriately preserved and analyzed within holding times.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the required frequencies. All method blanks were free of target analytes.

Field Quality Control

Field Duplicates

One field duplicate was collected in association with this sample set. Detected results are summarized in Table 2.

Table 2
Field Duplicate Summary

Analyte	EHWW-16-SC-152202	EHWW-116-SC-152202	RPD
Sulfphide	0.7 \%	0.95 \%	30.3\%
Total organic carbon	1.17 \%	1.11 \%	5.3\%
Total Solids	56 \%	60 \%	6.9\%
Loss on ignition	2.5 \%	2.5 \%	0.0\%
pH	7.6	7.5	1.3\%
Aluminum	$12500 \mu \mathrm{~g} / \mathrm{g}$	$13000 \mu \mathrm{~g} / \mathrm{g}$	3.9\%
Calcium	$17900 \mu \mathrm{~g} / \mathrm{g}$	$10900 \mu \mathrm{~g} / \mathrm{g}$	48.6\%
Iron	$17200 \mu \mathrm{~g} / \mathrm{g}$	$17800 \mu \mathrm{~g} / \mathrm{g}$	3.4\%
M agnesium	$5470 \mu \mathrm{~g} / \mathrm{g}$	$5590 \mu \mathrm{~g} / \mathrm{g}$	2.2\%
Phosphorus	$748 \mu \mathrm{~g} / \mathrm{g}$	$751 \mu \mathrm{~g} / \mathrm{g}$	0.4\%
Potassium	$1650 \mu \mathrm{~g} / \mathrm{g}$	$1720 \mu \mathrm{~g} / \mathrm{g}$	4.2\%
Sodium	$6920 \mu \mathrm{~g} / \mathrm{g}$	$7350 \mu \mathrm{~g} / \mathrm{g}$	6.0\%
Titanium	$1180 \mu \mathrm{~g} / \mathrm{g}$	$1220 \mu \mathrm{~g} / \mathrm{g}$	3.3\%
Arsenic	$8.3 \mu \mathrm{~g} / \mathrm{g}$	$7.4 \mu \mathrm{~g} / \mathrm{g}$	11.5\%
Barium	$29.2 \mu \mathrm{~g} / \mathrm{g}$	$29.8 \mu \mathrm{~g} / \mathrm{g}$	2.0\%
Cadmium	$4.59 \mu \mathrm{~g} / \mathrm{g}$	$4.61 \mu \mathrm{~g} / \mathrm{g}$	0.4\%
Chromium	$25 \mu \mathrm{~g} / \mathrm{g}$	$24 \mu \mathrm{~g} / \mathrm{g}$	4.1\%
Cobalt	$4.9 \mu \mathrm{~g} / \mathrm{g}$	$4.8 \mu \mathrm{~g} / \mathrm{g}$	2.1\%
Copper	$17.7 \mu \mathrm{~g} / \mathrm{g}$	$18.3 \mu \mathrm{~g} / \mathrm{g}$	3.3\%
Lead	$2.8 \mu \mathrm{~g} / \mathrm{g}$	$2.8 \mu \mathrm{~g} / \mathrm{g}$	0.0\%
Lithium	$14.3 \mu \mathrm{~g} / \mathrm{g}$	$14.7 \mu \mathrm{~g} / \mathrm{g}$	2.8\%
M anganese	$178 \mu \mathrm{~g} / \mathrm{g}$	$178 \mu \mathrm{~g} / \mathrm{g}$	0.0\%
Molybdenum	$3.2 \mu \mathrm{~g} / \mathrm{g}$	$3.3 \mu \mathrm{~g} / \mathrm{g}$	3.1\%
Nickel	$17 \mu \mathrm{~g} / \mathrm{g}$	$17.5 \mu \mathrm{~g} / \mathrm{g}$	2.9\%
Selenium	$2.8 \mu \mathrm{~g} / \mathrm{g}$	$3.9 \mu \mathrm{~g} / \mathrm{g}$	32.8\%
Strontium	$113 \mu \mathrm{~g} / \mathrm{g}$	$71 \mu \mathrm{~g} / \mathrm{g}$	45.7\%
Thallium	$0.7 \mu \mathrm{~g} / \mathrm{g}$	$0.7 \mu \mathrm{~g} / \mathrm{g}$	0.0\%
Uranium (Uranium 238)	$1.2 \mathrm{ug} / \mathrm{g}$	$1.2 \mu \mathrm{~g} / \mathrm{g}$	0.0\%
Vanadium	$43 \mu \mathrm{~g} / \mathrm{g}$	$42 \mu \mathrm{~g} / \mathrm{g}$	2.4\%
Zinc	$58 \mu \mathrm{~g} / \mathrm{g}$	$48 \mu \mathrm{~g} / \mathrm{g}$	18.9\%
Zirconium	$7.3 \mu \mathrm{~g} / \mathrm{g}$	$7.5 \mu \mathrm{~g} / \mathrm{g}$	2.7\%

Notes:

$\mu \mathrm{g} / \mathrm{g}$: microgram per gram
$\mathrm{ng} / \mathrm{kg}$: nanogram per gram
mg / L : milligram per liter
$\mathrm{mg} / \mathrm{kg}$: microgram per kilogram
Result values less than five times the reporting limit (RL) may have exaggerated relative percent difference (RPD) values; therefore, the values were not evaluated. All RPD values were within control limits and no date were qualified.

Surrogate Recoveries

Surrogate recoveries were within the laboratory control limits.

Laboratory Control Samples

Laboratory control samples (LCS) were analyzed at the required frequencies or certified reference materials were analyzed in place of LCSs. All LCS recoveries were within laboratory-required control limits.

Matrix Spike and Matrix Spike Duplicate Samples

Matrix spike (MS) and matrix spike duplicate (MSD) samples were analyzed at the required frequency and resulted in recoveries and/or RPD values within laboratory-required control limits.

Laboratory Duplicates

Laboratory duplicates were analyzed at the required frequency. Result values less than five times the RL may have exaggerated RPD values; therefore, the values were not evaluated. All duplicate RPD values were within laboratory control limits.

Certified Reference Material

Certified reference materials (CRMs) were analyzed and reported as quality control (QC) standards. CRM results were reported as percent recoveries so could not be evaluated based on true values and confidence intervals. CRM s were instead evaluated against laboratory control limits. CRM analyses resulted in recoveries within laboratory control limits.

Reporting Limits

Reporting limits were acceptable as reported. All values were reported using the laboratory reporting limits. Values were reported as undiluted or when diluted, the reporting limit reflects the dilution factor.

Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical methods and all requested sample analyses were completed. Accuracy was acceptable as demonstrated by the surrogate, LCS, MS/MSD, and CRM recovery values. Precision was acceptable as demonstrated by the MS/MSD and laboratory and field duplicate RPD values. All data are acceptable as reported.

References

Anchor QEA, 2018. Sampling and Analysis Plan, Wood Debris Remediation and Habitat Restoration Support, Esquimalt Harbour Remediation Project. September 2018.

USEPA. 1986. Test methods for Evaluating Solid Waste: Physical/Chemical M ethods. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA-530/SW-846.

USEPA. 2016. USEPA Contract Laboratory Program National Functional Guidelines for High Resolution Superfund M ethods Data Review. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. EPA 542-B-16-001. April 2016.

USEPA. 2017a. National Functional Guidelines for Superfund Organic Methods Data Review. Office of Superfund Remediation and Technology Innovation. United States Environmental Protection Agency. EPA-540-R-2017-002. January 2017.

USEPA 2017b. National Functional Guidelines for Inorganic Superfund Data Review. Office of Superfund Remediation and Technology Innovation. United States Environmental Protection Agency. EPA-540-R-2017-001. January 2017.

Data Validation Report - EPA Stage 2A

Project: Esquimalt Harbour Woodwaste

Project Number: 170553-11.05
This report summarizes the review of analytical results for eight sediment samples collected on December 18 and 19, 2019. The samples were collected by Anchor QEA and submitted to AGAT Laboratories (AGAT) in Burnaby, British Columbia, Canada. The samples were analyzed for the following parameters:

- Polycyclic aromatic hydrocarbons (PAHs) by laboratory standard operating procedure (SOP) ORG-180-5102, section D.
- Polychlorinated biphenyl Aroclors (PCBs) by U.S. Environmental Protection Agency (USEPA) method 8082
- Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCD/F) by USEPA method 1613
- Metals by USEPA methods 6010C and 6020A
- pH by laboratory SOP INOR-181-6031 which is equivalent to standard method (SM) 4500-HB
- Total organic carbon (TOC) by laboratory SOP INOR-181-6027
- Total solids (TS) by laboratory SOP INOR 181-6024.002 which is equivalent to SM 2540G
- Ammonia (NH3) by Standard M ethod (SM) 4500-NH3E
- Grain size by laboratory SOP INOR-171-6009
- Sulphide (S2) calculated using methods ASTM International method E1915-11-modified, and SM 4500-SO4E-modified
- Total volatile solids (TVS) by ASTM International method D2974-07a

AGAT sample data group (SDG) number 18V422891 was reviewed in this report. Sample IDs, matrices, and analyses are presented in Table 1.

Table 1
Sample IDs, Matrices, and Analyses

Sample ID	Lab Sample ID	Matrix	Analyses
EHWW-54-SC-000050	9802297	Sediment	S2, grain size
EHWW-54-SC-055105	9802304	Sediment	PAH, PCB, PCD/F, metals, pH, TOC, TS, TVS, S2, NH3, grain size
EHWW-55-SC-110160	9802457	Sediment	PAH, PCB, PCD/F, metals, pH, TOC, TS, TVS, S2, NH3, grain size
EHWW-59-SC-038088	9802459	Sediment	PAH, PCB, PCD/F, metals, pH, TOC, TS, TVS, S2, NH3, grain size
EHWW-65-SC-000050	9802468	Sediment	S2, grain size

Sample ID	Lab Sample ID	Matrix	Analyses
EHWW-44-SC-017067	9802472	Sediment	PAH, PCB, PCD/F, metals, pH, TOC, TS, TVS, S2, NH3, grain size
EHWW-53-SC-000016	9802488	Sediment	S2, grain size
EHWW-53-SC-016066	9802498	Sediment	PAH, PCB, PCD/F, metals, pH, TOC, TS, TVS, S2, NH3, grain size
EHWW-53-SC-066166	9802502	Sediment	Metals, TS
EHWW-54-SC-105155	9802456	Sediment	Metals TS

Data Validation and Qualifications

The following comments refer to the laboratory's performance in meeting the quality assurance/quality control (QA/QC) guidelines outlined in the analytical procedures. Laboratory results were reviewed using the laboratory control limits and the following guidelines:

- Esquimalt Harbour Remediation Project, Sampling and Analysis Plan Wood Debris Remediation and Habitat Restoration Support (SAP; Anchor QEA, 2018)
- USEPA 1986 (SW-846, Third Edition), Test M ethods for Evaluating Solid Waste: Physical/Chemical M ethods.
- USEPA Contract Laboratory Program National Functional Guidelines for High Resolution Superfund Methods Data Review (USEPA 2016)
- USEPA National Functional Guidelines for Superfund Organic M ethods Data Review (USEPA 2017a)
- USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA 2017b)

Unless noted in this report, laboratory results for the samples listed above were within QC criteria.

Field Documentation

Field documentation was checked for completeness and accuracy. The chain-of-custody forms were signed by AGAT at the time of sample receipt. Samples were received within the correct temperature range and in good condition.

Holding Times and Sample Preservation

Samples were appropriately preserved and analyzed within holding times.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the required frequencies. All method blanks were free of target analytes.

Field Quality Control

No field quality control samples were collected in association with this sample set.

Surrogate Recoveries

Surrogate recoveries were within the laboratory control limits.

Laboratory Control Samples

Laboratory control samples (LCS) were analyzed at the required frequencies or certified reference materials were analyzed in place of LCSs. All LCS recoveries were within laboratory-required control limits.

Matrix Spike and Matrix Spike Duplicate Samples

Matrix spike (MS) and matrix spike duplicate (MSD) samples were analyzed at the required frequency and resulted in recoveries and/or RPD values within laboratory-required control limits.

Laboratory Duplicates

Laboratory duplicates were analyzed at the required frequency. Result values less than five times the RL may have exaggerated RPD values; therefore, the values were not evaluated. All duplicate RPD values were within laboratory control limits.

Certified Reference Material

Certified reference materials (CRMs) were analyzed and reported as quality control (QC) standards. CRM results were reported as percent recoveries so could not be evaluated based on true values and confidence intervals. CRM s were instead evaluated against laboratory control limits. CRM analyses resulted in recoveries within laboratory control limits.

Reporting Limits

Reporting limits were acceptable as reported. All values were reported using the laboratory reporting limits. Values were reported as undiluted or when diluted, the reporting limit reflects the dilution factor.

Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical methods and all requested sample analyses were completed. Accuracy was acceptable as demonstrated by the surrogate, LCS, MS/MSD, and CRM recovery values. Precision was acceptable as demonstrated by the MS/M SD and laboratory and field duplicate RPD values. All data are acceptable as reported.

References

Anchor QEA, 2018. Sampling and Analysis Plan, Wood Debris Remediation and Habitat Restoration Support, Esquimalt Harbour Remediation Project. September 2018.

USEPA. 1986. Test methods for Evaluating Solid Waste: Physical/Chemical M ethods.
U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA-530/SW-846.

USEPA. 2016. USEPA Contract Laboratory Program National Functional Guidelines for High Resolution Superfund M ethods Data Review. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. EPA 542-B-16-001. April 2016.

USEPA. 2017a. National Functional Guidelines for Superfund Organic Methods Data Review. Office of Superfund Remediation and Technology Innovation. United States Environmental Protection Agency. EPA-540-R-2017-002. January 2017.

USEPA 2017b. National Functional Guidelines for Inorganic Superfund Data Review. Office of Superfund Remediation and Technology Innovation. United States Environmental Protection Agency. EPA-540-R-2017-001. January 2017.

Appendix D

 Bioassay Report
Samples collected October 1-5, 2018

Final Report

January 18, 2019

Submitted to: Anchor QEA
Bellingham, WA

TABLE OF CONTENTS

Page

Signature Page ii
Summary iii
1.0 Introduction 1
2.0 Methods 1
3.0 Results 5
4.0 QA/QC. 10
5.0 References 11
List of Tables
Table 1. Summary of test conditions: 48-h bivalve (M. galloprovincialis) larval survival and development [SCCWRP method]. 3
Table 2. Summary of test conditions: 48-h bivalve (M. galloprovincialis) larval survival and development [PSEP method]. 4
Table 3. Results: 48-h bivalve (M. galloprovincialis) larval survival and development test [SCCWRP method] 6
Table 4. Results: 48-h bivalve (M. galloprovincialis) larval survival and development test [PSEP method]. 7
Table 5. Ammonia and sulphide: 48-h bivalve (M. galloprovincialis) larval survival and development test [SCCWRP method] 8
Table 6. Ammonia and sulphide: 48-h bivalve (M. galloprovincialis) larval survival and development test [PSEP method] 9
Table 7. Reference toxicant test results 10

List of Appendices

APPENDIX A - Mytilus galloprovincialis (SCCWRP) Toxicity Test Data
APPENDIX B - Mytilus galloprovincialis (PSEP) Toxicity Test Data
APPENDIX C - Sediment Descriptions
APPENDIX D - Chain-of-Custody Forms

SIGNATURE PAGE

Report By:
Yvonne Lam, B.Sc.
Laboratory Biologist

Reviewed By:
Armando Tang, R.P.Bio.
Senior Reviewer

This report has been prepared by Nautilus Environmental Company Inc. based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party. The results presented here relate only to the samples tested.

SUMMARY

Sample Information and Test Type

Sample ID	EHWW-REF17-SG-000010
	EHWW-REF18-SG-000010
	EHWW-01-SG-000010
	EHWW-06-SG-000010
	EHWW-08-SG-000010
	EHWW-11-SG-000010
	EHWW-12-SG-000010
	EHWW-13-SG-000010
	EHWW-15-SG-000010
	EHWW-22-SG-000010
	EHWW-29-SG-000010
	EHWW-31-SG-000010
	EHWW-39-SG-000010
	EHWW-40-SG-000010
	EHWW-42-SG-000010
	EHWW-44-SG-000010
	EHWW-50-SG-000010
Sample collection date	October 1, 2, 3, 4 and 5, 2018
Sample receipt date	October 2, 3, 4 and 6, 2018
Sample receipt temperature	$5.0-17.1^{\circ} \mathrm{C}$
Test types	48-h bivalve (Mytilus galloprovincialis) larval survival and development [SCCWRP method]
	48-h bivalve (Mytilus galloprovincialis) larval survival and development [PSEP method]

1.0 INTRODUCTION

Nautilus Environmental Company Inc. conducted marine sediment toxicity tests for Anchor QEA on 17 samples, including two reference sites. The samples were collected on October 1, 2, 3, 4 and 5, 2018 and delivered to the Nautilus Environmental laboratory in Burnaby, BC on October 2, 34 and 6, 2018. The samples were each transported in one 3-L plastic bag and received at temperatures ranging from 5.0 to $17.1^{\circ} \mathrm{C}$. The samples were stored in the dark at $4 \pm 2^{\circ} \mathrm{C}$ prior to testing.

A 48-h bivalve (Mytilus galloprovincialis) larval survival and development test was conducted on the samples. Testing was initiated on November 22, 2018 and this report describes the results of the toxicity tests. Copies of raw laboratory data sheets and statistical analyses are provided in Appendices A and B. Descriptions of the sediment samples are provided in Appendix C and the chain-of-custody forms are provided in Appendix D.

2.0 METHODS

Sediment samples were homogenized thoroughly using stainless steel spoons and were not sieved prior to testing. While 51 samples were received, 17 samples were selected by the client for testing.

The methods for the M. galloprovincialis toxicity tests are summarized in Tables 1 and 2. Testing on all 17 samples was conducted according to procedures developed by the Southern California Coastal Water Research Project (SCCWRP, 2009), incorporating screened chambers to separate the larvae from the sediment.

Three samples were also tested following procedures described by the Puget Sound Estuary Program (PSEP, 1995). Similar to the SCCWRP test, the sediment was allowed to settle for 24 hours prior to the addition of larvae. While PSEP (1995) specifies a settling time of 4 hours, historical data has shown that extending the settling period to 24 hours reduces the impact of the physical effect associated with particles settling on the larvae, thereby burying them and causing artefactual toxicity.

Ammonia and sulphides were measured by ALS Environmental, Burnaby, BC. Overlying and interstitial ammonia, and overlying and interstitial sulphides were collected for the SCCWRP test, and overlying ammonia and sulphides were collected for the PSEP test (interstitial samples are
not attainable for this method). In addition to the standard copper reference toxicant test, a concurrent ammonia reference toxicant test was also conducted. Statistical analyses for the tests were performed using CETIS (Tidepool Scientific Software, 2013).

Table 1. Summary of test conditions: 48-h bivalve (M. galloprovincialis) larval survival and development [SCCWRP method].

Test species	Mytilus galloprovincialis
Organism source	Kamilche Seafarms, Shelton, WA
Organism age	<2-h post-fertilization
Test type	Static
Test duration	48 hours
Test vessel	$375-\mathrm{mL}$ glass container
Test volume	100 mL sediment; 175 mL overlying water
Test replicates	4 per sample
Number of organisms	Approximately 250 embryos per replicate
Control/dilution water	Natural seawater
Test solution renewal	None
Test temperature	$15 \pm 1^{\circ} \mathrm{C}$
Test salinity	28 ± 2 ppt
Feeding	None
Light intensity	$500-1000$ lux
Photoperiod	16 hours light / 8 hours dark
Aeration	None, unless DO <60\% saturation
	Temperature, dissolved oxygen and pH measured daily; salinity,
Test measurements	overlying and interstitial ammonia, and overlying and interstitial
	sulphides measured at test initiation and termination
Test protocol	SCCWRP (2009)
Statistical software	CETIS Version 1.9 .4
Test endpoints	Survival, proportion normal, combined proportion normal
Test acceptability criteria for controls	$\geq 70 \%$ combined proportion normal
Reference toxicant	Copper (added as CuCl 2)

Table 2.Summary of test conditions: 48 -h bivalve (M. galloprovincialis) larval survival and development [PSEP method].	
Test species	Mytilus galloprovincialis
Organism source	Kamilche Seafarms, Shelton, WA
Organism age	$<2-\mathrm{h}$ post-fertilization
Test type	Static
Test duration	48 hours
Test vessel	$1-\mathrm{L}$ glass container
Test volume	18 g sediment; 900 mL overlying water
Test replicates	5 per sample
Number of organisms	Approximately $20-40$ embryos/mL
Control/dilution water	Natural seawater
Test solution renewal	None
Test temperature	$16 \pm 1^{\circ} \mathrm{C}$
Test salinity	28 ± 2 ppt
Feeding	None
Light intensity	Ambient laboratory lighting
Photoperiod	14 hours light / 10 hours dark
Aeration	None, unless DO <60\% saturation
	Temperature, dissolved oxygen and pH measured daily; salinity,
Test measurements	overlying ammonia and overlying sulphides measured at test
	initiation and termination
Test protocol	PSEP (1995)
Statistical software	CETIS Version 1.9 .4
Test endpoints	Survival, proportion normal, combined proportion normal
Test acceptability criteria for controls	$\geq 70 \%$ combined proportion normal
Reference toxicant	Copper (added as CuCl 2$)$

3.0 RESULTS

Results of the toxicity test on M. galloprovincialis following the SCCWRP method are summarized in Table 3. The samples were analyzed relative to the control seawater and reference sites EHWW-REF17 and EHWW-REF18. There were no adverse effects on the survival, proportion normal or combined proportion normal endpoints for any of the samples relative to the control seawater. There were significant differences on samples EHWW-06, -15, -22 and -50 for proportion normal relative to one or both of the reference sites.

The ammonia and sulphide concentrations measured during the SCCWRP test are summarized in Table 5. The concurrent ammonia reference toxicant test produced a proportion normal EC50 of $13.0 \mathrm{mg} / \mathrm{L} \mathrm{N}$, similar to previous in-house tests on this species which found the mean proportion normal EC50 to be $10.9 \mathrm{mg} / \mathrm{L} \mathrm{N}$. The SCCWRP method states the total overlying ammonia concentration should not exceed $4 \mathrm{mg} / \mathrm{L} \mathrm{N}$. Reference sites EHWW-REF17 and REF18, and samples EHWW-01, -12, -15, -29, -31, -39 and -40 produced the total ammonia concentrations that exceeded one or more of these guideline values.

Wang and Chapman (1999) reported a 48-h NOEC for Mytilus embryo sp. at $0.05 \mathrm{mg} / \mathrm{L}$ S, and SCCWRP lists a tolerance of $<0.09 \mathrm{mg} / \mathrm{L}$. Reference site EHWW-REF17 and samples EHWW-01, $-08,-15,-22,-40$, and -50 produced sulphide concentrations during this test that exceeded one or both of those values.

Results of the toxicity test on M. galloprovincialis following the PSEP method are summarized in Table 4, with the samples analyzed relative to the control seawater and control sediment. While all three samples were statistically significantly different relative to the control seawater for survival and combined proportion normal endpoints, only sample EHWW-50 produced adverse effects relative to the control sediment for combined proportion normal.

The ammonia and sulphide concentrations measured during the PSEP bivalve test are summarized in Table 6. They were not at levels expected to cause adverse effects in this species.

Table 3. Results: 48-h bivalve (M. galloprovincialis) larval survival and development test [SCCWRP method].

Sample ID	Survival (\%) (Mean \pm SD)	Proportion Normal $(\%)($ Mean \pm SD)	Combined Proportion Normal (\%) (Mean \pm SD)
Control SeaWater	85.1 ± 4.2	86.7 ± 5.9	73.8 ± 5.8
EHWW-REF17-SG-000010	80.6 ± 11.9	93.3 ± 0.8	75.2 ± 10.7
EHWW-REF18-SG-000010	84.4 ± 5.7	92.0 ± 1.3	77.6 ± 5.1
EHWW-01-SG-000010	80.4 ± 11.8	90.5 ± 2.4	72.7 ± 10.6
EHWW-06-SG-000010	83.4 ± 7.2	86.6 ± 1.6^{1}	72.2 ± 5.7
EHWW-08-SG-000010	79.7 ± 7.6	91.5 ± 1.6	72.8 ± 5.8
EHWW-11-SG-000010	84.5 ± 9.0	90.2 ± 2.8	76.1 ± 5.9
EHWW-12-SG-000010	88.7 ± 6.6	92.0 ± 1.6	81.6 ± 6.3
EHWW-13-SG-000010	86.6 ± 6.3	88.8 ± 2.4	76.8 ± 3.6
EHWW-15-SG-000010	79.8 ± 5.2	$83.5 \pm 6.4^{1.2}$	66.5 ± 5.5
EHWW-22-SG-000010	82.2 ± 12.0	87.0 ± 2.8^{1}	71.6 ± 12.0
EHWW-29-SG-000010	93.4 ± 4.7	92.2 ± 3.3	86.1 ± 6.1
EHWW-31-SG-000010	91.7 ± 5.7	92.0 ± 4.9	84.6 ± 8.9
EHWW-39-SG-000010	89.4 ± 7.5	88.2 ± 2.3	79.2 ± 7.3
EHWW-40-SG-000010	90.4 ± 7.9	91.1 ± 1.3	82.4 ± 8.3
EHWW-42-SG-000010	78.0 ± 5.5	89.8 ± 2.6	70.0 ± 4.1
EHWW-44-SG-000010	91.1 ± 6.7	92.2 ± 3.0	84.0 ± 6.1
EHWW-50-SG-000010	93.1 ± 5.3	86.4 ± 2.7^{1}	80.5 ± 4.4
ESTAD			

[^36]Table 4. Results: 48-h bivalve (M. galloprovincialis) larval survival and development test [PSEP method].

Sample ID	Survival (\%) (Mean \pm SD)	Proportion Normal $(\%)(M e a n ~$ (MD)	Combined Proportion Normal (\%) (Mean \pm SD)
Control Seawater	86.5 ± 3.8	90.9 ± 2.4	78.7 ± 4.8
Control Sediment	$77.6 \pm 4.3^{*}$	91.3 ± 2.0	70.8 ± 4.5
EHWW-11-SG-000010	76.3 ± 6.5 *	88.0 ± 4.9	67.4 ± 8.4 *
EHWW-39-SG-000010	77.6 ± 5.2 *	86.6 ± 2.8	67.2 ± 5.6 *
EHWW-50-SG-000010	$69.8 \pm 6.2 *$	87.3 ± 5.2	61.0 ± 6.6 *,

SD = Standard Deviation

* Indicates samples that were statistically significantly different relative to the control seawater.
${ }^{\dagger}$ Indicates samples that were statistically significantly different relative to the control sediment.

Table 5. Ammonia and sulphide: 48-h bivalve (M. galloprovincialis) larval survival and development test [SCCWRP method].

Sample ID	Overlying Water				Interstitial Water			
	Total Ammonia (mg/L N)		$\begin{aligned} & \text { Total Sulphide } \\ & (\mathrm{mg} / \mathrm{L} \mathrm{~S}) \end{aligned}$		Total Ammonia (mg/L N)		Total Sulphide (mg/L S)	
	Oh	48h	Oh	48h	Oh	48h	Oh	48h
Control Seawater	0.305	0.449	<0.018	<0.018	0.793	0.582	<0.018	<0.018
EHWW-REF17-SG-000010	2.61	8.53	<0.018	1.32	17.5	17.4	1.60	1.88
EHWW-REF18-SG-000010	0.965	2.89	<0.018	<0.018	5.57	5.50	0.021	<0.018
EHWW-01-SG-000010	1.02	3.98	<0.018	0.085	4.22	4.63	0.044	0.037
EHWW-06-SG-000010	0.892	2.20	<0.018	<0.018	3.45	3.99	0.020	0.048
EHWW-08-SG-000010	0.584	1.56	<0.018	0.019	2.57	2.74	0.060	0.055
EHWW-11-SG-000010	0.104	0.190	<0.018	<0.018	0.490	0.544	0.034	0.024
EHWW-12-SG-000010	0.851	2.62	<0.018	<0.018	3.36	4.37	0.031	<0.018
EHWW-13-SG-000010	0.151	0.374	<0.018	<0.018	0.880	0.811	0.035	<0.018
EHWW-15-SG-000010	2.10	5.55	<0.018	<0.018	8.37	8.15	0.051	0.023
EHWW-22-SG-000010	0.188	0.604	<0.018	<0.018	1.23	1.30	0.044	0.195
EHWW-29-SG-000010	1.72	4.25	<0.018	<0.018	6.55	5.45	0.020	0.020
EHWW-31-SG-000010	4.03	7.32	<0.018	0.047	12.2	10.2	<0.018	0.051
EHWW-39-SG-000010	1.81	3.82	<0.018	<0.018	6.38	5.59	0.036	0.032
EHWW-40-SG-000010	1.28	2.90	<0.018	0.023	5.22	5.45	0.79	5.19
EHWW-42-SG-000010	0.698	1.86	<0.018	<0.018	2.89	3.07	0.022	0.025
EHWW-44-SG-000010	0.625	1.46	<0.018	<0.018	2.25	2.63	0.020	<0.018
EHWW-50-SG-000010	0.830	2.23	<0.018	<0.018	3.28	3.78	<0.018	0.434

Table 6. Ammonia and sulphide: 48-h bivalve (M. galloprovincialis) larval survival and development test [PSEP method].

Sample ID	Overlying Water			
	Total Ammonia (mg/L N)		Total Sulphide (mg/L S)	
	$\mathbf{0} \mathbf{~ h r s}$	$\mathbf{4 8} \mathbf{~ h r s}$	$\mathbf{0} \mathbf{~ h r s}$	$\mathbf{4 8} \mathbf{~ h r s}$
Control Seawater	0.0077	<0.0050	<0.018	<0.018
Control Sediment	0.0466	<0.0050	<0.018	<0.018
EHWW-11-SG-000010	0.0170	<0.0050	<0.018	<0.018
EHWW-39-SG-000010	0.274	0.163	<0.018	<0.018
EHWW-50-SG-000010	0.157	0.0419	<0.018	<0.018

4.0 QA/QC

The health history of the test organisms used in the exposure was acceptable and met the requirements of the SCCWRP and PSEP protocols. The tests met all control acceptability criteria and water quality parameters remained within ranges specified in the protocols throughout the tests. There were no deviations from the test methodologies. Uncertainty associated with these tests is best described by the standard deviation around the mean and/or the confidence intervals around the point estimates.

For samples EHWW-08, $-11,-12,-40$ and -42 , only three replicates instead of four were used in the final statistical calculation due to one replicate producing a result that was inconsistent with the other three replicates.

Results of the reference toxicant tests conducted during the testing program are summarized in Table 7. The results for the tests fell within the range for organism performance of the mean and two standard deviations, based on historical results obtained by the laboratory with these tests. Thus, the sensitivity of the organisms used in the tests was appropriate.

Table 7. Reference toxicant test results.

Test Species	Endpoint	Historical Mean (2 SD Range)	CV (\%)	Test Date
M. galloprovincialis	Proportion normal (EC50): $12.5 \mu \mathrm{~g} / \mathrm{L} \mathrm{Cu}$	$12.2(8.4-17.8) \mu \mathrm{g} / \mathrm{L} \mathrm{Cu}$	19	November 22, 2018
M. galloprovincialis	Proportion normal (EC50): $13.0 \mathrm{mg} / \mathrm{L} \mathrm{N}$	$10.9(7.2-16.5) \mathrm{mg} / \mathrm{L} \mathrm{N}$	21	November 22, 2018

SD = Standard Deviation, CV = Coefficient of Variation, LC = Lethal Concentration

5.0 REFERENCES

Puget Sound Estuary Program (PSEP). 1995. Recommended guidelines for conducting laboratory bioassays on Puget Sound sediments. Prepared for US Environmental Protection Agency, Region 10, Office of Puget Sound, Seattle, WA. Final Report, July 1995. 89 pp.

Southern California Coastal Watershed Research Program (SCCWRP) 2009. Sediment Quality Assessment Draft Technical Support Manual. Prepared by the State Water Board, SCCWRP, Costa Mesa, CA. May 2009. 132 pp.

Tidepool Scientific Software. 2013. CETIS comprehensive environmental toxicity information system, version 1.9.4.11 Tidepool Scientific Software, McKinleyville, CA. 255 pp.

Wang, F. and Chapman, P.M. 1999. Biological implications of sulfide in sediment - A review focusing on sediment toxicity. Environmental Toxicology and Chemistry 18(11): 2526-2532.

APPENDIX A - Mytilus galloprovincialis (SCCWRP) Toxicity Test Data

Client:	Anchor
Work Order No.:	181641

Start Date: November 22, 2018
Set up by: YYL

Sample information:

Sample ID:	Various - see below
Sample Date:	October 1, 2, 3, 4 and 5, 2018
Date Received:	October 2, 3, 4, and 6, 2018
Sample Volume:	1×3 L per sample

Test Organism Information:

Species:	Mytilus galloprovincialis
Supplier:	Kamilche Seafarms, Shelton, WA
Date received:	November 22, 2018

Copper Reference Toxicant Results:

Reference Toxicant ID:
Stock Solution ID: Date Initiated:

Mg52
18 Cu 03
November 22, 2018

48-h EC50 Normal Larvae ($95 \% \mathrm{CL}$): $\quad 12.5(12.3-12.8) \mu \mathrm{g} / \mathrm{LCu}$

48-h EC50 Normal Larvae Reference Toxicant Mean ± 2 SD:
$\underline{12.2(8.4-17.8) \mu \mathrm{g} / \mathrm{LCu}} \mathrm{CV}(\%):$ \qquad

Test Results:

Sample ID	Survival \pm SD (\%)	Normal Larvae \pm SD (\%)	Combined Proportion Normal \pm SD $(\%)$
Control Seawater	85.1 ± 4.2	86.7 ± 5.9	73.8 ± 5.8
EHWW-REF-17-SG-000010	80.6 ± 11.9	93.3 ± 0.8	75.2 ± 10.7
EHWW-REF-18-SG-000010	84.4 ± 5.7	92.0 ± 1.3	77.6 ± 5.1
EHWW-01-SG-000010	80.4 ± 11.8	90.5 ± 2.4	72.7 ± 10.6
EHWW-06-SG-000010	83.4 ± 7.2	86.6 ± 1.6^{1}	72.2 ± 5.7
EHWW-08-SG-000010	79.7 ± 7.6	91.5 ± 1.6	72.8 ± 5.8
EHWW-11-SG-000010	84.5 ± 9.0	90.2 ± 2.8	76.1 ± 5.9
EHWW-12-SG-000010	88.7 ± 6.6	92.0 ± 1.6	81.6 ± 6.3
EHWW-13-SG-000010	86.6 ± 6.3	88.8 ± 2.4	76.8 ± 3.6
EHWW-15-SG-000010	79.8 ± 5.2	$83.5 \pm 6.4^{1.2}$	66.5 ± 5.5
EHWW-22-SG-000010	82.2 ± 12.0	87.0 ± 2.8^{1}	71.6 ± 12.0
EHWW-29-SG-000010	93.4 ± 4.7	92.2 ± 3.3	86.1 ± 6.1
EHWW-31-SG-000010	91.7 ± 5.7	92.0 ± 4.9	84.6 ± 8.9
EHWW-39-SG-000010	89.4 ± 7.5	88.2 ± 2.3	79.2 ± 7.3
EHWW-40-SG-000010	90.4 ± 7.9	91.1 ± 1.3	82.4 ± 8.3
EHWW-42-SG-000010	78.0 ± 5.5	89.8 ± 2.6	70.0 ± 4.1
EHWW-44-SG-000010	91.1 ± 6.7	92.2 ± 3.0	84.0 ± 6.1
EHWW-50-SG-000010	93.1 ± 5.3	86.4 ± 2.7^{1}	80.5 ± 4.4

There were no significant effects relative to the control seawater
${ }^{1}$ Indicates samples that were significantly different relative to reference site REF-17
${ }^{2}$ Indicates samples that were significantly different relative to reference site REF-18

Date reviewed:

48-h Bivalve Development Sediment Toxicity Test Data Sheet

Client:
Work Order No.:
Test Set up by:

Start Date \& Time: Nowember 22, 2018 C 1645 h End Date \& Time: Nowember 24,2018 C 1710 h Test species: M.gallaprovinciabis

Sample ID	Temperature$\left({ }^{\circ} \mathrm{C}\right)$			Dissolved oxygen (mg / L)			pH			Salinity (ppt)	
Seamater	0 h	24 h	48 h	0 h	24 h	48 h	0 h	24 h	48 h	0 h	48 h
Control	15.0	155	15.5	19	76	74	75	7.5	7.5	299	29
EHWW-REF+ 17-35-00010	15.0	155	15.5	60	5.8	52	7.6	76	7.7	29	30
EHWW-REF-2 18 - Sc-00so	15.0	155	155	6.3	58	54	76	76	27	29	30
EHWW-01-SG-00030	15.5	155	15.5	6.1	5.4	4.8	7.6	76	7.7	29	30
EHWW - 06 - SG-00s 10	15.0	155	18.5	33	5.8	5.4	765	7.5	7.6	28	30
EHWW-08-86-0030	15.5	15.5	15.5	5.5	5.6	55	7.6	75	7.5	28	30
EHWW-11-SG-003s	15.5	155	155	5.9	5.4	5.0	7.6	74	7.5	29	30
EHWW-12-s6-003sis	155	155	155	5.6	5.9	5.7	76	7.6	7.6	29	30
EHWW-13 - So-vjati	15.5	155	155	6.0	61	59	7.6	7.6	7.6	29	30
EHWW-15 - Scoown	15.5	15.5	15.5	5.8	59	5.4	76	7.6	7.6	28	30
EHWW-22-86-02039	15.5	15.5	15.5	5.9	5.6	5.4	7.6	76	7.6	28	30
EHWW) - 29-5G-00s.00	15.5	15.5	155	5.7	60	5.6	76	en 7.7 .6	7.6	29	30
EHWW-31-56-003010	15.5	15.5	15.5	5.5	5.4	49	77	7.1	7.8	28	30
EHWW - 39 - $56-003010$	15.5	15.5	155	5.8	6.1	57	75	7.6	7.5	29	30
EHWW - 40-5600950	15.5	15.5	15.5	5.8	6.0	5.7	75	7.5	7.5	28	30
EHWW - $42-36-000010$	1515	15.5	15.5	5.6	5.5	5.4	7.6	7.5	7.6	29	30
EHWW - 44-56003010	15.5	15.5	15.5	5.4	5.3	4.7	7.6	7.6	7.6	29	30
EHWW - 50-560000	155	15.5	15.5	53	6.0	5.7	7.5	7.6	7.6	29	30
Analyst Initials	un-	Uw	num	lun	un	une	my 4 m	nW	unc	4 m	unc

Bivalve Larvae Development Toxicity Test Data Sheet - Larval Counts

Start Date/Time: November 22,2018e 1645 h End Date/Time: November 24, 2018 e 1710 h

Test species: Mytilus galloprovincialis
Initial Density/ 10 mL aliquot: 254

D oupller-rep not wisen in statistical analyses
Reviewed by:
Date Reviewed:
$\frac{\text { Sana } 15,2019}{\left(\begin{array}{c}\text { Nautilus Environmental }\end{array}\right.}$

Bivalve Larvae Development Toxicity Test Data Sheet Larval Counts

Client: $\frac{\text { Anchor }}{18164)}$
Work Order \#:
Sample ID:

Start Date/Time: November 22,2018 e 16454
Test species: Mytilus sp.
Test set up by: Waac
Initial Density $10 \mathrm{~mL}: 254$

Comments: Costlier - rep not used ta statistical confuses

SIngle Comparison Summary

Analysis ID	Endpoint	Comparison Method	P-Value	Comparison Result
02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test	1.0000	EHWW-42 passed combined proportion no 1		
02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test	1.0000	EHWW-01 passed combined proportion no 1		
02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test	1.0000	EHWW-29 passed combined proportion no 1		
02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test	1.0000	EHWW-22 passed combined proportion no 1		
02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test	1.0000	EHWW-06 passed combined proportion no 1		
02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test	1.0000	EHWW-REF18 passed combined proportio 1		
02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test	1.0000	EHWW-31 passed combined proportion no 1		
02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test	1.0000	EHWW-REF17 passed combined proportio 1		
02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test	1.0000	EHWW-39 passed combined proportion no 1		
02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test	1.0000	EHWW-15 passed combined proportipn no 1		

SIngle Comparison Summary

Analysis ID Endpoint Comparison Method 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj \mathfrak{t} Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj \mathfrak{t} Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj \ddagger Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj \mathfrak{t} Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test

P-Value Comparison Result
1.0000 EHWW-50 passed combined proportion no 1 1.0000 EHWW-08 passed combined proportion no 1 1.0000 EHWW-40 passed combined proportion no 1 1.0000 EHWW-44 passed combined proportion no 1 1.0000 EHWW-12 passed combined proportion no 1 1.0000 Control passed combined proportion norm 1 1.0000 EHWW-13 passed combined proportion no 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

EHWW-11 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-08 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-39 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-29 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-44 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-40 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-13 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-44 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1

Report Date:
Test Code/ID:

05 Jan-19 15:21 (p 3 of 57)
181641 / 12-6434-9271

Bivalve Larval Survival and Development Test
Nautilus Environmental

Single Comparison Summary

Analysis ID Endpoint Comparison Method 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj 1 Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj \ddagger Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj \ddagger Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj \ddagger Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test

P-Value Comparison Result
EHWW-11 passed combined proportion no 1
EHWW-08 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-40 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 Control passed combined proportion norm 1 EHWW-29 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-22 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-29 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-50 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-11 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-31 passed combined proportion no \dagger EHWW-39 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-12 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-40 passed combined proportion no 1

SIngle Comparison Summary

Analysis ID Endpoint Comparison Method 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj \ddagger Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj \ddagger Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj \mathfrak{t} Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj \ddagger Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj i Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj \mathfrak{T} Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj \ddagger Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj \mathfrak{t} Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test

P-Value 1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
. 1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

Comparison Result
S
EHWW-31 passed combined proportion no 1
EHWW-06 passed combined proportion no 1
EHWW-29 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-08 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-REF17 passed combined proportio 1 EHWW-31 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 Control passed combined proportion norm 1 EHWW-39 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-22 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-44 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-42 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-42 passed combined proportion no 1 EHWW-44 passed combined proportion no 1

SIngle Comparison Summary

Analysis ID Endpoint Comparison Method
21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj \ddagger Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj \mathfrak{t} Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj \ddagger Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj ! Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj \mathfrak{t} Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj \ddagger Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj \ddagger Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj \ddagger Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test

P-Value Comparison Result
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

EHWW-40 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-15 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-50 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-42 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-12 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-31 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-15 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-01 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-11 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-13 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-40 passed combined proportion no 1

SIngle Comparison Summary

Analysis ID Endpoint Comparison Method
21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test
02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj \mathfrak{t} Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj \ddagger Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test

P-Value Comparison Result
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

EHWW-39 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-15 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-11 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-29 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-06 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-08 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-06 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-29 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 Control passed combined proportion norm 1 EHWW-11 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-12 passed combined proportion no 1

SIngle Comparison Summary

Analysis ID Endpoint Comparison Method
21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj ! Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj \ddagger Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj \ddagger Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test

P-Value Comparison Result
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

EHWW-44 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-42 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-01 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-29 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-22 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-06 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-40 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-REF17 passed combined proportio 1 EHWW-12 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-08 passed combined proportion no 1 EHWW-29 passed combined proportion no 1

SIngle Comparison Summary

Analysis ID Endpoint Comparison Method
21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Próportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj \mathfrak{T} Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test

P-Value Comparison Result
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

EHWW-01 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-31 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-39 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-12 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-13 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-REF17 passed combined proportio 1 EHWW-06 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-29 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-50 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-40 passed combined proportion rio 1 EHWW-REF17 passed combined proportio 1 EHWW-06 passed combined proportion no 1 EHWW-22 passed combined proportion no 1

Single Comparison Summary

Analysis ID Endpoint . Comparison Method
21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Próportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj \ddagger Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test

P-Value
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.5035
0.5035
0.5035
0.5035
0.5035
0.5035
0.5035
0.5035
0.5035
0.5035
0.5035
0.5035
0.5035
0.5035
0.5035
0.5035
0.5035
0.5035
0.9453
0.9453

Comparison Result
EHWW-50 passed combined proportion no 1
EHWW-REF18 passed combined proportio 1
EHWW-29 passed combined proportion no 1
EHWW-01 passed combined proportion no 1
EHWW-13 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-11 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-50 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-06 passed combined proportion ño 1 EHWW-11 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 Control passed combined proportion norm 1 EHWW-REF18 passed combined proportio 1 EHWW-13 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-50 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-29 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-31 passed combined proportion no 1

Report Date:
Test Code/lD:

05 Jan-19 15:21 (p 10 of 57)
181641 / 12-6434-9271

Single Comparison Summary

Analysis ID Endpoint Comparison Method 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj \ddagger Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj \ddagger Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj i Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj i Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test

P-Value
0.9453
0.9453
0.9453
0.9453
0.9453
0.9453
0.9453
0.9453
0.9453
0.9453
0.9453
0.9453
0.9453
0.9453
0.9453
0.9453
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

Comparison Result
EHWW-01 passed combined proportion no 1
EHWW-22 passed combined proportion no 1
EHWW-15 passed combined proportion no 1
Control passed combined proportion norm 1
EHWW-50 passed combined proportion no 1
EHWW-13 passed combined proportion no 1
EHWW-11 passed combined proportion no 1
EHWW-44 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-42 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-39 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-11 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-42 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-44 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-50 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-11 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-44 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1

SIngle Comparison Summary

Analysis ID Endpoint Comparison Method 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj \mathfrak{t} Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj 1 Test 02-3871-5703 Combined Próportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj \ddagger Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj \ddagger Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test

SIngle Comparison Summary

Analysis ID Endpoint Comparison Method 21-1427-6474 Combined Proportion Norma Bonferroni Adj \mathfrak{t} Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj \ddagger Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj \ddagger Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Próportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj \ddagger Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj i Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj \ddagger Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj 1 Test

P-Value Comparison Result
EHWW-39 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-REF17 passed combined proportio 1 EHWW-REF18 passed combined proportio 1 EHWW-40 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-REF18 passed combined proportio 1 EHWW-06 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-08 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-REF18 passed combined proportio 1 EHWW-31 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1

SIngle Comparison Summary

Analysis ID Endpoint Comparison Method 20-7148-5003 Combined Proportion Norma Bonferroni Adj 1 Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj \mathfrak{T} Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj 1 Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj 1 Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test

P-Value
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

Comparison Result
EHWW-50 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-13 passed combined proportion ro 1 EHWW-31 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-11 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-44 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-22 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-39 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-29 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-13 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-REF18 passed combined proportio 1 EHWW-13 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-44 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-39 passed combined proportion no 1

Single Comparison Summary

Analysis ID Endpoint Comparison Method 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj \ddagger Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj 1 Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj \ddagger Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj \ddagger Test

P-Value Comparison Result
S 1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

EHWW-06 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-REF17 passed combined proportio 1 EHWW-22 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-13 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-22 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-REF17 passed combined proportio 1 EHWW-15 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-01 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-08 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-29 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWWW-06 passed combined proportion no 1 EHWW-12 passed combined proportion no 1

SIngle Comparison Summary

Analysis ID Endpoint Comparison Method 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj \ddagger Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj \ddagger Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj \ddagger Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj \dagger Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj 1 Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test

P-Value Comparison Result
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

EHWW-44 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-44 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-REF17 passed combined proportio 1 EHWW-42 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-22 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-12 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-08 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-REF18 passed combined proportio 1 EHWW-01 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-13 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-22 passed combined proportion ro 1 EHWW-50 passed combined proportion no 1

SIngle Comparison Summary

Analysis ID Endpoint Comparison Method
20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj \mathfrak{t} Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj \ddagger Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj \ddagger Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj \ddagger Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj \mathfrak{t} Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj \ddagger Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test

P-Value Comparison Result
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

EHWW-31 passed combined proportion no 1
EHWW-29 passed combined proportion no 1
EHWW-12 passed combined proportion no 1
EHWW-40 passed combined proportion no 1
EHWW-31 passed combined proportion ņo 1
EHWW-40 passed combined proportion no 1
Control passed combined proportion norm 1
EHWW-44 passed combined proportion no 1
EHWW-06 passed combined proportion no 1
EHWW-15 passed combined proportion no 1
EHWW-01 passed combined proportion no 1
EHWW-22 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-29 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-13 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-06 passed combined proportion rio 1 EHWW-01 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-REF18 passed combined proportio 1 EHWW-13 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-31 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1

Single Comparison Summary

Analysis ID Endpoint Comparison Method 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj \ddagger Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj \ddagger Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj \mathfrak{t} Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj i Test 02-3871-5703 Combined Proportion Norma Bonferroni Adj t Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj \dagger Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj \ddagger Test 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test

P-Value Comparison Result
S
Control passed combined proportion norm 1 EHWW-40 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWW-13 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-06 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-22 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-13 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-39 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-REF18 passed combined proportio 1 EHWWW-40 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-44 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-15 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-22 passed combined proportion no 1 EHWW-REF17 passed combined proportio 1 EHWW-11 passed combined proportion no 1 EHWW-42 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-13 passed combined proportion no 1

Report Date:
Test Code/ID:

05 Jan-19 15:21 (p 18 of 57)
181641 / 12-6434-9271

Bivalve Larval Survival and Development Test

SIngle Comparison Summary

Analysis ID Endpoint Comparison Method 20-7148-5003 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 21-1427-6474 Combined Proportion Norma Bonferroni Adj t Test 14-6142-4225 Proportion Normal 21-2426-0886 Proportion Normal

Bonferroni Adj t Test Bonferroni Adj \mathfrak{t} Test Bonferroni Adj t Test

P-Value Comparison Result
EHWW-40 passed combined proportion no 1
EHWW-REF18 passed combined proportion 1
EHWW-08 passed combined proportion no 1
EHWW-29 passed combined proportion no 1
EHWW-39 passed combined proportion no 1
EHWW-06 passed combined proportion no 1
EHWW-22 passed combined proportion no 1 EHWW-44 passed combined proportion no 1 EHWW-31 passed combined proportion no 1 EHWW-01 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-06 passed combined proportion no 1 EHWW-29 passed combined proportion no 1 EHWW-REF18 passed combined proportion 1 EHWW-42 passed combined proportion no 1 EHWW-40 passed combined proportion no 1 EHWW-08 passed combined proportion no 1 EHWW-12 passed combined proportion no 1 EHWW-REF17 passed combined proportion 1 EHWW-15 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 EHWW-13 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 Control passed combined proportion norm 1 EHWW-39 passed proportion normal 1 EHWW-15 passed proportion normal 1 EHWW-22 passed proportion normal , 1 EHWW-44 passed proportion normal 1 EHWW-REF18 passed proportion normal 1 EHWW-50 passed proportion normal 1 EHWW-42 passed proportion normal 1 EHWW-12 passed proportion normal 1 Control passed proportion normal 1 EHWW-40 passed proportion normal 1 EHWW-01 passed proportion normal 1 EHWW-06 passed proportion normal 1 EHWW-REF17 passed proportion normal 1 EHWW-29 passed proportion normal 1 EHWW-13 passed proportion normal 1 EHWW-11 passed proportion normal 1 EHWW-08 passed proportion normal 1 EHWW-31 passed proportion normal . 1 EHWW-29 passed proportion normal 1
EHWW-REF18 passed proportion normal 1 EHWW-39 passed proportion normal 1 EHWW-06 passed proportion normal 1 EHWW-42 passed proportion normal 1 EHWW-44 passed proportion normal 1 EHWW-12 passed proportion normal 1 EHWW-01 passed proportion normal . 1
EHWW-REF17 passed proportion normal 1
EHWW-31 passed proportion normal 1
EHWW-08 passed proportion normal 1

SIngle Comparison Summary

13-2946-4594 Proportion Normal 21-2426-0886 Proportion Normal 13-2946-4594 Proportion Normal

Comparison Method

Bonferroni
Bonferroni Adj t Test Bonferroni Adj t Test Bonferroni Adj t Test Bonferroni Adj t Test Ad Test Bonferroni Adj t Test Bonferroni Adj t Test Bon Ad t Bonferroni Adj t Test Content Ad est Bonferroni Adj t Test Bonferroni Adj \mathfrak{t} Test Bonferroni Adj t Test
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
EHWW-REF17 passed proportion normal
EHWW-REF18 passed proportion normal 1
EHWW-REF17 passed proportion normal
EHWW-15 passed proportion normal 1
EHWW-REF18 passed proportion normal 1
EHWW-13 passed proportion normal " 1
EHWW-44 passed proportion normal 1
EHWW-12 passed proportion normal 1
EHWW-42 passed proportion normal 1
EHWW-29 passed proportion normal 1
EHWW-22 passed proportion normal 1
EHWW-50 passed proportion normal 1
EHWW-40 passed proportion normal 1
Control passed proportion normal 1
EHWW-11 passed proportion normal 1
EHWW-39 passed proportion normal 1
EHWW-08 passed proportion normal 1
EHWW-31 passed proportion normal 1
EHWW-01 passed proportion normal 1
EHWW-06 passed proportion normal 1
EHWW-13 passed proportion normal 1
EHWW-29 passed proportion normal 1
EHWW-REF18 passed proportion normal
EHWW-08 passed proportion normal 1
Control passed proportion normal • 1
EHWW-REF17 passed proportion normal 1
EHWW-06 passed proportion normal 1
EHWW-12 passed proportion normal . 1
EHWW-11 passed proportion normal 1
EHWW-40 passed proportion normal 1

Single Comparison Summary

Analysis ID Endpoint 13-2946-4594 Proportion Normal 14-6142-4225 Proportion Normal 21-2426-0886 Proportion Normal 13-2946-4594 Proportion Normal

Comparison Method	P-Value	Comparison Result	S
Bonferroni Adj t Test	1.0000	EHWW-31 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-39 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-22 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-44 passed proportion normal	
Bonferroni Adj t Test	1.0000	EHWW-01 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-42 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-15 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-50 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-22 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-31 passed proportion normal	1
Bonferroni Adj t Test	1.0000	Control passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-13 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-15 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-11 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-40 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-29 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-12 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-42 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-08 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-01 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-39 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-44 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-06 passed proportion normal	
Bonferroni Adj t Test	1.0000	EHWW-REF18 passed proportion normal	
Bonferroni Adj t Test	1.0000	EHWW-REF17 passed proportion normal	
Bonferroni Adj t Test	1.0000	EHWW-50 passed proportion normal	
Bonferroni Adj t Test	1.0000	EHWW-12 passed proportion normal	
Bonferroni Adj t Test	1.0000	EHWW-08 passed proportion normal	
Bonferroni Adj t Test	1.0000	EHWW-22 passed proportion normal	
Bonferroni Adj t Test	1.0000	EHWW-42 passed proportion normal	
Bonferroni Adj t Test	1.0000	EHWW-15 passed proportion normal	
Bonferroni Adj t Test	1.0000	EHWW-06 passed proportion normal	
Bonferroni Adj t Test	1.0000	EHWW-29 passed proportion normal	
Bonferroni Adj t Test	1.0000	EHWW-REF17 passed proportion normal	
Bonferroni Adj t Test	1.0000	EHWW-44 passed proportion normal	
Bonferroni Adj t Test	1.0000	EHWW-31 passed proportion normal	
Bonferroni Adj t Test	1.0000	Control passed proportion normal	
Bonferroni Adj t Test	1.0000	EHWW-11 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-50 passed proportion normal	
Bonferroni Adj t Test	1.0000	EHWW-40 passed proportion normal	
Bonferroni Adj t Test	. 1.0000	EHWW-01 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-39 passed proportion normal	
Bonferroni Adj t Test	1.0000	EHWW-REF18 passed proportion normal	
Bonferroni Adj t Test	1.0000	EHWW-13 passed proportion normal	1
Bonferroni Adj t Test	0.0127	EHWW-15 failed proportion normal	1
Bonferroni Adj t Test	0.0127	EHWW-REF18 failed proportion normal	1
Bonferroni Adj t Test	0.0127	EHWW-13 failed proportion normal	1
Bonferroni Adj t Test	0.0127	EHWW-08 failed proportion normal	
Bonferroni Adj t Test	0.0127	EHWW-REF17 failed proportion normal	1
Bonferroni Adj t Test	0.0127	EHWW-50 failed proportion normal	1
Bonferroni Adj t Test	0.0127	Control failed proportion normal	1
Bonferroni Adj t Test	0.0127	EHWW-01 failed proportion normal	1
Bonferroni Adj t Test	0.0127	EHWW-06 failed proportion normal	1

Single Comparison Summary

Analysis ID	Endpoint	Comparison Method	P-Value	Comparison Result	
$13-2946-4594$ Proportion Normal	Bonferroni Adj t Test	0.0127	EHWW-22 failed proportion normal	S	
$13-2946-4594$	Proportion Normal	Bonferroni Adj t Test	0.0127	EHWW-42 failed proportion normal	1
$13-2946-4594$ Proportion Normal	Bonferroni Adj t Test	0.0127	EHWW-12 failed proportion normal	1	
$13-2946-4594$ Proportion Normal	Bonferroni Adj t Test	0.0127	EHWW-29 failed proportion normal	1	
$13-2946-4594$ Proportion Normal	Bonferroni Adj t Test	0.0127	EHWW-44 failed proportion normal	1	
$13-2946-4594$ Proportion Normal	Bonferroni Adj t Test	0.0127	EHWW-11 failed proportion normal	1	
$13-2946-4594$ Proportion Normal	Bonferroni Adj t Test	0.0127	EHWW-40 failed proportion normal	1	
$13-2946-4594$ Proportion Normal	Bonferroni Adj t Test	0.0127	EHWW-39 failed proportion normal	1	
$13-2946-4594$ Proportion Normal	Bonferroni Adj t Test	0.0127	EHWW-31 failed proportion normal	1	
$14-6142-4225$ Proportion Normal	Bonferroni Adj t Test	0.1029	EHWW-42 passed proportion normal	1	
$14-6142-4225$ Proportion Normal	Bonferroni Adj t Test	0.1029	EHWW-01 passed proportion normal	1	
$14-6142-4225$ Proportion Normal	Bonferroni Adj t Test	0.1029	Control passed proportion normal	1	
$14-6142-4225$ Proportion Normal	Bonferroni Adj t Test	0.1029	EHWW-31 passed proportion normal	1	
$14-6142-4225$ Proportion Normal	Bonferroni Adj t Test	0.1029	EHWW-39 passed proportion normal	1	

14-6142-4225 Proportion Normal
21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 13-2946-4594 Proportion Normal

Bonferroni Adj t Test
Bonferroni Adj ! Test
Bonferroni Adj t Test Bonferroni Adj t Test Bonferroni Adj t Test Bonferroni Adj t Test Bonferroni Adj t Test Bonferroni Adj \ddagger Test Bonferroni Adj t Test Bonferroni Adj \mathfrak{t} Test Bonferroni Adj t Test Bonferroni Adj \mathfrak{t} Test Bonferroni Adj t Test
Bonferroni Adj t Test
0.1029
0.1029
0.1029
0.1029
0.1029
0.1029
0.1029
0.1029
0.1029
0.1029
0.1029
0.1029
0.1029
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000 EHWW-13 passed proportion normal 1
1.0000 EHWW-31 passed proportion normal 1
1.0000 EHWW-11 passed proportion normal 1
1.0000 EHWW-39 passed proportion normal " 1
1.0000 EHWW-08 passed proportion normal

SIngle Comparison Summary

Analysis ID	Endpoint
13-2946-4594 Proportion Normal	
14-6142-4225 Proportion Normal	

Bonferroni Adj t Test	
	Bonferroni Adj t Test

P-Value	Comparison Result	S
1.0000	EHWW-22 passed proportion normal	1
1.0000	EHWW-15 passed proportion normal	1
1.0000	EHWW-50 passed proportion normal	1
1.0000	EHWW-40 passed proportion normal	1
1.0000	EHWW-01 passed proportion normal	1
1.0000	EHWW-42 passed proportion normal	1
1.0000	EHWW-REF18 passed proportion normal	1
1.0000	EHWW-REF17 passed proportion normal	1
1.0000	EHWW-44 passed proportion normal	1
1.0000	EHWW-12 passed proportion normal	1
1.0000	EHWW-50 passed proportion normal	1
1.0000	EHWW-11 passed proportion normal	1
1.0000	EHWW-40 passed proportion normal	1
1.0000	EHWW-13 passed proportion normal	1
1.0000	EHWW-29 passed proportion normal	1
1.0000	EHWW-06 passed proportion normal	1
1.0000	EHWW-08 passed proportion normal	1
1.0000	EHWW-REF17 passed proportion normal	1
1.0000	EHWW-01 passed proportion normal	1
1.0000	EHWW-15 passed proportion normal	1
1.0000	EHWW-22 passed proportion normal	1
1.0000	EHWW-12 passed proportion normal	1
1.0000	EHWW-39 passed proportion normal	1
1.0000	EHWW-REF18 passed proportion normal	1
1.0000	EHWW-31 passed proportion normal	1
1.0000	EHWW-44 passed proportion normal	1
1.0000	Control passed proportion normal	1
1.0000	EHWW-42 passed proportion normal	1
1.0000	EHWW-REF18 passed proportion normal	1
1.0000	EHWW-01 passed proportion normal	1
1.0000	EHWW-REF17 passed proportion normal	1
1.0000	EHWW-22 passed proportion normal	1
1.0000	EHWW-06 passed proportion normal	1
1.0000	EHWW-15 passed proportion normal	1
1.0000	EHWW-01 passed proportion normal	1
1.0000	EHWW-06 passed proportion normal	1
1.0000	EHWW-08 passed proportion normal	1
1.0000	Control passed proportion normal	1

SIngle Comparison Summary

Analysis ID \quad Endpoint
13-2946-4594 Proportion Normal

13-2946-4594 Proportion Normal
14-6142-4225 Proportion Normal
21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 13-2946-4594 Proportion Normal

Comparison Method	P-Value	Comparison Result	S
Bonferroni Adj t Test	1.0000	EHWW-39 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-50 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-44 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-22 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-29 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-31 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-11 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-40 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-42 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-12 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-13 passed proportion normal	1
Bonferroni Adj t Test	1.0000	Control passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-31 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-50 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-REF17 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-44 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-01 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-15 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-13 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-06 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-REF18 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-39 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-29 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-40 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-11 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-08 passed proportion normal	1
Bonferroni Adj \dagger Test	1.0000	EHWW-22 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-12 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-42 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-42 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWWW-40 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-44 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-12 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-08 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-31 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-39 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-29 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-22 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-50 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-13 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-15 passed proportion normal	1
Bonferroni Adj t Test	1.0000	Control passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-11 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-REF18 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-06 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-01 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-REF17 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-39 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-40 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-08 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-29 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-REF17 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-11 passed proportion normal	1

SIngle Comparison Summary

Analysis ID	Endpoint
13-2946-4594 Proportion Normal	

13-2946-4594 Proportion Normal 13-2946-4594 Proportion Normal 14-6142-4225 Proportion Normal 21-2426-0886 Proportion Normal 13-2946-4594 Proportion Normal

Comparison Method
Bonferroni Adj t Test
Bonferroni Adj \mathfrak{t} Test
Bonferroni Adj t Test
Bonferroni Adj \ddagger Test
Bonferroni Adj t Test
Bonferroni Adj t Test
Bonferroni Adj t Test
Bonferroni Adj t Test
Bonferroni Adj t Test

P-Value 1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.1827
0.1827
0.1827
0.1827
0.1827

Comparison Result
S
EHWW-42 passed proportion normal 1
EHWW-06 passed proportion normal 1
Control passed proportion normal 1
EHWW-22 passed proportion normal 1
EHWW-13 passed proportion normal 1
EHWW-01 passed proportion normal 1
EHWW-31 passed proportion normal 1
EHWW-15 passed proportion normal 1
EHWW-44 passed proportion normal 1
EHWW-12 passed proportion normal 1
EHWW-REF18 passed proportion normal 1
EHWW-50 passed proportion normal 1
EHWW-31 passed proportion normal 1
EHWW-13 passed proportion normal 1
EHWW-44 passed proportion normal 1
EHWW-39 passed proportion normal 1
EHWW-12 passed proportion normal 1
EHWW-22 passed proportion normal 1
EHWW-06 passed proportion normal 1
EHWW-REF17 passed proportion normal 1
EHWW-42 passed proportion normal 1
EHWW-08 passed proportion normal 1
EHWW-01 passed proportion normal 1
EHWW-50 passed proportion normal 1
EHWW-15 passed proportion normal 1
EHWW-40 passed proportion normal 1
EHWW-11 passed proportion normal 1
EHWW-REF18 passed proportion normal 1
EHWW-29 passed proportion normal 1
Control passed proportion normal 1
EHWW-39 passed proportion normal 1
EHWW-15 passed proportion normal 1
EHWW-22 passed proportion normal 1
EHWW-13 passed proportion normal - 1
EHWW-06 passed proportion normal 1
EHWW-29 passed proportion normal 1
EHWW-REF17 passed proportion normal 1
EHWW-REF18 passed proportion normal 1
Control passed proportion normal 1
EHWW-42 passed proportion normal 1
EHWW-44 passed proportion normal 1
EHWW-40 passed proportion normal 1
EHWW-11 passed proportion normal 1
EHWW-08 passed proportion normal 1
EHWW-50 passed proportion normal 1
EHWW-01 passed proportion normal 1
EHWW-12 passed proportion normal 1
EHWW-31 passed proportion normal 1
EHWW-15 passed proportion normal 1
EHWW-12 passed proportion normal 1
EHWW-50 passed proportion normal 1
EHWW-31 passed proportion normal 1
EHWW-44 passed proportion normal 1

SIngle Comparison Summary

SIngle Comparison Summary

Analysis ID	Endpoint	Comparison Method	P-Value	Comparison Result	S
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	3.6E-04	EHWW-31 failed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	3.6E-04	EHWW-REF17 failed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	3.6E-04	EHWW-39 failed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	3.6E-04	EHWW-12 failed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	3.6E-04	EHWW-01 failed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	3.6E-04	EHWW-06 failed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	3.6E-04	EHWW-44 failed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	3.6E-04	EHWW-11 failed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	3.6E-04	EHWW-08 failed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	3.6E-04	EHWW-29 failed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	3.6E-04	Control failed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	3.6E-04	EHWW-22 failed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	3.6E-04	EHWW-40 failed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	3.6E-04	EHWW-50 failed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	0.0041	EHWW-44 failed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	0.0041	EHWW-13 failed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	0.0041	EHWW-11 failed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	0.0041	EHWW-29 failed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	0.0041	EHWW-REF18 failed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	0.0041	EHWW-12 failed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	0.0041	EHWW-42 failed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	0.0041	EHWW-50 failed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	0.0041	EHWW-01 failed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	0.0041	EHWW-06 failed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	0.0041	EHWWW-REF17 failed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	0.0041	EHWW-39 failed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	0.0041	EHWW-40 failed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	0.0041	EHWW-22 failed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	0.0041	EHWW-08 failed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	0.0041	EHWW-15 failed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	0.0041	EHWW-31 failed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	0.0041	Control failed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-01 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-29 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-22 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-50 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-42 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-44 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-11 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-06 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-39 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-12 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-REF17 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-31 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-40 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-REF18 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-08 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-13 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	Control passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-15 passed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	0.0235	EHWW-08 failed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	0.0235	EHWW-44 failed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	0.0235	EHWW-06 failed proportion normal	1

Report Date:
Test CodelID:

SIngle Comparison Summary

Analysis ID	Endpoint
13-2946-4594 Proportion Normal	

13-2946-4594 Proportion Normal
14-6142-4225 Proportion Normal 14-6142-4225 Proportion Normal 14-6142-4225 Proportion Normal 14-6142-4225 Proportion Normal 14-6142-4225 Proportion Normal 14-6142-4225 Proportion Normal 14-6142-4225 Proportion Normal 14-6142-4225 Proportion Normal 14-6142-4225 Proportion Normal 14-6142-4225 Proportion Normal 14-6142-4225 Proportion Normal 14-6142-4225 Proportion Normal 21-2426-0886 Proportion Normal 13-2946-4594 Proportion Normal 13-2946-4594 Proportion Normal

Comparison Method Bonferroni Adj t Test Bonferroni Adj ! Test Bonferroni Adj t Test Bonferroni Adj \ddagger Test Bonferroni Adj t Test Bonferroni Adj t Test Bonferroni Adj t Test Bonferroni Adj \mathfrak{t} Test Bonferroni Adj t Test

P-Value 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.1752 0.1752 0.1752 0.1752 0.1752 0.1752 0.1752 0.1752 0.1752 0.1752 0.1752 0.1752 0.1752
0.1752
0.1752
0.1752
0.1752
0.1752
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000 EHWW-12 passed proportion normal 1

EHWW-29 passed proportion normal 1

Report Date:
Test Code lID:

05 Jan-19 15:21 (p 28 of 57)
181641 / 12-6434-9271

SIngle Comparison Summary

Analysis ID Endpoint Comparison Method
13-2946-4594 Proportion Normal 14-6142-4225 Proportion Normal 21-2426-0886 Proportion Normal 13-2946-4594 Proportion Normal

Comparison Method Bonferroni Adj t Test Bonferroni Adj t Test
Bonferroni Adj t Test
Bonferroni Adj t Test
Bonferroni Adj t Test
Bonferroni Adj t Test
Bonferroni Adj t Test
Bonferroni Adj t Test
Bonferroni Adj t Test
Bonferroni Adj t Test
Bonferroni Adj t Test
Bonferroni Adj t Test
Bonferroni Adj t Test
Bonferroni Adj \ddagger Test
Bonferroni Adj t Test
Bonferroni Adj t Test
Bonferroni Adj t Test

P-Value 1.0000
1.0000 EHWW-REF18 passed proportion normal
1.0000 EHWW-42 passed proportion normal 1
1.0000 Control passed proportion normal 1
1.0000 EHWW-08 passed proportion normal 1
1.0000 EHWW-13 passed proportion normal 1
1.0000 EHWW-44 passed proportion normal 1
1.0000 EHWW-15 passed proportion normal 1
1.0000 EHWW-REF17 passed proportion normal 1
1.0000 EHWW-22 passed proportion normal 1
1.0000 EHWW-06 passed proportion normal . 1
1.0000 EHWW-50 passed proportion normal 1
1.0000 EHWW-11 passed proportion normal 1
1.0000 EHWW-39 passed proportion normal 1
1.0000 EHWW-31 passed proportion normal 1
1.0000 EHWW-01 passed proportion normal 1
1.0000 EHWW-44 passed proportion normal 1
1.0000 EHWW-29 passed proportion normal 1
1.0000 EHWW-42 passed proportion normal 1
1.0000 EHWW-40 passed proportion normal 1
1.0000 EHWW-31 passed proportion normal 1
1.0000 EHWW-39 passed proportion normal 1
1.0000 EHWW-11 passed proportion normal 1
1.0000 EHWW-12 passed proportion normal 1
1.0000 EHWW-01 passed proportion normal 1
1.0000 EHWW-50 passed proportion normal 1
1.0000 EHWW-REF18 passed proportion normal 1
1.0000 EHWW-REF17 passed proportion normal 1
1.0000 Control passed proportion normal 1
1.0000 EHWW-08 passed proportion normal 1
1.0000 EHWW-13 passed proportion normal 1
1.0000 EHWW-22 passed proportion normal 1
1.0000 EHWW-06 passed proportion normal 1
1.0000 EHWW-15 passed proportion normal * 1
1.0000 EHWW-31 passed proportion normal 1
1.0000 EHWW-13 passed proportion normal 1
1.0000 Control passed proportion normal 1
1.0000 EHWW-39 passed proportion normal 1
1.0000 EHWW-08 passed proportion normal 1
1.0000 EHWW-06 passed proportion normal 1
1.0000 EHWW-01 passed proportion normal 1
1.0000 EHWW-40 passed proportion normal 1
1.0000 EHWW-42 passed proportion normal 1
1.0000 EHWW-29 passed proportion normal 1
1.0000 EHWW-15 passed proportion normal 1
1.0000 EHWW-50 passed proportion normal 1
1.0000 EHWW-REF18 passed proportion normal 1
1.0000 EHWW-22 passed proportion normal 1
1.0000 EHWW-44 passed proportion normal 1
1.0000 EHWW-11 passed proportion normal 1
1.0000 EHWW-REF17 passed proportion normal 1
1.0000 EHWW-12 passed proportion normal 1
1.0000 EHWW-50 passed proportion normal 1

SIngle Comparison Summary

Analysis ID Endpoint
13-2946-4594 Proportion Normal 14-6142-4225 Proportion Normal 21-2426-0886 Proportion Normal

Comparison Method Bonferroni Adj \mathfrak{t} Test Bonferroni Adj t Test Bonferroni Adj t Test Bonferroni Adj t Test Bonferroni Adj t Test Bonferroni Adj t Test Bonferroni Adj t Test Bonferroni Adj t Test Bonferroni Adj t Test Bonferroni Adj \mathfrak{t} Test Bonferroni Adj t Test Bonferroni Adj t Test
Bonferroni Adj t Test
Bonferroni Adj t Test
Bonferroni Adj t Test
Bonferroni Adj t Test
Bonferroni Adj t Test
Bonferroni Adj t Test
Bonferroni Adj \ddagger Test
Bonferroni Adj t Test
Bonferroni Adj 1 Test
Bonferroni Adj t Test
Bonferroni Adj i Test
Bonferroni Adj t Test

P-Value
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000 EHWW-REF17 passed proportion normal 1
1.0000 Control passed proportion normal 1
1.0000 EHWW-01 passed proportion normal 1
1.0000 EHWW-11 passed proportion normal 1
1.0000 EHWW-01 passed proportion normal 1
1.0000 EHWW-29 passed proportion normal 1
1.0000 EHWW-12 passed proportion normal 1
1.0000 Control passed proportion normal 1
1.0000 EHWW-22 passed proportion normal 1
1.0000 EHWW-06 passed proportion normal 1
1.0000 EHWW-15 passed proportion normal 1
1.0000 EHWW-42 passed proportion normal 1
1.0000 EHWW-39 passed proportion normal 1
1.0000 EHWW-31 passed proportion normal 1
1.0000 EHWW-13 passed proportion normal 1
1.0000 EHWW-REF18 passed proportion normal 1
1.0000 EHWW-44 passed proportion normal 1
1.0000 EHWW-REF17 passed proportion normal 1
1.0000 EHWW-08 passed proportion normal 1
1.0000 EHWW-50 passed proportion normal 1
1.0000 EHWW-40 passed proportion normal 1

Report Date:
Test Code/ID:

05 Jan-19 15:21 (p 30 of 57)
181641 / 12-6434-9271

Bivalve Larval Survival and Development Test
Nautilus Environmental
Single Comparison Summary
Analysis ID Endpoint
13-2946-4594 Proportion Normal 14-6142-4225 Proportion Normal 21-2426-0886 Proportion Normal

SIngle Comparison Summary

Analysis ID	Endpoint
21-2426-0886 Proportion Normal	
13-2946-4594	Proportion Normal
13-2946-4594 Proportion Normal	

21-2426-0886 Proportion Normal

Comparison Method	P-Value	Comparison Result	S
Bonferroni Adj t Test	1.0000	EHWW-11 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-42 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-01 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-12 passed proportion normal	1
Bonferroni Adj t Test	. 1.0000	EHWW-40 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-15 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-REF17 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-31 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-REF18 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-50 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-13 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-08 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-44 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-11 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-39 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-22 passed proportion normal	1
Bonferroni Adj t Test	1.0000	Control passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-06 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-29 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-39 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-22 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-11 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-12 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-44 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-REF18 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-REF17 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-08 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-50 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-42 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-40 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-29 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-13 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-15 passed proportion normal	1
Bonferroni Adj t Test	1.0000	Control passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-06 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-31 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-01 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-15 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-39 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-40 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-22 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-REF18 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-44 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-31 passed proportion normal	1
Bonferroni Adj t Test	1.0000	Control passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-50 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-42 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-08 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-REF17 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-13 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-11 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-01 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-29 passed proportion normal	1

SIngle Comparison Summary					
Analysis ID	Endpoint	Comparison Method	P-Value	Comparison Result	S
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-12 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-06 passed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	0.7482	EHWW-42 passed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	0.7482	EHWW-31 passed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	0.7482	EHWW-06 passed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	0.7482	EHWW-08 passed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	0.7482	EHWW-01 passed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	0.7482	EHWW-29 passed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	0.7482	EHWW-REF18 passed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	0.7482	EHWW-11 passed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	0.7482	EHWW-50 passed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	0.7482	EHWW-39 passed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	0.7482	EHWW-13 passed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	0.7482	EHWW-22 passed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	0.7482	EHWW-REF17 passed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	0.7482	EHWW-44 passed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	0.7482	EHWW-40 passed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	0.7482	Control passed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	0.7482	EHWW-15 passed proportion normal	1
13-2946-4594	Proportion Normal	Bonferroni Adj t Test	0.7482	EHWW-12 passed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-40 passed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	1.0000	Control passed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-44 passed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-08 passed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-42 passed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-31 passed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-29 passed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-22 passed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-REF18 passed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-11 passed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-15 passed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-REF17 passed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-06 passed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-13 passed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-50 passed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-12 passed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-01 passed proportion normal	1
14-6142-4225	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-39 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-42 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-22 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-40 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-06 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-39 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj \ddagger Test	1.0000	EHWW-44 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-15 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-REF17 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-08 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-31 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	. 1.0000	EHWW-50 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-13 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-29 passed proportion normal	1
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-REF18 passed proportion normal.	
21-2426-0886	Proportion Normal	Bonferroni Adj t Test	1.0000	EHWW-12 passed proportion normal	

Report Date:
Test Code/ID:

05 Jan-19 15:21 (p 33 of 57)
181641/12-6434-9271

SIngle Comparison Summary

Analysis ID Endpoint 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 13-2946-4594 Proportion Normal 14-6142-4225 Proportion Normal 21-2426-0886 Proportion Normal

Comparison Method	P-Value	Comparison Result	S
Bonferroni Adj t Test	1.0000	EHWW-11 passed proportion normal	1
Bonferroni Adj t Test	1.0000	Control passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-01 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-44 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-15 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-REF17 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-40 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-12 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-13 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-50 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-31 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-29 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-06 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-42 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-08 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-REF18 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-01 passed proportion normal	1
Bonferroni Adj \mathfrak{t} Test	1.0000	EHWW-39 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-11 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-22 passed proportion normal	1
Bonferroni Adj t Test	1.0000	Control passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-08 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-11 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-01 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-06 passed proportion normal	1
Bonferroni Adj \mathfrak{t} Test	1.0000	Control passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-50 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-13 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-39 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-29 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-40 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-42 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-12 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-15 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-REF18 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-22 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-44 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-REF17 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-31 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-15 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-31 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-29 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-12 passed proportion normal	1
Bonferroni Adj t Test	. 1.0000	EHWW-39 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-01 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-06 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-50 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-REF17 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-08 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-13 passed proportion normal	1
Bonferroni Adj t Test	1.0000	Control passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-REF18 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-11 passed proportion normal	

SIngle Comparison Summary
Analysis ID Endpoint Comparison Method
21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 13-2946-4594 Proportion Normal 14-6142-4225 Proportion Normal 21-2426-0886 Proportion Normal

Comparison Method	P-Value	Comparison Result	s
Bonferroni Adj t Test	1.0000	EHWW-22 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-44 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-40 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-42 passed proportion normal	1
Bonferroni Adj t Test	0.0111	EHWW-06 failed proportion normal	1
Bonferroni Adj t Test	0.0111	EHWW-15 failed proportion normal	1
Bonferroni Adj t Test	0.0111	EHWW-REF17 failed proportion normal	1
Bonferroni Adj t Test	0.0111	EHWW-REF18 failed proportion normal	1
Bonferroni Adj t Test	0.0111	EHWW-29 failed proportion normal	1
Bonferroni Adj t Test	0.0111	EHWW-31 failed proportion normal	1
Bonferroni Adj t Test	0.0111	Control failed proportion normal	1
Bonferroni Adj t Test	0.0111	EHWW-22 failed proportion normal	1
Bonferroni Adj t Test	0.0111	EHWW-12 failed proportion normal	1
Bonferroni Adj t Test	0.0111	EHWW-13 failed proportion normal	1
Bonferroni Adj t Test	0.0111	EHWW-42 failed proportion normal	1
Bonferroni Adj t Test	0.0111	EHWW-40 failed proportion normal	1
Bonferroni Adj t Test	0.0111	EHWW-44 failed proportion normal	1
Bonferroni Adj t Test	0.0111	EHWW-11 failed proportion normal	1
Bonferroni Adj t Test	0.0111	EHWW-08 failed proportion normal	1
Bonferroni Adj t Test	0.0111	EHWW-39 failed proportion normal	1
Bonferroni Adj t Test	0.0111	EHWW-50 failed proportion normal	1
Bonferroni Adj t Test	0.0111	EHWW-01 failed proportion normal	1
Bonferroni Adj t Test	0.0914	EHWW-39 passed proportion normal	1
Bonferroni Adj t Test	0.0914	Control passed proportion normal	1
Bonferroni Adj t Test	0.0914	EHWW-29 passed proportion normal	1
Bonferroni Adj t Test	. 0.0914	EHWW-22 passed proportion normal	1
Bonferroni Adj t Test	0.0914	EHWW-11 passed proportion normal	1
Bonferroni Adj t Test	0.0914	EHWW-01 passed proportion normal	1
Bonferroni Adj t Test	0.0914	EHWW-40 passed proportion normal	1
Bonferroni Adj t Test	0.0914	EHWW-42 passed proportion normal	1
Bonferroni Adj t Test	0.0914	EHWW-REF18 passed proportion normal	1
Bonferroni Adj t Test	0.0914	EHWW-31 passed proportion normal	1
Bonferroni Adj t Test	0.0914	EHWW-13 passed proportion normal	1
Bonferroni Adj t Test	0.0914	EHWW-50 passed proportion normal	1
Bonferroni Adj t Test	0.0914	EHWW-12 passed proportion normal	1
Bonferroni Adj t Test	0.0914	EHWW-15 passed proportion normal	1
Bonferroni Adj t Test	0.0914	EHWW-08 passed proportion normal	1
Bonferroni Adj t Test	0.0914	EHWW-06 passed proportion normal	1
Bonferroni Adj t Test	0.0914	EHWW-44 passed proportion normal	1
Bonferroni Adj t Test	0.0914	EHWW-REF17 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-06 passed proportion normal	1
Bonferroni Adj t Test	1.0000	Control passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-42 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-15 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-40 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-31 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-29 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-22 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-REF17 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-11 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-13 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-08 passed proportion normal	1
Bonferroni Adj t Test	1.0000	EHWW-01 passed proportion normal	1

Single Comparison Summary
Analysis ID Endpoint 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 21-2426-0886 Proportion Normal 11-5555-3882 Survival Rate 12-6311-5380 Survival Rate. 12-6311-5380 Survival Rate 12-6311-5380 Survival Rate

Comparison Method
Bonferroni Adj t Test
Kolmogorov-Smirnov Two-Sample Test
Kolmogorov-Smirnov Two-Sample Test
Kolmogorov-Smirnov Two-Sample Test
Kolmogorov-Smirnov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test Kolmogorov-Sminnov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test Kolmogorov-Sminnov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test Kolmogorov-Sminnov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test

P-Value
1.0000
1.0000
1.0000
1.0000
1.0000
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857

Comparison Result s EHWW-REF18 passed proportion normal 1 EHWW-50 passed proportion normal EHWW-44 passed proportion normal EHWW-39 passed proportion normal EHWW-12 passed proportion normal 1 EHWW-13 passed survival rate .. 1 EHWW-06 passed survival rate 1 Control passed survival rate 1 EHWW-01 passed survival rate 1 EHWW-08 passed survival rate 1 EHWW-50 passed survival rate 1 EHWW-11 passed survival rate 1 EHWW-22 passed survival rate 1 EHWW-31 passed survival rate 1 EHWW-39 passed survival rate 1 EHWW-40 passed survival rate 1 EHWW-42 passed survival rate 1 EHWW-15 passed survival rate 1 EHWW-44 passed survival rate 1 EHWW-REF17 passed survival rate 1 EHWW-12 passed survival rate 1 EHWW-REF18 passed survival rate 1 EHWW-29 passed survival rate 1 EHWW-REF17 passed survival rate . 1 EHWW-12 passed survival rate 1 EHWW-42 passed survival rate 1 EHWW-01 passed survival rate 1 EHWW-08 passed survival rate 1 EHWW-11 passed survival rate * 1 EHWW-REF18 passed survival rate 1 Control passed survival rate . 1
EHWW-06 passed survival rate 1
EHWW-13 passed survival rate 1
EHWW-40 passed survival rate 1
EHWW-15 passed survival rate 1
EHWW-39 passed survival rate 1
EHWW-50 passed survival rate 1
EHWW-29 passed survival rate 1
EHWW-44 passed survival rate $\quad 1$
EHWW-22 passed survival rate 1
EHWW-31 passed survival rate 1
EHWW-06 passed survival rate 1
EHWW-29 passed survival rate 1
EHWW-31 passed survival rate $\quad 1$
EHWW-13 passed survival rate 1
EHWW-22 passed survival rate 1
EHWW-39 passed survival rate 1
EHWW-11 passed survival rate 1
Control passed survival rate 1
EHWW-50 passed survival rate 1
EHWW-40 passed survival rate . 1
EHWW-08 passed survival rate " 1
EHWW-44 passed survival rate - 1

Single Comparison Summary

Analysis ID Endpoint 12-6311-5380 Survival Rate 20-0346-5055 Survival Rate 11-5555-3882 Survival Rate 12-6311-5380 Survival Rate

Kolmogorov-Smirnov Two-Sample Tes Kolmogorov-Smirnov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test

P-Value
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000 EHWW-39 passed survival rate 1
0.5000 Control passed survival rate 1
0.5000 EHWW-29 passed survival rate 1
0.5000 EHWW-31 passed survival rate 1
0.5000 EHWW-40 passed survival rate 1
0.5000 EHWW-50 passed survival rate 1
0.5000 EHWW-15 passed survival rate 1
0.5000 EHWW-12 passed survival rate 1
0.5000 EHWW-11 passed survival rate 1
0.5000 EHWW-06 passed survival rate 1
0.5000 EHWW-REF17 passed survival rate
0.3857 EHWW-08 passed survival rate 1
0.3857 EHWW-13 passed survival rate 1
0.3857 EHWW-11 passed survival rate 1
0.3857 EHWW-40 passed survival rate 1
0.3857 EHWW-50 passed survival rate 1
0.3857 EHWW-15 passed survival rate 1
0.3857 EHWW-REF17 passed survival rate * 1
0.3857 EHWW-44 passed survival rate 1
0.3857 EHWW-REF18 passed survival rate 1
0.3857 EHWW-06 passed survival rate 1
0.3857° EHWW-31 passed survival rate 1
0.3857 EHWW-12 passed survival rate 1
0.3857 EHWW-01 passed survival rate 1

EHWW-39 passed survival rate
EHWW-42 passed survival rate
0.3857 EHWW-29 passed survival rate 1
0.3857 Control passed survival rate 1
0.3857 EHWW-22 passed survival rate 1
0.3857 EHWW-31 passed survival rate 1
0.3857 EHWW-39 passed survival rate 1
0.3857 EHWW-29 passed survival rate 1
0.3857 EHWW-42 passed survival rate 1
0.3857 EHWW-44 passed survival rate 1
0.3857 EHWW-40 passed survival rate 1
0.3857 EHWW-12 passed survival rate 1
0.3857 EHWW-13 passed survival rate 1
0.3857 EHWW-06 passed survival rate 1
0.3857 EHWW-11 passed survival rate 1

EHWW-01 passed survival rate

s

Report Date:
Test CodeIID:

05 Jan-19 15:21 (p 37 of 57)
181641 / 12-6434-9271

Single Comparison Summary

Analysis ID	Endpoint	Comparison Method	P-Value	Comparison Result	S
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	. 0.3857	Control passed survival rate	1
12-6311-5380	Survival Rate.	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-REF17 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-08 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-50 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-15 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-22 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-REF18 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	. 0.5000	EHWW-42 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-REF18 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	Control passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-06 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-40 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-50 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-12 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-01 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-REF17 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-44 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-22 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-29 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-13 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-31 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-11 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-08 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-15 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-39 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-06 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-50 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-08 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-13 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-11 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-31 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-15 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-22 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-REF18 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-29 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-REF17 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	Control passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-01 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-39 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-40 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-12 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-42 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-44 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-REF18 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-06 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-08 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-39 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-29 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-50 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-12 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-31 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-40 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-01 passed survival rate	1

SIngle Comparison Summary

Analysis ID \quad Endpoint
$12-6311-5380$ Survival Rate

Comparison Method
Kolmogorov-Smirnov Two-Sample Test Kolmogorov-Sminov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test

P -Value
P-Value Comparison Result
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.4429
0.4429
0.4429
0.4429
0.4429
0.4429

EHWN 40 passed survival
EHMN-31 passed survival
0.4429 EHWW-42 passed survival rate
0.4429 EHWW-29 passed survival rate
0.4429 EHWW-12 passed survival rate
0.4429 EHWW-11 passed survival rate
0.4429 Control passed survival rate
0.4429
0.4429
0.4429 EHWW-08 passed survival rate 1
0.4429 EHWW-44 passed survival rate . 1
0.4429 EHWW-13 passed survival rate 1
0.3286 Control passed survival rate 1
0.3286 EHWW-42 passed survival rate 1
0.3286 EHWW-13 passed survival rate 1
0.3286 EHWW-44 passed survival rate 1
0.3286 EHWW-15 passed survival rate 1
0.3286 EHWW-40 passed survival rate . 1
0.3286 EHWW-REF17 passed survival rate 1
0.3286 EHWW-REF18 passed survival rate 1
0.3286 EHWW-29 passed survival rate

Single Comparison Summary

Analysis ID Endpoint 12-6311-5380 Survival Rate 20-0346-5055 Survival Rate 11-5555-3882 Survival Rate 12-6311-5380 Survival Rate

Comparison Method Kolmogorov-Smirnov Two-Sample Test Kolmogorov-Sminnov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test

P-Value 0.3286 0.3286

Comparison Result S
EHWW-39 passed survival rate EHWW-12 passed survival rate EHWW-50 passed survival rate EHWW-08 passed survival rate EHWW-22 passed survival rate EHWW-01 passed survival rate EHWW-31 passed survival rate EHWW-06 passed survival rate EHWW-11 passed survival rate EHWW-REF17 passed survival rate
HWW-REF18 passed survival rate 1
EHWW-15 passed survival rate 1
EHWW-01 passed survival rate 1
EHWW-11 passed survival rate 1
Control passed survival rate 1
EHWW-08 passed survival rate 1
EHWW-13 passed survival rate 1
EHWW-50 passed survival rate 1
vival rate 1
EHWW-15 passed survival rate "1
EHWW-40 passed survival rate 1
EHWW-44 passed survival rate 1
EHWW-12 passed survival rate 1
EHWW-22 passed survival rate 1
EHWW-31 passed survival rate 1
EHWW-REF17 passed survival rate 1
EHWW-01 passed survival rate 1
EHWW-29 passed survival rate 1

SIngle Comparison Summary

Analysis ID Endpoint
12-6311-5380 Survival Ra

SIngle Comparison Summary

Analysis ID \quad Endpoint
$12-6311-5380$ Survival Rate

12-6311-5380 Survival Rate
20-0346-5055 Survival Rate
11-5555-3882 Survival Rate 11-5555-3882 Survival Rate 11-5555-3882 Survival Rate 11-5555-3882 Survival Rate 11-5555-3882 Survival Rate 11-5555-3882 Survival Rate 11-5555-3882 Survival Rate 11-5555-3882 Survival Rate 11-5555-3882 Survival Rate 11-5555-3882 Survival Rate 11-5555-3882 Survival Rate 11-5555-3882 Survival Rate 11-5555-3882 Survival Rate 12-6311-5380 Survival Rate
Comparison Method

Kolmogorov-Smirnov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test

P-Value
0.5000
0.5000
0.5000 EHWW-REF17 passed survival rate 1
0.5000 EHWW-12 passed survival rate 1
0.5000 EHWW-13 passed survival rate 1
0.5000 EHWW-01 passed survival rate 1
0.5000 EHWW-06 passed survival rate 1
0.5000 EHWW-11 passed survival rate 1
0.5000 EHWW-08 passed survival rate 1
0.5000 EHWW-50 passed survival rate 1
0.5000 Control passed survival rate 1
0.5000 EHWW-13 passed survival rate 1
0.5000 EHWW-01 passed survival rate 1
0.5000 EHWW-15 passed survival rate 1
0.5000 EHWW-08 passed survival rate 1
0.5000 EHWW-29 passed survival rate 1
0.5000 EHWW-12 passed survival rate 1
0.5000 EHWW-39 passed survival rate . 1
0.5000 EHWW-22 passed survival rate 1
0.5000 EHWW-31 passed survival rate 1
0.5000 EHWW-11 passed survival rate 1
0.5000 Control passed survival rate 1
0.5000 EHWW-40 passed survival rate 1
0.5000 EHWW-06 passed survival rate 1
0.5000 EHWW-50 passed survival rate 1
0.5000 EHWW-REF18 passed survival rate 1
0.5000 EHWW-42 passed survival rate 1
0.5000 EHWW-REF17 passed survival rate 1
0.5000 EHWW-44 passed survival rate 1
0.5000 EHWW-40 passed survival rate 1
0.5000 EHWW-08 passed survival rate 1
0.5000 EHWW-12 passed survival rate 1
0.5000 EHWW-REF17 passed survival rate 1
0.5000 EHWW-42 passed survival rate 1
0.5000 EHWW-39 passed survival rate 1
0.5000 EHWW-01 passed survival rate 1
0.5000 EHWW-44 passed survival rate 1
0.5000 EHWW-REF18 passed survival rate 1
0.5000 EHWW-31 passed survival rate 1
0.5000 EHWW-06 passed survival rate 1
0.5000 Control passed survival rate " 1
0.5000 EHWW-13 passed survival rate 1
0.5000 EHWW-29 passed survival rate 1
0.5000 EHWW-15 passed survival rate 1
0.5000 EHWW-50 passed survival rate 1
0.5000 EHWW-22 passed survival rate 1
0.5000 EHWW-11 passed survival rate 1
0.5000 EHWW-31 passed survival rate 1
0.5000 EHWW-50 passed survival rate 1
0.5000 EHWW-22 passed survival rate 1
0.5000 EHWW-39 passed survival rate 1
0.5000 EHWW-40 passed survival rate 1
0.5000 EHWW-44 passed survival rate 1

SIngle Comparison Summary

Analysis ID	Endpoint	Comparison Method	P-Value	Comparison Result	S
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-13 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-15 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-29 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-REF17 passed survival rate	1
12-6311-5380	Survival Rate	Koimogorov-Smirnov Two-Sample Test	0.5000	Control passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-12 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-11 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-08 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-42 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-06 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-REF18 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-01 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-39 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-42 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-REF18 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-40 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-31 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-06 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-REF17 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-44 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-15 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	Control passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-13 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-22 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-11 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-29 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWWW-01 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-12 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-08 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-50 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-42 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-15 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-11 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-12 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-31 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-44 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-50 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-01 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-22 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-REF18 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-08 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-06 passed survival rate	- 1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-39 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-13 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-29 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-40 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	Control passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-REF17 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-22 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	. 0.3857	EHWW-42 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-15 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-REF18 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.3857	EHWW-39 passed survival rate	1

SIngle Comparison Summary

Analysis ID \quad Endpoint
$12-6311-5380$ Survival Rate
12-6311-5380 Survival Rate
$12-6311-5380$ Survival Rate
$12-6311-5380$ Survival Rate
$12-6311-5380$ Survival Rate

12-6311-5380 Survival Rate 12-6311-5380 Survival Rate 12-6311-5380 Survival Rate 12-6311-5380 Survival Rate 20-0346-5055 Survival Rate -20-0346-5055 Survival Rate 20-0346-5055 Survival Rate 11-5555-3882 Survival Rate 12-6311-5380 Survival Rate 12-6311-5380 Survival Rate 12-6311-5380 Survival Rate 12-6311-5380 Survival Rate

Comparison Method Kolmogorov-Smirnov Two-Sample Test Kolmogorov-Sminov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test Koimogorov-Smirnov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test

P-Value

0.3857
0.3857
0.3857
0.3857
0.3857
0.3857
0.3857 0.3857 0.3857 0.3857 0.3857 0.3857 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.3857 0.3857 0.3857 0.3857 0.3857 0.3857 0.3857 0.3857 0.3857 0.3857 0.3857 0.3857 0.3857 0.3857 0.3857 0.3857 0.3857 0.3857
0.1143
0.1143
0.1143
0.1143
Comparison Result
EHWW-44 passed survival rate EHWW-06 passed survival rate EHWW-REF17 passed survival rate EHWW-31 passed survival rate EHWW-01 passed survival rate Control passed survival rate EHWW-13 passed survival rate EHWW-50 passed survival rate EHWW-08 passed survival rate EHWW-29 passed survival rate EHWW-12 passed survival rate EHWW-40 passed survival rate EHWW-11 passed survival rate EHWW-01 passed survival rate EHWW-22 passed survival rate EHWW-29 passed survival rate EHWW-31 passed survival rate EHWW-40 passed survival rate EHWW-12 passed survival rate EHWW-REF17 passed survival rate 1 EHWW-39 passed survival rate 1 EHWW-44 passed survival rate 1 EHWW-11 passed survival rate " 1 EHWW-06 passed survival rate 1 EHWW-42 passed survival rate 1 EHWW-08 passed survival rate 1 EHWW-15 passed survival rate 1 Control passed survival rate EHWW-REF18 passed survival rate 1 EHWW-50 passed survival rate 1 EHWW-13 passed survival rate 1 EHWW-29 passed survival rate 1 EHWW-31 passed survival rate 1 EHWW-44 passed survival rate 1 EHWW-39 passed survival rate 1 EHWW-06 passed survival rate 1 EHWW-13 passed survival rate 1 EHWW-50 passed survival rate 1 EHWW-22 passed survival rate 1 EHWW-01 passed survival rate 1 EHWW-11 passed survival rate 1 EHWW-08 passed survival rate 1 EHWW-42 passed survival rate 1 EHWW-12 passed survival rate 1 EHWW-40 passed survival rate 1 EHWW-REF18 passed survival rate 1 Control passed survival rate 1 EHWW-REF17 passed survival rate 1 EHWW-15 passed survival rate 1 EHWW-12 passed survival rate 1 EHWW-13 passed survival rate 1 EHWW-39 passed survival rate 1 EHWW-44 passed survival rate
1

Single Comparison Summary

Analysis ID Endpoint
12-6311-5380 Survival Ra

Single Comparison Summary

Analysis ID	Endpoint	Comparison Method	P-Value	Comparison Result	S
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-29 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-22 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-50 passed survival rate	1
12-6311-5380	Survival Rate.	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-15 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-08 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-01 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-42 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-40 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-REF18 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-11 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-44 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-31 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-REF17 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-39 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	Control passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	Control passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-REF18 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-08 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-13 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-50 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-31 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-39 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-42 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-11 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-40 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-01 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-29 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-06 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-22 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-15 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-REF17 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-12 passed survival rate	1
20-0346-5055	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-44 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-06 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-50 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-44 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-31 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-REF17 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-39 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-REF18 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-42 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-08 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-12 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-29 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-01 passed survival rate	- 1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-11 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-13 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	Control passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-40 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-22 passed survival rate	1
11-5555-3882	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-15 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-06 passed survival rate	1
12-6311-5380	Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-22 passed survival rate	1

Single Comparison Summary

Single Comparison Summary
Analysis ID Endpoint 12-6311-5380 Survival Rate 20-0346-5055 Survival Rate 11-5555-3882 Survival Rate

Comparison Method
Kolmogorov-Smirnov Two-Sample Test Kolmogorov-Smimov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test

P-Value 0.5000 0.5000 0.5000 0.5000

SIngle Comparison Summary

Analysis ID Endpoint
12-6311-5380 Survival Rate 20-0346-5055 Survival Rate. 20-0346-5055 Survival Rate 11-5555-3882 Survival Rate

Comparison Method
Kolmogorov-Smirnov Two-Sample Test Koimogorov-Smirnov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test

P-Value 0.5000

0.5000

0.5000

0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.2000
0.2000
0.2000
0.2000
0.2000
0.2000
0.2000
0.2000
0.2000
0.2000
0.2000
0.2000
0.2000
0.2000
0.2000
0.2000
0.2000

Comparison Result	S
EHWW-06 passed survival rate	1
EHWW-40 passed survival rate	1
EHWW-01 passed survival rate	1
Control passed survival rate	
EHWW-44 passed survival rate	,
EHWW-REF17 passed survival rate	
EHWW-12 passed survival rate	
EHWW-08 passed survival rate	
EHWW-42 passed survival rate	1
EHWW-11 passed survival rate	1
EHWW-REF18 passed survival rate	1
EHWW-15 passed survival rate	1
EHWW-31 passed survival rate	1
EHWW-22 passed survival rate	1
EHWW-29 passed survival rate	
EHWW-50 passed survival rate	1
EHWW-13 passed survival rate	1
EHWW-39 passed survival rate	1
EHWW-11 passed survival rate	1
EHWW-08 passed survival rate	1
EHWW-REF17 passed survival rate	1
EHWW-15 passed survival rate	1
EHWW-13 passed survival rate	1
EHWW-29 passed survival rate	
EHWW-06 passed survival rate	
EHWW-01 passed survival rate	1
EHWW-12 passed survival rate	
EHWW-44 passed survival rate	1
EHWW-50 passed survival rate	
EHWW-31 passed survival rate	1
EHWW-39 passed survival rate	1
EHWW-40 passed survival rate	1
Control passed survival rate	
EHWW-REF18 passed survival rate	
EHWW-22 passed survival rate	
EHWW-42 passed survival rate	
EHWW-42 passed survival rate	
EHWW-REF17 passed survival rate	
EHWW-12 passed survival rate	
Control passed survival rate	
EHWW-06 passed survival rate	1
EHWW-01 passed survival rate	1
EHWW-13 passed survival rate	1
EHWW-44 passed survival rate	1
EHWW-15 passed survival rate	1
EHWW-22 passed survival rate	1
EHWW-REF18 passed survival rate	1
EHWW-40 passed survival rate	1
EHWW-08 passed survival rate	1
EHWW-11 passed survival rate	1
EHWW-29 passed survival rate	
EHWW-31 passed survival rate	
EHWW-39 passed survival rate	

Single Comparison Summary

Analysis ID Endpoint 11-5555-3882 Survival Rate 12-6311-5380 Survival Rate 20-0346-5055 Survival Rate -20-0346-5055 Survival Rate 20-0346-5055 Survival Rate 20-0346-5055 Survival Rate 11-5555-3882 Survival Rate 11-5555-3882 Survival Rate 11-5555-3882 Survival Rate 11-5555-3882 Survival Rate . 11-5555-3882 Survival Rate 11-5555-3882 Survival Rate

Comparison Method Kolmogorov-Smirnov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test

P-Value 0.2000 0.1143 0.1143 0.1143 0.1143 0.1143 0.1143 0.1143 0.1143 0.1143

Comparison Result	S
EHWW-50 passed survival rate	1
EHWW-01 passed survival rate	1
EHWW-15 passed survival rate	1
EHWW-REF17 passed survival rate	1
EHWW-REF18 passed survival rate	1
EHWW-06 passed survival rate	1
EHWW-08 passed survival rate	1
EHWW-11 passed survival rate	1
Control passed survival rate	1
EHWW-13 passed survival rate	1
EHWW-50 passed survival rate	1
EHWW-22 passed survival rate	1
EHWW-29 passed survival rate	1
EHWW-40 passed survival rate	1
EHWW-44 passed survival rate	1
EHWW-31 passed survival rate	1
EHWW-39 passed survival rate	1
EHWW-42 passed survival rate	1
EHWW-12 passed survival rate	1
EHWW-42 passed survival rate	1
EHWW-44 passed survival rate	1
EHWW-40 passed survival rate	1
EHWW-39 passed survival rate	1
EHWW-15 passed survival rate	1
EHWW-REF17 passed survival rate	1
EHWW-29 passed survival rate	1
EHWW-22 passed survival rate	1
EHWW-50 passed survival rate	1
EHWW-13 passed survival rate	1
Control passed survival rate	1
EHWW-06 passed survival rate	1
EHWW-11 passed survival rate	1
EHWW-08 passed survival rate	1
EHWW-31 passed survival rate	1
EHWWW-08 passed survival rate	1
EHWW-REF18 passed survival rate	1
EHWW-50 passed survival rate	1
EHWW-13 passed survival rate	1
EHWW-REF18 passed survival rate	1
EHWWW-40 passed survival rate	1
EHWWW-12 passed survival rate	1
EHWW-12 passed survival rate	1
EHWW-06 passed passed survival rate	1
EHWW-42 passed survival rate	1
EHWW-44 passed survival rate	1
	1

Single Comparison Summary

Analysis ID Endpoint
$11-5555-3882$ Survival Ra

11-5555-3882 Survival Rate
12-6311-5380 Survival Rate 12-6311-5380 Survival Rate 12-6311-5380 Survival Rate 12-6311-5380 Survival Rate 12-6311-5380 Survival Rate 12-6311-5380 Survival Rate 12-6311-5380 Survival Rate 12-6311-5380 Survival Rate 12-6311-5380 Survival Rate 12-6311-5380 Survival Rate 12-6311-5380 Survival Rate 12-6311-5380 Survival Rate 12-6311-5380 Survival Rate 12-6311-5380 Survival Rate 12-6311-5380 Survival Rate 12-6311-5380 Survival Rate 12-6311-5380 Survival Rate 12-6311-5380 Survival Rate 20-0346-5055 Survival Rate 11-5555-3882 Survival Rate

Comparison Method
Kolmogorov-Smirnov Two-Sample Test Kolmogorov-Smirnov Two-Sample Test

P-Value
P-Value
Comparison ResuS

0.5000	Control passed survival rate	1
0.5000	EHWW-01 passed survival rate	1

0.5000 EHWW-22 passed survival rate 1
0.5000 EHWW-31 passed survival rate 1
0.5000 EHWW-29 passed survival rate 1
0.5000 EHWW-50 passed survival rate 1
0.5000 EHWW-13 passed survival rate 1
0.5000 EHWW-42 passed survival rate 1
0.5000 Control passed survival rate 10.50000.50000.50000.50000.50000.50000.50000.50000.50000.50000.50000.50000.5000
0.5000
0.50000.50000.50000.50000.50000.50000.5000
0.5000

EHWW-40 passed survival rate
EHWW-11 passed survival rate 1
EHWW-08 passed survival rate 1
EHWW-REF18 passed survival rate 1
EHWW-44 passed survival rate 1
EHWW-REF17 passed survival rate 1
EHWW-15 passed survival rate 1
EHWW-06 passed survival rate 1
EHWW-12 passed survival rate 1
EHWW-01 passed survival rate 1
EHWW-39 passed survival rate 1
EHWW-22 passed survival rate 1
EHWWV-01 passed survival rate 1
EHWW-06 passed survival rate 1
EHWW-08 passed survival rate 1
EHWW-11 passed survival rate 1
Control passed survival rate 1
EHWW-REF18 passed survival rate 1
EHWW-50 passed survival rate 1
EHWW-31 passed survival rate 1
EHWW-29 passed survival rate 1
EHWW-39 passed survival rate 1
EHWW-40 passed survival rate 1
EHWW-42 passed survival rate 1
EHWW-44 passed survival rate 1
EHWW-12 passed survival rate 1
EHWW-13 passed survival rate 1
EHWW-REF17 passed survival rate 1
EHWW-15 passed survival rate 1
EHWW-42 passed survival rate 1
EHWW-15 passed survival rate 1EHWW-REF17 passed survival rate
EHWW-REF18 passed survival rate1
EHWW-01 passed survival rate 1
EHWW-06 passed survival rate 1
EHWW-08 passed survival rate 1
EHWW-44 passed survival rate 1
EHWWW-40 passed survival rate 1
EHWW-39 passed survival rate 1
EHWW-31 passed survival rate 1
EHWW-12 passed survival rate 1
EHWW-29 passed survival rate 1
Control passed survival rate 1
EHWW-11 passed survival rate

SIngle Comparison Summary

Analysis ID Endpoint	Comparison Method	P-Value	Comparison Result	
11-5555-3882 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-50 passed survival rate	1
11-5555-3882 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-13 passed survival rate	1
11-5555-3882 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-22 passed survival rate	1
12-6311-5380 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-06 passed survival rate	1
12-6311-5380 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-11 passed survival rate	1
12-6311-5380 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	Control passed survival rate	
12-6311-5380 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-13 passed survival rate	
12-6311-5380 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-50 passed survival rate	
12-6311-5380 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-22 passed survival rate	
12-6311-5380 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-29 passed survival rate	
12-6311-5380 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-39 passed survival rate	1
12-6311-5380 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-01 passed survival rate	1
12-6311-5380 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-40 passed survival rate	1
12-6311-5380 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-42 passed survival rate	
12-6311-5380 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-44 passed survival rate	1
12-6311-5380 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-12 passed survival rate	1
12-6311-5380 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-31 passed survival rate	1
12-6311-5380 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-REF17 passed survival rate	
12-6311-5380 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-15 passed survival rate	1
12-6311-5380 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-REF18 passed survival rate	1
12-6311-5380 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-08 passed survival rate	1
20-0346-5055 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	Control passed survival rate	1
20-0346-5055 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-REF18 passed survival rate	1
20-0346-5055 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-01 passed survival rate	1
20-0346-5055 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-15 passed survival rate	1
20-0346-5055 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-06 passed survival rate	1
20-0346-5055 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-08 passed survival rate	1
20-0346-5055 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-22 passed survival rate	1
20-0346-5055 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-50 passed survival rate	1
20-0346-5055 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-29 passed survival rate	1
20-0346-5055 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-39 passed survival rate	1
20-0346-5055 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-40 passed survival rate	1
20-0346-5055 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-42 passed survival rate	1
20-0346-5055 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-REF17 passed survival rate	1
20-0346-5055 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-11 passed survival rate	1
20-0346-5055 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-31 passed survival rate	1
20-0346-5055 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-12 passed survival rate	1
20-0346-5055 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-44 passed survival rate	1
20-0346-5055 Survival Rate	Kolmogorov-Smirnov Two-Sample Test	0.5000	EHWW-13 passed survival rate	1

Proportion Normal Summary

Proportion Normal Detail

Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4
Control	LC	0.9055	0.8818	0.9027	0.7798
EHWW-REF17	RS	0.9435	0.9271	0.9363	0.9267
EHWW-REF18	XC	0.9133	0.9091	0.9171	0.9390
EHWW-01		0.9361	0.8889	0.9123	0.8824
EHWW-06		0.8529	0.8622	0.8883	0.8599
EHWW-08		0.9041	0.9082	0.9337	
EHWW-11		0.8703	0.9175	0.9194	
EHWW-12		0.9389	0.9130	0.9083	
EHWW-13		0.9014	0.8805	0.9109	0.8577
EHWW-15		0.9029	0.7727	0.7876	0.8750
EHWW-22		0.8945	0.8898	0.8325	0.8639
EHWW-29		0.9474	0.9433	0.8761	0.9194
EHWW-31		0.8493	0.9633	0.9309	0.9369
EHWW-39		0.8496	0.8842	0.8899	0.9048
EHWW-40		0.9203	0.8957	0.9163	
EHWW-42		0.9271	0.8883	0.8785	
EHWW-44		0.9312	0.9545	0.9167	0.8840
EHWW-50		0.8510	0.8340	0.8941	0.8778

Proportion Normal Binomials

Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4
Control	LC	$182 / 201$	$194 / 220$	$204 / 226$	$170 / 218$
EHWW-REF17	RS	$167 / 177$	$229 / 247$	$191 / 204$	$177 / 191$
EHWW-REF18	XC	$179 / 196$	$210 / 231$	$199 / 217$	$200 / 213$
EHWW-01		$205 / 219$	$168 / 189$	$156 / 171$	$210 / 238$
EHWW-06		$203 / 238$	$169 / 196$	$183 / 206$	$178 / 207$
EHWW-08		$198 / 219$	$188 / 207$	$169 / 181$	
EHWW-11		$208 / 239$	$178 / 194$	$194 / 211$	
EHWW-12		$215 / 229$	$189 / 207$	$218 / 240$	
EHWW-13		$192 / 213$	$199 / 226$	$184 / 202$	$205 / 239$
EHWW-15		$186 / 206$	$170 / 220$	$152 / 193$	$168 / 192$
EHWW-22		$178 / 199$	$226 / 254$	$159 / 191$	$165 / 191$
EHWW-29		$216 / 228$	$233 / 247$	$198 / 226$	$228 / 248$
EHWW-31	$186 / 219$	$236 / 245$	$229 / 246$	$208 / 222$	
EHWW-39		$192 / 226$	$229 / 259$	$194 / 218$	$190 / 210$
EHWW-40	$231 / 251$	$189 / 211$	$208 / 227$		
EHWW-42		$178 / 192$	$167 / 188$	$188 / 214$	
EHWW-44		$203 / 218$	$231 / 242$	$198 / 216$	$221 / 250$
EHWW-50	$217 / 255$	$196 / 235$	$211 / 236$	$194 / 221$	

CETIS Summary Report		Report Date: Test Code/ID:	05 Jan-19 15:21 (p 57 of 57) $181641 / 12-6434-9271$		
Bivalve Larval Survival and Development Test			Nautilus Environmental		
Survival Rate Binomials					
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4
Control	LC	$201 / 254$	$220 / 254$	$226 / 254$	$218 / 254$
EHWW-REF17	RS	$177 / 254$	$247 / 254$	$204 / 254$	$191 / 254$
EHWW-REF18	XC	$196 / 254$	$231 / 254$	$217 / 254$	$213 / 254$
EHWW-01		$219 / 254$	$189 / 254$	$171 / 254$	$238 / 254$
EHWW-06	$238 / 254$	$196 / 254$	$206 / 254$	$207 / 254$	
EHWW-08	$219 / 254$	$207 / 254$	$181 / 254$		
EHWW-11	$239 / 254$	$194 / 254$	$211 / 254$		
EHWW-12	$229 / 254$	$207 / 254$	$240 / 254$		
EHWW-13	$213 / 254$	$226 / 254$	$202 / 254$	$239 / 254$	
EHWW-15	$206 / 254$	$220 / 254$	$193 / 254$	$192 / 254$	
EHWW-22	$199 / 254$	$254 / 254$	$191 / 254$	$191 / 254$	
EHWW-29	$228 / 254$	$247 / 254$	$226 / 254$	$248 / 254$	
EHWW-31	$219 / 254$	$245 / 254$	$246 / 254$	$222 / 254$	
EHWW-39	$226 / 254$	$254 / 254$	$218 / 254$	$210 / 254$	
EHWW-40	$251 / 254$	$211 / 254$	$227 / 254$		
EHWW-42	$192 / 254$	$188 / 254$	$214 / 254$		
EHWW-44	$218 / 254$	$242 / 254$	$216 / 254$	$250 / 254$	
EHWW-50	$254 / 254$	$235 / 254$	$236 / 254$	$221 / 254$	

CETIS Analytical Report									Report Date: Test Code/ID:			$\begin{array}{r} 05 \text { Jan-19 15:21 (p } 2 \text { of 5) } \\ 181641 / 12-6434-9271 \end{array}$	
Bivalve Larval Survival and Development Test									Nautilus Environmental				
Analysis ID: Analyzed:	$\begin{aligned} & \text { 12-6311-5380 } \\ & \text { 05 Jan-19 15:17 } \end{aligned}$			Endpoint: Analysis:	Survival Rate Nonparametric-Two Sample				CETIS Version: Status Level:		CETISv1.9.4 1		
Kolmogorov-Smirnov Two-Sample Test													
Sample I	vs	Samp		Test Stat	Critical		DF	P-Type	P-Value	Decision(a:5\%)			
Lab Control		EHWW-REF17		0.5	n/a		6	Exact	0.3857	Non-Significant Effect			
		EHWW-REF18		0.5	n/a			Exact	0.3857	Non-Significant Effect			
		EHWW-01		0.5	n/a			Exact	0.3857	Non-Significant Effect			
		EHWW-06		0.5	n/a		6	Exact	0.3857	Non-Significant Effect			
		EHWW-08		0.5	n/a		5	Exact	0.3286	Non-Significant Effect			
		EHWW-11		0.4167	n/a		5	Exact	0.4429	Non-Significant Effect			
		EHWW-12		0.08333	n/a		5	Exact	0.5000	Non-Significant Effect			
		EHWW-13		0.25	$n / 2$		6	Exact	0.5000	Non-Significant Effect			
		EHWW-15		0.5	n/a		6	Exact	0.3857	Non-Significant Effect			
		EHWW-22		0.75	n / a		6	Exact	0.1143	Non-Significant Effect			
		EHWW-29		0	n/a		6	Exact	0.5000	Non-Significant Effect			
		EHWW-31		0	n/a		6	Exact	0.5000	Non-Significant Effect			
		EHWW-39		0	n/a		6	Exact	0.5000	Non-Significant Effect			
		EHWW-40		0.08333	n/a		5	Exact	0.5000	Non-Significant Effect			
		EHWW-42		0.75	n/a			Exact	0.1143	Non-Significant Effect			
		EHWW-44		0	n/a			Exact	0.5000	Non-Significant Effect			
		EHWW-50		0	n/a		6	Exact	0.5000	Non-Significant Effect			
ANOVA Table													
Source		Sum Squares		Mean Square		DF		F Stat	P-Value	Decision(a:5\%)			
Between		0.396803		0.0233414		17		1.316	0.2224	Non-Significant Effect			
Error		0.868769				49							
Total		1.26557				66							
Distributional Tests													
Attribute		Test				Test Stat		Critical	P-Value	Decision(α :1\%)			
Variances		Bartett Equality of Variance Test				12.25		33.41	0.7850	Equal Variances			
Distribution		Shapiro-Wilk W Normality Test				0.9269		0.9508	.7.2E-04	Non-Norm	al Distribution		
Survival Rate Summary													
Sample		Code	Count	Mean	95\% LCL	95\% UC		Median	Min	Max	Std Err	CV\%	\%Effect
Control		LC	4	0.8514	0.7842	0.9185		0.8622	0.7913	0.8898	0.0211	4.96\%	0.00\%
EHWW-REF			4	0.8061	0.6166	0.9956		0.7776	0.6969	0.9724	0.0595	14.77\%	5.32\%
EHWW-REF			4	0.8435	0.7532	0.9338		0.8465	0.7717	0.9094	0.0284	6.72\%	0.92\% ${ }^{\text {- }}$
EHWW-01			4	0.8041	0.6164	0.9919		0.8031	0.6732	0.9370	0.0590	14.67\%	5.55\%
EHWW-06			4	0.8337	0.7197	0.9476		0.8130	0.7717	0.9370	0.0358	8.59\%	2.08\%
EHWW-08			3	0.7966	0.6066	0.9866		0.8150	0.7126	0.8622	0.0442	9.60\%	6.44\%
EHWW-11			3	0.8451	0.6229	1.0000		0.8307	0.7638	0.9409	0.0517	10.59\%	0.73\%
EHWW-12			3	0.8871	0.7228	1.0000		0.9016	0.8150	0.9449	0.0382	7.46\%	-4.20\%
EHWW-13			4	0.8661	0.7658	0.9665		0.8642	0.7953	0.9409	0.0315	7.28\%	-1.73\%
EHWW-15			4	0.7982	0.7158	0.8806		0.7854	0.7559	0.8661	0.0259	6.49\%	6.24\%
EHWW-22			4	0.8219	0.6314	1.0000		0.7677	0.7520	1.0000	0.0599	14.56\%	3.47\%
EHWW-29			4	0.9341	0.8597	1.0000		0.9350	0.8898	0.9764	0.0234	5.00\%	-9.71\%
EHWW-31			4	0.9173	0.8265	1.0000		0.9193	0.8622	0.9685	0.0285	6.22\%	-7.75\%
EHWW-39			4	0.8937	0.7737	1.0000		0.8740	0.8268	1.0000	0.0377	8.44\%	-4.97\%
EHWW-40			3	0.9042	0.7073	1.0000		0.8937	0.8307	0.9882	0.0458	8.77\%	-6.20\%
EHWW-42			3	0.7795	0.6426	0.9164		0.7559	0.7402	0.8425	0.0318	7.07\%	8.44\%
EHWW-44			4	0.9114	0.8044	1.0000		0.9055	0.8504	0.9843	0.0336	7.38\%	-7.05\%
EHWW-50			4	0.9311	0.8464	1.0000		0.9272	0.8701	1.0000	0.0266	5.72\%	-9.36\%

CETIS Analytical Report		Report Date: Test Code/ID:	05 Jan-19 15:21 (p 5 of 5) $181641 / 12-6434-9271$	
Bivalve Larval Survival and Development Test			Nautilus Environmental	
Analysis ID:	12-6311-5380	Endpoint:	Survival Rate Analyzed: 05 Jan-19 15:17	Analysis:
Nonparametric-Two Sample	CETIS Version:	CETISv1.9.4		

Graphics

CETIS Analytical Report					Report Date: Test CodelID:	05 Jan-19 15:22 (p 1 of 5) 181641/12-6434-9271	
Bivalve Larval Survival and Development Test					Nautilus Environmental		
Analysis ID: Analyzed:	$\begin{aligned} & 21-2426-0886 \\ & 06 \text { Dec-18 12:11 } \end{aligned}$	Endpoint: Analysis:	Proportion Normal Parametric-Multiple Comparison		CETIS Version: Status Level:	$\begin{aligned} & \text { CETISv1.9.4 } \\ & 1 \end{aligned}$	
Batch ID: Start Date: Ending Date: Test Length:	09-1380-8962 22 Nov-18 16:45 24 Nov-18 17:10 48h	Test Type: Protocol: Species: Taxon:	Development-Survival SCCWRP (2009) Mytilus galloprovincialis		Analyst: Diluent: Brine: Source:	water afarms	Age:
Sample Code	Sample ID	Sample Date	Receipt Date	Sample Age	Client Name	Project	
Control	07-9348-4549	21 Nov-18	21 Nov-18	41h	Anchor QEA		
EHWW-REF17	7 11-6816-1975	03 Oct-18 08:25	04 Oct-18 16:25	50d $8 \mathrm{~h}\left(5^{\circ} \mathrm{C}\right)$			
EHWW-REF18	8 04-9066-2063	03 Oct-18 09:00	04 Oct-18 16:25	50d $8 \mathrm{~h}\left(5^{\circ} \mathrm{C}\right)$			
EHWW-01	09-4043-9892	01 Oct-18 14:15	02 Oct-18 16:20	52d $2 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-06	07-6081-6733	01 Oct-18 14:55	02 Oct-18 16:20	52d $2 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-08	11-6318-9477	01 Oct-18 15:35	02 Oct-18 16:20	52d $1 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-11	09-5214-7885	03 Oct-18 13:52	04 Oct-18 16:25	50d $3 \mathrm{~h}\left(5^{\circ} \mathrm{C}\right)$			
EHWW-12	20-9373-4766	04 Oct-1814:10	06 Oct-18 13:55	49d $3 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-13	17-9563-4578	03 Oct-18 12:55	04 Oct-18 16:25	50d $4 \mathrm{~h}\left(5^{\circ} \mathrm{C}\right)$			
EHWW-15	06-7893-1202	02 Oct-18 08:30	03 Oct-18 13:45	51d $8 \mathrm{~h}\left(17.1^{\circ} \mathrm{C}\right)$			
EHWW-22	07-9060-9507	03 Oct-18 15:00	04 Oct-18 16:25	$50 \mathrm{~d} 2 \mathrm{~h}\left(5^{\circ} \mathrm{C}\right)$			
EHWW-29	18-8320-8134	04 Oct-18 13:05	06 Oct-18 13:55	49d $4 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-31	14-3182-9114	02 Oct-18 15:00	03 Oct-18 13:45	51d $2 \mathrm{~h}\left(17.1^{\circ} \mathrm{C}\right)$			
EHWW-39	18-6327-2153	01 Oct-18 10:40	02 Oct-18 16:20	52d $6 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-40	13-1189-2993	05 Oct-18 09:35	06 Oct-18 13:55	48d $7 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-42	15-1638-8206	02 Oct-18 12:45	03 Oct-18 13:45	51d $4 \mathrm{~h}\left(17.1^{\circ} \mathrm{C}\right)$			
EHWW-44	19-2142-0006	04 Oct-18 08:15	06 Oct-18 13:55	49d $8 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-50	02-6376-1429	02 Oct-18 16:10	03 Oct-18 13:45	51d $1 \mathrm{~h}\left(17.1^{\circ} \mathrm{C}\right)$			
Sample Code	Material Type	Sample Source		Station Location			
Control	Control SW	Anchor QEA		Control			
EHWW-REF17	7 Sediment Sample	e Anchor QEA		EHWW-REF17-SG-000010			
EHWW-REF18	8 Sediment Sample	e Anchor QEA		EHWW-REF18-SG-000010			
EHWW-01	Sediment Sample	e Anchor QEA		EHWW-01-SG-000010			
EHWW-06	Sediment Sample	e Anchor QEA		EHWW-06-SG-000010			
EHWW-08	Sediment Sample	e Anchor QEA		EHWW-08-SG-000010			
EHWW-11	Sediment Sample	e Anchor QEA		EHWW-11-SG-000010			
EHWW-12	Sediment Sample	e Anchor QEA		EHWW-12-SG-000010			
EHWW-13	Sediment Sample	e Anchor QEA		EHWW-13-SG-000010			
EHWW-15	Sediment Sample	e Anchor QEA		EHWW-15-SG-000010			
EHWW-22	Sediment Sample	e Anchor QEA		EHWW-22-SG-000010			
EHWW-29	Sediment Sample	e Anchor QEA		EHWW-29-SG-000010			
EHWW-31	Sediment Sample	e Anchor QEA		EHWW-31-SG-000010			
EHWW-39	Sediment Sample	e Anchor QEA		EHWW-39-SG-000010			
EHWW-40	Sediment Sample	- Anchor QEA		EHWW-40-SG-000010			
EHWW-42	Sediment Sample	e Anchor QEA		EHWW-42-SG-000010			
EHWW-44	Sediment Sample	- Anchor QEA		EHWW-44-SG-000010			
EHWW-50	Sediment Sample	- Anchor QEA		EHWW-50-SG-000010			

CETIS Analytical Report							Report Date: Test Code/ID:		$\begin{array}{r} 05 \text { Jan-19 15:22 (p } 3 \text { of } 5 \text {) } \\ 181641 / 12-6434-9271 \end{array}$		
Bivalve Larval Survival and Development Test									Nautilus Environmental		
Analysis ID: Analyzed:	$\begin{aligned} & 21-2426-0886 \\ & 06 \text { Dec-18 12:11 } \end{aligned}$	Endpoint: Analysis:		Proportion Normal Parametric-Multiple Comparison			CETIS Version: Status Level:		$\begin{aligned} & \text { CETISv1.9.4 } \\ & 1 \end{aligned}$		
Proportion Normal Summary											
Sample	Code	Count	t Mean	95\% LCL	95\% UCL	Median	Min	Max	Std Err	CV\%	\%Effect
Control	LC	4	0.8674	0.7730	0.9619	0.8922	0.7798	0.9055	0.0297	6.84\%	0.00\%
EHWW-REF1		4	0.9334	0.9206	0.9462	0.9317	0.9267	0.9435	0.0040	0.86\%	-7.60\%
EHWW-REF1		4	0.9196	0.8984	0.9408	0.9152	. 0.9091	0.9390	0.0067	1.45\%	-6.01\%
EHWW-01		4	0.9049	0.8660	0.9438	0.9006	0.8824	0.9361	0.0122	2.70\%	-4.32\%
EHWW-06		4	0.8659	0.8412	0.8905	0.8611	0.8529	0.8883	0.0078	1.79\%	0.18\%
EHWW-08		3	0.9153	0.8755	0.9552	0.9082	0.9041	0.9337	0.0093	1.75\%	-5.52\%
EHWW-11		3	0.9024	0.8333	0.9716	0.9175	0.8703	0.9194	0.0161	3.08\%	-4.03\%
EHWW-12		3	0.9201	0.8792	0.9609	0.9130	0.9083	0.9389	0.0095	1.79\%	-6.07\%
EHWW-13		4	0.8876	0.8500	0.9252	0.8910	0.8577	0.9109	0.0118	2.66\%	-2.33\%
EHWW-15		4	0.8346	0.7325	0.9366	0.8313	0.7727	0.9029	0.0321	7.68\%	3.79\%
EHWW-22		4	0.8701	0.8248	0.9155	0.8768	0.8325	0.8945	0.0143	3.27\%	-0.31\%
EHWW-29		4	0.9215	0.8695	0.9736	0.9313	0.8761	0.9474	0.0164	3.55\%	-6.24\%
EHWW-31		4	0.9201	0.8418	0.9985	0.9339	0.8493	0.9633	0.0246	5.35\%	-6.07\%
EHWW-39		4	0.8821	0.8449	0.9193	0.8870	0.8496	0.9048	0.0117	2.65\%	-1.69\%
EHWW-40		3	0.9108	0.8780	0.9435	0.9163	0.8957	0.9203	0.0076	1.45\%	-5.00\%
EHWW-42		3	0.8980	0.8341	0.9618	0.8883	0.8785	0.9271	0.0148	2.86\%	-3.52\%
EHWW-44		4	0.9216	0.8746	0.9686	0.9239	0.8840	0.9545	0.0148	3.20\%	-6.24\%
EHWW-50		4	0.8642	0.8215	0.9069	0.8644	0.8340	0.8941	0.0134	3.11\%	0.37\%
Angular (Corrected) Transformed Summary											
Sample	Code	Count	Mean	95\% LCL	95\% UCL	Median	Min	Max	Std Err	CV\%	\%Effect
Control	LC	4	1.204	1.072	1.335	1.237	1.082	1.258	0.04127	6.86\%	0.00\%
EHWW-REF1		4	1.31	1.284	1.336	1.307	1.297	1.331	0.008166	1.25\%	-8.86\%
EHWW-REF1		4	1.284	1.244	1.324	1.275	1.265	1.321	0.0127	1.98\%	-6.69\%
EHWW-01		4	1.259	1.191	1.328	1.251	1.221	1.315	0.02147	3.41\%	-4.63\%
EHWW-06		4	1.196	1.159	1.233	1.189	1.177	1.23	0.01163	1.94\%	0.60\%
EHWW-08		3	1.276	1.203	1.35	1.263	1.256	1.31	0.01709	2.32\%	-6.06\%
EHWW-11		3	1.255	1.142	1.368	1.28	1.202	1.283	0.02631	3.63\%	-4.28\%
EHWW-12		3	1.285	1.208	1.363	1.271	1.263	1.321	0.01803	2.43\%	-6.79\%
EHWW-13		4	1.23	1.171	1.289	1.235	1.184	1.268	0.01856	3.02\%	-2.22\%
EHWW-15		4	1.157	1.017	1.298	1.151	1.074	1.254	0.04407	7.62\%	3.84\%
EHWW-22		4	1.204	1.137	1.27	1.213	1.149	1.24	0.02088	3.47\%	-0.01\%
EHWW-29		4	1.291	1.198	1.384	1.307	1.211	1.339	0.02935	4.55\%	-7.26\%
EHWW-31		4	1.293	1.155	1.431	1.311	1.172	1.378	0.04334	6.70\%	-7.43\%
EHWW-39		4	1.221	1.165	1.278	1.228	1.172	1.257	0.01778	2.91\%	-1.49\%
EHWW-40		3	1.268	1.211	1.325	1.277	1.242	1.285	0.01316	1.80\%	-5.36\%
EHWW-42		3	1.247	1.138	1.357	1.23	1.215	1.297	0.02538	3.52\%	-3.65\%
EHWW-44		4	1.291	1.203	1.379	1.292	1.223	1.356	0.02766	4.29\%	-7.24\%
EHWW-50		4	1.195	1.132	1.257	1.194	1.151	1.239	0.01969	3.30\%	0.73\%

CETIS Analytical Report		Report Date: Test Code/ID:	05 Jan-19 15:22 (p 4 of 5) $181641 / 12-6434-9271$	
Bivalve Larval Survival and Development Test			Nautilus Environmental	
Analysis ID:	$21-2426-0886$	Endpoint:	Proportion Normal	CETIS Version:
Analyzed:	06 CeTISv1.9.4			

Proportion Normal Detail

Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4
Control	LC	0.9055	0.8818	0.9027	0.7798
EHWW-REF17		0.9435	0.9271	0.9363	0.9267
EHWW-REF18		0.9133	0.9091	0.9171	0.9390
EHWW-01		0.9361	0.8889	0.9123	0.8824
EHWW-06		0.8529	0.8622	0.8883	0.8599
EHWW-08		0.9041	0.9082	0.9337	
EHWW-11		0.8703	0.9175	0.9194	
EHWW-12		0.9389	0.9130	0.9083	
EHWW-13	0.9014	0.8805	0.9109	0.8577	
EHWW-15	0.9029	0.7727	0.7876	0.8750	
EHWW-22	0.8945	0.8898	0.8325	0.8639	
EHWW-29	0.9474	0.9433	0.8761	0.9194	
EHWW-31	0.8493	0.9633	.0 .9309	0.9369	
EHWW-39	0.8496	0.8842	0.8899	0.9048	
EHWW-40	0.9203	0.8957	0.9163		
EHWW-42	0.9271	0.8883	0.8785		
EHWW-44	0.9312	0.9545	0.9167	0.8840	
EHWW-50		0.8510	0.8340	0.8941	0.8778

Angular (Corrected) Transformed Detail

Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4
Control	LC	1.258	1.22	1.253	1.082
EHWW-REF17		1.331	1.297	1.316	1.297
EHWW-REF18		1.272	1.265	1.279	1.321
EHWW-01		1.315	1.231	1.27	1.221
EHWW-06		1.177	1.191	1.23	1.187
EHWW-08		1.256	1.263	1.31	
EHWW-11		1.202	1.28	1.283	
EHWW-12	1.321	1.271	1.263		
EHWW-13		1.251	1.218	1.268	1.184
EHWW-15		1.254	1.074	1.092	1.209
EHWW-22	1.24	1.232	1.149	1.193	
EHWW-29	1.339	1.33	1.211	1.283	
EHWW-31		1.172	1.378	1.305	1.317
EHWW-39	1.172	1.224	1.233	1.257	
EHWW-40	1.285	1.242	1.277		
EHWW-42		1.297	1.23	1.215	
EHWW-44	1.305	1.356	1.278	1.223	
EHWW-50		1.174	1.151	1.239	1.214

Graphics

CETIS Analytical Report				Report Date: Test Code/ID:	05 Jan-19 15:2 181641/12	$\begin{gathered} \text { (p } 2 \text { of } 5) \\ 6434-9271 \end{gathered}$
Bivalve Larval Survival and Development Test				Nautilus Environmental		
Analysis ID: Analyzed:	$\begin{aligned} & 02-3871-5703 \\ & 06 \text { Dec-18 12:11 } \end{aligned}$	Endpoint: Analysis:	Combined Proportion Normal Parametric-Multiple Comparison	CETIS Version: Status Level:	CETISv1.9.4 1	
Data Transform		Alt Hyp		Comparison Result		PMSD
Angular (Cor	ected)	$C>T$		EHWW-15 passed combined proportion norm		23.47\%
				EHWW-22 passed combined proportion norm		23.47\%
				EHWW-29 passed combined proportion norm		23.47\%
				EHWW-31 passed combined proportion norm		23.47\%
				EHWW-39 passed combined proportion norm		23.47\%
				EHWW-40 passed combined proportion norm		23.47\%
				EHWW-42 passed combined proportion norm		23.47\%
				EHWW-44 passed combined proportion norm		23.47\%
				EHWW-50 passed combined proportion norm		23.47\%
				EHWW-REF17 passed combined proportion $n 23.47 \%$		
				EHWW-REF18 passed combined proportion $n 23.47 \%$		
				EHWW-01 passed combined proportion norm 23.47%		
	.			EHWW-06 passed combined proportion norm 23.47%		
				EHWW-08 passed combined proportion norm 23.47\%		
				EHWW-11 passed combined proportion norm 23.47%		
				EHWW-12 passed combined proportion norm 23.47%		
				EHWW-13 passed combined proportion norm 23.47%		

Bonferroni Adj t Test		Test Stat	Critical	MSD	DF	P-Type	P-Value	Decision(a:5\%)	
Sample I vs	Sample II								
Lab Control	EHWW-REF17	-0.3608	2.88	0.185	6	CDF	1.0000	Non-Significant Effect	
	EHWW-REF18	-0.679	2.88	0.185	6	CDF	1.0000	Non-Significant Effect	
	EHWW-01	0.1319	2.88	0.185	6	CDF	1.0000	Non-Significant Effect	
	EHWW-06	0.2958	2.88	0.185	6	CDF	1.0000	Non-Significant Effect	
	EHWW-08	0.1658	2.88	0.2	5	CDF	1.0000	Non-Significant Effect	
	EHWW-11	-0.3851	2.88	0.2	5	CDF	1.0000	Non-Significant Effect	
	EHWW-12	-1.379	2.88	0.2	5	CDF	1.0000	Non-Significant Effect	
	EHWW-13	-0.5186	2.88	0.185	6	CDF	1.0000	Non-Significant Effect	
	EHWW-15	1.256	2.88	0.185	6	CDF	1.0000	Non-Significant Effect	
	EHWW-22	0.2622	2.88	0.185	6	CDF	1.0000	Non-Significant Effect	
	EHWW-29	-2.485	2.88	0.185	6	CDF	1.0000	Non-Significant Effect	
	EHWW-31	-2.217	2.88	0.185	6	CDF	1.0000	Non-Significant Effect	
	EHWW-39	-1.059	2.88	0.185	6	CDF	1.0000	Non-Significant Effect	
	EHWW-40	-1.588	2.88	0.2	5	CDF	1.0000	Non-Significant Effect	
	EHWW-42	0.6384	2.88	0.2	5	CDF	1.0000	Non-Significant Effect	
	EHWW-44	-2	2.88	0.185	6	CDF	1.0000	Non-Significant Effect	
	EHWW-50	-1.246	2.88	0.185	6	CDF	1.0000	Non-Significant Effect	
ANOVA Table									
Source	Sum Squares	Mean Square		DF		F Stat	P-Value	Decision(a:5\%)	
Between	0.295843	0.0174025		17		2.11	0.0215	Significant Effect	
Error	0.404063	0.0082462		49					
Total	0.699906			66					

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1\%)
Variances	Bartlett Equality of Variance Test	11.2	33.41	0.8462	Equal Variances
Distribution	Shapiro-Wilk W Normality Test	0.9772	0.9508	0.2560	Normal Distribution

CETIS Analytical Report							Report Date: Test Code/ID:		$\begin{array}{r} 05 \text { Jan-19 15:21 (p } 3 \text { of 5) } \\ 181641 / 12-6434-9271 \end{array}$		
Bivalve Larval Survival and Development Test									Nautilus Environmental		
Analysis ID: Analyzed:	$\begin{aligned} & 02-3871-5703 \\ & 06 \text { Dec-18 12:11 } \end{aligned}$	Endpoint: Analysis:		Combined Proportion Normal Parametric-Multiple Comparison			CETIS Version: Status Level:		$\begin{aligned} & \text { CETISv1.9.4 } \\ & 1 \end{aligned}$		
Combined Proportion Normal Summary											
Sample	Code	Count	Mean	95\% LCL	95\% UCL	Median	Min	Max	Std Err	CV\%	\%Effect
Control	LC	4	0.7382	0.6459	0.8305	0.7402	0.6693	0.8031	0.0290	7.86\%	0.00\%
EHWW-REF1		4	0.7520	0.5817	0.9222	0.7244	0.6575	0.9016	0.0535	14.23\%	-1.87\%
EHWW-REF1		4	0.7756	0.6942	0.8570	0.7854	0.7047	0.8268	0.0256	6.59\%	-5.07\%
EHWW-01		4	0.7274	0.5595	0.8953	0.7343	0.6142	0.8268	0.0528	14.51\%	1.47\%
EHWW-06		4	0.7215	0.6313	0.8116	0.7106	0.6654	0.7992	0.0283	7.85\%	2.27\%
EHWW-08		3	0.7283	0.5843	0.8724	0.7402	0.6654	0.7795	0.0335	7.96\%	1.33\%
EHWW-11		3	0.7612	0.6143	0.9080	0.7638	0.7008	0.8189	0.0341	7.76\%	-3.11\%
EHWW-12		3	0.8163	0.6603	0.9722	0.8465	0.7441	0.8583	0.0363	7.69\%	-10.58\%
EHWW-13		4	0.7677	0.7110	0.8244	0.7697	0.7244	0.8071	0.0178	4.64\%	-4.00\%
EHWW-15		4	0.6654	0.5782	0.7525	0.6654	0.5984	0.7323	0.0274	8.23\%	9.87\%
EHWW-22		4	0.7165	0.5262	0.9069	0.6752	0.6260	0.8898	0.0598	16.70\%	2.93\%
EHWWW-29		4	0.8612	0.7637	0.9587	0.8740	0.7795	0.9173	0.0306	7.12\%	-16.67\%
EHWWW-31		4	0.8455	0.7041	0.9868	0.8602	0.7323	0.9291	0.0444	10.50\%	-14.53\%
EHWW-39		4	0.7923	0.6760	0.9087	0.7598	0.7480	0.9016	0.0366	9.23\%	-7.33\%
EHWW-40		3	0.8241	0.6185	1.0000	0.8189	0.7441	0.9094	0.0478	10.05\%	-11.64\%
EHWW-42		3	0.6995	0.5967	0.8022	0.7008	0.6575	0.7402	0.0239	5.91\%	5.24\%
EHWW-44		4	0.8396	0.7430	0.9361	0.8346	0.7795	0.9094	0.0303	7.23\%	-13.73\%
EHWW-50		4	0.8051	0.7345	0.8757	0.8012	0.7638	0.8543	0.0222	5.51\%	-9.07\%
Angular (Corrected) Transformed Summary											
Sample	Code	Count	Mean	95\% LCL	95\% UCL	Median	Min	Max	Std Err	CV\%	\%Effect
Control	LC	4	1.035	0.9301	1.141	1.036	0.9581	1.111	0.03312	6.40\%	0.00\%
EHWW-REF1		4	1.059	0.8429	1.274	1.019	0.9456	1.252	0.0678	12.81\%	-2.24\%
EHWW-REF1		4	1.079	0.9829	1.175	1.089	0.9963	1.142	0.03023	5.60\%	-4.21\%
EHWW-01		4	1.027	0.8365	1.217	1.033	0.9006	1.142	0.05986	11.66\%	0.82\%
EHWW-06		4	1.016	0.9135	1.119	1.003	0.9539	1.106	0.03236	6.37\%	1.83\%
EHWW-08		3	1.024	0.8628	1.185	1.036	0.9539	1.082	0.03746	6.34\%	1.11\%.
EHWW-11		3	1.062	0.8893	1.235	1.063	0.992	1.131	0.04019	6.55\%	-2.58\%
EHWW-12		3	1.131	0.9349	1.327	1.168	1.04	1.185	0.04561	6.98\%	-9.24\%
EHWW-13		4	1.069	1.002	1.136	1.07	1.018	1.116	0.0211	3.95\%	-3.22\%
EHWW-15		4	0.9548	0.8621	1.048	0.9539	0.8845	1.027	0.02914	6.10\%	7.79\%
EHWW-22		4	1.019	0.7858	1.251	0.9647	0.9128	1.232	0.07315	14.36\%	1.63\%
EHWW-29		4	1.195	1.056	1.334	1.209	1.082	1.279	0.0436	7.30\%	-15.41\%
EHWW-31		4	1.178	0.9815	1.374	1.191	1.027	1.301	0.06167	10.47\%	-13.75\%
EHWW-39		4	1.103	0.9458	1.261	1.059	1.045	1.252	0.04954	8.98\%	-6.57\%
EHWW-40		3	1.146	0.8647	1.426	1.131	1.04	1.265	0.06527	9.87\%	-10.64\%
EHWW-42		3	0.9912	0.879	1.103	0.992	0.9456	1.036	0.02607	4.56\%	4.28\%
EHWW-44		4	1.164	1.028	1.299	1.154	1.082	1.265	0.04257	7.31\%	-12.40\%
EHWW-50		4	1.115	1.025	1.205	1.11	1.063	1.179	0.02829	5.07\%	-7.73\%

Angular (Corrected) Transformed Detail

Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4
Control	LC	1.009	1.063	1.111	0.9581
EHWW-REF17		0.9456	1.252	1.049	0.9877
EHWW-REF18		0.9963	1.142	1.087	1.092
EHWW-01		1.116	0.9498	0.9006	1.142
EHWW-06		1.106	0.9539	1.014	0.992
EHWW-08		1.082	1.036	0.9539	
EHWW-11		1.131	0.992	1.063	
EHWW-12	1.168	1.04	1.185		
EHWW-13		1.054	1.087	1.018	1.116
EHWW-15	1.027	0.9581	0.8845	0.9498	
EHWW-22	0.992	1.232	0.9128	0.9373	
EHWW-29		1.174	1.279	1.082	1.245
EHWW-31	1.027	1.301	1.252	1.131	
EHWW-39	1.054	1.252	1.063	1.045	
EHWW-40	1.265	1.04	1.131		
EHWW-42	0.992	0.9456	1.036		
EHWW-44		1.106	1.265	1.082	1.202
EHWW-50	1.179	1.073	1.147	1.063	

Graphics

CETIS Analytical Report					Report Date: Test Code/ID:	05 Jan-19 15:22 (p 1 of 5) 181641 / 12-6434-9271	
Bivalve Larval Survival and Development Test						Nautilus Environmental	
Analysis ID: Analyzed:	$\begin{aligned} & \text { 20-0346-5055 } \\ & \text { 05 Jan-19 15:18 } \end{aligned}$	Endpoint: S Analysis:	al Rate ametric-Two Sa		CETIS Version: Status Level:	$\begin{aligned} & \text { CETISv1.9.4 } \\ & 1 \end{aligned}$	
Batch ID: Start Date: Ending Date: Test Length:	09-1380-8962 22 Nov-18 16:45 24 Nov-18 17:10 48h	Test Type: Protocol: Species: Taxon:	opment-Survival VRP (2009) galloprovincialis		Analyst: Diluent: Brine: Source:	Yvonne Lam Natural seawater Kamilche Seafarms	Age:
Sample Code	Sample ID	Sample Date	Receipt Date	Sample Age	Client Name	Project	
EHWW-REF17	7 11-6816-1975	03 Oct-18 08:25	04 Oct-18 16:25	50d $8 \mathrm{~h}\left(5^{\circ} \mathrm{C}\right)$	Anchor QEA		
EHWW-REF18	8 04-9066-2063	03 Oct-1809:00	04 Oct-18 16:25	50d $8 \mathrm{~h}\left(5^{\circ} \mathrm{C}\right)$			
EHWWW-01	09-4043-9892	01 Oct-1814:15	02 Oct-18 16:20	52d $2 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-06	07-6081-6733	01 Oct-18 14:55	02 Oct-18 16:20	52d $2 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-08	11-6318-9477	01 Oct-18 15:35	02 Oct-18 16:20	52d in ($10^{\circ} \mathrm{C}$)			
EHWW-11	09-5214-7885	03 Oct-18 13:52	04 Oct-18 16:25	50d $3 \mathrm{~h}\left(5^{\circ} \mathrm{C}\right)$			
EHWW-12	20-9373-4766	04 Oct-18 14:10	06 Oct-18 13:55	49d $3 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-13	17-9563-4578	03 Oct-18 12:55	04 Oct-18 16:25	$50 \mathrm{~d} 4 \mathrm{~h}\left(5^{\circ} \mathrm{C}\right)$			
EHWW-15	06-7893-1202	02 Oct-18 08:30	03 Oct-18 13:45	51d $8 \mathrm{~h}\left(17.1^{\circ} \mathrm{C}\right)$			
EHWW-22	07-9060-9507	03 Oct-18 15:00	04 Oct-18 16:25	50d $2 \mathrm{~h}\left(5^{\circ} \mathrm{C}\right)$			
EHWW-29	18-8320-8134	04 Oct-18 13:05	06 Oct-18 13:55	49d $4 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-31	14-3182-9114	02 Oct-18 15:00	03 Oct-18 13:45	51d $2 \mathrm{~h}\left(17.1{ }^{\circ} \mathrm{C}\right)$			
EHWW-39	18-6327-2153	01 Oct-18 10:40	02 Oct-18 16:20	52d $6 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-40	13-1189-2993	05 Oct-18 09:35	06 Oct-18 13:55	48d $7 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-42	15-1638-8206	02 Oct-18 12:45	03 Oct-18 13:45	51d $4 \mathrm{~h}\left(17.1^{\circ} \mathrm{C}\right)$			
EHWW-44	19-2142-0006	04 Oct-18 08:15	06 Oct-18 13:55	49d $8 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-50	02-6376-1429	02 Oct-18 16:10	03 Oct-18 13:45	51d $1 \mathrm{~h}\left(17.1^{\circ} \mathrm{C}\right)$			
Sample Code	Material Type	Sample Source		Station Location		Lat/Long	
EHWW-REF17	Sediment Sample	Anchor QEA		EHWW-REF17-SG-000010			
EHWW-REF18	8 Sediment Sample	Anch	OEA	EHWW-R	EFF18-SG-000010		
EHWW-01	Sediment Sample	le Anch	QEA	EHWW-0	1-SG-000010		
EHWW-06	Sediment Sample	le Anch	QEA	EHWW-0	6-SG-000010		
EHWW-08	Sediment Sample	Anch	OEA	EHWW-0	8-SG-000010		
EHWW-11	Sediment Sample	le Anch	QEA	EHWW-1	1-SG-000010		
EHWW-12	Sediment Sample	le Anch	QEA	EHWW-1	2-SG-000010		
EHWW-13	Sediment Sample	le Anch	QEA	EHWW-1	3-SG-000010		
EHWW-15	Sediment Sample	le Anch	OEA	EHWW-1	5-SG-000010		
EHWW-22	Sediment Sample	le Anch	OEA	EHWW-2	2-SG-000010		
EHWW-29	Sediment Sample	le Anch	QEA	EHWW-2	9-SG-000010		
EHWW-31	Sediment Sample	Anch	QEA	EHWW-3	1-SG-000010		
EHWW-39	Sediment Sample	Anch	QEA	EHWW-3	9-SG-000010		
EHWW-40	Sediment Sample	Anch	QEA	EHWW-4	0-SG-000010		
EHWW-42	Sediment Sample	Anch	QEA	EHWW-4	2-SG-000010		
EHWW-44	Sediment Sample	Anch	QEA	EHWW-4	4-SG-000010		
EHWW-50	Sediment Sample	Anch	QEA	EHWW-5	O-SG-000010		*

Graphics

| CETIS Analytical Report | | | Report Date:
 Test CodelID: | 05 Jan-19 15:22 (p 4 of 5)
 $181641 / 12-6434-9271$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Bivalve Larval Survival and Development Test | | | | Nautilus Environmental |

Angular (Corrected) Transformed Detail

Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4
EHWW-REF17	RS	1.331	1.297	1.316	1.297
EHWW-REF18		1.272	1.265	1.279	1.321
EHWW-01		1.315	1.231	1.27	1.221
EHWW-06		1.177	1.191	1.23	1.187
EHWW-08		1.256	1.263	1.31	
EHWW-11		1.202	1.28	1.283	
EHWW-12		1.321	1.271	1.263	
EHWW-13		1.251	1.218	1.268	1.184
EHWW-15		1.254	1.074	1.092	1.209
EHWW-22		1.24	1.232	1.149	1.193
EHWW-29		1.339	1.33	1.211	1.283
EHWW-31		1.172	1.378	1.305	1.317
EHWW-39		1.172	1.224	1.233	1.257
EHWW-40		1.285	1.242	1.277	
EHWW-42		1.297	1.23	1.215	
EHWW-44		1.305	1.356	1.278	1.223
EHWW-50		1.174	1.151	1.239	1.214

Graphics

CETIS Analytical Report						Report Date: Test CodellD:	$\begin{array}{r} 05 \text { Jan-19 15:22 (p } 1 \text { of } 5 \text {) } \\ 181641 \text { / 12-6434-9271 } \end{array}$	
Bivalve Larval Survival and Development Test							Nautilus Environmental	
Analysis ID: Analyzed:	$\begin{aligned} & \text { 21-1427-6474 } \\ & 05 \text { Jan-19 15:19 } \end{aligned}$		Endpoint: Analysis:	Combined Proportion Normal Parametric-Multiple Comparison		CETIS Version: Status Level:	CETISv1.9.4 1	
Batch ID: Start Date: Ending Date: Test Length:	$\begin{aligned} & 09- \\ & 22 \\ & 24 \\ & 48 \mathrm{~h} \end{aligned}$	$\begin{aligned} & 380-8962 \\ & \text { lov-18 16:45 } \\ & \text { lov-18 17:10 } \end{aligned}$	Test Type: Protocol: Species: My Taxon:	Development-Survival SCCWRP (2009) Mytilus galloprovincialis		Analyst: Diluent: Brine: Source:	Yvonne Lam Natural seawater Kamilche Seafarms	Age:
Sample Code		Sample ID	Sample Date	Receipt Date	Sample Age	Client Name	Project	
EHWW-REF17		11-6816-1975	03 Oct-18 08:25	04 Oct-18 16:25	$50 \mathrm{~d} 8 \mathrm{~h}\left(5^{\circ} \mathrm{C}\right)$	Anchor QEA		
EHWW-REF18		04-9066-2063	03 Oct-18 09:00	04 Oct-18 16:25	$50 \mathrm{~d} 8 \mathrm{~h}\left(5^{\circ} \mathrm{C}\right)$			
EHWW-01		09-4043-9892	01 Oct-18 14:15	02 Oct-18 16:20	52d $2 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-06		07-6081-6733	01 Oct-1814:55	02 Oct-18 16:20	52d $2 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-08		11-6318-9477	01 Oct-18 15:35	02 Oct-18 16:20	52d $1 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-11		09-5214-7885	03 Oct-18 13:52	04 Oct-18 16:25	$50 \mathrm{~d} 3 \mathrm{~h}\left(5^{\circ} \mathrm{C}\right)$			
EHWW-12		20-9373-4766	04 Oct-18 14:10	06 Oct-18 13:55	49d $3 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-13		17-9563-4578	03 Oct-18 12:55	04 Oct-18 16:25	$50 \mathrm{~d} 4 \mathrm{~h}\left(5^{\circ} \mathrm{C}\right)$			
EHWW-15		06-7893-1202	02 Oct-18 08:30	03 Oct-18 13:45	51d $8 \mathrm{~h}\left(17.1^{\circ} \mathrm{C}\right)$			
EHWW-22		07-9060-9507	03 Oct-18 15:00	04 Oct-18 16:25	50d $2 \mathrm{~h}\left(5^{\circ} \mathrm{C}\right)$			
EHWW-29		18-8320-8134	04 Oct-18 13:05	06 Oct-18 13:55	49d $4 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-31		14-3182-9114	02 Oct-18 15:00	03 Oct-18 13:45	51d $2 \mathrm{~h}\left(17.1^{\circ} \mathrm{C}\right)$			
EHWW-39		18-6327-2153	01 Oct-18 10:40	02 Oct-18 16:20	52d $6 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-40		13-1189-2993	05 Oct-18 09:35	06 Oct-18 13:55	48d $7 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-42		15-1638-8206	02 Oct-18 12:45	03 Oct-18 13:45	51d $4 \mathrm{~h}\left(17.1^{\circ} \mathrm{C}\right)$			
EHWW-44		19-2142-0006	04 Oct-18 08:15	06 Oct-18 13:55	49d $8 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-50		02-6376-1429	02 Oct-18 16:10	03 Oct-18 13:45	51d $1 \mathrm{~h}\left(17.1^{\circ} \mathrm{C}\right)$			
Sample Code		Material Type	Sample Source		Station Location		Lat/Long	
EHWW-REF. 17		Sediment Sample		Anchor QEA	EHWW-REF17-SG-000010			
EHWW-REF18		Sediment Sample An		Anchor QEA	EHWW-REF18-SG-000010			
EHWW-01		Sediment Sample An		Anchor QEA	EHWW-01-SG-000010			
EHWW-06		Sediment Sample An		Anchor QEA	EHWW-06-SG-000010			
EHWW-08		Sediment Sample An		Anchor QEA	EHWW-08-SG-000010			
EHWW-11		Sediment Sample An		Anchor QEA	EHWW-11-SG-000010			
EHWW-12		Sediment Sample An		Anchor QEA	EHWW-12-SG-000010			
EHWW-13		Sediment Sample An		Anchor QEA	EHWW-13-SG-000010			
EHWW-15		Sediment Sample An		Anchor QEA	EHWW-15-SG-000010			
EHWW-22		Sediment Sample An		Anchor QEA	EHWW-22-SG-000010			
EHWW-29		Sediment Sample An		Anchor QEA	EHWW-29-SG-000010			
EHWW-31		Sediment Sample An		Anchor QEA	EHWW-31-SG-000010			
EHWW-39		Sediment Sample An		Anchor QEA	EHWW-39-SG-000010			
EHWW-40		Sediment Sample An		Anchor QEA	EHWW-40-SG-000010			
EHWW-42		Sediment Sample An		Anchor QEA	EHWW-42-SG-000010			
EHWW-44		Sediment Sample An		Anchor QEA	EHWW-44-SG-000010			
EHWW-50		Sediment Sample An		Anchor QEA	EHWW-50-SG-000010			

Graphics

CETIS Analytical Report							Report Date: Test Code/ID:		$\begin{array}{r} 05 \text { Jan-19 15:22 (p } 3 \text { of } 5 \text {) } \\ 181641 / 12-6434-9271 \end{array}$		
Bivalve Larval Survival and Development Test							Nautilus Environmental				
Analysis ID: Analyzed:	$11-5555-388$ $05 \text { Jan-19 } 15$		Endpoint: Analysis:	Survival Rate Nonparametric	Two Sample			Version: Level:	CETISv1 1		
Angular (Corrected) Transformed Summary											
Sample	Code	Count	t Mean	95\% LCL	95\% UCL	Median	Min	Max	Std Err	CV\%	\%Effect
EHWW-REF17		4	1.138	0.8448	1.431	1.08	0.9877	1.404	0.09215	16.19\%	0.00\%
EHWW-REF18	Xc	4	1.169	1.043	1.294	1.168	1.073	1.265	0.03956	6.77\%	-2.68\%
EHWW-01		4	1.128	0.8763	1.379	1.115	0.9623	1.317	0.07895	14.00\%	0.92\%
EHWW-06		4	1.159	0.9874	1.331	1.124	1.073	1.317	0.05399	9.32\%	-1.86\%
EHWW-08		3	1.107	0.8732	1.341	1.126	1.005	1.19	0.05438	8.51\%	2.71\%
EHWW-11		3	1.178	0.8459	1.511	1.147	1.063	1.325	0.07729	.11.36\%	-3.55\%
EHWW-12		3	1.237	0.9774	1.497	1.252	1.126	1.334	0.06039	8.45\%	-8.71\%
EHWW-13		4	1.204	1.05	1.358	1.195	1.101	1.325	0.04852	8.06\%	-5.80\%
EHWW-15		4	1.107	1.002	1.213	1.09	1.054	1.196	0.0333	6.01\%	2.69\%
EHWW-22		4	1.181	0.8003	1.562	1.068	1.049	1.539	0.1197	20.27\%	-3.80\%
EHWW-29		4	1.324	1.167	1.482	1.325	1.232	1.416	0.04965	7.50\%	-16.38\%
EHWW-31		4	1.293	1.12	1.466	1.295	1.19	1.392	0.05434	8.41\%	-13.62\%
EHWW-39		4	1.275	0.9874	1.562	1.209	1.142	1.539	0.09022	14.16\%	-11.99\%
EHWW-40		3	1.282	0.8798	1.685	1.239	1.147	1.462	0.09357	12.64\%	-12.69\%
EHWW-42		3	1.084	0.9138	1.255	1.054	1.036	1.163	0.0396	6.33\%	4.73\%
EHWW-44		4	1.289	1.078	1.499	1.268	1.174	1.445	0.06609	10.26\%	-13.24\%
EHWW-50		4	1.334	1.105	1.563	1.298	1.202	1.539	0.07205	10.80\%	-17.23\%

Survival Rate Detail

Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4
EHWW-REF17		0.6969	0.9724	0.8031	0.7520
EHWW-REF18	XC	0.7717	0.9094	0.8543	0.8386
EHWW-01		0.8622	0.7441	0.6732	0.9370
EHWW-06		0.9370	0.7717	0.8110	0.8150
EHWW-08		0.8622	0.8150	0.7126	
EHWW-11		0.9409	0.7638	0.8307	
EHWW-12		0.9016	0.8150	0.9449	
EHWW-13		0.8386	0.8898	0.7953	0.9409
EHWW-15	0.8110	0.8661	0.7598	0.7559	
EHWW-22		0.7835	1.0000	0.7520	0.7520
EHWW-29		0.8976	0.9724	0.8898	0.9764
EHWW-31		0.8622	0.9646	0.9685	0.8740
EHWW-39	0.8898	1.0000	0.8583	0.8268	
EHWW-40		0.9882	0.8307	0.8937	
EHWW-42	0.7559	0.7402	0.8425		
EHWW-44	0.8583	0.9528	0.8504	0.9843	
EHWW-50		1.0000	0.9252	0.9291	0.8701

Survival Rate Binomials

Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4
EHWW-REF17		$177 / 254$	$247 / 254$	$204 / 254$	$191 / 254$
EHWW-REF18	XC	$196 / 254$	$231 / 254$	$217 / 254$	$213 / 254$
EHWW-01		$219 / 254$	$189 / 254$	$171 / 254$	$238 / 254$
EHWW-06		$238 / 254$	$196 / 254$	$206 / 254$	$207 / 254$
EHWW-08		$219 / 254$	$207 / 254$	$181 / 254$	
EHWW-11		$239 / 254$	$194 / 254$	$211 / 254$	
EHWW-12		$229 / 254$	$207 / 254$	$240 / 254$	
EHWW-13		$213 / 254$	$226 / 254$	$202 / 254$	$239 / 254$
EHWW-15	$206 / 254$	$220 / 254$	$193 / 254$	$192 / 254$	
EHWW-22		$199 / 254$	$254 / 254$	$191 / 254$	$191 / 254$
EHWW-29	$228 / 254$	$247 / 254$	$226 / 254$	$248 / 254$	
EHWW-31		$219 / 254$	$245 / 254$	$246 / 254$	$222 / 254$
EHWW-39	$226 / 254$	$254 / 254$	$218 / 254$	$210 / 254$	
EHWW-40	$251 / 254$	$211 / 254$	$227 / 254$		
EHWW-42	$192 / 254$	$188 / 254$	$214 / 254$		
EHWW-44	$218 / 254$	$242 / 254$	$216 / 254$	$250 / 254$	
EHWW-50	$254 / 254$	$235 / 254$	$236 / 254$	$221 / 254$	

Analyst Unive

Report Date:
Test Code/ID:
05 Jan-19 15:22 (p 3 of 5)
181641/12-6434-9271

$$
2
$$

Nautilus Environmental

Bivalve Larval Survival and Development Test									Nautilus Environmental		
Analysis ID: Analyzed:	$\begin{aligned} & \text { 14-6142-4225 } \\ & \text { 05 Jan-19 15:20 } \end{aligned}$	Endpoint: Analysis:		Proportion Normal Parametric-Multiple Comparison			CETIS Version: Status Level:		CETISv1.9.4$1$		
Proportion Norm	rmal Summary										
Sample	Code	Count	t Mean	95\% LCL	95\% UCL	Median	Min	Max	Std Err	CV\%	\%Effect
EHWW-REF17		4	0.9334	-0.9206	0.9462	0.9317	0.9267	0.9435	0.0040	0.86\%	0.00\%
EHWW-REF18	XC	4	0.9196	- 0.8984	0.9408	0.9152	0.9091	0.9390	0.0067	1.45\%	1.48\%
EHWW-01		4	0.9049	0.8660	0.9438	0.9006	0.8824	0.9361	0.0122	2.70\%	3.05\%
EHWW-06		4	0.8659	0.8412	0.8905	0.8611	0.8529	0.8883	0.0078	1.79\%	7.24\%
EHWW-08		3	0.9153	- 0.8755	0.9552	0.9082	0.9041	0.9337	0.0093	1.75\%	1.93\%
EHWW-11		3	0.9024	40.8333	0.9716	0.9175	0.8703	0.9194	0.0161	3.08\%	3.32\%
EHWW-12		3	0.9201	10.8792	0.9609	0.9130	0.9083	0.9389	0.0095	1.79\%	1.43\%
EHWW-13		4	0.8876	- 0.8500	0.9252	0.8910	0.8577	0.9109	0.0118	2.66\%	4.90\%
EHWW-15		4	0.8346	- 0.7325	0.9366	0.8313	0.7727	0.9029	0.0321	7.68\%	10.59\%
EHWW-22		4	0.8701	10.8248	0.9155	0.8768	0.8325	0.8945	0.0143	3.27\%	6.78\%
EHWWW-29		4	0.9215	- 0.8695	0.9736	0.9313	0.8761	0.9474	0.0164	3.55\%	1.27\%
EHWW-31		4	0.9201	10.8418	0.9985	0.9339	0.8493	0.9633	0.0246	5.35\%	1.42\%
EHWW-39		4	0.8821	10.8449	0.9193	0.8870	0.8496	0.9048	0.0117	2.65\%	5.50\%
EHWW-40		3	0.9108	$8 \quad 0.8780$	0.9435	0.9163	0.8957	0.9203	0.0076	1.45\%	2.42\%
EHWW-42		3	0.8980	0.8341	0.9618	0.8883	0.8785	0.9271	0.0148	2.86\%	3.80\%
EHWW-44		4	0.9216	60.8746	0.9686	0.9239	0.8840	0.9545	0.0148	3.20\%	1.26\%
EHWW-50		4	0.8642	20.8215	0.9069	0.8644	0.8340	0.8941	0.0134	3.11\%	7.41\%

Angular (Corrected) Transformed Summary											
Sample	Code	Count	Mean	95\% LCL	95\% UCL	Median	Min	Max	Std Err	CV\%	\%Effect
EHWW-REF17		4	1.31	1.284	1.336	1.307	1.297	1.331	0.008166	1.25\%	0.00\%
EHWW-REF18	XC	4	1.284	1.244	1.324	1.275	1.265	1.321	0.0127	1.98\%	1.99\%
EHWW-01		4	1.259	1.191	1.328	1.251	1.221	1.315	0.02147	3.41\%	3.88\%
EHWW-06		4	1.196	1.159	1.233	1.189	1.177	1.23	0.01163	1.94\%	8.69\%
EHWW-08		3	1.276	1.203	1.35	1.263	1.256	1.31	0.01709	2.32\%	2.57\%
EHWW-11		3	1.255	1.142	1.368	1.28	1.202	1.283	0.02631	3.63\%	4.21\%
EHWW-12		3	1.285	1.208	1.363	1.271	1.263	1.321	0.01803	2.43\%	1.90\%
EHWW-13		4	1.23	1.171	1.289	1.235	1.184	1.268	0.01856	3.02\%	6.10\%
EHWW-15		4	1.157	1.017	1.298	1.151	1.074	1.254	0.04407	7.62\%	11.67\%
EHWW-22		4	1.204	1.137	1.27	1.213	1.149	1.24	0.02088	3.47\%	8.13\%
EHWW-29		4	1.291	1.198	1.384	1.307	1.211	1.339	0.02935	4.55\%	1.47\%
EHWW-31		4	1.293	1.155	1.431	1.311	1.172	1.378	0.04334	6.70\%	1.31\%
EHWW-39		4	1.221	1.165	1.278	1.228	1.172	1.257	0.01778	2.91\%	6.77\%
EHWW-40		3	1.268	1.211	1.325	1.277	. 1.242	1.285	0.01316	1.80\%	3.22\%
EHWW-42		3	1.247	1.138	1.357	1.23	1.215	1.297	0.02538	3.52\%	4.79\%
EHWW-44		4	1.291	1.203	1.379	1.292	1.223	1.356	0.02766	4.29\%	1.49\%
EHWW-50		4	1.195	1.132	1.257	1.194	1.151	1.239	0.01969	3.30\%	8.81\%

Angular (Corrected) Transformed Detail

Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4
EHWW-REF17		1.331	1.297	1.316	1.297
EHWW-REF18	XC	1.272	1.265	1.279	1.321
EHWW-01		1.315	1.231	1.27	1.221
EHWW-06		1.177	1.191	1.23	1.187
EHWW-08		1.256	1.263	1.31	
EHWW-11		1.202	1.28	1.283	
EHWW-12		1.321	1.271	1.263	
EHWW-13		1.251	1.218	1.268	1.184
EHWW-15		1.254	1.074	1.092	1.209
EHWW-22		1.24	1.232	1.149	1.193
EHWW-29	1.339	1.33	1.211	1.283	
EHWW-31		1.172	1.378	1.305	1.317
EHWW-39		1.172	1.224	1.233	1.257
EHWW-40	1.285	1.242	1.277		
EHWW-42		1.297	1.23	1.215	
EHWW-44	1.305	1.356	1.278	1.223	
EHWW-50		1.174	1.151	1.239	1.214

Graphics

Analyst:

CETIS Analytical Report					Report Date: Test CodeIID:	05 Jan-19 15:23 (p 1 of 5) 181641 / 12-6434-9271	
Bivalve Larval Survival and Development Test					Nautilus Environmental		
Analysis ID: Analyzed:	$\begin{aligned} & \text { 20-7148-5003 } \\ & 05 \text { Jan-19 15:20 } \end{aligned}$	Endpoint: Analysis:	Combined Proportion Normal Parametric-Multiple Comparison		CETIS Version: Status Level:	$\begin{aligned} & \text { CETISv1.9.4 } \\ & 1 \end{aligned}$	
Batch ID: Start Date: Ending Date: Test Length:	09-1380-8962 22 Nov-18 16:45 24 Nov-18 17:10 48h	Test Type: Protocol: Species: Taxon:	Development-Survival SCCWRP (2009) Mytilus galloprovincialis		Analyst: Diluent: Brine: Source:	water eafarms	Age:
Sample Code	Sample ID	Sample Date	Receipt Date	Sample Age	Client Name	Project	
EHWW-REF17	7 11-6816-1975	03 Oct-18 08:25	04 Oct-18 16:25	$50 \mathrm{~d} 8 \mathrm{~h}\left(5^{\circ} \mathrm{C}\right)$	Anchor QEA		
EHWW-REF18	8 04-9066-2063	03 Oct-18 09:00	04 Oct-18 16:25	$50 \mathrm{~d} 8 \mathrm{~h}\left(5^{\circ} \mathrm{C}\right)$			
EHWW-01	09-4043-9892	01 Oct-18 14:15	02 Oct-18 16:20	52d $2 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-06	07-6081-6733	01 Oct-18 14:55	02 Oct-18 16:20	52d $2 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-08	11-6318-9477	01 Oct-18 15:35	02 Oct-18 16:20	52d $1 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-11	09-5214-7885	03 Oct-18 13:52	04 Oct-18 16:25	$50 \mathrm{~d} 3 \mathrm{~h}\left(5^{\circ} \mathrm{C}\right)$			
EHWW-12	20-9373-4766	04 Oct-1814:10	06 Oct-18 13:55	$49 \mathrm{~d} 3 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-13	17-9563-4578	03 Oct-18 12:55	04 Oct-18 16:25	$50 \mathrm{~d} 4 \mathrm{~h}\left(5^{\circ} \mathrm{C}\right)$			
EHWW-15	06-7893-1202	02 Oct-18 08:30	03 Oct-18 13:45	51d $8 \mathrm{~h}\left(17.1^{\circ} \mathrm{C}\right)$			
EHWW-22	07-9060-9507	03 Oct-18 15:00	04 Oct-18 16:25	$50 \mathrm{~d} 2 \mathrm{~h}\left(5^{\circ} \mathrm{C}\right)$			
EHWW-29	18-8320-8134	04 Oct-1813:05	06 Oct-18 13:55	49d $4 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-31	14-3182-9114	02 Oct-1815:00	03 Oct-18 13:45	51d $2 \mathrm{~h}\left(17.1^{\circ} \mathrm{C}\right)$			
EHWW-39	18-6327-2153	01 Oct-18 10:40	02 Oct-18 16:20	52d $6 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-40	13-1189-2993	05 Oct-18 09:35	06 Oct-18 13:55	48d $7 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-42	15-1638-8206	02 Oct-18 12:45	03 Oct-18 13:45	51d $4 \mathrm{~h}\left(17.1^{\circ} \mathrm{C}\right)$			
EHWW-44	19-2142-0006	04 Oct-18 08:15	06 Oct-18 13:55	49d $8 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-50	02-6376-1429	02 Oct-18 16:10	03 Oct-18 13:45	51d $1 \mathrm{~h}\left(17.1^{\circ} \mathrm{C}\right)$			
Sample Code	Material Type	Sample Source		Station Location		Lat/Long	
EHWW-REF17	Sediment Sample	Anchor QEA		EHWW-REF17-SG-000010			
EHWW-REF18	8 Sediment Sample	- Anchor QEA		EHWW-REF18-SG-000010			
EHWW-01	Sediment Sample	e Anchor QEA		EHWW-01-SG-000010			
EHWW-06	Sediment Sample	e Anchor QEA		EHWW-06-SG-000010			
EHWW-08	Sediment Sample	- Anchor QEA		EHWW-08-SG-000010			
EHWW-11	Sediment Sample	- Anchor QEA		EHWW-11-SG-000010			
EHWW-12	Sediment Sample	- Anchor QEA		EHWW-12-SG-000010			
EHWW-13	Sediment Sample	e Anchor QEA		EHWW-13-SG-000010			
EHWW-15	Sediment Sample	e Anchor QEA		EHWW-15-SG-000010			
EHWW-22	Sediment Sample	e Anchor QEA		EHWW-22-SG-000010			
EHWW-29	Sediment Sample	e Anchor QEA		EHWW-29-SG-000010			
EHWW-31	Sediment Sample	e Anchor QEA		EHWW-31-SG-000010			
EHWW-39	Sediment Sample	e Anchor QEA		EHWW-39-SG-000010			
EHWW-40	Sediment Sample	e Anchor QEA		EHWW-40-SG-000010			
EHWW-42	Sediment Sample	e Anchor QEA		EHWW-42-SG-000010			
EHWW-44	Sediment Sample	Anch	QEA	EHWW-44-SG-000010			
EHWW-50	Sediment Sampl	e Anchor QEA		EHWW-50-SG-000010			

| CETIS Analytical Report | | Report Date:
 Test Code/ID: | 05 Jan-19 15:23 (p 2 of 5)
 $181641 / 12-6434-9271$ |
| :--- | :--- | :--- | :--- | :--- |
| Bivalve Larval Survival and Development Test | | Nautilus Environmental | |

CETIS Analytical Report							Report Date: Test Code/lD:		$\begin{array}{r} 05 \text { Jan-19 15:23 (p } 3 \text { of 5) } \\ 181641 \text { / 12-6434-9271 } \end{array}$		
Bivalve Larval Survival and Development Test									Nautilus Environmental		
Analysis ID: 20 Analyzed:	$\begin{aligned} & \text { 20-7148-5003 } \\ & 05 \text { Jan-19 15:20 } \end{aligned}$		Endpoint: Analysis:	Combined Prop Parametric-Mult	ortion Norm iple Compa			S Version: s Level:	$\begin{aligned} & \text { CETISv } \\ & 1 \end{aligned}$		
Combined Proportion Normal Summary											
Sample	Code	Count	M Mean	95\% LCL	95\% UCL	Median	Min	Max	Std Err	CV\%	\%Effect
EHWW-REF17		4	0.7520	0.5817	0.9222	0.7244	0.6575	0.9016	0.0535	14.23\%	0.00\%
EHWW-REF18	XC	4	0.7756	- 0.6942	0.8570	0.7854	0.7047	0.8268	0.0256	6.59\%	-3.14\%
EHWW-01		4	0.7274	40.5595	0.8953	0.7343	0.6142	0.8268	0.0528	14.51\%	3.27\%
EHWW-06		4	0.7215	- 0.6313	0.8116	0.7106	0.6654	0.7992	0.0283	7.85\%	4.06\%"
EHWW-08		3	0.7283	30.5843	0.8724	0.7402	0.6654	0.7795	0.0335	7.96\%	3.14\%
EHWW-11		3	0.7612	20.6143	0.9080	0.7638	0.7008	0.8189	0.0341	7.76\%	-1.22\%
EHWW-12		3	0.8163	30.6603	0.9722	0.8465	0.7441	0.8583	0.0363	7.69\%	-8.55\%
EHWW-13		4	0.7677	$7 \quad 0.7110$	0.8244	0.7697	0.7244	0.8071	0.0178	4.64\%	-2.09\%
EHWW-15		4	0.6654	40.5782	0.7525	0.6654	0.5984	0.7323	0.0274	8.23\%	11.52\%
EHWW-22		4	0.7165	50.5262	0.9069	0.6752	0.6260	0.8898	0.0598	16.70\%	4.71\%
EHWW-29		4	0.8612	20.7637	0.9587	0.8740	0.7795	0.9173	0.0306	7.12\%	-14.53\%
EHWW-31		4	0.8455	50.7041	0.9868	0.8602	0.7323	0.9291	0.0444	10.50\%	-12.43\%
EHWW-39		4	0.7923	30.6760	0.9087	0.7598	0.7480	0.9016	0.0366	9.23\%	-5.37\%
EHWW-40		3	0.8241	10.6185	1.0000	0.8189	0.7441	0.9094	0.0478	10.05\%	-9.60\%
EHWW-42		3	0.6995	50.5967	0.8022	0.7008	0.6575	0.7402	0.0239	5.91\%	6.98\%
EHWW-44		4	0.8396	60.7430	0.9361	0.8346	0.7795	0.9094	0.0303	7.23\%	-11.65\%
EHWW-50		4	0.8051	10.7345	0.8757	0.8012	0.7638	0.8543	0.0222	5.51\%	-7.07\%

Angular (Corrected) Transformed Summary

Sample	Code	Count	Mean	95\% LCL	95\% UCL	Median	Min	Max	Std Err	CV\%	\%Effect
EHWW-REF17		4	1.059	0.8429	1.274	1.019	0.9456	1.252	0.0678	12.81%	0.00%
EHWW-REF18	XC	4	1.079	0.9829	1.175	1.089	0.9963	1.142	0.03023	5.60%	-1.93%
EHWW-01		4	1.027	0.8365	1.217	1.033	0.9006	1.142	0.05986	11.66%	2.99%
EHWW-06		4	1.016	0.9135	1.119	1.003	0.9539	1.106	0.03236	6.37%	3.98%
EHWW-08		3	1.024	0.8628	1.185	1.036	0.9539	1.082	0.03746	6.34%	3.28%
EHWW-11		3	1.062	0.8893	1.235	1.063	0.992	1.131	0.04019	6.55%	-0.33%
EHWW-12		3	1.131	0.9349	1.327	1.168	1.04	1.185	0.04561	6.98%	-6.85%
EHWW-13		4	1.069	1.002	1.136	1.07	1.018	1.116	0.0211	3.95%	-0.96%
EHWW-15		4	0.9548	0.8621	1.048	0.9539	0.8845	1.027	0.02914	6.10%	9.80%
EHWW-22		4	1.019	0.7858	1.251	0.9647	0.9128	1.232	0.07315	14.36%	3.78%
EHWW-29		4	1.195	1.056	1.334	1.209	1.082	1.279	0.0436	7.30%	-12.88%
EHWW-31		4	1.178	0.9815	1.374	1.191	1.027	1.301	0.06167	10.47%	-11.26%
EHWW-39		4	1.103	0.9458	1.261	1.059	1.045	1.252	0.04954	8.98%	-4.24%
EHWW-40		3	1.146	0.8647	1.426	1.131	1.04	1.265	0.06527	9.87%	-8.22%
EHWW-42		3	0.9912	0.879	1.103	0.992	0.9456	1.036	0.02607	4.56%	6.37%
EHWW-44		4	1.164	1.028	1.299	1.154	1.082	1.265	0.04257	7.31%	-9.94%
EHWW-50		4	1.115	1.025	1.205	1.11	1.063	1.179	0.02829	5.07%	-5.37%

| CETIS Analytical Report | | Report Date:
 Test Code/ID: | 05 Jan-19 15:23 (p 5 of 5)
 181641/12-6434-9271 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Bivalve Larval Survival and Development Test | | | Nautilus Environmental |

Graphics

Bivalve Larval Development Sediment Test - Ammonia

Client: Anchor
W.O.: 181641

Test Date: November 22, 2018 Species: M. galloprovincialis

Overlying Ammonia

	Sample ID	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	pH	Salinity (ppt)	Total Ammonia as Nitrogen (mg/L)	pKa	Unionized Ammonia (mg / L)
Oh	Control Seawater	15.0	7.5	29	0.305	9.737	0.002
	EHWW-REF17-SG-000010	15.0	7.6	29	2.61	9.737	0.019
	EHWW-REF18-SG-000010	15.0	7.6	29	0.965	9.737	0.007
	EHWW-01-SG-000010	15.5	7.6	29	1.02	9.737	0.007
	EHWW-06-SG-000010	15.0	7.5	29	0.892	9.737	0.005
	EHWW-08-SG-000010	15.5	7.6	29	0.584	9.737	0.004
	EHWW-11-SG-000010	15.5	7.6	29	0.104	9.737	0.001
	EHWW-12-SG-000010	15.5	7.6	29	0.851	9.737	0.006
	EHWW-13-SG-000010	15.5	7.6	29	0.151	9.737	0.001
	EHWW-15-SG-000010	15.5	7.6	29	2.10	9.737	0.015
	EHWW-22-SG-000010	15.5	7.6	29	0.188	9.737	0.001
	EHWW-29-SG-000010	15.5	7.6	29	1.72	9.737	0.012
	EHWW-31-SG-000010	15.5	7.7	29	4.03	9.737	0.037
	EHWW-39-SG-000010	15.5	7.5	29	1.81	9.737	0.010
	EHWW-40-SG-000010	15.5	7.5	29	1.28	9.737	0.007
	EHWW-42-SG-000010	15.5	7.6	29	0.698	9.737	0.005
	EHWW-44-SG-000010	15.5	7.6	29	0.625	9.737	0.005
	EHWW-50-SG-000010	15.5	7.5	29	0.830	9.737	0.005
48 h	Control Seawater	15.5	7.5	29	0.449	9.737	0.003
	EHWW-REF17-SG-000010	15.5	7.7	30	8.53	9.737	0.078
	EHWW-REF18-SG-000010	15.5	7.7	30	2.89	9.737	0.026
	EHWW-01-SG-000010	15.5	7.7	30	3.98	9.737	0.036
	EHWW-06-SG-000010	15.5	7.6	30	2.20	9.737	0.016
	EHWW-08-SG-000010	15.5	7.5	30	1.56	9.737	0.009
	EHWW-11-SG-000010	15.5	7.5	30	0.190	9.737	0.001
	EHWW-12-SG-000010	15.5	7.6	30	2.62	9.737	0.019
	EHWW-13-SG-000010	15.5	7.6	30	0.374	9.737	0.003
	EHWW-15-SG-000010	15.5	7.6	30	5.55	9.737	0.040
	EHWW-22-SG-000010	15.5	7.6	30	0.604	9.737	0.004
	EHWW-29-SG-000010	15.5	7.6	30	4.25	9.737	0.031
	EHWW-31-SG-000010	15.5	7.8	30	7.32	9.737	0.084
	EHWW-39-SG-000010	15.5	7.5	30	3.82	9.737	0.022
	EHWW-40-SG-000010	15.5	7.5	30	2.90	9.737	0.017
	EHWW-42-SG-000010	15.5	7.6	30	1.86	9.737	0.013
	EHWW-44-SG-000010	15.5	7.6	30	1.46	9.737	0.011
	EHWW-50-SG-000010	15.5	7.6	30	2.23	9.737	0.016

Table of PKa values

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	TDS $(\mathrm{mg} / \mathrm{L})$			Salinity $(\mathrm{g} / \mathrm{kg})$		
	0	250	2000	10	20	30
12	9.662	9.699	9.754	9.788	9.819	9.837
15	9.564	9.601	9.655	9.688	9.719	9.737
18	9.465	9.502	9.557	9.588	9.619	9.636
19					9.604	
20	9.401	9.438	9.492	9.523	9.554	9.571
22		9.391				
23	9.307	9.344	9.398	9.426	9.459	9.476
25	9.246	9.283	9.337	9.366	9.397	9.414

Bivalve Larval Development Sediment Test - Ammonia

Client: Anchor
W.O.: 181641

Test Date: November 22, 2018
Species: M. galloprovincialis

Interstitial Ammonia

Table of AKa values

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	IDS $(\mathrm{mg} / \mathrm{L})$			Salinity $(\mathrm{g} / \mathrm{kg})$		
	0	250	2000	10	20	30
12	9.662	9.699	9.754	9.788	9.819	9.837
15	9.564	9.601	9.655	9.688	9.719	9.737
18	9.465	9.502	9.557	9.588	9.619	9.636
19					9.604	
20	9.401	9.438	9.492	9.523	9.554	9.571
22		9.391				
23	9.307	9.344	9.398	9.426	9.459	9.476
25	9.246	9.283	9.337	9.366	9.397	9.414

Nautilus Environmental Water Quality Data For Ammonia

Client:	Anchor
Work Order No:	181641

Species: Maylloproracalis
Sample Type: Ammane-Intentitul
Date Measured: Nov $22 / 13$ (on)

Ammonia Salicylate Lot 变: \qquad
Ammonia Cyanurate Lot \#: \qquad
n le

Comments:
Tote among rancentratlans were mensuad bu AUS.
Results are enclosed in the datapeck
Review by:
 Date Reviewed: SO 2 $10 / 19$

Nautilus Environmental Water Quality Data For Ammonia

Client:
Work Order No: \qquad

Species: Madioprovinetelis
Sample Type: Amonsill-Intersinia)
Date Measured: Mav-22/18 (on)

Ammonia Salicylate Lot
Ammonia Cyanurate Lot it:

Comments:

ale
Tola l ammonic concuthettos ware rosined by ALS. Reguts ane enclosed in the detppack.

Review al by:
 Date Reviewed: Son $15 / 19$

Nautilus Environmental Water Quality Data For Ammonia

Species: Malloprovacidis
Sample Type: Ammonia- Interstitlel
Date Measured: My -24/18 (43h)

Ammonia Salicylate Lot \#:
nl s
Ammonia Cyanurate Lot \#: Ala

Comments:
Total ammonia concentrations wink nooscurd lay ALS.
Results ane enclosed ta the date park

Review by:
 Date Reviewer: Jan $15 / 19$

Nautilus Environmental Water Quality Data For Ammonia

Client:
Work Order No:

Species: M-galloprovinctetes
Sample Type: AmanAMM-Intengtitel
Date Measured: Nov 24/18 (48h)

Ammonia Salicylate Lot \#:
Ammonia Cyanurate Lot \#:

Comments: \qquad
Toke l ammorts concentrates wong measured by Ale. Results ane enclosed ta the Netapacte.

Review by:

NAUTILUS ENVIRONMENTAL
ATTN: Yvonne Lam
8664 Commerce Court Imperial Square Lake City
Burnaby BC V5A 4N7

Date Received: 29- NOV- 18
Report Date: 07-DEC-18 18:07 (MT)
Version: FINAL

Certificate of Analysis

Lab Work Order \#: L2203558

Project P.O. \#.
NOT SUBMITTED
Job Reference:
C of C Numbers:
Legal Site Desc:

Heather McKenzie
Account Manager
[This report shall not be reproduced except in full without the written authority of the Laboratory.]

	Sample ID Description Sampled Date Sampled Time Client ID	L2203558-1 Water 22-NOV-18 CONT-OAM-O	$\begin{aligned} & \text { L2203558-2 } \\ & \text { Water } \\ & \text { 22-NOV-18 } \end{aligned}$ REF17-OAM-0	$\begin{aligned} & \text { L2203558-3 } \\ & \text { Water } \\ & \text { 22-NOV-18 } \end{aligned}$ REF18-OAM-0	$\begin{gathered} \text { L2203558-4 } \\ \text { Water } \\ \text { 22-NOV-18 } \\ \text { 01-OAM-0 } \end{gathered}$	$\begin{aligned} & \text { L2203558-5 } \\ & \text { Water } \\ & \text { 22-NOV-18 } \\ & \text { 06-OAM-0 } \end{aligned}$
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L) Sulphide as S (mg/L)	0.305	2.61	0.965	1.02	0.892

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2203558-11 Water 22-NOV-18 22-OAM-0	L2203558-12 Water 22-NOV-18 29-OAM-0	L2203558-13 Water 22-NOV-18 31-OAM-0	$\begin{aligned} & \text { L2203558-14 } \\ & \text { Water } \\ & \text { 22-NOV-18 } \\ & \text { 39-OAM-0 } \end{aligned}$	$\begin{aligned} & \text { L2203558-15 } \\ & \text { Water } \\ & \text { 22-NOV-18 } \\ & \text { 40-OAM-0 } \end{aligned}$
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L) Sulphide as S (mg/L)	0.188	1.72	4.03	1.81	1.28

L2203558 CONTD...

 ALS ENVIRONMENTAL ANALYTICAL REPORT

 ALS ENVIRONMENTAL ANALYTICAL REPORT}

	Sample ID Description Sampled Date Sampled Time Client ID	L2203558-16 Water 22-NOV-18 42-OAM-0	L2203558-17 Water 22-NOV-18 44-OAM-0	L2203558-18 Water 22-NOV-18 50-OAM-0	L2203558-19 Water 22-NOV-18 CONT-OS-0	$\begin{gathered} \text { L2203558-20 } \\ \text { Water } \\ \text { 22-NOV-18 } \end{gathered}$ REF17-OS-0
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L) Sulphide as S (mg/L)	0.698	0.625	0.830	<0.018	<0.018

ALS ENVIRONMENTAL ANALYTICAL REPORT

ALS ENVIRONMENTAL ANALYTICAL REPORT

ALS ENVIRONMENTAL ANALYTICAL REPORT

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2203558-36 Water 22-NOV-18 50-OS-0	L2203558-37 Water 22-NOV-18 CONT-IAM-O	L2203558-38 Water 22-NOV-18 REF17-IAM-0	$\begin{aligned} & \text { L2203558-39 } \\ & \text { Water } \\ & \text { 22-NOV-18 } \end{aligned}$ REF18-IAM-0	$\begin{gathered} \text { L2203558-40 } \\ \text { Water } \\ \text { 22-NOV-18 } \\ \text { 01-IAM-0 } \end{gathered}$
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L) Sulphide as S (mg/L)	<0.018	0.793	17.5	5.57	4.22

L2203558 CONTD...

 ALS ENVIRONMENTAL ANALYTICAL REPORT

 ALS ENVIRONMENTAL ANALYTICAL REPORT}

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2203558-46 Water 22-NOV-18 15-IAM-0	L2203558-47 Water 22-NOV-18 22-IAM-0	L2203558-48 Water 22-NOV-18 29-IAM-0	L2203558-49 Water 22-NOV-18 31-IAM-0	L2203558-50 Water 22-NOV-18 39-IAM-0
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg / L) Sulphide as S (mg/L)	8.37	1.23	6.55	12.2	6.38

L2203558 CONTD....

ALS ENVIRONMENTAL ANALYTICAL REPORT

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2203558 CONTD....

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2203558 CONTD...

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2203558-66 Water 22-NOV-18 $29-1 \mathrm{~S}-0$	L2203558-67 Water 22-NOV-18 31-IS-0	L2203558-68 Water 22-NOV-18 39-IS-0	L2203558-69 Water 22-NOV-18 40 -IS-0	$\begin{gathered} \text { L2203558-70 } \\ \text { Water } \\ \text { 22-NOV-18 } \\ \text { 42-IS-0 } \end{gathered}$
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L) Sulphide as $S(\mathrm{mg} / \mathrm{L})$	0.020	<0.018	0.036	0.79	0.022

L2203558 CONTD....

L2203558 CONTD....

	Sample ID Description Sampled Date Sampled Time Client ID	L2203558-76 Water 24-NOV-18 01-OAM-48	L2203558-77 Water 24-NOV-18 06-OAM-48	L2203558-78 Water 24-NOV-18 08-OAM-48	L2203558-79 Water 24-NOV-18 11-OAM-48	L2203558-80 Water 24-NOV-18 12-OAM-48
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg / L) Sulphide as S (mg/L)	3.98	2.20	1.56	0.190	2.62

L2203558 CONTD....

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2203558-81 Water 24-NOV-18 13-OAM-48	L2203558-82 Water 24-NOV-18 15-OAM-48	L2203558-83 Water 24-NOV-18 22-OAM-48	L2203558-84 Water 24-NOV-18 29-OAM-48	L2203558-85 Water 24-NOV-18 31-OAM-48
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg / L) Sulphide as S (mg/L)	0.374	5.55	0.604	4.25	7.32

L2203558 CONTD....

 ALS ENVIRONMENTAL ANALYTICAL REPORT

 ALS ENVIRONMENTAL ANALYTICAL REPORT}

	Sample ID Description Sampled Date Sampled Time Client ID	L2203558-86 Water 24-NOV-18 39-OAM-48	L2203558-87 Water 24-NOV-18 40-OAM-48	L2203558-88 Water 24-NOV-18 42-OAM-48	$\begin{gathered} \text { L2203558-89 } \\ \text { Water } \\ \text { 24-NOV-18 } \\ \\ \text { 44-OAM-48 } \end{gathered}$	L2203558-90 Water 24-NOV-18 50-OAM-48
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L) Sulphide as S (mg/L)	3.82	2.90	1.86	1.46	2.23

L2203558 CONTD....

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2203558 CONTD....

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2203558 CONTD....

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL

L2203558 CONTD....

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2203558 CONTD....

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2203558-111 Water 24-NOV-18 REF18-IAM-48	L2203558-112 Water 24-NOV-18 01-IAM-48	L2203558-113 Water 24-NOV-18 06-IAM-48	L2203558-114 Water 24-NOV-18 08-IAM-48	L2203558-115 Water 24-NOV-18 11-IAM-48
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L) Sulphide as S (mg/L)	5.50	4.63	3.99	2.74	0.544

L2203558 CONTD....

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2203558-116 Water 24-NOV-18 12-IAM-48	L2203558-117 Water 24-NOV-18 13-IAM-48	L2203558-118 Water 24-NOV-18 15-IAM-48	L2203558-119 Water 24-NOV-18 22-IAM-48	L2203558-120 Water 24-NOV-18 29-IAM-48
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L) Sulphide as S (mg/L)	4.37	0.811	8.15	1.30	5.45

L2203558 CONTD....

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2203558-121 Water 24-NOV-18 31-IAM-48	L2203558-122 Water 24-NOV-18 39-IAM-48	L2203558-123 Water 24-NOV-18 40-IAM-48	L2203558-124 Water 24-NOV-18 42-IAM-48	L2203558-125 Water 24-NOV-18 44-IAM-48
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L) Sulphide as S (mg/L)	10.2	5.59	5.45	3.07	2.63

L2203558 CONTD....

 ALS ENVIRONMENTAL ANALYTICAL REPORT

 ALS ENVIRONMENTAL ANALYTICAL REPORT}

	Sample ID Description Sampled Date Sampled Time Client ID	L2203558-126 Water 24-NOV-18 50-IAM-48	L2203558-127 Water 24-NOV-18 CONT-IS-48	L2203558-128 Water 24-NOV-18 REF17-IS-48	L2203558-129 Water 24-NOV-18 REF18-IS-48	$\begin{gathered} \text { L2203558-130 } \\ \text { Water } \\ \text { 24-NOV-18 } \\ 01-\mathrm{IS}-48 \end{gathered}$
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L) Sulphide as S (mg/L)	3.78	<0.018	1.88	<0.018	0.037

L2203558 CONTD....

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2203558 CONTD....

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2203558 CONTD...
 ALS ENVIRONMENTAL ANALYTICAL REPORT
 07-DEC-18 18:07 (MT)
 Version: FINAL

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference ${ }^{\star *}$
NH3-F-VA	Water	Ammonia in Water by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37-42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

S2-T-COL-VA Water Total Sulphide by Colorimetric APHA 4500-S2 Sulphide

This analysis is carried out using procedures adapted from APHA Method 4500-S2 "Sulphide". Sulphide is determined using the methlyene blue colourimetric method.
** ALS test methods may incorporate modifications from specified reference methods to improve performance.
The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.
$\mathrm{mg} / \mathrm{kg}$ - milligrams per kilogram based on dry weight of sample.
$\mathrm{mg} / \mathrm{kg}$ wwt - milligrams per kilogram based on wet weight of sample.
$\mathrm{mg} / \mathrm{kg} / \mathrm{wt}$ - milligrams per kilogram based on lipid-adjusted weight of sample.
mg / L - milligrams per litre.
<-Less than.
D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.
Test results reported relate only to the samples as received by the laboratory.
UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.
Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

NAUTILUS
ENVIRONMENTAL

Burnaby

8664 Commerce Court
Burnaby, British Columbia, Canada V5A 4N7
Phone 604.420.8773

Calgary
\#4, 612512 Street SE
Calgary, Alberta, Canada
T2H 2K1
Phone 403.253.712

Date \qquad 1.16

8664 Commerce Court
Burnaby, British Columbia, Canada V5A 4N7
Phone 604.420.8773

Calgary
\#4, 612512 Street SE
Calgary, Alberta, Canada T2H 2K1
Phone 403.253 .7121

Burnaby
8664 Commerce Court
Burnaby, British Columbia, Canada V5A 4N7
Phone 604.420.8773

Calgary
\#4, 612512 Street SE
Calgary, Alberta, Canada T2H 2 K 1 316
Phone 403.253 .7121 e of

Additional costs may be required for sample disposal or storage. Payment net 30 unless otherwise contracted.

Burnaby

8664 Commerce Cour
Burnaby, British Columbia, Canada V5A 4N7
Phone 604.420.8773

Calgary
\#4, 612512 Street SE
Calgary, Alberta, Canada
T2H 2K1
Phone 403.253.7121
Date

ENVIRONMENTAL

Burnaby
8664 Commerce Court
Burnaby, British Columbia, Canada V5A 4N7
Phone 604.420.8773

Calgary
\#4, 612512 Street SE
Calgary, Alberta, Canada
T2H 2K1
Phone 403.253.7121

Date___ Page_of 16

Burnaby
8664 Commerce Court
Burnaby, British Columbia, Canada V5A 4N7
Phone 604.420.8773

Calgary

\#4, 612512 Street SE
Calgary, Alberta, Canada
T2H 2K1
Phone 403.253 .7121
1

Burnaby
8664 Commerce Court
Burnaby, British Columbia, Canada V5A 4N7
Phone 604.420.8773

Calgary
\#4, 612512 Street SE
Calgary, Alberta, Canada
T2H 2 K 1
Phone 403.253.7121
Date Page of 16

6
NAUTILUS
ENVIRONMENTAL

Burnaby
8664 Commerce Court
Burnaby, British Columbia, Canada V5A 4N7
Phone 604.420.8773

Calgary
\#4, 612512 Street SE
Calgary, Alberta, Canada
T2H 2 Ki
Phone 403.253 .7121

Burnaby
8664 Commerce Court
Burnaby, British Columbia, Canada VSA 4N7

Calgary
\#4, 612512 Street SE
Calgary, Alberta, Canada
T2H 2K1
Phone 403.253.712

8664 Commerce Court
Burnaby, British Columbia, Canada V5A 4N7
Phone 604.420.8773

Calgary
\#4, 612512 Street SE
Calgary, Alberta, Canada
T2H 2K1
Phone 403.253.7121

NAUTILUS
ENVIRONMENTAL

Burnaby
8664 Commerce Court
Burnaby, British Columbia, Canada V5A 4N7
Phone 604.420.8773

Calgary
\#4, 612512 Street SE
Calgary, Alberta, Canada
T2H 2K1
Phone 403.253 .7121

8664 Commerce Court
Burnaby, British Columbia, Canada V5A 4N7
Phone 604.420.8773
\#4, 612512 Street SE
Calgary, Alberta, Canada
T2H 2K1
Phone 403.253.7121

Burnaby

8664 Commerce Court
Burnaby. British Columbiar Canada V5A 4N7
Phone 604.420 .8773

Calgary
\#4, 612512 Street SE
Calgary, Alberta, Canada
T2H 2K1
Phone 403.253 .7121

Date
1316

NAUTILUS
ENVIRONMENTAL

Burnaby
8664 Commerce Court
Burnaby, British Columbia, Canada V5A 4N7
Phone 604.420.8773

Calgary
\#4, 612512 Street SE
Calgary, Alberta, Canada
T2H 2K1
Phone 403.253.7121

Burnaby

8664 Commerce Court
Burnaby, British Columbia, Canada
V5A 4N7
Phone 604.420.8773

Calgary

\#4, 612512 Street SE
Calgary, Alberta, Canada T2H 2K1
Phone 403.253.7121

Burnaby

8664 Commerce Court
Burnaby, British Columbia, Canada V5A 4N7

Phone 604.420.8773

Calgary
\#4, 612512 Street SE
Calgary, Alberta, Canàda
T2H 2 K 1
Phone 403.253.7121.
Date 1616

APPENDIX B - Mytilus galloprovincialis (PSEP) Toxicity Test Data

Client: \quad Anchor
Work Order No.: $\quad 181647$

Start Date: November 22, 2018
Set up by: YYL

Sample Information:

Sample ID:	Various - see below
Sample Date:	October 1,2 and 3, 2018
Date Received:	October 2, 3 and 4, 2018
Sample Volume:	1×3 L per sample

Test Organism Information:

Species:	Mytilus galloprovincialis
Supplier:	Kamilche Seafarms, Shelton, WA
Date received:	November 22, 2018

Copper Reference Toxicant Results:

Reference Toxicant ID:	
Stock Solution ID:	Mg52
Date Initiated:	November 22, 2018

48-h EC50 Normal Larvae ($95 \% \mathrm{CL}$): $\quad 12.5(12.3-12.8) \mu \mathrm{g} / \mathrm{LCu}$

48-h EC50 Normal Larvae Reference Toxicant Mean ± 2 SD:
$12.2(8.4-17.8) \mu \mathrm{g} / \mathrm{LCu}$ CV (\%): \qquad

Test Results:

Sample ID	Survival \pm SD (\%)	Normal Larvae \pm SD (\%)	Combined Proportion Normal \pm SD (\%)
Control Seawater	86.5 ± 3.8	90.9 ± 2.4	78.7 ± 4.8
Control Sediment	$77.6 \pm 4.3^{*}$	91.3 ± 2.0	70.8 ± 4.5
EHWW-11-SG-000010	$76.3 \pm 6.5^{*}$	88.0 ± 4.9	$67.4 \pm 8.4^{*}$
EHWW-39-SG-000010	$77.6 \pm 5.2^{*}$	86.6 ± 2.8	$67.2 \pm 5.6^{*}$
EHWW-50-SG-000010	$69.8 \pm 6.2^{*}$	87.3 ± 5.2	$61.0 \pm 6.6^{*+}$

${ }^{*}$ Indicates samples that were significantly different relative to the control seawater
${ }^{\dagger}$ Indicates samples that were significantly different relative to the control sediment

Date reviewed:

48-h Bivalve Development Sediment Toxicity Test Data Sheet

Client:
Work Order No.: Test Set up by:
$\frac{\text { Ancher }}{\frac{181647}{442}}$

Start Date \& Time: Nokember 22,201 \& 1715 h End Date \& Time: November 24, 201b@1745h

Test species: Mgalloprovincielis

Sample ID	Temperature $\left({ }^{\circ} \mathrm{C}\right)$			Dissolved oxygen (mg / L)			pH			Salinity (ppt)	
	0 h	24 h	48 h	0 h	24 h	48 h	0h	24 h	48 h	0 h	48 h
Control Seawaler	150	155	15.5	8.1	7.7	75	7.6	7.6	7.6	28	29
Control sediment	15.0	15.5	15.5	8.80	71	7.4	7.6	7.6	76	28	29
EHWW-11-50-000s10	15.0	15.5	15.5	6.6	6.2	6.0	7.4	7.4	7.4	29	29
EHWW-39-5G-000010	150	15.5	155	6.6	63	5.9	7.4	7.4	7.4	29	29
EHWW-50-86-000310	15.0	15.5	15.5	6.5	6.3	6.0	7.5	25	7.4	29	29
4											
Analyst Initials	um	unt	une	uns	hur	whe	mu	nur	une	mu	une

Bivalve Larvae Development Toxicity Test Data Sheet - Larval Counts

Reviewed by:

Batch ID: Start Date: Ending Date: Test Length:	18-9578-2855 22 Nov-18 17:15 24 Nov-18 17:45 49h	Test Type: Development-Survival Protocol: PSEP (1995) Species: Mytilus galloprovincialis Taxon:			Analyst: Diluent: Brine: Source:	Yvonne Lam Natural seawater Kamilche Seafarms	Age:
Sample Code	Sample ID	Sample Date	Receipt Date	Sample Age	Client Name	Project	
Control SW	17-8939-7448	22 Nov-18	22 Nov-18	17h	Anchor QEA		
Control Sed	20-5725-3868	21 Nov-18	21 Nov-18	41h			
EHWW-11	09-5214-7885	03 Oct-18 13:52	04 Oct-18 16:25	$50 \mathrm{~d} 3 \mathrm{~h}\left(5^{\circ} \mathrm{C}\right)$			
EHWW-39	18-6327-2153	01 Oct-18 10:40	02 Oct-18 16:20	52d $7 \mathrm{~h}\left(10^{\circ} \mathrm{C}\right)$			
EHWW-50	02-6376-1429	02 Oct-18 16:10	03 Oct-18 13:45	51d $1 \mathrm{~h}\left(17.1^{\circ} \mathrm{C}\right)$			
Sample Code	Material Type	Sample Source		Station Location		Lat/Long	
Control SW	Control SW	Anchor QEA		Control SW			
Control Sed	Sediment Sample	Anchor QEA		Control Sediment			
EHWW-11	Sediment Sample	- Anchor QEA		EHWW-11-SG-000010			
EHWW-39	Sediment Sample	e Anchor QEA		EHWW-39-SG-000010			
EHWW-50	Sediment Sample	Anchor QEA		EHWW-50-SG-000010			

SIngle Comparison Summary

Analysis ID Endpoint Comparison Method
20-5717-7987 Combined Proportion Norma Dunnett Multiple Comparison Test 15-5849-9313 Combined Proportion Norma Dunnett Multiple Comparison Test 20-5717-7987 Combined Proportion Norma Dunnett Multiple Comparison Test 15-5849-9313 Combined Proportion Norma Dunnett Multiple Comparison Test 20-5717-7987 Combined Proportion Norma Dunnett Multiple Comparison Test 15-5849-9313 Combined Proportion Norma Dunnett Multiple Comparison Test 20-5717-7987 Combined Proportion Norma Dunnett Multiple Comparison Test 05-2295-0171 Proportion Normal Dunnett Multiple Comparison Test

P-Value
0.0601
0.0601
0.0601
0.0601
0.0601
0.3880
0.3880
0.3880
0.3880
0.3880
0.0098
0.0098
0.0098
0.0098
0.0098
0.3661
0.3661
0.3661
0.3661
0.3661
0.0087
0.0087
0.0087
0.0087
0.0087
0.0327
0.0327
0.0327
0.0327
0.0327
2.4E-04
2.4E-04
2.4E-04
2.4E-04
0.8540 .
2.4E-04 Control SW failed combined proportion nor 1

Comparison Result
S
Control Sed passed combined proportion $n 1$ EHWW-50 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-11 passed combined proportion no 1 Control SW passed combined proportion n 1 Control SW passed combined proportion n 1 Control Sed passed combined proportion n 1 EHWW-11 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-50 failed combined proportion nor 1 EHWW-39 failed combined proportion nor 1 EHWW-11 failed combined proportion nor 1 Control Sed failed combined proportion nor 1 Control SW failed combined proportion nor 1 Control Sed passed combined proportion $n 1$ Control SW passed combined proportion $n 1$ EHWW-11 passed combined proportion no 1 EHWW-39 passed combined proportion no 1 EHWW-50 passed combined proportion no 1 EHWW-50 failed combined proportion nor 1 EHWW-39 falled combined proportion nor 1 EHWW-11 failed combined proportion nor 1 Control Sed failed combined proportion nor 1 Control SW failed combined proportion nor 1 Control Sed failed combined proportion nor 1 EHWW-11 failed combined proportion nor 1 EHWW-39 failed combined proportion nor 1 Control SW failed combined proportion nor 1 EHWW-50 failed combined proportion nor 1 EHWW-50 failed combined proportion nor 1 EHWW-11 failed combined proportion nor 1 EHWW-39 failed combined proportion nor 1 Control Sed failed combined proportion nor 1 Control SW passed proportion normal 1

SIngle Comparison Summary

Analysis ID Endpoint 05-2295-0171 Proportion Normal 15-8723-9048 Proportion Normal 05-2295-0171 Proportion Normal 15-8723-9048 Proportion Normal 05-2295-0171 Proportion Normal 15-8723-9048 Proportion Normal 03-3867-7903 Survival Rate 06-5132-6820 Survival Rate 03-3867-7903 Survival Rate 03-3867-7903 Survival Rate 03-3867-7903 Survival Rate 03-3867-7903 Survival Rate

Comparison Method	P-Value	Comparison Result	S
Dunnett Multiple Comparison Test	0.8540	EHWW-50 passed proportion normal	1
Dunnett Multiple Comparison Test	0.8540	EHWW-39 passed proportion normal	1
Dunnett Multiple Comparison Test	0.8540	EHWW-11 passed proportion normal	1
Dunnett Multiple Comparison Test	0.8540	Control Sed passed proportion normal	1
Dunnett Multiple Comparison Test	0.2723	EHWW-50 passed proportion normal	1
Dunnett Multiple Comparison Test	0.2723	EHWW-39 passed proportion normal	1
Dunnett Multiple Comparison Test	0.2723	EHWW-11 passed proportion normal	1
Dunnett Multiple Comparison Test	0.2723	Control Sed passed proportion normal	1
Dunnett Multiple Comparison Test	0.2723	Control SW passed proportion normal	1
Dunnett Multiple Comparison Test	0.2012	Control SW passed proportion normal	1
Dunnett Multiple Comparison Test	0.2012	EHWW-50 passed proportion normal	1
Dunnett Multiple Comparison Test	0.2012	EHWW-39 passed proportion normal	1
Dunnett Multiple Comparison Test	0.2012	EHWW-11 passed proportion normal	1
Dunnett Multiple Comparison Test	0.2012	Control Sed passed proportion normal	1
Dunnett Multiple Comparison Test	0.0878	EHWW-50 passed proportion normal	1
Dunnett Multiple Comparison Test	0.0878	EHWW-39 passed proportion normal	1
Dunnett Multiple Comparison Test	0.0878	Control SW passed proportion normal	1
Dunnett Multiple Comparison Test	0.0878	Control Sed passed proportion normal	1
Dunnett Multiple Comparison Test	0.0878	EHWW-11 passed proportion normal	1
Dunnett Multiple Comparison Test	0.0662	Control SW passed proportion normal	1
Dunnett Multiple Comparison Test	0.0662	Control Sed passed proportion normal	1
Dunnett Multiple Comparison Test	0.0662	EHWW-39 passed proportion normal	1
Dunnett Multiple Comparison Test	0.0662	EHWW-50 passed proportion normal	1
Dunnett Multiple Comparison Test	0.0662	EHWW-11 passed proportion normal	1
Dunnett Multiple Comparison Test	0.1775	EHWW-39 passed proportion normal	1
Dunnett Multiple Comparison Test	0.1775	EHWW-11 passed proportion normal	1
Dunnett Multiple Comparison Test	0.1775	Control Sed passed proportion normal	1
Dunnett Multiple Comparison Test	0.1775	Control SW passed proportion normal	1
Dunnett Muitiple Comparison Test	0.1775	EHWW-50 passed proportion normal	1
Dunnett Multiple Comparison Test	0.1307	EHWW-39 passed proportion normal	1
Dunnett Multiple Comparison Test	0.1307	EHWW-11 passed proportion normal	1
Dunnett Multiple Comparison Test	0.1307	Control Sed passed proportion normal	1
Dunnett Multiple Comparison Test	0.1307	EHWW-50 passed proportion normal	1
Dunnett Multiple Comparison Test	0.1307	Control SW passed proportion normal	1
Dunnett Multiple Comparison Test	0.0137	Control SW failed survival rate	1
Dunnett Multiple Comparison Test	0.0137	EHWW-11 failed survival rate	1
Dunnett Multiple Comparison Test	0.0137	EHWW-39 failed survival rate	1
Dunnett Multiple Comparison Test	0.0137	EHWW-50 failed survival rate	1
Dunnett Multiple Comparison Test	0.0137	Control Sed failed survival rate	1
Dunnett Multiple Comparison Test	0.0067	EHWW-50 failed survival rate	1
Dunnett Multiple Comparison Test	0.0067	Control SW failed survival rate	1
Dunnett Multiple Comparison Test	0.0067	Control Sed failed survival rate	1
Dunnett Multiple Comparison Test	0.0067	EHWW-11 failed survival rate	1
Dunnett Multiple Comparison Test	0.0067	EHWW-39 failed survival rate	
Dunnett Multiple Comparison Test	0.6221	Control SW passed survival rate	1
Dunnett Multiple Comparison Test	0.6221	Control Sed passed survival rate	1
Dunnett Multiple Comparison Test	0.6221	EHWW-39 passed survival rate	1
Dunnett Multiple Comparison Test	0.6221	EHWW-11 passed survival rate	1
Dunnett Multiple Comparison Test	0.6221	EHWW-50 passed survival rate	1
Dunnett Multiple Comparison Test	0.0148	EHWW-50 failed survival rate	1
Dunnett Multiple Comparison Test	0.0148	EHWW-39 failed survival rate	1
Dunnett Multiple Comparison Test	0.0148	Control Sed failed survival rate	1
Dunnett Multiple Comparison Test	0.0148	EHWW-11 failed survival rate	

CETIS Summary Report							Report Date: Test CodellD:		07 Jan-19 17:08 (p 3 of 4) 181647 / 15-4827-4837		
Bivalve Larval Survival and Development Test							Nautilus Environmental				
Single Comparison Summary											
Analysis ID	Endpoint		Compa	on Method			P-Value	Compar	on Result		S
03-3867-7903	Survival Rate		Dunnett	ultiple Com	parison Tes		0.0148	Control	failed sur	vival rate	1
06-5132-6820	Survival Rate		Dunnett	ultiple Com	parison Tes		. 0.7625	EHWW-5	passed s	vival rate	1
06-5132-6820	Survival Rate		Dunnett	ultiple Comp	parison Tes		0.7625	Control	passed	urvival rate	1
06-5132-6820	Survival Rate		Dunnett	ultiple Com	parison Tes		0.7625	Control	d passed	urvival rate	1
06-5132-6820	Survival Rate		Dunnett	ultiple Com	parison Tes		0.7625	EHWW-	passed sur	vival rate	1
06-5132-6820	Survival Rate		Dunnett	ultiple Com	parison Tes		0.7625	EHWW-	passed su	vival rate	1
03-3867-7903	Survival Rate		Dunnett	ultiple Com	parison Tes		1.0E-04	EHWW-30	failed surviver	val rate	1
03-3867-7903	Survival Rate		Dunnett	ultiple Com	parison Tes		1.0E-04	EHWW-5	failed sur	val rate	1
03-3867-7903	Survival Rate		Dunnett	ultiple Com	parison Tes		1.0E-04	EHWW-	failed survir	val rate	1
03-3867-7903	Survival Rate.		Dunnett	ultiple Com	parison Tes		1.0E-04	Control	d failed su	vival rate	1
03-3867-7903	Survival Rate		Dunnett	ultiple Com	parison Tes		1.0E-04	Control	failed sur	ival rate	1
06-5132-6820	Survival Rate		Dunnett	ultiple Com	parison Tes		0.0594	Control	passed	urvival rate	1
06-5132-6820	Survival Rate		Dunnett	ultiple Com	parison Tes		0.0594	EHWW-	passed	rvival rate	1
06-5132-6820	Survival Rate		Dunnett	ultiple Com	parison Tes		0.0594	EHWW-5	passed	vival rate	1
06-5132-6820	Survival Rate		Dunnett	ultiple Com	parison Tes		0.0594	Control	d passed	vival rate	1
06-5132-6820	Survival Rate		Dunnett	ultiple Com	parison Test		0.0594	EHWW-3	passed	ival rate	1
Combined Proportion Normal Summary											
Sample	Code	Count	Mean	95\% LCL	95\% UCL	Min	Max	Std Err	Std Dev	CV\%	\%Effect
Control SW	N	5	0.7871	0.7279	0.8463	0.7226	0.8516	0.0213	0.0477	6.06\%	0.00\%
Control Sed	CS	5	0.7084	0.6530	0.7638	0.6645	0.7613	0.0200	0.0446	6.30\%	10.00\%
EHWW-11		5	0.6735	0.5695	0.7775	0.5323	0.7387	0.0375	0.0838	12.44\%	14.43\%
EHWW-39		5	0.6723	0.6028	0.7417	0.6032	0.7387	0.0250	0.0560	8.32\%	14.59\%
EHWW-50		5	0.6097	0.5281	0.6913	0.5032	0.6710	0.0294	0.0657	10.78\%	22.54\%
Proportion Normal Summary											
Sample	Code	Count	Mean	95\% LCL	95\% UCL	Min	Max	Std Err	Std Dev	CV\%	\%Effect
Control SW	N	5	0.9094	0.8800	0.9388	0.8750	0.9401	0.0106	0.0237	2.60\%	0.00\%
Control Sed	CS	5	0.9133	0.8882	0.9385	0.8803	0.9336	0.0091	0.0203	2.22\%	-0.44\%
EHWW-11		5	0.8803	0.8199	0.9406	0.8010	0.9204	0.0217	0.0486	5.52\%	3.20\%
EHWW-39		5	0.8657	0.8314	0.8999	0.8166	0.8824	0.0123	0.0276	3.18\%	4.81\%
EHWW-50		5	0.8730	0.8086	0.9375	0.7919	0.9293	0.0232	0.0519	5.95\%	4.00\%
Survival Rate Summary											
Sample	Code	Count	Mean	95\% LCL	95\% UCL	Min	Max	Std Err	Std Dev	CV\%	\%Effect
Control SW	N	5	0.8652	0.8176	0.9128	0.8258	0.9290	0.0171	0.0383	4.43\%	0.00\%
Control Sed	CS	5	0.7755	0.7223	0.8287	0.7290	0.8258	0.0192	0.0428	5.52\%	10.37\%
EHWW-11		5	0.7632	0.6821	0.8443	0.6645	0.8194	0.0292	0.0653	8.56\%	11.78\%
EHWW-39		5	0.7761	0.7114	0.8408	0.7129	0.8419	0.0233	0.0521	6.71\%	10:29\%
EHWW-50		5	0.6981	0.6213	0.7748	0.6355	0.7806	0.0277	0.0618	8.86\%	19.31\%

CETIS Summary Report							Report Date: Test Code/ID:	07 Jan-19 17:08 (p 4 of 4) 181647/ 15-4827-4837
Bivalve Larval Survival and Development Test								Nautilus Environmental
Combined Proportion Normal Detail								
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Control SW	N	0.7774	0.8097	0.7742	0.8516	0.7226		
Control Sed	CS	0.6806	0.7516	0.7613	0.6645	0.6839		
EHWW-11		0.5323	0.6935	0.7323	0.6710	0.7387		
EHWW-39		0.6032	0.6806	0.7387	0.7097	0.6290		
EHWW-50		0.5935	0.6710	0.5032	0.6452	0.6355		
Proportion Normal Detail								
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Control SW	N	0.9129	0.9401	0.9023	0.9167	0.8750		
Control Sed	CS	0.9336	0.9209	0.9219	0.8803	0.9099		
EHWW-11		0.8010	0.8704	0.8937	0.9204	0.9160		
EHWW-39		0.8166	0.8755	0.8774	0.8765	0.8824		
EHWW-50		0.9293	0.8595	0.7919	0.8850	0.8995		
Survival Rate Detail								
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Control SW	N	0.8516	0.8613	0.8581	0.9290	0.8258		
Control Sed	CS	0.7290	0.8161	0.8258	0.7548	0.7516		
EHWW-11		0.6645	0.7968	0.8194	0.7290	0.8065		
EHWW-39		0.7387	0.7774	0.8419	0.8097	0.7129		
EHWW-50		0.6387	0.7806	0.6355	0.7290	0.7065		
Combined Proportion Normal Binomials								
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Control SW	N	241/310	251/310	240/310	264/310	224/310		
Control Sed	CS	211/310	233/310	236/310	206/310	212/310		
EHWW-11		165/310	215/310	227/310	208/310	229/310		
EHWW-39		187/310	211/310	229/310	220/310	195/310		
EHWW-50		184/310	208/310	156/310	200/310	197/310		
Proportion Normal Binomials								
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Control SW	N	241/264	251/267	240/266	264/288	224/256		
Control Sed	CS	211/226	233/253	236/256	208/234	212/233		
EHWW-11		165/206	215/247	227/254	208/226	229/250		
EHWW-39		187/229	211/241	229/261	$220 / 251$	195/221		
EHWW-50		184/198	208/242	156/197	200/226	197/219		
Survival Rate Binomials								
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Control SW	N	264/310	267/310	266/310	288/310	256/310		
Control Sed	CS	226/310	253/310	256/310	234/310	233/310		
EHWW-11		206/310	247/310	254/310	226/310	250/310		
EHWW-39		229/310	241/310	261/310	251/310	221/310		
EHWW-50		198/310	242/310	197/310	226/310	219/310		

Combined Proportion Normal Detail

Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
Control SW	N	0.7774	0.8097	0.7742	0.8516	0.7226
Control Sed		0.6806	0.7516	0.7613	0.6645	0.6839
EHWW-11		0.5323	0.6935	0.7323	0.6710	0.7387
EHWW-39		0.6032	0.6806	0.7387	0.7097	0.6290
EHWW-50		0.5935	0.6710	0.5032	0.6452	0.6355

Angular (Corrected) Transformed Detail

Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
Control SW	N	1.079	1.119	1.076	1.175	1.016
Control Sed		0.9702	1.049	1.06	0.953	0.9737
EHWW-11		0.8177	0.9841	1.027	0.9599	1.034
EHWW-39		0.8894	0.9702	1.034	1.002	0.9159
EHWW-50		0.8795	0.9599	0.7886	0.9327	0.9226

Combined Proportion Normal Binomials

Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
Control SW	N	$241 / 310$	$251 / 310$	$240 / 310$	$264 / 310$	$224 / 310$
EHWW-11		$165 / 310$	$215 / 310$	$227 / 310$	$208 / 310$	$229 / 310$
EHWW-39		$187 / 310$	$211 / 310$	$229 / 310$	$220 / 310$	$195 / 310$
EHWW-50		$184 / 310$	$208 / 310$	$156 / 310$	$200 / 310$	$197 / 310$

Graphics

Bivalve Larvae Development Toxicity Sediment Weight Data Sheet

Client:
Work Order \#:
Test set up by:

Start Date/Time: Nowirnber 22, 2018 e1715M End Date/Time: Movenber 24, 2018 017454 Test species: Mytilus galloprovincialis

Comments:

Reviewed by:

Bivalve Larval Development Sediment Test - Ammonia

Client : Anchor	Test Date: November 22,2018
W.O.: 1816417	Species: M. galloprovincialis

Overlying Ammonia

Table of PYa values

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	CDS $(\mathrm{mg} / \mathrm{L})$					Salinity $(\mathrm{g} / \mathrm{kg})$		
	0	250	2000	10	20	30		
12	9.662	9.699	9.754	9.788	9.819	9.837		
15	9.564	9.601	9.655	9.688	9.719	9.737		
18	9.465	9.502	9.557	9.588	9.619	9.636		
19						9.604		
20	9.401	9.438	9.492	9.523	9.554	9.571		
22		9.391						
23	9.307	9.344	9.398	9.426	9.459	9.476		
25	9.246	9.283	9.337	9.366	9.397	9.414		

NAUTILUS ENVIRONMENTAL
ATTN: Yvonne Lam
8664 Commerce Court Imperial Square Lake City
Burnaby BC V5A 4N7

Date Received: 29- NOV- 18
Report Date: 06- DEC- 18 18:26 (MT)
Version: FINAL

Certificate of Analysis

Lab Work Order \#: L2203552

Project P.O. \#.
NOT SUBMITTED
Job Reference:
C of C Numbers:
Legal Site Desc:

Heather McKenzie
Account Manager
[This report shall not be reproduced except in full without the written authority of the Laboratory.]

	Sample ID Description Sampled Date Sampled Time Client ID	L2203552-1 water 22-NOV-18 CONTSW-OAM-0	L2203552-2 water 22-NOV-18 CONTSED-OAM-0	$\begin{gathered} \text { L2203552-3 } \\ \text { water } \\ \text { 22-NOV-18 } \\ \\ \text { 11-OAM-0 } \end{gathered}$	L2203552-4 water 22-NOV-18 39-OAM-0	$\begin{aligned} & \text { L2203552-5 } \\ & \text { water } \\ & \text { 22-NOV-18 } \\ & \text { 50-OAM-0 } \end{aligned}$
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L) Sulphide as S (mg/L)	0.0077	0.0466	0.0170	0.274	0.157

ALS ENVIRONMENTAL ANALYTICAL REPORT

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2203552-11 water 24-NOV-18 CONTSW-OAM-48	L2203552-12 water 24-NOV-18 CONTSED-OAM48	L2203552-13 water 24-NOV-18 11-OAM-48	L2203552-14 water 24-NOV-18 39-OAM-48	$\begin{gathered} \text { L2203552-15 } \\ \text { water } \\ \text { 24-NOV-18 } \\ \text { 50-OAM-48 } \end{gathered}$
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L) Sulphide as $S(\mathrm{mg} / \mathrm{L})$	<0.0050	<0.0050	<0.0050	0.163	0.0419

ALS ENVIRONMENTAL ANALYTICAL REPORT

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
NH3-F-VA	Water	Ammonia in Water by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37-42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

S2-T-COL-VA Water Total Sulphide by Colorimetric APHA 4500-S2 Sulphide

This analysis is carried out using procedures adapted from APHA Method 4500-S2 "Sulphide". Sulphide is determined using the methlyene blue colourimetric method.
** ALS test methods may incorporate modifications from specified reference methods to improve performance.
The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.
$\mathrm{mg} / \mathrm{kg}$ - milligrams per kilogram based on dry weight of sample.
$\mathrm{mg} / \mathrm{kg}$ wwt - milligrams per kilogram based on wet weight of sample.
$\mathrm{mg} / \mathrm{kg} / \mathrm{wt}$ - milligrams per kilogram based on lipid-adjusted weight of sample.
mg/L - milligrams per litre.
<-Less than.
D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.
Test results reported relate only to the samples as received by the laboratory.
UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.
Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Burnaby
8664 Commerce Court
Burnaby, British Columbia, Canada
V5A 4N7
Phone 604.420.8773

Calgary
\#4, 612512 Street SE
Calgary, Alberta, Canada
T2H 2K1
Phone 403.253 .7121

Date Page: of 2

Burnaby
8664 Commerce Court
Burnaby, British Columbia, Canada V5A 4N7
Phone 604.420.8773

Caigary
\#4, 612512 Street SE
Calgary, Alberta, Canada
T2H2K1
Phone 403.253.7121

Date Page__of_

APPENDIX C - Sediment Descriptions

Client:
Work Order No.:
\qquad

Date: Novenbes 21,2018
Test Organism: M. gallaprovincialis

APPENDIX D - Chain-of-Custody Forms

1 See project SAP/QAPP for analyte lists and test methods
2. Email sample confirmation report to labdata@anchorqea.com

[^37]
\qquad of \qquad

1 See project SAP/QAPP for analyte lists and test methods

$$
2 \text { Email sample confirmation report to labdata@anchorqea.com }
$$

Additional notes/comments:

Relinquished By: EUAN MALCZYIL	Company: Anchor QEA LLC.	Received By:	Company: Ficentider
	$101212018 \quad 6+1400$	Thos Mbatimo	
Signature/Printed Name	Date/Time iNh	Signature/Printed Name	Date/Time
Relinquished By:	Company:	Received By:	Company:
Signature/Printed Name	Date/Time	Signature/Printed Name	Date/Time

\qquad of \qquad

1 See project SAP/QAPP for analyte lists and test methods
2 Email sample confirmation report to labdata@anchorqea.com

Additional notes/comments:

	Company: Anchor QEALLC.	Received By: Tuman Hasomifan	Company:	Mathrus
	$1013 / 208 \quad 1930$			$0 c / 04 / 18016<2$
	Date/Time	Sig ature/Printed Name		Dáte/Time
Relinquished By:	Company:	Received By:	Company:	
Signature/Printed Name	Date/Time	Signature/Printed Name		DaterTime

1 See project SAP/QAPP for analyte lists and test methods
2 Email sample confirmation report to labdata@anchorqea.com

[^38]

1 See project SAP/QAPP for analyte lists and test methods
2 Email sample confirmation report to labdata@anchorqea.com

Additional notes/comments:

Relinquished By:Cece $E \cup A M M, A C l z q C($	Company: Anchor QEA LLC. $015 / 18 \quad 1560$	Received By: Y Mul Mun Mun	Company:	$\begin{gathered} \text { Hennruarr } \\ 10 / 5 / 18 \quad 15.0) \end{gathered}$
Signature/Printed Name	Date/Time	Signature/Printed Name		Date/Time
Relinquished By		Received By:	Company:	
Signature/Printed Name	Date/Time	Signature/Printed Name C,		Date/Time

Appendix E

Statistical Evaluation

Multivariate Statistical Evaluation in Esquimalt Harbor

Multivariate patterns among bioassay results, sulphides, and wood waste in Esquimalt Harbour were evaluated using factor analysis for mixed data (FAMD), principal components analysis (PCA), hierarchical clustering, and k-means clustering. Bioassay tests were conducted for 17 sampling locations using the screen tube method. Replicate results were averaged for a single combined proportion normal for each location, which was used in this analysis to look at small gradations in toxicity between locations. These data represent a range of geographical locations, porewater sulphide concentrations, wood waste abundance, wood thickness, and wood types. This analysis was conducted to assess whether statistical associations between toxicity and any combination of sulphide and wood waste variables were present.

Patterns with categorical variables were evaluated through FAMD, using the FactoMineR and factoextra packages in R. Combined proportion normal and wood thickness in meters were treated as numerical variables. Diffusive gradients in thin films (DGT) porewater sulphide concentration was right-censored, due to saturated values. For this reason, it was treated as a categorical variable (low $\leq 10 \mathrm{mg} / \mathrm{L}$, med $>10 \mathrm{mg} / \mathrm{L}$ and $<51.6 \mathrm{mg} / \mathrm{L}$, high/saturated $\geq 51.6 \mathrm{mg} / \mathrm{L})$. Surface wood abundance was categorized from no wood to substantial wood. Wood type was categorized according to presence of fibers, fragments, or bark. As part of the FAMD, all data were normalized to balance the influence of numerical and categorical variables. Sulphide and toxicity were analyzed with various combinations of the wood variables. The results were then clustered using hierarchical clustering and k-means clustering. No significant patterns emerged.

Relationships among exclusively continuous, numerical variables were analyzed with PCA and clustering, using FactoMineR, factoextra, and the R stats package. Combined proportion normal, wood thickness in meters, and percent cover were treated as numerical variables. Saturated DGT porewater sulphide concentrations were set to $51.6 \mathrm{mg} / \mathrm{L}$, the upper limit of detection in the majority of this data set, and treated as numerical. All variables were centered about the mean and scaled by dividing by standard deviation. Hierarchical clustering using Euclidean distance with Ward's Method failed to describe the patterns observed in the substrate. PCA and k-means clustering results showed consistent patterns. K-means clustering was selected as the preferred analysis method because it is more directly interpretable.

A pair of k-means analyses for three centers was performed on the toxicity and sulphide data with either wood thickness or percent cover to represent wood waste presence. Radar plots were used to identify wood thickness as the better predictor of toxicity by highlighting non-random associations in the clusters (Figure E-1). The corners of the radar plot represent the centroid of each cluster within the scaled data, so the corner closest to the outer edge represents the greatest sulphide
concentration, wood depth, or toxicity (expressed as the inverse of the combined proportion normal centroid). As such, the centroid of Cluster 1 is typified by lower than average toxicity, wood thickness, and sulphide. The Cluster 3 centroid is associated with greater than average toxicity, wood thickness, and sulphide. The Cluster 2 centroid represents low toxicity and wood thickness, despite high sulphide concentrations.

These patterns can also be visualized using scatterplots of the data, colored by cluster and labeled by sample location ID (Figure E-2). As these clusters represent multivariate relationships, they are not simply associated with either wood thickness or sulphide. However, the Cluster 3 points can be seen gathered in the lower range for combined proportion normal and the higher range for wood depth. These plots suggest that the relationship between toxicity and wood depth may be stronger than that between toxicity and sulphide, though neither relationship is tightly correlated.

The geographical distribution of the clusters can be seen with the wood thickness interpolation in Figure E-3. As in the scatterplots, the clusters do not directly follow either wood thickness or sulphide concentration, but some combination of the two along with small variations in toxicity. This exploratory analysis can be used to inform further consideration of the relationship between wood thickness and benthic toxicity.

- Cluster 1
- Cluster 2
- Cluster 3

Figure E-1
Radar Plot of K-means Clusters
Corners of the radar plot represent the centroid of each cluster within the scaled data. outer edge of circles represents greatest sulfide concentration, wood depth, or toxicity. Toxicity is expressed as the inverse of the combined proportion normal centroid.

Figure E-2
Scatter Plot of K-means Clusters
Points are labeled with sample location ID.

- Cluster 1
- Cluster 2
- Cluster 3

tish Date: 2019/02/25, 5:22 PM | User: jsfox

Appendix A-2
 Characterization and Management Plan

Department of National Defence Esquimalt Harbour Wood Waste Assessment, Characterization and Management Plan

Prepared for:

Public Services and Procurement Canada
1230 Government Street
Victoria, BC V8W 3M4
Project No: R. 091121.001
Project No. 989593-08

Prepared by:

Hemmera Envirochem Inc.
18th Floor, 4730 Kingsway
Burnaby, BC V5H 0C6
T: 604.669.0424
F: 604.669.0430
hemmera.com

EXECUTIVE SUMMARY

Esquimalt Harbour has historically been used for log booming, log storage and wood milling operations over the last 70 years. These activities have led to the accumulation of wood and wood debris deposits in the subtidal area of the Harbour. Wood waste deposits can negatively affect marine benthic communities through physical alteration of sediments and increased toxicity through contamination by leachate or the by-products of anaerobic decomposition. An assessment of the effects of wood waste on the subtidal marine environment was conducted on behalf of the Department of National Defence and in support of the Esquimalt Harbour Remediation Project.

This report documents the approach and findings of the assessment including:

- A review of the impacts of wood waste on marine subtidal habitats, a review of Esquimalt Harbour historical industrial activities and existing biophysical studies relating to the Project area, and wood waste delineations in the Harbour (Section 2.0)
- Results from field surveys undertaken to determine the nature and extent (lateral extent and depth) of the wood waste deposits, to document biophysical site conditions, and analyze sediment chemistry results (Section 3.0)
- An impact assessment of wood waste on the subtidal benthic community in Esquimalt Harbour (Section 3.0)
- Evaluation of remedial options and provide recommendations for next steps (Section 4.0)
- Development of a recommended site-specific pilot project to test the effectiveness of proposed remediation measures (Section 5.0).

Main findings of the assessment include:

- Wood Waste Delineation

Wood waste is distributed in two large areas (>100 m wide) north of Inskip Island and reaching into Plumper Bay and south of Cole Island and two smaller areas of wood waste ($<50 \mathrm{~m}$ wide). The spatial distribution of wood waste deposits was greater than visual observations of the surficial extent of wood waste. The nature of the wood waste was indicative of log storage and log booming areas, primarily small woody debris, composed of bark chips and scattered cut logs and some finer wood pulp/fibre. Wood pulp/fibre could be from historical wood-processing activities that occurred within the harbour (Section 2.3) or from the breakdown of small woody debris. The total volume of wood waste and overlying impacted sediments in the Harbour was estimated to be $332,299 \mathrm{~m}^{3}$.

- Biophysical Conditions

Esquimalt Harbour epibenthic communities documented for this report were similar to those documented by earlier assessments. In areas of known wood waste deposits epibenthic organisms were sparse with evidence of bacterial mats (Beggiatoa sp.) that are often associated with wood waste impacted sediments. Areas with exposed logs, provided hard substrate for rocky reef organisms to colonize/use as complex habitat structure for refuge. Infauna holes and mounds were relatively absent, indicating the lack of large bioturbators. The abundance and diversity of infauna communities varied across the harbour; however, most stations were dominated by a single second-order opportunistic polychaete species.

- Sediment Chemistry

Decomposition by-products were assessed to determine drivers of impairment. Total organic carbon (TOC) levels were elevated in comparison to reference locations and had a distribution pattern that was correlated with the assessed extent of wood waste deposits. Pore-water sulphide and Ammonia did not show as tight of a relationship with the delineated area of wood waste.

- Impact Assessment

Due to its strong correlation with TOC and areas of wood waste deposits, the presence of Beggiatoa sp . can be considered an indicator of benthic community impairment from wood waste deposits. Other epibenthic species, such as Dungeness and graceful crabs, were observed in areas of wood waste during surveys but been shown by other studies to use these areas as habitat if the overlying water quality is not impaired.

Areas of greatest impact on the subtidal benthic community were determined using multivariate analysis and indicated that the sediment chemistry parameter most strongly linked with known areas of wood waste deposits and to differences in benthic infauna community composition and species richness was TOC. Benthic community impairment between $1-3 \%$ TOC was variable; however, a 3\% TOC level has been determined to be a site-specific indicator for the impairment of benthic infauna due to wood waste deposits, with greater impacts observed at TOC levels $>5 \%$. The benthic infauna community in Esquimalt Harbour shows general signs of impairment (ranging from somewhat disturbed/impacted to low - moderate impairment) and is dominated by opportunistic polychaete species and the lack of larger bioturbators or species that are pollutionsensitive.

In general, the recommended approach for site-specific remediation of wood waste, and wood waste impacted sediments, is as follows:

- Dredging

Complete removal of sediment/wood waste in areas where wood waste deposits are $>0.25 \mathrm{~m}$ deep. Placement of clean fill following dredging to reduce residuals and provide clean substrate for the recruitment and establishment of productive infauna communities. Following the implementation of remediation efforts, a monitoring program will be required to track the recovery of the benthic community and remediated bottom sediments, in order to qualify the remediation for the DND Habitat Bank.

- Pilot Study Project

Conduct an experimental in-field pilot study within the Harbour to investigate the site-specific effectiveness and feasibility of economical and less invasive remedial options (Monitored Natural and Enhanced Natural Recovery) for areas of discontinuous and/or shallow wood waste deposits ($0-0.25 \mathrm{~m}$).

ACKNOWLEDGEMENTS

We would like to acknowledge the efforts and valuable input to this Project from both Ashley Rabey, Environmental Specialist, and Kristen Ritchot, Environmental Specialist with Environmental Services, Public Services and Procurement Canada as well as Mike Waters, Environment Officer, Department of National Defence.

TABLE OF CONTENTS

EXECUTIVE SUMMARY 1
ACKNOWLEDGEMENTS II
ACRONYMS XI
GLOSSARY XII
1.0 INTRODUCTION 1
2.0 BACKGROUND INFORMATION REVIEW 5
2.1 Overview of the Effects of Wood Waste on the Marine Environment 5
2.1.1 Physical Effects 8
2.1.2 Leachate Production 8
2.1.3 By-Products from the Breakdown of Wood Waste 9
2.1.4 Impacts to Benthic Communities 11
2.1.5 Indicators of Impact 11
2.1.5.1 Wood Waste Surficial Cover 11
2.1.5.2 Bacterial Mats 11
2.1.5.3 Total Organic Carbon 12
2.1.5.4 Hydrogen Sulphide 14
2.1.5.5 Ammonia 14
2.1.5.6 PH 15
2.2 Study Location and Site Descriptions 15
2.2.1 Esquimalt Harbour Marine Environment 15
2.2.2 Pedder Bay Marine Environment 16
2.3 Historical Activities and Contamination 16
2.3.1 Activities and Contamination Review Methods 17
2.3.2 Aerial Photograph Review 20
2.3.3 Regulatory Information 21
2.3.3.1 Federal Contaminated Site Search 21
2.3.3.2 BC MOE Environmental Violations Database 21
2.3.3.3 BC MOE Environmental Management Authorization Database 21
2.3.3.4 Other Historical Information 21
2.3.4 Site and Surrounding Land Use History 22
2.3.4.1 Esquimalt (Areas 1-4) 23
2.3.4.2 Esquimalt and Songhees First Nations Reserves (Area 5) 24
2.3.4.3 View Royal (Area 6) 24
2.3.4.4 Colwood (Areas 7 \& 8) 25
2.3.4.5 Harbour Floor (Area 90) 25
2.3.5 Summary of Areas of Potential Environmental Concern 26
2.3.6 Background Review Conclusion 27
2.4 Historical Biophysical Information Review 28
2.4.1 Biophysical Review Methods 28
2.4.2 Regional Overview 29
2.4.3 Historic Distribution of Habitats and Species in Esquimalt Harbour 29
2.4.3.1 Substrate 29
2.4.3.2 Marine Vegetation 30
2.4.3.3 Benthic Invertebrate Fauna 31
2.4.3.4 Fish and Fisheries 32
2.4.4 Esquimalt Harbour Environmentally Sensitive Areas 32
2.4.4.1 SARA Species 33
3.0 SITE CHARACTERIZATION AND IMPACT ASSESSMENT 35
3.1 Methods 35
3.1.1 Field Sampling 36
3.1.1.1 Side Scan Sonar 36
3.1.1.2 SCUBA Biophysical Surveys 36
3.1.1.3 Sediment Collection 39
3.1.1.4 Benthic Infauna Sampling 42
3.1.2 Laboratory Analysis 42
3.1.2.1 Sediment Chemistry 42
3.1.2.2 Benthic Infauna 43
3.1.3 Data Analysis 44
3.1.3.1 Wood Waste Delineation 44
3.1.3.2 Biophysical Assessment 45
3.1.3.3 Sediment Chemistry 45
3.1.3.4 Wood waste Impact Assessment 46
3.2 ReSults 48
3.2.1 Wood Waste Delineation 48
3.2.1.1 Side Scan Sonar 48
3.2.1.2 Field Surveys 50
3.2.2 Biophysical Assessment 56
3.2.2.1 Physical Characteristics 56
3.2.2.2 Water Quality Results 56
3.2.2.3 Benthic Community 56
3.2.3 Sediment Chemistry 65
3.2.3.1 TOC 65
3.2.3.2 Sulphides 68
3.2.3.3 Ammonia 70
3.2.3.4 pH 70
3.3 WOOD Waste Impact Analysis 73
3.3.1 Wood Waste Delineation 73
3.3.2 Sediment Chemistry 73
3.3.3 Benthic Community 74
3.3.3.1 Epibenthic 74
3.3.3.2 Infauna Community 76
4.0 REMEDIAL AND MANAGEMENT OPTIONS 85
4.1 Identification of Potential Remedial Options 85
4.1.1 Monitored Natural Recovery 85
4.1.2 Enhanced Natural Recovery 87
4.1.3 Dredging 87
4.1.3.1 Options for Disposal of Dredge Materials 88
4.1.4 In-Situ Capping 89
4.1.5 $\quad \mathrm{In}$-Situ Treatment 89
4.2 Analysis of Remedial Options 90
4.2.1 No Action 91
4.2.2 Monitored Natural Recovery 91
4.2.3 Enhanced Natural Recovery 92
4.2.4 Dredging 92
4.2.4.1 Options for Disposal of Dredge Materials 92
4.2.5 In-Situ Capping 93
4.2.6 In-Situ Treatments 94
4.3 Recommended Options and Approaches, 94
4.3.1 Dredge and Placement of Clean Fill 95
4.3.2 Pilot Study Project 96
4.4 ReguLatory Framework and Requirements 98
4.4.1 DFO Fisheries Act Authorization 98
4.4.2 Disposal at Sea Permit 98
4.4.3 Navigation Protection Act Notice of Works 99
4.5 Potential Habitat Bank Credit Assessment 99
5.0 REMEDIAL PILOT STUDY PROJECT 102
5.1 Site Selection 102
5.2 Study Design 105
5.3 STUDY IMPLEMENTATION 107
5.3.1 Finalized Site Selection and Pilot Study Regulatory Framework 107
5.3.1.1 Finalized Site Selection 107
5.3.1.2 Navigation Protection Act - Notice of Works 107
5.3.1.3 Disposal at Sea - Beneficial Use Exemption for Clean Fill 107
5.3.1.4 Disposal at Sea - DAS Permit for Dredged Materials 108
5.3.1.5 DFO Fisheries Act - Serious Harm Assessment 109
5.3.2 Pilot Study Site Setup and Characterization of Baseline Conditions 111
5.3.2.1 Fieldwork Planning and logistics 111
5.3.2.2 Fieldwork 111
5.3.2.3 Analysis and Reporting 114
5.3.3 Application of Pilot Study Treatments 115
5.3.3.1 Fieldwork Planning and logistics 115
5.3.3.2 Fieldwork and Reporting 116
5.3.4 Effectiveness Monitoring 117
5.3.5 Determination of Pilot Study Effectiveness Report 118
5.4 Cost Estimate 119
6.0 PUBLICATION RECOMMENDATIONS. 120
7.0 CONCLUSIONS 121
8.0 REFERENCES 122

List of Figures

Figure 1.1 Project Site Locations 3
Figure 1.2 Project Area 4
Figure 2.1 Conceptual Site Model 7
Figure 2.2 Conceptual Site Model of the Relationship between Increasing Sediment Organic Carbon, Benthic Community Response, and other Related Environmental Factors, including Oxygen Depletion and Pressure of other Co-varying Sediment- Associated Stressors (Hyland et al. 2005) 13
Figure 2.3 Esquimalt Harbour Overview and Areas 19
Figure 3.1 Esquimalt Harbour Sampling Areas 37
Figure 3.2 Pedder Bay Sampling Areas 38
Figure 3.3 Esquimalt Harbour Side Scan Sonar Results 49
Figure 3.4 Esquimalt Harbour Interpolated Surficial Wood Waste Cover from Scuba Surveys 53
Figure 3.5 Esquimalt Harbour Interpolated Wood Waste Depth from Core Samples 55
Figure 3.6 Esquimalt Harbour Interpolated Beggiatoa Coverage 60
Figure 3.7 Esquimalt Harbour Interpolated Diatom Coverage 61
Figure $3.8 \quad$ Relative Proportion of each Taxonomic Group by Sample Station, Replicate, and TOC level 64
Figure 3.9 Esquimalt Harbour Interpolated Total Organic Carbon 66
Figure 3.10 Pedder Bay Interpolated Total Organic Carbon 67
Figure 3.11 Esquimalt Harbour Interpolated Sulphide Concentration 69
Figure 3.12 Esquimalt Harbour Interpolated Ammonia Concentration 71
Figure 3.13 Esquimalt Harbour Interpolated pH Concentration 72
Figure 3.14 Distance-based redundancy analysis showing the relative similarity among sample locations of differing TOC Screening-level Indicators and the dominant species 75
Figure 3.15 Benthic Infauna Total Abundance by Sample Location 78
Figure 3.16 Benthic Infauna Species Richness by Sample Location 79
Figure 3.17 Benthic Infauna Shannon Diversity Index by Sample Location 80
Figure 3.18 Benthic Infauna Pilou's Evenness by Sample Location 81
Figure 3.19 Benthic Infauna Swartz's Dominance by Sample Location 82
Figure 4.1 Esquimalt Harbour Wood Waste Depths for Remediation Options 97
Figure 5.1 Locations of Proposed Pilot Study Sites for Wood Waste Remediation. 104
Figure 5.2 Proposed Pilot Project Site Design Includes Three Replicates of each Proposed Treatment Type (MNR, ENR, and Dredge) 106
Figure 5.3 Environment and Climate Change Canada Disposal at Sea Program Minimum Sample Analytical Requirements 110
Figure 5.4 Example of Pilot Study Marker Setup 112
List of Tables
Table 2.1 Summary of Subtidal Wood Waste Types, Sources, and Potential Impacts on Marine Ecosystems (Based on Breems and Goodman 2009) 6
Table 2.2 Aerial Photograph Review Summary 20
Table 2.3 Summary of Current and Historical Leasehold Properties 22
Table 2.4 Related Areas of Potential Environmental Concern 27
Table 2.5 Subtidal Sediment Breakdown from Subtidal Habitat Survey of Esquimalt Harbour (Archipelago 2004) 30
Table 2.6 Estimate of Eelgrass Bed Areas within Esquimalt Harbour in 2004 31
Table 2.7 Marine Species at Risk with the Potential to Occur within the Project Area 33
Table 3.1 Summary of Field Survey Methods Used to Determine Existing Conditions in Esquimalt Harbour 35
Table 3.2 Biophysical Assessment Substrate Classification 39
Table 3.3 Surficial Sediment Sample Sizes Analyzed for Sediment Chemistry from Esquimalt Harbour and Pedder Bay 42
Table 3.4 Recommended Data Quality Objectives for Soil, Sediment and Groundwater 43
Table $3.5 \quad$ Estimates of Surficial Wood Waste Cover on the Subtidal Seafloor of Esquimalt Harbour 50
Table 3.6 Benthic Infauna Community Summary Statistics by Sample Location and Level of TOC. 63
Table $3.7 \quad$ Estimates of Subtidal Seafloor Area by TOC Screening-Level Indicators of Benthic Impairment in Esquimalt Harbour 68
Table 3.8 Spatial Regression Model Combinations and Outputs for Wood Waste Depth as an Independent Variable 73
Table 3.9 Dominant Epibenthic Species Observed at each of the Four TOC screening-level indicators for benthic impairments 74
Table 3.10 Spatial Regression Model Combinations and Outputs for Bacterial Mat Coverage as a Dependent Variable 76
Table 3.11 CCA Model Output of Community Composition as a Function of Wood Waste Decomposition By-products 77
Table 3.12 Linear Model Outputs and Correlation Values of Species Richness as a Function of Wood Waste Decomposition By-products 77
Table 3.13 Summary of Benthic Infauna Impacts 84
Table 4.1 Overview of Potential Wood Waste Remediation Options 86
Table 4.2 Recommended Options for Remediation of Wood Waste in Esquimalt Harbour 95
Table 4.3 Approximate Unit Costs for Remedial Dredge Works in Esquimalt Harbour 96
Table 4.4 Proposed Potential Habitat Banking Bottom Treatments, Restoration Times and Banking Potential 100
Table 5.1 Locally-relevant Toxicity Tests, Species and their Classification 115
Table 5.2 Pilot Study Project Cost Estimate Totals by Year 119
Table 6.1 Proposed Scientific Journals for Publication of Wood Waste Assessment and Remediation Results 120
List of Photographs
Photo 1 Representative view of a subtidal area in Esquimalt Harbour with scattered logs and fine layer of sediment and fine wood waste surrounded by bacterial mats 51
Photo 2 Representative view of a subtidal area in Esquimalt Harbour with continuous small woody debris and fine layer of sediment and fine wood waste 51
Photo 3 Representative view of a subtidal area in Esquimalt Harbour containing a silty sand substrate with drift understory kelp, shell debris, and only very sparse detritus and small woody debris. 52
Photo $4 \quad$ Representative view of a subtidal area in Pedder Bay containing silty sand substrate, with drift understory kelps, and an active infauna community signified by observable mounds and siphons 52
Photo $5 \quad$ Representative view of a subtidal area in Esquimalt Harbour with fibre mat intermixed with silt and Beggiatoa bacterial mat 58
Photo 6 Representative view of a subtidal area in Esquimalt Harbour with silty substrate and a mix of diatoms and Beggiatoa bacterial mat. 58
Photo $7 \quad$ Rocky habitat with encrusting species including a red sea urchin. 59
Photo 8 Exposed log covered in plumose anemones and diatoms, surrounded by young of the year black rockfish 59

List of Appendices

Appendix A	Aerial Photos
Appendix B	Regulatory Information
Appendix C	Harbour Occupants
Appendix D	Areas of Potential Environmental Concern
Appendix E	Background Biophysical Conditions of Esquimalt Harbour
Appendix F	Side Scan Sonar Results
Appendix G	Sediment Core Photo Examples
Appendix H	Wood Waste Depth Cross Sections
Appendix I	Biophysical and Sediment Chemistry Data
Appendix J	Detailed Pilot Study Project Cost Estimate

ACRONYMS

APEC	Areas of Potential Environmental Concern
AST	Above ground storage tank
BACI	Before After Control Impact
BC	British Columbia
BC MOE	British Columbia Ministry of Environment
BMP	Best Management Practice
BOD	Biological oxygen demand
CCA	Canonical correspondence analysis
CCME	Canadian Council of Ministers of the Environment
CD	Chart datum (where zero metres CD is equal to the average low water level)
CDF	Confined disposal facility
COPC	Contaminant of Potential Concern
DAS	Disposal at sea
DND	Department of National Defence
DQO	Data quality objectives
EMAP	Environmental Monitoring and Assessment Program
ENR	Enhanced natural recovery
EPA	Environmental Protection Agency
FCSI	Federal Contaminated Sites Inventory
FCSAP	Federal Contaminated Sites Action Plan
FPIP	Fisheries Productivity Investment Policy
HWL	High water level (approximately 4.5 m CD)
LWD	Large woody debris
MNR	Monitored Natural Recovery
PAH	Polycyclic aromatic hydrocarbon
PCB	Polychlorinated biphenyl
QA/QC	Quality assurance and quality control
RPD	Relative percent differences
SQG	Sediment quality guidelines
SWI	Sediment-water Interface
TOC	Total organic carbon
UST	Underground storage tank
WWI	World War I
WWII	World War II

GLOSSARY

Aerobic Conditions	Presence of dissolved oxygen
Anaerobic Conditions	Depleted of dissolved oxygen Metabolic functions without oxygen
Anaerobic Decomposition	Organisms within the sediment, in the sediment-water interface, and immediately adjacent overlying water
Benthic Fauna	A process used to determine the rate at which biological organisms use up oxygen in the water. High BOD reduces or removes available dissolved oxygen in the water column and pore water in the sediment.
Biological Oxygen Demand	
Cellulolysis	The process of breaking down cellulose
Chemosynthetic	produce sugars and amino acids
Epescribes organisms that live on the surface of the sediment on the	
seafloor	

1.0 INTRODUCTION

Forestry and wood product processing has a long and important history in British Columbia (BC), with waterways providing the most efficient and economical way to transport and store timber. As a result, forestry-related activities, such as log booming, log storage and sawmill operations, have resulted in wood waste deposits accumulating in intertidal and subtidal nearshore habitats along the coast of BC. In Esquimalt Harbour (the Harbour), Federal leaseholds have been used for log booming over the last 70 years (most intensively in the 1940s to 1980s), leading to the accumulation of a large amount of wood and wood debris deposited on the Harbour floor.

Wood waste deposits can negatively affect marine benthic communities through physical alteration of sediments and increased toxicity through contamination by leachate or the by-products of anaerobic decomposition (i.e., hydrogen sulphide, ammonia and methane). Assessing the effects of wood waste on the marine environment is a priority for the Department of National Defence (DND) in alignment with the Esquimalt Harbour Remediation Project. To address this, the Esquimalt Harbour Wood Waste Assessment, Characterization and Management Plan Project (the Project) was undertaken over two fiscal years, from 2016-2018, by Public Services and Procurement Canada on behalf of DND (see Figure 1.1 and Figure 1.2 for Project location).

The objectives of the Project are to:

- Determine the nature (e.g. composition) and extent (lateral coverage and depth) of the wood waste deposits in Esquimalt Harbour
- Characterize the biophysical habitat conditions within areas of known wood waste deposits, transition zones, and areas without wood waste
- Analyze sediment chemistry parameters to determine the distribution of conventional contaminants of concern and conventional sediment chemistry parameters associated with wood waste or wood waste decomposition by-products
- Identify and assess the impacts of wood waste deposits on marine benthic community in Esquimalt Harbour
- Evaluate wood waste remediation options considering the site-specific conditions and results of the impact assessment and provide recommendations for remediation
- Develop a recommended site-specific pilot study project to test the effectiveness of more economical and less invasive remediation measures

This report documents the approach and findings of the assessment (Project) including:

- A review of the impacts of wood waste on marine subtidal habitats, a review of Esquimalt Harbour historical industrial activities and existing biophysical studies relating to the Project area, and wood waste delineations in the Harbour (Section 2.0)
- Results from field surveys undertaken to determine the nature and extent (lateral extent and depth) of the wood waste deposits, and to document biophysical site conditions (Section 3.0)
- An impact assessment of wood waste on the subtidal benthic community in Esquimalt Harbour (Section 3.0)
- A remedial management options analysis and recommendations for next steps (Section 4.0)
- Proposed plan for a remedial pilot project and publication of findings (Section 5.0)

2.0 BACKGROUND INFORMATION REVIEW

This section contains a review of the impacts of wood waste on marine subtidal habitats, a review of Esquimalt Harbour historical industrial activities and existing biophysical studies relating to the Project area, and wood waste delineations in the Harbour.

2.1 Overview of the Effects of Wood Waste on the Marine Environment

The processing of timber and wood products in coastal BC is common within and near aquatic and marine environments due to the ease of transportation; however, these activities result in widespread wood waste deposits on the seafloor. While aquatic ecosystems are adapted to breakdown and store naturally occurring large woody debris (LWD; e.g. Wood debris that has not been processed or cut, may still contain roots or limbs), increased volumes from industrial sources can exceed the natural assimilative capacity of marine ecosystems (Breems and Goodman 2009). The resulting direct and indirect impacts include physical alteration of sediments, the release of leachates, and the generation of toxic by-products during decomposition. Impacts of wood waste on the marine environment are largely site-specific depending on the type or size of wood waste (Table 2.1), the species from which it was derived, the degree of incorporation into the sediment, the volume present, local water movement, and the extent of decomposition (Kendall and Michelsen 1997).

Natural wood debris deposited at the sediment-water interface (SWI) is typically broken down by various marine organisms in the nearshore environment (Maser and Sedell 1994). Large woody debris functions as the primary food source of wood-boring invertebrates, which recycle its nutrients and energy. Woodboring Crustacea, (e.g. gribbles) and wood-boring bivalve mollusks (e.g. shipworms), colonize LWD before microbial decomposition takes place and ingest the wood through boring (Breems and Goodman 2009). The cellulose portion of the wood is used for nutrition and the remainder excreted as pellets of finely ground wood fibres containing lignin and cellulosic materials (Gonor et al. 1988, Maser and Sedell 1994, Breems and Goodman 2009). While gribbles can use approximately 45 percent of the consumed material, shipworms use approximately 58 percent (Gonor et al. 1988, Maser and Sedell 1994). The fine particulate material of the pellets is easily transported by currents and tides and contributes to the detrital food web that supports species such as forage fish, juvenile salmon and marine birds (Gonor et al 1988, Maser and Sedell 1994, Breems and Goodman 2009; see Figure 2.1).

However, small wood waste (e.g. bark, sawdust, or wood fibre) does not meet the habitat requirements of wood-boring invertebrates, wood-borers prefer freshly-deposited wood that has not undergone much decomposition, and industrial wood waste tends to accumulate too rapidly in large volumes, overwhelming the assimilative capacity of benthic communities and leading to an anthropogenic increase in organic content in the sediments of nearshore marine habitats (Breems and Goodman 2009, Washington State 2013). Wood waste-associated impacts to nearshore benthic communities can result in impairing productive habitats, which form the foundation of nearshore marine food webs, and are integral to recycling nutrients between the SWI (Washington State 2013).

Finer-textured wood waste (e.g. wood chips to sawdust) has a greater surface area to volume ration, and my have a greater ecological impact with less coverage (Washington State 2013). Therefore, an understanding of how each type of wood waste reacts in the marine environment is critical to understanding short- and long-term impacts and developing effective site-specific remediation strategies. Each of these impacts are described in detail in the sections below and highlighted in Figure 2.1.

Table 2.1 Summary of Subtidal Wood Waste Types, Sources, and Potential Impacts on Marine Ecosystems (Based on Breems and Goodman 2009)

Wood Waste Type	Potential Source	Definition	Potential Impact
Cut logs	Log booming, transport, and storage	Cut timbers of various lengths free of roots and limbs	- Leachate production (slow release rate) - Compaction of sediment - Bark production - Navigational hazard - Can mimic functions of Natural wood
Small woody debris Bark and small branches	Log booming, log storage, and sawmills, depositional areas	Mainly bark and small wood less than 10 cm in diameter	- Physical barrier/smothering - $\mathrm{H}_{2} \mathrm{~S}$, methane, or ammonia production - Leachate production
Small woody debris - Wood chips	Wood chipping and transport facilities	$6-10 \mathrm{~cm}^{2}$	- Physical barrier/smothering - $\mathrm{H}_{2} \mathrm{~S}$, methane, or ammonia production - Leachate production
Small woody debris Sawdust	Sawmills	$10 \mathrm{~mm}^{2}$	- Physical barrier/smothering - $\mathrm{H}_{2} \mathrm{~S}$, methane, or ammonia production - Leachate production (rapidly depleted)
Wood fibre	Pulp and Paper mills	< $10 \mathrm{~mm}^{2}$	- Physical barrier/smothering - $\mathrm{H}_{2} \mathrm{~S}$, methane, or ammonia production

Legend		Notes
\square Beggiatoa \square Photosynthetic algae	AB Aerobic heterotrophic bacteria	1. This figure is not intended to be a "stand-alone" document, but a visual aid to the information contained within the referenced Report. It is intended to be used in conjunction with the scope of services and limitations described therein. Figure not to scale. Page Size: 11" x 17"
Small Woody Debris Bark / wood chips	CB Cellulolytic bacteria	
\% Sawdust or wood fibre	(S) Elemental sulphur (S)	
	MB Methanogenic Bacteria SOB Sulphur oxidizing bacteria	
	SRB Sulphide reducing bacteria	

Esquimalt Harbour Wood Waste Assessment DND, CFB Esquimalt, Esquimalt Harbour, BC		
Conceptual Site Model		
376-240.08	Production Date: Jan 11, 2019	Figure 2.1

2.1.1 Physical Effects

Wood waste can have a physical effect on marine benthic habitat conditions and benthic fauna. The thickness and composition of wood waste can physically isolate the sediment surface, acting as a barrier to the movement and colonization of benthic invertebrates by limiting their ability to settle on the appropriate substrate type and/or burrow into sediments (e.g. Samis et al. 1999). Wood waste accumulations as shallow as 1 cm can lead to a decline in the abundance of suspension feeders, while deposits up 15 cm can greatly reduce invertebrate biomass and diversity (Conlan and Ellis 1979). Similarly, Jackson (1986) demonstrated that bark accumulations $>2.5 \mathrm{~cm}$ may eliminate mollusks and several polychaete worm species.

Many benthic species rely on the nutrients and oxygen supplied by an adequately flushed sediment column. A breakdown in the exchange of nutrients and oxygen alters the composition and distribution of the benthic invertebrate population. Accumulated wood waste can form a physical barrier to the transfer of nutrients and oxygen between the SWI and the sediment interstitial spaces (Figure 2.1). Critically, accumulation of wood waste at the SWI results in the smothering of any present biota, which in turn reduces mixing of the upper sediment layer by burrowing invertebrates and results in a reduction in the presence of oxygen and ultimately produces an anaerobic environment. Full coverage of benthic sediments with bark, in depths of up to 10 cm , can decrease the dissolved oxygen concentration at the sediment surface from $10 \mathrm{mg} / \mathrm{L}$ to $2.5 \mathrm{mg} / \mathrm{L}$ (Pentec 1997). The alteration of the upper sediment layer from an aerobic to an anaerobic environment is a key driver in reducing species diversity and the production of toxic by-products from the breakdown of total organic carbon (TOC).

Finally, the texture, size and potential mobility of smaller wood waste may limit the attachment of species requiring immobile rocky substrates such as kelps; however, larger logs can provide a source of attachment or cover for marine borers and some species of algae, anemone, crab and fish (Breems and Goodman 2009; Figure 2.1). The natural nearshore environment is a highly productive ecosystem and the decline or loss of habitat and biological communities from physical impacts can have a significant impact on the overall ecosystem. For effective recovery, sediments require the elimination of wood waste and sources, improved dissolved oxygen at the SWI and within surficial sediments through flushing and bioturbation by benthic invertebrates within the surficial sediments (ie. Benthic infauna).

2.1.2 Leachate Production

When wood waste is in contact with water, chemical compounds that are toxic to a range of benthic invertebrates and fish species, leach into the surrounding environment (Pearse 1974, Peters et al. 1976, Buchanan et al. 1976, Samis et al. 1999). The composition of compounds and their concentrations in the leachate vary depending upon the tree species, size, and age, but may include: tropolones, lignins, fatty acids and resin acids (Samis et al. 1999). Although the amount of leachate released from wood waste is reduced as the wood becomes saturated and sinks, it can still be toxic to marine organisms. However,
toxins may not accumulate to lethal concentrations in areas with sufficient water exchange (Samis et al. 1999). Larger logs tend to slowly release leachate over a longer duration as the inner, unsaturated wood contains higher concentrations of contaminants that remain available to the environment as they degrade (Yücel et al 2012). Daily tidal movement may further reduce the impacts of leachate through flushing; although this likely has little effect on contaminants accumulated in the pore water sediment adjacent to and beneath wood waste deposits (Breems and Goodman 2009).

2.1.3 By-Products from the Breakdown of Wood Waste

The breakdown of smaller wood waste is largely the result of the microbial metabolism, where bacteria feed on the wood, break it down, and create decomposition by-products under either aerobic or anaerobic conditions. Under aerobic conditions, heterotrophic bacteria assist in the breakdown of wood waste by metabolizing sugars (i.e., glucose; generated during the degradation of cellulose by cellulolytic bacteria) and producing carbon dioxide and simple carbon-based compounds (lower molecular weight carbon sources as by-products (i.e. acetate; Maser and Sedell 1994; see Figure 2.1). However, the consumption of oxygen by bacteria, known as biological oxygen demand (BOD), further decreases the availability of dissolved oxygen in the interstitial pore water and at the SWI (Samis et al. 1999). In marine systems, the renewal of dissolved oxygen at the SWI is normally rapid, unless wood waste accumulations are excessively high, blocking circulation or flushing (Pearson et al. 1980; Figure 2.1).

Under anaerobic conditions, wood waste decomposition can still occur through anaerobic decomposition, whereby bacteria use chemicals other than oxygen (Pearson 1980). There are various types of anaerobic heterotrophs that breakdown cellulose (via cellulolysis) into low molecular weight organic acid metabolites (e.g. acetate, lactate, succinate and other organic acids; Pearson 1980). In the absence of oxygen, bacteria preferentially use commonly found nitrates $\left(\mathrm{NO}_{4}\right)$, along with a low molecular weight organic carbon source, producing ammonia $\left(\mathrm{NH}_{3}\right)$ as a by-product (Figure 2.1; Pearson 1980). Ammonia, exists in equilibrium between the un-ionized $\left(\mathrm{NH}_{3}\right)$ and ionized form $\left(\mathrm{NH}_{4}{ }^{+}\right)$and is typically found in higher concentrations within sediment porewater than the overlying water column, but can diffuse in stagnant conditions (Figure 2.1; Pearson 1980, Gray et al. 2002). At low concentrations ammonia can be acutely toxic to fish and other marine organisms, in particular un-ionized ammonia (Gray et al. 2002).

Once nitrates have been depleted, sulphate reducing bacteria, particularly Desulfovibrio, use the low molecular weight carbon sources and the abundance of sulfate ($\mathrm{SO}_{4}{ }^{2-}$) in marine sediments as an electron receptor to produce sulphide (HS^{-}), generally in the form of hydrogen sulphide ($\mathrm{H}_{2} \mathrm{~S}$; Figure 2.1; Pearson 1980, Goodman et al. 1995, Samis et al. 1999 Wang and Chapman 1999, Hyland et al. 2005). The sulphide gradient is often characterized by a black iron sulphide precipitate and a distinct rotten egg odour (Podger unpublished). Within sediments and porewater, the hydrogen sulphide may become trapped and remain acutely toxic to benthic infaunal invertebrates for extended periods of time. However, at the SWI, $\mathrm{H}_{2} \mathrm{~S}$ readily converts to the non-toxic SO_{4} in the presence of oxygen (Podger unpublished), with a short half-life
(approximately 20 minutes, Östlund and Alexander 1963). Hydrogen sulphide can have a toxic effect on benthic marine invertebrates, fish and marine vegetation such as eelgrass (e.g. Goodman et al. 1995, Wang and Chapman 1999, Pederson et al. 2004, Hyland et al. 2005, Elliott et al. 2006, Podger Unpublished). The ability to mix oxygen into the upper sediment layers that contain wood waste may help to reduce $\mathrm{H}_{2} \mathrm{~S}$ production.

Sulphides in the sediment can also be oxidized to the non-toxic SO_{4} by species of the multicellular filamentous chemosynthetic bacteria, Beggiatoa (Pearson 1980). Beggiatoa spp. are widely distributed in coastal sediments with a high organic load (Amend et al. 2004) and are limited to the zone of transition between aerobic and anaerobic environments. Dense white bacterial mats (between $0.5-3.0 \mathrm{~cm}$ thick) form when the oxygen-sulphide transition zone exists at the SWI (Figure 2.1; Podger unpublished, Pearson 1980, Jørgensen 1977, Mußmann et al. 2003). Beggiatoa spp. will continue to use hydrogen sulphides, keeping the underlying sediment anaerobic by creating a membrane of dense bacterial mats over the sediment, and obstructing the recovery of degraded sediments. In these conditions fish prey species occur in extremely low abundances and the resulting low dissolved oxygen conditions can become uninhabitable to many fish species (SAIC 1999). The presence of Beggiatoa mats can therefore be a good indicator of organic enrichment (i.e. TOC) from anthropogenic activities such as aquaculture or wood-processing (Fenchel and Bernard 1995, Elliott et al. 2006). However, the presence of the dense white mats is dependent on site-specific conditions, namely the presence of the oxygen-sulphide transition zone at the SWI. When the aerobic-anaerobic boundary falls below the sediment surface, large numbers of inconspicuous Beggiatoa spp. may occur in the top few centimeters of the sediment (predominantly 0.5 2.5 cm), often as the dominant organism, without forming large white mats on the surface (Jørgensen 1977, Mußmann et al. 2003). Beggiatoa spp. are classified by their gliding motility and have been shown to vertically migrate in sediment with a rapid change in the depth of the oxygen-sulphide transition zone (Jørgensen 1977, Mußmann et al. 2003). The presence of oxygen at the SWI, or within the first few centimeters of the sediment, can be both temporal (influenced by season) or spatial (influenced by wave action transporting oxygen into the SWI, by the bioturbation of benthic marine invertebrates in the surficial sediment layers, or by heterogenous distribution of wood waste in surfical sediments) (Podger unpublished, Jørgensen 1977, Fenchel and Bernard 1995, Elliott et al. 2006). For example, a study by Jørgensen (1977) found that the mats were only visible for short periods of the summer when bottom waters became stagnant and partially or totally depleted of oxygen.

In addition to nitrate and sulphate, bacteria in anaerobic marine sediments can also produce methane $\left(\mathrm{CH}_{4}\right)$ (see Figure 2.1). In this process, the lower molecular weight organic forms, such as lactate and acetate, are fermented by anaerobic methanogenic bacteria to produce methane (CH_{4}; Figure 2.1; Pearson 1980). In marine sediments, methane production does not normally occur, with the exception of pockets of decaying material (Pearson 1980), possibly due to reduced activity at temperatures below $10^{\circ} \mathrm{C}$ (Samis et al. 1999) As with hydrogen sulphide, methane may remain in the interstitial spaces of the sediment until it migrates up to the water column.

2.1.4 Impacts to Benthic Communities

Benthic infauna are important components of nearshore marine ecosystems, driving detrital decomposition and nutrient cycling and providing a food source for higher trophic level organisms. Since these organisms live in close association with the surface sediment, and are often sedentary, they are influenced by the direct and indirect effects of wood waste (see Section 2.1.1 to Section 2.1.3). A small amount of natural organic matter in nearshore marine benthic ecosystems provides an important source of food to benthic communities; however, high levels of organic matter lead to oxygen depletion, a build-up of toxic byproducts, and decreases in abundance, biomass and species richness of benthic infauna community organisms (e.g. Hyland et al. 2005; Figure 2.1 and Figure 2.2).

If wood waste is thinly deposited, sedimentation over the wood waste may allow for the natural recovery of the benthic infauna community over longer time periods. However, if wood waste accumulations are deep, sedimentation will not allow for recovery, since sulphides, ammonia, and to a lesser extent methane, will permeate through recently deposited materials (Figure 2.1; Washington State Ecology 2013).

2.1.5 Indicators of Impact

The impacts of wood waste on an area depend on the nature and extent of the wood waste in combination with site-specific biophysical conditions (Washington State 2013). Therefore, universal thresholds of impact do not exist and must be developed for a site based on the results of the impact assessment. However, certain indicators can be used in the assessment of impacts from wood waste on the benthic community.

2.1.5.1 Wood Waste Surficial Cover

Assessments of wood waste impacted sites in Washington state have used Kendall and Michelsen's (1997) findings to develop initial screening guidelines to target potential areas of wood waste impacts (Washington State 2013). Under these guidelines, surficial cover of $5-25 \%$ wood waste indicates a possible need for further investigation, while $>25 \%$ should be investigated further due to the adverse impacts to the benthic community. However, wood waste assessments in Washington State have found that areas with finer wood waste accumulations (such as small chips or sawdust) have a greater impact with less surficial coverage, and propose using a visual surficial cover of 5%, as opposed to 25%, to screen for potential biological impacts (Washington State 2013).

2.1.5.2 Bacterial Mats

While the presence of white bacterial (Beggiatoa sp) mats are indicative of high organic content (i.e. high TOC concentrations), they can be variable and indistinguishable under certain conditions, particularly seasonally with differences in oxygen at the SWI (outlined in Section 2.1.3). In combination with bacterial mats, several sediment chemistry analyses can also be used as indicators of degraded sediment conditions and deleterious effects on benthic fauna; however, natural baseline levels for sediment chemistry analyses vary between habitat types and should be considered in the interpretation of habitat quality impacts.

2.1.5.3 Total Organic Carbon

Naturally elevated levels of organic carbon are found associated with productive habitats in nearshore coastal ecosystems that generate high levels of detrital organic material, such as estuaries, eelgrass beds and kelp beds. Aside from these habitats, marine sediments generally have a low organic composition, measured as total organic carbon (Phillips 1984, Libes 1992). Therefore, elevated organic matter can result from accumulation of organic material derived from the detrital food chain or from organic enrichment by anthropogenic activities (e.g. aquaculture industry, sewage outfalls, and wood waste deposits). While naturally-derived organic matter forms an important food source for benthic fauna, an overabundance in surficial sediments will lead to a depletion of oxygen, the production of toxic by-products (e.g. sulphides and ammonia) and the subsequent impairment of benthic communities (decreases in species abundance, species richness, and biomass; Figure 2.2, Section 2.1.3; Hyland et al 2005). As a result, total organic carbon (TOC) can be used to help identify degraded habitat quality and the presence of wood waste deposits.

The Canadian Council of Ministers of the Environment (CCME) Sediment Quality Guidelines (SQG) for the Protection of Aquatic Life and the environmental quality standards set by BC Contaminated Sites Regulation (BC CSR) do not have a developed marine sediment TOC potential level of concern. However, the US Environmental Protection Agency (EPA) was evaluating threshold effect levels for TOC based on data from the Environmental Monitoring and Assessment Program (EMAP) which demonstrated that impaired benthic communities in estuarine systems were associated with muddy sediment ($>80 \%$ silt-clay) with moderate TOC content ($1-3 \%$) while unimpacted communities were associated with sandy sediment (<20\% silt-clay) and low TOC content (<1\% ; US EPA 1999). Similarly, a global meta-analysis conducted by Hyland et al. (2005) for coastal marine ecosystems proposes that TOC levels can be used as a general screening-level indicator for evaluating the likelihood of reduced sediment quality and associated impairment of the benthic community (low $\leq 1 \%$, intermediate $1-3.5 \%$, and high $\geq 3.5 \%$).

While most benthic communities will decrease in species abundance and diversity (measured as species richness) with increasing TOC, there are some Polychaete species that are dominant in polluted or degraded habitats (e.g. log handling facilities) and are good biological indicator species of elevated TOC, including (Reish and Barnard 1960, Rosenberg 1972, Conlan 1977, Kathman et al. 1984, Borja et al. 2000, Teixera et al. 2012):

- Capitella capitata;
- Armandia brevis; and,
- Prionospio cirrifera.

Figure 2.2 Conceptual Model of the Relationship between Increasing Sediment Organic Carbon, Benthic Community Response, and other Related Environmental Factors, including Oxygen Depletion and Presence of other Co-varying, Sediment-associated Stressors (Hyland et al. 2005)

2.1.5.4 Hydrogen Sulphide

Hydrogen sulphide is an indicator of sediment health since higher concentrations are directly correlated with increasing TOC and impacted benthic communities (Figure 2.2). Sulphide influences sediment toxicity in three ways: (i) increasing sediment toxicity, (ii) decreasing metal toxicity by binding with free metals and forming precipitates and/or complexes, and (iii) by affecting animal behavior (Wang and Chapman 1999). Hydrogen sulfide toxicity varies with pH and by species and life history stage; therefore, threshold levels are developed for a specific organism (Podger Unpublished, Wang and Chapman 1999). In sediment porewater, sulphide occurs in two forms, as un-ionized hydrogen sulphide ($\mathrm{H}_{2} \mathrm{~S}$) and as a sulphide ion (HS^{-}). Since $\mathrm{H}_{2} \mathrm{~S}$ can readily diffuse across the cell membranes of organisms, it has a higher toxicity and, at lower pH levels (i.e. more acidic conditions), a greater proportion of $\mathrm{H}_{2} \mathrm{~S}$ is present in the water (Wang and Chapman 1999).

Community-level effects can also occur indirectly, or as a cascading effect, when dominant or structural species such as eelgrass (Zostera marina) or horse clams (Tresus spp.) are negatively impacted. For example, hydrogen sulfide can reduce the distribution and health of native eelgrass beds, which normally provide cover for invertebrates and fish that feed sea birds and marine mammals (Pederson et al. 2004, Elliott et al. 2006). Hydrogen sulfide has also been shown to reduce the diversity of benthic invertebrate communities that aerate the sediment through bioturbation and are a large source of food for higher trophic species including crab, river otters and sea birds (Goodman et al. 1995, Wang and Chapman 1999, Hyland et al. 2005).

The CCME SQG for the Protection of Aquatic Life and the US EPA Marine Sediment Screening Benchmarks have not developed a marine sulphide (as $\mathrm{H}_{2} \mathrm{~S}$) potential level of concern. However, the US EPA saltwater quality criterion for hydrogen sulphide is $2 \mu \mathrm{~g} / \mathrm{L}$ (US EPA 1986), which can be used as a general indicator of water quality.

2.1.5.5 Ammonia

High levels of ammonia are difficult for marine organisms to excrete, leading to a buildup in the tissues and potentially death. Ammonia toxicity can change with environmental factors, such as pH and temperature, as this influences the equilibrium between un-ionized $\left(\mathrm{NH}_{3}\right)$ and ionized ammonia $\left(\mathrm{NH}_{4}{ }^{+}\right)$(Wang and Chapman 1999). An increase in one pH unit will increase the concentration of the more toxic un-ionized form tenfold, while a $5^{\circ} \mathrm{C}$ increase in temperature can increase this form $40-50 \%$ (CCME 2010). CCME SQG for the Protection of Aquatic Life and the US EPA Marine Sediment Screening Benchmarks have not developed a total ammonia potential level of concern for marine ecosystems; however, the US EPA saltwater quality criterion for un-ionized ammonia is $35 \mu \mathrm{~g} / \mathrm{L}$, which can be used as a general indicator of water quality. Ammonia is easily diluted and flushed in the water column and not likely to be as critical an indicator as $\mathrm{H}_{2} \mathrm{~S}$.

2.1.5.6 PH

CCME water quality guidelines for the Protection of Aquatic Life outline an acceptable range of $\mathrm{pH} 7.0-$ 8.7 for marine and estuarine environments based on the pH range observed in Canadian coastal water, unless it can be demonstrated that pH is a result of natural processes (CCME 2010).

2.2 Study Location and Site Descriptions

2.2.1 Esquimalt Harbour Marine Environment

Esquimalt Harbour is located along the southeastern end of Vancouver Island off the Strait of Juan de Fuca and comprises several smaller bays and coves with many small rocky islets (Figure 1.2; BCMCA 2016). In its entirety, the Harbour encompasses approximately 354 hectares (50 hectares of intertidal area and 304 hectares of subtidal area) and 20.0 km of shoreline (excluding islands; Archipelago 2004), with the federal DND portion of the Harbour encompassing an area of 343 hectares.

The natural shoreline, ranges from sand and gravel beaches to rocky shores, which has largely been maintained along the west and northeast sides of the Harbour. Shoreline in the southwest and much in the southeast (i.e. Constance Cove) has been altered by dredging, infilling, and hardening to support industrial and naval activities (CRD 2016). The Harbour is relatively quiescent, with semi-protected to protected shoreline exposure (i.e. relative exposure to the elements, primarily waves) classification and very low tidal currents ($0.001-0.045 \mathrm{~m} / \mathrm{s}$) (BCMCA 2016). Research investigating the sediment transport pathways in the harbour indicates that the harbour is in a dynamic equilibrium with little net sediment transport. Two major transport regimes are present and converge around the mouth of Constance Cove and the DND Jetties at Colwood - one moving from the Harbour mouth and one down from the head of the Harbour (Hemmera 2002).

The Harbour is relatively shallow, ranging from five to 12 m Chart Datum (CD) in depth within the limits of the Federal Harbour, and a maximum depth of 16 m CD at the Harbour entrance (CRD 2016; Figure 1.2). The subtidal benthic substrate is dominated by 87% fines (gravel, sand, and mud) with a few subtidal bedrock outcrops (CRD 2016). Sediment in the upper portion of the Harbour and around Plumper Bay is mainly silt, with large areas of organic wood waste cover, while the southern areas have higher proportions of sand.

There are several natural and manmade freshwater inputs into the Harbour. Millstream Creek flows into the head of the Harbour, draining a watershed of 2,842 hectares (including a storm drain network), with a stream length of 16.5 km terminating in a large intertidal mudflat (extending as far out as Cole Island during some low tides) (CRD 2016; Figure 1.1). Flooding and erosion of the lower watershed streambanks have been identified as a main environmental concern for the Millstream Creek Watershed, which can deliver large quantities of fines to the Harbour. Additionally, there is an unidentified stream in the View Royal area, at the north end of the harbour, outside of the federal harbour limit, that discharges the Price Creek Watershed (CRD 2016). The stream is approximately one kilometre long. There are 97 storm water drains that discharge directly into the Harbour (CRD 2016). The Capital Regional District (CRD) completes an
annual stormwater quality sampling program for Victoria and Esquimalt harbours which include fecal coliform (human health) levels for the stormwater discharges and an evaluation of contaminants of concern in stormwater sediments (Hemmera 2002).

2.2.2 Pedder Bay Marine Environment

Pedder Bay is located approximately twelve kilometers to the southwest of Esquimalt Harbour, in the Strait of Juan de Fuca, and was chosen as an out-of-Harbour reference location (Figure 1.2) due to its proximity to Esquimalt Harbour, similarities in bathymetry, in shoreline and subtidal substrates, and in wind and wave exposure, and its use in previous studies as a reference location not anticipated to have contamination that substantially affects the environmental conditions (studies summarized in SLR 2016).

The natural shoreline primarily consists primarily of rocky intertidal shores, with a mudflat located at the back of Pedder Bay at the terminus of Pedder and Cripple Creeks (BCMCA 2016). Minimal infrastructure are present within the harbour; however, the shoreline along the southwest has undergone some alterations to support Canadian Forces activities at Rocky Point. Like Esquimalt Harbour, the tidal currents are very low ($0.001-0.045 \mathrm{~m} / \mathrm{s}$; BCMCA 2016) and shoreline exposure is categorized primarily as semi-protected to very protected; however, the southwest shoreline is semi-exposed to waves generated locally within the Juan de Fuca Strait (Baird and Associates Coastal Engineering Ltd 1991, BCMCA 2016). No information is available on the sediment transport pathways within Pedder Bay.

Similar to Esquimalt Harbour, Pedder Bay is also relatively shallow, ranging from $5-10 \mathrm{~m}$ CD in depth; although depths do exceed 20 m at the entrance to the Bay (Baird and Associates Coastal Engineering Ltd 1991). Subtidal benthic substrates are classified as a mixture of flats and depressions with a mudflat extending into the subtidal at the back of the Bay. Freshwater input to Pedder Bay is received from both Pedder Creek (107.0 ha watershed including storm drain areas, 1.5 km main stream length) and Cripple Creek (296.7 ha watershed including storm drain areas, 3.5 km main stream length) drains (CRD 2016).

2.3 Historical Activities and Contamination

The objective of this section is to document historical use of the Harbour and associated upland properties, to review previously identified Areas of Potential Environmental Concern (APECs) and Contaminants of Potential Concern (COPCs) associated with on and off-site activities and that may have impacted sediment quality in the Harbour. Additionally, this review was also used to identify the sources of wood waste deposition that may be affecting benthic sediment quality and communities. For the purposes of this historical review, the area from the high water level (HWL) seaward, including the subtidal zones within the Federal limits of the Harbour, was investigated (see Figures 1.1 and 1.2). Lands above the HWL were classified as being out of the study area or offsite.

2.3.1 Activities and Contamination Review Methods

The review is consistent with guidance from Breems and Goodman (2009) and Washington State (2013) and includes both current and historical operations within the Harbour, as well as concerns associated with the historical use of adjacent and up-gradient properties. Sources of information reviewed included:

1. Previous environmental reports;
2. Aerial photographs review;
3. Search of the Federal Contaminated Sites Inventory (FCSI);
4. Search of the British Columbia Ministry of Environment (BC MOE) Environmental Violations and Management Authorization databases; and,
5. Search of the CRD Online Harbours Atlas for any reliable data/background.

The background review relied on the information presented in past environmental reports of the Harbour to compile relevant information on the history of property development and land use in and along the shore of the Harbour. Reports summarizing environmental investigations included significant information on historic operations that may have affected the seafloor in the study area, including:

- Bright 1993. An Environmental Survey of Esquimalt Harbour: Part I. Historical Inputs, Marine Sediment Contamination, and Biological Uptake. Report prepared for the Director General Environment, Department of National Defence by the Environmental Sciences Group, Royal Roads Military College;
- Hemmera 2002. Esquimalt Harbour Environmental Baseline Study. Esquimalt Harbour, British Columbia. Prepared for Transport Canada; and,
- Golder 2006a. Phase I Environmental Site Assessment and Supplemental Sediment and Crab Sampling Investigation, Esquimalt Harbour. Volume I of III. Prepared for Public Services and Procurement Canada Project. Victoria, British Columbia.

Previous investigations have focused on contamination issues resulting from ship repair activities, filling of Harbour areas and poor handling of chemicals. The sections following provide additional information by identifying the nature of historic land use and site development activities on the properties and tracing the lease history.

As the Project Area is comprised mainly of the Harbour floor, the review of historical activities and contamination was focused on the potential environmental impact on the federal harbour resulting from operations within the Harbour as well as, at neighbouring and surrounding properties. The review covers nine (9) areas that have been placed into 6 headings based on their location (Figure 2.3), and covers the following properties:

Esquimalt (Including the Township of Esquimalt and the Department of National Defence Facilities;

Areas 1-4)

- DND - CFB Esquimalt Dockyard
- Former Yarrow's Shipyard
- Lang Cove / DND - Naden
- Public Services and Procurement Canada - Graving Dock
- Public Services and Procurement Canada - Munroe Head

Esquimalt First Nations Reserve (Area 5)

- Former West Isle Site
- Former Fibremax Site
- A \& M Auto Site
- Fill Sites

Songhees First Nation Reserve (Area 5)

- Ashe Head
- Dallas Bank
- Fill Sites

View Royal (Area 6)

- Residential Properties
- Former Victoria Plywood Site

Colwood (Areas 7 \& 8)

- CFB Esquimalt Colwood - North and Central, including:
- Colwood Supply Depot
- Fire Fighting Training Area (FFTA)
- Fleet Diving Unit
- Fuel Depot
- Belmont Park

Harbour Floor (Area 9)

- Leased Areas, Un-leased Areas and Water Lots
- Inskip Island
- Macarthy Island
- Smart Island

2.3.2 Aerial Photograph Review

A summary of aerial photographs provides general information with regards to site configurations and activities (Table 2.2). A review of aerial photographs dated 1932, 1946, 1954, 1964, 1975, 1980, 1992 and 1997 (Appendix A) have been incorporated into the analysis of land use history presented in Section

2.3.4.

Aerial photograph review of the Harbour floor and related to the deposition of wood waste are summarized in the following table. Based on the review, the last observable date for large-scale log booming was in 1997; however, occasional log booming still occurs infrequently in the harbour within the Jones marine Lease Area.

Table 2.2 Aerial Photograph Review Summary

Chronology	Land Use
1932	Log booms are present near the entrance to Thetis Cove. Four wharves extend from a cannery operation at the location of the Fibremax log sort operation and from the former location of the Victoria Plywood Site.
1946	No log booms are present, otherwise the harbour looks unchanged.
1954	Sawmills appear to be active on the West Isle and the Victoria Plywood sites. Approximately $60-70 \%$ of Plumper Bay and Thetis Cove are covered with log booms supplying these operations. Log booms are present on the west side of Inskip Islands and in Paddy Passage.
1964	A sawmill is in operation on the West Isle site. Approximately 20-30\% of Plumper Bay and $50-60$ \% of Thetis Cove are covered with log booms supplying logs to this and the neighbouring Victoria Plywood operations. Log booms are now empty in Paddy Passage.
1975	Sawmills are in operation on the West Isle and Victoria Plywood sites. Approximately 50-60\% of Plumper Bay and Thetis Cove are covered with log booms supplying logs to these operations.
1980	Sawmills are in operation on the West Isle and Victoria Plywood sites. Approximately 70-80\% of Plumper Bay is covered with log booms supplying logs to these operations. Large log booms are present north of the Inskip Islands.
1992	Sawmills are no longer in operation on the West Isle and Victoria Plywood sites. There is a large reduction of log boom activity with booms only present west of the Fibremax site. Empty log booms remain in Plumper Bay and Thetis Cove. Log booms, which appear to be associated with the log sort facility on the Fibremax site.
1997	There are no log booms on the west side of Esquimalt harbour, in Thetis Cove, or Plumper Bay. Limited log boom activity appears to be associated with the log sort facility on the Fibremax site.

Additional aerial photographs from 2003, 2010, 2011, 2012, 2013, 2014, 2015 and 2016 have been reviewed using Google Earth Pro. While minor changes have occurred between 2003 and 2016, there does not appear to be any significant industrial or infilling changes within the Harbour.

2.3.3 Regulatory Information

2.3.3.1 Federal Contaminated Site Search

The FCSI includes information on all known federal contaminated sites under the custodianship of departments, agencies and consolidated Crown corporations as well as those that are being or have been investigated to determine whether they have contamination arising from past use that could pose a risk to human health or the environment. The inventory also includes non-federal contaminated sites for which the Government of Canada has accepted some or all financial responsibility.

A search of the Online FCSI was conducted on September 8, 2016 and generated greater than 100 federal contaminated sites within Esquimalt Harbour or close proximity. The results of the federal contaminated sites search are located in Appendix B: Regulatory Information. It should be noted that Esquimalt harbour was assessed under the Federal Contaminated Sites Action Plan (FCSAP) as one FCSI number and assigned as a Level 1 site.

2.3.3.2 BC MOE Environmental Violations Database

The Environmental Violations Database reports non-compliance orders, administrative sanctions, tickets and court convictions against twenty-four acts regulated by BC MOE since 2006. A search was completed for violations on September 6, 2016 and no environmental violations were listed within proximity to Esquimalt Harbour.

2.3.3.3 BC MOE Environmental Management Authorization Database

A search was conducted of the Environmental Management Authorization Database on November 9, 2016 for approved and permitted waste discharges within the vicinity of the Site. Twenty-one authorizations were on file for Victoria. None of these authorizations were within the vicinity of Esquimalt Harbour. Select details of these authorizations are provided in Appendix B.

2.3.3.4 Other Historical Information

Bright (1993) provided a series of tables in Appendix B-1 of the report, which provide a chronological listing of the Esquimalt Harbour occupants as of 1873, 1896, 1925, 1967, and current users as of the report date (1993). Copies of these tables are provided in Appendix C: Harbour Occupants.

Additionally, Hemmera (2004) reported current and historic leases of the harbour. These lease agreements are summarized in the following Table 2.3.

Table 2.3 Summary of Current and Historical Leasehold Properties

Leaseholder	Lease \#	Status	Lease Use	UTM Northing	UTM Easting
Plumper Bay Log Booming	W0306609	Current ${ }^{1}$	Log Booming	5365622.75	467813.067
Plumper Bay Log Booming	W9596354	Former	Log Booming	5365622.75	467813.067
Plumper Bay Sawmills Ltd.	104899	Former	Log Booming	5365608.057	468115.159
Greater Victoria Mill Operators Association (GVMOA)	89482 102058	Former	Log Booming	5366263.803	466872.966 467626.289
Avenor Inc. (Victoria Plywood site)	W8691194	Former	Log booming	5365931.808	467955.718

2.3.4 Site and Surrounding Land Use History

The following historical description of the Harbour is summarized from the Royal Roads Military College (RRMC) report "An Environmental Study of Esquimalt Harbour" (1993).

Prior to the British occupation of the Harbour, Lekwungen-speaking people, ancestors of present day Esquimalt Nation people, were the sole users of the Harbour. Hudson's Bay Company Chief Factor James Douglas (later Governor of the Crown Colonies of Vancouver Island and British Columbia) visited the Harbour in 1843 on a mission to seek a new site for the HBC's operations north of the 49th parallel. Although Douglas established the new fort on the shore of Victoria Harbour, he evidently saw the agricultural potential of the land that is now Esquimalt. After signing a series of treaties with local native people to acquire the area for the HBC, Douglas established three farms here to supply Fort Victoria and other HBC forts in the northwest with agricultural products. Farms were established at Colwood, in Constance Cove and in Plumper Bay with the exclusion of the First Nations Reserve at Plumper Bay.

In 1848-49 the first industrial sites were developed; a sawmill and gristmill at Mill Stream Falls. Additional infrastructure was built on the Constance Cove farm including a sawmill, flour mill and trades shops. During this period (1840s), the Royal Navy also had a presence within the Harbour and they conducted the first hydrographic survey. In 1855, the start of the first naval base was seen in the form of hospitals constructed to prepare for a potential battle with the Americans. As tensions mounted, increased construction of the naval base was seen in the Harbour. In 1860, two structures on Cole Island were built for use as powder magazines. In the early 1860's two large wooden coal sheds (1,500 ton capacity) and the Fisgard Island Lighthouse were built. The construction of the Esquimalt Naval Base was started in 1867 at Signal Hill in Constance Cove.

[^39]By 1883 the Navel Base had expanded onto the Duntze Head area and included approximately 58 buildings. The base was transferred from the Royal Navy to the Royal Canadian Navy in 1910. Pressure for a graving dock in Esquimalt Harbour increased as the base size grew. Shipbuilding and repair was already taking place by this time within the Harbour. In 1867, the construction of a graving dock was started on the southern shore of Constance Cove. By 1887, the dock was finished and began to service naval and commercial ships. Over the next 40 years the dock would service 855 ships until it was transferred to Esquimalt Naval Base.

2.3.4.1 Esquimalt (Areas 1-4)

In the late 1890s an additional shipyard was constructed in Constance Cove and in 1914 the shipyard was purchased by Alfred Yarrow. The village of Esquimalt was incorporated into the area in 1912 and began construction of a sewer system. The area of Grant Knoll was chosen for the construction of a marine railway (building 116) for the Naval Dockyard. Buildings just east of the railway (buildings 115 and 120) were built for boat maintenance. The "Factory" building (built in the mid 1860s) was the site of an engine shop, smelter and smith shop and during WWI was busy galvanizing ship parts and equipment.

Public Services and Procurement Canada began construction in 1921 on a new graving dock in Skinner's Cove, just east of Munroe Head, which disappeared as a result. By 1926 the Public Works Graving Dock was receiving ships (see Figure 2.3). Continued construction of facilities occurred following WWI. In 1925 fire destroyed the torpedo building, the old boat shed and the rigging loft, but they were replaced immediately (building 115). With the onset of World War II (WWII), increased demand in the base's facility meant increased expansion. In 1939 construction included a close-range weapons workshop, an indoor testing range building, an electroplating and chemical cleaning facility and a new gun mounting shop. The jetties were referred to as the "Dockyard Jetty" (A-Jetty), the "Refitting Jetty" (B-Jetty) and a "Naval Ordnance Jetty" (C-Jetty, the old coal wharf) (see Figure 2.3).

In the early 1940s Yarrows constructed an additional shipyard, situated just north of Munroe Head, to handle the large workload brought on by the war. Approximately $500,000 \mathrm{~m}^{3}$ of rock was blasted and used as fill in the area. Facilities at the new shipyard (Yarrows 2 Yard) included a marine railway, two building berths, lumber racks, an aluminum storage building, a finishing and paint shop, a compressor and boiler house, a winch house, an electrical shop, a joiner and pattern shop, sheet metal shop, shipwrights, riggers, plate shop/mold loft over, a pre-fabrication shop, an acetylene plant, a blacksmith shop, steel stock storage, rail and spur lines, two wharves, docking space and two cranes. Both the Yarrows shipyards and the Public Works Graving Dock saw many ships during WWII. At the end of the war the old Esquimalt Dry Dock was taken over and renovated by HMC Dockyard. In the mid-1900s shops were split and moved and new ones were built. Of note was the sheet metal workshop, which was constructed in the corner of the coal shed.

Following WWII, the Yarrows \#2 Shipyard was shut down. A portion of the yard was a crown lease, which expired in June, 1948. The Yarrows owned portion of the property was sold to Manning Timber Products for use in their sawmill operation. The mill included a drying kiln, a spur line from the Esquimalt and Nanaimo (E \& N) Railway, a transformer station and an electrical substation. The mill was in operation for only a short period and in 1959, DND acquired the property and presently has storage areas and facilities on the site. West of this area is the current Canadian Forces Sailing Association. During the 1960s, Yarrows became Versatile Shipyards (later changed back to Yarrows) and Public Works constructed EJetty adjacent to the Graving Dock. The Yarrows shipyard shut down in 1992 and the property was acquired by DND. Since then the site has undergone extensive environmental investigation. DND's C-Jetty, a ship repair facility, was closed in 1987, the area was dredged and a new concrete twin C-jetty was constructed.

2.3.4.2 Esquimalt and Songhees First Nations Reserves (Area 5)

In 1886 the E \& N Railway was built and the Esquimalt station was located near the boundary between Esquimalt First Nations Reserve and the View Royal. Todd's Cannery (1896) in the Plumper Bay area used the rail facility to export fish. In 1912, a large fuel storage tank was installed as a result of the switch to oil from coal. A machine shop was noted on the 1918 hydrographic chart. During WWII, an oil wharf, ferry slip and oil tank operated by E \& N Railway were present in Plumper Bay. The Cannery (now called Empire Cannery) was replaced in 1960 with a sawmill (West Isle Forest Products, later renamed Futura Forest Products). During this time, extensive log booming occurred at the mouth of Plumper Bay.

The 1970s and 1980s saw West Isle Forest Products (Futura Forest Products), Pacific Forest Products, Fibremax Timber Corp. and Victoria Plywood occupy the land south of Plumper Bay. All but the Fibremax site became inactive in the 1990s and clean-up/decommissioning of the sites has either been completed or is ongoing.

2.3.4.3 View Royal (Area 6)

In the 1930s, a floatplane base was located in Limekiln Cove. There was also additional industrial activity in the northern end of the harbour. In the mid-1900s, a masons yard existed in the Parsons Bridge area (over Mill Stream) as did a blacksmith shop and brass foundry. A high voltage electrical transmission line was routed to Dyke Point in 1947 for the harbour (see Figure 2.3). Extensive log Booming continued in the 1960s in the northern end of the harbour. During the 1970s and 1980s, the View Royal section of the Harbour (northern section) experienced a residential development boom. Questions exist however, about effectiveness of the septic systems of the older residences.

2.3.4.4 Colwood (Areas 7 \& 8)

In 1926, Frank Wilfert built a sawmill where the F-Jetty site is today (see Figure 2.3). A Former employee (Paul Cox) stated that the mill didn't use any chemical wood treatment and there were two booming sites, one directly in front of the mill site and the other across the harbour near the First Nations Reserve. Additional communications with residents indicated that log booming was present from Paterson Point to Dyke Point (see Figure 2.3), all the way up to Cole Island. Additional industrial activity during this time included a limekiln opposite Limekiln Cove (Patterson Point). The Cole Island magazines were moved to Patterson Point in the late 1930s, due to the requirement for fresh water access. In 1943, a "Magazine Jetty" (G-Jetty), associated with existing magazines, was present and by 1947, the "Fuel Oil Jetty" (F-Jetty) was in service (see Figure 2.3). The DND magazines were moved again, this time from Patterson Point to Rocky Point, which is southwest of Victoria (1955). The Naval Supply Depot was built in 1958, using the existing F-jetty. Later Fisgard Island was connected to Rodd Point through the addition of coarse fill material (see Figure 2.3). Little change occurred in the Colwood area during the 1960s, 1970s and 1980s. Further development of the area by DND, brought the Naval Fleet School (Pacific), the Fleet Diving Unit (Pacific), and storage space.

2.3.4.5 Harbour Floor (Area 90)

During World War I (WWI), the Royal Navy, the Royal Canadian Navy, and the Army used the magazines on Cole Island. The magazines were later moved to Patterson Point (1930s) and ownership of the island was transferred to the provincial government. Cole Island is currently under the jurisdiction of the provincial government's Heritage Properties Branch (see Figure 2.3).

With the exception of log booming in the northern portion of the Harbour from the 1940s to the 1980s and booming in the mouth of Plumper Bay to $199{ }^{2}$, there has been little to no marine activity, with the exception of navigation, within the federal harbour historically. Influences are linked to the activities of the adjacent lots. These influences include the infilling of portions of the Harbour.

Marine sediments in Esquimalt Harbour have been contaminated by historical and current operations within and adjacent to the harbour (Golder 2006).

[^40]
2.3.5 Summary of Areas of Potential Environmental Concern

Golder (2006) included an extensive review of historical literature relating to Esquimalt Harbour and surrounding areas, which was used to identify APECs for the Harbour and adjacent properties. No additional APECs were identified as part of this background review. Golder identified these APECs, in part, to develop a risk management strategy for the harbour.

In total, 104 APECs were identified which are summarized in Appendix D: Areas of Potential Environmental Concern (Table and Figures). The APECs were divided into seven categories by Golder, as follows:

- APEC Group A - Fill;
- APEC Group B - ASTs, USTs, other hydrocarbons;
- APEC Group C - Operational activities (including historical operations);
- APEC Group D - Treated timber piles;
- APEC Group E - Polychlorinated Biphenyls (PCBs);
- APEC Group F - Spills; and,
- APEC Group H - Stormwater outfalls.

Typically, a Phase I Environmental Site Assessment would link the APEC sources with areas of identified contamination. However, owing to the long, complex and varied nature of the historical activities at the Site, varied migration of contamination into sediments, and the potential for sediment transport, the source of the contaminants associated with each of the APEC was not always clear and, in most cases, could not be identified without being highly speculative. This process also does not target leachate from wood waste, or the physical impacts of wood waste.

The APECs deemed more relevant to the wood waste assessment, are excerpted from the complete table included in Appendix D and are outlined in Table 2.4.

Table 2.4 Related Areas of Potential Environmental Concern

$\begin{gathered} \text { APEC } \\ \text { ID } \end{gathered}$	Location	Issue(s) / Activity(ies)	Media Type	COPC
C7	West Isle Site, Plumper Bay	Historical operational activities associated with mill	Soil, Groundwater	Unknown
C8	Fibremax, Plumper Bay	Historical activities associated with mill	Soil, Groundwater Sediment	Unknown
C9	Victoria Plywood, Thetis Cove	Former mill activities	Soil, Groundwater, Sediment	Hydrocarbons, metals, PCBs, phenols, PAHs
C15	Cole Island	Potential waste materials from historical operational activities	Soil	Metals, hydrocarbons Possible Organics
C26	Victoria Plywood, Thetis Cove	Pollution Control Permit for discharge into harbour	Sediment	Phenols, hydrocarbons Metals
C27	Northern part of Esquimalt Harbour	Log booming causing accumulation of wood waste on sea floor	Sediments, Aquatic life	Organic material
C31	Upland area to the north and west of F Jetty, Colwood	Historical presence of a limestone handling facility, historical presence of a sawmill and booming grounds.	Soil, Groundwater, Sediment	Not known
C32	Shoreline of View Royal	Historical commercial activities in the area	Sediment, Aquatic life	Not known
C34	Esquimalt Harbour	Cable ties from log booming activities in the harbour	Sediment, Aquatic life	Metals
F1	West Isle Site, Plumper Bay	Chlorophenols from spill	Soil, Groundwater	Chlorophenols
G1	Harbour wide stormwater outfalls	Discharge of contaminated sediments from upland sources	Sediment, Aquatic life	Metals, PAHs
G2	Esquimalt Graving Dock stormwater outfalls	Stormwater outfalls	Sediment	Metals TBT

2.3.6 Background Review Conclusion

Esquimalt Harbour, and the surrounding area, have been heavily industrialized since 1848 with a long history of sawmilling and federal maritime activities. Leaseholds within the harbour used for log booming, have resulted in a large amount of wood debris being deposited on the harbour floor along with other contaminants resulting from infilling of the foreshore and historic operations and infrastructure within upland properties. While many COPCs have been studied extensively in the harbour, the assessment of wood waste and its associated physical impacts have not been examined historically.

2.4 Historical Biophysical Information Review

This section summarizes the historical biophysical information collected for the Study Area (i.e. subtidal sea floor within the Federal limits of Esquimalt Harbour, 'Harbour Floor' on Figure 2.3) and to fill any gaps through a review of pertinent existing databases to ultimately inform the current site characterization, impact assessment and future management options.

2.4.1 Biophysical Review Methods

The background review is consistent with guidance from Breems and Goodman (2009) and includes both current and historical data within the Harbour and Pedder Bay. Sources of information reviewed include:

- Duffus, H.J, J.W. Madill, W.t. MacFarlane, and P.J. Schurer. 1978. First Report on Bottom Studies of Esquimalt Harbour. Royal Roads Military College, Coastal Marine Science Laboratory Manuscript Report No 78-3. 23pp.
- Schurer, P.J., W.T. MacFarlane, and H.J. Duffus. 1979. Sub-bottom Survey of Harbours Near Victoria, B.C. 17pp
- Bright. 1995. An Environmental Survey of Esquimalt Harbour: Part I. Historical Inputs, Marine Sediment Contamination, and Biological Uptake. Report prepared for the Director General Environment, Department of National Defence by the Environmental Sciences Group, Royal Roads Military College.
- Hemmera. 2004. Victoria \& Esquimalt Harbours Environmental Baseline Study. Volume 18 (Addendum\#3) Lot A. Lot 18. Prepared for Transport Canada, Victoria \& Esquimalt Harbours Environmental Program.
- Archipelago. 2004. Subtidal survey of Physical and Biological Features of Esquimalt Harbour. Prepared for Transport Canada, Victoria and Esquimalt Harbours Environmental Program.
- SLR Consulting Ltd. 2016. Detailed Quantitative Ecological Risk Assessment to Support Environmental Risk Management, Esquimalt Harbour, BC, Esquimalt Harbour Remediation Project (EHRP), Draft \#3.

The following databases and information systems were also used:

- Capital Regional District online mapping application (CRD Atlas) and harbours information website;
- Ecosystems of British Columbia;
- Sensitive Habitat Inventory and Mapping (SHIM);
- iMapBC;
- BC Coastal Resource Information Management System (CRIMS database);
- British Columbia Marine Conservation Analysis (BCMCA);
- BC Conservation Data Centre (CDC) Species and Ecosystem Explorer;
- North Coast Watershed Atlas (NCWA), Community Mapping Network; and
- Pacific Coastal Resources Atlas (PCRA), Community Mapping Network.

2.4.2 Regional Overview

The upland areas of both Esquimalt Harbour and Pedder Bay lie within the Eastern Vancouver Island Ecoregion and the Leeward Island Mountains Ecosection and are classified as a Coastal Douglas-fir Moist Maritime Biogeoclimatic Zone (CDFmm). The CDFmm occurs along the southeastern Vancouver Island, on several Gulf Islands, and a small strip of the mainland and is limited to elevations below 150 m . Lying in the rain shadow of Vancouver Island and the Olympic mountains, it is characterized by warm, dry summers and mild, wet winters with mean annual temperature from $9.2-10.5^{\circ} \mathrm{C}$. The most common tree species in upland forest is the coastal variety of Douglas-fir (Pseudotsuga menziesii var. menziesii) which is frequently found with western redcedar (Thuja plicata), grand fir (Abies grandis), arbutus (Arbutus menziesi), Garry oak (Quercus garryana), and red alder (Alnus rubra), depending on site moisture and nutrient regime (Nuszdorfer et al. 1991).

The marine waters of both Esquimalt Harbour and Pedder Bay fall within the Georgia-Puget Basin Ecoregion, within the Strait of Juan de Fuca Marine Ecosection. Marine ecosections are defined according to physical, oceanographic and biological characteristics, with the Strait of Juan de Fuca Ecosection described as a deep trough marine area with semi-protected coastal waters and a strong "estuarine-like" outflow current (BCMCA 2016, BCMEC 2002). It is the major water exchange conduit between the Georgia - Puget Basin Ecoregion and the open Pacific Ocean (BCMEC 2002). Except for a few islets, such as Race Rocks, most of the ecosection is comprised of warm (i.e. $9-15^{\circ} \mathrm{C}$) nearshore marine waters (BCMEC 2002). Surface waters ($0-25 \mathrm{~m}$) within the Juan de Fuca Straight are characterized by an average winter temperature of approximately $8.2^{\circ} \mathrm{C}$ and average summer temperature of $10.0^{\circ} \mathrm{C}$ (Davenne and Masson 2001). The area of Juan de Fuca Strait surrounding Esquimalt Harbour and Pedder Bay is characterized as more marine than the Strait of Georgia and has an average surface salinity of $16-33 \mathrm{ppt}$ (BCMEC 2002).

2.4.3 Historic Distribution of Habitats and Species in Esquimalt Harbour

2.4.3.1 Substrate

The majority (87%) of subtidal surficial substrates in the Federal portion of the Harbour is classified as mud, sand or gravel (Table 2.5). By grain size, most of the sediments were silt and sand (33% of total subtidal area) or gravelly mud and sand (40\% of total subtidal area) (Hemmera 2004, Archipelago 2004). Some isolated bedrock outcrops are present, along with rocky seafloor adjoining rocky islands, but this only comprises 2% of subtidal area surveyed (Hemmera 2004, Archipelago 2004). Wood and bark debris were documented as mainly covering areas associated with log booming operations (Appendix E: Subtidal Survey of the Physical and Biological Features of Esquimalt, Figure 5; see Section 2.1 for a review of wood waste in Esquimalt Harbour; Hemmera 2004, Archipelago 2004).

Table 2.5 Subtidal Sediment Breakdown from Subtidal Habitat Survey of Esquimalt Harbour (Archipelago 2004)

Sediment Size	Subtidal Area	
	Area (ha)	$\%$
Gravel (>30\%)	41.0	15.3
Gravelly Mud and Sand (trace - 30\% gravel)	122.5	45.8
Sand	3.5	1.3
Silt and Sand	100.5	37.6
Silt	0	0
	$\mathbf{2 6 7 . 5}$	$\mathbf{1 0 0}$

2.4.3.2 Marine Vegetation

In 2004, vegetation, consisting of macroalgae or eelgrass, covered approximately 30% of the subtidal Harbour seafloor (Appendix E, Figure 11; Archipelago 2004). Similar to Victoria Harbour, less than 10\% of the total subtidal area in the Harbour had moderate to dense vegetative cover. In general, vegetative cover was not found on mud-sand sediments and was sparse to absent on gravel-sand-mud substrates. In the areas of $>30 \%$ wood waste (\% organic cover) vegetation was primarily sparse to negligible, with the exception of Paddy Passage, north of Inskip Islands (Archipelago 2004). In Paddy Passage macroalgae cover was moderate to dense consisting of broad kelp, green algae, or eelgrass, while sparse cover consisted primarily of filamentous red algae (Archipelago 2004).

Since depositional sediments throughout most of the Harbour are suitable for native eelgrass (Zostera marina), it was likely that the total area of native eelgrass was historically larger than today. However, dredging, infilling, and wood waste including bark and wood debris may have impacted the distribution. In 2004, a total area of 0.5 ha of eelgrass was mapped in the Harbour, split between eight small beds, ranging in size from $60 \mathrm{~m}^{2}$ to $1,630 \mathrm{~m}^{2}$, in depths of +0.5 to -0.9 m CD (Archipelago 2004). Substrates where eelgrass occurred was mainly a mix of mud and sand with gravel and shell content (barnacle hash). Of the beds identified, three had sparse to low cover ($<25 \%$; Table 2.6, Appendix E, Figure 12). Epiphytic red algae (Smithora naiadum) and diatoms were found on eelgrass blades, and other species co-occurred including: Laminaria sp., Ulva sp., Sargassum muticum, Alaria sp. and Neoagardhiella sp.

Table 2.6 Estimate of Eelgrass Bed Areas within Esquimalt Harbour in 2004

Bed Number	Location	Area ($\left.\mathbf{m}^{\mathbf{2}}\right)$
1	Grant Knoll	60
2	Lang Cove South	810
3	Lang Cove North	620
4	Munroe Head North	900
5	Ashe Head South	120
6	Thetis Cove	700
7	Limekiln Cove	1,320
8	Smart Island	820
	-	$\mathbf{5 , 3 5 0}$

Source: Archipelago 2004

2.4.3.3 Benthic Invertebrate Fauna

Benthic invertebrate fauna is a broad grouping of species that live within (infauna) and on (epibenthic) the surficial substrates of the seafloor. Infauna are divided into two size classes based on body size: meiofauna (63 to $500 \mu \mathrm{~m}$) and macrofauna ($>500 \mu \mathrm{~m}$ in length).

Infauna

Two previous environmental investigations conducted in Esquimalt Harbour have enumerated the macroinvertebrate infauna communities:

- Bright 1995-17 stations (17 in September 1993); and,
- SLR 2015 - 56 stations (12 in February 2013, 46 in July 2015).

However, these studies largely avoided areas of known wood waste debris. A subset of results from these studies are presented later in the report (Section 3.0).

Larger infauna within the Harbour has also previously been enumerated by using observations of infaunal burrows to indicate the presence of burrowing shrimp, worms, and bivalves (Archipelago 2004). Burrows were primarily found with the gravelly mud - sand substrates along the harbour entrance and western side of the upper harbour, and were not apparent in areas of wood and bark debris (Archipelago 2004). Of all the observations of fauna that Archipelago (2004) made from video surveys, the majority (81%) were made up of unmounded and mounded infaunal burrows.

Epibenthic

Both Dungeness (Metacarcinus magister) and graceful crabs (Cancer gracilis) have been observed to be distributed throughout the subtidal habitats of the Harbour on mud-sand and gravelly mud - sand substrates, while red rock crab (C. productus) are associated with coarser gravel and rocky substrates. Within eelgrass beds, Dungeness crab, graceful crab, helmet crab (Telmessus cheiragonus), and horse clams (Tresus capax) were the most common invertebrate species (Archipelago 2004). Plumose anemones were
frequently attached to logs and larger pieces of wood debris with crabs relatively abundant (Archipelago 2004). Echinoderms such as the California sea cucumber (Parastichopus californicus) and red sea urchin (Strongylocentrotus franciscanus) were noted in rocky substrates at the harbour entrance and Inskip Islands (Archipelago 2004). For observations refer to Appendix E, Figure 18-21.

Observations of Northern Abalone (Haliotis kamchatcana) have been documented within the harbour, refer to Section 2.4.4.1 below.

2.4.3.4 Fish and Fisheries

As with larger invertebrate macrofauna, fish that have been previously been identified in the subtidal environment throughout the Harbour varied in their distributions by habitat type. Fish commonly found in eelgrass beds, include: striped (Embiotoca lateralis) and pile perch (Rhacochilus vacca), threespine stickleback (Gasterosteus aculeatus), bay pipefish (Syngnathus griseolineatus), Northern ronquil (Ronquilus jordani) and gunnels (Archipelago 2004). In 2004, flatfish were the most commonly identified fish species in the outer area of the Harbour and off Inskip Islands (Archipelago 2004). Other fish such as perch and rockfish were associated mainly with the kelp beds adjacent to the islands (Archipelago 2004). For observations of fish during 2004 surveys refer to Appendix E, Figure 22).

The entirety of the Harbour and surrounding waters of the Greater Victoria area (DFO Are 19-1) are subject to a permanent bivalve sanitary closure due to concerns around potential presence of fecal coliform bacteria and other contaminants resulting from domestic sewage discharge from outfalls, docks, wharves, liveaboard boats and other sources (Golder 2006). In 2006, commercial fisheries within the Harbour were very limited. A commercial crab fishery consisting of only two licences was active in Esquimalt Harbour but restricted to specific areas due to DND security concerns, and red and green commercial sea urchin harvesting were generally conducted well outside of the harbour limits (Golder 2006). Recreationally, finfish and crab fishing was documented as occurring within Esquimalt Harbour in 2006; however, this was mostly near the mouth of the harbour and near Fisgard Island (Golder 2006).

2.4.4 Esquimalt Harbour Environmentally Sensitive Areas

North of Cole Island at the head of the Harbour is an area of shallow water and mudlfats. This habitat is used by many marine species, such as gulls and ducks, for foraging and occurs at the mouth of Millstream Creek, which is recognized as a coho spawning stream (SHIM Atlas 2016). Other fish species in the stream include: brown bullhead (Ameiurus nebulosus), cutthroat trout (Oncorhynchus clarkia), prickly sculpin (Cottus asper), pumpkinseed (Lepomis gibbosus), smallmouth bass (Micropterus dolomieu) and threespine stickleback (Gasterosteus aculeatus). Eelgrass habitat has been documented as providing critical rearing habitat for juvenile fish, such as salmon and herring, and aides in erosion control by trapping the sediment in the marine and estuarine environments. Before the harbour was industrialized, first nations harvested large numbers of herring. Cumulative herring spawn habitat index (SHI) data from Fisheries and oceans Canada based on spawn records from 1928-2009 classifies Esquimalt harbour as minor (lowest 25\%) to low (next 25\%) (BCMA: Marine Atlas of Pacific Canada).

2.4.4.1 SARA Species

A search of the BC CDC Species and Ecosystems Explorer showed that there are 7 provincially and/or federally listed marine species or sub-populations that may potentially occur in the Project area (Table 2.7, BC CDC, 2016).

Northern abalone (Haliotis kamchatcana) have previously been observed within Esquimalt Harbour associated with rocky nearshore habitat in the Esquimalt Harbour Remediation Project of C-Jetty work zone (Balance 2012), along with Duntz Head and ML Floats (Mike Waters, Pers. Comm.). There is little suitable habitat occurring within the present Project area, as much of the harbour seafloor is comprised of soft sediments (see Section 2.4.3.1 above)

Transient killer whales (Orcinus orca), harbour porpoises (Phocena phocena), and Steller sea lions (Eumetopias jubatus) have also been observed within the harbour (Mike Waters, Pers. Comm.).

Table 2.7 Marine Species at Risk with the Potential to Occur within the Project Area

Listed Species Name	$\begin{aligned} & \text { COSEWIC } \\ & \text { Status } \end{aligned}$	SARA Status	$\begin{gathered} \text { BC } \\ \text { Status* } \end{gathered}$	Habitat and Range Description	Likelihood of Occurrence
Steller sea lion (Eumetopias jubatus)	Special Concern	Schedule 1Special Concern	Blue	Marine habitats include coastal waters near shore and over the continental slope; sometimes rivers are ascended in pursuit of prey. When not on land, the sea lions may congregate at nearshore traditional rafting sites, or move out to the edge of the continental shelf	Steller sea lions have been observed in the Project Area; however, the Project Area is not considered important habitat for the Steller sea lion
Harbour porpoise (Phocoena phocoena)	Special Concern	Schedule 1Special Concern	Blue	Coastal waters and adjacent offshore shallows and also inhabits inshore areas such as bays, channels, and rivers. Mothers and young tend to move into sheltered coves and similar sites soon after parturition.	The Project Area is not considered primary habitat for this porpoise but may occur in areas adjacent to the Project area (this species has not been observed in the Project Area during surveys).
Killer whale (NE Pacific Southern resident population) (Orcinus orca)	Endangered	Schedule 1Endangered	Red	The range during spring, summer, and fall includes the waterways of Puget Sound, Strait of Juan de Fuca, and Southern Georgia Strait. Little is known about winter movements and range.	The Project Area is not considered primary habitat for killer whales, which are found more frequently in the nearshore waters of Juan de Fuca; however, they are not known to frequent the active harbours of Esquimalt and Victoria. It is considered unlikely that killer whales would enter within or adjacent to the Project Area.
Killer whale (West Coast transient [Bigg's] population) (Orcinus orca)	Threatened	Schedule 1Threatened	Red		

Listed Species Name	COSEWIC Status	SARA Status	BC Status*	Habitat and Range Description	Likelihood of Occurrence
Cutthroat trout (Oncorhynchus clarkii clarkii)	Not at risk	Not at risk	Blue	Preferred habitats are eelgrass meadows and kelp beds. Travels from streams to estuaries remaining close to shore.	The last recorded cutthroat trout in Mill Stream (flows into northeast Esquimalt Harbour) was in 1977; therefore, it is unknown if they still exist in the area (BCMOE, 2010). Cutthroat trout have not been observed in the Project Area to date.
Northern abalone (Haliotis kamtschatkana)	Threatened	Schedule 1- Threatened	Red	Found near kelp beds in the shallow subtidal and lower intertidal zones on hard substrates. Prefers areas with high wave action and currents.	There are some characteristics of the Project Area that would be favourable for abalone; however, the low wave action and currents and contaminated sediments are unfavourable. abalone were observed at the in the C jetty adjacent to the Project Area (Balanced 2012).
Olympia Oyster (Ostrea conchaphila)	Special Concern	Schedule 1Special Concern	Blue	Mainly found in the lower intertidal and shallow subtidal zones of saltwater lagoons and estuaries. They have also been found on tidal flats, tidal channels, bays and sounds, in splash pools, near freshwater seepage, or attached to pilings or the undersides of floats. On the outer coast, this oyster species is only found in protected locations. Within suitable habitat, Olympia oysters need hard substrate for settlement.	No known occurrences of Olympia oysters within the Project Area.

* Red - Extirpated, Endangered, or Threatened, Blue - Special Concern, Yellow - apparently secure and not at risk of extinction

3.0 SITE CHARACTERIZATION AND IMPACT ASSESSMENT

Wood waste impacts to nearshore benthic communities are site-specific, depending on site conditions (e.g. bathymetry, currents, sedimentation rates) and the nature of wood waste, and require a detailed site assessment and determination of site-specific impacts (Washington State 2013).

3.1 Methods

Site characterization methods were informed by wood waste assessment and remediation procedures developed by Breems and Goodman (2009) and Washington State Department of Ecology (2013), and included:

- Delineation of the nature (composition, see Table 2.1) and extent (lateral percent coverage and depth) of wood waste deposits in Esquimalt Harbour
- Characterization of existing biophysical conditions, within areas of known wood waste deposits, transition zones, and areas without wood waste including: substrate type, spatial distribution, and abundance of epibenthic and infauna biological communities
- Analysis of sediment chemistry to determine the distribution of COPCs and conventional sediment chemistry parameters associated with wood waste or wood waste decomposition by-products (including total organic carbon (TOC), pore water sulphides, ammonia, and pH).

Site characterization employed of a series of complimentary field methods to develop a comprehensive understanding of existing conditions in the Study area (see Table 3.1).

Table 3.1 Summary of Field Survey Methods Used to Determine Existing Conditions in Esquimalt Harbour

Survey Method	Objective		
	Wood Waste Delineation	Biophysical Assessment	Sediment chemistry
Side scan sonar	\checkmark	\checkmark	N/A
SCUBA Biophysical surveys	\checkmark	\checkmark	N/A
Sediment Collection (Hand cores, 0.65 m$)$ (Van Veen, 0.2 $)$ (Sonic Drill Boreholes, $\sim 5.0 \mathrm{~m})$	\checkmark	N/A	\checkmark
Benthic Infauna sampling (Van Veen, 0.2 m$)$	N/A	\checkmark	N/A

Following the site assessment, the data were used to determine any areas of Esquimalt Harbour that were impaired by wood waste, the results of which were used to inform remediation or management options (Section 4.0).

3.1.1 Field Sampling

Field sampling methods for side scan sonar, SCUBA biophysical surveys, core sampling and grab sampling are described in the following sub-sections.

3.1.1.1 Side Scan Sonar

Side scan sonar was used initially to collect imagery of the seafloor and provide information about larger features such as the distribution of larger wood waste (e.g. cut logs) and other underwater structures (e.g. debris, pilings), as well as sediment surface profiles and contours (e.g. can inform substrate composition assessment). Results were used to focus biophysical assessments on areas with wood waste deposits, and aid in the determination of the extent of wood waste.

Imaging was conducted on August 30, 2016 by Terra Remote Sensing Inc. using a towed Edge Tech 4200 operated at 300 and 900 kHz . Side scan survey lines were conducted primarily in a north-south direction and separated by 25 and 75 m to ensure adequate coverage of the seafloor. The horizontal scan range was 50 m to each side of the vessel. Mapping operations were conducted at three knots and kept at one metre depth (below the surface) throughout the survey.

3.1.1.2 SCUBA Biophysical Surveys

SCUBA surveys provide detailed information on sediment composition, the distribution of surficial wood waste and its composition, and the epibenthic community, and allow for some sub-surface sediment observations with the use of hand-held cores. While less rapid and less expensive then underwater towed video surveys, they are a more precise visual assessment method (Breems and Goodman 2009, Washington State 2013).

Survey and sample design were chosen to safely assess areas of wood waste deposits (initially delineated using the side scan sonar results), transition zones, and areas without wood waste both within the Harbour and at a nearby reference location, to:

- Visually delineate the extent of surficial wood waste and characterize the composition
- Observe and record biophysical features

Over the course of three field surveys, a total of fifty-eight 100 m long transects were surveyed: 52 within Esquimalt Harbour and six within Pedder Bay (Figure 3.1 and Figure 3.2).

- Field Survey 1: September 19-23, 2016
- Field Survey 2: October 19-21, 2016
- Field Survey 4: January 23-25, 2017

Survey methods followed those outlined in the Marine Foreshore Environmental Assessment Procedure (DFO 2003). Each transect was delineated with a 100 m long lead-weighted line and sampling occurred at stations spaced at 25 m intervals ($0,25,50,75,100 \mathrm{~m}$). Transect endpoints were georeferenced using a handheld GPS unit from the surface-support vessel. The 25 m interval sample positions were interpolated using distance along the transect with ArcGIS. At each of the five sampling locations, a $1.0 \mathrm{~m} \times 1.0 \mathrm{~m}$ quadrat was used to assess:

- Substrate type (including woody debris; \% cover; Table 3.2)
- Marine vegetation (\% cover)
- Sessile invertebrates (\% cover)
- Mobile invertebrates and fish (count)

The abundance of mobile invertebrates and fish were also documented as they were encountered along the transect. All transects were recorded using an underwater video camera for future review, as required.

Table 3.2 Biophysical Assessment Substrate Classification

Substrate Type	Size Range (Diameter)	
Bedrock/ Boulder	>256 mm	
Cobble	64-256 mm	
Gravel	2-64 mm	
Sand	$0.06-2 \mathrm{~mm}$	
Silt/Clay/Mud	$<0.06 \mathrm{~mm}$	
Other*	N/A*	
Large woody debris	Varies	
Wood waste	Cut Logs	Full size logs
	Small wood debris	$<10 \mathrm{~cm}$ diameter
	Wood chips	$6-10 \mathrm{~cm}^{2}$
	Sawdust	$10 \mathrm{~mm}^{2}$
	Woodfibre	$<10 \mathrm{~mm}^{2}$

Note: *Substrates can also include anthropogenic structures, debris and shell hash etc., all of which were characterized under "substrate - other" during field sampling.

3.1.1.3 Sediment Collection

To delineate the presence and depth of wood waste deposits, and collect sediment samples for chemical analyses, sediment cores were collected throughout the Project area, including the Pedder Bay reference location.

Three sub-surface cores were taken at 50 m intervals (stations 0,50 , and 100 m) along each SCUBA transect (Section 3.1.1.2), to a maximum depth of 0.65 m below the sediment surface. The core $(0.80 \mathrm{~m}$ long by 0.05 m diameter PVC tube) was pushed into the sediments by hand or using a one-kilogram hammer to a depth where it could no longer penetrate. The core was then capped, removed from the sediment, and a second cap placed on the bottom of the core to ensure the contents were not released. The sediment was retained in the corer during removal from the sediment due to suction created by the cap. Aboard the dive vessel, each core was visually inspected, photo-documented, and a borehole log was completed to document the vertical profile of substrate and wood waste stratification (Table 3.2). Additional information on the depth of hard substrate below the sediment surface was collected (stations 25 and 75 m) along each SCUBA transect using a one metre long metal probe marked at 10 cm intervals.

Surficial sediment samples ($0-10 \mathrm{~cm}$) were collected for chemical analyses during the SCUBA surveys using the hand driven cores and during Field Survey 3 (October $26-27,2016$) using a Ponar grab sampler ($\sim 0.15 \mathrm{~m}$ by 0.15 m) operated from the waters surface. Analysis of conventional sediment chemistry parameters can aid in the identification of areas affected by wood waste decomposition by-products (Washington State 2013). For each transect, sediment was analyzed for the following parameters (Figure

3.1 and Figure 3.2):

- Total organic carbon (TOC) - one to three samples
- Ammonia $\left(\mathrm{NH}_{3}\right)$ and pH - one sample
- Pore-water sulphides - one sample

Total volatile solids and TOC can both provide measures of sediment organic content and are indicators of wood waste in sediments. TOC was analyzed for this Project. Pore water sulphides were chosen over bulk sulphides as they provide a more accurate measure of $\mathrm{H}_{2} \mathrm{~S}$; the more toxic form to organisms (see Section 2.1.4.2; Breems and Goodman 2009). Biochemical oxygen demand may help evaluate the potential for a reduced oxygen environment but is not considered necessary to determine wood waste impacts (Washington State 2013).

Water quality data were collected during Field Survey 3, within one tidal cycle, using a YSI 600 XL MP Sonde 1.65, with an extended 50 m cord, to record values approximately one metre above the seafloor. Parameters recorded included: water temperature $\left({ }^{\circ} \mathrm{C}\right)$, salinity (g / kg), dissolved oxygen ($\mathrm{DO} \%$ and mg / L), pH and conductivity ($\mu \mathrm{s}$).

Following the completion of the first phase of the project (Fiscal Year 2016/2017), it was recommended that further delineation of wood waste depth be conducted in an area immediately north of Inskip Island where hand-held surface cores were not able to determine the maximum depth of wood waste deposits (wood waste deposits were characterized as "open at depth") during SCUBA surveys. This area was identified during the review of site history as a frequent location for log storage and near the former West Isle Sawmill
and Fibremax log sort sites. In November 2017, Field Survey 6 (November 6 - 9th $^{\text {th }}$ 2017) was initiated to determine the depth of the wood waste in this area using a sonic-drill rig mounted on a spudding barge. A total of 29 boreholes were completed during the survey; a borehole was considered complete if the borehole remained intact during extraction and native sediment was reached below wood waste deposits (Figure 3.1). Runs were completed in 5.0 m below ground surface intervals (i.e. below the sea floor), however, in some cases, up to 10.0 m penetration was required to ensure the borehole was complete (i.e. native sediment was reached).

As each run was removed from the water, cores were extruded from the drill into a sealed plastic bag and placed into a core box. Each borehole was visually inspected, photo-documented, and a borehole log was completed to document the vertical profile of substrate and wood waste stratification (Table 3.2). Once boreholes were logged and samples collected, drill cuttings were placed into labelled drums prior to characterization using the analytical laboratory results from the samples collected for disposal considerations. Drums were transported to an upland facility that could accept salt-impacted sediments for disposal. As with sediment cores above, sediment chemistry samples were taken from boreholes for the analysis of:

- TOC
- Ammonia
- Pore water sulphides
- pH

To determine the potential for dredged materials to qualify for disposal at sea (DAS), a preliminary investigation was conducted using samples taken from 10 of the boreholes during Field Survey 6 (Figure 3.1). Samples were collected from boreholes within the area of wood waste deposits north of Inskip Island and Plumper bay, along the border of, and within, the 5% TOC indicator threshold and analyzed for the DAS Minimum Sample Analytical Requirements ${ }^{3}$:

- Metals
- Cadmium, mercury, arsenic, chromium, copper, lead, zinc
- Organics
- Total polychlorinated biphenyls (PCB)
- Total polycyclic aromatic hydrocarbons (PAH)
- Physical Parameters
- TOC
- Moisture (\%)
- Grain Size Distribution (\%)

[^41]Sediment chemistry samples from all field surveys (Field Survey $1-6$) were processed on the support vessel after borehole log entries were completed (Table 3.3). Sample jars were identified using labels supplied by Maxxam Analytics (Maxxam) noting the sample number and type of analysis. The sample jars were then temporarily stored in insulated coolers at approximately $4^{\circ} \mathrm{C}$ to minimize chemical alteration prior to laboratory analysis. The coolers were transported to Maxxam as soon as possible after sediment sampling was complete (and within acceptable hold times). A site-specific chain-of-custody form accompanied the samples when delivered to Maxxam.

Table 3.3 Surficial Sediment Sample Sizes Analyzed for Sediment Chemistry from Esquimalt Harbour and Pedder Bay

Location	TOC	Porewater Sulphides	$\mathbf{N H}_{3}$	$\mathbf{p H}$	DAS Analytics (Minimum requirements)
Esquimalt Harbour	95	61	68	78	10
Pedder Bay	6	6	6	6	-

3.1.1.4 Benthic Infauna Sampling

Extensive benthic infauna datasets exist for the Harbour; including a small number at reference stations; however, most sampling has actively avoided areas of known wood waste deposits:

- Bright 1995-17 stations (17 in September 1993)
- SLR 2016 - 56 stations (12 in February 2013, 46 in July 2015)

In order to examine the impacts of wood waste on the benthic infauna community, a total of 14 benthic infauna samples were collected during Field Survey 5 (March $7-10^{\text {th }} 2017$), across sediments that exhibited a range of TOC levels in Esquimalt Harbour. Two replicate samples were collected with a Van Veen sediment grab $\left(0.1 \mathrm{~m}^{2}\right)$ at each station and field-screened through a 1.0 mm sieve using unfiltered seawater. Material retained on the screen was transferred to jars and preserved with 10% buffered formalin. Only samples penetrating at least 10 cm into the sediment, with no evidence of major washout or slumping, were processed. Sediment in Pedder Bay was very consolidated and grab samples were unsuccessful (i.e. sediment recovery did not meet the required quantities for analysis of benthic infauna community).

3.1.2 Laboratory Analysis

Sediment chemistry analysis and benthic infauna community analysis were performed at independent accredited lab facilities as follows.

3.1.2.1 Sediment Chemistry

All sediment chemistry analysis was performed by Maxxam Analytics.

Quality assurance and quality control (QA/QC) for the sediment samples included collecting a minimum of one duplicate sample for every ten samples analyzed (i.e., 10% field duplicates) and submitting to the lab using a blind sample ID. The relative percent differences (RPDs) between the characterization sample and the field duplicate were calculated and RPDs compared to data quality objectives (DQOs).

$$
\begin{aligned}
\text { RPD }= & (\text { Absolute Value }[A-B] / \text { Average Value }((A+B) / 2)) \times 100 \% \\
& \text { where } A=\text { field sample and } B=\text { duplicate sample }
\end{aligned}
$$

In 2016 the CCME updated their Guidance Manual for Environmental Site Characterization in Support of Environmental and Human Health Risk Assessment, Volume 4 Analytical Methods which contains recommended DQOs for laboratory duplicate RPDs (Table 3.4; CCME 2016). It is recognized that these DQOs are intended for laboratory duplicates and do not include provisions for additional variability in field duplicates. However, these DQOs are considered a conservative screen for assessing the quality of field duplicates.

Table 3.4 Recommended Data Quality Objectives for Soil, Sediment and Groundwater

Parameter Category	Data Quality Objectives
Organics in Soil and Sediment	
Polycyclic Aromatic Hydrocarbons (PAHs)	50\%
Volatile organic Compounds (VOC, including BTEX*)	50\%
Hydrocarbon Fractions F1-F4	30\%
Metals in Soil and Sediment	
High variability metals: $\mathrm{Ag}, \mathrm{Al}, \mathrm{Ba}, \mathrm{Hg}, \mathrm{K}, \mathrm{Mo}, \mathrm{Na}, \mathrm{Pb}, \mathrm{Sn}, \mathrm{Sr}, \mathrm{Ti}$	40\%
Other metals	30\%
Nutrients in Soil and Sediment	30\%
Organics in Water	
VOCs (including BTEX, F1-F4)	30\%
PAHs	30\%
Metals in Water	20\%
Nutrients in Water	20\%

*BTEX refers to chemicals benzene, toluene, ethylbenzene and xylene

High RPDs may reflect variability within the sample, which can be present due to the heterogeneity of the media or nature of the contaminant distribution. Values exceeding the above DQOs are examined on a case-by-case basis.

3.1.2.2 Benthic Infauna

Benthic infauna community was analyzed by Biologica Environmental Services Ltd. (Biologica). After a period of fixation, samples were transferred to 70% ethanol and stained with Rose Bengal to aid sorting. All samples and debris retained during field screening were sorted by trained technicians using a dissecting microscope at 10-40x magnification. Samples from high volume wood waste areas were sub-sampled.

Sorting efficiency QA/QC was conducted to ensure sorting efficiency was $>95 \%$. QA/QC was performed on 19% of the samples, and any samples below 95% sorting efficiency were re-sorted in their entirety. Subsampling accuracy was assessed by sorting the remaining sample for 10% of all subsampled samples and comparing the fractions to one another to ensure a $>95 \%$ accuracy.

Organisms were identified to the lowest practicable taxonomic classification level (species wherever possible), using standard taxonomic keys and Biologica's verified reference collections, and enumerated by trained taxonomists.

3.1.3 Data Analysis

To delineate the presence of wood waste and its potential effects within Esquimalt Harbour, the surficial extent and depth of wood waste were mapped and compared with sediment chemistry and existing benthic community data.

3.1.3.1 Wood Waste Delineation

The lateral or surficial extent of the wood waste was documented during SCUBA surveys and mapped as percent cover, while the depth was estimated and mapped using measurements of wood waste collected from the hand-held sediment core and sonic drill data. The sonic drill investigation (Field Survey 6) followed previous field surveys, in order to target an area immediately north of Inskip Island where hand-held surface cores were not able to determine the maximum depth of wood waste deposits (wood waste deposits were characterized as "open at depth") during SCUBA surveys. Wood waste was characterized by size as described in Table 2.1. The depth of wood waste was estimated by interpolating the beginning and ending wood waste depths within the core to create top and bottom surfaces and estimating the volume between these two surfaces. In cases where wood waste occurred to the bottom end of the core, the layer was marked as 'open at depth' indicating that the wood waste depth is unknown for this sample location.

Since wood waste surficial cover and depth measurements were based on point observations at sample stations along transects, distribution maps were developed by interpolation using kriging and Surfer v14®. Kriging models the relationships between known sample station values by assuming that the distance or direction between sample points reflects a spatial correlation that can be used to explain changes in the pattern, the resulting figure represents estimates of distribution for each parameter between known sample station values. The interpolated figures were created in ArcGIS $10.5 ®$ to visualize the distribution of wood waste coverage and wood waste depth patterns.

The total volume of the wood waste in Esquimalt Harbour was estimated using ArcMap 10.5® to calculate the volume between the sea floor and the bottom of the wood waste deposit, using interpolated results. Wood waste deposits were covered with varying depths of silt in some areas and, in these cases, the overlying surficial sediment was included in the total volume estimated, as it would also need to be dredged
during remediation. To visualize the wood waste deposits, information on wood waste depths were also imported into ArcGIS $10.4 ®$ from the borehole logs and used to create stratification/cross section profiles at six locations in Esquimalt Harbour.

3.1.3.2 Biophysical Assessment

Epibenthic Observations

Epibenthic communities were recorded during SCUBA surveys as percent cover for each of the sample stations along each transect for vegetation and sessile organisms, and as counts of individuals for mobile organisms. Descriptions of the biophysical environment were summarized qualitatively. Similar to the distribution maps for wood waste surficial coverage and depth, distribution maps were created for both bacterial mats (Beggiatoa spp.) and diatoms using percent cover observations and the interpolation method described above (Section 3.1.2.1).

Infauna Community

Summary metrics from the results of the benthic infauna sampling were calculated for each sample station to assess the distribution of community composition and included:

- Quantity Indices
- Abundance (total number of individuals)
- Diversity and Evenness Indices
- Species Richness (S) - Total number of unique taxonomic groups
- Shannon-Weiner Diversity Index (H^{\prime}) - Accounts for species richness and evenness
- Pielou's Evenness (J) - Quantifies distribution of individuals among the taxa
- Swartz's Dominance Index (SDI) - the number of taxa that account for 75% of the total sample abundance. A lower SDI indicates the sample is dominated by only a few species.

The relative proportion of taxonomic groups was also calculated to highlight the dominant species in each sample.

3.1.3.3 Sediment Chemistry

Sediment chemistry was characterized using TOC, pore water sulphides, ammonia, and pH as indicators of areas impacted by wood waste decomposition by-products (see Figure 2.1). Sediment chemistry distribution maps of TOC, pore-water sulphides, ammonia, and pH were created using the interpolation methods described above (see Section 3.1.2.1).

Since TOC is a measure of organic content in the sediment, it is assumed that TOC levels are indicative of particulates/wood fibres resulting from historic log boom storage/sorting practices in the Harbour. Pore water sulfides and ammonia provide an additional indication of potential toxic by-products resulting from the anaerobic breakdown of TOC. Finally, pH values influence the toxicity of both sulphides (Section 2.1.5.4) and ammonia (Section 2.1.5.5) to aquatic life and should be considered in the analysis.

3.1.3.4 Wood waste Impact Assessment

To assess the relationship between the benthic community, the presence of wood waste, and sediment chemistry parameters associated with the breakdown of wood waste in Esquimalt Harbour, multivariate statistical analyses was undertaken to investigate the impact to both infauna and epibenthic communities. Depending on site-specific conditions statistically significant correlations between biological data and sediment chemistry data may or may not be present (Washington State 2013).

Sediment Chemistry

Spatial regression analyses were conducted using GeoDa ${ }^{\text {TM }}$ software (Anselin 2003) to determine the relationship between each of the dependent sediment chemistry parameters measured (TOC, pore-water sulphides, ammonia, and pH) and wood waste deposit depths. A stepwise regression comparison approach was used. First, four ordinary least squares regressions were created for each of the dependent variables. Several diagnostics were used to assess for presence and type of spatial dependencies in the data (Anselin et al. 1996), with Moran's I, Lagrange Multiplier, and Robust Lagrange Multiplier tests used to estimate spatial autocorrelation. If autocorrelation was detected, the appropriate spatial model was run (Anselin 2005). Finally, an assessment for heteroskedasticity and non-normality was conducted.

Epibenthic Community

Analysis of the epibenthic community was also conducted using multivariate analyses in PIMER software (v.6.1.2, Primer-E Ltd.). To test for differences among epibenthic species assemblages within varying levels of TOC, a permutational MANOVA (perMANOVA) was conducted using the software package PERMANOVA (Anderson 2001, Andersen et al. 2008). PerMANOVA can determine within group variation, which addresses many common violations of analyzing ecological data. Significant differences among groups of species (P) were determined by permutation tests under the null hypothesis of no relationship, termed pseudo-F. To test for significant differences among levels of TOC, a one-way perMANOVA was run, which is similar in nature to a one-way ANOVA, except it compares how all the species in each group relate among TOC levels, rather than just a single species or variable.

An analysis of species contribution to the similarity among areas of differing TOC levels was also conducted using SIMPER (similarity percentage analysis) within PRIMER ver. 6 (Clarke and Gorley 2006). SIMPER identifies the amount each taxon contributes to the Bray-Curtis similarity within each habitat and the dissimilarity among habitats. In addition, a SIMPER was used to identify key indicator species for each TOC level and how consistently a species contributes to this difference. When the dissimilarity value (δ) is divided by the standard deviation (SD), values greater than approximately 1.4 indicating a strong indicator species (Clarke and Warwick 2001).

A distance-based linear model procedure (DISTLM) in PERMANOVA was used to identify sediment chemistry parameters (TOC, sulphide, ammonia, and pH) explaining variation among the epibenthic community of sample locations. DISTLM is a multivariate multiple regression or distance-based redundancy analysis (dbRDA) technique (McArdle and Anderson 2001) that can fit environmental variables to biotic variables. Marginal tests were conducted to quantify the relationship of each sediment chemistry parameter alone, while conditional tests identify the best combination of sediment chemistry parameters, given the relationship of those previously selected in the model (i.e., the best order of variables to explain the data). The BEST routine within DISTLM was used to identify sediment chemistry parameters that exhibit the greatest correlation with the epibenthic community using model selection criteria. A pseudo-F test statistic was generated using 4999 permutations to allow for a P -value of 0.0002 (Andersen et al. 2008). Results were illustrated using a dbRDA with vector overlay, showing the direction and strength of sediment chemistry parameters with the biotic data summarized by sample locations. The selection criteria R^{2} was used to explain the proportion of variation for each of the sediment chemistry parameters.

The stepwise regression comparison approach outlined above for sediment chemistry was also repeated to test for relationships between each of the sediment chemistry parameters as independent variables and bacterial mat coverage (\% cover) as a dependent variable.

Infauna Community

Both species composition and species richness were used to test for differences among sample locations as a function of varying levels of sediment chemistry parameters (TOC, pore water sulphides, and ammonia). If sediment chemistry values (TOC, pore-water sulphides, and ammonia) were not co-located with each benthic infauna station, values for the benthic infauna station were extrapolated from the interpolation of sediment chemistry data (Section 3.1.3.3). All analysis of the infauna community data was conducted using multivariate analyses in R Statistical software (R Core Team 217).

Differences in species abundance were examined with Canonical Correspondence Analysis (CCA; using the VEGAN community package; Oksanen et al. 2018). The CCA analysis is a multivariate method used to examine the relationships between biological assemblages of species and their environment and was used to identify sediment chemistry parameters driving any variation in community composition between sample locations. Significant differences among species composition at each sample location were determined by permutation tests under the null hypothesis of no relationship. The strength of the fitted sediment chemistry parameter is estimated using the R-squared values and the p-value, the probability that the random permutation of R-squared is larger or equal to the observed value of the fitted value. A p-value <0.05 was used to determine significant difference from random.

Linear modelling was used to examine differences in species richness. The species richness was rarefied to the minimum sample numbers and a correlation test is performed between the rarefied richness and the environmental variables. The relationship between species richness at each sample location and the
sediment chemistry parameters was examined by creating a linear model with all environmental variables and selecting the best model using a stepwise model selectin approach. The best model was then used to examine correlations among species richness and each environmental parameter in the model. Correlations were then tested for significance.

Of the sediment chemistry parameters tested, the parameter identified as the best predictor of changes in community composition and richness was then used to determine the threshold of that parameter that had an impact to infauna community. The summary metrics for each benthic infauna sample locations (Section 3.1.3.2) were then plotted against the threshold and used to provide an estimate of threshold impact to species diversity. Finally, to visually display the threshold, bubble plots of summary metrics for each benthic infauna location were overlaid on the interpolated distribution for TOC, and the US EPA TOC threshold.

3.2 Results

3.2.1 Wood Waste Delineation

Side scan sonar results were used to identify the area of wood waste deposits, with a combination of visual assessments (using SCUBA surveys) and sediment coring used to refine the lateral extent and depth of deposits.

3.2.1.1 Side Scan Sonar

Side scan sonar produced 19 high resolution images of the Esquimalt Harbour sea floor (see Appendix F: Side Scan Sonar Results). From these images, seafloor features were identified, including (Figure 3.3):

- Two large areas (>100 m wide) of wood waste (i.e., sunken logs) north of Inskip Island and into Plumper Bay, and south of Cole Island
- Two smaller areas of wood waste ($<50 \mathrm{~m}$ wide), one near the mouth of Thetis Cove and one in southeast Plumper Bay
- Subtidal rocky outcrops through the Harbour
- Numerous unidentified targets such as anchor blocks, a wreck, and other anthropomorphic debris
- Bathymetric elevations

Side scan sonar data illustrated that visible surficial wood waste (logs and wood waste debris) are mainly distributed in areas of wood waste previously identified (Archipelago 2004; Appendix D, Figure 8); however, logs identified on the side scan sonar imagery did not appear as dense as those identified during Archipelago (2004) video tow surveys. Since the majority of log booming and sorting operations ceased in the late 1990's, and no log removal efforts have occurred, sediment movements within the Harbour may have resulted in the deposition of sediment over the wood waste.

3.2.1.2 Field Surveys

Surficial Extent

Visual SCUBA surveys within Esquimalt Harbour supported side scan sonar data, with areas of scattered logs (Photo 1), at times concentrated, or bark cover (Photo 2) observed in two areas: north of Inskip Island and reaching into Plumber Bay, and north of Smart Island (Figure 3.4). Areas of Esquimalt Harbour without wood waste were generally characterized by soft sediment with some minor drift marine vegetation (Photo 3). In comparison, surficial wood waste cover was not observed during any of the SCUBA surveys conducted in Pedder Bay (Photo 4).

The majority of surveyed areas within Esquimalt Harbour are categorized as having little to no visible surficial wood waste ($0-5 \%$; Table 3.5). Although a previous subtidal video survey by Archipelago (2004) covered a greater extent of the harbour (see Appendix E, Figure 3), due to different study objectives, the surveyed areas that fall outside of the Hemmera towed video and sampling areas (e.g. Constance Cove) were categorized as having little to no wood waste coverage (see Appendix E, Figure 4). Therefore, surveyed areas of minimal to high wood waste coverage ($>5 \%$) mostly overlapped between the two studies. Since 2004, it appears that the percent cover of extremely high wood waste ($>80 \%$) has decreased and the area of moderate wood waste has increased ($5-30 \%$). Differences between the two studies may be due to variations in study area, but given the side scan sonar observations, are likely due to sedimentation burying wood waste deposits in areas of extremely high wood waste cover ($>80 \%$). Since net current velocities and rates of natural sedimentation in Esquimalt Harbour are quite low ($<0.003 \mathrm{~m} /$ second tidally averaged current velocities north of Inskip Island; Anchor QEA), burial of wood waste may be attributed to the resuspension and settlement of fine-grained sediments from Harbour activities, such as propeller wash and scour, or from the net influx of sediment from Juan de Fuca Strait (Burd 216, Geosea 2009).

Initial screening guidelines, outlined by Washington State (2013), to target potential areas of wood waste impacts use surficial cover of $5-25 \%$ wood waste to indicate a possible need for further investigation, while $>\mathbf{2 5 \%}$ (or 5% where wood waste is finer chips or sawdust) should be investigated further due to the adverse impacts to the benthic community (Section 2.1.5.1).

Table 3.5 Estimates of Surficial Wood Waste Cover on the Subtidal Seafloor of Esquimalt Harbour

Wood Waste Coverage (\% cover)	Archipelago 2004		Hemmera 2017	
	Subtidal Area (ha)	\% of Area Surveyed	Subtidal Area (ha)	\% of Area Surveyed
$0-5$	225.7	77	136.53	66
$5-30$	19.5	7	48.91	24
$30-80$	11.0	4	19.19	9
>80	36.9	12	1.49	1
-	$\mathbf{2 9 3 . 1 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 6 . 1 2}$	$\mathbf{1 0 0}$

Photo 1 Representative view of a subtidal area in Esquimalt Harbour with scattered logs and fine layer of sediment and fine wood waste surrounded by bacterial mats

Photo 2 Representative view of a subtidal area in Esquimalt Harbour with continuous small woody debris and fine layer of sediment and fine wood waste

Photo 3 Representative view of a subtidal area in Esquimalt Harbour containing a silty sand substrate with drift understory kelp, shell debris, and only very sparse detritus and small woody debris

Photo 4 Representative view of a subtidal area in Pedder Bay containing silty sand substrate, with drift understory kelps, and an active infauna community signified by observable mounds and siphons

Wood Waste Depth and Volume

Sediment cores (hand-held and sonic drill) showed variation in the stratification of wood waste and surficial sediment across the Harbour, with no wood waste observed in sediment cores from the Pedder Bay reference location (Figure 3.5; Appendix G: Sediment Core Photo Examples). To further visualize the distribution of wood waste across the harbour, cross sections were also developed from borehole logs (Appendix H: Wood Waste Depth Cross Sections).

Overall, the wood waste observed below the sediment surface (i.e. not observable during SCUBA surveys) was greater than observable surficial cover (Figure 3.4), confirming that wood waste deposits in some areas of the Harbour have become mixed with, or covered by, varying depths of surficial sediments (Figure 3.5). The interpolated depth results confirmed that the two large areas of wood waste identified by side scan sonar, north of Inskip Island and south of Cole Island, are the areas with deepest wood waste deposits in Esquimalt Harbour (Figure 3.5).

Wood waste deposits in Esquimalt Harbour are characterized by small woody debris, primarily large amounts of bark with some finer wood debris (e.g. sawdust or woodfibre), with interspersed cut logs (Table 2.1). While previous studies (Archipelago 2004) and side-scan sonar results show the presence of scattered logs in areas of wood waste, the diameter of the hand-held core was too small to capture this information and logs were only encountered once during the drilling program, north of Inskip Island (Field Survey 6). Decomposition of wood waste was indicated by the presence of dark organic fine sediment in sediment cores containing decomposing wood waste (see examples in Appendix G). In areas containing wood waste, a variety of conditions were characterized during borehole logging:

- Organic sediment mixed with high volumes of wood waste (fibre and wood debris)
- Organic sediment mixed with trace to low volumes of wood waste (fibre and wood debris)
- Entirely consisting of small wood waste (fibre and wood debris)

In some boreholes, a mixture of the above conditions was present (e.g. organic sediment mixed with high levels of wood waste overlying a layer entirely consisting of small wood waste before transitioning to native silt/sand sediment). The nature of the wood waste in Esquimalt Harbour is consistent with the extensive log storage activities that occurred until the late 1990's, and the log sort and sawmills located in Thetis Cove and the headland at the Ralmax facility near Plumper Bay (Section 2.4). Wood waste deposits transitioned to underlying bedrock or native sediment, which was typically light grey to grey/brown silt/ sand with some shell debris/ shell hash, eventually reaching native clays (in areas where the sonic-drill reached these depths (see examples in Appendix G).

The total volume of wood waste and overlying impacted sediments in Esquimalt Harbour is estimated to be $332,299 \mathrm{~m}^{3}$, with the deeper wood waste deposits ($>0.25 \mathrm{~m}$) calculated to be $227,819 \mathrm{~m}^{3}$ north of Inskip Island and 31,182 m^{3} south of Cole Island.

3.2.2 Biophysical Assessment

Biophysical results from all field surveys were summarized to determine impacts of wood waste on the marine benthic community (see Appendix I: Raw Field Observations and Sediment Chemistry Data).

3.2.2.1 Physical Characteristics

The subtidal area of Esquimalt Harbour that was surveyed was characterized primarily by unconsolidated soft sediments (mean percent cover silt $=82 \%$, sand $=12 \%$). Small debris wood waste and logs were observed overlying sediments in two areas within the Harbour as identified in Section 3.2.1 above. Similar to Archipelago's survey in 2004, in shallow surveyed areas outside of the wood waste deposits, sediments were more consolidated and contained higher quantities of gravel/sand: Thetis Cove (Transect 14), immediately adjacent to Cole Island (Transect 7) and in the outer Harbour (Transect 45; Archipelago 2004)). Recent work by Anchor QEA determined that deeper areas of the Harbour are generally characterized by fines, with coarser grained sediment in pockets that may have been stripped of fines by tidal currents and propeller wash. Three small patches of rocky reef habitat, surrounded by soft sediments, were observed in the outer Harbour (Transect 45/46; Figure 3.1).

In Pedder Bay sediments were more consolidated and had higher sand content than most of the areas surveyed in Esquimalt.

3.2.2.2 Water Quality Results

Both Esquimalt Harbour and Pedder Bay are tidally driven, with low volume freshwater inputs and low wave exposure (Section 2.2). In Esquimalt Harbour, dissolved oxygen and pH near sea bottom was characterized as being moderate ($\mathrm{DO} \%$ mean $=78.9, \mathrm{SD}=6.8$) and (pH mean $=7.9, \mathrm{SD}=0.08$), with similar conditions in Pedder Bay ($\mathrm{DO} \%$ mean $=77.14, \mathrm{SD}=4.68$) and $(\mathrm{pH}$ mean $=7.7, \mathrm{SD}=0.14)$. Since conditions are comparable and Pedder Bay did not contain any surficial wood waste, or deposits of wood waste, water quality at or near the SWI in Esquimalt does not appear to be impacted by wood waste.

3.2.2.3 Benthic Community

Epibenthic Community

Esquimalt Harbour epibenthic communities were similar to those documented by Archipelago (2004). The epibenthic community in Esquimalt Harbour was relatively sparse, with several common soft bottom species observed throughout survey areas, such as: Dungeness crabs (Metacarcinus magister), graceful crab (Metacarcinus gracilis), shrimp (Pandalus spp.), and hermit crabs (Pagurus spp.). White bacterial mats (e.g. Beggiatoa spp.) appear common throughout the inner Harbour area (Photo 5, Figure 3.6) and are inversely distributed with diatomaceous mats. Diatomaceous mats were observed more commonly from mid-Harbour to the outer Harbour area (Photo 6, Figure 3.7). Similarly, Archipelago (2004) documented concentrated bacterial mats in areas of highest organic debris, such as Plumper Bay. Bacterial mats are commonly
associated with coastal sediments containing high organic content (Amend et al. 2004), such as wood waste, and will outcompete naturally occurring diatom mat communities. Fewer areas with white bacterial mats were observed during surveys conducted in winter months, likely due to increased levels of oxygen at the SWI, or the first few centimeters of the sediment, allowing for the bacteria to migrate into the sediment with the change in the oxygen-sulphide transition zone (for further explanation see Section 2.1.3). Similar to Archipelago (2004) marine vegetation was sparse to absent in soft bottomed areas and areas with surficial wood waste cover and consisted solely of drift senescent understory kelps (e.g. Saccharina latissima and S. groenlandica). Although eelgrass (Zostera marina) beds occur in the Harbour, they were not observed in the project area.

Areas with hard structure (e.g. exposed logs and rocky reef habitat) were colonized by typical encrusting and hard substrate organisms. Rocky reef habitat was colonized by coralline algae (Corallina spp), ochre stars (Pisaster ochraceus), barnacles (Balanus glandula), and red sea urchins (Strongylocentrotus fransicanus) (Photo 7), while exposed logs provided substrate for plumose anemones (Metridium senile), hydroids (Phylum Cnidaria, Class Hydrozoa) and tunicates (subphylum Tunicata; Photo 1 and Photo 8). Areas with high structural complexity also attracted recruiting fish communities of black rockfish (Sebastes melanops) (e.g. Photo 8).

In comparison, Pedder Bay transects (Transect 21 - 26) had greater presence of shrimp (Pandalus sp.) and contained a higher coverage of drift senescent kelps (e.g. S. latissima and S. groenlandica), Sarcodietheca gaudichaudii, and diatoms (Photo 4). Bacterial mats were not observed along any of the transects surveyed in Pedder Bay.

Photo 5 Representative view of a subtidal area in Esquimalt Harbour with fibre mat intermixed with silt and Beggiatoa bacterial mat

Photo 6 Representative view of a subtidal area in Esquimalt Harbour with silty substrate and a mix of diatoms and Beggiatoa bacterial mat

Photo 7 Rocky habitat with encrusting species including a red sea urchin

Photo 8 Exposed log covered in plumose anemones and diatoms, surrounded by young of the year black rockfish

Infauna Observations

Infauna holes and mounds, generally indicative of burrowing shrimps, worms and bivalves, were relatively absent from most transects. Archipelago (2004) documented patchy occurrences of infaunal burrows in areas outside of known wood waste deposits and an absence of holes and mounds in wood waste areas (Appendix E, Figure 18). In comparison, Pedder Bay had a higher incidence of holes and mounds (Photo 4).

Benthic infauna data from fourteen paired benthic invertebrate sample locations within Esquimalt Harbour were summarized to examine variation among sample locations (see Benthic Infauna Stations Figure 3.1). The distribution of abundance, species richness, species diversity and evenness indices, and relative abundance of dominant taxa are presented in Table 3.6 (complete benthic infauna data available in Appendix I).

Both abundance and species richness varied across sample locations with a high of 1321 individual organisms and 44 species for location BI-14 Rep 02 and a low of 13 individuals and 3 species at location BI-04 Rep 02 (Figure 3.1 and Table 3.6). The number of species contributing to the 75% total abundance ranged from 1 to 10 across sample stations (Table 3.6). Species composition was also variable across sample locations with most stations dominated by a single second-order opportunistic polychaete species (Armandia brevis) and two other second-order opportunistic species dominating at the remaining stations (Prionospio (Minuspio) lighti and Aphelochaeta glandaria complex; Table 3.6 and Figure 3.8). Sample locations furthest from wood waste deposits (i.e. sample locations closer to the mouth of the harbour and furthest inside the harbour) had higher diversity metrics.

Table 3.6 Benthic Infauna Community Summary Statistics by Sample Location and Level of TOC

$\underset{\text { ID }}{\text { Sample }}$	Replicate	Wood Debris Indicator	Quantity Total Abundance (N)	Diversity				Dominant Species	Relative Proportion (\%)
		тоС		Species Richness (S)	Shannon Diversity Index (H^{\prime})	Pielou's Evenness (J')	Swartz's Dominance Index (SDI)		
BI-1	01	85,000	125	15	1.75	0.65	1	Armandia brevis	89
	02		95	16	2.24	0.81	1	Armandia brevis	91
BI-2	01	63,000	128	11	1.41	0.59	5	Armandia brevis	38
	02		68	11	1.57	0.65	4	Prionospio (Minuspio) lighti	53
$\mathrm{BI}-3$	01	55,000	249	16	1.31	0.47	1	Armandia brevis	90
	02		183	17	1.70	0.60	1	Armandia brevis	85
BI-4	01	41,000	19	9	1.98	0.90	2	Armandia brevis	65
	02		13	3	0.54	0.49	4	Prionospio (Minuspio) lighti	22
BI-5	01	21,000	668	27	2.06	0.62	1	Armandia brevis	90
	02		310	35	2.91	0.82	2	Armandia brevis	69
BI-6	01	19,000	516	13	0.55	0.22	7	Ampharete.labrops	29
	02		375	5	0.38	0.24	6	Prionospio (Minuspio) lighti	22
BI-7	01	23,000	267	20	1.99	0.66	2	Aphelochaeta glandaria complex	53
	02		659	26	1.82	0.56	3	Aphelochaeta glandaria complex	46
BI-8	01	25,000	187	4	0.38	0.28	1	Armandia brevis	69
	02		408	11	0.66	0.28	5	Prionospio (Minuspio) lighti	42
BI-9	01	18,000	234	15	1.43	0.53	2	Aphelochaeta glandaria complex	55
	02		291	23	2.26	0.72	3	Aphelochaeta glandaria complex	48
BI-10	01	18,000	230	8	0.48	0.23	4	Armandia brevis	53
	02		196	13	1.13	0.44	5	Armandia brevis	31
BI-11	01	9,800	513	28	2.43	0.73	2	Armandia brevis	51
	02		844	43	2.53	0.67	2	Armandia brevis	47
BI-12	01	39,000	817	39	1.70	0.46	2	Armandia brevis	62
	02		952	43	1.88	0.50	3	Armandia brevis	56
BI-13	01	25,000	72	12	1.29	0.52	5	Armandia brevis	26
	02		71	12	1.70	0.68	1	Armandia brevis	85
BI-14	01	15,000	991	33	1.50	0.43	5	Aoroides intermedia	30
	02		1321	44	1.89	0.50	10	Tectidrilus.sp.	15

Figure 3.8 Relative proportion of each Taxonomic Group by Sample Station, Replicate, and TOC Level

3.2.3 Sediment Chemistry

The analysis of sediment chemistry parameters focussed on wood waste degradation by-products commonly associated with wood waste deposits (TOC, pore water sulphides and ammonia). Raw results by sampling station can be found in Appendix I.

3.2.3.1 TOC

Naturally elevated levels of organic carbon are found associated with productive habitats in nearshore coastal ecosystems that generate high levels of detrital organic material, such as eelgrass beds and kelp beds. However, organic enrichment of nearshore environments also occurs from anthropogenic activities, such as the aquaculture industry, sewage outfalls, and wood waste deposits (Section 2.1.3). To interpret TOC measurements, it is necessary to determine if site-specific levels are naturally elevated, using nearby reference locations, or if anthropogenic activities are contributing (e.g. locations of aquaculture tenures, storm water outfall locations, log handling and storage tenures, etc).

TOC measurements within the Harbour ranged from 5,400 to $204,000 \mathrm{mg} / \mathrm{L}$ while in Pedder Bay measurements ranged from 1,600 to $8,700 \mathrm{mg} / \mathrm{L}$ (Figure 3.9 and Figure 3.10). Elevated TOC measurements within Esquimalt Harbour do not appear correlated with storm-water outfall locations but overlap with the identified areas of wood waste deposits (Figure 3.5 and Figure 3.8). There are no known, or active, log handling/storage tenures or aquaculture facilities in proximity to Pedder Bay or Esquimalt Harbour; however, the Jones Marine Lease Area within the Harbour may occasionally be used to store log booms.

When comparing against TOC screening-level indicators for benthic impairment (Section 2.1.4), most of the area covered by the interpolated TOC distribution (200.6 ha) fell within the intermediate ($1-3 \%$) and high ($>3 \%$) impact ranges. In the area of wood waste deposit north of Inskip Island and into Plumper Bay (Figure 3.5) TOC values ranged from $33,000 \mathrm{mg} / \mathrm{L}$ or 3.3% to $210,000 \mathrm{mg} / \mathrm{L}$ or 21% (Table 3.7, Figure 3.9). TOC values within the wood waste deposit north of Smart Island (Figure 3.5) ranged from $21,000 \mathrm{mg} / \mathrm{L}$ or 2.1% to $88,00 \mathrm{mg} / \mathrm{L}$ or 8.8% (Table 3.7, Figure 3.9). A few areas in the Harbour were below the 1\% TOC screening-level indicator for little to no impairment, including Thetis Cove, adjacent to Cole Island and the western shoreline south of McCarthy Island (Table 3.7, Figure 3.9). All samples collected at the out-ofHarbour reference location (Pedder Bay) were below 1\% or low chance of benthic impairment (Figure 3.10).

Table 3.7 Estimates of Subtidal Seafloor Area by TOC Screening-Level Indicators of Benthic Impairment in Esquimalt Harbour

TOC Screening Level (\%)	Benthic Impairment	Study Area	
	Area (ha)	\% of Area	
$0-1$	Low	14.4	7
$1-3$	Intermediate	98.4	49
>3	High	87.9	44
-	-	200.6	100

3.2.3.2 Sulphides

Pore-water sulphides are a by-product of bacterial wood waste decomposition in an anaerobic environment (Section 2.1.3 and Figure 2.1) and may provide an additional indicator of wood waste impacts (Washington State 2013).

Pore-water sulphides in Esquimalt Harbour ranged from 0.01 to $219 \mathrm{mg} / \mathrm{L}$ and from 0.01 to $13.1 \mathrm{mg} / \mathrm{L}$ at Pedder Bay reference location (Figure 3.11). The Detailed Quantitative Ecological Risk Assessment to Support Environmental Risk Management in Esquimalt harbour (SLR 2016) reported pore-water sulphides in a similar range (0.0062 to $161 \mathrm{mg} / \mathrm{L}$) across Esquimalt Harbour sediments and concluded that it may be occurring at concentrations high enough to affect benthic infauna. Results of a bioassay and follow-up study with the amphipod, Rhepoxynius abronius, suggested that toxicity (i.e. increased mortality) was observed at pore-water concentrations $>10 \mathrm{mg} / \mathrm{L}$ and that elevated concentrations of pore-water sulphides are contributing to sediment toxicity in the Harbour.

While there is some overlap of higher sulphide measurements with identified areas of wood waste deposits, some sample locations with higher sulphide measurements are not correlated with known areas of wood waste (Figure 3.5 and Figure 3.11). This may indicate that sulphide levels could be driven by other factors within the harbour. However, accurate pore-water sulphide measurements can also be difficult to obtain as hydrogen sulphide readily oxidizes into less toxic forms when sediment becomes disturbed and volatilization occurs during sampling, transport, and storage (Washington State 2013, Azimuth 2017). Given the pore-water sulphide results, sulphides may not be the best indicator of wood waste-associated impacts to the benthic community.

3.2.3.3 Ammonia

Ammonia is a by-product of bacterial wood waste decomposition in an anaerobic environment (Section 2.1.3 and Figure 2.1) and may provide an additional indicator of wood waste impacts (Washington State 2013).

Ammonia ranged from 2.0 to $67.5 \mathrm{mg} / \mathrm{L}$ in Esquimalt Harbour, while at the Pedder Bay reference location it ranged from 7.0 to $19.8 \mathrm{mg} / \mathrm{L}$ (Figure 3.12). The interpolated distribution of ammonia shows more overlap with the distribution of wood waste and elevated levels of TOC than pore-water sulphides, with two areas of elevated measurements (Figure 3.5, Figure 3.8 and Figure 3.12).

3.2.3.4 pH

A lower sediment pH will increase the concentration of the more toxic un-ionized forms of sulphide (H2S) and ammonia (NH 3) and should be considered in the sediment chemistry analysis when identifying areas impacted by decomposition by-products of wood waste.

Sediment pH in Esquimalt Harbour ranged from 7.02 to 8.27 and from 7.91 to 8.24 at Pedder Bay reference location (Figure 3.13). While the range experienced in Esquimalt Harbour sediments is within the range observed in Canadian coastal waters (Section 2.1.3), pH was lower (<7.91) in certain areas of Esquimalt Harbour than in all Pedder Bay samples.

While it is variable, the interpolated distribution of sediment pH does show some overlap with the distribution of wood waste, in particular surficial coverage of wood waste (Figure 3.4 and Figure 3.13). The area of deeper wood waste deposits immediately north of the western end of Inskip Islands (Figure 3.5) exhibits consistently lower pH values (<7.7).

3.3 Wood Waste Impact Analysis

3.3.1 Wood Waste Delineation

Observable surficial wood waste cover ranged from 0 to 100% across surveyed areas of Esquimalt Harbour (Figure 3.4). The majority of the surveyed areas of the Harbour (66\%; Table 3.5) had little to no wood waste cover ($0-5 \%$), with 24% of the surveyed area covered by $5-30 \%$ wood waste, indicating the need for further investigation of impacts (using Washington State's initial screening guidelines, Section 2.1.5.1), and 10% of the study area covered by $>30 \%$ wood waste, indicating it is likely to have adverse impacts on the benthic community.

The area of wood waste deposits was greater than the observable surficial coverage (Figure 3.5), indicating that in some areas wood waste has become mixed with fine sediments or partially covered. However, notable sedimentation overlying wood waste deposits was not observed in most areas of the harbour.

3.3.2 Sediment Chemistry

Wood waste depth was a good predictor of the four sediment chemistry parameters measured (TOC, ammonia, sulphide, and pH). All regression models had significant spatial autocorrelation and required spatial models to best describe the linkages between the predictor variable, wood waste depth, and the dependent chemical variables. TOC exhibited the strongest linkage with wood waste depth (R-squared 0.54 and coefficient value of 75,528 ; Table 3.8). Ammonia and pH were also strongly linked to wood waste depth (R-squared 0.37 and 0.40 , and coefficient values of 42.93 and -/082 respectively; Table 3.8). Pore-water sulphides had the weakest linkage to wood waste depth (R-squared 0.11 and coefficient value 88.63).

Table 3.8 Spatial Regression Model Combinations and Outputs for Wood Waste Depth as an Independent Variable

Independent Variable	Dependent Variable	Coefficient	Std. Error	z-value	Probability	R-squared	Regression
Wood Waste	TOC	75528.3	16709.7	4.52	<0.001	0.54	Spatial Lag
Wood Waste	Ammonia	42.93	9.38	4.57	<0.001	0.37	Spatial Lag
Wood Waste	pH	-0.82	0.15	-5.24	<0.001	0.40	Spatial Lag
Wood Waste	Sulphide	88.63	34.73	2.55	<0.001	0.11	Spatial Lag

3.3.3 Benthic Community

3.3.3.1 Epibenthic

Although a variety of epibenthic species were observed during field surveys, the epibenthic community in Esquimalt Harbour was dominated by the following groups or organisms: bacterial mats (Beggiatoa spp.), diatom mats, and sugar kelp (Saccharina latissimia; Table 3.9). Given that TOC can be used as an indicator of the percentage of wood waste present in the sediment (Washington 2013), four categories of TOC were used to examine differences in the composition of the epibenthic community. Since there are no developed thresholds of benthic community impact for wood waste, thresholds need to be developed on a site-specific basis. TOC categories were based on the TOC screening-level indicators for benthic impairments (Section 2.1): Pedder Bay reference ($<1 \%$ TOC), in harbour $<1 \%$ TOC, $1-3 \%$ TOC, and $>3 \%$ TOC). Differences between the categories were identified to be statistically different ($\mathrm{P}=<0.001$) and pairwise tests between each were conducted to determine differences (Figure 3.14). The epibenthic community for all three in-harbour TOC categories was significantly different from the Pedder Bay reference location ($\mathrm{P}=$ 0.05; Table 3.9). Within Esquimalt Harbour no statistical difference was determined between the in-harbour low TOC and intermediate TOC $(P=0.898)$, indicating the epibenthic community in each was relatively similar and dominated by a high abundance of diatoms (Table 3.9). A statistical difference occurred between the in-harbour low TOC and the high TOC areas $(P=0.01)$ due to the high abundance of Beggiatoa sp . bacterial mats associated with areas of wood waste (Figures 3.5 and Figure 3.6; Table 3.9) while diatom mat distribution showed an inverse relationship, although slightly less consistent, with bacterial mats
(Figure 3.6 and Figure 3.7).

Table 3.9 Dominant Epibenthic Species Observed at each of the Four TOC screening-level indicators for benthic impairments

Species	Mean Abundance	Contribution to Group Similarity
Pedder Bay Reference <1\% TOC	68.53	71.56
Diatoms	29.83	15.27
Drift Saccharina latissima	22.33	9.21
Drift Saccharina groenlandica	59.55	96.97
In Harbour <1\% TOC		
Diatoms		
In Harbour 1 to 3\% TOC	57.57	94.37
Diatoms		
In Harbour >3\% TOC	43.04	59.10
Beggiatoa spp.	27.68	39.19
Diatoms		

Figure 3.14 Distance-based redundancy analysis showing the relative similarity among sample locations of differing TOC Screeninglevel Indicators and the dominant species.

While all four sediment chemistry parameters were considered predictors of bacterial mat coverage, TOC and sulphide were the strongest predictors (R-squared 0.60 and 0.49 and coefficients 0.0007 and 0.26 respectively; Table 3.10). Beggiatoa sp. is known to be associated with high levels or organic carbon, requires sulphides to produce energy, and occurs at the oxygen-sulphide transition zone (Amend et al. 2004, Pearson 1980, Jørgensen 1977, Mußmann et al. 2003). Due to its strong correlation with TOC and areas of wood waste deposits, the presence of Beggiatoa sp. can be considered an indicator of benthic community impairment from wood waste deposits.

Table 3.10 Spatial Regression Model Combinations and Outputs for Bacterial Mat Coverage as a Dependent Variable

Independent Variable	Dependent Variable	Coefficient	Std. Error	z-value	Probability	R-squared	Regression
TOC	Bacteria	0.0007	0.0002	4.15	<0.001	0.60	Spatial Lag
Sulphide	Bacteria	0.26	0.08	3.17	<0.001	0.49	Spatial Lag
pH	Bacteria	-43.15	18.97	-2.28	0.023	0.41	Spatial Lag
Ammonia	Bacteria	0.49	0.29	1.69	0.091	0.40	Spatial Lag

Other epibenthic species observed during field surveys included Dungeness and graceful crabs and shrimp. A wood waste study in Port Angeles Harbour concluded that areas of sparse, scattered, small wood debris on the sediment surface, offshore of log booming areas, provided habitat for mobile epibenthic organisms such as shrimp, crabs, and fish as long as overlying water quality was not impacted (SAIC 1999).

Large wood debris (e.g. cut log piles) have also previously been shown to function as suitable epi-benthic habitat (SAIC 1999). Both these results and those of SAIC (1999) demonstrate that logs provide hard substrate for the colonization by sessile rocky reef organisms, such as plumose anemones, and rockfish (Sebastes spp.) use the logs as habitat. However, the benefits of large woody debris as habitat for epibenthic communities can come at the expense of the benthic infauna community, due to smothering and decomposition creating anaerobic conditions (discussed in Section 2.1; SAIC 1999).

Although sparse, epi-benthic species common to nearshore marine ecosystems were present, especially in areas where epibenthic organisms were separated from the sediment-water interface (e.g. log piles). Evidence of extensive Beggiatoa sp. bacterial mats indicate some degree of benthic impairment, which requires analysis of the infauna community to determine the nature and extent.

3.3.3.2 Infauna Community

Benthic infauna community composition and species richness were influenced by all three of the wood waste decomposition by-products investigated (TOC, pore-water sulphides, and ammonia). TOC and ammonia were significant drivers (TOC $p=0.002$, Ammonia $p=0.008$) of community composition among sample locations while there was greater variation in the relationship between community composition and
porewater sulphides ($\mathrm{p}=0.18$; Table 3.11). All three sediment chemistry parameters were significantly correlated with species richness (Table 3.12); however, TOC had the strongest relationship with the least variability (correlation -0.63).

Table 3.11 CCA Model Output of Community Composition as a Function of Wood Waste Decomposition By-products

Sediment Chemistry Parameter	Df	Sum of Squares	R-squared	p-value
TOC	1	0.90	0.11	0.002
Pore-water sulphides	1	0.37	0.04	0.18
Ammonia	1	0.76	0.09	0.008
Residual	24	6.24	0.75	-
Total	27	8.27	1.00	-

Table 3.12 Linear Model Outputs and Correlation Values of Species Richness as a Function of Wood Waste Decomposition By-products

Sediment Chemistry Parameter	Estimate	Standard Error	t-value	p-value	Correlation Value
Intercept	24	2.4	10.3	<0.001	-
TOC	-0.0003	0.0001	-4.5	0.001	$-0.633^{* *}$
Pore-water sulphides	$-4.96 \mathrm{E}-01$	0.2	-2.9	0.01	-0.35
Ammonia	5.17 E	0.2	3.0	0.01	-0.22

As described in Section 2.1, impacts of wood waste depend on both the nature and extent of the wood waste as well as the site-specific conditions. Therefore, screening-level indicators (Section 2.1.5.1) for potential impairment can be used to guide wood waste assessments but site-specific thresholds should be developed to determine impairment and management options. Since TOC is the sediment chemistry parameter most strongly linked with known areas of wood waste deposits (Figure 3.5 and Figure 3.9) and to differences in benthic infauna community composition and species richness, it was chosen as the best decomposition by-product to use for the establishment of site-specific thresholds for areas of impairment of the benthic infauna community. A global meta-analysis conducted by Hyland et al (2005) proposes a screening-level indicator of intermediate benthic infauna impairment between $1-3.5 \%$ TOC. While results of the benthic infauna analysis show increased variability in the distribution of community composition and species diversity between $1-3 \%$ TOC in Esquimalt Harbour, the strength of the relationship for these moderate levels of TOC is unclear. A 3\% TOC level is more consistent with the distribution of benthic infauna community composition and species diversity among samples stations and is considered the sitespecific indicator for determination of impairment of benthic infauna due to wood waste deposits
(Figure 3.15 to Figure 3.19).

These results are consistent with a recent study of benthic infuana in Esquimalt Harbour, which concluded that benthic infauna communities generally show signs of impairment, with stations ranging in their categorization of benthic community health from heavily impacted through to low/moderate impairment with opportunist-dominated areas (i.e. sample areas indicative of slight to pronounced imbalanced situations dominated by subsurface polychaete deposit-feeders; Biologica 2016). However, the sampling effort did not include areas of known wood waste deposits, except for three sample stations that were taken within the Ashe Head Remediation Area in Plumper Bay. The Ashe Head Remediation Area falls within the lower range of TOC values ($1-3 \%$) and stations were categorized by Biologica (2016) as low/moderate benthic community impairment, due to high summary metrics (e.g. abundance, species richness, diversity) along with the presence of pollution-sensitive taxa, some large bioturbators, and a large number of non-cirratulid opportunistic polychaetes indicative of reduced sediments or organic pollution.

Similar to Biologica (2016), all benthic infauna stations had very few large bioturbators or pollution-sensitive taxa and an elevated abundance of pollution- or disturbance-tolerant, opportunistic taxa. Other studies have documented similar results, for example, in Port Angeles Harbour the infauna community associated with log booming grounds (characterized as having abundant small woody debris such as bark and logs) consisted primarily of small, pioneering organisms that live at or near the SWI (e.g. surface feeding or filtering organisms), with some azoic areas showing no evidence of benthic infauna colonization (SAIC 1999). However, none of the benthic infauna stations sampled for this Project were classified as functionally azoic with minimal microbenthic function; therefore, benthic infauna communities ranged from somewhat disturbed/impacted to low to moderate impairment. Impairment to benthic infaunal communities appears highest north of Inskip Island, where Beggiatoa sp. mats were most concentrated and quantities of infauna organisms were moderate to normal but dominated by one opportunist species (SDI = 1).

Annelid Polychaete worms (Spionid Polychaete Prionospio (Minuspio) lighti and Opheliid Polychaete Armandia brevis) were present at all fourteen benthic infauna stations monitored during this Project, with the majority of stations dominated by one or the other (Table 6). Both species inhabit the top surface layer of sediments, deposit-feeding only at the SWI and are categorized as second-order opportunists which thrive under impacted conditions prohibitive to other species (e.g. P. lighti) or are associated with high levels of wood waste (A. brevis; Borja 2000, Kathman et al 1984, Teixera et a. 2012). Station BI-9 and BI-7, closer to the outer harbour, were dominated by the second-order opportunistic Cirratulid Polychaete complex Aphelochaeta glandaria.

The presence of large bioturbators allows for sediment reworking and oxygenation, particularly if they reach mature size, but many are pollution-sensitive or have unknown tolerance to disturbance (Biologica 2016). All benthic infauna stations in Esquimalt Harbour were relatively devoid of commonly-found large bioturbators, with the exception of Macoma nasuta, a bivalve Mollusc found at all stations in low numbers and commonly found in organically enriched sediments (Ranasinghe et al. 2013; Table 3.13). The occurrences of M. nasuta were primarily juveniles, with only a few intermediates and adults noted. Observations of pollution- or organic enrichment-sensitive taxa were limited to stations located between 1 3% TOC, with the exception of BI-4 (4.1\%) and were almost entirely juveniles (Table 3.13).

Table 3.13 Summary of Benthic Infauna Impacts

$\underset{\text { ID }}{\text { Sample }}$	Quantity*	Diversity*	Proliferating opportunists (>50\%)	Stimulated by organic enrichment	Sensitive to Enrichment	large bioturbator
BI- 1	Moderate to Normal	opportunist dominated	Opelidae (Armandia brevis)	Spionidae (Prionospio (Minuspio) lightii) very low	-	Macoma nasuta (1 a) Macoma sp (1 a, 2 juv)
BI-2	Moderately Impoverished	very low	-	Spionidae (Prionospio (Minuspio) lighti)	-	Cerebratulus californiensis (4int) Macoma nasuta (1 a, 2 int Macoma sp (4 int, 2 juv)
BI-3	Moderate to Normal	opportunist dominated	Opeliidae (Armandia brevis)	Spionidae (Prionospio (Minuspio) lightii) very low	-	Macoma sp (2 int, 3 juv)
BI-4	Impoverished	very low	-	Spionidae (Prionospio (Minuspio) lighti)	Lanassa venusta venusta (2 juv)	Macoma nasuta (1 a, 2 int, 6 juv) Macoma sp (26 juv)
BI-5	Opportunist Proliferation	opportunist dominated	Opelidae (Armandia brevis)	Spionidae (Prionospio (Minuspio) lighti)	Lanassa venusta venusta (1 int)	Macoma nasuta (5 juv), Macoma sp (5 juv)
BI-6	Opportunist Proliferation	very low	-	Spionidae (Prionospio (Minuspio) lighti)	Clinocardium nuttalli (18 juv)	Cerebratulus californiensis (17 a, 11 int, 6 juv), Macoma sp (8 int, 11 juv)
BI-7	Opportunist Proliferation	opportunist dominated	Cirratulidae (Aphelochaeta glandaria complex)	Spionidae (Prionospio (Minuspio) lightii) very low	-	Glycera americana (1 int), Macoma nasuta (5 int, 3 juv) Macoma sp. (1 juv)
BI-8	Moderate to Normal	very low/opportunist dominated	-	Spionidae (Prionospio (Minuspio) lightii)	-	Macoma nasuta (1 a, 2 int, 9 juv)
BI-9	Moderate to Normal	opportunist dominated	Cirratulidae (Aphelochaeta glandaria complex)	Spionidae (Prionospio (Minuspio) lightii) very low	Heterophoxus affinus (1 a, 1 juv) Lanassa venusta venusta (1 int)	Macoma nasuta (3 int, 11 juv)
BI- 10	Moderate to Normal	very low	Opelidae (Armandia brevis)	Spionidae (Prionospio (Minuspio) lighti)	-	Cerebratulus californiensis (3 int, 2 juv), Macoma nasuta (12 juv) Macoma sp (6 int, 21 juv)
BI- 11	Opportunist Proliferation	moderate or opportunist dominated	Opeliidae (Armandia brevis)	Spionidae (Prionospio (Minuspio) lightii)	-	Macoma nasuta (17 juv), Macoma sp (3 juv)
BI- 12	Opportunist Proliferation	opportunist dominated	Opelidae (Armandia brevis)	Spionidae (Prionospio (Minuspio) lighti)	-	Macoma nasuta (4 int, 10 juv), Macoma sp (4 juv)
BI- 13	Moderately Impoverished	opportunist dominated	Opeliidae (Armandia brevis)	Spionidae (Prionospio (Minuspio) lighti)	-	Macoma nasuta (1 juv)
BI- 14	Opportunist Proliferation	moderate	-	Spionidae (Prionospio (Minuspio) lightii) very low	-	Macoma nasuta (2 a, 3 int, 2 juv) Macoma sp (6 juv)

*Source: Biologica 2016 - Categories of benthic impairment based on calculated indices

4.0 REMEDIAL AND MANAGEMENT OPTIONS

The following sections identify potential remedial options, evaluate the remedial options applicable to Esquimalt Harbour, including the rationale and basis for preferred treatments, provide a preliminary approach to the restoration of wood waste impacted subtidal sediments, and include an analysis of the potential for inclusion of these remediated areas in the DND habitat bank.

4.1 Identification of Potential Remedial Options

Due to the relatively slow decomposition of wood waste by bacteria, accumulations can persist for decades and continue to negatively affect benthic communities and higher trophic level organisms dependent on those communities (Conlan 1977; Section 2.1).

Remedial options for wood waste rely on decomposition, isolation and removal mechanisms and may include the use of one treatment or approach, or a combination of approaches for more complex sites (Table 4.1). Remediation options include post-remediation monitoring to determine the effectiveness of the chosen approach.

4.1.1 Monitored Natural Recovery

Monitored Natural Recovery (MNR) relies on natural processes such as bioturbation, sedimentation, erosion, and biological decomposition. No physical works are prescribed for MNR. A monitoring program is established to track the progress of natural recovery (e.g. monitoring parameters of concern and biological recovery of infauna through bioassays and/or benthic infauna community analysis).

Site specific physical and biological conditions will determine the feasibility of natural recovery within a reasonable period. If natural recovery is predicted to take greater than 10 years, other, more active, approaches are generally recommended. MNR is generally prescribed for areas where wood waste coverage is discontinuous, deposits are shallow, and impairment of the bottom ecology is minimal. Sitespecific conditions required include: adequate dissolved oxygen, flushing and water exchange, high natural sedimentation rates, and sediment turnover (e.g. presence of bioturbators). Washington State Department of Ecology (WSDOE) has determined that natural recovery is unlikely to occur at locations with thick wood waste deposits (e.g. approximately $>0.9 \mathrm{~m}$ deep), since decomposition by-products will permeate through recently deposited sediment, conditions will remain anaerobic, and few bioturbators will colonize (Washington State 2013). Natural recovery for sites with low sedimentation rates can take decades to return to pre-impact productivity (Picard et al 2003).

MNR is a cost-effective approach for very large sites that meet the above criteria, where other approaches may be cost prohibitive and for areas where seafloor disturbance should be avoided (e.g. existing bivalve shellfish beds).

Table 4.1 Overview of Potential Wood Waste Remediation Options

Remedial Option	Application	Description	Benefits and Constraints
Monitored Natural Recovery	Suitable for sites where wood waste coverage is discontinuous and/or thinly deposited, and only low or moderate impairment	- No modifications or physical works (removal, caps) - Relies on naturally occurring bioturbation and sedimentation - Can take up to 10 years for sites with high bioturbation and natural sedimentation to recover. - Sites with low sedimentation/erosion can take decades to recover.	- Cost effective - Non-invasive - Ineffective at sites with deep accumulations of wood waste, or a lack of dissolved oxygen, flushing and water exchange, and sediment turnover
Enhanced Natural Recovery	Suitable for sites with discontinuous coverage and/ or thin wood waste deposits	- Augments natural recovery with the placement of a thin layer (15 cm) of clean sand - Sand provides oxygenated layer that promotes benthic infauna recruitment and establishes a productive benthic community - Bioturbators will mix sand with underlying wood waste overtime, diluting wood waste and accelerating aerobic decomposition	- Cost effective - Minimally invasive - Ineffective at sites with deep accumulations
Dredging	Suitable for sites with continuous coverage and/or deeper wood waste deposits	- Barge platform with clam shell dredge removes wood waste and impacted sediments - Dredge to native sediment and backfill with clean sediment - Variety of disposal options for dredge materials	- Most effective and permanent remedial option - Typically most expensive option
Capping	Suitable for sites with continuous coverage and/or deeper wood waste deposits. May require removal of some wood waste if there are significant volumes	- Thick layer of material placed over wood waste to physically and chemically isolate underlying sediment from contact with marine organisms - Cap thickness is designed by professional engineer for the sitespecific conditions but typically one meter, employing medium to fine sand - Typically, sand caps are used in low velocity waterways to protect them from scouring by strong (high energy) currents.	- Least preferred remedial option as the long-term efficacy has not been demonstrated - Expensive, but typically less expensive then dredging - Potential problems include anaerobic off gassing, leaching of soluble byproducts, and differential settling - Activities such as prop wash can reduce long-term effectiveness - Raises seafloor by approximately 1 m (before settlement)

Source: Breems and Goodman 2009, Washington State 2013

4.1.2 Enhanced Natural Recovery

Enhanced natural recovery (ENR) augments natural recovery with placement of a thin layer (approximately 15 cm) of unconsolidated clean sand materials that boosts natural recovery processes. The sand layer is not a true engineered cap as wood waste contaminated sediments are not meant to be isolated. Instead, the added thin layer provides oxygenated substrate that promotes benthic infauna recruitment and development of a productive community (Breems and Goodman 2009, Washington State 2013). As benthic communities develop over the long term, the presence of bioturbators will naturally mix or re-work the sand layer with underlying wood waste and accelerate aerobic decomposition.

ENR is only suitable for areas with discontinuous coverage and/or thin wood waste accumulations (<0.2 m), and for areas that would naturally recover in 10 years or less (Breems and Goodman 2009). The effectiveness of ENR is determined through a post remediation monitoring program.

4.1.3 Dredging

Dredging is the most effective and permanent remedial option for wood waste contaminated sediments, although it is generally the most costly approach. Effective dredging at some locations may require multiple dredging passes. For example, some wood waste is large, and the dredge bucket may not always be able to fully close, dropping material into the water as it is removed. Washington State (2013) recommends that a first pass is conducted with large equipment, followed by a second pass with a smaller, square-faced buckets if required.

Removal of wood waste through dredging exposes native sediments or bedrock. Depending on the depth of wood waste removed, dredging may result in unfavorable bottom depths or the creation of depressions that act as sinks for detritus and other debris and fine wood waste residual material, as much as several inches, can accumulate following dredging. Therefore, backfilling with a layer of clean sand (as with ENR) is a common best management practice (BMP) to fill in depressions, cover any residual material, and promote benthic infauna recolonization.

Dredging is generally performed during least-risk works windows to protect aquatic resources which can affect project scheduling.

Monitoring to ensure wood waste layers have been removed will confirm the efficacy of the dredge operation. Post construction bathymetric surveys will determine the need for additional treatment. Recovery is tracked through a monitoring program that will measure benthic invertebrate community succession.

4.1.3.1 Options for Disposal of Dredge Materials

Disposal at Sea

The most cost-effective means of disposing of dredge materials composed primarily of wood waste is Disposal at Sea (DAS), an activity that is regulated by Environment and Climate Change Canada (ECCC). The distance to established disposal sites is a determining factor in evaluation the cost effectiveness of the DAS option. Wood waste qualifies for DAS if it can be characterized as waste or other matter, as outlined in Schedule 5 Canadian Environmental Protection Act, 1999, and is considered clean.

Confined Aquatic Disposal

An alternative to DAS is to engineer a disposal site where dredged material is placed and covered by a cap to ensure long-term isolation and effectiveness. This approach has been utilized in Washington State, but is considered costly, and would require long-term monitoring to ensure effectiveness.

Beneficial Use

As an alternative to DAS, dredged material may be beneficially re-used for nearshore marine projects below the high-water mark so long as there is a demonstrated need or purpose for the use of the sediment, the sediment meets DAS sediment chemistry screening criteria, it can be demonstrated that there is no anticipated marine pollution or deleterious effects from the placement of the fill, and the beneficial use has DFO and local First Nations endorsement. A beneficial use exemption does not require a DAS permit; however, it does require engagement and approval from ECCC regulators with the DAS Program, DFO, and First nations. Similar to the DAS permit-process, a Sediment Sample and Analysis Plan will also need to be prepared and submitted to ECCC for review and input prior to conducting sediment sampling and analysis of the fill and completing a Sediment Characterization Report.

Upland Disposal

If dredgeate does not qualify for DAS or beneficial use, upland disposal at a landfill facility near the project site is feasible but can be costly to transport and to treat, as sediments are categorized as salt-impacted and may contain other forms of contamination (depending on site conditions).

Engineered Nearshore Confined Disposal Facility (CDF)

A second option for contaminated dredged materials is the use to infill a clean berm built along the shoreline and capped with clean sediment. This disposal option requires the determination that tidally driven groundwater exchange will lead to the release of decomposition by-products (e.g. Sulphide and ammonia) into the marine environment. The area on top of the CDF can then potentially be used for port or other water-dependent shoreline development activities. This approach has been used in Washington State at several clean-up sites, but is costly to build and maintain.

Alternative Use

A full review of alternative re-use options has been conducted by Azimuth (2017) and includes alternatives such as: combustion of wood waste can be used to produce power or heat, biomass gasification or pyrolysis to produced power, liquid fuels an/or biochar, and composting. However, the moisture and salt content of dredged wood waste, along with its mixture with sediment, may make its re-use prohibitive from a technical or cost-effectiveness perspective (Azimuth 2017).

4.1.4 In-Situ Capping

A cap is a thicker layer of material, such as sand, placed on top of contaminated sediment which has been engineered to isolate the underlying contaminated sediment. Caps are designed so that the rate of desorption of contaminants in porewater that passes through the cap does not exceed applicable water quality criteria at or near the surface. The cap prevents the contaminated sediment from coming into direct contact with marine organisms; therefore, must be designed to be thick enough that deep-burrowing bioturbators do not come in contact. Caps need to be engineered for the conditions of each site. In Puget Sound, a 1 m thick cap comprised of medium to fine sand is commonly prescribed for wood waste contaminated sediments (Breems and Goodman 2009).

Capping is the least preferred remedial technology for wood waste sites with thick accumulations of wood waste since the long-term efficacy has not been fully demonstrated and potential issues could include anaerobic off-gassing, leaching of soluble by-products, and differential settling, which could compromise the integrity of the cap and prevent the establishment of a healthy and productive benthic community (Breems and Goodman 2009, Washtington 2013). This remedial option is typically expensive, but less expensive then dredging of wood waste. Other constraints of this remedial option include: cap design must provide complete cover of the wood waste (i.e. significant volumes of wood waste may require the removal of some before in-situ capping since capping requirements include limits on the volume of wood waste in the sediment; Washington 2013), and activities such as prop wash can also reduce the long-term effectiveness of the cap. However, this remedial option can be a less complex and less expensive approach to remediation (Washington 2013).

As capping can generate sediment plumes during installation, works should be scheduled to take place during least risk work windows. Proposed capping projects will be subject to a Fisheries Act Serious Harm assessment. Recovery is tracked through a monitoring program to demonstrate long-term effectiveness

4.1.5 In-Situ Treatment

In-situ treatments would involve alternate forms of ENR by treating wood waste deposits on-site without movement, in order to facilitate natural in-situ decomposition. To our knowledge, the use of in-situ treatments as a remedial option for benthic communities impaired by wood waste has not been investigated. Previous work on wood waste remediation (Breems and Goodman 2009, Washington State 2013) has not
identified any effective in-situ remediation approaches for the treatment of wood waste in the marine environment, only flagged that further research on the rates and mechanisms of decomposition of wood waste components is required to inform other options.

The impacts of wood waste on nearshore benthic communities are similar to those from aquaculture/fish farming (i.e. buildup of organic material on the seafloor, oxygen depletion within and above sediments, increase in sulphides and changes to the benthic community structure, Brooks et al 2003) and research on the impacts to, and potential remediation of, benthic communities beneath aquaculture facilities has been widely explored. Since the impacts of wood waste on nearshore benthic communities are similar to aquaculture, potential approaches to in-situ remediation of wood waste could be drawn from this body of work. However, some differences between impacts of the two activities do exist (e.g. other contaminants, including zinc and copper, accumulate in the sediment below aquaculture pens during the breakdown of aquaculture feed waste, SAG 2011) and remedial approaches used in aquaculture but would require investigation prior to their implementation in Esquimalt Harbour.

Some potential approaches include:

- Oxygenation - Toxic anaerobic by-products of wood waste decomposition (e.g. hydrogen sulphide and ammonia) are oxidized to non-toxic forms when exposed to oxygen. The introduction of oxygen to wood waste deposits may also allow for the aerobic breakdown of wood waste by heterotrophic bacteria, eliminating further production of toxic by-products. This could be conducted by harrowing, or heavy raking of the seafloor, or irrigation with oxygenated surface-water (Keeley et al 2017). However, this has only been explored for remediation of sediments impacted by salmon farm aquaculture in New Zealand and has only been applied to small-scale pilot study field plots ($\sim 15 \mathrm{~m}^{2}$) - therefore, may not be feasible for large-scale application.
- Shell hash addition - Low pH can cause a greater proportion of the toxic hydrogen sulphide form to occur in sediment porewater. The addition of a thin layer of crushed bivalve shells (e.g. byproducts of shellfish aquaculture) may help to buffer pore-water pH and lower the toxicity of decomposition by-products. This has been used in aquaculture to deal with ocean acidification, in particular addition to the sediment of mudflats on the Atlantic Coast to enhance pore-water pH and clam survival (Green et al 2009, Green et al 2013). Shell hash addition has also proven successful in reducing hydrogen sulphide in organically enriched mudflats in Japan (Yamamoto et al 2012).
- Scavenging sulphides - This approach would include the addition of iron to sediments to precipitate iron-sulphides in order to suppress the sulphate reduction pathways and reduce toxic $\mathrm{H}_{2} \mathrm{~S}$ byproducts. It is used in seagrass systems in the Mediterranean that are impacted by eutrophication (e.g. increases in organic matter, Holmer et al 2005).

4.2 ANALYSIS OF Remedial Options

Management options for wood waste remediation are developed on a site-specific basis using results of the site assessment (Section 3.2.3) and drawing on effective approaches from other wood waste assessment and remediation projects. The evaluation of remedial options for Esquimalt Harbour should also consider remedial objectives, short- and long-term effectiveness, technical feasibility, and cost (including permitting, equipment, mobilization, remedial treatment, monitoring). Further evaluation of a remedial option is generally not warranted if the option is technically unsuitable or cost prohibitive.

Given that wood waste, and its associated decomposition by-products, are not regulated contaminants of concern in the Canadian marine environment, the driver for the remediation of impaired benthic communities in Esquimalt Harbour is to re-establish a balanced and productive benthic community that will restore fish habitats and drive the productivity of upper trophic-level commercial, recreational or Aboriginal (CRA) fisheries species (e.g. Dungeness crabs, fish), so that remediated habitats can be deposited as credits in the DND Habitat Bank.

4.2.1 No Action

Wood waste, in particular bark, is extremely slow to break down and can persist for decades or centuries. Since the cessation of wood-processing activities in the late 1990's (nearly 20 years ago), and the assessment of wood waste by Archipelago (2004; approximately 15 years ago), very little burial of wood waste has occurred, and biophysical conditions within known areas of wood waste appear to have remained unchanged (e.g. relatively sparse epibenthic organisms and very little evidence of infauna activity, such as holes and mounds indicative of burrowing worms and bivalves). Exposed log piles within the Harbour do provide habitat for typical rocky reef species but will not contribute to the recovery of benthic infauna and soft-bottom communities.

Natural sedimentation rates within Esquimalt Harbour are very low and ongoing bottom disturbance occurs in many areas of the Harbour from ship propwash and local dredging resuspending fine sediments creates patchy disturbances to benthic sediments (Burd 2016, Geosea 2009). Without sufficient clean sediment for pollution-sensitive benthic infauna to colonize, an infauna community dominated by low species richness and opportunistic, organic enrichment-tolerant species will continue to prevail. Impacts to benthic infauna can lead to lower food sources for higher trophic organisms, such as Dungeness crabs and juvenile salmonids (Section 2.1.4). Due to the presence of Beggiatoa sp mats, and without the presence of large infauna bioturbators, oxygen is unlikely to permeate the SWI, and toxic anaerobic by-products will continue to be produced.

Since wood waste decomposition and impacts are site-specific, there is very little information available on the rate of wood waste breakdown and benthic community recovery without remedial action. Conditions in areas containing deeper wood waste deposits (> 0.25 m) within the harbour are expected to persist; however, areas with shallow deposits ($0-0.25 \mathrm{~m}$) may recover naturally in $10-15$ years, depending on sedimentation rates and any disruption to unconsolidated sediments (e.g. propeller wash).

4.2.2 Monitored Natural Recovery

MNR would be implemented in concert with a No Action approach, but monitoring of recovery. In Esquimalt Harbour it is unlikely to lead to the successful recovery of the benthic infauna community in areas containing deeper wood waste deposits ($>0.25 \mathrm{~m}$) in a reasonable time frame. Areas with shallow deposits ($0-0.25 \mathrm{~m}$) may recover naturally in 10-15 years, depending on sedimentation rates and any disruption to unconsolidated sediments (e.g. propeller wash).

4.2.3 Enhanced Natural Recovery

ENR is generally recommended for areas with continuous coverage and thin wood waste deposits that would naturally recover in 10 years or less. The placement of 15 cm of sand in areas with shallow deposits ($0-0.25 \mathrm{~m}$), and approximately between $3-5 \%$ TOC, may allow for the successful recruitment of a productive benthic infauna community. The presence of some sensitive taxa within the harbour, while patchy, may aid in the establishment of productive infauna communities if physical disturbances (e.g. propeller wash) to unconsolidated benthic environments are minimized Burd (2016).

ENR will not likely be a successful long-term remediation option in areas of deeper wood waste deposits, since anaerobic decomposition will continue to occur below the clean sand layer, decomposition byproducts will permeate through recently deposited sediment, and toxic conditions will re-establish preventing recruitment of large bioturbators and other sensitive infauna.

4.2.4 Dredging

Remediation of continuous and/or deeper wood waste deposits in Esquimalt Harbour will require the application of a remedial option that is more intensive then MNR or ENR. Dredging has been proven to be the most effective and permanent approach to removing wood waste accumulations, and often applied in wood waste remediation projects in Washington. However, given the volume of wood waste deposits, and associated impacted sediments, in Esquimalt Harbour this option is logistically complex and very expensive. Site-specific disposal options for dredged materials will, in part, determine the cost and are outlined below.

4.2.4.1 Options for Disposal of Dredge Materials

Should dredging be pursued as a remedial option, Esquimalt Harbour sediments are not likely to be suitable for Beneficial Use (e.g. soft unconsolidated sediments with high quantities of wood are not likely to be structurally suitable fill for nearshore marine construction works, and wood waste could continue decomposing and releasing by-products) and other less common options are costly and their long-term effectiveness is uncertain (e.g. Confined Aquatic Disposal or CDF) or has not been developed to the point of feasible implementation (e.g. Alternative Use) (Section 4.2.4.1). Based on this, disposal of dredged materials from Esquimalt Harbour is best done by Disposal at Sea or Upland Disposal.

Disposal at Sea

A preliminary sediment investigation was conducted during Field Survey 6 to characterize the sediment within the wood waste deposit north of Inskip Island, in order to determine if sediment is likely to qualify for a Disposal at Sea Permit and inform site-specific remedial options. Results of the sediment characterization indicate that several contaminant parameters exceed the applicable CCME ISQG and PEL guidelines, as well as the BC CSR sediment standards (Schedule 3.4), including arsenic, cadmium, copper, chromium, lead mercury, zinc, various PAHs, and total PCBs (see Appendix I). The sediment characterization data was also screened against the Disposal at Sea Lower Level of the National Action List criteria for cadmium,
mercury, total PAHs, and total PCBs, with all four constituents exceeding these criteria in numerous samples. However, detection limits exceed applicable standard criteria (i.e. results were below the laboratory detection limit but above the DAS criteria) and the actual concentrations of metals, PCBs and PAHs cannot be determined. This anomaly may be due to a high water content and level of wood waste organics in the sediment.

Based on Disposal at Sea guidance, and the anticipated exceedances of DAS screening criteria, the sediment associated with the wood waste would be considered by ECCC to have a "high certainty" of future exceedances and indicates that the sediment may not be suitable for DAS. However, DAS permitting requires consultation with ECCC DAS program staff to determine if sediments qualify (https://www.canada.ca/en/environment-climate-change/services/disposal-at-sea/permit-applicant-guide/dredged-material/applicant-guide-permit-dredged-material/chapter-3-1.html). If DAS is a desirable approach to disposing of wood waste, a project description (outlining site history, previous sediment sampling results, etc) and sediment sampling plan will need to be approved by ECCC, sediment sampling conducted, and a sediment and characterization report submitted for review. Sediments determined by ECCC to have a "higher certainty" of exceedance could still qualify for DAS but may be requested to undergo toxicity testing. If DAS is pursued, more finite testing areas should be included in the sediment sampling plan, to focus dredge management units, as sediments from some areas may qualify for DAS even if others do not.

Upland Disposal

Drill cuttings from Field Survey 6 were disposed of at an upland facility located on Vancouver Island that can accept salt-impacted sediments. Should upland disposal of dredged materials be required, it would likely need to be treated for metal stabilization, based on preliminary investigation results (Appendix I).

4.2.5 In-Situ Capping

While the long-term efficacy of in-situ capping is uncertain, this remedial option would be likely be a less expensive approach to remediation in Esquimalt Harbour. Given the large spatial extent of deeper wood waste deposits in Esquimalt Harbour (Figure 3.5), and that the in-situ cap design would need to completely cover the wood waste, use of this remedial technique in Esquimalt Harbour would likely be logistically complex and require the removal of some wood waste, and irregularly oriented logs in the surface material, to allow for the cap to completely cover. Combined with the uncertainty around long-term effectiveness, this is not considered a feasible option for remediation of wood waste in Esquimalt Harbour at this time.

4.2.6 In-Situ Treatments

To our knowledge, the use of in-situ treatments as a remedial option for benthic communities impaired by wood waste has not been investigated. Research into the impacts to and potential remediation of benthic communities beneath aquaculture facilities has been widely explored. Since the impacts from wood waste are similar to aquaculture, potential approaches to in-situ remediation of wood waste can be drawn from this body of work. However, some differences between impacts of the two activities do exist (e.g. other contaminants, including zinc and copper, accumulate in the sediment below aquaculture pens during the breakdown of aquaculture feed waste, SAG 2011) and remedial approaches used in aquaculture but would require investigation prior to their implementation in Esquimalt Harbour. It is possible that the use of biological or chemical treatments (possible treatments are outline in Section 4.1.5) applied to areas of wood waste in Esquimalt Harbour could enhance the natural recovery of the area by increasing the decomposition rate of wood waste or eliminating toxic by-products.

The application of an experimental in-situ approach (such as scavenging sulphides) in the field can lead to un-intended consequences, particularly given the differences in the nature of the organic enrichment between aquaculture and wood waste, and may be challenging to obtain regulatory (ECCC and DFO) support. The oxygenation of sediments does not seem logistically feasible on a larger scale across Esquimalt Harbour. If an in-situ approach were to be pursued, the use of shell hash addition to lower pH and reduce hydrogen sulphide may be the most likely to be logistically feasible and to obtain regulatory support.

4.3 Recommended Options and Approaches

After evaluating existing site-specific conditions for Esquimalt Harbour (wood waste distribution and wood waste depth, TOC content, the distribution of Beggiatoa sp bacterial mats, and impacts to the benthic infauna community) and remedial options, two wood waste management options are recommended based on the remediation objective:

- To promote recovery of benthic communities and enhancement of fish habitats so that remediated habitats can be deposited as credits to the DND Habitat Bank.

The recommended approach for sediment remediation includes two options, as outlined in Table 4.2 below, including a field-based pilot study project of cost-effective and less invasive remediation options in areas of shallow wood waste accumulations and the complete removal, through dredging of wood waste, of deeper accumulations (Figure 4.1).

Table 4.2 Recommended Options for Remediation of Wood Waste in Esquimalt Harbour

Management Option	Bottom Condition	Area / volume Affected
Dredge with Backfill	- Deep accumulations $(>0.25 \mathrm{~m})$ - mostly within the $>5 \%$ TOC contour	- North Deposit $31,182 \mathrm{m3}$ - South Deposit $227,819 \mathrm{~m} 3$
Field Pilot Study Project	- Shallow accumulations $(0-0.25 \mathrm{~m})$ - mostly within the $3-5 \%$ TOC contours	

4.3.1 Dredge and Placement of Clean Fill

MNR and ENR are not considered feasible options for the remediation of deeper wood waste deposits, given the existing information on the impacts and persistence of deeper wood waste deposits, and the low sedimentation rates within the harbour.

Removal of the deeper wood waste deposits and placement of clean fill is considered the most effective and permanent option for remediating the two areas of deeper wood waste deposits ($>0.25 \mathrm{~m}$), approximately in areas where TOC is $>5 \%$, that have been determined to impair the function of the benthic community in Esquimalt Harbour (Figure 4.1):

- Immediately north of Inskip Island and into Plumper Bay (approximately 227,819 m³)
- North of Smart Island (approximately $31,182 \mathrm{~m}^{3}$)

Immediately after dredging and backfilling, confirmatory monitoring is desirable to demonstrate effectiveness (dredge depth and residual wood waste) and backfill thickness. The deposit of remediated habitats to the DND habitat bank would occur after the remediated habitat is proven to be restored back to a productive soft-bottom community. This will entail an effectiveness monitoring program, of sediment chemistry (e.g. wood waste decomposition by-products) and bioassays, to demonstrate benthic infauna recovery (Washington State 2013).

A detailed cost estimate for dredging, including scoping options for disposal of dredge materials, can be provided if DND chooses to pursue this remediation option, once spatial extent and volume have been determined and project design/engineering have occurred. Currently, deep surficial wood waste deposits are mapped based on interpolative distribution modelling around known depths (Figure 4.1). The boundaries of deeper deposits should be delineated prior to pursing this as a remediation option, in order to avoid un-necessary dredging and related costs. For example, just south of Inskip Island is categorized as deep based on modelling but should be confirmed. Approximate unit costs for works associated with dredging and capping with sand are presented below (Table 4.3).

Table 4.3 Approximate Unit Costs for Remedial Dredge Works in Esquimalt Harbour

Work Description	Unit Cost	Comment
Permitting	$\$ 100,000$	DAS, Fisheries Act and other permitting processes
Mobilization	$\$ 20,000$	One-time cost
Dredging	$\$ 15,000 /$ day	Clam shell dredge, flat barge, support tug
Sand (clean fill)	$\$ 50 /$ tonne	-
Sand Placement	$\$ 15,000 /$ day	Clam shell dredge, flat barge, support tug
Disposal fees	$\$ 150 /$ tonne	Assumes wood waste qualifies for DAS
Environmental Monitoring	$\$ 113 / \mathrm{hr}$	Environmental monitor rate
Demobilization	$\$ 20,000$	One-time cost
Effectiveness Monitoring	$\$ 200,000 /$ year	For a period of three to five years as stipulated by DFO. With sediment chemistry, bioassays, and Scuba surveys

4.3.2 Pilot Study Project

A field-based pilot study project is recommended to determine the site-specific effectiveness and feasibility of economical and less invasive remediation options in areas of shallower wood waste deposits. The details and cost scoping of the recommended pilot study project are provided below in Section 5.0.

4.4 Regulatory Framework and Requirements

4.4.1 DFO Fisheries Act Authorization

Under the Fisheries Act, proponents are responsible for avoiding and mitigating serious harm to fish that are part of or support commercial, recreational or Aboriginal (CRA) fisheries:
35. (1) No person shall carry on any work, undertaking or activity that results in serious harm to fish that are part of a commercial, recreational or Aboriginal fishery, or to fish that support such a fishery (DFO 2012).

The Fisheries Protection Policy Statement (2013) defines serious harm to fish as:

- The death of a fish;
- A permanent alteration of fish habitat of a spatial scale, duration or intensity that limits or diminishes the ability of fish to use such habitats as spawning grounds, or as nursey, rearing, or food supply areas, or a mitigation corridor, or any other area in order to carry out one or more of their life processes;
- The destruction of fish habitat of a spatial scale, duration, or intensity that fish can no longer reply upon such habitats for use as spawning grounds, or as nursery, rearing, or food supply areas, or as a migration corridor, or any other area in order to carry out one of more of their life processes.

On a project-by-project basis, DFO expects proponents, and/or qualified practitioners working on their behalf, to consult DFO's Pathways of Effects and evaluate project-related effects and determine, by way of a serious harm assessment, if the Project will result in Serious Harm. If the proponent cannot avoid or mitigate serious harm to fish (i.e. the Project will result in residual serious harm) then an Authorization under section 35(2)(b) of the Fisheries Act is required (DFO 2012).

Prior to the commencement of any physical remediation works in Esquimalt Harbour, a Serious Harm Assessment should be undertaken by a Qualified Environmental Professional. However, the nature of the remediation works is not anticipated to result in residual Serous Harm and not require a Fisheries Act Authorization (FAA). A Request for Review form should be completed and submitted to DFO to ensure the avoidance and mitigation measures, along with the determination of no residual serious harm, are considered suitable.

4.4.2 Disposal at Sea Permit

Environment and Climate Change Canada (ECCC) administers the Disposal at Sea (DAS) Program under the Canadian Environmental Protection Act. DAS permits may be granted if dredge materials proposed for disposal meet established disposal guidelines. As discussed in Section 4.2.4.1, wood waste contaminated sediments may not qualify for DAS and, if DAS is pursued, more finite testing areas should be included in the sediment sampling plan, to focus dredge management units, as sediments from some areas may qualify
for DAS even if others do not. ECCC should be consulted prior to finalizing disposal options to determine the feasibility of DAS. Established and active DAS disposal sites may be too distant to achieve cost effective project objectives.

During remediation, placement of clean fill materials will constitute DAS if comprised of dredged sediments; however, the placement of clean materials during remedial works will constitute a beneficial use exemption under the DAS program. This can be applied for through a similar, but less involved process to a DAS permit with ECCC. Regardless of the source of fill material, the proponent will be responsible for ensuring the material is clean, suitable for the intended purpose, and not likely to cause marine pollution.

Esquimalt Harbour is primarily federal crown land and this provincial and local government legislation and statutes do not apply. If dredged material is proposed for upland disposal, provincial waste management regulations may apply.

4.4.3 Navigation Protection Act Notice of Works

Under the Navigation Protection Act (formerly the Navigable Waters Protection Act), any works that may affect navigation on navigable waters in Canada require approval. Placement of clean fill materials should not greatly alter the bathymetry of the Harbour and will not interfere with navigation in a substantial way. As such, remedial works should fall under permitted works that may proceed without the Minister's approval under the Navigation Protection Act (formerly the Navigable Waters Protection Act) administered by the Navigation Protection Program. A Notice of Works Form is required for all work on navigable waters listed on the schedule to the NPA and should be completed and submitted to Transport Canada prior to the commencement of any remediation works.

4.5 Potential Habitat Bank Credit Assessment

The "Fisheries Productivity Investment Policy: A Proponent's Guide to Offsetting November 2013" (FPIP 2013) describes a "proponent-led habitat bank" as a formalized approach for creating offsets through habitat creation, enhancement or restoration in advance of projects that result in Serious Harm. The habitat bank is managed to enhance or improve fisheries productivity.

DND maintains a Habitat Bank through a Memorandum of Understanding (MOU) with DFO Pacific Region. The existing habitat banking MOU has expired and a draft Habitat Banking Arrangement between the DND and DFO has been developed to fit modern legislation and policy. The renewed Arrangement will provide up-to-date guidance for management of the habitat bank guided by DFO's "Fisheries Protection Program's Interim Guide to Proponent-led Habitat Banking" (October 2016). The Arrangement, once finalized, will be in effect for 10 years with options to renew.

At present, areas affected by wood waste sustain low quality fish habitat as ecological function is impaired (Section 3.3). For a restoration project to be eligible for inclusion in the habitat bank, it must demonstrate an increase in fish habitat productivity over existing conditions. Productive nearshore benthic communities contain unconsolidated fine sediments that support several CRA fishery species and species groups including forage fish, flatfish, Dungeness crabs and bivalve shellfish. The treatments recommended to remediate wood waste in Esquimalt Harbour are designed to promote the re-establishment of a balanced and productive benthic infauna community recovery of the seafloor. Since benthic infauna are important components of nearshore marine ecosystems, driving detrital decomposition and nutrient cycling and providing a food source for higher trophic level organisms, the restoration of unconsolidated subtidal habitats should qualify the area for the DND Habitat Bank. Additionally, while Esquimalt Harbour is included in the DFO Area 19-1 permanent bivalve sanitary closure, it can be argued that bivalves within the harbour provide a source of reproductive larval material that can recruit to harvestable areas.

Temporary physical effects to substrates and benthic organisms will result from ENR and dredging. However, if these areas remain undisturbed following the application of the remedial treatments, they are expected to colonize with opportunistic infauna species relatively rapidly (e.g., six months to one year), and develop into a healthy and productive infauna community (e.g. balanced mix of functions, such as large bioturbators, through the recruitment of annelids, arthropods, and bivalves) over time thus contributing to fish habitat that supports CRA fishery species.

The predicted time to recovery of each remediation approach and the eligibility for inclusion of restored habitat to the habitat bank is presented below in Table 4.4. Most remedial treatment types, if they progress as predicted, would be result in productive habitat within a reasonable time frame. The deposit of habitat credits to the bank would be confirmed through monitoring of sediment chemistry (e.g. wood waste decomposition by-products) and bioassays to demonstrate benthic infauna recovery and productive habitat function (Washington State 2013). Effectiveness monitoring would require the establishment of baseline conditions (using sediment chemistry and bioassays) for the targeted areas of remediation immediately prior to restoration treatments being applied in order for comparison to monitoring data in subsequent years.

Table 4.4 Proposed Potential Habitat Banking Bottom Treatments, Restoration Times and Banking Potential

Proposed Treatment	Restoration Period	Habitat Banking Potential
MNR	Unknown (Under 10 years if sedimentation rates are high, sediments are well flushed with dissolved oxygen)	Delayed - dependent on monitoring results
ENR	6 months -3 years	Yes
Dredging (with backfill)	6 months -3 years	Yes

DND may also consider value-added habitat enhancement opportunities, such as the creation of subtidal rocky reefs or kelp beds. These enhancements would be constructed over the remediated sediment areas at appropriate depths for productive biological function. An enhancement of this nature is expected to be successful given the results of the impact assessment demonstrating that natural rocky reef areas, and log piles, in Esquimalt Harbour provide functional habitat for invertebrates that require hard substrate (e.g. sea urchins, plumose anemones, coralline algae or understory kelps) and juvenile rockfish (Photo 8). Targeted CRA species for these enhanced habitats would include rockfish (Sebastes sp) and lingcod (Ophiodon elongatus), forage fish, bivalve shellfish, crabs and urchins. This value-added approach may be the best course of action if operational or future development activities may negatively impact the remediated sediments (e.g. anticipated disturbance of remediated unconsolidated sediments by prop-wash creating patchy disturbances and impacting recruitment and establishment of healthy and productive benthic infauna communities) or, if future DND development will impact nearshore rocky reef habitat and require the offsetting of this type of habitat.

5.0 REMEDIAL PILOT STUDY PROJECT

Given that the remediation of wood waste impacted marine environments is a relatively new objective for water lot managers in British Columbia there are currently no CCME or CSR standards for wood waste remediation. Additionally, dredging and disposal of deeper wood waste deposits is a costly remediation option. Prior to the execution of a larger scale remediation effort, a focused field-based pilot study project has been recommended and designed to fulfill the following objective:

- Determine the site-specific effectiveness and feasibility of economical and less invasive remediation options, MNR and ENR, for areas of discontinuous and/or shallow wood waste deposits in Esquimalt Harbour.

The basic scoping of the pilot study project, including site selection, design, study implementation, and a detailed cost estimate, are provided below for DND to consider implementing in the future. Following the implementation, monitoring, and determination of effectiveness of the pilot project, a full-scale remediation and potential value-added habitat enhancement opportunity can be assessed and implemented.

5.1 Site Selection

The pilot study site(s) should be representative of shallow wood waste deposits, have similar biophysical conditions across the site (and between sites if multiple sites are chosen), and not be affected by DND operational requirements or recontamination by log handling over the duration of the pilot study.

To select suitable sites for the pilot project implementation, areas of the Harbour with shallow ($0-0.25 \mathrm{~m}$ deep) and deep (> 0.25 m) wood waste deposits were first identified and mapped as follows (Figure 5.1):

- 50 m buffer applied to each sample location (wood waste depth was sampled in 50 m intervals)
- Polygons created for shallow and deep deposits
- TOC thresholds (1,3 , and 5%) were overlaid

Following this initial mapping, areas with shallow wood waste deposits, that are approximately within a 3% TOC threshold, were examined to look for locations that possess similar biophysical conditions (e.g. current, bathymetry, biophysical impacts based on sediment chemistry and benthic infauna analysis). Since the pilot project will be conducted in the Harbour, rather than a controlled laboratory setting, it is important to consider other variables that may impact the determination of treatment effectiveness and keep as many of these constant to ensure that the results of the remediation treatments are not influenced by other factors. Based on results, three areas of approximately 100 m wide by 170 m long have been identified as possible candidate pilot study sites (Figure 5.1). The location south of Inskip Islands has been identified as the best candidate for pilot project implementation given that wood waste depths, bathymetry (range from -10.5 to 11.0 m deep), and sediment type (gravelly mud/sand) and sediment chemistry conditions (e.g. TOC) and are relatively equivalent across the location (Figure 5.1). Two other areas south of Cole Island are
tentatively proposed as back-up or additional locations; however, there is a greater range in bathymetry across the locations (west side of harbour -3.0 to -4.0 m ; east side of harbour -4.5 to -6.0 m deep), the west location has more variability in wood waste depth, and the sediment characteristics (e.g. unconsolidated almost suspended layer of fine sand/mud bottom sediments) at these two locations may impact the feasibility of pilot study treatments (e.g. placing a sand layer on top of unconsolidated materials could lead to it sinking into the material rather than remaining as a surficial layer).

Additional suitable candidate pilot study sites may exist, but due to the nature of the field assessments (Section 3.0), some data gaps remain between transects/sample locations (Figure 5.1). Should further field assessments be conducted prior to the selection of a candidate pilot study site(s), the potential site locations should be re-assessed to determine if the boundaries of the identified locations could be expanded and/or to determine if more suitable locations are available.

A reference site location will also be established in the outer Harbour area, ideally in a location that possesses similar bathymetry, sediment type, and current dynamics to the pilot study site.

Prior to finalizing a pilot study and reference site(s), input is required from PWGSC and DND to ensure that operational requirements of the harbour will not impact the site location over the duration of treatment and monitoring.

5.2 Study Design

The pilot study design can be applied at one site or at multiple sites. The more sites that are included in the study the greater the confidence in the resulting observations. The cost estimate currently includes pricing for the implementation of the pilot study at one study site location (Section 5.4).

Regardless off how many sites are chosen, three treatment types are proposed per study site (for a full description of each treatment type refer to Section 4.1 and Table 4.1):

- MNR - no modifications to the treatment area
- ENR - placement of a thin layer of clean fill over existing sediments (approximately 15 cm deep)
- Dredging - dredge wood waste and impacted sediments and backfill with clean fill

The study design includes both spatial and temporal replication following a Before After Control Impact (BACI) design. Replication in experimental design is required to account for natural variation and reduces the influence of measurement error in analyses; therefore, the pilot study has been designed to include three replicates of each treatment type (in approximately 20 m circular plots) at each site (for a total of nine treatment plots), with a minimum of 3-5 sample locations within each treatment plot (for statistical power; see Figure 5.2). A circular treatment plot was selected over a square plot due to the difficulty of placing clean fill from a barge and to allow for some spillover into the surrounding area, so that the treatment can be applied up to, and just over, the boundary of the treatment plot.

The pilot study site(s) need to cover a large enough area that the treatment plots can be spaced far enough apart to avoid edge-effects and prevent incidental influence on the results of other treatment plots. Within the pilot site, the placement of treatment plots should be randomized in order to maximize the statistical power, as this helps to ensure any differences found are attributable to the treatment, rather than a confounding variable.

The four corners of the pilot site, and the center point of each circular treatment plot, will be marked with a cement cinder block, and a small float that is suspended off the seafloor by no more than $1-2 \mathrm{~m}$, depending on site depth, to allow for easy detection during sampling while not impeding navigation within the Harbour. Each time the treatment plot is sampled, the sample locations should be randomized.

A reference site location, with two plots, will also be established in the outer Harbour area and sampled as described above. No treatments will be applied to the reference location.

Figure 5.2 Proposed Pilot Project Site Design Includes Three Replicates of each Proposed Treatment Type (MNR, ENR, and Dredge).

5.3 STUDY IMPLEMENTATION

The pilot project implementation has been scoped in a phased approach because it will need to be executed over multiple years. The steps are outlined in the sections below and are proposed to occur with the following timing to coincide with federal government fiscal years:

- Fiscal Year 1 - Completion of regulatory requirements
- Fiscal Year 2 - Baseline conditions (May/June) and application of treatment types (July/August)
- Fiscal Year 3 - Effectiveness monitoring Year 1 (May/June)
- Fiscal Year 4 - Effectiveness monitoring Year 2 (May/June) and final reporting (July - December)

5.3.1 Finalized Site Selection and Pilot Study Regulatory Framework

Regulatory requirements and permitting could be conducted concurrently with Section 5.3.2 Baseline Conditions. However, to move forward with the application of the treatment types a few regulatory criteria must be satisfied as outlined below. It is recommended that regulatory requirements be completed well in advance of the application of treatments (Year 1), so that baseline conditions and application of treatments can be completed within the same fiscal year (Year 2), and within the DFO Summer Timing Window for the Protection of Fish and Fish habitat (Area 19 July 1 - October 1).

5.3.1.1 Finalized Site Selection

Before moving forward with regulatory requirements, a final selection of the pilot study site and reference site need to be made in concert with PWGSC and DND.

5.3.1.2 Navigation Protection Act - Notice of Works

Under the Navigation Protection Act (formerly the Navigable Waters Protection Act), any works that may affect navigation on navigable waters in Canada require approval (Section 4.4.3). Because the pilot project will not greatly change the existing bathymetry, or place any obstructions to navigation, a permit approval will not be required. Instead, a Navigation Protection Act Notice of Works Form should be completed and submitted to the Transport Canada Navigation Protection Program.

5.3.1.3 Disposal at Sea-Beneficial Use Exemption for Clean Fill

Regardless of the source of fill material, the proponent will be responsible for ensuring the material is clean, suitable for the intended purpose, and not likely to cause marine pollution. The Disposal at Sea Program currently only regulates the placement of dredged material in the marine environment. Therefore, if fill for the ENR and dredge treatments is sourced from an upland quarry, and is comprised of clean constructiongrade material, it is Hemmera's understanding that this material will not be required to undergo a DAS beneficial use exemption. Should the clean fill be sourced from dredged marine sediments, the placement of fill from a barge into subtidal areas of Esquimalt Harbour would require a review by the DAS program to determine if it would qualify for a beneficial use exemption.

In order to qualify for beneficial use, there must be a demonstrated need or purpose for the use of the sediment, the sediment must be proven to meet DAS sediment chemistry screening criteria, demonstrate there is no anticipated marine pollution or deleterious effects from the placement of the fill, and have DFO and local First Nations endorsement. After fill has been sourced, a Project Description will be compiled and submitted to DFO and ECCC for consultation and approval. The Project Description will outline:

- Esquimalt Harbour site history and the pilot project objectives (high level overview)
- Fill source location site history/background information
- Dredge area boundary (if fill is dredged) and estimated fill volumes

Depending on the source of dredged materials, a Sediment Sample and Analysis Plan will also need to be prepared and submitted to ECCC for review and input prior to conducting sediment sampling and analysis of the fill and completing a Sediment Characterization Report. If suitable sediment chemistry results already exist, it is possible that ECCC will not require further analysis/reporting. The quantity of fill required for the pilot study will vary based on the dimensions of the final pilot study site location, and treatment plot size, but will be less than 10,000 m^{3}. Therefore, ECCC will require a minimum of 7 samples (6 samples and 1 duplicate) be analyzed for the minimum analytical requirements, as outlined in Figure 5.3 below. The Sediment Characterization Report will also be submitted to ECCC to allow for beneficial use signoff. Unlike a full DAS permit application, ECCC does not need sediment chemistry, extended site history information, bathymetric surveys, and dispersion modelling for the receiving pilot study site in Esquimalt Harbour.

5.3.1.4 Disposal at Sea - DAS Permit for Dredged Materials

Before a final pilot study site is selected, and investigatory sediment chemistry conducted to look at DAS Program minimum sample analytical requirements (Figure 5.3), it cannot be determined whether sediments from the pilot study site might qualify for a DAS permit. In order to provide a conservative cost estimate, it has been assumed that sediments from the dredge treatment will be disposed of at a permitted upland facility. The DAS permitting process can be lengthy as it must include the compilation of site information and selection of a suitable DAS site, along with First Nations consultation. However, disposal at an upland facility is costly and can have limitations based on the facilities that are able to accept salt-laden waste.

Should PWGSC and DND wish to pursue a DAS permit for dredged materials, ECCC will require detailed Project Description be submitted for review prior to providing input on a Sediment Sampling Plan. Sediment Sampling and a resulting Sediment Characterization Report must be submitted for ECCC to determine whether sediments meet DAS requirements for permitting, at which time, PWGSC and DND could pursue an DAS permit application.

5.3.1.5 DFO Fisheries Act - Serious Harm Assessment

Given the nature and extent of the pilot study design, a serious harm self-assessment is recommended to assess the pilot project-related effects to fish and fish habitat, outline recommended avoidance and mitigation measures for pilot study implementation, and determine residual serious harm. A Request for Review form should be completed and submitted to DFO to ensure the avoidance and mitigation measures, along with the determination of no residual serious harm, are considered suitable. A full Fisheries Act Authorization is not expected to be necessary for the implementation of the pilot study.

Disposal at Sea Minimum Sample Analytical Requirements				
The table below outlines minimum analytical requirements for projects with no contaminant history. Prior to sampling, Environment Canada should be consulted to determine the need for additional site-specific analytical requirements.				
Metals	Digestion Method	Analytical Method	Target Detection Limit ($\mathrm{mg} / \mathrm{kg}$ dry weight)	Reference Criterion (mg/kg dry weight)
Cadmium	EPA 3050B	EPA 6020A	0.20	$0.60{ }^{2}$
Mercury	EPA 3050B	EPA 7471	0.05	$0.75{ }^{2}$
Arsenic	EPA 3050B	EPA 6020A	1.00	$7.24{ }^{3}$
Chromium	EPA 3050B	EPA 6020A	1.00	$52.3{ }^{3}$
Copper	EPA 3050B	EPA 6020A	1.00	$18.7{ }^{3}$
Lead	EPA 3050B	EPA 6020A	0.50	$30.2{ }^{3}$
Zinc	EPA 3050B	EPA 6020A	1.00	$124{ }^{3}$
Organics		Analytical Method	Target Detection Limit ($\mathrm{mg} / \mathrm{kg}$ dry weight)	Reference Criterion ($\mathrm{mg} / \mathrm{kg}$ dry weight)
Total polychlorinated biphenyls (PCB)		EPA 8080	0.04	$0.10{ }^{2}$
Total polycyclic aromatic hydrocarbons (PAH), [216]		EPA 8270C	0.05	$2.50{ }^{2}$
	Acenapthene	EPA 8270C	0.05	
	Napthalene	EPA 8270C	0.05	
	Acenapthylene	EPA 8270C	0.05	
	Anthracene	EPA 8270C	0.05	
	Phenanthrene	EPA 8270C	0.05	
	Flourene	EPA 8270C	0.05	
	Fluoranthene	EPA 8270C	0.05	
	Benz[a]anthracene	EPA 8270C	0.05	
	Benzolalpyrene	EPA 8270C	0.05	
	Benzofblfluoranthene	EPA 8270C	0.05	
	Benzo/klfluoranthene	EPA 8270C	0.05	
	Chrysene	EPA 8270C	0.05	
	Benzo[ghilperylene	EPA 8270C	0.05	
	Dibenz[a, h]anthracene	EPA 8270C	0.05	
	Indeno [1,2,-cd]pyrene	EPA 8270C	0.05	
	Pyrene	EPA 8270C	0.05	
Physical Parameters		Analytical Method ${ }^{1}$	Measurement	
Total Organic Carbon		EPA 9060A	0.01% dry weight	
Percent Moisture		ASTM D2794-00	1\%	
Percent Grain Size Distribution		ASTM D422-63	Sieve and pipette analysis	
	Gravel	ASTM D422-63	$16 \mathrm{~mm}-2 \mathrm{~mm}$	
	Sand	ASTM D422-63	$2 \mathrm{~mm}-0.0625 \mathrm{~mm}$	
	Silt	ASTM D422-63	$0.0625 \mathrm{~mm}-0.0039 \mathrm{~mm}$	
Clay		ASTM D422-63	$<0.0039 \mathrm{~mm}$	
Notes:				
An equival limit is accep 2 Canadian 3 Canadian C Protection of	ertified under the Canadi Protection Act, 1999, D isters of the Environmen (Marine).	Association for Labo posal at Sea Regulatio 1999. Canadian Envir	ry Accreditation that nental Qual ity Guide	n achieve the specified target de es, Sediment Qual ity Guideline

Figure 5.3 Environment and Climate Change Canada Disposal at Sea Program Minimum Sample Analytical Requirements

5.3.2 Pilot Study Site Setup and Characterization of Baseline Conditions

Once the final pilot study site(s) has been chosen, a pre-treatment determination of baseline conditions should be conducted to allow for the comparison of the effectiveness monitoring results and allow for the determination of remedial standards. Some data will already exist for the pilot study site, based on field assessments conducted as part of this Project (Section 3.0); however, further data will need to be collected to fully characterize the entire pilot study site, and include additional metrics that have not been previously sampled.

5.3.2.1 Fieldwork Planning and logistics

Characterization of baseline conditions should be planned for earlier summer months (May/June) in Year 2 of the pilot study so that sampling takes place after the benthic infauna community has had time to flourish (late spring) and, so that the application of treatment types can occur immediately following, within the same fiscal year (July/August), to (i) coincide with the DFO Summer Timing Window for the Protection of Fish and Fish habitat (Area 19 July 1 - October 1) and (ii) allow time for fill to settle and colonization to occur before the effectiveness monitoring begins in the next fiscal year.

A detailed sampling plan will be completed, outlining specifics of the pilot study site(s) setup, sampling of biophysical conditions, and reporting and provided to PWGSC and DND for review. Prior to the commencement of fieldwork, a Health and Safety Plan will also be provided for PWGSC and DND review.

ArcGIS will be used to determine the coordinate locations of the pilot study site boundaries, as well as the center points of each treatment plot and five sample location coordinates within each treatment plot. The sample location coordinates can then be used to determine the compass bearings and distances from the center cinder block.

5.3.2.2 Fieldwork

All fieldwork will be conducted by SCUBA and assisted by a surface-support vessel. For each pilot site and the reference site, the vessel will transit to the pre-determined coordinates for the location and divers will setup the cement cinder blocks at each of the four corners, and at the centre point of each treatment plot (Figure 5.2). With diver support, cinder blocks will be slowly lowered from the surface-support vessel on a temporary leadline with a buoy float. Divers will then descend the float line to re-position the cinder block, as necessary, and attach a smaller/shorter marker float for future treatment plot identification (Figure 5.4). All cinder block locations will be georeferenced in the field using a handheld GPS unit from the surfacesupport vessel and the temporary surface buoy as the location.

After setup, and before seafloor sediments are disturbed at each treatment/reference plot by grab sampling and divers, water quality measurements will be assessed using a $\mathrm{YSI}{ }^{\odot}$ handheld multi-parameter meter and the temporary surface buoy as a marker. Parameters will be measured at the surface (-1.0 m) and just above the seafloor, and will include temperature $\left({ }^{\circ} \mathrm{C}\right)$, dissolved oxygen (\%), conductivity ($\mu \mathrm{s} / \mathrm{cm}$), salinity (PPT), pH, and redox potential data was collected.

Figure 5.4 Example of Pilot Study Marker Setup
A sediment grab sampler (e.g. Van Veen) will then be deployed at the center point of each treatment plot and reference plot and field-screened by a Biologica technician through a 1.0 mm sieve using unfiltered seawater. Material retained on the screen will be transferred to jars and preserved with 10% buffered formalin for laboratory benthic infauna community analysis. It is recommended that benthic infauna community analysis be conducted during the establishment of baseline conditions, and again at the conclusion of the pilot study, to investigate differences in the benthic infauna community structure, rates of colonization, and determine if larger bioturbators and pollution-sensitive species are present. Benthic infauna communities undergo succession as they reach a mature community, with a greater presence of larger microbenthic and pollution-sensitive species in later stage or healthier productive communities. Larger taxa play a role in the bioturbation of sediments through their burrowing activities, this re-working of the sediments provides oxygenation and can aid in the recovery of wood-waste impacted areas. However, benthic infauna community data for the Harbour currently indicates that pollution-tolerant or opportunistic species dominate, with very few large bioturbators or sensitive species present. The presence of bioturbators will be an integral part of the success of enhanced natural recovery treatments. While this analysis is costly, it would be informative of the likelihood of a healthy and productive mature benthic infuana community developing within the Harbour.

After setup and grab sampling, biophysical conditions within each of the nine treatment plots and two reference plots will be surveyed. At each plot, divers will descend the temporary line to the center cinder block and use the predetermined compass bearings and a transect tape to navigate to the five randomized sample locations. At each of the five sample locations, divers will place a $1.0 \mathrm{~m} \times 1.0 \mathrm{~m}$ quadrat, use an underwater camera to take a photo of each sample location quadrat, and record:

- Seafloor depth
- Substrate type (\% cover; Table 3.2)
- Marine vegetation, bacteria (Beggiatoa sp.) and sessile invertebrates (\% cover)
- Mobile invertebrates and fish observed within a few metres of the quadrat (abundance)

At three sample locations (i.e. quadrat) within each plot, divers will also collect surficial sediment using push cores, to delineate the depth of wood waste and collect sediment for the analysis of biophysical and chemical parameters as follows:

- One long core (0.80 m long by 0.05 m diameter PVC tube) will be pushed into the sediments by hand or using a one-kilogram hammer to a depth where it could no longer penetrate. The core will be capped, removed from the sediment, and a second cap placed on the bottom of the core to ensure the contents were not released. The sediment is retained in the corer during removal from the sediment due to suction created by the cap.
- Three short squat cores (0.30 m long by 0.10 m diameter PVC tube) will be pushed into the sediments by hand or using a one-kilogram hammer to a depth where it could no longer penetrate and capped as above.
- A one-meter long metal probe, marked with 10 cm intervals, could also be used within the transect to collect additional information on the depth of hard substrates, shell hash/debris, and/or wood waste.

Aboard the surface-support vessel, sediment within the long core will be extruded into a core box and visually inspected, photo-documented, and a borehole log completed to document the vertical profile of substrate types and wood waste stratification (Table 3.2), along with other sediment observations (e.g. texture, colour, odour, presence of biota).

Sediment from the shorter cores will be used for analysis of physical and chemical sediment parameters, along with bioassays. Water will be decanted from the cores and the sediment immediately placed in clean containers/polyethylene bags, labelled with project information, recorded on a chain-of-custody form, and placed in coolers with ice packs to maintain temperatures below $6^{\circ} \mathrm{C}$ until they can be shipped to the appropriate laboratory facility. Approximately one duplicate for every ten samples will also be selected at random for data QA/QC procedures.

Following the completion of sampling at each of the nine treatment plots and two reference plots, the temporary surface line/buoy used for setup can be untied and reeled back into the surface-support vessel, and the shorter marker buoy left to help with location identification during future phases (Figure 5.4).

5.3.2.3 Analysis and Reporting

Benthic infauna community samples collected in the field will be analyzed by Biologica after a period of fixation, similar to that described in Section 3.1.2.2. Sediment core samples collected in the field will be sent to an accredited laboratory facility for analysis of physical and sediment chemistry parameters and to Nautilus Environmental for bioassay testing.

Sediment will be analyzed for the following physical and chemical parameters, which includes wood waste by-products along with contaminants which could impact results of the pilot study:

- Grain size distribution
- TOC
- Ammonia $\left(\mathrm{NH}_{3}\right)$ and pH
- Pore-water sulphides
- Heavy metals
- PAHs
- PCBs
- Dioxins/furans

Bioassays are an analytical method used to determine the toxicity of the sediment on living animals, they are a confirmatory tool used to demonstrate whether wood waste is adversely impacting benthic community and will be used to determine the short-term effectiveness of selected pilot project treatments by correlating wood waste and wood waste by-products with bioassay results. Provincial ecological risk assessment guidelines and the FCSAP provide guidance on bioassay testing but there are no Canadian criteria. Washington State SMS criteria stipulates the use of 2 acute and 1 chronic bioassay test for marine sediment (Washington 2013). Once the timing of the baseline conditions fieldwork has been confirmed, Nautilus Environmental can be contacted to determine the seasonal availability of species. Nautilus requires a minimum of one week's notice prior to submitting samples; however, samples can be held for up to 6 weeks before conducting bioassay testing. The bioassay toxicity tests outlined in Table 5.1 have been selected as suitable for the pilot study, based on locally-relevant infauna/epifauna that naturally occur in soft sediment habitats. The cost of one chronic and one acute test have been included in the cost estimate, it is recommended that at least one of the tests include a benthic infauna organism type (Section 5.4).

Table 5.1 Locally-relevant Toxicity Tests, Species and their Classification

Toxicity Test (Duration/Endpoint)	Species	Organism Type	Test Classification
$48-96$ h larval development and survival	Sea urchin (Strongylocentrotus purpuratus) or sand dollar (Dendraster excentricus)	Epibenthic	Chronic
10 -minute fertilization	Sea urchin (Strongylocentrotus purpuratus) or sand dollar (Dendraster excentricus)	Epibenthic	Acute
20-day survival and growth	Polychaete worm (Neanthes arenaceodentata)	Benthic Infauna	Chronic
10-day survival	Amphipod (Rhepoxynius abronius)	Benthic Infauna	Acute

Site-specific remedial standards will need to be developed based on site-specific conditions. Data analysis results from the pilot study site and outer harbour reference site will be compared to determine remedial endpoint goals. Results of the baseline conditions and remedial standards will be summarized in a short letter-style report for use in determining effectiveness of pilot study treatments in future fiscal years.

5.3.3 Application of Pilot Study Treatments

Following the completion of regulatory requirements and collection of baseline conditions, the various treatment types can be applied to the treatment plots as outlined below.

5.3.3.1 Fieldwork Planning and logistics

Characterization of baseline conditions should be planned for earlier summer months (May/June), after benthic community has had time to flourish, so that the application of treatments can occur immediately following, within the same fiscal year (July/August). The application of treatments to each treatment plot should be conducted within the DFO Summer Timing Window for the Protection of Fish and Fish habitat (Area 19 July 1 - October 1) and follow avoidance and mitigation measures outlined in the Serious Harm Assessment.

Prior to the commencement of fieldwork, a detailed Implementation Plan will be completed, outlining the specific details of implementation. A Health and Safety Plan will also be provided for PWGSC and DND review.

Treatment types applied to each of the nine treatment plots will be randomized and determined in advance of the fieldwork.

5.3.3.2 Fieldwork and Reporting

Application of the various treatment types will commence with the dredging and removal of wood waste and impacted sediments from the three treatment plots assigned to the dredge treatment and wrap up with the placement of clean fill for the ENR and dredge treatments. To assist with the application of treatments (i.e. move/replace treatment plot markers and confirm treatments have been applied appropriately), a dive team will also be onsite with a surface support vessel.

For the dredge treatment plots, a spudding, crane barge (with dredge bucket size approximately $3-4 \mathrm{~m}^{3}$) will mobilize to site and use previously-marked GPS coordinates to position at each of the three dredge treatment plots. Divers will confirm the treatment plot marker locations and remove them prior to the dredging. As dredgeate is removed it will be placed in a contained barge. Following the completion of dredging at a treatment plot, divers will visually confirm dredging parameters, and place a temporary center marker using a concrete cinder block with leadline and surface buoy.

Total volume of dredgeate is estimated to be approximately $400 \mathrm{~m}^{3}$, assuming three 20 m diameter treatment plots are dredged to approximately 0.4 m depth. Once the pilot study site has been selected, and baseline conditions collected, the total dredge volume can be more accurately determined.

Sediment samples will be collected from the dredgeate of each of the treatment plots and sent for sediment chemistry analytics to inform upland disposal facilities of contents and cost of disposal. For each of the three dredge treatment plots, 3 composite samples will be created. The sediment samples will be placed in clean containers/polyethylene bags, labelled with project information, recorded on a chain-of-custody form, and placed in coolers with ice packs to maintain temperatures below $6{ }^{\circ} \mathrm{C}$ until they can be shipped to the appropriate laboratory facility. Approximately one duplicate for every ten samples will also be selected at random for data QA/QC procedures. Sediment samples collected in the field will be sent to an accredited laboratory facility for analysis of the following sediment chemistry parameters:

- Grain size distribution and \% moisture
- TOC
- TCLP metals (including sulphur)
- LEPH/HEPH/PAH
- PCB
- BTEX
- $\mathrm{Na} / \mathrm{Cl}$

Once analytical results are received, the dredgeate can be towed to a location where it can be offloaded to dump trucks and transported to an upland facility that can accept salt-impacted sediments for disposal.

Once dredging is complete, placement of clean fill can commence. A spudding, crane barge will position itself using GPS waypoints for treatment plots, and the temporary surface buoy markers placed by divers, and place fill with the dredge at both the ENR treatment plots and the dredged treatment plots. Before fill is placed, divers will move the treatment plot markers and, following the placement of fill, divers will visually confirm that fill is placed appropriately (i.e. confirm thickness or provide feedback to crane operator on further areas to fill) and replace the treatment plot markers as per Figure 5.4. Approximately $600 \mathrm{~m}^{3}$ of clean fill has been estimated to be required, $190 \mathrm{~m}^{3}$ to place $15-20 \mathrm{~cm}$ of sand across the ENR treatment plots, and $400 \mathrm{~m}^{3}$ of fill to backfill the dredged treatment plots.

Onsite dive team members can serve as Environmental Monitors, to ensure that avoidance and mitigation measures outlined in the Fisheries Act Serious Harm Assessment are being implemented appropriately.

Results of the application of treatment types will be summarized in a short letter-style report. If the application of treatment types is completed within the same fiscal year as the baseline conditions, these results can be included in the same report. An environmental monitoring report will also be submitted at the completion of treatment application, summarizing on-site environmental activities and documenting any issues that arose.

5.3.4 Effectiveness Monitoring

Benthic infauna communities undergo succession as they reach a mature community, with a greater presence of larger microbenthic and pollution-sensitive species in later stage or healthier communities. The colonization and re-establishment of the benthic infauna community could take several years to establish. For example, results from Esquimalt Graving Dock Remediation Project's Year 1 and Year 3 effectiveness monitoring provides an indication of both rates of colonization/re-establishment and community composition following remediation within Esquimalt Harbour (Keystone 2015). Year 1 results indicate that the benthic infauna community was dominated by small, quick colonizers or species known to be pollution-tolerant (Keystone 2015) ${ }^{4}$. Therefore, effectiveness monitoring is recommended to occur annually for a minimum of two consecutive years following the application of treatment types (within pilot study Years 3 and 4). The presence of bioturbators will be an integral part of the success of enhanced natural recovery treatment (as described in Section 4.1.2); therefore, time should be allowed for larger bioturbators to colonize and begin bioturbating the clean fill, before the determination of pilot study effectiveness. Effectiveness monitoring must occur at the same time of year as the characterization of baseline conditions (May/June), to avoid any impacts of seasonality on the results, as was observed with the Esquimalt Graving Dock work (Keystone 2015).

[^42]Sampling of the treatment and reference plots will follow the exact procedures used for sampling baseline conditions, outlined in Section 5.3.2 above. In short, SCUBA divers will transit to the pilot study site and reference site using a surface-support vessel. Treatment plots will be located using previously determined GPS coordinates for the center marker of each plot. Before seafloor sediments are disturbed, water quality measurements will be taken at the center point of each plot. Divers will then locate the center cinder block of each plot and use predetermined compass bearings and a transect tape to navigate to five randomized sample locations. At each location a quadrat will be used to record biophysical observations, and push cores will be used to collect sediment at three of the locations. Sediment cores will be processed on the deck of the support vessel and sent to the appropriate laboratory facilities for analysis of physical and chemical parameters, along with bioassay testing.

Benthic infauna community analysis will only be conducted during the second year of effectiveness monitoring. Here, divers can attach temporary surface buoys to the treatment and reference plot center markers so that the sediment grab sampler can be deployed. Methods for field screening and laboratory analysis are as described above (Section 5.3.2).

Results of the first year of effectiveness monitoring will be summarized in a short letter-style report, comparing data to baseline conditions, while results of the second year of effectiveness monitoring will be rolled into the final report.

After the second year of effectiveness monitoring is complete, the pilot study and reference site and treatment plot markers can be removed by the divers. However, PWGSC and DND may decide to maintain these for potential future monitoring.

5.3.5 Determination of Pilot Study Effectiveness Report

Once the analytical results for the second year of effectiveness monitoring have been received (approximately 2-3 months following fieldwork), the data for pre-treatment baseline conditions and the two years of effectiveness monitoring can be compiled, analyzed and a final report for the pilot study project compiled.

Results will be used to determine whether there are any significant differences in wood waste by-product levels (i.e. TOC, ammonia, sulphides), bioassay toxicity results, and benthic infauna community structure between the three treatment types and the reference location. This will aid in the determination of which treatment type was most effective for the restoration of a productive benthic community. Based on the outcome, recommendations will be made for the remediation of the discontinuous and/or shallow areas of wood-waste deposits within Esquimalt Harbour.

5.4 Cost Estimate

Given the level of information available for basic scoping of the pilot study permitting, phased design implementation, and determination of effectiveness, a detailed, but not definitive, cost estimate is provided. The total estimated cost for the pilot study project implementation is $\mathbf{\$ 3 , 1 3 2 , 0 2 0 . 0 0}$, plus applicable taxes, with a breakdown of totals by year provided in Table 5.2 below and the detailed cost estimate breakdown included in Appendix J: Detailed Pilot Project Cost Estimate.

Table 5.2 Pilot Study Project Cost Estimate Totals by Year

Category	Cost
Year 1: Finalized Site Selection and Regulatory Requirements	$\$ 21,581.00$
Year 2: Pilot Setup, Baseline Conditions, Application of Treatments	$\$ 2,712,523.00$
Year 3: Effectiveness Monitoring Year 1	$\$ 164,298.00$
Year 4: Effectiveness Monitoring Year 2 and Determination of Effectiveness	$\$ 233,618.00$
Total Pilot Study	$\mathbf{\$ 3 , 1 3 2 , 0 2 0 . 0 0}$

Assumptions and notes on the cost estimate:

- Cost estimate currently includes pricing for the implementation of the pilot study at one study site. It is noted that additional sites would improve the margin of error
- Dredgeate volume is assumed to be approximately $400 \mathrm{~m}^{3}$ - based on three, 20 m diameter dredge treatment plots are dredged to approximately 0.4 m depth. Once the pilot study site has been selected, and baseline conditions collected, the total dredge volume can be more accurately determined
- Cost estimate is based on disposal of dredgeate at a Vancouver-Island based facility.
- The weight of dredged sediments is assumed to be $2000 \mathrm{~kg} / 1 \mathrm{~m}^{3}$ and based the cost of upland disposal on the cost of drill cutting sediments disposed of following Field Survey 6 ($\$ 1.86 / \mathrm{kg}$). Physical stabilization of sediments may be required, and the upland facility may not accept cut logs within the dredgeate.
- The dredging costs will vary with contractor, equipment type, and study site depths (greater depths will take longer to dredge and backfill)
- Cost estimate assumes that approximately $600 \mathrm{~m}^{3}$ of clean fill will be required - based on $190 \mathrm{~m}^{3}$ to place $15-20 \mathrm{~cm}$ of sand across the three ENR treatment plots, and $400 \mathrm{~m}^{3}$ of fill to backfill the dredged treatment plots.

6.0 PUBLICATION RECOMMENDATIONS

The publication of wood waste assessment and remediation case studies contributes to the working knowledge of the success of wood waste remediation and provides valuable information to waterlot managers in British Columbia on the regional impacts of wood waste and success of site-specific designed remediation efforts. Therefore, recommendations for the publication of assessment and remediation results have been included here for PWGSC and DND's consideration.

Given that the site characterization and assessment data is extensive, and the pilot study project has a separate objective, two or three targeted scientific publications are proposed as follows:

1. Assessment of Wood Waste Impacts to Benthic Communities within Esquimalt Harbour
2. Site-specific Effectiveness and Feasibility of Three Wood Waste Remediation Treatments on Areas of Discontinuous or Shallow Wood Waste Deposits in Esquimalt Harbour
3. Remediation of Wood Waste Impacted Sediments in Esquimalt Harbour

An initial list of suggested journals for publications has been provided in Table $\mathbf{6 . 1}$ for consideration.
Table 6.1 Proposed Scientific Journals for Publication of Wood Waste Assessment and Remediation Results

Journal	Journal Scope	Notes
Marine Pollution Bulletin	Concerned with the rational use of maritime and marine resources in estuaries, the seas and oceans, as well as with documenting marine pollution and introducing new forms of measurement and analysis. Topics include effluent disposal and pollution control, but also the management, economic aspects and protection of the marine environment in general. Several different categories of articles are published, including, 'baselines' which document measurements which are expected to have value in the future.	- International - Publication fee - Open Access
Water Quality Research Journal of Canada	The Water Quality Research Journal is a forum for original research dealing with the aquatic environment and reports new and significant findings that advance the understanding of the field. General subject areas can include: Impact of current and emerging contaminants on aquatic ecosystems, Aquatic ecology, Conservation and protection of aquatic environments, Responsible resource development and water quality (mining, forestry, hydropower, oil and gas), wastewater and stormwater treatment technologies and strategies, Industrial water quality, Groundwater quality (management, remediation, fracking, legacy contaminants), Assessment of surface and subsurface water quality, Regulations, economics, strategies and policies related to water quality.	- Canadian journal - more relevant regionally. - No publication fee - Open Access (for a fee) - Easier/faster to get published
Water Environment Research	Water Environment Research is a multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. Goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.	- International - Engineering audience

7.0 CONCLUSIONS

We sincerely appreciate the opportunity to have assisted you with this project and if there are any questions, please do not hesitate to contact the undersigned by phone at 604.669.0424.

Report prepared by:

Hemmera Envirochem Inc.

martin

Mikaela Davis, M.Sc., R.P.Bio.
Biologist
604.669.0424 (236)
mdavis@hemmera.com

Tracey L'Espérance, B.Sc., R.P.Bio.
Environmental Scientist
tlesperance@hemmera.com

Report senior reviewed by:
Hemmera Envirochem Inc.

Scott Northrup, P.Biol., R.P.Bio.
Biologist
snorthrup@hemmera.com

Scott Toes, M.Sc., R.P.Bio.
Biologist
stoews@hemmera.com

8.0 REFERENCES

Armend, J.P., K.J. Edwards, T.W. Lyons. 2004. Sulfur Biogeochemistry - Past and Present. Sulfide oxidation in marine sediments: Geochemistry meets microbiology In Geological Society of America Special Papers 379.

Archipelago Marine Research Ltd. (Archipelago). 2004. Subtidal Survey Of Physical And Biological Features Of Esquimalt Harbour: Report \& Map Folio, Revised and Updated. Prepared for Victoria and Esquimalt Harbours Environmental Program, Transport Canada. 76pp.

Azimuth Consulting Group Partnership (Azimuth). 2017. Assessment of Alternatives to Disposing of Wood Waste a Sea in the Pacific and Yukon Region. Prepared for Environment and Climate Change Canada. 70pp.

Baird and Associates Coastal Engineering Ltd. Pedder Bay. 1991. British Columbia Wave Climate Study and Wave Protection Considerations: Final Report. Prepared for Government of Canada, Fisheries and Oceans. Accessed (November 2016) from: http://www.racerocks.com/racerock/rreo/rreoref/pedbaywave.htm

BC Site Registry, accessed via BC Online at: https://www.bconline.gov.bc.ca/
Biologica Environmental Services Ltd (Biologica). 2016. Esquimalt Harbour Macrobenthic Invertebrate Survey 2015 Data Report: Calculation and Assessment of Biotic Indices. Prepared for SLR Consulting. 32pp.

Breems, J, and T. Goodman. 2009. Wood Waste Assessment and Remediation in Puget Sound. Prepared for Estuary and Salmon Restoration Program of the Puget Sound Nearshore Ecosystem Restoration Project.

Borja, A., Franco, and J. Perez, V. 2000. A marine biotic index to establish the ecological quality of softbottom benthos within European estuarine and coastal environments. Marine Pollution Bulletin 40:1100-1114.

Bright, D.A., and Reimer, K.J. 1993. An Environmental Study of Esquimalt Harbour: Part I. Historical Inputs, Marine Sediment Contamination, and Biological Uptake. Report prepared for the Director General Environment, Department of National Defence by the Environmental Sciences Group, Royal Roads Military College.

British Columbia Contaminated Sites Regulation (BC CSR). 2009. BC Reg. 375/96 (Effective April 1997 and amended July 1999, November 1999, February 2002, November 2003, July 2004, July 2007, January 2013 and January 2014), including amendments up to B.C. Reg. 4/2014, effective January 31, 2014.

British Columbia digital mapping application, iMapBC. http://maps.gov.bc.ca/ess/sv/imapbc/

British Columbia Environmental Violations Database, accessed online at:

 https://a100.gov.bc.ca/pub/ocers/searchApproved.do?submitType=menuBritish Columbia Marine Conservation Analysis (BCMCA). 2016. Marine Atlas of Pacific Canada. Accessed (November 2016) from: http://www.cmnbc.ca/atlas_gallery/bc-marine-conservation-analysis-atlas

British Columbia Marine Ecological Classification (BCMEC). 2002. British Columbia Marine Ecological Classification: marine ecosections and ecounits, v2. 63pp. Accessed from: https://www2.gov.bc.ca/assets/gov/environment/natural-resource-stewardship/nr-lawspolicy/risc/bcmec_version_2.pdf

British Columbia Ministry of Environment (BCMOE). 2016. Fisheries Information Summary System (FISS). [online] Available at: http://a100.gov.bc.ca/pub/fidq/fissReport.do

British Columbia Waste Discharge Authorizations, accessed online at: http://www2.gov.bc.ca/gov/content/environment/waste-management/waste-discharge-authorization/managing-authorizations/publicly-viewable-authorization-documents

Brooks, K.M., A.R. Stierns, C.V.W. Mahnken, D.B. Blackburn. 2003. Chemical and biological remediation of the benthos near Atlantic salmon farms. Aquaculture 219: 355-377.

Buchanan, D.V., P.S. Tate, and J.R. Moring. 1976. Acute Toxicities of Spruce and Hemlock Bark Extracts to some Estuarine Organisms in Southeastern Alaska. Journal of Fisheries Research Board of Canada 33: 1188-1192

Burd, Brenda. 2016. Synthesis Report: Benthos impact assessment relative to sediment geochemical, contaminant, and physical disturbance conditions in Esquimalt Harbour based on 2013 and 2015 monitoring data. Prepared for SLR consulting Ltd. 98pp

CCME, Canadian Council of Ministers of the Environment. 2010. Canadian water quality guidelines for the protection of aquatic life: Ammonia. In: Canadian environmental quality guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg. 8pp

CRD, Capital Regional District online mapping application, CRD Atlas, accessed online via: https://maps.crd.bc.ca/Html5Viewer/?viewer=public

CRD, Capital Regional District. 2016. Esquimalt Harbour. Accessed (November 2016) from: https://www.crd.bc.ca/education/our-environment/harbours/esquimalt-harbour

Conlan, K.E. 1977. The effects of wood deposition from a coastal log handling operation on the benthos of a shallow sand bed in Saanich Inlet, British Columbia. M.Sc. Theses, University of Victoria. 202pp.

Conlan, K.E. and D.V. Ellis. 1979. Effects of Wood Waste on Sand-bed Benthos. Marine Pollution Bulletin 10. 41pp. Accessed from: http://waves-vagues.dfo-mpo.gc.ca/Library/40587976.pdf

Davenne, E. and D. Masson. 2001. Water Properties in the Straits of Georgia and Juan de Fuca
Elliott, J.K., Spear, E. and Wyllie-Echeverria, S., 2006. Mats of Beggiatoa bacteria reveal that organic pollution from lumber mills inhibits growth of Zostera marina. Marine Ecology, 27(4), pp.372-380.

Fenchel, T., C. Bernard. 1995. Mats of colourless sulphur bacteria. I. Major microbial processes. Marine Ecology Progress Series. 178: 161-170.

Geosea. 2009.
Golder. 2006. Phase I Environmental Site Assessment and Supplemental Sediment and Crab Sampling Investigation, Esquimalt Harbour. Volume I of III. Prepared for Public Works and Government Services Canada. Victoria, British Columbia.

Gonor, J.J., J.R. Sedell, and P.A. Benner. 1988. Chapter 4: What we know about large trees in estuaries, in the sea, and on coastal beaches. In From the forest to the sea: A story of fallen trees. Eds. C. Maser, R.F. Tarrant, J.M. Trappe, and J.F. Franklin. General Technical Report PNW-GTR-229. Pacific Northwest Research Station, US Department of Agriculture, Forest Service.

Goodman, J.L., K.A. Moore, and W.C. Dennison. 1995. Photosynthetic Responses of Eelgrass (Zostera marina L.) to Light and Sediment Sulfide in a Shallow Barrier Island Lagoon. Aquatic Botany 50(1): 37-47

Gray, J.S., R.S. Wu, and Y.Y. Or. 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Marine ecology progress series 238: 249-279

Green, M.A., G.G. Waldbusser, S.L. Reilly, K. Emerson, and S. O'Donnell. 2009. Death by dissolution: Sediment saturation state as a mortality factor for juvenile bivalves. Limnol. Oceanogr. 54(4): 1037-1047

Green, M.A., G.G. Waldbusser, L. Hubazc, E. Cathcart, J. Hall. 2013. Carbonate Mineral Saturation State as the Recruitment Cue for Settling Bivalves in Marine Muds. Estuaries and Coasts 36: 18-27

Hemmera Envirochem Inc. 2004. Esquimalt Harbour Environmental Baseline Study. Volume 18 (Addendum\#3) Lot A. Lot 18. Esquimalt Harbour, British Columbia. Prepared for Transport Canada.

Holmer, M., C.M. Duarte, and N. Marba. 2005. Iron additions reduce sulfate reduction rates and improve seagrasss growth on organic-enriched carbonate sediments. Ecosystems 8: 721-730

Hyland, J., L.Balthis, I. Karakassis. 2005. Organic Carbon Content of Sediments as an Indicator of Stress in the Marine Benthos. Mare ecology Progress Series 295: 91-103.

Jackson, R.G. 1986. Effect of bark accumulation on benthic infauna at a log transfer facility in southeast Alaska. Marine Pollution Bulletin 17, no. 6: 258-262.

Jørgensen, B.B. 1977. Distribution of Colorless Sulfur Bacteria (Beggiatoa species) in Coastal MarineSediment. Marine Biology 4: 19-28.

Kathman, R.D., S.F. Cross, and M. Waldichuck. 1984. Effects of Wood Waste on the Recruitment Potential of Marine Benthic Communities. Canadian Technical Report of Fisheries and Oceans Sciences. 56pp.

Keely, N.B., C.K Macleod, D. Taylor, and R. Forrest. 2017. Comparison of three potential methods for accelerating seabed recovery beneath salmon farms. Aquaculture 479: 652-666

Kendall, D. and T. Michelsen. 1997. Management of Wood Waste under Dredged Material Management Programs (DMMP) and the Sediment Management Standards (SMS) Cleanup Program. Seattle District, ACOE, and Washington Department of Ecology.

Keystone Environmental (Keystone). 2015. Year 1 Habitat Compensation Effectiveness Monitoring Report, Esquimalt Graving Dock Waterlot Remediation Project, Esquimalt, BC. Prepared for: Public Works and Government Services Canada. 181pp.

Libes, S. 1992. An Introduction to Marine Biogeochemistry. New York: Wiley. Accessed (November 2016) from:
https://books.google.ca/books?hl=en\&|r=\&id=KVZJUw4nORgC\&oi=fnd\&pg=PP1\&dq=An+introdu ction+to+marine+biogeochemistry\&ots=JeAOVIvdYk\&sig=04sn-
p6IU4eySyzzIBUzlei8IUM\#v=onepage\&q=An\%20introduction\%20to\%20marine\%20biogeochemis try\&f=false

Maser, C., and J.R. Sedell. From the forest to the sea: The ecology of Wood in Streams, Rivers, Estuaries, and oceans. St. Lucie Press, Florida, 200pp.

Mußmann M., H.N. Sculz, B. Strotmann, T. Kjær, L.P. Nielsen, R.A. Rosselló-Mora, R.I. Amann, B.B. Jørgensen. 2003. Phylogeny and distribution of nitrate-storing Beggiatoa spp. in coastal marine sediments. Environmental Microbiology, 5: 523-533.

Nuszdorfer, F.C., K. Klinka, and D.A. Demarchi. 1991. Chapter 5: Coastal Douglas-fir Zone in Special Report Series 6: Ecosystems of British Columbia. Eds D. Meidinger and J. Pojar. BC Ministry of Forests. from: https://www.for.gov.bc.ca/hfd/pubs/docs/Srs/Srs06/chap5.pdf. Accessed (November 2016)

Oksanen, J., F. Guillaume Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O'Hara, G. L. Simpson, P.r Solymos, M. H. Stevens, E. Szoecs and H. Wagner (2018). Vegan: Community Ecology Package. R package version 2.4-6. https://CRAN.Rproject.org/package=vegan

Östlund, H.G., Alexander, J.1963. Oxidation rate of sulfide in sea water, a preliminary study. Journal of Geophysical Research 68(13): 3995-3997.

Pearse, B.C. 1974. Effects of log dumping and rafting on the marine environment of southeast Alaska. Fisheries Research Institute - USDA Forest Service General - University of Washington, Seattle. Technical report pub\# PNW-22, Seattle, WA. Accessed (November 2016) from: https://babel.hathitrust.org/cgi/pt?id=umn.31951d02964450x;page=root;view=image;size=75;seq =68;num=60

Pearson, T.H., 1980. Marine pollution effects of pulp and paper industry wastes. Helgoländer Meeresuntersuchungen, 33(1), p. 340 .

Pederson, O., T.Binzer, and J. Borum. 2004. Sulphide Intrusion in Eelgrass (Zostera marina L.). Plant, cell \& Environment 27(5): 595-602.

Peters, G.B., H.J. Dawson, B.F. Hruthfiord, and R.R. Whitney. 1976. Aqueous leachate from western red cedar: effects on some aquatic organisms. Journal of Fisheries Research Board Canada 33: 2703-2709.

Phillips, R.C. 1984. Ecology of an Eelgrass Meadow in the Pacific Northwest: A community profile. FWS/OBS - 84/24, Seattle Pacific University, Washington (USA). Accessed (November 2016) from: https://babel.hathitrust.org/cgi/pt?id=uc1.31822023039233;view=1up;seq=1

Picard, C., B. Bornhold, J. Harper. 2003. Impacts of wood debris accumulation on seabed ecology in british columbia estuaries. $2^{\text {nd }}$ International Symposium on Contaminated Sediments. Accessed from: http://www.scs2003.ggl.ulaval.ca/Histories/Picard2.pdf

Podger, D. Unpublished. Sulfide Effects on Aquatic Organisms Literature Review. 16pp. Accessed (November 2016) from: https://salishsearestoration.org/images/8/8c/Podger_2013_sulfide_effects_on_aquatic_organisms .pdf

Reish, D.J. and J.L. Barnard. 1960. Field toxicity tests in marine waters utilizing the polychaetous annelid Capitella captitata (Fabricius). Pac. Nat. 21:1-8

Rice, E.W., Baird, R.B., Eaton, A.D., and Clesceri, L.S, eds. 2012. Standard methods for the examination of water and wastewater, $22^{\text {nd }}$ Edition. Washington DC

Rosenberg, R. 1972. Succession in benthic marcofauna in a Swedish fjord subsequent to the closure of a sulphite pulp mill. Oikos 24(2): 244-258.

Independent Science Advisory Group (SAG). 2011. Letter Report of the Independent Scientific Advisory Group Regarding the B.C.Aquaculture Waste Control Regulation: Initial Review Comments on (I) Selection of Protection and Measurement Endpoints and (II) Methods for Establishing Environmentally Protective Thresholds, toward the Sustainable Management of Salmon Aquaculture Wastes. 25pp.

Science Applications International Corporation (SAIC). 1999. Port Angeles Harbor Wood Waste Study, Port Angeles, Washington, Final. Prepared for: Washington State Department of Ecology by SAIC, Bothell, WA, 41pp. Accessed (February 2017) from: https://fortress.wa.gov/ecy/publications/SummaryPages/99326.html

Samis, S.C., S.D. Liu, B.G. Wernick and M.D. Nassichuk. 1999. Mitigation of fisheries impacts from the use and disposal of wood residue in British Columbia and the Yukon. Canadian Technical Report of Fisheries Aquatic Sciences 2296: viii and 91 p. Accessed (November 2016) from: http://www.dfo-mpo.gc.ca/Library/243104.pdf.

Sensitive Habitat Inventory and Mapping (SHIM). 2016. SHIM Atlas. Accessed (November 2016) from: http://www.cmnbc.ca/atlas_gallery/shim-sensitive-habitat-inventory-and-mapping

Snelgrove, P.V.R. 1997. The importance of marine sediment biodiversity in ecosystem processes. Ambio vol 26 (8): 579-583.

SLR Consulting Canada Ltd (SLR). 2016. Detailed Quantitative Ecological Risk Assessment to Support Environmental Risk Management, Esquimalt Harbour, BC - Draft \#3. Prepared for Public Works and Government Services Canada - Esquimalt Harbour Remediation Project. 2721 pp

Teixeira, H., Weisberg, S.B., Borja, A., Ranasinghe, A., Cadien, D.B., Velardee, R.G., Lovell, L.L., Pakso, D., Philllips, C.A., Montagne, D.E., Ritter, K.J., Salas, F., Marquesa, J.C. 2012. Calibration and validation of the AZTI's Marine Biotic Index (AMBI) for Southern California marine bays. Ecological Indicators 12: 84-95

Treasury Board of Canada Secretariat, Federal Contaminated Sites Inventory, accessed online via: http://www.tbs-sct.gc.ca/fcsi-rscf/home-accueil-eng.aspx
U.S. Environmental Protection Agency (US EPA). 1986. Quality criteria for water. EPA 550/5-86-001. Cincinnati, OH.
U.S. Enviornmental Protection Agency (US EPA). 1999. EMAP-Virginian Province Four-Year Assessment (1990-93)". EPA/620/R-99/004. Accessed from: https://nepis.epa.gov/Exe/ZyNET.exe/300042W8.TXT?ZyActionD=ZyDocument\&Client=EPA\&Ind ex=1995+Thru+1999\&Docs=\&Query=\&Time=\&EndTime=\&SearchMethod=1\&TocRestrict=n\&Toc
=\&TocEntry=\&QField=\&QFieldYear=\&QFieldMonth=\&QFieldDay=\&IntQFieldOp=0\&ExtQFieldOp =0\&XmIQuery=\&File=D\%3A\%5Czyfiles\%5CIndex\%20Data\%5C95thru99\%5CTxt\%5C00000016 \%5C300042W8.txt\&User=ANONYMOUS\&Password=anonymous\&SortMethod=h\%7C\&MaximumDocuments=1\&FuzzyDegree=0\&ImageQuality=r75g8/r75g8/x150y150g16/i425\&Displ ay=hpfr\&DefSeekPage=x\&SearchBack=ZyActionL\&Back=ZyActionS\&BackDesc=Results\%20pag e\&MaximumPages=1\&ZyEntry=1\&SeekPage=x\&ZyPURL

Wang, F. and Chapman, P.M., 1999. Biological implications of sulfide in sediment-a review focusing on sediment toxicity. Environmental Toxicology and Chemistry, 18(11), pp.2526-2532.

State of Washington Department of Ecology (Washington State). 2013. Wood Waste Cleanup: Identifying, Assessing, and Remediating Wood Waste in Marine and Freshwater Environments - Guidance for Implementing the Cleanup Provisions of the Sediment Management Standards Chapter 173024 WAC. Publication No. 09-09-044. 93pp.

Yamamoto, T., S. Kondo, K-H. Kim, S. Asaoka, H. Yamamoto, M. Tokuoka, T. Hibino. Remediation of muddy tidal flat sediments using hot air-dried crushed oyster shells. Marine Pollution Bulletin 64: 2428-2434

Yücel, M., Galand, P.E., Fagervold, S.K., Contreira-Pereira, L. and Le Bris, N., 2013. Sulfide production and consumption in degrading wood in the marine environment. Chemosphere, 90(2)

APPENDIX A
 Aerial Photos

 8.5
3
5

A

CRD 1:6500 Lat N48.4352 Lon W123. 442e 17:21:30 3691 \qquad ब5 $25 / \mathrm{F} 5$ INE V173 PC-1E AGFA

FF1.3 EC 0 * SP- wh. 07709 00\% dt007.2 ds011 26. 2V -58mb ER00 CAM5373

ds010

4
$3 / 4$
3

APPENDIX B

Regulatory Information

Treasury Board of Canada Secretariat

Home > OCG > Real Property Management > DFRP/FCSI - Map Navigator

DFRP/FCSI - Map Navigator

Area: Capital Content: 222 Federal Contaminated Sites,

Layers

\rightarrow Federal Properties

* \square Federal Buildings
- Federal Contaminated Sites
- Economic Region
- Census Divisions
- Census Subdivisions
- Metropolitan Areas
- Federal Electoral Districts

Treaty Areas
${ }^{1}$ This layer is visible only when the map scale is smaller than 1:3,000,000.
${ }^{2}$ Google base maps are only available when the map scale is smaller than 1:60,000.

IMPORTANT NOTE: The tables below are currently not synchronized with the map content. Please click on the following hyperlink if you want to update the tables content: UPDATE TABLES

Federal Properties

Federal Properties
Page(s):
Select the number of rows per page \square

Federal Buildings

Federal Contaminated Sites

Authorization	Authorization Type	Issue Date	Waste Type	State	Facility Type - Description	Facility Address
4772	Permit	08/08/1977	Effluent	Cancelled	Elementary School - sewage	3291 Happy Valley Road, Victoria
6081	Asphalt Plant Regulation	26/09/1997	Air	Active	Asphalt Plant	740 Industrial Way, Victoria BC V9B 6E2
8241	Permit	11/05/1989	Effluent	Cancelled	Chlorination/Dechlorination	680 Montreal Street, CRD BC V8V 1 Z8
15601	Permit	18/09/2000	Air	Active	n/a	765 Industrial Way, Victoria
18363	Operational Certificate	19/02/2008	Effluent	Active	Reclaimed water production plant Reclaimed water production facility at Victoria inner harbour Reclaimed water used for toilet flushing, landscape irrigation and impoundment. Overflow from impoundment into Victoria Harbour	101-1117 Wharf Street, Victoria BC V8W 2 S6
100051	Hazardous Waste Regulation	20/09/2007		Active	Biocell at Highwest Landfill	1943 Millstream Road, Victoria BC V9B 6E2
100174	Organic Matter Recycling Regulation	06/03/2008		Active	Compost	1416 B Alan Road, Victoria BC V9E 2C5
100183	Organic Matter Recycling Regulation	07/03/2008		Cancelled	Compost	UVic Finerty Road Victoria
100184	Organic Matter Recycling Regulation	07/03/2008		Active	Compost	4370 Interurban Rd Victoria BC V9E 2C3
100302	Vehicle Dismantling and Recycling Industry Environmental Planning Regulation	28/07/2008		Active	Automotive recycler Automotive recycler	232 Trans Canada Highway, Malahat BC VOR 2 LO
100327	Vehicle Dismantling and Recycling Industry Environmental Planning Regulation	01/08/2008		Active	Steel Recycling Facility Waste metal collection and recycling depot, including wet/dry vehicles. A diesel powered metal shredder is used to shred and sort, metals (ferrous, non-ferrous and non-metals). This site also accepts demolition wastes, bottles for recycling	2770 Pleasant St, Victoria BC
100382	Vehicle Dismantling and Recycling Industry Environmental Planning Regulation	13/08/2008		Active	automobile dismantling Automobile dismantling	1297 Glenshire Drive, Victoria BC V9C 3W7
100384	Code of Practice for Concrete and Concrete Products	26/08/2008		Active	Concrete Production	439 Bay Street, Victoria BC V8T 1P5
103167	Vehicle Dismantling and Recycling Industry Environmental Planning Regulation	05/02/2009		Withdrawn	Sales and service of new and used motorcycles, their parts and accessories. Sales and service of new and used motorcycles, their parts and accessories.	D-611 David Street, Victoria BC V8T 2C9
103821	Permit	31/03/2010	Air	Active	Electric motor rebuilding Electric motor rebuilding shop	859 Viewfield Road, Victoria BC V9A 4V2

Authorization Number	Authorization Type	Issue Date	Waste Type	State	Facility Type - Description	Facility Address
103965	Petroleum Storage and Distribution Facilities Storm Water Regulation	09/09/2009		Withdrawn	Transfer area is drained into an oil/water sparator that discharges into the storm sewer situated adjacent to the property	2515 Rock Bay Ave, Victoria BC V8T 4R5
104612	Petroleum Storage and Distribution Facilities Storm Water Regulation	$03 / 03 / 2010$		Active	Petroleum products storage and distribution facility	2515 Rock Bay Avenue, Victoria BC V8T 4R5
105554	Hazardous Waste Regulation	$20 / 04 / 2011$	Hazardous Waste	Cancelled	Ellice Recycle and Ralmax Development's barge ramF facility	2800 Bridge Street, Victoria BC \times
106038	Hazardous Waste Regulation	$27 / 02 / 2012$	Hazardous Waste	Active	Soil Treatment Biocell - Landfill	1943 Millstream Rd, Victoria BC
106597	Petroleum Storage and Distribution Facilities Storm Water Regulation	$08 / 02 / 2013$		Active	Langford Cardlock	2596 Sooke Road, Colwood BC V9B 1X7
106843	Permit	$09 / 01 / 2014$	Refuse	Active	Soil storage three fill areas (Fill area 1,2 and 3) for permanent storage of contaminated soil	203 Harbour Road, Victoria BC V9A 3S2

APPENDIX C

Harbour Occupants

APPENDIX A-1: Harbour Occupants as of 1873

Area	Usage	Dates
Northern Shore - Cole Island	- munitions magazine	- 1860-1938
East Side - land between southern shore Thetis Cove \& northern Plumper Bay - north shore Thetis Cove	- "Indian Village" - unidentified building	$\begin{aligned} & -1873 \\ & - \text { by } 1860-1873 \end{aligned}$
Constance Cove - Lang Cove - Skinner Cove	- named "Village Bay" - intact, with inland stream	$\begin{aligned} & - \text { ca } 1873 \\ & -1848-1920 \mathrm{~s} \\ & \hline \end{aligned}$
Duntze Head/Naval Yard Peninsula Area - Thetis Island - Esquimalt Village - Western part/naval yard - Western part/naval yard inland - East of Grant Knoll - SE of landing East of Grant Knoll - directly inland east of Duntze Head, near first Naval Yard Boundary Line (West of Signal Hill) - inland east of Grant Knoll \& south of "Landing"	- Naval Coal Wharf Naval Coal Store/Note: island still intact, separate - Fraser's River ("Cariboo") Gold Rush traffic landing here/Esquimalt Village \& Wharf St. developed/small wharf - Admiralty/Naval land has enlarged wharf - "The Factory": Smith shop, Smelter/Engine House - cable, paint, chain, timber, lumber, ordnance, cordage/stores; fitting house - Boathouse - Landing - "Factory" - Paint, Oil, Ordnance, Victualling Stores, Naval stores, Condemned Stores, Engine	$\begin{aligned} & -(1860-1880) \\ & -1858-68 \\ & -1865 \\ & - \text { by } 1873 \\ & - \text { by } 1858 \\ & - \text { by } 1863-67 \\ & - \text { by } 1863-67 \end{aligned}$
West Side - Southern entrance, west side	- Fisgard Lighthouse	- 1860-present

APPENDIX A-2: Harbour Occupants as of 1896

Area	Usage	Dates
Northern Shore - Northern harbour, inland - Cole Island	- Esquimalt \& Nanaimo Railway - magazine, incl. boathouse, jetty, mine \& shell store, shell filling house, ordnance store, 4 powder magazines, quick firing ammunition store, store for empty cases	- 1886-present? - 1860-1938
East Side - North of Skinner Cove - Land between southern shore Thetis Cove \& northern Plumper Bay - Along eastern side of harbour - Plumper Bay peninsula area, southwest of Thetis Cove	- Hudson's Bay Co. Post - "Indian Village" - E \& N Railway (splits \& runs down peninsula area in Plumper Bay) - "Cannery" (platform extends out into water; appears on 1896 hydrographic chart)	- ca 1896 - construction starts 1884; operative 1886present - by 1896-(on 1947 chart; not present on 1967 chart)
Constance Cove - Lang Cove area - between Pilgrim \& Lang - Pilgrim Cove area - West of Skinner Cove - Lang Cove area - North of Skinner Cove - Pilgrim Cove - Northeast Signal Hill - North of Signal Hill - Shoreline N.E. of Signal Hill - North of Signal Hill - Shoreline N.W. of Signal Hill - West of Signal Hill	- Isbestor's Pier (identified as Foster's Pier in 1896) - Infectious ward - Jetty/landing stage/wharf - Hudson's Bay Co. wharf - Brown family operated Slipway cradle \& jetty/BC Marine slipway (known in 1895 as "Marine Slipway"/1896 "slipway"/18971914 BC Marine Railway Co. Cradle) - E\&N Railway/Esquimalt \& Craigflower Rd./Hudson's Bay Co./4 large bldgs - Royal Naval Hospital - Fosters Pier - wharf with bldgs - Isbestor's Pier (identified as Foster's Pier in 1896) - Submarine Mine Establishment, with tramway - boathouse; cement \& timber store - War Department boundary	- ca 1895 - ca 1895 - by 1895 - 1893-1914 - ca 1896 - ca 1896 - ca 1896 - ca 1895 - 든 1895 - ca 1895

APPENDIX A-3: Harbour Occupants in 1925

Area	Usage	Dates
Northern Shore - Parsons Bridge - Cole Island - Inland northern harbour - Northern harbour	- Blacksmith shop/brass foundry (slaughterhouse/piggery)/tannery? - Magazines used by Royal Navy/Royal Canadian Navy/Army - Esquimalt and Namaimo railway - oyster beds	- 1900-1930s - WWI - 1886-present? - up to1920-1930s
East Side - Thetis Cove, opposite Richards Island - Plumper Bay \& North - inland Plumper Bay - Thetis Cove - Indian Reserve - Plumper Bay area - Southwestern shore of Thetis Cove	- Large, fuel wharf - E \& N Railway - Oil tank "(conspicuous)" - Machine shop (off of E \& N Railway) - Star Shipyard - Empire Cannery/V.H. Todd \& Sons, Ltd. Empire owned by Todds - Oil wharf - Small vessel wharf	- 1920s - by 1886-? - 1921 (on chart)1947 - 1918 - 1905-77 (?) - by 1896-1947 - 1925-present - Early 1900spresent
Constance Cove - Pilgrim Cove - Skinner Cove - Lang Cove - Inland Pilgrim Cove - Signal Hill and northern shoreline	Boat House/RCN Barracks inland - Proposed Esquimalt Graving Dock - Slipway becomes Yarrows (graving dock \& shipyard) - Royal Navy Hospital (incl. dead house, infectious ward, disinfecting house) - Joint Services Magazine - Submarine Mining Establishment, including offices, shops, stores and stone jetty for handling mines jutting into Constance Cove Imperial forces returned to England, minefield operation discontinued; abandoned buildings become part of Canadian Ordnance complex. -9.2" gun battery	- 1920s - (opens 1926) - 1914-1946 - ca 1913-1914 - 1899-1906 - 1906 - 1912-1939

$\begin{aligned} & \text { APPENDIX A- } \\ & \text { 3(CONT.) } \end{aligned}$		
Duntze Head/Naval Yard Peninsula Area		
- Western portion	- Drydock used by Royal Navy/Royal Canadian Navy/ Can. Gov't./Commerical ships	- 1887-1927
- Western portion	- Drydock closed	$\begin{aligned} & -1927-1945 \text { closure } \\ & -1858-1939 \end{aligned}$
- Esquimalt Village	Pioneer St. northern end - hotel/public landing - float plane lounge - Esquimalt wharf smaller	$-1920 \mathrm{~s}-30 \mathrm{~s}$ $\text { - by } 1910$
- Thetis Island	- Naval Coal store capacity of 10,000 tons, with coal chute and crane	- 1903-1942
- Grant Knoll	- filled w/unknown substance when marine railway built	- 1910-1911
- Esquimalt Village		- 1912 - 1910-11
- Western portion	- Naval Land - now Royal Canadian Navy - painters, smithers, galvanizing shops	$\begin{aligned} & -1910-11 \\ & - \text { by } 1903 \end{aligned}$
- Works Dept. Yard	- painters, smithers, galvanizing shops - Marine railway (Bldg 116)	- 1913-46
from Bldg 115)		- 1910-1984
- Adjacent to Grant	- Sail loft \& oil store	$\text { - } 1903$
Knoll (Bldg 109)	- receiving \& sale store - sail loft \& pitch deposit	$\begin{aligned} & -1920 \\ & -1923 \end{aligned}$
- Adjacent to Grant Knoll (Bldg 113)	- Shipwright shop \& spar shed	$\begin{aligned} & \text { - built } 1901-1917 \\ & 1922-1950 \mathrm{~s} \end{aligned}$
- Adjacent to Grant Knoll (Bldg 115)	- "Shipwright \& riggers marine ship repair unit" ("concrete floor with open slope to the sea")	- 1913-1946
- Northeastern shoreline of Duntze Head (Southwestern shoreline of Constance Cove)	- The "Factory" cf 1896 chart (machine shops, blacksmith boiler ships, moulding shops, etc.) - Heavy usage of galvanizing tank	- 1891-present - WWII
West Side		
- up from Limekiln Cove	- Lime kilns	- 1925

APPENDIX A-4: Harbour Users as of 1967

Area	Usage	Dates
Northern shore - Northern harbour Inland northern harbour	- very dense log boom storage - Esquimalt and Nanaimo Railway	$-1930 \mathrm{~s}-1960 \mathrm{~s}$ -1886 -present
East Side - Plumper Bay \& north - Along Hallowell Rd., adj. to Esquimalt Band Reserve - Southwestern shore of Thetis Cove - Munroe Head South of Richard Island, north of Plumper Bay - Plumper Bay - Paddy Pass - Esquimalt Band Reserve, southern portion - Munroe Head - View Royal	- E \& N Railway - West Isle Logging, Ltd./Futura Forest Products sawmill' (PCBs \& chlorophenol contaminants found later) - Wharf (old oil wharf; now serving sawmill? - Yarrows Ltd \# 2 Plant - numerous piles - "Booming Ground \& numerous piles"; also "Ruins" - dead heads - piles - floats in northern portion - floating breakwater off of tip, running NW/SE - several large buildings \& "travelling crane" - small square platform offshore - residential development, and small business development; septic tanks on rocky ground	- 1886-? - 1967-1983 - by 1925-present - by 1947 (on charts) to 1958 - 1967 chart - 1970s-present
Constance Cove - (Skinner Cove) - Lang Cove - South of Esquimalt Graving Dock - Pilgrim Cove - Lang Cove - Signal Hill and northern shoreline	- Esquimalt Graving Dock high usage period - "Wallace" owned (or titled) shipyard \& drydock - Government Jetty E, Dept. of Public Works - piles/2 small (? piers) on north shore/8 piers along south - "Yarrows" (?) substantially built up - buildings absorbed by HMC Dockyard Esquimalt \& occupied by civilian work force	$\begin{aligned} & - \text { 1965-1973 } \\ & -1946-72 \text { (since } \\ & 1893) \\ & - \text { ?-present } \\ & -1967 \\ & - \text { ca 1967 } \\ & \text { - since WWII } \end{aligned}$

$\begin{aligned} & \text { APPENDIXA- } \\ & \text { 4(CONT.) } \end{aligned}$		
Duntze Head/Naval Yard Peninsula Area:		
-Western portion	- Drydock used by Royal Canadian Navy; peak usage 1954-1964.	- 1945-present
-Thetis Island	- Gun shed and carpenter shop	$-1951-1970$
-Thetis Island	- Jetty A; enlarged Jetty B; ways southwest of jettys; complex pier	- ca 1967
- Lang Cove	structure east \& south of Jetty C; 3 piers off of Jetty C - small jetty southwest of Jetty A	$\begin{aligned} & - \text { ca } 1967 \\ & -1951 \end{aligned}$
- Area adjacer	- electric store	- 1920-1950s
Grant Knoll (Bldg	- shipwright \& spar shed	- 1950s
109)	- carpenter shop	- 1950s-(?)
- Grant Knoll area (Bldg 113)	- Civilian paint shop - Bldg 114 - Torpedo storage - Bldg 115B	Dockyard, Naden
- b/n Grant Knoll \& Jetty A	- Shipwright's cradle shop-Bldg 117 - Haulout - BIdg 116 - Civilian Paint Shop - Bldg 119 - Boat store - Bldg 120	utilities map)
- Inland between Jetty	- P.N.L. Jetty - Bldg 133	- 1891-present -1951
A \& B	- The "Factory" still operative - Above called "Naval Stores"	$\begin{aligned} & -1951 \\ & -1955 \end{aligned}$
shoreline of Duntze Head (southwestern shoreline of Constance Cove)	- Third section of factory (moulding shop; coppersmith; galvanizing tank; pattern makers shop) demolished \& replaced by parking lot	- 1949-present
- Various parts of dockyard and Duntze Head area		- 1949-present
West Side		
- Southern tip Smart Is., to northern McCarthy Is., to fuel	- power line/"dol s." \& piles McCarthy Is. area	- 1967 chart
- - Between Dunn's	- "G Jetty"/float north of G Jetty/very	- 1967
Nook \& Patterson	large Naval Supply Depot with tank	
Point		- 1967
- Southern entrance	- Fisgard Island \& Rodd Pt. connected (Fill?)	
- North of Yew Pt.	- "D Jetty"/ (w/4 bldgs/wharf-like	- ?-present
	structures); ship tratfic \& minor repairs - sandblasting inland from "D" Jetty	- ?-present
- Dunn's Nook	- Fuel oil jetty "F"/piles within Nook	- ?-present

APPENDIX A-5: Harbour Users as of 1987

Area	Usage	Dates
Northern Entrance - Inland northern harbour - Cole Island - View Royal - Mill Stream - Northern harbour	- Esquimalt \& Nanaimo Railway - Prov. Gov't of Parks Canada"takeover \& stabilization" (ex-magazines) (possibly) faulty septic tank discharge from residential \& small business areas - PETRO CAN OIL holdings upstream - sparse log boom storage	- 1886-present (?) - 1974 - 1970s-present - $(1970$ s-present
East Side - Inland Plumper Bay \& North - Along Hallowell Rd. adjacent to Esquimalt Bank Reserve - End of Hallowell Rd /south shore Thetis Cove	- E \& N Railway - Futura Forest Products mill (\& West Isle Logging Ltd), with wharf (old oil wharf) - Fibermax Timber Corp. - Victoria Plywood	- 1886-present - (1970-late 1980s) - 1986-present - ?-late 1980 s
Constance Cove - Lang Cove - Between Yarrows \& Signal Hill - South of \& adj. to DPW Graving Dock - Signal Hill and northern shoreline	- Private graving dock/Ship yard = Versatile Pacific - Bldg 508 Shipwright \& plastic shops - Government Jetty E - Ship Repair Unit (Pacific) plastic shop \& sandblasting site; Base Transportation Vehicle park on extensive landfill into Constance Cove; Base Supply use of Ordnance store buildings; Naval Officers' Training Centre small training vessels berthed \& maintained; some Queen's Harbour Master's department facilities	- 1972-1989 - 1985 - (?-present) - ca 1981

APPENDIX A-6: Current Major Harbour Users

Area	Usage	Dates
Northern Entrance - View Royal - Northern Harbour - Inland Northern harbour	- (Possibly) faulty septic tanks/residential \& small business development - sparse log boom storage - Esquimalt \& Nanaimo Railway	- 1970s-present - 1970s-present - 1886-present?
East Side - Plumper Bay \& north - end of Hallowell Rd - Along Hallowell Rd - View Royal	- E \& N Railway - Fibermax Timber Corp; - Victoria Plywood Co-op - Pacific Forest - residential \& small business development; faulty septic systems	- 1886-present - 1986-present - ?-present - (1990) - 1990-present
Constance Cove - Lang Cove - Signal Hill and northern shoreline - Lang Cove - Esquimalt (DPW) Graving Dock	- Dredging - Further expansion of HMC Dockyard Esquimalt facilities - Drydock/shipyd know as "Yarrows" again - Ship refit \& repair activities; Government "E" Jetty	- ($\mathrm{Lt}(\mathrm{N})$ Smith $)$ - 1980s-present - 1989-present - 1926-present
Duntze Head/Naval Yard Peninsula Area - North shore CFB Esquimalt, between Jetty A \& B - Western tip - Dockyard \& Western portion of Duntze Head - Northern shoreline CFB Esquimalt	- Bldg 243, unidentified outfall pipe - FMG construction site: discovery of lead contaminated soils - Continued industrial activity - "A" Jetty: ship traffic, discharge \& repair; minor fueling - "B" Jetty: ship traffic, discharge \& repair; minor fueling - "C" Jetty: "Refit Jetty" for major repairs, refits and minor refueling	- current - summer-winter 1992 - 1870s-present - to present - to present - to present
West Side - Patterson Pt. - North of Yew Pt. - North of Yew Pt. - North of Dunn's Nook - North of Dunn's Nook	- DND Fire Training Area - "D" Jetty: patrol boat traffic, ship discharge \& repair - Sandblasting inland from "D" Jetty - "F" Jetty ship traffic, discharge \& repair; Naval Fuel Jetty - "G" Jetty ship traffic, discharge \& repair	- to present - post WWII to present - to present - to present - to present

APPENDIX D
Areas of Potential Environmental Concern

Areas of Potential Environmental Concern

$\begin{gathered} \text { APEC } \\ \text { ID } \end{gathered}$	LOCATION	ISSUE(S)/ ACTIVITY(IES)	MEDIA TYPE	PCOC
APEC A - Fill				
A1	Southern part of Dockyard	Metals dump/fill material	Soil, Groundwater	Metals
A2	Fill between Grants Knoll and Dockyard	Fill used to join island to mainland prior to 1946	Soil, Groundwater	Metals, PAH
A3	Dockyard A-Jetty and B-Jetty Fill	Shoreline filling to raise ground level	Soil, Groundwater	Metals, PAHs
A4	Dockyard shoreline fill materials	Filling activities	Soil, Groundwater	Metals, hydrocarbons
A5	Infilled cove on north side of Signal Hill	Fill activities - backfilled with waste materials	Soil, Groundwater	Metals, PAH, hydrocarbons
A6	Soil capsules, Yarrows	Contaminated soil dredgeate containment cell	Soil, Groundwater	PAHs, metals
A7	Black Sands Beach, Yarrows	Deposition of black sandblast grit	Soil, Groundwater, Sediment	Metals
A8	Yarrows area	Fill activity	Soil, Groundwater	Metals, hydrocarbons
A9	Lang Cove	Deposition of contaminated sediments and fill material to reclaim land	Soil, Groundwater, Sediment	Metals, hydrocarbons
A10	Pilgrim Cove	Historical filling	Soil, Groundwater	Metals, hydrocarbons
A11	Skinner Cove	Historical filling	Soil, Groundwater	Metals, hydrocarbons
A12	Munroe Head	Historical filling	Soil, Groundwater, Sediment	Metals, PAHs, hydrocarbons. PCBs
A13	Dallas Bank	Foreshore fill material	Sediments Soil	N/A
A14	Ashe Head	Infilled cove	Soil, Groundwater	Metals, PAHs
A15	South side of Plumper Bay	Fill materials	Soil	Metals
A16	Fill material on south east side of Plumper Bay	Fill materials	Soil	Metals, PAHs, hydrocarbons
A17	Central part of Plumper Bay	Fill material on shoreline	Soil	Metals, hydrocarbons
A18	Southeast of West Isle site, Plumper Bay	Fill material on shoreline	Soil	Metals, PAHs, hydrocarbons
A19	West Isle shoreline, Plumper Bay	Fill material on shoreline	Soil	Metals, PAHs, hydrocarbons, chlorophenols
A20	West Isle Site, Plumper Bay	Fill material	Soil, Groundwater	Metals, hydrocarbons, chlorophenols

APEC ID	LOCATION	ISSUE(S)/ ACTIVITY(IES)	MEDIA TYPE	PCOC
A21	Fibremax fill material north shore of Plumper Bay	Fill material	Soil	Metals, hydrocarbons
A22	Fibremax fill material on Fibremax peninsular, Plumper Bay	Fill material	Soil	Metals, hydrocarbons, PAHs
A23	Fibremax fill material north side of property, Plumper Bay/Thetis Cove	Fill materials	Soil	Metal
A24	Fibremax site, Plumper Bay	Fill material	Soil, Groundwater	Metals, hydrocarbons, phenols
A25	Victoria Plywood, Thetis Cove	Filled embayment area	Soil, Groundwater	Metals and hydrocarbons
A26	Thetis Cove shoreline	Fill material	Soil, Groundwater	Metals and hydrocarbons
A27	Thetis Cove shoreline	Fill material	Soil, Groundwater	Metals, hydrocarbons
A28	Dunns Nook/F-Jetty, Colwood	Shoreline fill materials	Soil, Groundwater, Sediment	Metals, hydrocarbons
A29	Colwood D-Jetty	Fill materials to the west of D-Jetty, including sandblast material	Soil, Groundwater, Sediment	Metals
A30	Colwood D-Jetty	Fill material adjacent to west side of D-Jetty	Soil, Groundwater, Sediment	Metals
A31	Yew Point, Colwood	Fill materials	Soil, Groundwater, Sediment	Metals
A32	Fisgard Island	Unknown fill quality used in constructing the causeway to the lighthouse	Soil, Sediments	Metals, hydrocarbons
A33	Thetis Cove shoreline	Fill material	Sediment	Metals, PAHs, hydrocarbons
A34	Thetis Cove shoreline	Fill material	Sediment	Metals, PAHs hydrocarbons
APEC B - ASTs, USTs, Other Hydrocarbons				
B1	Infilled cove on north side of Signal Hill	Tanks		Hydrocarbons, metals
B2	OWWTP at Dockyard	Potential for accidental release to harbour	Soil, groundwater, sediments	Hydrocarbons, PAHs
B3	B-Jetty at Dockyard	6 fuel tanks	Soil, groundwater, sediments	Hydrocarbons
B4	Pilgrim Cove	Fuel tanks/fuel pump	Soil, Groundwater	Hydrocarbons
B5	CFSA, Munroe Head	Presence of ASTs	Soil, Groundwater	Hydrocarbons

$\begin{gathered} \text { APEC } \\ \text { ID } \end{gathered}$	LOCATION	ISSUE(S)/ ACTIVITY(IES)	MEDIA TYPE	PCOC
B6	Victoria Plywood, Thetis Cove	Oil wharf	Soil, Groundwater, Sediment	Hydrocarbons
B7	Indian Reserve	Former fuel tank located at north end of reserve-	Soil, Groundwater	Hydrocarbons (Bunker C)
B8	Victoria Plywood, Thetis Cove	Former tanks; 11 ASTs and 2 USTs	Soil, Groundwater, Sediment	Hydrocarbons, metals
B9	Victoria Plywood, Thetis Cove	Pipeline	Soil, Groundwater	Hydrocarbons
B10	Gasoline Dock, north of F-Jetty, Colwood	AST on shoreline	Soil, Groundwater Sediments, Aquatic receptors	Hydrocarbons
B11	F-Jetty at Colwood	Fuel supply lines to F Jetty	Soil, Groundwater, Sediment	Hydrocarbons
B12	Esquimalt Graving Dock	AST	Soil, Groundwater, Sediment	Hydrocarbons
APEC C - Operational Activities				
C1	Dockyard	Historical and current activities associated with ship building, repair and maintenance	Soil, Groundwater	Metals, PCBs, hydrocarbons
C2	DND dry dock at Dockyard	Sandblasting activities	Sediments	Metals, hydrocarbons
C3	Yarrows ship building activities	Historical activities associated with ship building and repair (blacksmith, machine and sheet metal shop) and the Signal Hill lease lots	Soil, Groundwater	Metals, PCBs, hydrocarbons
C4	Esquimalt Graving Dock	Operational practices such as sandblasting activities	Soil, Groundwater, Sediment	Metals, PCBs, hydrocarbons, TBT
C5	Jenkins Marine Munroe Head	Boat building and operational activities	Soil, Groundwater	Metals, hydrocarbons, PCBs, TBT
C6	Plumper Bay	Cement/Concrete plant on north side of Plumper Bay - operational activities	Soil, Groundwater, Sediment	Unknown
C7	West Isle Site, Plumper Bay	Historical operational activities associated with mill	Soil, Groundwater	Unknown
C8	Fibremax, Plumper Bay	Historical activities associated with mill	Soil, Groundwater Sediment	Unknown
C9	Victoria Plywood, Thetis Cove	Former mill activities	Soil, Groundwater, Sediment	Hydrocarbons, metals, PCBs, phenols, PAHs
C10	Seaplane operation, Limekiln cove, View Royal	Refuelling of small planes and operational activities	Sediment	Hydrocarbons
C11	Fire Fighting Training Area, Colwood	Historical and current FFTA operational activities	Soil, Groundwater, Sediment	Hydrocarbons, PFOS/PFOA

$\begin{gathered} \text { APEC } \\ \text { ID } \end{gathered}$	LOCATION	ISSUE(S)/ ACTIVITY(IES)	MEDIA TYPE	PCOC
C12	Colwood bunkers	Operational activities bunkers historically used to store munitions, more recently hazardous chemicals	Soil, Groundwater	Metals, PCBs, hydrocarbons
C13	Smart Island	Soil contamination from activities on the island	Soil	Metals
C14	McCarthy Island	Soil contamination from activities on the island	Soil	Metals
C15	Cole Island	Potential waste materials from historical operational activities	Soil	Metals, hydrocarbons
C16	Dunns Nook, Colwood	Sandblast grit from operational activities in the area	Sediments	Metals
C17	D-Jetty, Colwood	Maintenance and operational activities	Sediments	PAHs, PCB's, metals, hydrocarbons
C18	Yew Point, Colwood	Dredgeate material from operational activities	Soil, Groundwater, Sediment	Metals
C19	DND Colwood	Historical and current operational activities associated with supply depot, sandblasting, refuelling and dredgeate storage	Soil, Groundwater, Sediment	Metals, hydrocarbons
C20	Fisgard Island	Maintenance and operational activities	Soil, Groundwater, Sediment	Metals, hydrocarbons
C21	Dockyard and Signal Hill	Historical sandblasting activities	Soil, Groundwater, Sediment	Metals
C22	Munroe Head	Historical operational activities associated with welding and pipe shop and an overhead crane.	Soil, Groundwater	Metals, hydrocarbons PCBs
C23	Munroe Head	Former slipway area	Soils	Metals
C24	Pilgrim Cove	Shipwright	Soil, Groundwater, Sediment	Metals, hydrocarbons TBT
C25	Esquimalt Graving Dock	AEC 11 - Waterlot sediments	Sediment	Metals, PAHs, PCBs, TBT Hydrocarbons
C26	Victoria Plywood, Thetis Cove	Pollution Control Permit for discharge into harbour	Sediment	Phenols, hydrocarbons Metals
C27	Northern part of Esquimalt Harbour	Log booming causing accumulation of wood waste on sea floor	Sediments, Aquatic life	Organic material
C28	Dockyard	Operational activities associated with moored ships at docks at Dockyard	Sediment, Aquatic life	Metals, PAHs, TBT,

$\begin{gathered} \text { APEC } \\ \text { ID } \end{gathered}$	LOCATION	ISSUE(S)/ ACTIVITY(IES)	MEDIA TYPE	PCOC
C29	Colwood	Operational activities associated with moored ships at docks at CFB Esquimalt, Colwood	Sediment, Aquatic life	Metals, PAHs, TBT
C30	CFSA, Munroe Head	Operational activities associated with small docks, including scraping and repainting small boats	Sediment, Aquatic life	Metals, PAHs, TBT
C31	Upland area to the north and west of F Jetty, Colwood	Historical presence of a limestone handling facility, historical presence of a sawmill and booming grounds.	Soil, Groundwater, Sediment	Not known
C32	Shoreline of View Royal	Historical commercial activities in the area	Sediment, Aquatic life	Not known
C33	Esquimalt Harbour mouth	Antisubmarine cables, potentially lead lined	Sediment, Aquatic life	Metals
C34	Esquimalt Harbour	Cable ties from log booming activities in the harbour	Sediment, Aquatic life	Metals
C35	Millstream Creek (entering Esquimalt Harbour)	Upstream historical and current activities	Sediment, Aquatic life	Not known
C36	G-Jetty, Colwood	Ship maintenance	Sediment, Aquatic life	Metals, PAHs, TBT
C37	F-Jetty, Colwood	Harbour basin used as a mortar range	Sediment, Aquatic life	Metals
C38	D-Jetty, Colwood	Materials store	Soil, Groundwater, Sediment	Not known
C39	Small wharf in Pilgrim Cover	Activities associated with small wharfs	Sediment Aquatic life	Not known
APEC D - Treated Timbers				
D1	A-Jetty and floating docks, Dockyard and Signal Hill	Leaching of preservatives from treated timber piles	Sediments	PAHs
D2	Pilgrim Cove	Leaching of preservatives from treated timber piles	Sediments	PAHs
D3	Esquimalt Graving Dock	Leaching of preservatives from treated timber piles	Sediments	PAHs
D4	CFSA, Munroe Head	Leaching of preservatives from treated timber piles	Sediment	PAHs
D5	Shoreline of View Royal	Leaching of preservatives from small docks and jetties constructed using treated timber piles.	Aquatic receptors, Sediments	PAHs, metals, hydrocarbons
D6	G-Jetty, Colwood	Leaching of preservatives from treated timber piles	Sediments, Aquatic receptors	PAHs

APEC ID	LOCATION	ISSUE(S)/ ACTIVITY(IES)	MEDIA TYPE	PCOC
D7	D-Jetty, Colwood	Leaching of preservatives from treated timber piles	Sediments, Aquatic receptors	PAHs
D8	Plumper Bay	Leaching of preservatives from treated timber piles	Sediments, Aquatic receptors	PAHs
APEC E-PCBs				
E1	East of C-Jetty, adjacent to Yarrows area	Pole mounted transformers	Soil, groundwater, sediments	PCBs
E2	Victoria Plywood, Thetis Cove	PCB contamination from improperly stored capacitors	Soil, Groundwater	PCBs
E3	G-Jetty, Colwood	Pole mounted transformers	Soil, Groundwater, Sediment	PCBs
E4	Colwood Bunkers	PCB storage	Soil, Groundwater, Sediment	PCBs
APEC F - Spills				
F1	West Isle Site, Plumper Bay	Chlorophenols from spill	Soil, Groundwater	Chlorophenols
F2	Victoria Plywood, Thetis Cove	Leak of hydraulic oil and chain oil	Soil, Groundwater	Hydrocarbons
F3	Shoreline of View Royal	Local storage of domestic quantities of chemicals and paints with spill potential.	Aquatic receptors, Sediments	PAHs, metals, hydrocarbons
F4	Dunns Nook, Colwood	Spillage	Soil, Groundwater, Sediment	Hydrocarbons
F5	Harbour wide	Spillages into the harbour	Sediments, Aquatic life	Unknown
APEC G - Stormwater Outfalls				
G1	Harbour wide stormwater outfalls	Discharge of contaminated sediments from upland sources	Sediment, Aquatic life	Metals, PAHs
G2	Esquimalt Graving Dock stormwater outfalls	Stormwater outfalls	Sediment	Metals TBT

APPENDIX E Background Biophysical Conditions of Esquimalt Harbour

7.0 MAP Folio

A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 4. Substrate Type	
Sediment Rock or rock with sediment veneer Wood \& bark debris (substrate obscured)	
Shoreline Intertidal Zone Opland Om Contour (Chart Datum) No Survey 2, $5,10 \mathrm{~m}$ Contours Survey Trackine	
Physical Shore Type * Rock Rock and Sediment Sediment Estuary, Marsh or Lagoon Man-Made	
Survey Dates: SIMS: March 21-31, 2000 Dive: May 25-29, 2000 June 27-28, 2000	Map Edition: February 5, 2004

A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 5. Sediment Size Class	
Gravel Gravelly Mud/Sand Mud/Sand Sand Rock or rock with sediment veneer Wood \& bark debris (substrate obscured)	
Shoreline Pier/Wharf/Jetty/Dock Om Contour (Chart D 2, 5, 10m Contours Survey Boundary	Intertidal Zone Upland No Survey Survey Trackline
Physical Shore Type *	
Survey Dates: SIMS: March 21-31, 2000 Dive: May 25-29, 2000 June 27-28, 2000	Map Edition: February 5, 2004

A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 8. Organic Cover	
Trace-5\% 5-30\% 30-80\% > 80\% \# Logs	
Shoreline Intertidal Zone Opland On Contour (Chart Datum) No Survey Survey Trackine	
Survey Dates: SIMS: March 21-31, 2000 Dive: May 25-29, 2000 June 27-28, 2000	Map Edition: February 5, 2004

A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 9. Shell Cover	
$\begin{aligned} & 5-30 \% \\ & 30-50 \% \end{aligned}$	
Shoreline Intertidal Zone Pier/Wharf/Jetty/Dock Upland Om Contour (Chart Datum) No Survey 2, 5, 10m Contours Survey Trackline	
Survey Dates: SIMS: March 21-31, 2000 Dive: May 25-29, 2000 June 27-28, 2000	Map Edition: February 5, 2004

A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 11. Vegetation Cover	
Sparse - Low Cover (Trace - 25\%) Moderate - Dense Cover (25-100\%)	
Shoreline Pier/Wharf/Jetty/Dock Om Contour (Chart D 2, 5, 10m Contours Survey Boundary	Intertidal Zone Upland No Survey Survey Trackline
Survey Dates: SIMS: March 21-31, 2000 Dive: May 25-29, 2000 June 27-28, 2000	Map Edition: February 5, 2004

A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 12. Eelgrass Beds (Zostera marina)	
Sparse - Low Cover (Trace-25\%) Moderate - Dense Cover (25-100\%) \# Eelgrass Bed number (see Report text, Table 10)	
Shoreline Intertidal Zone Pier/Wharf/Jetty/Dock Upland Om Contour (Chart Datum) No Survey 2, 5, 10m Contours Survey Trackline	
Survey Dates: SIMS: March 21-31, 2000 Dive: May 25-29, 2000 June 27-28, 2000	Map Edition: February 5, 2004

A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 13. Kelps	
Sparse - Low Cover (Trace-25\%) Moderate - Dense Cover (25-100\%)	
Shoreline Pier/Wharf/Jetty/Dock Om Contour (Chart D 2, 5, 10m Contours Survey Boundary	Intertidal Zone Upland No Survey Survey Trackline
Survey Dates: SIMS: March 21-31, 2000 Dive: May 25-29, 2000 June 27-28, 2000	Map Edition: February 5, 2004

A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 15. Foliose Green Algae	
Sparse - Low Cover (Trace - 25\%) Moderate - Dense Cover (25-100\%)	
Shoreline Pier/Wharf/Jetty/Dock Om Contour (Chart D 2, 5, 10m Contours Survey Boundary	Intertidal Zone Upland No Survey Survey Trackline
Survey Dates: SIMS: March 21-31, 2000 Dive: May 25-29, 2000 June 27-28, 2000	Map Edition: February 5, 2004

A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 16. Filamentous Red Algae	
Sparse - Low Cover (Trace - 25\%) Moderate - Dense Cover (25-100\%)	
Shoreline Pier/Wharf/Jetty/Dock Om Contour (Chart D 2, 5, 10m Contours Survey Boundary	Intertidal Zone Upland No Survey Survey Trackline
Survey Dates: SIMS: March 21-31, 2000 Dive: May 25-29, 2000 June 27-28, 2000	Map Edition: February 5, 2004

A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 17. Foliose \& Coralline Red Algae	
Foliose Red Algae Sparse - Low Cov \# Moderate-Dense Coralline Red Algae \$ Sparse-Low Cov \$ Moderate - Dense	- 25%) $r(25-100 \%)$ - 25%) (25-100\%)
Shoreline Pier/Wharf/Jetty/Dock Om Contour (Chart D 2,5,10m Contours Survey Boundary	Intertidal Zone Upland No Survey Survey Trackline
Survey Dates: SIMS: March 21-31, 2000 Dive: May 25-29, 2000 June 27-28, 2000	Map Edition: February 5, 2004

A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 18. Infaunal Burrows	
$\begin{array}{ll} \text { \# } & \text { Few/Patchy } \\ \# & \text { Continuous } \end{array}$	
Shoreline Pier/Wharf/Jetty/Dock Om Contour (Chart D 2, 5, 10m Contours Survey Boundary	Intertidal Zone Upland No Survey Survey Trackline
Survey Dates: SIMS: March 21-31, 2000 Dive: May 25-29, 2000 June 27-28, 2000	Map Edition: February 5, 2004

A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 19. Anemones	
$\begin{array}{ll} \text { \# } & \text { Metridium } \\ \text { \# } & \text { Urticina sp. (Tealia) } \end{array}$	
Shoreline Pier/Wharf/Jetty/Dock Om Contour (Chart D 2, 5, 10 m Contours Survey Boundary	Intertidal Zone Upland No Survey Survey Trackline
Survey Dates: SIMS: March 21-31, 2000 Dive: May 25-29, 2000 June 27-28, 2000	Map Edition: February 5, 2004

A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 21. Other Invertebrates	
```\# Red Sea Urchins (Strongylocentrotus franciscanus) \# California Sea Cucumbers (Parastichopus californicus) \# Burrowing Sea Cumbers (Cucumaria miniata) \# Piddock Clams (Zirfaea pilsbryi) \# Bryozoans```	
Shoreline Intertidal Zone   Opland    Om Contour (Chart Datum)    No Survey    Survey Boundary    Survey Trackline	
Survey Dates:   SIMS: March 21-31, 2000   Dive: May 25-29, 2000   June 27-28, 2000	Map Edition:   February 5, 2004




## APPENDIX F

## Side Scan Sonar Results





PAGE 01
$0 \quad 10$
$\lambda$
1


$\qquad$
$\qquad$

$\qquad$
1 $\square$

## 





Woodwaste Extent












PAGE95
$1-8$


Coasting

$2+\frac{2}{2}$
-11

$2+\frac{2}{2}$
-11
B $\rightarrow$ , $-5$ ,
1,


## 0






## APPENDIX G

## Sediment Core Photo Examples



Photo G2: Esquimalt Harbour Borehole T24-01 Consists entirely of sand/silt and no wood waste


Photo G3: Pedder Bay Borehole T21-01 Consists entirely of coarse sand and no wood waste


Photo G4: Esquimalt Harbour Borehole T31-03 Organic transitions to organic with trace wood fibre/debris $(-0.15 \mathrm{~m})$ which transitions to silt with trace shell debris/hash at -0.2 m


Photo G5: Esquimalt Harbour Borehole T54-03 Organic with wood fibre/debris transitions to silt with trace wood fibre/debris at -0.2 m


Photo G6: Esquimalt Harbour Borehole T27-03 Organic with trace wood fibre/debris transitions to organic with wood fibre/debris at -0.3 m , which transitions to silt with trace shell debris/hash at -0.3 m


Photo G7: Esquimalt Harbour Borehole T27-05 Organic with trace wood fibre/debris transitions to dense wood fibre/debris at -0.1 m


Photo G8: Esquimalt Harbour Borehole T56-01 Organic with wood fibre/debris for the length of the borehole core


Photo G9: Esquimalt Harbour Borehole T11-05 Organic with trace wood fibre/debris transitions to organic with wood fibre/debris at -0.15 m , and then to sand/silt at -0.3 m


Photo G10: Esquimalt Harbour Borehole T48-01 Organic with wood fibre/debris transitions to silt with shell debris/hash at -0.3 m


Photo G11: Esquimalt Harbour Sonic Drill BH15 Organic with wood fibre/debris transitioning to silt/clay with shell debris at -0.254 m


Photo G12: Esquimalt Harbour Sonic Drill BH14 Organic with wood fibre/debris transitioning to sand/silt with shell debris at -0.366 m


Photo G13: Esquimalt Harbour Sonic Drill BH29 Showing the transition from organic with wood fibre/debris to silt/sand with trace shell debris at -1.74m


Photo G14: Esquimalt Harbour Sonic Drill BH7 Wood fibre/debris transitions to silt/sand with trace shell debris at -1.778 m


Photo G15: Esquimalt Harbour Sonic Drill BH20 Wood fibre/debris transitions to sand/silt with trace shell debris at -0.84 m


Photo G16: Esquimalt Harbour Sonic Drill BH19 Wood fibre/debris transitions to silt/sand with shell debris at -0.42 m

## APPENDIX H

## Wood Waste Depth Cross Sections






Notes

$\qquad$

Esquimalt Harbour Wood Waste Assessment DND, CFB Esquimalt, Esquimalt Harbour, BC

Cross Section of Wood Waste Surface Sedimed

$376-240.08$	Production Date: Jan 11, 2019	Figure H-4

[ILHemmera




APPENDIX I
Biophysical and Sediment Chemistry Data


Transect Sampling Information		Year	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
		Transect Surey Date	Sep-19														
		Field Surey $\#$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	,
		OLD Transect ID	13	13	13	13	13	14	14	14	14	14	w1	w1	w1	w1	w1
		OLD Sample ID	13.01	13.04	13.02	13.05	${ }_{13.03}$	${ }_{14.01}$	14.04	${ }_{14.02}$	14.05	${ }_{14.03}$	W1-01	W1.04	W1.02	${ }^{W} 1.05$	${ }^{1} 1.03$
		NEW Transect ID	01	01	01	01	01	02	02	02	02	02	03	03	03	03	03
		Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
		NEW Sample ID	01.01	01.02	01.03	01.04	01.05	02.01	02.02	02.03	02.04	02.05	03.01	03.02	03.03	03.04	03.05
		Point 10	1	4		5	3		,	2			1		2	5	
		Distance	0	25	50	75	100	0	25	50	75	100	0	25	50	75	100
		Depth gauge ( $m$ ):	.2.74	. 3.66	4.88	-5.49	-5.79	-7.01	-7.32	-7.62	-7.93	-. 8.54	. 5.49	-6.40	-6.40	-6.40	-6.40
		Depth gauge (ft):	-9	-12	-16	-18	-19	-23	-24	-25	-26	-28	-18	-21	-21	-21	-21
		Tide (m):	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	2.1	2.1	2.1	2.1	2.1
		Depth m CD:	-1.2	-2.2	-3.4	-4.0	4.3	-5.5	-5.8	-6.1	-6.4	-7.0	-3.4	-4.3	${ }^{4.3}$	4.3	-4.3
Biological		Probe												1.00		1.00	
	Kelp detritus	Kelp deftitus						10									
	Begatao spp.	bacterial mat									95			60	55		
	Diatoms	Diatoms	90	95	95	95	75			95			45	40	45	45	60
	Agarum fimbriatum	$\frac{\text { tringed sieve } \text { Kelp }}{\text { encrusting coraline seaweed }}$															
	Desmerassia viridis	Stringy acid hair															
	Gracilaria	Smgatar															
	Red blade	red blade															
	Red branched	Red branched															
	Red filamentous	red flimentous															
	Sacharina latissima	sugar kelp	2.5														
	Sacharina groenlandica	$\xrightarrow{\text { spulit }}$ Sulp															
	Solva lactuca	$\frac{\text { succulent seaweed }}{\text { sea etuce }}$															
	Holes					0.5	0.5	2									
	Mounds					0.5											
	Balanus glandula	acorn barnacle															
	Cancer productus	red rock crab															
	Dirona																
	Metacarcinus gracilis	$\frac{\text { graceful rock crab }}{\text { Dungeness crab }}$	0.5					0.5	0.5		0.5		0.5		0.5		
	Metridium farcimen	giant plumose anemone															
	Metridium senile	short plumose anemone															
	Pagurus sp.	hermit crab															
	Pandalus danae	coon striped shrimp						0.5	1.5								
	Pandalus platyceros	Pandalus unknown															
	Parastichopus californicus	red sea cucumber															
	Pisaster ochraceaus	Ochre sea star															
	Pugetia productus	kelp crab															
	Shrimp species	shrimp species															
		Sted urchin															
	Tresus sp.	gaper clams															
	Unticina unknown	Anemone unknown															
		Tunicate															
	Altorhy ${ }^{\text {Cithus flavidus }}$	$\underset{\text { Tpeckles ssand dab }}{\text { Tub }}$															
	Clupea pallasii	Pacific herring															
	Lumpenus sagita	Smanke prickleback															
	Platichthys stellatus	stary flounder															
	Pleuronichthy coenosus	C.O sole															
	Sculin unknown	$\frac{\text { soung }}{\text { sculipin unknown }}$															






Appendix H : Raw Field Observations and Sediment Chemistry Data


Appendix H: Raw Field Observations and Sediment Chemistry Data

Transect Sampling Information		Year	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
		Transect Survey Date	Sep-20									
		Field Surve \#	1	1	1	1	1	120	1	1	1	1
		OLD Transect ID	w6	w6	w6	W6	w6	T2	T2	12	T2	T2
		OLL Sample ID	w6-01	w6-04	W6.02	W6.05	w6.03	T2.01		${ }_{\text {T2.02 }}$		${ }_{\text {T2.03 }}$
		NEW Transect tio	10	10	10	10	10	11	11	11	11	11
		Point	01	02	03	04	05	01	02	03	04	05
		NEW Sample ID	10.01	10.02	10.03	10.04	10.05	11.01	11.02	11.03	11.04	${ }_{11-05}^{10}$
		Point ID	1	4	2	5	3	1	4	2	5	3
		Distance	0	25	50	75	100	0	25	50	75	100
		Depth gauge (m):	9.76	-9.76	. 9.15	-8.54	-7.32	-8.84	-8.84	-8.84	-8.84	-8.84
		Depth gauge (t):	. 32	. 32	. 30	-28	-24	-29	-29	-29	-29	-29
		Tide ( m :	2.1	2.1	2.1	2.1	2.1	2.4	2.4	2.4	2.4	2.4
		Depth m co:	-7.7	-7.7	-7.0	-6.4	-5.2	-6.4	-6.4	-6.4	-6.4	-6.4
		Probe						0.60	0.60	0.60	0.60	0.60
Biological	Kelp detritus	Kelp defritus										
	Beggatoa spp.	bacterial mat	100	93		85	13	100	10	100	10	10
	Diatoms	Diatoms										
	Agarum fimbriatum	fringed sieve kelp										
	Coraline crust spp.	encrusting coraline seaw										
	Desmerassia viridis	Stringy acid hair										
	Gracilaria											
	Red blade	red blade										
	Red branched	Red branched										
	Red filamentous	red filamentous										
	Sacharina latissima	sugar kelp										
	Sacharina groenlandica	spilit kelp										
	Sarcodietheca gaudichaudii	succulent saweed										
	Ulva lactuca	sea eltuce										
	Holes											
	Mounds											
	Balanus glandula	acorm barnacle										
	Cancer productus	red rock crab										
	Dirona											
	Metacarcinus gracilis	graeful rock crab										
	Metacarcinus magister											
	Metridium farcimen	giant plumose anemone	2									
	Metridium senile	short plumose anemone										
	Pagurus sp.											
	Pandalus danae	${ }_{\text {coon stripa shrimp }}^{\text {spot rawn }}$										
	Pandalus unknown	Pandalus unknown										
	Parastichopus califormicus	red sea cucumber										
	Pisaster ochraceaus	Ochre sea star										
	Pugetia productus	kelp crab										
	Shrimp species	shrimp species										
	Strongly centrotus franciscanus											
	Styela montereyensis	stakked tunicate										
	Tresus sp.											
	Uricima unknown	$\frac{\text { Anemone unknown }}{\text { Turicate }}$										
		Tube snout										
	Citharichthys stigmaeus	speckled sand dab										
	Clupea pallasii	Pacific herring										
	Lumpenus sagita	$\frac{\text { Smanke prickleack }}{\text { stary fiounder }}$										
		${ }_{\text {stary }}^{\text {couounder }}$										
	$\frac{\text { Sebastes spp. YoY }}{\text { Sculin unkown }}$	$\frac{\text { oung of the year rockish }}{\text { sculpin unkown }}$	0.5									



Transect Sampling Information		rear	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
		Transect Survey Date	Sep-20	Sep-20	Sep-20	Sep-20	Sep-20	Sep-21									
		Field Surey \#	1	1	1	1	1	1	1	1	1	1	1		1	1	1
		OLD Transect ID	T2	T2	T2	T2	T2	F3	F3	F3	F3	F3	F4	F4	F4	F4	F4
		OLD Sample ID	T.04		${ }_{\text {T2.05 }}$		T2.06	${ }^{53.01}$	F3.04	${ }^{13} 3.02$	${ }_{\text {F3.05 }}$	F3.03	F4.01	F4.04	F4.02	F4.05	${ }^{54.03}$
		NEW Transect 10	12	12	12	12	12	13	13	13	13	13	14	14	14	14	14
		Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
		NEW Sample ID	12.01	12.02	12.03	12.04	12.05	13.01	13.02	${ }_{13.03}$	13.04	${ }_{13.05}$	14.01	14.02	14.03	14.04	14.05
		Point ID	1	4	2	5			,	2			1	,	2	5	,
		Distance	0	25	50	75	100	0	25	50	75	100	-	25	50	75	100
		Depth gauge ( $m$ ):	-8.84	-8.84	-8.84	-8.84	-8.84	-7.93	.7.32	-7.01	-6.71	-6.71	. 5.79	.5.18	4.4	${ }^{-3.35}$	${ }^{-3.05}$
		Depth gauge (ft):	-29	-29	-29	-29	-29	-26	-24	-23	-22	-22	-19	-17	14	-11	-10
		Tide (m):	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4
		Depth m CD:	-6.4	-6.4	-6.4	-6.4	-6.4	-5.5	4.9	-4.6	-4.3	-4.3	-3.4	-2.8	-1.9	-1.0	-0.6
		Probe	0.60	0.60	0.60	0.60	0.60		0.20		0.40			0.17			
Biological	Kelp detritus	Kelp deteritus															
	Beggatoa spp.	bacterial mat	100	100	100	100	100	70	95	100	99	97	75				
	Diatoms	Diatoms												58	80	80	60
	Agarum fimbriatum	fringed sieve kelp															
	Coraline crust spp.	encrusting coralline seaweed															
	Desmerastia viridis	Stringy acid hair															
	Gracilaria																
	Red blade	red blade															
	Red branched	Red branched															
	Red filamentous	red filamentous															
	Sacharina groenlandica	spilit kelp											2				
	Sarcodietheca gaudichaudii	succulent seaweed															
	Ulva lactuca	seal eftuce															
	Holes																
	Mounds																
	Balanus glandula	acorn barnacle															
	Cancer productus	red rock crab															
	Dirona																
	Metacarcinus gracilis	$\frac{\text { graceful rock crab }}{\text { Dungenss }}$															
	Metridium farcimen	giant plumose anemone			5			1					2			0.5	
	Metridium senile	short plumose anemone															
	Pagurus sp.	hermit crab															
	Pandalus danae	coon Strijed Shrimp spot prawn															
	Pandalus platyceros																
	Parastichopus californicus	red sea cucumber															
	Pisaster ochraceaus	Ochre sea star															
	Pugetia productus	kelp crab															
	Shrimp species	shrimp species															
	Strongly ${ }^{\text {Stecentrout }}$ Stranciscanus	$\frac{\text { red urchin }}{\text { stake tunicate }}$															
	Tresus sp.	gaper clams															
	Unticina unknown	Anemone unknown															
		Tunicate															
	Allorhynchus flavidus	$\frac{\text { Tube snout }}{\text { speckled sand dab }}$															
	Clupea pallasii	Pacific herring															
	Lumpenus saitta	Smanke prickleack															
	Platichthys stellatus   Pleuronichthys coenosus	$\frac{\text { stary flounder }}{\text { c.os sole }}$															
	Sebastes spp. YOY	young of the year rockish															
	Sculpin unknown	sculpin unknown															



Transect Sampling Information		Year	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
		Transect Survey Date	Sep-21														
		Field Surey \#	1	1	1	1	1	1	1	1	1	1	1	+	1	1	1
		OLD Transect ID	w4	W4	W4	w4	W4	w3	w3	W3	W3	w3	T4	T4	T4	T4	T4
		OLD Sample ID	W4.01	W4.04	W4.02	W4.05	W4.03	w3.01	W3.04	w3.02	${ }_{\text {W3.05 }}$	w3.03	T4.01		T4.02		T4.03
		NEW Transect 10	15	15	15	15	15	16	16	16	16	16	17	17	17	17	17
		Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
		NEW Sample ID	15.01	15.02	${ }_{15-03}$	15.04	15.05	16.01	16.02	16.03	16.04	16.05	17.01	17.02	17.03	17.04	17.05
		Point ID	1	4	2	5	${ }^{3}$		4	2	5		1	4		5	3
		Distance	0	25	50	75	100	0	25	50	75	100	。	25	50	75	100
		Depth gauge (m):	.7.32	.7.32	. 7.01	-6.71	. 5.79	-8.84	-8.84	-8.54	-8.23	-7.93	5.18	.5.18	-5.18	.5.18	5.18
		Depth gauge (ft):	-24	-24	. 23	. 22	- 19	-29	-29	-28	. 27	. 26	-17	-17	-17	17	${ }^{-17}$
		Tide ( $m$ :	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	1.9	1.9	1.9	1.9	1.9
		Depth m CD:	-5.3	-5.3	-5.0	-4.7	-3.8	-6.8	-6.8	-6.5	-6.2	-5.9	-3.3	-3.3	-3.3	-3.3	-3.3
		Probe		0.20		0.30			0.50				0.50	0.50	0.40	0.20	0.20
Biological	Kelp detritus	Kelp deteritus															
	Beggatoa spp.	bacterial mat	83	88	99	99	90	83	80	80	48	83					
	Diatoms	Diatoms															
	Agarum fimbriatum	fringed sieve kelp															
	Coraline crust spp.	encrusting coralline seaweed															
	Desmerastia viridis	Stringy acid hair															
	Gracilaria																
	Red blade	red blade															
	Red branched	Red branched															
	Red filamentous	red flimentous														8	
	Sacharina latissima	$\frac{\text { sugar kelp }}{\text { spitit }}$											80			80	40
	Sacharna groenlanalica	succulunt seameed															
	Salva lactuca	succuen seaveed															
	Holes																
	Mounds																
	Balanus glandula	acorm barnacle															
	Cancer productus	red rock crab															
	Dirona																
	Metacarcinus gracilis	graceful rock crab										0.5					
	Metacarainus magister	Dungeness crab															
	Metridium farcimen	giant plumose anemone short plumose anemone										0.5					
	Metricium senile	$\frac{\text { short plumose anemone }}{\text { hermit crab }}$															
	Pandalus danae	coon striped shrimp														10	
	Pandalus platyceros	spot prawn														10	
	Pandalus unknown	Pandalus unknown															
	Parastichopus californicus	red sea cuuumber															
	Pisaster ochraceaus	Ochre sea star															
	Pugetia productus	${ }_{\text {shrimp species }}$															
	Stronglyocentrotus franciscanus	$\frac{}{\text { red urchin }}$															
	Styela montereyensis	stalked tunicate															
	Tresus sp.	$\xrightarrow{\text { Anemone }{ }^{\text {a }} \text { unks }}$															
	Urticina unknown	$\underset{\text { Anemone unknown }}{\text { Tunicate }}$															
	Aulortynchus flavidus	Tube snout															
	Citharichthys stigmaeus	speckled sand dab															
	Clupea pallasii	Pacific herring															
	Lumpenus saita	Smanke pirckleback															
	Platichths stellatus	$\frac{\text { stary flounder }}{\text { c.os sole }}$															
	Sebastes spp. YOY	young of the year rockish															
	Sculpin unknown	sculpin unknown															

Appendix H: Raw Field Observations and Sediment Chemistry Data


Appendix H: Raw Field Observations and Sediment Chemistry Data




Transect Sampling Information	rear	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
	Transect Survey Date	Sep-22														
	Field Surey \#	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	OLD Transect ID	03	03	03	03	03	04	04	04	04	04	05	05	05	05	05
	OLD Sample ID	03.01	03.04	${ }^{03.02}$	03.05	${ }_{03.03}$	04.01	04.04	04.02	04.05	04.03	05.01	05.04	05.02	05.05	05.03
	NEW Transect ID	${ }^{23}$	${ }^{23}$	${ }^{23}$	${ }^{23}$	${ }^{23}$	${ }^{24}$	${ }^{24}$	${ }^{24}$	24	24	25	25	25	25	25
	Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
	NEW Sample ID	${ }^{23.01}$	23.02	23.03	23.04	23.05	24.01	24.02	24.03	24.04	24.05	25.01	25.02	25.03	25.04	25.05
	Point ID		4	${ }^{2}$	75	${ }^{3}$		25	5	75	100	1	25	5	75	\%
	Distance	- 7	${ }_{-8,23}$	50   .8 .54	$\stackrel{75}{8.54}$	- 100	${ }_{-8,84}$	${ }^{25}$	50 .9 .15	75 -9.95	- 100	${ }_{8}{ }^{-84}$	$\stackrel{25}{-88}$	50   .9 .15	- ${ }_{-8} 8$	100 -9.45
	$\frac{\text { Depth gauge (m): }}{\text { Depth gauge (ft): }}$	$\stackrel{.7 .32}{ }{ }_{-24}$	$\stackrel{-8.23}{-27}$	$\stackrel{-8.54}{-28}$	$\stackrel{.8 .54}{-28}$	${ }_{-8.84}^{-29}$	${ }_{-28}^{\text {- } 29}$	$\stackrel{.9 .15}{.30}$	$\stackrel{.9 .15}{\text {-30 }}$	${ }^{-9.15}$	$\stackrel{.9 .45}{.31}$	${ }_{-28}$	$\stackrel{-8.84}{-29}$	${ }_{.9}^{9.15}$	-8.84	$\stackrel{-9.45}{.31}$
	Tide ( m :	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	${ }_{2} 2.1$	2.1
	Depth m CD:	-5.2	${ }_{-6.1}$	-6.4	${ }_{-6.4}$	${ }_{-6.7}$	${ }_{-6.7}$	${ }_{-7.0}$	$\stackrel{-7.0}{ }$	${ }_{-7.0}$	${ }^{-7.4}$	${ }_{-6.7}$	${ }_{-6.7}$	-7.0	${ }_{-6.7}$	-7.4
Sediment analyses	Sample Date	Sep-22		Oct-21			Oct.21		Sep-22					Sep-22		Oct-21
	Grab Sample Time															
	WP															
	Sulphide (as H 2S)			0.063			0.025									14
	Ammonia (N)			6.96			19.8									16.9
	pH			7.91			8.16									8.24
	Total Sulphide			0.0593			0.0235									13.1
	$\mathrm{TOC}(0.10 \mathrm{~cm})$	7300							7200					6000		
	TOC (20.40cm)															
	TOC (30-40 m)															
	$\xrightarrow{\text { Moisture }}$						37 198									35
				6.96 7.91			19.8 8.16									16.9   8.24
	Sulphide (Avs)			92.5			173									224
	Grab Sampling Comments															
YSI Sampling	Sample Date			oct 27			oct 27		oct 27			Oct 27		oct 27		oct 27
	Sample Time			$9: 50$			9:55		9:55			10:10		10:10		10:10
	wp			001			003		004			008		009		010
	Temp			${ }^{10.14} 315$			${ }^{10.15}$		10.14			${ }^{10.16}$		10.25 3191		10.12 3187
	$\frac{\text { Conductivit/salinity }}{\text { Do }}$			${ }^{31.59} 68$			31.92 74.1		${ }_{8}^{31.91}$			81.812		$\begin{array}{r}31.91 \\ \hline 8.8 \\ \hline\end{array}$		$\begin{array}{r}31.87 \\ \hline 76.8 \\ \hline\end{array}$
	Do mgh			6.24			6.62		7.55			7.43		7.22		7.03
	pH			7.44			7.61		7.7			7.85		7.86		7.87
Substrate	Silt	35	60	50	60	60	60	50	50	50	40	40	40	40	30	40
	Sand	65	40	50	40	40	40	50	50	50	60	60	60	60	70	60
	Gravel															
	Boulder															
	Bearock															
	Shell						0.5							0.5	0.5	
	$\underset{\text { Wod waste }}{\text { Ware }}$															
	ww Depth	0.15			closed		0		0		0	0		0		
	ww state			closed			closed		closed		losed	closed		closed		closed


Transect Sampling Information		Year	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
		Transect Survey Date	Sep-22														
		Field Surey \#	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		OLD Transect ID	03	03	03	03	03	04	04	04	04	04	05	05	05	05	05
		OLD Sample ID	03.01	03.04	03.02	${ }^{03.05}$	${ }^{03.03}$	04.01	04.04	04.02	04.05	04.03	05.01	05.04	05.02	05.05	05.03
		NEW Transect ID	${ }^{23}$	${ }^{23}$	${ }^{23}$	${ }^{23}$	${ }^{23}$	${ }^{24}$	${ }^{24}$	${ }^{24}$	${ }^{24}$	24	25	25	25	25	25
		Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
		NEW Sample ID	23.01	${ }^{23.02}$	${ }^{23.03}$	23.04	${ }^{23.05}$	24.01	24.02	${ }^{24.03}$	24.04	24.05	25.01	25.02	25.03	25.04	25.05
		Point ID		4	2	5	3	1	4	2	5		1	,		5	,
		Distance	0	25	50	75	100	0	25	50	75	100	0	25	50	75	100
		Depth gauge (m):	.7.32	${ }_{-8.23}$	-. 8.54	-. 84	-8.84	-.8.84	-9.15	-9.15	-9.15	-9.45	-8.84	-8.84	-9.15	-8.84	-9.45
		Depth gauge (ft):	-24	-27	-28	-28	-29	-29	. 30	. 30	. 30	. 31	-29	-29	. 30	-29	. 31
		Tide ( m :	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
		Depth m CD:	-5.2	-6.1	-6.4	-6.4	-6.7	-6.7	-7.0	-7.0	-7.0	-7.4	-6.7	-6.7	-7.0	-6.7	-7.4
Biological		Probe															
	Kelp detritus	Kelp detritus															
	Beggatoa spp.	bacterial mat								78							
	Diatoms	Diatoms	55	80	83	80	83	63	55	78	85	53	70	63	65	70	
	Agarum fimbriatum	fringed sieve kelp															
	Coraline crust spp.	encrusting coraline seaveed					-					18					
	Gracilaria																
	Red blade	red blade															
	Red branched	Red branched															
	Red filamentous	red flimentous															
	Sacharina latissima	sugar kelp spilitelp	50	38	55	58	58	83	75	90		70		53	85	83	90
	Sacharina groenlandica	split kelp	50	38	55	58	58			90	78	70	${ }_{6}{ }^{3}$	${ }_{18}^{53}$	25	0.5	
	Salcoolietheca gaudichauail	$\frac{\text { succuien seaweed }}{\text { sea eltuce }}$										2.5					
	Holes		3									0.5					
	Mounds															0.5	
	Balanus glandula	acorm barnacle															
	Cancer productus	red rock crab														0.5	
	Dirona																
	Metacarcinus gracilis	graceful rock crab															
	Metacarcinus magister	Dungeness crab	2	0.5										0.5			
	Metridium farcimen	giant plumose anemone					0.5										
	Metridium senile	short plumose anemone															
	Pagurus sp.	hermit crab															
	Pandalus danae	$\underbrace{\text { spot trawn }}_{\text {coon striped shrimp }}$	0.5					3					0.5				
	Pandalas platyceros	Pandalus unknown	5	2.5	2	5	10.5	3	5	4	8.5	5	3	1.5	1	1	2.5
	Parastichopus califormicus	red sea cuuumber															
	Pisaster ochraceaus	Ochre sea star															
	Pugetia productus	kelp crab	0.5	0.5		0.5					0.5	1.5					
	Shrimp species	shrimp species															
	Strongly ${ }^{\text {a }}$ Sentrotus franciscanus	$\frac{\text { red urchin }}{\text { staked tunicate }}$															
	Tresus sp.	staper clams															
	Unticina unknown	Anemone unknown															
		Tunicate															
	Aulorrynchus flavidus	Tube snout															
	Citharichthy stigmaeus	Speckled sand dab															
	Lumpenus sagita	Smanke prickleack															
	Platichthys stellatus	stary flounder															
	Pleuronichthy coenosus	C.O sole															
	Sele	$\frac{\text { suan }}{\text { sculin }}$ unknown															

Appendix H: Raw Field Observations and Sediment Chemistry Data


Appendix H: Raw Field Observations and Sediment Chemistry Data



Transect Sampling Information		rear	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
		Transect Survey Date	Sep-23	Sep.23	Sep-23	Sep-23											
		Field Surey \#	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		OLD Transectio	T3	${ }^{\text {T }}$	T3	${ }^{\text {T3 }}$	T3	15	15	15	15	15	16	16	16	16	16
		OLD Sample ID	${ }_{\text {T3.04 }}$		T3.05		${ }_{\text {т } 3.06}$	${ }_{15-01}$	15.04	${ }_{15-02}$	15.05	${ }_{15.03}$	16.01	16.04	16.02	16.05	16.03
		NEW Transect 10	28	28	28	28	28	29	29	29	29	29	30	30	30	30	30
		Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
		NEW Sample ID	28.01	28.02	${ }_{28.03}$	28.04	28.05	29.01	29.02	29.03	29.04	29.05	30.01	30.02	30.03	30.04	${ }^{30.05}$
		Point 10		4	2	5			4	2	5		1	,	2	5	
		Distance	0	25	50	75	100	0	25	50	75	100	0	25	50	75	100
		Depth gauge (m):	-10.37	-10.67	${ }^{-10.37}$	-10.37	-10.67	${ }^{13.11}$	-12.80	-12.80	-13.11	-12.80	12.80	12.50	-12.50	12.50	11.59
		Depth gauge (ft):	. 34	. 35	. 34	. 34	. 35	43	-42	42	43	-42	42	41	41	41	${ }^{-38}$
		Tide (m):	2.2	2.2	2.2	2.2	2.2	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
		Depth m CD:	-8.2	-8.5	-8.2	-8.2	-8.5	-11.3	-11.0	-11.0	-11.3	-11.0	-11.0	10.7	10.7	10.7	-9.8
		Probe	${ }^{0.40}$	0.40	0.40	0.40	0.40										
Biological	Kelp detritus	Kelp defititus															
	Beggatoa spp.	bacterial mat	100	100	100	100	100										
	Diatoms	Diatoms						28	35	23	33	10	23	13	18	10	
	Agarum fimbriatum	fringed sieve kelp															
	Coralline crust spp.	encrusting coralline seaweed															
	Desmerastria viridis	Stringy acid hair															
	Gracilaria																
	Red blade	red blade															
	Red branched	Red branched															
	Red filamentous	red flimentous															
	Sacharina latissima	$\underset{\text { sugar kelp }}{\substack{\text { spit } k \text { elp }}}$														8	75
	Sacharina groeenlandica	succulitent seapeed				-											
	Slva lactuca	$\frac{\text { sucuen }}{\text { seal etuaceed }}$															
	Holes							3.5	1.5	1.5		1.5			0.5	1.5	
	Mounds																
	Balanus glandula	acorn barnacle															
	Cancer productus	red rock crab															
	Dirona																
	Metacarcinus gracilis	$\frac{\text { graceful rock crab }}{\text { Dungenss }}$						0.5	0.5				0.5				
	Metridium farcimen	giant plumose anemone	6						0.5								
	Metridium senile	short plumose anemone															
	Pagurus sp.	hermit crab															
	Pandalus danae	${ }_{\text {con stiped shrimp }}^{\text {spot prawn }}$															1.5
	Pandalus unknown	Pandalus unknown											1.5			5	
	Parastichopus califormicus	red sea cucumber															
	Pisaster ochrraceaus	Ochre sea star															
	Pugetia productus	kelp crab															
	Shrimp species	shrimp species															
	Strongly ocentrotus franciscanus	$\frac{\text { red urchin }}{\text { staked tunicate }}$															
	Tresus sp.	gaper clams															
	Urticina unknown	Anemone unknown															
		Tunicate															
	Aulorhynchus flavidus	$\xrightarrow[\text { Tpeckles ssound dab }]{\text { Tum }}$															
	Clupea pallasii	Pacific herring															
	Lumpenus sagita	Smanke prickleack															
	Platichthys stellatus	stary filunder															
	Peuronichthy coenosus	${ }_{\text {young of the year r ockish }}$								0.5							
	Sculpin unknown	sccllpin unknown															



Transect Sampling Information		Year	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
		Transect Survey Date	Oct-19														
		Field Surey \#	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
		OLD Transect ID	10a	10a	10a	10a	10a	10b	10b	10 b	10 b	10 b	11a	11a	11a	11a	11a
		OLD Sample ID	10a.01	10a-04	10.02	10a.05	10.03	100-01	100-04	106-02	100.05	${ }^{100.03}$	112.01	112.04	${ }^{11 a-02}$	112.05	$11 a^{10.03}$
		NEW Transect 10	31	31	31	31	31	32	32	32	32	32	33	33	33	33	33
		Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
		NEW Sample ID	31-01	31-02	${ }^{31.03}$	31.04	31.05	32.01	32.02	${ }^{32.03}$	32.04	32.05	33-01	33-02	${ }_{33-03}$	${ }_{33.04}$	33.05
		Point ID		2	3	4	5		2	3	4	5	1	,		5	
		Distance	0	25	50	75	100	0	25	50	75	100	-	25	50	75	100
		Depth gauge (m):	5.79	-6.10	-6.10	- 6.40	-6.40	-6.40	-6.71	-6.71	-7.01	-7.62	-6.40	-6.40	-6.40	-7.01	-6.40
		Depth gauge (ft):	19	-20	-20	-21	-21	-21	-22	-22	-23	. 25	-21	-21	-21	-23	-21
		Tide ( m :	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.5	2.5	2.5	2.5	2.5
		Depth m CD:	8.0	-3.9	-3.9	-4.2	4.2	-4.2	-4.5	-4.5	-4.8	-5.4	-3.9	-3.9	-3.9	-4.5	-3.9
		Probe	70.00	70.00	70.00	50.00	30.00	40.00	40.00	30.00	20.00	20.00	20.00	20.00	30.00	20.00	40.00
Biological	Kelp detritus	Kelp deteritus															
	Beggatoa spp.	bacterial mat						30	20	10	50	80					
	Diatoms	Diatoms	80	80	80	5	80	70	60	80	50	10	90	90	90	80	90
	Agarum fimbriatum	fringed sieve kelp															
	Coralline crust spp.	encrusting coraline seaweed															
	Desmerastria viridis	Stringy acid hair															
	Gracilaria																
	Red blade	red blade															
	Red branched	${ }_{\text {Red dranched }}^{\text {red filmentous }}$															
	Red fliamentous	red filamentous															
	Sacharina groenlandica	split kelp															
	Sarcodietheca gaudichaudii	succulent seaweed															
	Ulva lactuca	seal eftuce															
	Holes																
	Mounds																
	$\frac{3}{\text { Balanus glandula }}$	$\underset{\text { acorm barnacle }}{\text { redreck rab }}$															
	Dirona																
	Metacarcinus gracilis	graceful rock crab															
	Metacarcinus magister	Dungeness crab															
	Metridium farcimen	giant plumose anemone															
	Metridium senile	short plumose anemone															
	Pagurus sp.	hermit crab															
	Pandlalus danae	${ }_{\text {coon striped shrimp }}^{\text {spot trawn }}$															
	Pandalas Platy ceros   Pandalus unknown	${ }_{\text {Pandalus ununnown }}^{\text {spot }}$															
	Parastichopus califormicus	red sea cucumber															
	Pisaster ochraceaus	Ochre sea star															
	Pugetia productus	kelp crab															
	Shrimp species	shrimp species															
	Strongly ${ }^{\text {a }}$ Secintrotus franciscanus	$\frac{\text { red urchin }}{\text { staked tunicate }}$															
	Tresus sp.	gaper clams															
	Utricina unknown	Anemone unknown															
		Tunicate															
	Aulorhynchus flavidus	Tube snout															
	Citharichthy stigmaeus	$\underset{\text { speckled sand dab }}{\text { Pacific herring }}$															
	Lumpenus sagita	Smanke prickleback															
	Platichthys stellatus	stary flounder															
	Pleuronichthy coenosus	$\frac{\text { c.O osole }}{\text { Joung of the year rockish }}$															
	Sele	$\frac{\text { suan }}{\text { sculin }}$ unknown															

Appendix H: Raw Field Observations and Sediment Chemistry Data


Appendix H: Raw Field Observations and Sediment Chemistry Data



Transect Sampling Information		rear	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
		Transect Surey Date	Oct-19	Oct-19	Oct-19	Oct-19	Oct-19	Oct-20	Oct20	Oct-20							
		Field Surey \#	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
		OLD Transect ID	14 b	16 a	$16{ }^{1}$	$16{ }^{1}$	$16{ }^{1}$	16 a	16b	16 b	16b	16b	16b				
		OLD Sample ID	14b-01	14b-04	146.02	14b-05	145.03	$16 a_{0} 01$	16a.04	$16 a^{-02}$	$16 a^{-05}$	$16 a^{-03}$	$166-01$	166.04	166.02	$16 \mathrm{~b}-05$	$16 b^{-03}$
		NEW Transect 10	36	36	36	36	36	${ }^{37}$	37	${ }^{37}$	${ }^{37}$	${ }^{37}$	38	38	38	38	38
		Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
		NEW Sample II	36.01	36.02	36.03	36.04	36.05	37.01	37.02	${ }^{37.03}$	${ }^{37.04}$	${ }^{37.05}$	38.01	38.02	${ }^{38.03}$	38.04	38.05
		Point 10	1	4	2	5		1	,	2			1	4	2	5	,
		Distance	0	25	50	75	100	0	25	50	75	100	0	25	50	75	100
		Depth gauge ( $m$ ):	-11.90	-11.80	-11.40	-11.60	-11.50	-13.11	-13.11	-13.11	-13.11	-13.11	-13.11	-13.11	-12.80	-12.50	-12.50
		Depth gauge (ft):						${ }^{43}$	-43	-43	43	43	${ }^{43}$	43	42	41	41
		Tide (m):	2.4	2.4	2.4	2.4	2.4	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
		Depth m CD:	-9.5	-9.4	-9.0	-9.2	-9.1	-10.6	-10.6	-10.6	-10.6	-10.6	-10.6	-10.6	-10.3	-10.0	-10.0
		Probe	30.00	60.00	60.00	10.00	20.00	20.00	0.00	20.00	20.00	20.00	0.00	50.00	20.00	0.00	50.00
Biological	Kelp detritus	Kelp defitius															
	Beggatoa spp.	bacterial mat															
	Diatoms	Diatoms							80	40	90	90	50	80	30	90	80
	Agarum fimbriatum	fringed sieve kelp															
	Coraline crust spp.	encrusting coralline seaweed															
	Desmerassia viridis	Stringy acid hair															
	Gracilaria																
	Red blade	red blade															
	Red branched	${ }_{\text {Red dranched }}^{\text {red filmentous }}$															
	Red filamentous	red filamentous															
	Sacharina groenlandica	spilit kelp															
	Sarcodietheca gaudichaudii	succulent seaweed															
	Ulva lactuca	seal eftuce															
	Holes																
	Mounds																
	Balanus glandula	acorn barnacle															
	Cancer productus	red rock crab									1						
	Dirona																
	Metacarcinus gracilis	$\frac{\text { graceful rock crab }}{\text { Dungenss }}$ crab															
	Metridium farcimen	giant plumose anemone															
	Metridium senile	short plumose a amemene															
	Pagurus sp.	hermit crab															
	Pandalus danae	coon striped shrimp															
	Pandalus Platyceros	$\frac{\text { spot prawn }}{\text { Pandaus unkown }}$															
	Pandalus unknown	$\xrightarrow{\text { Pandalus unknown }}$ red sea cucumber															
	Pisaster ochrraceaus	Ochre sea star															
	Pugetia productus	kelp crab															
	Shrimp species	shrimp species															
	Strongly cenentrotus franciscanus	red urchin															
	Styela monterevensis	stalked tunicate															
	Tresus sp.	${ }_{\text {Anemone e unknown }}^{\text {gat }}$															
		Tunicate															
	Aulorhynchus flavidus	Tube snout															
	Citharichthys stigmaeus   Cupea pallasii	$\underset{\text { specked sand dab }}{\text { Pacific herring }}$															
	Lumpenus sagita	Smanke prickleback															
	Platichthys stellatus	stary flounder															
	Pleuronichthy coenosus	C.O sole															
	Sebastes spp. Yor	$\frac{\text { young oft the year rockish }}{\text { sculin unknown }}$															




Appendix H: Raw Field Observations and Sediment Chemistry Data


Appendix H: Raw Field Observations and Sediment Chemistry Data



Transect Sampling Information		rear	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
		Transect Survey Date	Oct-21	Oct21	Oct21	Oct21	Oct 21	Oct.21	Oct-21	Oct21	Oct-21	Oct-21	Oct-21	Oct.21	Oct-21	Oct-21	Oct21
		Field Surey \#	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
		OLD Transect ID	17b	17b	17b	17 b	17b	18 a	18 a	18 a	18 a	18a	18 b	18b	18 b	18b	18 b
		OLD Sample ID	17b-01	176.04	177-02	17 b .05	177.03	188.01	188.04	188.02	$18 a^{-05}$	${ }_{18 \text { a }}$-3	18b-01	18 B -04	18b-02	${ }_{18 \text { 18-05 }}$	18 b .03
		NEW Transect ID	44	44	44	44	44	45	45	45	45	45	46	46	46	46	46
		Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
		NEW Sample ID	44.01	44.02	44.03	44.04	44.05	45.01	45.02	45.03	45.04	45.05	46.01	46.02	46.03	46.04	46.05
		Point 10	1	4	2	5	3		,	2			1	,	2	5	
		Distance	0	25	50	75	100	0	25	50	75	100	0	25	50	75	100
		Depth gauge ( m ):	-13.41	-13.11	-13.41	-13.11	${ }^{-13.41}$	. 5.49	-7.62	-11.59	-11.89	-12.80	${ }_{-13.72}$	${ }_{-14.02}$	-14.02	${ }_{13.72}$	${ }^{-13.72}$
		Depth gauge (ft):	44	-43	44	-43	44	-18	-25	. 38	. 39	-42	45	46	46	45	45
		Tide (m):	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4
		Depth m CD:	-11.0	-10.7	-11.0	-10.7	-11.0	-3.1	-5.2	-9.2	-9.5	-10.4	-11.3	-11.6	-11.6	-11.3	-11.3
		Probe	0.00	0.00	0.00	0.00	0.00	0.00	0.00	30.00	50.00	60.00	50.00	0.00	0.00	0.00	0.00
Biological	Kelp detritus	Kelp defitius															
	Beggatoa spp.	bacterial mat															
	Diatoms	Diatoms	80	80	80	80	70					30	40	40	40	40	40
	Agarum fimbriatum	fringed sieve kelp															
	Coraline crust spp.	encrusting coralline seaweed															
	Desmerastia viridis	Stringy acid hair															
	Gracilaria							30	10								
	Red blade	red blade									5						
	Red branched	${ }_{\text {Red dranched }}^{\text {red filmentous }}$															
	Red filamentous	red filamentous							10		20		20		10		
	Sacharina groenlandica	spilit kelp															
	Sarcodietheca gaudichaudii	succulent seaweed								20							
	Ulva lactuca	seal eftuce							10	10							
	Holes																
	Mounds																
	Balanus glandula	acorn barnacle															
	Cancer productus	red rock crab						1	1								
	Dirona																
	Metacarcinus gracilis	$\frac{\text { graceful rock crab }}{\text { Dungenss }}$															
	Metridium farcimen	giant plumose anemone															
	Metridium senile	short plumose a amome															
	Pagurus sp.	hermit crab															
	Pandalus danae	coon striped shrimp															
	Pandalus Platyceros	$\frac{\text { spot prawn }}{\text { Pandaus unknown }}$		4				12	25	12							
	Pandalus unknown	$\frac{\text { Pandalus unknown }}{\text { red sea cucumber }}$															
	Pisaster ochraceaus	Ochre sea star															
	Pugetia productus	kelp crab															
	Shrimp species	shrimp species															
	Stronglyocentrotus franciscanus	red urchin															
	Styela montereyensis	stalked tunicate															
	Tresus sp.	${ }_{\text {Anemone e unknown }}^{\text {gat }}$															
		Tunicate															
	Aulorhynchus flavidus	Tube snout															
	Citharichthys stigmaeus	speckled sand dab															
	Clupea pallasii	$\frac{\text { Pacific herring }}{\text { Smanke prickleback }}$															
	Lumpenus sagita	Smanke prickeback															
	Pluaronichthy coemosus	C.O sole															
	Sebastes spp. YoY	$\frac{\text { young of the year rockish }}{\text { sculpin unkown }}$								4							




Appendix H: Raw Field Observations and Sediment Chemistry Data

Transect Sampling Information	Year	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017
	Transect Survey Date	Jan-24	Jan-24	Jan-24	Jan-24	Jan-24	Jan-25	Jan-25	Jan-25	Jan-25	Jan-25
	Field Survey $\#$	4	4	4	4	4	4	4	4	4	4
	OLD Transect ID	n/a									
	OLD Sample ID	n/a									
	NEW Transect ID	50	50	50	50	50	51	51	51	51	51
	Point	01	02	03	04	05	01	02	03	04	05
	NEW Sample id	50.01	50.02	50.03	50.04	50.05	51.01	51.02	51.03	$51-04$	51.05
	Point 10										
	Distance	0	25	50	75	100	0	25	50	75	100
	Depth gauge ( $m$ ):	-11.28	-11.28	-10.98	-11.28	-11.28	-10.37	-10.98	-10.98	-10.98	-10.98
	Depth gauge (ft):	. 37	${ }^{.37}$	. 36	. 37	. 37	. 34	${ }^{-36}$	${ }^{36}$	${ }^{36}$	${ }^{-36}$
	Tide ( m :	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
	Depth m CD:	-8.5	-8.5	-8.2	-8.5	-8.5	${ }_{-7.6}$	-8.2	-8.2	-8.2	-8.2
Sediment analyses	Sample Date	Jan-24		Jan-24		Jan-24	an-25		Jan-25		Jan-25
	Grab sample Time										
	WP										
	Sulphide (as H2S)					0.011					0.048
	Ammonia (N)										15.5
	$\mathrm{pH}^{\text {p }}$					7.56					7.75
	$\frac{\text { Total Sulphide }}{\text { Toc (0.10 m) }}$	24000		24000		0.01	24000		28000		0.0449
	Toc (00.000 m)										
	Toc ( 30.40 cm )	14000		14000		17000	18000		16000		16000
	Moisture										
	Available (KCl) Ammonia (N) AVS)										
	Soluble (2:1) PH ( AVS)										
	Sulphide (Avs)										
	Grab Sampling Comments										
YSI Sampling	Sample Date										
	Sample Time										
	WP										
	${ }_{\text {Conductivity }}^{\text {Salainity }}$										
	$\frac{\text { Conductivitissainity }}{\text { D0\% }}$										
	Do mg										
	pH										
Substrate	Silt	100	100	100	100	100	100	100	100	100	100
	Sand										
	Gravel										
	Booulder										
	Bedrock										
	Shell										
	Wood waste										
	ww Depth						0				
	w State	closed					closed		closed		closed

Appendix H: Raw Field Observations and Sediment Chemistry Data



Transect Sampling Information		rear	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017
		Transect Survey Date	Jan-25	Jan-25	Jan-25	Jan-25	Jan-25	Jan-23									
		Field Surey \#	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
		OLD Transect ID	n/a	m/a	n/a	m/a											
		OLD Sample ID	n/a														
		NEW Transect ID	52	52	52	52	52	53	53	53	53	53	54	54	54	54	54
		Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
		NEW Sample ID	52.01	52.02	52.03	52-04	52.05	53.01	53.02	53.03	53.04	53.05	54.01	54.02	54.03	54.04	54.05
		Point 10															
		Distance	0	25	50	75	100	0	25	50	75	100	0	25	50	75	100
		Depth gauge (m):	-10.67	-10.67	-10.67	-10.67	-10.37	12.20	-12.20	-12.20	-12.20	12.20	-12.20	-12.80	-12.20	12.20	11.89
		Depth gauge (ft):	${ }^{-35}$	. 35	. 35	. 35	${ }^{-34}$	40	-40	40	40	-40	40	42	-40	40	-39
		Tide ( m :	2.8	2.8	2.8	2.8	2.8	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
		Depth m CD:	-7.9	-7.9	-7.9	-7.9	-7.6	-10.0	-10.0	-10.0	-10.0	-10.0	-10.0	10.6	10.0	10.0	-9.7
Biological		Probe															
	Kelp detritus	Kelp deftritus															
	Beggatoa spp.	bacterial mat			8						9		9				
	Diatoms	Diatoms	50	70	80	50	80	90	90	90	90	90	90	90	80	90	90
	Agarum fimbriatum	fringed sieve kelp															
	Desmerastia viridis	Stringy acid hair															
	Gracilaria	Smgatar															
	Red blade	red blade															
	Red branched	Red branched															
	Red filamentous	red filamentous															
	Sacharina latissima	sugar kelp															
	Sacharina groenlandica	spilit kelp															
	Sarcodietheca gaudichaudii	succulent saweed															
	Ulva lactuca	seal eftuce															
	Holes																
	Mounds																
	Balanus glandula	$\underset{\text { acorm baracie }}{\text { redrock rab }}$															
	Dirona																
	Metacarcinus gracilis	graceful rock crab															
	Metacarcinus magister	Dungeness crab															
	Metridium farcimen	giant plumose anemone															
	Metridium senile	short plumose anemone															
	Pagurus sp.	hermit crab															
	Pandalus danae	$\underset{\text { coon striped shimp }}{\text { spot prawn }}$															
	Pandalus platyceros																
	Parastichopus californicus	red sea cucumber															
	Pisaster ochraceaus	Ochre sea star															
	Pugetia productus	$\frac{\text { Kelp crab }}{\text { shrimp species }}$															
	Strongly ocentrotus franciscanus	redurchin															
	Styela montereyensis	stalked tunicate															
	Tresus sp.	gaper clams															
	Uricima unknown	$\frac{\text { Anemone unknown }}{\text { Tunicate }}$															
	Aulorhynchus flavidus	Tube snout															
	Citharichthys stigmaeus	speckled sand dab															
	Clupea pallasii	$\frac{\text { Pacific herring }}{\text { Smanke prickleaack }}$															
	Platichthys stellatus	stary flounder															
	Pluaronichthy coemosus	C.O sole															
	Sebastes spp. YoY	$\frac{\text { young of the year rockish }}{\text { sculpin unkown }}$															


Transect Sampling Information	Year	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017
	Transect Survey Date	Jan-24	Jan-25	Jan-25	Jan.25	Jan-25	Jan-25									
	Field Survey $\#$	4	4	4	4	4	4	4	4	4	4			4	4	4
	OLD Transect ID	n/a														
	OLD Sample ID	n/a														
	NEW Transect ID	55	55	55	55	55	56	56	56	56	56	57	57	57	57	57
	Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
	NEW Sample ID	55.01	55-02	55.03	55.04	55.05	56.01	56-02	56.03	56.04	56.05	57.01	57.02	57.03	57.04	57.05
	Point ID															
	Distance	0	25	50	75	100	0	25	50	75	100	0	25	50	75	100
	Depth gauge (m):	-10.06	-9.76	${ }^{8.84}$	-8.84	-9.15	-9.45	-10.06	-9.76	-9.45	-9.15	4.88	4.57	- 3.96	4.88	-5.18
	Depth gauge (t):	. 33	-32	29	-29	-30	. 31	. 33	. 32	-31	-30	16	-15	-13	-16	-17
	Tide ( m :	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.8	2.8	2.8	2.8	2.8
	Depth m CD:	-7.4	-7.1	11.5	-6.1	-6.4	-6.8	$\stackrel{-7}{ }$	-7.1	-6.8	-6.4	-2.1	-1.8	-1.2	-2.1	-2.4
Sediment analyses	Sample Date	Jan-24		Jan-24		Jan-24	Jan-24		Jan-24		Jan-24	Jan-25		Jan-25		Jan-25
	Grab Sample Time															
	wp															
	Sulphide (as 12 S)					$\begin{array}{r}1.5 \\ 25 \\ \hline\end{array}$					0.042					0.006
	$\underset{\text { Ammin }}{\text { Am }}$					$\frac{25.8}{73}$					${ }^{23.9}$					12.1 7.83
	Total Sulphide					1.38					0.0399					0.0095
	Toc (0.100m)	140000		120000			140000		120000			190000		150000		
	TOC (20.40cm)															
	TOC (30.40cm)	160000					170000		75000		14000					1500
	Moistue															
	$\frac{\text { able }}{\text { Soclil }) \text { Ammonia (N) }}$															
	Suphide (AVs)															
	Grab Sampling Comments															
YSI Sampling	Sample Date															
	Sample Time															
	wp															
	Temp															
	Conductivit/salinity															
	DO mgl															
	pH															
Substrate	Silt		40	10	30	10	100	100	100	60	20					
	$\underset{\text { Sand }}{\text { Gravel }}$															40
	Cobble															
	Boulder															
	Bedrock															
	Sheoll	100	60	90	70	90				40	80	100	100	9	9	
	${ }_{\text {Wood }}$ Base					-										
	ww Depth	0.5		0.1		0.1	0.4		0.4		0.4	0.3		0.3		
	ww state		open		open open				open			lopen		open		closed


Transect Sampling Information		rear	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017
		Transect Surey Date	Jan-24	Jan-25	Jan-25	Jan-25	Jan-25	Jan-25									
		Field Surey \#	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
		OLD Transectio	n/a	m/a	n/a	m/a											
		OLD Sample ID	n/a														
		NEW Transect ID	55	55	55	55	55	56	56	56	56	56	57	57	57	57	57
		Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
		NEW Sample ID	55.01	55.02	55.03	55.04	55.05	56.01	56.02	56.03	56.04	56.05	57.01	57.02	57.03	57.04	57.05
		Point 10															
		Distance	0	25	50	75	100	0	25	50	75	100	0	25	50	75	100
		Depth gauge (m):	-10.06	.9.76	8.84	-8.84	-9.15	-9.45	-10.06	-9.76	-9.45	-9.15	4.88	4.57	-3.96	4.88	5.18
		Depth gauge (ft):	. 33	. 32	29	-29	. 30	. 31	. 33	. 32	. 31	. 30	-16	-15	-13	16	-17
		Tide (m):	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.8	2.8	2.8	2.8	2.8
		Depth m CD:	${ }_{-7.4}$	-7.1	11.5	-6.1	-6.4	-6.8	${ }_{-7.4}$	-7.1	-6.8	-6.4	-2.1	-1.8	-1.2	-2.1	-2.4
Biological		Probe															
	Kelp detritus	Kelp deteritus															
	Beggatoa spp.	bacterial mat		10					30	50				30			
	Diatoms	Diatoms	90	90	80	90	80	90	60	50	70	60	60	50	5	70	90
	Agarum fimbriatum	fringed sieve kelp															
	Coraline crust spp.	encrusting coralline seaweed															
	Desmerassia viridis	Stringy acid hair															
	Gracilaria																
	Red blade	red blade				5											
	Red branched	Red branched															
	Red filiamentous	$\frac{\text { red filamentous }}{\text { sugar kelp }}$															
	Sacharina groenlandica	spilit kelp															
	Sarcodietheca gaudichaudii	succulent seaweed															
	Ulva lactuca	seal eftuce															
	Holes							2									
	Mounds																
	Balanus glandula	$\underset{\text { acorr baracle }}{\text { red rock rab }}$												10			
	Dirona																
	Metacarcinus gracilis	graceful rock crab															
	Metacarcinus magister	Dungeness crab															
	Metridium farcimen	giant plumose a amome short plumose anemone															
	Metridium senile	short plumose anemone															
	Pandalus danae	coon striped shrimp															
	Pandalus platyceros	spot prawn															
	Pandalus unknown	$\frac{\text { Pandalus unknown }}{\text { red sea cucumber }}$															
	Pisaster ochrraceaus	Ochre sea star															
	Pugetia productus	kelp crab															
	Shrimp species	shrimp species															
	Strongly cenentrotus franciscanus	red urchin															
	Styela montereyensis	stalked tunicate															
	Tresus sp.	${ }_{\text {Anemone e unknown }}^{\text {gat }}$															
		Tunicate															
	Aulorhynchus flavidus	Tube snout															
	Citharichthys stigmaeus   Cupea pallasii	$\underset{\text { specked sand dab }}{\text { Pacific herring }}$															
	Lumpenus sagita	Smanke prickleback															
	Platichthys stellatus	stary flounder															
	Pleuronichthy coenosus	C.O sole															
	Sele	$\frac{\text { soung }}{\text { sculipin unknown }}$															


Transect Sampling Information	Year	2017	2017	2017	2017	2017	error check
	Transect Surey Date	Jan-25	Jan-25	Jan-25	Jan-25	Jan-25	
	Field Surrey \#	4	4	4	4	4	1
	OLD Transect ID	n/a	n/a	n/a	n/a	n/a	
	OLD Sample ID	n/a	n/a	n/a	n/a	n/a	
	NEW Transect ID	58	58	58	58	58	1
	Point	01	02	03	04	05	
	NEW Sample ID	58.01	58.02	58.03	58.04	58.05	
	Point ID						
	Distance	0	25	50	75	100	1
	Depth gauge (m):	. 3.66	-2.44	1.83	2.13	2.44	1.00
	Depth gauge (ft):	-12	-8	- 6	-7	-8	1
	Tide ( m :	2.8	2.8	2.8	2.8	2.8	1.0
	Depth m CD:	-0.9	0.4	1.0	0.7	0.4	
Sediment analyses	Sample Date	Jan-25		Jan-25		Jan-2	1.00
	Grab Sample Time						1.00
	WP						1.00
	Sulphide (as $\mathrm{H2S}$ )					0.01	1.00
	Ammonia (N)					${ }^{3.6}$	1.00
	pH					7.37	1.00
	Tota Sulphide					0.0095	1.00
	$\mathrm{TOC}(0.10 \mathrm{~cm})$	49000		37000			1.00
	Toc (20.400m)						
	TOC (30.40cm)			22000		17000	
	Moisture						1.00
	Available (KCl) Ammonia (N) AVS)						1.00
	Soluble (2:i) pH (AVS)						1.00
	Sulphide AVs)						1.00
	Grab Sampling Comments						1.00
YSI Sampling	Sample Date						1.00
	Sample Time						1.00
	${ }_{\text {WP }}$						1.00 1.00
	Conductivitys salinity						$\xrightarrow{1.00}$
	D0\%						1.00
	Do mgl						1.00
	pH						1.00
Substrate	Silt	100			40	100	1.00
	Sand			50			1.00
	${ }_{\text {Gravel }}$			50			1.00   1.00
	Boulder						$\stackrel{1.00}{1.0}$
	Bedrock						1.00
	Shell						1.00
	Wood waste				60		1.00
	${ }_{\text {W }}$ Bre Depth			0.4		0.35	1.00
	Ww State	closed		closed		closed	

Appendix H: Raw Field Observations and Sediment Chemistry Data

biologica

为Biologica Sample \#   Client Sample \#				Grand Total	17-033-001	17-033-002	17-033-003	17-033-004	17-033-005	17-033-006	17-033-011	17-033-012	17-033-013	17-033-014	17-033-015	17-033-016	17-033-017	17-033-018
					04.05	04.05	07-03	07-03	12-03	12.03	15-01	15-01	$41-03$	$41-03$	43.05	43-05	45-03	45-03
Replicate					Rep 01	Rep 02												
Date Sampled					07/03/2017								08/03/2017	08/03/2017				
Debris Volume					High	High	High	High	Standard	High	Standard	Standard	Standard	Standard	Standard	Standard	High	High
$\begin{array}{\|l\|l\|} \hline \text { taxcodede } \\ \text { ANNE } \end{array}$	grpode	Family	TaxonName	Total Abundance														
	ANOL	Naididae	Paranais litoralis	2														
ANNE	ANOL	Naididae	Tectidrilus sp.	389	16	106	96	122										46
ANNE	PoER	Dorvilleidae	Schistomeringos annulata	11	4	2	4											
	Poer	Dorvilleidae	Schistomeringos longicornis	11				3		2								
$\begin{array}{\|l\|} \hline \text { ANNE } \\ \hline \text { ANNE } \\ \hline \end{array}$	Poer	Dorvilleidae	Schistomeringos sp.	24		18											6	
	Poer	Glyceridae	Glycera americana												1			
ANNE	PoER	Goniadidae	Glycinde picta	84	5	3	2	3	2					2	- 4	-8	8	${ }^{4}$
	POER	Goniadidae	Glycinde sp.	49		4		5		2				2	4	6		
ANNE	Poer	Hesionidae	Micropodarke dubia	4		2	2											
ANNE	Poer	Hesionidae	Oxydromus pugettensis	6	4												2	
ANNE	Poer	Hesionidae	Podarkeopsis glabus	63	2	16	10	8						2	1	1		
	Poer	Hesionidae	Podarkeopsis perkinsi	1									1					
ANNE	PoER	Hesionidae	Podarkeopsis sp.	2						2								
ANNE	PoER	Lumbrineridae	Lumbrineridae indet.	2			2											
	PoER	Lumbrineridae	Lumbrineris californiensis	8														
ANNE	POER	Lumbrineridae	Scoletoma tetraura complex	1,016		2									181	237		
	Poer	Nephtridae	Bipalponephtys cornuta	11											1			
ANNE	PoER	Nephtridae	Nephtys punctata	1												1		
ANNE	Poer	Nereididae	Alitta virens					1										
ANNE	PoER	Nereididae	Nereis procera	13														
	Poer	Nereididae	Platyereis bicanaliculata	127	2		24	38									58	
ANNE   ANNE	PoER	Onuphidae	Onuphidae indet.	1				1										
	Poer	Onuphidae	Onuphis sp.	2														
ANNE	Poer	Pholoidae	Pholoe minuta	1														
ANNE	Poer	Phyllodocidae	Eteone californica	1				1										
ANNE	Poer	Phyllodocidae	Eteone longa complex	1														
ANNE	POER	Phyllodocidae	Eteone sp.	1														
	Poer	Phyllodocidae	Eteone tuberculata	6				1		2								
ANNE	POER	Phyllodocidae	Eumida longicornuta	2	2													
ANNE	PoER	Phyllodocidae	Phyllodoce hartmanae	1											1			
ANNE	Poer	Polynoidae	Gattyana cirrhosa	1														
	POER	Polynoidae	Harmothoe imbricata	1				1										
ANNE   ANNE	POER	Polynoidae	Hesperonoe adventor	1														
ANNE	PoER	Polynoidae	Tenonia priops	2														
ANNE	Poer	Sphaerodoridae	Sphaerodoropsis sphaerulifer	2														
	POER	Syllidae		1	2	22		2								2		
ANNE	POER	syllidae	syllis cornuta	1											1			
ANNE	POSE	Ampharetidae	Ampharete labrops	390	8	18	148	186			4	4		3	1		4	
ANNE	POSE	Ampharetidae	Ampharete lineata															
\|la	POSE	Ampharetidae	Ampharetidae indet.	1												1		
ANNE	POSE	Capitellidae	Capitella capitata complex	132		2	2		16	14			11	9			14	14
	POSE	Capitellidae	Heteromastus filobranchus	31											9	8		
ANNE	POSE	Capitellidae	Mediomastus ambiseta	2														
ANNE	POSE	Capitellidae	Mediomastus californiensis	36		4	4	8									4	16
ANNE	Pose	Chaetopteridae	Spiochaetopterus costarum complex	6														
ANNE	PoSE	Ciratulidae	Aphelochaeta glandaria complex	2,088 330		2									431	${ }_{4}^{40}$		20
ANNE	Pose	Cirratulidae	Aphelochaeta sp.	59								1						
ANNE	PoSE	Cirratulidae	Chaetozone setosa complex	205											42	42		47
	PoSE	Cirratulidae	Cirratulidae indet.	2										2				
ANNE	POSE	Cirratulidae	Kirkegardia sp.	4		4												
	POSE	Cossuridae	Cossura pygodactylata	19											1	8		
ANNE	Pose	Magelolidae	Magelona longicorris	2											$\square$	16		
ANNE		Maldanaidae	Purymene sp. nr. .onalis	2														
ANNE																		


Biologica Sample \#				Grand Total	17-033-001	17-033-002	17-033-003	17-033-004	17-033-005	17-033-006	17-033-011	17-033-012	17-033-013	17-033-014	17-033-015	17-033-016	17-033-017	17-033-018
					04.05	04.05	07-03	07-03	12-03	12-03	15-01	15-01	$41-03$	41.03	43-05	43.05	45-03	45-03
Replicate					Rep 01	Rep 02												
Date Sampled					07/03/2017								08/03/2017	08/03/2017				
Debris Volume					High	High	High	High	Standard	High	Standard	Standard	Standard	Standard	Standard	Standard	High	High
taxcode	grpoode	Family	TaxonName	Total Abundance														
	POSE	Ophelidae	Armandia brevis	2,646	102	28	18	16	168	348	65	32	206	136			52	32
ANNE	PoSE	Opheliidae	Ophelina acuminata	3												1		
	POSE	Orbiniidae	Leitoscoloplos pugettensis	1											1			
ANNE	POSE	Orbiniidae	Scoloplos acmeceps	6													2	
ANNE	POSE	Owenidae	Galathowenia oculata	1														
ANNE	PoSE	Owenidae	Owenia fusiformis	86			34	52										
ANNE	POSE	Sabellidae	Euchone incolor	22											2	3		
	POSE	Spionidae	Dipolydora cardalia	2											1			
	POSE	Spionidae	Dipolydora sp.	6														
ANNE	POSE	Spionidae	Paraprionospio alata	12						2					2			
ANNE		spionidae	Polydora sp. complex	10				5								2		
ANNE	POSE	Spionidae	Prionospio (Minuspio) lighti	1,140	74	346	66	187		28	34	19	8	32	19	17	30	18
	POSE	Spionidae	Prionospio (Prionospio) sp.	1											1			
ANNE   ANNE	POSE	spionidae	Pseudopolydora paucibranchiata	5			2	2							1			
	POSE	Spionidae	Spiophanes berkeleyorum	2												1		
ANNE	POSE	Sternaspidae	Sternaspis affinis	2											2			
ANNE	POSE	Terebellidae	Lanassa venusta venusta	4									1					
\| ANE	PoSE	Terebellidae	Polycirrus sp. complex	1				1										
	POSE	Trichobranchidae	Terebellides sp.	1												1		
ARTH	CRAM	Aoridae	Aoroides intermedia	230													200	30
ARTH	CRAM	Aoridae	Aoroides sp.	46		40									1	1		
ARTH	CRAM	Aoridae	Aoroides spinosa	18	14													
ARTH	CRAM	Caprellidae	Caprella kennerlyi	2														
ARTH   ARTH	${ }^{\text {CRAM }}$	Caprellidae	Caprella mendax	6														
ARTH	CRAM	Isaeidae	Gapmaropsis spinosa	2														
ARTH	CRAM	Isaeidae	Isaeidae indet.	1														
$\pm{ }^{\text {ARTH }}$	CRAM	Isaeidae	Photis brevipes	14		2											2	
	Cram	Isaeidae	Photis sp.	8	4	4												
ARTH	CRAM	Isaeidae	Protomedeia prudens	2														
ARTH	CRAM	Melitidae	Desdimelita desdichada	13				1							1	3		
	Cram	Oedicerotidae	Deflexilodes sp.	6												3		
ARTH	CRAM	Oedicerotidae	Oedicerotidae indet.	1								1						
ARTH	CRAM	Oedicerotidae	Westwoodilla tone	9											1	2	2	
$\left\lvert\, \begin{array}{\|l\|} \text { ARTH } \\ \text { ARTH } \end{array}\right.$	CRAM	Phoxocephalidae	Eobrolgus chumash	10													4	
	CRAM	Phoxocephalidae	Heterophoxus affinis	2														
ARTH	CRAM	Phoxocephalidae	Heterophoxus sp.	1												1		
	CRAM		Amphipoda indet.	8	8													
$\begin{aligned} & \text { АRTH } \\ & \hline \text { ARTH } \\ & \hline \end{aligned}$	CRCl		Balanomorpha indet.	17	6		6											
ARTH	CRCU	Leuconidae	Eudorella pacifica	1														
ARTH	crcu	Leuconidae	Eudorella sp.	2														
	CRCU	Leuconidae	Leucon sp.	4														
$\begin{array}{\|l\|} \hline \text { ARTH } \\ \hline \text { ARTH } \\ \hline \end{array}$	CRDE	Callianassidae	Neotrypaea aigas	5														
ARTH   ARTH	CRDE	Cancridae	Cancridae indet.	1													1	
	CRDE	Crangonidae	Crangon alaskensis	3														
ARTH	CRDE	Pinnotheridae	Pinnixa schmitti	20							1							
ARTH	CRDE	Pinnotheridae	Pinnixa sp.			2									1	2		
	CRIS	Limnoridae	Limnoria lignorum	4														
ARTH	CRLE	Nebalidae	Nebalia pugettensis complex	206													202	
\| ${ }^{\text {ARTH }}$	CRTA	Leptochelidae	Leptochelia dubia complex	7	4											2		
	BrYO	Vesicularidae	Bowerbankia gracilis															
	CNHY	Corynidae	Corrnidae indet.	${ }_{1}$														
MIISC	CNHY	Coryyidae	Sarsia tubulosa	1														
MISC   MISC	CNHY	Pandeidae	Amphinema dinema	1														
	NTEA	Amphiporidae	Amphiporus imparispiosus	1				1										
MISC	NTEA	Emplectonematidae	Paranemertes californica	6				4										
MISC	NTEA	Lineidae	Cerebratulus californiensis	52		4	16	18										
MISC	NTEA	Tubulanidae	TTubulanus polymorrphus															


				Grand Total	17-033-001	17-033-002	17-033-003	17-033-004	17-033-005	17-033-006	17-033-011	17-033-012	17-033-013	17-033-014	17-033-015	17-033-016	17-033-017	17-033-018
					04.05	04.05	07-03	07-03	12-03	12.03	15-01	15-01	$41-03$	41.03	43.05	43.05	45.03	45-03
Client Sample \#					Rep 01	Rep 02												
					07/03/2017								08/03/2017	08/03/2017				
Date Sampled   Debris Volume					High	High	High	High	Standard	High	Standard	Standard	Standard	Standard	Standard	Standard	High	High
taxcode Ifrocode		Family	TaxonName	Total Abundance														
MISC   MISC	NTEA	Tubulanidae	Tubulanus sp.	2														
	NTEA		Anopla indet.	1														
Minc   Misc	URAS		Stolidobranchiata indet.	1				1										
Moll	MOBI	Cardidae	Clinocardinae indet.	19			4	8			1					1		
MOLL	мов1	Cardidae	Clinocardium nuttallii	18				18										
Moul	мов	Lasaidae	Kurtiella tumida	43			6	3							11	3	4	
MOLL	MOBI	Lucinidae	Lucinoma a anulatum	2														
Moul	MOB1	Lucinidae	Parvilucina tenuisculpta	3											1	1		
MOLL	MOBI	Nuculidae	Acila castrensis	54											16	18		
	мов	Nuculidae	Ennucula tenuis	5												1		
$\frac{\text { MOLL }}{\text { MOLL }}$	мов	Tellinidae	Macoma carlottensis	26											3	2		
$\begin{array}{\|l\|} \hline \text { Moll } \\ \hline \text { MOOLL } \\ \hline \end{array}$	мов	Tellinidae	Macoma nasuta	103	2						14	3	1	4	4	4	4	
\| Moul	мов	Tellinidae	Macoma sp.	105	4	6	6	13		4	3			1		1		
Moul	мов	Tellinidae	Tellina modesta	1														
Moll	MOBI	Tellinidae	Tellina sp.	26			8	5									2	
Moll	мов	Thyasiridae	Axinopsida serricata	76											6	15	4	
	мов1	Veneridae	Leukoma staminea	5														
$\frac{\text { mout }}{\text { Mout }}$	MOB1	veneridae	Nutricola sp.	54											6	15		
Mout	мов	veneridae	Veneridae indet.	7							1					2		
Moul	мов		Bivalvia indet.	56	2	18	8	16						1				
	MOGA	Columbellidae	Astris gauspata	3													2	
$\frac{\text { Mout }}{\text { Mout }}$	MOGA	Littorinidae	Lacuna vincta	4													2	
Moll	MOGA	Onchidorididae	Loy thompsoni													1		
Moll	MOGA	Pyramidellidae	Odostomia sp.	27												4		
MoL	MOGA	Pyramidellidae	Turbonilla sp.	9														
Moul	M0GA	Rissoidae	Alvaia compacta	131			16	50								6	44	
	MOGA	Rissoidae	Alvani sp.	22				16									4	2
MOLL	MOGA		Cephalaspidea indet.	4														
Mou	моga		Gastropoda indet.	50		2	10	27								1	4	
			Total Abundance	10,802	267	659	513	844	187	408	128	68	230	196	817	952	668	310
			Total Unique Taxa (species richness)	117			,	37		10		11		10	36			

biologica

Biologica	S Sample \#			17-033-019	17-033-020	17-033-021	17-033-022	17-033-023	17-033-024	17-033-025	17-033-026	17-033-027	17-033-028	17-033-029	17-033-030	17-033-031	17-033-032
Client Sam	mple \#			46-03	46-03	50.01	50.01	53-01	53.01	54.03	54.03	59-01	59-02	61-01	61-01	60.01	60.02
Replicate				Rep 01	Rep 02			Rep 01	Rep 02								
Date Sam	mpled											07/03/2017	07/03/2017	10/03/2017	10/03/2017	09/03/2017	09/03/2017
Debris V0	olume			Standard	Standard	Standard	Standard	Standard	Standard	High	High	High	High	standard	High	standard	Standard
taxcode	grpode	Family	TaxonName	Total Abundance													
ANNE	ANOL	Naididae	Paranais IItoralis														
ANNE	ANOL	Naididae	Tectidrilus sp.														
ANNE	Poer	Dorvilleidae	Schistomeringos annulata														
ANNE	Poer	Dorvilleidae	Schistomeringos longicornis									2				1	3
ANNE	POER	Dorvilleidae	Schistomeringos sp.														
ANNE	PoER	Glyceridae	Glycera americana														
ANNE	POER	Goniadidae	Glycinde picta	1	3	1				4	6		4	4	6		
ANNE	Poer	Goniadidae	Glycinde sp.		6	3			1		2	2	2	4	6		
ANNE	POER	Hesionidae	Micropodarke dubia														
ANNE	Poer	Hesionidae	Oxydromus pugettensis														
ANNE	POER	Hesionidae	Podarkeopsis glabus		4			1		2	2	2		7		2	
ANNE	Poer	Hesionidae	Podarkeopsis perkinsi														
ANNE	Poer	Hesionidae	Podarkeopsis sp.														
ANNE	Poer	Lumbrineridae	Lumbrineridae indet.														
ANNE	POER	Lumbrineridae	Lumbrineris californiensis														
ANNE	PoEr	Lumbrineridae	Scoletoma tetraura complex	236	268	1	1	4	1	28	44			1	8		
ANNE	Poer	Nephtridae	Bipalponephtys cornuta								,				2		
ANNE	POER	Nephtridae	Nephtys punctata														
ANNE	POER	Nereididae	Alita virens														
ANNE	POER	Nereididae	Nereis procera		1												
ANNE	Poer	Nereididae	Platyereis bicanaliculata													2	
ANNE	POER	Onuphidae	Onuphida inde.														
ANNE	POER	Onuphidae	Onuphis sp.														
ANNE	POER	Pholoidae	Pholoe minuta		1												
ANNE	Poer	Phyllodocidae	Eteone californica														
ANNE	PoER	Phyllodocidae	Eteone longa complex	1													
ANNE	Poer	Phyllodocidae	Eteone sp.														
ANNE	Poer	Phyllodocidae	Eteone tuberculata		2												
ANNE	Poer	Phyllodocidae	Eumida Iongicornuta														
ANNE	POER	Phyllodocidae	Phyllodoce hartmanae														
ANNE	PoER	Polynoidae	Gattyana cirrhosa														
ANNE	Poer	Polynoidae	Harmothoe imbricata														
ANNE	PoER	Polynoidae	Hesperonoe adventor														
ANNE	Poer	Polynoidae	Tenonia priops							2							
ANNE	POER	Sphaerodoridae	Sphaerodoropsis sphaerulifer		2												
ANNE	Poer	syllidae	Brania sp.														
ANNE	PoER	syllidae	Exogone dwisula												2		
ANNE	POER	Syllidae	syllis cornuta														
ANNE	POSE	Ampharetidae	Ampharete labrops			1					4						
ANNE	POSE	Ampharetidae	Ampharete lineata	1													
ANNE	POSE	Ampharetidae	Ampharetidae indet.														
ANNE	POSE	Capitellidae	Capitella capitata complex								2	30	6	4	2		
ANNE	Pose	Capitellidae	Heteromastus filobranchus	6	6						2						
ANNE	POSE	Capitellidae	Mediomastus ambiseta														
ANNE	POSE	Capitellidae	Mediomastus californiensis														
ANNE	Pose	Chaetopteridae	Spiochaetopterus costarum complex						-								
ANNE	Pose	Ciriratulidae	Aphelochaeta gananarara momplex	87	130												
ANNE	Pose	Cirratulidae	Aphelochaeta sp.								58						
ANNE	POSE	Cirratulidae	Chaetozone setosa complex	13	59									1			
ANNE	POSE	Cirratuidae	Cirratulida indet.														
ANNE	Pose	Ciratulidae	Kirkegaardia sp.														
$\frac{\text { ANNE }}{\text { ANNE }}$	POSE	Cossuridae	Cossura pygodactlata														
ANNE	PoSE	Maldanidae	Euclymene sp. nr. zonalis	12	23												
ANNE	POSE	Maldanidae	Praxillella pacifica														


logica	Sample \#			17-033-019	17-033-020	17-033-021	17-033-022	17-033-023	17-033-024	17-033-025	17-033-026	17-033-027	17-033-028	17-033-029	17-033-030	17-033-031	17-033-032
Client Sa	mple \#			46-03	46-03	50.01	50-01	53-01	53-01	54.03	54.03	59-01	59-02	61.01	61.01	60-01	60-02
Replicate				Rep 01	Rep 02			Rep 01	Rep 02								
Date Sam	mpled											07/03/2017	07/03/2017	10/03/2017	10/03/2017	09/03/2017	09/03/2017
Debris Vo	olume			Standard	Standard	Standard	Standard	Standard	Standard	High	High	High	High	Standard	High	Standard	Standard
taxcode	grpcode	Family	TaxonName	Total Abundance													
ANNE	POSE	Ophelidae	Armandia brevis			5	11	50	19	152	52	458	343	154	102	66	29
ANNE	POSE	Ophelidae	Ophelina a auminata		1												
ANNE	POSE	Orbiniidae	Leitoscoloplos pugettensis														
ANNE	POSE	Orbinidae	Scoloplos acmeceps														
ANNE	POSE	Owenidae	Galathowenia oculata		1												
ANNE	PoSE	Owenidae	Owenia fusiformis														
ANNE	POSE	Sabellidae	Euchone incolor	6	11												
ANNE	POSE	Spionidae	Dipolydora cardalia		1												
ANNE	POSE	Spionidae	Dipolydora sp.												2		
ANNE	POSE	Spionidae	Paraprionospio alata	3	1						4						
ANNE	POSE	Spioinidae	Polydora sp. complex														
ANNE	POSE	Spionidae	Prionospio (Minuspio) light	1	21	4			30	10	64		20	54	28	13	10
ANNE	POSE	Spionidae	Prionospio (Prionospio) sp.														
ANNE	POSE	Spionidae	Pseudopolydora paucibranchiata														
ANNE	POSE	Spionidae	Spiophanes berkeleyorum		1												
ANNE	POSE	Sternaspidae	Sternaspis affinis														
ANNE	POSE	Terebellidae	Lanassa venusta venusta		1						2						
ANNE	POSE	Terebellidae	Polycirrus sp. complex														
ANNE	POSE	Trichobranchidae	Terebellides sp.														
ARTH	CRAM	Aoridae	Aoroides intermedia														
ARTH	Cram	Aoridae	Aoroides sp.											1	2		
ARTH	Cram	Aoridae	Aoroides spiosa														
ARTH	Cram	Caprellidae	Caprella kennerlyi														
ARTH	CRAM	Caprellidae	Caprella mendax														
ARTH	CRAM	Caprellidae	Caprellida indet.														
ARTH	Cram	Isaeidae	Gammaropsis spinosa	1													
ARTH	CRAM	Isaeidae	Isaeidae indet.		1												
ARTH	Cram	Isaeidae	Photis brevipes													5	5
ARTH	CRAM	Lsaeidae	Photis sp.														
ARTH	CRAM	Isaeidae	Protomedeia prudens	2													
ARTH	CRAM	Melitidae	Desdimelita desdichada												6		
ARTH	CRAM	Oedicerotidae	Deffexilodes sp.	1	1									1			
ARTH	CRAM	Oedicerotidae	Oedicerotidae indet.														
ARTH	Cram	Oedicerotidae	Westwoodilla tone														
ARTH	Cram	Phoxocephalidae	Eobrolgus chumashi														
ARTH	CRAM	Phoxocephalidae	Heterophoxus affinis	1	1												
ARTH	cram	Phoxocephalidae	Heterophoxus sp.														
ARTH	CRAM		Amphipoda indet.														
ARTH	CRCI		Balanomorpha indet.					3									
ARTH	CRCU	Leuconidae	Eudorella pacifica		1												
ARTH	CRCU	Leuconidae	Eudorella sp.								2						
ARTH	CRCU	Leuconidae	Leucon sp.								4						
ARTH	CRDE	Callianassidae	Neotrypaea gigas			2											
ARTH	CRDE	Cancridae	Cancridae indet.														
ARTH	CRDE	Crangonidae	Crangon alaskensis			1											
ARTH	CRDE	Hippolytidae	Lebbeus sp.														
ARTH	CRDE	Pinnotheridae	Pinnixa schmitti	1	15												
ARTH	CRDE	Pinnotheridae	Pinnixa sp.														
ARTH	CRIS	Limnoridae	Limnoria lignorum												4		
ARTH	CRLE	Nebalidae	Nebalia pugettensis complex									2					
ARTH	CRTA	Leptochelidae	Leptochelia dubia complex														
MISC	BrYo	Vesiculariidae	Bowerbankia gracilis												2		
MISC	cNHY	Corryidae	Corrnidae indet.														
MISC	CNHY	Corryidae	Sarsia tubulosa														
MISC	CNHY	Corryidae	Slabberia sp.														
MISC	cNHY	Pandeidae	Amphinema dinema														
MISC	NTEA	Amphiporidae	Amphiporus imparispinosus														
MISC	NTEA	Emplectonematidae	Paranemertes californica														
MISC	NTEA	Lineidae	Cerebratulus californiensis													5	$\square$
MISC	NTEA	Lineidae	Micrura sp.														


				17-033-019	17-033-020	17-033-021	17-033-022	17-033-023	17-033-024	17-033-025	17-033-026	17-033-027	17-033-028	17-033-029	17-033-030	17-033-031	17-033-032
				46-03	46-03	50-01	50.01	53-01	53-01	54.03	54.03	59.01	59-02	61-01	61-01	60.01	60-02
Replicate				Rep 01	Rep 02			Rep 01	Rep 02								
Date Sampled												07/03/2017	07/03/2017	10/03/2017	10/03/2017	09/03/2017	09/03/2017
Debris Volume				Standard	Standard	Standard	Standard	Standard	Standard	High	High	High	High	Standard	High	Standard	Standard
taxcode [grpode		Family	TaxonName	Total Abundance													
	NTEA	Tubulanidae	Tubulanus sp.														
	NTEA		Anopla indet.						1								
MISC	URAS		Stolidobranchiata indet.														
MOLL	MOBI	Cardidae	Clinocardiinae indet.	1						2	2						
\| Moll	мов	Cardidae	Clinocardium nuttallii														
	мов	Lasaeidae	Kurtiella tumida	1	5		1			2	2					3	
Moul	мов	Lucinidae	Lucinoma annulatum														
Mou	мов	Lucinidae	Parvilucina tenuisculpta		1												
MOLL	мові	Nuculidae	Acila castrensis	11	7												
Moul	MOBI	Nuculidae	Ennucula tenuis	1	2			1									
$\begin{array}{\|l\|l\|} \hline \text { Moul } \\ \hline \text { MOII } \end{array}$	мові	Tellinidae	Macoma carlottensis	2	12										2		
	мов	Tellinidae	Macoma nasuta	5	9			5	7	6	3	1		8	6		
M Mou	мов	Tellinidae	Macoma sp.							8	18	3		4		14	13
Moll	мов	Tellinidae	Tellina modesta		1												
Moul	мов	Tellinidae	Tellina sp.	1							6						
Moll	MOBI	Thyasiridae	Axinopsida serricata	18	33												
	мові	veneridae	Leukoma staminea	5													
$\frac{\text { Moll }}{\left\lvert\, \frac{\text { Moul }}{}\right.}$	мов	veneridae	Nutricola sp.	10	23												
Mol	мов	veneridae	Veneridae indet.		1				1		2						
Moul	мов		Bivalvi indet.							4	4					1	2
MoL	MOGA	Columbellidae	Astyris gausapata		1												
MOLL   Moul	MOGA	Littorinidae	Lacuna vincta														
	MOGA	Onchidorididae	Loy thompsoni														
Mout	mOGA	Pyramidellidae	Odostomia sp.	8	6			1	4	4							
MOLL	MOGA	Pyramidellidae	Turbonilla sp.	2	7												
	MOGA	Rissoidae	Alvania compacta	2	6									1			4
$\frac{\text { mol }}{\text { mout }}$	MOGA	Rissoidae	Alvania sp.														
MOLL	MOGA		Cephalaspidea indet.									4					
MOLL	MOGA		Gastropoda indet.								2						
			Total Abundance	991	1,321	19	13		71	234	291	516	375	249	183	125	95
			Total Unique Taxa (species richness)											14	1		14

## biologica

Benthic report of quality control and quality assurance for Hemmera Esquimalt Harbour 2017.

Biologica   Sample ID	Client Sample ID	Replicate	Debris Volume	Subsample	Sorting Efficiency QC: Spotcheck	Subsampling Accuracy
17-033-001	04-05	Rep 01	High	1/2	95.83\%	
17-033-002	04-05	Rep 02	High	1/2		
17-033-003	07-03	Rep 01	High	1/2		
17-033-004	07-03	Rep 02	High	Whole		95.30\%
17-033-005	12-03	Rep 01	Standard	Whole		
17-033-006	12-03	Rep 02	High	1/2	100.00\%	
17-033-007	14-03	Rep 01-A	Not analyzing	na		
17-033-008	14-03	Rep 01-B	Not analyzing	na		
17-033-009	14-03	Rep 02-A	Not analyzing	na		
17-033-010	14-03	Rep 02-B	Not analyzing	na		
17-033-011	15-01	Rep 01	Standard	Whole		
17-033-012	15-01	Rep 02	Standard	Whole		
17-033-013	41-03	Rep 01	Standard	Whole	100.00\%	
17-033-014	41-03	Rep 02	Standard	Whole		
17-033-015	43-05	Rep 01	Standard	Whole		
17-033-016	43-05	Rep 02	Standard	Whole		
17-033-017	45-03	Rep 01	High	1/2	96.91\%	97.80\%
17-033-018	45-03	Rep 02	High	1/2		
17-033-019	46-03	Rep 01	Standard	Whole		
17-033-020	46-03	Rep 02	Standard	Whole	99.39\%	
17-033-021	50-01	Rep 01	Standard	Whole		
17-033-022	50-01	Rep 02	Standard	Whole		
17-033-023	53-01	Rep 01	Standard	Whole		
17-033-024	53-01	Rep 02	Standard	Whole		
17-033-025	54-03	Rep 01	High	1/2	100.00\%	
17-033-026	54-03	Rep 02	High	1/2		
17-033-027	59-01		High	1/2		
17-033-028	59-02		High	1/2		
17-033-029	61-01	Rep 01	Standard	Whole		
17-033-030	61-01	Rep 02	High	1/2		
17-033-031	60-01		Standard	Whole		
17-033-032	60-02		Standard	Whole		
				Average:	98.69\%	96.55\%

## Quality Contro

Sorting efficiency: [(total count - organisms recovered in spot check and/or re-sort) / total count] x 100\%
Spot Check: $25 \%$ of sample debris resorted for $19 \%$ of samples

APPENDIX I: Biophysical and Sediment Chemistry Data

Sediment Chemistry Test		Units	EQL	bccsp Sed. Marine Sensitive	BCCSRSed. Marine Typical	CCME   Sediment Aquatic Life (Marine, ISGQ)	CCME Sediment Aquatic Life (Marine, PEL)	DAS referenceCriterion	вН3		BH5		BH8		
		Suricicial							230cm	Surficial	>30cm	Surficial	>30cm		
Grain Size	Silt ( $<0.0625 \mathrm{~mm}$ and $>0.0039 \mathrm{~mm}$ )		\%	0.01				-		96.59	95.99	94.87	97.96	67.66	71.02
	Clay ( $<0.0039 \mathrm{~mm}$ )	\%	0.01	-	-	-	.						21.82	$\frac{21.84}{6}$	
	Sand ( $(<2.00 \mathrm{~mm} \mathrm{\&} \times 0.063 \mathrm{~mm}$ )	\%	0.01						3.2	3.56	3.99	1.84	9.94	${ }^{6.42}$	
Inorganics	Moisture	\%	03	-	-	-	-	-	44	39	42	40	39	39	
	Percent Saturation	\%		-	.	-	-		89.8	79.1	87.1	85.5	82.3	75.5	
	Ammonia	mg/kg	2												
	Chloride	$\mathrm{mg} / \mathrm{kg}$	48	-	.	.	.	-	11,900	9060	11,900	9980	10,300	9010	
	pH (Initial)	pH_Units		-	.	.	.	-	8.52	8.9	8.55	8.94	8.76	8.77	
	Phosphorus	mg/kg	10	-		.					955	790	919	886	
Metals	Soluble Chloride	mg/	100						13,300	11,500	13,600	11,700	12,600	11,900	
	Sodium ion (1+)	mg/kg	2.4	-	-	.	.	-	6680	5170	${ }_{1}^{6710}$	${ }_{1}^{5820}$	${ }^{5950}$	5210	
	Aluminium	mg/kg	100	-	.	.	.	-			16,600	16,700	14,100	15,400	
	Antimony	mg/kg	0.1				$\cdots$				0.21	0.2	0.15	0.16	
	Arsenic	$\mathrm{mg} / \mathrm{kg}$	0.5	26	50	7.24	41.6	. 24					6.53	7.17	
	Barium	mg/kg	0.1								46	36.1	35.4	34.6	
	Beryllium	mg/kg	0.2	-	-		.				0.32	0.31	0.26	0.29	
	Bismuth	$\mathrm{mg} / \mathrm{kg}$	0.1								$<0.1$	$<0.1$	$<0.1$	$<0.1$	
	Cadmium	$\mathrm{mg} / \mathrm{kg}$	${ }^{0.05}$	2.6	5	0.7	4.2	0.6			${ }^{3.31}$	2.2	$\frac{3.05}{13}$	$\underline{2.73}$	
	Calcium	mg/kg	100								12,000	6960	13,800	8450	
	Chromium (III+VI)	mg/kg	0	99	190	52.3	160	52.3	-	-	34.7	34.8	29	31.2	
	Cobalt	mg/kg	0.3								6.13	6.72	5.32	5.96	
	Copper	mg/kg	0.5	67	130	18.7	108	18.7					16.7		
	Iron	mglkg	100					-		-	24,400	25,800	21,100	23,000	
	Lead	$\mathrm{mg} / \mathrm{kg}$	0.1	69	130	30.2	112	30.2			13.3	4.47	3.68	3.84	
	Lithium	mg/kg	5				.				19	22.5	16.1	16.4	
	Magnesium	mg/kg	100	-	.	-	-	-			8200	8160	6880	7510	
	Manganese	$\mathrm{mg} / \mathrm{kg}$	0.2								205	222	182	203	
	Mercury	$\mathrm{mg} / \mathrm{kg}$	0.05	0.43	0.84	0.13	0.7	0.75			0.236	$<0.05$	$<0.05$	$<0.05$	
	Molybdenum	mg/kg	0.1				-				3.98	4.09	3.42	3.08	
	Nickel	mg/kg	0.8	-		.	.	-	-	-	21.7	23.3	18.5	20.3	
	Potassium	mg/kg	100	-			.				2520	2590	2160	2280	
	Selenium	mg/kg	0.5	-	-	-	.		-	-	0.8	0.79	0.75	0.75	
	Silver	mg/kg	0.05	-	.	.	-	-	-	-	0.115	0.101	0.09	0.1	
	Sodium	$\mathrm{mg} / \mathrm{kg}$	100	-			-				10,200	9790	8630	8910	
	Strontium	$\mathrm{mg} / \mathrm{kg}$	0.1	-	-	-	.		-		86.7	48.9	90.9	57.4	
	Thallium	$\mathrm{mg} / \mathrm{kg}$	0.01	-	-		-				${ }_{0}^{0.361}$	0.308	${ }^{0.364}$	0.379	
	Tin	mg/kg	0.1	-			-	-			1.74	0.47	0.38	0.4	
	Titanium	mg/kg	1				.				1160	1160	1080	1140	
	Uranium	$\mathrm{mg} / \mathrm{kg}$	0.05	-	.	-	.	-	-	-	2.05	1.86	1.74	1.58	
	Vanadium	mg/kg	2								51.5	53.5	45.9	49.9	
	Zinc	$\mathrm{mg} / \mathrm{kg}$	1	170	330	124	271	124	-	-	72	64.9	54.9	$\frac{56.8}{8.76}$	
PAH	2-methyinaphthalene	mgakg	0.001	0.12	0.24	0.0202	0.201		038	0.008	0.012	0.0097	0.0077	${ }^{0.0063}$	
	Acenaphthene	mg/kg	0.0005	0.055	0.11	0.00671	0.0889		0.066	<0.0005	0.0014	0.00083	$<0.0005$	$<0.0005$	
	Acenaphthylene	$\mathrm{mg} / \mathrm{kg}$	0.0005	0.079	0.15	0.00587	0.128	-	0.067	<0.0005	0.0012	<0.0005	$<0.0005$	$<0.0005$	
	Anthracene	mg/kg	0.001	0.15	0.29	0.0469	0.245	-	0.43	0.0013	0.0056	0.001	<0.001	<0.001	
	Benzo(a)anthracene	$\mathrm{mg} / \mathrm{kg}$	0.001	0.43	0.83	0.0748	0.693	-	1.2	0.002	0.012	0.0015	0.0015	<0.001	
	Benzo(a) pyrene	mg/kg	0.001	0.47	0.92	0.0888	0.763	-	0.76	0.0015	0.0087	<0.001	0.0012	<0.001	
	Benzo(b)fluoranthene	$\mathrm{mg} / \mathrm{kg}$	0.001				-		0.81	0.0025	0.015	0.002	0.0026	0.0016	
	Benzo( $($ b+i) filuoranthene	mg/kg	0.001	-	-		.	-	1.2	0.0025	0.023	0.002	0.0026	0.0016	
	Benzo(g, h,i, ) perylene	mg/kg	0.05	-			-								
	Benzo(k)fluoranthene	mg/kg	0.001					-	0.4	$<0.001$	0.0073	<0.001	<0.001	$<0.001$	
	Chrysene	mg/kg	0.001	0.52	1	0.108	0.846		1.2	0.0028	0.014	0.0033	0.0021	0.0021	
	Dibenz(a,h)anthracene	$\mathrm{mg} / \mathrm{kg}$	0.0005	${ }_{0}^{0.084}$	0.16	${ }_{0}^{0.00622}$	$\frac{0.135}{1.494}$			<0.0005	0.0019	<0.0005	<0.0005		
	Fluoranthene	mg/kg	${ }_{0}^{0.001}$	0.93	1.8	0.113	1.494 0.144	-		${ }^{0.00036}$	0.0022	${ }_{0}^{0.0032}$	${ }_{0}^{0.0035}$	0.0018	
	Fluorene	mg/kg	0.001	0.089	0.17	0.0212	0.144	-	$\stackrel{0.16}{0.32}$	0.0026	0.0042	0.0027	0.0021	${ }^{0.0015}$	
	Indeno(1,2,3-c, d) pyrene	mg/kg	0.002						0.32			<0.002			
	Total PAHs	$\frac{\mathrm{mg} / \mathrm{kg}}{\mathrm{mg} \text { g }}$	0.001	10	20			2.5	6.9	0.036	${ }_{0}^{0.082}$	0.037	${ }_{0}^{0.0031}$	0.0019	
	Phenanthrene	mg/kg	0.001	0.34	0.65	0.0867	0.544			0.0096	0.018	0.0092	0.0069	0.005	
	Low Molecular Weight PAHs	mg/kg	0.001						2.1	${ }^{0.023}$	${ }^{0.046}$	0.025	${ }^{0.018}$	0.013	
	Pyrene	mg/kg	0.001	0.87	1.7	0.153	1.398	-		${ }^{0.0036}$	0.024	0.004	0.0041	0.0024	
	$\frac{\text { Ba Pa P Total Potency Equivalent }}{\text { PCBs (Sum of total) }}$	mg/kg	${ }_{0}^{0.01}$						$\frac{1.2}{<0.1}$	$\stackrel{<0.01}{<0.01}$	$\stackrel{0.016}{<0.25}$	$\stackrel{<0.01}{<0.1}$	$\stackrel{<0.01}{<0.1}$	$\stackrel{<0.01}{<0.1}$	
	PCBs (Sum of total)		0.01	0.12	0.23										



APPENDIX J
Detailed Pilot Study Project Cost Estimate


## Appendix B Environmental Requirements

# Appendix B-1 Due Diligence Environmental Effects Determination 

# Department of National Defence (DND) 

## Due Diligence Environmental Effects Determination (DD EED) Report

## Physical Activity: DND Wood Waste Remediation Pilot Project

Prepared by: Hemmera Envirochem
Date: 2019/07/23
Version: v2

## Executive Summary

The Department of National Defence (DND) and Contracting Authority Public Services and Procurement Canada (PSPC) proposes to conduct the DND Wood Waste Remediation Pilot Project (the Project) located adjacent to CFB Esquimalt within the marine waters of northern Esquimalt Harbour, British Columbia (Latitude $40^{\circ} 26{ }^{\prime} 44.04$ " N, Longitude: $123^{\circ} 26^{\prime} 33.48^{\prime \prime}$ W). The northern area of the Harbour has a long history of log booming, log storage and sawmill operations which have contributed to a large amount of persistent subtidal wood debris deposited on the northern Harbour floor. Large volumes of wood waste can overwhelm the assimilative capacity of subtidal benthic communities, impairing otherwise productive fish habitats. Previous assessment work by both Hemmera and Anchor QEA have determined that a total area of $640,000 \mathrm{~m}^{2}$ of subtidal fish habitat in northern Esquimalt Harbour contains wood waste impacted sediments that pose an environmental risk to benthic fish habitat and warrants remediation consistent with the objectives of Esquimalt Harbour Remediation Project.

Anchor QEA, working on behalf of PSPC, has retained Hemmera Envirochem Inc. (Hemmera), a wholly owned subsidiary of Ausenco Engineering Canada Inc. (Ausenco), to review the potential significant adverse effects of the Project on the environment and fish/fish habitat resources, to conduct an EED and a Fisheries Act serious harm assessment and, if necessary, to prepare an offsetting plan in support of the Fisheries Act.

The Project involves the implementation of an on-site wood waste remediation pilot project with the objectives of assessing:

- The site-specific effectiveness of the two potential remedial techniques for remediating wood waste-impacted sediments that pose an environmental risk to benthic fish habitat and enhancing subtidal benthic fish habitat conditions within northern Esquimalt Harbour
- The site-specific constructability of placing the sand material in areas with unique physical and geotechnical characteristics.
- The effect of placing rock mounds over enhanced natural recovery (ENR) treated sediments to assess the suitability for kelp establishment.

Results of the pilot project will be used to determine the efficacy of the In Situ Amendment for use in the remediation of degraded wood waste habitat and inform the selection of remedial actions for the sediments impacted by wood waste in Esquimalt Harbour. Any future remediation work will be evaluated through a separate Environmental Effects Determination.

For the purposes of this Environmental Effects Determination (EED) report, the project was divided into the following components:

1. Construction Activities
2. Post-Construction Monitoring

Potential significant adverse effects of these activities were assessed, and avoidance and mitigation measures have been identified to minimize or eliminate these effects to Valued Environmental Components (VECs).

On the basis of this EED report, it has been determined that the Project activities are not likely to cause significant adverse environmental effects. Therefore, the Project can proceed with application of the mitigation measures specified in the interaction tables in this report.

## Table of Contents

Executive Summary ..... ii
Table of Contents ..... iv
Part 1. Physical Activity Information ..... 1
1.1 Title of Proposed Physical Activity ..... 1
1.2 Originating Directorate, Base, or Unit ..... 1
1.3 Location of Proposed Physical Activity ..... 1
1.4 Project Summary ..... 1
1.5 Applicability of DND EIA Directive ..... 9
1.6 DD EED Start Date ..... 9
1.7 EIA number ..... 9
1.8 Provincial and Municipal Government Involvement ..... 9
1.9 Other Federal Departments or Third-Party Groups ..... 9
1.10 Contacts ..... 9
1.10.1 Establishment Point of Contact ..... 9
1.10.2 Physical Activity Project OPI ..... 9
1.11 Relevant Environmental Legislation ..... 10
Part 2. Environmental Effects Discussion ..... 15
2.1 Description of Physical Activity Components, Schedule and Site ..... 15
2.2 Identification of Valued Ecosystem Components (VECs) ..... 19
2.3 Identification of Valued Ecosystem Components ..... 20
2.3.1 Physical Components ..... 21
2.3.2 Biological Components ..... 23
2.3.3 Social and Cultural Components ..... 32
2.4 Physical Activity Effects and Associated Mitigation Measures ..... 34
2.5 Indigenous Community Engagement ..... 43
2.5.1 First Nations Communications for the Project ..... 46
2.6 Public Participation ..... 48
2.7 References and Expertise from Other Federal Government Bodies or Third Party Groups ..... 49
Part 3. Environmental Effects Determination ..... 51

## Figures

Figure 1 Project Location in relation to Esquimalt Harbour, Esquimalt and View Royal, British Columbia (Source: Google Earth).
Figure 2 Wood Waste Management Areas (WWMA), Pilot Project Work Areas, and Wood Waste Cover in Esquimalt Harbour, British Columbia (Source: Anchor QEA).
Figure 3 Location of the two work areas in relation to features within northern Esquimalt Harbour
Figure 4 Design and layout of Work Area 1, the test areas, and the treatments to be applied
Figure 5 Design and layout of Work Area 2, the test areas and practice area, and the treatments to be applied
Figure 6 Esquimalt Harbour Field Assessment Sampling Areas (Source: Hemmera 2018)

## Appendices

Appendix A Sediment Chemistry
Appendix B Siderite SDS Information Sheet
Appendix C Onondaga Lake Final Design
Appendix D Supplemental Treatability Recommendations Report
Appendix E Department of National Defence Esquimalt Harbour Wood Waste Assessment, Characterization and Management Plan
Appendix F DFO Fisheries Act Assessment of Serious Harm.

## Part 1. Physical Activity Information

### 1.1 Title of Proposed Physical Activity

Department of National Defence (DND) Wood Waste Remediation Pilot Project (Project)

### 1.2 Originating Directorate, Base, or Unit

The originating Establishment is: Department of National Defence (DND), Canadian Forces Base Esquimalt (CFB Esquimalt)

### 1.3 Location of Proposed Physical Activity

Latitude: $\quad 40^{\circ} 26^{\prime} 44.04^{\prime \prime} \mathrm{N} \quad$ Longitude: $123^{\circ} 26^{\prime} 33.48^{\prime \prime} \mathrm{W}$
The Project site is located within the marine waters of northern Esquimalt Harbour, at the south end of Vancouver Island, British Columbia. Esquimalt Harbour is bounded to the east by the municipality of Esquimalt, to the south by CFB Esquimalt Dockyard, to the north and northeast by the town of View Royal, and to the west by the City of Colwood, as shown in Figure 1.
The harbour is a Federal Harbour (established by the 1924 Six Harbour Agreement) that is administered by the Department of National Defence (DND) and is governed by the Canada Marine Act, Transport Canada's (TC) Natural and Man-made Harbour Regulations, and local practices and procedures. The harbour authority is CFB Esquimalt Queen's Harbour Master.
The Songhees and Esquimalt First Nations jointly hold a waterlot lease with DND that is located north of Inskip Island and West of Plumper Bay (see Figure 2 for location). The Esquimalt and Songhees First Nations reserves are located to the north of the Esquimalt Graving Dock (EGD) and are administered by Aboriginal Affairs and Northern Development Canada. Parks Canada administers Fort Rodd Hill and Fisgard Lighthouse National Historic Sites. View Royal, the area to the northeast of Esquimalt Harbour, is largely private residential.

### 1.4 Project Summary

## Project Overview and History

The DND and Contracting Authority Public Services and Procurement Canada (PSPC) propose to conduct a wood waste remediation pilot project (the Project) in the northern portion of Esquimalt Harbour (the Harbour) on Vancouver Island, British Columbia (Figure 1).

Esquimalt Harbour has been home to numerous industrial activities since the mid-1800s, including civilian and military shipbuilding and repair, commercial and military ship operations, and private logging and milling. These historical activities have generated a wide variety of organic and inorganic pollutants, which have made their way into the harbour and have become part of the underlying sediments. Contaminated sediments within Esquimalt Harbour (FCSAP site ESQ-1) are being remediated in a phased approach under the Esquimalt Harbour Remediation Project (EHRP).

In particular, the northern area of the Harbour has a long history of log booming, log storage and sawmill operations. Water leaseholds used for log booming/log storage have contributed to a large amount of persistent subtidal wood debris deposited on the northern Harbour floor. Large volumes of wood waste overwhelm the assimilative capacity of benthic communities and lead to an anthropogenic increase in organic content in the sediments of nearshore marine habitats (Breems and Goodman 2009, Washington State 2013). Therefore, wood waste deposits can negatively affect the productivity of marine benthic communities through both the physical alteration of sediments (i.e. build-up of wood waste deposits isolating sediments and breaking down the exchange of oxygen and nutrients) and the accumulation of toxic by-products from the anaerobic decomposition of wood waste, especially porewater sulphides (e.g. $\mathrm{H}_{2} \mathrm{~S}$ ). Wood waste-associated impacts to nearshore benthic communities can result in impairing otherwise productive habitats, which form the foundation of nearshore marine food webs, and are integral to recycling nutrients between the SWI (Washington State 2013).

In 2016-2018 Hemmera assessed the northern portion of the Harbour and determined that widespread areas are negatively impacted by the presence of persistent wood waste accumulations and decomposition by-products (Hemmera 2018). The type of wood waste varies by location by historical use but includes logs, bark, wood chips, and fibres (e.g. sawdust), and in some locations occurs in deposits that are more than 2 m thick. Subsequent studies by Anchor QEA and Hemmera further characterized and defined these areas and measured high levels of sulphides in sediments within northern Esquimalt Harbour (Anchor QEA 2019a, 2019b). As such, sediments containing wood waste in the Harbour pose an environmental risk to benthic fish habitat and warrant remediation consistent with the objectives of EHRP.

Based on previous assessment work, two larger areas of wood waste, totaling $640,000 \mathrm{~m}^{2}$, in northern Esquimalt Harbour have been identified for potential sediment remediation under the Esquimalt Harbour Wood Waste Remediation project (WWRP; Anchor QEA 2019b). The objective of the WWRP is to develop and implement a risk management and remediation strategy that effectively reduces the ecological impacts associated with wood waste impacted sediments and enhances the quality of existing subtidal fish habitat in northern Esquimalt Harbour.

The potential remediation area was delineated into five Wood Waste Management Areas (WWMAs) based on historical wood sources, physical conditions, geochemical conditions, and site use (Anchor QEA 2019b; Figure 2). The northern-most area of wood waste is composed of one WWMA, while the area of wood waste in the south is composed of 4 WWMAs. The applicability (effectiveness and ability to implement) of available remedial technologies for wood waste were then assessed for each WWMA (Anchor QEA 2019b). However, further site-specific studies are required to determine the effectiveness of implementing two potential remedial options that are cost-effective and less-invasive remedial techniques: Enhanced Natural Recovery (ENR) and In Situ Amendment (outlined further below).

## Project Objectives

The Project proposes to implement an on-site wood waste remediation pilot project in December 2019, to investigate:

- The site-specific effectiveness of two potential remedial techniques for remediating wood waste-impacted sediments that pose an environmental risk to benthic fish habitat and enhancing subtidal benthic fish habitat conditions within northern Esquimalt Harbour:
- ENR (clean sand cover)
- In Situ Amendment treatment (clean sand cover mixed with siderite)
- The site-specific constructability of placing the sand material in areas with unique physical and geotechnical characteristics.
- The effect of placing rock mounds over ENR treated sediments to assess the suitability for kelp establishment.
The Project will include placement of ENR, In Situ Amendment Treatment, and rock mounds at Test Areas within two defined work areas (Work Area 1 within DND marine waters, and Work Area 2 within the Esquimalt and Songhees Leased Waterlot) and subsequent post-construction monitoring. The specific Project activities covered by the EED are described in further detail in Section 2.1 Description of Physical Activities.

Results of the pilot project will be used to determine the efficacy of the In Situ Amendment for use in the remediation of degraded wood waste habitat and inform the selection of remedial actions for the sediments impacted by wood waste in Esquimalt Harbour as part of the WWRP.

## Site Selection and Pilot Project Design

## Site Selection Criteria

The Pilot Project locations were selected based on thickness of wood debris deposits estimated from surface grab samples and sediment cores, geotechnical properties of surface sediments, and surface sediment conditions (i.e., images) identified from diver surveys (Anchor QEA 2019a), using the following specific selection criteria:

- To target subtidal marine areas that:
- Have significant thickness of wood debris (i.e., a thickness that adversely affects benthic community composition, typically greater than 20 cm ).
- Show visual evidence of wood debris on the surface
- To select one work area that has firm surface sediments and one work area that has soft surface sediments to assess a range of geotechnical conditions
- Based on geotechnical conditions (e.g. bathymetry)
- To avoid areas:
- That show evidence of significant propwash scour due to vessel operations or may be subject to prop wash scour due to known vessel operations
- Within or directly adjacent to the Jones Marine Lease area (to minimize impacts on Jones Marine business activities in lease areas)
- That show evidence of bedrock outcrops (to focus on benthic soft sediments impacted by wood waste)

Based on these criteria, two Work Areas within the marine subtidal waters of northern Esquimalt Harbour were selected for use in the pilot project, one within Esquimalt Harbour North WWMA and one within Inskip Island West WWMA (Figure 3).

## Pilot Project Treatments

Two potential remedial techniques for remediating wood waste-impacted sediments and enhancing subtidal benthic fish habitat conditions were selected:

- ENR (clean sand cover)
- In Situ Amendment treatment (clean sand cover mixed with siderite)
- Control (no action)


## Enhanced Natural Recovery

Refers to the placement of a layer of clean material (usually sand) on top of wood waste impacted sediments to increase the rate of the natural recovery process. While ENR does not reduce the mass of wood debris or eliminate wood debris by-products (i.e., sulphides), the ENR layer immediately replaces the biologically active zone with clean sediment in order to provide an oxygenated layer to promote benthic infauna community recruitment and establishment of a productive benthic community (Breems and Goodman 2009, Washington State 2013). As benthic communities develop, bioturbators will naturally mix the clean material with underlying wood waste over time, diluting wood waste and accelerating aerobic decomposition.

Sand material to be placed during the pilot project will consist of clean sand that meets the Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines (CEQG) sediment quality guidelines. Laboratory tests of samples taken from Fraser River sand, for previous use as clean fill, indicate that all measurable metals were below the lowest value for sediment quality guidelines established by the Canadian Council of Ministers of the Environment (CCME) and are representative of the type of fill material that would be used, (Appendix A: Sediment Chemistry).

## In Situ Amendment

This treatment involves the mixing of a naturally-occurring mineral-based chemical compound with clean sand material and placing in a thin layer over sediment (similar to ENR). In addition to replacing the biologically active zone with clean sediment (to provide an oxygenated layer to promote benthic infauna community recruitment and establishment of a productive benthic community), the mineral-based compound will also bind porewater sulphides (e.g. $\mathrm{H}_{2} \mathrm{~S}$ ), which are a toxic by-product of organic decomposition, so they are no longer biologically available thereby reducing $\mathrm{H}_{2} \mathrm{~S}$ concentrations and ultimately reducing benthic toxicity.

In Situ Amendment has not been previously used to remediate wood waste-impacted sediments; however, to ensure the In Situ Amendment will not pose a risk to fish or fish habitat in Esquimalt Harbour, an appropriate compound was selected through: (i) desktopbased technical literature review, (ii) geochemical transport modeling, and (iii) laboratory bench-scale tests using sediment from Esquimalt Harbour (Anchor QEA 2019c). Based on this work, Siderite, a natural earth mineral consisting of ferrous carbonate $\left(\mathrm{FeCO}_{3}\right)$, was selected to be mixed with clean sand in order to bind with $\mathrm{H}_{2} \mathrm{~S}$.

Upon placement in the marine environment, Siderite will slowly dissolve in water to produce carbonate and ferrous iron ( $\mathrm{Fe}(\mathrm{II})$ ) ions, the latter of which will bind with toxic $\mathrm{H}_{2} \mathrm{~S}$ to precipitate iron sulphides. In anoxic environments, the reaction of sulphide with the $\mathrm{Fe}(\mathrm{II})$ ion will form a stable compound of either mackinawite ( FeS ) or pyrite ( $\mathrm{FeS}_{2}$ ). Over time mackinawite can also transform to pyrite. $\mathrm{Fe}(\mathrm{II})$ released from siderite may also be oxidized to ferric iron ( $\mathrm{Fe}(\mathrm{III})$ ) and precipitated in the form of iron oxides and oxyhydroxides, which can abiotically oxidize dissolved sulphide. The resulting effect is the permanent reduction of toxic $\mathrm{H}_{2} \mathrm{~S}$ in the impacted benthic environment.

Siderite is an odourless non-toxic material that does not present a hazard to human or animal health and is not a controlled substance (Appendix B: Siderite SDS Information Sheet). Applications have included the use in food as a nutrient supplement in food and possibly infant formula (U.S. Food and Drug Administration: https://www.accessdata. fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1307b), as well as use in the agricultural industry for livestock feed supplements.

Previously, siderite has been used successfully as a cap amendment in an aquatic environment in order to aid with pH control (Appendix C: Onondaga Lake Final Design). With this project, testing was conducted to evaluate potential water quality impacts during and after placement of siderite as part of an amended sediment cap, including batch leach testing to evaluate leaching of constituents from siderite in upwelling porewater. Results show there were no exceedances of New York State Department of Environmental Conservation (NYSDEC) surface water criteria, and leach testing results verify that the majority of analytes (metals, semivolatiles, total cyanide, pH and total suspended solids) were not detected or actually showed decreased concentrations in the leachate, and there would be no significant long-term impacts resulting from porewater migration through the siderite.

Rigorous laboratory bench-scale treatability testing was also conducted on wood waste sediment collected from norther Esquimalt Harbour to assess the effectiveness of sand cover mixed with different mineral-based reactive amendments to reduce bioavailable toxic porewater sulphide concentrations at the sediment-water interface (Appendix D: Supplemental Treatability Recommendations Report). Dissolved sulphide concentrations in overlying water was measured 10, 20 and 40 days following the application of the amendments. The tests demonstrated that sand mixed with siderite suppressed dissolved sulphide concentrations not only in overlying water and porewater but also in underlying sediment porewater over the 40-day test duration. Dissolved sulphide concentrations in overlying water were also close to or less than the method detection limit (MDL) of the iodine method ( $0.1 \mathrm{mg} / \mathrm{L}$ ), indicating that siderite is effective at suppressing sulphide species. Testing was conducted with powdered siderite due to faster reaction kinetics than granular forms in short testing durations; however, granular forms of these amendments are expected to be just as effective as the powder forms in the long term. Granular forms are also expected to be better suited for In Situ application, particularly for mixing and placement effectiveness.

Based on this information, it has been concluded that the In Situ Amendment Treatment of clean sand ( $95 \%$ ) blended with siderite material ( $5 \%$ ) does not constitute a risk to fish or fish habitat from a change in sediment concentrations or the introduction of deleterious materials. The In Situ Amendment is expected to act similar to sand, and provide a clean substrate for benthic colonization following the pilot project implementation.

## Control

The control treatment will not include any placement of material or change to the marine environment. This will act as a comparison treatment to the ENR and In Situ Amendment in the determination of effectiveness over the duration of the pilot project.

## Project Design

Two Work Areas were selected for use in the pilot project, the design of each as outlined below:

## Work Area 1

Work Area 1 (dimensions 190 by 110 m ) is located in an area characterized by soft surface sediments with water depths ranging from between -4.0 m to -6.0 m Chart Datum (CD; Figure 3). The objectives in this Work Area are to:

- Evaluate the performance of ENR (clean sand) and In Situ Amendment (clean sand mixed with siderite) treatment types for remediation of soft surface wood waste-impacted sediments
- To examine the viability of different placement methods on the softer surface sediments in this area.
- Placed materials in Work Area 1 are more likely to mix with the softer surface sediments, which could make the placement of a well-defined layer of ENR or In Situ Treatment more difficult.

This Work Area contains six Test Areas (each Test Area is 30 m by 30 m or $900 \mathrm{~m}^{2}$ ) spaced 50 m apart (Figure 4). Five of the Test Areas will have material placed in varying combinations of thickness ( 0.3 m to 0.6 m ) and treatment type (i.e. ENR or In Situ Amendment), while Test Area 6 will serve as a control plot (i.e. no construction impacts; see Table 1).

The total construction footprint below the high water mark within Work Area 1 will be 4500 $\mathrm{m}^{2}$ (5 Test Areas x $900 \mathrm{~m}^{2}$ ). Further details are provided in Component 1: Construction Activities in Section 2.1 and Table 1.

## Work Area 2

Work Area 2 (dimensions 200 m by 110 m ) is located in an area characterized by firm surface sediments and high density of coarser wood waste, with water depths ranging from between -4.0 m to -9.0 m CD (Figure 5). The objective of this Work Area is to:

- Practice the placement of materials at the start of construction in the Practice Area
- Evaluate the performance of ENR (clean sand) and In Situ Amendment (clean sand mixed with siderite) treatment types for remediation of firm surface wood waste-impacted sediments
- Investigate the effectiveness of rock mounds (6 m diameter) placed over ENR (clean plots) to investigate kelp restoration activities.

This Work Area contains three Test Areas (each Test Area is 30 m by 30 m or $900 \mathrm{~m}^{2}$ ) spaced 50 m apart, and one Practice Area (dimensions 40 m by 110 m or $4,400 \mathrm{~m}^{2}$; Figure 5).

Prior to the placement of treatment materials in any of the Test Areas, the Contractor will conduct a 'practice placement' of ENR (clean sand) within the Practice Area. The intent of a 'practice placement' is to demonstrate that the Contractor's means and methods are adequate to meet the Targeted Placement Thickness and Vertical Placement Tolerances required. This placement will occur within 10 m by 10 m practice plots located in the designated Practice Area in Work Area 2, as few times as required to refine the placement technique. As such, the 'practice placement' is anticipated to only use a subset of the entire $4,400 \mathrm{~m}^{2}$ Practice Area; however, to be conservative, the entire Practice Area was included in the calculation of total project footprint.

The placement of two rock mounds will also occur within the Practice Area, overlying two ENR (clean sand) practice plots. Rip rap/boulder will be placed to create two circular Rock Mounds with a maximum center height of $1.5-2.0 \mathrm{~m}$ and maximum diameter of 6 m . Location of the Rock mounds within the Practice Area will be determined following completion of practice placement work. Two of the Test Areas will have material placed, both with the same thickness ( 0.3 m ) but varying in treatment type (i.e. ENR or In Situ Amendment), while the third Test Area will serve as a control plot (i.e. no construction impacts; see Table 1).

The total footprint below the high water mark within Work Area 2 will be $6200 \mathrm{~m}^{2}((2$ Test Areas $\left.\times 900 \mathrm{~m}^{2}\right)+\left(1\right.$ Practice Area $\left.\times 4,400 \mathrm{~m}^{2}\right)$ ). Further details are provided in Component 1: Construction Activities in Section 2.1) and Table 1.

The total Project footprint for both Work Areas combined is conservatively estimated to be a $10,700 \mathrm{~m}^{2}$ of enhanced subtidal marine fish habitat.

Table 1: Summary of Work Area, Treatment Types, Construction footprint, Material Composition and Volumes, and Placement Thickness

Work Area	Treatment Area	Treatment Type	Construction Footprint ( $\mathrm{m}^{2}$ )	Material Composition and Volume ( $\mathrm{m}^{3}$ )			Total Volume ( $\mathrm{m}^{3}$ )	Targeted Placement Thickness (m)
				Type 1: Clean Sand	Type 2: Granular Siderite	Type 3:   Rock		
Work Area 1	Test Area 1	In Situ Amendment	900	391	14	-	405	0.3
	Test Area 2	In Situ Amendment	900	391	14	-	405	0.3
	Test Area 3	In Situ Amendment	900	391	14	-	405	0.3
	Test Area 4	ENR	900	405	-	-	405	0.3
	Test Area 5	ENR	900	675	-	-	675	0.6
	Test Area 6	Control	N/A	-	-	-	-	-
	Sub-Total Work Area 1		4,500	2,253	42		2,295	-
Work Area 2	Test Area 7	In Situ Amendment	900	391	14	-	405	0.3
	Test Area 8	ENR	900	405	-	-	405	0.3
	Test Area 9	Control	-	-	-	-	-	-
	Practice Area	ENR / Rock Mounds	4,400*	270**	-	38	38	0.3 (clean sand),   1.5 (Rock mound)
	Sub-Total Work Area 2		6, 200	1066	14	38	848	-
		Project Total	10, 700	3,319	56	38	3,143	-

*Only a subset of the entire $4,400 \mathrm{~m}^{2}$ Practice Area is anticipated to be used in $10 \mathrm{~m} \times 10 \mathrm{~m}$ plots; however, to be conservative, the entire Practice Area was included in the calculation of total project footprint.
** $270 \mathrm{~m}^{3}$ of sand is estimated as a maximum for Practice Plots.

### 1.5 Applicability of DND EIA Directive

This Physical Activity does not meet the definition of a project in Section 66 of the CEAA 2012 and therefore Section 67/68 is not applicable. However, according to the DND Environmental Impact Assessment Directive a determination on the likelihood of adverse environmental effects is required as an exercise of due diligence before the Physical Activity can proceed.

### 1.6 DD EED Start Date

Start date of the effects determination process: 2019-04-17

### 1.7 EIA number

EIA Number: 2019-21-102311

### 1.8 Provincial and Municipal Government Involvement

N/A

### 1.9 Other Federal Departments or Third-Party Groups

A Request for Review will be submitted to Fisheries and Oceans Canada (DFO). If DFO determines that the project will cause serious harm to fish or fish habitat, an authorization will be obtained from the Minister of Fisheries, Oceans and the Canadian Coast Guard as per Paragraph 35(2)(b) of the Fisheries Act Regulations.

A Notice of Works, under the Navigation Protection Act, will also be submitted to Transport Canada.

### 1.10 Contacts

### 1.10.1 Establishment Point of Contact

a) Name: Jennifer Holder, MARPAC ESS
b) E-mail Address: jennifer.holder@forces.gc.ca

### 1.10.2 Physical Activity Project OPI

a) Name: Mike Waters, MARPAC FSE Environment Officer
b) E-mail Address: Michael.Waters@forces.gc.ca
1.11 Relevant Environmental Legislation

Act, Regulation, or Bylaw	Description	Applicability to Wood Waste Remediation Project Pilot Project	Approval/Permit OR Requirements Met
Federal			
Canadian Environmental Assessment Act, 2012	Section 67 specifies that Federal Authorities must not make a decision about a proposed "project" on federal lands unless the proposed "project" is determined to be unlikely to cause significant adverse environmental effects, or the Governor in Council decides that those effects are justified.   Section 5 provides protections against adverse project effects to 'any structure, site or thing that is of historical, archaeological, paleontological or architectural significance'.	The proposed Project meets the definition of a "project" under the Act, and an Environmental Effects report has been prepared.	No formal approval required. The Environmental Effects Determination indicates that the Project is unlikely to cause significant adverse environmental effects with mitigation measures that have been recommended.
Fisheries Act	Section 35 prohibits causing serious harm to fish that are part of or support a commercial, recreational or Aboriginal fishery unless authorized under the Act.	Project involved work in water which has the potential to cause serious harm to fish.	Serious harm to fish is not anticipated for the scope of work as outlined in Anchor 2018. A Request for Review will be submitted by Department of National Defence to Fisheries and Oceans Canada.
	Section 36 prohibits the deposit of a deleterious substance in water frequented by fish.	Project activities require work in and around water that could cause a release of deleterious substances. Placement of siderite (iron carbonate) is not a deleterious substance, as described in the Environmental Effects Determination.	Water quality performance objectives have been developed in the Water Quality Monitoring Plan to help meet the intent of this section.   Contractor also to prepare and implement a Spill Prevention and Response Plan, Water Quality Protection Plan and a Sediment and Erosion Control Plan.
	Section 38 specifies a duty to notify and take corrective measures when serious harm to fish or deposit of a deleterious substances occurs, or when there is a serious and imminent danger of such an occurrence	Project involves work in and around water that contains fish and fish habitat.	Reporting requirements are to be considered in the development of the Contractor's communications and spill response plans.
Deposit out of the Normal Course of Events Notification Regulations under the Fisheries Act	The regulations identify the "prescribed person" for notifications under Section 38 of the Fisheries Act	The BC Provincial Emergency Program, now called Emergency Management BC, is the 24 -hour emergency telephone service for spill reporting and spill notification to relevant provincial and federal agencies.	Spill reporting requirements are to be considered in the development of the Contractor's spill response plan.


Act, Regulation, or Bylaw	Description	Applicability to Wood Waste Remediation Project Pilot Project	Approval/Permit OR Requirements Met
Marine Mammal Regulations under the Fisheries Act	Section 7 prohibits the disturbance of marine mammals except when fishing for marine mammals under the authority of these Regulations.   Subsections 7(3) to 7(4) of the Marine Mammal Regulations (amended in June 2018) identify the following approach distances for marine mammals:   - 100 metres for whale, dolphin and porpoise   - 200 metres for killer whale populations in BC and the Pacific Ocean	Marine mammals may occur in and adjacent to the Wood Waste Remediation Project Work Site.	Mitigation measures will be implemented to avoid disturbing marine mammals.
Aquatic Invasive Species RegulationsUnder the Fisheries Act	Prohibitions on import, transport, possession and/or release for species listed in Part 2 of the Schedule in the Regulations.	Vessels used for the Wood Waste Remediation Project project have the potential to unintentionally transport invasive species.	Mitigation measures will be implemented to avoid the introduction of invasive species.
Species at Risk Act (S.C. 2002, c. 29)	The Species at Risk Act contains prohibitions that make it an offence to:   - kill, harm, harass, capture, or take an individual of a species listed in Schedule 1 of the Species at Risk Act as endangered, threatened or extirpated;   - possess, collect, buy, sell or trade an individual of a species listed in Schedule 1 of the Species at Risk Act as endangered, threatened or extirpated;   - damage or destroy the residence (e.g., nest or den) of one or more individuals of a species listed in Schedule 1 of the Species at Risk Act as endangered, threatened or extirpated	Several marine mammal species at risk have some potential to occur in the in-water project areas including harbour porpoise, killer whales, and Steller sea lions.   Common Nighthawk, a Species at Risk Act Schedule 1 threatened species, may nest on the gravel at Yew Point.	Mitigation measures will be followed to avoid contravening the Act.
Migratory Birds Convention Act	Section 5.1/ 5.2 prohibits the deposit of a substance that is harmful to migratory birds.	Migratory birds may occur in the Wood Waste Remediation Project Work Site, and deposition of a substance such as fuel may harm migratory birds.	Mitigation measures will be implemented to avoid depositing harmful substances.
Migratory Birds Regulations (pursuant to the Migratory Birds Convention Act)	Section 6 - Prohibits the disturbance, destruction or removal of a nest or related shelter, or egg of a migratory bird, or possession of a live migratory bird, or a carcass, nest or egg of a migratory bird.	No land-based staging areas will be used in Esquimalt Harbour for this project.	General prohibition - no authorization issued.
Navigation Protection Act	Regulates and protects navigable waters in Canada including Esquimalt Harbour. No work will be built or placed in, on, over, under, through or across any navigable water unless approved or exempted under this Act.	Project works meet the assessment criteria for the Minor Works Order and are classified as "designated works" under the Act.	A Notice to the Minister is not required under the Act for works classified as "designated works" as long as all legal requirements are met.


Act, Regulation, or Bylaw	Description	Applicability to Wood Waste Remediation Project Pilot Project	Approval/Permit OR Requirements Met
Canada Marine Act	The Act establishes the means of management of ports and harbour facilities such as through the establishment of ports and harbour authorities. The Queen's Harbour Master is the designated Authority for Esquimalt Harbour.   Esquimalt Harbour Practices and Procedures are made pursuant to the Act. Procedures include marine spill response and reporting.	The Project will be undertaken in Esquimalt Harbour.	Esquimalt Harbour Practices and Procedures shall be followed by all harbour users associated with the Project.
Canada Shipping Act	The Act promotes safety in marine transportation and recreational boating; protects the marine environment from damage due to navigation and shipping activities; prohibits the discharge of pollutants and contains reporting requirements; and prescribes regulations for vessels on or in any Canadian waterway through the "Collision Regulations".	Project involves work in a waterway.	All vessels used by the Contractor will comply with the relevant orders and regulations of the Canada Shipping Act including pollution prevention and reporting.
Transportation of Dangerous Goods Act	Regulates the transport of dangerous goods in Canada, whether by rail, road, air, or water, and establishes safety standards and documentation to be complied with such that all containers, packages, and means of transport are clearly marked with prescribed safety marks. The Act also establishes requirements regarding emergency response assistance plans.	Dangerous goods may be transported during this Project.	Hazardous materials associated with the Project will be transported in accordance with this Act.
Provincial			
Environmental Management Act	Prohibition against the introduction of waste into the environment in such a manner or quantity as to cause pollution, unless the introduction of that waste is conducted in accordance with a permit, approval, order, or regulation. The Act also prohibits causing pollution which is defined in the Act as "...the presence in the environment of substances or contaminants that substantially alter or impair the usefulness of the environment."	This general prohibition is addressed by the water quality protection measures developed for the Project as outlined in the Water Quality Monitoring Plan.	No wastes will be introduced into the environment.
Hazardous Waste Regulation (pursuant to Environmental Management Act)	Hazardous wastes are wastes that could harm human health or the environment if not properly handled and disposed of. The Hazardous Waste Regulation includes the identification, handling, transport, disposal and treatment of hazardous wastes.	No hazardous wastes will be generated during this Project.	General provisions - no authorization issued.


Act, Regulation, or Bylaw	Description	Applicability to Wood Waste Remediation Project Pilot Project	Approval/Permit OR Requirements Met
Contaminated Sites   Regulation (pursuant to Environmental Management Act)	The Contaminated Sites Regulation provides a process for identifying and tracking the movement and deposition of soils from contaminated sites.   Previously (prior to November 2017), the Contaminated Sites Regulation Schedule 7 was applicable to the assessment of soils/sediments being relocated or disposed on provincial land. The Stage 10 amendments allow use of the soil standards as applicable to the receiving site, in determining when a Contaminated Soil Relocation Agreement might be required to relocate soil to a receiving site.   The Contaminated Sites Regulation is also relevant to the characterization, transportation and disposal of the dredged materials to provincial lands.	No dredging or removal of contaminated sediment will occur during this project.	General provisions - no authorization issued.
Spill Reporting Regulation (pursuant to Environmental Management Act)	The regulation defines a "spill" as:   (a) an unauthorized release of a listed substance that enters, or is likely to enter a body of water, or   (b) the release or discharge of listed substance into the environment in an amount exceeding the listed quantity. The regulation identifies to whom spills are to be reported and the reporting requirements.	Listed substances might be used during the Project. Emergency Program, now called Emergency Management $B C$ is the 24-hour emergency telephone service for notification and follow up reporting.	The requirements of the Regulation are to be considered in the development of a spill response plan.
Wildlife Act	Section 34 - A person commits an offence if the person, except as provided by regulation, possesses, takes, injures, molests or destroys:   (c) a bird or its egg   (d) the nest of an eagle, peregrine falcon, gyrfalcon, osprey, heron or burrowing owl   (e) the nest of a bird not referred to in paragraph (b) when the nest is occupied by a bird or its egg	No nesting is anticipated during this project as the work is all water-based without any staging areas in Esquimalt Harbour.	General prohibition - no authorization issued. Mitigation measures will be followed to avoid contravening the Act.
Transportation of Dangerous Goods Act	Regulates the transport of all dangerous goods in British Columbia on provincial highways and ferry routes. The Act establishes safety standards and documentation to be complied with such that all containers, packages, and means of transport are clearly marked with prescribed safety marks.	Dangerous goods may need to be transported for this Project.	General provisions - no authorization issued. Any hazardous materials associated with the Project will require be transported with a manifest.


Act, Regulation, or Bylaw	Description	Applicability to Wood Waste Remediation Project Pilot Project	Approval/Permit OR Requirements Met
Municipal			
Town of View Royal Bylaw No. 523 (2003)	Outlines noise disturbance in the Town.	Noise from Project activities may cause disturbance.	Mitigation measures will be implemented to help avoid noise disturbance.
City of Colwood Noise Bylaw, No. 1594 (2016)	Outlines noise disturbance during certain hours and days of the week.	Noise from Project activities may cause disturbance.	Mitigation measures will be implemented to help avoid noise disturbance.
City of Colwood Traffic and Highway Regulation Bylaw, No. 1134 (2010)	Designates truck routes for heavy trucks (over 8,600 kilograms).	If over-land transportation is undertaken, specific truck routes may need to be used.	A Traffic Management Plan will be prepared by the contractor if over-land transport is undertaken.
Township of Esquimalt Maintenance of Property and Nuisance Regulation Bylaw No. 2826 (2014)	Regulates the maintenance of property, unsightly property, and nuisance, including noise.	Noise from Project activities may cause disturbance.	Mitigation measures will be implemented to help avoid noise disturbance.
Township of Esquimalt Bylaw No. 2898 (2017)	The Bylaw identifies roads that are not acceptable for trucks over 10,000 kilograms within Esquimalt.	If over-land transportation is undertaken, specific truck routes may need to be used.	A Traffic Management Plan will be prepared by the contractor if over-land transport is undertaken.
Capital Regional District   Bylaw No. 2922   (Consolidated) (2016)	Regulate the discharge of waste into sewers connected to a sewage discharge facility operated by the Capital Regional District	Potential for Contractor to want to discharge waste into sewers.	In the event that the Contractor wishes to discharge waste such as barge stormwater, into the Capital Regional District sewer system, the Contractor will apply for permits/authorizations for such a discharge.

## Part 2. Environmental Effects Discussion

### 2.1 Description of Physical Activity Components, Schedule and Site

The Project is comprised of the following components: 1) Construction Activities (placement of material) and 2) Post-Construction Monitoring. Project details are based on $100 \%$ design specifications and drawings provided by Anchor QEA. Future design changes, if deemed necessary, may require additional assessment and an amendment to this EED report may be necessary.

## Component 1: Construction Activities

Construction is targeted to commence in December 2019, within the DFO least risk winter timing window for Area 19 Victoria (December 1 - February 15). Construction activities will occur over a two-week period and include:

- Mobilization and pre-construction survey
- Placement of the materials within each Work Area and post-construction surveys
- Placement of materials will occur from a barge located above the Work Area into the Practice Area and each of the Test Areas (Table 1)
- Post-construction surveys will be completed for each Test Area and the Practice Area once placement is complete in that area
- Placement of materials is anticipated to occur over an eight-day period, with materials being placed at approximately $420 \mathrm{~m}^{3}$ / day.
- Demobilization

No upland area within Esquimalt Harbour will be used for staging or loading/offloading equipment and material as part of this work. All work activities associated with this project, including temporary construction facilities (i.e., trailer, restrooms), materials and equipment staging will be conducted on the water using barges or other floating platforms or vessels. During the placement of materials into the Work Areas, grounding of barges and equipment will not occur, and reduced power will be used during transport in shallow areas to minimize disturbance to newly placed materials. Barges will spud in place for storage purposes.

In Test Areas where In Situ Amendments (clean sand and granular siderite) are applied, the sand and siderite will be uniformly blended on the barge prior to placement in the marine environment and will be blended by proportioning the fined-grained sand and siderite ( $5 \%$ of Siderite by dry weight).

Prior to the placement of treatment materials in the Test Areas, the Contractor will conduct a 'practice placement' of clean sand. The intent of a 'practice placement' is to demonstrate that the Contractor's means and methods are adequate to meet the Targeted Placement Thickness and Vertical Placement Tolerances required. This placement will occur within 10 m by 10 m practice plots located in the designated Practice Area in Work Area 2, and will occur as few times as possible (Figure 4). As such, the 'practice placement' is anticipated to only use a subset of the entire $4,400 \mathrm{~m}^{2}$ Practice Area; however, to be conservative, the entire Practice Area was included in the calculation of total project footprint.

## Placement of Material in Work Area 2

Following the material placement in the practice area, placement will continue within Work Area 2 in the following order (Figure 4):

- Practice Area - ENR Practice Plots and 2 Rock mounds
- Test Area 7 - In Situ Amendment
- Test Area 8 - ENR

All work will be completed in one test area before moving on to the next test area. No placement will occur in Test Area 9 as this is a Control Treatment.

The placement of the two rock mounds will occur within the Practice Area, overlying two ENR (clean sand) practice plots, to create two circular Rock Mounds with a maximum center height of $1.5-2.0 \mathrm{~m}$ in the center and maximum diameter of 6 m . Location of the Rock mounds within the Practice Area will be determined following completion of Practice Placement work.

Placement of ENR and In Situ Amendment in Test Areas 7 and 8 will occur using any of the acceptable placement methods listed below for Work Area 1 or other methods proposed by the contractor (and accepted by PSPC) as an alternate placement method.

## Placement of Material In Work Area 1

Following the placement of material in Work Area 2, placement will occur in the following order within Work Area 1 (Figure 3):

- Test Area 1 - In Situ Amendment
- Test Area 2 - In Situ Amendment
- Test Area 3-In Situ Amendment
- Test Area 4 - ENR
- Test Area 5 - ENR

All work will be completed in one test area before moving on to the next test area. No placement will occur in Test Area 6 as this is a Control Treatment.

One of the purposes of the pilot project is to evaluate the effectiveness of using different placement methods to place material in the Test Areas of Work Area 1, which contains soft bed sediments. The contractor will select two or three different placement methods to use within Work Area 1, for the placement of the In Situ Amendment (clean sand mixed with granular siderite) within Test Areas 1, 2, and 3 as follows:

- Placement method 1: Controlled placement above the water surface
- The contractor will place the In Situ material from a material barge using a clamshell or re-handling bucket to lay down material over the specified test area. This will occur by cracking the bucket open slightly and swinging the bucket in an arc above the water surface.
- As long as the placement method meets water quality criteria and other requirements in the Specifications, drop distance above the water surface may vary and is not restricted.
- Placement method 2: Controlled placement above the water surface
- The contractor will place the In Situ material from a material barge using a high-speed conveyor, skip box, or similar from above the water surface.
- As long as the placement method meets water quality criteria and other requirements in the Specifications, drop distance may vary and is not restricted.
- Placement method 3: Controlled placement below the water surface
- The contractor will place the In Situ material from a material barge directly near the sea bed floor using a clamshell bucket (or similar) before releasing
- The contractor will limit the drop distance from bucket to sea bed bottom (i.e., less than approximately 2-m drop).

The contractor will place ENR materials (clean sand) in Test Areas 4 and 5 using any of the acceptable placement methods listed above or other methods proposed by the contractor (and accepted by the Departmental Representative) as an alternate placement method

## Component 2: Post-Construction Monitoring

Following Component 1, post-construction monitoring will be conducted in each Test Area to evaluate effectiveness of ENR (clean sand cover) and In Situ Amendment (clean sand cover amended with siderite) treatment types, in comparison to the control treatments, for remediating wood waste-impacted sediments.

Baseline monitoring will begin immediately following material placement for comparison against monitoring approximately 1 month after construction, and subsequently every 3 months for up to 12 months post construction. Planned monitoring activities will include the following:

- Sediment profile imaging (SPI) - will be conducted immediately following placement to assess the thickness of placed material and identify target monitoring locations. SPI is an underwater technique for photographing the sediment-water interface in order to measure or estimate biological, chemical or physical processes that occur in the top 20 cm . It utilizes a camera on a small platform, lowered to the seafloor, and the camera pushed into the sediment. SPI will be employed at multiple locations within each Test Area and could be employed during later monitoring phases to assess redox potential discontinuity (i.e., thickness of oxidized sediment layer) and benthic colonization.
- Diver surveys - will record bottom conditions along transects in the Test Areas documenting condition of placed sediments, evidence of benthic invertebrates, presence of wood waste, and other conditions that can be visually documented. Surveys will be conducted up to 12 months following construction. Divers may also collect samples of the placed material near the end of the 1-year monitoring period for benthic invertebrate enumeration to assess the rate of recolonization in the cover material.
- Porewater sulphide testing - will be conducted at the locations identified during the original post-construction SPI survey. Divers will deploy diffusive gradients in thin films (DGTs) spears to collect porewater sulphide profiles within the test areas. DGTs will be shipped to the laboratory for analysis immediately following construction and at several monitoring events within 12 months following construction.
- Multi-beam bathymetric surveys - will be conducted twice during the first year within the extent of each Work Area to assess changes to the placement areas from scour, deposition, or settlement over time.

The monitoring plan for the pilot project will be developed during final design. The plan will provide specific information regarding number and locations of diver survey transects and SPI locations. The monitoring plan will also describe sampling and testing means, methods, and quality assurance/quality control procedures.

### 2.2 Identification of Valued Ecosystem Components (VECs)

Table 2. Environmental Effects Matrix

PHYSICAL ACTIVITY COMPONENTS	VALUED ECOSYSTEM COMPONENTS (VEC)													
	PHYSICAL				BIOLOGICAL				SOCIAL AND CULTURAL					
												0   0	Aboriginal / Traditional Activities	
1) Construction Activities   - Mobilization   - Placement of material   - Demobilization	x	x	X	x	x	x	x	x	x	x	x	x	x	X
2) Post Construction Monitoring	x	x	x	x		x	x	x			x		x	X

Legend: $[$ Blank $]=$ No Effect I $[\mathrm{X}]=$ Potential Significant Adverse Effect

### 2.3 Identification of Valued Ecosystem Components

The following Valued Ecosystem Components have been identified for the Project and are evaluated in the following section.

- Physical Components
- Atmosphere
- Surface Water
- Marine Substrate
- Ambient Noise
- Biological Components
- Marine Vegetation and Fish Habitat
- Marine Invertebrates, Fish, and Mammals
- Seabirds, Shorebirds, and Waterfowl
- Marine Species at Risk
- Social and Cultural Components
- Commercially, Recreationally, and Aboriginally (CRA) Important Fish
- Water/Land Use
- Recreational Use
- Cultural Resources
- Aboriginal/Traditional Activities
- Health and Safety


## General Description

Esquimalt Harbour is located along the southeastern end of Vancouver Island, off the Strait of Juan de Fuca and comprises several smaller bays and coves with many small rocky islets (Figure 1). In its entirety, the harbour encompasses approximately 354 hectares ( 50 hectares of intertidal area and 304 hectares of subtidal area) and 20 kilometres of shoreline (excluding islands), with the federal Department of National Defence (DND) portion of the harbour encompasses an area of 343 hectares.

Esquimalt Harbour and the surrounding area has been heavily industrialized since 1848 with a long history of sawmilling and ship building and repairing activities. Historically, a number of industries have operated within the harbour and reportedly discharged wastes into Esquimalt Harbour. These industries include a saw and grist mill, carpenter shop, blacksmith shop, slaughterhouse, flour mill, ship building, and repair of non-naval vessels (Golder 2006). Leaseholds within the harbour used for log booming have resulted in a large amount of wood debris being deposited on the harbour floor along with other contaminants resulting from infilling of the foreshore and historic operations and infrastructure within upland properties. While many contaminants have been studied extensively in the harbour, the assessment of wood waste and its associated physical impacts have not been examined historically. Based on the review in Hemmera 2018, the last observable date for log booming was in 1997, and the sources of wood waste to sediment have been controlled since that time.

Within Esquimalt Harbour, the shorelines are mixed between natural and anthropogenic conditions. The natural shoreline, ranges from sand and gravel beaches to rocky shores, which has largely been maintained along the west and northeast sides of the harbour. Shoreline in the southwest and much in the southeast has been altered by dredging, infilling, and hardening to support industrial and naval activities (i.e. Esquimalt Graving Dock, Canadian Forces Base Esquimalt, and the Canadian Forces Sailing Association). The Harbour is relatively quiescent, with semi-protected to protected shoreline exposure (i.e. relative exposure to the elements, primarily waves) classification. The harbour is not influenced by strong tidal currents to the same extent as Victoria Harbour or Gorge Waterway; therefore, the shoreline along the harbour is classified as semi-protected to protected and experiences very low tidal currents ( 0.001 to 0.045 metres per second). However, Paddy Passage and the channel between Smart and McCarthy islands are subject to stronger currents due to their narrow nature.

The harbour is relatively shallow, ranging from 5 to $12 \mathrm{~m} C D$ in depth within the limits of the harbour, and a maximum depth of 16 m CD at the harbour entrance. The dominant subtidal substrate type within the harbour has been classified as $87 \%$ granular materials (gravel, sand, and mud) with a few subtidal bedrock outcrops. Sediment in the upper or northern portion of the harbour and around Plumper Bay is mainly silt, with large areas of organic cover, while the southern areas have higher proportions of sand.

Further details outlining the physical, biological and social VEC components of the Project are provided below.

### 2.3.1 Physical Components

## i) Atmosphere

The climate in the Project area is characterized by mild, damp winters, and warm, dry summers. The mean annual temperature ranges from $9.2^{\circ \mathrm{C}}$ to $10.5^{\circ \mathrm{C}}$. Mean annual precipitation varies from 647 to 1263 mm with very little falling as snow in winter.

The proposed Project location is situated near the existing CFB Esquimalt, and Esquimalt Graving Dock, both large scale industrial operations and contributors to the ambient atmospheric conditions at the site.
ii) Surface Water

There are a number of natural and engineered freshwater inputs into the harbour. Millstream Creek flows into the head of the harbour, draining a watershed of approximately 2,800 hectares (including a storm drain network), with a stream length of approximately 17 kilometres terminating in a large intertidal mudflat (extending as far out as Cole Island during some low tides). Flooding and erosion of the lower Millstream Creek watershed streambanks can deliver large quantities of fines to the harbour. A small, mapped watercourse commonly named Joe Creek flows from the Juan de Fuca golf course approximately 886 m northwest, through CFB Esquimalt Property Colwood before discharging into the harbour. Joe Creek provides poor quality fish habitat due to barriers, poor water quality, and poor riparian cover throughout the watercourse (D.R. Clough Consulting 2016). The watercourse likely provides drainage to the golf course and surface drainage to nearby properties. Additionally, an unidentified stream (approximately 1 km long) is present in the View Royal area, at the north end of the harbour, outside of the federal harbour limit, that discharges the Price Creek Watershed. In addition, 97 stormwater drains discharge directly into the harbour (CRD 2016).

## iii) Marine Substrate

Water quality near the sediment water interface in northern Esquimalt Harbour had dissolved oxygen and pH characterized as being moderate ( $\mathrm{DO} \%$ mean $=78.9$, $\mathrm{SD}=6.8$; pH mean $=7.9$, $\mathrm{SD}=0.08$ ).

## Work Area 1

Work Area 1 is located in WWMA-1 Esquimalt Harbour North (Figure 2 and Figure 3). This WWMA covers an area of 176,000 $\mathrm{m}^{2}$ with water depths ranging from 1.0 to -6.0 m CD (Anchor QEA 2019). Sediment in this area has previously been characterized as $\mathrm{mud} / \mathrm{sand}$, this area has been reported to contain a very soft layer of fine-grained, flocculent suspended sediments that appears to have a high fraction of organics and accumulates just above the more competent sediment surface (Anchor QEA 2019). This sediment was hard to sample using traditional sediment sampling equipment, but was noted by divers during SCUBA assessments as a layer similar to fluidized mud. No evidence of vessel scour; area considered low potential for propwash in the Esquimalt Harbour Natural Recovery Analysis (Anchor QEA 2018).

Surficial wood waste cover of $>10 \%$ occurs across $65,000 \mathrm{~m}^{2}$ of WWMA-1 but occurs up to $100 \%$ coverage at two survey locations. WWMA-1 is generally characterized by relatively thin deposits of wood waste (average thickness is 0.4 m , up to 0.6 m ) compared to other WWMAs, with an area of $106,000 \mathrm{~m} 2$ containing $>0.2 \mathrm{~m}$ thick wood waste deposits. The historical source of wood waste in this area is log rafting, with wood fragments and bark primarily present and sunken logs scattered throughout the WWMA (Anchor QEA 2019).

WWMA-1 has a TOC concentration up to $12 \%$, with an average of $6 \%$, and higher levels of porewater sulphides compared with other WWMAs (Seasonal sulphide concentrations exceeding $10 \mathrm{mg} / \mathrm{L}$ in the entire WWMA with more than half of the samples exceeding 50 $\mathrm{mg} / \mathrm{L}$ ). Impairments to benthic communities have been documented at TOC levels as low as $1-3 \%$. The area is documented as having low impacts from non-wood-related contaminants, with no chemical contaminants exceed 6x Probable Effects Level (PEL) and only cadmium exceeding 1x PEL (Anchor QEA 2019).

The presence of Beggiatoa spp., multicellular filamentous chemosynthetic bacteria that oxidize sulphides, are an indicator of organic enrichment (i.e. TOC) from anthropogenic activities such as aquaculture or wood-processing and form dense white bacterial mats in some areas. While the detection of the bacteria presence can be seasonal (fewer areas with white bacterial mats were observed during surveys conducted in winter months, likely due to increased levels of oxygen at the SWI, or the first few centimeters of the sediment, allowing for the bacteria to migrate into the sediment with the change in the oxygensulphide transition); however, Beggiatoa spp. mats from $50 \%$ to $96 \%$ coverage have been observed in the southern portion of this WWMA and none in the northern portion.

## Work Area 2

Work Area 2 is located within WWMA-4 Inskip Island West, which is situated adjacent to the north side of Inskip Island (Figure 2 and Figure 3). The WWMA is 136,000 $\mathrm{m}^{2}$ with water depth ranging from high water down to -11 m CD (Anchor QEA 2019). Sediment in this area has previously been characterized as mud/sand; however, no layer of soft finegrained, flocculent sediment with high organics was observed (Anchor QEA 2019). The area is considered medium potential for propwash in the Esquimalt Harbour Natural Recovery Analysis (Anchor QEA 2018).

Surficial wood waste of $>10 \%$ cover occurs across approximately $111,000 \mathrm{~m} 2$ of the area but occurs up to $100 \%$ surface cover at four survey locations (out of 57 survey points).

Relatively thick deposits of wood waste impacted sediment are found within this WWMA, (average thickness of 0.7 m , up to 2.0 m ) and a high density of sunken logs are present. Historical sources of wood waste are from log rafting, with bark and wood fragments primarily observed.

Only one TOC sample was taken from this area, measuring $16 \%$. Seasonal sulphide concentrations are high but slightly lower than WWMAs 1 through 3 with values up to $37 \mathrm{mg} / \mathrm{L}$ and 18 percent exceeding $30 \mathrm{mg} / \mathrm{L}$. Low impacts from non-wood related contaminants; no chemical contaminants exceed 6x PEL, only dioxins/furans exceed $1 \times$ PEL.

While the detection of Beggiatoa spp. mats presence can be impacted by seasonal conditions, they have been observed for much of this WWMA, ranging from $13 \%$ to $100 \%$ coverage.

## v) Ambient Noise

The Project is located nearby CFB Esquimalt operational activities along the west shore of Esquimalt Harbour, currently inaccessible to the general public. Operation of heavy machinery and general harbour operations in Constance Cove, due to on-going works at CFB Esquimalt, contributes to ambient noise conditions in the area. Based on imagery from Google Earth, no residents are located within at least 200m of Work Area 1 and 400 m of Work Area 2.

### 2.3.2 Biological Components

Recent biophysical desktop and field survey assessments were conducted by Hemmera (Hemmera 2018; Appendix E: Department of National Defence Esquimalt Harbour Wood Waste Assessment, Characterization and Management Plan) to assess the extent and impacts of wood waste on the benthic communities in Esquimalt Harbour. A summary of both the desktop and field survey results pertinent to the Project Work Areas are broken down by VEC sub-sections below.

The desktop review is consistent with guidance from Breems and Goodman (2009) around information required to assess impacts from wood waste and includes both current and historical data within the harbour. Sources of information reviewed include:

- Duffus, H.J, J.W. Madill, W.t. MacFarlane, and P.J. Schurer. 1978. First Report on Bottom Studies of Esquimalt Harbour. Royal Roads Military College, Coastal Marine Science Laboratory Manuscript Report No 78-3. 23pp.
- Schurer, P.J., W.T. MacFarlane, and H.J. Duffus. 1979. Sub-bottom Survey of Harbours Near Victoria, B.C. 17pp
- Bright. 1995. An Environmental Survey of Esquimalt Harbour: Part I. Historical Inputs, Marine Sediment Contamination, and Biological Uptake. Report prepared for the Director General Environment, Department of National Defence by the Environmental Sciences Group, Royal Roads Military College.
- Hemmera. 2004. Victoria \& Esquimalt Harbours Environmental Baseline Study. Volume 18 (Addendum\#3) Lot A. Lot 18. Prepared for Transport Canada, Victoria \& Esquimalt Harbours Environmental Program.
- Archipelago. 2004. Subtidal survey of Physical and Biological Features of Esquimalt Harbour. Prepared for Transport Canada, Victoria and Esquimalt Harbours Environmental Program.
- SLR Consulting Ltd. 2016. Detailed Quantitative Ecological Risk Assessment to Support Environmental Risk Management, Esquimalt Harbour, BC, Esquimalt Harbour Remediation Project (EHRP), Draft \#3.

The following databases and information systems were also used:

- Capital Regional District online mapping application (CRD Atlas) and harbours information website;
- Ecosystems of British Columbia;
- Sensitive Habitat Inventory and Mapping (SHIM);
- iMapBC;
- BC Coastal Resource Information Management System (CRIMS database);
- British Columbia Marine Conservation Analysis (BCMCA);
- BC Conservation Data Centre (CDC) Species and Ecosystem Explorer;
- DFO Aquatic Species at Risk Map;
- North Coast Watershed Atlas (NCWA), Community Mapping Network; and
- Pacific Coastal Resources Atlas (PCRA), Community Mapping Network.

Biological field survey assessments were conducted by SUBA biophysical transect surveys, and benthic infauna sampling (Hemmera 2018; refer to Appendix E for further methodology). Survey and sample design were chosen to safely assess areas of wood waste deposits (initially delineated using the side scan sonar results), transition zones, and areas without wood waste within the Harbour. Over the course of three field surveys, a total of fifty-two 100 m long transects were surveyed by SCUBA (Figure 6):

- Field Survey 1: September 19-23, 2016
- Field Survey 2: October 19-21, 2016
- Field Survey 4: January 23-25, 2017


## i) Marine Vegetation and Fish Habitat

## Desktop Review

The Project Work Areas are located in marine subtidal areas and do not contain any upland riparian or intertidal habitat.

Within the Project Work Areas, fish habitat was identified to consist of fine mud-sand flats as described in Section 2.3.1, iii) Marine Substrate above (Archipelago 2004).

In general, vegetative cover has not been previously found on mud-sand sediments in the Project Work Areas (Archipelago 2004). In the areas of $>30 \%$ wood waste (\% organic cover) vegetation was primarily sparse to negligible. In 2004, native eelgrass (Zostera marina) was present in some nearshore areas of the Harbour; however, dredging, infilling, and wood waste may have impacted the distribution, and the bathymetry of the Project Work Areas is deeper than the abiotic requirements of eelgrass in Esquimalt Harbour (+0.5 to -0.9 m CD; Archipelago 2004).

## Field Assessment

Field surveys confirmed that within the Project Work Areas, fish habitat consists of fine mud-sand flats, with areas of surficial wood waste as described in Section 2.3.1, iii) Marine Substrate above (Photo 1 and Photo 2; Hemmera 2018).

White bacterial mats (e.g. Beggiatoa spp.) are common throughout the inner harbour area (Photo 1), while diatomaceous mats are more common in the mid- to outer harbour area. The two are inversely distributed, and overlap is rare. Fewer areas with white bacterial mats were observed during surveys conducted in winter months, likely due to increased levels of oxygen at the SWI, or the first few centimeters of the sediment, allowing for the bacteria to migrate into the sediment with the change in the oxygen-sulphide transition.

Similar to Archipelago (2004), the field assessment verified that attached or rooted marine vegetation was sparse to absent in the Project Work Areas and, where present, consisted solely of drift senescent understory kelps (e.g. Saccharina latissima and S. groenlandica). Although eelgrass (Zostera marina) beds have been previously noted to occur in the Harbour (Archipelago 2004), known locations are >300 m from the Project Work Areas and no eelgrass was observed during field assessments in the Project Work Areas.


Photo 1 Representative view of Work Area 1 in northern Esquimalt Harbour with fine wood fibres intermixed with silt and Beggiatoa spp. bacterial mat


Photo 2 Representative view of Work Area 2 in northern Esquimalt Harbour with bark wood debris covered with a thin layer of fine silt
ii) Marine Invertebrates, Fish, and Mammals

## Desktop Review

Both Dungeness (Metacarcinus magister) and graceful crabs (Cancer gracilis) were observed throughout the subtidal habitats of the northern Harbour on mud-sand and gravelly mud - sand substrates. Plumose anemones were frequently attached to logs and larger pieces of wood debris with crabs relatively abundant (Archipelago 2004). Additionally, Archipelago (2004) documented patchy occurrences of infaunal burrows in areas outside of known wood waste deposits and an absence of holes and mounds in wood waste areas.

As with larger invertebrate macrofauna, fish that have been previously identified in the subtidal environment throughout the Harbour varied in their distributions by habitat type. In 2004, flatfish were the most commonly identified fish species off Inskip Islands (Archipelago 2004). Other fish such as perch and rockfish were associated mainly with
the kelp beds in rocky areas adjacent to the islands, outside of the Project Work Areas (Archipelago 2004). North of Cole Island, Millstream Creek is recognized as coho spawning habitat (SHIM Atlas 2016). Other fish species in the stream include: brown bullhead (Ameiurus nebulosus), cutthroat trout (Oncorhynchus clarkii), prickly sculpin (Cottus asper), pumpkinseed (Lepomis gibbosus), smallmouth bass (Micropterus dolomieu) and threespine stickleback (Gasterosteus aculeatus).

Marine mammals including Steller sea lion (Eumetopias jubatus) and harbour seal (Phoca vitulina) have been observed within Esquimalt harbour, but the Project area does not provide any important habitat for any species of marine mammal (Archipelago 2004, Hemmera 2018).

## Field Assessment

## Epibenthic Community

The epibenthic community in the Project Work Areas within northern Esquimalt Harbour has been documented as relatively sparse, with several common soft bottom species observed throughout survey areas, such as: Dungeness crabs (Metacarcinus magister), graceful crab (Metacarcinus gracilis), shrimp (Pandalus spp.), and hermit crabs (Pagurus spp.). White bacterial mats (e.g. Beggiatoa spp.) appear common (Photo 1) and inversely distributed with diatomaceous mats, which were more common in the mid- to outer Harbour area. Within the Project Work Areas scattered exposed logs were partially colonized by typical encrusting and hard substrate organisms, such as plumose anemones (Metridium senile), hydroids (Phylum Cnidaria, Class Hydrozoa) and tunicates (subphylum Tunicata; Photo 3).


Photo 3 Representative view of a subtidal area in northern Esquimalt Harbour with Beggiatoa spp overlying fine sediments, and a scattered log providing hard substrate for colonization by plumose anemones

## Infauna Observations

Infauna holes and mounds, generally indicative of burrowing shrimps, worms and bivalves, were relatively absent from most transects within the Project Work Areas. Occasionally Macoma sp. clams and mud bay shrimp were encountered during sediment sampling efforts.

Benthic infauna data was collected during field surveys in 2018 from fourteen paired benthic invertebrate sample locations within Esquimalt Harbour and summarized to examine variation among sample locations (Hemmera 2018). Both abundance, diversity, and composition varied across sample locations. Most stations dominated by a single second-order opportunistic polychaete species (Armandia brevis) and two other secondorder opportunistic species dominating at the remaining stations (Prionospio (Minuspio) lighti and Aphelochaeta glandaria complex. The stations closest to Work Area 1 and 2 were both dominated by Armandia brevis and Prionospio (Minuspio) lighti, species known to dominate in polluted or degraded habitats, such as log handling facilities, and indicators of elevated levels of TOC. Sample locations furthest from the Project Work Areas (i.e. sample locations closer to the mouth of the harbour and furthest inside the harbour) had higher diversity metrics.

## iii) Seabirds, Shorebirds, and Waterfowl

## Desktop Review

North of Cole Island at the head of the Harbour is an area of shallow water and mudflats at the mouth of Millstream Creek. This habitat is used by many marine bird species, such as gulls and ducks, for foraging but is located $>600 \mathrm{~m}$ from Work Area 1.

Esquimalt Lagoon, located near the mouth of Esquimalt Harbour, is considered an important over-wintering ground and feeding area for several bird species (CRD 2016). Again, this area falls well outside of the Project Work Area.

Species previously documented as frequenting Esquimalt Harbour include gulls and terns, swans, geese and dabbling ducks, diving ducks, mergansers and coots, loons and grebes, cormorants, shorebirds and alcids (CRD 2016) In general, many species are migratory, and migratory bird species occur in the highest numbers from August 15 through May 15 (CRD 2016).

Since the Project Work Areas are entirely subtidal, without shallow marine vegetation, they do not offer suitable foraging habitat for the majority of marine bird species that could occur at the Work Areas. However, marine bird species such as Glaucous-winged gulls or cormorant species could occur incidentally within the marine waters overlying the Work Areas.

## iv) Marine Species at Risk

A search of the BC CDC Species and Ecosystems Explorer and the DFO Aquatic Species at Risk Map showed that there are 13 provincially and/or federally listed marine species or sub-populations that may potentially occur in the Project Work Areas (Table 3). However, no critical habitat is designated within the Project Work Areas.

Transient killer whales (Orcinus orca), harbour porpoises (Phocena phocena), and Steller sea lions (Eumetopias jubatus) have also been observed within the Harbour (Mike Waters, Pers. Comm.).

Northern abalone (Haliotis kamchatcana) have previously been observed along rocky nearshore habitat of Constance Cove near the C-Jetty work zone within Esquimalt Harbour (Balanced Environmental 2012), along with Duntz Head and ML Floats (Mike Waters, Pers. Comm.). However, no suitable abalone habitat occurrs within the Project Work Areas (e.g., hard rocky substrate, pink encrusting coralline algae, abundant kelp [Lessard and Campbell 2018]), as the harbour seafloor in the Work Areas is comprised of soft sediments.

Table 3. Marine Species at Risk with the Potential to Occur within the Project Work Areas

Listed Species Name	COSEWIC Status	SARA Status	Habitat and Range Description	Likelihood of Occurrence within Project Work Areas
Steller sea lion (Eumetopias jubatus)	Special Concern	Schedule 1-   Special Concern	Marine habitats include coastal waters near shore and over the continental slope; sometimes rivers are ascended in pursuit of prey. When not on land, the sea lions may congregate at nearshore traditional rafting sites, or move out to the edge of the continental shelf	Steller sea lions have been observed in the Harbour; however, the Project Area is not considered important habitat for the Steller sea lion
Harbour porpoise (Phocoena phocoena)	Special Concern	Schedule 1Special Concern	Coastal waters and adjacent offshore shallows and also inhabits inshore areas such as bays, channels, and rivers. Mothers and young tend to move into sheltered coves and similar sites soon after parturition.	The Project Area is not considered primary habitat for this porpoise but may occur in areas adjacent to the Project area (this species has not been observed in the Project Area during surveys).
Killer whale (NE Pacific Southern resident population) (Orcinus orca)	Endangered	Schedule 1-   Endangered	The range during spring, summer, and fall includes the waterways of Puget Sound, Strait of Juan de Fuca, and Southern Georgia Strait. Little is known about winter movements and range.	The Project Area is not considered primary habitat for killer whales, which are found more frequently in the nearshore waters of Juan de Fuca; however, they are not known to frequent the active harbours of Esquimalt and Victoria. It is considered unlikely that killer whales would enter within or adjacent to the Project Area.
Killer whale (West Coast transient [Bigg's] population) (Orcinus orca)	Threatened	Schedule 1 -   Threatened		
Northern abalone (Haliotis kamtschatkana)	Threatened	Schedule 1-   Threatened	Found near kelp beds in the shallow subtidal and lower intertidal zones on hard substrates. Prefers areas with high wave action and currents.	No known occurrences within Project area, have been observed in Constance Cove on harder substrates. Low wave action and currents, and lack of hard substrate means occurrence within the Project area is highly unlikely.
Olympia Oyster   (Ostrea conchaphila)	Special Concern	Schedule 1 Special Concern	Mainly found in the lower intertidal and shallow subtidal of saltwater lagoons/ estuaries. Also found on tidal flats/channels, bays/sounds, or attached to pilings or the undersides of floats. On the outer coast, this oyster species is only found in protected locations. Within suitable habitat, Olympia oysters need hard substrate for settlement.	No known occurrences of Olympia oysters within Project Area. Lack of hard substrate means occurrence of abalone within the Project area is highly unlikely.


Listed Species Name	COSEWIC Status	SARA   Status	Habitat and Range Description	Likelihood of Occurrence within Project Work Areas
Yelloweye Rockfish (Sebastes ruberrimus)	Special Concern	Schedule 1-   Special   Concern	Occur in rocky reefs and boulder fields to depths of 600 m , with younger individuals found in shallower regions. Little is known about fine scale movements and distribution.	The Project Area is not considered primary habitat for yelloweye rockfish as they prefer complex habitats with rocky substrates. Juvenile rockfish sp. were occasionally observed in northern Esquimalt harbour during field surveys, solely around colonized hard substrate structures such as logs.
Tope Shark (Galeorhinus galeus)	Special Concern	Schedule 1Special Concern	Mainly demersal on continental and insular shelves, but also on the upper slopes. In BC, observed most on the west coast of Vancouver Island. Occasionally found in pelagic, open ocean ecosystems.	No known occurrences within the Project Area. Unlikely to occur, as tope shark prefer demersal offshore habitats.
Bluntnose Sixgill Shark (Hexanchus griseus)	Special Concern	Schedule 1-   Special Concern	Wide but patchy distribution in deep, cool waters along the continental slope and Strait of Georgia, down to 2000 m . Diurnal migrations take them to shallower waters at night.	Although possible, the bluntnose sixgill shark is considered highly unlikely to occur in the Project Area, as it prefers deeper, colder waters.
Humpback Whale   (Megaptera   novaeangliae)	Special Concern	Schedule 1-   Special Concern	Migrate north from Hawaii or Baja, Mexico in the spring to forage on small pelagic fishes, primarily off the west coast of Vancouver Island. Occasionally seen in the Strait of Georgia.	The Project Area is not considered primary habitat for humpback whales, though they may be found in adjacent habitats, particularly further offshore.
Grey Whale (Eschrichtius robustus)	Special Concern	Schedule 1-   Special Concern	Occur throughout the coastal waters of the Pacific. Depending on the population, grey whales migrate through or remain in BC waters in the summer, feeding on benthic invertebrates in sandy bays. Mainly found along the west coast of Vancouver Island, particularly during southward migrations.	The Project Area is not considered primary habitat for grey whales, though they may be found in adjacent habitats, particularly further offshore.
Basking shark (Cetorhinus maximus)	Endangered	Schedule 1-   Endangered	Found along temperate coasts and open ocean environments although they are extremely rare in BC due to directed eradication in the 1960s. Early signs of population recovery in Puget Sound.	No known occurrences of basking sharks in the Project Area and due to their diminished population, it is considered highly unlikely that they would occur near the Project.


Listed Species   Name	COSEWIC   Status	SARA   Status	Habitat and Range   Description	Likelihood of Occurrence within Project   Work Areas
Leatherback Sea   Turtle (Dermochelys   coriacea)   Endangered	Schedule 1-   Endangered	Open ocean, often near edge of continental shelf;   also seas, gulfs, bays, and estuaries. Mainly   pelagic, foraging in temperate waters. Seldom   approaching land except for nesting in tropical   locations	Adult leatherback sea turtles have been seen   foraging off the coast of BC between July and   September and are sometimes seen in   inshore waters. No known occurrences within   the Project Work Areas. Potential to occur is   low	

* Red - Extirpated, Endangered, or Threatened, Blue - Special Concern, Yellow - apparently secure and not at risk of extinction


### 2.3.3 Social and Cultural Components

## i) Commercial, Recreational, Aboriginal Fisheries

Esquimalt Harbour is located within DFO Fisheries Management Subarea 19-2. As a precautionary measure, DFO closed Esquimalt Harbour (Subarea 19-2) in 2016 to all fishing, including commercial, recreational, and Aboriginal fisheries, due to a fuel spill in Plumper Bay. According to the QHM, commercial crab fishery activities occurred in Esquimalt Harbour in 2016 prior to the closure by an estimated six or fewer harvesters (Golder 2018). Typically, commercial crab is harvested over approximately two months at the start of the DFO-regulated opening in mid-June. Esquimalt Harbour
has also been closed to all bivalve shellfish harvest due to marine biotoxin and this closure remains in effect (DFO 2018a). If the DFO 2016 fishery closure is lifted, the bivalve shellfish consumption advisory would remain in place for Esquimalt Harbour as would a seafood consumption advisory (DFO 2018b). The seafood consumption advisory provides the recommended maximum weekly intake, in accordance with Health Canada (HC) recommendations for adults and toddlers, of Dungeness crab hepatopancreas and muscle, red rock crab hepatopancreas and muscle, sea urchin roe, and rockfish muscle (DFO 2018b).

In the event that DFO lifts the fishing closures in Esquimalt Harbour, as per the Esquimalt Harbour Practices and Procedures, fishing or crabbing in Esquimalt Harbour requires preauthorized approval of a harbour official (Royal Canadian Navy 2017). As per the Esquimalt Harbour Practices and Procedures, fishing and crabbing is prohibited in the entrance to Esquimalt Harbour, and in the area east of McCarthy Island (Royal Canadian Navy 2017). Fishing and crabbing are to be conducted only in areas that minimize impact on marine traffic, harbour use, and in accordance with DFO licensing requirements (Royal Canadian Navy 2017).

Recreationally, finfish and crab fishing was documented as occurring within Esquimalt Harbour in 2006; however, this was mostly near the mouth of the harbour, well outside of the Project Work Areas (Golder 2006).

Before the harbour was industrialized, Indigenous groups harvested large numbers of herring. Cumulative herring spawn habitat index (SHI) data from Fisheries and oceans Canada based on spawn records from 1928-2009 classifies Esquimalt harbour as minor (lowest 25\%) to low (next 25\%), and herring spawning habitat falls outside of the Project Work Areas (BCMA: Marine Atlas of Pacific Canada).

Under the Douglas Treaty, the Esquimalt and Songhees Nations have fishing and hunting rights, which are practiced in Esquimalt Harbour. In meetings with DND, First Nations representatives have indicated that they have ongoing subsistence and cultural uses in the harbour. Both the Esquimalt and Songhees Nations assert Aboriginal rights and interests within the harbour area.

## ii) Water/Land Use

The marine waters within the two Work Areas are outside of areas of regular CFB Esquimalt use; however, these waters are intermittently used for vessel movement and mooring. The Jones Marine Lease Area is adjacent to (west of) Work Area 2 and previlusly
used intermittently for log booming/storage activities. However, limited use of this facility is expected during Component 1 and Component 2 activities.

There is no upland portion of this project for land use.

## iii) Recreational Use

No national or provincial parks are located adjacent to the Project Work Areas, but there are a number of waterfront parks in Esquimalt Harbour, including two National Historic Sites. Fort Rodd Hill and Fisgard Lighthouse National Historic Site is located on the west side of the entrance to the harbour. Another National Historic Site, Cole Island, is located at the north end of the harbour, approximately 500 m from Work Area 1. Both sites are open to the public for day use recreation.

In addition to recreational fish and seafood harvesting, other water-based recreation in Esquimalt Harbour includes recreational boating, kayaking, and shoreline usage. Pleasure crafts use the harbour year-round (Golder 2018). Ships at anchor must register with QHM Operations and cannot remain at anchor for longer than 2 weeks, there are also strict rules for anchoring and a number of sections in the harbour are off limits. The Canadian Forces Sailing Association is located near Constance Cove within the harbour.

The work will not impede recreational or cultural use of the harbour.

## iv) Cultural Resources

The Project falls within the traditional territories of the Songhees and Esquimalt Nations, and the Esquimalt and Songhees First Nations reserves are located to the north of the Esquimalt Graving Dock (EGD). DND has previously completed archaeological overview assessments of proposed remediation areas in Esquimalt Harbour (Golder 2015, 2016a, 2017). From these, no heritage resources, including archaeological sites or areas of archaeological potential, have been identified in the Project Work Areas. The nearest known archaeological site is located $>50 \mathrm{~m}$ from Work Area 2; however, no ground disturbance is anticipated as part of Project activities.

Information on Indigenous Engagement can be found below in Section 2.5.

## v) Aboriginal/Traditional Activities

The Project falls within the traditional territories of the Songhees and Esquimalt Nations, and the Esquimalt and Songhees First Nations reserves are located to the north of the Esquimalt Graving Dock (EGD). Work Area 2 is located within the Songhees and Esquimalt First Nations jointly held waterlot lease with DND.

Use of Esquimalt Harbour for the exercise of treaty rights or for other traditional purposes by the Esquimalt Nation and Songhees Nation has decreased since approximately 1960. Current use is related to non-harvesting activities; however, the Esquimalt Nation and Songhees Nation have indicated to DND that this current use does not reflect their past use or desired future use of the harbour for their "food basket," made up in part by seafood (i.e., ling cod, rockfish or rock cod, clams, mussels, sea urchin, crab, shrimp, and prawns), as well as waterfowl such as ducks and geese.

Information on Indigenous Engagement can be found below in Section 2.5.

### 2.4 Physical Activity Effects and Associated Mitigation Measures

The potential Project-related effects on each of the Valued Ecosystem Components, along with relevant avoidance and mitigation measures are outlined in Table 4 below. Prior to the commencement of the Project, the Contractor will retain a QP to prepare an EPP that demonstrates how they will satisfy the environmental requirements (mitigation measures and monitoring requirements). The EPP will include the following information:

- Organization chart and names of persons responsible for EPP implementation and compliance
- Training requirements
- Site and activity-specific measures that will be implemented, equipment that will be used, and maintenance that will be undertaken
- Contingency procedures in the event that environmental protection goals are not being met
- Drawings, for example, showing work and storage areas

The EPP will include, at a minimum, procedures for the following:

- Dust and emissions control Plan
- Water quality protection Plan
- Spill prevention and response Plan
- Silt curtain control Plan
- Sediment and erosion control Plan
- Non-hazardous waste storage and disposal
- Monitoring for presence of herring and marine mammals a as well as triggers for modifying work
- Archaeological chance find management

The EPP will be part of submissions by the contractor and will be reviewed by DND/PWGSC and must be accepted prior to construction.

Table 4: Potential effects of the Project on each Valued Ecosystem Component (VEC) with avoidance and mitigation measures

VEC(s) Affected	Physical Activity Component(s)	Description of Effects	Mitigation Measures	Are residual significant adverse effects likely?
Atmosphere	1) Construction Activities   - Use of Industrial Equipment   - Stockpiled materials on barge	Air quality will be negatively affected due to the use of construction equipment.   Exhaust generated may present a health risk to workers or other people in the immediate area.   Dust may be generated by stockpiled materials.	1) A Dust and Emissions Control Plan will be developed by the Contractor's Environmental Specialist and implemented by the Contractor.   - Plans will assign implementation and monitoring roles   - On-site personnel will review the plans, understand their roles and responsibilities, and be properly trained and equipped to implement the plan.   - Plan will include specific measures that will be undertaken to meet prohibitions outlined within relevant municipal bylaws and exposure limits outlined within the Occupational Health and Safety Regulation.   2) DND OPI is responsible for coordinating notification of the affected community of the nature and likely duration of forthcoming project activities that may temporarily degrade local atmospheric conditions. Coordinate notification to individuals and/or organizations/municipalities outside the Department through Base Public Affairs.   3) Vessels and equipment will be well maintained and in good working order.   4) Work will be scheduled to avoid periods of extremely dry or windy conditions.   5) Airborne dust conditions will be monitored daily and additional housekeeping and dust suppression techniques will be employed as required.   - Workers nearby will be notified of the potential reduction in air quality.   6) Good housekeeping and dust suppression techniques will be employed to reduce airborne dust and prevent off-site migration.   7) As appropriate, additional dust control measures will be implemented as necessary   - All materials will be covered during transport to and from the Site. Dust-producing materials with be covered with 6 mil polyethylene sheeting (at a minimum)   - The use of water as a dust suppressant may also be employed   9) Efforts will be made to minimize exhaust emissions:   - Vessels, equipment and machinery used on Site will be in good working order and comply with applicable air quality standards.   - Equipment and machinery producing excessive exhaust will be replaced or repaired.   - The contractor will use clean alternative fuels for vessels and equipment wherever possible.   - Idling of vessels, equipment and machinery will be minimized, and turned off when not in use.   - Stationary emission sources (such as portable diesel generators, compressors, etc) will only be used if there is not another alternative, and will be turned off when not in use   - Equipment and machinery will be operated at optimum rated loads	No
Surface Water	1) Construction Activities   - Material Placement	Placement of clean sand material and siderite for remediation and enhancement of degraded marine substrates may temporarily increase turbidity within the vicinity of the Project.	1) Water Quality Protection Plan will be developed by a Qualified Environmental Professional and implemented by the Contractor.   - Plan will assign implementation and monitoring roles   - On-site personnel will review the plans, understand their roles and responsibilities, and be properly trained and equipped to implement the plan.   - The plan will outline water quality monitoring procedures to ensure that water in the Project Work Areas meets applicable guidelines and standards during material placement activities.   - Water quality monitoring will be undertaken by a Qualified Professional.   - The plan will include, but will not be limited to: proposed water quality monitoring locations and frequency; applicable guidelines and thresholds; permit requirements; engineering controls; best management practices; and mitigation measures to reduce impacts on the marine environment.   2) A Sediment and Erosion Control Plan will be developed by the Contractor's Environmental Specialist and implemented by the Contractor.   - Plans will assign implementation and monitoring roles   - On-site personnel will review the plans, understand their roles and responsibilities, and be properly trained and equipped to implement the plan.   - The plan will include specific measures that will be undertaken, and equipment to be used, to prevent transport and erosion of barge sand during periods of rain and/or wind. Including mitigation measures listed under Atmosphere.	No


VEC(s) Affected	Physical Activity Component(s)	Description of Effect	Mitigation Measures	Are residual $\begin{gathered}\text { significant adverse } \\ \text { effects likely? }\end{gathered}$ effects likely?
			3) A Spill Prevention and Response Plan will be developed by the Contractor's Environmental Specialist and implemented by the Contractor.   - Plan will assign implementation and monitoring roles.   - Ensure Site personnel have reviewed the plan, understand their roles and responsibilities, and are properly trained and equipped to conduct spill response activities   - Plan will include a list of spill response equipment that will be present on Site.   - Plan will include specific measures that will be undertaken to prevent and respond to spills, and will include:   - Ensure all equipment, machinery, vessels and vehicles brought on Site are clean, free of leaks, excess oil, and grease, and in good working order.   - Check all equipment, machinery, vessels and vehicles every morning for leaks and ensure they are maintained in good working order.   - Ensure hydraulic machinery, if required, uses environmentally-sensitive hydraulic fluids that are non-toxic to aquatic life and are readily or inherently biodegradable.   - Limit refuelling, fuel stockpiling and maintenance of equipment to designated areas on level, impermeable surface areas at least 30 m away from any drainage or surface water features.   - Ensure all refuelling occurs with funnels, pads and drip pans in place.   - Store fuels, lubricants and chemicals appropriately on Site, with proper controls to prevent the release of deleterious substances, in a designated area at least 30 m away from surface water features or surface water drainage.   - Place properly sized oil drip pans under all equipment and vehicles left on site.   - Identify high-risk locations where spills are probable and maintain spill kits, capable of handling the largest potential spill through the duration of the project, at these locations. Locate PPE at the top of the spill kit to ensure easy access for the spill responder. Keep spill kits closed with a safety seal affixed to indicate if the kit has been used or tampered with.   - Respond immediately to all spills in accordance with plan. Contact the following if a spill cannot be contained and cleaned up and second level response is required:   - Port Operations and Emergency Services Queen's Harbour Master/Environmental Protection Office (250-3632160 (24/7) / VHF Ch 10 (Esquimalt Harbour) / VHF Ch 19 (Nanoose Harbour) / Duty Q 250-889-0044 (silent hours)) for marine spills in Esquimalt and Nanoose Harbours and their approaches;   - 911 for land-borne spills. Inform the 911 operator that the spill has occurred on CFB Esquimalt property. Verbally report all spills to DND OPI immediately. If DND OPI is not available, contact the Joint Operations Centre (JOC) (363-2425, 363-5848).   - Submit the following information to DND OPI within one day of a spill incident:   - Date and time of spill (indicate occurrence, discovery and cleanup commencement and Type of material spilled - and Transport of Dangerous Goods classification   - Spill surface (gravel, water, pavement, shop floor)   - Quantity of material spilled and quantity recovered (kg/L)   - Source/origin of spill   - Cause of spill (description of incident)   - Corrective action take and action plan to prevent a subsequent spill   - Human impacts   - Environmental impacts (ground, water, vegetation, wildlife)   - Weather conditions at the time of the incident   - Agencies or authorities notified or involved   - Media interest   - DND OPI is responsible for ensuring that all spills are reported to MARPAC FSE in accordance with MARPAC SEMS DSE1: Safety and Environmental Emergency Incident Reporting. If MARPAC FSE personnel are not immediately available, contact the Joint Operations Centre (JOC) ( $363-2425,363-5848$ ). If required, MARPAC FSE or the JOC will contact Emergency Management BC directly to ensure that ECCC's notification requirement is met.	


$\mathrm{VEC}(\mathrm{s})$ Affected	Physical Activity Component(s)	Description of Effects	Mitigation Measures	Are residualsignificant adverse   effects likely?
			4) Mitigation measures to protect water quality will include:   - Sand cover material must be clean, fine-grained sand material, free of organic material as similar in nature to the native sediment within the Work Site as practical and must conform to specific gradations as indicated in the specifications. Sand material will meets the Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines (CEQG) sediment quality guidelines.   - Material will be placed in a controlled manner, and not placed by rapid dumping of a barge load   - The contractor must describe in its construction work plan what means, methods and procedures will be used to prevent water quality requirement exceedances, and what contingency actions will be taken to restore compliance.   - The contractor must employ placement means and methods that will avoid resuspending sea bed sediment during placement activities and prevent excessive mixing of the placed material with the sea bed sediment.   - Sediment control measures such as silt curtains will be implemented during material placement if needed to meet water quality criteria outined in the Water Quality Plan   - A Silt Curtain Control Plan will be developed by the Contractor's Environmental Specialist and implemented by the Contractor. The plan will include: how the silt curtain will be installed, maintained and inspected, if required to protect water quality. If required, silt curtain should be inspected daily from the surface of the water.   - Refuse and debris related to the Work will be collected and disposed of at approved disposal facilities in compliance with laws and requirements of all authorities having jurisdiction.   - The Contractor will not dump, burn, bury, or allow others under its control to dump, burn, or bury construction wastes and refuse associated with the Work. Should refuse or construction wastes related to the Work be dumped, the Contractor will immediately act to clean up and remove the waste material to an approved location.   - The Contractor's work area will have a recycling and waste management program in place. Among other things, clearly labelled garbage bins with lids and recycling containers must be made available for food waste and recyclable office waste. The Contractor will arrange for the placement of garbage receptacles and recycling containers at key locations within the Work Site such as in the vicinity of the laydown area. Garbage bins kept outside will have lids sufficient to keep willife from accessing the waste inside.   - The Contractor will establish regular clean up and disposal programs to prevent the unnecessary accumulation of excessive construction waste and refuse.   - Hazardous materials will be disposed of in accordance with law and the requirements of all authorities having jurisdiction.   - Should the on-site storage of hazardous materials such as gasoline or oils be required, secondary containment capable of holding at least $110 \%$ of all hazardous materials stored within will be in place.   - Above ground storage tank areas will be bermed, lined, and have in place appropriate drainage systems for removing accumulated rainwater.   - Current Safety Data Sheets (SDS)1 and an inventory will be maintained for all controlled substances used, stored, and handled onsite associated with Project activities.   - An area will be designated, as required, for the transfer or temporary storage of hazardous materials and wastes. The area will be clearly labelled and controlled in accordance with Workplace Hazardous Materials Information System and other statutes.   - Where construction activities involve the handling, storage, and removal of hazardous waste, the Contractor(s) will maintain the following records:   Inventories of types and quantities of hazardous waste generated, stored, or removed Manifests identifying hazardous waste haulers and disposal destinations Disposal certification documents   - Personnel will be trained in the handling and transportation of dangerous goods and controlled substances.	


VEC(s) Affected	Physical Activity Component(s)	Description of Effects	Mitigation Measures	Are residual significant adverse effects likely?
Marine Substrate	1) Construction Activities   - Material Placement   2) Post Construction Monitoring	Placement of clean sand and siderite for remediation and enhancement of degraded marine substrates may disturb marine substrates Spudding of barge equipment for placement of materials and storage may disturb marine substrates   Propwash may disturb newly placed materials	1) Mitigation measures to protect marine substrate will include:   - Sand cover material must be clean, fine-grained sand material, free of organic material as similar in nature to the native sediment within the Work Site as practical and must conform to specific gradations as indicated in the specifications. Sand material will meets the Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines (CEQG) sediment quality guidelines.   - Material will be placed in a controlled manner, and not placed by rapid dumping of a barge load   - The contractor must employ placement means and methods that will avoid resuspending sea bed sediment during placement activities and prevent excessive mixing of the placed material with the sea bed sediment.   - Grounding of barges and equipment will be minimized during placement of materials and overnight storage   - Reduced power will be used during transport in shallow areas to minimize disturbance to newly placed materials	No
Ambient Noise	1) Construction Activities   - Use of Industrial Equipment	Increase in ambient noise during construction.	1) Mitigation measure for ambient noise include:   - Comply with Canada Occupational Health and Safety Regulations (DND/CAF personnel) and the BC Occupational Health and Safety Regulations (Contractor personnel) regarding noise regulations and PPE requirements.   - The Contractor must comply with local ordinances regarding noise control while conducting activities at the Work Site.   - Project activities that have the potential to increase ambient noise levels will comply with time periods identified in applicable municipal noise bylaws. If work is required outside these hours, the DND OPI is responsible for gaining approval as required. Noise restrictions apply between the hours of 7:00 pm and 7:00 am from Monday to Saturday and at all times on Sundays and statutory holidays. The contractor must undertake noisier work activities during daytime hours and modify activities based on noise monitoring and resident feedback.   - Coordinate notification of the affected community with DND OPI. Information will include: the nature and likely duration of any particularly noisy operations that may be forthcoming as a part of project activities. Coordinate notification to individuals and/or organizations/municipalities outside the Department through Base Public Affairs.   - If noise complaints are reported, DND OPI will complete a noise generation evaluation   - Properly maintain equipment and machinery to minimize unnecessary noise pollution. Fit all machinery and equipment with functioning exhaust and muffler systems. Ensure machinery covers and equipment panels are well fitted and remain in place to muffle noise. Ensure bolts and fasteners are tight to avoid rattling.   - Placing power-generating equipment in such a way to reduce exposure and minimize disruption to adjacent occupants.   - Shielding loud power equipment and turning off equipment when not in use.   - The occurrence of multiple noise activities during a single event (cumulative effects) or for prolonged periods will be prevented	No
Marine Vegetation, and Fish Habitat	1) Construction Activities   2) Post Construction Monitoring	Placement of clean sand and siderite for remediation and enhancement of degraded marine substrates may disturb marine substrates   Spudding of barge equipment for placement of materials and storage may disturb marine substrates   Propwash may disturb newly placed materials   Introduction of Invasive Species.	1) Refer to mitigation measures outlined for Marine Substrates and Surface Water   2) Additionally:   - Before entering Esquimalt Harbour, remove plants, algae, and animals attached to or inside vessels to help avoid the spread of marine invasive species.   - If deemed necessary, the QP will have the authority to halt work to avoid impacts to aquatic animals and/or their habitat. Mitigation methods will be reviewed and corrected.	No


VEC(s) Affected	Physical Activity Component(s)	Description of Effects	Mitigation Measures	Are residual significant adverse effects likely?
Marine Fish, Invertebrates, and Mammals	1) Construction Activities	Placement of clean sand and siderite for remediation and enhancement of degraded marine substrates may cause the direct Mortality of Fish.	1) Refer to mitigation measures outlined for Marine Substrates and Surface Water   2) Additionally:   - If, after project review, DFO determines that the project will cause serious harm to fish and is part of a commercial, recreational or Aboriginal fishery or supports a commercial, recreational or Aboriginal fishery, an authorization will be obtained from the Minister of Fisheries, Oceans and the Canadian Coast Guard as per Paragraph 35(2)(b) of the Fisheries Act Regulations.   - Work is scheduled to occur within the DFO least risk winter window for Area 19 (December 1 - February 15) and outside the Pacific herring spawning season (between February 15 and June 1).   - If work occurs within the herring spawning season; However; if delays occur and the work window falls between 15 February and June 1, a qualified QP will visually observe from the surface of the water for spawning herring (i.e., schools of herring depositing eggs or releasing milt) and herring eggs within and adjacent to the Project Work Site. Monitoring for spawning herring and herring eggs will be undertaken every day that in-situ water quality monitoring is conducted. If herring spawning is observed within in-water work areas, the PWGSC Representative will be informed and work with potential to affect herring egg masses or emergent larvae will be stopped for 10 to 14 working days. If herring eggs are found on equipment, the PWGSC Representative will be informed, and work will be stopped and will not resume until after eggs have hatched   - Material will be placed in such a way as to not increase the risk of mortality and or injury to fish within the Work Site. Material will be placed near the water surface, below the surface or within approximately 1 m of the substrate, as approved by the Contractor and the QP. As long as the placement method meets water quality criteria and other requirements in the Specifications, drop distance above the water surface may vary and is not restricted.   - Should silt curtains be employed, contained areas will be monitored for fish presence and marine mammals. If schools of fish or a marine mammal are observed in the enclosed silt curtain, in-water work will be temporarily suspended, and the silt curtain opened to allow organisms to escape.   - If deemed necessary, the QP will have the authority to halt work to avoid impacts to aquatic animals and/or their habitat. Mitigation methods will be reviewed and corrected.	No
	1) Construction Activities	Interactions with marine mammals.	1) Marine mammal monitoring will be implemented during all in-water activities by a qualified professional.   2) Visual observations of work within a silt curtain will be made to verify that marine mammals do not become entrapped. If a marine mammal is observed in the enclosed area, the enclosed area opened to allow the mammal to leave.   3) Vessels will follow standard boat operation when in proximity to marine mammals in accordance with the Marine Mammal Regulations and DFO's guidance for watching marine wildlife:   - Under no circumstances, other than in the case of an emergency, will vessels approach within 200 m of any killer whale or within 100 m of all other whales, dolphins and porpoises. For all other marine mammal encounters, vessels will avoid approaching within 100 m of a marine mammal in the water or a seal/sea lion haul out.   - As safe navigation allows, reduce speed to less than 7 knots when within 400 m of the nearest whale. Avoid abrupt course changes.   - If seals or sea lions are encountered, reduce boat speed, minimize wake, wash and noise, and then slowly pass without stopping. Avoid sudden changes in speed and direction.   - Pay attention and move away, slowly and cautiously, at the first sign of disturbance or agitation.   - Do not disturb, move, feed or touch any marine wildlife, including seal pups.   - Emergency collisions with marine mammals, or a sighting of an entangled or injured marine mammal, are to be immediately reported to Coast Guard (VHF Channel 16) or Whale Emergency Network (1-800-465-4336). Additionally, DND Formation Safety and Environment needs to be contacted for all marine mammal issues.	No


VEC(s) Affected	Physical Activity Component(s)	Description of Effects	Mitigation Measures	Are residual significant adverse effects likely?
Seabirds, shorebirds and Waterfowl	1) Construction Activities   - Use of Industrial Equipment	Disturbing nesting birds.	1) Construction activities will be scheduled to avoid sensitive bird periods such as breeding, nesting, roosting, rearing young and staging (migration). The general nesting period for southern BC is February - September.   2) A QP will conduct a bird nest survey on Inskip Island prior to project implementation, if activities will be conducted during the nesting period. If nests are present, a QP will develop a management plan identifying protective measures specific to the species present. Management plan should be developed in accordance with the most recent version of the following documents, as applicable:   - Guidelines for Raptor Conservation during Urban and Rural Land Development in British Columbia, BC Ministry of Environment   - Guide for developing Beneficial Management Practices for Migratory Bird Conservation, Environment and Climate Change Canada   - Project implementation will not commence until the management plan is approved by DND OPI and MARPAC FSE. DND OPI is responsible for developing contingency plans to modify project activities in accordance with the management plan. A QP, who is provided with authority to modify or halt project activities if it is deemed necessary to do so for the protection of bird species or habitat, will monitor the plan through implementation.	No
Species at Risk	1) Construction Activities	Placement of clean sand and siderite for remediation and enhancement of degraded marine substrates may cause the direct Mortality of Species at Risk	1) Refer to Mitigation measures for Surface Water, Marine Substrates, Marine Vegetation and Fish Habitat, and Marine Fish, Invertebrates, and Mammals   2) Additionally, If a Species at Risk or critical habitat is found, work will be suspended and DND OPI will be notified.	No
CRA	1) Construction Activities	Placement of clean sand and siderite for remediation and enhancement of degraded marine substrates may cause the direct Mortality of CRA species	1) Refer to Mitigation measures for Surface Water, Marine Substrates, Marine Vegetation and Fish Habitat, and Marine Fish, Invertebrates, and Mammals	
Water/Land Use	1) Construction Activities	Vessels may interfere with navigation within Esquimalt Harbour.	1) The Contractor will submit a Navigation Control Plan describing means and methods by which vessel movements and current Esquimalt Harbour practices and control procedures will be completed and monitored. Vessel movements will be coordinated by the Queens Harbour Master (QHM)   - Practices and procedures that have been developed pursuant to Section 56 of the Canada Marine Act, which provide guidance to safe use, navigation, and environmental stewardship of the harbour, will be followed   2) All vessels entering the harbour are required to contact the Queen's Harbour Master Operations for a clearance request and provide applicable information.   3) Unless authorized, no project activity is to be conducted that will adversely affect harbour operations, interfere with navigation, or adversely affect sediment, soil, air or water quality.   4) All posted speed limits will be followed or at a safe speed to not exceed 7 knots. Reduce speed to a minimum wake when passing berthed ships.   5) Project vessels will keep 100 m away from stationary vessels and 200 m away from vessels underway.   4) Material transported by barge into, within, and out of Esquimalt Harbour requires the Contractor to coordinate directly with QHM pursuant to the Canada Marine Act. The PWGSC Representative requires 72 -hour notification of all material transported by barge into or out of Esquimalt Harbour. Material barge transport movements within Esquimalt Harbour require a 24 -hour notification to the QHM.   5) Work will be phased to minimize disruptions to other vessel traffic which includes mitigations in the specifications (i.e., stand-by time).   6) QHM will be consulted for overnight moorage of vessels and provided points of contact for any emergencies involving the vessels.   7) Additional emergency docking and navigation management procedures outlined in the Navigation Control Plan will be followed.	No
Recreational Use	1) Construction Activities   2) Post Construction Monitoring	Project has potential to obstruct small areas of the harbour from recreational boat use over the two week construction period or during Post Construction Monitoring	1) Project Work will be communicated to the QHM and/or Base Public Affairs by the DND OPI to coordinate external notification to recreational users.	No


VEC(s) Affected	Physical Activity Component(s)	Description of Effects	Mitigation Measures	Are residual significant adverse effects likely?
Cultural Resources	1) Construction Activities	Potential to uncover archaeological resources during material placement.	1) Archaeological Chance Find Management procedures will be included in the EPP and Archaeological Chance Find Management Guidelines are to be followed if sediment will be handled (i.e., removal if a test area is overfilled, etc.).   - Totes for storage and protection of items will be provided along with a cedar box and blanket for HR if identified.   - Monitoring of excavated sediments, if applicable, will include provisions for the collection of observed historically, archaeologically, or paleontologically significant artifacts, features, and faunal materials, as well as human remains	No
Aboriginal/Traditional Activities	1) Construction Activities   2) Post Construction Monitoring	Potential to obstruct traditional activities during construction activities and post construction monitoring.	1) Mitigation measures will be verified during Indigenous Engagement.	No
Health and Safety	1) Construction Activities   2) Post Construction Monitoring	Potential for injury during construction activities and post construction monitoring	1) Develop and implement a Health and Safety Plan to minimize the potential for accidental injury or property damage during all stages of the project.   2) Ensure the plan outlines measures for protecting site workers, visitors, and DND/CAF personnel working adjacent to the Site. Ensure the plan is monitored through project implementation.   3) Ensure all project activities comply with the direction detailed in the Canada Occupational Health and Safety Regulations (DND/CAF personnel) and the BC Occupational Health and Safety Regulations (Contractor personnel) regarding Occupational Health and Safety (OHS).   3) Immediately take measures to rectify unforeseen or peculiar safety related hazards that become evident during project implementation. Verbally advise the DND OPI immediately and provide a written report of the hazard or condition as soon as practical.   4) Conduct regular safety briefings and meetings with on-site workers to encourage safe working procedures are followed.   5) Investigate and report all incidents and accidents as required by:   - DND General Safety Program (DND/CAF personnel)   - Occupational Health and Safety Regulation, B.C. Reg. 195/2015, Workers Compensation Act (Contractor personnel)   6) DND OPI is responsible for ensuring compliance with BSO 3005-0: Occupational Health and Safety Liaison with Private Contractors. This includes:   - ensuring that all hazards associated with the project are identified and assessed and mitigation strategies are developed prior to work commencing   - ensuring that a communication plan is developed with the appropriate DND/CAF supervisors for hazards that have the potential to impact adjacent DND/CAF personnel.	

## Potential Effects to Fish and Fish Habitat

Potential Project-related effects to fish and fish habitat are estimated prior to the application of any mitigation measures. Project activities with the potential to cause serious harm to fish that are part of a Commercial, Recreational, and Aboriginal (CRA) fishery, to fishes that support such a fishery, and to aquatic Species at Risk were assessed, along with impacts to aquatic habitat (including water and sediment quality). "Serious harm to fish" as defined in Subsection 2(2) of the Fisheries Act is: "the death of fish or any permanent alteration to, or destruction of, fish habitat." Project activities and associated potential effects that may result in serious harm to fish are identified in Table 5 and expanded upon below. Pathways of effects (DFO 2014) were also considered, where applicable.

Table 5. Potential Project-related Effects to Fish and Fish Habitat

Construction Activity	Potential Effect		
	Fish Mortality	Loss of Fish   Habitat	Alteration of Fish Habitat
Placement of treatment types   on seafloor	$\checkmark$		$\checkmark$
Introduction of Siderite to the   marine environment			$\checkmark$
Operation of machinery			

## Fish Mortality

Some in-water activities, including the placement of the various treatment types (ENR or In Situ Amendment) in the marine environment, have the potential to cause direct injury or mortality of fish (including eggs, and larvae), due to interaction between fish and the mixed materials, or direct contact with industrial equipment (as identified by DFO's Pathways of Effects; DFO 2014). The placement of the material required for the Project may result in entrapment or smothering of adult and juvenile fish, as well as, smothering of eggs, larvae and infaunal invertebrate species. Infilling of marine habitats may lead to direct mortality of low mobility and sessile species (e.g., bivalves).

Temporary changes to surface water quality that may occur during Project construction at the Project Site also have the potential to cause direct injury or mortality of fish, and include:

- Introduction of deleterious substances (e.g., polycyclic aromatic hydrocarbons) to the environment, due to accidental release from on-site heavy machinery (DFO 2014).
- Temporary increase in total suspended solids from infilling works. Increased suspended sediments may disrupt fish feeding and/or predator avoidance.


## Permanent Alteration of Fish Habitat

The introduction of the clean sand and clean sand/siderite material to the marine environment has the potential to permanently alter the fish habitat within the Project footprint. The materials may cause a permanent alteration in the substrate available to fish and invertebrates, particularly members of the infaunal (within the sediment) community. However, based on i) desktop-based technical literature review, (ii) geochemical transport modeling, and (iii) laboratory bench-scale tests using sediment from Esquimalt Harbour (as outlined in Section 1.4) it has been concluded that the In Situ Amendment Treatment of clean sand (95\%) blended with siderite material (5\%) does not constitute a risk to fish or fish habitat from a change in sediment concentrations or the introduction of deleterious materials. The application of clean sand enhances fish habitat conditions in the northern Harbour by replacing the biologically active zone with clean sediment in order to provide an oxygenated layer to promote benthic infauna community recruitment and establishment of a productive benthic community (Breems and Goodman 2009, Washington State 2013).

The In Situ Amendment is expected to act similar to clean sand and provide a suitable clean substrate for benthic colonization while restoring degraded conditions (by removing toxic $\mathrm{H}_{2} \mathrm{~S}$ ).

### 2.5 Indigenous Community Engagement

This section summarizes collected background information on the Aboriginal groups that may be affected by the DND Project. Included is a description of how DND determined which Aboriginal groups needed to be engaged. The Aboriginal groups that will be potentially affected are identified based on guidance from DND and publicly available information from the federal government and the Province of British Columbia. Based on this information, DND concluded that the following groups and organizations have Aboriginal interests in the Esquimalt Harbour remediation area:

- Esquimalt Nation
- Songhees Nation
- Te'mexw Treaty Association, representing the Malahat Nation, Scia'new (Beecher Bay) First Nation, Snaw-naw-as (Nanoose) First Nation, Songhees Nation, and the T'Sou-ke (Sooke) Nation
- Hul'qumi'num Treaty Group, representing the Cowichan Tribes, Halalt First Nation, Lake Cowichan First Nation, Lyackson First Nation, and Penelakut Tribe
- Saanich Nations (Malahat First Nation, Pauquachin First Nation, Tsartlip First Nation, Tsawout First Nation and Tseycum First Nation)
- Stz'uminus (Chemainus) First Nation
- Métis Nation British Columbia
- Métis Nation of Greater Victoria

There are two First Nations communities with Indian Reserves (IRs) on Esquimalt Harbour and thus considered local to the Esquimalt Harbour remediation areas: the Esquimalt Nation on the Esquimalt IR and the Songhees Nation on New Songhees IR 1A. These IRs are located on Plumper Bay on the east shore of the harbour, adjacent to the Esquimalt Graving Dock and approximately 700 m north of CFB Esquimalt.

The Esquimalt and Songhees Nations are Douglas Treaty Nations. The Douglas Treaties include a series of treaties signed in the 1850's by the Crown and Vancouver Island First Nations, including what are now the Esquimalt and Songhees Nations. Use of Esquimalt Harbour for the exercise of treaty rights or for other traditional purposes by the Esquimalt Nation and Songhees Nation has decreased since approximately 1960. Current use is related to non-harvesting activities; however, the Esquimalt Nation and Songhees Nation have indicated to DND that this current use does not reflect their past use or desired future use of the harbour for their "food basket," made up in part by seafood (i.e., ling cod, rockfish or rock cod, clams, mussels, sea urchin, crab, shrimp, and prawns) and waterfowl (i.e., duck and geese).

As part of the Te'mexw Treaty Association (TTA), the Songhees Nation is negotiating a final agreement with Canada and British Columbia through the British Columbia Treaty Commission (BCTC) process. There are five First Nations that form the TTA: Malahat Nation, Scia'new (Beecher Bay) First Nation, Snaw-naw-as (Nanoose) First Nation, Songhees Nation, and the T'Sou-ke (Sooke) Nation. All of these First Nations have IRs located within the Capital Regional District, except for the Snaw-naw-as First Nation who have an IR situated on Nanoose Bay in the Regional District of Nanaimo. The Esquimalt Nation is not participating in the BCTC process.

In addition to the Esquimalt Nation, Songhees Nation and the TTA, the federal Aboriginal and Treaty Rights Information System (ATRIS) maintained by Indigenous and Northern Affairs Canada and the First Nations Consultative Areas Database (accessed online 1 March 2016) maintained by the Province of British Columbia identifies Hul'qumi'num Treaty Group (HTG) member First Nations as having potential interests in Esquimalt Harbour, based on a large asserted marine (non-core) territory. Like the TTA, the First Nations of the HTG are collectively negotiating a final agreement with Canada and British Columbia through the BCTC process; the HTG are currently at Stage 4 of the six-stage BCTC process. The five members of the HTG are Cowichan Tribes, Halalt First Nation, Lake Cowichan First Nation, Lyackson First Nation, and Penelakut Tribe. The Stz'uminus (Chemainus) First Nation was previously part of the HTG but have recently withdrawn from the BCTC process. The closest HTG community to Esquimalt Harbour is located approximately 45 km to the north by the City of Duncan, BC. The HTG have indicated previously to DND that Esquimalt Harbour is a "lower priority" in relation to their interests but have recommended that HTG member communities be notified about DND activities by letter.

In late 2016, ATRIS and the First Nations Consultative Areas Database (both accessed online 5 December 2016) identified the Saanich Nations, including the Malahat First Nation, Pauquachin First Nation, Tsartlip First Nation, Tsawout First Nation and Tseycum First Nation, as having potential interests in Esquimalt Harbour. Each of the five Saanich Nations have their own IRs located within the Capital Regional District. There have been no previous communications between DND and the five Saanich Nations.

It is not known if the Métis use Esquimalt Harbour, including the C3RP Work Site, for harvesting purposes. Métis Nation British Columbia (MNBC) is an Aboriginal organization routinely identified by the Canadian Environmental Assessment Agency for BC-based Projects subject to review under the Canadian Environmental Assessment Act 2012. MNBC represents 34 chartered communities in BC, including the Métis Nation of Greater Victoria (MNGV); MNGV is the Métis local for the Capital Regional District, which includes Esquimalt Harbour. There have been no previous communications between DND and MNBC or other Métis representative groups.

Consultation with the Songhees and Esquimalt Nations has been ongoing since 2006. Between 2006 and 2007, a First Nation Involvement Plan, including a traditional use and knowledge study, was undertaken as part of the Esquimalt Harbour Sediment Quality Project. The following provides a summary of work conducted between 2006 and 2007:

- Planning (August 2006): First Nations with potential interests in Esquimalt Harbour were identified and contacted based on background research and discussions with DND and PSPC.
- Data Collection (September to October 2006): The team worked with local First Nations to understand how and where people currently use the harbour, as well as how and where the harbour was used in the past and how and where First Nations anticipate using the harbour in the future. Data collection methods included formalized interviews with community Elders and expert knowledge holders that documented and mapped traditional use sites, as well as Traditional Ecological Knowledge (TEK), from the harbour. Collected information was entered into a GIS database and the results summarized into a confidential report to PSPC, DND and the Esquimalt and Songhees Nations.
- The confidential TEK identified a wide range of traditional and recreational use in Esquimalt Harbour as well as concerns regarding contamination and deterioration of the harbour environment and loss of access due to other activities in the harbour. While the TEK report is now over 10 years old, concerns highlighted at recent consultation sessions reiterate the contamination issues highlighted in the TEK.
- Communication (September 2006 to February 2007): The results of the TEK were provided to the community for additional comment, and protocols were put in place for protecting confidential information. In addition, the results of the environmental studies for the Harbour were shared with First Nations. Support to First Nations in the review of the technical environmental studies and the participation in the overall engagement process was offered.
- Evaluation (February to March 2007): The team committed to working with First Nations to monitor the effectiveness of the engagement process and to track relationships as they developed. Progress against the following goals were measured: increased awareness of the harbour environment; increased ability of First Nations to be involved in harbour management; and, improved communication between DND and First Nations.


### 2.5.1 First Nations Communications for the Project

This section describes the approach, methods and actions that DND has undertaken to engage Aboriginal Groups prior to and during the environmental assessment process. The comments and concerns of Aboriginal groups, and the process for addressing these comments and concerns are summarized.

DND recognizes the importance of effectively engaging Aboriginal groups with Aboriginal interests in the Project Work Areas. The objective was to support positive, productive and long-lasting relationships with affected Aboriginal communities that properly addressed applicable legal and regulatory requirements. DND has committed to providing Aboriginal groups opportunities where appropriate to engage in Esquimalt Harbour remediation projects and to provide meaningful input for consideration.

A First Nations Communications Plan was previously prepared for Esquimalt Harbour remediation projects by Golder (2014), that provided for a communications stream between DND and First Nations that is separate from the Public Communications Plan. This plan details communication activities with First Nations from Fall 2014 through to implementation to support the preliminary draft EA and the necessary permitting for the Esquimalt Harbour remediation projects to proceed, and it provides an outline of recommended activities through to implementation close out (December 2022) to monitor for emerging issues or concerns. The Plan is intended as a living document that can be adjusted as Esquimalt Harbour remediation and DND communications with First Nations evolve.

Through a combination of formal correspondence, face-to-face meetings, and telephone / e-mail communications, the plan (and amendments, as necessary) accomplished the following measurable and tangible outcomes as a result of its implementation:

- Obtained and demonstrated the incorporation of meaningful First Nations feedback on the preliminary draft EA report for the Esquimalt Harbour remediation projects, including mitigation measures, habitat offsetting, and environmental / archaeological management plans
- Produced appropriate documentation of communications activities, First Nations interests and concerns, DND responses, and key outcomes
- Met First Nations communications requirements and expectations of applicable federal / provincial agencies, such as DFO
- Fostered First Nations support for Esquimalt Harbour remediation projects

The plan anticipates that the HTG member First Nations, Saanich Nations and MNBC / MNGV will be formally notified of the Esquimalt Harbour remediation projects, but that the focus of ongoing communications activities is with the Esquimalt Nation and Songhees Nation, in recognition of their unique history, interests, and concerns relative to Esquimalt Harbour.

## Esquimalt Nation Communications

Meetings with the Chief of the Esquimalt Nation were held on 25 September and 13 November 2014. Presentations on the Esquimalt Harbour remediation projects were made to the Chief and Council on 7 March 2016, the Band Administrator on 24 January 2017, to the Chief on 19 July 2017, and to the Chief and Council on 9 May 2018.

## Songhees Nation Communications

A meeting with the Chief of the Songhees Nation was held on 8 January 2015. Presentations on the Esquimalt Harbour remediation projects were made to the Songhees Chief and Council on 4 February 2015, 4 May 2016, 18 January 2017, to the Songhees Nation Executive Director on 19 July 2017, and to the Chief and Council on 9 May 2018.

## Communication Results

Leadership from the Esquimalt Nation and Songhees Nation have been provided Esquimalt Harbour remediation projects-related information for their review and comment, including mapping of the remediation areas. Separate face-to-face meetings on Esquimalt Harbour remediation projects were conducted with Chief and Council from the Esquimalt Nation and Songhees Nation. Draft environmental assessment documents were also provided to the Esquimalt Nation and Songhees Nation for their review and comment. DND has a standing offer with the Chief and Council from both the Esquimalt and Songhees Nations to conduct a site visit to the proposed Esquimalt Harbour remediation project areas.

First Nations expressed considerable support for the Esquimalt Harbour remediation projects. Specific concerns regarding proposed activities include how and where the dredged sediments will be disposed of and whether dredging and shipping activities associated with CFB Esquimalt and Esquimalt Graving Dock will further disturb contaminated sediments, possibly contaminating other locations in the Esquimalt Harbour. DND has committed to sending the contaminated sediments from the remediation areas to a permitted off-site facility for disposal. DND acknowledged that preliminary studies suggest contaminants can move limited distances over time. However, it is unlikely that that the sediments from the Esquimalt Harbour remediation projects will contaminate other areas of Esquimalt Harbour over the next 50 years.

Both the Esquimalt Nation and the Songhees Nation expressed interest in the potential economic opportunities for their First Nations from Esquimalt Harbour remediation projects, including employment and training opportunities. The Esquimalt and Songhees Nations have in-house experience in conducting remediation activities.

DND has indicated that Defence Construction Canada (DCC) has contracting opportunities for the Esquimalt Harbour remediation projects, including potential Aboriginal set-asides. DND will make DCC aware of the First Nation's interest and as new contracting opportunities present themselves, DND will alert the Esquimalt and Songhees Nations.

Both the Esquimalt Nation and the Songhees Nation expressed considerable concern with the implications of Health Canada's Seafood Consumption Advisory for the Esquimalt Harbour, especially as it relates to the consumption of their traditional foods from the harbour. These foods are an important part of the community member's diet, and have a critical role in their traditional ceremonies. Traditional foods include not only those listed
in the Seafood Consumption Advisory, but also waterfowl, clams and mussel, as well as several species of fish. There were also concern that the Esquimalt Harbour remediation projects may interfere with fishing at the entrance to the Esquimalt Harbour.

DND acknowledges these concerns and indicated that this is one of the principal reasons for proceeding with the remediation projects. While the Esquimalt Harbour will never be as it once was before industrialization, there should be significant improvements as a result of the remediation projects that include the remediation of six highly contaminated locations within the Esquimalt Harbour, as well as construction of additional habitat for marine life in the Esquimalt Harbour. At their request, DND has also presented the First Nations with a draft poster board on the Seafood Consumption Advisory established by Health Canada. DND has also committed to investigating how to best accommodate fishing activities in Esquimalt harbour, respecting the fact that there are security requirements that will not allow private vessels to come too close to the Jetties; DND will raise this concern with the Queen's Harbour Master at CFB Esquimalt.

The Songhees Nation has community events that include activities on the Esquimalt Harbour. For instance, there is an annual canoe race from their IR through the entrance to Esquimalt Harbour. DND has indicated that they can accommodate this race if provided with proper notice; DND has alerted the Queen's Harbour Master at CFB Esquimalt of this issue.

First Nations expressed a concern about the potential for previously unidentified archaeological sites to be impacted by the remediation activities in remediation project areas. DND has completed archaeological overview assessments (Golder 2015, 2016a, 2017), as well as additional overview work undertaken as part of the C-Jetty, ML Floats and Y-jetty, and Lang Cove EED (Golder 2018). Subsequently, an AIA was completed for the upland portion of A/B Jetties in 2014 and at Lang Cove and the F/G Jetty in 2015 (Golder 2016b). Recommended archaeological mitigation was completed at Lang Cove in November 2016.

DND has committed continuing to work with Aboriginal groups to identify potential adverse effects of the Project on Aboriginal interests. The future involvement of identified First Nations will be incorporated into the Project based on the results of the communication process.

Since 2006, engagement for Esquimalt Harbour remediation has been ongoing with the most recent meeting held in March 2018. Communication plans are being updated in 2019 and further meetings are planned for 2019, where information on the Pilot Project activities will be shared with the Songhees Nation and Esquimalt Nation at an upcoming 2019 meeting.

### 2.6 Public Participation

The assessment and remediation of the harbour has been communicated to the general public through the annual Public Information Sessions over the past four years. The next Public Information Session is July 2019.

### 2.7 References and Expertise from Other Federal Government Bodies or Third Party Groups

Anchor QEA. 2018. Esquimalt Harbour Natural Recovery Analysis. Esquimalt Harbour Remediation Project. Prepared for Public Works and Government Services Canada and Department of National Defence, and Defence Construction Canada.

Anchor QEA. 2019a. Wood Waste Remediation Project: Data Memorandum. Prepared Public Works and Government Services Canada and Department of National Defence.

Anchor QEA. 2019b. Wood Waste Remediation Project: Remedial Options Analysis. Prepared for Public Works and Government Services Canada and Department of National Defence. 62pp

Anchor QEA. 2019c. Supplemental Treatability Recommendations Report. Prepared for Public Works and Government Services Canada and Department of National Defence. 53pp

Archipelago Marine Research Ltd. (Archipelago). 2004. Subtidal Survey Of Physical And Biological Features Of Esquimalt Harbour: Report \& Map Folio, Revised and Updated. Prepared for Victoria and Esquimalt Harbours Environmental Program, Transport Canada. 76pp.

Balanced Environmental. 2012. Esquimalt Harbour Remediation Project: Qualitative Presence / Absence Survey for Marine Species, C-Jetty Remediation Area. Letter Report prepared for SNC-Lavalin Environment. 8 pp.

Breems, J. and T. Goodman. 2009. Wood Waste Assessment and Remediation in Puget Sound. Accessed from: https://salishsearestoration.org/images/5/58/Breems_\%26_Goodman_2009_wood_w aste_assessment_and_remediation.pdf

CRD, Capital Regional District. 2016. Esquimalt Harbour. Accessed (November 2016) from: https://www.crd.bc.ca/education/our-environment/harbours/esquimalt-harbour

Fisheries and Oceans Canada (DFO). 2018a. FN0281-Bivalve Shellfish: Marine Biotoxin - Update for Areas 2, 16 and 29 Summary for all Areas - 5 April 2018. Accessed from: https://www-ops2.pac.dfo-mpo.gc.ca/fnssap/indexeng.cfm?pg=view_notice\&DOC_ID=206603\&ID=all.

Fisheries and Oceans Canada (DFO). 2018b. Pacific Region Integrated Fisheries Management Plan Crab by Trap. 1 April 2018 to 31 March 2019.
D.R. Clough Consulting. 2016. PWGSC DND Col-30 Stream Restoration Report. 8 pp. Hemmera. 2018. Department of National Defence Esquimalt Harbour Wood Waste Assessment, Characterization and Management Plan. Prepared for Public Services and Procurement Canada. 439 pp.

Golder. 2015. Archaeological Overview Assessment of Six Proposed Remedial Dredging Areas in Esquimalt Harbour, CFB Esquimalt BC. 31 March 2015. Non-permit report on file with PSPC, Victoria, BC.

Golder. 2016a. Archaeological Impact Assessment of Remedial Dredging Areas at Lang Cove and F \& G Jetty in Esquimalt Harbour, Esquimalt BC. 30 June 2016. Nonpermit report on file with PSPC, Victoria, BC.

Golder. 2016b. Archaeological Impact Assessment of Remedial Dredging Areas at Lang Cove and F \& G Jetty in Esquimalt Harbour, Esquimalt BC. 30 June 2016. Nonpermit report on file with PSPC, Victoria, BC.

Golder. 2017. Archaeological Overview Assessment of Proposed Remedial Dredging Area, Munroe Head to Thetis Cove in Esquimalt Harbour. 16 March 2017. Non-permit report on file with PSPC, Victoria, BC.

Golder. 2018. Department of National Defence Environmental Effects Determination Report Project: Esquimalt Harbour Remediation Project (C Jetty / ML Floats and Y Jetty / Lang Cove). Prepared by Golder Associates Ltd. 21 August 2018. DGIEGPS EED File \#:2017-21-100946.

Lessard, J. and A. Campbell. 2018. Appendix IV : Impact Assessment Protocol for Works and Developments Potentially Affecting Abalone and their Habitat in Action Plan for the Northern Abalone (Haliotis kamtschatkana) in Canada. Accessed from: https://www.sararegistry.gc.ca/document/doc1742f/p7_e.cfm

State of Washington Department of Ecology (Washington State). 2013. Wood Waste Cleanup: Identifying, Assessing, and Remediating Wood Waste in Marine and Freshwater Environments - Guidance for Implementing the Cleanup Provisions of the Sediment Management Standards Chapter 173-024 WAC. Publication No. 09-09044. 93pp.

## Part 3. Environmental Effects Determination

On the basis of this DND DD EED Report, it has been determined that the impact of this Physical Activity on the environment is as follows:
$\boxtimes$ The Physical Activity is not likely to cause significant adverse environmental effects. The Physical Activity can proceed with application of the mitigation measures specified in the interaction tables in this report.
$\square$ The Physical Activity is likely to cause significant adverse environmental effects that cannot be mitigated. As per the Environmental Impact Assessment Directive, it is recommended that the Physical Activity must not proceed.

For determination of Serious Harm as it relates to the Fisheries Act, refer to Appendix F: DFO Fisheries Act Assessment of Serious Harm.

DND DD EED Report Prepared by:
Name: Mikaela Davis
moarto
Signature

Title: Biologist, R.P.Bio

23-07-2019
Date (dd-mm-yyyy)

DND DD EED Report Reviewed by:
Name: Jenn Holder
Title: MARPAC ESS
$\overline{\text { Signature } \quad \text { Date (dd-mm-yyyy) }}$

## DND DD EED Report Accepted and Approved by:

The undersigned accepts the determination and recommendations of this environmental effects determination report. The undersigned also accepts the responsibility to incorporate the recommendations of the report into the Physical Activity design and implementation.

Name: Mike Waters
Title: MARPAC FSE Environment Officer

FIGURES


Figure 1. Project Location in relation to Esquimalt Harbour, Esquimalt and View Royal, British Columbia (Source: Google Earth).


Publish Date: 2019/07/17, 10:49 AM | User: jsfox
Filepath: \lorcas GGSVobs 0 O90553-03 Esquimalt
$\mathcal{Y}$ ANCHOR
Figure 2






$\uparrow{ }^{\circ}$ ANCHOR $\leftrightarrow$ QEA

##  <br>  <br> SQUIMALT HARBOUR

DND WOOD WASTE
REMEDIATION PILOT PROJECT

SUBJECT ISUET
REQUIRED MATERIAL
PLACEMENT PLAN - WORK AREA 2

proouction	drevemedirevu	
		DESO I AGENT
$\frac{\text { S.ROORRGUEI }}{\text { DRAWN DESSINE }}$		Prou Mgr l gest prou
c. HEwETT		
CHECKED \| VÉRIFIÉ   T. WANG		DES MGR \| GES
Oordination		FRRE INCENDIE
Wes No. I No. otp N 000159.11 .02		
owg .o. INo. dessin		C-2



## APPENDIX A Sediment Chemistry Results

MILESTONE ENVIRONMENTAL CONTRACTING WEST INC
ATTN: Vanessa Osorio
4481-232nd Street
Langley BC V2Z 2 Sa

Date Received: 06-MAY-19
Report Date: 10-MAY-19 18:52 (MT)
Version: FINAL

# Certificate of Analysis 

Lab Work Order \#: L2268216<br>Project P.O. \#:<br>NOT SUBMITTED<br>Job Reference:<br>C of C Numbers:<br>17-830008<br>Legal Site Desc:

Comments: Please note: the water used in the extraction of the Shakeflask analysis was provided by the client. QC with the client supplied water is included in this report.


Carla Fuginski
Account Manager


[^43]
## QC Samples with Qualifiers \& Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Method Blank	Lead (Pb)-Leachable	B	L2268216-1, -2, -3, -4, -5
Qualifiers for Individual Parameters Listed:			
Qualifier	Description		
B	Method Blank exceeds ALS DQO. Associated sample results which are $<$   reliable. Limit of Reporting or $>5$ times blank level are considered		
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).		

## Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
HG-SHKFLSK-CVAFS-VA	Soil	Mercury by CVAAS (SHAKEFLASK)	BC MINISTRY OF ENERGY AND MINES

This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a $3: 1$ liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter and analysed using atomic absorption spectrophotometry (EPA Method 245.7). The Shakeflask extraction is an empirical procedure with pre-defined characteristics. Recovery of some elements ( $\mathrm{Ag}, \mathrm{Bi}, \mathrm{Hg}$, and Sn ) by this method can be variable due to the neutral pH of the extraction fluid. LCS QC sample DQOs for these elements have been established at $50-130 \%$ for this reason
MET-SHKFLSK-MS-VA Soil Metals by ICPMS (SHAKEFLASK) BC MINISTRY OF ENERGY AND MINES
This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a $3: 1$ liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter and analysed using inductively coupled plasma mass spectrophotometry (EPA Method 6020A).
The Shakeflask extraction is an empirical procedure with pre-defined characteristics. Recovery of some elements ( $\mathrm{Ag}, \mathrm{Bi}, \mathrm{Hg}, \mathrm{and} \mathrm{Sn}$ ) by this method can be variable due to the neutral pH of the extraction fluid. LCS QC sample DQOs for these elements have been established at $50-130 \%$ for this reason.
MOISTURE-VA Soil Moisture content CCME PHC in Soil - Tier 1 (mod)
This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of two hours.

## PH-SHKFLSK-PCT-VA Soil pH by PCT (SHAKEFLASK) BC MINISTRY OF ENERGY AND MINES

This analysis is based upon the extraction procedure outlined in "Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Minesites in British Columbia" BC Ministry of Energy and Mines, (Dr. William A. Price, 1997). In summary, the sample is extracted at a $3: 1$ liquid to solids ratio for 24 hours using deionized water. The extract is then allowed to settle and subsequently analysed using procedures adapted from APHA Method $4500-\mathrm{H}$ " pH Value". The pH is determined in the laboratory using a pH electrode.
** ALS test methods may incorporate modifications from specified reference methods to improve performance.
The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

## 17-830008

## GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.
$\mathrm{mg} / \mathrm{kg}$ - milligrams per kilogram based on dry weight of sample.
$\mathrm{mg} / \mathrm{kg}$ wwt - milligrams per kilogram based on wet weight of sample.
$\mathrm{mg} / \mathrm{kg} / \mathrm{wt}$ - milligrams per kilogram based on lipid-adjusted weight of sample.
$\mathrm{mg} / \mathrm{L}$ - milligrams per litre.
<-Less than.
D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.
Test results reported relate only to the samples as received by the laboratory.
UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.
Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Quality Control Report
Workorder: L2268216
Report Date: 10-MAY-19
Page 1 of 5


## Quality Control Report

	Workorder: L2268216		Report Date: 10-MAY-19			Page 2 of 5	
Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-SHKFLSK-MS-VA Soil							
Batch R4630583							
	L2268216-2						
Strontium (Sr)-Leachable	6.70	6.79		mg/L	1.3	30	10-MAY-19
Thallium (TI)-Leachable	<0.0050	<0.0050	RPD-NA	$\mathrm{mg} / \mathrm{L}$	N/A	30	10-MAY-19
Tin (Sn)-Leachable	<0.025	<0.025	RPD-NA	$\mathrm{mg} / \mathrm{L}$	N/A	30	10-MAY-19
Titanium (Ti)-Leachable	<0.50	<0.50	RPD-NA	mg/L	N/A	40	10-MAY-19
Uranium (U)-Leachable	0.00269	0.00265		$\mathrm{mg} / \mathrm{L}$	1.6	30	10-MAY-19
Vanadium (V)-Leachable	<0.050	<0.050	RPD-NA	mg/L	N/A	30	10-MAY-19
Zinc (Zn)-Leachable	<0.50	<0.50	RPD-NA	mg/L	N/A	30	10-MAY-19
WG3045718-3 LCS							
Aluminum (Al)-Leachable		97.2		\%		70-130	10-MAY-19
Antimony (Sb)-Leachable		94.2		\%		70-130	10-MAY-19
Arsenic (As)-Leachable		93.8		\%		70-130	10-MAY-19
Barium (Ba)-Leachable		95.9		\%		70-130	10-MAY-19
Beryllium (Be)-Leachable		102.1		\%		70-130	10-MAY-19
Bismuth (Bi)-Leachable		94.9		\%		50-130	10-MAY-19
Boron (B)-Leachable		102.3		\%		70-130	10-MAY-19
Cadmium (Cd)-Leachable		93.8		\%		70-130	10-MAY-19
Calcium (Ca)-Leachable		91.6		\%		70-130	10-MAY-19
Chromium (Cr)-Leachable		95.5		\%		70-130	10-MAY-19
Cobalt (Co)-Leachable		93.9		\%		70-130	10-MAY-19
Copper (Cu)-Leachable		92.3		\%		70-130	10-MAY-19
Iron (Fe)-Leachable		95.0		\%		70-130	10-MAY-19
Lead (Pb)-Leachable		96.4		\%		70-130	10-MAY-19
Lithium (Li)-Leachable		101.4		\%		70-130	10-MAY-19
Magnesium (Mg)-Leachable		98.0		\%		70-130	10-MAY-19
Manganese (Mn)-Leachable		95.9		\%		70-130	10-MAY-19
Molybdenum (Mo)-Leachable		95.9		\%		70-130	10-MAY-19
Nickel (Ni)-Leachable		93.1		\%		70-130	10-MAY-19
Phosphorus (P)-Leachable		103.2		\%		70-130	10-MAY-19
Potassium (K)-Leachable		91.4		\%		70-130	10-MAY-19
Selenium (Se)-Leachable		91.1		\%		70-130	10-MAY-19
Silicon (Si)-Leachable		97.4		\%		70-130	10-MAY-19
Silver (Ag)-Leachable		88.0		\%		50-130	10-MAY-19
Sodium ( Na )-Leachable		93.0		\%		70-130	10-MAY-19
Strontium (Sr)-Leachable		93.3		\%		70-130	10-MAY-19

Emuïrammental
Quality Control Report

	Workorder: L2268216			Report Date: 10-MAY-19		Page 3 of 5	
Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-SHKFLSK-MS-VA Soil							
Batch R4630583							
WG3045718-3 LCS							
Thallium (TI)-Leachable		86.8		\%		70-130	10-MAY-19
Tin (Sn)-Leachable		95.9		\%		50-130	10-MAY-19
Titanium (Ti)-Leachable		89.1		\%		70-130	10-MAY-19
Uranium (U)-Leachable		98.7		\%		70-130	10-MAY-19
Vanadium (V)-Leachable		95.1		\%		70-130	10-MAY-19
Zinc (Zn)-Leachable		93.7		\%		70-130	10-MAY-19
WG3045718-1 MB							
Aluminum (Al)-Leachable		<0.0050		mg/L		0.005	10-MAY-19
Antimony (Sb)-Leachable		<0.00010		$\mathrm{mg} / \mathrm{L}$		0.0001	10-MAY-19
Arsenic (As)-Leachable		<0.0010		$\mathrm{mg} / \mathrm{L}$		0.001	10-MAY-19
Barium (Ba)-Leachable		<0.0010		$\mathrm{mg} / \mathrm{L}$		0.001	10-MAY-19
Beryllium (Be)-Leachable		<0.00050		$\mathrm{mg} / \mathrm{L}$		0.0005	10-MAY-19
Bismuth (Bi)-Leachable		<0.00050		$\mathrm{mg} / \mathrm{L}$		0.0005	10-MAY-19
Boron (B)-Leachable		<0.010		$\mathrm{mg} / \mathrm{L}$		0.01	10-MAY-19
Cadmium (Cd)-Leachable		<0.000050		$\mathrm{mg} / \mathrm{L}$		0.00005	10-MAY-19
Calcium (Ca)-Leachable		<0.10		$\mathrm{mg} / \mathrm{L}$		0.1	10-MAY-19
Chromium (Cr)-Leachable		<0.00050		$\mathrm{mg} / \mathrm{L}$		0.0005	10-MAY-19
Cobalt (Co)-Leachable		<0.00010		$\mathrm{mg} / \mathrm{L}$		0.0001	10-MAY-19
Copper (Cu)-Leachable		<0.0010		$\mathrm{mg} / \mathrm{L}$		0.001	10-MAY-19
Iron (Fe)-Leachable		<0.030		$\mathrm{mg} / \mathrm{L}$		0.03	10-MAY-19
Lead (Pb)-Leachable		0.00024	B	$\mathrm{mg} / \mathrm{L}$		0.0001	10-MAY-19
Lithium (Li)-Leachable		<0.0050		$\mathrm{mg} / \mathrm{L}$		0.005	10-MAY-19
Magnesium (Mg)-Leachable		<0.050		$\mathrm{mg} / \mathrm{L}$		0.05	10-MAY-19
Manganese (Mn)-Leachable		<0.00050		mg/L		0.0005	10-MAY-19
Molybdenum (Mo)-Leachable		<0.00010		$\mathrm{mg} / \mathrm{L}$		0.0001	10-MAY-19
Nickel (Ni)-Leachable		<0.00050		$\mathrm{mg} / \mathrm{L}$		0.0005	10-MAY-19
Phosphorus (P)-Leachable		<0.30		$\mathrm{mg} / \mathrm{L}$		0.3	10-MAY-19
Potassium (K)-Leachable		<0.050		$\mathrm{mg} / \mathrm{L}$		0.05	10-MAY-19
Selenium (Se)-Leachable		<0.00050		$\mathrm{mg} / \mathrm{L}$		0.0005	10-MAY-19
Silicon (Si)-Leachable		<0.050		$\mathrm{mg} / \mathrm{L}$		0.05	10-MAY-19
Silver (Ag)-Leachable		<0.000050		$\mathrm{mg} / \mathrm{L}$		0.00005	10-MAY-19
Sodium ( Na )-Leachable		<0.050		$\mathrm{mg} / \mathrm{L}$		0.05	10-MAY-19
Strontium (Sr)-Leachable		<0.00050		$\mathrm{mg} / \mathrm{L}$		0.0005	10-MAY-19
Thallium (TI)-Leachable		<0.00010		mg/L		0.0001	10-MAY-19

Emuirommental

## Quality Control Report

		Workorder: L2268216			Report Date: 10-MAY-19		Page 4 of 5	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-SHKFLSK-MS-VA	Soil							
Batch R4630583								
WG3045718-1 MB Tin (Sn)-Leachable			<0.00050		mg/L		0.0005	10-MAY-19
Titanium (Ti)-Leachable			<0.010		$\mathrm{mg} / \mathrm{L}$		0.01	10-MAY-19
Uranium (U)-Leachable			<0.000010		$\mathrm{mg} / \mathrm{L}$		0.00001	10-MAY-19
Vanadium (V)-Leachable			<0.0010		$\mathrm{mg} / \mathrm{L}$		0.001	10-MAY-19
Zinc (Zn)-Leachable			<0.010		$\mathrm{mg} / \mathrm{L}$		0.01	10-MAY-19
MOISTURE-VA	Soil							
Batch R4627151								
WG3043588-3 DUP		L2268216-1						
Moisture		3.08	3.00		\%	2.7	20	07-MAY-19
WG3043588-2 LCS Moisture			99.9		\%		90-110	07-MAY-19
WG3043588-1 MB Moisture			<0.25		\%		0.25	07-MAY-19
Batch R4630280								
WG3046026-2 LCS Moisture			101.2		\%		90-110	09-MAY-19
WG3046026-1 MB Moisture			<0.25		\%		0.25	09-MAY-19
PH-SHKFLSK-PCT-VA	Soil							
Batch R4630896								
WG3045718-2 DUP pH		$\begin{aligned} & \text { L2268216-2 } \\ & 7.45 \end{aligned}$	7.47	J	pH	0.02	0.3	10-MAY-19

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

## Sample Parameter Qualifier Definitions:

Qualifier	Description
B	Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or $>5$ times blank level are   considered reliable.
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

## Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.
ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.


## CLIENT NAME: MILESTONE ENVIRONMENTAL CONTRACTING <br> 4481-232 STREET <br> LANGLEY, BC V2Z2S2 <br> (604) 329-5554

## ATTENTION TO: Vanessa Osorio <br> PROJECT: 18-014 C Jetty ML Floats

AGAT WORK ORDER: 19 V437506
SOIL ANALYSIS REVIEWED BY: Dana Solari, Lab Reporter
TRACE ORGANICS REVIEWED BY: Dana Solari, Lab Reporter
DATE REPORTED: Feb 19, 2019
PAGES (INCLUDING COVER): 16
VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (778) 452-4000

## *NOTES

VERSION 1: Sample receipt temperature $1^{\circ} \mathrm{C}$.

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis
AGAT WORK ORDER: 19V437506
PROJECT: 18-014 C Jetty ML Floats
ATTENTION TO: Vanessa Osorio SAMPLING SITE:

SAMPLED BY

BC CSR Omnibus Metals in Soil


## Certified By:

CLIENT NAME: MILESTONE ENVIRONMENTAL CONTRACTING SAMPLING SITE:

Certificate of Analysis
AGA WORK ORDER: 19V437506
PROJECT: 18-014 C Jetty ML Floats
ATTENTION TO: Vanessa Osorio SAMPLED BY:

BC CSR Omnibus Metals in Soil
DATE RECEIVED: 2019-02-13
DATE REPORTED: 2019-02-19

## Certified By:



CLIENT NAME: MILESTONE ENVIRONMENTAL CONTRACTING SAMPLING SITE:

Certificate of Analysis
AGAT WORK ORDER: 19V437506
PROJECT: 18-014 C Jetty ML Floats
ATTENTION TO: Vanessa Osorio SAMPLED BY:


## Certified By:



CLIENT NAME: MILESTONE ENVIRONMENTAL CONTRACTING SAMPLING SITE:

Certificate of Analysis
AGAT WORK ORDER: 19V437506
PROJECT: 18-014 C Jetty ML Floats
ATTENTION TO: Vanessa Osorio SAMPLED BY:

## BC CSR Omnibus Metals in Soil

DATE RECEIVED: 2019-02-13
DATE REPORTED: 2019-02-19

Comments: RDL-Reported Detection Limit; G / S - Guideline / Standard: Refers to BC CSR Schedule 3.1-Residential Low Density (Site-specific factor: Groundwater used for drinking) Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 9901386-9901400 Results are based on the dry weight of the sample
Analysis performed at AGAT Vancouver (unless marked by *)

## Certified By:



4年 (G) (5) GT Laboratories
CLIENT NAME: MILESTONE ENVIRONMENTAL CONTRACTING SAMPLING SITE:

Certificate of Analysis
AGAT WORK ORDER: 19 V 437506
PROJECT: 18-014 C Jetty ML Floats
ATTENTION TO: Vanessa Osorio
SAMPLED BY:


## Certified By:



EGAT CERTIFICATE OF ANALYSIS (V1)

CLIENT NAME: MILESTONE ENVIRONMENTAL CONTRACTING SAMPLING SITE:

Certificate of Analysis
AGA WORK ORDER: 19V437506
PROJECT: 18-014 C Jetty ML Floats
ATTENTION TO: Vanessa Osorio SAMPLED BY:

LEPH/HEPH Soil	
	DATE REPORTED: 2019-02-19


CLIENT NAME: MILESTONE ENVIRONMENTAL CONTRACTING SAMPLING SITE:

Certificate of Analysis
AGAT WORK ORDER: 19V437506
PROJECT: 18-014 C Jetty ML Floats
ATTENTION TO: Vanessa Osorio
SAMPLED BY:
LEPH/HEPH Soil


## Certified By:



CLIENT NAME: MILESTONE ENVIRONMENTAL CONTRACTING SAMPLING SITE:

Certificate of Analysis
AGAT WORK ORDER: 19V437506
PROJECT: 18-014 C Jetty ML Floats
ATTENTION TO: Vanessa Osorio
SAMPLED BY:

LEPH/HEPH Soil
DATE RECEIVED: 2019-02-13
DATE REPORTED: 2019-02-19

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to BC CSR Schedule 3.1 - Residential Low Density (Site-specific factor: Groundwater used for drinking) Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.
9901386-9901400 Results are based on dry weight of sample
LEPH \& HEPH results have been corrected for PAH contributions.
Analysis performed at AGAT Vancouver (unless marked by *)

## Certified By:



Unit 120, 8600 Glenlyon Parkway
Burnaby, British Columbia
CANADA V5J 0B6
TEL (778)452-4000
FAX (778)452-4074
http://www.agatlabs.com

## Quality Assurance

CLIENT NAME: MILESTONE ENVIRONMENTAL CONTRACTING
PROJECT: 18-014 C Jetty ML Floats
SAMPLING SITE:

AGA WORK ORDER: 19 V 437506
ATTENTION TO: Vanessa Osorio
SAMPLED BY:


Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

## Quality Assurance

CLIENT NAME: MILESTONE ENVIRONMENTAL CONTRACTING
PROJECT: 18-014 C Jetty ML Floats
SAMPLING SITE:

AGA WORK ORDER: 19 V 437506
ATTENTION TO: Vanessa Osorio
SAMPLED BY:


Comments: RDs are calculated using raw analytical data and not the rounded duplicate values reported.

# Method Summary 

CLIENT NAME: MILESTONE ENVIRONMENTAL CONTRACTING
PROJECT: 18-014 C Jetty ML Floats
SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Aluminum	MET-181-6106,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Antimony	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Arsenic	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Barium	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Beryllium	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Bismuth	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Boron	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP/MS
Cadmium	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Chromium	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Cobalt	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Copper	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Iron	MET-181-6106,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Lead	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Lithium	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Manganese	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP-MS
Mercury	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Molybdenum	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Nickel	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Selenium	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Silver	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Strontium	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP-MS
Thallium	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Tin	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Tungsten	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Uranium	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Vanadium	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Zinc	MET-181-6102,   LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS

## Method Summary

CLIENT NAME: MILESTONE ENVIRONMENTAL CONTRACTING
PROJECT: 18-014 C Jetty ML Floats
SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Zirconium	MET-181-6102,	BC MOE Lab Manual C (SALM) and	ICP-MS
	LAB-181-4008	EPA 6020A	
pH 1:2	INOR-181-6031	BC MOE Lab Manual B ( pH,	PH METER

# Method Summary 

CLIENT NAME：MILESTONE ENVIRONMENTAL CONTRACTING
PROJECT：18－014 C Jetty ML Floats
SAMPLING SITE：

AGAT WORK ORDER：19V437506
ATTENTION TO：Vanessa Osorio
SAMPLED BY：

PARAMETER	AGAT S．O．P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG－180－5102	Modified from BC MOE Lab Manual Section D（PAH）	GC／MS
2－Methylnaphthalene	ORG－180－5102	Modified from BC MOE Lab Manual Section D（PAH）	GC／MS
1－Methylnaphthalene	ORG－180－5102	Modified from BC MOE Lab Manual Section D（PAH）	GC／MS
Acenaphthylene	ORG－180－5102	Modified from BC MOE Lab Manual Section D（PAH）	GC／MS
Acenaphthene	ORG－180－5102	Modified from BC MOE Lab Manual Section D（PAH）	GC／MS
Fluorene	ORG－180－5102	Modified from BC MOE Lab Manual Section D（PAH）	GC／MS
Phenanthrene	ORG－180－5102	Modified from BC MOE Lab Manual Section D（PAH）	GC／MS
Anthracene	ORG－180－5102	Modified from BC MOE Lab Manual Section D（PAH）	GC／MS
Fluoranthene	ORG－180－5102	Modified from BC MOE Lab Manual Section D（PAH）	GC／MS
Pyrene	ORG－180－5102	Modified from BC MOE Lab Manual Section D（PAH）	GC／MS
Benzo（a）anthracene	ORG－180－5102	Modified from BC MOE Lab Manual Section D（PAH）	GC／MS
Chrysene	ORG－180－5102	Modified from BC MOE Lab Manual Section D（PAH）	GC／MS
Benzo（b）fluoranthene	ORG－180－5102	Modified from BC MOE Lab Manual Section D（PAH）	GC／MS
Benzo（j）fluoranthene	ORG－180－5102	Modified from BC MOE Lab Manual Section D（PAH）	GC／MS
Benzo（k）fluoranthene	ORG－180－5102	Modified from BC MOE Lab Manual Section D（PAH）	GC／MS
Benzo（a）pyrene	ORG－180－5102	Modified from BC MOE Lab Manual Section D（PAH）	GC／MS
Indeno（1，2，3－c，d）pyrene	ORG－180－5102	Modified from BC MOE Lab Manual Section D（PAH）	GC／MS
Dibenzo（a，h）anthracene	ORG－180－5102	Modified from BC MOE Lab Manual Section D（PAH）	GC／MS
Benzo（g，h，i）perylene	ORG－180－5102	Modified from BC MOE Lab Manual Section D（PAH）	GC／MS
Quinoline	ORG－180－5102	Modified from BC MOE Lab Manual Section D（PAH）	GC／MS
Naphthalene－d8	ORG－180－5102	Modified from BC MOE Lab Manual Section D（PAH）	GC／MS
2－Fluorobiphenyl	ORG－180－5102	modified from BC MOE Lab Manual Section D（PAH）	GC／MS
P－Terphenyl－d14	ORG－180－5102	modified from BC MOE Lab Manual Section D（PAH）	GC／MS
EPH C10－C19	ORG－180－5101	Modified from BCMOE Lab Manual Section D（EPH）	GC／FID
EPH C19－C32	ORG－180－5101	Modified from BCMOE Lab Manual Section D（EPH）	GC／FID
LEPH C10－C19	ORG－180－5101	Modified from BCMOE Lab Manual Section D（EPH）	GC／FID
HEPH C19－C32	ORG－180－5101	Modified from BCMOE Lab Manual Section D（EPH）	GC／FID

## Chain of Custody Record



## Invoice To

Same as above Yes $⿴ 囗 ⿰ 丿 ㇄$
Company：
Contact：
$\qquad$

Address：

> Phone:


PO／AFE\＃：

LABORATORY   USE（LAB ID \＃	SAMPLE IDENTIFICATION
$940176 b$	River Sand Sample 1
93	River Sand Sample 1 DUP
94	River Sand Sample 2
95	River Sand Sample 3
96	River Sand Sample 4
97	River Sand Sample 5
97	River Sand Sample 6
99	River Sand Sample 7
400	River Sand Sample 8


	Cote／Tme	Ssmp
	Date／Tme	Santo
Samplas Reinquished by Print Name and Sility	Dare／Time	Samp

## (न) (5) Laboratories

## SAMPLE INTEGRITY RECEIPT FORM - BURNABY

Work Order \# 19V437506

## Receiving Basics: <br> Received From: <br> client

Waybill \#: $\qquad$
Sample Quantities:
Coolers:_Yロx Containers: 18

Time Sensitive Issues:
Earliest Date Sampled:
Feb 17.2019
ALREADY EXCEEDED?

## Non-Conformances:

3 temperatures of samples* and average of each cooler: (record differing temperatures on the VoC next to sample ID's) *use jars when available
(1) $\underline{O}+\underline{+}+\underline{1}=1^{\circ}{ }^{\circ}(2) \ldots+\ldots+\ldots=ـ^{\circ} \mathrm{C}(3) \ldots+\ldots+\ldots=\mathcal{C}^{\circ} \mathrm{C}(4) \ldots+\ldots+\ldots={ }^{\circ}{ }^{\circ} \mathrm{C}$ Was ice or ice pack present: Integrity Issues:
$\qquad$
$\square$
$\qquad$
$\qquad$
$\qquad$
Account Project Manager: $\qquad$ have they been notified of the above issues: Yes No
Whom spoken to: $\qquad$ Date and Time: $\qquad$
Additional Notes:
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## APPENDIX B <br> Siderite SDS Information Sheet

## SDS INFORMATION SHEET: IRON CARBONATE

## Section 1: Product and Company

Other Product Name(s) :
FERROUS CARBONATE or SIDERITE

	SIDCO Minerals, Inc.   2801 Richmond Rd.   Box 51   Texarkana, TX 75503   USA
Company	$903-838-4493$
Fax	$903-838-0275$
Email	$\underline{\text { sidcomine@aol.com }}$

## Section 2: Hazards Identification

## Emergency Overview No unusual fire or spill hazard. Low health risk by inhalation

## Potential Health Effects

Eyes	May cause mechanical irritation
Skin	None
Inhalation	Low health risk by inhalation. Treat as nuisance dust.

## Section 3: Composition / Information on Ingredients

Product name	Siderite is a natural earth mineral composed mainly of   ferrous carbonate
Synonyms	Ferrous Carbonate, Iron (II) Carbonate
Color Index	N/A

## SDS INFORMATION SHEET: IRON CARBONATE



## Section 4: First Aid Measures

After Inhalation	Remove to fresh air. If breathing is labored or stopped, give   artificial respiration. Get immediate medical attention.
After Skin Contact	Wash area of skin with soap and water
After Eye Contact	Flush eyes with plenty of water for at least 15 minutes. Seek   medical attention if irritation develops or persists.
After ingestion	If victim is conscious and alert, give large quantities of water to   induce vomiting. Seek medical attention immediately.

## Section 5: Fire Fighting Measures

Fire	Not considered to be a fire hazard. Not flammable.
Explosion	Not considered to be an explosion hazard.
Extinguishing Media	This material is not combustable and is not anticipated to react   with commercially employed extinguishing media. Use appropriate   extinguishing media surrounding fire.

## SDS INFORMATION SHEET: IRON CARBONATE

## Section 6: Accidental Release Measures

Protect against identified hazards through use of prescribed persona; protection equipment, proper work and hygiene practices. Limit foot and vehicular traffic to minimize mechanical agitation and dispersion. Employ a vacuum, equipped with HEPA (High Efficiency Particulate Spill Procedures Air) filter, for clean-up of the spill material. If no vacuum is available, use a broom and shovel to collect excess powder in the area. Recover uncontaminated material for use. Vacuum or sweep remaining material keeping dust to a minimum. Residual material should then be cleared, utilizing the process of wet sweeping, to avoid dust generation.

This is a solid material and will not travel far from the spill location
Containment Techniques
Spill Response Equipment The following equipment is recommended for spill response:

- vacuum, equipped with a HEPA filter
- broom, wet mop
- dust pan, shovel, scoop
- bags, drums or sacks for collection

All personnel should utilize the following protective equipment when performing spill response activities:
Personal Protective

- gloves (rubber or leather)
- safety glasses or goggles
- respiratory equipment as recommended in Section 8


## Section 7: Handling and Storage

A moderately dry, well-ventilated area is considered adequate for

Storage handling and storage. Usual precautions for nuisance dust should be followed.

When handling product, all personnel are directed to:

- Wear all specified elements of PPE, as directed by this document,

Handling or under location specific requirements, whichever is more conservative

- Avoid creating dust, where possible.


## Section 8: Exposure Controls / Personal Protection

Engineering Controls Use with adequate ventilation to meet exposure limits in Section 2.
Respiratory Protection Use NIOSH-approved dust respirator, if overexposure exists.

## SDS INFORMATION SHEET: IRON CARBONATE

Skin Protection	Leather or rubber gloves.
Eye/Face Protection	Safety glasses, goggles or face shield are recommended.
-	To control potential exposures, avoid creating dust.   Do not eat, drink, smoke, or perform other hand-to-mouth
Work Hygiene Practices	activities in product use or handling area.   Wash thoroughly after handling product.

## Section 9: Physical and Chemical Properties

Earths are natural products. Technical data varies or are not measurable.

Appearance Color: Light Brown/ Taupe
Form: Powder or granular
Odor
Odorless

## Section 10: Stability and Reactivity

Stability Stable under ordinary conditions of use and storage.
Hazardous Decomposition Products None
Hazardous Polymerization Products Will not occur.
Incompatibilities None known.
Conditions to avoid None

## Section 11: Toxicological Information

Ingestion Ingestion of mineral compounds may cause abdominal pain and nausea.

Inhalation May cause irritation of mucous membrane or delayed respiratory disease if dust is inhaled over a prolonged period of time.

Skin Contact No known dangerous acute or chronic effects.
Eye Contact If dust intrudes into eyes, eye irritation may occur.

# SDS INFORMATION SHEET: IRON CARBONATE 

Respiratory disease may result from prolonged exposure. Can cause eye irritation.
Carcinogenicity: NTP: No IARC Monographs: Yes (Silica)
Signs and Symptoms of Exposure: Excessive inhalation of dust may
Health Hazards ( Acute and Chronic )result in shortness of breath and reduced pulmonary function and wheezing.
Aggravation of Pre-Existing Conditions: Persons with impaired respiratory function may be more susceptible to the effects of the substance.

## Section 12: Ecological Information

No harmful effects known other than those associated with suspended inert solids in water.

## Section 13: Disposal Concerns

Recommended Disposal Method
Collect in containers, bags or covered dumpster boxes. Whatever cannot be saved for recovery or recycling should be managed in an appropriate and approved waste facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

## Section 14: Transportation Information

U.S. DOT

Canadian TDG Hazard Class
Not regulated
and PIN
Not regulated for domestic transport by land, rail or air. Enter the proper freight classification on the shipping documents, "MSDS Number" and "Product Name" for shipping purposes.

## Section 15: Regulatory Information

SARA 313 Title III	Section 311/312 Hazardous Categories: None   Section 313 Toxic Chemicals: None
OSHA Status	This product is not considered hazardous.
TSCA Status	Components of this product are listed in the TSCA Inventory.
California Proposition 65	Not Listed
CERCLA Reportable Quantity	None

# SDS INFORMATION SHEET: IRON CARBONATE 

Canadian Ingredient Disclosure List: Components are listed. Canadian WHMIS: This material is not a controlled substance under WHMIS.<br>European Community: This material is not subject to classification according to EEC Directive 67/548/EEC.

## Section 16: Other Information

Date 15 FEB 2017

The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. SIDCO Minerals, Inc. shall not be held responsible or liable for any damage resulting from handling or from contact with the product.

## APPENDIX C Onondaga Lake Final Design

## APPENDIX I

## PH AMENDMENT EVALUATION

1.1 CAP pH MODEL MEMO
1.2 SIDERITE LEACHATE EVALUATION

## I. 2

## SIDERITE LEACHATE EVALUATION

## APPENDIX I. 2

## SIDERITE LEACHATE EVALUATION

Testing was conducted to evaluate potential water quality impacts during and after placement of siderite as part of an amended sediment cap. This included bulk chemical analyses for general characterization, modified elutriate testing (MET), and sequential batch leach testing (SBLT) (Parsons, 2009).

The MET evaluation was completed to evaluate potential impacts during material placement. Siderite was mixed with distilled/deionized water, and water samples were collected and analyzed following a 24 -hour settlement period. The supernatant was analyzed for total and dissolved target analyte list (TAL) metals, semivolatiles (EPA Method 8260), total cyanide, hardness, pH , and total suspended solids. For dissolved concentrations, an aliquot of the supernatant was centrifuged prior to analysis.

Results from the MET testing (Parsons, 2009) verify that water quality impacts from siderite during cap placement will not be a concern. As shown in Table I.2-1, there were no exceedances of NYSDEC acute surface water quality criteria. Any impacts to water quality would be minor, localized and dissipate rapidly following material placement.

The SBLT was designed to evaluate leaching of constituents from siderite by upwelling porewater following cap placement. SBLT testing was conducted using porewater from the in-lake waste deposit (ILWD), which is the area where siderite is proposed in the initial design as part of the sediment cap. SBLT testing was completed on powered, pelletized and granular siderite. For each of the three forms of siderite ILWD porewater and siderite amendment were added to a container at a liquid to solid ratio of $4: 1$ and tumbled for 24 hours. The leachate was then removed by centrifugation and decanting. The porewater was replaced and the mixture placed on the tumbler for another 24 hours, after which the porewater was decanted again. This procedure was repeated for a total of four cycles. The initial porewater and leachates from each cycle were analyzed for TAL metals, semivolatiles, total cyanide, pH , and total suspended solids were also measured. Subsequent design evaluations indicate that the amended cap will use granular siderite. Therefore, the discussion below focuses on the results from the granular siderite testing.

SBLT test results verify that there would be no significant long-term impacts resulting from porewater migration through the siderite. Table I.2-2 compares the SBLT leachate analyte concentrations with the ILWD porewater in order to identify potential contributions from siderite. As shown in Table I.2-2, the majority of analytes were not detected or actually showed decreased concentrations in the leachate, perhaps as a result of precipitation, such as for mercury and vanadium. There were some metals, such as aluminum and zinc, which showed variability, or at most, potentially minor increases in comparison to the ILWD porewater. The only metal which showed consistently elevated concentrations in the leachate was cobalt. However, the average concentration of cobalt in the leachate was approximately $6.4 \mathrm{ug} / \mathrm{L}$, which only slightly
exceeds the NYSDEC chronic surface water criteria of $5 \mathrm{ug} / \mathrm{L}$. Any metals contribution to the cap porewater would be minor and would be quickly attenuated by the overlying sediment cap.

Semivolatile organic compounds were also analyzed for in the leachate, primarily to identify any impacts due to the manufacturing process associated with the pelletized siderite, which is no longer under consideration. Bis(2-ethylhexyl)phthalate (BEHP) was detected sporadically at low levels in the leachate from all forms of siderite. BEHP is a common laboratory or sample handling artifact. It is used as a plasticizer and may be derived from materials that the siderite samples were in contact with during shipping or sample processing. It would not be expected to be present in granular siderite.

## REFERENCES

Parsons, 2009. Onondaga Lake Pre-Design Investigation: Phase IV Work Plan - Addendum 7 Cap pH Amendment Evaluation Addendum.
Parsons, 2009. Onondaga Lake Pre-Design Investigation: Draft Phase IV Data Summary Report Appendix H Cap pH Amendment Study
http://www.dec.ny.gov/regs/4590.html

Table I.2-1
Modified Elutriate Test Results Compared to NYSDEC Class B/C Water Quality Standards

Parameter	Units	Elutriate Blank ${ }^{1}$	Granular Siderite (Sidco)			Acute   Aquatic   Standard
			Rep 1	Rep 2	Rep 3	
Metals						
Aluminum (dissolved)	ug/L	23.4 B	212 B	177 B	1,190	NS
Arsenic (dissolved)	ug/L	<2	<2	<2	<2.7	340
Beryllium (total)	ug/L	0.4 B	6.6 B	4.5 B	6.2	NS
Cadmium (dissolved)	ug/L	<0.21	<0.21	$<0.21$	0.19 J	$15.7^{2}$
Chromium (dissolved)	ug/L	<1.1	<1.1	<1.1	2.1 J	1,580 ${ }^{2}$
Cobalt (total)	ug/L	<0.4	173	119	107	NS
Copper (dissolved)	ug/L	<4.6	<4.6	<4.6	<2.7	$43.5^{2}$
Lead (dissolved)	ug/L	<1.7	<1.7	<1.7	<1.3	$366^{2}$
Mercury (dissolved)	ug/L	<0.038	<0.038	<0.038	<0.038	1.4
Nickel (dissolved)	ug/L	<0.78	107 B	88.7 B	40.4 B	1,350 ${ }^{2}$
Selenium (dissolved)	ug/L	<2.9	<2.9	<2.9	<1.6	NS
Silver (dissolved)	ug/L	<0.54	<0.54	$<0.54$	<0.68	NS
Thallium (total)	ug/L	<2.4	4 J	3.4 J	<2.4	NS
Vanadium (total)	ug/L	<1.9	549	353	632	NS
Zinc (dissolved)	ug/L	<3.1	212	183	32.6 B	$337^{2}$
Semivolatiles						
2,4-Dichlorophenol	ug/L	<0.13	<0.13	$<0.13$	<0.13	NS
2,4-Dimethylphenol	ug/L	$<0.077$	<0.078	<0.076	<0.077	NS
2,4-Dinitrophenol	ug/L	<5.9	<6	<5.8	<5.8	NS
bis(2-Ethylhexyl) phthalate	ug/L	4.1 B	<0.45	<0.44	3 BJ	NS
Hexachlorobenzene	$\mathrm{ug} / \mathrm{L}$	$<0.17$	<0.18	$<0.17$	<0.17	NS
Hexachlorobutadiene	ug/L	<0.12	<0.11	<0.11	<0.11	NS
Hexachlorocyclopentadiene	ug/L	$<0.11$	<0.11	<0.11	<0.11	NS
Hexachloroethane	ug/L	<0.077	$<0.074$	<0.073	$<0.072$	NS
Pentachlorophenol	ug/L	<1.8	<1.8	<1.8	<1.8	$10.5^{2}$
Phenol	ug/L	<0.24	<0.23	<0.22	9.8	NS
Other						
Cyanide	ug/L	<1.5	<1.5	<1.5	<1.5	22
pH	su	5	5.3	5.4	5.7	NS

## Notes:

1: Elutriate blank is DI water with a pH of 5
2: Water quality standard is pH and/or hardness dependent. Standard calculated using the lowest reported hardness ( $348 \mathrm{mg} / \mathrm{L}$ ) and pH (7.18) from 2006 monitoring data, Onondaga Lake Ambient Monitoring Program
<- result is non-detect at the reported method detection limit (MDL)
$J$ - estimated value, result is less than the reporting limit (RL) but greater than the MDL
B - analyte detected in associated laboratory blank
NS - no standard

ONONDAGA LAKE CAPPING, DREDGING, HABITAT AND PROFUNDAL ZONE (SMU 8)

FINAL DESIGN

Table I.2-2
Sequential Batch Leach Test Results for Granular Siderite (Sidco)

			Rep 1				Rep 2			
Parameter	Units	SBLT   Solution ${ }^{1}$	Leach Cycle 1	Leach Cycle 2	Leach Cycle 3	Leach Cycle 4	Leach Cycle 1	Leach Cycle 2	Leach Cycle 3	Leach Cycle 4
Metals										
Aluminum (dissolved)	ug/L	23.1 BJ	33.4 BJ	26.3 BJ	<9.7	20.6 J	46.6 BJ	26.3 BJ	<9.7	13 J
Arsenic (dissolved)	ug/L	13.6	6.2 J	7.4 J	5 J	8 J	5.8 J	7.4 J	8.7 J	5.8 J
Beryllium (total)	ug/L	0.8 J	0.75 J	1.1 J	0.83 J	0.65 J	0.75 J	1.1 J	0.89 J	0.69 J
Cadmium (dissolved)	ug/L	<0.13	<0.13	<0.13	<0.13	<0.13	1.1 J	<0.13	<0.13	<0.13
Chromium (dissolved)	ug/L	<0.57	0.67 J	1.6 J	1.6 J	5.3	1.3 J	0.94 J	1.2 J	2.6 J
Cobalt (total)	ug/L	1.5 J	15.9 J	4.6 J	2.7 J	3.2 J	13.2 J	4.6 J	3.5 J	3.4 J
Copper (dissolved)	ug/L	$<2.7$	3.8 J	4.8 J	<2.7	12.3 J	5.7 J	4.8 J	<2.7	<2.7
Lead (dissolved)	ug/L	<6.3	<6.3	<6.3	<6.3	<6.3	<6.3	<6.3	<6.3	<6.3
Mercury (dissolved)	ug/L	26.2	$<0.038$	$<0.038$	0.046 J	0.095 J	<0.038	$<0.038$	0.048 J	0.076 J
Nickel (dissolved)	ug/L	167	245	248	200	185	268	243	206	181
Selenium (dissolved)	ug/L	5.7	8.1	8.5	6.1	6.2	7.5	5.2	6.6	3.7 J
Silver (dissolved)	ug/L	$<0.68$	<0.68	$<0.68$	$<0.68$	$<0.68$	$<0.68$	<0.68	<0.68	<0.68
Thallium (total)	ug/L	<2.4	<2.4	<2.4	<2.4	<2.4	<2.4	<2.4	<2.4	<2.4
Vanadium (total)	ug/L	2.2 J	<1.9	<1.9	<1.9	<1.9	2.9 J	<1.9	<1.9	<1.9
Zinc (dissolved)	ug/L	11.4 BJ	11.7 BJ	24 BJ	30.3 B	41.4 J	22.9 B	13.7 BJ	13.8 BJ	12 BJ
Semivolatiles										
2,4-Dichlorophenol	ug/L	<0.2	<0.24	<0.19	<0.24	$<0.21$	<0.21	<0.19	<0.24	<0.2
2,4-Dimethylphenol	ug/L	7 J	3.7 J	6.6 J	7.1 J	8 J	3.4 J	6.4 J	0.9 J	8.7 J
2,4-Dinitrophenol	ug/L	<9.1	<11	<8.8	<11	<9.8	<9.5	<8.8	<11	<9
bis(2-Ethylhexyl) phthalate	ug/L	$<0.69$	7.1 J	5.6 J	$<0.81$	6.6 J	6.3 J	5.6 J	<0.81	5.6 J
Hexachlorobenzene	ug/L	$<0.27$	<0.32	$<0.26$	<0.32	<0.29	<0.28	<0.26	<0.32	<0.27
Hexachlorobutadiene	ug/L	$<0.18$	$<0.21$	$<0.17$	$<0.21$	<0.21	<0.19	<0.17	<0.21	$<0.21$
Hexachlorocyclopentadiene	ug/L	$<0.17$	<0.2	<0.16	<0.2	$<0.18$	<0.18	<0.16	<0.2	<0.17
Hexachloroethane	ug/L	$<0.11$	$<0.13$	$<0.11$	$<0.13$	<0.12	<0.12	$<0.11$	$<0.13$	<0.11
Pentachlorophenol	ug/L	<2.8	<2.9	<2.7	<3.3	<3	<2.8	<2.7	<3.3	<2.8
Phenol	ug/L	520	420	570 J*	520	580	410	540	71	650
Other										
Total Cyanide	ug/L	696	135	28.7	22.8	36	136	19.4	11.5	32.6
pH	s.u.	11.8	8.1	7.1	6.8	7.4	8.2	7.2	7.4	7.1

Notes:
1: SBLT blank solution is porewater collected from location TR-03A.
<- result is non-detect at the reported method detection limit (MDL)
$J$ - estimated value, result is less than the reporting limit (RL) but greater than the MDL
B - analyte detected in associated laboratory blank

## APPENDIX D <br> Supplemental Treatability Recommendations Report



## Supplemental Treatability Recommendations Report

Prepared for Public Works and Government Services Canada

# Supplemental Treatability Recommendations Report 

## Prepared for

Public Works and Government Services Canada

## Prepared by

Anchor QEA, LLC
1201 3rd Avenue, Suite 2600
Seattle, Washington, 98101

## TABLE OF CONTENTS

1 Introduction ..... 1
2 Materials and Methods ..... 3
2.1 Sample Collection ..... 3
2.2 Preliminary Reactive Amendment Screening ..... 3
2.3 Mesocosm Setup ..... 4
2.4 Mesocosm Monitoring ..... 5
2.4.1 Overlying Water ..... 5
2.4.2 Sulphide Concentration Profiles ..... 5
2.4.3 Sediment Porewater Sulphide Speciation by Microelectrode Voltammetry ..... 6
3 Results ..... 7
3.1 Initial Sample Characterization ..... 7
3.2 Preliminary Reactive Amendment Screening ..... 7
3.3 Mesocosm Monitoring ..... 7
3.3.1 Dissolved Sulphide and Water Quality Monitoring in Overlying Water ..... 7
3.3.2 Porewater Sulphide Concentration Profiles ..... 8
3.4 Sulphide Speciation by Microelectrode Voltammetry ..... 9
4 Summary and Recommendations ..... 11
5 References ..... 14

## TABLES

\(\left.$$
\begin{array}{ll}\text { Table 1 } & \begin{array}{l}\text { Sediment Cores Collected for the Bench-Scale Treatability Testing } \\
\text { Table 2 }\end{array}
$$ <br>
Media Tested in the Preliminary Reactive Amendment Screening Tests and the <br>

Bench-Scale Treatability Testing\end{array}\right]\)| Table 3 | Mesocosm Setup |
| :--- | :--- |
| Table 4 | Results of Initial Sediment Composite Characterization <br> Table 5 |
| Table 6 | Results of Initial Surface Water Characterization <br> Results Water Quality Measurements in the Mesocosms with Sediment <br> Composite A |
| Table 7 | Results of Water Quality Measurements in the Mesocosms with Sediment <br> Composite B |
| Table 8 | DGT Deployment Time and Vertical Position |

## FIGURES

Figure 1
Figure 2

Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8 Dissolved Sulphide Concentration Profiles in the Mesocosms with Sediment Composite B
Figure 9 Sediment Control Mesocosm After 10 Days (a) and After 40 Days of Incubation (b)
Figure 10 Layer of Black Precipitate Formed at the Overlying Water/Sand and Sediment/Sand Interfaces in the Sand-Only Mesocosm After 40 Days
Figure 11 Layer of Black Precipitate Formed at the Sediment/Amended Sand Interface in the Siderite-Sand Amended Mesocosm
Figure 12 The $\mathrm{MnO}_{2}$-Sand Amended Mesocosm (a) and MMO-Sand Amended Mesocosm (b) After 40 Days

Figure 13 Cyclic Voltammograms Showing the Detection of Various Sulphide Species in Sediment Porewater of Core EHWW-16-SC-2 (Approximately 5 cm from the Top)
Figure 14 Cyclic Voltammograms Showing the Detection of Various Sulphide Species in Sediment Porewater in the Sediment Control Mesocosms with Sediment Composite A (a) and B (b)

## APPENDIX

Appendix A Mesocosm and Pilot Test Modeling

## ABBREVIATIONS

$\mu \mathrm{m}$	micrometre
$\mu \mathrm{S} / \mathrm{cm}$	microsiemens per centimetre
$\mathrm{Au} / \mathrm{Hg}$	gold/mercury
AVS	acid volatile sulphide
cm	centimetre
CV	cyclic voltammetry
DGT	diffusive gradients in thin films
DO	dissolved oxygen
EGL	Environmental Geochemistry Laboratory
Fe	iron
$\mathrm{Fe}(\mathrm{II})$	ferrous iron
Fe (III)	ferric iron
FeCO	siderite
FeS	mackinawite
$\mathrm{FeS}(\mathrm{aq})$	iron complexed sulphide
$\mathrm{FeS} \mathrm{S}_{2}$	pyrite
GFH	granular ferric hydroxide
H 2 S	hydrogen sulphide
$\mathrm{ICP}-\mathrm{AES}$	inductively coupled plasma atomic emission spectroscopy
L	litre
M	moles per litre
MDL	method detection limit
$\mathrm{mg} / \mathrm{L}$	milligrams per litre
mL	millilitre
mm	millimetre
MMO	mixed metal oxide
Mn	manganese
MnO	manganese dioxide
ORP	oxidation reduction potential   PTFE
$\mathrm{S}^{0}$	polytetrafluoroethylene
SC	elemental sulfur
	specific conductivity

## 1 Introduction

This report presents results of bench-scale treatability testing to assess the effectiveness of sand cover mixed with treatment amendments to reduce bioavailable porewater sulphide concentrations in sediment containing wood waste in Esquimalt Harbour, British Columbia, Canada (site). Elevated sulphide concentrations have been measured in sediment porewater in areas where wood waste has accumulated as a result of log booming, log storage, and wood mill operations over the last 70 years at the site. Wood waste deposits can negatively affect marine benthic communities through physical alteration of sediments and increased toxicity from by-products of anaerobic decomposition, especially porewater sulphides.

Bench-scale treatability testing was conducted to assess the effectiveness of sand cover mixed with different mineral-based reactive amendments to reduce bioavailable porewater sulphide concentrations at the sediment-water interface for protection of sediment and surface water quality at the site. Several reactive amendments were evaluated in laboratory mesocosms to assess their effectiveness for potential use for future remediation, including for use in a pilot study anticipated to be conducted in fiscal year 2019/2010. Amendments are ranked based on their ability to reduce sulphide concentrations in sediment porewater, cost, and any potential secondary water quality impacts. Appendix A contains modeled predictions to assess the effectiveness of sand and the treatment amendments used in the bench-scale testing at reducing porewater sulphide concentrations, both to compare modeled results to the bench-scale testing findings and to evaluate long-term effectiveness of the recommended amendment.

Sulphides are generated in sediment under anaerobic conditions in the presence of organic matter by bacteria that use chemicals other than oxygen. An excess amount of organic matter can result in excess amounts of hydrogen sulphide to accumulate in porewater, causing toxicity in the sediment and in the water column close to the sediment (Podger 2013). The amount of hydrogen sulphide as a component of total porewater sulphides can vary depending on pH (Rearick et al. 2005). Site-specific benchmarks developed for porewater sulphide in Esquimalt Harbour were 0.0157 milligram per litre ( $\mathrm{mg} / \mathrm{L}$; threshold effects benchmark) and $0.617 \mathrm{mg} / \mathrm{L}$ (probable effects benchmark; SLR 2016). These are similar to literature reference values, which found that larval development tests of bay mussels (Mytilus edulis) had a half-maximal effective concentration (EC50) for total sulphide of $0.1 \mathrm{mg} / \mathrm{L}$ (Knezovich 1996).

Reduced dissolved sulphide concentrations in sediment porewater may occur through the following processes:

- Precipitation of iron sulphide minerals such as mackinawite ( FeS ) or pyrite ( $\mathrm{FeS}_{2}$ ) under reducing conditions
- Abiotic oxidation by iron oxides and manganese (Mn) oxides
- Manipulating sediment redox conditions to regulate the activity of the sulphate-reducing bacteria

In anoxic environments, mackinawite or pyrite can be formed by the reaction of sulphide with ferrous iron (Fe(II)) ion (Lennie et al. 1997). Over time mackinawite can transform to thermodynamically more stable pyrite. Siderite $\left(\mathrm{FeCO}_{3}\right)$ is a potential treatment amendment that dissolves in water and produces carbonate and $\mathrm{Fe}(\mathrm{II})$ ions, the latter of which can combine with sulphide to precipitate iron sulphides. Fe(II) released from siderite may also be oxidized to ferric iron (Fe(III)) and precipitated in the form of iron oxides and oxyhydroxides, which can abiotically oxidize dissolved sulphide.

Other potential treatment amendments include $\mathrm{Fe}(\mathrm{III})$ and manganese oxides ( $\mathrm{Mn}(\mathrm{IV})$ ), which can also abiotically oxidize dissolved sulphide into sulphate. The Fe(II) ions produced may also sequester dissolved sulphide by precipitation of $\mathrm{Fe}(\mathrm{II})$ sulphide. Mn(IV) oxide (e.g., pyrolusite, birnessite) mineral amendments can suppress dissolved sulphide concentration in sediment porewater by inhibiting microbial sulphate reduction (Vlassopoulos et al. 2018).

Redox manipulation by addition of an electron acceptor that is more oxidizing than sulphate (e.g., oxygen, nitrate, Mn , and Fe ) can result in redox levels that inhibit sulphate reduction, which can have the effect of suppressing the production of dissolved sulphide. This strategy has been demonstrated to be successful on sediment cleanup in Onondaga Lake, New York, where the addition of nitrate to the lake's bottom waters prevents the development of sulphate-reducing conditions (Todorova et al. 2009). Like nitrate, Mn (IV)-reducing conditions and Fe(III)-reducing conditions contribute to a more oxidizing redox potential than those under which sulphate reduction takes place, thus amendment of sediments with Mn (IV) oxide or Fe (III) oxide can inhibit reduction of sulphate into sulphides.

Reactive amendments selected for the bench-scale treatability testing were siderite (iron carbonate), manganese oxide, and mixed metal oxide following preliminary screening. This report presents the materials, methods. and testing results of several mesocosms to simulate field conditions and evaluate effectiveness of the amendments. The objective of the treatability study is to provide benchscale performance data for the reactive media tested to aid in selection of a suitable amendment and dose for pilot testing that could also be evaluated as part of a larger cleanup of the wood waste areas in Esquimalt Harbour. Treatability testing was performed in Anchor QEA's Environmental Geochemistry Laboratory (EGL) in Portland, Oregon.

## 2 Materials and Methods

### 2.1 Sample Collection

In December 2018, sediment cores and surface water were collected from the site for use in the bench-scale treatability testing (Anchor QEA 2019a). Table 1 presents the locations and core length of each sediment core, which were 7.5 -centimetre (cm) in diameter. The sediment cores were shipped upright and on ice to EGL in Portland, Oregon. Surface water samples were collected in 20litre ( L ) plastic cubitainers. The sediment cores were frozen at $-20^{\circ} \mathrm{C}$, and the surface water samples were stored at $4^{\circ} \mathrm{C}$ until use. Two different sediment composite samples were prepared by homogenizing sediment cores collected from different areas (Table 1). EHWW-16 is located in the northern area of Esquimalt Harbour, which contains considerable wood waste deposits, much of which comprise finer/less coarse wood than other areas of the harbour. EHWW-3, EHWW-55, and EHWW-57 are located in the area north of Inskip Islands in areas known to contain thick wood deposits that tend to contain more coarse wood waste. These two areas are candidates for remediation and are generally located in the area where pilot study testing is planned. The sediment cores collected from the central area (EHWW-39 and EHWW-59) were saved and stored for potential future testing or characterization.

Sediments from EHWW-16 were homogenized for one set of testing (Sediment Composite A), and sediments from EHWW-3, EHWW-55, and EHWW-57 were homogenized for a second set of testing (Sediment Composite B). The homogenized sediments were subsampled in duplicate and analyzed for iron and manganese (digestion/inductively coupled plasma atomic emission spectroscopy [ICPAES]), sulphide (distillation/methylene blue method), total organic carbon (high temperature oxidation and coulometric detection), and total solids.

On receipt of the site surface water samples at EGL, pH, oxidation reduction potential (ORP), specific conductance, and dissolved oxygen (DO) were measured at room temperature. Surface water was analyzed in duplicate for cations and metals (sodium, potassium, calcium, magnesium, iron, and manganese by ICP-AES), anions (chloride, sulphate, and nitrate by ion chromatography), sulphide, dissolved organic carbon, and alkalinity.

### 2.2 Preliminary Reactive Amendment Screening

Reactive amendments to be used in the bench-scale treatability testing program were first subjected to preliminary batch screening testing. Reaction batch tests were performed to determine removal efficiency of dissolved sulphide in water by several reactive amendments. Table 2 lists the reactive amendments tested in the preliminary batch screening tests. The reaction rate batch tests were set up in 500 millilitre $(\mathrm{mL})$ polyethylene bottles at a liquid/solid mass ratio (mass of test solution to dry mass of amendment) of 250 . Test solution was prepared using deoxygenated deionized water.

Sodium sulphide nonahydrate $\left(\mathrm{Na}_{2} \mathrm{~S} \cdot 9 \mathrm{H}_{2} \mathrm{O}\right)$ was dissolved to target initial dissolved sulphide concentration at approximately $100 \mathrm{mg} / \mathrm{L}$ as hydrogen sulphide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$. Sodium chloride $(\mathrm{NaCl})$ and sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$ were dissolved in test solution at 0.7 moles per litre ( M ) and 0.01 M to maintain ionic strength and pH , respectively. In one test bottle, test solution and reactive amendment was prepared and sealed under nitrogen atmosphere. Test bottles were kept in a heatsealed, nitrogen-filled Mylar bag and gently agitated on a shaker table for 3 days to ensure proper mixing. Solutions in the test bottles were sampled after 1 and 3 days of reaction. Water samples were filtered by 0.45 -micrometre $(\mu \mathrm{m})$ syringe filter and immediately analyzed for dissolved sulphide by the iodine method (Standard Method 4500-S2-F; APHA 2005). Results are presented in Section 3.2.

### 2.3 Mesocosm Setup

Sediment cores were thawed, sediment was extruded from the core tubes and homogenized under a nitrogen atmosphere to produce two representative sediment composite samples for testing. Large wood debris, rocks, and large shell fragments were removed by hand. Smaller wood debris were not removed to maintain the carbon source for microbial activity. Sediment mesocosms were prepared in acrylic columns ( 10 cm diameter by 50 cm tall) with polytetrafluoroethylene (PTFE) end caps held in place by rubber O-rings. Five mesocosms were prepared for each of the two sediment composites (10 mesocosms; Table 3), including three reactive amendments mixed with sand, a sediment control (sediment only), and a sand control (sediment overlain by sand only).

Approximately 1.6 kilograms of wet homogenized sediment composite was placed in each column to achieve a sediment depth of 15 cm . The three reactive amendments were mixed with sand at a dose of $5 \%$ on a dry-weight basis. A $10-\mathrm{cm}$ layer consisting of sand with or without reactive amendment was placed on top of the previously loaded sediment for a total depth of 25 cm . Site water was then slowly added to the mesocosms on top of the sediment to provide an overlying water column depth of 15 cm . Figure 1 provides a schematic of the sediment mesocosm apparatus, and Figure 2 presents images of a sediment control mesocosm (2a) and a mesocosm with the siderite-amended sand layer (2b). After adding surface water to the mesocosms, they were sealed with a PTFE cap. The mesocosms were then connected to a $\mathrm{N}_{2}$ gas distribution manifold, and the overlying water was purged with high-purity nitrogen for several hours to remove DO and promote establishment of anaerobic conditions (Figure 3). Mesocosms were kept in the dark except during sampling. Overlying water was periodically topped off as needed to maintain the water depth in the mesocosms. The mesocosms were allowed to stabilize for approximately 1 week prior to sampling.

### 2.4 Mesocosm Monitoring

### 2.4.1 Overlying Water

Approximately 50 mL of overlying water was periodically collected from each mesocosm to detect the onset of sulphate-reducing conditions. Water samples were immediately filtered $(0.45-\mu \mathrm{m}$ polyethersulfone membranes) and analyzed for dissolved sulphide concentrations by the iodine method (SW-846 Test Method 9034). The method detection limit (MDL) of the iodine method was $0.1 \mathrm{mg} / \mathrm{L}$ as S . General water quality parameters including pH , ORP, specific conductivity (SC), and DO were also measured using a multi-probe flowblock monitoring system (Geotech Environmental Equipment, Inc), which allows simultaneous measurement on a small volume of water without contacting air.

### 2.4.2 Sulphide Concentration Profiles

Diffusive gradients in thin films (DGT) devices were used to monitor dissolved sulphide concentration profiles across the sediment/(amended) sand/water interface. This method, developed over the last two decades (Teasdale et al. 1999; Rearick et al. 2005), is becoming increasingly common as a reliable in situ technique for quantifying sulphide levels in sediment porewater. The method is based on the reaction of silver iodide (Agl), a white powder impregnated into a gel, with sulphide to produce silver sulphide ( $\mathrm{Ag}_{2} \mathrm{~S}$ ), a black solid. The gray-scale intensity of the colour developed is proportional to the amount of sulphide accumulated in the gel.

Flat-probe DGT assemblies preloaded for sulphide measurement were purchased from DGT Research (http://www.dgtresearch.com). The DGT sampler consist of a DGT holder containing a 0.6 -millimetre (mm)-thick silver iodide (Agl)-impregnated binding gel layer, overlain by a 0.78 -mm thick polyacrylamide diffusive gel, and held in place by a $0.45-\mu \mathrm{m}$ cellulose nitrate membrane filter. The window size of the DGT sampler is 1.8 by 15 cm (Figure 4). Prior to use, the DGT assemblies were deoxygenated by immersion in 0.3 M sodium chloride purged with high-purity nitrogen gas for at least 2 days to remove any residual oxygen.

Dissolved sulphide concentration profiles across the sediment/(amended) sand/water interface were measured by manually deploying and retrieving the flat-probe DGT assemblies from the top of the mesocosms. Exposure time of the DGT assemblies ranged between 6 and 48 hours as discussed below. On retrieval, the DGT assemblies were immediately rinsed with deionized water to remove residual sulphide and fines to stop the reaction of sulphide with Agl in the binding gels. Then, the binding gels were immediately recovered and placed on blotting paper. The binding gels were then laid on a thin cellophane sheet (Bio-Rad), and covered with a second cellophane sheet. The sheet assembly was then placed in a vacuum gel dryer (Bio-Rad, Model 583) and dried for 2 hours at $80^{\circ} \mathrm{C}$. The dried sheet was digitally scanned (Konica Minolta BizHub-C364) and saved as a grey-scale image
file. Gel analysis software (UN-SCAN-IT Gel Version 7.1) was used to measure and analyze the greyscale intensity of the images.

Dissolved sulphide concentrations were determined from grey-scale intensity data and exposure time according to Equation 1. This equation is based on the standard DGT equations proposed by Teasdale et al. (1999), which involves plotting the gray-scale intensity to dissolved sulphide concentrations and fitting the data to a function relating gray-scale intensity to dissolved sulphide concentrations. The data were obtained with different exposure times to confirm the equation is valid for each exposure time. As shown in Figure 5, the data fit well to an exponential function (Equation 1) over the entire range of sulphide concentrations tested ( 0.1 to $195 \mathrm{mg} / \mathrm{L}$ as $\mathrm{H}_{2} \mathrm{~S}$ ) for each exposure time.

## Equation 1

DGT Calibration Curve for Sulphide Concentration Using Optical Densitometry

$$
\begin{gathered}
\mathrm{C}=\frac{2.993 \times \exp (0.018 \times I)}{t} \\
R^{2}=0.963
\end{gathered}
$$

where:
$\mathrm{C}=$ sulphide concentration ( $\mathrm{mg} / \mathrm{L}$ as $\mathrm{H}_{2} \mathrm{~S}$ )
1 = grey-scale intensity of binding gel image
$t=$ exposure time (hours)

### 2.4.3 Sediment Porewater Sulphide Speciation by Microelectrode Voltammetry

Gold/mercury ( $\mathrm{Au} / \mathrm{Hg}$ ) microelectrode voltammetry is used to determine various reduced sulfur compounds and ions in situ without sample manipulation (Luther et al. 2001). In this study, $\mathrm{Au} / \mathrm{Hg}$ microelectrode voltammetry was used to identify sulphide speciation in sediment porewater from selected sediment cores and the composites. A DLK-70 potentiostat (AIS Inc., New Jersey) with an $\mathrm{Au} / \mathrm{Hg}$ working electrode mounted on a micromanipulator and $\mathrm{Ag} / \mathrm{AgCl}$ reference and platinum (Pt) counter electrodes was used for voltammetry measurements. The $\mathrm{Au} / \mathrm{Hg}$ microelectrodes were fabricated, conditioned, and calibrated following published procedures (Luther et al. 1998, 2008, 2013). Cyclic voltammetry (CV) scans were collected from -0.1 to -1.8 volts at different depths and the working electrode was conditioned before advancing to the next measurement.

## 3 Results

### 3.1 Initial Sample Characterization

Characterization results for the sediment composites and surface water are presented in Tables 4 and 5 , respectively.

### 3.2 Preliminary Reactive Amendment Screening

In the preliminary batch screening tests, reactive amendments were compared and evaluated in terms of their efficiency to remove dissolved sulphide from water (Figure 6). Overall, powder reactive amendments removed dissolved sulphide from the test solution faster than granular reactive amendments probably because of a larger surface area. Among all reactive media, powder mixed metal oxide (MMO) achieved the best performance to remove dissolved sulphide. Granular MMO also removed dissolved sulphide approximately $50 \%$ within 3 days. The powder manganese dioxide $\left(\mathrm{MnO}_{2}\right)$ amendment performed the second best to remove dissolved sulphide. The granular ferric hydroxide (GFH) amendment achieved approximately $25 \%$ removal. Although dissolved sulphide removed by granular siderite was kinetically not fast, powder siderite removed dissolved sulphide efficiently. The iron-oxide slag and basic oxygen furnace slag amendments sequestered dissolved sulphide to some extent, but they were not as effective as the siderite amendment. Sand and oyster shell did not reduce dissolved sulphide concentration at all.

Based on the results of the preliminary batch screening test and cost of each amendment (i.e., material and shipping costs), three reactive amendments (siderite, $\mathrm{MnO}_{2}$, and MMO ) were selected for bench-scale treatability testing (Table 2). Although GFH efficiently removed dissolved sulphide, it is relatively expensive material compared to the three reactive amendments. The three amendments selected for testing are commercially available in bulk quantity.

Powder form of the selected reactive amendments was used for mesocosms because their reaction kinetics are faster than those in granular form. This enables evaluation and comparison of their performance within the relatively short bench-scale testing duration.

### 3.3 Mesocosm Monitoring

### 3.3.1 Dissolved Sulphide and Water Quality Monitoring in Overlying Water

Overlying water in the mesocosms was sampled at $7,14,28$, and 40 days after setup, and the water samples were analyzed for dissolved sulphide (the iodine method), $\mathrm{pH}, \mathrm{ORP}, \mathrm{SC}$, and DO (Table 6 and 7). By 28 days, dissolved sulphide concentrations of 0.9 to $1.2 \mathrm{mg} / \mathrm{L}$ as $\mathrm{H}_{2} \mathrm{~S}$ were detected in the control mesocosms, while the amendment mesocosms were all close to or less than the MDL of the iodine method ( $0.1 \mathrm{mg} / \mathrm{L}$ ). After 40 days, however, dissolved sulphide was detected in the sand-only
amended mesocosms, while the mesocosms with the reactive media-amended sand layers were all close to or less than the MDL. The low ORP and DO levels indicate that anaerobic conditions were established in the mesocosms. ORP and DO levels were lowest in the control mesocosms, slightly higher in the sand-only mesocosms, and highest in the amended sand mesocosms. ORP was slightly higher in the $\mathrm{MnO}_{2}$ and MMO amended sand mesocosms than in the siderite amended sand mesocosms. SC and pH remained relatively stable in each mesocosm.

These results indicate that 1) reactive amendments within the sand layer can buffer redox condition and reduce sulphide transport from the underlying sediment layer to overlying water, and 2 ) a sandonly layer can be temporarily effective, but not effective over time in isolating reduced sediment from overlying water compared to an amended sand layer.

### 3.3.2 Porewater Sulphide Concentration Profiles

Sulphide concentration profiles in the mesocosms were monitored using flat-probe DGTs deployed at 10, 20, and 40 days. Deployment times and vertical deployment depths of the DGT assemblies were adjusted for each mesocosm and sampling event to account for expected sulphide levels (Table 8).

Sulphide concentration profiles in the mesocosms are presented in Figure 7 for sediment composite $A$ and Figure 8 for sediment composite B. In the control mesocosms, the binding gels were saturated below 4 to 6 cm depth for a 12-hour exposure time, and the deeper portions of the profiles represent minimum sulphide concentrations (i.e., sulphide concentrations as $\mathrm{H}_{2} \mathrm{~S}$ were greater than $12 \mathrm{mg} / \mathrm{L}$ ). The DGT results confirmed that sulfate-reducing conditions were maintained in the control mesocosms throughout the testing ( $\sim 20 \mathrm{mg} / \mathrm{L}$ as $\mathrm{H}_{2} \mathrm{~S}$ in sediment porewater). Sulphide concentrations varied slightly at different depths in the control mesocosm within sediment composite B, probably because of the presence of small wood debris, rocks, and shell fragments. Overlying water had sulphide odour in the control mesocosms after 7 days. Figure 9 shows images of the control mesocosm after 10 and 40 days of incubation. After 40 days, black precipitate, likely mackinawite (FeS(s)), was observed in overlying water and the sediment surface in the control mesocosms.

Dissolved sulphide was not detected by DGT in overlying water or in sand layer porewater in the sand-only mesocosms throughout the testing, which suggests that the sand layer itself has some effectiveness in mitigating sulphide concentrations in overlying water (Figure 7 and 8). However, dissolved sulphide was detected in overlying water after 40 days by the iodine method (but not the DGT method). As discussed in Section 3.4, several different sulphide species were identified in sediment porewater, and it is likely that dissolved sulphide species that cannot be detected by DGT diffused into overlying water through the sand layer over time. In the sand-only mesocosms, dissolved sulphide concentrations were measured by DGT in sediment porewater below the sand
over time (Figure 7 and 8), indicating that a sand layer is not effective at reducing sulphide concentration in underlying sediment. After 40 days, black precipitate, likely FeS(s), was observed at the overlying water/sand interface and at the sediment/sand interface in the sand-only mesocosms. Figure 10 shows images of the sand-only amended mesocosm after 40 days of incubation. This observation at the sand surface indicates iron complexed sulphide (FeS(aq)) and other sulphide species, which cannot be detected by DGT, diffused into overlying water through the sand layer and precipitate as $\mathrm{FeS}(\mathrm{s})$.

In the mesocosms with the siderite-amended sand layer, dissolved sulphide concentrations were not detected in siderite-sand porewater and overlying water by DGT during the testing (Figure 7 and 8). Dissolved sulphide concentrations in overlying water were also close to or less than the MDL of the iodine method ( $0.1 \mathrm{mg} / \mathrm{L}$ ). In contrast to the sand-only mesocosms, dissolved sulphide concentrations in sediment porewater measured by DGT decreased over time in the mesocosms with the siderite-amended sand layer. This clearly indicates that siderite is effective in mitigating dissolved sulphide not only in overlying water and amended sand layer porewater, but also for a few cm into the underlying sediment porewater. In contrast to the sand-only mesocosms, black precipitates were not observed on top of the siderite-amended sand layer after 40 days (Figure 11). Black precipitates were formed at the amended sand/sediment interface, indicating siderite reacted with sulphide in sediment porewater, likely as a result of siderite dissolving to $\mathrm{Fe}(\mathrm{II})$ and carbonate ions, and $\mathrm{Fe}(\mathrm{II})$ ion reacting with dissolved sulphide to form $\mathrm{FeS}(\mathrm{s})$.

In the mesocosms with the $\mathrm{MnO}_{2}$-amended and MMO -amended sand layers, dissolved sulphide concentrations were not detected in amended sand layer porewater and overlying water by DGT during the testing (Figure 7 and 8). Dissolved sulphide concentrations in overlying water were also close to or less than the MDL of the iodine method ( $0.1 \mathrm{mg} / \mathrm{L}$ ). The mesocosms with the $\mathrm{MnO}_{2}$ amended and MMO-amended sand layers showed reduced dissolved sulphide concentrations not only in overlying water and amended sand layer porewater but also for a few cm into the underlying sediment porewater. The $\mathrm{MnO}_{2}$-amended and MMO -amended sand layers exhibited better effects to suppress dissolved sulphide concentrations in sediment porewater than the siderite-amended sand layer. This may be due to abiotic oxidation of dissolved sulphide and/or redox manipulation by $\mathrm{MnO}_{2}$ and MMO. Images show $\mathrm{MnO}_{2}$ and MMO reacted with dissolved sulphide at the amended sand/sediment interface after 40 days (Figure 12), likely because MMO contains iron oxides, which might reduce to $\mathrm{Fe}(I I)$ ion and react with dissolved sulphide to form $\mathrm{FeS}(\mathrm{s})$.

### 3.4 Sulphide Speciation by Microelectrode Voltammetry

Prior to homogenizing the sediment cores, microelectrode voltammetry measurements were collected to identify sulphide species present in sediment porewater. The Au/Hg working electrode, $\mathrm{Ag} / \mathrm{AgCl}$ reference, and Pt counter electrode were inserted into the sediment cores from the top. Vertical profiles could not be obtained due to large wood debris, rocks, and shell fragments, which
made it difficult to advance the $\mathrm{Au} / \mathrm{Hg}$ working electrode deeper into the sediment. In addition, the extremely high sulphide concentrations in the sediment porewater poisoned the $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode which had to be frequently reconditioned. Therefore only a few voltammetry scans could be obtained from the upper 5 cm of selected cores.

Figure 13 shows cyclic voltammograms obtained from sediment core EHWW-16-SC-2. Dissolved $\mathrm{H}_{2} \mathrm{~S}$ concentration was high enough to saturate the $\mathrm{Au} / \mathrm{Hg}$ working electrode. The voltammograms indicate the presence of free $\mathrm{H}_{2} \mathrm{~S}$, acid-volatile sulphide (AVS), and a trace of iron complexed sulphide ( $\mathrm{FeS}(\mathrm{aq})$ ). AVS is defined as the pool of sulfur compounds that is released as $\mathrm{H}_{2} \mathrm{~S}$ gas when a sample is reacted with acid. AVS may include larger molecular clusters of $\mathrm{FeS}(\mathrm{aq})$ and $\mathrm{FeS}(\mathrm{s})$ nanoparticles or colloids, which are generally less bioavailable than free $\mathrm{H}_{2} \mathrm{~S}$. The large AVS peak in the cyclic voltammograms indicate that a significant portion of the sulphide in the sediment porewater is present in these less bioavailable forms.

After incubating the mesocosms for about a month, $\mathrm{Au} / \mathrm{Hg}$ microelectrode voltammetry measurement was conducted to identify sulphide speciation in the sediments in the control mesocosms. The $\mathrm{Au} / \mathrm{Hg}$ working electrode was slowly inserted into the sediments to conduct CV at different depths. $\mathrm{Ag} / \mathrm{AgCl}$ reference and Pt counter electrode were submerged into overlying water. During the measurement, nitrogen gas was slowly filled above overlying water to maintain low DO concentrations. Figure 14 shows cyclic voltammograms obtained from the sediments in the control mesocosms. The cyclic voltammograms also indicate the presence of several different sulphide species such as free $\mathrm{H}_{2} \mathrm{~S}, \mathrm{AVS}$, $\mathrm{FeS}(\mathrm{aq})$, and a trace of elemental sulfur ( $\mathrm{S}^{0}$ ). High FeS(aq) peaks were observed in the cyclic voltammograms, which indicates sediment porewater is rich in $\mathrm{FeS}(\mathrm{aq})$ and may correspond to the observation of black spots, probably $\mathrm{FeS}(\mathrm{s})$, in the sediment layer in the mesocosms (Figure 11 and 12). It should be noted that most of the porewater sulphide is not present as free $\mathrm{H}_{2} \mathrm{~S}$ species based on the microelectrode voltammetry results. Peak sizes of sulphide species in the cyclic voltammograms are different between the sediment core EHWW-16 (Figure 13) and the sediments of the control mesocosms (Figure 14). This is likely because the sediment composites were prepared by mixing and homogenizing the different cores, and then incubated with surface water under anoxic conditions for about a month (Table 1). In situ, sulphide speciation can be variable vertically within a single sediment profile and at different locations, depending on the amount of sulphide production by sulfate-reducing bacteria, which is linked to the amount of bioavailable organic carbon (which can vary by wood type and age of wood), water temperature, and other sitespecific conditions.

## 4 Summary and Recommendations

Bench-scale mesocosms were prepared in the laboratory using sediment and surface water collected from the site. The effectiveness of a sand layer with three different reactive amendments (i.e., siderite, $\mathrm{MnO}_{2}$, and MMO ) was studied to assess effectiveness at suppressing sulphide concentrations in the mesocosms. Dissolved sulphide concentration profiles in mesocosms were measured by DGT after 10,20 , and 40 days of incubation. Dissolved sulphide concentrations in overlying water in mesocosms were also periodically measured by the iodine method.

The DGT results confirmed that sulfate-reducing conditions were maintained in sediment in the control mesocosms throughout the testing ( $\sim 20 \mathrm{mg} / \mathrm{L}$ as $\mathrm{H}_{2} \mathrm{~S}$ in sediment porewater). ORP and DO levels were maintained at low levels in all mesocosms. These results suggest that field conditions were effectively simulated, which is necessary to accurately evaluate the performance of the selected reactive amendments in the testing.

The following conclusions can be drawn from the bench-scale testing:

- Sand-only layer effectiveness. The testing demonstrated that a sand layer can decrease the diffusion of dissolved sulphide from the sediment layer. While dissolved sulphide in sand layer porewater was not detected by DGT in the sand-only mesocosms, dissolved sulphide was detected in overlying water after 40 days by the iodine method. This suggests that sulphide species that cannot be detected by DGT diffused into overlying water through the sand layer. The microelectrode voltammetry results indicate that several different sulphide species are present in sediment porewater in the sediment composites. Although those may not be bioavailable sulphide species, a sand-only layer is not completely effective at maintaining low sulphide concentrations. The dissolved sulphide concentrations measured by the iodine method confirmed a sand layer is not effective at reducing dissolved sulphide concentration in underlying sediment.
- Siderite-amendment effectiveness. Siderite-amended sand suppressed dissolved sulphide concentrations not only in overlying water and amended sand porewater but also in underlying sediment porewater over the 40-day test duration. This is likely the result of siderite dissolving into $\mathrm{Fe}(\mathrm{II})$ ion, which reacts with dissolved sulphide to precipitate $\mathrm{FeS}(\mathrm{s})$ in the sediment layer. Dissolved sulphide concentrations in overlying water were also close to or less than the MDL of the iodine method ( $0.1 \mathrm{mg} / \mathrm{L}$ ), indicating that siderite is effective at suppressing sulphide species that cannot be detected by DGT.
- $\mathrm{MnO}_{2}$ and MMO -amendment effectiveness. $\mathrm{MnO}_{2}$-amended sand and MMO -amended sand significantly suppressed dissolved sulphide concentration in sediment porewater. The $\mathrm{MnO}_{2}-$ amended and MMO-amended sand layers exhibited better effects to suppress dissolved sulphide concentrations in sediment porewater than the siderite-amended sand layer. The mechanism is likely a result of 1 ) manganese oxides and iron oxides abiotically oxidizing
dissolved sulphide and 2) an elevated redox condition that is inhibiting sulfate reducing conditions.
- Sulphide species. Microelectrode voltammetry measurement was conducted to identify sulphide speciation in the sediment cores collected from the site. Cyclic voltammograms collected from the core indicated the presence of different sulphide species such as free $\mathrm{H}_{2} \mathrm{~S}$, AVS, $\mathrm{FeS}(\mathrm{aq})$, and $\mathrm{S}^{0}$ in site sediment and sediment composites, which are less bioavailable forms. Free $\mathrm{H}_{2} \mathrm{~S}$ is reactive to Agl and can be measured by DGT, but DGT may not be able to measure AVS, FeS(aq), and $\mathrm{S}^{0}$.

The results of this study support the use of reactive amendments mixed with sand as part of an in situ pilot study to assess the effectiveness in wood waste areas of Esquimalt Harbour. Bench-scale test results indicate that sand amended with siderite, $\mathrm{MnO}_{2}$, or MMO are each expected to be effective at reducing dissolved porewater sulphide concentrations. The results of the bench-scale testing were consistent with modeled predictions of sulphide concentrations (Appendix A). The following findings from this study and Appendix A should be considered during design of the in situ pilot study and for consideration as part of a potential larger-scale remediation of wood waste areas in Esquimalt Harbour:

- Powder versus granular treatment amendments. Testing was conducted with powder reactive amendments because their reaction kinetics are faster than those in granular form, which was required to evaluate and compare its performance within the relatively short bench-scale testing duration. However, granular forms of these amendments are expected to be just as effective as the powder forms in the long term. Granular forms are also expected to be better suited for in situ application, particularly for mixing and placement effectiveness.
- Amendment dosage. The dosage of the amendment ( $5 \%$ on a dry-weight basis) was shown to be effective at reducing dissolved porewater sulphide concentrations for both bench-scale testing and modeled predictions. Additional literature review of the potential effects of these amendments on benthic invertebrate and aquatic communities are summarized in the Remedial Options Analysis Report (Anchor QEA 2019b). Kinetic modeling in Appendix A indicates that siderite is expected to be a more effective amendment in the long-term. These modeling results support the use of siderite at $5 \%$ by weight in a 1 -foot-thick amended sand layer for the pilot study. Modeled results also suggest that siderite is expected to be effective at suppressing porewater sulphide concentrations in the long term (i.e., greater than 30 years). Long-term model simulations and the associated effectiveness of the dose of siderite should be refined following additional testing (i.e., labile organic carbon component of wood waste) and monitoring from the pilot study planned for next fiscal year to inform the effectiveness and permanence of this cleanup technology on a larger scale as part of future remediation activities.
- Availability and cost. Siderite, $\mathrm{MnO}_{2}$, and MMO are all commercially available in granular form; however, siderite tends to be less expensive. Granular siderite is planned for the pilot study, and the supplier indicated that the cost is the same for powdered and granular forms. Additional evaluation on cost and supply factors should be conducted to assess the use of siderite as a treatment amendment for the pilot study and potentially as part of larger-scale remediation activities in the future.


## 5 References

American Public Health Association (APHA), 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. http://standardmethods.org

Anchor QEA (Anchor QEA, LLC), 2019a. Data Memorandum. Wood Waste Remediation Project. Prepared for Public Works and Government Services Canada. March 2019.

Anchor QEA, 2019b. Remedial Options Analysis Report. Wood Waste Remediation Project. Prepared for Public Works and Government Services Canada. March 2019.

Anchor QEA, 2019c. Pilot Study Basis of Design Memorandum. Wood Waste Remediation Project. Prepared for Public Works and Government Services Canada. March 2019.

Knezovich, J.P., D.J. Steichen, J.A. Jelinski, and S.L. Anderson, 1996. "Sulfide Tolerance of Four Marine Species Used to Evaluate Sediment and Pore-Water Toxicity." Bulletin of Environmental Contamination and Toxicology 57:450-457.

Lennie, A.R., Redfern, A.T.R., Champness, P.E., Stoddart, C.P., Schofield, P.F. and D.J. Vaughn, 1997. Transformation of mackinawite to greigite: An in situ X-ray powder diffraction and transmission electron microscope study. American Mineralogist 82:203-309.

Luther III, G.W. and A. S. Madison, 2013. Determination of dissolved oxygen, hydrogen sulfide, iron(II), and manganese(II) in wetland pore waters, in SSSA Book Series 10. Methods in Biogeochemistry of Wetlands, DeLaune, R.D., Reddy, K.R., Richardson, C.J. and J. P. Megonigal, ed., 87-106.

Luther III, G.W., Brendel, P.J., Lewis, B.L., Sundby, B., Lefrancois, L., Silverberg, N., and D.B. Nuzzio, 1998. Simultaneous measurement of $\mathrm{O}_{2}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{I}^{-}$, and $\mathrm{S}(-\mathrm{II})$ in marine pore waters with a solid-state voltammetric microelectrode. Limnology and Oceanography 43:325-333.

Luther III, G.W., Glazer, B.T., Hohmann, L., Popp, J.I., Taillefert, M., Rozan, T.F., Brendel, P.J., Theberge, S.M., and D.B. Nuzzio, 2001. Sulfur speciation monitored in situ with solid state gold amalgam voltammetric microelectrodes: polysulfides as a special case in sediments, microbial mats and hydrothermal vent waters. Journal of Environmental Monitoring 3:61-66.

Luther III, G.W., Glazer, B.T., Ma, S.F., Trouwborst, R.E., Moore, T.S., Metzger, E., Kraiya, C., Waite, T.J., Druschel, G., Sundby, B., Taillefert, M., Nuzzio, D.B., Shank, T.M., Lewis, B.L., and P.J. Brendel, 2008. Use of voltammetric solidstate (micro)electrodes for studying biogeochemical processes: laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA). Marine Chemistry 108:221-235.

Rearick, M.S., Gilmour, C.C., Heyes, A., R.P. Mason, 2005. Measuring sulphide accumulation in diffusive gradients in thin films by means of purge and trap followed by ion-selective electrode. Environmental Chemistry \& Toxicology 24:3043-3047.

Teasdale, P.R., Hayward, S., and W. Davison, 1999. In situ, high-resolution measurement of dissolved sulphide using diffusive gradients in thin films with computer-imaging densitometry. Analytical Chemistry 71:2186-2191.

Todorova, S.G., Driscoll, C.T., Matthews, D.A., Effler, S.W., Hines M.E., and E.A. Henry, 2009. Evidence for regulation of monomethyl mercury by nitrate in a seasonally stratified, eutrophic lake. Environmental Science and Technology 43:6572-6578.

Vlassopoulos, D., M. Kanematsu, E.A. Henry, J. Goin, A. Leven, D. Glaser, S.S. Brown, and P.A. O’Day, 2018. "Manganese(IV) Oxide Amendments Reduce Methylmercury Concentrations in Sediment Porewater." Environmental Science Processes \& Impacts 20: 1746-1760.

## Tables

Table 1
Sediment Cores Collected for the Bench-Scale Treatability Testing

Sediment Composite	Area	Sample Location	Core ID	Core Length (centimetres)
A	Northern Area	EHWW-16	EHWW-16-SC-1	76
			EHWW-16-SC-2	69
			EHWW-16-SC-3	70
B	Inskip Island	EHWW-3	EHWW-03-SC-2	40
			EHWW-03-SC-3	73
			EHWW-03-SC-4	70
		EHWW-55	EHWW-55-SC-1	19
			EHWW-55-SC-2	13
		EHWW-57	EHWW-57-SC-1	22
			EHWW-57-SC-2	50
			EHWW-57-SC-3	53
$C^{1}$	Central Area	EHWW-39	EHWW-39-SC-1	75
			EHWW-39-SC-2	70
			EHWW-39-SC-3	69
		EHWW-59	EHWW-59-SC-1	64
			EHWW-59-SC-2	67
			EHWW-59-SC-3	67

Note:

1. Composite C was archived.

Table 2
Media Tested in the Preliminary Reactive Amendment Screening Tests and the Bench-Scale Treatability Testing

Media	Source	Selected for Bench-Scale Treatability Testing
Sand	Target Products Ltd. (https://www.targetproducts.com/)	
Oyster shell (Granular)	Myco Supply (https://mycosupply.com/)	
Iron-oxide slag (Granular)	Copperhill Industries, LLC	
Iron-oxide slag (Powder)	(https://www.mineralsandores.com/)	
Basic oxygen furnace slag (Granular)	Stein, Inc. (http://www.steininc.com/)	
Siderite (Granular)		
Siderite (Powder)	Sidco Minerals (https.//sidcominerals.com/)	$\bigcirc$
Mixed metal oxide (Granular)	Carus Corporation	
Mixed metal oxide (Powder)	(http://www.caruscorporation.com/)	$\bigcirc$
Granular ferric hydroxide	Evoqua Water Technologies, LLC (https://www.evoqua.com)	
Manganese dioxide (Powder)	Laguna Clay Co. (http://www.lagunaclay.com/)	$\bigcirc$

## Table 3

Mesocosm Setup

Mesocosm	Sediment Composite	Cap Layer	Sediment Layer   Thickness (cm)	Sand/   Amended Sand Layer Thickness (cm)	Overlying Water Depth (cm)
1	A	None	15	0	25
2		Sand	15	10	20
3		Siderite (5\%) + Sand	15	10	20
4		Manganese dioxide (5\%) + Sand	15	10	20
5		MMO (5\%) + Sand	15	10	20
6	B	None	15	0	25
7		Sand	15	10	20
8		Siderite (5\%) + Sand	15	10	20
9		Manganese dioxide (5\%) + Sand	15	10	20
10		MMO (5\%) + Sand	15	10	20

## Table 4

Results of Initial Sediment Composite Characterization

Parameter		Result $^{\mathbf{1}}$	
	Sediment Composite A	Sediment Composite B	Units
Sulphide	23.2	610	$\mathrm{mg} / \mathrm{kg}$
Iron	14,900	12,700	$\mathrm{mg} / \mathrm{kg}$
Manganese	150	132	$\mathrm{mg} / \mathrm{kg}$
Total Organic Carbon	11,000	33,000	$\mathrm{mg} / \mathrm{kg}$
Total Solids	61.0	53.3	$\mathrm{wt} \%$

Note:

1. Average of two replicate samples. Standard deviation in parentheses. The samples were field-filtered and filtered at EGL again before subsampling for characterization.

## Table 5

Results of Initial Surface Water Characterization

Parameter	Result $^{\mathbf{1}}$	Units
Manganese, total	$<0.02$	$\mathrm{mg} / \mathrm{L}$
Manganese, dissolved	$<0.02$	$\mathrm{mg} / \mathrm{L}$
Iron, total	$<0.50$	$\mathrm{mg} / \mathrm{L}$
Iron, dissolved	$<0.50$	$\mathrm{mg} / \mathrm{L}$
Sodium	10,100	$\mathrm{mg} / \mathrm{L}$
Potassium	392	$\mathrm{mg} / \mathrm{L}$
Calcium	433	$\mathrm{mg} / \mathrm{L}$
Magnesium	1,150	$\mathrm{mg} / \mathrm{L}$
Chloride	17,600	$\mathrm{mg} / \mathrm{L}$
Sulphate	2,540	$\mathrm{mg} / \mathrm{L}$
Fluoride	0.795	$\mathrm{mg} / \mathrm{L}$
Nitrate ${ }^{2}$	0.439	$\mathrm{mg} / \mathrm{L} \mathrm{as} \mathrm{N}$
Ammonia	$<0.01$	$\mathrm{mg} / \mathrm{L} \mathrm{as} \mathrm{N}$
Nitrite ${ }^{3}$	$<0.02$	$\mathrm{mg} / \mathrm{L} \mathrm{as} \mathrm{N}$
Alkalinity	103	$\mathrm{mg} / \mathrm{L} \mathrm{as} \mathrm{CaCO} 3$
Sulphide	$<0.05$	$\mathrm{mg} / \mathrm{L}$
Dissolved Organic Carbon	$<1.00$	$\mathrm{mg} / \mathrm{L}$
pH	7.31	-
Oxidation-Reduction Potential	237.4	mV
Specific Conductivity	32,600	$\mathrm{~m} / \mathrm{cm}$
Dissolved Oxygen	9.76	

Notes:

1. Average of two replicate samples. Standard deviation in parentheses. The samples were field-filtered and filtered again prior to analysis.
2. Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)
3. Sample received at the lab outside the holding time.

## Table 6

## Results of Water Quality Measurements in the Mesocosms with Sediment Composite A

Parameter	Units	Sediment composite A (EHWW-16)																			
		No Amendment				Sand Only				Siderite + Sand				MnO ${ }^{+}$Sand				MMO + Sand			
		7 days	14 days	28 days	40 days	7 days	14 days	28 days	40 days	7 days	14 days	28 days	40 days	7 days	14 days	28 days	40 days	7 days	14 days	28 days	40 days
pH	-	6.49	6.72	7.35	7.84	6.78	6.90	7.35	7.95	6.92	6.93	7.49	8.01	6.99	7.00	7.50	8.02	7.40	7.02	7.40	7.89
ORP	mV	-115.2	-118.7	-194.6	-220.6	-48.1	-52.5	-153.8	-170.9	9.8	55.7	-154.7	-89.3	30.9	70.1	-72.2	-68.9	47.4	87.1	-12.8	-32.8
SC	$\mu \mathrm{S} / \mathrm{cm}$	32,600	32,500	32,700	32,500	32,700	32,500	32,600	32,500	32,700	32,600	32,700	32,400	32,600	32,500	32,600	32,400	32,600	32,600	32,600	32,500
DO	$\mathrm{mg} / \mathrm{L}$	0.89	0.87	0.57	0.66	1.01	1.05	0.73	0.57	1.68	0.94	0.92	0.69	1.50	0.77	0.95	0.64	1.70	0.87	0.84	0.79
Sulphide	mg/L	1.0	0.9	1.1	1.2	0.2	0.1	0.2	1.0	0.0	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.1	0.0	0.0	0.0

## Table 7

Results of Water Quality Measurements in the Mesocosms with Sediment Composite B

Parameter	Units	Sediment composite B (EHWW-3, 55, 57)																			
		No Amendment				Sand Only				Siderite + Sand				MnO ${ }^{+}$Sand				MMO + Sand			
		7 days	14 days	28 days	40 days	7 days	14 days	28 days	40 days	7 days	14 days	28 days	40 days	7 days	14 days	28 days	40 days	7 days	14 days	28 days	40 days
pH	-	7.22	7.04	7.32	7.48	7.58	7.28	7.57	7.85	7.61	7.27	7.56	7.77	7.46	7.29	7.52	7.80	7.55	7.27	7.54	7.72
ORP	mV	-131.7	-138.5	-225.8	-231.5	-61.7	-135.8	-125.8	-145.0	7.7	3.0	-71.7	-94.5	22.9	23.7	-43.4	-65.1	44.4	37.8	-25.5	-44.7
SC	$\mu \mathrm{S} / \mathrm{cm}$	32,500	32,600	32,700	32,600	32,500	32,500	32,400	32,500	32.600	32,500	32,400	32,500	32,600	32,500	32,400	32,400	32,600	32,600	32,600	32,300
DO	mg/L	0.58	0.89	0.44	0.58	0.84	0.89	0.87	0.79	0.85	0.84	1.02	0.68	0.55	0.64	1.28	0.78	1.56	0.98	1.40	0.63
Sulphide	mg/L	0.9	0.8	1.2	1.3	0.1	0.1	0.1	0.4	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 8
DGT Deployment Time and Vertical Position

Mesocosm No.	Sediment Composite	Amended Sand Layer	Incubation (days)	Deployment time (hours)	Vertical position from the top of flat-probe DGT open window (cm) ${ }^{\mathbf{1}}$		
					Overlying water	Sand layer	Sediment
1	A	No   Amendment	10	12	0-4	-	4-15
			20	6	0-3	-	3-15
			40	6	0-2	-	2-15
2		Sand Only	10	12	0-2	2-12	12-15
			20	12	-	0-10	10-15
			40	48	-	0-10	10-15
3		Siderite + Sand	10	12	0-2	2-12	12-15
			20	48	-	0-10	10-15
			40	48	-	0-10	10-15
4		$\mathrm{MnO}_{2}+$ Sand	10	12	0-2	2-12	12-15
			20	48	-	0-10	10-15
			40	48	-	0-10	10-15
5		MMO + Sand	10	12	0-2	2-12	12-15
			20	48	-	0-10	10-15
			40	48	-	0-10	10-15
6	B	No   Amendment	10	12	0-4	-	4-15
			20	6	0-3	-	3-15
			40	6	0-3	-	3-15
7		Sand Only	10	12	0-2	2-12	12-15
			20	12	-	0-10	10-15
			40	48	-	0-10	10-15
8		Siderite + Sand	10	12	0-2	2-12	12-15
			20	48	-	0-10	10-15
			40	48	0-1	1-11	11-15
9		$\mathrm{MnO}_{2}+$ Sand	10	12	0-2	2-12	12-15
			20	48	-	0-10	10-15
			40	48	-	0-10	10-15
10		MMO + Sand	10	12	0-2	2-12	12-15
			20	48	-	0-10	10-15
			40	48	-	0-10	10-15

Note:

1. The length of a flat-probe DGT open window is 15 cm .

Figures

Figure 1
Schematic of the Mesocosm Column Setup


Note: Reactive amendment was mixed with quartz sand and applied as a 10 cm layer on top of 15 cm sediment.

## Figure 2

Sediment Control Mesocosm (No Amendment) (a) and Siderite + Sand Mesocosm (b)


Figure 3
Setup of the Bench-Scale Treatability Testing (Day 1)


Figure 4
Flat-Probe DGT Device


Figure 5
DGT Calibration Curve


Figure 6
Dissolved Sulphide Concentrations in the Preliminary Batch Screening Tests


Figure 7
Dissolved Sulphide Concentration Profiles in the Mesocosms with Sediment Composite A






Note: Blue and green transparent colors in background indicate overlying water and sand/amended sand layer, respectively.

Figure 8
Dissolved Sulphide Concentration Profiles in the Mesocosms with Sediment Composite B






Note: Blue and green transparent colors in background indicate overlying water and sand/amended sand layer, respectively.

Figure 9
Sediment Control Mesocosm After 10 Days (a) and After 40 Days of Incubation (b)


Figure 10
Layer of Black Precipitate Formed at the Overlying Water/Sand and Sediment/Sand Interfaces in the Sand-Only Mesocosm After 40 Days


Figure 11
Layer of Black Precipitate Formed at the Sediment/Amended Sand Interface in the SideriteSand Amended Mesocosm


Note: Blue arrow indicates the amended sand/sediment interface.

Figure 12
The $\mathrm{MnO}_{2}$-Sand Amended Mesocosm (a) and MMO-Sand Amended Mesocosm (b) After 40 Days


Note: Blue arrow indicates the amended sand/sediment interface.

## Figure 13

Cyclic Voltammograms Showing the Detection of Various Sulphide Species in Sediment Porewater of Core EHWW-16-SC-2 (Approximately 5 cm from the Top)


Figure 14
Cyclic Voltammograms Showing the Detection of Various Sulphide Species in Sediment Porewater in the Sediment Control Mesocosms with Sediment Composite A (a) and B (b)



Appendix A
Mesocosm and Pilot Test Modeling

## 1 Introduction

Laboratory bench-scale sediment mesocosm tests were set up and monitored to evaluate the ability of a thin sand layer with and without reactive amendments to reduce porewater sulphide concentrations. The amendments selected for mesocosm testing included siderite $\left(\mathrm{FeCO}_{3}\right)$, manganese dioxide $\left(\mathrm{MnO}_{2}\right)$, and Carus mixed metal oxide ( MMO ). These amendments reduce dissolved sulphide by different mechanisms: siderite provides a source of ferrous iron which can react with sulphide to precipitate iron sulphide phases; manganese dioxide and MMO contain oxides that can directly oxidize sulphide to sulphate. The objective of the mesocosm tests was to compare the performance of the three amendments (and unamended sand) in preventing the buildup of dissolved sulphide in the sand layer and overlying water in order to provide a recommendation for an amendment to be incorporated into the pilot study. The bench-scale mesocosms were initially monitored over a period of 40 days; sulphide concentration profiles showed similarly good performance of all three amendments over that time period. Therefore, it is necessary to assess potential differences in performance over a longer timeframe in order to select an amendment for the pilot test. This was accomplished by using a reactive transport model to simulate the evolution of sulphide concentration profiles in the mesocosms over a period of 1 year.

Based on the results of the mesocosm reactive transport model simulations, a hypothetical pilot test model simulation was performed to evaluate porewater sulphide concentrations in the biologically active zone [BAZ] (i.e., upper 10 centimetres [cm]) of a siderite-amended sand layer.

## 2 Model Setup

### 2.1 Bench-Scale Mesocosm Models

The mesocosm models were set up using the sediment early diagenesis reactive transport model described in Bessinger et al. 2012. Modelling was implemented in the geochemical reactive transport software PHREEQC Version 3 (Parkhurst and Appelo 2013). The model simulations were set up to reflect the mesocosm setup: a closed system consisting of 15 cm of wood waste/sediment overlain by a $10-\mathrm{cm}$ thick sand layer and 15 cm of seawater. The pore fluid initially present in the sand layer and underlying sediment was also seawater and an effective porosity of $30 \%$ was assumed.

Four model scenarios were developed by varying the composition of the sand layer: 1) unamended sand, 2) siderite-amended sand, 3) manganese dioxide-amended sand, and 4) MMO-amended sand. As with the mesocosms, the initial dose of the amendments was $5 \%$ by weight. MMO is composed of $23 \%$ goethite ( FeOOH ), $5.5 \%$ manganese dioxide, and $12.5 \%$ calcite $\left(\mathrm{CaCO}_{3}\right)$ with the remaining $59 \%$ comprising silica, alumina, calcium oxide and proprietary components, considered to be inactive with respect to sulphide. These amounts were scaled for an amendment dose of $5 \%$ by weight MMO.

The model simulates biogeochemical processes as kinetically controlled primary and secondary redox reactions. Primary redox reactions include, for example, the microbial oxidation of organic carbon (i.e., wood waste) coupled to the reduction of sulphate to sulphide. Secondary redox reactions include the oxidation of sulphide to sulphate by reductive dissolution of iron and manganese oxides. Dissolution of siderite and precipitation of iron sulphides such as mackinawite ( FeS ) is treated as an equilibrium process.

Transport of dissolved ions from overlying water into the sediment and vice versa occurs via diffusion and is in response to concentration gradients.

### 2.2 Pilot Test Model

As with the bench-scale mesocosm models, the pilot test simulation was set up using the sediment early diagenesis model described in Bessinger et al. 2012, and implemented using the geochemical reactive transport software PHREEQC Version 3 (Parkhurst and Appelo 2013). This model simulation was set up to reflect a hypothetical pilot test involving a $30-\mathrm{cm}$ siderite-amended sand layer overlying 100 cm of wood waste and sediment. A constant concentration boundary was implemented at the seawater-sand layer interface, and the pore fluid initially present in the sand layer and underlying sediment was also seawater. An effective porosity of $30 \%$ was assumed, and the siderite amendment dose in the sand layer was $5 \%$ by weight. The pilot test model simulation was carried out for a period of 30 years.

Also, as with the bench-scale mesocosm models, transport of dissolved ions from overlying seawater into the sediment and vice versa occurs via diffusion and is in response to concentration gradients.

## 3 Results

### 3.1 Bench-Scale Mesocosm Models

Figures A-1 through A-4 show the simulated evolution of sulphide concentration profiles in the wood waste/sediment and overlying sand layer for the four mesocosms over a period of 1 year.

Note that the predicted concentrations are a function of the initial conditions assumed and the rate coefficients for the biogeochemical redox reactions used in the model. While the rate coefficients are based on published values taken from the peer-reviewed scientific literature, they are not sitespecific and the model was not calibrated to site data as this was beyond the scope of the analysis. Although the predicted absolute concentrations are not necessarily representative of conditions within the mesocosms, the vertical profiles and sulphide breakthrough characteristics of the sand layer in the different mesocosms do provide a basis of comparison to assess the potential long-term effectiveness of the amendments.

The unamended sand mesocosm (Figure A-1) shows a progressive breakthrough of sulphide in the sand layer with the concentration profile approaching steady-state (i.e., linear vertical gradient) by 12 months.

Modelling results indicate that the siderite-amended sand layer (Figure A-2) is effective at preventing dissolved sulphide from breaking through over the course of the simulation. This is due to the precipitation of mackinawite ( FeS ) at the sand-wood waste interface, which has also been observed in the bench-scale mesocosms. The dissolved sulphide concentrations in the wood waste also decrease over time as sulphur is permanently removed from the solution by this process.

The manganese-dioxide- and MMO-amended sand mesocosms show a breakthrough of sulphide into overlying water albeit at a slower rate than the unamended sand mesocosm. This indicates that the rate of sulphate reduction outpaces the rate of sulphide oxidation by manganese and iron oxides. A limited sensitivity analysis was performed by running an additional simulation in which the rate coefficient for sulphide oxidation by manganese oxide was increased by an order of magnitude. The concentration profiles were diminished, but sulphide breakthrough into the sand layer was still observed to occur by 12 months of simulation time.

These results suggest that although the manganese dioxide and MMO amendments can retard sulphide breakthrough, they would not be as effective as the siderite amendment in the long term.

### 3.2 Pilot Test Model Simulation

Based on the bench-scale mesocosm model results, siderite was chosen as the amendment for the pilot test model simulation. Figure A-5 shows the average porewater sulphide concentration in the BAZ. Steady state sulphide concentration in BAZ porewater is established after about 6 years, at a concentration of approximately 0.5 milligrams per litre. The model indicates traces of sulphide breakthrough may be observed in the BAZ in a 1- to 2-year timeframe. The simulation results also suggest that the $5 \%$ dose will be effective for the duration of the pilot study, and that less than $10 \%$ of the siderite will have been expended by the 30-year model timeframe. Long-term model simulations and the associated effectiveness of the dose of siderite could be refined following additional data collection (i.e., labile carbon component of wood waste, porosity) and monitoring from the pilot study planned for next fiscal year.


Figure A-1
Simulated Porewater Sulphide Profiles in the Unamended Sand Mesocosm After 3, 6, 9, and 12 Months

## Sand/Siderite



Figure A-2
Simulated Porewater Sulphide Profiles in the Siderite-Amended Sand Mesocosm After 3, 6, 9. and 12 Months

## Sand/Manganese Oxide



Figure A-3
Simulated Porewater Sulphide Profiles in the Manganese Dioxide-Amended Sand Mesocosm After 3, 6, 9, and 12 Months


Figure A-4
Simulated Porewater Sulphide Profiles in the MMO-Amended Sand Mesocosm After 3, 6, 9, and 12 Months


Figure A-5
Simulated Porewater Sulphide Concentration in the BAZ of a 30-cm Siderite-Amended Sand Layer

## 4 References

Bessinger, B.A., D. Vlassopoulos, S. Serrano, and P.A. O’Day, 2012. "Reactive Transport Modeling of Subaqueous Sediment Caps and Implications for the Long-Term Fate of Arsenic, Mercury, and Methylmercury." Aquat. Geochem. Online First™. April 27, 2012.

Parkhurst, D.L., and C.A.J. Appelo, 2013. "Description of Input and Examples for PHREEQC Version 3— A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations." U.S. Geological Survey Techniques and Methods. Book 6. p. 497. Available at: http://pubs.usgs.gov/tm/06/a43.

## APPENDIX E

Department of National Defence Esquimalt harbour Wood Waste Assessment, Characterization and Management Plan

## Department of National Defence Esquimalt Harbour Wood Waste Assessment, Characterization and Management Plan



## Prepared for:

Public Services and Procurement Canada
1230 Government Street
Victoria, BC V8W 3M4
Project No: R. 091121.001
Project No. 989593-08

Prepared by:

Hemmera Envirochem Inc.
18th Floor, 4730 Kingsway
Burnaby, BC V5H 0C6
T: 604.669.0424
F: 604.669.0430
hemmera.com

## EXECUTIVE SUMMARY

Esquimalt Harbour has historically been used for log booming, log storage and wood milling operations over the last 70 years. These activities have led to the accumulation of wood and wood debris deposits in the subtidal area of the Harbour. Wood waste deposits can negatively affect marine benthic communities through physical alteration of sediments and increased toxicity through contamination by leachate or the by-products of anaerobic decomposition. An assessment of the effects of wood waste on the subtidal marine environment was conducted on behalf of the Department of National Defence and in support of the Esquimalt Harbour Remediation Project.

This report documents the approach and findings of the assessment including:

- A review of the impacts of wood waste on marine subtidal habitats, a review of Esquimalt Harbour historical industrial activities and existing biophysical studies relating to the Project area, and wood waste delineations in the Harbour (Section 2.0)
- Results from field surveys undertaken to determine the nature and extent (lateral extent and depth) of the wood waste deposits, to document biophysical site conditions, and analyze sediment chemistry results (Section 3.0)
- An impact assessment of wood waste on the subtidal benthic community in Esquimalt Harbour (Section 3.0)
- Evaluation of remedial options and provide recommendations for next steps (Section 4.0)
- Development of a recommended site-specific pilot project to test the effectiveness of proposed remediation measures (Section 5.0).

Main findings of the assessment include:

- Wood Waste Delineation

Wood waste is distributed in two large areas (>100 m wide) north of Inskip Island and reaching into Plumper Bay and south of Cole Island and two smaller areas of wood waste ( $<50 \mathrm{~m}$ wide). The spatial distribution of wood waste deposits was greater than visual observations of the surficial extent of wood waste. The nature of the wood waste was indicative of log storage and log booming areas, primarily small woody debris, composed of bark chips and scattered cut logs and some finer wood pulp/fibre. Wood pulp/fibre could be from historical wood-processing activities that occurred within the harbour (Section 2.3) or from the breakdown of small woody debris. The total volume of wood waste and overlying impacted sediments in the Harbour was estimated to be $332,299 \mathrm{~m}^{3}$.

- Biophysical Conditions

Esquimalt Harbour epibenthic communities documented for this report were similar to those documented by earlier assessments. In areas of known wood waste deposits epibenthic organisms were sparse with evidence of bacterial mats (Beggiatoa sp.) that are often associated with wood waste impacted sediments. Areas with exposed logs, provided hard substrate for rocky reef organisms to colonize/use as complex habitat structure for refuge. Infauna holes and mounds were relatively absent, indicating the lack of large bioturbators. The abundance and diversity of infauna communities varied across the harbour; however, most stations were dominated by a single second-order opportunistic polychaete species.

- Sediment Chemistry

Decomposition by-products were assessed to determine drivers of impairment. Total organic carbon (TOC) levels were elevated in comparison to reference locations and had a distribution pattern that was correlated with the assessed extent of wood waste deposits. Pore-water sulphide and Ammonia did not show as tight of a relationship with the delineated area of wood waste.

- Impact Assessment

Due to its strong correlation with TOC and areas of wood waste deposits, the presence of Beggiatoa sp . can be considered an indicator of benthic community impairment from wood waste deposits. Other epibenthic species, such as Dungeness and graceful crabs, were observed in areas of wood waste during surveys but been shown by other studies to use these areas as habitat if the overlying water quality is not impaired.

Areas of greatest impact on the subtidal benthic community were determined using multivariate analysis and indicated that the sediment chemistry parameter most strongly linked with known areas of wood waste deposits and to differences in benthic infauna community composition and species richness was TOC. Benthic community impairment between $1-3 \%$ TOC was variable; however, a 3\% TOC level has been determined to be a site-specific indicator for the impairment of benthic infauna due to wood waste deposits, with greater impacts observed at TOC levels $>5 \%$. The benthic infauna community in Esquimalt Harbour shows general signs of impairment (ranging from somewhat disturbed/impacted to low - moderate impairment) and is dominated by opportunistic polychaete species and the lack of larger bioturbators or species that are pollutionsensitive.

In general, the recommended approach for site-specific remediation of wood waste, and wood waste impacted sediments, is as follows:

- Dredging

Complete removal of sediment/wood waste in areas where wood waste deposits are $>0.25 \mathrm{~m}$ deep. Placement of clean fill following dredging to reduce residuals and provide clean substrate for the recruitment and establishment of productive infauna communities. Following the implementation of remediation efforts, a monitoring program will be required to track the recovery of the benthic community and remediated bottom sediments, in order to qualify the remediation for the DND Habitat Bank.

- Pilot Study Project

Conduct an experimental in-field pilot study within the Harbour to investigate the site-specific effectiveness and feasibility of economical and less invasive remedial options (Monitored Natural and Enhanced Natural Recovery) for areas of discontinuous and/or shallow wood waste deposits ( $0-0.25 \mathrm{~m}$ ).

## ACKNOWLEDGEMENTS

We would like to acknowledge the efforts and valuable input to this Project from both Ashley Rabey, Environmental Specialist, and Kristen Ritchot, Environmental Specialist with Environmental Services, Public Services and Procurement Canada as well as Mike Waters, Environment Officer, Department of National Defence.

## TABLE OF CONTENTS

EXECUTIVE SUMMARY .....  1
ACKNOWLEDGEMENTS .....  II
ACRONYMS ..... XI
GLOSSARY ..... XII
1.0 INTRODUCTION ..... 1
2.0 BACKGROUND INFORMATION REVIEW ..... 5
2.1 Overview of the Effects of Wood Waste on the Marine Environment ..... 5
2.1.1 Physical Effects ..... 8
2.1.2 Leachate Production ..... 8
2.1.3 By-Products from the Breakdown of Wood Waste ..... 9
2.1.4 Impacts to Benthic Communities ..... 11
2.1.5 Indicators of Impact ..... 11
2.1.5.1 Wood Waste Surficial Cover ..... 11
2.1.5.2 Bacterial Mats ..... 11
2.1.5.3 Total Organic Carbon ..... 12
2.1.5.4 Hydrogen Sulphide ..... 14
2.1.5.5 Ammonia ..... 14
2.1.5.6 PH ..... 15
2.2 Study Location and Site Descriptions ..... 15
2.2.1 Esquimalt Harbour Marine Environment ..... 15
2.2.2 Pedder Bay Marine Environment ..... 16
2.3 Historical Activities and Contamination ..... 16
2.3.1 Activities and Contamination Review Methods ..... 17
2.3.2 Aerial Photograph Review ..... 20
2.3.3 Regulatory Information ..... 21
2.3.3.1 Federal Contaminated Site Search ..... 21
2.3.3.2 BC MOE Environmental Violations Database ..... 21
2.3.3.3 BC MOE Environmental Management Authorization Database ..... 21
2.3.3.4 Other Historical Information ..... 21
2.3.4 Site and Surrounding Land Use History ..... 22
2.3.4.1 Esquimalt (Areas 1-4) ..... 23
2.3.4.2 Esquimalt and Songhees First Nations Reserves (Area 5) ..... 24
2.3.4.3 View Royal (Area 6) ..... 24
2.3.4.4 Colwood (Areas 7 \& 8) ..... 25
2.3.4.5 Harbour Floor (Area 90) ..... 25
2.3.5 Summary of Areas of Potential Environmental Concern ..... 26
2.3.6 Background Review Conclusion ..... 27
2.4 Historical Biophysical Information Review ..... 28
2.4.1 Biophysical Review Methods ..... 28
2.4.2 Regional Overview ..... 29
2.4.3 Historic Distribution of Habitats and Species in Esquimalt Harbour ..... 29
2.4.3.1 Substrate ..... 29
2.4.3.2 Marine Vegetation ..... 30
2.4.3.3 Benthic Invertebrate Fauna ..... 31
2.4.3.4 Fish and Fisheries ..... 32
2.4.4 Esquimalt Harbour Environmentally Sensitive Areas ..... 32
2.4.4.1 SARA Species ..... 33
3.0 SITE CHARACTERIZATION AND IMPACT ASSESSMENT ..... 35
3.1 Methods ..... 35
3.1.1 Field Sampling ..... 36
3.1.1.1 Side Scan Sonar ..... 36
3.1.1.2 SCUBA Biophysical Surveys ..... 36
3.1.1.3 Sediment Collection ..... 39
3.1.1.4 Benthic Infauna Sampling ..... 42
3.1.2 Laboratory Analysis ..... 42
3.1.2.1 Sediment Chemistry ..... 42
3.1.2.2 Benthic Infauna ..... 43
3.1.3 Data Analysis ..... 44
3.1.3.1 Wood Waste Delineation ..... 44
3.1.3.2 Biophysical Assessment ..... 45
3.1.3.3 Sediment Chemistry ..... 45
3.1.3.4 Wood waste Impact Assessment ..... 46
3.2 ReSults ..... 48
3.2.1 Wood Waste Delineation ..... 48
3.2.1.1 Side Scan Sonar ..... 48
3.2.1.2 Field Surveys ..... 50
3.2.2 Biophysical Assessment ..... 56
3.2.2.1 Physical Characteristics ..... 56
3.2.2.2 Water Quality Results ..... 56
3.2.2.3 Benthic Community ..... 56
3.2.3 Sediment Chemistry ..... 65
3.2.3.1 TOC ..... 65
3.2.3.2 Sulphides ..... 68
3.2.3.3 Ammonia ..... 70
3.2.3.4 pH ..... 70
3.3 WOOD Waste Impact Analysis ..... 73
3.3.1 Wood Waste Delineation ..... 73
3.3.2 Sediment Chemistry ..... 73
3.3.3 Benthic Community ..... 74
3.3.3.1 Epibenthic ..... 74
3.3.3.2 Infauna Community ..... 76
4.0 REMEDIAL AND MANAGEMENT OPTIONS ..... 85
4.1 Identification of Potential Remedial Options ..... 85
4.1.1 Monitored Natural Recovery ..... 85
4.1.2 Enhanced Natural Recovery ..... 87
4.1.3 Dredging ..... 87
4.1.3.1 Options for Disposal of Dredge Materials ..... 88
4.1.4 In-Situ Capping ..... 89
4.1.5 $\quad \mathrm{In}$-Situ Treatment ..... 89
4.2 Analysis of Remedial Options ..... 90
4.2.1 No Action ..... 91
4.2.2 Monitored Natural Recovery ..... 91
4.2.3 Enhanced Natural Recovery ..... 92
4.2.4 Dredging ..... 92
4.2.4.1 Options for Disposal of Dredge Materials ..... 92
4.2.5 In-Situ Capping ..... 93
4.2.6 In-Situ Treatments ..... 94
4.3 Recommended Options and Approaches, ..... 94
4.3.1 Dredge and Placement of Clean Fill ..... 95
4.3.2 Pilot Study Project ..... 96
4.4 ReguLatory Framework and Requirements ..... 98
4.4.1 DFO Fisheries Act Authorization ..... 98
4.4.2 Disposal at Sea Permit ..... 98
4.4.3 Navigation Protection Act Notice of Works ..... 99
4.5 Potential Habitat Bank Credit Assessment ..... 99
5.0 REMEDIAL PILOT STUDY PROJECT ..... 102
5.1 Site Selection ..... 102
5.2 Study Design ..... 105
5.3 STUDY IMPLEMENTATION ..... 107
5.3.1 Finalized Site Selection and Pilot Study Regulatory Framework ..... 107
5.3.1.1 Finalized Site Selection ..... 107
5.3.1.2 Navigation Protection Act - Notice of Works ..... 107
5.3.1.3 Disposal at Sea - Beneficial Use Exemption for Clean Fill ..... 107
5.3.1.4 Disposal at Sea - DAS Permit for Dredged Materials ..... 108
5.3.1.5 DFO Fisheries Act - Serious Harm Assessment ..... 109
5.3.2 Pilot Study Site Setup and Characterization of Baseline Conditions ..... 111
5.3.2.1 Fieldwork Planning and logistics ..... 111
5.3.2.2 Fieldwork ..... 111
5.3.2.3 Analysis and Reporting ..... 114
5.3.3 Application of Pilot Study Treatments ..... 115
5.3.3.1 Fieldwork Planning and logistics ..... 115
5.3.3.2 Fieldwork and Reporting ..... 116
5.3.4 Effectiveness Monitoring ..... 117
5.3.5 Determination of Pilot Study Effectiveness Report ..... 118
5.4 Cost Estimate ..... 119
6.0 PUBLICATION RECOMMENDATIONS. ..... 120
7.0 CONCLUSIONS ..... 121
8.0 REFERENCES ..... 122

## List of Figures

Figure 1.1 Project Site Locations ..... 3
Figure 1.2 Project Area ..... 4
Figure 2.1 Conceptual Site Model ..... 7
Figure 2.2 Conceptual Site Model of the Relationship between Increasing Sediment Organic Carbon, Benthic Community Response, and other Related Environmental Factors, including Oxygen Depletion and Pressure of other Co-varying Sediment- Associated Stressors (Hyland et al. 2005) ..... 13
Figure 2.3 Esquimalt Harbour Overview and Areas ..... 19
Figure 3.1 Esquimalt Harbour Sampling Areas ..... 37
Figure 3.2 Pedder Bay Sampling Areas ..... 38
Figure 3.3 Esquimalt Harbour Side Scan Sonar Results ..... 49
Figure 3.4 Esquimalt Harbour Interpolated Surficial Wood Waste Cover from Scuba Surveys ..... 53
Figure 3.5 Esquimalt Harbour Interpolated Wood Waste Depth from Core Samples ..... 55
Figure 3.6 Esquimalt Harbour Interpolated Beggiatoa Coverage ..... 60
Figure 3.7 Esquimalt Harbour Interpolated Diatom Coverage ..... 61
Figure $3.8 \quad$ Relative Proportion of each Taxonomic Group by Sample Station, Replicate, and TOC level ..... 64
Figure 3.9 Esquimalt Harbour Interpolated Total Organic Carbon ..... 66
Figure 3.10 Pedder Bay Interpolated Total Organic Carbon ..... 67
Figure 3.11 Esquimalt Harbour Interpolated Sulphide Concentration ..... 69
Figure 3.12 Esquimalt Harbour Interpolated Ammonia Concentration ..... 71
Figure 3.13 Esquimalt Harbour Interpolated pH Concentration ..... 72
Figure 3.14 Distance-based redundancy analysis showing the relative similarity among sample locations of differing TOC Screening-level Indicators and the dominant species ..... 75
Figure 3.15 Benthic Infauna Total Abundance by Sample Location ..... 78
Figure 3.16 Benthic Infauna Species Richness by Sample Location ..... 79
Figure 3.17 Benthic Infauna Shannon Diversity Index by Sample Location ..... 80
Figure 3.18 Benthic Infauna Pilou's Evenness by Sample Location ..... 81
Figure 3.19 Benthic Infauna Swartz's Dominance by Sample Location ..... 82
Figure 4.1 Esquimalt Harbour Wood Waste Depths for Remediation Options ..... 97
Figure 5.1 Locations of Proposed Pilot Study Sites for Wood Waste Remediation. ..... 104
Figure 5.2 Proposed Pilot Project Site Design Includes Three Replicates of each Proposed Treatment Type (MNR, ENR, and Dredge) ..... 106
Figure 5.3 Environment and Climate Change Canada Disposal at Sea Program Minimum Sample Analytical Requirements ..... 110
Figure 5.4 Example of Pilot Study Marker Setup ..... 112
List of Tables
Table 2.1 Summary of Subtidal Wood Waste Types, Sources, and Potential Impacts on Marine Ecosystems (Based on Breems and Goodman 2009) ..... 6
Table 2.2 Aerial Photograph Review Summary ..... 20
Table 2.3 Summary of Current and Historical Leasehold Properties ..... 22
Table 2.4 Related Areas of Potential Environmental Concern ..... 27
Table 2.5 Subtidal Sediment Breakdown from Subtidal Habitat Survey of Esquimalt Harbour (Archipelago 2004) ..... 30
Table 2.6 Estimate of Eelgrass Bed Areas within Esquimalt Harbour in 2004 ..... 31
Table 2.7 Marine Species at Risk with the Potential to Occur within the Project Area ..... 33
Table 3.1 Summary of Field Survey Methods Used to Determine Existing Conditions in Esquimalt Harbour ..... 35
Table 3.2 Biophysical Assessment Substrate Classification ..... 39
Table 3.3 Surficial Sediment Sample Sizes Analyzed for Sediment Chemistry from Esquimalt Harbour and Pedder Bay ..... 42
Table 3.4 Recommended Data Quality Objectives for Soil, Sediment and Groundwater ..... 43
Table $3.5 \quad$ Estimates of Surficial Wood Waste Cover on the Subtidal Seafloor of Esquimalt Harbour ..... 50
Table 3.6 Benthic Infauna Community Summary Statistics by Sample Location and Level of TOC. ..... 63
Table $3.7 \quad$ Estimates of Subtidal Seafloor Area by TOC Screening-Level Indicators of Benthic Impairment in Esquimalt Harbour ..... 68
Table 3.8 Spatial Regression Model Combinations and Outputs for Wood Waste Depth as an Independent Variable ..... 73
Table 3.9 Dominant Epibenthic Species Observed at each of the Four TOC screening-level indicators for benthic impairments ..... 74
Table 3.10 Spatial Regression Model Combinations and Outputs for Bacterial Mat Coverage as a Dependent Variable ..... 76
Table 3.11 CCA Model Output of Community Composition as a Function of Wood Waste Decomposition By-products ..... 77
Table 3.12 Linear Model Outputs and Correlation Values of Species Richness as a Function of Wood Waste Decomposition By-products ..... 77
Table 3.13 Summary of Benthic Infauna Impacts ..... 84
Table 4.1 Overview of Potential Wood Waste Remediation Options ..... 86
Table 4.2 Recommended Options for Remediation of Wood Waste in Esquimalt Harbour ..... 95
Table 4.3 Approximate Unit Costs for Remedial Dredge Works in Esquimalt Harbour ..... 96
Table 4.4 Proposed Potential Habitat Banking Bottom Treatments, Restoration Times and Banking Potential ..... 100
Table 5.1 Locally-relevant Toxicity Tests, Species and their Classification ..... 115
Table 5.2 Pilot Study Project Cost Estimate Totals by Year ..... 119
Table 6.1 Proposed Scientific Journals for Publication of Wood Waste Assessment and Remediation Results ..... 120
List of Photographs
Photo 1 Representative view of a subtidal area in Esquimalt Harbour with scattered logs and fine layer of sediment and fine wood waste surrounded by bacterial mats ..... 51
Photo 2 Representative view of a subtidal area in Esquimalt Harbour with continuous small woody debris and fine layer of sediment and fine wood waste ..... 51
Photo 3 Representative view of a subtidal area in Esquimalt Harbour containing a silty sand substrate with drift understory kelp, shell debris, and only very sparse detritus and small woody debris. ..... 52
Photo $4 \quad$ Representative view of a subtidal area in Pedder Bay containing silty sand substrate, with drift understory kelps, and an active infauna community signified by observable mounds and siphons ..... 52
Photo $5 \quad$ Representative view of a subtidal area in Esquimalt Harbour with fibre mat intermixed with silt and Beggiatoa bacterial mat ..... 58
Photo 6 Representative view of a subtidal area in Esquimalt Harbour with silty substrate and a mix of diatoms and Beggiatoa bacterial mat. ..... 58
Photo $7 \quad$ Rocky habitat with encrusting species including a red sea urchin. ..... 59
Photo 8 Exposed log covered in plumose anemones and diatoms, surrounded by young of the year black rockfish ..... 59

## List of Appendices

Appendix A	Aerial Photos
Appendix B	Regulatory Information
Appendix C	Harbour Occupants
Appendix D	Areas of Potential Environmental Concern
Appendix E	Background Biophysical Conditions of Esquimalt Harbour
Appendix F	Side Scan Sonar Results
Appendix G	Sediment Core Photo Examples
Appendix H	Wood Waste Depth Cross Sections
Appendix I	Biophysical and Sediment Chemistry Data
Appendix J	Detailed Pilot Study Project Cost Estimate

## ACRONYMS

APEC	Areas of Potential Environmental Concern
AST	Above ground storage tank
BACI	Before After Control Impact
BC	British Columbia
BC MOE	British Columbia Ministry of Environment
BMP	Best Management Practice
BOD	Biological oxygen demand
CCA	Canonical correspondence analysis
CCME	Canadian Council of Ministers of the Environment
CD	Chart datum (where zero metres CD is equal to the average low water level)
CDF	Confined disposal facility
COPC	Contaminant of Potential Concern
DAS	Disposal at sea
DND	Department of National Defence
DQO	Data quality objectives
EMAP	Environmental Monitoring and Assessment Program
ENR	Enhanced natural recovery
EPA	Environmental Protection Agency
FCSI	Federal Contaminated Sites Inventory
FCSAP	Federal Contaminated Sites Action Plan
FPIP	Fisheries Productivity Investment Policy
HWL	High water level (approximately 4.5 m CD)
LWD	Large woody debris
MNR	Monitored Natural Recovery
PAH	Polycyclic aromatic hydrocarbon
PCB	Polychlorinated biphenyl
QA/QC	Quality assurance and quality control
RPD	Relative percent differences
SQG	Sediment quality guidelines
SWI	Sediment-water Interface
TOC	Total organic carbon
UST	Underground storage tank
WWI	World War I
WWII	World War II

## GLOSSARY

Aerobic Conditions	Presence of dissolved oxygen
Anaerobic Conditions	Depleted of dissolved oxygen   Metabolic functions without oxygen
Anaerobic Decomposition	Organisms within the sediment, in the sediment-water interface, and   immediately adjacent overlying water
Benthic Fauna	A process used to determine the rate at which biological organisms use   up oxygen in the water. High BOD reduces or removes available dissolved   oxygen in the water column and pore water in the sediment.
Biological Oxygen Demand	
Cellulolysis	The process of breaking down cellulose
Chemosynthetic	produce sugars and amino acids
Epescribes organisms that live on the surface of the sediment on the	
seafloor	

### 1.0 INTRODUCTION

Forestry and wood product processing has a long and important history in British Columbia (BC), with waterways providing the most efficient and economical way to transport and store timber. As a result, forestry-related activities, such as log booming, log storage and sawmill operations, have resulted in wood waste deposits accumulating in intertidal and subtidal nearshore habitats along the coast of BC. In Esquimalt Harbour (the Harbour), Federal leaseholds have been used for log booming over the last 70 years (most intensively in the 1940s to 1980s), leading to the accumulation of a large amount of wood and wood debris deposited on the Harbour floor.

Wood waste deposits can negatively affect marine benthic communities through physical alteration of sediments and increased toxicity through contamination by leachate or the by-products of anaerobic decomposition (i.e., hydrogen sulphide, ammonia and methane). Assessing the effects of wood waste on the marine environment is a priority for the Department of National Defence (DND) in alignment with the Esquimalt Harbour Remediation Project. To address this, the Esquimalt Harbour Wood Waste Assessment, Characterization and Management Plan Project (the Project) was undertaken over two fiscal years, from 2016-2018, by Public Services and Procurement Canada on behalf of DND (see Figure 1.1 and Figure 1.2 for Project location).

The objectives of the Project are to:

- Determine the nature (e.g. composition) and extent (lateral coverage and depth) of the wood waste deposits in Esquimalt Harbour
- Characterize the biophysical habitat conditions within areas of known wood waste deposits, transition zones, and areas without wood waste
- Analyze sediment chemistry parameters to determine the distribution of conventional contaminants of concern and conventional sediment chemistry parameters associated with wood waste or wood waste decomposition by-products
- Identify and assess the impacts of wood waste deposits on marine benthic community in Esquimalt Harbour
- Evaluate wood waste remediation options considering the site-specific conditions and results of the impact assessment and provide recommendations for remediation
- Develop a recommended site-specific pilot study project to test the effectiveness of more economical and less invasive remediation measures

This report documents the approach and findings of the assessment (Project) including:

- A review of the impacts of wood waste on marine subtidal habitats, a review of Esquimalt Harbour historical industrial activities and existing biophysical studies relating to the Project area, and wood waste delineations in the Harbour (Section 2.0)
- Results from field surveys undertaken to determine the nature and extent (lateral extent and depth) of the wood waste deposits, and to document biophysical site conditions (Section 3.0)
- An impact assessment of wood waste on the subtidal benthic community in Esquimalt Harbour (Section 3.0)
- A remedial management options analysis and recommendations for next steps (Section 4.0)
- Proposed plan for a remedial pilot project and publication of findings (Section 5.0)




### 2.0 BACKGROUND INFORMATION REVIEW

This section contains a review of the impacts of wood waste on marine subtidal habitats, a review of Esquimalt Harbour historical industrial activities and existing biophysical studies relating to the Project area, and wood waste delineations in the Harbour.

### 2.1 Overview of the Effects of Wood Waste on the Marine Environment

The processing of timber and wood products in coastal BC is common within and near aquatic and marine environments due to the ease of transportation; however, these activities result in widespread wood waste deposits on the seafloor. While aquatic ecosystems are adapted to breakdown and store naturally occurring large woody debris (LWD; e.g. Wood debris that has not been processed or cut, may still contain roots or limbs), increased volumes from industrial sources can exceed the natural assimilative capacity of marine ecosystems (Breems and Goodman 2009). The resulting direct and indirect impacts include physical alteration of sediments, the release of leachates, and the generation of toxic by-products during decomposition. Impacts of wood waste on the marine environment are largely site-specific depending on the type or size of wood waste (Table 2.1), the species from which it was derived, the degree of incorporation into the sediment, the volume present, local water movement, and the extent of decomposition (Kendall and Michelsen 1997).

Natural wood debris deposited at the sediment-water interface (SWI) is typically broken down by various marine organisms in the nearshore environment (Maser and Sedell 1994). Large woody debris functions as the primary food source of wood-boring invertebrates, which recycle its nutrients and energy. Woodboring Crustacea, (e.g. gribbles) and wood-boring bivalve mollusks (e.g. shipworms), colonize LWD before microbial decomposition takes place and ingest the wood through boring (Breems and Goodman 2009). The cellulose portion of the wood is used for nutrition and the remainder excreted as pellets of finely ground wood fibres containing lignin and cellulosic materials (Gonor et al. 1988, Maser and Sedell 1994, Breems and Goodman 2009). While gribbles can use approximately 45 percent of the consumed material, shipworms use approximately 58 percent (Gonor et al. 1988, Maser and Sedell 1994). The fine particulate material of the pellets is easily transported by currents and tides and contributes to the detrital food web that supports species such as forage fish, juvenile salmon and marine birds (Gonor et al 1988, Maser and Sedell 1994, Breems and Goodman 2009; see Figure 2.1).

However, small wood waste (e.g. bark, sawdust, or wood fibre) does not meet the habitat requirements of wood-boring invertebrates, wood-borers prefer freshly-deposited wood that has not undergone much decomposition, and industrial wood waste tends to accumulate too rapidly in large volumes, overwhelming the assimilative capacity of benthic communities and leading to an anthropogenic increase in organic content in the sediments of nearshore marine habitats (Breems and Goodman 2009, Washington State 2013). Wood waste-associated impacts to nearshore benthic communities can result in impairing productive habitats, which form the foundation of nearshore marine food webs, and are integral to recycling nutrients between the SWI (Washington State 2013).

Finer-textured wood waste (e.g. wood chips to sawdust) has a greater surface area to volume ration, and my have a greater ecological impact with less coverage (Washington State 2013). Therefore, an understanding of how each type of wood waste reacts in the marine environment is critical to understanding short- and long-term impacts and developing effective site-specific remediation strategies. Each of these impacts are described in detail in the sections below and highlighted in Figure 2.1.

Table 2.1 Summary of Subtidal Wood Waste Types, Sources, and Potential Impacts on Marine Ecosystems (Based on Breems and Goodman 2009)

Wood Waste Type	Potential Source	Definition	Potential Impact
Cut logs	Log booming, transport, and storage	Cut timbers of various lengths free of roots and limbs	- Leachate production (slow release rate)   - Compaction of sediment   - Bark production   - Navigational hazard   - Can mimic functions of Natural wood
Small woody debris Bark and small branches	Log booming, log storage, and sawmills, depositional areas	Mainly bark and small wood less than 10 cm in diameter	- Physical barrier/smothering   - $\mathrm{H}_{2} \mathrm{~S}$, methane, or ammonia production   - Leachate production
Small woody debris -   Wood chips	Wood chipping and transport facilities	$6-10 \mathrm{~cm}^{2}$	- Physical barrier/smothering   - $\mathrm{H}_{2} \mathrm{~S}$, methane, or ammonia production   - Leachate production
Small woody debris Sawdust	Sawmills	$10 \mathrm{~mm}^{2}$	- Physical barrier/smothering   - $\mathrm{H}_{2} \mathrm{~S}$, methane, or ammonia production   - Leachate production (rapidly depleted)
Wood fibre	Pulp and Paper mills	< $10 \mathrm{~mm}^{2}$	- Physical barrier/smothering   - $\mathrm{H}_{2} \mathrm{~S}$, methane, or ammonia production



Legend		Notes
$\square$ Beggiatoa $\square$ Photosynthetic algae	AB Aerobic heterotrophic bacteria	1. This figure is not intended to be a "stand-alone" document, but a visual aid to the information contained within the referenced Report. It is intended to be used in conjunction with the scope of services and limitations described therein.   Figure not to scale. Page Size: 11" x 17"
Small Woody Debris Bark / wood chips	CB Cellulolytic bacteria	
\% Sawdust or wood fibre	(S) Elemental sulphur (S)	
	MB Methanogenic Bacteria   SOB Sulphur oxidizing bacteria	
	SRB Sulphide reducing bacteria	


Esquimalt Harbour Wood Waste Assessment DND, CFB Esquimalt, Esquimalt Harbour, BC		
Conceptual Site Model		
376-240.08	Production Date: Jan 11, 2019	Figure 2.1

### 2.1.1 Physical Effects

Wood waste can have a physical effect on marine benthic habitat conditions and benthic fauna. The thickness and composition of wood waste can physically isolate the sediment surface, acting as a barrier to the movement and colonization of benthic invertebrates by limiting their ability to settle on the appropriate substrate type and/or burrow into sediments (e.g. Samis et al. 1999). Wood waste accumulations as shallow as 1 cm can lead to a decline in the abundance of suspension feeders, while deposits up 15 cm can greatly reduce invertebrate biomass and diversity (Conlan and Ellis 1979). Similarly, Jackson (1986) demonstrated that bark accumulations $>2.5 \mathrm{~cm}$ may eliminate mollusks and several polychaete worm species.

Many benthic species rely on the nutrients and oxygen supplied by an adequately flushed sediment column. A breakdown in the exchange of nutrients and oxygen alters the composition and distribution of the benthic invertebrate population. Accumulated wood waste can form a physical barrier to the transfer of nutrients and oxygen between the SWI and the sediment interstitial spaces (Figure 2.1). Critically, accumulation of wood waste at the SWI results in the smothering of any present biota, which in turn reduces mixing of the upper sediment layer by burrowing invertebrates and results in a reduction in the presence of oxygen and ultimately produces an anaerobic environment. Full coverage of benthic sediments with bark, in depths of up to 10 cm , can decrease the dissolved oxygen concentration at the sediment surface from $10 \mathrm{mg} / \mathrm{L}$ to $2.5 \mathrm{mg} / \mathrm{L}$ (Pentec 1997). The alteration of the upper sediment layer from an aerobic to an anaerobic environment is a key driver in reducing species diversity and the production of toxic by-products from the breakdown of total organic carbon (TOC).

Finally, the texture, size and potential mobility of smaller wood waste may limit the attachment of species requiring immobile rocky substrates such as kelps; however, larger logs can provide a source of attachment or cover for marine borers and some species of algae, anemone, crab and fish (Breems and Goodman 2009; Figure 2.1). The natural nearshore environment is a highly productive ecosystem and the decline or loss of habitat and biological communities from physical impacts can have a significant impact on the overall ecosystem. For effective recovery, sediments require the elimination of wood waste and sources, improved dissolved oxygen at the SWI and within surficial sediments through flushing and bioturbation by benthic invertebrates within the surficial sediments (ie. Benthic infauna).

### 2.1.2 Leachate Production

When wood waste is in contact with water, chemical compounds that are toxic to a range of benthic invertebrates and fish species, leach into the surrounding environment (Pearse 1974, Peters et al. 1976, Buchanan et al. 1976, Samis et al. 1999). The composition of compounds and their concentrations in the leachate vary depending upon the tree species, size, and age, but may include: tropolones, lignins, fatty acids and resin acids (Samis et al. 1999). Although the amount of leachate released from wood waste is reduced as the wood becomes saturated and sinks, it can still be toxic to marine organisms. However,
toxins may not accumulate to lethal concentrations in areas with sufficient water exchange (Samis et al. 1999). Larger logs tend to slowly release leachate over a longer duration as the inner, unsaturated wood contains higher concentrations of contaminants that remain available to the environment as they degrade (Yücel et al 2012). Daily tidal movement may further reduce the impacts of leachate through flushing; although this likely has little effect on contaminants accumulated in the pore water sediment adjacent to and beneath wood waste deposits (Breems and Goodman 2009).

### 2.1.3 By-Products from the Breakdown of Wood Waste

The breakdown of smaller wood waste is largely the result of the microbial metabolism, where bacteria feed on the wood, break it down, and create decomposition by-products under either aerobic or anaerobic conditions. Under aerobic conditions, heterotrophic bacteria assist in the breakdown of wood waste by metabolizing sugars (i.e., glucose; generated during the degradation of cellulose by cellulolytic bacteria) and producing carbon dioxide and simple carbon-based compounds (lower molecular weight carbon sources as by-products (i.e. acetate; Maser and Sedell 1994; see Figure 2.1). However, the consumption of oxygen by bacteria, known as biological oxygen demand (BOD), further decreases the availability of dissolved oxygen in the interstitial pore water and at the SWI (Samis et al. 1999). In marine systems, the renewal of dissolved oxygen at the SWI is normally rapid, unless wood waste accumulations are excessively high, blocking circulation or flushing (Pearson et al. 1980; Figure 2.1).

Under anaerobic conditions, wood waste decomposition can still occur through anaerobic decomposition, whereby bacteria use chemicals other than oxygen (Pearson 1980). There are various types of anaerobic heterotrophs that breakdown cellulose (via cellulolysis) into low molecular weight organic acid metabolites (e.g. acetate, lactate, succinate and other organic acids; Pearson 1980). In the absence of oxygen, bacteria preferentially use commonly found nitrates $\left(\mathrm{NO}_{4}\right)$, along with a low molecular weight organic carbon source, producing ammonia $\left(\mathrm{NH}_{3}\right)$ as a by-product (Figure 2.1; Pearson 1980). Ammonia, exists in equilibrium between the un-ionized $\left(\mathrm{NH}_{3}\right)$ and ionized form $\left(\mathrm{NH}_{4}{ }^{+}\right)$and is typically found in higher concentrations within sediment porewater than the overlying water column, but can diffuse in stagnant conditions (Figure 2.1; Pearson 1980, Gray et al. 2002). At low concentrations ammonia can be acutely toxic to fish and other marine organisms, in particular un-ionized ammonia (Gray et al. 2002).

Once nitrates have been depleted, sulphate reducing bacteria, particularly Desulfovibrio, use the low molecular weight carbon sources and the abundance of sulfate ( $\mathrm{SO}_{4}{ }^{2-}$ ) in marine sediments as an electron receptor to produce sulphide ( $\mathrm{HS}^{-}$), generally in the form of hydrogen sulphide ( $\mathrm{H}_{2} \mathrm{~S}$; Figure 2.1; Pearson 1980, Goodman et al. 1995, Samis et al. 1999 Wang and Chapman 1999, Hyland et al. 2005). The sulphide gradient is often characterized by a black iron sulphide precipitate and a distinct rotten egg odour (Podger unpublished). Within sediments and porewater, the hydrogen sulphide may become trapped and remain acutely toxic to benthic infaunal invertebrates for extended periods of time. However, at the SWI, $\mathrm{H}_{2} \mathrm{~S}$ readily converts to the non-toxic $\mathrm{SO}_{4}$ in the presence of oxygen (Podger unpublished), with a short half-life
(approximately 20 minutes, Östlund and Alexander 1963). Hydrogen sulphide can have a toxic effect on benthic marine invertebrates, fish and marine vegetation such as eelgrass (e.g. Goodman et al. 1995, Wang and Chapman 1999, Pederson et al. 2004, Hyland et al. 2005, Elliott et al. 2006, Podger Unpublished). The ability to mix oxygen into the upper sediment layers that contain wood waste may help to reduce $\mathrm{H}_{2} \mathrm{~S}$ production.

Sulphides in the sediment can also be oxidized to the non-toxic $\mathrm{SO}_{4}$ by species of the multicellular filamentous chemosynthetic bacteria, Beggiatoa (Pearson 1980). Beggiatoa spp. are widely distributed in coastal sediments with a high organic load (Amend et al. 2004) and are limited to the zone of transition between aerobic and anaerobic environments. Dense white bacterial mats (between $0.5-3.0 \mathrm{~cm}$ thick) form when the oxygen-sulphide transition zone exists at the SWI (Figure 2.1; Podger unpublished, Pearson 1980, Jørgensen 1977, Mußmann et al. 2003). Beggiatoa spp. will continue to use hydrogen sulphides, keeping the underlying sediment anaerobic by creating a membrane of dense bacterial mats over the sediment, and obstructing the recovery of degraded sediments. In these conditions fish prey species occur in extremely low abundances and the resulting low dissolved oxygen conditions can become uninhabitable to many fish species (SAIC 1999). The presence of Beggiatoa mats can therefore be a good indicator of organic enrichment (i.e. TOC) from anthropogenic activities such as aquaculture or wood-processing (Fenchel and Bernard 1995, Elliott et al. 2006). However, the presence of the dense white mats is dependent on site-specific conditions, namely the presence of the oxygen-sulphide transition zone at the SWI. When the aerobic-anaerobic boundary falls below the sediment surface, large numbers of inconspicuous Beggiatoa spp. may occur in the top few centimeters of the sediment (predominantly 0.5 2.5 cm ), often as the dominant organism, without forming large white mats on the surface (Jørgensen 1977, Mußmann et al. 2003). Beggiatoa spp. are classified by their gliding motility and have been shown to vertically migrate in sediment with a rapid change in the depth of the oxygen-sulphide transition zone (Jørgensen 1977, Mußmann et al. 2003). The presence of oxygen at the SWI, or within the first few centimeters of the sediment, can be both temporal (influenced by season) or spatial (influenced by wave action transporting oxygen into the SWI, by the bioturbation of benthic marine invertebrates in the surficial sediment layers, or by heterogenous distribution of wood waste in surfical sediments) (Podger unpublished, Jørgensen 1977, Fenchel and Bernard 1995, Elliott et al. 2006). For example, a study by Jørgensen (1977) found that the mats were only visible for short periods of the summer when bottom waters became stagnant and partially or totally depleted of oxygen.

In addition to nitrate and sulphate, bacteria in anaerobic marine sediments can also produce methane $\left(\mathrm{CH}_{4}\right)$ (see Figure 2.1). In this process, the lower molecular weight organic forms, such as lactate and acetate, are fermented by anaerobic methanogenic bacteria to produce methane ( $\mathrm{CH}_{4}$; Figure 2.1; Pearson 1980). In marine sediments, methane production does not normally occur, with the exception of pockets of decaying material (Pearson 1980), possibly due to reduced activity at temperatures below $10^{\circ} \mathrm{C}$ (Samis et al. 1999) As with hydrogen sulphide, methane may remain in the interstitial spaces of the sediment until it migrates up to the water column.

### 2.1.4 Impacts to Benthic Communities

Benthic infauna are important components of nearshore marine ecosystems, driving detrital decomposition and nutrient cycling and providing a food source for higher trophic level organisms. Since these organisms live in close association with the surface sediment, and are often sedentary, they are influenced by the direct and indirect effects of wood waste (see Section 2.1.1 to Section 2.1.3). A small amount of natural organic matter in nearshore marine benthic ecosystems provides an important source of food to benthic communities; however, high levels of organic matter lead to oxygen depletion, a build-up of toxic byproducts, and decreases in abundance, biomass and species richness of benthic infauna community organisms (e.g. Hyland et al. 2005; Figure 2.1 and Figure 2.2).

If wood waste is thinly deposited, sedimentation over the wood waste may allow for the natural recovery of the benthic infauna community over longer time periods. However, if wood waste accumulations are deep, sedimentation will not allow for recovery, since sulphides, ammonia, and to a lesser extent methane, will permeate through recently deposited materials (Figure 2.1; Washington State Ecology 2013).

### 2.1.5 Indicators of Impact

The impacts of wood waste on an area depend on the nature and extent of the wood waste in combination with site-specific biophysical conditions (Washington State 2013). Therefore, universal thresholds of impact do not exist and must be developed for a site based on the results of the impact assessment. However, certain indicators can be used in the assessment of impacts from wood waste on the benthic community.

### 2.1.5.1 Wood Waste Surficial Cover

Assessments of wood waste impacted sites in Washington state have used Kendall and Michelsen's (1997) findings to develop initial screening guidelines to target potential areas of wood waste impacts (Washington State 2013). Under these guidelines, surficial cover of $5-25 \%$ wood waste indicates a possible need for further investigation, while $>25 \%$ should be investigated further due to the adverse impacts to the benthic community. However, wood waste assessments in Washington State have found that areas with finer wood waste accumulations (such as small chips or sawdust) have a greater impact with less surficial coverage, and propose using a visual surficial cover of $5 \%$, as opposed to $25 \%$, to screen for potential biological impacts (Washington State 2013).

### 2.1.5.2 Bacterial Mats

While the presence of white bacterial (Beggiatoa sp) mats are indicative of high organic content (i.e. high TOC concentrations), they can be variable and indistinguishable under certain conditions, particularly seasonally with differences in oxygen at the SWI (outlined in Section 2.1.3). In combination with bacterial mats, several sediment chemistry analyses can also be used as indicators of degraded sediment conditions and deleterious effects on benthic fauna; however, natural baseline levels for sediment chemistry analyses vary between habitat types and should be considered in the interpretation of habitat quality impacts.

### 2.1.5.3 Total Organic Carbon

Naturally elevated levels of organic carbon are found associated with productive habitats in nearshore coastal ecosystems that generate high levels of detrital organic material, such as estuaries, eelgrass beds and kelp beds. Aside from these habitats, marine sediments generally have a low organic composition, measured as total organic carbon (Phillips 1984, Libes 1992). Therefore, elevated organic matter can result from accumulation of organic material derived from the detrital food chain or from organic enrichment by anthropogenic activities (e.g. aquaculture industry, sewage outfalls, and wood waste deposits). While naturally-derived organic matter forms an important food source for benthic fauna, an overabundance in surficial sediments will lead to a depletion of oxygen, the production of toxic by-products (e.g. sulphides and ammonia) and the subsequent impairment of benthic communities (decreases in species abundance, species richness, and biomass; Figure 2.2, Section 2.1.3; Hyland et al 2005). As a result, total organic carbon (TOC) can be used to help identify degraded habitat quality and the presence of wood waste deposits.

The Canadian Council of Ministers of the Environment (CCME) Sediment Quality Guidelines (SQG) for the Protection of Aquatic Life and the environmental quality standards set by BC Contaminated Sites Regulation (BC CSR) do not have a developed marine sediment TOC potential level of concern. However, the US Environmental Protection Agency (EPA) was evaluating threshold effect levels for TOC based on data from the Environmental Monitoring and Assessment Program (EMAP) which demonstrated that impaired benthic communities in estuarine systems were associated with muddy sediment ( $>80 \%$ silt-clay) with moderate TOC content ( $1-3 \%$ ) while unimpacted communities were associated with sandy sediment (<20\% silt-clay) and low TOC content (<1\% ; US EPA 1999). Similarly, a global meta-analysis conducted by Hyland et al. (2005) for coastal marine ecosystems proposes that TOC levels can be used as a general screening-level indicator for evaluating the likelihood of reduced sediment quality and associated impairment of the benthic community (low $\leq 1 \%$, intermediate $1-3.5 \%$, and high $\geq 3.5 \%$ ).

While most benthic communities will decrease in species abundance and diversity (measured as species richness) with increasing TOC, there are some Polychaete species that are dominant in polluted or degraded habitats (e.g. log handling facilities) and are good biological indicator species of elevated TOC, including (Reish and Barnard 1960, Rosenberg 1972, Conlan 1977, Kathman et al. 1984, Borja et al. 2000, Teixera et al. 2012):

- Capitella capitata;
- Armandia brevis; and,
- Prionospio cirrifera.


Figure 2.2 Conceptual Model of the Relationship between Increasing Sediment Organic Carbon, Benthic Community Response, and other Related Environmental Factors, including Oxygen Depletion and Presence of other Co-varying, Sediment-associated Stressors (Hyland et al. 2005)

### 2.1.5.4 Hydrogen Sulphide

Hydrogen sulphide is an indicator of sediment health since higher concentrations are directly correlated with increasing TOC and impacted benthic communities (Figure 2.2). Sulphide influences sediment toxicity in three ways: (i) increasing sediment toxicity, (ii) decreasing metal toxicity by binding with free metals and forming precipitates and/or complexes, and (iii) by affecting animal behavior (Wang and Chapman 1999). Hydrogen sulfide toxicity varies with pH and by species and life history stage; therefore, threshold levels are developed for a specific organism (Podger Unpublished, Wang and Chapman 1999). In sediment porewater, sulphide occurs in two forms, as un-ionized hydrogen sulphide ( $\mathrm{H}_{2} \mathrm{~S}$ ) and as a sulphide ion ( $\mathrm{HS}^{-}$). Since $\mathrm{H}_{2} \mathrm{~S}$ can readily diffuse across the cell membranes of organisms, it has a higher toxicity and, at lower pH levels (i.e. more acidic conditions), a greater proportion of $\mathrm{H}_{2} \mathrm{~S}$ is present in the water (Wang and Chapman 1999).

Community-level effects can also occur indirectly, or as a cascading effect, when dominant or structural species such as eelgrass (Zostera marina) or horse clams (Tresus spp.) are negatively impacted. For example, hydrogen sulfide can reduce the distribution and health of native eelgrass beds, which normally provide cover for invertebrates and fish that feed sea birds and marine mammals (Pederson et al. 2004, Elliott et al. 2006). Hydrogen sulfide has also been shown to reduce the diversity of benthic invertebrate communities that aerate the sediment through bioturbation and are a large source of food for higher trophic species including crab, river otters and sea birds (Goodman et al. 1995, Wang and Chapman 1999, Hyland et al. 2005).

The CCME SQG for the Protection of Aquatic Life and the US EPA Marine Sediment Screening Benchmarks have not developed a marine sulphide (as $\mathrm{H}_{2} \mathrm{~S}$ ) potential level of concern. However, the US EPA saltwater quality criterion for hydrogen sulphide is $2 \mu \mathrm{~g} / \mathrm{L}$ (US EPA 1986), which can be used as a general indicator of water quality.

### 2.1.5.5 Ammonia

High levels of ammonia are difficult for marine organisms to excrete, leading to a buildup in the tissues and potentially death. Ammonia toxicity can change with environmental factors, such as pH and temperature, as this influences the equilibrium between un-ionized $\left(\mathrm{NH}_{3}\right)$ and ionized ammonia $\left(\mathrm{NH}_{4}{ }^{+}\right)$(Wang and Chapman 1999). An increase in one pH unit will increase the concentration of the more toxic un-ionized form tenfold, while a $5^{\circ} \mathrm{C}$ increase in temperature can increase this form $40-50 \%$ (CCME 2010). CCME SQG for the Protection of Aquatic Life and the US EPA Marine Sediment Screening Benchmarks have not developed a total ammonia potential level of concern for marine ecosystems; however, the US EPA saltwater quality criterion for un-ionized ammonia is $35 \mu \mathrm{~g} / \mathrm{L}$, which can be used as a general indicator of water quality. Ammonia is easily diluted and flushed in the water column and not likely to be as critical an indicator as $\mathrm{H}_{2} \mathrm{~S}$.

### 2.1.5.6 PH

CCME water quality guidelines for the Protection of Aquatic Life outline an acceptable range of $\mathrm{pH} 7.0-$ 8.7 for marine and estuarine environments based on the pH range observed in Canadian coastal water, unless it can be demonstrated that pH is a result of natural processes (CCME 2010).

### 2.2 Study Location and Site Descriptions

### 2.2.1 Esquimalt Harbour Marine Environment

Esquimalt Harbour is located along the southeastern end of Vancouver Island off the Strait of Juan de Fuca and comprises several smaller bays and coves with many small rocky islets (Figure 1.2; BCMCA 2016). In its entirety, the Harbour encompasses approximately 354 hectares ( 50 hectares of intertidal area and 304 hectares of subtidal area) and 20.0 km of shoreline (excluding islands; Archipelago 2004), with the federal DND portion of the Harbour encompassing an area of 343 hectares.

The natural shoreline, ranges from sand and gravel beaches to rocky shores, which has largely been maintained along the west and northeast sides of the Harbour. Shoreline in the southwest and much in the southeast (i.e. Constance Cove) has been altered by dredging, infilling, and hardening to support industrial and naval activities (CRD 2016). The Harbour is relatively quiescent, with semi-protected to protected shoreline exposure (i.e. relative exposure to the elements, primarily waves) classification and very low tidal currents ( $0.001-0.045 \mathrm{~m} / \mathrm{s}$ ) (BCMCA 2016). Research investigating the sediment transport pathways in the harbour indicates that the harbour is in a dynamic equilibrium with little net sediment transport. Two major transport regimes are present and converge around the mouth of Constance Cove and the DND Jetties at Colwood - one moving from the Harbour mouth and one down from the head of the Harbour (Hemmera 2002).

The Harbour is relatively shallow, ranging from five to 12 m Chart Datum (CD) in depth within the limits of the Federal Harbour, and a maximum depth of 16 m CD at the Harbour entrance (CRD 2016; Figure 1.2). The subtidal benthic substrate is dominated by $87 \%$ fines (gravel, sand, and mud) with a few subtidal bedrock outcrops (CRD 2016). Sediment in the upper portion of the Harbour and around Plumper Bay is mainly silt, with large areas of organic wood waste cover, while the southern areas have higher proportions of sand.

There are several natural and manmade freshwater inputs into the Harbour. Millstream Creek flows into the head of the Harbour, draining a watershed of 2,842 hectares (including a storm drain network), with a stream length of 16.5 km terminating in a large intertidal mudflat (extending as far out as Cole Island during some low tides) (CRD 2016; Figure 1.1). Flooding and erosion of the lower watershed streambanks have been identified as a main environmental concern for the Millstream Creek Watershed, which can deliver large quantities of fines to the Harbour. Additionally, there is an unidentified stream in the View Royal area, at the north end of the harbour, outside of the federal harbour limit, that discharges the Price Creek Watershed (CRD 2016). The stream is approximately one kilometre long. There are 97 storm water drains that discharge directly into the Harbour (CRD 2016). The Capital Regional District (CRD) completes an
annual stormwater quality sampling program for Victoria and Esquimalt harbours which include fecal coliform (human health) levels for the stormwater discharges and an evaluation of contaminants of concern in stormwater sediments (Hemmera 2002).

### 2.2.2 Pedder Bay Marine Environment

Pedder Bay is located approximately twelve kilometers to the southwest of Esquimalt Harbour, in the Strait of Juan de Fuca, and was chosen as an out-of-Harbour reference location (Figure 1.2) due to its proximity to Esquimalt Harbour, similarities in bathymetry, in shoreline and subtidal substrates, and in wind and wave exposure, and its use in previous studies as a reference location not anticipated to have contamination that substantially affects the environmental conditions (studies summarized in SLR 2016).

The natural shoreline primarily consists primarily of rocky intertidal shores, with a mudflat located at the back of Pedder Bay at the terminus of Pedder and Cripple Creeks (BCMCA 2016). Minimal infrastructure are present within the harbour; however, the shoreline along the southwest has undergone some alterations to support Canadian Forces activities at Rocky Point. Like Esquimalt Harbour, the tidal currents are very low ( $0.001-0.045 \mathrm{~m} / \mathrm{s}$; BCMCA 2016) and shoreline exposure is categorized primarily as semi-protected to very protected; however, the southwest shoreline is semi-exposed to waves generated locally within the Juan de Fuca Strait (Baird and Associates Coastal Engineering Ltd 1991, BCMCA 2016). No information is available on the sediment transport pathways within Pedder Bay.

Similar to Esquimalt Harbour, Pedder Bay is also relatively shallow, ranging from $5-10 \mathrm{~m}$ CD in depth; although depths do exceed 20 m at the entrance to the Bay (Baird and Associates Coastal Engineering Ltd 1991). Subtidal benthic substrates are classified as a mixture of flats and depressions with a mudflat extending into the subtidal at the back of the Bay. Freshwater input to Pedder Bay is received from both Pedder Creek ( 107.0 ha watershed including storm drain areas, 1.5 km main stream length) and Cripple Creek (296.7 ha watershed including storm drain areas, 3.5 km main stream length) drains (CRD 2016).

### 2.3 Historical Activities and Contamination

The objective of this section is to document historical use of the Harbour and associated upland properties, to review previously identified Areas of Potential Environmental Concern (APECs) and Contaminants of Potential Concern (COPCs) associated with on and off-site activities and that may have impacted sediment quality in the Harbour. Additionally, this review was also used to identify the sources of wood waste deposition that may be affecting benthic sediment quality and communities. For the purposes of this historical review, the area from the high water level (HWL) seaward, including the subtidal zones within the Federal limits of the Harbour, was investigated (see Figures 1.1 and 1.2). Lands above the HWL were classified as being out of the study area or offsite.

### 2.3.1 Activities and Contamination Review Methods

The review is consistent with guidance from Breems and Goodman (2009) and Washington State (2013) and includes both current and historical operations within the Harbour, as well as concerns associated with the historical use of adjacent and up-gradient properties. Sources of information reviewed included:

1. Previous environmental reports;
2. Aerial photographs review;
3. Search of the Federal Contaminated Sites Inventory (FCSI);
4. Search of the British Columbia Ministry of Environment (BC MOE) Environmental Violations and Management Authorization databases; and,
5. Search of the CRD Online Harbours Atlas for any reliable data/background.

The background review relied on the information presented in past environmental reports of the Harbour to compile relevant information on the history of property development and land use in and along the shore of the Harbour. Reports summarizing environmental investigations included significant information on historic operations that may have affected the seafloor in the study area, including:

- Bright 1993. An Environmental Survey of Esquimalt Harbour: Part I. Historical Inputs, Marine Sediment Contamination, and Biological Uptake. Report prepared for the Director General Environment, Department of National Defence by the Environmental Sciences Group, Royal Roads Military College;
- Hemmera 2002. Esquimalt Harbour Environmental Baseline Study. Esquimalt Harbour, British Columbia. Prepared for Transport Canada; and,
- Golder 2006a. Phase I Environmental Site Assessment and Supplemental Sediment and Crab Sampling Investigation, Esquimalt Harbour. Volume I of III. Prepared for Public Services and Procurement Canada Project. Victoria, British Columbia.

Previous investigations have focused on contamination issues resulting from ship repair activities, filling of Harbour areas and poor handling of chemicals. The sections following provide additional information by identifying the nature of historic land use and site development activities on the properties and tracing the lease history.

As the Project Area is comprised mainly of the Harbour floor, the review of historical activities and contamination was focused on the potential environmental impact on the federal harbour resulting from operations within the Harbour as well as, at neighbouring and surrounding properties. The review covers nine (9) areas that have been placed into 6 headings based on their location (Figure 2.3), and covers the following properties:

## Esquimalt (Including the Township of Esquimalt and the Department of National Defence Facilities;

## Areas 1-4)

- DND - CFB Esquimalt Dockyard
- Former Yarrow's Shipyard
- Lang Cove / DND - Naden
- Public Services and Procurement Canada - Graving Dock
- Public Services and Procurement Canada - Munroe Head


## Esquimalt First Nations Reserve (Area 5)

- Former West Isle Site
- Former Fibremax Site
- A \& M Auto Site
- Fill Sites


## Songhees First Nation Reserve (Area 5)

- Ashe Head
- Dallas Bank
- Fill Sites


## View Royal (Area 6)

- Residential Properties
- Former Victoria Plywood Site


## Colwood (Areas 7 \& 8)

- CFB Esquimalt Colwood - North and Central, including:
- Colwood Supply Depot
- Fire Fighting Training Area (FFTA)
- Fleet Diving Unit
- Fuel Depot
- Belmont Park


## Harbour Floor (Area 9)

- Leased Areas, Un-leased Areas and Water Lots
- Inskip Island
- Macarthy Island
- Smart Island



### 2.3.2 Aerial Photograph Review

A summary of aerial photographs provides general information with regards to site configurations and activities (Table 2.2). A review of aerial photographs dated 1932, 1946, 1954, 1964, 1975, 1980, 1992 and 1997 (Appendix A) have been incorporated into the analysis of land use history presented in Section

### 2.3.4.

Aerial photograph review of the Harbour floor and related to the deposition of wood waste are summarized in the following table. Based on the review, the last observable date for large-scale log booming was in 1997; however, occasional log booming still occurs infrequently in the harbour within the Jones marine Lease Area.

Table 2.2 Aerial Photograph Review Summary

Chronology	Land Use
1932	Log booms are present near the entrance to Thetis Cove. Four wharves extend from a   cannery operation at the location of the Fibremax log sort operation and from the former   location of the Victoria Plywood Site.
1946	No log booms are present, otherwise the harbour looks unchanged.
1954	Sawmills appear to be active on the West Isle and the Victoria Plywood sites. Approximately   $60-70 \%$ of Plumper Bay and Thetis Cove are covered with log booms supplying these   operations. Log booms are present on the west side of Inskip Islands and in Paddy Passage.
1964	A sawmill is in operation on the West Isle site. Approximately 20-30\% of Plumper Bay and   $50-60$ \% of Thetis Cove are covered with log booms supplying logs to this and the   neighbouring Victoria Plywood operations. Log booms are now empty in Paddy Passage.
1975	Sawmills are in operation on the West Isle and Victoria Plywood sites. Approximately 50-60\%   of Plumper Bay and Thetis Cove are covered with log booms supplying logs to these   operations.
1980	Sawmills are in operation on the West Isle and Victoria Plywood sites. Approximately 70-80\%   of Plumper Bay is covered with log booms supplying logs to these operations. Large log   booms are present north of the Inskip Islands.
1992	Sawmills are no longer in operation on the West Isle and Victoria Plywood sites. There is a   large reduction of log boom activity with booms only present west of the Fibremax site. Empty   log booms remain in Plumper Bay and Thetis Cove. Log booms, which appear to be   associated with the log sort facility on the Fibremax site.
1997	There are no log booms on the west side of Esquimalt harbour, in Thetis Cove, or Plumper   Bay. Limited log boom activity appears to be associated with the log sort facility on the   Fibremax site.

Additional aerial photographs from 2003, 2010, 2011, 2012, 2013, 2014, 2015 and 2016 have been reviewed using Google Earth Pro. While minor changes have occurred between 2003 and 2016, there does not appear to be any significant industrial or infilling changes within the Harbour.

### 2.3.3 Regulatory Information

### 2.3.3.1 Federal Contaminated Site Search

The FCSI includes information on all known federal contaminated sites under the custodianship of departments, agencies and consolidated Crown corporations as well as those that are being or have been investigated to determine whether they have contamination arising from past use that could pose a risk to human health or the environment. The inventory also includes non-federal contaminated sites for which the Government of Canada has accepted some or all financial responsibility.

A search of the Online FCSI was conducted on September 8, 2016 and generated greater than 100 federal contaminated sites within Esquimalt Harbour or close proximity. The results of the federal contaminated sites search are located in Appendix B: Regulatory Information. It should be noted that Esquimalt harbour was assessed under the Federal Contaminated Sites Action Plan (FCSAP) as one FCSI number and assigned as a Level 1 site.

### 2.3.3.2 BC MOE Environmental Violations Database

The Environmental Violations Database reports non-compliance orders, administrative sanctions, tickets and court convictions against twenty-four acts regulated by BC MOE since 2006. A search was completed for violations on September 6, 2016 and no environmental violations were listed within proximity to Esquimalt Harbour.

### 2.3.3.3 BC MOE Environmental Management Authorization Database

A search was conducted of the Environmental Management Authorization Database on November 9, 2016 for approved and permitted waste discharges within the vicinity of the Site. Twenty-one authorizations were on file for Victoria. None of these authorizations were within the vicinity of Esquimalt Harbour. Select details of these authorizations are provided in Appendix B.

### 2.3.3.4 Other Historical Information

Bright (1993) provided a series of tables in Appendix B-1 of the report, which provide a chronological listing of the Esquimalt Harbour occupants as of 1873, 1896, 1925, 1967, and current users as of the report date (1993). Copies of these tables are provided in Appendix C: Harbour Occupants.

Additionally, Hemmera (2004) reported current and historic leases of the harbour. These lease agreements are summarized in the following Table 2.3.

Table 2.3 Summary of Current and Historical Leasehold Properties

Leaseholder	Lease \#	Status	Lease Use	UTM   Northing	UTM   Easting
Plumper Bay Log   Booming	W0306609	Current ${ }^{1}$	Log Booming	5365622.75	467813.067
Plumper Bay Log   Booming	W9596354	Former	Log Booming	5365622.75	467813.067
Plumper Bay Sawmills   Ltd.	104899	Former	Log Booming	5365608.057	468115.159
Greater Victoria Mill   Operators Association   (GVMOA)	89482   102058	Former	Log Booming	5366263.803	466872.966   467626.289
Avenor Inc. (Victoria   Plywood site)	W8691194	Former	Log booming	5365931.808	467955.718

### 2.3.4 Site and Surrounding Land Use History

The following historical description of the Harbour is summarized from the Royal Roads Military College (RRMC) report "An Environmental Study of Esquimalt Harbour" (1993).

Prior to the British occupation of the Harbour, Lekwungen-speaking people, ancestors of present day Esquimalt Nation people, were the sole users of the Harbour. Hudson's Bay Company Chief Factor James Douglas (later Governor of the Crown Colonies of Vancouver Island and British Columbia) visited the Harbour in 1843 on a mission to seek a new site for the HBC's operations north of the 49th parallel. Although Douglas established the new fort on the shore of Victoria Harbour, he evidently saw the agricultural potential of the land that is now Esquimalt. After signing a series of treaties with local native people to acquire the area for the HBC, Douglas established three farms here to supply Fort Victoria and other HBC forts in the northwest with agricultural products. Farms were established at Colwood, in Constance Cove and in Plumper Bay with the exclusion of the First Nations Reserve at Plumper Bay.

In 1848-49 the first industrial sites were developed; a sawmill and gristmill at Mill Stream Falls. Additional infrastructure was built on the Constance Cove farm including a sawmill, flour mill and trades shops. During this period (1840s), the Royal Navy also had a presence within the Harbour and they conducted the first hydrographic survey. In 1855, the start of the first naval base was seen in the form of hospitals constructed to prepare for a potential battle with the Americans. As tensions mounted, increased construction of the naval base was seen in the Harbour. In 1860, two structures on Cole Island were built for use as powder magazines. In the early 1860's two large wooden coal sheds ( 1,500 ton capacity) and the Fisgard Island Lighthouse were built. The construction of the Esquimalt Naval Base was started in 1867 at Signal Hill in Constance Cove.

[^44]By 1883 the Navel Base had expanded onto the Duntze Head area and included approximately 58 buildings. The base was transferred from the Royal Navy to the Royal Canadian Navy in 1910. Pressure for a graving dock in Esquimalt Harbour increased as the base size grew. Shipbuilding and repair was already taking place by this time within the Harbour. In 1867, the construction of a graving dock was started on the southern shore of Constance Cove. By 1887, the dock was finished and began to service naval and commercial ships. Over the next 40 years the dock would service 855 ships until it was transferred to Esquimalt Naval Base.

### 2.3.4.1 Esquimalt (Areas 1-4)

In the late 1890s an additional shipyard was constructed in Constance Cove and in 1914 the shipyard was purchased by Alfred Yarrow. The village of Esquimalt was incorporated into the area in 1912 and began construction of a sewer system. The area of Grant Knoll was chosen for the construction of a marine railway (building 116) for the Naval Dockyard. Buildings just east of the railway (buildings 115 and 120) were built for boat maintenance. The "Factory" building (built in the mid 1860s) was the site of an engine shop, smelter and smith shop and during WWI was busy galvanizing ship parts and equipment.

Public Services and Procurement Canada began construction in 1921 on a new graving dock in Skinner's Cove, just east of Munroe Head, which disappeared as a result. By 1926 the Public Works Graving Dock was receiving ships (see Figure 2.3). Continued construction of facilities occurred following WWI. In 1925 fire destroyed the torpedo building, the old boat shed and the rigging loft, but they were replaced immediately (building 115). With the onset of World War II (WWII), increased demand in the base's facility meant increased expansion. In 1939 construction included a close-range weapons workshop, an indoor testing range building, an electroplating and chemical cleaning facility and a new gun mounting shop. The jetties were referred to as the "Dockyard Jetty" (A-Jetty), the "Refitting Jetty" (B-Jetty) and a "Naval Ordnance Jetty" (C-Jetty, the old coal wharf) (see Figure 2.3).

In the early 1940s Yarrows constructed an additional shipyard, situated just north of Munroe Head, to handle the large workload brought on by the war. Approximately $500,000 \mathrm{~m}^{3}$ of rock was blasted and used as fill in the area. Facilities at the new shipyard (Yarrows 2 Yard) included a marine railway, two building berths, lumber racks, an aluminum storage building, a finishing and paint shop, a compressor and boiler house, a winch house, an electrical shop, a joiner and pattern shop, sheet metal shop, shipwrights, riggers, plate shop/mold loft over, a pre-fabrication shop, an acetylene plant, a blacksmith shop, steel stock storage, rail and spur lines, two wharves, docking space and two cranes. Both the Yarrows shipyards and the Public Works Graving Dock saw many ships during WWII. At the end of the war the old Esquimalt Dry Dock was taken over and renovated by HMC Dockyard. In the mid-1900s shops were split and moved and new ones were built. Of note was the sheet metal workshop, which was constructed in the corner of the coal shed.

Following WWII, the Yarrows \#2 Shipyard was shut down. A portion of the yard was a crown lease, which expired in June, 1948. The Yarrows owned portion of the property was sold to Manning Timber Products for use in their sawmill operation. The mill included a drying kiln, a spur line from the Esquimalt and Nanaimo (E \& N) Railway, a transformer station and an electrical substation. The mill was in operation for only a short period and in 1959, DND acquired the property and presently has storage areas and facilities on the site. West of this area is the current Canadian Forces Sailing Association. During the 1960s, Yarrows became Versatile Shipyards (later changed back to Yarrows) and Public Works constructed EJetty adjacent to the Graving Dock. The Yarrows shipyard shut down in 1992 and the property was acquired by DND. Since then the site has undergone extensive environmental investigation. DND's C-Jetty, a ship repair facility, was closed in 1987, the area was dredged and a new concrete twin C-jetty was constructed.

### 2.3.4.2 Esquimalt and Songhees First Nations Reserves (Area 5)

In 1886 the E \& N Railway was built and the Esquimalt station was located near the boundary between Esquimalt First Nations Reserve and the View Royal. Todd's Cannery (1896) in the Plumper Bay area used the rail facility to export fish. In 1912, a large fuel storage tank was installed as a result of the switch to oil from coal. A machine shop was noted on the 1918 hydrographic chart. During WWII, an oil wharf, ferry slip and oil tank operated by E \& N Railway were present in Plumper Bay. The Cannery (now called Empire Cannery) was replaced in 1960 with a sawmill (West Isle Forest Products, later renamed Futura Forest Products). During this time, extensive log booming occurred at the mouth of Plumper Bay.

The 1970s and 1980s saw West Isle Forest Products (Futura Forest Products), Pacific Forest Products, Fibremax Timber Corp. and Victoria Plywood occupy the land south of Plumper Bay. All but the Fibremax site became inactive in the 1990s and clean-up/decommissioning of the sites has either been completed or is ongoing.

### 2.3.4.3 View Royal (Area 6)

In the 1930s, a floatplane base was located in Limekiln Cove. There was also additional industrial activity in the northern end of the harbour. In the mid-1900s, a masons yard existed in the Parsons Bridge area (over Mill Stream) as did a blacksmith shop and brass foundry. A high voltage electrical transmission line was routed to Dyke Point in 1947 for the harbour (see Figure 2.3). Extensive log Booming continued in the 1960s in the northern end of the harbour. During the 1970s and 1980s, the View Royal section of the Harbour (northern section) experienced a residential development boom. Questions exist however, about effectiveness of the septic systems of the older residences.

### 2.3.4.4 Colwood (Areas 7 \& 8)

In 1926, Frank Wilfert built a sawmill where the F-Jetty site is today (see Figure 2.3). A Former employee (Paul Cox) stated that the mill didn't use any chemical wood treatment and there were two booming sites, one directly in front of the mill site and the other across the harbour near the First Nations Reserve. Additional communications with residents indicated that log booming was present from Paterson Point to Dyke Point (see Figure 2.3), all the way up to Cole Island. Additional industrial activity during this time included a limekiln opposite Limekiln Cove (Patterson Point). The Cole Island magazines were moved to Patterson Point in the late 1930s, due to the requirement for fresh water access. In 1943, a "Magazine Jetty" (G-Jetty), associated with existing magazines, was present and by 1947, the "Fuel Oil Jetty" (F-Jetty) was in service (see Figure 2.3). The DND magazines were moved again, this time from Patterson Point to Rocky Point, which is southwest of Victoria (1955). The Naval Supply Depot was built in 1958, using the existing F-jetty. Later Fisgard Island was connected to Rodd Point through the addition of coarse fill material (see Figure 2.3). Little change occurred in the Colwood area during the 1960s, 1970s and 1980s. Further development of the area by DND, brought the Naval Fleet School (Pacific), the Fleet Diving Unit (Pacific), and storage space.

### 2.3.4.5 Harbour Floor (Area 90)

During World War I (WWI), the Royal Navy, the Royal Canadian Navy, and the Army used the magazines on Cole Island. The magazines were later moved to Patterson Point (1930s) and ownership of the island was transferred to the provincial government. Cole Island is currently under the jurisdiction of the provincial government's Heritage Properties Branch (see Figure 2.3).

With the exception of log booming in the northern portion of the Harbour from the 1940s to the 1980s and booming in the mouth of Plumper Bay to $199{ }^{2}$, there has been little to no marine activity, with the exception of navigation, within the federal harbour historically. Influences are linked to the activities of the adjacent lots. These influences include the infilling of portions of the Harbour.

Marine sediments in Esquimalt Harbour have been contaminated by historical and current operations within and adjacent to the harbour (Golder 2006).

[^45]
### 2.3.5 Summary of Areas of Potential Environmental Concern

Golder (2006) included an extensive review of historical literature relating to Esquimalt Harbour and surrounding areas, which was used to identify APECs for the Harbour and adjacent properties. No additional APECs were identified as part of this background review. Golder identified these APECs, in part, to develop a risk management strategy for the harbour.

In total, 104 APECs were identified which are summarized in Appendix D: Areas of Potential Environmental Concern (Table and Figures). The APECs were divided into seven categories by Golder, as follows:

- APEC Group A - Fill;
- APEC Group B - ASTs, USTs, other hydrocarbons;
- APEC Group C - Operational activities (including historical operations);
- APEC Group D - Treated timber piles;
- APEC Group E - Polychlorinated Biphenyls (PCBs);
- APEC Group F - Spills; and,
- APEC Group H - Stormwater outfalls.

Typically, a Phase I Environmental Site Assessment would link the APEC sources with areas of identified contamination. However, owing to the long, complex and varied nature of the historical activities at the Site, varied migration of contamination into sediments, and the potential for sediment transport, the source of the contaminants associated with each of the APEC was not always clear and, in most cases, could not be identified without being highly speculative. This process also does not target leachate from wood waste, or the physical impacts of wood waste.

The APECs deemed more relevant to the wood waste assessment, are excerpted from the complete table included in Appendix D and are outlined in Table 2.4.

Table 2.4 Related Areas of Potential Environmental Concern

$\begin{gathered} \text { APEC } \\ \text { ID } \end{gathered}$	Location	Issue(s) / Activity(ies)	Media Type	COPC
C7	West Isle Site, Plumper Bay	Historical operational activities associated with mill	Soil, Groundwater	Unknown
C8	Fibremax, Plumper Bay	Historical activities associated with mill	Soil, Groundwater Sediment	Unknown
C9	Victoria Plywood, Thetis Cove	Former mill activities	Soil, Groundwater, Sediment	Hydrocarbons, metals, PCBs, phenols, PAHs
C15	Cole Island	Potential waste materials from historical operational activities	Soil	Metals, hydrocarbons Possible Organics
C26	Victoria Plywood, Thetis Cove	Pollution Control Permit for discharge into harbour	Sediment	Phenols, hydrocarbons Metals
C27	Northern part of Esquimalt Harbour	Log booming causing accumulation of wood waste on sea floor	Sediments, Aquatic life	Organic material
C31	Upland area to the north and west of F Jetty, Colwood	Historical presence of a limestone handling facility, historical presence of a sawmill and booming grounds.	Soil, Groundwater, Sediment	Not known
C32	Shoreline of View Royal	Historical commercial activities in the area	Sediment, Aquatic life	Not known
C34	Esquimalt Harbour	Cable ties from log booming activities in the harbour	Sediment, Aquatic life	Metals
F1	West Isle Site, Plumper Bay	Chlorophenols from spill	Soil, Groundwater	Chlorophenols
G1	Harbour wide stormwater outfalls	Discharge of contaminated sediments from upland sources	Sediment, Aquatic life	Metals, PAHs
G2	Esquimalt Graving Dock stormwater outfalls	Stormwater outfalls	Sediment	Metals TBT

### 2.3.6 Background Review Conclusion

Esquimalt Harbour, and the surrounding area, have been heavily industrialized since 1848 with a long history of sawmilling and federal maritime activities. Leaseholds within the harbour used for log booming, have resulted in a large amount of wood debris being deposited on the harbour floor along with other contaminants resulting from infilling of the foreshore and historic operations and infrastructure within upland properties. While many COPCs have been studied extensively in the harbour, the assessment of wood waste and its associated physical impacts have not been examined historically.

### 2.4 Historical Biophysical Information Review

This section summarizes the historical biophysical information collected for the Study Area (i.e. subtidal sea floor within the Federal limits of Esquimalt Harbour, 'Harbour Floor' on Figure 2.3) and to fill any gaps through a review of pertinent existing databases to ultimately inform the current site characterization, impact assessment and future management options.

### 2.4.1 Biophysical Review Methods

The background review is consistent with guidance from Breems and Goodman (2009) and includes both current and historical data within the Harbour and Pedder Bay. Sources of information reviewed include:

- Duffus, H.J, J.W. Madill, W.t. MacFarlane, and P.J. Schurer. 1978. First Report on Bottom Studies of Esquimalt Harbour. Royal Roads Military College, Coastal Marine Science Laboratory Manuscript Report No 78-3. 23pp.
- Schurer, P.J., W.T. MacFarlane, and H.J. Duffus. 1979. Sub-bottom Survey of Harbours Near Victoria, B.C. 17pp
- Bright. 1995. An Environmental Survey of Esquimalt Harbour: Part I. Historical Inputs, Marine Sediment Contamination, and Biological Uptake. Report prepared for the Director General Environment, Department of National Defence by the Environmental Sciences Group, Royal Roads Military College.
- Hemmera. 2004. Victoria \& Esquimalt Harbours Environmental Baseline Study. Volume 18 (Addendum\#3) Lot A. Lot 18. Prepared for Transport Canada, Victoria \& Esquimalt Harbours Environmental Program.
- Archipelago. 2004. Subtidal survey of Physical and Biological Features of Esquimalt Harbour. Prepared for Transport Canada, Victoria and Esquimalt Harbours Environmental Program.
- SLR Consulting Ltd. 2016. Detailed Quantitative Ecological Risk Assessment to Support Environmental Risk Management, Esquimalt Harbour, BC, Esquimalt Harbour Remediation Project (EHRP), Draft \#3.

The following databases and information systems were also used:

- Capital Regional District online mapping application (CRD Atlas) and harbours information website;
- Ecosystems of British Columbia;
- Sensitive Habitat Inventory and Mapping (SHIM);
- iMapBC;
- BC Coastal Resource Information Management System (CRIMS database);
- British Columbia Marine Conservation Analysis (BCMCA);
- BC Conservation Data Centre (CDC) Species and Ecosystem Explorer;
- North Coast Watershed Atlas (NCWA), Community Mapping Network; and
- Pacific Coastal Resources Atlas (PCRA), Community Mapping Network.


### 2.4.2 Regional Overview

The upland areas of both Esquimalt Harbour and Pedder Bay lie within the Eastern Vancouver Island Ecoregion and the Leeward Island Mountains Ecosection and are classified as a Coastal Douglas-fir Moist Maritime Biogeoclimatic Zone (CDFmm). The CDFmm occurs along the southeastern Vancouver Island, on several Gulf Islands, and a small strip of the mainland and is limited to elevations below 150 m . Lying in the rain shadow of Vancouver Island and the Olympic mountains, it is characterized by warm, dry summers and mild, wet winters with mean annual temperature from $9.2-10.5^{\circ} \mathrm{C}$. The most common tree species in upland forest is the coastal variety of Douglas-fir (Pseudotsuga menziesii var. menziesii) which is frequently found with western redcedar (Thuja plicata), grand fir (Abies grandis), arbutus (Arbutus menziesi), Garry oak (Quercus garryana), and red alder (Alnus rubra), depending on site moisture and nutrient regime (Nuszdorfer et al. 1991).

The marine waters of both Esquimalt Harbour and Pedder Bay fall within the Georgia-Puget Basin Ecoregion, within the Strait of Juan de Fuca Marine Ecosection. Marine ecosections are defined according to physical, oceanographic and biological characteristics, with the Strait of Juan de Fuca Ecosection described as a deep trough marine area with semi-protected coastal waters and a strong "estuarine-like" outflow current (BCMCA 2016, BCMEC 2002). It is the major water exchange conduit between the Georgia - Puget Basin Ecoregion and the open Pacific Ocean (BCMEC 2002). Except for a few islets, such as Race Rocks, most of the ecosection is comprised of warm (i.e. $9-15^{\circ} \mathrm{C}$ ) nearshore marine waters (BCMEC 2002). Surface waters ( $0-25 \mathrm{~m}$ ) within the Juan de Fuca Straight are characterized by an average winter temperature of approximately $8.2^{\circ} \mathrm{C}$ and average summer temperature of $10.0^{\circ} \mathrm{C}$ (Davenne and Masson 2001). The area of Juan de Fuca Strait surrounding Esquimalt Harbour and Pedder Bay is characterized as more marine than the Strait of Georgia and has an average surface salinity of $16-33 \mathrm{ppt}$ (BCMEC 2002).

### 2.4.3 Historic Distribution of Habitats and Species in Esquimalt Harbour

### 2.4.3.1 Substrate

The majority ( $87 \%$ ) of subtidal surficial substrates in the Federal portion of the Harbour is classified as mud, sand or gravel (Table 2.5). By grain size, most of the sediments were silt and sand ( $33 \%$ of total subtidal area) or gravelly mud and sand (40\% of total subtidal area) (Hemmera 2004, Archipelago 2004). Some isolated bedrock outcrops are present, along with rocky seafloor adjoining rocky islands, but this only comprises $2 \%$ of subtidal area surveyed (Hemmera 2004, Archipelago 2004). Wood and bark debris were documented as mainly covering areas associated with log booming operations (Appendix E: Subtidal Survey of the Physical and Biological Features of Esquimalt, Figure 5; see Section 2.1 for a review of wood waste in Esquimalt Harbour; Hemmera 2004, Archipelago 2004).

Table 2.5 Subtidal Sediment Breakdown from Subtidal Habitat Survey of Esquimalt Harbour (Archipelago 2004)

Sediment Size	Subtidal Area	
	Area (ha)	$\%$
Gravel (>30\%)	41.0	15.3
Gravelly Mud and Sand (trace - 30\% gravel)	122.5	45.8
Sand	3.5	1.3
Silt and Sand	100.5	37.6
Silt	0	0
	$\mathbf{2 6 7 . 5}$	$\mathbf{1 0 0}$

### 2.4.3.2 Marine Vegetation

In 2004, vegetation, consisting of macroalgae or eelgrass, covered approximately $30 \%$ of the subtidal Harbour seafloor (Appendix E, Figure 11; Archipelago 2004). Similar to Victoria Harbour, less than 10\% of the total subtidal area in the Harbour had moderate to dense vegetative cover. In general, vegetative cover was not found on mud-sand sediments and was sparse to absent on gravel-sand-mud substrates. In the areas of $>30 \%$ wood waste (\% organic cover) vegetation was primarily sparse to negligible, with the exception of Paddy Passage, north of Inskip Islands (Archipelago 2004). In Paddy Passage macroalgae cover was moderate to dense consisting of broad kelp, green algae, or eelgrass, while sparse cover consisted primarily of filamentous red algae (Archipelago 2004).

Since depositional sediments throughout most of the Harbour are suitable for native eelgrass (Zostera marina), it was likely that the total area of native eelgrass was historically larger than today. However, dredging, infilling, and wood waste including bark and wood debris may have impacted the distribution. In 2004, a total area of 0.5 ha of eelgrass was mapped in the Harbour, split between eight small beds, ranging in size from $60 \mathrm{~m}^{2}$ to $1,630 \mathrm{~m}^{2}$, in depths of +0.5 to -0.9 m CD (Archipelago 2004). Substrates where eelgrass occurred was mainly a mix of mud and sand with gravel and shell content (barnacle hash). Of the beds identified, three had sparse to low cover ( $<25 \%$; Table 2.6, Appendix E, Figure 12). Epiphytic red algae (Smithora naiadum) and diatoms were found on eelgrass blades, and other species co-occurred including: Laminaria sp., Ulva sp., Sargassum muticum, Alaria sp. and Neoagardhiella sp.

Table 2.6 Estimate of Eelgrass Bed Areas within Esquimalt Harbour in 2004

Bed Number	Location	Area ( $\left.\mathbf{m}^{\mathbf{2}}\right)$
1	Grant Knoll	60
2	Lang Cove South	810
3	Lang Cove North	620
4	Munroe Head North	900
5	Ashe Head South	120
6	Thetis Cove	700
7	Limekiln Cove	1,320
8	Smart Island	820
	-	$\mathbf{5 , 3 5 0}$

Source: Archipelago 2004

### 2.4.3.3 Benthic Invertebrate Fauna

Benthic invertebrate fauna is a broad grouping of species that live within (infauna) and on (epibenthic) the surficial substrates of the seafloor. Infauna are divided into two size classes based on body size: meiofauna ( 63 to $500 \mu \mathrm{~m}$ ) and macrofauna ( $>500 \mu \mathrm{~m}$ in length).

## Infauna

Two previous environmental investigations conducted in Esquimalt Harbour have enumerated the macroinvertebrate infauna communities:

- Bright 1995-17 stations (17 in September 1993); and,
- SLR 2015 - 56 stations (12 in February 2013, 46 in July 2015).

However, these studies largely avoided areas of known wood waste debris. A subset of results from these studies are presented later in the report (Section 3.0).

Larger infauna within the Harbour has also previously been enumerated by using observations of infaunal burrows to indicate the presence of burrowing shrimp, worms, and bivalves (Archipelago 2004). Burrows were primarily found with the gravelly mud - sand substrates along the harbour entrance and western side of the upper harbour, and were not apparent in areas of wood and bark debris (Archipelago 2004). Of all the observations of fauna that Archipelago (2004) made from video surveys, the majority ( $81 \%$ ) were made up of unmounded and mounded infaunal burrows.

## Epibenthic

Both Dungeness (Metacarcinus magister) and graceful crabs (Cancer gracilis) have been observed to be distributed throughout the subtidal habitats of the Harbour on mud-sand and gravelly mud - sand substrates, while red rock crab (C. productus) are associated with coarser gravel and rocky substrates. Within eelgrass beds, Dungeness crab, graceful crab, helmet crab (Telmessus cheiragonus), and horse clams (Tresus capax) were the most common invertebrate species (Archipelago 2004). Plumose anemones were
frequently attached to logs and larger pieces of wood debris with crabs relatively abundant (Archipelago 2004). Echinoderms such as the California sea cucumber (Parastichopus californicus) and red sea urchin (Strongylocentrotus franciscanus) were noted in rocky substrates at the harbour entrance and Inskip Islands (Archipelago 2004). For observations refer to Appendix E, Figure 18-21.

Observations of Northern Abalone (Haliotis kamchatcana) have been documented within the harbour, refer to Section 2.4.4.1 below.

### 2.4.3.4 Fish and Fisheries

As with larger invertebrate macrofauna, fish that have been previously been identified in the subtidal environment throughout the Harbour varied in their distributions by habitat type. Fish commonly found in eelgrass beds, include: striped (Embiotoca lateralis) and pile perch (Rhacochilus vacca), threespine stickleback (Gasterosteus aculeatus), bay pipefish (Syngnathus griseolineatus), Northern ronquil (Ronquilus jordani) and gunnels (Archipelago 2004). In 2004, flatfish were the most commonly identified fish species in the outer area of the Harbour and off Inskip Islands (Archipelago 2004). Other fish such as perch and rockfish were associated mainly with the kelp beds adjacent to the islands (Archipelago 2004). For observations of fish during 2004 surveys refer to Appendix E, Figure 22).

The entirety of the Harbour and surrounding waters of the Greater Victoria area (DFO Are 19-1) are subject to a permanent bivalve sanitary closure due to concerns around potential presence of fecal coliform bacteria and other contaminants resulting from domestic sewage discharge from outfalls, docks, wharves, liveaboard boats and other sources (Golder 2006). In 2006, commercial fisheries within the Harbour were very limited. A commercial crab fishery consisting of only two licences was active in Esquimalt Harbour but restricted to specific areas due to DND security concerns, and red and green commercial sea urchin harvesting were generally conducted well outside of the harbour limits (Golder 2006). Recreationally, finfish and crab fishing was documented as occurring within Esquimalt Harbour in 2006; however, this was mostly near the mouth of the harbour and near Fisgard Island (Golder 2006).

### 2.4.4 Esquimalt Harbour Environmentally Sensitive Areas

North of Cole Island at the head of the Harbour is an area of shallow water and mudlfats. This habitat is used by many marine species, such as gulls and ducks, for foraging and occurs at the mouth of Millstream Creek, which is recognized as a coho spawning stream (SHIM Atlas 2016). Other fish species in the stream include: brown bullhead (Ameiurus nebulosus), cutthroat trout (Oncorhynchus clarkia), prickly sculpin (Cottus asper), pumpkinseed (Lepomis gibbosus), smallmouth bass (Micropterus dolomieu) and threespine stickleback (Gasterosteus aculeatus). Eelgrass habitat has been documented as providing critical rearing habitat for juvenile fish, such as salmon and herring, and aides in erosion control by trapping the sediment in the marine and estuarine environments. Before the harbour was industrialized, first nations harvested large numbers of herring. Cumulative herring spawn habitat index (SHI) data from Fisheries and oceans Canada based on spawn records from 1928-2009 classifies Esquimalt harbour as minor (lowest 25\%) to low (next 25\%) (BCMA: Marine Atlas of Pacific Canada).

### 2.4.4.1 SARA Species

A search of the BC CDC Species and Ecosystems Explorer showed that there are 7 provincially and/or federally listed marine species or sub-populations that may potentially occur in the Project area (Table 2.7, BC CDC, 2016).

Northern abalone (Haliotis kamchatcana) have previously been observed within Esquimalt Harbour associated with rocky nearshore habitat in the Esquimalt Harbour Remediation Project of C-Jetty work zone (Balance 2012), along with Duntz Head and ML Floats (Mike Waters, Pers. Comm.). There is little suitable habitat occurring within the present Project area, as much of the harbour seafloor is comprised of soft sediments (see Section 2.4.3.1 above)

Transient killer whales (Orcinus orca), harbour porpoises (Phocena phocena), and Steller sea lions (Eumetopias jubatus) have also been observed within the harbour (Mike Waters, Pers. Comm.).

Table 2.7 Marine Species at Risk with the Potential to Occur within the Project Area

Listed Species Name	$\begin{aligned} & \text { COSEWIC } \\ & \text { Status } \end{aligned}$	SARA   Status	$\begin{gathered} \text { BC } \\ \text { Status* } \end{gathered}$	Habitat and Range Description	Likelihood of Occurrence
Steller sea lion (Eumetopias jubatus)	Special Concern	Schedule 1Special Concern	Blue	Marine habitats include coastal waters near shore and over the continental slope; sometimes rivers are ascended in pursuit of prey. When not on land, the sea lions may congregate at nearshore traditional rafting sites, or move out to the edge of the continental shelf	Steller sea lions have been observed in the Project Area; however, the Project Area is not considered important habitat for the Steller sea lion
Harbour porpoise (Phocoena phocoena)	Special Concern	Schedule 1Special Concern	Blue	Coastal waters and adjacent offshore shallows and also inhabits inshore areas such as bays, channels, and rivers. Mothers and young tend to move into sheltered coves and similar sites soon after parturition.	The Project Area is not considered primary habitat for this porpoise but may occur in areas adjacent to the Project area (this species has not been observed in the Project Area during surveys).
Killer whale (NE Pacific Southern resident population) (Orcinus orca)	Endangered	Schedule 1Endangered	Red	The range during spring, summer, and fall includes the waterways of Puget Sound, Strait of Juan de Fuca, and Southern Georgia Strait. Little is known about winter movements and range.	The Project Area is not considered primary habitat for killer whales, which are found more frequently in the nearshore waters of Juan de Fuca; however, they are not known to frequent the active harbours of Esquimalt and Victoria. It is considered unlikely that killer whales would enter within or adjacent to the Project Area.
Killer whale (West Coast transient [Bigg's] population) (Orcinus orca)	Threatened	Schedule 1Threatened	Red		


Listed Species Name	COSEWIC Status	SARA   Status	BC Status*	Habitat and Range Description	Likelihood of Occurrence
Cutthroat trout (Oncorhynchus clarkii clarkii)	Not at risk	Not at risk	Blue	Preferred habitats are eelgrass meadows and kelp beds. Travels from streams to estuaries remaining close to shore.	The last recorded cutthroat trout in Mill Stream (flows into northeast Esquimalt Harbour) was in 1977; therefore, it is unknown if they still exist in the area (BCMOE, 2010). Cutthroat trout have not been observed in the Project Area to date.
Northern abalone (Haliotis kamtschatkana)	Threatened	Schedule 1-   Threatened	Red	Found near kelp beds in the shallow subtidal and lower intertidal zones on hard substrates. Prefers areas with high wave action and currents.	There are some characteristics of the Project Area that would be favourable for abalone; however, the low wave action and currents and contaminated sediments are unfavourable. abalone were observed at the in the C jetty adjacent to the Project Area (Balanced 2012).
Olympia Oyster (Ostrea conchaphila)	Special Concern	Schedule 1Special Concern	Blue	Mainly found in the lower intertidal and shallow subtidal zones of saltwater lagoons and estuaries. They have also been found on tidal flats, tidal channels, bays and sounds, in splash pools, near freshwater seepage, or attached to pilings or the undersides of floats. On the outer coast, this oyster species is only found in protected locations. Within suitable habitat, Olympia oysters need hard substrate for settlement.	No known occurrences of Olympia oysters within the Project Area.

* Red - Extirpated, Endangered, or Threatened, Blue - Special Concern, Yellow - apparently secure and not at risk of extinction


### 3.0 SITE CHARACTERIZATION AND IMPACT ASSESSMENT

Wood waste impacts to nearshore benthic communities are site-specific, depending on site conditions (e.g. bathymetry, currents, sedimentation rates) and the nature of wood waste, and require a detailed site assessment and determination of site-specific impacts (Washington State 2013).

### 3.1 Methods

Site characterization methods were informed by wood waste assessment and remediation procedures developed by Breems and Goodman (2009) and Washington State Department of Ecology (2013), and included:

- Delineation of the nature (composition, see Table 2.1) and extent (lateral percent coverage and depth) of wood waste deposits in Esquimalt Harbour
- Characterization of existing biophysical conditions, within areas of known wood waste deposits, transition zones, and areas without wood waste including: substrate type, spatial distribution, and abundance of epibenthic and infauna biological communities
- Analysis of sediment chemistry to determine the distribution of COPCs and conventional sediment chemistry parameters associated with wood waste or wood waste decomposition by-products (including total organic carbon (TOC), pore water sulphides, ammonia, and pH ).

Site characterization employed of a series of complimentary field methods to develop a comprehensive understanding of existing conditions in the Study area (see Table 3.1).

Table 3.1 Summary of Field Survey Methods Used to Determine Existing Conditions in Esquimalt Harbour

Survey Method	Objective		
	Wood Waste   Delineation	Biophysical   Assessment	Sediment chemistry
Side scan sonar	$\checkmark$	$\checkmark$	N/A
SCUBA Biophysical surveys	$\checkmark$	$\checkmark$	N/A
Sediment Collection   (Hand cores, 0.65 m$)$   (Van Veen, 0.2 $)$   (Sonic Drill Boreholes, $\sim 5.0 \mathrm{~m})$	$\checkmark$	N/A	$\checkmark$
Benthic Infauna sampling   (Van Veen, 0.2 m$)$	N/A	$\checkmark$	N/A

Following the site assessment, the data were used to determine any areas of Esquimalt Harbour that were impaired by wood waste, the results of which were used to inform remediation or management options (Section 4.0).

### 3.1.1 Field Sampling

Field sampling methods for side scan sonar, SCUBA biophysical surveys, core sampling and grab sampling are described in the following sub-sections.

### 3.1.1.1 Side Scan Sonar

Side scan sonar was used initially to collect imagery of the seafloor and provide information about larger features such as the distribution of larger wood waste (e.g. cut logs) and other underwater structures (e.g. debris, pilings), as well as sediment surface profiles and contours (e.g. can inform substrate composition assessment). Results were used to focus biophysical assessments on areas with wood waste deposits, and aid in the determination of the extent of wood waste.

Imaging was conducted on August 30, 2016 by Terra Remote Sensing Inc. using a towed Edge Tech 4200 operated at 300 and 900 kHz . Side scan survey lines were conducted primarily in a north-south direction and separated by 25 and 75 m to ensure adequate coverage of the seafloor. The horizontal scan range was 50 m to each side of the vessel. Mapping operations were conducted at three knots and kept at one metre depth (below the surface) throughout the survey.

### 3.1.1.2 SCUBA Biophysical Surveys

SCUBA surveys provide detailed information on sediment composition, the distribution of surficial wood waste and its composition, and the epibenthic community, and allow for some sub-surface sediment observations with the use of hand-held cores. While less rapid and less expensive then underwater towed video surveys, they are a more precise visual assessment method (Breems and Goodman 2009, Washington State 2013).

Survey and sample design were chosen to safely assess areas of wood waste deposits (initially delineated using the side scan sonar results), transition zones, and areas without wood waste both within the Harbour and at a nearby reference location, to:

- Visually delineate the extent of surficial wood waste and characterize the composition
- Observe and record biophysical features

Over the course of three field surveys, a total of fifty-eight 100 m long transects were surveyed: 52 within Esquimalt Harbour and six within Pedder Bay (Figure 3.1 and Figure 3.2).

- Field Survey 1: September 19-23, 2016
- Field Survey 2: October 19-21, 2016
- Field Survey 4: January 23-25, 2017



Survey methods followed those outlined in the Marine Foreshore Environmental Assessment Procedure (DFO 2003). Each transect was delineated with a 100 m long lead-weighted line and sampling occurred at stations spaced at 25 m intervals ( $0,25,50,75,100 \mathrm{~m}$ ). Transect endpoints were georeferenced using a handheld GPS unit from the surface-support vessel. The 25 m interval sample positions were interpolated using distance along the transect with ArcGIS. At each of the five sampling locations, a $1.0 \mathrm{~m} \times 1.0 \mathrm{~m}$ quadrat was used to assess:

- Substrate type (including woody debris; \% cover; Table 3.2)
- Marine vegetation (\% cover)
- Sessile invertebrates (\% cover)
- Mobile invertebrates and fish (count)

The abundance of mobile invertebrates and fish were also documented as they were encountered along the transect. All transects were recorded using an underwater video camera for future review, as required.

Table 3.2 Biophysical Assessment Substrate Classification

Substrate Type	Size Range (Diameter)	
Bedrock/ Boulder	>256 mm	
Cobble	64-256 mm	
Gravel	2-64 mm	
Sand	$0.06-2 \mathrm{~mm}$	
Silt/Clay/Mud	$<0.06 \mathrm{~mm}$	
Other*	N/A*	
Large woody debris	Varies	
Wood waste	Cut Logs	Full size logs
	Small wood debris	$<10 \mathrm{~cm}$ diameter
	Wood chips	$6-10 \mathrm{~cm}^{2}$
	Sawdust	$10 \mathrm{~mm}^{2}$
	Woodfibre	$<10 \mathrm{~mm}^{2}$

Note: *Substrates can also include anthropogenic structures, debris and shell hash etc., all of which were characterized under "substrate - other" during field sampling.

### 3.1.1.3 Sediment Collection

To delineate the presence and depth of wood waste deposits, and collect sediment samples for chemical analyses, sediment cores were collected throughout the Project area, including the Pedder Bay reference location.

Three sub-surface cores were taken at 50 m intervals (stations 0,50 , and 100 m ) along each SCUBA transect (Section 3.1.1.2), to a maximum depth of 0.65 m below the sediment surface. The core $(0.80 \mathrm{~m}$ long by 0.05 m diameter PVC tube) was pushed into the sediments by hand or using a one-kilogram hammer to a depth where it could no longer penetrate. The core was then capped, removed from the sediment, and a second cap placed on the bottom of the core to ensure the contents were not released. The sediment was retained in the corer during removal from the sediment due to suction created by the cap. Aboard the dive vessel, each core was visually inspected, photo-documented, and a borehole log was completed to document the vertical profile of substrate and wood waste stratification (Table 3.2). Additional information on the depth of hard substrate below the sediment surface was collected (stations 25 and 75 m ) along each SCUBA transect using a one metre long metal probe marked at 10 cm intervals.

Surficial sediment samples ( $0-10 \mathrm{~cm}$ ) were collected for chemical analyses during the SCUBA surveys using the hand driven cores and during Field Survey 3 (October $26-27,2016$ ) using a Ponar grab sampler ( $\sim 0.15 \mathrm{~m}$ by 0.15 m ) operated from the waters surface. Analysis of conventional sediment chemistry parameters can aid in the identification of areas affected by wood waste decomposition by-products (Washington State 2013). For each transect, sediment was analyzed for the following parameters (Figure

## 3.1 and Figure 3.2):

- Total organic carbon (TOC) - one to three samples
- Ammonia $\left(\mathrm{NH}_{3}\right)$ and pH - one sample
- Pore-water sulphides - one sample

Total volatile solids and TOC can both provide measures of sediment organic content and are indicators of wood waste in sediments. TOC was analyzed for this Project. Pore water sulphides were chosen over bulk sulphides as they provide a more accurate measure of $\mathrm{H}_{2} \mathrm{~S}$; the more toxic form to organisms (see Section 2.1.4.2; Breems and Goodman 2009). Biochemical oxygen demand may help evaluate the potential for a reduced oxygen environment but is not considered necessary to determine wood waste impacts (Washington State 2013).

Water quality data were collected during Field Survey 3, within one tidal cycle, using a YSI 600 XL MP Sonde 1.65, with an extended 50 m cord, to record values approximately one metre above the seafloor. Parameters recorded included: water temperature $\left({ }^{\circ} \mathrm{C}\right)$, salinity ( $\mathrm{g} / \mathrm{kg}$ ), dissolved oxygen ( $\mathrm{DO} \%$ and $\mathrm{mg} / \mathrm{L}$ ), pH and conductivity ( $\mu \mathrm{s}$ ).

Following the completion of the first phase of the project (Fiscal Year 2016/2017), it was recommended that further delineation of wood waste depth be conducted in an area immediately north of Inskip Island where hand-held surface cores were not able to determine the maximum depth of wood waste deposits (wood waste deposits were characterized as "open at depth") during SCUBA surveys. This area was identified during the review of site history as a frequent location for log storage and near the former West Isle Sawmill
and Fibremax log sort sites. In November 2017, Field Survey 6 (November 6 - 9th $^{\text {th }}$ 2017) was initiated to determine the depth of the wood waste in this area using a sonic-drill rig mounted on a spudding barge. A total of 29 boreholes were completed during the survey; a borehole was considered complete if the borehole remained intact during extraction and native sediment was reached below wood waste deposits (Figure 3.1). Runs were completed in 5.0 m below ground surface intervals (i.e. below the sea floor), however, in some cases, up to 10.0 m penetration was required to ensure the borehole was complete (i.e. native sediment was reached).

As each run was removed from the water, cores were extruded from the drill into a sealed plastic bag and placed into a core box. Each borehole was visually inspected, photo-documented, and a borehole log was completed to document the vertical profile of substrate and wood waste stratification (Table 3.2). Once boreholes were logged and samples collected, drill cuttings were placed into labelled drums prior to characterization using the analytical laboratory results from the samples collected for disposal considerations. Drums were transported to an upland facility that could accept salt-impacted sediments for disposal. As with sediment cores above, sediment chemistry samples were taken from boreholes for the analysis of:

- TOC
- Ammonia
- Pore water sulphides
- pH

To determine the potential for dredged materials to qualify for disposal at sea (DAS), a preliminary investigation was conducted using samples taken from 10 of the boreholes during Field Survey 6 (Figure 3.1). Samples were collected from boreholes within the area of wood waste deposits north of Inskip Island and Plumper bay, along the border of, and within, the $5 \%$ TOC indicator threshold and analyzed for the DAS Minimum Sample Analytical Requirements ${ }^{3}$ :

- Metals
- Cadmium, mercury, arsenic, chromium, copper, lead, zinc
- Organics
- Total polychlorinated biphenyls (PCB)
- Total polycyclic aromatic hydrocarbons (PAH)
- Physical Parameters
- TOC
- Moisture (\%)
- Grain Size Distribution (\%)

[^46]Sediment chemistry samples from all field surveys (Field Survey $1-6$ ) were processed on the support vessel after borehole log entries were completed (Table 3.3). Sample jars were identified using labels supplied by Maxxam Analytics (Maxxam) noting the sample number and type of analysis. The sample jars were then temporarily stored in insulated coolers at approximately $4^{\circ} \mathrm{C}$ to minimize chemical alteration prior to laboratory analysis. The coolers were transported to Maxxam as soon as possible after sediment sampling was complete (and within acceptable hold times). A site-specific chain-of-custody form accompanied the samples when delivered to Maxxam.

Table 3.3 Surficial Sediment Sample Sizes Analyzed for Sediment Chemistry from Esquimalt Harbour and Pedder Bay

Location	TOC	Porewater   Sulphides	$\mathbf{N H}_{3}$	$\mathbf{p H}$	DAS Analytics   (Minimum requirements)
Esquimalt Harbour	95	61	68	78	10
Pedder Bay	6	6	6	6	-

### 3.1.1.4 Benthic Infauna Sampling

Extensive benthic infauna datasets exist for the Harbour; including a small number at reference stations; however, most sampling has actively avoided areas of known wood waste deposits:

- Bright 1995-17 stations (17 in September 1993)
- SLR 2016 - 56 stations (12 in February 2013, 46 in July 2015)

In order to examine the impacts of wood waste on the benthic infauna community, a total of 14 benthic infauna samples were collected during Field Survey 5 (March $7-10^{\text {th }} 2017$ ), across sediments that exhibited a range of TOC levels in Esquimalt Harbour. Two replicate samples were collected with a Van Veen sediment grab $\left(0.1 \mathrm{~m}^{2}\right)$ at each station and field-screened through a 1.0 mm sieve using unfiltered seawater. Material retained on the screen was transferred to jars and preserved with $10 \%$ buffered formalin. Only samples penetrating at least 10 cm into the sediment, with no evidence of major washout or slumping, were processed. Sediment in Pedder Bay was very consolidated and grab samples were unsuccessful (i.e. sediment recovery did not meet the required quantities for analysis of benthic infauna community).

### 3.1.2 Laboratory Analysis

Sediment chemistry analysis and benthic infauna community analysis were performed at independent accredited lab facilities as follows.

### 3.1.2.1 Sediment Chemistry

All sediment chemistry analysis was performed by Maxxam Analytics.

Quality assurance and quality control (QA/QC) for the sediment samples included collecting a minimum of one duplicate sample for every ten samples analyzed (i.e., $10 \%$ field duplicates) and submitting to the lab using a blind sample ID. The relative percent differences (RPDs) between the characterization sample and the field duplicate were calculated and RPDs compared to data quality objectives (DQOs).

$$
\begin{aligned}
\text { RPD }= & (\text { Absolute Value }[A-B] / \text { Average Value }((A+B) / 2)) \times 100 \% \\
& \text { where } A=\text { field sample and } B=\text { duplicate sample }
\end{aligned}
$$

In 2016 the CCME updated their Guidance Manual for Environmental Site Characterization in Support of Environmental and Human Health Risk Assessment, Volume 4 Analytical Methods which contains recommended DQOs for laboratory duplicate RPDs (Table 3.4; CCME 2016). It is recognized that these DQOs are intended for laboratory duplicates and do not include provisions for additional variability in field duplicates. However, these DQOs are considered a conservative screen for assessing the quality of field duplicates.

Table 3.4 Recommended Data Quality Objectives for Soil, Sediment and Groundwater

Parameter Category	Data Quality Objectives
Organics in Soil and Sediment	
Polycyclic Aromatic Hydrocarbons (PAHs)	50\%
Volatile organic Compounds (VOC, including BTEX*)	50\%
Hydrocarbon Fractions F1-F4	30\%
Metals in Soil and Sediment	
High variability metals: $\mathrm{Ag}, \mathrm{Al}, \mathrm{Ba}, \mathrm{Hg}, \mathrm{K}, \mathrm{Mo}, \mathrm{Na}, \mathrm{Pb}, \mathrm{Sn}, \mathrm{Sr}, \mathrm{Ti}$	40\%
Other metals	30\%
Nutrients in Soil and Sediment	30\%
Organics in Water	
VOCs (including BTEX, F1-F4)	30\%
PAHs	30\%
Metals in Water	20\%
Nutrients in Water	20\%

*BTEX refers to chemicals benzene, toluene, ethylbenzene and xylene

High RPDs may reflect variability within the sample, which can be present due to the heterogeneity of the media or nature of the contaminant distribution. Values exceeding the above DQOs are examined on a case-by-case basis.

### 3.1.2.2 Benthic Infauna

Benthic infauna community was analyzed by Biologica Environmental Services Ltd. (Biologica). After a period of fixation, samples were transferred to $70 \%$ ethanol and stained with Rose Bengal to aid sorting. All samples and debris retained during field screening were sorted by trained technicians using a dissecting microscope at 10-40x magnification. Samples from high volume wood waste areas were sub-sampled.

Sorting efficiency QA/QC was conducted to ensure sorting efficiency was $>95 \%$. QA/QC was performed on $19 \%$ of the samples, and any samples below $95 \%$ sorting efficiency were re-sorted in their entirety. Subsampling accuracy was assessed by sorting the remaining sample for $10 \%$ of all subsampled samples and comparing the fractions to one another to ensure a $>95 \%$ accuracy.

Organisms were identified to the lowest practicable taxonomic classification level (species wherever possible), using standard taxonomic keys and Biologica's verified reference collections, and enumerated by trained taxonomists.

### 3.1.3 Data Analysis

To delineate the presence of wood waste and its potential effects within Esquimalt Harbour, the surficial extent and depth of wood waste were mapped and compared with sediment chemistry and existing benthic community data.

### 3.1.3.1 Wood Waste Delineation

The lateral or surficial extent of the wood waste was documented during SCUBA surveys and mapped as percent cover, while the depth was estimated and mapped using measurements of wood waste collected from the hand-held sediment core and sonic drill data. The sonic drill investigation (Field Survey 6) followed previous field surveys, in order to target an area immediately north of Inskip Island where hand-held surface cores were not able to determine the maximum depth of wood waste deposits (wood waste deposits were characterized as "open at depth") during SCUBA surveys. Wood waste was characterized by size as described in Table 2.1. The depth of wood waste was estimated by interpolating the beginning and ending wood waste depths within the core to create top and bottom surfaces and estimating the volume between these two surfaces. In cases where wood waste occurred to the bottom end of the core, the layer was marked as 'open at depth' indicating that the wood waste depth is unknown for this sample location.

Since wood waste surficial cover and depth measurements were based on point observations at sample stations along transects, distribution maps were developed by interpolation using kriging and Surfer v14®. Kriging models the relationships between known sample station values by assuming that the distance or direction between sample points reflects a spatial correlation that can be used to explain changes in the pattern, the resulting figure represents estimates of distribution for each parameter between known sample station values. The interpolated figures were created in ArcGIS $10.5 ®$ to visualize the distribution of wood waste coverage and wood waste depth patterns.

The total volume of the wood waste in Esquimalt Harbour was estimated using ArcMap 10.5® to calculate the volume between the sea floor and the bottom of the wood waste deposit, using interpolated results. Wood waste deposits were covered with varying depths of silt in some areas and, in these cases, the overlying surficial sediment was included in the total volume estimated, as it would also need to be dredged
during remediation. To visualize the wood waste deposits, information on wood waste depths were also imported into ArcGIS $10.4 ®$ from the borehole logs and used to create stratification/cross section profiles at six locations in Esquimalt Harbour.

### 3.1.3.2 Biophysical Assessment

## Epibenthic Observations

Epibenthic communities were recorded during SCUBA surveys as percent cover for each of the sample stations along each transect for vegetation and sessile organisms, and as counts of individuals for mobile organisms. Descriptions of the biophysical environment were summarized qualitatively. Similar to the distribution maps for wood waste surficial coverage and depth, distribution maps were created for both bacterial mats (Beggiatoa spp.) and diatoms using percent cover observations and the interpolation method described above (Section 3.1.2.1).

## Infauna Community

Summary metrics from the results of the benthic infauna sampling were calculated for each sample station to assess the distribution of community composition and included:

- Quantity Indices
- Abundance (total number of individuals)
- Diversity and Evenness Indices
- Species Richness (S) - Total number of unique taxonomic groups
- Shannon-Weiner Diversity Index ( $\mathrm{H}^{\prime}$ ) - Accounts for species richness and evenness
- Pielou's Evenness ( J ) - Quantifies distribution of individuals among the taxa
- Swartz's Dominance Index (SDI) - the number of taxa that account for $75 \%$ of the total sample abundance. A lower SDI indicates the sample is dominated by only a few species.

The relative proportion of taxonomic groups was also calculated to highlight the dominant species in each sample.

### 3.1.3.3 Sediment Chemistry

Sediment chemistry was characterized using TOC, pore water sulphides, ammonia, and pH as indicators of areas impacted by wood waste decomposition by-products (see Figure 2.1). Sediment chemistry distribution maps of TOC, pore-water sulphides, ammonia, and pH were created using the interpolation methods described above (see Section 3.1.2.1).

Since TOC is a measure of organic content in the sediment, it is assumed that TOC levels are indicative of particulates/wood fibres resulting from historic log boom storage/sorting practices in the Harbour. Pore water sulfides and ammonia provide an additional indication of potential toxic by-products resulting from the anaerobic breakdown of TOC. Finally, pH values influence the toxicity of both sulphides (Section 2.1.5.4) and ammonia (Section 2.1.5.5) to aquatic life and should be considered in the analysis.

### 3.1.3.4 Wood waste Impact Assessment

To assess the relationship between the benthic community, the presence of wood waste, and sediment chemistry parameters associated with the breakdown of wood waste in Esquimalt Harbour, multivariate statistical analyses was undertaken to investigate the impact to both infauna and epibenthic communities. Depending on site-specific conditions statistically significant correlations between biological data and sediment chemistry data may or may not be present (Washington State 2013).

## Sediment Chemistry

Spatial regression analyses were conducted using GeoDa ${ }^{\text {TM }}$ software (Anselin 2003) to determine the relationship between each of the dependent sediment chemistry parameters measured (TOC, pore-water sulphides, ammonia, and pH ) and wood waste deposit depths. A stepwise regression comparison approach was used. First, four ordinary least squares regressions were created for each of the dependent variables. Several diagnostics were used to assess for presence and type of spatial dependencies in the data (Anselin et al. 1996), with Moran's I, Lagrange Multiplier, and Robust Lagrange Multiplier tests used to estimate spatial autocorrelation. If autocorrelation was detected, the appropriate spatial model was run (Anselin 2005). Finally, an assessment for heteroskedasticity and non-normality was conducted.

## Epibenthic Community

Analysis of the epibenthic community was also conducted using multivariate analyses in PIMER software (v.6.1.2, Primer-E Ltd.). To test for differences among epibenthic species assemblages within varying levels of TOC, a permutational MANOVA (perMANOVA) was conducted using the software package PERMANOVA (Anderson 2001, Andersen et al. 2008). PerMANOVA can determine within group variation, which addresses many common violations of analyzing ecological data. Significant differences among groups of species $(P)$ were determined by permutation tests under the null hypothesis of no relationship, termed pseudo-F. To test for significant differences among levels of TOC, a one-way perMANOVA was run, which is similar in nature to a one-way ANOVA, except it compares how all the species in each group relate among TOC levels, rather than just a single species or variable.

An analysis of species contribution to the similarity among areas of differing TOC levels was also conducted using SIMPER (similarity percentage analysis) within PRIMER ver. 6 (Clarke and Gorley 2006). SIMPER identifies the amount each taxon contributes to the Bray-Curtis similarity within each habitat and the dissimilarity among habitats. In addition, a SIMPER was used to identify key indicator species for each TOC level and how consistently a species contributes to this difference. When the dissimilarity value ( $\delta$ ) is divided by the standard deviation (SD), values greater than approximately 1.4 indicating a strong indicator species (Clarke and Warwick 2001).

A distance-based linear model procedure (DISTLM) in PERMANOVA was used to identify sediment chemistry parameters (TOC, sulphide, ammonia, and pH ) explaining variation among the epibenthic community of sample locations. DISTLM is a multivariate multiple regression or distance-based redundancy analysis (dbRDA) technique (McArdle and Anderson 2001) that can fit environmental variables to biotic variables. Marginal tests were conducted to quantify the relationship of each sediment chemistry parameter alone, while conditional tests identify the best combination of sediment chemistry parameters, given the relationship of those previously selected in the model (i.e., the best order of variables to explain the data). The BEST routine within DISTLM was used to identify sediment chemistry parameters that exhibit the greatest correlation with the epibenthic community using model selection criteria. A pseudo-F test statistic was generated using 4999 permutations to allow for a P -value of 0.0002 (Andersen et al. 2008). Results were illustrated using a dbRDA with vector overlay, showing the direction and strength of sediment chemistry parameters with the biotic data summarized by sample locations. The selection criteria $\mathrm{R}^{2}$ was used to explain the proportion of variation for each of the sediment chemistry parameters.

The stepwise regression comparison approach outlined above for sediment chemistry was also repeated to test for relationships between each of the sediment chemistry parameters as independent variables and bacterial mat coverage (\% cover) as a dependent variable.

## Infauna Community

Both species composition and species richness were used to test for differences among sample locations as a function of varying levels of sediment chemistry parameters (TOC, pore water sulphides, and ammonia). If sediment chemistry values (TOC, pore-water sulphides, and ammonia) were not co-located with each benthic infauna station, values for the benthic infauna station were extrapolated from the interpolation of sediment chemistry data (Section 3.1.3.3). All analysis of the infauna community data was conducted using multivariate analyses in R Statistical software (R Core Team 217).

Differences in species abundance were examined with Canonical Correspondence Analysis (CCA; using the VEGAN community package; Oksanen et al. 2018). The CCA analysis is a multivariate method used to examine the relationships between biological assemblages of species and their environment and was used to identify sediment chemistry parameters driving any variation in community composition between sample locations. Significant differences among species composition at each sample location were determined by permutation tests under the null hypothesis of no relationship. The strength of the fitted sediment chemistry parameter is estimated using the $R$-squared values and the $p$-value, the probability that the random permutation of R-squared is larger or equal to the observed value of the fitted value. A $p$-value $<0.05$ was used to determine significant difference from random.

Linear modelling was used to examine differences in species richness. The species richness was rarefied to the minimum sample numbers and a correlation test is performed between the rarefied richness and the environmental variables. The relationship between species richness at each sample location and the
sediment chemistry parameters was examined by creating a linear model with all environmental variables and selecting the best model using a stepwise model selectin approach. The best model was then used to examine correlations among species richness and each environmental parameter in the model. Correlations were then tested for significance.

Of the sediment chemistry parameters tested, the parameter identified as the best predictor of changes in community composition and richness was then used to determine the threshold of that parameter that had an impact to infauna community. The summary metrics for each benthic infauna sample locations (Section 3.1.3.2) were then plotted against the threshold and used to provide an estimate of threshold impact to species diversity. Finally, to visually display the threshold, bubble plots of summary metrics for each benthic infauna location were overlaid on the interpolated distribution for TOC, and the US EPA TOC threshold.

### 3.2 Results

### 3.2.1 Wood Waste Delineation

Side scan sonar results were used to identify the area of wood waste deposits, with a combination of visual assessments (using SCUBA surveys) and sediment coring used to refine the lateral extent and depth of deposits.

### 3.2.1.1 Side Scan Sonar

Side scan sonar produced 19 high resolution images of the Esquimalt Harbour sea floor (see Appendix F: Side Scan Sonar Results). From these images, seafloor features were identified, including (Figure 3.3):

- Two large areas (>100 m wide) of wood waste (i.e., sunken logs) north of Inskip Island and into Plumper Bay, and south of Cole Island
- Two smaller areas of wood waste ( $<50 \mathrm{~m}$ wide), one near the mouth of Thetis Cove and one in southeast Plumper Bay
- Subtidal rocky outcrops through the Harbour
- Numerous unidentified targets such as anchor blocks, a wreck, and other anthropomorphic debris
- Bathymetric elevations

Side scan sonar data illustrated that visible surficial wood waste (logs and wood waste debris) are mainly distributed in areas of wood waste previously identified (Archipelago 2004; Appendix D, Figure 8); however, logs identified on the side scan sonar imagery did not appear as dense as those identified during Archipelago (2004) video tow surveys. Since the majority of log booming and sorting operations ceased in the late 1990's, and no log removal efforts have occurred, sediment movements within the Harbour may have resulted in the deposition of sediment over the wood waste.


### 3.2.1.2 Field Surveys

## Surficial Extent

Visual SCUBA surveys within Esquimalt Harbour supported side scan sonar data, with areas of scattered logs (Photo 1), at times concentrated, or bark cover (Photo 2) observed in two areas: north of Inskip Island and reaching into Plumber Bay, and north of Smart Island (Figure 3.4). Areas of Esquimalt Harbour without wood waste were generally characterized by soft sediment with some minor drift marine vegetation (Photo 3). In comparison, surficial wood waste cover was not observed during any of the SCUBA surveys conducted in Pedder Bay (Photo 4).

The majority of surveyed areas within Esquimalt Harbour are categorized as having little to no visible surficial wood waste ( $0-5 \%$; Table 3.5). Although a previous subtidal video survey by Archipelago (2004) covered a greater extent of the harbour (see Appendix E, Figure 3), due to different study objectives, the surveyed areas that fall outside of the Hemmera towed video and sampling areas (e.g. Constance Cove) were categorized as having little to no wood waste coverage (see Appendix E, Figure 4). Therefore, surveyed areas of minimal to high wood waste coverage ( $>5 \%$ ) mostly overlapped between the two studies. Since 2004, it appears that the percent cover of extremely high wood waste ( $>80 \%$ ) has decreased and the area of moderate wood waste has increased ( $5-30 \%$ ). Differences between the two studies may be due to variations in study area, but given the side scan sonar observations, are likely due to sedimentation burying wood waste deposits in areas of extremely high wood waste cover ( $>80 \%$ ). Since net current velocities and rates of natural sedimentation in Esquimalt Harbour are quite low ( $<0.003 \mathrm{~m} /$ second tidally averaged current velocities north of Inskip Island; Anchor QEA), burial of wood waste may be attributed to the resuspension and settlement of fine-grained sediments from Harbour activities, such as propeller wash and scour, or from the net influx of sediment from Juan de Fuca Strait (Burd 216, Geosea 2009).

Initial screening guidelines, outlined by Washington State (2013), to target potential areas of wood waste impacts use surficial cover of $5-25 \%$ wood waste to indicate a possible need for further investigation, while $>\mathbf{2 5 \%}$ (or $5 \%$ where wood waste is finer chips or sawdust) should be investigated further due to the adverse impacts to the benthic community (Section 2.1.5.1).

Table 3.5 Estimates of Surficial Wood Waste Cover on the Subtidal Seafloor of Esquimalt Harbour

Wood Waste   Coverage   (\% cover)	Archipelago 2004		Hemmera 2017	
	Subtidal Area (ha)	\% of Area   Surveyed	Subtidal Area (ha)	\% of Area   Surveyed
$0-5$	225.7	77	136.53	66
$5-30$	19.5	7	48.91	24
$30-80$	11.0	4	19.19	9
$>80$	36.9	12	1.49	1
-	$\mathbf{2 9 3 . 1 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 6 . 1 2}$	$\mathbf{1 0 0}$



Photo 1 Representative view of a subtidal area in Esquimalt Harbour with scattered logs and fine layer of sediment and fine wood waste surrounded by bacterial mats


Photo 2 Representative view of a subtidal area in Esquimalt Harbour with continuous small woody debris and fine layer of sediment and fine wood waste


Photo 3 Representative view of a subtidal area in Esquimalt Harbour containing a silty sand substrate with drift understory kelp, shell debris, and only very sparse detritus and small woody debris


Photo 4 Representative view of a subtidal area in Pedder Bay containing silty sand substrate, with drift understory kelps, and an active infauna community signified by observable mounds and siphons


## Wood Waste Depth and Volume

Sediment cores (hand-held and sonic drill) showed variation in the stratification of wood waste and surficial sediment across the Harbour, with no wood waste observed in sediment cores from the Pedder Bay reference location (Figure 3.5; Appendix G: Sediment Core Photo Examples). To further visualize the distribution of wood waste across the harbour, cross sections were also developed from borehole logs (Appendix H: Wood Waste Depth Cross Sections).

Overall, the wood waste observed below the sediment surface (i.e. not observable during SCUBA surveys) was greater than observable surficial cover (Figure 3.4), confirming that wood waste deposits in some areas of the Harbour have become mixed with, or covered by, varying depths of surficial sediments (Figure 3.5). The interpolated depth results confirmed that the two large areas of wood waste identified by side scan sonar, north of Inskip Island and south of Cole Island, are the areas with deepest wood waste deposits in Esquimalt Harbour (Figure 3.5).

Wood waste deposits in Esquimalt Harbour are characterized by small woody debris, primarily large amounts of bark with some finer wood debris (e.g. sawdust or woodfibre), with interspersed cut logs (Table 2.1). While previous studies (Archipelago 2004) and side-scan sonar results show the presence of scattered logs in areas of wood waste, the diameter of the hand-held core was too small to capture this information and logs were only encountered once during the drilling program, north of Inskip Island (Field Survey 6). Decomposition of wood waste was indicated by the presence of dark organic fine sediment in sediment cores containing decomposing wood waste (see examples in Appendix G). In areas containing wood waste, a variety of conditions were characterized during borehole logging:

- Organic sediment mixed with high volumes of wood waste (fibre and wood debris)
- Organic sediment mixed with trace to low volumes of wood waste (fibre and wood debris)
- Entirely consisting of small wood waste (fibre and wood debris)

In some boreholes, a mixture of the above conditions was present (e.g. organic sediment mixed with high levels of wood waste overlying a layer entirely consisting of small wood waste before transitioning to native silt/sand sediment). The nature of the wood waste in Esquimalt Harbour is consistent with the extensive log storage activities that occurred until the late 1990's, and the log sort and sawmills located in Thetis Cove and the headland at the Ralmax facility near Plumper Bay (Section 2.4). Wood waste deposits transitioned to underlying bedrock or native sediment, which was typically light grey to grey/brown silt/ sand with some shell debris/ shell hash, eventually reaching native clays (in areas where the sonic-drill reached these depths (see examples in Appendix G).

The total volume of wood waste and overlying impacted sediments in Esquimalt Harbour is estimated to be $332,299 \mathrm{~m}^{3}$, with the deeper wood waste deposits ( $>0.25 \mathrm{~m}$ ) calculated to be $227,819 \mathrm{~m}^{3}$ north of Inskip Island and 31,182 $\mathrm{m}^{3}$ south of Cole Island.


### 3.2.2 Biophysical Assessment

Biophysical results from all field surveys were summarized to determine impacts of wood waste on the marine benthic community (see Appendix I: Raw Field Observations and Sediment Chemistry Data).

### 3.2.2.1 Physical Characteristics

The subtidal area of Esquimalt Harbour that was surveyed was characterized primarily by unconsolidated soft sediments (mean percent cover silt $=82 \%$, sand $=12 \%$ ). Small debris wood waste and logs were observed overlying sediments in two areas within the Harbour as identified in Section 3.2.1 above. Similar to Archipelago's survey in 2004, in shallow surveyed areas outside of the wood waste deposits, sediments were more consolidated and contained higher quantities of gravel/sand: Thetis Cove (Transect 14), immediately adjacent to Cole Island (Transect 7) and in the outer Harbour (Transect 45; Archipelago 2004)). Recent work by Anchor QEA determined that deeper areas of the Harbour are generally characterized by fines, with coarser grained sediment in pockets that may have been stripped of fines by tidal currents and propeller wash. Three small patches of rocky reef habitat, surrounded by soft sediments, were observed in the outer Harbour (Transect 45/46; Figure 3.1).

In Pedder Bay sediments were more consolidated and had higher sand content than most of the areas surveyed in Esquimalt.

### 3.2.2.2 Water Quality Results

Both Esquimalt Harbour and Pedder Bay are tidally driven, with low volume freshwater inputs and low wave exposure (Section 2.2). In Esquimalt Harbour, dissolved oxygen and pH near sea bottom was characterized as being moderate ( $\mathrm{DO} \%$ mean $=78.9, \mathrm{SD}=6.8$ ) and ( pH mean $=7.9, \mathrm{SD}=0.08$ ), with similar conditions in Pedder Bay ( $\mathrm{DO} \%$ mean $=77.14, \mathrm{SD}=4.68$ ) and $(\mathrm{pH}$ mean $=7.7, \mathrm{SD}=0.14)$. Since conditions are comparable and Pedder Bay did not contain any surficial wood waste, or deposits of wood waste, water quality at or near the SWI in Esquimalt does not appear to be impacted by wood waste.

### 3.2.2.3 Benthic Community

## Epibenthic Community

Esquimalt Harbour epibenthic communities were similar to those documented by Archipelago (2004). The epibenthic community in Esquimalt Harbour was relatively sparse, with several common soft bottom species observed throughout survey areas, such as: Dungeness crabs (Metacarcinus magister), graceful crab (Metacarcinus gracilis), shrimp (Pandalus spp.), and hermit crabs (Pagurus spp.). White bacterial mats (e.g. Beggiatoa spp.) appear common throughout the inner Harbour area (Photo 5, Figure 3.6) and are inversely distributed with diatomaceous mats. Diatomaceous mats were observed more commonly from mid-Harbour to the outer Harbour area (Photo 6, Figure 3.7). Similarly, Archipelago (2004) documented concentrated bacterial mats in areas of highest organic debris, such as Plumper Bay. Bacterial mats are commonly
associated with coastal sediments containing high organic content (Amend et al. 2004), such as wood waste, and will outcompete naturally occurring diatom mat communities. Fewer areas with white bacterial mats were observed during surveys conducted in winter months, likely due to increased levels of oxygen at the SWI, or the first few centimeters of the sediment, allowing for the bacteria to migrate into the sediment with the change in the oxygen-sulphide transition zone (for further explanation see Section 2.1.3). Similar to Archipelago (2004) marine vegetation was sparse to absent in soft bottomed areas and areas with surficial wood waste cover and consisted solely of drift senescent understory kelps (e.g. Saccharina latissima and S. groenlandica). Although eelgrass (Zostera marina) beds occur in the Harbour, they were not observed in the project area.

Areas with hard structure (e.g. exposed logs and rocky reef habitat) were colonized by typical encrusting and hard substrate organisms. Rocky reef habitat was colonized by coralline algae (Corallina spp), ochre stars (Pisaster ochraceus), barnacles (Balanus glandula), and red sea urchins (Strongylocentrotus fransicanus) (Photo 7), while exposed logs provided substrate for plumose anemones (Metridium senile), hydroids (Phylum Cnidaria, Class Hydrozoa) and tunicates (subphylum Tunicata; Photo 1 and Photo 8). Areas with high structural complexity also attracted recruiting fish communities of black rockfish (Sebastes melanops) (e.g. Photo 8).

In comparison, Pedder Bay transects (Transect 21 - 26) had greater presence of shrimp (Pandalus sp.) and contained a higher coverage of drift senescent kelps (e.g. S. latissima and S. groenlandica), Sarcodietheca gaudichaudii, and diatoms (Photo 4). Bacterial mats were not observed along any of the transects surveyed in Pedder Bay.


Photo 5 Representative view of a subtidal area in Esquimalt Harbour with fibre mat intermixed with silt and Beggiatoa bacterial mat


Photo 6 Representative view of a subtidal area in Esquimalt Harbour with silty substrate and a mix of diatoms and Beggiatoa bacterial mat


Photo 7 Rocky habitat with encrusting species including a red sea urchin


Photo 8 Exposed log covered in plumose anemones and diatoms, surrounded by young of the year black rockfish



## Infauna Observations

Infauna holes and mounds, generally indicative of burrowing shrimps, worms and bivalves, were relatively absent from most transects. Archipelago (2004) documented patchy occurrences of infaunal burrows in areas outside of known wood waste deposits and an absence of holes and mounds in wood waste areas (Appendix E, Figure 18). In comparison, Pedder Bay had a higher incidence of holes and mounds (Photo 4).

Benthic infauna data from fourteen paired benthic invertebrate sample locations within Esquimalt Harbour were summarized to examine variation among sample locations (see Benthic Infauna Stations Figure 3.1). The distribution of abundance, species richness, species diversity and evenness indices, and relative abundance of dominant taxa are presented in Table 3.6 (complete benthic infauna data available in Appendix I).

Both abundance and species richness varied across sample locations with a high of 1321 individual organisms and 44 species for location BI-14 Rep 02 and a low of 13 individuals and 3 species at location BI-04 Rep 02 (Figure 3.1 and Table 3.6). The number of species contributing to the $75 \%$ total abundance ranged from 1 to 10 across sample stations (Table 3.6). Species composition was also variable across sample locations with most stations dominated by a single second-order opportunistic polychaete species (Armandia brevis) and two other second-order opportunistic species dominating at the remaining stations (Prionospio (Minuspio) lighti and Aphelochaeta glandaria complex; Table 3.6 and Figure 3.8). Sample locations furthest from wood waste deposits (i.e. sample locations closer to the mouth of the harbour and furthest inside the harbour) had higher diversity metrics.

Table 3.6 Benthic Infauna Community Summary Statistics by Sample Location and Level of TOC

$\underset{\text { ID }}{\text { Sample }}$	Replicate	Wood Debris Indicator	Quantity   Total Abundance   (N)	Diversity				Dominant Species	Relative Proportion (\%)
		тоС		Species Richness (S)	Shannon Diversity Index ( $\mathrm{H}^{\prime}$ )	Pielou's Evenness (J')	Swartz's Dominance Index (SDI)		
BI-1	01	85,000	125	15	1.75	0.65	1	Armandia brevis	89
	02		95	16	2.24	0.81	1	Armandia brevis	91
BI-2	01	63,000	128	11	1.41	0.59	5	Armandia brevis	38
	02		68	11	1.57	0.65	4	Prionospio (Minuspio) lighti	53
$\mathrm{BI}-3$	01	55,000	249	16	1.31	0.47	1	Armandia brevis	90
	02		183	17	1.70	0.60	1	Armandia brevis	85
BI-4	01	41,000	19	9	1.98	0.90	2	Armandia brevis	65
	02		13	3	0.54	0.49	4	Prionospio (Minuspio) lighti	22
BI-5	01	21,000	668	27	2.06	0.62	1	Armandia brevis	90
	02		310	35	2.91	0.82	2	Armandia brevis	69
BI-6	01	19,000	516	13	0.55	0.22	7	Ampharete.labrops	29
	02		375	5	0.38	0.24	6	Prionospio (Minuspio) lighti	22
BI-7	01	23,000	267	20	1.99	0.66	2	Aphelochaeta glandaria complex	53
	02		659	26	1.82	0.56	3	Aphelochaeta glandaria complex	46
BI-8	01	25,000	187	4	0.38	0.28	1	Armandia brevis	69
	02		408	11	0.66	0.28	5	Prionospio (Minuspio) lighti	42
BI-9	01	18,000	234	15	1.43	0.53	2	Aphelochaeta glandaria complex	55
	02		291	23	2.26	0.72	3	Aphelochaeta glandaria complex	48
BI-10	01	18,000	230	8	0.48	0.23	4	Armandia brevis	53
	02		196	13	1.13	0.44	5	Armandia brevis	31
BI-11	01	9,800	513	28	2.43	0.73	2	Armandia brevis	51
	02		844	43	2.53	0.67	2	Armandia brevis	47
BI-12	01	39,000	817	39	1.70	0.46	2	Armandia brevis	62
	02		952	43	1.88	0.50	3	Armandia brevis	56
BI-13	01	25,000	72	12	1.29	0.52	5	Armandia brevis	26
	02		71	12	1.70	0.68	1	Armandia brevis	85
BI-14	01	15,000	991	33	1.50	0.43	5	Aoroides intermedia	30
	02		1321	44	1.89	0.50	10	Tectidrilus.sp.	15



Figure 3.8 Relative proportion of each Taxonomic Group by Sample Station, Replicate, and TOC Level

### 3.2.3 Sediment Chemistry

The analysis of sediment chemistry parameters focussed on wood waste degradation by-products commonly associated with wood waste deposits (TOC, pore water sulphides and ammonia). Raw results by sampling station can be found in Appendix I.

### 3.2.3.1 TOC

Naturally elevated levels of organic carbon are found associated with productive habitats in nearshore coastal ecosystems that generate high levels of detrital organic material, such as eelgrass beds and kelp beds. However, organic enrichment of nearshore environments also occurs from anthropogenic activities, such as the aquaculture industry, sewage outfalls, and wood waste deposits (Section 2.1.3). To interpret TOC measurements, it is necessary to determine if site-specific levels are naturally elevated, using nearby reference locations, or if anthropogenic activities are contributing (e.g. locations of aquaculture tenures, storm water outfall locations, log handling and storage tenures, etc).

TOC measurements within the Harbour ranged from 5,400 to $204,000 \mathrm{mg} / \mathrm{L}$ while in Pedder Bay measurements ranged from 1,600 to $8,700 \mathrm{mg} / \mathrm{L}$ (Figure 3.9 and Figure 3.10). Elevated TOC measurements within Esquimalt Harbour do not appear correlated with storm-water outfall locations but overlap with the identified areas of wood waste deposits (Figure 3.5 and Figure 3.8). There are no known, or active, log handling/storage tenures or aquaculture facilities in proximity to Pedder Bay or Esquimalt Harbour; however, the Jones Marine Lease Area within the Harbour may occasionally be used to store log booms.

When comparing against TOC screening-level indicators for benthic impairment (Section 2.1.4), most of the area covered by the interpolated TOC distribution (200.6 ha) fell within the intermediate ( $1-3 \%$ ) and high ( $>3 \%$ ) impact ranges. In the area of wood waste deposit north of Inskip Island and into Plumper Bay (Figure 3.5) TOC values ranged from $33,000 \mathrm{mg} / \mathrm{L}$ or $3.3 \%$ to $210,000 \mathrm{mg} / \mathrm{L}$ or $21 \%$ (Table 3.7, Figure 3.9). TOC values within the wood waste deposit north of Smart Island (Figure 3.5) ranged from $21,000 \mathrm{mg} / \mathrm{L}$ or $2.1 \%$ to $88,00 \mathrm{mg} / \mathrm{L}$ or $8.8 \%$ (Table 3.7, Figure 3.9). A few areas in the Harbour were below the 1\% TOC screening-level indicator for little to no impairment, including Thetis Cove, adjacent to Cole Island and the western shoreline south of McCarthy Island (Table 3.7, Figure 3.9). All samples collected at the out-ofHarbour reference location (Pedder Bay) were below 1\% or low chance of benthic impairment (Figure 3.10).



Table 3.7 Estimates of Subtidal Seafloor Area by TOC Screening-Level Indicators of Benthic Impairment in Esquimalt Harbour

TOC Screening   Level (\%)	Benthic   Impairment	Study Area	
	Area (ha)	\% of Area	
$0-1$	Low	14.4	7
$1-3$	Intermediate	98.4	49
$>3$	High	87.9	44
-	-	200.6	100

### 3.2.3.2 Sulphides

Pore-water sulphides are a by-product of bacterial wood waste decomposition in an anaerobic environment (Section 2.1.3 and Figure 2.1) and may provide an additional indicator of wood waste impacts (Washington State 2013).

Pore-water sulphides in Esquimalt Harbour ranged from 0.01 to $219 \mathrm{mg} / \mathrm{L}$ and from 0.01 to $13.1 \mathrm{mg} / \mathrm{L}$ at Pedder Bay reference location (Figure 3.11). The Detailed Quantitative Ecological Risk Assessment to Support Environmental Risk Management in Esquimalt harbour (SLR 2016) reported pore-water sulphides in a similar range ( 0.0062 to $161 \mathrm{mg} / \mathrm{L}$ ) across Esquimalt Harbour sediments and concluded that it may be occurring at concentrations high enough to affect benthic infauna. Results of a bioassay and follow-up study with the amphipod, Rhepoxynius abronius, suggested that toxicity (i.e. increased mortality) was observed at pore-water concentrations $>10 \mathrm{mg} / \mathrm{L}$ and that elevated concentrations of pore-water sulphides are contributing to sediment toxicity in the Harbour.

While there is some overlap of higher sulphide measurements with identified areas of wood waste deposits, some sample locations with higher sulphide measurements are not correlated with known areas of wood waste (Figure 3.5 and Figure 3.11). This may indicate that sulphide levels could be driven by other factors within the harbour. However, accurate pore-water sulphide measurements can also be difficult to obtain as hydrogen sulphide readily oxidizes into less toxic forms when sediment becomes disturbed and volatilization occurs during sampling, transport, and storage (Washington State 2013, Azimuth 2017). Given the pore-water sulphide results, sulphides may not be the best indicator of wood waste-associated impacts to the benthic community.


### 3.2.3.3 Ammonia

Ammonia is a by-product of bacterial wood waste decomposition in an anaerobic environment (Section 2.1.3 and Figure 2.1) and may provide an additional indicator of wood waste impacts (Washington State 2013).

Ammonia ranged from 2.0 to $67.5 \mathrm{mg} / \mathrm{L}$ in Esquimalt Harbour, while at the Pedder Bay reference location it ranged from 7.0 to $19.8 \mathrm{mg} / \mathrm{L}$ (Figure 3.12). The interpolated distribution of ammonia shows more overlap with the distribution of wood waste and elevated levels of TOC than pore-water sulphides, with two areas of elevated measurements (Figure 3.5, Figure 3.8 and Figure 3.12).

### 3.2.3.4 pH

A lower sediment pH will increase the concentration of the more toxic un-ionized forms of sulphide (H2S) and ammonia ( NH 3 ) and should be considered in the sediment chemistry analysis when identifying areas impacted by decomposition by-products of wood waste.

Sediment pH in Esquimalt Harbour ranged from 7.02 to 8.27 and from 7.91 to 8.24 at Pedder Bay reference location (Figure 3.13). While the range experienced in Esquimalt Harbour sediments is within the range observed in Canadian coastal waters (Section 2.1.3), pH was lower ( $<7.91$ ) in certain areas of Esquimalt Harbour than in all Pedder Bay samples.

While it is variable, the interpolated distribution of sediment pH does show some overlap with the distribution of wood waste, in particular surficial coverage of wood waste (Figure 3.4 and Figure 3.13). The area of deeper wood waste deposits immediately north of the western end of Inskip Islands (Figure 3.5) exhibits consistently lower pH values (<7.7).



### 3.3 Wood Waste Impact Analysis

### 3.3.1 Wood Waste Delineation

Observable surficial wood waste cover ranged from 0 to $100 \%$ across surveyed areas of Esquimalt Harbour (Figure 3.4). The majority of the surveyed areas of the Harbour (66\%; Table 3.5) had little to no wood waste cover ( $0-5 \%$ ), with $24 \%$ of the surveyed area covered by $5-30 \%$ wood waste, indicating the need for further investigation of impacts (using Washington State's initial screening guidelines, Section 2.1.5.1), and $10 \%$ of the study area covered by $>30 \%$ wood waste, indicating it is likely to have adverse impacts on the benthic community.

The area of wood waste deposits was greater than the observable surficial coverage (Figure 3.5), indicating that in some areas wood waste has become mixed with fine sediments or partially covered. However, notable sedimentation overlying wood waste deposits was not observed in most areas of the harbour.

### 3.3.2 Sediment Chemistry

Wood waste depth was a good predictor of the four sediment chemistry parameters measured (TOC, ammonia, sulphide, and pH ). All regression models had significant spatial autocorrelation and required spatial models to best describe the linkages between the predictor variable, wood waste depth, and the dependent chemical variables. TOC exhibited the strongest linkage with wood waste depth (R-squared 0.54 and coefficient value of 75,528 ; Table 3.8). Ammonia and pH were also strongly linked to wood waste depth (R-squared 0.37 and 0.40 , and coefficient values of 42.93 and -/082 respectively; Table 3.8). Pore-water sulphides had the weakest linkage to wood waste depth (R-squared 0.11 and coefficient value 88.63).

Table 3.8 Spatial Regression Model Combinations and Outputs for Wood Waste Depth as an Independent Variable

Independent   Variable	Dependent   Variable	Coefficient	Std.   Error	z-value	Probability	R-squared	Regression
Wood Waste	TOC	75528.3	16709.7	4.52	$<0.001$	0.54	Spatial Lag
Wood Waste	Ammonia	42.93	9.38	4.57	$<0.001$	0.37	Spatial Lag
Wood Waste	pH	-0.82	0.15	-5.24	$<0.001$	0.40	Spatial Lag
Wood Waste	Sulphide	88.63	34.73	2.55	$<0.001$	0.11	Spatial Lag

### 3.3.3 Benthic Community

### 3.3.3.1 Epibenthic

Although a variety of epibenthic species were observed during field surveys, the epibenthic community in Esquimalt Harbour was dominated by the following groups or organisms: bacterial mats (Beggiatoa spp.), diatom mats, and sugar kelp (Saccharina latissimia; Table 3.9). Given that TOC can be used as an indicator of the percentage of wood waste present in the sediment (Washington 2013), four categories of TOC were used to examine differences in the composition of the epibenthic community. Since there are no developed thresholds of benthic community impact for wood waste, thresholds need to be developed on a site-specific basis. TOC categories were based on the TOC screening-level indicators for benthic impairments (Section 2.1): Pedder Bay reference ( $<1 \%$ TOC), in harbour $<1 \%$ TOC, $1-3 \%$ TOC, and $>3 \%$ TOC). Differences between the categories were identified to be statistically different ( $\mathrm{P}=<0.001$ ) and pairwise tests between each were conducted to determine differences (Figure 3.14). The epibenthic community for all three in-harbour TOC categories was significantly different from the Pedder Bay reference location ( $\mathrm{P}=$ 0.05; Table 3.9). Within Esquimalt Harbour no statistical difference was determined between the in-harbour low TOC and intermediate TOC $(P=0.898)$, indicating the epibenthic community in each was relatively similar and dominated by a high abundance of diatoms (Table 3.9). A statistical difference occurred between the in-harbour low TOC and the high TOC areas $(P=0.01)$ due to the high abundance of Beggiatoa sp . bacterial mats associated with areas of wood waste (Figures 3.5 and Figure 3.6; Table 3.9) while diatom mat distribution showed an inverse relationship, although slightly less consistent, with bacterial mats
(Figure 3.6 and Figure 3.7).

Table 3.9 Dominant Epibenthic Species Observed at each of the Four TOC screening-level indicators for benthic impairments

Species	Mean Abundance	Contribution to Group Similarity
Pedder Bay Reference <1\% TOC	68.53	71.56
Diatoms	29.83	15.27
Drift Saccharina latissima	22.33	9.21
Drift Saccharina groenlandica	59.55	96.97
In Harbour <1\% TOC		
Diatoms		
In Harbour 1 to 3\% TOC	57.57	94.37
Diatoms		
In Harbour >3\% TOC	43.04	59.10
Beggiatoa spp.	27.68	39.19
Diatoms		



Figure 3.14 Distance-based redundancy analysis showing the relative similarity among sample locations of differing TOC Screeninglevel Indicators and the dominant species.

While all four sediment chemistry parameters were considered predictors of bacterial mat coverage, TOC and sulphide were the strongest predictors (R-squared 0.60 and 0.49 and coefficients 0.0007 and 0.26 respectively; Table 3.10). Beggiatoa sp. is known to be associated with high levels or organic carbon, requires sulphides to produce energy, and occurs at the oxygen-sulphide transition zone (Amend et al. 2004, Pearson 1980, Jørgensen 1977, Mußmann et al. 2003). Due to its strong correlation with TOC and areas of wood waste deposits, the presence of Beggiatoa sp. can be considered an indicator of benthic community impairment from wood waste deposits.

Table 3.10 Spatial Regression Model Combinations and Outputs for Bacterial Mat Coverage as a Dependent Variable

Independent   Variable	Dependent   Variable	Coefficient	Std.   Error	z-value	Probability	R-squared	Regression
TOC	Bacteria	0.0007	0.0002	4.15	$<0.001$	0.60	Spatial Lag
Sulphide	Bacteria	0.26	0.08	3.17	$<0.001$	0.49	Spatial Lag
pH	Bacteria	-43.15	18.97	-2.28	0.023	0.41	Spatial Lag
Ammonia	Bacteria	0.49	0.29	1.69	0.091	0.40	Spatial Lag

Other epibenthic species observed during field surveys included Dungeness and graceful crabs and shrimp. A wood waste study in Port Angeles Harbour concluded that areas of sparse, scattered, small wood debris on the sediment surface, offshore of log booming areas, provided habitat for mobile epibenthic organisms such as shrimp, crabs, and fish as long as overlying water quality was not impacted (SAIC 1999).

Large wood debris (e.g. cut log piles) have also previously been shown to function as suitable epi-benthic habitat (SAIC 1999). Both these results and those of SAIC (1999) demonstrate that logs provide hard substrate for the colonization by sessile rocky reef organisms, such as plumose anemones, and rockfish (Sebastes spp.) use the logs as habitat. However, the benefits of large woody debris as habitat for epibenthic communities can come at the expense of the benthic infauna community, due to smothering and decomposition creating anaerobic conditions (discussed in Section 2.1; SAIC 1999).

Although sparse, epi-benthic species common to nearshore marine ecosystems were present, especially in areas where epibenthic organisms were separated from the sediment-water interface (e.g. log piles). Evidence of extensive Beggiatoa sp. bacterial mats indicate some degree of benthic impairment, which requires analysis of the infauna community to determine the nature and extent.

### 3.3.3.2 Infauna Community

Benthic infauna community composition and species richness were influenced by all three of the wood waste decomposition by-products investigated (TOC, pore-water sulphides, and ammonia). TOC and ammonia were significant drivers (TOC $p=0.002$, Ammonia $p=0.008$ ) of community composition among sample locations while there was greater variation in the relationship between community composition and
porewater sulphides ( $\mathrm{p}=0.18$; Table 3.11). All three sediment chemistry parameters were significantly correlated with species richness (Table 3.12); however, TOC had the strongest relationship with the least variability (correlation -0.63 ).

Table 3.11 CCA Model Output of Community Composition as a Function of Wood Waste Decomposition By-products

Sediment Chemistry   Parameter	Df	Sum of Squares	R-squared	p-value
TOC	1	0.90	0.11	0.002
Pore-water sulphides	1	0.37	0.04	0.18
Ammonia	1	0.76	0.09	0.008
Residual	24	6.24	0.75	-
Total	27	8.27	1.00	-

Table 3.12 Linear Model Outputs and Correlation Values of Species Richness as a Function of Wood Waste Decomposition By-products

Sediment Chemistry   Parameter	Estimate	Standard Error	t-value	p-value	Correlation   Value
Intercept	24	2.4	10.3	$<0.001$	-
TOC	-0.0003	0.0001	-4.5	0.001	$-0.633^{* *}$
Pore-water sulphides	$-4.96 \mathrm{E}-01$	0.2	-2.9	0.01	-0.35
Ammonia	5.17 E	0.2	3.0	0.01	-0.22

As described in Section 2.1, impacts of wood waste depend on both the nature and extent of the wood waste as well as the site-specific conditions. Therefore, screening-level indicators (Section 2.1.5.1) for potential impairment can be used to guide wood waste assessments but site-specific thresholds should be developed to determine impairment and management options. Since TOC is the sediment chemistry parameter most strongly linked with known areas of wood waste deposits (Figure 3.5 and Figure 3.9) and to differences in benthic infauna community composition and species richness, it was chosen as the best decomposition by-product to use for the establishment of site-specific thresholds for areas of impairment of the benthic infauna community. A global meta-analysis conducted by Hyland et al (2005) proposes a screening-level indicator of intermediate benthic infauna impairment between $1-3.5 \%$ TOC. While results of the benthic infauna analysis show increased variability in the distribution of community composition and species diversity between $1-3 \%$ TOC in Esquimalt Harbour, the strength of the relationship for these moderate levels of TOC is unclear. A 3\% TOC level is more consistent with the distribution of benthic infauna community composition and species diversity among samples stations and is considered the sitespecific indicator for determination of impairment of benthic infauna due to wood waste deposits
(Figure 3.15 to Figure 3.19).






These results are consistent with a recent study of benthic infuana in Esquimalt Harbour, which concluded that benthic infauna communities generally show signs of impairment, with stations ranging in their categorization of benthic community health from heavily impacted through to low/moderate impairment with opportunist-dominated areas (i.e. sample areas indicative of slight to pronounced imbalanced situations dominated by subsurface polychaete deposit-feeders; Biologica 2016). However, the sampling effort did not include areas of known wood waste deposits, except for three sample stations that were taken within the Ashe Head Remediation Area in Plumper Bay. The Ashe Head Remediation Area falls within the lower range of TOC values ( $1-3 \%$ ) and stations were categorized by Biologica (2016) as low/moderate benthic community impairment, due to high summary metrics (e.g. abundance, species richness, diversity) along with the presence of pollution-sensitive taxa, some large bioturbators, and a large number of non-cirratulid opportunistic polychaetes indicative of reduced sediments or organic pollution.

Similar to Biologica (2016), all benthic infauna stations had very few large bioturbators or pollution-sensitive taxa and an elevated abundance of pollution- or disturbance-tolerant, opportunistic taxa. Other studies have documented similar results, for example, in Port Angeles Harbour the infauna community associated with log booming grounds (characterized as having abundant small woody debris such as bark and logs) consisted primarily of small, pioneering organisms that live at or near the SWI (e.g. surface feeding or filtering organisms), with some azoic areas showing no evidence of benthic infauna colonization (SAIC 1999). However, none of the benthic infauna stations sampled for this Project were classified as functionally azoic with minimal microbenthic function; therefore, benthic infauna communities ranged from somewhat disturbed/impacted to low to moderate impairment. Impairment to benthic infaunal communities appears highest north of Inskip Island, where Beggiatoa sp. mats were most concentrated and quantities of infauna organisms were moderate to normal but dominated by one opportunist species (SDI = 1 ).

Annelid Polychaete worms (Spionid Polychaete Prionospio (Minuspio) lighti and Opheliid Polychaete Armandia brevis) were present at all fourteen benthic infauna stations monitored during this Project, with the majority of stations dominated by one or the other (Table 6). Both species inhabit the top surface layer of sediments, deposit-feeding only at the SWI and are categorized as second-order opportunists which thrive under impacted conditions prohibitive to other species (e.g. P. lighti) or are associated with high levels of wood waste (A. brevis; Borja 2000, Kathman et al 1984, Teixera et a. 2012). Station BI-9 and BI-7, closer to the outer harbour, were dominated by the second-order opportunistic Cirratulid Polychaete complex Aphelochaeta glandaria.

The presence of large bioturbators allows for sediment reworking and oxygenation, particularly if they reach mature size, but many are pollution-sensitive or have unknown tolerance to disturbance (Biologica 2016). All benthic infauna stations in Esquimalt Harbour were relatively devoid of commonly-found large bioturbators, with the exception of Macoma nasuta, a bivalve Mollusc found at all stations in low numbers and commonly found in organically enriched sediments (Ranasinghe et al. 2013; Table 3.13). The occurrences of $M$. nasuta were primarily juveniles, with only a few intermediates and adults noted. Observations of pollution- or organic enrichment-sensitive taxa were limited to stations located between 1 $3 \%$ TOC, with the exception of BI-4 (4.1\%) and were almost entirely juveniles (Table 3.13).

Table 3.13 Summary of Benthic Infauna Impacts

$\underset{\text { ID }}{\text { Sample }}$	Quantity*	Diversity*	Proliferating opportunists (>50\%)	Stimulated by organic enrichment	Sensitive to Enrichment	large bioturbator
BI- 1	Moderate to Normal	opportunist dominated	Opelidae (Armandia brevis)	Spionidae (Prionospio (Minuspio) lightii) very low	-	Macoma nasuta (1 a)   Macoma sp (1 a, 2 juv)
BI-2	Moderately Impoverished	very low	-	Spionidae (Prionospio (Minuspio) lighti)	-	Cerebratulus californiensis (4int) Macoma nasuta (1 a, 2 int Macoma sp (4 int, 2 juv)
BI-3	Moderate to Normal	opportunist dominated	Opeliidae (Armandia brevis)	Spionidae (Prionospio (Minuspio) lightii) very low	-	Macoma sp (2 int, 3 juv)
BI-4	Impoverished	very low	-	Spionidae (Prionospio (Minuspio) lighti)	Lanassa venusta venusta (2 juv)	Macoma nasuta (1 a, 2 int, 6 juv)   Macoma sp (26 juv)
BI-5	Opportunist Proliferation	opportunist dominated	Opelidae (Armandia brevis)	Spionidae (Prionospio (Minuspio) lighti)	Lanassa venusta venusta (1 int)	Macoma nasuta ( 5 juv),   Macoma sp (5 juv)
BI-6	Opportunist Proliferation	very low	-	Spionidae (Prionospio (Minuspio) lighti)	Clinocardium nuttalli (18 juv)	Cerebratulus californiensis (17 a, 11 int, 6 juv), Macoma sp (8 int, 11 juv)
BI-7	Opportunist Proliferation	opportunist dominated	Cirratulidae (Aphelochaeta glandaria complex)	Spionidae (Prionospio (Minuspio) lightii) very low	-	Glycera americana ( 1 int ),   Macoma nasuta (5 int, 3 juv)   Macoma sp. (1 juv)
BI-8	Moderate to Normal	very low/opportunist dominated	-	Spionidae (Prionospio (Minuspio) lightii)	-	Macoma nasuta (1 a, 2 int, 9 juv)
BI-9	Moderate to Normal	opportunist dominated	Cirratulidae (Aphelochaeta glandaria complex)	Spionidae (Prionospio (Minuspio) lightii) very low	Heterophoxus affinus (1 a, 1 juv)   Lanassa venusta venusta (1 int)	Macoma nasuta (3 int, 11 juv)
BI- 10	Moderate to Normal	very low	Opelidae (Armandia brevis)	Spionidae (Prionospio (Minuspio) lighti)	-	Cerebratulus californiensis (3 int, 2 juv),   Macoma nasuta (12 juv)   Macoma sp ( 6 int, 21 juv)
BI- 11	Opportunist Proliferation	moderate or opportunist dominated	Opeliidae (Armandia brevis)	Spionidae (Prionospio (Minuspio) lightii)	-	Macoma nasuta (17 juv),   Macoma sp (3 juv)
BI- 12	Opportunist Proliferation	opportunist dominated	Opelidae (Armandia brevis)	Spionidae (Prionospio (Minuspio) lighti)	-	Macoma nasuta (4 int, 10 juv),   Macoma sp (4 juv)
BI- 13	Moderately Impoverished	opportunist dominated	Opeliidae (Armandia brevis)	Spionidae (Prionospio (Minuspio) lighti)	-	Macoma nasuta (1 juv)
BI- 14	Opportunist Proliferation	moderate	-	Spionidae (Prionospio (Minuspio) lightii) very low	-	Macoma nasuta (2 a, 3 int, 2 juv) Macoma sp (6 juv)

*Source: Biologica 2016 - Categories of benthic impairment based on calculated indices

### 4.0 REMEDIAL AND MANAGEMENT OPTIONS

The following sections identify potential remedial options, evaluate the remedial options applicable to Esquimalt Harbour, including the rationale and basis for preferred treatments, provide a preliminary approach to the restoration of wood waste impacted subtidal sediments, and include an analysis of the potential for inclusion of these remediated areas in the DND habitat bank.

### 4.1 Identification of Potential Remedial Options

Due to the relatively slow decomposition of wood waste by bacteria, accumulations can persist for decades and continue to negatively affect benthic communities and higher trophic level organisms dependent on those communities (Conlan 1977; Section 2.1).

Remedial options for wood waste rely on decomposition, isolation and removal mechanisms and may include the use of one treatment or approach, or a combination of approaches for more complex sites (Table 4.1). Remediation options include post-remediation monitoring to determine the effectiveness of the chosen approach.

### 4.1.1 Monitored Natural Recovery

Monitored Natural Recovery (MNR) relies on natural processes such as bioturbation, sedimentation, erosion, and biological decomposition. No physical works are prescribed for MNR. A monitoring program is established to track the progress of natural recovery (e.g. monitoring parameters of concern and biological recovery of infauna through bioassays and/or benthic infauna community analysis).

Site specific physical and biological conditions will determine the feasibility of natural recovery within a reasonable period. If natural recovery is predicted to take greater than 10 years, other, more active, approaches are generally recommended. MNR is generally prescribed for areas where wood waste coverage is discontinuous, deposits are shallow, and impairment of the bottom ecology is minimal. Sitespecific conditions required include: adequate dissolved oxygen, flushing and water exchange, high natural sedimentation rates, and sediment turnover (e.g. presence of bioturbators). Washington State Department of Ecology (WSDOE) has determined that natural recovery is unlikely to occur at locations with thick wood waste deposits (e.g. approximately $>0.9 \mathrm{~m}$ deep), since decomposition by-products will permeate through recently deposited sediment, conditions will remain anaerobic, and few bioturbators will colonize (Washington State 2013). Natural recovery for sites with low sedimentation rates can take decades to return to pre-impact productivity (Picard et al 2003).

MNR is a cost-effective approach for very large sites that meet the above criteria, where other approaches may be cost prohibitive and for areas where seafloor disturbance should be avoided (e.g. existing bivalve shellfish beds).

Table 4.1 Overview of Potential Wood Waste Remediation Options

Remedial Option	Application	Description	Benefits and Constraints
Monitored   Natural   Recovery	Suitable for sites where wood waste coverage is discontinuous and/or thinly deposited, and only low or moderate impairment	- No modifications or physical works (removal, caps)   - Relies on naturally occurring bioturbation and sedimentation   - Can take up to 10 years for sites with high bioturbation and natural sedimentation to recover.   - Sites with low sedimentation/erosion can take decades to recover.	- Cost effective   - Non-invasive   - Ineffective at sites with deep accumulations of wood waste, or a lack of dissolved oxygen, flushing and water exchange, and sediment turnover
Enhanced Natural Recovery	Suitable for sites with discontinuous coverage and/ or thin wood waste deposits	- Augments natural recovery with the placement of a thin layer ( 15 cm ) of clean sand   - Sand provides oxygenated layer that promotes benthic infauna recruitment and establishes a productive benthic community   - Bioturbators will mix sand with underlying wood waste overtime, diluting wood waste and accelerating aerobic decomposition	- Cost effective   - Minimally invasive   - Ineffective at sites with deep accumulations
Dredging	Suitable for sites with continuous coverage and/or deeper wood waste deposits	- Barge platform with clam shell dredge removes wood waste and impacted sediments   - Dredge to native sediment and backfill with clean sediment   - Variety of disposal options for dredge materials	- Most effective and permanent remedial option   - Typically most expensive option
Capping	Suitable for sites with continuous coverage and/or deeper wood waste deposits. May require removal of some wood waste if there are significant volumes	- Thick layer of material placed over wood waste to physically and chemically isolate underlying sediment from contact with marine organisms   - Cap thickness is designed by professional engineer for the sitespecific conditions but typically one meter, employing medium to fine sand   - Typically, sand caps are used in low velocity waterways to protect them from scouring by strong (high energy) currents.	- Least preferred remedial option as the long-term efficacy has not been demonstrated   - Expensive, but typically less expensive then dredging   - Potential problems include anaerobic off gassing, leaching of soluble byproducts, and differential settling   - Activities such as prop wash can reduce long-term effectiveness   - Raises seafloor by approximately 1 m (before settlement)

Source: Breems and Goodman 2009, Washington State 2013

### 4.1.2 Enhanced Natural Recovery

Enhanced natural recovery (ENR) augments natural recovery with placement of a thin layer (approximately 15 cm ) of unconsolidated clean sand materials that boosts natural recovery processes. The sand layer is not a true engineered cap as wood waste contaminated sediments are not meant to be isolated. Instead, the added thin layer provides oxygenated substrate that promotes benthic infauna recruitment and development of a productive community (Breems and Goodman 2009, Washington State 2013). As benthic communities develop over the long term, the presence of bioturbators will naturally mix or re-work the sand layer with underlying wood waste and accelerate aerobic decomposition.

ENR is only suitable for areas with discontinuous coverage and/or thin wood waste accumulations (<0.2 m ), and for areas that would naturally recover in 10 years or less (Breems and Goodman 2009). The effectiveness of ENR is determined through a post remediation monitoring program.

### 4.1.3 Dredging

Dredging is the most effective and permanent remedial option for wood waste contaminated sediments, although it is generally the most costly approach. Effective dredging at some locations may require multiple dredging passes. For example, some wood waste is large, and the dredge bucket may not always be able to fully close, dropping material into the water as it is removed. Washington State (2013) recommends that a first pass is conducted with large equipment, followed by a second pass with a smaller, square-faced buckets if required.

Removal of wood waste through dredging exposes native sediments or bedrock. Depending on the depth of wood waste removed, dredging may result in unfavorable bottom depths or the creation of depressions that act as sinks for detritus and other debris and fine wood waste residual material, as much as several inches, can accumulate following dredging. Therefore, backfilling with a layer of clean sand (as with ENR) is a common best management practice (BMP) to fill in depressions, cover any residual material, and promote benthic infauna recolonization.

Dredging is generally performed during least-risk works windows to protect aquatic resources which can affect project scheduling.

Monitoring to ensure wood waste layers have been removed will confirm the efficacy of the dredge operation. Post construction bathymetric surveys will determine the need for additional treatment. Recovery is tracked through a monitoring program that will measure benthic invertebrate community succession.

### 4.1.3.1 Options for Disposal of Dredge Materials

## Disposal at Sea

The most cost-effective means of disposing of dredge materials composed primarily of wood waste is Disposal at Sea (DAS), an activity that is regulated by Environment and Climate Change Canada (ECCC). The distance to established disposal sites is a determining factor in evaluation the cost effectiveness of the DAS option. Wood waste qualifies for DAS if it can be characterized as waste or other matter, as outlined in Schedule 5 Canadian Environmental Protection Act, 1999, and is considered clean.

## Confined Aquatic Disposal

An alternative to DAS is to engineer a disposal site where dredged material is placed and covered by a cap to ensure long-term isolation and effectiveness. This approach has been utilized in Washington State, but is considered costly, and would require long-term monitoring to ensure effectiveness.

## Beneficial Use

As an alternative to DAS, dredged material may be beneficially re-used for nearshore marine projects below the high-water mark so long as there is a demonstrated need or purpose for the use of the sediment, the sediment meets DAS sediment chemistry screening criteria, it can be demonstrated that there is no anticipated marine pollution or deleterious effects from the placement of the fill, and the beneficial use has DFO and local First Nations endorsement. A beneficial use exemption does not require a DAS permit; however, it does require engagement and approval from ECCC regulators with the DAS Program, DFO, and First nations. Similar to the DAS permit-process, a Sediment Sample and Analysis Plan will also need to be prepared and submitted to ECCC for review and input prior to conducting sediment sampling and analysis of the fill and completing a Sediment Characterization Report.

## Upland Disposal

If dredgeate does not qualify for DAS or beneficial use, upland disposal at a landfill facility near the project site is feasible but can be costly to transport and to treat, as sediments are categorized as salt-impacted and may contain other forms of contamination (depending on site conditions).

## Engineered Nearshore Confined Disposal Facility (CDF)

A second option for contaminated dredged materials is the use to infill a clean berm built along the shoreline and capped with clean sediment. This disposal option requires the determination that tidally driven groundwater exchange will lead to the release of decomposition by-products (e.g. Sulphide and ammonia) into the marine environment. The area on top of the CDF can then potentially be used for port or other water-dependent shoreline development activities. This approach has been used in Washington State at several clean-up sites, but is costly to build and maintain.

## Alternative Use

A full review of alternative re-use options has been conducted by Azimuth (2017) and includes alternatives such as: combustion of wood waste can be used to produce power or heat, biomass gasification or pyrolysis to produced power, liquid fuels an/or biochar, and composting. However, the moisture and salt content of dredged wood waste, along with its mixture with sediment, may make its re-use prohibitive from a technical or cost-effectiveness perspective (Azimuth 2017).

### 4.1.4 In-Situ Capping

A cap is a thicker layer of material, such as sand, placed on top of contaminated sediment which has been engineered to isolate the underlying contaminated sediment. Caps are designed so that the rate of desorption of contaminants in porewater that passes through the cap does not exceed applicable water quality criteria at or near the surface. The cap prevents the contaminated sediment from coming into direct contact with marine organisms; therefore, must be designed to be thick enough that deep-burrowing bioturbators do not come in contact. Caps need to be engineered for the conditions of each site. In Puget Sound, a 1 m thick cap comprised of medium to fine sand is commonly prescribed for wood waste contaminated sediments (Breems and Goodman 2009).

Capping is the least preferred remedial technology for wood waste sites with thick accumulations of wood waste since the long-term efficacy has not been fully demonstrated and potential issues could include anaerobic off-gassing, leaching of soluble by-products, and differential settling, which could compromise the integrity of the cap and prevent the establishment of a healthy and productive benthic community (Breems and Goodman 2009, Washtington 2013). This remedial option is typically expensive, but less expensive then dredging of wood waste. Other constraints of this remedial option include: cap design must provide complete cover of the wood waste (i.e. significant volumes of wood waste may require the removal of some before in-situ capping since capping requirements include limits on the volume of wood waste in the sediment; Washington 2013), and activities such as prop wash can also reduce the long-term effectiveness of the cap. However, this remedial option can be a less complex and less expensive approach to remediation (Washington 2013).

As capping can generate sediment plumes during installation, works should be scheduled to take place during least risk work windows. Proposed capping projects will be subject to a Fisheries Act Serious Harm assessment. Recovery is tracked through a monitoring program to demonstrate long-term effectiveness

### 4.1.5 In-Situ Treatment

In-situ treatments would involve alternate forms of ENR by treating wood waste deposits on-site without movement, in order to facilitate natural in-situ decomposition. To our knowledge, the use of in-situ treatments as a remedial option for benthic communities impaired by wood waste has not been investigated. Previous work on wood waste remediation (Breems and Goodman 2009, Washington State 2013) has not
identified any effective in-situ remediation approaches for the treatment of wood waste in the marine environment, only flagged that further research on the rates and mechanisms of decomposition of wood waste components is required to inform other options.

The impacts of wood waste on nearshore benthic communities are similar to those from aquaculture/fish farming (i.e. buildup of organic material on the seafloor, oxygen depletion within and above sediments, increase in sulphides and changes to the benthic community structure, Brooks et al 2003) and research on the impacts to, and potential remediation of, benthic communities beneath aquaculture facilities has been widely explored. Since the impacts of wood waste on nearshore benthic communities are similar to aquaculture, potential approaches to in-situ remediation of wood waste could be drawn from this body of work. However, some differences between impacts of the two activities do exist (e.g. other contaminants, including zinc and copper, accumulate in the sediment below aquaculture pens during the breakdown of aquaculture feed waste, SAG 2011) and remedial approaches used in aquaculture but would require investigation prior to their implementation in Esquimalt Harbour.

Some potential approaches include:

- Oxygenation - Toxic anaerobic by-products of wood waste decomposition (e.g. hydrogen sulphide and ammonia) are oxidized to non-toxic forms when exposed to oxygen. The introduction of oxygen to wood waste deposits may also allow for the aerobic breakdown of wood waste by heterotrophic bacteria, eliminating further production of toxic by-products. This could be conducted by harrowing, or heavy raking of the seafloor, or irrigation with oxygenated surface-water (Keeley et al 2017). However, this has only been explored for remediation of sediments impacted by salmon farm aquaculture in New Zealand and has only been applied to small-scale pilot study field plots ( $\sim 15 \mathrm{~m}^{2}$ ) - therefore, may not be feasible for large-scale application.
- Shell hash addition - Low pH can cause a greater proportion of the toxic hydrogen sulphide form to occur in sediment porewater. The addition of a thin layer of crushed bivalve shells (e.g. byproducts of shellfish aquaculture) may help to buffer pore-water pH and lower the toxicity of decomposition by-products. This has been used in aquaculture to deal with ocean acidification, in particular addition to the sediment of mudflats on the Atlantic Coast to enhance pore-water pH and clam survival (Green et al 2009, Green et al 2013). Shell hash addition has also proven successful in reducing hydrogen sulphide in organically enriched mudflats in Japan (Yamamoto et al 2012).
- Scavenging sulphides - This approach would include the addition of iron to sediments to precipitate iron-sulphides in order to suppress the sulphate reduction pathways and reduce toxic $\mathrm{H}_{2} \mathrm{~S}$ byproducts. It is used in seagrass systems in the Mediterranean that are impacted by eutrophication (e.g. increases in organic matter, Holmer et al 2005).


### 4.2 ANALYSIS OF Remedial Options

Management options for wood waste remediation are developed on a site-specific basis using results of the site assessment (Section 3.2.3) and drawing on effective approaches from other wood waste assessment and remediation projects. The evaluation of remedial options for Esquimalt Harbour should also consider remedial objectives, short- and long-term effectiveness, technical feasibility, and cost (including permitting, equipment, mobilization, remedial treatment, monitoring). Further evaluation of a remedial option is generally not warranted if the option is technically unsuitable or cost prohibitive.

Given that wood waste, and its associated decomposition by-products, are not regulated contaminants of concern in the Canadian marine environment, the driver for the remediation of impaired benthic communities in Esquimalt Harbour is to re-establish a balanced and productive benthic community that will restore fish habitats and drive the productivity of upper trophic-level commercial, recreational or Aboriginal (CRA) fisheries species (e.g. Dungeness crabs, fish), so that remediated habitats can be deposited as credits in the DND Habitat Bank.

### 4.2.1 No Action

Wood waste, in particular bark, is extremely slow to break down and can persist for decades or centuries. Since the cessation of wood-processing activities in the late 1990's (nearly 20 years ago), and the assessment of wood waste by Archipelago (2004; approximately 15 years ago), very little burial of wood waste has occurred, and biophysical conditions within known areas of wood waste appear to have remained unchanged (e.g. relatively sparse epibenthic organisms and very little evidence of infauna activity, such as holes and mounds indicative of burrowing worms and bivalves). Exposed log piles within the Harbour do provide habitat for typical rocky reef species but will not contribute to the recovery of benthic infauna and soft-bottom communities.

Natural sedimentation rates within Esquimalt Harbour are very low and ongoing bottom disturbance occurs in many areas of the Harbour from ship propwash and local dredging resuspending fine sediments creates patchy disturbances to benthic sediments (Burd 2016, Geosea 2009). Without sufficient clean sediment for pollution-sensitive benthic infauna to colonize, an infauna community dominated by low species richness and opportunistic, organic enrichment-tolerant species will continue to prevail. Impacts to benthic infauna can lead to lower food sources for higher trophic organisms, such as Dungeness crabs and juvenile salmonids (Section 2.1.4). Due to the presence of Beggiatoa sp mats, and without the presence of large infauna bioturbators, oxygen is unlikely to permeate the SWI, and toxic anaerobic by-products will continue to be produced.

Since wood waste decomposition and impacts are site-specific, there is very little information available on the rate of wood waste breakdown and benthic community recovery without remedial action. Conditions in areas containing deeper wood waste deposits (> 0.25 m ) within the harbour are expected to persist; however, areas with shallow deposits ( $0-0.25 \mathrm{~m}$ ) may recover naturally in $10-15$ years, depending on sedimentation rates and any disruption to unconsolidated sediments (e.g. propeller wash).

### 4.2.2 Monitored Natural Recovery

MNR would be implemented in concert with a No Action approach, but monitoring of recovery. In Esquimalt Harbour it is unlikely to lead to the successful recovery of the benthic infauna community in areas containing deeper wood waste deposits ( $>0.25 \mathrm{~m}$ ) in a reasonable time frame. Areas with shallow deposits ( $0-0.25 \mathrm{~m}$ ) may recover naturally in 10-15 years, depending on sedimentation rates and any disruption to unconsolidated sediments (e.g. propeller wash).

### 4.2.3 Enhanced Natural Recovery

ENR is generally recommended for areas with continuous coverage and thin wood waste deposits that would naturally recover in 10 years or less. The placement of 15 cm of sand in areas with shallow deposits ( $0-0.25 \mathrm{~m}$ ), and approximately between $3-5 \%$ TOC, may allow for the successful recruitment of a productive benthic infauna community. The presence of some sensitive taxa within the harbour, while patchy, may aid in the establishment of productive infauna communities if physical disturbances (e.g. propeller wash) to unconsolidated benthic environments are minimized Burd (2016).

ENR will not likely be a successful long-term remediation option in areas of deeper wood waste deposits, since anaerobic decomposition will continue to occur below the clean sand layer, decomposition byproducts will permeate through recently deposited sediment, and toxic conditions will re-establish preventing recruitment of large bioturbators and other sensitive infauna.

### 4.2.4 Dredging

Remediation of continuous and/or deeper wood waste deposits in Esquimalt Harbour will require the application of a remedial option that is more intensive then MNR or ENR. Dredging has been proven to be the most effective and permanent approach to removing wood waste accumulations, and often applied in wood waste remediation projects in Washington. However, given the volume of wood waste deposits, and associated impacted sediments, in Esquimalt Harbour this option is logistically complex and very expensive. Site-specific disposal options for dredged materials will, in part, determine the cost and are outlined below.

### 4.2.4.1 Options for Disposal of Dredge Materials

Should dredging be pursued as a remedial option, Esquimalt Harbour sediments are not likely to be suitable for Beneficial Use (e.g. soft unconsolidated sediments with high quantities of wood are not likely to be structurally suitable fill for nearshore marine construction works, and wood waste could continue decomposing and releasing by-products) and other less common options are costly and their long-term effectiveness is uncertain (e.g. Confined Aquatic Disposal or CDF) or has not been developed to the point of feasible implementation (e.g. Alternative Use) (Section 4.2.4.1). Based on this, disposal of dredged materials from Esquimalt Harbour is best done by Disposal at Sea or Upland Disposal.

## Disposal at Sea

A preliminary sediment investigation was conducted during Field Survey 6 to characterize the sediment within the wood waste deposit north of Inskip Island, in order to determine if sediment is likely to qualify for a Disposal at Sea Permit and inform site-specific remedial options. Results of the sediment characterization indicate that several contaminant parameters exceed the applicable CCME ISQG and PEL guidelines, as well as the BC CSR sediment standards (Schedule 3.4), including arsenic, cadmium, copper, chromium, lead mercury, zinc, various PAHs, and total PCBs (see Appendix I). The sediment characterization data was also screened against the Disposal at Sea Lower Level of the National Action List criteria for cadmium,
mercury, total PAHs, and total PCBs, with all four constituents exceeding these criteria in numerous samples. However, detection limits exceed applicable standard criteria (i.e. results were below the laboratory detection limit but above the DAS criteria) and the actual concentrations of metals, PCBs and PAHs cannot be determined. This anomaly may be due to a high water content and level of wood waste organics in the sediment.

Based on Disposal at Sea guidance, and the anticipated exceedances of DAS screening criteria, the sediment associated with the wood waste would be considered by ECCC to have a "high certainty" of future exceedances and indicates that the sediment may not be suitable for DAS. However, DAS permitting requires consultation with ECCC DAS program staff to determine if sediments qualify (https://www.canada.ca/en/environment-climate-change/services/disposal-at-sea/permit-applicant-guide/dredged-material/applicant-guide-permit-dredged-material/chapter-3-1.html). If DAS is a desirable approach to disposing of wood waste, a project description (outlining site history, previous sediment sampling results, etc) and sediment sampling plan will need to be approved by ECCC, sediment sampling conducted, and a sediment and characterization report submitted for review. Sediments determined by ECCC to have a "higher certainty" of exceedance could still qualify for DAS but may be requested to undergo toxicity testing. If DAS is pursued, more finite testing areas should be included in the sediment sampling plan, to focus dredge management units, as sediments from some areas may qualify for DAS even if others do not.

## Upland Disposal

Drill cuttings from Field Survey 6 were disposed of at an upland facility located on Vancouver Island that can accept salt-impacted sediments. Should upland disposal of dredged materials be required, it would likely need to be treated for metal stabilization, based on preliminary investigation results (Appendix I).

### 4.2.5 In-Situ Capping

While the long-term efficacy of in-situ capping is uncertain, this remedial option would be likely be a less expensive approach to remediation in Esquimalt Harbour. Given the large spatial extent of deeper wood waste deposits in Esquimalt Harbour (Figure 3.5), and that the in-situ cap design would need to completely cover the wood waste, use of this remedial technique in Esquimalt Harbour would likely be logistically complex and require the removal of some wood waste, and irregularly oriented logs in the surface material, to allow for the cap to completely cover. Combined with the uncertainty around long-term effectiveness, this is not considered a feasible option for remediation of wood waste in Esquimalt Harbour at this time.

### 4.2.6 In-Situ Treatments

To our knowledge, the use of in-situ treatments as a remedial option for benthic communities impaired by wood waste has not been investigated. Research into the impacts to and potential remediation of benthic communities beneath aquaculture facilities has been widely explored. Since the impacts from wood waste are similar to aquaculture, potential approaches to in-situ remediation of wood waste can be drawn from this body of work. However, some differences between impacts of the two activities do exist (e.g. other contaminants, including zinc and copper, accumulate in the sediment below aquaculture pens during the breakdown of aquaculture feed waste, SAG 2011) and remedial approaches used in aquaculture but would require investigation prior to their implementation in Esquimalt Harbour. It is possible that the use of biological or chemical treatments (possible treatments are outline in Section 4.1.5) applied to areas of wood waste in Esquimalt Harbour could enhance the natural recovery of the area by increasing the decomposition rate of wood waste or eliminating toxic by-products.

The application of an experimental in-situ approach (such as scavenging sulphides) in the field can lead to un-intended consequences, particularly given the differences in the nature of the organic enrichment between aquaculture and wood waste, and may be challenging to obtain regulatory (ECCC and DFO) support. The oxygenation of sediments does not seem logistically feasible on a larger scale across Esquimalt Harbour. If an in-situ approach were to be pursued, the use of shell hash addition to lower pH and reduce hydrogen sulphide may be the most likely to be logistically feasible and to obtain regulatory support.

### 4.3 Recommended Options and Approaches

After evaluating existing site-specific conditions for Esquimalt Harbour (wood waste distribution and wood waste depth, TOC content, the distribution of Beggiatoa sp bacterial mats, and impacts to the benthic infauna community) and remedial options, two wood waste management options are recommended based on the remediation objective:

- To promote recovery of benthic communities and enhancement of fish habitats so that remediated habitats can be deposited as credits to the DND Habitat Bank.

The recommended approach for sediment remediation includes two options, as outlined in Table 4.2 below, including a field-based pilot study project of cost-effective and less invasive remediation options in areas of shallow wood waste accumulations and the complete removal, through dredging of wood waste, of deeper accumulations (Figure 4.1).

Table 4.2 Recommended Options for Remediation of Wood Waste in Esquimalt Harbour

Management Option	Bottom Condition	Area / volume Affected
Dredge with Backfill	- Deep accumulations $(>0.25 \mathrm{~m})$   - mostly within the $>5 \%$ TOC contour	- North Deposit $31,182 \mathrm{m3}$   - South Deposit $227,819 \mathrm{~m} 3$
Field Pilot Study Project	- Shallow accumulations $(0-0.25 \mathrm{~m})$   - mostly within the $3-5 \%$ TOC contours	

### 4.3.1 Dredge and Placement of Clean Fill

MNR and ENR are not considered feasible options for the remediation of deeper wood waste deposits, given the existing information on the impacts and persistence of deeper wood waste deposits, and the low sedimentation rates within the harbour.

Removal of the deeper wood waste deposits and placement of clean fill is considered the most effective and permanent option for remediating the two areas of deeper wood waste deposits ( $>0.25 \mathrm{~m}$ ), approximately in areas where TOC is $>5 \%$, that have been determined to impair the function of the benthic community in Esquimalt Harbour (Figure 4.1):

- Immediately north of Inskip Island and into Plumper Bay (approximately 227,819 m³)
- North of Smart Island (approximately $31,182 \mathrm{~m}^{3}$ )

Immediately after dredging and backfilling, confirmatory monitoring is desirable to demonstrate effectiveness (dredge depth and residual wood waste) and backfill thickness. The deposit of remediated habitats to the DND habitat bank would occur after the remediated habitat is proven to be restored back to a productive soft-bottom community. This will entail an effectiveness monitoring program, of sediment chemistry (e.g. wood waste decomposition by-products) and bioassays, to demonstrate benthic infauna recovery (Washington State 2013).

A detailed cost estimate for dredging, including scoping options for disposal of dredge materials, can be provided if DND chooses to pursue this remediation option, once spatial extent and volume have been determined and project design/engineering have occurred. Currently, deep surficial wood waste deposits are mapped based on interpolative distribution modelling around known depths (Figure 4.1). The boundaries of deeper deposits should be delineated prior to pursing this as a remediation option, in order to avoid un-necessary dredging and related costs. For example, just south of Inskip Island is categorized as deep based on modelling but should be confirmed. Approximate unit costs for works associated with dredging and capping with sand are presented below (Table 4.3).

Table 4.3 Approximate Unit Costs for Remedial Dredge Works in Esquimalt Harbour

Work Description	Unit Cost	Comment
Permitting	$\$ 100,000$	DAS, Fisheries Act and other permitting processes
Mobilization	$\$ 20,000$	One-time cost
Dredging	$\$ 15,000 /$ day	Clam shell dredge, flat barge, support tug
Sand (clean fill)	$\$ 50 /$ tonne	-
Sand Placement	$\$ 15,000 /$ day	Clam shell dredge, flat barge, support tug
Disposal fees	$\$ 150 /$ tonne	Assumes wood waste qualifies for DAS
Environmental Monitoring	$\$ 113 / \mathrm{hr}$	Environmental monitor rate
Demobilization	$\$ 20,000$	One-time cost
Effectiveness Monitoring	$\$ 200,000 /$ year	For a period of three to five years as stipulated by DFO.   With sediment chemistry, bioassays, and Scuba surveys

### 4.3.2 Pilot Study Project

A field-based pilot study project is recommended to determine the site-specific effectiveness and feasibility of economical and less invasive remediation options in areas of shallower wood waste deposits. The details and cost scoping of the recommended pilot study project are provided below in Section 5.0.


### 4.4 Regulatory Framework and Requirements

### 4.4.1 DFO Fisheries Act Authorization

Under the Fisheries Act, proponents are responsible for avoiding and mitigating serious harm to fish that are part of or support commercial, recreational or Aboriginal (CRA) fisheries:
35. (1) No person shall carry on any work, undertaking or activity that results in serious harm to fish that are part of a commercial, recreational or Aboriginal fishery, or to fish that support such a fishery (DFO 2012).

The Fisheries Protection Policy Statement (2013) defines serious harm to fish as:

- The death of a fish;
- A permanent alteration of fish habitat of a spatial scale, duration or intensity that limits or diminishes the ability of fish to use such habitats as spawning grounds, or as nursey, rearing, or food supply areas, or a mitigation corridor, or any other area in order to carry out one or more of their life processes;
- The destruction of fish habitat of a spatial scale, duration, or intensity that fish can no longer reply upon such habitats for use as spawning grounds, or as nursery, rearing, or food supply areas, or as a migration corridor, or any other area in order to carry out one of more of their life processes.

On a project-by-project basis, DFO expects proponents, and/or qualified practitioners working on their behalf, to consult DFO's Pathways of Effects and evaluate project-related effects and determine, by way of a serious harm assessment, if the Project will result in Serious Harm. If the proponent cannot avoid or mitigate serious harm to fish (i.e. the Project will result in residual serious harm) then an Authorization under section 35(2)(b) of the Fisheries Act is required (DFO 2012).

Prior to the commencement of any physical remediation works in Esquimalt Harbour, a Serious Harm Assessment should be undertaken by a Qualified Environmental Professional. However, the nature of the remediation works is not anticipated to result in residual Serous Harm and not require a Fisheries Act Authorization (FAA). A Request for Review form should be completed and submitted to DFO to ensure the avoidance and mitigation measures, along with the determination of no residual serious harm, are considered suitable.

### 4.4.2 Disposal at Sea Permit

Environment and Climate Change Canada (ECCC) administers the Disposal at Sea (DAS) Program under the Canadian Environmental Protection Act. DAS permits may be granted if dredge materials proposed for disposal meet established disposal guidelines. As discussed in Section 4.2.4.1, wood waste contaminated sediments may not qualify for DAS and, if DAS is pursued, more finite testing areas should be included in the sediment sampling plan, to focus dredge management units, as sediments from some areas may qualify
for DAS even if others do not. ECCC should be consulted prior to finalizing disposal options to determine the feasibility of DAS. Established and active DAS disposal sites may be too distant to achieve cost effective project objectives.

During remediation, placement of clean fill materials will constitute DAS if comprised of dredged sediments; however, the placement of clean materials during remedial works will constitute a beneficial use exemption under the DAS program. This can be applied for through a similar, but less involved process to a DAS permit with ECCC. Regardless of the source of fill material, the proponent will be responsible for ensuring the material is clean, suitable for the intended purpose, and not likely to cause marine pollution.

Esquimalt Harbour is primarily federal crown land and this provincial and local government legislation and statutes do not apply. If dredged material is proposed for upland disposal, provincial waste management regulations may apply.

### 4.4.3 Navigation Protection Act Notice of Works

Under the Navigation Protection Act (formerly the Navigable Waters Protection Act), any works that may affect navigation on navigable waters in Canada require approval. Placement of clean fill materials should not greatly alter the bathymetry of the Harbour and will not interfere with navigation in a substantial way. As such, remedial works should fall under permitted works that may proceed without the Minister's approval under the Navigation Protection Act (formerly the Navigable Waters Protection Act) administered by the Navigation Protection Program. A Notice of Works Form is required for all work on navigable waters listed on the schedule to the NPA and should be completed and submitted to Transport Canada prior to the commencement of any remediation works.

### 4.5 Potential Habitat Bank Credit Assessment

The "Fisheries Productivity Investment Policy: A Proponent's Guide to Offsetting November 2013" (FPIP 2013) describes a "proponent-led habitat bank" as a formalized approach for creating offsets through habitat creation, enhancement or restoration in advance of projects that result in Serious Harm. The habitat bank is managed to enhance or improve fisheries productivity.

DND maintains a Habitat Bank through a Memorandum of Understanding (MOU) with DFO Pacific Region. The existing habitat banking MOU has expired and a draft Habitat Banking Arrangement between the DND and DFO has been developed to fit modern legislation and policy. The renewed Arrangement will provide up-to-date guidance for management of the habitat bank guided by DFO's "Fisheries Protection Program's Interim Guide to Proponent-led Habitat Banking" (October 2016). The Arrangement, once finalized, will be in effect for 10 years with options to renew.

At present, areas affected by wood waste sustain low quality fish habitat as ecological function is impaired (Section 3.3). For a restoration project to be eligible for inclusion in the habitat bank, it must demonstrate an increase in fish habitat productivity over existing conditions. Productive nearshore benthic communities contain unconsolidated fine sediments that support several CRA fishery species and species groups including forage fish, flatfish, Dungeness crabs and bivalve shellfish. The treatments recommended to remediate wood waste in Esquimalt Harbour are designed to promote the re-establishment of a balanced and productive benthic infauna community recovery of the seafloor. Since benthic infauna are important components of nearshore marine ecosystems, driving detrital decomposition and nutrient cycling and providing a food source for higher trophic level organisms, the restoration of unconsolidated subtidal habitats should qualify the area for the DND Habitat Bank. Additionally, while Esquimalt Harbour is included in the DFO Area 19-1 permanent bivalve sanitary closure, it can be argued that bivalves within the harbour provide a source of reproductive larval material that can recruit to harvestable areas.

Temporary physical effects to substrates and benthic organisms will result from ENR and dredging. However, if these areas remain undisturbed following the application of the remedial treatments, they are expected to colonize with opportunistic infauna species relatively rapidly (e.g., six months to one year), and develop into a healthy and productive infauna community (e.g. balanced mix of functions, such as large bioturbators, through the recruitment of annelids, arthropods, and bivalves) over time thus contributing to fish habitat that supports CRA fishery species.

The predicted time to recovery of each remediation approach and the eligibility for inclusion of restored habitat to the habitat bank is presented below in Table 4.4. Most remedial treatment types, if they progress as predicted, would be result in productive habitat within a reasonable time frame. The deposit of habitat credits to the bank would be confirmed through monitoring of sediment chemistry (e.g. wood waste decomposition by-products) and bioassays to demonstrate benthic infauna recovery and productive habitat function (Washington State 2013). Effectiveness monitoring would require the establishment of baseline conditions (using sediment chemistry and bioassays) for the targeted areas of remediation immediately prior to restoration treatments being applied in order for comparison to monitoring data in subsequent years.

## Table 4.4 Proposed Potential Habitat Banking Bottom Treatments, Restoration Times and Banking Potential

Proposed Treatment	Restoration Period	Habitat Banking Potential
MNR	Unknown (Under 10 years if sedimentation rates are high,   sediments are well flushed with dissolved oxygen)	Delayed - dependent on   monitoring results
ENR	6 months -3 years	Yes
Dredging (with backfill)	6 months -3 years	Yes

DND may also consider value-added habitat enhancement opportunities, such as the creation of subtidal rocky reefs or kelp beds. These enhancements would be constructed over the remediated sediment areas at appropriate depths for productive biological function. An enhancement of this nature is expected to be successful given the results of the impact assessment demonstrating that natural rocky reef areas, and log piles, in Esquimalt Harbour provide functional habitat for invertebrates that require hard substrate (e.g. sea urchins, plumose anemones, coralline algae or understory kelps) and juvenile rockfish (Photo 8). Targeted CRA species for these enhanced habitats would include rockfish (Sebastes sp) and lingcod (Ophiodon elongatus), forage fish, bivalve shellfish, crabs and urchins. This value-added approach may be the best course of action if operational or future development activities may negatively impact the remediated sediments (e.g. anticipated disturbance of remediated unconsolidated sediments by prop-wash creating patchy disturbances and impacting recruitment and establishment of healthy and productive benthic infauna communities) or, if future DND development will impact nearshore rocky reef habitat and require the offsetting of this type of habitat.

### 5.0 REMEDIAL PILOT STUDY PROJECT

Given that the remediation of wood waste impacted marine environments is a relatively new objective for water lot managers in British Columbia there are currently no CCME or CSR standards for wood waste remediation. Additionally, dredging and disposal of deeper wood waste deposits is a costly remediation option. Prior to the execution of a larger scale remediation effort, a focused field-based pilot study project has been recommended and designed to fulfill the following objective:

- Determine the site-specific effectiveness and feasibility of economical and less invasive remediation options, MNR and ENR, for areas of discontinuous and/or shallow wood waste deposits in Esquimalt Harbour.

The basic scoping of the pilot study project, including site selection, design, study implementation, and a detailed cost estimate, are provided below for DND to consider implementing in the future. Following the implementation, monitoring, and determination of effectiveness of the pilot project, a full-scale remediation and potential value-added habitat enhancement opportunity can be assessed and implemented.

### 5.1 Site Selection

The pilot study site(s) should be representative of shallow wood waste deposits, have similar biophysical conditions across the site (and between sites if multiple sites are chosen), and not be affected by DND operational requirements or recontamination by log handling over the duration of the pilot study.

To select suitable sites for the pilot project implementation, areas of the Harbour with shallow ( $0-0.25 \mathrm{~m}$ deep) and deep (> 0.25 m ) wood waste deposits were first identified and mapped as follows (Figure 5.1):

- 50 m buffer applied to each sample location (wood waste depth was sampled in 50 m intervals)
- Polygons created for shallow and deep deposits
- TOC thresholds ( 1,3 , and $5 \%$ ) were overlaid

Following this initial mapping, areas with shallow wood waste deposits, that are approximately within a $3 \%$ TOC threshold, were examined to look for locations that possess similar biophysical conditions (e.g. current, bathymetry, biophysical impacts based on sediment chemistry and benthic infauna analysis). Since the pilot project will be conducted in the Harbour, rather than a controlled laboratory setting, it is important to consider other variables that may impact the determination of treatment effectiveness and keep as many of these constant to ensure that the results of the remediation treatments are not influenced by other factors. Based on results, three areas of approximately 100 m wide by 170 m long have been identified as possible candidate pilot study sites (Figure 5.1). The location south of Inskip Islands has been identified as the best candidate for pilot project implementation given that wood waste depths, bathymetry (range from -10.5 to 11.0 m deep), and sediment type (gravelly mud/sand) and sediment chemistry conditions (e.g. TOC) and are relatively equivalent across the location (Figure 5.1). Two other areas south of Cole Island are
tentatively proposed as back-up or additional locations; however, there is a greater range in bathymetry across the locations (west side of harbour -3.0 to -4.0 m ; east side of harbour -4.5 to -6.0 m deep), the west location has more variability in wood waste depth, and the sediment characteristics (e.g. unconsolidated almost suspended layer of fine sand/mud bottom sediments) at these two locations may impact the feasibility of pilot study treatments (e.g. placing a sand layer on top of unconsolidated materials could lead to it sinking into the material rather than remaining as a surficial layer).

Additional suitable candidate pilot study sites may exist, but due to the nature of the field assessments (Section 3.0), some data gaps remain between transects/sample locations (Figure 5.1). Should further field assessments be conducted prior to the selection of a candidate pilot study site(s), the potential site locations should be re-assessed to determine if the boundaries of the identified locations could be expanded and/or to determine if more suitable locations are available.

A reference site location will also be established in the outer Harbour area, ideally in a location that possesses similar bathymetry, sediment type, and current dynamics to the pilot study site.

Prior to finalizing a pilot study and reference site(s), input is required from PWGSC and DND to ensure that operational requirements of the harbour will not impact the site location over the duration of treatment and monitoring.


### 5.2 Study Design

The pilot study design can be applied at one site or at multiple sites. The more sites that are included in the study the greater the confidence in the resulting observations. The cost estimate currently includes pricing for the implementation of the pilot study at one study site location (Section 5.4).

Regardless off how many sites are chosen, three treatment types are proposed per study site (for a full description of each treatment type refer to Section 4.1 and Table 4.1):

- MNR - no modifications to the treatment area
- ENR - placement of a thin layer of clean fill over existing sediments (approximately 15 cm deep)
- Dredging - dredge wood waste and impacted sediments and backfill with clean fill

The study design includes both spatial and temporal replication following a Before After Control Impact (BACI) design. Replication in experimental design is required to account for natural variation and reduces the influence of measurement error in analyses; therefore, the pilot study has been designed to include three replicates of each treatment type (in approximately 20 m circular plots) at each site (for a total of nine treatment plots), with a minimum of 3-5 sample locations within each treatment plot (for statistical power; see Figure 5.2). A circular treatment plot was selected over a square plot due to the difficulty of placing clean fill from a barge and to allow for some spillover into the surrounding area, so that the treatment can be applied up to, and just over, the boundary of the treatment plot.

The pilot study site(s) need to cover a large enough area that the treatment plots can be spaced far enough apart to avoid edge-effects and prevent incidental influence on the results of other treatment plots. Within the pilot site, the placement of treatment plots should be randomized in order to maximize the statistical power, as this helps to ensure any differences found are attributable to the treatment, rather than a confounding variable.

The four corners of the pilot site, and the center point of each circular treatment plot, will be marked with a cement cinder block, and a small float that is suspended off the seafloor by no more than $1-2 \mathrm{~m}$, depending on site depth, to allow for easy detection during sampling while not impeding navigation within the Harbour. Each time the treatment plot is sampled, the sample locations should be randomized.

A reference site location, with two plots, will also be established in the outer Harbour area and sampled as described above. No treatments will be applied to the reference location.


Figure 5.2 Proposed Pilot Project Site Design Includes Three Replicates of each Proposed Treatment Type (MNR, ENR, and Dredge).

### 5.3 STUDY IMPLEMENTATION

The pilot project implementation has been scoped in a phased approach because it will need to be executed over multiple years. The steps are outlined in the sections below and are proposed to occur with the following timing to coincide with federal government fiscal years:

- Fiscal Year 1 - Completion of regulatory requirements
- Fiscal Year 2 - Baseline conditions (May/June) and application of treatment types (July/August)
- Fiscal Year 3 - Effectiveness monitoring Year 1 (May/June)
- Fiscal Year 4 - Effectiveness monitoring Year 2 (May/June) and final reporting (July - December)


### 5.3.1 Finalized Site Selection and Pilot Study Regulatory Framework

Regulatory requirements and permitting could be conducted concurrently with Section 5.3.2 Baseline Conditions. However, to move forward with the application of the treatment types a few regulatory criteria must be satisfied as outlined below. It is recommended that regulatory requirements be completed well in advance of the application of treatments (Year 1), so that baseline conditions and application of treatments can be completed within the same fiscal year (Year 2), and within the DFO Summer Timing Window for the Protection of Fish and Fish habitat (Area 19 July 1 - October 1).

### 5.3.1.1 Finalized Site Selection

Before moving forward with regulatory requirements, a final selection of the pilot study site and reference site need to be made in concert with PWGSC and DND.

### 5.3.1.2 Navigation Protection Act - Notice of Works

Under the Navigation Protection Act (formerly the Navigable Waters Protection Act), any works that may affect navigation on navigable waters in Canada require approval (Section 4.4.3). Because the pilot project will not greatly change the existing bathymetry, or place any obstructions to navigation, a permit approval will not be required. Instead, a Navigation Protection Act Notice of Works Form should be completed and submitted to the Transport Canada Navigation Protection Program.

### 5.3.1.3 Disposal at Sea-Beneficial Use Exemption for Clean Fill

Regardless of the source of fill material, the proponent will be responsible for ensuring the material is clean, suitable for the intended purpose, and not likely to cause marine pollution. The Disposal at Sea Program currently only regulates the placement of dredged material in the marine environment. Therefore, if fill for the ENR and dredge treatments is sourced from an upland quarry, and is comprised of clean constructiongrade material, it is Hemmera's understanding that this material will not be required to undergo a DAS beneficial use exemption. Should the clean fill be sourced from dredged marine sediments, the placement of fill from a barge into subtidal areas of Esquimalt Harbour would require a review by the DAS program to determine if it would qualify for a beneficial use exemption.

In order to qualify for beneficial use, there must be a demonstrated need or purpose for the use of the sediment, the sediment must be proven to meet DAS sediment chemistry screening criteria, demonstrate there is no anticipated marine pollution or deleterious effects from the placement of the fill, and have DFO and local First Nations endorsement. After fill has been sourced, a Project Description will be compiled and submitted to DFO and ECCC for consultation and approval. The Project Description will outline:

- Esquimalt Harbour site history and the pilot project objectives (high level overview)
- Fill source location site history/background information
- Dredge area boundary (if fill is dredged) and estimated fill volumes

Depending on the source of dredged materials, a Sediment Sample and Analysis Plan will also need to be prepared and submitted to ECCC for review and input prior to conducting sediment sampling and analysis of the fill and completing a Sediment Characterization Report. If suitable sediment chemistry results already exist, it is possible that ECCC will not require further analysis/reporting. The quantity of fill required for the pilot study will vary based on the dimensions of the final pilot study site location, and treatment plot size, but will be less than 10,000 $\mathrm{m}^{3}$. Therefore, ECCC will require a minimum of 7 samples ( 6 samples and 1 duplicate) be analyzed for the minimum analytical requirements, as outlined in Figure 5.3 below. The Sediment Characterization Report will also be submitted to ECCC to allow for beneficial use signoff. Unlike a full DAS permit application, ECCC does not need sediment chemistry, extended site history information, bathymetric surveys, and dispersion modelling for the receiving pilot study site in Esquimalt Harbour.

### 5.3.1.4 Disposal at Sea - DAS Permit for Dredged Materials

Before a final pilot study site is selected, and investigatory sediment chemistry conducted to look at DAS Program minimum sample analytical requirements (Figure 5.3), it cannot be determined whether sediments from the pilot study site might qualify for a DAS permit. In order to provide a conservative cost estimate, it has been assumed that sediments from the dredge treatment will be disposed of at a permitted upland facility. The DAS permitting process can be lengthy as it must include the compilation of site information and selection of a suitable DAS site, along with First Nations consultation. However, disposal at an upland facility is costly and can have limitations based on the facilities that are able to accept salt-laden waste.

Should PWGSC and DND wish to pursue a DAS permit for dredged materials, ECCC will require detailed Project Description be submitted for review prior to providing input on a Sediment Sampling Plan. Sediment Sampling and a resulting Sediment Characterization Report must be submitted for ECCC to determine whether sediments meet DAS requirements for permitting, at which time, PWGSC and DND could pursue an DAS permit application.

### 5.3.1.5 DFO Fisheries Act - Serious Harm Assessment

Given the nature and extent of the pilot study design, a serious harm self-assessment is recommended to assess the pilot project-related effects to fish and fish habitat, outline recommended avoidance and mitigation measures for pilot study implementation, and determine residual serious harm. A Request for Review form should be completed and submitted to DFO to ensure the avoidance and mitigation measures, along with the determination of no residual serious harm, are considered suitable. A full Fisheries Act Authorization is not expected to be necessary for the implementation of the pilot study.

Disposal at Sea   Minimum Sample Analytical Requirements				
The table below outlines minimum analytical requirements for projects with no contaminant history. Prior to sampling, Environment Canada should be consulted to determine the need for additional site-specific analytical requirements.				
Metals	Digestion Method	Analytical Method	Target Detection Limit ( $\mathrm{mg} / \mathrm{kg}$ dry weight)	Reference Criterion (mg/kg dry weight)
Cadmium	EPA 3050B	EPA 6020A	0.20	$0.60{ }^{2}$
Mercury	EPA 3050B	EPA 7471	0.05	$0.75{ }^{2}$
Arsenic	EPA 3050B	EPA 6020A	1.00	$7.24{ }^{3}$
Chromium	EPA 3050B	EPA 6020A	1.00	$52.3{ }^{3}$
Copper	EPA 3050B	EPA 6020A	1.00	$18.7{ }^{3}$
Lead	EPA 3050B	EPA 6020A	0.50	$30.2{ }^{3}$
Zinc	EPA 3050B	EPA 6020A	1.00	$124{ }^{3}$
Organics		Analytical Method	Target Detection Limit ( $\mathrm{mg} / \mathrm{kg}$ dry weight)	Reference Criterion ( $\mathrm{mg} / \mathrm{kg}$ dry weight)
Total polychlorinated biphenyls (PCB)		EPA 8080	0.04	$0.10{ }^{2}$
Total polycyclic aromatic hydrocarbons (PAH), [216]		EPA 8270C	0.05	$2.50{ }^{2}$
	Acenapthene	EPA 8270C	0.05	
	Napthalene	EPA 8270C	0.05	
	Acenapthylene	EPA 8270C	0.05	
	Anthracene	EPA 8270C	0.05	
	Phenanthrene	EPA 8270C	0.05	
	Flourene	EPA 8270C	0.05	
	Fluoranthene	EPA 8270C	0.05	
	Benz[a]anthracene	EPA 8270C	0.05	
	Benzolalpyrene	EPA 8270C	0.05	
	Benzofblfluoranthene	EPA 8270C	0.05	
	Benzo/klfluoranthene	EPA 8270C	0.05	
	Chrysene	EPA 8270C	0.05	
	Benzo[ghilperylene	EPA 8270C	0.05	
	Dibenz[a, h]anthracene	EPA 8270C	0.05	
	Indeno [1,2,-cd]pyrene	EPA 8270C	0.05	
	Pyrene	EPA 8270C	0.05	
Physical Parameters		Analytical Method ${ }^{1}$	Measurement	
Total Organic Carbon		EPA 9060A	$0.01 \%$ dry weight	
Percent Moisture		ASTM D2794-00	1\%	
Percent Grain Size Distribution		ASTM D422-63	Sieve and pipette analysis	
	Gravel	ASTM D422-63	$16 \mathrm{~mm}-2 \mathrm{~mm}$	
	Sand	ASTM D422-63	$2 \mathrm{~mm}-0.0625 \mathrm{~mm}$	
	Silt	ASTM D422-63	$0.0625 \mathrm{~mm}-0.0039 \mathrm{~mm}$	
Clay		ASTM D422-63	$<0.0039 \mathrm{~mm}$	
Notes:				
An equival limit is accep 2 Canadian 3 Canadian C Protection of	ertified under the Canadi   Protection Act, 1999, D isters of the Environmen (Marine).	Association for Labo   posal at Sea Regulatio 1999. Canadian Envir	ry Accreditation that   nental Qual ity Guide	n achieve the specified target de   es, Sediment Qual ity Guideline

Figure 5.3 Environment and Climate Change Canada Disposal at Sea Program Minimum Sample Analytical Requirements

### 5.3.2 Pilot Study Site Setup and Characterization of Baseline Conditions

Once the final pilot study site(s) has been chosen, a pre-treatment determination of baseline conditions should be conducted to allow for the comparison of the effectiveness monitoring results and allow for the determination of remedial standards. Some data will already exist for the pilot study site, based on field assessments conducted as part of this Project (Section 3.0); however, further data will need to be collected to fully characterize the entire pilot study site, and include additional metrics that have not been previously sampled.

### 5.3.2.1 Fieldwork Planning and logistics

Characterization of baseline conditions should be planned for earlier summer months (May/June) in Year 2 of the pilot study so that sampling takes place after the benthic infauna community has had time to flourish (late spring) and, so that the application of treatment types can occur immediately following, within the same fiscal year (July/August), to (i) coincide with the DFO Summer Timing Window for the Protection of Fish and Fish habitat (Area 19 July 1 - October 1) and (ii) allow time for fill to settle and colonization to occur before the effectiveness monitoring begins in the next fiscal year.

A detailed sampling plan will be completed, outlining specifics of the pilot study site(s) setup, sampling of biophysical conditions, and reporting and provided to PWGSC and DND for review. Prior to the commencement of fieldwork, a Health and Safety Plan will also be provided for PWGSC and DND review.

ArcGIS will be used to determine the coordinate locations of the pilot study site boundaries, as well as the center points of each treatment plot and five sample location coordinates within each treatment plot. The sample location coordinates can then be used to determine the compass bearings and distances from the center cinder block.

### 5.3.2.2 Fieldwork

All fieldwork will be conducted by SCUBA and assisted by a surface-support vessel. For each pilot site and the reference site, the vessel will transit to the pre-determined coordinates for the location and divers will setup the cement cinder blocks at each of the four corners, and at the centre point of each treatment plot (Figure 5.2). With diver support, cinder blocks will be slowly lowered from the surface-support vessel on a temporary leadline with a buoy float. Divers will then descend the float line to re-position the cinder block, as necessary, and attach a smaller/shorter marker float for future treatment plot identification (Figure 5.4). All cinder block locations will be georeferenced in the field using a handheld GPS unit from the surfacesupport vessel and the temporary surface buoy as the location.

After setup, and before seafloor sediments are disturbed at each treatment/reference plot by grab sampling and divers, water quality measurements will be assessed using a $\mathrm{YSI}{ }^{\odot}$ handheld multi-parameter meter and the temporary surface buoy as a marker. Parameters will be measured at the surface ( -1.0 m ) and just above the seafloor, and will include temperature $\left({ }^{\circ} \mathrm{C}\right)$, dissolved oxygen (\%), conductivity ( $\mu \mathrm{s} / \mathrm{cm}$ ), salinity (PPT), pH, and redox potential data was collected.


Figure 5.4 Example of Pilot Study Marker Setup
A sediment grab sampler (e.g. Van Veen) will then be deployed at the center point of each treatment plot and reference plot and field-screened by a Biologica technician through a 1.0 mm sieve using unfiltered seawater. Material retained on the screen will be transferred to jars and preserved with $10 \%$ buffered formalin for laboratory benthic infauna community analysis. It is recommended that benthic infauna community analysis be conducted during the establishment of baseline conditions, and again at the conclusion of the pilot study, to investigate differences in the benthic infauna community structure, rates of colonization, and determine if larger bioturbators and pollution-sensitive species are present. Benthic infauna communities undergo succession as they reach a mature community, with a greater presence of larger microbenthic and pollution-sensitive species in later stage or healthier productive communities. Larger taxa play a role in the bioturbation of sediments through their burrowing activities, this re-working of the sediments provides oxygenation and can aid in the recovery of wood-waste impacted areas. However, benthic infauna community data for the Harbour currently indicates that pollution-tolerant or opportunistic species dominate, with very few large bioturbators or sensitive species present. The presence of bioturbators will be an integral part of the success of enhanced natural recovery treatments. While this analysis is costly, it would be informative of the likelihood of a healthy and productive mature benthic infuana community developing within the Harbour.

After setup and grab sampling, biophysical conditions within each of the nine treatment plots and two reference plots will be surveyed. At each plot, divers will descend the temporary line to the center cinder block and use the predetermined compass bearings and a transect tape to navigate to the five randomized sample locations. At each of the five sample locations, divers will place a $1.0 \mathrm{~m} \times 1.0 \mathrm{~m}$ quadrat, use an underwater camera to take a photo of each sample location quadrat, and record:

- Seafloor depth
- Substrate type (\% cover; Table 3.2)
- Marine vegetation, bacteria (Beggiatoa sp.) and sessile invertebrates (\% cover)
- Mobile invertebrates and fish observed within a few metres of the quadrat (abundance)

At three sample locations (i.e. quadrat) within each plot, divers will also collect surficial sediment using push cores, to delineate the depth of wood waste and collect sediment for the analysis of biophysical and chemical parameters as follows:

- One long core ( 0.80 m long by 0.05 m diameter PVC tube) will be pushed into the sediments by hand or using a one-kilogram hammer to a depth where it could no longer penetrate. The core will be capped, removed from the sediment, and a second cap placed on the bottom of the core to ensure the contents were not released. The sediment is retained in the corer during removal from the sediment due to suction created by the cap.
- Three short squat cores ( 0.30 m long by 0.10 m diameter PVC tube) will be pushed into the sediments by hand or using a one-kilogram hammer to a depth where it could no longer penetrate and capped as above.
- A one-meter long metal probe, marked with 10 cm intervals, could also be used within the transect to collect additional information on the depth of hard substrates, shell hash/debris, and/or wood waste.

Aboard the surface-support vessel, sediment within the long core will be extruded into a core box and visually inspected, photo-documented, and a borehole log completed to document the vertical profile of substrate types and wood waste stratification (Table 3.2), along with other sediment observations (e.g. texture, colour, odour, presence of biota).

Sediment from the shorter cores will be used for analysis of physical and chemical sediment parameters, along with bioassays. Water will be decanted from the cores and the sediment immediately placed in clean containers/polyethylene bags, labelled with project information, recorded on a chain-of-custody form, and placed in coolers with ice packs to maintain temperatures below $6^{\circ} \mathrm{C}$ until they can be shipped to the appropriate laboratory facility. Approximately one duplicate for every ten samples will also be selected at random for data QA/QC procedures.

Following the completion of sampling at each of the nine treatment plots and two reference plots, the temporary surface line/buoy used for setup can be untied and reeled back into the surface-support vessel, and the shorter marker buoy left to help with location identification during future phases (Figure 5.4).

### 5.3.2.3 Analysis and Reporting

Benthic infauna community samples collected in the field will be analyzed by Biologica after a period of fixation, similar to that described in Section 3.1.2.2. Sediment core samples collected in the field will be sent to an accredited laboratory facility for analysis of physical and sediment chemistry parameters and to Nautilus Environmental for bioassay testing.

Sediment will be analyzed for the following physical and chemical parameters, which includes wood waste by-products along with contaminants which could impact results of the pilot study:

- Grain size distribution
- TOC
- Ammonia $\left(\mathrm{NH}_{3}\right)$ and pH
- Pore-water sulphides
- Heavy metals
- PAHs
- PCBs
- Dioxins/furans

Bioassays are an analytical method used to determine the toxicity of the sediment on living animals, they are a confirmatory tool used to demonstrate whether wood waste is adversely impacting benthic community and will be used to determine the short-term effectiveness of selected pilot project treatments by correlating wood waste and wood waste by-products with bioassay results. Provincial ecological risk assessment guidelines and the FCSAP provide guidance on bioassay testing but there are no Canadian criteria. Washington State SMS criteria stipulates the use of 2 acute and 1 chronic bioassay test for marine sediment (Washington 2013). Once the timing of the baseline conditions fieldwork has been confirmed, Nautilus Environmental can be contacted to determine the seasonal availability of species. Nautilus requires a minimum of one week's notice prior to submitting samples; however, samples can be held for up to 6 weeks before conducting bioassay testing. The bioassay toxicity tests outlined in Table 5.1 have been selected as suitable for the pilot study, based on locally-relevant infauna/epifauna that naturally occur in soft sediment habitats. The cost of one chronic and one acute test have been included in the cost estimate, it is recommended that at least one of the tests include a benthic infauna organism type (Section 5.4).

Table 5.1 Locally-relevant Toxicity Tests, Species and their Classification

Toxicity Test   (Duration/Endpoint)	Species	Organism Type	Test Classification
$48-96$ h larval   development and   survival	Sea urchin (Strongylocentrotus purpuratus)   or   sand dollar (Dendraster excentricus)	Epibenthic	Chronic
10 -minute fertilization	Sea urchin (Strongylocentrotus purpuratus)   or   sand dollar (Dendraster excentricus)	Epibenthic	Acute
20-day survival and   growth	Polychaete worm (Neanthes arenaceodentata)	Benthic Infauna	Chronic
10-day survival	Amphipod (Rhepoxynius abronius)	Benthic Infauna	Acute

Site-specific remedial standards will need to be developed based on site-specific conditions. Data analysis results from the pilot study site and outer harbour reference site will be compared to determine remedial endpoint goals. Results of the baseline conditions and remedial standards will be summarized in a short letter-style report for use in determining effectiveness of pilot study treatments in future fiscal years.

### 5.3.3 Application of Pilot Study Treatments

Following the completion of regulatory requirements and collection of baseline conditions, the various treatment types can be applied to the treatment plots as outlined below.

### 5.3.3.1 Fieldwork Planning and logistics

Characterization of baseline conditions should be planned for earlier summer months (May/June), after benthic community has had time to flourish, so that the application of treatments can occur immediately following, within the same fiscal year (July/August). The application of treatments to each treatment plot should be conducted within the DFO Summer Timing Window for the Protection of Fish and Fish habitat (Area 19 July 1 - October 1) and follow avoidance and mitigation measures outlined in the Serious Harm Assessment.

Prior to the commencement of fieldwork, a detailed Implementation Plan will be completed, outlining the specific details of implementation. A Health and Safety Plan will also be provided for PWGSC and DND review.

Treatment types applied to each of the nine treatment plots will be randomized and determined in advance of the fieldwork.

### 5.3.3.2 Fieldwork and Reporting

Application of the various treatment types will commence with the dredging and removal of wood waste and impacted sediments from the three treatment plots assigned to the dredge treatment and wrap up with the placement of clean fill for the ENR and dredge treatments. To assist with the application of treatments (i.e. move/replace treatment plot markers and confirm treatments have been applied appropriately), a dive team will also be onsite with a surface support vessel.

For the dredge treatment plots, a spudding, crane barge (with dredge bucket size approximately $3-4 \mathrm{~m}^{3}$ ) will mobilize to site and use previously-marked GPS coordinates to position at each of the three dredge treatment plots. Divers will confirm the treatment plot marker locations and remove them prior to the dredging. As dredgeate is removed it will be placed in a contained barge. Following the completion of dredging at a treatment plot, divers will visually confirm dredging parameters, and place a temporary center marker using a concrete cinder block with leadline and surface buoy.

Total volume of dredgeate is estimated to be approximately $400 \mathrm{~m}^{3}$, assuming three 20 m diameter treatment plots are dredged to approximately 0.4 m depth. Once the pilot study site has been selected, and baseline conditions collected, the total dredge volume can be more accurately determined.

Sediment samples will be collected from the dredgeate of each of the treatment plots and sent for sediment chemistry analytics to inform upland disposal facilities of contents and cost of disposal. For each of the three dredge treatment plots, 3 composite samples will be created. The sediment samples will be placed in clean containers/polyethylene bags, labelled with project information, recorded on a chain-of-custody form, and placed in coolers with ice packs to maintain temperatures below $6{ }^{\circ} \mathrm{C}$ until they can be shipped to the appropriate laboratory facility. Approximately one duplicate for every ten samples will also be selected at random for data QA/QC procedures. Sediment samples collected in the field will be sent to an accredited laboratory facility for analysis of the following sediment chemistry parameters:

- Grain size distribution and \% moisture
- TOC
- TCLP metals (including sulphur)
- LEPH/HEPH/PAH
- PCB
- BTEX
- $\mathrm{Na} / \mathrm{Cl}$

Once analytical results are received, the dredgeate can be towed to a location where it can be offloaded to dump trucks and transported to an upland facility that can accept salt-impacted sediments for disposal.

Once dredging is complete, placement of clean fill can commence. A spudding, crane barge will position itself using GPS waypoints for treatment plots, and the temporary surface buoy markers placed by divers, and place fill with the dredge at both the ENR treatment plots and the dredged treatment plots. Before fill is placed, divers will move the treatment plot markers and, following the placement of fill, divers will visually confirm that fill is placed appropriately (i.e. confirm thickness or provide feedback to crane operator on further areas to fill) and replace the treatment plot markers as per Figure 5.4. Approximately $600 \mathrm{~m}^{3}$ of clean fill has been estimated to be required, $190 \mathrm{~m}^{3}$ to place $15-20 \mathrm{~cm}$ of sand across the ENR treatment plots, and $400 \mathrm{~m}^{3}$ of fill to backfill the dredged treatment plots.

Onsite dive team members can serve as Environmental Monitors, to ensure that avoidance and mitigation measures outlined in the Fisheries Act Serious Harm Assessment are being implemented appropriately.

Results of the application of treatment types will be summarized in a short letter-style report. If the application of treatment types is completed within the same fiscal year as the baseline conditions, these results can be included in the same report. An environmental monitoring report will also be submitted at the completion of treatment application, summarizing on-site environmental activities and documenting any issues that arose.

### 5.3.4 Effectiveness Monitoring

Benthic infauna communities undergo succession as they reach a mature community, with a greater presence of larger microbenthic and pollution-sensitive species in later stage or healthier communities. The colonization and re-establishment of the benthic infauna community could take several years to establish. For example, results from Esquimalt Graving Dock Remediation Project's Year 1 and Year 3 effectiveness monitoring provides an indication of both rates of colonization/re-establishment and community composition following remediation within Esquimalt Harbour (Keystone 2015). Year 1 results indicate that the benthic infauna community was dominated by small, quick colonizers or species known to be pollution-tolerant (Keystone 2015) ${ }^{4}$. Therefore, effectiveness monitoring is recommended to occur annually for a minimum of two consecutive years following the application of treatment types (within pilot study Years 3 and 4). The presence of bioturbators will be an integral part of the success of enhanced natural recovery treatment (as described in Section 4.1.2); therefore, time should be allowed for larger bioturbators to colonize and begin bioturbating the clean fill, before the determination of pilot study effectiveness. Effectiveness monitoring must occur at the same time of year as the characterization of baseline conditions (May/June), to avoid any impacts of seasonality on the results, as was observed with the Esquimalt Graving Dock work (Keystone 2015).

[^47]Sampling of the treatment and reference plots will follow the exact procedures used for sampling baseline conditions, outlined in Section 5.3.2 above. In short, SCUBA divers will transit to the pilot study site and reference site using a surface-support vessel. Treatment plots will be located using previously determined GPS coordinates for the center marker of each plot. Before seafloor sediments are disturbed, water quality measurements will be taken at the center point of each plot. Divers will then locate the center cinder block of each plot and use predetermined compass bearings and a transect tape to navigate to five randomized sample locations. At each location a quadrat will be used to record biophysical observations, and push cores will be used to collect sediment at three of the locations. Sediment cores will be processed on the deck of the support vessel and sent to the appropriate laboratory facilities for analysis of physical and chemical parameters, along with bioassay testing.

Benthic infauna community analysis will only be conducted during the second year of effectiveness monitoring. Here, divers can attach temporary surface buoys to the treatment and reference plot center markers so that the sediment grab sampler can be deployed. Methods for field screening and laboratory analysis are as described above (Section 5.3.2).

Results of the first year of effectiveness monitoring will be summarized in a short letter-style report, comparing data to baseline conditions, while results of the second year of effectiveness monitoring will be rolled into the final report.

After the second year of effectiveness monitoring is complete, the pilot study and reference site and treatment plot markers can be removed by the divers. However, PWGSC and DND may decide to maintain these for potential future monitoring.

### 5.3.5 Determination of Pilot Study Effectiveness Report

Once the analytical results for the second year of effectiveness monitoring have been received (approximately 2-3 months following fieldwork), the data for pre-treatment baseline conditions and the two years of effectiveness monitoring can be compiled, analyzed and a final report for the pilot study project compiled.

Results will be used to determine whether there are any significant differences in wood waste by-product levels (i.e. TOC, ammonia, sulphides), bioassay toxicity results, and benthic infauna community structure between the three treatment types and the reference location. This will aid in the determination of which treatment type was most effective for the restoration of a productive benthic community. Based on the outcome, recommendations will be made for the remediation of the discontinuous and/or shallow areas of wood-waste deposits within Esquimalt Harbour.

### 5.4 Cost Estimate

Given the level of information available for basic scoping of the pilot study permitting, phased design implementation, and determination of effectiveness, a detailed, but not definitive, cost estimate is provided. The total estimated cost for the pilot study project implementation is $\mathbf{\$ 3 , 1 3 2 , 0 2 0 . 0 0}$, plus applicable taxes, with a breakdown of totals by year provided in Table 5.2 below and the detailed cost estimate breakdown included in Appendix J: Detailed Pilot Project Cost Estimate.

Table 5.2 Pilot Study Project Cost Estimate Totals by Year

Category	Cost
Year 1: Finalized Site Selection and Regulatory Requirements	$\$ 21,581.00$
Year 2: Pilot Setup, Baseline Conditions, Application of Treatments	$\$ 2,712,523.00$
Year 3: Effectiveness Monitoring Year 1	$\$ 164,298.00$
Year 4: Effectiveness Monitoring Year 2 and Determination of Effectiveness	$\$ 233,618.00$
Total Pilot Study	$\mathbf{\$ 3 , 1 3 2 , 0 2 0 . 0 0}$

Assumptions and notes on the cost estimate:

- Cost estimate currently includes pricing for the implementation of the pilot study at one study site. It is noted that additional sites would improve the margin of error
- Dredgeate volume is assumed to be approximately $400 \mathrm{~m}^{3}$ - based on three, 20 m diameter dredge treatment plots are dredged to approximately 0.4 m depth. Once the pilot study site has been selected, and baseline conditions collected, the total dredge volume can be more accurately determined
- Cost estimate is based on disposal of dredgeate at a Vancouver-Island based facility.
- The weight of dredged sediments is assumed to be $2000 \mathrm{~kg} / 1 \mathrm{~m}^{3}$ and based the cost of upland disposal on the cost of drill cutting sediments disposed of following Field Survey 6 ( $\$ 1.86 / \mathrm{kg}$ ). Physical stabilization of sediments may be required, and the upland facility may not accept cut logs within the dredgeate.
- The dredging costs will vary with contractor, equipment type, and study site depths (greater depths will take longer to dredge and backfill)
- Cost estimate assumes that approximately $600 \mathrm{~m}^{3}$ of clean fill will be required - based on $190 \mathrm{~m}^{3}$ to place $15-20 \mathrm{~cm}$ of sand across the three ENR treatment plots, and $400 \mathrm{~m}^{3}$ of fill to backfill the dredged treatment plots.


### 6.0 PUBLICATION RECOMMENDATIONS

The publication of wood waste assessment and remediation case studies contributes to the working knowledge of the success of wood waste remediation and provides valuable information to waterlot managers in British Columbia on the regional impacts of wood waste and success of site-specific designed remediation efforts. Therefore, recommendations for the publication of assessment and remediation results have been included here for PWGSC and DND's consideration.

Given that the site characterization and assessment data is extensive, and the pilot study project has a separate objective, two or three targeted scientific publications are proposed as follows:

1. Assessment of Wood Waste Impacts to Benthic Communities within Esquimalt Harbour
2. Site-specific Effectiveness and Feasibility of Three Wood Waste Remediation Treatments on Areas of Discontinuous or Shallow Wood Waste Deposits in Esquimalt Harbour
3. Remediation of Wood Waste Impacted Sediments in Esquimalt Harbour

An initial list of suggested journals for publications has been provided in Table $\mathbf{6 . 1}$ for consideration.
Table 6.1 Proposed Scientific Journals for Publication of Wood Waste Assessment and Remediation Results

Journal	Journal Scope	Notes
Marine   Pollution   Bulletin	Concerned with the rational use of maritime and marine resources in estuaries, the seas and oceans, as well as with documenting marine pollution and introducing new forms of measurement and analysis. Topics include effluent disposal and pollution control, but also the management, economic aspects and protection of the marine environment in general.   Several different categories of articles are published, including, 'baselines' which document measurements which are expected to have value in the future.	- International   - Publication fee   - Open Access
Water Quality Research Journal of Canada	The Water Quality Research Journal is a forum for original research dealing with the aquatic environment and reports new and significant findings that advance the understanding of the field.   General subject areas can include: Impact of current and emerging contaminants on aquatic ecosystems, Aquatic ecology, Conservation and protection of aquatic environments, Responsible resource development and water quality (mining, forestry, hydropower, oil and gas), wastewater and stormwater treatment technologies and strategies, Industrial water quality, Groundwater quality (management, remediation, fracking, legacy contaminants), Assessment of surface and subsurface water quality, Regulations, economics, strategies and policies related to water quality.	- Canadian journal - more relevant regionally.   - No publication fee   - Open Access (for a fee)   - Easier/faster to get published
Water Environment Research	Water Environment Research is a multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. Goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.	- International   - Engineering audience

### 7.0 CONCLUSIONS

We sincerely appreciate the opportunity to have assisted you with this project and if there are any questions, please do not hesitate to contact the undersigned by phone at 604.669.0424.

## Report prepared by:

## Hemmera Envirochem Inc.

## martin

Mikaela Davis, M.Sc., R.P.Bio.
Biologist
604.669.0424 (236)
mdavis@hemmera.com


Tracey L'Espérance, B.Sc., R.P.Bio.
Environmental Scientist
tlesperance@hemmera.com

Report senior reviewed by:
Hemmera Envirochem Inc.


Scott Northrup, P.Biol., R.P.Bio.
Biologist
snorthrup@hemmera.com


Scott Toes, M.Sc., R.P.Bio.
Biologist
stoews@hemmera.com

### 8.0 REFERENCES

Armend, J.P., K.J. Edwards, T.W. Lyons. 2004. Sulfur Biogeochemistry - Past and Present. Sulfide oxidation in marine sediments: Geochemistry meets microbiology In Geological Society of America Special Papers 379.

Archipelago Marine Research Ltd. (Archipelago). 2004. Subtidal Survey Of Physical And Biological Features Of Esquimalt Harbour: Report \& Map Folio, Revised and Updated. Prepared for Victoria and Esquimalt Harbours Environmental Program, Transport Canada. 76pp.

Azimuth Consulting Group Partnership (Azimuth). 2017. Assessment of Alternatives to Disposing of Wood Waste a Sea in the Pacific and Yukon Region. Prepared for Environment and Climate Change Canada. 70pp.

Baird and Associates Coastal Engineering Ltd. Pedder Bay. 1991. British Columbia Wave Climate Study and Wave Protection Considerations: Final Report. Prepared for Government of Canada, Fisheries and Oceans. Accessed (November 2016) from: http://www.racerocks.com/racerock/rreo/rreoref/pedbaywave.htm

BC Site Registry, accessed via BC Online at: https://www.bconline.gov.bc.ca/
Biologica Environmental Services Ltd (Biologica). 2016. Esquimalt Harbour Macrobenthic Invertebrate Survey 2015 Data Report: Calculation and Assessment of Biotic Indices. Prepared for SLR Consulting. 32pp.

Breems, J, and T. Goodman. 2009. Wood Waste Assessment and Remediation in Puget Sound. Prepared for Estuary and Salmon Restoration Program of the Puget Sound Nearshore Ecosystem Restoration Project.

Borja, A., Franco, and J. Perez, V. 2000. A marine biotic index to establish the ecological quality of softbottom benthos within European estuarine and coastal environments. Marine Pollution Bulletin 40:1100-1114.

Bright, D.A., and Reimer, K.J. 1993. An Environmental Study of Esquimalt Harbour: Part I. Historical Inputs, Marine Sediment Contamination, and Biological Uptake. Report prepared for the Director General Environment, Department of National Defence by the Environmental Sciences Group, Royal Roads Military College.

British Columbia Contaminated Sites Regulation (BC CSR). 2009. BC Reg. 375/96 (Effective April 1997 and amended July 1999, November 1999, February 2002, November 2003, July 2004, July 2007, January 2013 and January 2014), including amendments up to B.C. Reg. 4/2014, effective January 31, 2014.

British Columbia digital mapping application, iMapBC. http://maps.gov.bc.ca/ess/sv/imapbc/

## British Columbia Environmental Violations Database, accessed online at:

 https://a100.gov.bc.ca/pub/ocers/searchApproved.do?submitType=menuBritish Columbia Marine Conservation Analysis (BCMCA). 2016. Marine Atlas of Pacific Canada. Accessed (November 2016) from: http://www.cmnbc.ca/atlas_gallery/bc-marine-conservation-analysis-atlas

British Columbia Marine Ecological Classification (BCMEC). 2002. British Columbia Marine Ecological Classification: marine ecosections and ecounits, v2. 63pp. Accessed from: https://www2.gov.bc.ca/assets/gov/environment/natural-resource-stewardship/nr-lawspolicy/risc/bcmec_version_2.pdf

British Columbia Ministry of Environment (BCMOE). 2016. Fisheries Information Summary System (FISS). [online] Available at: http://a100.gov.bc.ca/pub/fidq/fissReport.do

British Columbia Waste Discharge Authorizations, accessed online at: http://www2.gov.bc.ca/gov/content/environment/waste-management/waste-discharge-authorization/managing-authorizations/publicly-viewable-authorization-documents

Brooks, K.M., A.R. Stierns, C.V.W. Mahnken, D.B. Blackburn. 2003. Chemical and biological remediation of the benthos near Atlantic salmon farms. Aquaculture 219: 355-377.

Buchanan, D.V., P.S. Tate, and J.R. Moring. 1976. Acute Toxicities of Spruce and Hemlock Bark Extracts to some Estuarine Organisms in Southeastern Alaska. Journal of Fisheries Research Board of Canada 33: 1188-1192

Burd, Brenda. 2016. Synthesis Report: Benthos impact assessment relative to sediment geochemical, contaminant, and physical disturbance conditions in Esquimalt Harbour based on 2013 and 2015 monitoring data. Prepared for SLR consulting Ltd. 98pp

CCME, Canadian Council of Ministers of the Environment. 2010. Canadian water quality guidelines for the protection of aquatic life: Ammonia. In: Canadian environmental quality guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg. 8pp

CRD, Capital Regional District online mapping application, CRD Atlas, accessed online via: https://maps.crd.bc.ca/Html5Viewer/?viewer=public

CRD, Capital Regional District. 2016. Esquimalt Harbour. Accessed (November 2016) from: https://www.crd.bc.ca/education/our-environment/harbours/esquimalt-harbour

Conlan, K.E. 1977. The effects of wood deposition from a coastal log handling operation on the benthos of a shallow sand bed in Saanich Inlet, British Columbia. M.Sc. Theses, University of Victoria. 202pp.

Conlan, K.E. and D.V. Ellis. 1979. Effects of Wood Waste on Sand-bed Benthos. Marine Pollution Bulletin 10. 41pp. Accessed from: http://waves-vagues.dfo-mpo.gc.ca/Library/40587976.pdf

Davenne, E. and D. Masson. 2001. Water Properties in the Straits of Georgia and Juan de Fuca
Elliott, J.K., Spear, E. and Wyllie-Echeverria, S., 2006. Mats of Beggiatoa bacteria reveal that organic pollution from lumber mills inhibits growth of Zostera marina. Marine Ecology, 27(4), pp.372-380.

Fenchel, T., C. Bernard. 1995. Mats of colourless sulphur bacteria. I. Major microbial processes. Marine Ecology Progress Series. 178: 161-170.

Geosea. 2009.
Golder. 2006. Phase I Environmental Site Assessment and Supplemental Sediment and Crab Sampling Investigation, Esquimalt Harbour. Volume I of III. Prepared for Public Works and Government Services Canada. Victoria, British Columbia.

Gonor, J.J., J.R. Sedell, and P.A. Benner. 1988. Chapter 4: What we know about large trees in estuaries, in the sea, and on coastal beaches. In From the forest to the sea: A story of fallen trees. Eds. C. Maser, R.F. Tarrant, J.M. Trappe, and J.F. Franklin. General Technical Report PNW-GTR-229. Pacific Northwest Research Station, US Department of Agriculture, Forest Service.

Goodman, J.L., K.A. Moore, and W.C. Dennison. 1995. Photosynthetic Responses of Eelgrass (Zostera marina L.) to Light and Sediment Sulfide in a Shallow Barrier Island Lagoon. Aquatic Botany 50(1): 37-47

Gray, J.S., R.S. Wu, and Y.Y. Or. 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Marine ecology progress series 238: 249-279

Green, M.A., G.G. Waldbusser, S.L. Reilly, K. Emerson, and S. O'Donnell. 2009. Death by dissolution: Sediment saturation state as a mortality factor for juvenile bivalves. Limnol. Oceanogr. 54(4): 1037-1047

Green, M.A., G.G. Waldbusser, L. Hubazc, E. Cathcart, J. Hall. 2013. Carbonate Mineral Saturation State as the Recruitment Cue for Settling Bivalves in Marine Muds. Estuaries and Coasts 36: 18-27

Hemmera Envirochem Inc. 2004. Esquimalt Harbour Environmental Baseline Study. Volume 18 (Addendum\#3) Lot A. Lot 18. Esquimalt Harbour, British Columbia. Prepared for Transport Canada.

Holmer, M., C.M. Duarte, and N. Marba. 2005. Iron additions reduce sulfate reduction rates and improve seagrasss growth on organic-enriched carbonate sediments. Ecosystems 8: 721-730

Hyland, J., L.Balthis, I. Karakassis. 2005. Organic Carbon Content of Sediments as an Indicator of Stress in the Marine Benthos. Mare ecology Progress Series 295: 91-103.

Jackson, R.G. 1986. Effect of bark accumulation on benthic infauna at a log transfer facility in southeast Alaska. Marine Pollution Bulletin 17, no. 6: 258-262.

Jørgensen, B.B. 1977. Distribution of Colorless Sulfur Bacteria (Beggiatoa species) in Coastal MarineSediment. Marine Biology 4: 19-28.

Kathman, R.D., S.F. Cross, and M. Waldichuck. 1984. Effects of Wood Waste on the Recruitment Potential of Marine Benthic Communities. Canadian Technical Report of Fisheries and Oceans Sciences. 56pp.

Keely, N.B., C.K Macleod, D. Taylor, and R. Forrest. 2017. Comparison of three potential methods for accelerating seabed recovery beneath salmon farms. Aquaculture 479: 652-666

Kendall, D. and T. Michelsen. 1997. Management of Wood Waste under Dredged Material Management Programs (DMMP) and the Sediment Management Standards (SMS) Cleanup Program. Seattle District, ACOE, and Washington Department of Ecology.

Keystone Environmental (Keystone). 2015. Year 1 Habitat Compensation Effectiveness Monitoring Report, Esquimalt Graving Dock Waterlot Remediation Project, Esquimalt, BC. Prepared for: Public Works and Government Services Canada. 181pp.

Libes, S. 1992. An Introduction to Marine Biogeochemistry. New York: Wiley. Accessed (November 2016) from:
https://books.google.ca/books?hl=en\&|r=\&id=KVZJUw4nORgC\&oi=fnd\&pg=PP1\&dq=An+introdu ction+to+marine+biogeochemistry\&ots=JeAOVIvdYk\&sig=04sn-
p6IU4eySyzzIBUzlei8IUM\#v=onepage\&q=An\%20introduction\%20to\%20marine\%20biogeochemis try\&f=false

Maser, C., and J.R. Sedell. From the forest to the sea: The ecology of Wood in Streams, Rivers, Estuaries, and oceans. St. Lucie Press, Florida, 200pp.

Mußmann M., H.N. Sculz, B. Strotmann, T. Kjær, L.P. Nielsen, R.A. Rosselló-Mora, R.I. Amann, B.B. Jørgensen. 2003. Phylogeny and distribution of nitrate-storing Beggiatoa spp. in coastal marine sediments. Environmental Microbiology, 5: 523-533.

Nuszdorfer, F.C., K. Klinka, and D.A. Demarchi. 1991. Chapter 5: Coastal Douglas-fir Zone in Special Report Series 6: Ecosystems of British Columbia. Eds D. Meidinger and J. Pojar. BC Ministry of Forests. from: https://www.for.gov.bc.ca/hfd/pubs/docs/Srs/Srs06/chap5.pdf. Accessed (November 2016)

Oksanen, J., F. Guillaume Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O'Hara, G. L. Simpson, P.r Solymos, M. H. Stevens, E. Szoecs and H. Wagner (2018). Vegan: Community Ecology Package. R package version 2.4-6. https://CRAN.Rproject.org/package=vegan

Östlund, H.G., Alexander, J.1963. Oxidation rate of sulfide in sea water, a preliminary study. Journal of Geophysical Research 68(13): 3995-3997.

Pearse, B.C. 1974. Effects of log dumping and rafting on the marine environment of southeast Alaska. Fisheries Research Institute - USDA Forest Service General - University of Washington, Seattle. Technical report pub\# PNW-22, Seattle, WA. Accessed (November 2016) from: https://babel.hathitrust.org/cgi/pt?id=umn.31951d02964450x;page=root;view=image;size=75;seq =68;num=60

Pearson, T.H., 1980. Marine pollution effects of pulp and paper industry wastes. Helgoländer Meeresuntersuchungen, 33(1), p. 340 .

Pederson, O., T.Binzer, and J. Borum. 2004. Sulphide Intrusion in Eelgrass (Zostera marina L.). Plant, cell \& Environment 27(5): 595-602.

Peters, G.B., H.J. Dawson, B.F. Hruthfiord, and R.R. Whitney. 1976. Aqueous leachate from western red cedar: effects on some aquatic organisms. Journal of Fisheries Research Board Canada 33: 2703-2709.

Phillips, R.C. 1984. Ecology of an Eelgrass Meadow in the Pacific Northwest: A community profile. FWS/OBS - 84/24, Seattle Pacific University, Washington (USA). Accessed (November 2016) from: https://babel.hathitrust.org/cgi/pt?id=uc1.31822023039233;view=1up;seq=1

Picard, C., B. Bornhold, J. Harper. 2003. Impacts of wood debris accumulation on seabed ecology in british columbia estuaries. $2^{\text {nd }}$ International Symposium on Contaminated Sediments. Accessed from: http://www.scs2003.ggl.ulaval.ca/Histories/Picard2.pdf

Podger, D. Unpublished. Sulfide Effects on Aquatic Organisms Literature Review. 16pp. Accessed (November 2016) from: https://salishsearestoration.org/images/8/8c/Podger_2013_sulfide_effects_on_aquatic_organisms .pdf

Reish, D.J. and J.L. Barnard. 1960. Field toxicity tests in marine waters utilizing the polychaetous annelid Capitella captitata (Fabricius). Pac. Nat. 21:1-8

Rice, E.W., Baird, R.B., Eaton, A.D., and Clesceri, L.S, eds. 2012. Standard methods for the examination of water and wastewater, $22^{\text {nd }}$ Edition. Washington DC

Rosenberg, R. 1972. Succession in benthic marcofauna in a Swedish fjord subsequent to the closure of a sulphite pulp mill. Oikos 24(2): 244-258.

Independent Science Advisory Group (SAG). 2011. Letter Report of the Independent Scientific Advisory Group Regarding the B.C.Aquaculture Waste Control Regulation: Initial Review Comments on (I) Selection of Protection and Measurement Endpoints and (II) Methods for Establishing Environmentally Protective Thresholds, toward the Sustainable Management of Salmon Aquaculture Wastes. 25pp.

Science Applications International Corporation (SAIC). 1999. Port Angeles Harbor Wood Waste Study, Port Angeles, Washington, Final. Prepared for: Washington State Department of Ecology by SAIC, Bothell, WA, 41pp. Accessed (February 2017) from: https://fortress.wa.gov/ecy/publications/SummaryPages/99326.html

Samis, S.C., S.D. Liu, B.G. Wernick and M.D. Nassichuk. 1999. Mitigation of fisheries impacts from the use and disposal of wood residue in British Columbia and the Yukon. Canadian Technical Report of Fisheries Aquatic Sciences 2296: viii and 91 p. Accessed (November 2016) from: http://www.dfo-mpo.gc.ca/Library/243104.pdf.

Sensitive Habitat Inventory and Mapping (SHIM). 2016. SHIM Atlas. Accessed (November 2016) from: http://www.cmnbc.ca/atlas_gallery/shim-sensitive-habitat-inventory-and-mapping

Snelgrove, P.V.R. 1997. The importance of marine sediment biodiversity in ecosystem processes. Ambio vol 26 (8): 579-583.

SLR Consulting Canada Ltd (SLR). 2016. Detailed Quantitative Ecological Risk Assessment to Support Environmental Risk Management, Esquimalt Harbour, BC - Draft \#3. Prepared for Public Works and Government Services Canada - Esquimalt Harbour Remediation Project. 2721 pp

Teixeira, H., Weisberg, S.B., Borja, A., Ranasinghe, A., Cadien, D.B., Velardee, R.G., Lovell, L.L., Pakso, D., Philllips, C.A., Montagne, D.E., Ritter, K.J., Salas, F., Marquesa, J.C. 2012. Calibration and validation of the AZTI's Marine Biotic Index (AMBI) for Southern California marine bays. Ecological Indicators 12: 84-95

Treasury Board of Canada Secretariat, Federal Contaminated Sites Inventory, accessed online via: http://www.tbs-sct.gc.ca/fcsi-rscf/home-accueil-eng.aspx
U.S. Environmental Protection Agency (US EPA). 1986. Quality criteria for water. EPA 550/5-86-001. Cincinnati, OH.
U.S. Enviornmental Protection Agency (US EPA). 1999. EMAP-Virginian Province Four-Year Assessment (1990-93)". EPA/620/R-99/004. Accessed from: https://nepis.epa.gov/Exe/ZyNET.exe/300042W8.TXT?ZyActionD=ZyDocument\&Client=EPA\&Ind ex=1995+Thru+1999\&Docs=\&Query=\&Time=\&EndTime=\&SearchMethod=1\&TocRestrict=n\&Toc
=\&TocEntry=\&QField=\&QFieldYear=\&QFieldMonth=\&QFieldDay=\&IntQFieldOp=0\&ExtQFieldOp =0\&XmIQuery=\&File=D\%3A\%5Czyfiles\%5CIndex\%20Data\%5C95thru99\%5CTxt\%5C00000016 \%5C300042W8.txt\&User=ANONYMOUS\&Password=anonymous\&SortMethod=h\%7C\&MaximumDocuments=1\&FuzzyDegree=0\&ImageQuality=r75g8/r75g8/x150y150g16/i425\&Displ ay=hpfr\&DefSeekPage=x\&SearchBack=ZyActionL\&Back=ZyActionS\&BackDesc=Results\%20pag e\&MaximumPages=1\&ZyEntry=1\&SeekPage=x\&ZyPURL

Wang, F. and Chapman, P.M., 1999. Biological implications of sulfide in sediment-a review focusing on sediment toxicity. Environmental Toxicology and Chemistry, 18(11), pp.2526-2532.

State of Washington Department of Ecology (Washington State). 2013. Wood Waste Cleanup: Identifying, Assessing, and Remediating Wood Waste in Marine and Freshwater Environments - Guidance for Implementing the Cleanup Provisions of the Sediment Management Standards Chapter 173024 WAC. Publication No. 09-09-044. 93pp.

Yamamoto, T., S. Kondo, K-H. Kim, S. Asaoka, H. Yamamoto, M. Tokuoka, T. Hibino. Remediation of muddy tidal flat sediments using hot air-dried crushed oyster shells. Marine Pollution Bulletin 64: 2428-2434

Yücel, M., Galand, P.E., Fagervold, S.K., Contreira-Pereira, L. and Le Bris, N., 2013. Sulfide production and consumption in degrading wood in the marine environment. Chemosphere, 90(2)

## APPENDIX A <br> Aerial Photos






























 8.5
3
5





























## 

$A$




















































































CRD 1:6500 Lat N48.4352 Lon W123. 442e 17:21:30 3691 $\qquad$ ब5 $25 / \mathrm{F} 5$ INE V173 PC-1E AGFA


FF1.3 EC 0 * SP- wh. 07709 00\% dt007.2 ds011 26. 2V -58mb ER00 CAM5373




ds010


4
$3 / 4$
3





## APPENDIX B

Regulatory Information

## Treasury Board of Canada Secretariat

Home > OCG > Real Property Management > DFRP/FCSI - Map Navigator

## DFRP/FCSI - Map Navigator

Area: Capital Content: 222 Federal Contaminated Sites,


## Layers

## $\rightarrow$ Federal Properties

* $\square$ Federal Buildings
- Federal Contaminated Sites
- Economic Region
- Census Divisions
- Census Subdivisions
- Metropolitan Areas
- Federal Electoral Districts

Treaty Areas
${ }^{1}$ This layer is visible only when the map scale is smaller than 1:3,000,000.
${ }^{2}$ Google base maps are only available when the map scale is smaller than 1:60,000.

# IMPORTANT NOTE: The tables below are currently not synchronized with the map content. Please click on the following hyperlink if you want to update the tables content: UPDATE TABLES 

## Federal Properties

Federal Properties
Page(s):
Select the number of rows per page $\square$

## Federal Buildings

Federal Contaminated Sites

Authorization	Authorization Type	Issue Date	Waste Type	State	Facility Type - Description	Facility Address
4772	Permit	08/08/1977	Effluent	Cancelled	Elementary School - sewage	3291 Happy Valley Road, Victoria
6081	Asphalt Plant Regulation	26/09/1997	Air	Active	Asphalt Plant	740 Industrial Way, Victoria BC V9B 6E2
8241	Permit	11/05/1989	Effluent	Cancelled	Chlorination/Dechlorination	680 Montreal Street, CRD BC V8V 1 Z8
15601	Permit	18/09/2000	Air	Active	n/a	765 Industrial Way, Victoria
18363	Operational Certificate	19/02/2008	Effluent	Active	Reclaimed water production plant Reclaimed water production facility at Victoria inner harbour   Reclaimed water used for toilet flushing, landscape irrigation and impoundment.   Overflow from impoundment into Victoria Harbour	101-1117 Wharf Street, Victoria BC V8W 2 S6
100051	Hazardous Waste Regulation	20/09/2007		Active	Biocell at Highwest Landfill	1943 Millstream Road, Victoria BC V9B 6E2
100174	Organic Matter Recycling Regulation	06/03/2008		Active	Compost	1416 B Alan Road, Victoria BC V9E 2C5
100183	Organic Matter Recycling Regulation	07/03/2008		Cancelled	Compost	UVic Finerty Road Victoria
100184	Organic Matter Recycling Regulation	07/03/2008		Active	Compost	4370 Interurban Rd Victoria BC V9E 2C3
100302	Vehicle Dismantling and Recycling Industry Environmental Planning Regulation	28/07/2008		Active	Automotive recycler Automotive recycler	232 Trans Canada Highway, Malahat BC VOR 2 LO
100327	Vehicle Dismantling and Recycling Industry Environmental Planning Regulation	01/08/2008		Active	Steel Recycling Facility Waste metal collection and recycling depot, including wet/dry vehicles. A diesel powered metal shredder is used to shred and sort, metals (ferrous, non-ferrous and non-metals). This site also accepts demolition wastes, bottles for recycling	2770 Pleasant St, Victoria BC
100382	Vehicle Dismantling and Recycling Industry Environmental Planning Regulation	13/08/2008		Active	automobile dismantling Automobile dismantling	1297 Glenshire Drive, Victoria BC V9C 3W7
100384	Code of Practice for Concrete and Concrete Products	26/08/2008		Active	Concrete Production	439 Bay Street, Victoria BC V8T 1P5
103167	Vehicle Dismantling and Recycling Industry Environmental Planning Regulation	05/02/2009		Withdrawn	Sales and service of new and used motorcycles, their parts and accessories. Sales and service of new and used motorcycles, their parts and accessories.	D-611 David Street, Victoria BC V8T 2C9
103821	Permit	31/03/2010	Air	Active	Electric motor rebuilding Electric motor rebuilding shop	859 Viewfield Road, Victoria BC V9A 4V2


Authorization   Number	Authorization Type	Issue Date	Waste Type	State	Facility Type - Description	Facility Address
103965	Petroleum Storage and Distribution   Facilities Storm Water Regulation	09/09/2009		Withdrawn	Transfer area is drained into an oil/water sparator that   discharges into the storm sewer situated adjacent to the   property	2515 Rock Bay Ave, Victoria BC V8T 4R5
104612	Petroleum Storage and Distribution   Facilities Storm Water Regulation	$03 / 03 / 2010$		Active	Petroleum products storage and distribution facility	2515 Rock Bay Avenue, Victoria BC V8T 4R5
105554	Hazardous Waste Regulation	$20 / 04 / 2011$	Hazardous   Waste	Cancelled	Ellice Recycle and Ralmax Development's barge ramF   facility	2800 Bridge Street, Victoria BC $\times$
106038	Hazardous Waste Regulation	$27 / 02 / 2012$	Hazardous   Waste	Active	Soil Treatment Biocell - Landfill	1943 Millstream Rd, Victoria BC
106597	Petroleum Storage and Distribution   Facilities Storm Water Regulation	$08 / 02 / 2013$		Active	Langford Cardlock	2596 Sooke Road, Colwood BC V9B 1X7
106843	Permit	$09 / 01 / 2014$	Refuse	Active	Soil storage three fill areas (Fill area 1,2 and 3) for   permanent storage of contaminated soil	203 Harbour Road, Victoria BC V9A 3S2

## APPENDIX C

## Harbour Occupants

## APPENDIX A-1: Harbour Occupants as of 1873

Area	Usage	Dates
Northern Shore   - Cole Island	- munitions magazine	- 1860-1938
East Side   - land between southern shore Thetis Cove \& northern Plumper Bay - north shore Thetis Cove	- "Indian Village"   - unidentified building	$\begin{aligned} & -1873 \\ & - \text { by } 1860-1873 \end{aligned}$
Constance Cove   - Lang Cove   - Skinner Cove	- named "Village Bay"   - intact, with inland stream	$\begin{aligned} & - \text { ca } 1873 \\ & -1848-1920 \mathrm{~s} \\ & \hline \end{aligned}$
Duntze Head/Naval Yard   Peninsula Area   - Thetis Island   - Esquimalt Village   - Western part/naval yard   - Western part/naval yard inland   - East of Grant Knoll   - SE of landing East of Grant Knoll   - directly inland east of Duntze Head, near first Naval Yard Boundary Line (West of Signal Hill)   - inland east of Grant Knoll \& south of "Landing"	- Naval Coal Wharf   Naval Coal Store/Note: island still intact, separate   - Fraser's River ("Cariboo") Gold Rush traffic landing here/Esquimalt Village \& Wharf St. developed/small wharf   - Admiralty/Naval land has enlarged wharf   - "The Factory": Smith shop, Smelter/Engine House   - cable, paint, chain, timber, lumber, ordnance, cordage/stores; fitting house   - Boathouse   - Landing   - "Factory"   - Paint, Oil, Ordnance, Victualling Stores, Naval stores, Condemned Stores, Engine	$\begin{aligned} & -(1860-1880) \\ & -1858-68 \\ & -1865 \\ & - \text { by } 1873 \\ & - \text { by } 1858 \\ & - \text { by } 1863-67 \\ & - \text { by } 1863-67 \end{aligned}$
West Side   - Southern entrance, west side	- Fisgard Lighthouse	- 1860-present

## APPENDIX A-2: Harbour Occupants as of 1896

Area	Usage	Dates
Northern Shore   - Northern harbour, inland   - Cole Island	- Esquimalt \& Nanaimo Railway   - magazine, incl. boathouse, jetty, mine \& shell store, shell filling house, ordnance store, 4 powder magazines, quick firing ammunition store, store for empty cases	- 1886-present?   - 1860-1938
East Side   - North of Skinner Cove   - Land between southern shore Thetis Cove \& northern Plumper Bay   - Along eastern side of harbour   - Plumper Bay peninsula area, southwest of Thetis Cove	- Hudson's Bay Co. Post   - "Indian Village"   - E \& N Railway (splits \& runs down peninsula area in Plumper Bay)   - "Cannery" (platform extends out into water; appears on 1896 hydrographic chart)	- ca 1896   - construction starts 1884; operative 1886present   - by 1896-(on 1947 chart; not present on 1967 chart)
Constance Cove   - Lang Cove area   - between Pilgrim \& Lang   - Pilgrim Cove area   - West of Skinner Cove   - Lang Cove area   - North of Skinner Cove   - Pilgrim Cove   - Northeast Signal Hill   - North of Signal Hill   - Shoreline N.E. of Signal Hill   - North of Signal Hill   - Shoreline N.W. of Signal Hill   - West of Signal Hill	- Isbestor's Pier (identified as Foster's Pier in 1896)   - Infectious ward   - Jetty/landing stage/wharf   - Hudson's Bay Co. wharf   - Brown family operated Slipway cradle \& jetty/BC Marine slipway (known in 1895 as "Marine Slipway"/1896 "slipway"/18971914 BC Marine Railway Co. Cradle)   - E\&N Railway/Esquimalt \& Craigflower Rd./Hudson's Bay Co./4 large bldgs   - Royal Naval Hospital   - Fosters Pier   - wharf with bldgs   - Isbestor's Pier (identified as Foster's Pier in 1896)   - Submarine Mine Establishment, with tramway   - boathouse; cement \& timber store   - War Department boundary	- ca 1895   - ca 1895   - by 1895   - 1893-1914   - ca 1896   - ca 1896   - ca 1896   - ca 1895   - 든 1895   - ca 1895



## APPENDIX A-3: Harbour Occupants in 1925

Area	Usage	Dates
Northern Shore   - Parsons Bridge   - Cole Island   - Inland northern harbour   - Northern harbour	- Blacksmith shop/brass foundry (slaughterhouse/piggery)/tannery?   - Magazines used by Royal Navy/Royal Canadian Navy/Army   - Esquimalt and Namaimo railway   - oyster beds	- 1900-1930s   - WWI   - 1886-present?   - up to1920-1930s
East Side   - Thetis Cove, opposite Richards Island   - Plumper Bay \& North   - inland Plumper Bay   - Thetis Cove   - Indian Reserve   - Plumper Bay area   - Southwestern shore of Thetis Cove	- Large, fuel wharf   - E \& N Railway   - Oil tank "(conspicuous)"   - Machine shop (off of E \& N Railway)   - Star Shipyard   - Empire Cannery/V.H. Todd \& Sons, Ltd. Empire owned by Todds   - Oil wharf   - Small vessel wharf	- 1920s   - by 1886-?   - 1921 (on chart)1947   - 1918   - 1905-77 (?)   - by 1896-1947   - 1925-present   - Early 1900spresent
Constance Cove   - Pilgrim Cove   - Skinner Cove   - Lang Cove   - Inland Pilgrim Cove   - Signal Hill and northern shoreline	Boat House/RCN Barracks inland   - Proposed Esquimalt Graving Dock   - Slipway becomes Yarrows (graving dock \& shipyard)   - Royal Navy Hospital (incl. dead house, infectious ward, disinfecting house)   - Joint Services Magazine   - Submarine Mining Establishment, including offices, shops, stores and stone jetty for handling mines jutting into Constance Cove   Imperial forces returned to England, minefield operation discontinued; abandoned buildings become part of Canadian Ordnance complex.   -9.2" gun battery	- 1920s   - (opens 1926)   - 1914-1946   - ca 1913-1914   - 1899-1906   - 1906   - 1912-1939


$\begin{aligned} & \text { APPENDIX A- } \\ & \text { 3(CONT.) } \end{aligned}$		
Duntze Head/Naval Yard   Peninsula Area		
- Western portion	- Drydock used by Royal Navy/Royal Canadian Navy/ Can. Gov't./Commerical ships	- 1887-1927
- Western portion	- Drydock closed	$\begin{aligned} & -1927-1945 \text { closure } \\ & -1858-1939 \end{aligned}$
- Esquimalt Village	Pioneer St. northern end - hotel/public landing   - float plane lounge   - Esquimalt wharf smaller	$-1920 \mathrm{~s}-30 \mathrm{~s}$ $\text { - by } 1910$
- Thetis Island	- Naval Coal store capacity of 10,000 tons, with coal chute and crane	- 1903-1942
- Grant Knoll	- filled w/unknown substance when marine railway built	- 1910-1911
- Esquimalt Village		- 1912   - 1910-11
- Western portion	- Naval Land - now Royal Canadian Navy   - painters, smithers, galvanizing shops	$\begin{aligned} & -1910-11 \\ & - \text { by } 1903 \end{aligned}$
- Works Dept. Yard	- painters, smithers, galvanizing shops   - Marine railway (Bldg 116)	- 1913-46
from Bldg 115)		- 1910-1984
- Adjacent to Grant	- Sail loft \& oil store	$\text { - } 1903$
Knoll (Bldg 109)	- receiving \& sale store   - sail loft \& pitch deposit	$\begin{aligned} & -1920 \\ & -1923 \end{aligned}$
- Adjacent to Grant Knoll (Bldg 113)	- Shipwright shop \& spar shed	$\begin{aligned} & \text { - built } 1901-1917 \\ & 1922-1950 \mathrm{~s} \end{aligned}$
- Adjacent to Grant Knoll (Bldg 115)	- "Shipwright \& riggers marine ship repair unit" ("concrete floor with open slope to the sea")	- 1913-1946
- Northeastern shoreline of Duntze Head (Southwestern shoreline of Constance Cove)	- The "Factory" cf 1896 chart (machine shops, blacksmith boiler ships, moulding shops, etc.)   - Heavy usage of galvanizing tank	- 1891-present - WWII
West Side		
- up from Limekiln Cove	- Lime kilns	- 1925

## APPENDIX A-4: Harbour Users as of 1967

Area	Usage	Dates
Northern shore   - Northern harbour Inland northern harbour	- very dense log boom storage   - Esquimalt and Nanaimo Railway	$-1930 \mathrm{~s}-1960 \mathrm{~s}$ -1886 -present
East Side   - Plumper Bay \& north   - Along Hallowell Rd., adj. to Esquimalt Band Reserve   - Southwestern shore of Thetis Cove   - Munroe Head   South of Richard Island, north of   Plumper Bay   - Plumper Bay   - Paddy Pass   - Esquimalt Band Reserve, southern portion   - Munroe Head   - View Royal	- E \& N Railway   - West Isle Logging, Ltd./Futura Forest Products sawmill' (PCBs \& chlorophenol contaminants found later)   - Wharf (old oil wharf; now serving sawmill?   - Yarrows Ltd \# 2 Plant   - numerous piles   - "Booming Ground \& numerous piles"; also "Ruins"   - dead heads   - piles   - floats in northern portion   - floating breakwater off of tip, running   NW/SE   - several large buildings \& "travelling crane"   - small square platform offshore   - residential development, and small business development; septic tanks on rocky ground	- 1886-?   - 1967-1983   - by 1925-present   - by 1947 (on   charts) to 1958   - 1967 chart   - 1970s-present
Constance Cove   - (Skinner Cove)   - Lang Cove   - South of Esquimalt   Graving Dock   - Pilgrim Cove   - Lang Cove   - Signal Hill and northern shoreline	- Esquimalt Graving Dock high usage   period   - "Wallace" owned (or titled) shipyard \& drydock   - Government Jetty E, Dept. of Public Works   - piles/2 small (? piers) on north shore/8   piers along south   - "Yarrows" (?) substantially built up   - buildings absorbed by HMC Dockyard Esquimalt \& occupied by civilian work force	$\begin{aligned} & - \text { 1965-1973 } \\ & -1946-72 \text { (since } \\ & 1893) \\ & - \text { ?-present } \\ & -1967 \\ & - \text { ca 1967 } \\ & \text { - since WWII } \end{aligned}$


$\begin{aligned} & \text { APPENDIXA- } \\ & \text { 4(CONT.) } \end{aligned}$		
Duntze Head/Naval Yard   Peninsula Area:		
-Western portion	- Drydock used by Royal Canadian Navy; peak usage 1954-1964.	- 1945-present
-Thetis Island	- Gun shed and carpenter shop	$-1951-1970$
-Thetis Island	- Jetty A; enlarged Jetty B; ways southwest of jettys; complex pier	- ca 1967
- Lang Cove	structure east \& south of Jetty C; 3 piers off of Jetty C   - small jetty southwest of Jetty A	$\begin{aligned} & - \text { ca } 1967 \\ & -1951 \end{aligned}$
- Area adjacer	- electric store	- 1920-1950s
Grant Knoll (Bldg	- shipwright \& spar shed	- 1950s
109)	- carpenter shop	- 1950s-(?)
- Grant Knoll area (Bldg 113)	- Civilian paint shop - Bldg 114   - Torpedo storage - Bldg 115B	Dockyard, Naden
- b/n Grant Knoll \& Jetty A	- Shipwright's cradle shop-Bldg 117   - Haulout - BIdg 116   - Civilian Paint Shop - Bldg 119   - Boat store - Bldg 120	utilities map)
- Inland between Jetty	- P.N.L. Jetty - Bldg 133	- 1891-present $-1951$
A \& B	- The "Factory" still operative   - Above called "Naval Stores"	$\begin{aligned} & -1951 \\ & -1955 \end{aligned}$
shoreline of Duntze   Head (southwestern shoreline of Constance Cove)	- Third section of factory (moulding shop; coppersmith; galvanizing tank; pattern makers shop) demolished \& replaced by parking lot	- 1949-present
- Various parts of dockyard and Duntze Head area		- 1949-present
West Side		
- Southern tip Smart Is., to northern McCarthy Is., to fuel	- power line/"dol s." \& piles McCarthy Is. area	- 1967 chart
- - Between Dunn's	- "G Jetty"/float north of G Jetty/very	- 1967
Nook \& Patterson	large Naval Supply Depot with tank	
Point		- 1967
- Southern entrance	- Fisgard Island \& Rodd Pt. connected (Fill?)	
- North of Yew Pt.	- "D Jetty"/ (w/4 bldgs/wharf-like	- ?-present
	structures); ship tratfic \& minor repairs   - sandblasting inland from "D" Jetty	- ?-present
- Dunn's Nook	- Fuel oil jetty "F"/piles within Nook	- ?-present

## APPENDIX A-5: Harbour Users as of 1987

Area	Usage	Dates
Northern Entrance   - Inland northern harbour   - Cole Island   - View Royal   - Mill Stream   - Northern harbour	- Esquimalt \& Nanaimo Railway   - Prov. Gov't of Parks Canada"takeover \& stabilization" (ex-magazines) (possibly) faulty septic tank discharge from residential \& small business areas   - PETRO CAN OIL holdings upstream   - sparse log boom storage	- 1886-present (?)   - 1974   - 1970s-present   - $(1970$ s-present
East Side   - Inland Plumper Bay \& North   - Along Hallowell Rd. adjacent to Esquimalt Bank Reserve   - End of Hallowell Rd /south shore Thetis Cove	- E \& N Railway   - Futura Forest Products mill (\& West Isle Logging Ltd), with wharf (old oil wharf)   - Fibermax Timber Corp.   - Victoria Plywood	- 1886-present   - (1970-late 1980s)   - 1986-present   - ?-late 1980 s
Constance Cove   - Lang Cove   - Between Yarrows \& Signal Hill   - South of \& adj. to DPW Graving Dock   - Signal Hill and northern shoreline	- Private graving dock/Ship yard = Versatile Pacific   - Bldg 508 Shipwright \& plastic shops   - Government Jetty E   - Ship Repair Unit (Pacific) plastic shop \& sandblasting site; Base Transportation Vehicle park on extensive landfill into Constance Cove; Base Supply use of Ordnance store buildings; Naval Officers' Training Centre small training vessels berthed \& maintained; some Queen's Harbour Master's department facilities	- 1972-1989   - 1985   - (?-present)   - ca 1981



## APPENDIX A-6: Current Major Harbour Users

Area	Usage	Dates
Northern Entrance   - View Royal   - Northern Harbour   - Inland Northern harbour	- (Possibly) faulty septic tanks/residential \& small business development   - sparse log boom storage   - Esquimalt \& Nanaimo Railway	- 1970s-present   - 1970s-present   - 1886-present?
East Side   - Plumper Bay \& north   - end of Hallowell Rd   - Along Hallowell Rd   - View Royal	- E \& N Railway   - Fibermax Timber Corp;   - Victoria Plywood Co-op   - Pacific Forest   - residential \& small business development; faulty septic systems	- 1886-present   - 1986-present   - ?-present   - (1990)   - 1990-present
Constance Cove   - Lang Cove   - Signal Hill and northern shoreline   - Lang Cove   - Esquimalt (DPW) Graving Dock	- Dredging   - Further expansion of HMC Dockyard Esquimalt facilities   - Drydock/shipyd know as "Yarrows" again   - Ship refit \& repair activities; Government "E" Jetty	- ( $\mathrm{Lt}(\mathrm{N})$ Smith $)$   - 1980s-present   - 1989-present   - 1926-present
Duntze Head/Naval Yard   Peninsula Area   - North shore CFB Esquimalt, between Jetty A \& B   - Western tip   - Dockyard \& Western portion of Duntze Head   - Northern shoreline CFB Esquimalt	- Bldg 243, unidentified outfall pipe   - FMG construction site: discovery of lead contaminated soils   - Continued industrial activity   - "A" Jetty: ship traffic, discharge \& repair; minor fueling   - "B" Jetty: ship traffic, discharge \& repair; minor fueling   - "C" Jetty: "Refit Jetty" for major repairs, refits and minor refueling	- current   - summer-winter   1992   - 1870s-present   - to present   - to present   - to present
West Side   - Patterson Pt.   - North of Yew Pt.   - North of Yew Pt.   - North of Dunn's Nook   - North of Dunn's Nook	- DND Fire Training Area   - "D" Jetty: patrol boat traffic, ship discharge \& repair   - Sandblasting inland from "D" Jetty   - "F" Jetty ship traffic, discharge \& repair;   Naval Fuel Jetty   - "G" Jetty ship traffic, discharge \& repair	- to present   - post WWII to present   - to present   - to present   - to present

APPENDIX D
Areas of Potential Environmental Concern

## Areas of Potential Environmental Concern

$\begin{gathered} \text { APEC } \\ \text { ID } \end{gathered}$	LOCATION	ISSUE(S)/ ACTIVITY(IES)	MEDIA TYPE	PCOC
APEC A - Fill				
A1	Southern part of Dockyard	Metals dump/fill material	Soil, Groundwater	Metals
A2	Fill between Grants Knoll and Dockyard	Fill used to join island to mainland prior to 1946	Soil, Groundwater	Metals, PAH
A3	Dockyard A-Jetty and B-Jetty Fill	Shoreline filling to raise ground level	Soil, Groundwater	Metals, PAHs
A4	Dockyard shoreline fill materials	Filling activities	Soil, Groundwater	Metals, hydrocarbons
A5	Infilled cove on north side of Signal Hill	Fill activities - backfilled with waste materials	Soil, Groundwater	Metals, PAH, hydrocarbons
A6	Soil capsules, Yarrows	Contaminated soil dredgeate containment cell	Soil, Groundwater	PAHs, metals
A7	Black Sands Beach, Yarrows	Deposition of black sandblast grit	Soil, Groundwater, Sediment	Metals
A8	Yarrows area	Fill activity	Soil, Groundwater	Metals, hydrocarbons
A9	Lang Cove	Deposition of contaminated sediments and fill material to reclaim land	Soil, Groundwater, Sediment	Metals, hydrocarbons
A10	Pilgrim Cove	Historical filling	Soil, Groundwater	Metals, hydrocarbons
A11	Skinner Cove	Historical filling	Soil, Groundwater	Metals, hydrocarbons
A12	Munroe Head	Historical filling	Soil, Groundwater, Sediment	Metals, PAHs, hydrocarbons. PCBs
A13	Dallas Bank	Foreshore fill material	Sediments Soil	N/A
A14	Ashe Head	Infilled cove	Soil, Groundwater	Metals, PAHs
A15	South side of Plumper Bay	Fill materials	Soil	Metals
A16	Fill material on south east side of Plumper Bay	Fill materials	Soil	Metals, PAHs, hydrocarbons
A17	Central part of Plumper Bay	Fill material on shoreline	Soil	Metals, hydrocarbons
A18	Southeast of West Isle site, Plumper Bay	Fill material on shoreline	Soil	Metals, PAHs, hydrocarbons
A19	West Isle shoreline, Plumper Bay	Fill material on shoreline	Soil	Metals, PAHs, hydrocarbons, chlorophenols
A20	West Isle Site, Plumper Bay	Fill material	Soil, Groundwater	Metals, hydrocarbons, chlorophenols


APEC ID	LOCATION	ISSUE(S)/ ACTIVITY(IES)	MEDIA TYPE	PCOC
A21	Fibremax fill material north shore of Plumper Bay	Fill material	Soil	Metals, hydrocarbons
A22	Fibremax fill material on Fibremax peninsular, Plumper Bay	Fill material	Soil	Metals, hydrocarbons, PAHs
A23	Fibremax fill material north side of property, Plumper Bay/Thetis Cove	Fill materials	Soil	Metal
A24	Fibremax site, Plumper Bay	Fill material	Soil, Groundwater	Metals, hydrocarbons, phenols
A25	Victoria Plywood, Thetis Cove	Filled embayment area	Soil, Groundwater	Metals and hydrocarbons
A26	Thetis Cove shoreline	Fill material	Soil, Groundwater	Metals and hydrocarbons
A27	Thetis Cove shoreline	Fill material	Soil, Groundwater	Metals, hydrocarbons
A28	Dunns Nook/F-Jetty, Colwood	Shoreline fill materials	Soil, Groundwater, Sediment	Metals, hydrocarbons
A29	Colwood D-Jetty	Fill materials to the west of D-Jetty, including sandblast material	Soil, Groundwater, Sediment	Metals
A30	Colwood D-Jetty	Fill material adjacent to west side of D-Jetty	Soil, Groundwater, Sediment	Metals
A31	Yew Point, Colwood	Fill materials	Soil, Groundwater, Sediment	Metals
A32	Fisgard Island	Unknown fill quality used in constructing the causeway to the lighthouse	Soil, Sediments	Metals, hydrocarbons
A33	Thetis Cove shoreline	Fill material	Sediment	Metals, PAHs, hydrocarbons
A34	Thetis Cove shoreline	Fill material	Sediment	Metals, PAHs hydrocarbons
APEC B - ASTs, USTs, Other Hydrocarbons				
B1	Infilled cove on north side of Signal Hill	Tanks		Hydrocarbons, metals
B2	OWWTP at Dockyard	Potential for accidental release to harbour	Soil, groundwater, sediments	Hydrocarbons, PAHs
B3	B-Jetty at Dockyard	6 fuel tanks	Soil, groundwater, sediments	Hydrocarbons
B4	Pilgrim Cove	Fuel tanks/fuel pump	Soil, Groundwater	Hydrocarbons
B5	CFSA, Munroe Head	Presence of ASTs	Soil, Groundwater	Hydrocarbons


$\begin{gathered} \text { APEC } \\ \text { ID } \end{gathered}$	LOCATION	ISSUE(S)/ ACTIVITY(IES)	MEDIA TYPE	PCOC
B6	Victoria Plywood, Thetis Cove	Oil wharf	Soil, Groundwater, Sediment	Hydrocarbons
B7	Indian Reserve	Former fuel tank located at north end of reserve-	Soil, Groundwater	Hydrocarbons (Bunker C)
B8	Victoria Plywood, Thetis Cove	Former tanks; 11 ASTs and 2 USTs	Soil, Groundwater, Sediment	Hydrocarbons, metals
B9	Victoria Plywood, Thetis Cove	Pipeline	Soil, Groundwater	Hydrocarbons
B10	Gasoline Dock, north of F-Jetty, Colwood	AST on shoreline	Soil, Groundwater Sediments, Aquatic receptors	Hydrocarbons
B11	F-Jetty at Colwood	Fuel supply lines to $F$ Jetty	Soil, Groundwater, Sediment	Hydrocarbons
B12	Esquimalt Graving Dock	AST	Soil, Groundwater, Sediment	Hydrocarbons
APEC C - Operational Activities				
C1	Dockyard	Historical and current activities associated with ship building, repair and maintenance	Soil, Groundwater	Metals, PCBs, hydrocarbons
C2	DND dry dock at Dockyard	Sandblasting activities	Sediments	Metals, hydrocarbons
C3	Yarrows ship building activities	Historical activities associated with ship building and repair (blacksmith, machine and sheet metal shop) and the Signal Hill lease lots	Soil, Groundwater	Metals, PCBs, hydrocarbons
C4	Esquimalt Graving Dock	Operational practices such as sandblasting activities	Soil, Groundwater, Sediment	Metals, PCBs, hydrocarbons, TBT
C5	Jenkins Marine Munroe Head	Boat building and operational activities	Soil, Groundwater	Metals, hydrocarbons, PCBs, TBT
C6	Plumper Bay	Cement/Concrete plant on north side of Plumper Bay - operational activities	Soil, Groundwater, Sediment	Unknown
C7	West Isle Site, Plumper Bay	Historical operational activities associated with mill	Soil, Groundwater	Unknown
C8	Fibremax, Plumper Bay	Historical activities associated with mill	Soil, Groundwater Sediment	Unknown
C9	Victoria Plywood, Thetis Cove	Former mill activities	Soil, Groundwater, Sediment	Hydrocarbons, metals, PCBs, phenols, PAHs
C10	Seaplane operation, Limekiln cove, View Royal	Refuelling of small planes and operational activities	Sediment	Hydrocarbons
C11	Fire Fighting Training Area, Colwood	Historical and current FFTA operational activities	Soil, Groundwater, Sediment	Hydrocarbons, PFOS/PFOA


$\begin{gathered} \text { APEC } \\ \text { ID } \end{gathered}$	LOCATION	ISSUE(S)/ ACTIVITY(IES)	MEDIA TYPE	PCOC
C12	Colwood bunkers	Operational activities bunkers historically used to store munitions, more recently hazardous chemicals	Soil, Groundwater	Metals, PCBs, hydrocarbons
C13	Smart Island	Soil contamination from activities on the island	Soil	Metals
C14	McCarthy Island	Soil contamination from activities on the island	Soil	Metals
C15	Cole Island	Potential waste materials from historical operational activities	Soil	Metals, hydrocarbons
C16	Dunns Nook, Colwood	Sandblast grit from operational activities in the area	Sediments	Metals
C17	D-Jetty, Colwood	Maintenance and operational activities	Sediments	PAHs, PCB's, metals, hydrocarbons
C18	Yew Point, Colwood	Dredgeate material from operational activities	Soil, Groundwater, Sediment	Metals
C19	DND Colwood	Historical and current operational activities associated with supply depot, sandblasting, refuelling and dredgeate storage	Soil, Groundwater, Sediment	Metals, hydrocarbons
C20	Fisgard Island	Maintenance and operational activities	Soil, Groundwater, Sediment	Metals, hydrocarbons
C21	Dockyard and Signal Hill	Historical sandblasting activities	Soil, Groundwater, Sediment	Metals
C22	Munroe Head	Historical operational activities associated with welding and pipe shop and an overhead crane.	Soil, Groundwater	Metals, hydrocarbons PCBs
C23	Munroe Head	Former slipway area	Soils	Metals
C24	Pilgrim Cove	Shipwright	Soil, Groundwater, Sediment	Metals, hydrocarbons TBT
C25	Esquimalt Graving Dock	AEC 11 - Waterlot sediments	Sediment	Metals, PAHs, PCBs, TBT Hydrocarbons
C26	Victoria Plywood, Thetis Cove	Pollution Control Permit for discharge into harbour	Sediment	Phenols, hydrocarbons Metals
C27	Northern part of Esquimalt Harbour	Log booming causing accumulation of wood waste on sea floor	Sediments, Aquatic life	Organic material
C28	Dockyard	Operational activities associated with moored ships at docks at Dockyard	Sediment, Aquatic life	Metals, PAHs, TBT,


$\begin{gathered} \text { APEC } \\ \text { ID } \end{gathered}$	LOCATION	ISSUE(S)/ ACTIVITY(IES)	MEDIA TYPE	PCOC
C29	Colwood	Operational activities associated with moored ships at docks at CFB Esquimalt, Colwood	Sediment, Aquatic life	Metals, PAHs, TBT
C30	CFSA, Munroe Head	Operational activities associated with small docks, including scraping and repainting small boats	Sediment, Aquatic life	Metals, PAHs, TBT
C31	Upland area to the north and west of $F$ Jetty, Colwood	Historical presence of a limestone handling facility, historical presence of a sawmill and booming grounds.	Soil, Groundwater, Sediment	Not known
C32	Shoreline of View Royal	Historical commercial activities in the area	Sediment, Aquatic life	Not known
C33	Esquimalt Harbour mouth	Antisubmarine cables, potentially lead lined	Sediment, Aquatic life	Metals
C34	Esquimalt Harbour	Cable ties from log booming activities in the harbour	Sediment, Aquatic life	Metals
C35	Millstream Creek (entering Esquimalt Harbour)	Upstream historical and current activities	Sediment, Aquatic life	Not known
C36	G-Jetty, Colwood	Ship maintenance	Sediment, Aquatic life	Metals, PAHs, TBT
C37	F-Jetty, Colwood	Harbour basin used as a mortar range	Sediment, Aquatic life	Metals
C38	D-Jetty, Colwood	Materials store	Soil, Groundwater, Sediment	Not known
C39	Small wharf in Pilgrim Cover	Activities associated with small wharfs	Sediment Aquatic life	Not known
APEC D - Treated Timbers				
D1	A-Jetty and floating docks, Dockyard and Signal Hill	Leaching of preservatives from treated timber piles	Sediments	PAHs
D2	Pilgrim Cove	Leaching of preservatives from treated timber piles	Sediments	PAHs
D3	Esquimalt Graving Dock	Leaching of preservatives from treated timber piles	Sediments	PAHs
D4	CFSA, Munroe Head	Leaching of preservatives from treated timber piles	Sediment	PAHs
D5	Shoreline of View Royal	Leaching of preservatives from small docks and jetties constructed using treated timber piles.	Aquatic receptors, Sediments	PAHs, metals, hydrocarbons
D6	G-Jetty, Colwood	Leaching of preservatives from treated timber piles	Sediments, Aquatic receptors	PAHs


APEC ID	LOCATION	ISSUE(S)/ ACTIVITY(IES)	MEDIA TYPE	PCOC
D7	D-Jetty, Colwood	Leaching of preservatives from treated timber piles	Sediments, Aquatic receptors	PAHs
D8	Plumper Bay	Leaching of preservatives from treated timber piles	Sediments, Aquatic receptors	PAHs
APEC E-PCBs				
E1	East of C-Jetty, adjacent to Yarrows area	Pole mounted transformers	Soil, groundwater, sediments	PCBs
E2	Victoria Plywood, Thetis Cove	PCB contamination from improperly stored capacitors	Soil, Groundwater	PCBs
E3	G-Jetty, Colwood	Pole mounted transformers	Soil, Groundwater, Sediment	PCBs
E4	Colwood Bunkers	PCB storage	Soil, Groundwater, Sediment	PCBs
APEC F - Spills				
F1	West Isle Site, Plumper Bay	Chlorophenols from spill	Soil, Groundwater	Chlorophenols
F2	Victoria Plywood, Thetis Cove	Leak of hydraulic oil and chain oil	Soil, Groundwater	Hydrocarbons
F3	Shoreline of View Royal	Local storage of domestic quantities of chemicals and paints with spill potential.	Aquatic receptors, Sediments	PAHs, metals, hydrocarbons
F4	Dunns Nook, Colwood	Spillage	Soil, Groundwater, Sediment	Hydrocarbons
F5	Harbour wide	Spillages into the harbour	Sediments, Aquatic life	Unknown
APEC G - Stormwater Outfalls				
G1	Harbour wide stormwater outfalls	Discharge of contaminated sediments from upland sources	Sediment, Aquatic life	Metals, PAHs
G2	Esquimalt Graving Dock stormwater outfalls	Stormwater outfalls	Sediment	Metals TBT











# APPENDIX E Background Biophysical Conditions of Esquimalt Harbour 

### 7.0 MAP Folio





A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 4. Substrate Type	
Sediment   Rock or rock with sediment veneer   Wood \& bark debris (substrate obscured)	
Shoreline Intertidal Zone   Opland    Om Contour (Chart Datum)    No Survey    2, $5,10 \mathrm{~m}$ Contours    Survey Trackine	
Physical Shore Type *   Rock   Rock and Sediment   Sediment   Estuary, Marsh or Lagoon   Man-Made	
Survey Dates:   SIMS: March 21-31, 2000   Dive: May 25-29, 2000   June 27-28, 2000	Map Edition:   February 5, 2004



A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 5. Sediment Size Class	
Gravel   Gravelly Mud/Sand   Mud/Sand   Sand   Rock or rock with sediment veneer   Wood \& bark debris (substrate obscured)	
Shoreline   Pier/Wharf/Jetty/Dock   Om Contour (Chart D   2, 5, 10m Contours   Survey Boundary	Intertidal Zone   Upland   No Survey   Survey Trackline
Physical Shore Type *	
Survey Dates:   SIMS: March 21-31, 2000   Dive: May 25-29, 2000   June 27-28, 2000	Map Edition:   February 5, 2004







A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 8. Organic Cover	
Trace-5\%   5-30\%   30-80\%   > 80\%   \# Logs	
Shoreline Intertidal Zone    Opland     On Contour (Chart Datum)  No Survey   Survey Trackine	
Survey Dates:   SIMS: March 21-31, 2000   Dive: May 25-29, 2000   June 27-28, 2000	Map Edition:   February 5, 2004



A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 9. Shell Cover	
$\begin{aligned} & 5-30 \% \\ & 30-50 \% \end{aligned}$	
Shoreline   Intertidal Zone   Pier/Wharf/Jetty/Dock Upland   Om Contour (Chart Datum) No Survey   2, 5, 10m Contours Survey Trackline	
Survey Dates:   SIMS: March 21-31, 2000   Dive: May 25-29, 2000   June 27-28, 2000	Map Edition:   February 5, 2004





A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 11. Vegetation Cover	
Sparse - Low Cover (Trace - 25\%)   Moderate - Dense Cover (25-100\%)	
Shoreline   Pier/Wharf/Jetty/Dock   Om Contour (Chart D   2, 5, 10m Contours   Survey Boundary	Intertidal Zone   Upland   No Survey   Survey Trackline
Survey Dates:   SIMS: March 21-31, 2000   Dive: May 25-29, 2000   June 27-28, 2000	Map Edition:   February 5, 2004



A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 12. Eelgrass Beds (Zostera marina)	
Sparse - Low Cover (Trace-25\%)   Moderate - Dense Cover (25-100\%)   \# Eelgrass Bed number (see Report text, Table 10)	
Shoreline   Intertidal Zone   Pier/Wharf/Jetty/Dock Upland   Om Contour (Chart Datum) No Survey   2, 5, 10m Contours   Survey Trackline	
Survey Dates:   SIMS: March 21-31, 2000   Dive: May 25-29, 2000   June 27-28, 2000	Map Edition:   February 5, 2004



A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 13. Kelps	
Sparse - Low Cover (Trace-25\%)   Moderate - Dense Cover (25-100\%)	
Shoreline   Pier/Wharf/Jetty/Dock   Om Contour (Chart D   2, 5, 10m Contours   Survey Boundary	Intertidal Zone   Upland   No Survey   Survey Trackline
Survey Dates:   SIMS: March 21-31, 2000   Dive: May 25-29, 2000   June 27-28, 2000	Map Edition:   February 5, 2004




A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 15. Foliose Green Algae	
Sparse - Low Cover (Trace - 25\%)   Moderate - Dense Cover (25-100\%)	
Shoreline   Pier/Wharf/Jetty/Dock   Om Contour (Chart D   2, 5, 10m Contours   Survey Boundary	Intertidal Zone   Upland   No Survey   Survey Trackline
Survey Dates:   SIMS: March 21-31, 2000   Dive: May 25-29, 2000   June 27-28, 2000	Map Edition:   February 5, 2004



A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 16. Filamentous Red Algae	
Sparse - Low Cover (Trace - 25\%)   Moderate - Dense Cover (25-100\%)	
Shoreline   Pier/Wharf/Jetty/Dock   Om Contour (Chart D   2, 5, 10m Contours   Survey Boundary	Intertidal Zone   Upland   No Survey   Survey Trackline
Survey Dates:   SIMS: March 21-31, 2000   Dive: May 25-29, 2000   June 27-28, 2000	Map Edition:   February 5, 2004



A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 17. Foliose \& Coralline Red Algae	
Foliose Red Algae   Sparse - Low Cov   \# Moderate-Dense   Coralline Red Algae   \$ Sparse-Low Cov   \$ Moderate - Dense	- $25 \%$ )   $r(25-100 \%)$   - $25 \%$ )   (25-100\%)
Shoreline   Pier/Wharf/Jetty/Dock   Om Contour (Chart D   2,5,10m Contours   Survey Boundary	Intertidal Zone   Upland   No Survey   Survey Trackline
Survey Dates:   SIMS: March 21-31, 2000   Dive: May 25-29, 2000   June 27-28, 2000	Map Edition:   February 5, 2004



A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 18. Infaunal Burrows	
$\begin{array}{ll} \text { \# } & \text { Few/Patchy } \\ \# & \text { Continuous } \end{array}$	
Shoreline   Pier/Wharf/Jetty/Dock   Om Contour (Chart D   2, 5, 10m Contours   Survey Boundary	Intertidal Zone   Upland   No Survey   Survey Trackline
Survey Dates:   SIMS: March 21-31, 2000   Dive: May 25-29, 2000   June 27-28, 2000	Map Edition:   February 5, 2004



A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 19. Anemones	
$\begin{array}{ll} \text { \# } & \text { Metridium } \\ \text { \# } & \text { Urticina sp. (Tealia) } \end{array}$	
Shoreline   Pier/Wharf/Jetty/Dock   Om Contour (Chart D   2, 5, 10 m Contours   Survey Boundary	Intertidal Zone   Upland   No Survey   Survey Trackline
Survey Dates:   SIMS: March 21-31, 2000   Dive: May 25-29, 2000   June 27-28, 2000	Map Edition:   February 5, 2004




A Subtidal Survey of the Physical and Biological Features of Esquimalt Harbour	
Figure 21. Other Invertebrates	
```\# Red Sea Urchins (Strongylocentrotus franciscanus) \# California Sea Cucumbers (Parastichopus californicus) \# Burrowing Sea Cumbers (Cucumaria miniata) \# Piddock Clams (Zirfaea pilsbryi) \# Bryozoans```	
Shoreline Intertidal Zone Opland Om Contour (Chart Datum) No Survey Survey Boundary Survey Trackline	
Survey Dates: SIMS: March 21-31, 2000 Dive: May 25-29, 2000 June 27-28, 2000	Map Edition: February 5, 2004

APPENDIX F

Side Scan Sonar Results

PAGE 01
$0 \quad 10$
λ
1

\qquad
\qquad

\qquad
1 \square

Woodwaste Extent

PAGE95
$1-8$

Coasting

$2+\frac{2}{2}$
-11

$2+\frac{2}{2}$
-11
B \rightarrow , -5 ,
1,

0

APPENDIX G

Sediment Core Photo Examples

Photo G2: Esquimalt Harbour Borehole T24-01 Consists entirely of sand/silt and no wood waste

Photo G3: Pedder Bay Borehole T21-01 Consists entirely of coarse sand and no wood waste

Photo G4: Esquimalt Harbour Borehole T31-03 Organic transitions to organic with trace wood fibre/debris $(-0.15 \mathrm{~m})$ which transitions to silt with trace shell debris/hash at -0.2 m

Photo G5: Esquimalt Harbour Borehole T54-03 Organic with wood fibre/debris transitions to silt with trace wood fibre/debris at -0.2 m

Photo G6: Esquimalt Harbour Borehole T27-03 Organic with trace wood fibre/debris transitions to organic with wood fibre/debris at -0.3 m , which transitions to silt with trace shell debris/hash at -0.3 m

Photo G7: Esquimalt Harbour Borehole T27-05 Organic with trace wood fibre/debris transitions to dense wood fibre/debris at -0.1 m

Photo G8: Esquimalt Harbour Borehole T56-01 Organic with wood fibre/debris for the length of the borehole core

Photo G9: Esquimalt Harbour Borehole T11-05 Organic with trace wood fibre/debris transitions to organic with wood fibre/debris at -0.15 m , and then to sand/silt at -0.3 m

Photo G10: Esquimalt Harbour Borehole T48-01 Organic with wood fibre/debris transitions to silt with shell debris/hash at -0.3 m

Photo G11: Esquimalt Harbour Sonic Drill BH15 Organic with wood fibre/debris transitioning to silt/clay with shell debris at -0.254 m

Photo G12: Esquimalt Harbour Sonic Drill BH14 Organic with wood fibre/debris transitioning to sand/silt with shell debris at -0.366 m

Photo G13: Esquimalt Harbour Sonic Drill BH29 Showing the transition from organic with wood fibre/debris to silt/sand with trace shell debris at -1.74m

Photo G14: Esquimalt Harbour Sonic Drill BH7 Wood fibre/debris transitions to silt/sand with trace shell debris at -1.778 m

Photo G15: Esquimalt Harbour Sonic Drill BH20 Wood fibre/debris transitions to sand/silt with trace shell debris at -0.84 m

Photo G16: Esquimalt Harbour Sonic Drill BH19 Wood fibre/debris transitions to silt/sand with shell debris at -0.42 m

APPENDIX H

Wood Waste Depth Cross Sections

Notes

\qquad

Esquimalt Harbour Wood Waste Assessment DND, CFB Esquimalt, Esquimalt Harbour, BC

Cross Section of Wood Waste Surface Sedimed

$376-240.08$	Production Date: Jan 11, 2019	Figure H-4

[ILHemmera

APPENDIX I
Biophysical and Sediment Chemistry Data

Transect Sampling Information		Year	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
		Transect Surey Date	Sep-19														
		Field Surey $\#$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	,
		OLD Transect ID	13	13	13	13	13	14	14	14	14	14	w1	w1	w1	w1	w1
		OLD Sample ID	13.01	13.04	13.02	13.05	${ }_{13.03}$	${ }_{14.01}$	14.04	${ }_{14.02}$	14.05	${ }_{14.03}$	W1-01	W1.04	W1.02	${ }^{W} 1.05$	${ }^{1} 1.03$
		NEW Transect ID	01	01	01	01	01	02	02	02	02	02	03	03	03	03	03
		Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
		NEW Sample ID	01.01	01.02	01.03	01.04	01.05	02.01	02.02	02.03	02.04	02.05	03.01	03.02	03.03	03.04	03.05
		Point 10	1	4		5	3		,	2			1		2	5	
		Distance	0	25	50	75	100	0	25	50	75	100	0	25	50	75	100
		Depth gauge (m):	.2.74	. 3.66	4.88	-5.49	-5.79	-7.01	-7.32	-7.62	-7.93	-. 8.54	. 5.49	-6.40	-6.40	-6.40	-6.40
		Depth gauge (ft):	-9	-12	-16	-18	-19	-23	-24	-25	-26	-28	-18	-21	-21	-21	-21
		Tide (m):	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	2.1	2.1	2.1	2.1	2.1
		Depth m CD:	-1.2	-2.2	-3.4	-4.0	4.3	-5.5	-5.8	-6.1	-6.4	-7.0	-3.4	-4.3	${ }^{4.3}$	4.3	-4.3
Biological		Probe												1.00		1.00	
	Kelp detritus	Kelp deftitus						10									
	Begatao spp.	bacterial mat									95			60	55		
	Diatoms	Diatoms	90	95	95	95	75			95			45	40	45	45	60
	Agarum fimbriatum	$\frac{\text { tringed sieve } \text { Kelp }}{\text { encrusting coraline seaweed }}$															
	Desmerassia viridis	Stringy acid hair															
	Gracilaria	Smgatar															
	Red blade	red blade															
	Red branched	Red branched															
	Red filamentous	red flimentous															
	Sacharina latissima	sugar kelp	2.5														
	Sacharina groenlandica	$\xrightarrow{\text { spulit }}$ Sulp															
	Solva lactuca	$\frac{\text { succulent seaweed }}{\text { sea etuce }}$															
	Holes					0.5	0.5	2									
	Mounds					0.5											
	Balanus glandula	acorn barnacle															
	Cancer productus	red rock crab															
	Dirona																
	Metacarcinus gracilis	$\frac{\text { graceful rock crab }}{\text { Dungeness crab }}$	0.5					0.5	0.5		0.5		0.5		0.5		
	Metridium farcimen	giant plumose anemone															
	Metridium senile	short plumose anemone															
	Pagurus sp.	hermit crab															
	Pandalus danae	coon striped shrimp						0.5	1.5								
	Pandalus platyceros	Pandalus unknown															
	Parastichopus californicus	red sea cucumber															
	Pisaster ochraceaus	Ochre sea star															
	Pugetia productus	kelp crab															
	Shrimp species	shrimp species															
		Sted urchin															
	Tresus sp.	gaper clams															
	Unticina unknown	Anemone unknown															
		Tunicate															
	Altorhy ${ }^{\text {Cithus flavidus }}$	$\underset{\text { Tpeckles ssand dab }}{\text { Tub }}$															
	Clupea pallasii	Pacific herring															
	Lumpenus sagita	Smanke prickleback															
	Platichthys stellatus	stary flounder															
	Pleuronichthy coenosus	C.O sole															
	Sculin unknown	$\frac{\text { soung }}{\text { sculipin unknown }}$															

Appendix H : Raw Field Observations and Sediment Chemistry Data

Appendix H: Raw Field Observations and Sediment Chemistry Data

Transect Sampling Information		Year	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
		Transect Survey Date	Sep-20									
		Field Surve \#	1	1	1	1	1	120	1	1	1	1
		OLD Transect ID	w6	w6	w6	W6	w6	T2	T2	12	T2	T2
		OLL Sample ID	w6-01	w6-04	W6.02	W6.05	w6.03	T2.01		${ }_{\text {T2.02 }}$		${ }_{\text {T2.03 }}$
		NEW Transect tio	10	10	10	10	10	11	11	11	11	11
		Point	01	02	03	04	05	01	02	03	04	05
		NEW Sample ID	10.01	10.02	10.03	10.04	10.05	11.01	11.02	11.03	11.04	${ }_{11-05}^{10}$
		Point ID	1	4	2	5	3	1	4	2	5	3
		Distance	0	25	50	75	100	0	25	50	75	100
		Depth gauge (m):	9.76	-9.76	. 9.15	-8.54	-7.32	-8.84	-8.84	-8.84	-8.84	-8.84
		Depth gauge (t):	. 32	. 32	. 30	-28	-24	-29	-29	-29	-29	-29
		Tide (m :	2.1	2.1	2.1	2.1	2.1	2.4	2.4	2.4	2.4	2.4
		Depth m co:	-7.7	-7.7	-7.0	-6.4	-5.2	-6.4	-6.4	-6.4	-6.4	-6.4
		Probe						0.60	0.60	0.60	0.60	0.60
Biological	Kelp detritus	Kelp defritus										
	Beggatoa spp.	bacterial mat	100	93		85	13	100	10	100	10	10
	Diatoms	Diatoms										
	Agarum fimbriatum	fringed sieve kelp										
	Coraline crust spp.	encrusting coraline seaw										
	Desmerassia viridis	Stringy acid hair										
	Gracilaria											
	Red blade	red blade										
	Red branched	Red branched										
	Red filamentous	red filamentous										
	Sacharina latissima	sugar kelp										
	Sacharina groenlandica	spilit kelp										
	Sarcodietheca gaudichaudii	succulent saweed										
	Ulva lactuca	sea eltuce										
	Holes											
	Mounds											
	Balanus glandula	acorm barnacle										
	Cancer productus	red rock crab										
	Dirona											
	Metacarcinus gracilis	graeful rock crab										
	Metacarcinus magister											
	Metridium farcimen	giant plumose anemone	2									
	Metridium senile	short plumose anemone										
	Pagurus sp.											
	Pandalus danae	${ }_{\text {coon stripa shrimp }}^{\text {spot rawn }}$										
	Pandalus unknown	Pandalus unknown										
	Parastichopus califormicus	red sea cucumber										
	Pisaster ochraceaus	Ochre sea star										
	Pugetia productus	kelp crab										
	Shrimp species	shrimp species										
	Strongly centrotus franciscanus											
	Styela montereyensis	stakked tunicate										
	Tresus sp.											
	Uricima unknown	$\frac{\text { Anemone unknown }}{\text { Turicate }}$										
		Tube snout										
	Citharichthys stigmaeus	speckled sand dab										
	Clupea pallasii	Pacific herring										
	Lumpenus sagita	$\frac{\text { Smanke prickleack }}{\text { stary fiounder }}$										
		${ }_{\text {stary }}^{\text {couounder }}$										
	$\frac{\text { Sebastes spp. YoY }}{\text { Sculin unkown }}$	$\frac{\text { oung of the year rockish }}{\text { sculpin unkown }}$	0.5									

Transect Sampling Information		rear	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
		Transect Survey Date	Sep-20	Sep-20	Sep-20	Sep-20	Sep-20	Sep-21									
		Field Surey \#	1	1	1	1	1	1	1	1	1	1	1		1	1	1
		OLD Transect ID	T2	T2	T2	T2	T2	F3	F3	F3	F3	F3	F4	F4	F4	F4	F4
		OLD Sample ID	T.04		${ }_{\text {T2.05 }}$		T2.06	${ }^{53.01}$	F3.04	${ }^{13} 3.02$	${ }_{\text {F3.05 }}$	F3.03	F4.01	F4.04	F4.02	F4.05	${ }^{54.03}$
		NEW Transect 10	12	12	12	12	12	13	13	13	13	13	14	14	14	14	14
		Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
		NEW Sample ID	12.01	12.02	12.03	12.04	12.05	13.01	13.02	${ }_{13.03}$	13.04	${ }_{13.05}$	14.01	14.02	14.03	14.04	14.05
		Point ID	1	4	2	5			,	2			1	,	2	5	,
		Distance	0	25	50	75	100	0	25	50	75	100	-	25	50	75	100
		Depth gauge (m):	-8.84	-8.84	-8.84	-8.84	-8.84	-7.93	.7.32	-7.01	-6.71	-6.71	. 5.79	.5.18	4.4	${ }^{-3.35}$	${ }^{-3.05}$
		Depth gauge (ft):	-29	-29	-29	-29	-29	-26	-24	-23	-22	-22	-19	-17	14	-11	-10
		Tide (m):	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4
		Depth m CD:	-6.4	-6.4	-6.4	-6.4	-6.4	-5.5	4.9	-4.6	-4.3	-4.3	-3.4	-2.8	-1.9	-1.0	-0.6
		Probe	0.60	0.60	0.60	0.60	0.60		0.20		0.40			0.17			
Biological	Kelp detritus	Kelp deteritus															
	Beggatoa spp.	bacterial mat	100	100	100	100	100	70	95	100	99	97	75				
	Diatoms	Diatoms												58	80	80	60
	Agarum fimbriatum	fringed sieve kelp															
	Coraline crust spp.	encrusting coralline seaweed															
	Desmerastia viridis	Stringy acid hair															
	Gracilaria																
	Red blade	red blade															
	Red branched	Red branched															
	Red filamentous	red filamentous															
	Sacharina groenlandica	spilit kelp											2				
	Sarcodietheca gaudichaudii	succulent seaweed															
	Ulva lactuca	seal eftuce															
	Holes																
	Mounds																
	Balanus glandula	acorn barnacle															
	Cancer productus	red rock crab															
	Dirona																
	Metacarcinus gracilis	$\frac{\text { graceful rock crab }}{\text { Dungenss }}$															
	Metridium farcimen	giant plumose anemone			5			1					2			0.5	
	Metridium senile	short plumose anemone															
	Pagurus sp.	hermit crab															
	Pandalus danae	coon Strijed Shrimp spot prawn															
	Pandalus platyceros																
	Parastichopus californicus	red sea cucumber															
	Pisaster ochraceaus	Ochre sea star															
	Pugetia productus	kelp crab															
	Shrimp species	shrimp species															
	Strongly ${ }^{\text {Stecentrout }}$ Stranciscanus	$\frac{\text { red urchin }}{\text { stake tunicate }}$															
	Tresus sp.	gaper clams															
	Unticina unknown	Anemone unknown															
		Tunicate															
	Allorhynchus flavidus	$\frac{\text { Tube snout }}{\text { speckled sand dab }}$															
	Clupea pallasii	Pacific herring															
	Lumpenus saitta	Smanke prickleack															
	Platichthys stellatus Pleuronichthys coenosus	$\frac{\text { stary flounder }}{\text { c.os sole }}$															
	Sebastes spp. YOY	young of the year rockish															
	Sculpin unknown	sculpin unknown															

Transect Sampling Information		Year	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
		Transect Survey Date	Sep-21														
		Field Surey \#	1	1	1	1	1	1	1	1	1	1	1	+	1	1	1
		OLD Transect ID	w4	W4	W4	w4	W4	w3	w3	W3	W3	w3	T4	T4	T4	T4	T4
		OLD Sample ID	W4.01	W4.04	W4.02	W4.05	W4.03	w3.01	W3.04	w3.02	${ }_{\text {W3.05 }}$	w3.03	T4.01		T4.02		T4.03
		NEW Transect 10	15	15	15	15	15	16	16	16	16	16	17	17	17	17	17
		Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
		NEW Sample ID	15.01	15.02	${ }_{15-03}$	15.04	15.05	16.01	16.02	16.03	16.04	16.05	17.01	17.02	17.03	17.04	17.05
		Point ID	1	4	2	5	${ }^{3}$		4	2	5		1	4		5	3
		Distance	0	25	50	75	100	0	25	50	75	100	。	25	50	75	100
		Depth gauge (m):	.7.32	.7.32	. 7.01	-6.71	. 5.79	-8.84	-8.84	-8.54	-8.23	-7.93	5.18	.5.18	-5.18	.5.18	5.18
		Depth gauge (ft):	-24	-24	. 23	. 22	- 19	-29	-29	-28	. 27	. 26	-17	-17	-17	17	${ }^{-17}$
		Tide (m :	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	1.9	1.9	1.9	1.9	1.9
		Depth m CD:	-5.3	-5.3	-5.0	-4.7	-3.8	-6.8	-6.8	-6.5	-6.2	-5.9	-3.3	-3.3	-3.3	-3.3	-3.3
		Probe		0.20		0.30			0.50				0.50	0.50	0.40	0.20	0.20
Biological	Kelp detritus	Kelp deteritus															
	Beggatoa spp.	bacterial mat	83	88	99	99	90	83	80	80	48	83					
	Diatoms	Diatoms															
	Agarum fimbriatum	fringed sieve kelp															
	Coraline crust spp.	encrusting coralline seaweed															
	Desmerastia viridis	Stringy acid hair															
	Gracilaria																
	Red blade	red blade															
	Red branched	Red branched															
	Red filamentous	red flimentous														8	
	Sacharina latissima	$\frac{\text { sugar kelp }}{\text { spitit }}$											80			80	40
	Sacharna groenlanalica	succulunt seameed															
	Salva lactuca	succuen seaveed															
	Holes																
	Mounds																
	Balanus glandula	acorm barnacle															
	Cancer productus	red rock crab															
	Dirona																
	Metacarcinus gracilis	graceful rock crab										0.5					
	Metacarainus magister	Dungeness crab															
	Metridium farcimen	giant plumose anemone short plumose anemone										0.5					
	Metricium senile	$\frac{\text { short plumose anemone }}{\text { hermit crab }}$															
	Pandalus danae	coon striped shrimp														10	
	Pandalus platyceros	spot prawn														10	
	Pandalus unknown	Pandalus unknown															
	Parastichopus californicus	red sea cuuumber															
	Pisaster ochraceaus	Ochre sea star															
	Pugetia productus	${ }_{\text {shrimp species }}$															
	Stronglyocentrotus franciscanus	$\frac{}{\text { red urchin }}$															
	Styela montereyensis	stalked tunicate															
	Tresus sp.	$\xrightarrow{\text { Anemone }{ }^{\text {a }} \text { unks }}$															
	Urticina unknown	$\underset{\text { Anemone unknown }}{\text { Tunicate }}$															
	Aulortynchus flavidus	Tube snout															
	Citharichthys stigmaeus	speckled sand dab															
	Clupea pallasii	Pacific herring															
	Lumpenus saita	Smanke pirckleback															
	Platichths stellatus	$\frac{\text { stary flounder }}{\text { c.os sole }}$															
	Sebastes spp. YOY	young of the year rockish															
	Sculpin unknown	sculpin unknown															

Appendix H: Raw Field Observations and Sediment Chemistry Data

Appendix H: Raw Field Observations and Sediment Chemistry Data

Transect Sampling Information	rear	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
	Transect Survey Date	Sep-22														
	Field Surey \#	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	OLD Transect ID	03	03	03	03	03	04	04	04	04	04	05	05	05	05	05
	OLD Sample ID	03.01	03.04	${ }^{03.02}$	03.05	${ }_{03.03}$	04.01	04.04	04.02	04.05	04.03	05.01	05.04	05.02	05.05	05.03
	NEW Transect ID	${ }^{23}$	${ }^{23}$	${ }^{23}$	${ }^{23}$	${ }^{23}$	${ }^{24}$	${ }^{24}$	${ }^{24}$	24	24	25	25	25	25	25
	Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
	NEW Sample ID	${ }^{23.01}$	23.02	23.03	23.04	23.05	24.01	24.02	24.03	24.04	24.05	25.01	25.02	25.03	25.04	25.05
	Point ID		4	${ }^{2}$	75	${ }^{3}$		25	5	75	100	1	25	5	75	\%
	Distance	- 7	${ }_{-8,23}$	50 .8 .54	$\stackrel{75}{8.54}$	- 100	${ }_{-8,84}$	${ }^{25}$	50 .9 .15	75 -9.95	- 100	${ }_{8}{ }^{-84}$	$\stackrel{25}{-88}$	50 .9 .15	- ${ }_{-8} 8$	100 -9.45
	$\frac{\text { Depth gauge (m): }}{\text { Depth gauge (ft): }}$	$\stackrel{.7 .32}{ }{ }_{-24}$	$\stackrel{-8.23}{-27}$	$\stackrel{-8.54}{-28}$	$\stackrel{.8 .54}{-28}$	${ }_{-8.84}^{-29}$	${ }_{-28}^{\text {- } 29}$	$\stackrel{.9 .15}{.30}$	$\stackrel{.9 .15}{\text {-30 }}$	${ }^{-9.15}$	$\stackrel{.9 .45}{.31}$	${ }_{-28}$	$\stackrel{-8.84}{-29}$	${ }_{.9}^{9.15}$	-8.84	$\stackrel{-9.45}{.31}$
	Tide (m :	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	${ }_{2} 2.1$	2.1
	Depth m CD:	-5.2	${ }_{-6.1}$	-6.4	${ }_{-6.4}$	${ }_{-6.7}$	${ }_{-6.7}$	${ }_{-7.0}$	$\stackrel{-7.0}{ }$	${ }_{-7.0}$	${ }^{-7.4}$	${ }_{-6.7}$	${ }_{-6.7}$	-7.0	${ }_{-6.7}$	-7.4
Sediment analyses	Sample Date	Sep-22		Oct-21			Oct.21		Sep-22					Sep-22		Oct-21
	Grab Sample Time															
	WP															
	Sulphide (as H 2S)			0.063			0.025									14
	Ammonia (N)			6.96			19.8									16.9
	pH			7.91			8.16									8.24
	Total Sulphide			0.0593			0.0235									13.1
	$\mathrm{TOC}(0.10 \mathrm{~cm})$	7300							7200					6000		
	TOC (20.40cm)															
	TOC (30-40 m)															
	$\xrightarrow{\text { Moisture }}$						37 198									35
				6.96 7.91			19.8 8.16									16.9 8.24
	Sulphide (Avs)			92.5			173									224
	Grab Sampling Comments															
YSI Sampling	Sample Date			oct 27			oct 27		oct 27			Oct 27		oct 27		oct 27
	Sample Time			$9: 50$			9:55		9:55			10:10		10:10		10:10
	wp			001			003		004			008		009		010
	Temp			${ }^{10.14} 315$			${ }^{10.15}$		10.14			${ }^{10.16}$		10.25 3191		10.12 3187
	$\frac{\text { Conductivit/salinity }}{\text { Do }}$			${ }^{31.59} 68$			31.92 74.1		${ }_{8}^{31.91}$			81.812		$\begin{array}{r}31.91 \\ \hline 8.8 \\ \hline\end{array}$		$\begin{array}{r}31.87 \\ \hline 76.8 \\ \hline\end{array}$
	Do mgh			6.24			6.62		7.55			7.43		7.22		7.03
	pH			7.44			7.61		7.7			7.85		7.86		7.87
Substrate	Silt	35	60	50	60	60	60	50	50	50	40	40	40	40	30	40
	Sand	65	40	50	40	40	40	50	50	50	60	60	60	60	70	60
	Gravel															
	Boulder															
	Bearock															
	Shell						0.5							0.5	0.5	
	$\underset{\text { Wod waste }}{\text { Ware }}$															
	ww Depth	0.15			closed		0		0		0	0		0		
	ww state			closed			closed		closed		losed	closed		closed		closed

Transect Sampling Information		Year	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
		Transect Survey Date	Sep-22														
		Field Surey \#	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		OLD Transect ID	03	03	03	03	03	04	04	04	04	04	05	05	05	05	05
		OLD Sample ID	03.01	03.04	03.02	${ }^{03.05}$	${ }^{03.03}$	04.01	04.04	04.02	04.05	04.03	05.01	05.04	05.02	05.05	05.03
		NEW Transect ID	${ }^{23}$	${ }^{23}$	${ }^{23}$	${ }^{23}$	${ }^{23}$	${ }^{24}$	${ }^{24}$	${ }^{24}$	${ }^{24}$	24	25	25	25	25	25
		Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
		NEW Sample ID	23.01	${ }^{23.02}$	${ }^{23.03}$	23.04	${ }^{23.05}$	24.01	24.02	${ }^{24.03}$	24.04	24.05	25.01	25.02	25.03	25.04	25.05
		Point ID		4	2	5	3	1	4	2	5		1	,		5	,
		Distance	0	25	50	75	100	0	25	50	75	100	0	25	50	75	100
		Depth gauge (m):	.7.32	${ }_{-8.23}$	-. 8.54	-. 84	-8.84	-.8.84	-9.15	-9.15	-9.15	-9.45	-8.84	-8.84	-9.15	-8.84	-9.45
		Depth gauge (ft):	-24	-27	-28	-28	-29	-29	. 30	. 30	. 30	. 31	-29	-29	. 30	-29	. 31
		Tide (m :	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
		Depth m CD:	-5.2	-6.1	-6.4	-6.4	-6.7	-6.7	-7.0	-7.0	-7.0	-7.4	-6.7	-6.7	-7.0	-6.7	-7.4
Biological		Probe															
	Kelp detritus	Kelp detritus															
	Beggatoa spp.	bacterial mat								78							
	Diatoms	Diatoms	55	80	83	80	83	63	55	78	85	53	70	63	65	70	
	Agarum fimbriatum	fringed sieve kelp															
	Coraline crust spp.	encrusting coraline seaveed					-					18					
	Gracilaria																
	Red blade	red blade															
	Red branched	Red branched															
	Red filamentous	red flimentous															
	Sacharina latissima	sugar kelp spilitelp	50	38	55	58	58	83	75	90		70		53	85	83	90
	Sacharina groenlandica	split kelp	50	38	55	58	58			90	78	70	${ }_{6}{ }^{3}$	${ }_{18}^{53}$	25	0.5	
	Salcoolietheca gaudichauail	$\frac{\text { succuien seaweed }}{\text { sea eltuce }}$										2.5					
	Holes		3									0.5					
	Mounds															0.5	
	Balanus glandula	acorm barnacle															
	Cancer productus	red rock crab														0.5	
	Dirona																
	Metacarcinus gracilis	graceful rock crab															
	Metacarcinus magister	Dungeness crab	2	0.5										0.5			
	Metridium farcimen	giant plumose anemone					0.5										
	Metridium senile	short plumose anemone															
	Pagurus sp.	hermit crab															
	Pandalus danae	$\underbrace{\text { spot trawn }}_{\text {coon striped shrimp }}$	0.5					3					0.5				
	Pandalas platyceros	Pandalus unknown	5	2.5	2	5	10.5	3	5	4	8.5	5	3	1.5	1	1	2.5
	Parastichopus califormicus	red sea cuuumber															
	Pisaster ochraceaus	Ochre sea star															
	Pugetia productus	kelp crab	0.5	0.5		0.5					0.5	1.5					
	Shrimp species	shrimp species															
	Strongly ${ }^{\text {a }}$ Sentrotus franciscanus	$\frac{\text { red urchin }}{\text { staked tunicate }}$															
	Tresus sp.	staper clams															
	Unticina unknown	Anemone unknown															
		Tunicate															
	Aulorrynchus flavidus	Tube snout															
	Citharichthy stigmaeus	Speckled sand dab															
	Lumpenus sagita	Smanke prickleack															
	Platichthys stellatus	stary flounder															
	Pleuronichthy coenosus	C.O sole															
	Sele	$\frac{\text { suan }}{\text { sculin }}$ unknown															

Appendix H: Raw Field Observations and Sediment Chemistry Data

Appendix H: Raw Field Observations and Sediment Chemistry Data

Transect Sampling Information		rear	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
		Transect Survey Date	Sep-23	Sep.23	Sep-23	Sep-23											
		Field Surey \#	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		OLD Transectio	T3	${ }^{\text {T }}$	T3	${ }^{\text {T3 }}$	T3	15	15	15	15	15	16	16	16	16	16
		OLD Sample ID	${ }_{\text {T3.04 }}$		T3.05		${ }_{\text {т } 3.06}$	${ }_{15-01}$	15.04	${ }_{15-02}$	15.05	${ }_{15.03}$	16.01	16.04	16.02	16.05	16.03
		NEW Transect 10	28	28	28	28	28	29	29	29	29	29	30	30	30	30	30
		Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
		NEW Sample ID	28.01	28.02	${ }_{28.03}$	28.04	28.05	29.01	29.02	29.03	29.04	29.05	30.01	30.02	30.03	30.04	${ }^{30.05}$
		Point 10		4	2	5			4	2	5		1	,	2	5	
		Distance	0	25	50	75	100	0	25	50	75	100	0	25	50	75	100
		Depth gauge (m):	-10.37	-10.67	${ }^{-10.37}$	-10.37	-10.67	${ }^{13.11}$	-12.80	-12.80	-13.11	-12.80	12.80	12.50	-12.50	12.50	11.59
		Depth gauge (ft):	. 34	. 35	. 34	. 34	. 35	43	-42	42	43	-42	42	41	41	41	${ }^{-38}$
		Tide (m):	2.2	2.2	2.2	2.2	2.2	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
		Depth m CD:	-8.2	-8.5	-8.2	-8.2	-8.5	-11.3	-11.0	-11.0	-11.3	-11.0	-11.0	10.7	10.7	10.7	-9.8
		Probe	${ }^{0.40}$	0.40	0.40	0.40	0.40										
Biological	Kelp detritus	Kelp defititus															
	Beggatoa spp.	bacterial mat	100	100	100	100	100										
	Diatoms	Diatoms						28	35	23	33	10	23	13	18	10	
	Agarum fimbriatum	fringed sieve kelp															
	Coralline crust spp.	encrusting coralline seaweed															
	Desmerastria viridis	Stringy acid hair															
	Gracilaria																
	Red blade	red blade															
	Red branched	Red branched															
	Red filamentous	red flimentous															
	Sacharina latissima	$\underset{\text { sugar kelp }}{\substack{\text { spit } k \text { elp }}}$														8	75
	Sacharina groeenlandica	succulitent seapeed				-											
	Slva lactuca	$\frac{\text { sucuen }}{\text { seal etuaceed }}$															
	Holes							3.5	1.5	1.5		1.5			0.5	1.5	
	Mounds																
	Balanus glandula	acorn barnacle															
	Cancer productus	red rock crab															
	Dirona																
	Metacarcinus gracilis	$\frac{\text { graceful rock crab }}{\text { Dungenss }}$						0.5	0.5				0.5				
	Metridium farcimen	giant plumose anemone	6						0.5								
	Metridium senile	short plumose anemone															
	Pagurus sp.	hermit crab															
	Pandalus danae	${ }_{\text {con stiped shrimp }}^{\text {spot prawn }}$															1.5
	Pandalus unknown	Pandalus unknown											1.5			5	
	Parastichopus califormicus	red sea cucumber															
	Pisaster ochrraceaus	Ochre sea star															
	Pugetia productus	kelp crab															
	Shrimp species	shrimp species															
	Strongly ocentrotus franciscanus	$\frac{\text { red urchin }}{\text { staked tunicate }}$															
	Tresus sp.	gaper clams															
	Urticina unknown	Anemone unknown															
		Tunicate															
	Aulorhynchus flavidus	$\xrightarrow[\text { Tpeckles ssound dab }]{\text { Tum }}$															
	Clupea pallasii	Pacific herring															
	Lumpenus sagita	Smanke prickleack															
	Platichthys stellatus	stary filunder															
	Peuronichthy coenosus	${ }_{\text {young of the year r ockish }}$								0.5							
	Sculpin unknown	sccllpin unknown															

Transect Sampling Information		Year	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
		Transect Survey Date	Oct-19														
		Field Surey \#	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
		OLD Transect ID	10a	10a	10a	10a	10a	10b	10b	10 b	10 b	10 b	11a	11a	11a	11a	11a
		OLD Sample ID	10a.01	10a-04	10.02	10a.05	10.03	100-01	100-04	106-02	100.05	${ }^{100.03}$	112.01	112.04	${ }^{11 a-02}$	112.05	$11 a^{10.03}$
		NEW Transect 10	31	31	31	31	31	32	32	32	32	32	33	33	33	33	33
		Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
		NEW Sample ID	31-01	31-02	${ }^{31.03}$	31.04	31.05	32.01	32.02	${ }^{32.03}$	32.04	32.05	33-01	33-02	${ }_{33-03}$	${ }_{33.04}$	33.05
		Point ID		2	3	4	5		2	3	4	5	1	,		5	
		Distance	0	25	50	75	100	0	25	50	75	100	-	25	50	75	100
		Depth gauge (m):	5.79	-6.10	-6.10	- 6.40	-6.40	-6.40	-6.71	-6.71	-7.01	-7.62	-6.40	-6.40	-6.40	-7.01	-6.40
		Depth gauge (ft):	19	-20	-20	-21	-21	-21	-22	-22	-23	. 25	-21	-21	-21	-23	-21
		Tide (m :	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.5	2.5	2.5	2.5	2.5
		Depth m CD:	8.0	-3.9	-3.9	-4.2	4.2	-4.2	-4.5	-4.5	-4.8	-5.4	-3.9	-3.9	-3.9	-4.5	-3.9
		Probe	70.00	70.00	70.00	50.00	30.00	40.00	40.00	30.00	20.00	20.00	20.00	20.00	30.00	20.00	40.00
Biological	Kelp detritus	Kelp deteritus															
	Beggatoa spp.	bacterial mat						30	20	10	50	80					
	Diatoms	Diatoms	80	80	80	5	80	70	60	80	50	10	90	90	90	80	90
	Agarum fimbriatum	fringed sieve kelp															
	Coralline crust spp.	encrusting coraline seaweed															
	Desmerastria viridis	Stringy acid hair															
	Gracilaria																
	Red blade	red blade															
	Red branched	${ }_{\text {Red dranched }}^{\text {red filmentous }}$															
	Red fliamentous	red filamentous															
	Sacharina groenlandica	split kelp															
	Sarcodietheca gaudichaudii	succulent seaweed															
	Ulva lactuca	seal eftuce															
	Holes																
	Mounds																
	$\frac{3}{\text { Balanus glandula }}$	$\underset{\text { acorm barnacle }}{\text { redreck rab }}$															
	Dirona																
	Metacarcinus gracilis	graceful rock crab															
	Metacarcinus magister	Dungeness crab															
	Metridium farcimen	giant plumose anemone															
	Metridium senile	short plumose anemone															
	Pagurus sp.	hermit crab															
	Pandlalus danae	${ }_{\text {coon striped shrimp }}^{\text {spot trawn }}$															
	Pandalas Platy ceros Pandalus unknown	${ }_{\text {Pandalus ununnown }}^{\text {spot }}$															
	Parastichopus califormicus	red sea cucumber															
	Pisaster ochraceaus	Ochre sea star															
	Pugetia productus	kelp crab															
	Shrimp species	shrimp species															
	Strongly ${ }^{\text {a }}$ Secintrotus franciscanus	$\frac{\text { red urchin }}{\text { staked tunicate }}$															
	Tresus sp.	gaper clams															
	Utricina unknown	Anemone unknown															
		Tunicate															
	Aulorhynchus flavidus	Tube snout															
	Citharichthy stigmaeus	$\underset{\text { speckled sand dab }}{\text { Pacific herring }}$															
	Lumpenus sagita	Smanke prickleback															
	Platichthys stellatus	stary flounder															
	Pleuronichthy coenosus	$\frac{\text { c.O osole }}{\text { Joung of the year rockish }}$															
	Sele	$\frac{\text { suan }}{\text { sculin }}$ unknown															

Appendix H: Raw Field Observations and Sediment Chemistry Data

Appendix H: Raw Field Observations and Sediment Chemistry Data

Transect Sampling Information		rear	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
		Transect Surey Date	Oct-19	Oct-19	Oct-19	Oct-19	Oct-19	Oct-20	Oct20	Oct-20							
		Field Surey \#	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
		OLD Transect ID	14 b	16 a	$16{ }^{1}$	$16{ }^{1}$	$16{ }^{1}$	16 a	16b	16 b	16b	16b	16b				
		OLD Sample ID	14b-01	14b-04	146.02	14b-05	145.03	$16 a_{0} 01$	16a.04	$16 a^{-02}$	$16 a^{-05}$	$16 a^{-03}$	$166-01$	166.04	166.02	$16 \mathrm{~b}-05$	$16 b^{-03}$
		NEW Transect 10	36	36	36	36	36	${ }^{37}$	37	${ }^{37}$	${ }^{37}$	${ }^{37}$	38	38	38	38	38
		Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
		NEW Sample II	36.01	36.02	36.03	36.04	36.05	37.01	37.02	${ }^{37.03}$	${ }^{37.04}$	${ }^{37.05}$	38.01	38.02	${ }^{38.03}$	38.04	38.05
		Point 10	1	4	2	5		1	,	2			1	4	2	5	,
		Distance	0	25	50	75	100	0	25	50	75	100	0	25	50	75	100
		Depth gauge (m):	-11.90	-11.80	-11.40	-11.60	-11.50	-13.11	-13.11	-13.11	-13.11	-13.11	-13.11	-13.11	-12.80	-12.50	-12.50
		Depth gauge (ft):						${ }^{43}$	-43	-43	43	43	${ }^{43}$	43	42	41	41
		Tide (m):	2.4	2.4	2.4	2.4	2.4	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
		Depth m CD:	-9.5	-9.4	-9.0	-9.2	-9.1	-10.6	-10.6	-10.6	-10.6	-10.6	-10.6	-10.6	-10.3	-10.0	-10.0
		Probe	30.00	60.00	60.00	10.00	20.00	20.00	0.00	20.00	20.00	20.00	0.00	50.00	20.00	0.00	50.00
Biological	Kelp detritus	Kelp defitius															
	Beggatoa spp.	bacterial mat															
	Diatoms	Diatoms							80	40	90	90	50	80	30	90	80
	Agarum fimbriatum	fringed sieve kelp															
	Coraline crust spp.	encrusting coralline seaweed															
	Desmerassia viridis	Stringy acid hair															
	Gracilaria																
	Red blade	red blade															
	Red branched	${ }_{\text {Red dranched }}^{\text {red filmentous }}$															
	Red filamentous	red filamentous															
	Sacharina groenlandica	spilit kelp															
	Sarcodietheca gaudichaudii	succulent seaweed															
	Ulva lactuca	seal eftuce															
	Holes																
	Mounds																
	Balanus glandula	acorn barnacle															
	Cancer productus	red rock crab									1						
	Dirona																
	Metacarcinus gracilis	$\frac{\text { graceful rock crab }}{\text { Dungenss }}$ crab															
	Metridium farcimen	giant plumose anemone															
	Metridium senile	short plumose a amemene															
	Pagurus sp.	hermit crab															
	Pandalus danae	coon striped shrimp															
	Pandalus Platyceros	$\frac{\text { spot prawn }}{\text { Pandaus unkown }}$															
	Pandalus unknown	$\xrightarrow{\text { Pandalus unknown }}$ red sea cucumber															
	Pisaster ochrraceaus	Ochre sea star															
	Pugetia productus	kelp crab															
	Shrimp species	shrimp species															
	Strongly cenentrotus franciscanus	red urchin															
	Styela monterevensis	stalked tunicate															
	Tresus sp.	${ }_{\text {Anemone e unknown }}^{\text {gat }}$															
		Tunicate															
	Aulorhynchus flavidus	Tube snout															
	Citharichthys stigmaeus Cupea pallasii	$\underset{\text { specked sand dab }}{\text { Pacific herring }}$															
	Lumpenus sagita	Smanke prickleback															
	Platichthys stellatus	stary flounder															
	Pleuronichthy coenosus	C.O sole															
	Sebastes spp. Yor	$\frac{\text { young oft the year rockish }}{\text { sculin unknown }}$															

Appendix H: Raw Field Observations and Sediment Chemistry Data

Appendix H: Raw Field Observations and Sediment Chemistry Data

Transect Sampling Information		rear	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
		Transect Survey Date	Oct-21	Oct21	Oct21	Oct21	Oct 21	Oct.21	Oct-21	Oct21	Oct-21	Oct-21	Oct-21	Oct.21	Oct-21	Oct-21	Oct21
		Field Surey \#	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
		OLD Transect ID	17b	17b	17b	17 b	17b	18 a	18 a	18 a	18 a	18a	18 b	18b	18 b	18b	18 b
		OLD Sample ID	17b-01	176.04	177-02	17 b .05	177.03	188.01	188.04	188.02	$18 a^{-05}$	${ }_{18 \text { a }}$-3	18b-01	18 B -04	18b-02	${ }_{18 \text { 18-05 }}$	18 b .03
		NEW Transect ID	44	44	44	44	44	45	45	45	45	45	46	46	46	46	46
		Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
		NEW Sample ID	44.01	44.02	44.03	44.04	44.05	45.01	45.02	45.03	45.04	45.05	46.01	46.02	46.03	46.04	46.05
		Point 10	1	4	2	5	3		,	2			1	,	2	5	
		Distance	0	25	50	75	100	0	25	50	75	100	0	25	50	75	100
		Depth gauge (m):	-13.41	-13.11	-13.41	-13.11	${ }^{-13.41}$. 5.49	-7.62	-11.59	-11.89	-12.80	${ }_{-13.72}$	${ }_{-14.02}$	-14.02	${ }_{13.72}$	${ }^{-13.72}$
		Depth gauge (ft):	44	-43	44	-43	44	-18	-25	. 38	. 39	-42	45	46	46	45	45
		Tide (m):	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4
		Depth m CD:	-11.0	-10.7	-11.0	-10.7	-11.0	-3.1	-5.2	-9.2	-9.5	-10.4	-11.3	-11.6	-11.6	-11.3	-11.3
		Probe	0.00	0.00	0.00	0.00	0.00	0.00	0.00	30.00	50.00	60.00	50.00	0.00	0.00	0.00	0.00
Biological	Kelp detritus	Kelp defitius															
	Beggatoa spp.	bacterial mat															
	Diatoms	Diatoms	80	80	80	80	70					30	40	40	40	40	40
	Agarum fimbriatum	fringed sieve kelp															
	Coraline crust spp.	encrusting coralline seaweed															
	Desmerastia viridis	Stringy acid hair															
	Gracilaria							30	10								
	Red blade	red blade									5						
	Red branched	${ }_{\text {Red dranched }}^{\text {red filmentous }}$															
	Red filamentous	red filamentous							10		20		20		10		
	Sacharina groenlandica	spilit kelp															
	Sarcodietheca gaudichaudii	succulent seaweed								20							
	Ulva lactuca	seal eftuce							10	10							
	Holes																
	Mounds																
	Balanus glandula	acorn barnacle															
	Cancer productus	red rock crab						1	1								
	Dirona																
	Metacarcinus gracilis	$\frac{\text { graceful rock crab }}{\text { Dungenss }}$															
	Metridium farcimen	giant plumose anemone															
	Metridium senile	short plumose a amome															
	Pagurus sp.	hermit crab															
	Pandalus danae	coon striped shrimp															
	Pandalus Platyceros	$\frac{\text { spot prawn }}{\text { Pandaus unknown }}$		4				12	25	12							
	Pandalus unknown	$\frac{\text { Pandalus unknown }}{\text { red sea cucumber }}$															
	Pisaster ochraceaus	Ochre sea star															
	Pugetia productus	kelp crab															
	Shrimp species	shrimp species															
	Stronglyocentrotus franciscanus	red urchin															
	Styela montereyensis	stalked tunicate															
	Tresus sp.	${ }_{\text {Anemone e unknown }}^{\text {gat }}$															
		Tunicate															
	Aulorhynchus flavidus	Tube snout															
	Citharichthys stigmaeus	speckled sand dab															
	Clupea pallasii	$\frac{\text { Pacific herring }}{\text { Smanke prickleback }}$															
	Lumpenus sagita	Smanke prickeback															
	Pluaronichthy coemosus	C.O sole															
	Sebastes spp. YoY	$\frac{\text { young of the year rockish }}{\text { sculpin unkown }}$								4							

Appendix H: Raw Field Observations and Sediment Chemistry Data

Transect Sampling Information	Year	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017
	Transect Survey Date	Jan-24	Jan-24	Jan-24	Jan-24	Jan-24	Jan-25	Jan-25	Jan-25	Jan-25	Jan-25
	Field Survey $\#$	4	4	4	4	4	4	4	4	4	4
	OLD Transect ID	n/a									
	OLD Sample ID	n/a									
	NEW Transect ID	50	50	50	50	50	51	51	51	51	51
	Point	01	02	03	04	05	01	02	03	04	05
	NEW Sample id	50.01	50.02	50.03	50.04	50.05	51.01	51.02	51.03	$51-04$	51.05
	Point 10										
	Distance	0	25	50	75	100	0	25	50	75	100
	Depth gauge (m):	-11.28	-11.28	-10.98	-11.28	-11.28	-10.37	-10.98	-10.98	-10.98	-10.98
	Depth gauge (ft):	. 37	${ }^{.37}$. 36	. 37	. 37	. 34	${ }^{-36}$	${ }^{36}$	${ }^{36}$	${ }^{-36}$
	Tide (m :	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
	Depth m CD:	-8.5	-8.5	-8.2	-8.5	-8.5	${ }_{-7.6}$	-8.2	-8.2	-8.2	-8.2
Sediment analyses	Sample Date	Jan-24		Jan-24		Jan-24	an-25		Jan-25		Jan-25
	Grab sample Time										
	WP										
	Sulphide (as H2S)					0.011					0.048
	Ammonia (N)										15.5
	$\mathrm{pH}^{\text {p }}$					7.56					7.75
	$\frac{\text { Total Sulphide }}{\text { Toc (0.10 m) }}$	24000		24000		0.01	24000		28000		0.0449
	Toc (00.000 m)										
	Toc (30.40 cm)	14000		14000		17000	18000		16000		16000
	Moisture										
	Available (KCl) Ammonia (N) AVS)										
	Soluble (2:1) PH (AVS)										
	Sulphide (Avs)										
	Grab Sampling Comments										
YSI Sampling	Sample Date										
	Sample Time										
	WP										
	${ }_{\text {Conductivity }}^{\text {Salainity }}$										
	$\frac{\text { Conductivitissainity }}{\text { D0\% }}$										
	Do mg										
	pH										
Substrate	Silt	100	100	100	100	100	100	100	100	100	100
	Sand										
	Gravel										
	Booulder										
	Bedrock										
	Shell										
	Wood waste										
	ww Depth						0				
	w State	closed					closed		closed		closed

Appendix H: Raw Field Observations and Sediment Chemistry Data

Transect Sampling Information		rear	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017
		Transect Survey Date	Jan-25	Jan-25	Jan-25	Jan-25	Jan-25	Jan-23									
		Field Surey \#	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
		OLD Transect ID	n/a	m/a	n/a	m/a											
		OLD Sample ID	n/a														
		NEW Transect ID	52	52	52	52	52	53	53	53	53	53	54	54	54	54	54
		Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
		NEW Sample ID	52.01	52.02	52.03	52-04	52.05	53.01	53.02	53.03	53.04	53.05	54.01	54.02	54.03	54.04	54.05
		Point 10															
		Distance	0	25	50	75	100	0	25	50	75	100	0	25	50	75	100
		Depth gauge (m):	-10.67	-10.67	-10.67	-10.67	-10.37	12.20	-12.20	-12.20	-12.20	12.20	-12.20	-12.80	-12.20	12.20	11.89
		Depth gauge (ft):	${ }^{-35}$. 35	. 35	. 35	${ }^{-34}$	40	-40	40	40	-40	40	42	-40	40	-39
		Tide (m :	2.8	2.8	2.8	2.8	2.8	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
		Depth m CD:	-7.9	-7.9	-7.9	-7.9	-7.6	-10.0	-10.0	-10.0	-10.0	-10.0	-10.0	10.6	10.0	10.0	-9.7
Biological		Probe															
	Kelp detritus	Kelp deftritus															
	Beggatoa spp.	bacterial mat			8						9		9				
	Diatoms	Diatoms	50	70	80	50	80	90	90	90	90	90	90	90	80	90	90
	Agarum fimbriatum	fringed sieve kelp															
	Desmerastia viridis	Stringy acid hair															
	Gracilaria	Smgatar															
	Red blade	red blade															
	Red branched	Red branched															
	Red filamentous	red filamentous															
	Sacharina latissima	sugar kelp															
	Sacharina groenlandica	spilit kelp															
	Sarcodietheca gaudichaudii	succulent saweed															
	Ulva lactuca	seal eftuce															
	Holes																
	Mounds																
	Balanus glandula	$\underset{\text { acorm baracie }}{\text { redrock rab }}$															
	Dirona																
	Metacarcinus gracilis	graceful rock crab															
	Metacarcinus magister	Dungeness crab															
	Metridium farcimen	giant plumose anemone															
	Metridium senile	short plumose anemone															
	Pagurus sp.	hermit crab															
	Pandalus danae	$\underset{\text { coon striped shimp }}{\text { spot prawn }}$															
	Pandalus platyceros																
	Parastichopus californicus	red sea cucumber															
	Pisaster ochraceaus	Ochre sea star															
	Pugetia productus	$\frac{\text { Kelp crab }}{\text { shrimp species }}$															
	Strongly ocentrotus franciscanus	redurchin															
	Styela montereyensis	stalked tunicate															
	Tresus sp.	gaper clams															
	Uricima unknown	$\frac{\text { Anemone unknown }}{\text { Tunicate }}$															
	Aulorhynchus flavidus	Tube snout															
	Citharichthys stigmaeus	speckled sand dab															
	Clupea pallasii	$\frac{\text { Pacific herring }}{\text { Smanke prickleaack }}$															
	Platichthys stellatus	stary flounder															
	Pluaronichthy coemosus	C.O sole															
	Sebastes spp. YoY	$\frac{\text { young of the year rockish }}{\text { sculpin unkown }}$															

Transect Sampling Information	Year	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017
	Transect Survey Date	Jan-24	Jan-25	Jan-25	Jan.25	Jan-25	Jan-25									
	Field Survey $\#$	4	4	4	4	4	4	4	4	4	4			4	4	4
	OLD Transect ID	n/a														
	OLD Sample ID	n/a														
	NEW Transect ID	55	55	55	55	55	56	56	56	56	56	57	57	57	57	57
	Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
	NEW Sample ID	55.01	55-02	55.03	55.04	55.05	56.01	56-02	56.03	56.04	56.05	57.01	57.02	57.03	57.04	57.05
	Point ID															
	Distance	0	25	50	75	100	0	25	50	75	100	0	25	50	75	100
	Depth gauge (m):	-10.06	-9.76	${ }^{8.84}$	-8.84	-9.15	-9.45	-10.06	-9.76	-9.45	-9.15	4.88	4.57	- 3.96	4.88	-5.18
	Depth gauge (t):	. 33	-32	29	-29	-30	. 31	. 33	. 32	-31	-30	16	-15	-13	-16	-17
	Tide (m :	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.8	2.8	2.8	2.8	2.8
	Depth m CD:	-7.4	-7.1	11.5	-6.1	-6.4	-6.8	$\stackrel{-7}{ }$	-7.1	-6.8	-6.4	-2.1	-1.8	-1.2	-2.1	-2.4
Sediment analyses	Sample Date	Jan-24		Jan-24		Jan-24	Jan-24		Jan-24		Jan-24	Jan-25		Jan-25		Jan-25
	Grab Sample Time															
	wp															
	Sulphide (as 12 S)					$\begin{array}{r}1.5 \\ 25 \\ \hline\end{array}$					0.042					0.006
	$\underset{\text { Ammin }}{\text { Am }}$					$\frac{25.8}{73}$					${ }^{23.9}$					12.1 7.83
	Total Sulphide					1.38					0.0399					0.0095
	Toc (0.100m)	140000		120000			140000		120000			190000		150000		
	TOC (20.40cm)															
	TOC (30.40cm)	160000					170000		75000		14000					1500
	Moistue															
	$\frac{\text { able }}{\text { Soclil }) \text { Ammonia (N) }}$															
	Suphide (AVs)															
	Grab Sampling Comments															
YSI Sampling	Sample Date															
	Sample Time															
	wp															
	Temp															
	Conductivit/salinity															
	DO mgl															
	pH															
Substrate	Silt		40	10	30	10	100	100	100	60	20					
	$\underset{\text { Sand }}{\text { Gravel }}$															40
	Cobble															
	Boulder															
	Bedrock															
	Sheoll	100	60	90	70	90				40	80	100	100	9	9	
	${ }_{\text {Wood }}$ Base					-										
	ww Depth	0.5		0.1		0.1	0.4		0.4		0.4	0.3		0.3		
	ww state		open		open open				open			lopen		open		closed

Transect Sampling Information		rear	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017
		Transect Surey Date	Jan-24	Jan-25	Jan-25	Jan-25	Jan-25	Jan-25									
		Field Surey \#	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
		OLD Transectio	n/a	m/a	n/a	m/a											
		OLD Sample ID	n/a														
		NEW Transect ID	55	55	55	55	55	56	56	56	56	56	57	57	57	57	57
		Point	01	02	03	04	05	01	02	03	04	05	01	02	03	04	05
		NEW Sample ID	55.01	55.02	55.03	55.04	55.05	56.01	56.02	56.03	56.04	56.05	57.01	57.02	57.03	57.04	57.05
		Point 10															
		Distance	0	25	50	75	100	0	25	50	75	100	0	25	50	75	100
		Depth gauge (m):	-10.06	.9.76	8.84	-8.84	-9.15	-9.45	-10.06	-9.76	-9.45	-9.15	4.88	4.57	-3.96	4.88	5.18
		Depth gauge (ft):	. 33	. 32	29	-29	. 30	. 31	. 33	. 32	. 31	. 30	-16	-15	-13	16	-17
		Tide (m):	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.8	2.8	2.8	2.8	2.8
		Depth m CD:	${ }_{-7.4}$	-7.1	11.5	-6.1	-6.4	-6.8	${ }_{-7.4}$	-7.1	-6.8	-6.4	-2.1	-1.8	-1.2	-2.1	-2.4
Biological		Probe															
	Kelp detritus	Kelp deteritus															
	Beggatoa spp.	bacterial mat		10					30	50				30			
	Diatoms	Diatoms	90	90	80	90	80	90	60	50	70	60	60	50	5	70	90
	Agarum fimbriatum	fringed sieve kelp															
	Coraline crust spp.	encrusting coralline seaweed															
	Desmerassia viridis	Stringy acid hair															
	Gracilaria																
	Red blade	red blade				5											
	Red branched	Red branched															
	Red filiamentous	$\frac{\text { red filamentous }}{\text { sugar kelp }}$															
	Sacharina groenlandica	spilit kelp															
	Sarcodietheca gaudichaudii	succulent seaweed															
	Ulva lactuca	seal eftuce															
	Holes							2									
	Mounds																
	Balanus glandula	$\underset{\text { acorr baracle }}{\text { red rock rab }}$												10			
	Dirona																
	Metacarcinus gracilis	graceful rock crab															
	Metacarcinus magister	Dungeness crab															
	Metridium farcimen	giant plumose a amome short plumose anemone															
	Metridium senile	short plumose anemone															
	Pandalus danae	coon striped shrimp															
	Pandalus platyceros	spot prawn															
	Pandalus unknown	$\frac{\text { Pandalus unknown }}{\text { red sea cucumber }}$															
	Pisaster ochrraceaus	Ochre sea star															
	Pugetia productus	kelp crab															
	Shrimp species	shrimp species															
	Strongly cenentrotus franciscanus	red urchin															
	Styela montereyensis	stalked tunicate															
	Tresus sp.	${ }_{\text {Anemone e unknown }}^{\text {gat }}$															
		Tunicate															
	Aulorhynchus flavidus	Tube snout															
	Citharichthys stigmaeus Cupea pallasii	$\underset{\text { specked sand dab }}{\text { Pacific herring }}$															
	Lumpenus sagita	Smanke prickleback															
	Platichthys stellatus	stary flounder															
	Pleuronichthy coenosus	C.O sole															
	Sele	$\frac{\text { soung }}{\text { sculipin unknown }}$															

Transect Sampling Information	Year	2017	2017	2017	2017	2017	error check
	Transect Surey Date	Jan-25	Jan-25	Jan-25	Jan-25	Jan-25	
	Field Surrey \#	4	4	4	4	4	1
	OLD Transect ID	n/a	n/a	n/a	n/a	n/a	
	OLD Sample ID	n/a	n/a	n/a	n/a	n/a	
	NEW Transect ID	58	58	58	58	58	1
	Point	01	02	03	04	05	
	NEW Sample ID	58.01	58.02	58.03	58.04	58.05	
	Point ID						
	Distance	0	25	50	75	100	1
	Depth gauge (m):	. 3.66	-2.44	1.83	2.13	2.44	1.00
	Depth gauge (ft):	-12	-8	- 6	-7	-8	1
	Tide (m :	2.8	2.8	2.8	2.8	2.8	1.0
	Depth m CD:	-0.9	0.4	1.0	0.7	0.4	
Sediment analyses	Sample Date	Jan-25		Jan-25		Jan-2	1.00
	Grab Sample Time						1.00
	WP						1.00
	Sulphide (as $\mathrm{H2S}$)					0.01	1.00
	Ammonia (N)					${ }^{3.6}$	1.00
	pH					7.37	1.00
	Tota Sulphide					0.0095	1.00
	$\mathrm{TOC}(0.10 \mathrm{~cm})$	49000		37000			1.00
	Toc (20.400m)						
	TOC (30.40cm)			22000		17000	
	Moisture						1.00
	Available (KCl) Ammonia (N) AVS)						1.00
	Soluble (2:i) pH (AVS)						1.00
	Sulphide AVs)						1.00
	Grab Sampling Comments						1.00
YSI Sampling	Sample Date						1.00
	Sample Time						1.00
	${ }_{\text {WP }}$						1.00 1.00
	Conductivitys salinity						$\xrightarrow{1.00}$
	D0\%						1.00
	Do mgl						1.00
	pH						1.00
Substrate	Silt	100			40	100	1.00
	Sand			50			1.00
	${ }_{\text {Gravel }}$			50			1.00 1.00
	Boulder						$\stackrel{1.00}{1.0}$
	Bedrock						1.00
	Shell						1.00
	Wood waste				60		1.00
	${ }_{\text {W }}$ Bre Depth			0.4		0.35	1.00
	Ww State	closed		closed		closed	

Appendix H: Raw Field Observations and Sediment Chemistry Data

biologica

为Biologica Sample \# Client Sample \#				Grand Total	17-033-001	17-033-002	17-033-003	17-033-004	17-033-005	17-033-006	17-033-011	17-033-012	17-033-013	17-033-014	17-033-015	17-033-016	17-033-017	17-033-018
					04.05	04.05	07-03	07-03	12-03	12.03	15-01	15-01	$41-03$	$41-03$	43.05	43-05	45-03	45-03
Replicate					Rep 01	Rep 02												
Date Sampled					07/03/2017								08/03/2017	08/03/2017				
Debris Volume					High	High	High	High	Standard	High	Standard	Standard	Standard	Standard	Standard	Standard	High	High
$\begin{array}{\|l\|l\|} \hline \text { taxcodede } \\ \text { ANNE } \end{array}$	grpode	Family	TaxonName	Total Abundance														
	ANOL	Naididae	Paranais litoralis	2														
ANNE	ANOL	Naididae	Tectidrilus sp.	389	16	106	96	122										46
ANNE	PoER	Dorvilleidae	Schistomeringos annulata	11	4	2	4											
	Poer	Dorvilleidae	Schistomeringos longicornis	11				3		2								
$\begin{array}{\|l\|} \hline \text { ANNE } \\ \hline \text { ANNE } \\ \hline \end{array}$	Poer	Dorvilleidae	Schistomeringos sp.	24		18											6	
	Poer	Glyceridae	Glycera americana												1			
ANNE	PoER	Goniadidae	Glycinde picta	84	5	3	2	3	2					2	- 4	-8	8	${ }^{4}$
	POER	Goniadidae	Glycinde sp.	49		4		5		2				2	4	6		
ANNE	Poer	Hesionidae	Micropodarke dubia	4		2	2											
ANNE	Poer	Hesionidae	Oxydromus pugettensis	6	4												2	
ANNE	Poer	Hesionidae	Podarkeopsis glabus	63	2	16	10	8						2	1	1		
	Poer	Hesionidae	Podarkeopsis perkinsi	1									1					
ANNE	PoER	Hesionidae	Podarkeopsis sp.	2						2								
ANNE	PoER	Lumbrineridae	Lumbrineridae indet.	2			2											
	PoER	Lumbrineridae	Lumbrineris californiensis	8														
ANNE	POER	Lumbrineridae	Scoletoma tetraura complex	1,016		2									181	237		
	Poer	Nephtridae	Bipalponephtys cornuta	11											1			
ANNE	PoER	Nephtridae	Nephtys punctata	1												1		
ANNE	Poer	Nereididae	Alitta virens					1										
ANNE	PoER	Nereididae	Nereis procera	13														
	Poer	Nereididae	Platyereis bicanaliculata	127	2		24	38									58	
ANNE ANNE	PoER	Onuphidae	Onuphidae indet.	1				1										
	Poer	Onuphidae	Onuphis sp.	2														
ANNE	Poer	Pholoidae	Pholoe minuta	1														
ANNE	Poer	Phyllodocidae	Eteone californica	1				1										
ANNE	Poer	Phyllodocidae	Eteone longa complex	1														
ANNE	POER	Phyllodocidae	Eteone sp.	1														
	Poer	Phyllodocidae	Eteone tuberculata	6				1		2								
ANNE	POER	Phyllodocidae	Eumida longicornuta	2	2													
ANNE	PoER	Phyllodocidae	Phyllodoce hartmanae	1											1			
ANNE	Poer	Polynoidae	Gattyana cirrhosa	1														
	POER	Polynoidae	Harmothoe imbricata	1				1										
ANNE ANNE	POER	Polynoidae	Hesperonoe adventor	1														
ANNE	PoER	Polynoidae	Tenonia priops	2														
ANNE	Poer	Sphaerodoridae	Sphaerodoropsis sphaerulifer	2														
	POER	Syllidae		1	2	22		2								2		
ANNE	POER	syllidae	syllis cornuta	1											1			
ANNE	POSE	Ampharetidae	Ampharete labrops	390	8	18	148	186			4	4		3	1		4	
ANNE	POSE	Ampharetidae	Ampharete lineata															
\|la	POSE	Ampharetidae	Ampharetidae indet.	1												1		
ANNE	POSE	Capitellidae	Capitella capitata complex	132		2	2		16	14			11	9			14	14
	POSE	Capitellidae	Heteromastus filobranchus	31											9	8		
ANNE	POSE	Capitellidae	Mediomastus ambiseta	2														
ANNE	POSE	Capitellidae	Mediomastus californiensis	36		4	4	8									4	16
ANNE	Pose	Chaetopteridae	Spiochaetopterus costarum complex	6														
ANNE	PoSE	Ciratulidae	Aphelochaeta glandaria complex	2,088 330		2									431	${ }_{4}^{40}$		20
ANNE	Pose	Cirratulidae	Aphelochaeta sp.	59								1						
ANNE	PoSE	Cirratulidae	Chaetozone setosa complex	205											42	42		47
	PoSE	Cirratulidae	Cirratulidae indet.	2										2				
ANNE	POSE	Cirratulidae	Kirkegardia sp.	4		4												
	POSE	Cossuridae	Cossura pygodactylata	19											1	8		
ANNE	Pose	Magelolidae	Magelona longicorris	2											\square	16		
ANNE		Maldanaidae	Purymene sp. nr. .onalis	2														
ANNE																		

Biologica Sample \#				Grand Total	17-033-001	17-033-002	17-033-003	17-033-004	17-033-005	17-033-006	17-033-011	17-033-012	17-033-013	17-033-014	17-033-015	17-033-016	17-033-017	17-033-018
					04.05	04.05	07-03	07-03	12-03	12-03	15-01	15-01	$41-03$	41.03	43-05	43.05	45-03	45-03
Replicate					Rep 01	Rep 02												
Date Sampled					07/03/2017								08/03/2017	08/03/2017				
Debris Volume					High	High	High	High	Standard	High	Standard	Standard	Standard	Standard	Standard	Standard	High	High
taxcode	grpoode	Family	TaxonName	Total Abundance														
	POSE	Ophelidae	Armandia brevis	2,646	102	28	18	16	168	348	65	32	206	136			52	32
ANNE	PoSE	Opheliidae	Ophelina acuminata	3												1		
	POSE	Orbiniidae	Leitoscoloplos pugettensis	1											1			
ANNE	POSE	Orbiniidae	Scoloplos acmeceps	6													2	
ANNE	POSE	Owenidae	Galathowenia oculata	1														
ANNE	PoSE	Owenidae	Owenia fusiformis	86			34	52										
ANNE	POSE	Sabellidae	Euchone incolor	22											2	3		
	POSE	Spionidae	Dipolydora cardalia	2											1			
	POSE	Spionidae	Dipolydora sp.	6														
ANNE	POSE	Spionidae	Paraprionospio alata	12						2					2			
ANNE		spionidae	Polydora sp. complex	10				5								2		
ANNE	POSE	Spionidae	Prionospio (Minuspio) lighti	1,140	74	346	66	187		28	34	19	8	32	19	17	30	18
	POSE	Spionidae	Prionospio (Prionospio) sp.	1											1			
ANNE ANNE	POSE	spionidae	Pseudopolydora paucibranchiata	5			2	2							1			
	POSE	Spionidae	Spiophanes berkeleyorum	2												1		
ANNE	POSE	Sternaspidae	Sternaspis affinis	2											2			
ANNE	POSE	Terebellidae	Lanassa venusta venusta	4									1					
\| ANE	PoSE	Terebellidae	Polycirrus sp. complex	1				1										
	POSE	Trichobranchidae	Terebellides sp.	1												1		
ARTH	CRAM	Aoridae	Aoroides intermedia	230													200	30
ARTH	CRAM	Aoridae	Aoroides sp.	46		40									1	1		
ARTH	CRAM	Aoridae	Aoroides spinosa	18	14													
ARTH	CRAM	Caprellidae	Caprella kennerlyi	2														
ARTH ARTH	${ }^{\text {CRAM }}$	Caprellidae	Caprella mendax	6														
ARTH	CRAM	Isaeidae	Gapmaropsis spinosa	2														
ARTH	CRAM	Isaeidae	Isaeidae indet.	1														
$\pm{ }^{\text {ARTH }}$	CRAM	Isaeidae	Photis brevipes	14		2											2	
	Cram	Isaeidae	Photis sp.	8	4	4												
ARTH	CRAM	Isaeidae	Protomedeia prudens	2														
ARTH	CRAM	Melitidae	Desdimelita desdichada	13				1							1	3		
	Cram	Oedicerotidae	Deflexilodes sp.	6												3		
ARTH	CRAM	Oedicerotidae	Oedicerotidae indet.	1								1						
ARTH	CRAM	Oedicerotidae	Westwoodilla tone	9											1	2	2	
$\left\lvert\, \begin{array}{\|l\|} \text { ARTH } \\ \text { ARTH } \end{array}\right.$	CRAM	Phoxocephalidae	Eobrolgus chumash	10													4	
	CRAM	Phoxocephalidae	Heterophoxus affinis	2														
ARTH	CRAM	Phoxocephalidae	Heterophoxus sp.	1												1		
	CRAM		Amphipoda indet.	8	8													
$\begin{aligned} & \text { АRTH } \\ & \hline \text { ARTH } \\ & \hline \end{aligned}$	CRCl		Balanomorpha indet.	17	6		6											
ARTH	CRCU	Leuconidae	Eudorella pacifica	1														
ARTH	crcu	Leuconidae	Eudorella sp.	2														
	CRCU	Leuconidae	Leucon sp.	4														
$\begin{array}{\|l\|} \hline \text { ARTH } \\ \hline \text { ARTH } \\ \hline \end{array}$	CRDE	Callianassidae	Neotrypaea aigas	5														
ARTH ARTH	CRDE	Cancridae	Cancridae indet.	1													1	
	CRDE	Crangonidae	Crangon alaskensis	3														
ARTH	CRDE	Pinnotheridae	Pinnixa schmitti	20							1							
ARTH	CRDE	Pinnotheridae	Pinnixa sp.			2									1	2		
	CRIS	Limnoridae	Limnoria lignorum	4														
ARTH	CRLE	Nebalidae	Nebalia pugettensis complex	206													202	
\| ${ }^{\text {ARTH }}$	CRTA	Leptochelidae	Leptochelia dubia complex	7	4											2		
	BrYO	Vesicularidae	Bowerbankia gracilis															
	CNHY	Corynidae	Corrnidae indet.	${ }_{1}$														
MIISC	CNHY	Coryyidae	Sarsia tubulosa	1														
MISC MISC	CNHY	Pandeidae	Amphinema dinema	1														
	NTEA	Amphiporidae	Amphiporus imparispiosus	1				1										
MISC	NTEA	Emplectonematidae	Paranemertes californica	6				4										
MISC	NTEA	Lineidae	Cerebratulus californiensis	52		4	16	18										
MISC	NTEA	Tubulanidae	TTubulanus polymorrphus															

				Grand Total	17-033-001	17-033-002	17-033-003	17-033-004	17-033-005	17-033-006	17-033-011	17-033-012	17-033-013	17-033-014	17-033-015	17-033-016	17-033-017	17-033-018
					04.05	04.05	07-03	07-03	12-03	12.03	15-01	15-01	$41-03$	41.03	43.05	43.05	45.03	45-03
Client Sample \#					Rep 01	Rep 02												
					07/03/2017								08/03/2017	08/03/2017				
Date Sampled Debris Volume					High	High	High	High	Standard	High	Standard	Standard	Standard	Standard	Standard	Standard	High	High
taxcode Ifrocode		Family	TaxonName	Total Abundance														
MISC MISC	NTEA	Tubulanidae	Tubulanus sp.	2														
	NTEA		Anopla indet.	1														
Minc Misc	URAS		Stolidobranchiata indet.	1				1										
Moll	MOBI	Cardidae	Clinocardinae indet.	19			4	8			1					1		
MOLL	мов1	Cardidae	Clinocardium nuttallii	18				18										
Moul	мов	Lasaidae	Kurtiella tumida	43			6	3							11	3	4	
MOLL	MOBI	Lucinidae	Lucinoma a anulatum	2														
Moul	MOB1	Lucinidae	Parvilucina tenuisculpta	3											1	1		
MOLL	MOBI	Nuculidae	Acila castrensis	54											16	18		
	мов	Nuculidae	Ennucula tenuis	5												1		
$\frac{\text { MOLL }}{\text { MOLL }}$	мов	Tellinidae	Macoma carlottensis	26											3	2		
$\begin{array}{\|l\|} \hline \text { Moll } \\ \hline \text { MOOLL } \\ \hline \end{array}$	мов	Tellinidae	Macoma nasuta	103	2						14	3	1	4	4	4	4	
\| Moul	мов	Tellinidae	Macoma sp.	105	4	6	6	13		4	3			1		1		
Moul	мов	Tellinidae	Tellina modesta	1														
Moll	MOBI	Tellinidae	Tellina sp.	26			8	5									2	
Moll	мов	Thyasiridae	Axinopsida serricata	76											6	15	4	
	мов1	Veneridae	Leukoma staminea	5														
$\frac{\text { mout }}{\text { Mout }}$	MOB1	veneridae	Nutricola sp.	54											6	15		
Mout	мов	veneridae	Veneridae indet.	7							1					2		
Moul	мов		Bivalvia indet.	56	2	18	8	16						1				
	MOGA	Columbellidae	Astris gauspata	3													2	
$\frac{\text { Mout }}{\text { Mout }}$	MOGA	Littorinidae	Lacuna vincta	4													2	
Moll	MOGA	Onchidorididae	Loy thompsoni													1		
Moll	MOGA	Pyramidellidae	Odostomia sp.	27												4		
MoL	MOGA	Pyramidellidae	Turbonilla sp.	9														
Moul	M0GA	Rissoidae	Alvaia compacta	131			16	50								6	44	
	MOGA	Rissoidae	Alvani sp.	22				16									4	2
MOLL	MOGA		Cephalaspidea indet.	4														
Mou	моga		Gastropoda indet.	50		2	10	27								1	4	
			Total Abundance	10,802	267	659	513	844	187	408	128	68	230	196	817	952	668	310
			Total Unique Taxa (species richness)	117			,	37		10		11		10	36			

biologica

Biologica	S Sample \#			17-033-019	17-033-020	17-033-021	17-033-022	17-033-023	17-033-024	17-033-025	17-033-026	17-033-027	17-033-028	17-033-029	17-033-030	17-033-031	17-033-032
Client Sam	mple \#			46-03	46-03	50.01	50.01	53-01	53.01	54.03	54.03	59-01	59-02	61-01	61-01	60.01	60.02
Replicate				Rep 01	Rep 02			Rep 01	Rep 02								
Date Sam	mpled											07/03/2017	07/03/2017	10/03/2017	10/03/2017	09/03/2017	09/03/2017
Debris V0	olume			Standard	Standard	Standard	Standard	Standard	Standard	High	High	High	High	standard	High	standard	Standard
taxcode	grpode	Family	TaxonName	Total Abundance													
ANNE	ANOL	Naididae	Paranais IItoralis														
ANNE	ANOL	Naididae	Tectidrilus sp.														
ANNE	Poer	Dorvilleidae	Schistomeringos annulata														
ANNE	Poer	Dorvilleidae	Schistomeringos longicornis									2				1	3
ANNE	POER	Dorvilleidae	Schistomeringos sp.														
ANNE	PoER	Glyceridae	Glycera americana														
ANNE	POER	Goniadidae	Glycinde picta	1	3	1				4	6		4	4	6		
ANNE	Poer	Goniadidae	Glycinde sp.		6	3			1		2	2	2	4	6		
ANNE	POER	Hesionidae	Micropodarke dubia														
ANNE	Poer	Hesionidae	Oxydromus pugettensis														
ANNE	POER	Hesionidae	Podarkeopsis glabus		4			1		2	2	2		7		2	
ANNE	Poer	Hesionidae	Podarkeopsis perkinsi														
ANNE	Poer	Hesionidae	Podarkeopsis sp.														
ANNE	Poer	Lumbrineridae	Lumbrineridae indet.														
ANNE	POER	Lumbrineridae	Lumbrineris californiensis														
ANNE	PoEr	Lumbrineridae	Scoletoma tetraura complex	236	268	1	1	4	1	28	44			1	8		
ANNE	Poer	Nephtridae	Bipalponephtys cornuta								,				2		
ANNE	POER	Nephtridae	Nephtys punctata														
ANNE	POER	Nereididae	Alita virens														
ANNE	POER	Nereididae	Nereis procera		1												
ANNE	Poer	Nereididae	Platyereis bicanaliculata													2	
ANNE	POER	Onuphidae	Onuphida inde.														
ANNE	POER	Onuphidae	Onuphis sp.														
ANNE	POER	Pholoidae	Pholoe minuta		1												
ANNE	Poer	Phyllodocidae	Eteone californica														
ANNE	PoER	Phyllodocidae	Eteone longa complex	1													
ANNE	Poer	Phyllodocidae	Eteone sp.														
ANNE	Poer	Phyllodocidae	Eteone tuberculata		2												
ANNE	Poer	Phyllodocidae	Eumida Iongicornuta														
ANNE	POER	Phyllodocidae	Phyllodoce hartmanae														
ANNE	PoER	Polynoidae	Gattyana cirrhosa														
ANNE	Poer	Polynoidae	Harmothoe imbricata														
ANNE	PoER	Polynoidae	Hesperonoe adventor														
ANNE	Poer	Polynoidae	Tenonia priops							2							
ANNE	POER	Sphaerodoridae	Sphaerodoropsis sphaerulifer		2												
ANNE	Poer	syllidae	Brania sp.														
ANNE	PoER	syllidae	Exogone dwisula												2		
ANNE	POER	Syllidae	syllis cornuta														
ANNE	POSE	Ampharetidae	Ampharete labrops			1					4						
ANNE	POSE	Ampharetidae	Ampharete lineata	1													
ANNE	POSE	Ampharetidae	Ampharetidae indet.														
ANNE	POSE	Capitellidae	Capitella capitata complex								2	30	6	4	2		
ANNE	Pose	Capitellidae	Heteromastus filobranchus	6	6						2						
ANNE	POSE	Capitellidae	Mediomastus ambiseta														
ANNE	POSE	Capitellidae	Mediomastus californiensis														
ANNE	Pose	Chaetopteridae	Spiochaetopterus costarum complex						-								
ANNE	Pose	Ciriratulidae	Aphelochaeta gananarara momplex	87	130												
ANNE	Pose	Cirratulidae	Aphelochaeta sp.								58						
ANNE	POSE	Cirratulidae	Chaetozone setosa complex	13	59									1			
ANNE	POSE	Cirratuidae	Cirratulida indet.														
ANNE	Pose	Ciratulidae	Kirkegaardia sp.														
$\frac{\text { ANNE }}{\text { ANNE }}$	POSE	Cossuridae	Cossura pygodactlata														
ANNE	PoSE	Maldanidae	Euclymene sp. nr. zonalis	12	23												
ANNE	POSE	Maldanidae	Praxillella pacifica														

logica	Sample \#			17-033-019	17-033-020	17-033-021	17-033-022	17-033-023	17-033-024	17-033-025	17-033-026	17-033-027	17-033-028	17-033-029	17-033-030	17-033-031	17-033-032
Client Sa	mple \#			46-03	46-03	50.01	50-01	53-01	53-01	54.03	54.03	59-01	59-02	61.01	61.01	60-01	60-02
Replicate				Rep 01	Rep 02			Rep 01	Rep 02								
Date Sam	mpled											07/03/2017	07/03/2017	10/03/2017	10/03/2017	09/03/2017	09/03/2017
Debris Vo	olume			Standard	Standard	Standard	Standard	Standard	Standard	High	High	High	High	Standard	High	Standard	Standard
taxcode	grpcode	Family	TaxonName	Total Abundance													
ANNE	POSE	Ophelidae	Armandia brevis			5	11	50	19	152	52	458	343	154	102	66	29
ANNE	POSE	Ophelidae	Ophelina a auminata		1												
ANNE	POSE	Orbiniidae	Leitoscoloplos pugettensis														
ANNE	POSE	Orbinidae	Scoloplos acmeceps														
ANNE	POSE	Owenidae	Galathowenia oculata		1												
ANNE	PoSE	Owenidae	Owenia fusiformis														
ANNE	POSE	Sabellidae	Euchone incolor	6	11												
ANNE	POSE	Spionidae	Dipolydora cardalia		1												
ANNE	POSE	Spionidae	Dipolydora sp.												2		
ANNE	POSE	Spionidae	Paraprionospio alata	3	1						4						
ANNE	POSE	Spioinidae	Polydora sp. complex														
ANNE	POSE	Spionidae	Prionospio (Minuspio) light	1	21	4			30	10	64		20	54	28	13	10
ANNE	POSE	Spionidae	Prionospio (Prionospio) sp.														
ANNE	POSE	Spionidae	Pseudopolydora paucibranchiata														
ANNE	POSE	Spionidae	Spiophanes berkeleyorum		1												
ANNE	POSE	Sternaspidae	Sternaspis affinis														
ANNE	POSE	Terebellidae	Lanassa venusta venusta		1						2						
ANNE	POSE	Terebellidae	Polycirrus sp. complex														
ANNE	POSE	Trichobranchidae	Terebellides sp.														
ARTH	CRAM	Aoridae	Aoroides intermedia														
ARTH	Cram	Aoridae	Aoroides sp.											1	2		
ARTH	Cram	Aoridae	Aoroides spiosa														
ARTH	Cram	Caprellidae	Caprella kennerlyi														
ARTH	CRAM	Caprellidae	Caprella mendax														
ARTH	CRAM	Caprellidae	Caprellida indet.														
ARTH	Cram	Isaeidae	Gammaropsis spinosa	1													
ARTH	CRAM	Isaeidae	Isaeidae indet.		1												
ARTH	Cram	Isaeidae	Photis brevipes													5	5
ARTH	CRAM	Lsaeidae	Photis sp.														
ARTH	CRAM	Isaeidae	Protomedeia prudens	2													
ARTH	CRAM	Melitidae	Desdimelita desdichada												6		
ARTH	CRAM	Oedicerotidae	Deffexilodes sp.	1	1									1			
ARTH	CRAM	Oedicerotidae	Oedicerotidae indet.														
ARTH	Cram	Oedicerotidae	Westwoodilla tone														
ARTH	Cram	Phoxocephalidae	Eobrolgus chumashi														
ARTH	CRAM	Phoxocephalidae	Heterophoxus affinis	1	1												
ARTH	cram	Phoxocephalidae	Heterophoxus sp.														
ARTH	CRAM		Amphipoda indet.														
ARTH	CRCI		Balanomorpha indet.					3									
ARTH	CRCU	Leuconidae	Eudorella pacifica		1												
ARTH	CRCU	Leuconidae	Eudorella sp.								2						
ARTH	CRCU	Leuconidae	Leucon sp.								4						
ARTH	CRDE	Callianassidae	Neotrypaea gigas			2											
ARTH	CRDE	Cancridae	Cancridae indet.														
ARTH	CRDE	Crangonidae	Crangon alaskensis			1											
ARTH	CRDE	Hippolytidae	Lebbeus sp.														
ARTH	CRDE	Pinnotheridae	Pinnixa schmitti	1	15												
ARTH	CRDE	Pinnotheridae	Pinnixa sp.														
ARTH	CRIS	Limnoridae	Limnoria lignorum												4		
ARTH	CRLE	Nebalidae	Nebalia pugettensis complex									2					
ARTH	CRTA	Leptochelidae	Leptochelia dubia complex														
MISC	BrYo	Vesiculariidae	Bowerbankia gracilis												2		
MISC	cNHY	Corryidae	Corrnidae indet.														
MISC	CNHY	Corryidae	Sarsia tubulosa														
MISC	CNHY	Corryidae	Slabberia sp.														
MISC	cNHY	Pandeidae	Amphinema dinema														
MISC	NTEA	Amphiporidae	Amphiporus imparispinosus														
MISC	NTEA	Emplectonematidae	Paranemertes californica														
MISC	NTEA	Lineidae	Cerebratulus californiensis													5	\square
MISC	NTEA	Lineidae	Micrura sp.														

				17-033-019	17-033-020	17-033-021	17-033-022	17-033-023	17-033-024	17-033-025	17-033-026	17-033-027	17-033-028	17-033-029	17-033-030	17-033-031	17-033-032
				46-03	46-03	50-01	50.01	53-01	53-01	54.03	54.03	59.01	59-02	61-01	61-01	60.01	60-02
Replicate				Rep 01	Rep 02			Rep 01	Rep 02								
Date Sampled												07/03/2017	07/03/2017	10/03/2017	10/03/2017	09/03/2017	09/03/2017
Debris Volume				Standard	Standard	Standard	Standard	Standard	Standard	High	High	High	High	Standard	High	Standard	Standard
taxcode [grpode		Family	TaxonName	Total Abundance													
	NTEA	Tubulanidae	Tubulanus sp.														
	NTEA		Anopla indet.						1								
MISC	URAS		Stolidobranchiata indet.														
MOLL	MOBI	Cardidae	Clinocardiinae indet.	1						2	2						
\| Moll	мов	Cardidae	Clinocardium nuttallii														
	мов	Lasaeidae	Kurtiella tumida	1	5		1			2	2					3	
Moul	мов	Lucinidae	Lucinoma annulatum														
Mou	мов	Lucinidae	Parvilucina tenuisculpta		1												
MOLL	мові	Nuculidae	Acila castrensis	11	7												
Moul	MOBI	Nuculidae	Ennucula tenuis	1	2			1									
$\begin{array}{\|l\|l\|} \hline \text { Moul } \\ \hline \text { MOII } \end{array}$	мові	Tellinidae	Macoma carlottensis	2	12										2		
	мов	Tellinidae	Macoma nasuta	5	9			5	7	6	3	1		8	6		
M Mou	мов	Tellinidae	Macoma sp.							8	18	3		4		14	13
Moll	мов	Tellinidae	Tellina modesta		1												
Moul	мов	Tellinidae	Tellina sp.	1							6						
Moll	MOBI	Thyasiridae	Axinopsida serricata	18	33												
	мові	veneridae	Leukoma staminea	5													
$\frac{\text { Moll }}{\left\lvert\, \frac{\text { Moul }}{}\right.}$	мов	veneridae	Nutricola sp.	10	23												
Mol	мов	veneridae	Veneridae indet.		1				1		2						
Moul	мов		Bivalvi indet.							4	4					1	2
MoL	MOGA	Columbellidae	Astyris gausapata		1												
MOLL Moul	MOGA	Littorinidae	Lacuna vincta														
	MOGA	Onchidorididae	Loy thompsoni														
Mout	mOGA	Pyramidellidae	Odostomia sp.	8	6			1	4	4							
MOLL	MOGA	Pyramidellidae	Turbonilla sp.	2	7												
	MOGA	Rissoidae	Alvania compacta	2	6									1			4
$\frac{\text { mol }}{\text { mout }}$	MOGA	Rissoidae	Alvania sp.														
MOLL	MOGA		Cephalaspidea indet.									4					
MOLL	MOGA		Gastropoda indet.								2						
			Total Abundance	991	1,321	19	13		71	234	291	516	375	249	183	125	95
			Total Unique Taxa (species richness)											14	1		14

biologica

Benthic report of quality control and quality assurance for Hemmera Esquimalt Harbour 2017.

Biologica Sample ID	Client Sample ID	Replicate	Debris Volume	Subsample	Sorting Efficiency QC: Spotcheck	Subsampling Accuracy
17-033-001	04-05	Rep 01	High	1/2	95.83\%	
17-033-002	04-05	Rep 02	High	1/2		
17-033-003	07-03	Rep 01	High	1/2		
17-033-004	07-03	Rep 02	High	Whole		95.30\%
17-033-005	12-03	Rep 01	Standard	Whole		
17-033-006	12-03	Rep 02	High	1/2	100.00\%	
17-033-007	14-03	Rep 01-A	Not analyzing	na		
17-033-008	14-03	Rep 01-B	Not analyzing	na		
17-033-009	14-03	Rep 02-A	Not analyzing	na		
17-033-010	14-03	Rep 02-B	Not analyzing	na		
17-033-011	15-01	Rep 01	Standard	Whole		
17-033-012	15-01	Rep 02	Standard	Whole		
17-033-013	41-03	Rep 01	Standard	Whole	100.00\%	
17-033-014	41-03	Rep 02	Standard	Whole		
17-033-015	43-05	Rep 01	Standard	Whole		
17-033-016	43-05	Rep 02	Standard	Whole		
17-033-017	45-03	Rep 01	High	1/2	96.91\%	97.80\%
17-033-018	45-03	Rep 02	High	1/2		
17-033-019	46-03	Rep 01	Standard	Whole		
17-033-020	46-03	Rep 02	Standard	Whole	99.39\%	
17-033-021	50-01	Rep 01	Standard	Whole		
17-033-022	50-01	Rep 02	Standard	Whole		
17-033-023	53-01	Rep 01	Standard	Whole		
17-033-024	53-01	Rep 02	Standard	Whole		
17-033-025	54-03	Rep 01	High	1/2	100.00\%	
17-033-026	54-03	Rep 02	High	1/2		
17-033-027	59-01		High	1/2		
17-033-028	59-02		High	1/2		
17-033-029	61-01	Rep 01	Standard	Whole		
17-033-030	61-01	Rep 02	High	1/2		
17-033-031	60-01		Standard	Whole		
17-033-032	60-02		Standard	Whole		
				Average:	98.69\%	96.55\%

Quality Contro

Sorting efficiency: [(total count - organisms recovered in spot check and/or re-sort) / total count] x 100\%
Spot Check: 25% of sample debris resorted for 19% of samples

APPENDIX I: Biophysical and Sediment Chemistry Data

Sediment Chemistry Test		Units	EQL	bccsp Sed. Marine Sensitive	BCCSRSed. Marine Typical	CCME Sediment Aquatic Life (Marine, ISGQ)	CCME Sediment Aquatic Life (Marine, PEL)	DAS referenceCriterion	вН3		BH5		BH8		
		Suricicial							230cm	Surficial	>30cm	Surficial	>30cm		
Grain Size	Silt ($<0.0625 \mathrm{~mm}$ and $>0.0039 \mathrm{~mm}$)		\%	0.01				-		96.59	95.99	94.87	97.96	67.66	71.02
	Clay ($<0.0039 \mathrm{~mm}$)	\%	0.01	-	-	-	.						21.82	$\frac{21.84}{6}$	
	Sand ($(<2.00 \mathrm{~mm} \mathrm{\&} \times 0.063 \mathrm{~mm}$)	\%	0.01						3.2	3.56	3.99	1.84	9.94	${ }^{6.42}$	
Inorganics	Moisture	\%	03	-	-	-	-	-	44	39	42	40	39	39	
	Percent Saturation	\%		-	.	-	-		89.8	79.1	87.1	85.5	82.3	75.5	
	Ammonia	mg/kg	2												
	Chloride	$\mathrm{mg} / \mathrm{kg}$	48	-	.	.	.	-	11,900	9060	11,900	9980	10,300	9010	
	pH (Initial)	pH_Units		-	.	.	.	-	8.52	8.9	8.55	8.94	8.76	8.77	
	Phosphorus	mg/kg	10	-		.					955	790	919	886	
Metals	Soluble Chloride	mg/	100						13,300	11,500	13,600	11,700	12,600	11,900	
	Sodium ion (1+)	mg/kg	2.4	-	-	.	.	-	6680	5170	${ }_{1}^{6710}$	${ }_{1}^{5820}$	${ }^{5950}$	5210	
	Aluminium	mg/kg	100	-	.	.	.	-			16,600	16,700	14,100	15,400	
	Antimony	mg/kg	0.1				\cdots				0.21	0.2	0.15	0.16	
	Arsenic	$\mathrm{mg} / \mathrm{kg}$	0.5	26	50	7.24	41.6	. 24					6.53	7.17	
	Barium	mg/kg	0.1								46	36.1	35.4	34.6	
	Beryllium	mg/kg	0.2	-	-		.				0.32	0.31	0.26	0.29	
	Bismuth	$\mathrm{mg} / \mathrm{kg}$	0.1								<0.1	<0.1	<0.1	<0.1	
	Cadmium	$\mathrm{mg} / \mathrm{kg}$	${ }^{0.05}$	2.6	5	0.7	4.2	0.6			${ }^{3.31}$	2.2	$\frac{3.05}{13}$	$\underline{2.73}$	
	Calcium	mg/kg	100								12,000	6960	13,800	8450	
	Chromium (III+VI)	mg/kg	0	99	190	52.3	160	52.3	-	-	34.7	34.8	29	31.2	
	Cobalt	mg/kg	0.3								6.13	6.72	5.32	5.96	
	Copper	mg/kg	0.5	67	130	18.7	108	18.7					16.7		
	Iron	mglkg	100					-		-	24,400	25,800	21,100	23,000	
	Lead	$\mathrm{mg} / \mathrm{kg}$	0.1	69	130	30.2	112	30.2			13.3	4.47	3.68	3.84	
	Lithium	mg/kg	5				.				19	22.5	16.1	16.4	
	Magnesium	mg/kg	100	-	.	-	-	-			8200	8160	6880	7510	
	Manganese	$\mathrm{mg} / \mathrm{kg}$	0.2								205	222	182	203	
	Mercury	$\mathrm{mg} / \mathrm{kg}$	0.05	0.43	0.84	0.13	0.7	0.75			0.236	<0.05	<0.05	<0.05	
	Molybdenum	mg/kg	0.1				-				3.98	4.09	3.42	3.08	
	Nickel	mg/kg	0.8	-		.	.	-	-	-	21.7	23.3	18.5	20.3	
	Potassium	mg/kg	100	-			.				2520	2590	2160	2280	
	Selenium	mg/kg	0.5	-	-	-	.		-	-	0.8	0.79	0.75	0.75	
	Silver	mg/kg	0.05	-	.	.	-	-	-	-	0.115	0.101	0.09	0.1	
	Sodium	$\mathrm{mg} / \mathrm{kg}$	100	-			-				10,200	9790	8630	8910	
	Strontium	$\mathrm{mg} / \mathrm{kg}$	0.1	-	-	-	.		-		86.7	48.9	90.9	57.4	
	Thallium	$\mathrm{mg} / \mathrm{kg}$	0.01	-	-		-				${ }_{0}^{0.361}$	0.308	${ }^{0.364}$	0.379	
	Tin	mg/kg	0.1	-			-	-			1.74	0.47	0.38	0.4	
	Titanium	mg/kg	1				.				1160	1160	1080	1140	
	Uranium	$\mathrm{mg} / \mathrm{kg}$	0.05	-	.	-	.	-	-	-	2.05	1.86	1.74	1.58	
	Vanadium	mg/kg	2								51.5	53.5	45.9	49.9	
	Zinc	$\mathrm{mg} / \mathrm{kg}$	1	170	330	124	271	124	-	-	72	64.9	54.9	$\frac{56.8}{8.76}$	
PAH	2-methyinaphthalene	mgakg	0.001	0.12	0.24	0.0202	0.201		038	0.008	0.012	0.0097	0.0077	${ }^{0.0063}$	
	Acenaphthene	mg/kg	0.0005	0.055	0.11	0.00671	0.0889		0.066	<0.0005	0.0014	0.00083	<0.0005	<0.0005	
	Acenaphthylene	$\mathrm{mg} / \mathrm{kg}$	0.0005	0.079	0.15	0.00587	0.128	-	0.067	<0.0005	0.0012	<0.0005	<0.0005	<0.0005	
	Anthracene	mg/kg	0.001	0.15	0.29	0.0469	0.245	-	0.43	0.0013	0.0056	0.001	<0.001	<0.001	
	Benzo(a)anthracene	$\mathrm{mg} / \mathrm{kg}$	0.001	0.43	0.83	0.0748	0.693	-	1.2	0.002	0.012	0.0015	0.0015	<0.001	
	Benzo(a) pyrene	mg/kg	0.001	0.47	0.92	0.0888	0.763	-	0.76	0.0015	0.0087	<0.001	0.0012	<0.001	
	Benzo(b)fluoranthene	$\mathrm{mg} / \mathrm{kg}$	0.001				-		0.81	0.0025	0.015	0.002	0.0026	0.0016	
	Benzo($($ b+i) filuoranthene	mg/kg	0.001	-	-		.	-	1.2	0.0025	0.023	0.002	0.0026	0.0016	
	Benzo(g, h,i,) perylene	mg/kg	0.05	-			-								
	Benzo(k)fluoranthene	mg/kg	0.001					-	0.4	<0.001	0.0073	<0.001	<0.001	<0.001	
	Chrysene	mg/kg	0.001	0.52	1	0.108	0.846		1.2	0.0028	0.014	0.0033	0.0021	0.0021	
	Dibenz(a,h)anthracene	$\mathrm{mg} / \mathrm{kg}$	0.0005	${ }_{0}^{0.084}$	0.16	${ }_{0}^{0.00622}$	$\frac{0.135}{1.494}$			<0.0005	0.0019	<0.0005	<0.0005		
	Fluoranthene	mg/kg	${ }_{0}^{0.001}$	0.93	1.8	0.113	1.494 0.144	-		${ }^{0.00036}$	0.0022	${ }_{0}^{0.0032}$	${ }_{0}^{0.0035}$	0.0018	
	Fluorene	mg/kg	0.001	0.089	0.17	0.0212	0.144	-	$\stackrel{0.16}{0.32}$	0.0026	0.0042	0.0027	0.0021	${ }^{0.0015}$	
	Indeno(1,2,3-c, d) pyrene	mg/kg	0.002						0.32			<0.002			
	Total PAHs	$\frac{\mathrm{mg} / \mathrm{kg}}{\mathrm{mg} \text { g }}$	0.001	10	20			2.5	6.9	0.036	${ }_{0}^{0.082}$	0.037	${ }_{0}^{0.0031}$	0.0019	
	Phenanthrene	mg/kg	0.001	0.34	0.65	0.0867	0.544			0.0096	0.018	0.0092	0.0069	0.005	
	Low Molecular Weight PAHs	mg/kg	0.001						2.1	${ }^{0.023}$	${ }^{0.046}$	0.025	${ }^{0.018}$	0.013	
	Pyrene	mg/kg	0.001	0.87	1.7	0.153	1.398	-		${ }^{0.0036}$	0.024	0.004	0.0041	0.0024	
	$\frac{\text { Ba Pa P Total Potency Equivalent }}{\text { PCBs (Sum of total) }}$	mg/kg	${ }_{0}^{0.01}$						$\frac{1.2}{<0.1}$	$\stackrel{<0.01}{<0.01}$	$\stackrel{0.016}{<0.25}$	$\stackrel{<0.01}{<0.1}$	$\stackrel{<0.01}{<0.1}$	$\stackrel{<0.01}{<0.1}$	
	PCBs (Sum of total)		0.01	0.12	0.23										

APPENDIX J
Detailed Pilot Study Project Cost Estimate

APPENDIX F
 DFO Fisheries Act Assessment of Serious Harm

Appendix F: Assessment of Serious Harm to Fish

Assessment of serious harm to fish resulting from Project effects on marine fish and fish habitats include an assessment of activities that result in fish mortality and those that result in either destruction or permanent alteration of fish habitat.

Not all interactions resulting in fish mortality or changes to fish habitat are expected to be serious harm to fish that are part of, or support, a CRA fishery. Serious harm is defined as the death of fish or the permanent alteration to, or destruction of, fish habitat of a spatial scale, duration, or intensity that limits, diminishes, or precludes the ability of fish to use that habitat for one or more of their life processes (DFO 2013a). The assessment for potential of serious harm to fish resulting from the interaction between the Project activities and fish and fish habitat, after the implementation of avoidance and mitigation measures, (summarized in Section 2.4, Table 4), was conducted using the criteria defined below.

Residual Effects Criteria

Five criteria were used to characterize the possibility of serious harm to fish and fish habitat:

1. habitat availability
2. habitat value
3. habitat dependency
4. localized effect
5. anticipated residual harm to fish.

Habitat Availability

Habitat availability provides a relative qualitative assessment of the availability and condition of nearby habitat. Effects to a fish population from the permanent alteration or destruction of habitat may increase with low availability and condition of nearby habitat. Three qualitative definitions of habitat availability were used.

1. Low (L) - the affected fish habitat is the only habitat of its type and quality in the immediate area of the Project.
2. Moderate (M) - the same kind and quality of fish habitat being affected is moderately abundant in the immediate area of the Project.
3. High (H) - the same kind and quality of fish habitat being affected is highly abundant in the immediate area of the Project.

Habitat Value

The value of habitat is determined by the ecological function provided and the ability to support life processes of local CRA fisheries species.

1. Low (L) - CRA species that occur locally are not expected to use the habitat to support life processes.
2. Moderate (M) - CRA species may use the habitat to carry out one or more life processes but can use other habitat types to support the same life processes.
3. High (H) - CRA species are reliant on the affected habitat for one or more life processes, which can not be accommodated using other habitat types.

Habitat Dependency

Fish population dependence on habitat can be characterized by the functional support of the habitat and relative abundance of similarly functional habitat nearby. Four qualitative definitions of habitat dependency were used:

1. Negligible (N) - species may occur in the affected habitat but are not dependent on the habitat to carry out one or more life processes.
2. Low (L) - species use affected habitat to carry out one or more life processes, but habitat that provides similar ecological function(s) is available in the local area.
3. Medium (M) - species use affected habitat to carry out life processes, but habitat that provides similar ecological function(s) is limitedly available in the local area.
4. High (H) - species rely entirely on affected habitat to carry out life processes, and there is no habitat that provides this ecological function.

Localized Effect

A localized effect characterizes weather or not the Project impacts are expected to have an effect on fish or fish habitat that could reduce the ongoing productivity of fish populations that use the Project area. Localized effect is characterized as yes or no.

1. Yes (Y) - a localized effect is expected after application of avoidance and mitigation measures.
2. No (N) - a localized effect is not expected after application of avoidance and mitigation measures.

Residual Serious Harm to Fish

Residual serious harm to fish is anticipated after efforts to avoid and mitigate Project effects have been implemented and through an analysis of the residual effects criteria defined above. Residual serious harm conclusions are presented below:

1. Yes (Y) - residual serious harm to fish from a Project component is expected.
2. $\mathrm{No}(\mathrm{N})$ - residual serious harm to fish from a Project component is not expected.

Fish mortality

Mortalities of mobile fish from implementation of the Project are expected to be avoided by scheduling the construction of the Pilot Project during the DFO least risk winter window for Area 19 Victoria (December 1 - February 15) and by implementing the mitigation measures outlined in Section 2.4, Table 4 (DFO 2013b). Fish are anticipated to avoid the Project area during the placement of the ENR (clean sand) and In Situ Treatment (clean sand/siderite) and the construction methodology is not predicted to result in mortality and/or injury to fish (e.g., through elevated underwater noise).

Mortalities of sessile and infaunal invertebrates located within the Pilot Project footprint may occur through burial during material placement. It is possible that certain species and individuals may be less susceptible to injury or mortality from burial due to their life histories, spatial distribution within the substrate, and post-construction depth of cover. However, to remain conservative, mortality of all individuals within the footprint is assumed. Infaunal invertebrate mortality cannot be mitigated, however the impacted invertebrates represent a small fraction of the local population and will not impact the local
population; subsequently, bivalve mortalities are not expected to result in serious residual harm. Generally, infaunal invertebrate density within the Project footprint is low.

Water Quality

The mitigation measures outlined in Section 2.4, Table 4 are expected to avoid any mortality and/or injury to fish from elevated turbidity levels and/or direct contact from equipment. Temporary changes in water quality resulting from construction of the Project are not anticipated to result in serious harm to fish due to mortality and/or injury.

Permanent Alteration of Fish Habitat

A total of $10,200 \mathrm{~m}^{2}$ of subtidal habitat will be permanently altered by the placement of a $15-45 \mathrm{~cm}$ layer of either ENR (clean sand) or In Situ (clean sand/siderite) treatments, which represents approximately 0.3% of the available subtidal fish habitat within the Harbour (304 hectares). However, based on the properties of siderite, it has been concluded that the In Situ Amendment Treatment of clean sand (95\%) blended with siderite material (5\%) does not constitute a risk to fish or fish habitat from a change in sediment concentrations or the introduction of deleterious materials. The application of clean sand enhances subtidal fish habitat in the northern Harbour by replacing the biologically active zone with clean sediment in order to provide an oxygenated layer to promote benthic infauna community recruitment and establishment of a productive benthic community (Breems and Goodman 2009, Washington State 2013). The In Situ Amendment is expected to act similar to clean sand and provide a suitable clean substrate for benthic colonization while simultaneously restoring degraded conditions (by removing toxic $\mathrm{H}_{2} \mathrm{~S}$).

The existing habitat value of the proposed Project location is low, extensive assessment work has demonstrated that it is degraded and does not support any sensitive life history processes of any CRA species. Habitat dependency on the Project location is negligible. The area that will be affected is characterized by degraded soft substrates consisting mainly of silt, with the presence of surficial wood waste in some areas, and wood waste deposits up to 2.0 m in others. The sediment contains abundant Beggiatoa spp. bacterial mats, an indicator of degraded habitats, and elevated toxic porewater sulfides.

Post-construction, the substrate available to benthic fish and the infaunal community (e.g., the top 30 cm of substrate) will consist of clean, oxygenated material composed of ENR (100\% sand) or In Situ Amendment (composed of 95\% sand and 5\% siderite). The habitat will become immediately available for colonization by epifaunal and infaunal invertebrates and fish. Over time, the siderite is expected to bind with $\mathrm{H}_{2} \mathrm{~S}$, reducing the overall toxicity of decomposition by-products in the underlying substrate. The resulting habitat quality of the project footprint will be higher following construction as clean, oxygenated substrate is colonized by the infaunal community and succession takes place.

The proposed Project is not expected to have a localized effect on fish populations. The communities found within the proposed footprint are stable and found throughout subtidal soft sediments in Esquimalt Harbour. The permanent alteration of $10,200 \mathrm{~m}^{2}$ of substrate is not anticipated to result in serious harm to fish or fish habitat.

Summary

Under the Fisheries Act, proponents are responsible for avoiding and mitigating serious harm to fish that are part of or support CRA fisheries:
35. (1) No person shall carry on any work, undertaking or activity that results in serious harm to fish that are part of a commercial, recreational, or Aboriginal fishery, or to fish that support such a fishery.

Serious harm to fish is defined as "the death of fish or any permanent alteration to, or destruction of, fish habitat". Only when proponents are unable to completely avoid or mitigate serious harm to fish will projects require authorization under section 35 (2) of the Fisheries Act in order for the project to proceed.

The Fisheries Protection Policy Statement (DFO 2013) interprets serious harm to fish as:

- The death of a fish;
- A permanent alteration to fish habitat of a spatial scale, duration or intensity that limits or diminishes the ability of fish to use such habitats as spawning grounds, or as nursey, rearing, or food supply areas, or a mitigation corridor, or any other area in order to carry out one or more of their life processes.
- The destruction of fish habitat of a spatial scale, duration, or intensity that fish can no longer reply upon such habitats for use as spawning grounds, or as nursery, rearing, or food supply areas, or as a migration corridor, or any other area in order to carry out one of more of their life processes.

After incorporation of measures to avoid and mitigate serious harm to fish that are part of a CRA fishery, or fish that support such a fishery, no serious harm is anticipated to result from construction of the Project (Table F1). The project activities will remediate and enhance low quality degraded subtidal fish habitat to become higher quality substrate for colonization and establishment of benthic communities.

The total area of fish habitat that will be affected by the Project, but is not expected to result in Residual Serious Harm to Fish, includes the alteration of $\mathbf{1 0 , 2 0 0} \mathbf{m}^{2}$ of soft, subtidal substrate for the purposes of enhancement/remediation of degraded habitat. Additionally, the mortality of a small number of benthic bivalves as a result of material placement is not expected to result in Residual Serious Harm to Fish.

Table F1 Summary of Project Components, Habitat Types, Effects on Fish and Fish Habitat, Residual Harm Criteria, and Required Offsetting for the Connector Road Project

Habitat Type	Project Component	Effect Type	Area of Habitat Affected (m^{2})	Habitat Availability	Habitat Value	Habitat Dependency	Localized Effect	Residual Serious Harm to Fish
N/A	Burial or crushing during sand/siderite placement	Invertebrate Mortality	N/A	N/A	N/A	N/A	N	N
Subtidal Habitat	Placement of sand/siderite	Permanent alteration	10,200	H	L	N	N	N
N/A	Disturbance to Fish Behaviour	Temporary Avoidance	N/A	N/A	N/A	N/A	N	N

Appendix B-2 Environmental Management Plan

July 2019
DND Wood Waste Remediation Pilot Project

Environmental Management Plan

Prepared for Public Works and Government Services Canada

July 2019
DND Wood Waste Remediation Pilot Project

Environmental Management Plan

Prepared for

Public Works and Government Services Canada

Prepared by
Anchor QEA, LLC
1201 3rd Avenue, Suite 2600
Seattle, WA 98101

SIGNATURES

We trust that this Environmental Management Plan provides sufficient information for your present needs. If you have any questions, please do not hesitate to contact the undersigned.

Joy Dunay
Author
Dan Berlin
Senior Reviewer

TABLE OF CONTENTS

1 Introduction 1
1.1 Overview 1
1.2 Project Background 2
1.3 Project Description 3
1.4 Objectives 5
2 Environmental Setting 6
2.1 Physical Environment 6
2.2 Biological Environment 7
2.3 Social and Cultural Environment 8
3 Roles and Responsibilities 9
3.1 Department of National Defence 9
3.2 Public Works and Government Services Canada 9
3.3 Consultant 10
3.4 External Stakeholders 11
3.5 Contractor(s) 11
3.6 Reporting 12
3.6.1 Field-Based Inspection and Construction Monitoring Reporting 12
3.6.2 Environmental Reporting 13
3.6.3 Completion Reporting 13
4 Regulatory Setting 14
4.1 Applicable Best Management Practices and Guidelines 14
5 Environmental Requirements 15
5.1 Environmental Protection Plan 15
5.2 Protection Measures 16
5.2.1 Air Quality 16
5.2.2 Water Quality 16
5.2.3 Marine Vegetation, Invertebrates, and Fish and Fish Habitat 18
5.2.4 Marine Mammals 19
5.2.5 Birds 20
5.2.6 Navigation 20
5.2.7 In-Air Noise, Light and Odour 21
5.2.8 Spill Prevention and Emergency Response 22
5.2.9 Non-Hazardous Waste Management 24
5.2.10 Hazardous Materials Handling and Storage 25
5.2.11 Archaeology 27
5.3 Environmental Site Inspections 28
6 Environmental Incidents 29
7 Environmental Monitoring Implementation Plan 31
7.1 Water Quality Monitoring 31
7.2 Pacific Herring Monitoring 31
7.3 Marine Mammal Monitoring 32
7.4 Bird Monitoring 32
7.5 In-Air Noise, Light, and Odour Monitoring 32
7.6 Non-Hazardous and Hazardous Waste Management. 32
8 Construction Quality Assurance Plan 33
8.1 Project Construction Activities 33
8.2 Construction Management Activities 34
8.2.1 Contract Award Meeting 34
8.2.2 Contractor Pre-Construction Meeting 34
8.2.3 DND/PWGSC/Consultant Pre-Construction Meeting 34
8.2.4 Review of Submittals 34
8.2.5 Construction Meetings 35
8.3 Inspection Requirements 35
8.3.1 Material Placement 35
8.3.2 Surveying and Positioning Control 37
8.4 Safety 38
9 References 39

TABLES

Table 1 Relevant Environmental Legislation
Table 2 Applicable Best Management Practices and Guidelines
Table 3 Environmental Site Inspection Tasks
Table 4 Marine Mammal Species at Risk and Known to Occur in Esquimalt Harbour

FIGURES

Figure $1 \quad$ Esquimalt Harbour Sites and Vicinity Map
Figure $2 \quad$ Pilot Project Work Areas with Wood Waste Thickness
Figure $3 \quad$ Pilot Project Work Areas with Wood Waste Cover
Figure 4 Environmental Team Organizational and Communication Structure

APPENDICES

Appendix A Water Quality Monitoring Plan
Appendix B Example Reporting Templates
Appendix C Project Contact List
Appendix D Submittals Tracking Table

ABBREVIATIONS

BC	British Columbia
BMP	best management practice
CD	Chart Datum
cm	centimetre
DFAR	Daily Field Activity Report
DFO	Fisheries and Oceans Canada
DND	Department of National Defence
DR	Departmental Representative
EED	Environmental Effects Determination
EIR	Environmental Incident Report
EM	Environmental Monitor
EMA	Environmental Management Act
EMP	Environmental Management Plan
ENR	enhanced natural recovery
EPP	Environmental Protection Plan
FSEMS	Formation Safety Environment Management System
HASP	Health and Safety Plan
m	metre
mg/L	milligrams per litre
Project	DND Wood Waste Remediation Pilot Project
PWGSC	Public Works and Government Services Canada
QHM	Queen's Harbour Master
QP	Qualified Professional
RFI	Request for Information
SARA	Species at Risk Act
SDS	Safety Data Sheet
TOC	total organic carbon
WQMP	Water Quality Monitoring Plan
WWMA	Wood Waste Management Area

1 Introduction

1.1 Overview

This Environmental Management Plan (EMP) has been prepared for the Department of National Defence (DND) Wood Waste Remediation Pilot Project (Project) and is based on potential environmental effects and mitigation measures identified in the Canadian Environmental Assessment Act, 2012 (CEAA 2015) Section 67 Environmental Effects Determination (EED) for the Project as well as other relevant environmental legislation and bylaws.

The contents of this EMP are organized as follows:

- Section 1.0, Introduction: Provides overview of the Project and the purpose and organization of the EMP.
- Section 2.0, Environmental Setting: Provides summary of the physical, biological and social/cultural setting of the Project Work Site.
- Section 3.0, Roles and Responsibilities: Describes roles, responsibilities, and reporting relationships of DND, Public Works and Government Services Canada (PWGSC), the Environmental Monitor (EM), and the Contractor(s) for implementing environmental management and mitigation measures.
- Section 4.0, Regulatory Setting: Outlines environmental legislation, authorizations, permits, approvals, and best management practices (BMPs) applicable to the work.
- Section 5.0, Environmental Requirements: Summarizes measures that will be undertaken for protection of environmental resources, components to be included in the contractor's Environmental Protection Plan (EPP), and environmental site inspection and monitoring activities that will be undertaken to assess and document that environmental management goals set for the Project are being met.
- Section 6.0, Environmental Incidents: Defines environmental incidents and outlines reporting and notification protocol to DND, PWGSC and relevant regulatory agencies.
- Section 7.0, Environmental Monitoring Implementation Plan: Describes how the monitoring of environmental performance objectives, potential environmental risks, and mitigation measures identified in the EMP will be implemented.
- Section 8.0, Construction Quality Assurance Plan: Documents construction management requirements and outline communication pathways for PWGSC and its project consultants responsible for implementation, administration, and monitoring of the Project.
- Appendix A, Water Quality Monitoring Plan (WQMP): The WQMP outlines the scope of water quality monitoring that will be undertaken during project activities and identifies appropriate monitoring parameters, performance objectives, and a decision framework to guide appropriate response to where changes in water quality are observed.
- Appendix B, Example Reporting Templates: Examples of reporting templates are provided as guidance for expected contents.
- Appendix C, Project Contact List: Provides the key contact information for staff that will serve in these roles for the Project.
- Appendix D, Submittals Tracking Table: Provides the tracking of contractor submittals and the review by PWGSC and the Consultant.

This EMP is intended to be read in conjunction with applicable environmental approvals, authorizations, and permits for the Project as well as contract requirements. This report was prepared for Canada in accordance with the terms and conditions outlined in Contaminated Sites Marine Sediment Contract No. EZ897-172925/001/VAN. The scope of work for this report (Task 7: PreConstruction Documents) was outlined in Anchor QEA's "Workplan for Esquimalt Harbour Wood Waste Remediation Project, Canadian Forces Base Esquimalt, Victoria, BC," dated 20 May 2019. Task Authorization for the above work plan was provided by PWGSC on 21 May 2019 under TA 700445589.

1.2 Project Background

DND, which administers Esquimalt Harbour, is implementing a remediation and risk management program in Esquimalt Harbour as part of a long-term strategy to address sediments that have been contaminated by historical industrial activities. Various remediation projects have been or are currently being undertaken in Esquimalt Harbour as part of the remediation and risk management program. The DND Wood Waste Remediation Pilot Project is the latest project being planned under this program and is being undertaken under the Federal Contaminated Sites Action Plan (Anchor QEA 2018).

DND has retained PWGSC as its contracting authority for the Project. PWGSC will designate a representative (the PWGSC Representative) to advise, coordinate and monitor the work on behalf of DND. A contractor will be retained to undertake the work.

The Project is one of several phased remediation projects intended to address contaminated sediment sites within Esquimalt Harbour (Figure 1). As part of this phased remediation effort, sediments in the northern portion of Esquimalt Harbour were evaluated for presence of wood waste and potential impacts on the aquatic environment. An estimated $640,000 \mathrm{~m}^{2}$ of sediments contain wood waste at the sediment surface or near the sediment surface within northern Esquimalt Harbour. Literature and previous studies within Esquimalt Harbour have shown wood waste deposits to negatively affect marine benthic communities through physical alteration of sediments and increased toxicity from by-products of anaerobic decomposition, especially porewater sulphides.

Anchor QEA has assessed potential remedial technologies to address the presence of wood waste within several Wood Waste Management Areas (WWMAs; Figure 1) in northern Esquimalt Harbour, including monitored natural recovery, enhanced natural recovery (ENR), in situ treatment, capping, and dredging (Anchor QEA 2019a). These remedial options need to be further assessed in order to plan and design a long-term solution. Two potential remedial technologies for addressing wood waste include ENR and In Situ Treatment, each of which has the potential to improve benthic conditions that contribute to low benthic diversity within the WWMAs and also potentially to address the presence of elevated porewater sulphides, which are likely contributing to benthic toxicity. A description of each of these technologies is provided below:

- ENR refers to placing a layer of clean material (usually sand) on top of sediments to speed up (or enhance) the natural recovery process. ENR immediately replaces the biologically active zone with clean sediment. This clean layer is not intended to provide complete containment of the underlying contaminated sediments and may mix with the underlying sediment over time. ENR does not reduce the mass of wood waste or bind wood waste by-products (i.e., sulphides), leaving the possibility that some degradation by-products could build up to high enough levels to diffuse through the ENR layer and potentially adversely affect the surface sediment over the long term.
- In situ treatment involves the placement of reactive material mixed with sand in a thin layer over sediment (similar to ENR). In situ treatment has not been used to treat wood wasteimpacted sediments at other sites; however, a range of treatment amendments are available that can effectively bind sulphides (e.g., $\mathrm{H}_{2} \mathrm{~S}$) so they are not biologically available. The potential use of in situ treatment for remediation of wood waste-impacted sediment was evaluated by Anchor QEA using technical literature review, geochemical transport modeling, and laboratory bench-scale tests on site sediment (Anchor QEA 2019a). The results of these studies show that in situ treatment using a blend of clean sand and siderite (iron carbonate [FeCO_{3}]) is expected to be effective at long term sulphide sequestration.

1.3 Project Description

The Project has been designed to: 1) evaluate the site-specific effectiveness of ENR (clean sand cover) and in situ treatment (clean sand cover amended with siderite) for remediating wood wasteimpacted sediments, and 2) test the constructability of blending and placing the amended sand material in two different wood waste areas with unique physical and geotechnical characteristics. The Project is scheduled for construction in the fall of 2019 and will include monitoring to assess effectiveness at addressing adverse surface sediment conditions associated with the presence of wood waste.

The Project consists of design, construction, and monitoring of no action, constructed ENR, and constructed in situ treatment areas within Esquimalt Harbour for assessment and comparison. No
removal of wood waste-impacted sediment will be conducted as part of the Project. The results of the Project will be used to inform selection of the preferred remedial actions for sediments impacted by wood waste in Esquimalt Harbour and the implementation of in situ treatment should it be selected.

Based on site characterization, the Work Site has been divided into five WWMAs that have different historical sources, physical conditions, geochemical conditions, and/or site use (Anchor QEA 2019b). Two specific work areas were selected from within the WWMAs for the Project: one area in WWMA-1 (Esquimalt Harbour North) and a second in WWMA-4 (Inskip Island West). The location of the work areas relative to the WWMAs and wood waste thickness and wood waste cover are shown in Figures 2 and 3, respectively.

- Work Area 1 is located in WWMA-1 in an area characterized by soft surface sediments comprising finer wood waste. The Project objectives in this work area are to evaluate performance of ENR and in situ treatment for remediation of wood waste-impacted sediments and to examine the implementability of different placement methods on the softer surface sediments in this area. Placed materials in Work Area 1 may be more likely to mix with the softer surface sediments, which could make more difficult the placement of a well-defined layer of ENR or in situ treatment cover material. Six 30-metre (m) by 30-m test areas have been identified in Work Area 1, five of which will receive material placement and one that will serve as a control plot. Each test area will be separated by 50 m . Each of the six $30-\mathrm{m}$ by $30-\mathrm{m}$ test areas will be within a footprint that is 190 by 110 m for Work Area 1.
- Work Area 2 is located in WWMA-4 in an area characterized by firmer surface sediments and high density of coarse wood waste. Successful methods for placing material on firm surface sediments are well documented; therefore, the Project will not evaluate different placement methods in Work Area 2. The Project will focus only on the performance of ENR and in situ treatment for remediation of sediments impacted by coarse wood waste in Work Area 2. Three $30-\mathrm{m}$ by $30-\mathrm{m}$ test areas have been identified in Work Area 2, two of which will receive material placement and one that will serve as a control plot. Each test area will be separated by 50 m . In addition, the contractor will place sand within 10 m by 10 m practice areas within Work Area 2 to refine the various placement methods and demonstrate that the means and methods used are adequate to meet specification requirements. Each of the three $30-\mathrm{m}$ by $30-\mathrm{m}$ test areas and the $10-\mathrm{m}$ by $10-\mathrm{m}$ practice areas will be within a footprint that is 110 by 200 m for Work Area 2.

Two materials will be used for the pilot cap study. Material 1 (clean sand) will consist of imported clean sand. Material 2 (amended sand) will consist of imported sand amended with granular siderite, with the siderite comprising 5% by dry weight. Most test areas will have a targeted sand cover placement thickness of 30 centimetres (cm), with a $15-\mathrm{cm}$ tolerance, which could result in a final
thickness that ranges from 15 to 45 cm . If the material is effectively placed within Work Area 1 , an additional test area will be placed that will target 60 cm thick to assess the potential for capping within soft sediment areas. The bearing capacity of the wood waste will also be assessed through placement of two small rock mounds (1.5 m high by 8 m in diameter) within Work Area 2, which may be incorporated into future cleanup or habitat restoration design elements.

Imported sand will be transported to the Work Areas by barge. Amended sand will be mixed off site or on the barge prior to placement.

The Project will be monitored following placement over the next year. Monitoring is anticipated to involve physical monitoring, diver surveys, and sediment profile imaging, as well as chemical monitoring for porewater sulphides and biological monitoring for benthic community recolonization.

1.4 Objectives

The overall objective of the EMP is to provide a framework for the management of potential environmental effects during the Project through the implementation of protection measures. Specifically, the EMP identifies:

- Roles, responsibilities, and communication structure of DND, PWGSC, and the Contractor(s) during construction
- Federal and provincial environmental legislation and municipal bylaws that apply to the Project
- Measurable environmental protection requirements, including environmental mitigation measures and monitoring that are to be undertaken during implementation
- Environmental incident reporting protocols in the event an environmental incident occurs during implementation of the Project

The EMP addresses project effects identified in the engineering design and allows for a process of continuous improvement and adaptive management if additional effects are identified during construction. However, it should be noted that minimal environmental effects are anticipated since the Project includes the addition of clean sand/amended clean sand to two small Work Areas with no dredging or removal of wood waste or any contaminated material.

2 Environmental Setting

This section provides a summary of the environmental resources in and adjacent to the Project Work Areas. A more detailed description is provided in the EED report (Hemmera 2019).

2.1 Physical Environment

The Project Work Areas are located in the northern portion of Esquimalt Harbour. The harbour is relatively shallow, ranging from 5 to 12 m Chart Datum (CD) in depth within the limits of the Federal Harbour, and a maximum depth of 16 m CD at the harbour entrance (CRD 2019). Water depths are between -4.5 and -6 m CD within Work area 1 and between -8.5 and -5 m CD within Work Area 2.

The dominant subtidal substrate type within Esquimalt Harbour has been classified as 87\% granular materials (gravel, sand, and fines) with a few subtidal bedrock outcrops (CRD 2019). Sediment in the northern portion of the harbour and around Plumper Bay is mainly silt, with large areas of wood waste at or near the sediment surface, while the southern and nearshore areas have higher proportions of sand.

Based on observations from the supplemental data collection efforts conducted in 2018 and 2019, seafloor substrate within Work Area 1 contains soft, flocculant surface sediments and seafloor substrate within Work Area 2 contains firm surface sediment and high density of coarse wood waste (Anchor QEA 2019c). Most of the site exceeded a total organic carbon (TOC) concentration of 3\% (more than 60% of laboratory analyses from the site exceeded 3% TOC). Samples from the site ranged from 0.04% to 35% with a median of 4.3% in 202 samples.

Elevated porewater sulphides are a by-product of wood waste decomposition and were found throughout the site. Porewater sulphide concentrations were measured in 65 samples (including replicates) with values ranging from 0.27 milligrams per litre (mg / L) to $206 \mathrm{mg} / \mathrm{L}$. More than 80% of samples exceeded $2 \mathrm{mg} / \mathrm{L}$, which has been shown to cause toxicity in highly sensitive species. The median was $25 \mathrm{mg} / \mathrm{L}$, which is above levels that have been shown to cause adverse impacts to the benthic community, as reported in scientific literature. The Podger (unpublished) literature survey aggregates sulphide toxicity values from scientific literature for numerous marine species, which are impacted by sulphide concentrations of about 1 to $2 \mathrm{mg} / \mathrm{L}$ for highly sensitive species. In general, elevated porewater sulphide was generally co-located with sediment containing wood waste; however, porewater sulphide was not always co-located with sediment containing wood waste, indicating that spatial heterogeneities, seasonal variability, and other location-specific factors affect porewater sulphide concentrations, in addition to wood waste.

Other chemical parameters (i.e., metals, organics) were measured in a subset of surface grab samples and leave surface (post-dredge) samples within the WWMAs. A few surface samples had detections of dioxin and furans, polychlorinated biphenyl Aroclors, and/or polycyclic aromatic hydrocarbons
(pyrene) detections that exceed the probable effects level; however, none of these were located within the Project Work Areas 1 or 2.

2.2 Biological Environment

The biological conditions of the site have been assessed through visual benthic surveys, benthic community enumeration, and ex situ bioassay tests. Visual diver surveys indicated the sulphurrespiring Beggiatoa spp. (bacterial mats) was present within much of the site, with percent coverage ranging up to 100% in several locations during summer months. Similar to porewater sulphide, Beggiatoa spp. tended to be co-located with wood waste but were not always only found in wood waste areas. Consistent with the visual surveys, the presence of Beggiatoa spp. was co-located with higher TOC (e.g., >3\%). Consistent with the visual surveys, the presence of Beggiatoa was co-located with higher TOC (e.g., $>3 \%$). The presence of diatoms was co-located with areas of lower TOC (e.g., $<3 \%$), which was indicative of fewer benthic impacts.

A benthic community impact analysis was performed to assess the impact of wood waste on the existing benthic community (Hemmera 2018). The infauna community composition and species richness analysis showed that the study area generally shows signs of impairment, and that species richness is negatively correlated with TOC. Study area infauna community was dominated by opportunistic species or had very low abundance in most stations (Hemmera 2018).

Within the Project Work Areas, the only marine invertebrate organism observed during dive surveys conducted by Hemmera in January 2017 and December 2019 was one graceful rock crab (Metacarcinus gracilis). No invertebrate species at risk are expected to occur in the Project Work Areas (Hemmera 2018; Anchor QEA 2019c).

Marine vegetation was sparse within the Project Work Areas. Where present, vegetation consisted of unidentified red bladed algae (5\%), unidentified species of diatoms (up to 90%), and tube snout (Aulorhynchus flavidus, 2\%).

Several species of salmonids and Pacific herring may migrate through the Project Work Areas. Pacific herring are not expected to spawn in the Project Work Areas but may spawn in adjacent areas. Other marine fish species, such as flatfish, have the potential to occur in the Project Work Areas.

Within the Project Work Areas, smaller marine mammals can potentially pass through, including harbour seal, California sea lion, Steller sea lion, Dall's porpoise, and harbour porpoise. Larger marine mammals, such as killer whales, are not likely to be present in the Project Work Areas but may occur near the entrance of the harbour. Seven of these marine mammal species are known or have potential to occur in Esquimalt Harbour, four of which are species at risk (Section 8.3).

Marine birds may occur near the Project Work Areas, but the project is not expected to affect any nesting, as the project duration is short and conducted all from water-based equipment.

2.3 Social and Cultural Environment

Esquimalt Harbour is administered by DND and is governed by the Canada Marine Act, the Natural and Man-Made Harbour Regulations (pursuant to the Canada Marine Act), and the Esquimalt Harbour Practices and Procedures (pursuant to the Canada Marine Act). The Queen's Harbour Master (QHM) is the Transport Canada designated Harbour Authority for Esquimalt Harbour. All vessels entering or departing Esquimalt Harbour must contact the QHM Operations on marine VHF channel 10 or by telephone at (250) 363-2160.

Vessels entering and exiting Esquimalt Harbour include naval ships accessing DND Jetties, commercial traffic accessing the Esquimalt Graving dock, pleasure craft of all sizes, and recreational and commercial crab harvesting vessels (Golder 2018).

As per the Esquimalt Harbour Practices and Procedures, all crab harvesting is only allowed outside of the controlled access zones and water lease areas. However, since 2016, Fisheries and Oceans Canada (DFO) has closed Esquimalt Harbour to all harvesting, including commercial, recreational, and Aboriginal crab harvesting (DFO 2018).

The work will not impede recreational or cultural use of the harbour. Ships at anchor must register with QHM Operations and cannot remain at anchor for longer than 2 weeks.

Project Work Areas are located within the asserted traditional territories of the Songhees Nation and the Esquimalt Nation. No heritage resources, including archaeological sites or area of archaeological potential, have been identified in the Project Work Areas.

3 Roles and Responsibilities

This section describes the roles and responsibilities of DND, PWGSC, and the Contractor for implementing, inspecting, and reporting on the effectiveness of the environmental mitigation measures. The team organization and communication structure are illustrated in Figure 4. Appendix C (Table 1) provides the key contact information for staff that will serve in these roles for the Project.

3.1 Department of National Defence

DND is the proponent of the Project and is the overall authority. DND is responsible for the overall compliance with federal and provincial legislation. All communications with DND are to go through PWGSC. All communications with outside regulatory agencies are to go through DND, except as required by relevant laws and regulations. For example, in the event of a spill the responsible person or company will report the spill in accordance with the British Columbia (BC) Provincial Spill Reporting Regulation as described in Section 5.2.10.

DND staff includes the following:

- DND Project Director: Manages Project development activities, including the preparation of documents necessary to obtain departmental approval and funding allocation; ensures that the Project objectives are aligned with the established operational requirements and are maintained throughout Project completion.
- DND Project Leader: Represents the DND on all communications internally with the Project team and externally with stakeholders regarding the Project; also responsible for all detailed day-to-day activities and functions of the Project for DND.
- Queen's Harbour Master: Manages and oversees the movement of vessels in the harbour. The Contractor and Departmental Representative (DR) will liaise with the QHM of the Project schedule and of any changes in activities that might affect operations, such as schedule changes or unanticipated construction activities that may impact operations (e.g., vessel interference).

3.2 Public Works and Government Services Canada

PWGSC is DND's representative for the Project (PWGSC Representative) and is responsible for day-to-day compliance with environmental mitigation measures, permits, approvals, and authorizations. PWGSC may retain an EM to confirm that environmental management measures and controls are implemented in accordance with regulatory approvals, authorizations and permits, environmental components of the contract requirements, including this EMP, and the EPP prepared by the Contractor. The Contractor(s) and the EM will communicate with PWGSC about environmental aspects of the Project. All communications to DND will go through PWGSC.

Environmental monitoring will be conducted by or under the supervision of a Qualified Professional (QP). For the purposes of this EMP, a QP is defined as a person who is registered and/or licensed in the relevant jurisdiction with his or her appropriate professional association and/or licensing authority, acts under that professional association's and/or licensing authority's code of ethics, and is subject to disciplinary action by that professional association and/or licensing authority, and through suitable education, experience, accreditation, and knowledge can be reasonably relied on to provide advice within his or her area of expertise.

PWGSC staff includes the following:

- PWGSC Program Manager: Responsible for coordinating the delivery of the entire Project and managing the entire Project team.
- Departmental Representative: Serves as PWGSC's single point of contact for coordination with the contractor and technically and administratively manages the contract (e.g., coordinate/facilitate Project planning and scheduling; manage consultant team and contractor in day-to-day implementation of the Contract; reviews and accepts all Project submittals; review, coordinate, and manage advisory response to Requests for Information (RFIs); issues stop-work order when necessary; monitors and controls, through surveillance of Project activities, ensuring that relevant portions of the Project are implemented; interface directly with the Contractor to maintain an awareness in planning and scheduling of QA/QC processes).
- PWGSC Health and Safety Coordinator: Reviews the contractor's submitted Health and Safety Plan (HASP) and periodically visit the site to assess the Contractor's compliance, as well as DND safety protocols.

3.3 Consultant

The Consultant is Anchor QEA, the Designer of Record for the Project. The Consultant serves in an advisory role for technical support, construction management, and environmental monitoring. The Consultant will review submittals from the Contractor to determine if the submitted items and revisions are consistent with the design objectives, and will provide feedback, as appropriate. The consultant will also provide technical review, input, and recommended response language to the DR on RFIs and other Contractor inquiries.

In addition, the Consultant will be responsible for 1) field inspection and monitoring of the contractor's construction activities, for QA purposes only, and 2) environmental monitoring during construction (to confirm that environmental management measures and controls are implemented in accordance with regulatory approvals and environmental components of the Contract requirements, and as described in this EMP).

3.4 External Stakeholders

The External Stakeholders include the First Nations, Provincial Agencies, DFO, Environment Canada, and the community. These are generally considered external communications for the purposes of the Project, and the DND Project Leader will respond to any requests from the External Stakeholders regarding on-site activities associated with the Project and coordinate with PWGSC, the Consultant, and Contractor as necessary. The DND Project Leader will also inform the External Stakeholders of any changes in the scope of the Contract that will affect them. The Communications Plan, as part of the Project Management Plan, outlines further details on liaising procedures with External Stakeholders (Anchor QEA 2018).

All communications with External Stakeholders and/or the public will be addressed by DND for on-site activities and by the Contractor for all off-site activities. The Consultant and PWGSC will review the Communications Plan to understand intended lines of communication, but all inquiries for both on and off-site communications will go through DND. As needed, the Consultant will also be available to assist PWGSC with support for public meetings/discussions associated with on-site construction activities.

3.5 Contractor(s)

The Contractor(s) will be responsible for the actions of its agents, employees, and subcontractors, and thus will undertake all reasonable actions to have environmental protection measures in place and working effectively throughout the Project Work Site. The contractor(s) will:

- Adhere to requirements set out in regulatory authorizations, approvals and permits, and contract requirements, including this EMP.
- Undertake effective communication with work crews and subcontractors, such that environmental responsibilities and requirements are understood prior to the commencement of work and are implemented during the work. This will include disseminating information from orientation and other meetings to personnel not in attendance at those meetings.
- Retain an Environmental Specialist with appropriate skills to prepare the EPP(s) and evaluate performance against the requirements outlined in regulatory approvals, authorizations, and permits, as well as environmental protection goals provided in this EMP and the contract requirements. The environmental specialist will also conduct environmental monitoring to verify and document that the objectives of environmental legislation, terms and conditions of regulatory permits and approvals, and environmental contract requirements, including this EMP, are being met. Environmental monitoring tasks will include participating in meetings, conducting work site inspections, and reporting. The Contractor's Environmental Specialist will also be a QP (as defined in Section 3.2).
- Use equipment and implement work procedures and controls to prevent and/or reduce workrelated disturbance to environmental, social, heritage, archaeological, and cultural resources.
- Take preventative and corrective measures in response to non-conformance with regulatory permits, approvals and the contract requirements, including this EMP.
- Immediately respond to environmental incidents (defined in Section 6.0).

3.6 Reporting

3.6.1 Field-Based Inspection and Construction Monitoring Reporting

The field-based inspection and construction monitoring to be conducted by Anchor QEA field inspector will include the following:

- Monitor compliance with Contract requirements, ensuring that each item of work complies with the Specifications and Drawings.
- Identify activities that do not comply with the Contract requirements and reason(s) why the work was not completed in accordance with the requirements of the Contract.
- Coordination with the DR and Contractor will be required to decide the appropriate course of action to verify that completed work meets the intent of the Contract and project objectives.
- Regularly document construction progress or lack thereof.

3.6.1.1 Daily Field Activity Reporting

To keep track of details, the Anchor QEA field inspector will maintain a Daily Field Activity Report (DFAR), using their own company standard formats. An example form for Anchor QEA's DFAR is provided in Appendix B. The DFAR will record all items of importance regarding the work performed, including the following:

- Conditions. Conditions (e.g., weather, predicted tides, etc.), and any adverse conditions may have affected the Contractor's operations.
- Activities. Details of each activity (e.g., schedule, location); specific activity observation requirements are detailed in Section 8.3.
- QA/QC Activities. All QA/QC activities performed by the Contractor and/or PWGSC's subcontractors on days when these activities are performed.
- Difficulties. All difficulties encountered by field staff or the Contractor, rationale for the difficulty and any resolution that may have been reached by the DR and Contractor.
- Deficiencies and Violations: Construction safety incidents, labor, etc.
- Progress Information. Any delays, actions taken, and actions contemplated through coordination with the DR and Contractor.
- Construction Downtime. Daily and cumulative amount of time tracked as Contractor's downtime.
- Equipment. Arrival at the site and shipment from the site of each major item of equipment (by manufacturer, model, serial number, and capacity), equipment in use and any idle equipment.
- Tests. All tests and results thereof.
- Photo Log. Key photographs to illustrate the work conducted.

Reporting of the environmental monitoring (as described in Section 3.6.2.2) will be appended to the DFAR. The DFAR will be submitted as one compiled daily report to the DR on the next working day following completion of the construction activities/monitoring.

3.6.2 Environmental Reporting

3.6.2.1 Spill and Environmental Incident Reporting

Refer to Section 5.2.10 for spill reporting procedures, and Section 6.0 for environmental incident reporting.

3.6.2.2 Daily Environmental Monitoring Reporting

Environmental inspection and monitoring reports will be prepared by the contractor, appended to the DFAR, and submitted daily to the DR. Example report templates are provided in Appendix B. Reports may be submitted, as required, to regulatory agencies, First Nations, and public stakeholders by DND. Daily environmental monitoring reports will include, at a minimum, the following information:

- A description of construction activities undertaken during the reporting period
- A description of site inspections and monitoring activities undertaken
- Results of testing (e.g., water quality data)
- A description of environmental issues and corresponding mitigation measures implemented, and communication steps taken
- Tracking of emerging and outstanding environmental issues
- Photos documenting construction activities, environmental issues, and corresponding mitigation measures
- Reporting on environmental incidents (e.g., spills) and corrective action taken

3.6.3 Completion Reporting

Anchor QEA will prepare a completion report following completion of the Project. The report will summarize the Project activities conducted for environmental and construction monitoring, as well as field inspection. The completion report will include representative site photographs, a summary of monitoring data collected, a summary of construction activities including verification of depth of material, environmental management and issues during construction, how these issues were managed, and mitigation measures. GSI deliverables will be provided in Formation Safety and Environment standard requirements.

4 Regulatory Setting

Table 1 provides a summary of federal and provincial environmental legislation and municipal bylaws, as well as authorizations, permits and approvals issued for the Project (current to June 2019). This legislation provides the framework for the procedures described in Section 5.0 of this EMP. This section is not necessarily exhaustive or all-inclusive; it is the Contractor's responsibility to understand the regulatory context governing their activities and to act accordingly. Should clarification of any environmental issue be required, the Contractor should consult the original regulation or legislative document.

If additional authorizations, permits or approvals are required, the Contractor(s) will be provided with copies received by DND from regulatory agencies and will be responsible for complying with the terms and conditions specified within these documents as well as the provisions of the statutes under which the approvals have been issued. DND and the Contractor(s) will be required to keep copies of all Project approvals, authorizations, and permits available for inspection as needed at the Project Work Areas.

4.1 Applicable Best Management Practices and Guidelines

Table 2 provides a list of applicable BMPs and guidelines that apply to the Project.

5 Environmental Requirements

This section is an overview of environmental requirements of the Project and is intended to be read in conjunction with environmental legislation, authorizations, permits, and approvals issued for the Project, BMPs and guidance documents (Section 4.0), and the contract requirements for the Project, which includes this EMP. The environmental requirements are based on potential Project effects identified in the EED Report and other relevant environmental legislation and bylaws.

5.1 Environmental Protection Plan

Prior to the commencement of the Project, the Contractor will prepare an EPP that demonstrates how they will satisfy the requirements set out in this EMP. The Contractor will retain a QP to prepare the EPP. The EPP will include the following information:

- Organization chart and names of persons responsible for EPP implementation and compliance
- Training requirements
- Site and activity-specific measures that will be implemented, equipment that will be used, and maintenance that will be undertaken
- Contingency procedures in the event that environmental protection goals are not being met
- Drawings, for example, showing work and storage areas

The EPP will include, at a minimum, procedures for the following:

- Dust and emissions control
- Water quality protection
- Spill prevention and response
- Silt curtain control
- Sediment and erosion control
- Non-hazardous waste storage and disposal
- Monitoring for presence of herring and marine mammals a as well as triggers for modifying work
- Archaeological chance find management

The EPP will be part of submissions by the contractor and will be reviewed by DND/PWGSC and must be accepted prior to construction to make sure it meets the intent of the EMP. The contractor will address any deficiencies in the EPP.

5.2 Protection Measures

5.2.1 Air Quality

References

- The Township of Esquimalt Maintenance of Property and Nuisance Regulation Bylaw, 2014, No. 2826.
- EED Report: DND Wood Waste Remediation Pilot Project
- Contract technical specifications

Mitigation Measures and Monitoring

Air Quality Protection Measures	Responsibility	Timing
Environmental Protection Plan Components		Contractor
Dust and Emissions Control Plan will include specific measures that will be undertaken to meet prohibitions outlined within relevant municipal bylaws and exposure limits outlined within the Occupational Health and Safety Regulation.	Before work commences	
Mitigation Measures	Contractor	On-going during work
Implement dust control measures (such as the use of water as a dust suppressant) as outlined in the design specifications.	Contractor	On-going during work
Vessels and equipment will be well maintained and in good working order.	Contractor	On-going during work
Efforts will be made to minimize exhaust emissions. The contractor will be encouraged to use clean alternative fuels for vessels and equipment. Idling of vessels and equipment will be minimized.	Contractor's Environmental Specialist. PWGSC's EM may do spot checks	On-going during work
Monitoring		

5.2.2 Water Quality

References

- Fisheries Act
- Canada Shipping Act and associated regulations
- Environmental Management Act (EMA)
- Capital Regional District Bylaw No. 2922 (Consolidated)
- WQMP (Appendix A)
- EED Report: DND Wood Waste Remediation Pilot Project
- Contract technical specifications
- Formation Safety and Environment Management System Directives for spill response, storage tanks, and effluent management

Mitigation Measures and Monitoring

Water Quality Protection Measures	Responsibility	Timing
Environmental Protection Plan Components		
Water Quality Protection Plan as part of the EPP which will include specific measures that will be undertaken and equipment to be used to meet the water quality objectives outlined in the WQMP for material placement.	Contractor	Before work commences
Spill Prevention and Response Plan as part of the EPP which will include specific measures that will be undertaken to prevent and respond to spills.	Contractor	Before work commences
Silt Curtain Control Plan as part of the EPP to describe how the silt curtain will be installed, maintained and inspected, if required to protect water quality. If required, silt curtain should be inspected daily from the surface of the water.	Contractor	Before work commences
Sediment and Erosion Control Plan as part of the EPP which will include specific measures that will be undertaken and equipment to be used to prevent transport and erosion of barge sand during periods of rain and/or wind.	Contractor	Before work commences
Mitigation Measures		
Material Placement		
Sand cover material must be clean, fine-grained sand material, free of organic material as similar in nature to the native sediment within the Work Site as practical and must conform to specific gradations as indicated in the specifications.	Contractor. Results will be review and approved by the PWGSC Representative prior to use	Before material placement
As outlined in the specifications, the contractor must describe in its construction work plan what means, methods and procedures will be used to prevent water quality requirement exceedances, and what contingency actions will be taken to restore compliance.	Contractor	Before material placement
A silt curtain may be required to be used during material placement activities if water quality performance requirements outlined in the WQMP cannot be met without a silt curtain.	Contractor	On-going during work
As outlined in the specifications, the contractor must employ placement means and methods that will avoid resuspending sea bed sediment during placement activities and prevent excessive mixing of the placed material with the sea bed sediment.	Contractor	On-going during work
As outlined in the specifications, the contractor must not place material by rapid dumping of a barge load; rather, it must be placed in a controlled manner.	Contractor	On-going during work
Monitoring		
Water quality monitoring requirements will be undertaken as outlined in the WQMP.	Contractor's Environmental Specialist	On-going during work
Implementation of monitoring procedures outlined in the WQMP to verify that the performance objectives are being met and employ	Contractor	On-going

Water Quality Protection Measures	Responsibility	Timing
management decisions in the event that the performance objectives are not met.		

5.2.3 Marine Vegetation, Invertebrates, and Fish and Fish Habitat

References

- Fisheries Act
- DFO's Measures to Avoid Causing Harm to Fish and Fish Habitat
- EED Report: DND Wood Waste Remediation Pilot Project

Mitigation Measures and Monitoring

Marine Vegetation, Invertebrates, and Fish and Fish Habitat Protection Measures	Responsibility	Timing
Environmental Protection Plan Components		
The EPP will include Contractor monitoring requirements for fish and triggers for modifying work.	Contractor	Before work commences
Mitigation Measures		
All Work Activities		
Before entering Esquimalt Harbour, remove plants, algae, and animals attached to or inside vessels to help avoid the spread of marine invasive species.	Contractor	Before work commences and ongoing during work
Monitoring		
General		
Work is scheduled to occur within the least risk window for fish (DFO in-water work window). However; if delays occur and the work window falls between 15 February and June 1, a qualified EM will visually observe from the surface of the water for spawning herring (i.e., schools of herring depositing eggs or releasing milt) and herring eggs within and adjacent to the Project Work Site. Monitoring for spawning herring and herring eggs will be undertaken every day that in-situ water quality monitoring is conducted. If herring spawning is observed within in-water work areas, the PWGSC Representative will be informed and work with potential to affect herring egg masses or emergent larvae will be stopped for 10 to 14 working days. If herring eggs are found on equipment, the PWGSC Representative will be informed, and work will be stopped and will not resume until after eggs have hatched.	PWGSC's EM	During inwater works between February 15 and June 1
For work within a silt curtain, if large schools of fish are observed in the enclosed silt curtain, in-water work should be temporarily suspended, and the silt curtain opened to allow fish to escape.	Contractor's Environmental Specialist. PWGSC's EM may do spot checks	During inwater works

Material will be placed in such a way as to not increase the risk of mortality and or injury to fish within the Work Site. The material will be placed carefully by clamshell barge either near the water surface, below the surface within approximately 1 m of the substrate), or by some method approved by the Contractor, PWGSC, and the EM.

5.2.4 Marine Mammals

References

- Marine Mammal Regulations
- Species at Risk Act
- DFO's "Watching Marine Wildlife" (DFO 2019)
- EED Report: DND Wood Waste Remediation Pilot Project
- Formation Safety and Environment Management System Directives

Mitigation Measures and Monitoring

Marine Mammal Protection Measures	Responsibility	Timing
Environmental Protection Plan Components		
The EPP will include Contractor monitoring requirements for marine mammals and triggers for modifying work.	Contractor	Before work commences
Mitigation Measures		
Vessels will follow standard boat operation when in proximity to marine mammals in accordance with the Marine Mammal Regulations and DFO's guidance for watching marine wildlife: - Under no circumstances, other than in the case of an emergency, will vessels approach within 200 m of any killer whale or within 100 m of all other whales, dolphins and porpoises. For all other marine mammal encounters, vessels will avoid approaching within 100 m of a marine mammal in the water or a seal/sea lion haul out. - As safe navigation allows, reduce speed to less than 7 knots when within 400 m of the nearest whale. Avoid abrupt course changes. - If seals or sea lions are encountered, reduce boat speed, minimize wake, wash and noise, and then slowly pass without stopping. Avoid sudden changes in speed and direction. - Pay attention and move away, slowly and cautiously, at the first sign of disturbance or agitation. - Do not disturb, move, feed or touch any marine wildlife, including seal pups. - Emergency collisions with marine mammals, or a sighting of an entangled or injured marine mammal, are to be immediately reported to Coast Guard (VHF Channel 16) or Whale Emergency Network (1-800-465-4336). Additionally, DND	Contractor	On-going during work

Formation Safety and Environment needs to be contacted for all marine mammal issues.		
If a marine mammal is observed in the enclosed silt curtain area, inwater work should be suspended, and the silt curtain opened to allow it to escape.	Contractor	On-going during work
Monitoring		
Marine mammal monitoring will be implemented during all in-water activities as a component of the environmental monitoring, with presence/absence communicated to the contractor.	Contractor's Environmental Specialist. PWGSC's EM may do spot checks	During all in-water activities
Visual observations of work within a silt curtain will be made to verify that marine mammals do not become entrapped. If a marine mammal is observed in the enclosed area, the PWGSC Representative will be informed, and in-water work will be suspended, and the enclosed area opened to allow the mammal to leave.	Contractor's Environmental Specialist. PWGSC's EM may do spot checks	On-going during work

5.2.5 Birds

References

- Migratory Birds Convention Act
- Wildlife Act
- EED Report: DND Wood Waste Remediation Pilot Project
- DND Formation Safety Environment Management System (FSEMS) Natural Resource Management Directive E5

Mitigation Measures and Monitoring

Bird Protection Measures	Responsibility	Timing
Environmental Protection Plan Components		
The EPP will include Contractor monitoring requirements for birds and triggers for modifying work.	Contractor	Before work commences
Mitigation Measures		
If a bird is observed nesting nearby on Inskip Island, an appropriately qualified biologist should be contacted to evaluate whether the work activities may disturb nesting activities.	Contractor	On-going during work
Monitoring		
Monitoring for signs of nesting, injured or dead birds will be undertaken by a qualified EM.	Contractor's Environmental Specialist. PWGSC's EM may do spot checks	On-going during work

5.2.6 Navigation

References

- Esquimalt Harbour - Practices and Procedures (Royal Canadian Navy 2019)
- Canada Shipping Act and its associated regulations
- Contract technical specifications
- EED Report: DND Wood Waste Remediation Pilot Project

Mitigation Measures and Monitoring

Navigation Protection Measures	Responsibility	Timing
Navigation Control Plan		
The Contractor must submit a Navigation Control Plan describing means and methods by which vessel movements and harbour control procedures and practices will be completed and monitored.	Contractor	Before work commences
Mitigation Measures		
The work will be conducted in accordance with the Esquimalt Harbour Practices and Procedures.	Contractor	On-going during work
Material transported by barge into, within, and out of Esquimalt Harbour requires the Contractor to coordinate directly with QHM pursuant to the Canada Marine Act. The PWGSC Representative requires 72-hour notification of all material transported by barge into or out of Esquimalt Harbour. Material barge transport movements within Esquimalt Harbour require a 24-hour notification to the QHM.	Contractor	As necessary
Work will be phased to minimize disruptions to other vessel traffic which includes mitigations in the specifications (i.e., stand-by time).	Contractor	On-going during work
QHM will be consulted for overnight moorage of vessels and provided points of contact for any emergencies involving the vessels.	Contractor	On-going during work
Additional emergency docking and navigation management procedures outlined in the Navigation Control Plan will be followed.	Contractor	On-going during work
Monitoring		
PWGSC and QHM will be monitoring the contractor's execution of work including navigation in Esquimalt Harbour.	PWGSC's EM and QHM	On-going during work

5.2.7 In-Air Noise, Light and Odour

References

- The Township of Esquimalt, Maintenance of Property and Nuisance Regulation Bylaw, 2014, No. 2826.
- The Town of View Royal: Noise Bylaw No. 523, 2003.
- The City of Colwood: Colwood Noise Bylaw, Bylaw No. 1594, 2016.
- The City of Colwood: Nuisance (Controlled Substance) Bylaw No. 851, 2006
- EED Report: DND Wood Waste Remediation Pilot Project
- Contract technical specifications

Mitigation Measures and Monitoring

In-Air Noise, Light and Odour Protection Measures		Responsibility
Mitigation Measures	Timing	
The Contractor must comply with local ordinances regarding noise control while conducting activities at the Work Site.	Contractor	On-going during work
The contractor is to meet the intent of Township of Esquimalt, Colwood, and View Royal Noise By-laws at the Work Site boundary or modify work activities. Noise restrictions apply within the hours of 7:00 p.m. to 7:00 a.m. between Monday and Saturday and at all times on Sundays and statutory holidays. The City of Colwood also limits creating noise or sound by the operation of drills, compressors or other equipment used to prepare land for blasting before 8:00 a.m. or after 5:00 p.m., Monday to Saturday, and at all times on Sundays and Statutory Holidays. The contractor must undertake noisier work activities during daytime hours and modify activities based on noise monitoring and resident feedback.	Contractor	
Construction equipment must be operated with exhaust systems in good repair to minimize noise.	Contractor	On-going during work
Make sure that noise control devices (i.e., mufflers and silencers) on construction equipment are properly maintained.	Contractor	On-going during work
The contractor must implement use of lighting shrouds for work to be completed during night-time hours to minimize lighting disruptions to local residents.	Contractor	On-going during work
Monitoring	On-going	
Air noise monitoring may be conducted on an as needed basis if complaints are received, to verify that specified bylaw noise levels are met. Complaints received about noise will be reviewed to evaluate the need to implement additional noise monitoring or modifications to activities.	During work	

5.2.8 Spill Prevention and Emergency Response

References

- Fisheries Act
- Migratory Birds Convention Act
- Canada Shipping Act
- EMA and Spill Reporting Regulation
- Esquimalt Harbour Practices and Procedures
- EED Report: DND Wood Waste Remediation Pilot Project
- FSEMS Spill Response Directive SE5
- FSEMS Emergency Reporting Directive SE1
- Contract technical specifications

Mitigation Measures and Monitoring

Spill Prevention and Emergency Response Protection Measures	Responsibility	Timing
Environmental Protection Plan Components		
The Spill Prevention and Emergency Response Plan which will include specific measures that will be undertaken, and equipment used, to prevent spills and to respond to emergencies. At a minimum, the plan will include: - Procedures for spill prevention including refueling of marine equipment within the Work Site and within Esquimalt Harbour. - Procedures, response actions, and reports to be used in the event of an unforeseen spill of regulated substance, including containment, recovery, and clean-up procedures - Spill incident report forms - On-site spill/release clean-up materials, equipment, and locations - Names and telephone numbers of persons and organizations that may be contacted in the event of a potential environmental incident, including PWGSC/ DND and representatives, the Contractor's Environmental Specialist(s), Contractor(s) representative and local emergency response organizations. The Plan will be available for inspection by the PWGSC Representative and regulatory agency personnel and will be posted at conspicuous locations in the work site and in relevant machinery.	Contractor	Before work commences

Mitigation Measures

To reduce the risk of fluid spills reaching the aquatic environment and to protect worker safety, the Contractor will follow, at a minimum, the following mitigation measures:

- Vessels and machinery will arrive on-site in a clean/good condition and maintained free of fluid leaks.
- All work will be conducted in a manner that does not result in the deposit of a toxic or deleterious substance into waters frequented by fish.
- All field personnel will be made aware of the location of emergency spill response equipment and the procedures necessary to contain spills of any fluid.
- Wash, refuel and service machinery and store fuel and other materials for the machinery in such a way as to prevent any deleterious substances from entering the water.
- Secondary containment trays will also be used for any products that have potential to leak or spill, such as gasoline, diesel fuel, oil, paints, and solvents
- Appropriate spill control equipment will be kept on site at all times during the work.
- Operating personnel are to be familiar with the contents and use of spill response equipment and the location and operation of emergency 'shut-offs'.

- Materials contaminated by a Project-related release of deleterious substances will be recovered and placed into containment for subsequent off-site disposal at an appropriate facility.			
Monitoring	Contractor's Environmental Specialist. PWGSC's EM may do spot checks	On-going during work	
The work area will be inspected for effectiveness of control measures put into place by the Contractor(s).			
Reporting			
For spills to the marine environment, the Contractor will immediately notify the PWGSC Representative upon detection of the spill. As per the Esquimalt Harbour Practices and Procedures, the Fisheries Act, the Canada Shipping Act and the EMA, the Contractor will also notify Emergency Management BC (1-800-663- 3456) and the Queen's Harbour Master (250-363-2160).		On-going	
For spills to land, refer to the Spill Reporting Regulation to determine if the spill is reportable to Emergency Management BC. If the spill to land is of a reportable size, the Contractor will report the spill to the PWGSC Representative and Emergency Management BC (1-800-663-3456). A written report will be provided to the PWGSC Representative and applicable government agencies within 24 hours of any spill to the marine environment, or a reportable spill to land. Additional reports will be to the PWGSC Representative and applicable government agencies as per the Spill Reporting Regulation (Amended October 2018) of the EMA.		Contractor	

5.2.9 Non-Hazardous Waste Management

References

- Formation Safety and Environment Management System Directives
- Contract technical specifications
- Canada Marine Act
- Canada Shipping Act
- Transportation of Dangerous Goods Act
- BC Transportation of Dangerous Goods Act
- Navigation Protection Act
- Fisheries Act
- EMA
- Contaminated Sites Regulation (pursuant to EMA)
- EED Report: DND Wood Waste Remediation Pilot Project
- Contract technical specifications

Mitigation Measures and Monitoring

Non-Hazardous Waste Management Protection Measures	Responsibility	Timing
Environmental Protection Plan Components		
Specific measures to be undertaken and equipment to be used to manage nonhazardous waste will be described. The measures will address, at a minimum: - A list of approved locations that will accept recyclable and non-recyclable solid nonhazardous construction wastes to be generated during the Work - The types and quantities of materials to be recycled, as well as those requiring disposal, names of construction waste material haulers, and approved disposal facilities that meet the requirements of the EMA.	Contractor	Prior to work commencing
Mitigation Measures		
Refuse and debris related to the Work will be collected and disposed of at approved disposal facilities in compliance with laws and requirements of all authorities having jurisdiction.	Contractor	On-going during work
The Contractor will not dump, burn, bury, or allow others under its control to dump, burn, or bury construction wastes and refuse associated with the Work. Should refuse or construction wastes related to the Work be dumped, the Contractor will immediately act to clean up and remove the waste material to an approved location.	Contractor	On-going during work
The Contractor's work area will have a recycling and waste management program in place. Among other things, clearly labelled garbage bins with lids and recycling containers must be made available for food waste and recyclable office waste. The Contractor will arrange for the placement of garbage receptacles and recycling containers at key locations within the Work Site such as in the vicinity of the laydown area. Garbage bins kept outside will have lids sufficient to keep wildlife from accessing the waste inside.	Contractor	On-going during work
The Contractor will establish regular clean up and disposal programs to prevent the unnecessary accumulation of excessive construction waste and refuse.	Contractor	On-going during work
Monitoring		
The work area will be inspected for effectiveness of control measures put into place by the Contractor(s).	Contractor's Environmental Specialist. PWGSC's EM may do spot checks	As necessary

5.2.10 Hazardous Materials Handling and Storage

References

- BC Fire Code
- National Fire Code of Canada
- Transportation of Dangerous Goods Act
- BC Transportation of Dangerous Goods Act
- Workplace Hazardous Materials Information System
- EMA
- Hazardous Waste Regulation (pursuant to EMA)
- BC Field Guide to Fuel Handling Transportation \& Storage
- Formation Safety and Environment Management System Directive
- EED Report: DND Wood Waste Remediation Pilot Project
- Contract technical specifications

Mitigation Measures and Monitoring

Hazardous Materials Handling and Storage Protection Measures	Responsibility	Timing
Environmental Protection Plan Components		
Specific measures that will be undertaken and equipment that will be used to manage hazardous materials will be described, including: - The proposed location and types of facilities where hazardous materials will be stored and handled, and where construction equipment will be refueled. - Details of containment facilities for fuels, oils, antifreeze, and other liquid forms of hazardous materials such that spills can be contained and collected before contaminants enter soils or reach any watercourse or storm water system. This information may be included in the Health and Safety Plan prepared by the Contractor for the Project.	Contractor	Prior to work commencing
Mitigation Measures		
Hazardous materials will be disposed of in accordance with law and the requirements of all authorities having jurisdiction.	Contractor	On-going during work
Should the on-site storage of hazardous materials such as gasoline or oils be required, secondary containment capable of holding at least 110% of all hazardous materials stored within will be in place.	Contractor	On-going during work
Above ground storage tank areas will be bermed, lined, and have in place appropriate drainage systems for removing accumulated rainwater.	Contractor	On-going during work
Current Safety Data Sheets (SDS) ${ }^{1}$ and an inventory will be maintained for all controlled substances used, stored, and handled on-site associated with Project activities.	Contractor	On-going during work
An area will be designated, as required, for the transfer or temporary storage of hazardous materials and wastes. The area will be clearly labelled and controlled in accordance with Workplace Hazardous Materials Information System and other statutes.	Contractor	On-going during work
Where construction activities involve the handling, storage, and removal of hazardous waste, the Contractor(s) will maintain the following records: - Inventories of types and quantities of hazardous waste generated, stored, or removed	Contractor	On-going during work

- Manifests identifying hazardous waste haulers and disposal destinations - Disposal certification documents					
Personnel will be trained in the handling and transportation of dangerous goods and controlled substances.	Contractor	On-going during work			
Monitoring				Contractor's Environmental Specialist. DCC's EM may do spot checks	As necessary
The work area will be inspected for effectiveness of control measures implemented by the Contractor(s).	Sporer				

Notes:

1. Formerly called "material safety data sheets" or MSDS.

5.2.11 Archaeology

References

- Technical Guidance for Assessing Physical and Cultural Heritage or any Structure, Site or Thing that is of Historical, Archeological, Paleontological or Architectural Significance under the Canadian Environmental Assessment Act, 2012 (March 2015) (Canadian Environmental Assessment Agency 2015)
- Heritage Conservation Act
- B.C. Archaeological Impact Assessment Guidelines. (Archaeology Branch, Ministry of Forests, Lands, Natural Resource Operations and Rural Development 1989)
- EED Report: DND Wood Waste Remediation Pilot Project

Mitigation Measures and Monitoring

Archaeology Protection Measures	Responsibility	Timing
Environmental Protection Plan Components		
The EPP will include Archaeological Chance Find Management procedures	Contractor	Before work commences
Mitigation Measures		
Archaeological Chance Find Management Guidelines are to be followed if sediment will be handled (i.e., removal if a test area is overfilled, etc.). Totes for storage and protection of items will be provided along with a cedar box and blanket for HR if identified.	Contractor	As necessary
Monitoring		
Monitoring of excavated sediments, if applicable, will include provisions for the collection of observed historically, archaeologically, or paleontologically significant artifacts, features, and faunal materials, as well as human remains.	PWGSC's Archaeologist will conduct periodic monitoring and respond to chance find call-outs.	On-going during work

5.3 Environmental Site Inspections

Environmental site inspection tasks are outlined in Table 3. These inspections will be separate from inspections carried out by the Contractor as part of their implementation and quality control for the EPP. Environmental site inspections should be undertaken at the beginning of the work and throughout the program thereafter dependent on the activities and equipment on-site. The frequency of inspections may be increased based on direction from PWGSC or based on coordination with PWGSC/DND regarding the results of the inspections.

The Contractor is responsible for mechanical inspections by qualified personnel, for maintaining health and safety equipment and procedures for their work, and for maintaining equipment logs (maintenance and inspection) which can be produced upon request to verify that mechanical inspections are being conducted.

6 Environmental Incidents

An environmental incident is an event that has caused, or has the potential to cause:

- Damage to aquatic or terrestrial habitat
- Adverse/harmful effects to fish, wildlife or other environmental resources
- Adverse publicity associated with impacts on the environment
- Violation of statutes or regulatory authorizations
- Environmental damage

Examples of environmental incidents include, but are not limited to:

- Spill to the marine environment or a spill of reportable size under the EMA Spill Reporting Regulation
- Deposit of a deleterious substance
- Serious harm to fish without prior authorization
- Injury to marine mammals or birds

All environmental incidents are to be reported to DND immediately via the PWGSC Representative. Refer to Section 5.2.10 for additional spill reporting requirements to be undertaken by the Contractor. An Environmental Incident Report (EIR) is to be prepared and submitted by the Contractor(s) to provide a timely and accurate internal written notification of environmental incidents to DND. The deadline for submission of the initial spill report to EIR is within 24 hours following an incident. The EIR will include the following information:

- Who reported, and responded, to the incident
- A description of the incident (e.g., date, time, cause, personnel present, type of material spilled, environment affected)
- Actions taken to mitigate the incident
- Preventative measures implemented following the incident
- Photo documentation
- Spill Report Number issued by Emergency Management BC if applicable

The written EIR is not intended to take the place of verbal notification of an incident requiring immediate action or further notification of regulatory agencies (e.g., a spill that affects neighbouring properties or requires assistance in the supply or deployment of containment equipment).

As well as internal reporting to PWGSC and DND and external reporting to authorities listed in Section 5.2.10, it may be necessary in some situations to report an environmental incident to local municipal environmental representatives (Township of Esquimalt, City of Colwood) and owners of neighbouring properties (e.g., DND, QHM). DND will provide these notifications.

In the event that the incident is considered an emergency, and the PWGSC Representative is not available, or where a delay in notification could result in environmental damage or risk to human health, PWGSC's EM will provide these notifications. Notification of corrective measures and closure of the incident may also be reported, as per direction from DND.

7 Environmental Monitoring Implementation Plan

The purpose of an Environmental Monitoring Implementation Plan is to describe how the monitoring of environmental performance objectives, potential environmental risks, and mitigation measures identified in the EMP will be implemented. Due to the limited scope and short duration of the Project, a separate Environmental Monitoring Implementation Plan was not prepared for this effort, and the implementation plan steps are provided in this EMP.

The Project consists of the following components:

- Mobilization and demobilization
- Placement of material
- In-water transportation (of placement material)

To assure compliance of environmental requirements (Section 5), the environmental monitoring for this program will include the elements described in the subsequent sections.

7.1 Water Quality Monitoring

Water quality will be monitored daily following the WQMP provided in Appendix A.

7.2 Pacific Herring Monitoring

The Pacific Herring spawning season is typically mid-March to mid-April (DFO 2019). The construction window should not overlap with the spawning season; however, as a protective measure, visual observations for herring spawn will occur during construction.

The following monitoring will be undertaken for Pacific herring:

- The EM will visually observe from the surface of the water for spawning herring (i.e., schools of herring depositing eggs or releasing milt) and herring eggs within the in-water project areas. Monitoring for spawning herring and herring eggs will be undertaken every day that in situ water quality monitoring is being conducted. Milt should be visible as white opaque water from the surface of the water, and attached eggs may be more visible on vegetation or equipment at low tide. Spawning herring may also attract birds and marine mammals, which may be observed from the surface of the water.
- If herring spawning is observed within in-water project areas, the EM will inform PWGSC and work with the potential to affect herring egg masses or emergent larvae will be stopped until safe to resume work.

If herring eggs are found on equipment, the EM will inform PWGSC, and work will be stopped and will not resume until after eggs have hatched.

7.3 Marine Mammal Monitoring

Several marine mammal species are known to occur in and around Esquimalt Harbour, four of which are Species at Risk (Table 4). Construction activities will not generate significant underwater noise. If marine mammals are encountered during material placement, the protection measure outlined in Section 5.2 .5 will be implemented.

7.4 Bird Monitoring

Monitoring for signs of injured or dead birds will be undertaken by a qualified EM.

7.5 In-Air Noise, Light, and Odour Monitoring

In the event that complaints regarding in-air noise, light, or odour from the project are received from neighbouring municipalities (i.e., Colwood, View Royal, and Esquimalt), monitoring will be undertaken to determine if applicable bylaws are being followed. If bylaws are not being followed, the EM will discuss potential mitigation measures with PWGSC and the contractor.

7.6 Non-Hazardous and Hazardous Waste Management

Spot checks on equipment and non-hazardous/hazardous material storage will be conducted by a qualified EM to ensure waste management control measures are put into place by the Contractor(s).

8 Construction Quality Assurance Plan

The purpose of this section is to document construction management requirements and outline communication pathways for PWGSC and its project consultants responsible for implementation, administration, and monitoring of the Project. Due to limited scope and short duration of the Project, a separate Construction Quality Assurance Plan was not prepared for this effort.

8.1 Project Construction Activities

The key construction activities and sequencing for the Project provided in this section are intended to be conceptual (in the general order of occurrence, as provided in Specification Section 011155 [General Instructions]) and may be modified by the Contractor, for acceptance by PWGSC, as needed to complete the work. Specific construction activities to be performed as part of the Project include the following:

- Mobilization, approval of pre-construction submittals and materials, and pre-construction surveys
- Material placement
- Practice placement in Work Area 2 and approval of work by the DR
- Material placement in Work Area 2
- Test areas must be completed in the following order: test areas 7 and 8
- Material placement in Work Area 1
- Test areas must be completed in the following order: test areas $1,2,3,4$, and 5 (optional work, if needed and as directed by the DR)
- All work must be completed in one test area before moving on to the next test area
- The contractor may move on to the next test area while waiting for approval of work in the previous test area
- A maximum of two test areas may be completed within each work day
- Post-construction surveys should be conducted to verify spatial extent and thickness of placed fill materials within the practice area and each test area once they are completed
- Demobilization, which is anticipated to occur daily, can occur once placement in all test areas has been approved by the DR

The Specification sections and drawings constitute the standard against which the contractor's performance is measured. Criteria for acceptance are either explicitly stated or provided as a measurable standard. Discrepancies between Specification sections of the contract must be addressed through RFI procedures, and clarifications given to the contractor. The work to be performed by the contractor will not only include all the requirements specified throughout each of the Specification sections and drawings, but also information provided in the Unit Price Table
(included in the tender documents), site information (including reference drawings, documents, surveys, and other data reports), applicable contract documents, as well as this EMP.

8.2 Construction Management Activities

8.2.1 Contract Award Meeting

As specified in the Specifications, within 10 working days following Contract Award, the DR will request a Contract Award Meeting to discuss and resolve administrative procedures and responsibilities. The DR will select appropriate parties to attend the Contract Award Meeting.

8.2.2 Contractor Pre-Construction Meeting

DND and PWGSC PM, the DR, the Consultant Contractor, the Contractor's site superintendent, and major subcontractors, and supervisors will attend the Contractor pre-construction meeting following the Contract Award Meeting. Per Section 011155 (General Instructions), the Contractor will schedule and organize the Contractor pre-construction meeting following the award of the Contract.

Meeting notes will be compiled by the Contractor and distributed in draft format to all attendees for review and comment. The meeting notes will be updated accordingly and then issued as a final record of the meeting.

8.2.3 DND/PWGSC/Consultant Pre-Construction Meeting

Prior to the start of construction activities (between the Contract Award meeting and the Contractor pre-construction meeting), DND, PWGSC, and the Consultant will meet to review protocol for communication and to run through scenarios for typical daily execution of the Project work. This preconstruction meeting will be used to finalize identification of the Consultant point of contact and to further refine procedures for communication between DND, PWGSC, the Consultant, and the Contractor.

8.2.4 Review of Submittals

Submittals are required from the Contractor to supplement the Drawings and Specifications by showing the detail necessary to construct, verify, and confirm items to be incorporated into the work. Submittals will require review by the DR or the Consultant (if applicable). Document control procedures (review, distribution and storage, elimination of obsolete documents, and control of document changes) will be the responsibility of the DR and are outlined in the PWGSC Records and Document Management Plan, as part of the Project Management Plan (Anchor QEA 2018).

Submittals and the review of submittals will be tracked by PWGSC and the Consultant with the Submittal Tracking Table (Appendix D). This table contains all Contractor submittals and will be used to track the progress of each submittal from its initial receipt by PWGSC to its final acceptance.

Contractor submittals are provided directly to the DR (generally as an RFI) before being passed onto the Consultant for review. The Consultant will, in turn, provide feedback (e.g., comments, questions, or revisions) on the submittal to the DR, which will be conveyed back to the Contractor. The Submittal Review Table can track multiple revisions of a submittal, if necessary.

The DR may call upon the Consultant to review other submittals and other aspects of construction as they arise.

8.2.5 Construction Meetings

Technical and environmental requirements of the Project are to be reviewed by the Contractor(s) and their crews in the Contractor pre-construction meeting (see Section 8.2.2) and daily tailgate meetings. Due to the short construction window, weekly meetings are not anticipated.

The Contractor will hold daily tailgate meetings in accordance with Specification Section 013119 (Project Meetings). Besides the Contractor, additional attendees may include the inspectors, field staff, and other interested parties. The purpose of this meeting is to have a field review of staff safety and potential safety concerns, as well as planned daily work activities and related environmental concerns.

8.3 Inspection Requirements

General inspection requirements for the Project construction activities are described in the following sections.

8.3.1 Material Placement

Per Specification Section 353710 (Material Placement), inspection requirements of the field inspectors for material placement will include the following:

- Daily inspection of work, including means, methods, and sequencing of material placement and compliance with Drawings and Specifications.
- Review of Contractor Daily Construction Reports to ensure that reporting of activities completed is consistent with observation of the activities and in compliance with the requirements of the Drawings and Specifications.
- Daily observation of work activities to ensure the following:
- The Contractor is implementing BMPs while conducting material placement, as described in its Construction Work Plan.
- The Contractor is using materials that meet the gradation requirements provided in the Specifications.
- The Contractor is employing means and methods that allow for placement of materials within the defined material placement thicknesses and including the vertical placement tolerances.
- The Contractor is using the approved siderite and blending the siderite and sand to the required concentration.
- The Contractor is in compliance with environmental protection requirements as stated in Specification Section 013543 (Environmental Procedures), and in accordance with the permits.
- The Contractor places materials in a manner that minimizes the resuspension of sediment.

8.3.1.1 Import Material Inspection and Testing

The Contractor is required to provide materials testing for Material Types 1 and 3 (clean sand and rock, respectively) brought to the Work Site and intended for use on the Project. Material Types 1 and 3 must be analyzed for metals, polycyclic aromatic hydrocarbons, light extractable petroleum hydrocarbons, and heavy extractable petroleum hydrocarbons, but additional analyses may be necessary based on the current and historical land uses at the source site. In addition, Material Type 1 must have chemical concentrations lower than the Canadian Council of Ministers of the Environment Sediment Quality Guidelines "Probable Effects Levels" and Contaminated Sites Regulation Generic Numerical Sediment Criteria for typical sites. For light extractable petroleum hydrocarbons and heavy extractable petroleum hydrocarbons, concentrations must be lower than the Contaminated Sites Regulation numerical soil standards for residential land use.

The Contractor will provide test results of Contractor laboratory testing to the Consultant and PWGSC for review and acceptance no less than 2 weeks prior to the start of placement activities at the Work Site.

The Consultant and DR may complete inspections of the borrow facilities (that will provide the backfill material to the Work Site) in advance of materials being brought to the Work Site for placement. The Consultant and DR must accept the borrow facility(ies) prior to the Contractor importing the materials to the Work Site.

Upon arrival of imported material to the Work Site, Anchor QEA field inspectors will conduct visual observations of the stockpiles of material on the material barges to evaluate general compliance with the Specification requirements and to compare to observations from the borrow site inspections described above. These observations will be recorded in the DFAR and include the following:

- General appearance of material (color, gradation, odor, etc.)
- Evidence of staining or sheen
- Presence of debris

If results of visual inspection indicate that imported material is not in compliance with the Specifications, the field inspectors will notify the DR for follow-up notification to the Contractor.

Anchor QEA may collect samples of the stockpiles of fill materials (as appropriate) for laboratory analysis for QA chemical testing.

If the field inspectors' review of material placement post-construction surveys indicates discrepancies between surveys and Specifications, the inspectors will notify the DR in writing of the recommendations for corrective action.

8.3.2 Surveying and Positioning Control

Per Specification Section 022113 (Surveying and Positioning Control), the Contractor will contract with a surveyor (to be determined) to conduct various bathymetric surveys during completion of the Project. Objectives and general scope for completion of surveys for the Project include the following:

- The Contractor will identify and describe means and methods for establishing and maintaining positioning control throughout completion of the construction activities required in the Contract documents. Construction inspectors will verify that the Contractor can demonstrate acceptable positioning control prior to the start of construction activities at the Work Site.
- The Contractor will complete a pre-construction bathymetric survey of the Work Site to verify seabed elevations for completion of material placement activities.
- The Contractor will conduct daily progress surveying to provide QC of the material placement work, and to calculate or verify volumes, areas, limits, and positions.
- The Contractor will conduct post-construction surveys once they have completed material placement work in each test area to verify that targeted placement thicknesses have been achieved.

The Consultant will review results of all Contractor surveys on an ongoing basis to verify that survey results demonstrate consistency with the progress of work reported in the Contractor Daily Construction Reports, and to confirm completion of the work in accordance with the requirements of the Contract documents. The Consultant will notify the DR immediately if review of Contractor surveys indicates that work being completed is not in compliance with the requirements of the Drawings and Specifications, and provide recommendations for corrective action for the DR to consider.

8.3.2.1 Quality Assurance for Surveying

The DR will review the Contractor's QC surveys to ensure they are complete and accurate.

8.4 Safety

All field inspectors will be responsible for observing and reporting on safety issues. The Contractor is responsible for Work Site safety; however, if field inspectors observe unsafe actions, they will immediately notify the Contractor and inform the DR.

The Consultant will operate under its own HASPs and the Contractor's HASP for the Project. Consultant HASP will be provided to the Contractor for inclusion with the Contractor HASP. All health and safety incidents or near misses will be reported to the DR and DND.

9 References

Anchor QEA, 2018. Project Management Plan. DND Esquimalt Harbour Remediation Project. Engineering Assets Strategy, Esquimalt, BC. Prepared for Public Works and Government Services Canada. March 31, 2018.

Anchor QEA, 2019a. Remedial Options Analysis Memorandum. Wood Waste Remediation Project. Prepared for Public Works and Government Services Canada. March 2019.

Anchor QEA, 2019b. Basis of Design Report (90\% Design). DND Wood Waste Remediation Pilot Project. Prepared for Public Works and Government Services Canada. March 2019.

Anchor QEA, 2019c Data Memorandum. Wood Waste Remediation Project. Prepared for Public Works and Government Services Canada. March 2019.

CEAA (Canadian Environmental Assessment Agency), 2015. "Technical Guidance for Assessing Physical and Cultural Heritage or Any Structure, Site or Thing that Is of Historical, Archeological, Paleontological or Architectural Significance Under the Canadian Environmental Assessment Act, 2012 (March 2015)." Accessed: 3 December 2016. Available at https://www.ceaa-acee.gc.ca/default.asp?lang=en\&n=536A4CFE-1.

CRD (Capital Regional District), 2019. "Esquimalt Harbour." Accessed: February 2019. Available at: http://crd.bc.ca/education/our-environmental/harbours/esquimalt-harbour.

DFO (Fisheries and Oceans Canada), 2018. "Section 193, Victoria Herring Spawn Records." Accessed: 18 December 2018. Available at: http://www.pac.dfompo. gc.ca/science/species-especes/pelagic-pelagique/herring-hareng/herspawn/193fig-eng.html.

DFO, 2019. "Fisheries and Oceans Canada Watching Marine Wildlife." Accessed: 3 June 2019. Available at: http://www.dfompo. gc.ca/species-especes/mammals-mammiferes/watching-observation/index-eng.html.

Hemmera (Hemmera Envirochem Inc.), 2018. Department of National Defence Esquimalt Harbour Wood Waste Assessment, Characterization and Management Plan. Prepared for Public Services and Procurement Canada. March 1, 2018.

Hemmera, 2019. [To be included in final report.]
Golder (Golder Associates Ltd.), 2018. Habitat Survey for Central Constance Cove, Jetty 11 and G Jetty - Esquimalt Harbour, Esquimalt, BC. Esquimalt Harbour Remediation Project. Report \#: 18100095-010-RRevA. 2 November 2018.

Royal Canadian Navy, 2019. "Esquimalt Harbour - Practices and Procedures - February 2019."
Accessed: 3 June 2019. Available at: http://www.navy-marine.forces.gc.ca/en/about/structure-marpac-poesb-practices-procedures.page.

Tables

Table 1
Relevant Environmental Legislation

Act, Regulation, or Bylaw	Description	Applicability to Wood Waste Remediation Pilot Project	Approval/Permit OR Requirements Met
Federal			
Canadian Environmental Assessment Act, 2012	Section 67 specifies that Federal Authorities must not make a decision about a proposed "project" on federal lands unless the proposed "project" is determined to be unlikely to cause significant adverse environmental effects, or the Governor in Council decides that those effects are justified. Section 5 provides protections against adverse project effects to 'any structure, site or thing that is of historical, archaeological, paleontological or architectural significance'.	The proposed Project meets the definition of a "project" under the Act, and an Environmental Effects report has been prepared.	No formal approval required. The Environmental Effects Determination indicates that the Project is unlikely to cause significant adverse environmental effects with mitigation measures that have been recommended.
Fisheries Act	Section 35 prohibits causing serious harm to fish that are part of or support a commercial, recreational or Aboriginal fishery unless authorized under the Act.	Project involved work in water which has the potential to cause serious harm to fish.	Serious harm to fish is not anticipated for the scope of work as outlined in Anchor 2018. A Request for Review will be submitted by Department of National Defence to Fisheries and Oceans Canada.
	Section 36 prohibits the deposit of a deleterious substance in water frequented by fish.	Project activities require work in and around water that could cause a release of deleterious substances. Placement of siderite (iron carbonate) is not a deleterious substance, as described in the Environmental Effects Determination.	Water quality performance objectives have been developed in the Water Quality Monitoring Plan to help meet the intent of this section. Contractor also to prepare and implement a Spill Prevention and Response Plan, Water Quality Protection Plan and a Sediment and Erosion Control Plan.
	Section 38 specifies a duty to notify and take corrective measures when serious harm to fish or deposit of a deleterious substances occurs, or when there is a serious and imminent danger of such an occurrence	Project involves work in and around water that contains fish and fish habitat.	Reporting requirements are to be considered in the development of the Contractor's communications and spill response plans.
Deposit out of the Normal Course of Events Notification Regulations under the Fisheries Act	The regulations identify the "prescribed person" for notifications under Section 38 of the Fisheries Act	The BC Provincial Emergency Program, now called Emergency Management $B C$, is the 24 -hour emergency telephone service for spill reporting and spill notification to relevant provincial and federal agencies.	Spill reporting requirements are to be considered in the development of the Contractor's spill response plan.
Marine Mammal Regulations under the Fisheries Act	Section 7 prohibits the disturbance of marine mammals except when fishing for marine mammals under the authority of these Regulations. Subsections 7(3) to 7(4) of the Marine Mammal Regulations (amended in June 2018) identify the following approach distances for marine mammals: - 100 metres for whale, dolphin and porpoise - 200 metres for killer whale populations in $B C$ and the Pacific Ocean	Marine mammals may occur in and adjacent to the Wood Waste Remediation Project Work Site.	Mitigation measures will be implemented to avoid disturbing marine mammals.

Table 1
Relevant Environmental Legislation

Act, Regulation, or Bylaw	Description	Applicability to Wood Waste Remediation Pilot Project	Approval/Permit OR Requirements Met
Aquatic Invasive Species Regulations Under the Fisheries Act	Prohibitions on import, transport, possession and/or release for species listed in Part 2 of the Schedule in the Regulations.	Vessels used for the Wood Waste Remediation Project project have the potential to unintentionally transport invasive species.	Mitigation measures will be implemented to avoid the introduction of invasive species.
Species at Risk Act (S.C. 2002, c. 29)	The Species at Risk Act contains prohibitions that make it an offence to: - kill, harm, harass, capture, or take an individual of a species listed in Schedule 1 of the Species at Risk Act as endangered, threatened or extirpated; - possess, collect, buy, sell or trade an individual of a species listed in Schedule 1 of the Species at Risk Act as endangered, threatened or extirpated; - damage or destroy the residence (e.g., nest or den) of one or more individuals of a species listed in Schedule 1 of the Species at Risk Act as endangered, threatened or extirpated	Several marine mammal species at risk have some potential to occur in the in-water project areas including harbour porpoise, killer whales, and Steller sea lions. Common Nighthawk, a Species at Risk Act Schedule 1 threatened species, may nest on the gravel at Yew Point.	Mitigation measures will be followed to avoid contravening the Act.
Migratory Birds Convention Act	Section 5.1/ 5.2 prohibits the deposit of a substance that is harmful to migratory birds.	Migratory birds may occur in the Wood Waste Remediation Project Work Site, and deposition of a substance such as fuel may harm migratory birds.	Mitigation measures will be implemented to avoid depositing harmful substances.
Migratory Birds Regulations (pursuant to the Migratory Birds Convention Act)	Section 6 - Prohibits the disturbance, destruction or removal of a nest or related shelter, or egg of a migratory bird, or possession of a live migratory bird, or a carcass, nest or egg of a migratory bird.	No land-based staging areas will be used in Esquimalt Harbour for this project.	General prohibition - no authorization issued.
Navigation Protection Act	Regulates and protects navigable waters in Canada including Esquimalt Harbour. No work will be built or placed in, on, over, under, through or across any navigable water unless approved or exempted under this Act.	Project works meet the assessment criteria for the Minor Works Order and are classified as "designated works" under the Act.	A Notice to the Minister is not required under the Act for works classified as "designated works" as long as all legal requirements are met.
Canada Marine Act	The Act establishes the means of management of ports and harbour facilities such as through the establishment of ports and harbour authorities. The Queen's Harbour Master is the designated Authority for Esquimalt Harbour. Esquimalt Harbour Practices and Procedures are made pursuant to the Act. Procedures include marine spill response and reporting.	The Project will be undertaken in Esquimalt Harbour.	Esquimalt Harbour Practices and Procedures shall be followed by all harbour users associated with the Project.
Canada Shipping Act	The Act promotes safety in marine transportation and recreational boating; protects the marine environment from damage due to navigation and shipping activities; prohibits the discharge of pollutants and contains reporting requirements; and prescribes regulations for vessels on or in any Canadian waterway through the "Collision Regulations".	Project involves work in a waterway.	All vessels used by the Contractor will comply with the relevant orders and regulations of the Canada Shipping Act including pollution prevention and reporting
Transportation of Dangerous Goods Act	Regulates the transport of dangerous goods in Canada, whether by rail, road, air, or water, and establishes safety standards and documentation to be complied with such that all containers, packages, and means of transport are clearly marked with prescribed safety marks. The Act also establishes requirements regarding emergency response assistance plans.	Dangerous goods may be transported during this Project.	Hazardous materials associated with the Project will be transported in accordance with this Act.

Table 1
Relevant Environmental Legislation

Act, Regulation, or Bylaw	Description	Applicability to Wood Waste Remediation Pilot Project	Approval/Permit OR Requirements Met
Provincial			
Environmental Management Act	Prohibition against the introduction of waste into the environment in such a manner or quantity as to cause pollution, unless the introduction of that waste is conducted in accordance with a permit, approval, order, or regulation. The Act also prohibits causing pollution which is defined in the Act as "...the presence in the environment of substances or contaminants that substantially alter or impair the usefulness of the environment."	This general prohibition is addressed by the water quality protection measures developed for the Project as outlined in the Water Quality Monitoring Plan.	No wastes will be introduced into the environment.
Hazardous Waste Regulation (pursuant to Environmental Management Act)	Hazardous wastes are wastes that could harm human health or the environment if not properly handled and disposed of. The Hazardous Waste Regulation includes the identification, handling, transport, disposal and treatment of hazardous wastes.	No hazardous wastes will be generated during this Project.	General provisions - no authorization issued.
Contaminated Sites Regulation (pursuant to Environmental Management Act)	The Contaminated Sites Regulation provides a process for identifying and tracking the movement and deposition of soils from contaminated sites. Previously (prior to November 2017), the Contaminated Sites Regulation Schedule 7 was applicable to the assessment of soils/sediments being relocated or disposed on provincial land. The Stage 10 amendments allow use of the soil standards as applicable to the receiving site, in determining when a Contaminated Soil Relocation Agreement might be required to relocate soil to a receiving site. The Contaminated Sites Regulation is also relevant to the characterization, transportation and disposal of the dredged materials to provincial lands.	No dredging or removal of contaminated sediment will occur during this project.	General provisions - no authorization issued.
Spill Reporting Regulation (pursuant to Environmental Management Act)	The regulation defines a "spill" as: (a) an unauthorized release of a listed substance that enters, or is likely to enter a body of water, or (b) the release or discharge of listed substance into the environment in an amount exceeding the listed quantity. The regulation identifies to whom spills are to be reported and the reporting requirements.	Listed substances might be used during the Project. Emergency Program, now called Emergency Management $B C$ is the 24 -hour emergency telephone service for notification and follow up reporting.	The requirements of the Regulation are to be considered in the development of a spill response plan.
Wildlife Act	Section 34 - A person commits an offence if the person, except as provided by regulation, possesses, takes, injures, molests or destroys: (c) a bird or its egg (d) the nest of an eagle, peregrine falcon, gyrfalcon, osprey, heron or burrowing owl (e) the nest of a bird not referred to in paragraph (b) when the nest is occupied by a bird or its egg	No nesting is anticipated during this project as the work is all water-based without any staging areas in Esquimalt Harbour.	General prohibition - no authorization issued. Mitigation measures will be followed to avoid contravening the Act.
Heritage Conservation Act	Archaeological sites that predate AD 1846 are automatically protected. Heritage wrecks, consisting of the remains of vessels or aircraft after two or more years have passed since they sank, crashed, or were abandoned, are also protected under the Act.	Provincial legislation and guidelines are applied in the absence of federal statutory directives with respect to how heritage resources should be "considered" (i.e., managed). Discovery of unanticipated archaeological sites, and/ or a heritage wreck is possible during WWRP.	Monitoring of excavated sediments, if applicable, will include provisions for the collection of observed archaeologically or historically significant artifacts, features, and faunal materials, as well as human remains.

Table 1
Relevant Environmental Legislation

Act, Regulation, or Bylaw	Description	Applicability to Wood Waste Remediation Pilot Project	Approval/Permit OR Requirements Met
Transportation of Dangerous Goods Act	Regulates the transport of all dangerous goods in British Columbia on provincial highways and ferry routes. The Act establishes safety standards and documentation to be complied with such that all containers, packages, and means of transport are clearly marked with prescribed safety marks.	Dangerous goods may need to be transported for this Project.	General provisions - no authorization issued. Any hazardous materials associated with the Project will require be transported with a manifest.
Municipal			
Town of View Royal Bylaw No. 523 (2003)	Outlines noise disturbance in the Town.	Noise from Project activities may cause disturbance.	Mitigation measures will be implemented to help avoid noise disturbance.
City of Colwood Noise Bylaw, No. 1594 (2016)	Outlines noise disturbance during certain hours and days of the week.	Noise from Project activities may cause disturbance.	Mitigation measures will be implemented to help avoid noise disturbance.
City of Colwood Traffic and Highway Regulation Bylaw, No. 1134 (2010)	Designates truck routes for heavy trucks (over 8,600 kilograms).	If over-land transportation is undertaken, specific truck routes may need to be used.	A Traffic Management Plan will be prepared by the contractor if over-land transport is undertaken.
Township of Esquimalt Maintenance of Property and Nuisance Regulation Bylaw No. 2826 (2014)	Regulates the maintenance of property, unsightly property, and nuisance, including noise.	Noise from Project activities may cause disturbance.	Mitigation measures will be implemented to help avoid noise disturbance.
Township of Esquimalt Bylaw No. 2898 (2017)	The Bylaw identifies roads that are not acceptable for trucks over 10,000 kilograms within Esquimalt.	If over-land transportation is undertaken, specific truck routes may need to be used.	A Traffic Management Plan will be prepared by the contractor if over-land transport is undertaken.
Capital Regional District Bylaw No. 2922 (Consolidated) (2016)	Regulate the discharge of waste into sewers connected to a sewage discharge facility operated by the Capital Regional District	Potential for Contractor to want to discharge waste into sewers.	In the event that the Contractor wishes to discharge waste such as barge stormwater, into the Capital Regional District sewer system, the Contractor will apply for permits/authorizations for such a discharge.

Table 2
Applicable Best Management Practices and Guidelines

Best Management Practice / Guidelines	Applicability to the Project
Fisheries and Oceans Canada's Measures to Avoid Causing Harm to Fish and Fish Habitat: http://www.dfo-mpo.gc.ca/pnw-ppe/measures-mesures/measures-mesures- eng.html	Provides advice that will help to avoid causing serious harm to fish and fish habitat.
British Columbia Guidelines for Industry Emergency Response Plans: https://www2.gov.bc.ca/gov/content/environment/air-land-water/spills- environmental-emergencies/planning-prevention-response/industry-emergency- response-plans	Provides information for preparing a plan to respond to emergencies.
Department of National Defence Formation Safety Environmental Management System Directives and Shipyard best management practices	Directives for emergency reporting, solid waste management, hazardous materials management, spill response, storage tanks, and effluent management.
Fisheries and Oceans Canada's watching marine wildlife: https://www.dfo- mpo.gc.ca/species-especes/mammals-mammiferes/watching- observation/infographic/100-200-400-eng.html	Identifies minimum distances and measures to avoid disturbance to marine mammals.

Table 3
Environmental Site Inspection Tasks

Environmental Component	Description
Air Quality	Visually observe activities for conformance with the Dust and Emissions Control Plan.
Water Quality - Spill Prevention and Response	Confirm that the Contractor spill prevention and emergency response plan is posted on-site, readily available to personnel, and discussed at daily pre-job briefings.
	Confirm with the Contractor that operating personnel are familiar with the locations, contents and use of spill response equipment.
	Confirm with the Contractor that operating personnel are familiar with the location and operation of emergency 'shut-offs', and the notification procedures to be followed in the event of an emergency or environmental incident.
	Verify that spill response equipment is available on site and confirm with the Contractor that trained personnel are available to deploy the spill response equipment.
	Verify that Safety Data Sheets are available on site.
	Confirm with the Contractor that operating personnel are familiar with the locations and use of the Safety Data Sheets.
	Visually inspect equipment for hydraulic fluid, fuel and other leaks.
	Equipment logs (maintenance and inspection) may occasionally be checked to verify that maintenance/inspection of equipment is being conducted in accordance with Department of National Defence directives.
	Confirm with the Contractor that the spill prevention and emergency response measures have the capability to effectively manage spills resulting from their activities and operations.
	Visual observation of fueling events and confirm that they conform to Spill Prevention and Response Plan.
Water Quality - Stormwater Pollution Prevention	Visually inspect stormwater protection measures on the barge so they are functioning to prevent pollution from entering surface waters.
Water Quality - Silt Curtain (if required)	Visibly inspect silt curtain daily from above water for damage, shift in location, anchorage to shore (if applicable), and conformance with the Silt Curtain Control Plan (if silt curtain is required).
Water Quality - Sediment and Erosion Control	Visually inspect erosion control measures on the barge to confirm they conform to the Soil Erosion Control Plan and that they are functioning as intended.
Noise, Light and Odour	Inspect work areas and work activities for conformance with the Noise, Light and Odour Plan. Conduct in-air noise monitoring in the event complaints are received.
Non-Hazardous Waste Storage and Disposal	Inspect work areas and work activities for conformance with the Non-hazardous Waste Storage and Disposal Plan.
Hazardous Materials Storage and Disposal	Inspect hazardous materials storage for compliance with Hazardous Materials Storage and Disposal Plan.
Archaeological Chance Find	Inspect materials for archaeological chance finds and include provisions for the collection of observed archaeologically or historically significant artifacts, features, and faunal materials, as well as human remains

Table 4
Marine Mammal Species at Risk and Known to Occur in Esquimalt Harbour

Common Name (Scientific Name)	BC Conservation Data Centre Status	COSEWIC Status	SARA Status
Harbour Porpoise - Pacific Ocean population (Phocoena vomerina)	Blue	SC	$1 / \mathrm{SC}$
Killer Whale - Northeast Pacific southern resident population (Orcinus orca pop. 5)	Red	E	$1 / \mathrm{E}$
Killer Whale - West Coast transient population (Orcinus orca pop. 3)	Red	T	$1 / \mathrm{T}$
Steller Sea Lion (Eumetopias jubatus)	Blue	SC	$1 / \mathrm{SC}$

Notes:
COSEWIC: Committee on the Status of Endangered Wildlife in Canada
E: Endangered
SARA: Species at Risk Act
SC: Special Concern
T: Threatened

Figures

LEGEND:

İ: WWMAs
\square Pilot Project Work Areas
[-] Jones Marine Lease Boundary

Wood Waste Thickness (metres)
$\square 0-0.2$
\square 0.21-0.4
\square 0.41-0.6
$\square 0.61-0.8$
\square 0.81-1.5

- 1.51-3.55

NOTES:
The wood waste thickness surface was created using Natural Neighbor interpolation method. . Jones Marine Waterlot Lease boundary corner DND DND = Department of Defence WWMA = Wood Waste Management Area

Publish Date: 2019/07/17, 10:51 AM | User: jsfox

Publish Date: 2019/07/17, 10:49 AM | User: jsfox
Filepath: \lorcas GGSVObs 0 Ooc553-03 Esquimalt
\mathcal{Y} ANCHOR
Figure 3

Filepath:
Fuji\Anchor\Projects\PWGSC\Esquimalt Harbour\Wood Waste\Deliverables\EMP-WQMP\EMP\Figures\Fig4_OrgChart.docx

Appendix A

Water Quality Monitoring Plan

July 2019
DND Wood Waste Remediation Pilot Project

Water Quality Monitoring Plan

Prepared for Public Works and Government Services Canada

July 2019
DND Wood Waste Remediation Pilot Project

Water Quality Monitoring Plan

Prepared for

Public Works and Government Services Canada

Prepared by
Anchor QEA, LLC
1201 3rd Avenue, Suite 2600
Seattle, WA 98101

TABLE OF CONTENTS

1 Introduction 1
1.1 Background 1
1.2 Objectives 1
1.3 Report Structure 2
2 Project Area and Location 3
2.1 Water Quality in Esquimalt Harbour 3
2.1.1 Surface Water Quality 3
2.1.2 Turbidity Implications for the WQMP. 5
3 Water Quality Monitoring 6
3.1 Monitoring Parameters 6
3.1.1 Total Suspended Solids 6
3.1.2 Turbidity 6
3.1.3 Dissolved Oxygen 7
3.1.4 pH 7
3.1.5 Iron 8
3.2 Decision Criteria and Management Actions 8
3.2.1 Overview 8
3.2.2 Decision Framework for Material Placement 8
3.3 In Situ and Laboratory Water Quality Monitoring 10
3.3.1 Types of Monitoring 10
3.3.2 Monitoring Locations 10
3.3.3 Monitoring Frequency 11
3.4 TSS/Turbidity Relationship 11
3.5 Quality Assurance/Quality Control (QA/QC) 12
3.5.1 Field 12
3.5.2 Laboratory 13
3.5.3 Data Management 13
4 Reporting 15
4.1 General 15
4.1.1 Exceedances 15
5 References 16

TABLES

Table 1	Vertical Profile Data from Esquimalt Harbour
Table 2	Water Quality Criteria
Table 3	Monitoring Program Summary

FIGURES

Figure $1 \quad$ Pilot Project Work Areas
Figure $2 \quad$ Total Suspended Solids - Turbidity Relationship for Compliance Points
Figure 3 Decision Framework for Implementing Management Actions During Material Placement Based on Real-Time Monitoring of Turbidity
Figure $4 \quad$ Conceptual Layout of Turbidity Measurements in the Water Column
Figure 5 Conceptual Layout of Monitoring Locations for Material Placement Activities

ABBREVIATIONS

CD	chart datum
DND	Department of National Defence
EMP	Environmental Management Plan
m	metres
mg / L	milligrams per litre
NTU	nephelometric turbidity unit
Project	DND Wood Waste Remediation Pilot Project
PWGSC	Public Works and Government Services Canada
QA/QC	quality assurance/quality control
QP	Qualified Professional
RPD	relative percent difference
TA	Task Authorization
TSS	total suspended solids
WQG	water quality guideline
WQMP	Water Quality Monitoring Plan

1 Introduction

1.1 Background

The Department of National Defence (DND), which administers Esquimalt Harbour, is implementing a remediation and risk management program in Esquimalt Harbour as part of a long-term strategy to address sediments that have been contaminated by historical industrial activities. Various remediation projects have been or are currently being undertaken in Esquimalt Harbour as part of the remediation and risk management program. The DND Wood Waste Remediation Pilot Project (Project) is the latest project being planned under this program and is being undertaken under the Federal Contaminated Sites Action Plan (Anchor QEA 2018a). DND has retained Public Works and Government Services Canada (PWGSC) as its contracting authority for the Project. PWGSC will designate a representative (the PWGSC Representative) to advise, coordinate, and monitor the work on behalf of DND. A contractor will be retained to undertake the work.

Anchor QEA, LLC, was retained by PWGSC on behalf of DND to develop a Water Quality Monitoring Plan (WQMP) that will be implemented during the Project to monitor water quality during material placement. The WQMP, which is part of the Environmental Management Plan (EMP), outlines the scope of monitoring that will be undertaken during Project activities and identify appropriate parameters and assessment criteria.

This report was prepared for Canada in accordance with the terms and conditions outlined in the PWGSC Contaminated Sites Marine Sediment Contract No. EZ897-172925/001/VAN. The scope of work for this report (Task 7: Pre-Construction Documents) was outlined in Anchor QEA's "Workplan for Esquimalt Harbour Wood Waste Remediation Project, CFB Esquimalt, Victoria, BC," dated 20 May 2019. Task Authorization (TA) for the above work plan was provided by PWGSC on 21 May 2019 under TA 700445589.

1.2 Objectives

The objectives of the WQMP are to address the following:

- Outline the scope of water quality monitoring that will be undertaken during Project activities including location and frequency of monitoring
- Identify appropriate parameters and assessment criteria
- Present decision criteria and high-level management actions
- Present data compilation and quality assurance/quality control (QA/QC) measures

1.3 Report Structure

The WQMP includes the following components:

- A description of baseline water quality conditions in Esquimalt Harbour, including an evaluation of implications for the Project (Section 2.0)
- Parameters to be monitored (Section 3.1) and limits that will trigger management actions (Section 3.2)
- Methodology for in situ water quality monitoring for real-time assessment and collection of water for laboratory analysis (Section 3.3)
- Validation of total suspended solids (TSS) levels and plume direction (Section 3.4)
- Monitoring data QA/QC procedures that will be undertaken to verify the reliability of collected data (Section 3.5)
- Monitoring data management procedures (Section 3.5.3)
- Reporting (Section 4.0)

This WQMP is intended to be read in conjunction with the EMP, environmental approvals, authorizations, and contract requirements for the Project.

A summary of federal and provincial pollution prevention legislation is provided in the EMP for the Project. The intent of this WQMP is to provide direction to DND, Consultants, and the Contractor that is consistent with the provisions for environmental protection contained in that legislation. Should further clarification of any environmental issue be required, the appropriate regulation or legislative document should be consulted, or advice sought from DND.

2 Project Area and Location

The Project Work Areas are located in the northern portion of Esquimalt Harbour (Figure 1). The harbour is relatively shallow, ranging from 5 to 12 metres (m) Chart Datum (CD) in depth within the limits of the Federal Harbour, and a maximum depth of 16 m CD at the harbour entrance (CRD 2019).

Surface water in Esquimalt Harbour exchanges with waters of the Strait of Juan de Fuca through the harbour entrance, Royal Roads passage, which is approximately 750 m across. The relatively wide entrance of the harbour allows the tidal regime of the harbour to match surrounding areas outside the harbour.

Based on Canadian Tide and Current Tables, Esquimalt Harbour's mean tide is 1.8 m (relative to CD) with a reported large tide of 3.1 m . The mean tide Higher High Water is 2.5 m , and the large tide Higher High Water is 3.4 m. The mean Lower Low Water is 0.7 m , and the large tide Lower Low Water is 0.1 m (DFO 2010).

An investigation of currents and tidal effects in the harbour was conducted in 2010 (Golder 2011). A vessel-mounted acoustic doppler current profiler was towed along five survey lines to determine current speeds and direction over an entire tidal cycle. Exchange of water through the mouth of the harbour during peak flood and ebb tidal periods resulted in depth-averaged current speeds in excess of 1 m per second near the mouth of the harbour. For most of the harbour, including the Project Work Areas, the measured currents were shown to be typically weak and variable in direction (Golder 2011).

2.1 Water Quality in Esquimalt Harbour

2.1.1 \quad Surface Water Quality

Existing surface water quality is relevant to Project water quality monitoring because:

- It provides a characterization of pre-project water quality conditions
- It provides a basis of "background" conditions against which monitoring data can be compared, such that interpretation (by a Qualified Professional [QP]) ${ }^{1}$ of water quality monitoring results is better supported.

A brief overview of contaminants data is provided here, with additional detail on background turbidity data provided because this parameter will be a substantial component of the water quality

[^48]monitoring program during material placement. In the event that further interpretation is needed, the QP should refer to the original reports referenced below. Overall, the available data indicate the importance of collecting project-specific data because intermittent events unrelated to in-water construction activities can affect what is relatively good water quality in Esquimalt Harbour (Anchor QEA 2016).

Water quality data for Esquimalt Harbour are available from surface water samples collected during multiple separate investigations between 2005 and 2017. Metals were generally found to be below or at federal (CCME 1999) and provincial (MOEACC 2018) water quality guidelines (WQGs), with slightly higher concentrations occurring near the mouth of the Esquimalt Graving Dock than in Esquimalt Harbour to the west (Golder 2006a, b; SLR 2008, 2014). Polycyclic aromatic hydrocarbons (PAHs) were also below WQGs except in some samples collected near Outfall D adjacent to Munroe Head on the east side of Esquimalt Harbour in 2005. This dataset is limited, and these conditions should not be assumed to represent background concentration at the time the Project is implemented.

Turbidity monitoring was undertaken in Esquimalt Harbour between 18 October and 15 December 2010 prior to remedial dredging at the Esquimalt Graving Dock (Golder 2011). Turbidity values ranged between 0 and 165 nephelometric turbidity units (NTU) south of D Jetty and up to 817 NTU at stations on the east side of Esquimalt Harbour. The 99th percentile of all NTU values observed in the field was 6.4 NTU ($n=59,000$). The short-duration peaks in turbidity observed during the program may have been due to sediment re-suspension caused by operational activities including boat/tug activity, propeller wash, or by natural re-suspension of sediments caused by wind-waves and tidal currents. Turbidity monitoring was also undertaken between 4 January and 28 April 2017 during remedial dredging and backfilling at D Jetty and F/G Jetty (Golder 2017). Ambient turbidity measured during the program was generally low (<2 NTU), while turbidity at 100 m from the dredging or backfilling activities ranged between 0 and 107.5 NTU.

Manual monitoring of turbidity, water temperature, pH , and dissolved oxygen was undertaken at each of the automated turbidity monitoring stations at the Esquimalt Graving Dock (Golder 2011), and at far-field reference locations adjacent to Plumper Bay during the remedial dredging program at D Jetty and F/G Jetty (Golder 2017). Water column profile data was also collected from the Project area in December 2018 (Anchor QEA 2019). During each monitoring program, these parameters were relatively consistent among sampling stations and across water depths, indicating that the harbour was relatively well mixed (Table 1). Turbidity measurements in the Project area were mostly 0 NTU, but were measured above 0 NTU, up to 0.9 NTU in intervals at the surface or near the sediment in several samples (Anchor QEA 2019). These data may not be representative of conditions during colder or warmer weather when stratification may occur. Potential stratification of the water column
will need to be taken into consideration during monitoring for potential turbidity plume generation and distribution.

2.1.2 Turbidity Implications for the WQMP

On average, turbidity in Esquimalt Harbour is low, with mean values typically being less than $5 \mathrm{NTU}^{2}$ at most stations and median turbidity being < 1 NTU. However, the data available from the turbidity loggers demonstrates that Esquimalt Harbour turbidity can, at times be "patchy." Additionally, large turbidity events (e.g., two orders of magnitude increases) can occur as short-duration (i.e., hours long) transient events, for example from activities such as ship passage and propeller wash. Thus, a turbidity value that represents an increase over background and thus the operational characterization of background (i.e., during Project activities) will be an important information item because it will aid in deciding if turbidity measurements are of concern or if turbidity measurements are simply normal, transient events associated with operations in the harbour.

Two WQMP considerations are raised by these observations:

- A greater number of reference stations and/or samples than recommended here could be necessary. That determination should be made under operational conditions and with the benefit of visual observations made and turbidity data collected during operations. Because the turbidity monitoring costs are not unit costs (equipment rental plus staff time), this should not appreciably impact the monitoring implementation costs.
- An appropriate response to a single high turbidity value that is outside the range of data depicted in Table 1 is to resample and to identify the reasons for that increase prior to implementing more stringent operational controls. Because of the characteristics of background turbidity data (short duration, relatively high magnitude transient events), there is a risk of incorrect presumptive decisions that could affect the Project cost and schedule.

[^49]
3 Water Quality Monitoring

This section describes the following components of the water quality monitoring program that will facilitate verification that environmental controls for the Project are adequate, and provide environmental management data that will be used to identify when additional controls on, or cessation of, Project activities are necessary:

- Monitoring parameters
- Decision criteria and management actions
- Manual ("real-time") in situ water quality monitoring
- Collection of water samples for laboratory analysis of total and dissolved iron

Water quality in and adjacent to the Project Work Site may be affected by Project activities through the following:

- Induced suspension of solids and turbidity during placement of material
- Fuel and hydraulic spills from equipment

The WQMP provides a monitoring program for induced turbidity and TSS caused by placement of cover material through the water column, as this is the primary component of the Project that has potential to affect water quality.

3.1 Monitoring Parameters

The WQMP includes measurement of various parameters that will provide information to manage potential effects from the Project. Background information on these parameters is provided below. Table 2 provides the water quality criteria that will be used for the Project.

3.1.1 Total Suspended Solids

TSS encompasses both inorganic solids such as clay, silt, and sand, and organic solids such as algae and detritus and is a gravimetric measurement of the dry weight of suspended particulate material (solids) per unit volume of water. The measurement of TSS requires the collection of a sample and submission of that sample to the laboratory. Analysis is done by filtering the sample onto a glass fibre filter and drying the sample at a specified temperature. Data for this analysis are typically available on a 24 -hour turnaround.

A TSS concentration of 75 milligrams per litre (mg / L) for induced suspension of solids will also be used to manage day-to-day material placement.

3.1.2 Turbidity

Turbidity is a measure of the optical properties (e.g., scattering of light) of particulates suspended in water. Turbidity is often used for the day-to-day management of material placement activities as the
results are available in real-time. Turbidity is measured using an instrument that measures the passage of light through the sample as well as the scattered light that is reflected from the sediment particles and reports values in units such as NTU. Turbidity can be measured on-site, in real and near-real time.

Anchor QEA (2018b) developed a TSS-turbidity relationship from data collected during the Plumper Bay Ash Head Remediation Project in Esquimalt Harbour. Based on this relationship, a TSS of $75 \mathrm{mg} / \mathrm{L}$ is related to a turbidity of 90 NTU , and a TSS of $40 \mathrm{mg} / \mathrm{L}$ is related to a turbidity of 30 NTU (Figure 2).

3.1.3 Dissolved Oxygen

Dissolved oxygen provides a measure of the amount of oxygen available for aquatic organisms. The oxygen content in the atmosphere is 21%, which equates to approximately 210,000 parts per million. However, the amount of oxygen dissolved in water is temperature and salinity-dependent but on the order of 10 parts per million or less. The ability of aquatic organisms to obtain oxygen from water is therefore susceptible to reductions in dissolved oxygen. In Esquimalt Harbour, dissolved oxygen concentrations of 7.03 to $9.29 \mathrm{mg} / \mathrm{L}$ were measured during fall 2010 and winter 2017. Concentrations were variable between locations and were lower deeper in the water column than at the surface (Table 1).

Dissolved oxygen will be measured in situ during manual water quality monitoring and results will be available in near real-time. The information will be used by the QP to evaluate potential for environmental impacts, for example to interpret whether effects are project-related or the result of natural processes.

3.1.4 pH

The pH measures how acid or alkaline a substance is with a pH of 7 being neutral (neither acid nor alkaline). Normal seawater pH values are slightly alkaline (in fall 2010 and winter 2017, pH values of 7.86 to 8.17 were measured in Esquimalt Harbour [Table 1]) and seawater chemistry has the ability to resist minor changes but can be overcome when such changes are substantial. pH can be influenced by natural processes such as photosynthesis during algal blooms, which can result in elevated pH (i.e., $>9 \mathrm{pH}$ units), whereas material placement is not likely to change pH values to an extent that is, on its own, harmful. pH changes can affect the toxicity of other substances and it is therefore a necessary parameter to monitor so that interpretation of certain results by a QP is possible.
pH will be measured in situ during manual water quality monitoring.

3.1.5 Iron

There is no marine water quality guideline for iron. However, since siderite contains iron carbonate, water samples will be collected as indicated in Section 3.2 for submission to an analytical laboratory for analysis of total and dissolved iron. The purpose of collecting iron data will be to document concentrations of iron during pilot placement.

3.2 Decision Criteria and Management Actions

3.2.1 Overview

There are presently no specific regulations pertaining to discharge from in-water material placement projects. The specific parameters and points of compliance are generally determined by agreement at the project level through the process of environmental review and consultation with the responsible regulatory agencies such to meet the general provisions of the environmental statutes.

Regulatory compliance is typically evaluated at the point at which an operator no longer exercises control over a discharge. For the Project, this will be 25 m (point of compliance) from the edge of the work zone.

To verify that these controls are sufficient to protect the surrounding environmental values, additional assessment will be carried out approximately 100 m away (assessment point) where water quality should meet ambient WQGs or a pre-specified change from background condition.

Table 2 provides the water quality criteria for both the operational compliance point (25 m from the work zone) and the assessment point as represented by the outer boundary of the work zone. The management consideration for these criteria are related to the control of particulates and to minimize the potential for physical effects to aquatic biota.

3.2.2 Decision Framework for Material Placement

The decision framework for implementing management actions during material placement is comprised of a series of steps to allow for adaptive management that will be responsive to environmental protection goals without unnecessary disruption to the operational needs of the Project as illustrated in Figure 3. The decision framework is based on real-time measurements of turbidity. Other factors may also be considered in a decision by PWGSC to implement management actions, for example, interaction with other projects occurring at the same time or the extent of visually obvious turbidity.

The steps in the decision framework are as follows:

1. Regular monitoring (Section 3.3) is undertaken to evaluate potential for induced turbidity (i.e., the change in turbidity greater than background) at the edge of the work zone (i.e., the assessment point) during material placement activities.
2. If turbidity at the assessment point is observed to be less than the ambient WQG (i.e., <5 NTU above background), regular monitoring of turbidity continues, with no application of management actions. In the event that turbidity is greater than the ambient WQG, the level of exceedance determines whether:
a. In situ turbidity measurements will be conducted after 4 hours when induced turbidity is between 5 and 90 NTU above background and after 2 hours when induced turbidity is >90 NTU. In situ turbidity measurements will be made at three locations along the assessment point (100 m from the work zone) at three depths (1 m below surface, midwater column, and 2 m above the seabed) (Figure 4).
b. Implementation of management actions is warranted when induced turbidity at the assessment point is >90 NTU above background for material placement. The management action will be implemented, followed by in situ turbidity measurements at the assessment point as described in Step 2a to evaluate the effectiveness of the management action.
3. Step 2 is repeated. If the ambient WQG is met at the assessment point, regular monitoring is continued, and the process returns to Step 1. If the ambient WQG is exceeded at the assessment point, the level of exceedance determines whether and when additional in situ turbidity measurements should be conducted or management actions are implemented.
4. If, after Steps 2 and 3, induced turbidity continues to exceed the ambient WQG at the assessment point:
a. Management actions will be implemented if induced turbidity is >5 and <90 NTU, and in situ measurements will include collection of turbidity measurements at three depths and five locations along the compliance point (25 m from the edge of the work zone) as well as at the assessment point (100 m from the edge of the work zone). The purpose of the additional monitoring locations is to collect information about the behavior of the turbidity plume that can be used by a QP to evaluate the potential for environmental effects (which is determined in part by a combination of duration and magnitude). The QP will need to take into account background conditions, visual observations, and level of accuracy of field instrumentation when assessing which course of action should be taken.
b. Material placement will be temporarily stopped if induced turbidity is >90 NTU. After corrective actions are implemented, material placement may re-commence as will regular turbidity monitoring.
5. If, after Step 4a, induced turbidity continues to exceed the ambient WQG at the assessment point (i.e., is >5 and $<90 \mathrm{NTU}$) or is >90 NTU at the compliance point, material placement will be
stopped, and corrective actions will be implemented. Material placement and regular turbidity monitoring may then resume.
6. Collection of water samples for laboratory analysis of TSS and iron. Collection will be at the discretion of the QP.

3.3 In Situ and Laboratory Water Quality Monitoring

3.3.1 Types of Monitoring

Both in situ measurements and collection of water samples for laboratory analysis will be undertaken during water quality monitoring. The management of day-to-day Project activities will rely on in situ monitoring of turbidity.

3.3.1.1 In Situ Monitoring

The focus of the in situ water quality monitoring program will be manual "real-time" turbidity measurements, although in situ measurements of pH and dissolved oxygen will also be made occasionally to evaluate the effect of Project activities on these parameters. The assumed number of monitoring locations is described and summarized in Table 3; however, a greater or lesser number of measurements may be made depending on the conditions at the time (e.g., presence of confounding sources of turbidity or additional monitoring triggered per the decision framework for implementing management actions [Figure 3]).

3.3.1.2 Water Sampling for Laboratory Analysis

Water samples will also be collected for laboratory analysis from the monitoring locations. Samples for laboratory analysis of TSS and total and dissolved iron will be collected as noted in Table 3. TSS and iron data are being collected to document these parameters during material placement. Due to the short duration of the project and minimal risk of contamination (no dredging and placement of clean material), laboratory analyses will be analyzed on a standard turn-around-time.

3.3.2 Monitoring Locations

In situ measurements and sample collection for laboratory analysis will be conducted both upcurrent and down-current of the works and will be adjusted throughout the event depending on the location of Project activity and the direction of prevailing current at the time of sampling (as noted in Section 2.0, currents in Esquimalt Harbour are variable). The locations will be documented using hand-held GPS and laser rangefinder units. The selection of specific monitoring locations will be refined on the basis of site-specific conditions and work locations. A conceptual layout of the monitoring locations are provided in Figure 5 and described below.

3.3.2.1 Compliance Point Samples

Samples will be collected at a distance of 25 m from the edge of the work zone (material placement bucket). Turbidity measurements will be collected from multiple depths:

- At the surface of the water column: 1 m below the surface.
- At the bottom of the water column: 2 m above the sea bed (the grab sampler should be fitted with a weighted lead to help prevent the sampler itself from hitting the seabed and causing re-suspension of solids that may become entrained in the sample).
- Mid-water column: this can be approximately half-way between the surface and bottom of the water column when it is not stratified, or just below the density barrier (i.e., thermocline or halocline) when/if stratification is occurring.

3.3.2.2 Assessment Point Samples

Samples will be collected at a distance of 100 m down-current from the point at which the operator no longer exercises control over the discharge material (e.g., from the edge of the work zone). It is proposed that turbidity measurements will be made at three locations along this radius with discrete measurements at three depths, as noted above. In the event that confirmatory sampling is triggered, two additional locations may also be sampled at this distance, for a total of five.

3.3.2.3 Reference Samples

Samples will be collected outside of the Project Work Site influence, and other material placement project influences, to obtain reference (or background) turbidity measurements. During periods of time when the potential for non-project related activities (e.g., vessels berthing at nearby jetties) to influence background turbidity, a higher number of reference stations will be sampled, including near-field (two stations) and far-field (three stations) locations. When the potential for non-project related activities is low, fewer reference samples may be collected. Turbidity will be measured at three depths, in the same manner as the compliance point samples. When the potential for confounding activities is relatively low, the QP may take turbidity measurements at fewer reference locations.

3.3.3 Monitoring Frequency

Because of the short duration of the project, in-situ monitoring will be conducted every day for the entire project. Water samples for laboratory analysis will be collected during material placement at the frequency summarized in Table 3. Iron testing will only be conducted during placement of amended sand (siderite).

3.4 TSS/Turbidity Relationship

TSS data will be collected to assess the best management practices used for the Project, but because of the short duration of the project, and since there is no dredging activity, insufficient data will be
collected to validate the TSS/turbidity relationship. Information collected on the TSS/turbidity relationship will be provided in the Completion Report.

3.5 Quality Assurance/Quality Control (QA/QC)

3.5.1 Field

3.5.1.1 General

The following general guidelines will apply to field sampling activities:

- Sampling equipment will be decontaminated between sampling stations where applicable (i.e., when sampling for analysis of contaminants).
- Samples will be:
- Collected in containers and preserved as necessary with supplies provided by the analytical laboratory.
- Collected in such way as to minimize the introduction of foreign material to the sample and the loss of material of interest from the sample prior to analysis.
- Stored in coolers with ice packs ${ }^{3}$ during collection and shipping.
- Sufficient volume will be collected, where possible, such that required analytical detection limits can be met and quality control samples can be analyzed.
- Field meters will be calibrated according to manufacturers' instructions and calibrations will be verified with applicable commercially-formulated calibration standard solutions.
Calibration records will be kept and submitted with data reports.
- Chain-of-custody documentation will be maintained to document holding times and storage conditions and sample continuity.
- Field duplicate samples will be collected where applicable, and the relative percent difference (RPD) calculated to provide a measure of method precision:

$$
\text { RPD }=\left(\frac{\text { sample }- \text { duplicate }}{(\text { sample }+ \text { duplicate }) / 2}\right) \times 100
$$

In accordance with the BC Field Sampling Manual (BC MOE 2013), an RPD value of $\pm 20 \%$ for values ≥ 5 times the method detection limit will be used to identify notable differences between original and duplicate samples. RPDs are not calculated for values <5 times the method detection limit due to increased variability near analytical detection limits.

[^50]
3.5.1.2 Water Sampling for Laboratory Analysis

Duplicate water samples will be collected for laboratory analysis at a rate of 10% (i.e., for every 10 samples collected, one sample will be collected as a duplicate) and analyzed for the same set of parameters as the original sample.

Equipment blanks will be collected once per week and analyzed for total and dissolved iron.

3.5.2 Laboratory

Samples for chemical analyses will be submitted to Canadian Association of Laboratory Accreditation-accredited laboratories. Laboratory QA/QC will include analysis of laboratory duplicates, method blanks, matrix spikes, and certified reference materials as appropriate (i.e., depending on the parameter).

Prior to entry into the data management system (Section 3.5.3), laboratory data will be reviewed to verify that they are reliable. For example, this review may include checking the following:

- Sample control numbers of the chain of custody sheets and laboratory reports match.
- Confirmation that hold times have been met.
- Results are provided for samples submitted and analyses requested.
- Method blanks are below method detection limits and data reporting limits.
- Results of QC samples (e.g., duplicate samples, matrix spikes, certified reference materials) are within an acceptable range.

3.5.3 Data Management

Protocols for managing data quality will include the following:

- For field collection of water quality measurements, templates standardizing data collection requirements will be developed and used by the Environmental Monitor to promote consistency of data collection. Information to document includes:
- Field personnel
- Weather conditions and other site observations relevant to interpretation of monitoring data
- Station ID
- Unique ID for laboratory samples with linkage to site identifiers as appropriate
- Depth of sample
- Sample type (e.g., "normal," field duplicate, equipment blank)
- Unit of measurement
- Equipment used
- Where there are missing values (e.g., data were not collected), explanatory notes will be recorded
- Data (laboratory chemistry and field measurements) will be entered into a data management system agreed to between PWGSC and the Environmental Monitor following confirmation that laboratory and field data quality objectives were met (Section 3.5.2). Data that do not meeting the data quality objectives for the Project will be flagged.
- A number of different platforms are available for data management. The specific platform for data management will be selected by the Environmental Monitor in conjunction with PWGSC.
- Data entry (either manual or transfer of electronic data) will be cross-checked by a second person at a rate of approximately 10% of entries. The rate of verification will be increased proportionately to errors found, if any.

Archives of original hard and electronic copies, as appropriate, of data files will be maintained for future reference, including original laboratory reports, electronic data files (e.g., telemetry files from automated data loggers), field notes and QA/QC documentation.

4 Reporting

4.1 General

Results of regular real-time monitoring will be documented in daily reports provided to PWGSC who will forward reports to other applicable parties on the frequency outlined in the EMP (daily reporting and monitoring completion reporting following completion of the Project). Laboratory data will be reported in the Completion Report.

4.1.1 Exceedances

The Environmental Monitor undertaking the monitoring outlined in this WQMP will document exceedances and provide photographs of any plumes in daily reports and report exceedances and other compliance events to PWGSC (who will provide reports to other parties as applicable) as soon as possible commensurate with the severity of the event.

5 References

Anchor QEA (Anchor QEA, LLC), 2016. Draft Harbour-Wide Recontamination Evaluation. Esquimalt Harbour Remediation Project. Prepared for Public Works and Government Services Canada. 31 March 2016.

Anchor QEA, 2018a. Remedial Action Plan/Basis of Design Report. Central Constance Cove Remediation Project. Prepared for Public Works and Government Services Canada. November 2018.

Anchor QEA, 2018b. Environmental Closeout Report. Plumper Bay and Ashe Head Remediation Project. Prepared for Public Works and Government Services Canada.

Anchor QEA, 2019. Data Memorandum. Wood Waste Remediation Project. Prepared for Public Works and Government Services Canada. March 20, 2019.

BC MOE (British Columbia Ministry of Environment), 2013. British Columbia Field Sampling Manual for Continuous Monitoring and the Collection of Air, Air - Emission, Water, Wastewater, Soil, Sediment, and Biological Samples. Queens Printer, Victoria, British Columbia.

BC MOEACC (British Columbia Ministry of Environment and Climate Change), 2018. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife \& Agriculture. Summary Report. Available at: https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/wqgs-wqos/approvedwqgs/wqg_summary_aquaticlife_wildlife_agri.pdf.

CCME (Canadian Council of Ministers of the Environment), 1999. Canadian Environmental Quality Guidelines (for Sediment and Water). Updated to 2007. http://st-ts.ccme.ca.

CRD (Capital Regional District), 2019. Esquimalt Harbour. Accessed February 2019. Available at: http://crd.bc.ca/education/our-environmental/harbours/esquimalt-harbour.

DFO (Fisheries and Oceans Canada), 2010. Canadian Tide and Current Tables: Volume 5. Canadian Hydrographic Service, Ottawa, ON.

Golder (Golder Associates Ltd.), 2006a. Interim Data Report Supplemental Field Investigation. Esquimalt Graving Dock Waterlot. Prepared for PSPC.

Golder, 2006b. Detailed Quantitative Ecological and Human Health Risk Assessment and Updated Risk Management Plan. PSPC Graving Dock Waterlot. August 2006.

Golder, 2011. Baseline Turbidity and Current Monitoring in Esquimalt Harbour - Preliminary Data Report. February 2011.

Golder, 2017. Environmental Monitoring Closure Report. Colwood Jetties Remediation Project. Reference No. 1664698-029-R-RevA.

Golder, 2019. Water Quality Assessment. Central Constance Cove Remediation Project (WWRP Pilot Study). Submitted to PSPC. Document No. 18109625-003-R-Rev0. 22 March 2019.

SLR (SLR Consulting Ltd.), 2008. 2007/2008 Supplemental Site Investigation. Esquimalt Harbour Sediment Management Esquimalt, BC.

SLR, 2014. Phase 1B Environmental Monitoring Completion Report. Esquimalt Graving Dock Waterlot Sediment Remediation Project. July 2014.

Tables

Table 1
Vertical Profile Data from Esquimalt Harbour

Parameter	Depth	Ambient Water Quality Measurements (Mean Values)					
			D^{1}	Munro	Head ${ }^{1}$	Plump	er Bay ${ }^{2}$
		$\begin{aligned} & \text { Easting } \\ & 5365323 \end{aligned}$	Northing 0467871	Easting 5364985	$\begin{array}{\|c\|} \hline \text { Northing } \\ 0468117 \\ \hline \end{array}$	Easting ${ }^{3}$ 5365421	Northing 0467933
Turbidity (NTU)	Shallow (0-4 m)	0.76		0.53		0.65	
	M id-water (4-8 m)	0.57		0.63		0.53	
	Deep (8 m+)	0.59		-		0.51	
	All depths	0.64		0.55		0.56	
Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Shallow (0-4 m)	7.78		8.51		8.12	
	M id-water (4-8 m)	7.70		8.00		8.03	
	Deep (8 m+)	7.51		-		7.94	
	All depths	7.69		8.42		8.03	
Dissolved Oxygen (mg/L)	Shallow (0-4 m)	7.53		7.27		9.22	
	M id-water (4-8 m)	7.31		7.25		9.34	
	Deep (8 m+)	7.37		-		9.32	
	All depths	7.40		7.27		9.29	
pH	Shallow (0-4 m)	7.93		8.07		7.97	
	M id-water (4-8 m)	8.03		8.15		7.95	
	Deep (8 m+)	8.07		-		7.94	
	All depths	8.00		8.08		7.95	

Notes:

1. Data collected in October/November 2010 (Golder 2011)
2. Data collected between January and April 2017 (Golder 2017)
3. Location is approximate center of reference locations used to calculate mean values

EGD: Esquimalt Graving Dock
m : metre
mg / L : milligrams per litre
NTU: nephelometric turbidity units

Table 2
Water Quality Criteria

Parameter	Compliance Point ${ }^{1}$		Assessment Point ${ }^{2}$
Total Suspended Solids	M aterial placement	$<75 \mathrm{mg} / \mathrm{L}$ (over background)	$<10 \mathrm{mg} / \mathrm{L}$ over background at any given time ($<24 \mathrm{~h}$ duration) when background is $<100 \mathrm{mg} / \mathrm{L}$; $<10 \%$ of background when background is $>100 \mathrm{mg} / \mathrm{L}$
Turbidity ${ }^{3}$	Turbidity values as compliance limits for the discharge are not commonly specified for effluents. For the purposes of day-to-day management of dredging activities, turbidity value based on the TSS/turbidity relationship derived (Section 3.1; Figure 2) and are applied as over background values.		<5 NTU over background ${ }^{4,5}$ when background is <50 NTU; $<10 \%$ of background when background is >50 NTU
Dissolved Oxygen	$>5 \mathrm{mg} / \mathrm{L}^{6}$		>8 mg/L
pH	6.5 to $9.0{ }^{3}$		7.0 to 8.7^{7}
Metals -iron	See Table 3		See Table 3

Notes:

1. Point of Discharge (POD) taken to be the established set-back or safe working distance from active operations (e.g., 25 m from the edge of the material placement bucket).
2. Receiving environment taken to be the edge of the work zone or assessment point (i.e., 100 m from the edge of the material placement bucket).
3. The range of pH specified for protection of marine waters is $7.0-8.7$ to protect mollusk embryo development, based on BC MOE ambient water quality guidelines for pH (BC MOE 1991). However, for the purposes of managing pH during construction projects, DFO has typically specified the same range as for freshwater (6.5 to 9.0), recognizing that these pH differences are small, short-term in nature, are not harmful, and with marine water buffering, the pH water quality guidelines will be met very quickly. Transient pH excursions to less than 7 or greater than 8.7 units are common natural occurrences in coastal environment.
4. Background is defined as the NTU value measured in the receiving environment up current from the activity
5. The baseline monitoring program indicated that background turbidity in Esquimalt Harbour is relatively low (mean = 3.8 NTU). However, intermittent increases to 400 NTU have been
 6. Based on British Columbia MOE ambient water quality guidelines for instantaneous minimum dissolved oxygen (BC MOE 2016).
6. Based on MOE ambient water quality guidelines for pH (MOE 1991).
h: hour
mg / L : milligrams per litre
NTU: nephelometric turbidity units
POD: point of discharge
TSS: total suspended solids

Table 3

Monitoring Program Summary

Type of Sample	Number of Locations ${ }^{1}$	Number of Depth Intervals	Estimated Number of Samples for Analysis of TSS and Iron ${ }^{2,3}$	Frequency of Laboratory Samples ${ }^{4}$	
				Week 1	Week 2
Compliance Point (Placement Location)				Once daily (standard TAT)	Once, every three days (standard TAT)
$25 \mathrm{~m}^{5}$ from edge of bucket	1	3	3		
Assessment Point					
100 m from placement location	3	3	9		
References					
Near-field	2	3	6		
Far-field	3	3	9		

Notes:

1. The actual number of locations from which samples are collected for laboratory analysis will be determined by the Qualified Professional and number of reference samples collected will be dependent on the need to evaluate the potential for non-project related activities (e.g., vessels berthing) to influence background turbidity.
2. Total and dissolved iron.
3. Iron samples will only be collected during monitoring when amended sand cover (siderite) is placed. Sand only test plots will only require TSS testing.
4. Field duplicates will be collected at a rate of approximately 10% for quality control purposes and equipment blanks will be collected once per week (Section 3.5).
5. This is a safety buffer.
m : metre
TAT: turnaround time.
TSS: total suspended solids

Figures

LEGEND:

İ: WWMAs
\square Pilot Project Work Areas
[.] Jones Marine Lease Boundary

Wood Waste Thickness (metres)
$\square 0-0.2$
\square 0.21-0.4
0.41-0.
$\square 0.61-0.8$
\square 0.81-1.5

- 1.51-3.55

NOTES:
The wood waste thickness surface was created using Natural Neighbor interpolation method. . Jones Marine Waterlot Lease boundary corner points coordinates provided by DND. DND = Department of Defence WWMA = Wood Waste Management Area

Publish Date: 2019/07/17, 10:44 AM | User: jsfox

Figure 2
Total Suspended Solids - Turbidity Relationship for Compliance Points
Green line represents best-fit regression line. Gray shading represents prediction interval (95\% confidence). Turbidity of 30.9 NTU associated with TSS of $40 \mathrm{mg} / \mathrm{L}$. Turbidity of 90.7 NTU associated with TSS of $75 \mathrm{mg} / \mathrm{L}$.

Source: Golder 2019

Filepath:
Fuji\Anchor\Projects\PWGSC\Esquimalt Harbour\Wood Waste\Deliverables\EMP-WQMP\EMP\Appendix A - WQMP\Figures\Figure 4 Conceptual Layout of Turbidity Measurements in the Water Column.docx

Source: Golder 2019

Filepath:
Fuji\Anchor\Projects\PWGSC\Esquimalt Harbour\Wood Waste\Deliverables\EMP-WQMP\EMP\Appendix A - WQMP\Figures\Figure 5 Conceptual Layout of Monitoring Locations for Material Placement Activities.docx

Appendix B Example Reporting Templates

Memorandum

To: Recipient(s)
From: Author(s)
cc: Other(s)

Re: Environmental Monitoring Daily Summary

1.0 Introduction

2.0 Construction Activities

3.0 Environmental Monitoring Activities

3.1 Environmental Site Inspections and Observations
3.2 Water Quality Monitoring

Table 1
Summary of In Situ Water Quality Measurements

Parameter	Performance	Surface Range	Mid-Depth Range	Bottom Range	Comments

3.3 Marine Mammal Monitoring

3.4 Fish Monitoring

3.5 Bird Monitoring

4.0 Emerging Issues

Table 2
Emerging Issues

Date Noted	Environmental	Recommendation/ Action	Comments	Completed

5.0 Closure

6.0 References

DAILY FIELD ACTIVITY REPORT (DFAR)

PROJECT NO.:
PROJECT NAM E: Wood Waste Remediation Project - Pilot Study REPORT DATE \qquad
REPORT NUM BER \qquad
CONTRACTOR NAM E: \qquad
DFAR PREPARED BY: \qquad

http://www.waterlevels.gc.ca/eng/station?sid=7109

DAILY TIDE PREDICTIONS IN FEET	DATE	TIME	HEIGHT (m)	HEIGHT (FT)
Station ID: 7109				
Esquimalt Harbour				
Time Zone: PST				
Datum: Chart				
Sea State				

CONSTRUCTION OBSERVATIONS		
Location	Description of field activity, observations, hours of work, changes, and recommendations to Owner	Further Action Recommended to Owner

DREDGE VOLUME / WORK CONDUCTED

TASK	DREDGE VOLUME / WORK CONDUCTED	
Specification Reference	Location / Dredge Unit / Description	Quantity / Progress

DAILY FIELD ACTIVITY REPORT (DFAR)

ENVIRONMENTALMONITORING					
Type of Monitoring	Acceptable		Comment		
Air Quality	$\square \mathrm{Ye}$	\square No			
Site M anagement	$\square \mathrm{Ye}$	\square No			
Noise	$\square \mathrm{Ye}$	\square No			
			PERSONN	ITE (EST.)	
Name (or Labor Cat	gory)		Organization	Number Personnel	Notes

EQUIPMENT ON SITE

EQUIPMENT ON SITE		
	Organization	
		Notes/ Status/ Usage

DAILY FIELD ACTIVITY REPORT (DFAR)

PHOTOGRAPHS		

Appendix C

 Project Contact List
Table 1

Project Contact List

Name	Role or Title	Email	Address	Office Phone	Mobile Phone
Department of Defence (DND)					
Duane Freeman	Project Director	duane.freeman@forces.gc.ca	PO Box 17000 Station Forces Victoria, BC V9A 7N2	Direct: 250-363-5063	250-480-9554
Mike Bodman	Senior Project Advisor	michael.bodman@forces.gc.ca	Building D-9, CFB Esquimalt PO Box 17000 Station Forces Victoria BC V9A 7N2	Direct: 250-363-4824	250-812-1540
Mike Waters	Project Leader	michael.waters@forces.gc.ca	PO Box 17000 Station Forces Victoria BC V9A 7N2	Direct: 250-363-7457	250-213-1653
Kara Foreman	Deputy Project Leader	Kara.foreman@forces.gc.ca	PO Box 17000 Station Forces Victoria BC V9A 7N2	Direct: 250-363-2177	778-984-9900
Public Works and Government Services Canada (PWGSC)					
Kristen Ritchot	Departmental Representative, Design and Environmental Project Manager, Environmental Monitoring	kristen.ritchot@pwgsc-tpsgc.gc.ca	401, 1230 Government Street Victoria, BC V8W 3X4	Direct: 250-363-7861	250-208-4008
Andrew Smith	First Nations Communications Coordinator, Senior Procurement Advisor	Andrew.g.smith@pwgsctpsgc.gc.ca	401, 1230 Government Street Victoria, BC V8W 3X4	Direct: 250-363-8441	250-812-7975
Chris Patterson	Construction Health and Safety Coordinator	chris.patterson@pwgsc.gc.ca	401, 1230 Government Street Victoria, BC V8W 3X4	Direct: 604-812-9768	604-812-9768
Anchor QEA, LLC (Lead Consultant: Project Engineering, Construction Management, Environmental Monitoring)					
Tom Wang	Principal in Charge	twang@anchorqea.com	1201 3rd Avenue, Suite 2600 Seattle, WA 98101	Main: 206-287-9130 Direct: 206-903-3314	206-465-0900

Name	Role or Title	Email	Address	Office Phone	Mobile Phone
Dan Berlin	Project Manager	dberlin@anchorqea.com	1201 3rd Avenue, Suite 2600 Seattle, WA 98101	Main: 206-287-9130 Direct: 206-903-3322	206-409-7268
Kathy Ketteridge	Engineer of Record (Contract Drawings and Specifications)	kketteridge@anchorqea.com	1605 Cornwall Avenue, Bellingham, WA 98225	Main: 360-733-4311 Direct: 360-715-2709	360-319-8069
MCCOI Marine Ltd. (Quality Assurance Bathymetric Surveying)					
Matt Fawcus	Surveyor	matt@mccoi-marine.com	PO Box 2091, Sechelt, BC Canada, VON 3A0	--	604-740-6616

Appendix D

Submittals Tracking Table
\qquad
Project Number:
R. 098682.001
\qquad
Updated with Contractor Schedule dated:
STATUS KEY: AC $=$ Accepted $\quad \mathrm{RJ}=$ Rejected/Re-Submit $\quad \mathrm{RR}=$ Revise $\&$ Re-Submit $\quad \mathrm{MC}=$ Make Corrections Noted $\quad \mathrm{SI}=$ Submit Specific Item

Submittal Info				Status					Notes
Spec Section	Submittal Type	Submittal	Manufacturer / Supplier / Comment	Date required from Contractor	Date Received from Contractor	RFI \# (if applicable)	Design Team Lead	STATUS	
011155	Pre-Construction	Notice of Project							
011155	Pre-Construction	Construction Work Plan							
011155	Pre-Construction	Initial "month by month" Cash Flow Estimate							
011155	Pre-Construction	Environmental Protection Plan (EPP)							
011155	Pre-Construction	Health and Safety Plan							
011155	Pre-Construction	Construction Quality Control Plan							
011155	Pre-Construction	Security Clearance Documentation							
013500.50	Pre-Construction	Navigation Control Plan							
013500.50	Pre-Construction	Floating Equipment Certificate of Qualification, including Floating Plant Form							
013500.50	Pre-Construction	Safety Management System (SMS) for All Registered Vessels							
013119	Progress	Minutes of Progress Meeting(s)							
011155	Progress	Coordination Drawings							
352023	Progress	Daily Construction Report							
352023	Progress	Progress Claims							
011155	Progress	"Month-by-month" Cash Flow Estimates							
011155	Progress	Breakdown of the Contract Unit Rates and Lump Sum Prices							
011155	Progress	Record Documents							
022113	Progress	Post-Construction Bathymetric Survey(s) and Quantity Calculations							
013529.14	Progress	Health and Safety Program Requirements, including, but not limited to: Incident and Accident Reports, and complete set of MSDS and other WHMIS requirements							
013500.50	Progress	Vessel Information, including vessel name; registration number; type of vessel; and last port of call							
013500.50	Progress	For any new equipment brought on site, new Floating Equipment Certificate of Qualification, including Floating Plant Form							
014500	Progress	Inspection and Laboratory Test Reports							
022113	Progress	Progress Survey(s) and Quantity Calculations							
352023	Progress	Empty and Full Barge Displacement Measurements							
353710	Progress	Marine Surveyor Report (for documentation of the seaworthiness of each transport barge)							
353710	Progress	Material Types 1 and 2 Samples and Cover Type 3 Samples							
353710	Progress	Material Types 1 and 3 Laboratory Test Results							
011155	Post-Construction	Record Documents							
017830	Post-Construction	Certificate of Completion							
017830	Post-Construction	Notification of Contractor Inspection Completion							

Appendix B-3 Implementation of Measures to Avoid and Mitigate the Potential for Prohibited Effects to Fish and Fish Habitat

Fisheries and Oceans

Pacific Region
Ecosystems Management Branch 3190 Hammond Bay Road Nanaimo, BC V9T 6N7

Canada

Région du Pacifique Gestion des ecosystems 3190 rue Hammond Bay Nanaimo, CB V9T 6N7

September 30, 2019
Our file Notre référence
19-HPAC-00546

Michael Waters
Department of National Defence
CFB Esquimalt
Building 199D, Room 302
Victoria, B.C. V9A 7N2

Subject: Wood Waste Remediation, Esquimalt Harbour, Esquimalt Implementation of Measures to Avoid and Mitigate the Potential for Prohibited Effects to Fish and Fish Habitat

Dear Mr. Michael Waters:
The Fish and Fish Habitat Protection Program (the Program) of Fisheries and Oceans Canada (DFO) received your proposal on July 24, 2019. We understand that you propose to conduct a wood waste remediation pilot project in Esquimalt Harbour, British Columbia consisting of the following:

- Placing a thin layer $(0.3-0.6 \mathrm{~m})$ of clean sand on top of mud/sand sediment covered with wood waste material. Material will be placed in 3 test areas resulting in a $2,700 \mathrm{~m}^{2}$ total footprint;
- Placing a thin layer (0.3 m) of mixed siderite (5\%) with clean sand (95\%) on top of $\mathrm{mud} /$ sand sediment covered with wood waste material. Material will be placed in 4 test areas resulting in a $3,600 \mathrm{~m}^{2}$ total footprint;
- Conducting practice placements in $10 \mathrm{~m} \times 10 \mathrm{~m}$ plots using three methods resulting up to a $4,400 \mathrm{~m}^{2}$ total footprint. Practice placements will occur prior to the placement of materials in test areas listed above;
- Placing boulders in the practice area to create two circular rock mounds (up to 2 m height x 6 m diameter); and
- Conducting subsequent monitoring to investigate the effectiveness of placing the material on subtidal benthic habitats impacted by wood waste.

We understand the following aquatic species listed under the Species at Risk Act may use the area in the vicinity of where your proposal is to be located:

- NE Pacific Southern Resident Killer Whale listed as Endangered;
- Northern Abalone listed as Endangered;
- NE Pacific Transient Killer Whale listed as Threatened;
- Stellar Sea Lion listed as Special Concern; and
- Harbour Porpoise listed as Special Concern.

Our review considered the following information, herein called the 'Project Plan':

- Request for Review Form submitted by Mike Waters, Department of National Defence (DND), received July 24, 2019;
- Due Diligence Environmental Effects Determination Report, Physical Activity: DND Wood Waste Remediation Project and Appendices prepared by Hemmera Envirochem, dated July 23, 2019;
- Information received via telephone correspondence between Mike Waters (DND) and Larissa Chin (the Program); and
- Water Quality Monitoring Plan prepared by Anchor QEA, dated July 2019.

Your proposal has been reviewed to determine whether it is likely to result in:

- the death of fish by means other than fishing and the harmful alteration, disruption or destruction of fish habitat which are prohibited under subsections 34.4(1) and 35(1) of the Fisheries Act;
- effects to listed aquatic species at risk, any part of their critical habitat or the residences of their individuals in a manner which is prohibited under sections 32, 33 and subsection 58(1) of the Species at Risk Act; and
- the introduction of aquatic species into regions or bodies of water frequented by fish where they are not indigenous, which is prohibited under section 10 of the Aquatic Invasive Species Regulations.

The aforementioned impacts are prohibited unless authorized under their respective legislation and regulations.

Provided that you incorporate your proposed avoidance and mitigation measures that are described in your Project Plan, the Program is of the view that your proposal will not require an authorization under the Fisheries Act, the Aquatic Invasive Species Regulations or the Species at Risk Act.

Should your plans change or if you have omitted some information in your proposal, further review by the Program may be required. Consult our website (http://www.dfo-mpo.gc.ca/pnw-ppe/index-eng.html) or consult with a qualified environmental consultant to determine if further review may be necessary. It remains your responsibility to remain in compliance with the Fisheries Act, avoid prohibited effects on listed aquatic species at risk, any part of their critical habitat or the residences of their individuals, and prevent the introduction of non-indigenous species.

It is also your Duty to Notify DFO if you have caused, or are about to cause, the death of fish by means other than fishing and/or the harmful alteration, disruption or destruction of fish habitat. Such notifications should be directed to (http://www.dfo-mpo.gc.ca/pnw-ppe/CONTACT-eng.html) or to the DFO-Pacific Observe, Record and Report phone line (1-800-465-4336).

Please notify this office at least 10 days before starting your project. A copy of this letter should be kept on site while the work is in progress. It remains your responsibility to meet all other federal, territorial, provincial and municipal requirements that apply to your proposal.

If you have any questions with the content of this letter, please contact Larissa Chin at our Nanaimo office at 250-758-4978, or by email at Larissa.Chin@dfo-mpo.gc.ca. Please refer to the file number referenced above when corresponding with the Program.

Yours sincerely,

Boone Barber, RPBio
Senior Biologist
Fish and Fish Habitat Protection Program

Appendix C
 DND Reference Documents and Guidelines

Appendix C-1
 DND CAD/BIM Standard

DND CAD/BIM Standard

CETO (Construction Engineering Technical Order) C-98-002-CAD/FP-003 replacing obsolete CETO D-98-000-MIS/SF-003 Drawing Standards and Symbols.

Version 2.3

OPI: DCAE 6

August 2012
National Defence Headquarters
Major-General George R. Pearkes Building
101 Colonel By Drive
Ottawa, ON, K1A OK2

For inquiries, please contact ADM(IE) DCAE 6 (613) 995-3269

The DND CAD/BIM Standard is the intellectual property of DND. Only pre-authorized use is permissible, and no one has the right to sell, rent, lease, or make profit from the standard.

Preface

This CAD/BIM Standard manual has been developed by ADM (IE) as an initiative to consolidate and update the existing Guidelines and Conventions for the Production of Engineering and Architectural Drawings.

A French version of this document is also available. If there is a discrepancy between the French document and the English document, the latter shall be considered correct.

Table of Contents

1 INTRODUCTION 6
1.1 Purpose 6
1.2 Scope 6
1.2.1 Keeper of the CAD/BIM Standard 7
1.2.2 Revisions to this Document 7
1.3 Terminology 7
1.4 Definitions 8
1.5 Acronyms 8
1.6 Legend 9
1.7 DND CAD/BIM Standard Companion Document Listing 10
2 GENERAL REQUIREMENTS 11
2.1 Bilingual Requirements 11
2.2 Metric Requirements 11
2.3 Revision Text 11
2.4 As-Built Requirements 11
2.5 GIS Requirements 11
2.5.1 Closed Shapes 11
2.5.2 Coordinate System 11
3 DRAWING NUMBER CONVENTION 12
3.1 Drawing Number 12
3.1.1 Drawing Number Responsibilities 12
3.1.2 Drawing Number Breakdown 13
3.1.3 Job Number. 13
3.1.4 Drawing Sheet Number 14
3.2 Electronic File name 15
4 ELECTRONIC FILE STANDARD 16
4.1 Drawing Composition 16
4.1.1 DND Border Set-up 16
4.1.2 Actual Size Requirement. 16
4.1.3 Reference Files 16
4.1.4 One Design Per File 16
4.1.5 Layout Vs. Design Model Information 16
4.1.6 New, Demolition, and Existing Features 17
4.2 Layer Standard 17
4.2.1 DND Layer Name Structure 17
4.2.2 ByLayer 19
4.2.3 Layer Types 19
4.3 Line Width 20
4.4 Colour 21
4.5 Line Types / Styles 21
4.6 Text Styles 22
4.7 Dimension Styles 23
5 DRAWING CONVENTIONS 25
5.1 Introduction 25
5.2 Drawing Border 25
5.2.1 English \& French Borders 26
5.2.2 Standard B1 Title block 26
5.2.3 Cover Sheet 29
5.3 Drawing Scales 30
5.3.1 Graphic Scale 30
5.3.2 Multiple Scale Requirements 30
5.4 Section and Detail Identifiers 30
5.5 Abbreviations 30
5.6 Legend 30
APPENDIX A: PEN WIDTH \& COLOUR ASSIGNMENTS 31
APPENDIX B: DND CUSTOM LINE STYLES 33
APPENDIX C: DND PREFERRED DRAWING SCALES \& RESPECTIVE TEXT SIZE 38
APPENDIX D: DND SECTION \& DETAIL IDENTIFIERS 39
APPENDIX E: TYPES OF WORK AND BUILDINGS 41

1 Introduction

Traditionally this Standard has focused on CAD and the requirements surrounding the graphics and drawing conventions in support of AEC project delivery. While the basic requirements involving CAD remain, it is important to introduce Building Information Modeling (BIM) support within the framework of the DND CAD Standard to suit AEC industry advances. This standard has been renamed the DND CAD/BIM Standard Version 2.3.

The practical use of any drawing or package of drawings within the Department of National Defence (DND) does not terminate with the construction of the facility, but continues over the life cycle of the facility. Therefore, all drawings produced for or by DND upon promulgation of this CETO shall conform to the standards herein.

All drawings produced as part of the final contract document package shall be completely computergenerated; manual revisions to existing drawings are not permitted.

This Standard supports AutoCAD, the de facto standard in the Canadian design industry. DND also provides support for MicroStation users on an ad hoc basis. Certain restrictions are made with the DND CAD/BIM Standard, with line types for example, to ensure smooth translations between these CAD systems.

1.1 PURPOSE

A set of exhaustive rules for preparing engineering drawings is not attainable. The intent of this document is to supply sufficient direction so that drawings can be presented in a consistent manner.

This document provides drawing standards to which final DND drawings shall adhere, regardless of the CAD system used.

Reasons to comply:

- Improve the clarity, consistency, and compatibility of the drawings that are submitted to DND regardless of CAD system
- Maximize interoperability of the digital drawing file between CAD systems
- Reduce the amount of rework or reconfigurations that are required when drawings are accepted
- Ensure ease and accuracy of siting data migration to GIS
- Improve the ability to create printable copies of electronic files that are received
- Reduce the need for re-submissions by consultants hired to assist DND

1.2 SCOPE

This document is designed to inform stakeholders of the graphic presentation requirements of the final design/contract drawing. It is not intended to cover any technical or CAD software-specific instructions on how to achieve the standards set out herein.

See the DND CAD/BIM Standard Companion Document Listing section in this document for a list of supporting documents that cover other areas of the standard.

1.2.1 Keeper of the CAD/BIM Standard

The Keeper of the CAD/BIM Standard is the CAD/BIM Chief, DCAE 6, who is responsible for maintaining the documents.

Contact Information

Mailing Address:
National Defence Headquarters
Major-General George R. Pearkes Building
101 Colonel By Drive
Ottawa, ON, K1A OK2
Office Location:
180 Kent Street
Minto Building
Ottawa, ON (14-117)
Attention: John Hale, Chief CAD/BIM
DCAE 6
(613) 995-3269
john.hale@forces.gc.ca
Please refer all questions and comments to the above contact when required.

1.2.2 Revisions to this Document

It is recognized that the standard will evolve over time due to software changes and improved strategies.
Any suggestions and corrections that may improve future releases should be submitted to the Keeper of the CAD/BIM Standard.

1.3 TERMINOLOGY

In an effort to distinguish requirements from suggested guidelines, this standard uses the terminology defined below:

Table 1-1

SHALL	Expresses a requirement or order (i.e., the consultant must follow this condition to be compliant)
SHOULD	Expresses a recommendation (i.e., it is not mandatory, but strongly advised)
MAY	Expresses an option or that which is permissible (e.g., consultants may deliver projects in CAD or BIM)
CAN	Expresses possibility or capability (i.e., the option is practicable)

1.4 DEFINITIONS

Table 1-2

OUTSIDE	Project work that consists only of exterior items including external utilities, roads, survey information, etc.
INSIDE	Project work that consists only of interior building items including floor plans, internal utilities, furniture layouts, building elevations, and building structure.
SITING	Project work that consists of GIS information, such as site plans.
CIVIL	Project work that consists of civil engineering, such as road design, bridges, etc.
DESIGN MODELS	A model file contains elements or entities that represent the actual objects that are being drawn or designed (e.g., walls, doors, columns, sidewalks, pavement, curbs, etc.). This is referred to as Model Space in AutoCAD, and Design Model in MicroStation.
SHEET LAYOUTS	A model file used to assemble design model data, border graphics and annotation to compose the final plotted drawing. This is referred to as Paper Space in AutoCAD, and Sheet Model in MicroStation.
LAYERS	Classification system for graphics in the design/drawing file. Allows grouping of drawing components, which enables the user to turn items on and off, change colour, line width, and other properties as a group. The term Layer is used in AutoCAD whereas the term Level is used in MicroStation.

1.5 ACRONYMS

Table 1-3

ADM(IE)	Assistant Deputy Minister Infrastructure and Environment
AIA	American Institute of Architects
DND	Department of National Defence
AE	Architect Engineer
AEC	Architectural, Engineering, and Construction
CAD	Computer Aided Design
CETO	Construction Engineering Technical Orders
GIS	Geographic Information System
ISO	International Organization for Standardization
SI	International System of Units
N/A	not applicable

1.6 LEGEND

The following symbols are used throughout this document.

Table 1-4

Symbols	Definition
	Important note
	Reference to information found in another document or manual

1.7 DND CAD/BIM STANDARD COMPANION DOCUMENT LISTING

Table 1-5

Document Name	Description
DND CAD/BIM Standard C-98-002-CAD/FP-003	Document that prescribes general requirements and drawing convention standards
Annex A: Layers C-98-002-CAD/FP-004	Listing of DND Standard Layers and abbreviations
Annex B: Symbols C-98-002-CAD/FP-005	Listing of DND Standard Symbols for reference
Annex C: DND Location Codes C-98-002-CAD/FP-009	Listing of DND Location Codes, which form part of the DND Drawing Number naming convention.
Annex D: Change Request Form	Form completed to track change requests
Tool Kit Documents	Document covering all aspects of working with the DND Standard using AutoCAD software
Annex E: Tool Kit Guide for AutoCAD C-98-002-CAD/FP-006	Document covering all aspects of working with the DND Standard using Civil 3D software
Annex F: Tool Kit Guide for Civil 3D	Document covering all aspects of working with the DND Standard using Revit software
Annex G: Tool Kit Guide for Revit	
Annex H: Interim BIM Project Guide	Document introducing submission requirements for BIM projects
Annex I: Menu Manager Content	Listing of Menu Manager menus and content for reference.

See the "What's New" document to review changes to standard documentation and delivered DND software since the last release.
(Some or all DND CAD/BIM Standard documents can be accessed in PDF format from one of the following web addresses:
DND Personnel Only:
http://admie.ottawa-hull.mil.ca/dgme/DCAE/CAD Standards/cad std and guidelines e.asp

Public Website:

http://www.acsnb.com/dnd

2 General Requirements

2.1 BILINGUAL REQUIREMENTS

Ensure that where bilingual documents are required, drawings are prepared to allow application of notes, titles, etc., in both official languages without compromising drawing clarity.

2.2 METRIC REQUIREMENTS

All drawings detailing construction engineering, architectural, and related works for DND facilities shall be prepared using the International System of Units (SI). Units for linear dimensioning are restricted to the metre (m) and the millimetre (mm). Whole numbers will indicate millimetres [e.g., the coordinate $(600,1250)$ is referenced in millimetres], and decimal expressions to three places of decimals will indicate metres [e.g., the coordinate $(1.200,25.000)$ is referenced in metres].

For AutoCAD format drawings, "Insertion Scale" \& "Length" parameters of the drawing units shall be set accordingly.

In certain applications, the "NPS" designation is used to describe the size of piping and appurtenances. This is acceptable provided current manufacturing standards for the items concerned have not been converted from imperial to metric units.

2.3 REVISION TEXT

Where applicable, red-line, bubble or revision clouds shall be used to denote all changed items on the drawings. Where applicable, these revisions shall be called out by a reference to the title block (utilizing a number enclosed in a triangle to reference date, description, etc.).

2.4 AS-BUILT REQUIREMENTS

Upon completion of the project, final project drawings (all disciplines) shall be updated to "As-Built" status by the consultant/contractor responsible for the work. Final "As-Built" drawings shall be both hard copy and native digital files.

2.5 GIS REQUIREMENTS

2.5.1 Closed Shapes

All shapes drawn shall be "closed shapes" and all symbols shall conform to the CAD/BIM Standard by having a graphic point at the point of origin. This is particularly important for siting as it ensures that data migration to GIS can be performed correctly.

2.5.2 Coordinate System

The project manager will provide additional instructions for siting project requirements related to coordinate system, geodetic datum and global origin, as this information is unique to each base (client).

3 Drawing Number Convention

3.1 DRAWING NUMBER

Contract and other non-standard drawings shall be numbered with the combination of the Job Number and the Drawing Sheet Number. See Table 3-1.

1 See Appendix E for numbering sketches, site records, and standard drawings
Using as an example $\mathrm{H}-\mathrm{B9}-9501 / 3-601 \mathrm{~B}$, the drawing number has the following parts:
Table 3-1: Part of Drawing Number

Job Number	Drawing Sheet Number
H-B9-9501/3	601 B

Figure 3-1: Sample of Drawing Number in the Title block

3.1.1 Drawing Number Responsibilities

H-B9-9501/3-601B

Job numbers are issued by DND Headquarters, Command, or Base via the project manager assigned to the project. The number assigned should be checked with the base (the client) to ensure that it is correct.

H-B9-9501/3-601B
Drawing Sheet Numbers are the responsibility of the consultant or designer developing the project.

3.1.2 Drawing Number Breakdown

Using as an example H-B9-9501/3-601B, the job number and the drawing sheet number have the following parts:

3.1.3 Job Number

Job Number H-B9-9501/3 is broken down as follows:

Authority Code

H-b9-9501/3-601B
The authority code is a letter signifying the design agency responsible for the production of the drawing.
Table 3-2: Authority Codes

Code	Description
H	Headquarters
C	Command
L	Local (base)

Location Code

H-B9-9501/3-601B
The location code is a combined letter and number system that represents the site, establishment or base at which the building or service is located.
(1) See Annex C: DND Location Codes.

Facility or Type of Work

H-B9-9501/3-601B

The first two digits indicate the type of work or facility, and the second two digits represent a specified standard design for a work or facility.See Appendix E for a list of codes for type of work or facility.

Job Sequence Number

H-B9-9501/3-601B
This number indicates subsequent projects involving the same work or building.

3.1.4 Drawing Sheet Number

Drawing sheet number 601B is broken down as follows:

Table 3-3: Drawing Sheet Number Breakdown

Trade Number	Sequential Number	Bilingual Indicator
6	01	B

Trade Number

H-B9-9501/3-601B
DND utilizes the following trade (discipline) codes to identify drawings by trade and provide a standard sequence within the final submission.

Table 3-4: Trade Codes

Trade Code	Description
0	Cover sheet and very small projects where two or more disciplines appear on the same drawing shall use 0 as the trade identifier of the drawing number.
1	Siting
2	Structural
3	Architectural
4	Mechanical
5	Electrical
6	Civil
7	Communication
8	Fire Safety/Security
9	Interior Design

Sequential Number

H-B9-9501/3-601B
The following digits are the sequential numbers identifying the sheet for the accompanying trade number.
Each trade sequential number is to have 2 digits and begin with 01. For example, the first drawing in a Siting series is 101 and the first drawing in a Civil series is 601 . See Table 3-5.

Table 3-5: Sequential Number Values

Code Value	Description
01	First Drawing in the series
02	Second Drawing in the series
03	Third Drawing in the series
- -	

* For large projects, where a trade sequence is expected to exceed 99 drawings, the sequential number shall have 3 digits beginning with 001. For example, the first drawing in an Architectural series is 3001.

Bilingual Indicator

H-B9-9501/3-601B

Drawings shall be produced in both official languages. When both languages appear on the same sheet, the letter 'B' shall follow the drawing number, indicating a bilingual drawing.

Where there is too much detail for this method to be practicable, separate English and French drawings shall be prepared. Although both sheets will show the same drawing number, the English only sheet will have no Bilingual Indicator and the French only sheet will be identified by the letter ' F ' placed immediately after the drawing sheet number.

Table 3-6: Bilingual Indicator Values

Code Value	Description
B	Drawing is bilingual
F	Drawing is French

3.2 ELECTRONIC FILE NAME

The electronic drawing file name is the same as the Drawing Number in the title block except it includes the file extension.

2 No slashes are allowed in file names; they need to be replaced with hyphens.
For example, for Drawing Number H-B9-9501/3-601B, the drawing filename is H-B9-9501-3-601B.dgn or H-B9-9501-3-601B.dwg

4 Electronic File Standard

The information in this section covers the computer-based standards of the final DND drawing. See the accompanying guides for system-specific requirements, instructions, and information on how to comply with the DND standard.

4.1 DRAWING COMPOSITION

The following describes the drawing set-up and composition of the final drawings.

4.1.1 DND Border Set-up

- All final DND drawings shall use one of DND's Standard borders (see Tables 5.1 and 5.2).
- Borders can be placed as an external reference or as a block.
- Border blocks shall not be exploded.
- Borders can be placed in or referenced to the sheet layout. Borders shall not be scaled in a sheet layout. The scaling of the design should occur through scaled reference or viewport attachments.
- All layout viewport scales shall be locked when submitted.
- Borders should be initially set up using a DND template.

4.1.2 Actual Size Requirement

All drawing information shall be drawn true scale (1:1). That is, if a roadway segment is 100 metres long, the line drawn to represent it shall also be 100 metres long.

4.1.3 Reference Files

External reference files shall only be used during design development. All external reference files shall be bound within the final delivered electronic drawing file.

4.1.4 One Design Per File

Each drawing in a drawing set shall reside in separate electronic files. It is not acceptable for a single drawing file to contain 601, 602, 603, etc.

Multiple sheet layouts should be used to plot the same information with different sized borders, etc., but NOT to create separate drawings of the drawing set (e.g., drawings that would normally have separate drawing numbers such as: H-B9-9501/3-601B).

4.1.5 Layout Vs. Design Model Information

The following rules shall be used when determining where information should reside:

- Only items that are not graphically linked to objects in the design model shall appear in sheet layout (e.g., borders, title blocks, general notes, titles, legends, notes to computer operators that are not to be printed).
- All notes directly linked to the design should be placed in the design model (e.g., leaders, dimensions, and labels).
- All design information shall be placed in the design model (e.g., buildings, doors, column grids, dimensions, names, etc.).

4.1.6 New, Demolition, and Existing Features

In situations where you need to show existing design items in combination with items that are new, to be demolished, or relocated, it is preferred to have the existing design items subdued to appear as background information. This is achieved by making existing items appear grey and lightened; all other content is displayed normally or emphasized through bolding.

The following are acceptable options on how new, demolition, relocated and existing design items should be organized in the file.

Option 1: Prior to drawing a new design, move all demolition items to the demolition layers provided. Create a new layer for all existing items (e.g., A_EXST) and move all existing features to this layer. Use the provided layers for the NEW design items.

Option 2: For situations where separate design layers are needed to show new and existing construction, the standard layer naming convention shall be used for NEW and EXISTING. A status suffix of
"_NEW" shall be placed at the end of the layer name for NEW items (e.g., A_WALL_NEW). A suffix of "_EXST" shall be placed at the end of the layer name for EXISTING items (e.g., A_WALL_EXST).

Option 3: The drawing containing the demolition or existing information can be kept as is and referenced to a new drawing where you use the provided layers for the NEW design items. You have the option in this case to override the display of the item attributes of the reference to suit.

Option 4: Where you have separate drawing files to show different construction conditions or phases, such as having a separate "Demolition Plan" and "New Floor Plan", all layers with existing items to remain should be appended with the status "_EXST" with their color and weight modified according to the standard. All other content that is new, to be removed, or relocated should be placed on their appropriate layers as provided, allowing them to appear bolder than the existing items to remain in the background.

Existing items to be removed may be marked with an " X ", and existing items for Removal and Relocation with an "R."

Where all information can be accommodated on one plan, items may be marked as follows:
"X" - Removal
"R" - Removal and Relocate
"E" - Existing to Remain
"N" - New

4.2 LAYER STANDARD

Exceptions to the standard will be accepted only in cases where items cannot be classified into one of the predefined layers. Layer names that are created shall follow the general DND layer name structure, and a description shall be provided.Refer to Annex A: Layers for a list of available predefined layer names.

4.2.1 DND Layer Name Structure

All DND Layer names generally consist of four or more fields separated by underscores (_).

Dashes ("-") or spaces (" ") shall not be used in any DND Layer names.

Discipline Designator
 X_xxxx_xxxx_xxxx_x

The discipline designator is the first field indicating the level feature discipline. The discipline designator fields are mandatory except for COMMON layers. See Table 4-1 for a complete list of DND discipline designators.

Table 4-1 : DND Discipline Designator

Discipline Designator		
INSIDE		OUTSIDE
A	Architectural/Interior	SI Siting
S	Structural	C Control
M	Mechanical	E Environmental
F	Fire Protection	B Boring Log
P	Plumbing	G Geotechnical
E	Electrical	H Hazardous Materials
T	Telecommunications	HI Historical Plan
		G General Key Plan
		P Planimetry - General
		P_AF Planimetry - Airfield
		P_H Planimetry - Hydrology
		P_M Planimetry - Marine
		P_RAP Planimetry - Paving
		P_V Planimetry - Vegetation
		T Topography
		U_A Utilities - Abandoned
		$U^{-} \quad$ Utilities - General
		U_C Utilities - Communications
		U_D Utilities - Drainage/Storm
		U_E Utilities - Electrical
		U_G Utilities - Gas
		U_H Utilities - Heating
		U_M Utilities - Marine
		U_S Utilities - Sanitary
		U_W Utilities - Water
		z Zone
		C Civil
		L Landscape

Major Group
 × $\mathbf{X X X X}$
 XXXX_XXXX_x

The major group is an abbreviation that identifies a grouping of common types of drawing information relevant to each discipline.

Minor Group
 X_XXXX
 XXXX_XXXX

This optional group is to subdivide the major group field to identify each level more precisely.
\square See Annex A for DND layer abbreviations used for the major and minor groups.

Status

$$
x_{-} \times x x x_{_} \text {xxx__xxx__X }
$$

The status is an optional identifier to specify the current state of the layer.
Most DND predefined layers do not include the status identifier. Table 4-2 lists predefined standard statuses and their layer properties that can be appended to any layer.

Table 4-2 : DND Predefined Layer Statuses

Status	Color	Line type	Weight	Description
_HIDE	$*$	DND_DASHED_ MED	$*$	To identify or display hidden features
_NEW	$*$	$*$	0.50 mm	To identify new construction or features
_EXST	252	$*$	0.25 mm	To identify existing conditions or features
_ABAN	252	$*$	0.25 mm	To identify abandoned features
_DEMO	6	DND_DASHED_ SHORT	0.35 mm	To identify features to be demolished

"*" - denotes that the property does not change when the status is appended to the layer.

4.2.2 ByLayer

All features shall be drawn with their properties of colour, line width, and line style set to "ByLayer." This allows all properties of the objects to be inherited from the settings of the layer in which they are "placed." The CAD user can change the line width, colour, and line style by simply changing the properties of the entire layer.

4.2.3 Layer Types

The DND Layer name structure differs depending on the type. DND has identified 3 types:

- INSIDE: Project work that consists only of interior building items

These Layer names are based on American Institute of Architects' (AIA) guidelines for layer structure and properties.

- OUTSIDE: Project work that consists only of exterior items

These Layer names are based on layer requirements of GIS standards as previously developed by DND.
(COMMON: Layers that are not uniquely INSIDE nor OUTSIDE or are common to both, such as some text features.
These layers will loosely follow the same structure as INSIDE, except the discipline designator is omitted; therefore, the layer starts with an underscore ($_$).

Table 4-3: DND Layer Samples

DND Layer Samples			
Type	Layer Name	Discipline	Description
INSIDE	A_WALL_FULL_EXTR_EXST	Architectural	Exterior full height walls Existing
	A_ELEV_CASE	Interior	Wall mounted casework
OUTSIDE	C_Horizontal_Control	Control Plan	Horizontal controls
	T_Contour_Int_Dep_Obsc	Topography Plan	Contour intermediate depressed obstructed
	U_C_UG_Optical_Lines	Utilities Communication	Underground lines optical fibre
COMMON	_PLT_WHITE *	N/A	Features on this layer / level print white
	_ANNO_NPLT *		Features on this layer / level do NOT print
	_ANNO_DIMS		Dimension features
	_ANNO_TXTE		English text
	_ANNO_TXTF		French text

* These are special layers available.

4.3 LINE WIDTH

Standards for varying widths of lines have been established to improve presentation and readability of drawings. While CAD systems have the capability of showing a wide array of line widths, only a small number of them are required for drawing legibility.

The line widths displayed in the table below shall be used for all drawings unless substantial improvement in readability can be gained through the use of additional widths.

Table 4-4 : DND Preferred Pen Widths

Line Widths	Pen Widths $(\mathbf{m m})$	Examples of use
Extra Fine	0.09	Grids
Fine	0.18	Hatching, centerlines
Thin	0.25	Light and background features
Medium	0.35	Miscellaneous Features
Wide	0.50	Section lines, Grade line, Rebar
Extra Wide	0.70	Border outline

1 See Appendix A: Pen Width \& Colour Assignments for a complete list of acceptable DND line widths.

4.4 COLOUR

The following are important notes on the use of colours on DND drawings:

- The AutoCAD colour table shall be used as the colour scheme on all DND drawings to improve interoperability between CAD systems.
- Colour is not used to determine printing pen width. Pen width is determined by the line weight attribute.
- A relationship between line weight and colour has been standardized and shall be maintained where possible to improve screen clarity between features and layers.
- Certain colours have been designated to print either screened at a given percentage or at their given colours on monochrome prints with the use of DND plot styles or pen tables.
- Colour 255 in AutoCAD (0 in MicroStation) is not used except for objects placed on layer _PLT_WHITE
- All objects shall be placed using the colour attribute set to "BYLAYER" where possible.
- See Appendix A: Pen Width \& Colour Assignments for tables on DND colour assignments.

4.5 LINE TYPES / STYLES

DND has standardized a set of custom line styles to improve interoperability between CAD systems. DND line styles are separated into 3 groups:

- COMMON - general line styles
- INSIDE - line styles generally used within the interior of building
- OUTSIDE - line styles generally used on the exterior of building

Figure 4-1: Sample DND Line Styles

COMMON	
..	DND_DOT
	DND_DASHED_SHORT
	DND_DASHED_MED
	DND_DASHED_LONG
-.-.-.-.-.-.-.-.-.-.-.-	DND_CENTER_DOT
----	DND_CENTER_DASH
-..-..-..-...--...-	DND_PHANTOM
INSIDE	
w	CIRCULATNG WATER SUPPLY
	GAS LINE
- oxy	OXYGENELINE
$\begin{gathered} \text { OUTSIDE } \\ k====================(\text { cULVERT } \end{gathered}$	
	Rallway
-SNっ	SANITARY FLOW UNDERGROUND

The following rules shall be followed on DND Drawings:

- Only the available DND line styles shall be used.
- All objects shall be placed using the line style attribute set to "BYLAYER" where possible.
- Line style scale shall be adjusted using the available global system variable such as, "LTScale" in AutoCAD (do not set custom line style scale at the object level).
- See Appendix B: DND Custom Line Styles for the complete list of DND line styles.

4.6 TEXT STYLES

DND has adopted a number of text styles to ensure that drawing text display and print in a consistent manner. To improve interoperability between CAD systems, true type fonts shall be used throughout all drawings.

Text on DND submitted drawings shall be Arial Narrow, size 2.5 mm for general notes, dimensions, and annotation. Details, titles, sections, etc., shall be Arial, size 5 mm .

Other requirements to consider:

- Full-size drawings are often printed at half-size; therefore, text size shall be scaled appropriately to accommodate this requirement.
- All text presented on the drawing should have a vertical orientation and be UPPERCASE.

Table 4-5: DND Test Styles and Font Use

Style Name	Font	Size (mm)	Description	Example Items
General_Text	Arial Narrow	2.5	General text in drawing	General Notes, Dimensions, Annotation, Call-outs
Name_Text	Arial Narrow	3.5	Room Name Text	Room Names or text that require more emphasis
Title_Text	Arial	5	Some Border and Title Cover sheet text	Cover Sheets, Borders, Titles, Headings, Drawing number, Project Location, Discipline names.
ID_Text	Arial Narrow	2.0	To identify an object like a pole, MH, valve, etc.	Pole \# or name, MH \# or name, valve \# or name
Border_Text	Arial Narrow	N/A	Border Text Only	Not for General Use Not to be modified
Canada_Logo	Times New Roman	N/A	Canada Logo Only	Not for General Use Not to be modified
Exceptions: Use of other fonts, heights, and styles shall be minimized. Exceptions only allowed when unusual clarity issues require use of other fonts.				

4.7 DIMENSION STYLES

DND has adopted a number of dimension styles to ensure that drawing dimensions display and print in a consistent manner. To improve interoperability, these dimension styles are available in both CAD systems.

Table 4-6: DND Dimension Styles

Style names	Where to Use	Term. Types	Units	Angle Format
DND_Architectural	INSIDE - architectural discipline only	slash	Millimetres (whole number)	Decimal degrees
DND_MM	INSIDE - buildings and building features	arrow	Millimetres (whole number)	Decimal degrees
DND_Metre	OUTSIDE - Engineering or Siting	arrow	Metres (Three decimal places)	Degrees, minutes and seconds

The following rules shall be followed:

- The true dimensions value shall be shown and not be overridden or altered.
- Where part of the drawing is not to scale (NTS) or there is a break in the information, the dimension shown shall be followed by the abbreviation NTS or by using a break symbol in the dimension line.
- Units shall not be designated
- The following note shall be placed on the drawing:

INSIDE millimetre drawings: All dimensions shown are in millimetres unless otherwise noted

OUTSIDE metre drawings: All dimensions shown are in metres unless otherwise noted
Table 4-7: DND Dimension Style Samples

DND_MM	DND_Architectural	DND_Metre
$\xrightarrow{3000}$	$\Varangle \quad 3000$	$\stackrel{3.000}{\longrightarrow}$

5 Drawing Conventions

5.1 INTRODUCTION

This section addresses the presentation of graphic requirements for lines, text, leaders, dimensions, etc.

5.2 DRAWING BORDER

All DND standard borders that are unique to DND are based on ISO B series sizes and ANSI sizes.
The B1 1000x707 border shall be used for all project drawings. See Table 5-1.
Table 5-1: DND Standard Border Sizes

DND Name Designation (Layout Name)	Size (mm) $(\mathbf{h} \times \mathbf{w})$	Paper Size Standard	Notation
B1 1000×707	1000×707	ISO B1	
Cover 1000×707			

Table 5-2 includes the DND Borders that can be used in special cases approved by the project manager.
Table 5-2: DND Standard Border Sizes

DND Name Designation (Layout Name)	$\begin{aligned} & \text { Size (mm) } \\ & \text { (h x w) } \end{aligned}$	Paper Size Standard	Notation
A0 1189×841	1189×841	ISO A0	DND A0 border (Engineering Title block)
A1 841×594	841×594	ISO A1	DND A1 Border (Engineering Title block)
B3 500×353	500×353	ISO B3	Half-size of B1 Border (Engineering Title block)
Tabloid	$\begin{aligned} & 431.8 \mathrm{x} \\ & 279.4 \end{aligned}$	ANSI "B"	17x11 border (Engineering Title block)
11×17-L			Landscape (horizontal title block)
11×17 _DATA			Landscape
11×17	$\begin{aligned} & 279.4 x \\ & 431.8 \end{aligned}$		Portrait
Legal	$\begin{aligned} & 215.9 x \\ & 355.6 \end{aligned}$	$\begin{aligned} & 8.5 " \times 14 " \\ & \text { (Legal) } \end{aligned}$	Portrait
Legal_L	$\begin{aligned} & 355.6 \mathrm{x} \\ & 215.9 \end{aligned}$		Landscape

Letter	279.4 x		
	215.9	ANSI "A"	Portrait
Letter_L	215.9 x		Landscape

5.2.1 English \& French Borders

All borders are bilingual; however, there is an English and French version for each border size. That is, French is the primary language in the French borders. The language version is indicated with a suffix of _E for English and _F for French for all layout names. All English and French borders are also stored in separate template files indicated by the suffix _E \& _F. For example, dnd_layouts_ctb_E.dwg contains only English borders.

5.2.2 Standard B1 Title block

Figure 5-1: B1 Border

The DND B1 Title block contains the following components:
Table 5-3: Title Block Components

Component Items	Description
GoC Logo	Government of Canada wordmark
Level of Security	Status of current drawing security level
Disclaimer	Copyright information for use of drawings
Consultant Area	Area reserved for consultant identification and logo
Key plan Area	Area reserved for key plan when needed
Date Stamp	Date of last revision made to border drawing
Revision Block	Drawing revision \#, date, revision description and initials to

	list history of revisions, addenda, as-built information, etc.
Project \& Drawing Information Fields	Project, subject, location, and other drawing information
Production \& Reviewed Identification Fields	Various initials fields. Reviewed fields required may vary from base to base.
Plot Stamp	Generated drawing info at printing time. Info includes file name, layout name, user name, date and time.
Hanging Strip	98mm wide trim line for hanging strip.

Level of Security

There are five level of security options to indicate the current drawing's security level:

- TO BE REVIEWED
- UNCLASS
- CONFIDENTIAL
- SECRET
- TOP SECRET

Production \& Reviewed Identification Fields

The following describe the initial fields used in the production and reviewed grouping.

Production Initial Fields

Initial fields in the production grouping are predetermined and shall not be changed.
Figure 5-2: Cover Sheet

PRODUCTION	REVIEWED\|REVU	
DESIGNEDIÉTUDIÉ X.X.	$\begin{aligned} & \mathrm{XX} \mid \mathrm{XX} \\ & \mathrm{X} . \mathrm{X} . \end{aligned}$	$\begin{aligned} & \text { DES O\| AGENT CONC } \\ & \text { X.X. } \end{aligned}$
DRAWN \| DESSINÉ X.X.		$\begin{aligned} & \text { PROJ MGR I GEST PROJ } \\ & \text { X.X. } \end{aligned}$
CHECKED \| VÉRIFIÉ X.X.		```DES MGR \| GEST CONC X.X.```
COORDINATION X.X.		FIRE \| INCENDIE X.X.
WBS NO. INO. OTP	PF NO. \| NO. DP	

Table 5-4: Production Fields

Predetermined Fields	Required Content
DESIGNED	Initials of the engineer or architect responsible for the design
DRAWN	Initials of the CAD user responsible for drawing preparation
CHECKED	Initials of the individual responsible for checking drawing accuracy
COORDINATION	Initials of the individual, designated by the (prime) consultant as responsible for overall coordination and delivery of the final design package

Reviewed Field Initials

Some initial fields in the Reviewed grouping have been predetermined. Empty fields have been provided for base specific initials if required.

Figure 5-3: Cover Sheet

Table 5-5: Reviewed Fields

Predetermined Fields	Description
DES O	Design Officer
PROJ MGR	Project Manager
DES MGR	Design Manager
FIRE	Fire Chief

The following table lists other initials that may be used. The empty fields provided shall be used for these or any other additional fields required by the base.

Table 5-6: Field Initials

Fields	Description
ENG O	Engineering Officer

PROJ O	Project Officer
CUSTOMER	Customer or Client
MP/W	Military Police/Wing
SECT OC	Officer Commanding Engineer Services Company
COMMS	Communication
WFC	Wing Fire Chief
REQT/ENG O	Requirements Officer / Engineering Officer
WCEO	Wing Construction Engineering Officer

5.2.3 Cover Sheet

The DND cover sheet is required unless the project manager specifically states otherwise.
Figure 5-4: Cover Sheet

Table 5-7: Cover Sheet Fields

Cover Items	Description
Design Image	Space for the image of the design
Consultant Area	Area reserved for consultant identification and logo
Title block Info	Project, job number, location information, etc.
Date Stamp	Date of last revision made to border drawing
Hanging Strip	98mm wide trim line for hanging strip
List of Drawings	List of drawings by discipline
Level of Security Markings	Status of current drawing security level (default value = to be reviewed)
GoC Logo	Government of Canada wordmark
Plot Stamp Info	Generated drawing info at printing time. Info includes file name, layout name, user name, date and time.

The following items shall be completed on each cover sheet of each drawing set:

- Project Number (WBS - Work Breakdown Structure, issued for Level 1)
- Job Number
- Location
- Project Name
- List of Drawings (by discipline)

5.3 DRAWING SCALES

The proper scales should be selected to avoid overcrowded or ambiguous conditions on the drawings.
ㅁal See Appendix C: DND Preferred Drawing Scales \& Respective Text Size
The selection of scales for supporting drawings of auxiliary and related equipment shall reflect the same considerations.

5.3.1 Graphic Scale

Graphic bar scales shall be used on all drawings to indicate the units of measurement and the ratio. See Figure 5-5.

Figure 5-5: Graphic Bar Scale in Title block

5.3.2 Multiple Scale Requirements

When two or more scales are used on the same drawing sheet, each scale shall be clearly indicated below each particular title, and the notation "AS NOTED" or "SCALE AS SHOWN" indicated in the Project /Subject Identification Block. See Figure 5-6.

Figure 5-6: Scale Notation in Title Block
SCALE - ÉCHELLE

SCALE AS SHOWN

I คのATI \quad LMADI ACLMALNIT

5.4 SECTION AND DETAIL IDENTIFIERS

DND has standard symbols to use for cross-referencing information in drawings. These standard symbols shall be used where possible to identify sections and details, and as labelling titles.

1 See Appendix D: DND Section and Detail Identifiers for samples of DND Identifiers and appropriate uses.

5.5 ABBREVIATIONS

Abbreviations should be kept to a minimum, and when used, a legend should be provided.

5.6 LEGEND

A legend is required for all symbols that are used in the drawing set.

Appendix A：Pen Width \＆Colour Assignments

Table A－1 contains the complete list of DND Standard pen widths and the colours assigned to each width．
Note the following：
－All DND colours are based on the AutoCAD colour table．
－AutoCAD line weight and pen width are represented by the same value．MicroStation weight equivalents are expressed in whole numbers．
－Line widths with an asterisk（＊）are preferred DND pen widths．
－Colours in Table A－1 are generally designated to print black through the use of DND plot styles or pen tables．

These tables should also be referenced when examining Annex A：Layers where a line weight is assigned to each layer utilized in DND drawings．

Table A－1－DND Pen Widths and Colour Assignments

Line Widths	Pen Width mm （AutoCAD Line weight）	MicroStation WT	Colour－to－Width Assignments								
			$\frac{0}{\mathbf{D}}$		$\begin{aligned} & \text { ס్ర్ } \\ & \text { In } \end{aligned}$	π 0	$\frac{\check{N}}{\substack{0}}$	$\begin{aligned} & \text { 3 } \\ & \frac{0}{\overline{0}} \\ & \hline \end{aligned}$	0 O त्⿺𠃊 O	入	$\stackrel{\text { ¢ }}{\substack{1 \\ 3}}$
Extra Fine＊	0.09	WT＝ 0								9， 251	
Fine＊	0.18	WT＝ 1	$\begin{gathered} 5, \\ 150 \end{gathered}$	100	10	210	130	50	30	8	
Thin＊	0.25	WT＝ 2	$\begin{gathered} 151,1 \\ 60,16 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 3,61, \\ 81,91 \end{gathered}$	1	201	$\begin{gathered} \hline 121 \\ , 13 \\ \hline \end{gathered}$	51	$\begin{aligned} & 11, \\ & 21 \end{aligned}$		
	0.30	$\mathrm{WT}=3$	$\begin{aligned} & 111, \\ & 120 \end{aligned}$								
Medium＊	0.35	WT＝ 4	$\begin{gathered} 162,1 \\ 72 \end{gathered}$	$\begin{gathered} \hline 82,92 \\ 122 \end{gathered}$	$\begin{array}{r} \hline 12, \\ 232 \\ \hline \end{array}$	6	132	2	$\begin{aligned} & 22, \\ & 31 \end{aligned}$		
	0.40	$W T=5$	$\begin{aligned} & 170, \\ & 181 \\ & \hline \end{aligned}$								
Wide＊	0.50	WT＝ 6	$\begin{gathered} 163,1 \\ 73 \end{gathered}$	$\begin{gathered} 83,113, \\ 123 \\ \hline \end{gathered}$	230	$\begin{aligned} & 203, \\ & 213 \end{aligned}$	4	53	$\begin{aligned} & 23 \\ & 40 \end{aligned}$		
	0.60	$\mathrm{WT}=7$				$\begin{aligned} & 231, \\ & 241 \end{aligned}$					
Extra＊Wide	0.70	WT＝ 8		84		204			24		
	1.00	WT＝ 9	180	80	244	220					
	1.06	$W T=10$		90							－
	1.20	WT＝ 11		93							$\stackrel{\pi}{\pi}$
	1.4	$W T=12$		96	33			52			番
	1.58	$W T=13$	152	103	240	222					$\frac{0}{3}$
	2.0	$W T=14$	182	110	242	200					\cdots

The following tables list colours designated to print either screened at a given percentage or at their given colours on monochrome prints with the use of DND plot styles or pen tables.

Table A-2 - DND Screened Colours Available on Monochrome Prints

Screened Colours Available on Monochrome Prints (Colour Number by Colour Group)						
\% Screen	Blue	Green	Red	Magenta	Cyan	Yellow
$\mathbf{2 5 \%}$	143	73	13	214	133	54
$\mathbf{5 0 \%}$	144	74	14	215	134	55
$\mathbf{7 5 \%}$	145	75	15	216	135	56

Table A-3 - DND Black Screen Colours on Monochrome Prints

Black Screened Colours		
Colour Group	Colour Number	\% Screened
	245	10%
	246	20%
	247	30%
	248	40%
	249	60%
	250	80%

Table A-4 - DND Colours Available on Monochrome Prints
Colours Available on Monochrome Prints (by colour group)
(Following colours print with Primary Colours)

Blue (5)	Green(3)	Red (1)	Magenta (6)	Cyan (4)	Yellow (2)	Grey
170	70	20	211	140	41	-

(Following colours print with colour number)

Blue	Green	Red	Magenta	Cyan	Yellow	Grey
171,190	71,72	32,243	212,221	141,142	$42,43,60$	$252,253,254$

*
 Appendix B: DND Custom Line Styles

Table B-1

Linetype Name	Example	Replacement for:	
DND CUSTOM LINETYPES - COMMON		Linetypes	Description
CONTINUOUS		N/A	SOLID
DND_DOT	-................................	DOT2	DOT
DND_DASHED_SHORT	--------------	HIDDEN2	MEDIUM DASHED
DND_DASHED_MED	- - - - - - - - -	DASHED2	LONG DASHED
DND_DASHED_LONG	- - - -	DASHEDX2	DOT DASH
DND_CENTER_DOT	- - - - - - - - - -	DASHDOT2	SHORT DASHED
DND_CENTER_DASH	- - - - - -	CENTER2	DASH DOT DOT
DND_PHANTOM	- $\cdots-\cdots-\cdots$	DIVIDE2	LONG DASH SHORT DASH

Linetype Name	Example	Description
DND CUSTOM LINETYPES - INSIDE		
ACET	—— ACET —	ACETYLENE LINE
BRINE_RETURN	\longrightarrow BR	BRINE RETURN
BRINE_SUPPLY	-_ B	BRINE SUPPLY
CA	- CA	COMPRESSED AIR LINE
CHILL_WTR_FLOW	$\square \mathrm{CH}$	CHILLED WATER FLOW
CHILL_WTR_RETURN	- CHR	CHILLED WATER RETURN
CIRC_WTR_FLOW	$\square \mathrm{CW}$	CIRCULATING WATER FLOW
CIRC_WTR_RETURN	- CWR	CIRCULATING WATER RETURN
CGS	__ cGs _ _ _	COLD GLYCOL SUPPLY LINE
CGR	-_CGR	COLD GLYCOL RETURN LINE
COMP_AIR	- A	COMPRESSED AIR
COND_WTR_FLOW	$\square \mathrm{C}-\mathrm{C}$	CONDENSER WATER FLOW
COND_WTR_RETURN	$\square \mathrm{CR}$	CONDENSER WATER RETURN
DCW	-_ - - - - _	DOMESTIC COLD WATER
DHW	-_-- - - -	DOMESTIC HOT WATER
DHWR	- - -	DOMESTIC COLD WATER
DEIONW	-_ DEIONW —_ _	DEIONIZED WATER LINE
DEMIN	-_ DEMIN	DEMIN WATER LINE
DIST	DIST	DISTILLED WATER LINE
DRAIN	- D	DRAIN
FEED_PUMP	- OO	FEEDWATER PUMP
FIRE_LINE	-_F-_F	FIRE LINE
FUEL_OIL_FLOW	__ FOF	FUEL OIL FLOW
FUEL_OIL_RETURN	[FOR \square	FUEL OIL RETURN
FUEL_OIL_VENT	—_ FOV	FUEL OIL TANK VENT
HGS	$\square \mathrm{C}^{\square}$	HOT GLYCOL SUPPLY LINE
HGR	- HGR	HOT GLYCOL RETURN LINE
GAS_LINE		GAS LINE
HP_RETURN	$\square---/ /$	HIGH PRESSURE RETURN
HP_STEAM	- //	HIGH PRESSURE STEAM
HR	\square	HOT WATER RETURN LINE
HS	$\square \mathrm{HS}^{\square}$	HOT WATER SUPPLY LINE
HUMID_LINE	-_- -	HUMIDIFICATION LINE
MP_RETURN	$\square--\square$	MEDIUM PRESSURE RETURN
MP_STEAM	-	MEDIUM PRESSURE STEAM
OW	__ow ow	OILY WASTE LINE
OXY	-_ OXY	OXYGEN LINE
REFR_DISCHARGE	- RD	REFRIGERANT DISCHARGE
REFR_SUCTION	$\square--$ - RS	REFRIGERANT SUCTION
SPRINKLER_BRANCH	$\longrightarrow-$	BRANCH AND HEAD SPRINKLER LINE
SPRINKLER_DRAIN	$\square---\mathrm{s}$	DRAIN SPRINKLER LINE
SPRINKLER_MAIN	$\square \mathrm{s}$	MAIN SPRINKLER LINE
VAC_CLEAN	- v - v	VACUUM CLEANING
VAC_PUMP	- - - -	VACUUM PUMP

Linetype Name	Example	Description
DND CUSTOM LINETYPES - OUTSIDE		
ACID_L	\longrightarrow ACID	SEWER LINE FOR ACID
ACID_R	- ACID	SEWER LINE FOR ACID
AM_OH	_ ${ }^{\text {AM }}$	SEWER LINE FOR ACID
AM_UG	- - - - AM	SEWER LINE FOR ACID
AVIATOR_FUEL	- - - - AF	AVIATOR FUEL
BANK		EMBANKMENT
BERM	$\xrightarrow{\text { +1 }}$	BERM
CAC_OH	\longrightarrow CAC	CRASH ALARM OVERHEAD LINE
CAC_UG	- - - - САС	CRASH ALARM UNDERGROUND LINE
CEILO_OH	—	CEILOMETER OVERHEAD LINE
CEILO_UG	- - - - ceil -	CEILOMETER UNDERGROUND LINE
COMM_OH	[COM	COMMUNICATION OVERHEAD LINE
COMM_UG	_- - - COM^{-}	COMMUNICATION UNDERGROUND LINE
COMM_UG_ENCASED	- - - - COM - $^{\text {- }}$	COMMUNICATION UNDERGROUND LINE ENCASED
CONID		CONTOUR INTERMEDIATE DEPRESSED
CONIDO	$-\perp \perp \perp \perp$	CONTOUR INTERMEDIATE DEPRESSED OBSC
CONXD		CONTOUR INDEX DEPRESSED
CONXDO	$-\perp \perp \perp \perp$	CONTOUR INDEX DEPRESSED OBSC
CTV_OH	- TV	CABLE TV OVHERHEAD
CTV_UG	- - - - TV -	CABLE TV UNDERGROUND
DITCH	-	WATER DIRECTIONAL FLOW IN BOTTOM OF DITCH
EXP_JOINT_BELLOW	$\xrightarrow{\text { - }}$	EXPANSION JOINT BELLOWS TYPE
EXP_JOINT_SLIDING	-	EXPANSION JOINT SLIDING TYPE
FENCE_1	$x \longrightarrow$	STATE NUMBER AND SIZE OF DUCT
FENCE_2	- x - - x -	STATE NUMBER AND SIZE OF DUCT
FENCE_3	-	STATE NUMBER AND SIZE OF DUCT
FENCE_4	-_O-_-	STATE NUMBER AND SIZE OF DUCT
FIRE_OH	-F	FIRE ALARM OVERHEAD LINE
FIRE_UG	- - - F-	FIRE ALARM UNDERGROUND LINE
GAS_OH	G	GAS OVERHEAD LINE
GAS_UG	-G	GAS UNDERGROUND LINE
GAS_UTIL	- - GU	GAS UTILITY LINE
GUIDE	$\bigcirc \bigcirc$	GUIDE RAIL
HEAT_FUEL	- - - - HF -	HEATING FUEL
HPS	\longrightarrow HPS	HIGH PRESSURE STEAM
HPS_UG	- - - - HPS -	HIGH PRESSURE STEAM UNDERGROUND
HTW	\longrightarrow	HIGH TEMP WATER
HTW_UG	- - - - HTW -	HIGH TEMP WATER UNDERGROUND
ICC	—_ ICC	INSULATING CONCRETE CONDUIT
ICC_UG	- - - - ICC -	INSULATING CONCRETE CONDUIT UGND

Linetype Name	Example	Description
DND CUSTOM LINETYPES - OUTSIDE (...cont.)		
IHC	-_ IHC	INSULATING HYDROCARBON
IHC_UG	- - - - ${ }^{\text {HC }}$ -	INSULATING HYDROCARBON UNDERGROUND
INT_OH	_ INT	INTERCOM OVERHEAD
INT_UG	__ - - - ${ }^{\text {NT }}$	INTERCOM UNDERGROUND
IR_WAT	_ IN	IRRIGATION WATER UNDERGROUND LINES
LPS	—— LPS	LOW PRESSURE STEAM
LPS_UG	- - - - LPS -	LOW PRESSURE STEAM UNDERGROUND
LTW	- LTW -	LOW TEMP WATER
LTW_UG	- - - - LTW -	LOW TEMP WATER UNDERGROUND
MET_OH	MET	METEOROLOGICAL OVERHEAD LINE
MET_UG	- - - - MET - _	METEOROLOGICAL UNDERGROUND LINE
MTW	- MTW	MEDIUM TEMP WATER
MTW_UG	_ - - - мтw __	MEDIUM TEMP WATER UNDERGROUND
OPT_OH	0	OPTICAL FIBRE OVERHEAD
OPT_UG	-0	OPTICAL FIBRE UNDERGROUND
PMC	— PMC	PREFABRICATED METALLIC CONDUIT
PMC_UG	_ - - - PMC _ _	PREFABRICATED METALLIC CONDUIT UGND
PRI_OH_2400V_1	[P3	PRIMARY OVERHEAD 2400V 1 PHASE
PRI_OH_2400V_3	\longrightarrow P2	PRIMARY OVERHEAD 2400V 3 PHASE
PRI_OH_25000V	$\square \mathrm{P}^{\square}$	PRIMARY OVERHEAD 25000V
PRI_UG_2400V_1	- - - P3	PRIMARY UNDERGROUND 2400V 1PHASE
PRI_UG_2400V_3	- - - - P2 -	PRIMARY UNDERGROUND 2400V 3 PHASE
PRI_UG_25000V	$---\quad \mathrm{P}_{1}-$	PRIMARY UNDERGROUND 25000V
PRIM_OH	$\square \mathrm{P}$	PRIMARY OVERHEAD LINE
PRIM_UG	- - - -	PRIMARY UNDERGROUND LINE
RAILWAY	$1 \quad 1 \quad 11$	RAILWAY
RAIL_ABDN	$-++++++$	RAILWAY ABANDONED
RETURN_OH	$\square \mathrm{R}$	RETURN, CONDENSATE OR WATER
RETURN_UG	- - -	RETURN, CONDENSATE OR WATER UGND
SAN	[SAN	SANITARY UNDERGROUND LINE
SAN_R	- SAN	SANITARY FLOW UNDERGROUND LINE
SAN_L	- N $\mathrm{CS} \downarrow$	SANITARY FLOW UNDERGROUND LINE
SCC_OH	[SC	SIREN CONTROL OVERHEAD LINE
SCC_UG	__ - - sc	SIREN CONTROL UNDERGROUND LINE
SEC_OH_120/208V	\square	SECONDARY OVERHEAD 120/208V
SEC_OH_120/240V	- S2	SECONDARY OVERHEAD 120/240V
SEC_OH_220V	- S4	SECONDARY OVERHEAD 220V
SEC_OH_550V	_ S3	SECONDARY OVERHEAD 550V
SEC_OH_600/347V	- S^{5}	SECONDARY OVERHEAD 600/347V
SEC_UG_120/208V	-_- - S1	SECONDARY UNDERGROUND 120/208V

Appendix C: DND Preferred Drawing Scales \& Respective Text Size

Table C-1

OUTSIDE				
Drawing Type	Metric Scale Factor	2.5 mm plotted text size (mm)	$\begin{aligned} & \hline 3.5 \mathrm{~mm} \\ & \text { plotted } \\ & \text { text } \\ & \text { size } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	```5 mm plotted text size (mm)```
Site Plans	$\begin{aligned} & \hline 1: 1 \\ & 1: 200 \\ & 1: 250 \\ & 1: 500 \\ & 1: 750 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 500 \\ & 625 \\ & 1250 \\ & 1875 \end{aligned}$	3.5 700 875 1750 2625	$\begin{aligned} & \hline 5 \\ & 1000 \\ & 1250 \\ & 2500 \\ & 3750 \end{aligned}$
	$\begin{aligned} & 1: 1000 \\ & 1: 2000 \\ & 1: 2500 \\ & 1: 3000 \\ & 1: 4000 \\ & 1: 5000 \\ & 1: 10000 \end{aligned}$	$\begin{aligned} & 2500 \\ & 5000 \\ & 6250 \\ & 7500 \\ & 10000 \\ & 12500 \\ & 25000 \end{aligned}$	$\begin{aligned} & 3500 \\ & 7000 \\ & 8750 \\ & 10500 \\ & 14000 \\ & 17500 \\ & 35000 \end{aligned}$	$\begin{aligned} & 5000 \\ & 10000 \\ & 12500 \\ & 15000 \\ & 20000 \\ & 25000 \\ & 50000 \end{aligned}$
	$\begin{aligned} & 1: 15000 \\ & 1: 20000 \\ & 1: 50000 \\ & 1: 100000 \end{aligned}$	$\begin{aligned} & 37500 \\ & 50000 \\ & 125000 \\ & 250000 \end{aligned}$	$\begin{aligned} & 52500 \\ & 70000 \\ & 175000 \\ & 350000 \end{aligned}$	$\begin{aligned} & \hline 75000 \\ & 100000 \\ & 250000 \\ & 500000 \end{aligned}$
	$\begin{aligned} & 1: 200000 \\ & 1: 250000 \\ & 1: 500000 \end{aligned}$	$\begin{aligned} & 500000 \\ & 625000 \\ & 1250000 \end{aligned}$	$\begin{aligned} & 700000 \\ & 875000 \\ & 1750000 \end{aligned}$	$\begin{aligned} & 1000000 \\ & 1250000 \\ & 2500000 \end{aligned}$
Elevations	1:100	250	350	500
Sections	$\begin{aligned} & 1: 200 \\ & 1: 50 \end{aligned}$	$\begin{aligned} & 500 \\ & 125 \end{aligned}$	$\begin{aligned} & 700 \\ & 175 \end{aligned}$	$\begin{aligned} & 1000 \\ & 250 \end{aligned}$
Details	$\begin{aligned} & \hline 1: 100 \\ & 1: 200 \\ & 1: 5 \\ & 1: 10 \\ & 1: 25 \end{aligned}$	$\begin{aligned} & 250 \\ & 500 \\ & 12.5 \\ & 25 \\ & 62.5 \end{aligned}$	$\begin{aligned} & 350 \\ & 700 \\ & 17.5 \\ & 35 \\ & 87.5 \end{aligned}$	$\begin{aligned} & 500 \\ & 1000 \\ & 25 \\ & 50 \\ & 125 \end{aligned}$

INSIDE				
Drawing Type	Metric Scale Factor	2.5 mm lotted ext size (mm)	$\mathbf{3 . 5} \mathbf{~ m m}$ plotted text size (mm)	5 mm plotted text size (mm)
	$1: 1$	2.5	3.5	5
Floor Plans	$1: 50$	125	175	250
	$1: 75$	187.5	262.5	375
$1: 100$	250	350	500	
$1: 200$	500	700	1000	
	$1: 250$	625	875	1250
Roof Plan	$1: 200$	500	700	1000
Exterior	$1: 100$	250	350	500
Elevations	$1: 200$	500	700	1000
Interior	$1: 50$	125	175	250
Elevations	$1: 100$	250	350	500
Cross	$1: 50$	125	175	250
Sections	$1: 100$	250	350	500
	$1: 200$	500	700	1000
Wall	$1: 20$	50	70	100
Sections	$1: 25$	62.5	87.5	125
Stair Details	$1: 10$	25	35	50
Details	$1: 5$	12.5	17.5	25
	$1: 10$	25	35	50
	$1: 25$	62.5	87.5	125

Appendix D: DND Section \& Detail Identifiers

DND standard symbols shall be used for all cross-referencing identifiers. Refer to Annex B: Symbols for a list of available symbols.

* Details and Elevations are identified by a number; Sections are identified by a letter.

Figure D-1 Identifiers: Section, Details, and Elevations

Figure D-2 Title Identifier: Section, Details, and Elevations

Sample Use of DND Identifiers

2 It is acceptable practice to have 2 identifiers with the same detail numbers or section letters, provided that the sheet numbers are different. For example, this sample Floor Plan shows 2 Section " A " identifiers for 2 different section details, which is acceptable since one section is drawn on sheet 601 and the other on sheet 602.

Figure D-3

FIRST FLOOR PLAN
SCALE: 1:50

Appendix E: Types of Work and Buildings

Codes indicated with "shading" are used by National Defence Headquarters.

Table E-1

0100		Administration Buildings
0200		Airfields including Parking Aprons, Runways, Lighting, VASIS
	0201	Parking Aprons, Runways
	0202	Apron concrete (hangar)
	0203	Airfield lighting
	0204	Arrest barrier
	0205	Taxi lighting
	0206	Runway lighting
	0207	Radar dome lighting
	0208	Helicopter landing pad
	0209	Exterior flight lighting
	0210	Substation (airfield)
	0211	
	0212	
	0213	VASIS
	0220	Noise exposure
	0221	Airport zoning
	0222	Electromagnetic interference
0300		Armouries and Drill Halls
0400		
0500		Air Transport Terminal Facilities
0600		Band Buildings
0700		Bridges
0800		
0900		Cemeteries
1000		Chapels
1100		Control Towers
1200		Cranes and Lifting Appliances
1300		Multiple-use Building
1400		Detention Barracks, Guard Houses
1500		Standard Detail Drawings
1600		Drydocks
1700		Security Systems (Intrusion Alarms, Access Control, CCTV, etc)
1750		Shielded Enclosure
1760		Surveillance and Security
1800		
1900		Exposition Buildings and Structures (including Museums)
2000		Miscellaneous Exterior Installations
2100		
2200		
2300		Fire Halls
2400		
2500		Garages
2600		Gate Houses
2700		
2800		
2900		
3000		Hangars - Aircraft

3030		Hangars - Tank
3050		Hangars - Gun (including gun sheds)
3100		
3200		Hospitals and Dental Clinic
3300		Residence
3400		
3500		Junior Ranks Clubs and Canteens
3600		
3700		
3800		Kitchen Installations
3900		
4000		Laboratory Buildings
4100		
4200		Magazines
4300		Masts and Towers Except for Telecommunications
4400		
4500		Messes - Cadets
4600		Messes - Officers
4700		Messes - WOs and Sgts
4800		Messes - Men's
4900		Messes - Combined
5000		
5100		Meteorological Structures
5200		
5300		
5400		
5500		Operations Buildings
5600		
5700		
5800		Plants
	5800	Central Heating Plants (including non-standard CHPs)
	5810	Water Treatment Plants
	5820	Sewage Treatment Plants
	5830	Power Generating Plants
	5840	Detached heating plants (serving one building only)
	5870	
	5880	
	5890	
5900		POL Storage Installations (including propane)
6000		Post Office Buildings
6100		Prefabricated Buildings
6200		Property Survey - Legal
6300		
6400		Photographic Buildings
6500		Quarters - Type 1, Trainees
6600		Quarters - Type 4, Single Officers
6700		Quarters - Type 3, Single NCOs
6800		Quarters - Type 2, Ordinary Ranks
6900		Quarters - Combined Single
7000		Quarters - Married Quarters
7050		Formally PMQ's
7001		Garages for PMQ
7100		Deployed Camp (e.g., Bosnia)
	7101	Grounds including fencing, grading, Camp Layout
	7104	Water Distribution Systems
	7105	Exterior Sewage Systems
	7106	Exterior Electrical Systems

	7107	Exterior Lighting
	7112	Exterior Fire Protection Systems
	7115	Communications
7200		Deployable Structures Weather Events
7210		Generic Camp Design
7220		Generic Bunker Design
7300		Recruiting and Sub Recruiting Centres
7400		Ablution for Cadet and or Militia Camps
7450		Ablution Buildings and Structures
7500		Ranges and Training Areas
7550		Training Area (Drop Zone)
7600		
7700		Service Facilities (barber shops, beauty parlours, libraries, NPF shops, etc, not integral to other building types)
7800		
7900		Space Detection Installations
8000		Schools - Dependents
8100		Sea Plane Stations - Shipways
8200		Supply and Store Buildings
8300		Survival Buildings and Structures (excluding those under the 8730 series)
8400		Site Record Drawings
8500		Siting Multiple Buildings/Works
8600		Seedling Nurseries
8700		
8710		Radar Buildings and Towers (including SAGE and BUIC)
8730		Radio Buildings and Structures (including TX, RX, ADCOM, GATR, REGHQs, EASE, TELCO Buildings, and Antenna Farms)
8750	8750	Air Navigation Buildings
	8751	Ground Control Approach (GCA)
	8757	Precision Approach Radar (PAR)
	8760	Instrument Flight Rules Control Centre (IFRCC)
	8761	Area Surveillance Radar (ASR)
8800		Training Buildings and Structures
8900		Training/Recreation Facilities
9000		Decommissioning
9100		Environmental Project
9200		Land/ Property Procurement
9250		Reserve (Indian)
9300		Outside Services (including Pumping Stations)
	9301	Grounds including Fencing, Culverts, Retaining Walls, Grading and Seeding but excluding Airfields, Sports Ranges and Training Areas Fields
	9302	Pavements except Airfield Pavements
	9303	Exterior Heating Distribution Systems
	9304	Water Distribution Systems, including Pumping Stations
	9305	Exterior Sewage Systems, Storm and Sanitary
	9306	Exterior Electrical Distribution Systems including Sub Stations
	9307	Exterior Lighting Systems except Airfield Lighting
	9308	Exterior Gas Supply and Distribution Systems
	9309	Exterior Compressed Air Systems
	9310	Exterior Liquid Fuel Distribution Systems
	9311	POL Distribution Systems - Pipelines
	9312	Exterior Fire Protection Systems
	9313	Exterior Lighting Protection Systems
	9314	Exterior Communications Loop System (Telephone, Intercom, Data)
	9315	Communication Ducts - underground construction
	9330	Excavating Ext.
	9340	Underwater Exc. \& Dredging

	9360	Y2K (opabacus)
9400		Water Storage Structures
9500		Wharves, Piers, and Jetties
9600		Workshops
9700		Geotechnical Soils Records
9800		Hydrographic
9900		Multiple Buildings/Works Projects

1. Unassigned numbers for types of works and buildings shall not be used without prior approval of and/or promulgation of -an amendment by NDHQ.

Please report any new codes to the Keeper of the Standard.
2. With the exception of the 5800 series (plants), the 7000 series (Married Quarters), the 9300 series (Outside Services) and the 9900 series (Multiple Building/Works Projects), the first two digits represent the type of works or building and the last two digits represent particular works or building. For example, the first garage at a base is identified as " 2501 ," the second " 2502 " etc. When five garages already exist at a base, a new garage would be identified as "2506."
3. The drawings for work integral to a building shall bear the basic third series number of the building. Thus, a drawing to install a sprinkler system in the second garage at a base will have the basic third series number "2502."
4. Subsequent projects involving the same works or building shall have the basic third series number extended in numerical and chronological sequence by the addition of $/ 1, / 2, / 3$, etc. Thus to continue the above example, if the installation of a sprinkler system in the second garage at a base was the first subsequent project after completion of the garage, the third series number would be 2502/1.
5. The 5800 series (Plants) has been subdivided to provide identification for the type of plant involved, i.e., water treatment (5810), sewage treatment (5820), power generating (5830), etc. The first three digits represent the type of plant while the fourth digit identifies a particular plant. For example the first sewage treatment plant at a base is identified as " 5821 " and the second, as " 5822. ."
6. It is not feasible to identify each married quarters with a number from the 7000 series (Quarters - Married Quarters). Therefore, for a project involving married quarters, the third series number " 7000 " shall be used and extended by the addition of $/ 1, / 2, / 3$, etc. Thus, a project showing the third series number "7000/2" signifies the second project involving any married quarters at that location.
7. The 9300 series (Outside Services) has also been subdivided to provide identification for particular groups of outside services. For example, all projects involving pavements (excluding airfield pavements defined specifically under the 0200 series) will use the basic third series number " 9302 ." Before selecting a 9300 -series number, it is important to ensure that the outside service or installation in question is not more adequately defined under another series. For subsequent projects the 9300 series number is extended in the same manner as for the 7000 series. Thus, a project showing the third series number " $9302 / 5$ " signifies the fifth project involving pavements at that location.
8. The 9900 series (Multiple Buildings/Works Projects) shall be used for the third series number when a project involves similar maintenance, repairs or additions to more than one building or facility. Thus a project showing the third series number " $9900 / 6$ " signifies the sixth multiple building/works project at that location. It should be noted that the sixth multiple building/works project is correctly identified as above and not as " 9906 ."
9. In each case it shall be the responsibility of the design authority to obtain the facility identification portion of the third series in the drawing number from the Base Construction Engineering Officer (BCEO)
concerned. It shall be the responsibility of the BCEO to respond immediately by message or telephone to such requests. The third series number assigned by the BCEO shall be used to identify the works or building in perpetuity except when a permanent change in the function of a works or building occurs.

STANDARD DESIGN DRAWINGS AND SPECIFICATIONS

Using "S-2501-312" as an example, drawings within a standard design package depicting a particular works or building shall be numbered as follows:
a. First Series. The first series, " S ", indicates a standard design. As the design agency for development, preparation and promulgation of all standard design drawing and specification packages is NDHQ, there is no requirement to further identify the responsible design agency in the manner followed for contract/project drawings.
b. Second Series. The second series consists of four digits in which the first two digits indicate the type of works or building, and the second two digits represent a specified standard design for a works or building.
c. Third Series. The third series consists mostly of three digits in which the first digit represents the discipline shown on the drawing and the remaining digits indicate the drawing sheet number.
d. The standard number to be shown on the specifications and standard design drawing package cover sheet shall consist of the first and second series of the drawing numbers. Referring to the above example, a standard design drawing number, " $\mathrm{S}-2501-312$ " results from a standard number for the package of " S 2501".

SKETCH DRAWINGS

Using as an example "SK-C40-2501-2," sketch drawings shall be numbered in series as follows:
a. First Series. The first series, "SK," indicates a sketch or preliminary drawing.
b. Second Series. The second series, a combined letter and number system, represents the site, establishment or base as detailed under Contract and Non-Standard Drawings. If the sketch has been prepared for development of a standard design, the second series shall consist solely of the letter "S."
c. Third Series. The third series numbers for sketch drawings are assigned as described for Contract and Non-Standard Drawings.
d. Fourth Series. The fourth series indicates the drawing sheet number of the sketch.

SITE RECORD DRAWINGS

Using "H-C40-8410-101" as an example, site record drawings shall be numbered in series as follows:
a. First Series. The first series is a letter signifying the agency responsible for drawing preparation. The first series letter codes for site record drawings are the same as described earlier for contract and nonstandard drawings.
b. Second Series. The first series is a combined letter and number system, which represents the site, establishment or base as previously detailed for contract and non-standard drawings.
c. Third Series. The third series consists of four digits. The first two digits identify the " 8400 " series, from the list of standard numbers for types of works and buildings, and are standard for all site record drawings. The third digit indicates the scale of the drawing as follows:

1 Overall site drawing
2 1:2000 (*1:2400)
5 1:500 (*1:600)

* Metric equivalent of previous imperial scales

The fourth digit may be a letter or a number. Letters indicate a "base drawing" and identify each component overlay and composite as follows:

A Base drawing showing buildings, roads, runways, manholes, poles, light standards and related plant.

B A clear film overlay showing contours, wooded areas, road classification and related planimetry.
C A composite reproduction of the two previous components reproduced in register.

The numbers identify a base or composite drawing to which pertinent details regarding specific services and facilities have been added:

1:2000 scale drawing

0 overall site drawing
1 utility drawing - water
2 utility drawing - sanitary sewer
3 utility drawing - storm sewer
4 utility drawing - heat distribution
5 utility drawing - gas, POL, compressed air
6 utility drawing - electrical, primary
7 utility drawing - fire alarm circuits
8 utility drawing - services beyond built-up area of site

1:500 scale drawings

0 overall site drawing
1 building and utilities drawing
2 building and electrical primary circuit drawing
3 building and electrical secondary circuit
4 building and electrical miscellaneous circuit drawing
d. Fourth Series. The fourth series consists of three digits. The first digit indicates the generation or satellite drawing as follows:

1 First generation (property and survey control)
2 Second generation (miniature site drawing)
3 Satellite drawing (scale 1:50 000)
4 Soils information
The last two digits indicate the drawing's position in the series and are consecutive from "01." A letter following the third digit, for example "101A, B, C, etc." indicates that the sheet is back-up or related information to the sheet concerned, in this case, "101." An example of related information would be borehole logs supplying information in addition to the borehole location drawing.
e. Although specifications may not always form part of the preparation of site record drawings, it is necessary to identify a job number for record purposes. The job number for site record drawings from which the drawing number quoted above was extracted would be $\mathrm{H}-\mathrm{C} 40-84$.

STANDARD DETAIL DRAWING

Standard detail drawings are those prepared for miscellaneous items such as catch basins, manholes, fences, roads, transformer vaults, kiosks, fuel storage, etc. The standard details can be used for individual installations or incorporated within a set of contract drawings. Standard detail drawings shall be numbered in series as follows, using as an example, S-1506-401.
a. First Series. The first series, " S ", indicates a standard design.
b. Second Series. The second series consists of four digits. The first two digits identify the " 1500 " series from the list of standard numbers for types of works and buildings. The last two digits represent the numerical/chronological sequence of development and promulgation.
c. Third Series. The third series consists of three digits. The first digit represents the discipline shown on the drawing and the last two represent the consecutive drawing sheet number.
d. When a standard detail drawing is incorporated within a package of drawings for a specific project, it shall bear a drawing number identified with the project.

SCHEDULES

Schedules for delineating structural steel and reinforced concrete as well as room finish, door and hardware schedules shall be incorporated into the contract drawing package as warranted by the magnitude of the works and facilities being designed. All pertinent data, consistent with current professional engineering and architectural practice, shall be clearly indicated in a format approved for use by the responsible design agency or its delegated officers.

NUMBERING OF DRAWINGS

EXAMPLE - STANDARD DRAWINGS
STANDARD NUMBER

STANDARD DRAWING INDICATOR \qquad

TYPE OF WORKS OR BUILDING \qquad
PARTICULAR DESIGN WITHIN ABOVE GROUP \qquad

TRADE \qquad

DRAWING SHEET NUMBER \qquad

EXAMPLE - SKETCH DRAWINGS
JOB / STANDARD NUMBER SK - C40-2501-2

SKETCH DRAWING INDICATOR \qquad
SITE \qquad
TYPE OF WORKS OR BUILDING \qquad

PARTICULAR WORKS OR BUILDING \qquad

DRAWING SHEET NUMBER \qquad

Figure E-1 (Sheet 1 of 2) Numbering of Drawings

NUMBERING OF DRAWINGS (Cont'd)

EXAMPLE - SITE RECORD DRAWINGS

FORMATION RESPONSIBLE FOR DRAWING \qquad
SITE \qquad
CODE FOR SITE RECORD DRAWINGS \qquad

SCALE OF DRAWINGS \qquad

TYPE OF SITE RECORD DRAWING \qquad
GENERATION OR SATELLITE DRAWING \qquad

DRAWING SHEET NUMBER \qquad

DENOTES SHEET CONTAINS AUXILIARY INFORMATION \qquad

Figure E-1 (Sheet 2 of 2) Numbering of Drawings

Appendix C-2
 Esquimalt Harbour Practices and Procedures

Esquimalt Harbour Practices and Procedures

28 February 2019

1. Preamble
2. Definitions
3. Authority of Harbour Official
4. Entry, Movement, Departure Clearances
5. Speed Limits
6. Controlled Access Zones
7. Contractor Requirements - Marine Projects
8. Commercial Ships
9. Pleasure Craft
10. Derelict, Abandoned, Illegally Anchored or Moored Vessels
11. Sewage Discharge
12. Marine Spill Response
13. Tug or Pilot Services
14. Towing of Ships
15. Securing, Crewing, and Propulsion Requirements for Ships
16. Turning of Propellers Alongside
17. Scaling and Painting of Ships
18. Equipment Protruding Beyond Ship's Side
19. Rafting of Ships
20. Ship-to-Ship Transfers
21. Activities that Require Pre-Authorized Approval

1. Preamble

1-1 Esquimalt Harbour is a public harbour, within the meaning of Section 108 of the British North America Act, and subject to Federal jurisdiction. In these practices and procedures, it will be referred to simply as 'the harbour.' The harbour limits are all the navigable waters northward, from a line running from the southern extremity of Albert Head, intersecting at a 90° angle line running north and south astronomically, from the western tip of Saxe Point to the high-water mark of the northerly shore of Esquimalt Harbour.

1-2 For official nautical information on Esquimalt Harbour, refer to Chart 3419, published by Canadian Hydrographic Services.

1-3 The Minister of National Defence has designated the entire area of Esquimalt Harbour and its approaches, from the southern extremity of Albert Head and the western tip of Saxe Point, to be a Controlled Access Zone. Any vessel operating in close proximity of this zone may be approached and hailed by the Department of National Defence.

1-4 The harbour is open to the public within the limitations set out in an Order in Council regarding Controlled Access Zones. This provides for security zones surrounding Department of National Defence property, and warships berthed or moving in the harbour. Refer to Section 6 Controlled Access Zones for amplifying information.

1-5 These practices and procedures are made pursuant to the Canada Marine Act Section 56 and amplify the Natural and Man-made Harbour Navigation and Use Regulations.

1-6 These practices and procedures are intended to promote the safe and effective use, navigation, and environmental stewardship of the harbour. They are to be followed by all harbour users, including ships entering, manoeuvring, berthing, departing, anchoring, or working in the waters of Esquimalt Harbour, designated by regulation pursuant to the Canada Marine Act Section 104 Subsection (2).

1-7 For the purpose of these practices and procedures, where a subject is referred to in the singular, it will also represent the plural of the same subject.

1-8 These practices and procedures may be amended from time to time, as circumstances dictate. An emergency amendment(s) may be made to this document without notice and be effective immediately. Unless otherwise indicated, implementation of a practice or procedure will be effective 30 days after publication of the new or amended practice or procedure.

1-9 Unless authorized by a harbour official, no person shall, by act or omission, do anything or permit anything to be done in the harbour that has, or is likely to have, any of the following results:
a. adversely affect harbour operations;
b. interfere with navigation;
c. jeopardize the safety or health of persons or property;
d. obstruct or threaten any part of the harbour;
e. interfere with an authorized activity;
f. divert the flow of a river or stream, cause or affect currents, cause silting or the accumulation of material or otherwise reduce the depth of the waters;
g. cause a nuisance;
h. cause damage to ships; and
i. adversely affect sediment, soil, air or water quality.

1-10 Under the Canada Marine Act Section 59 Subsection (1)(a), it is an offence, subject to financial penalty, if a person or ship does not adhere to these practices and procedures.

2. Definitions

2-1 "BARGE" means a vessel designed with no means of self-propulsion.
2-2 "CANADIAN MARITIME DOCUMENT" means a licence, permit, certificate or other document that is issued by the Minister of Transport under Part 1 (General), 3 (Personnel), 4 (Safety), 9 (Pollution Prevention - Department of Transport) or 11 (Enforcement - Department of Transport) to verify that the person to whom or vessel to which it is issued has met requirements under that Part.

2-3 "CLEARANCE" means granting authorization to carry out a manoeuvre or task. This can be given verbally, in writing, or transmitted by electronic means.

2-4 "CONTROLLED ACCESS ZONE" means a zone designated by the Minister of National Defence, which includes all corresponding airspace above, and water and land below the zone. In general, Controlled Access Zones are areas intended to create buffer zones, to ensure the safety and security of Canadian Armed Forces and Department of National Defence naval vessels, materiel, and property, warships under the control of a visiting force, acting under the Visiting Forces Act, and personnel.

2-5 "DANGEROUS GOODS" has the meaning assigned in Section 2 of the Transportation of Dangerous Goods Act, 1992.

2-6 "HARBOUR OFFICIAL" means officials appointed pursuant to the Canada Marine Act Sections 106 and 108 and include the Queen's Harbour Master, Deputy Queen's Harbour Master, Harbour Traffic Control Officer, or other designated harbour officials.

2-7 "HOT WORK" means any work that uses flame, or that can produce a source of ignition, such as heating, cutting or welding.

2-8 "KNOTS" means nautical miles per hour.
2-9 "LIVE-ABOARD VESSEL" means any vessel used primarily as a residence, or any vessel represented as a place of business, a professional or other commercial enterprise, or a legal residence, except those vessels in contract with Canada.

2-10 "MASTER" means master, owner, agent, operator, or person in charge of a ship.
3/14 - DND EHMA - RDIMS 498801

2-11 "PILOT" refers to Department of National Defence Pilot, BC Coast Pilot, or Public Services and Procurement Canada Docking Master.

2-12 "PLEASURE CRAFT" means a vessel that is used for pleasure and does not carry passengers, and includes a vessel of a prescribed class.

2-13 "PRINCIPAL TOWING SHIP" means the towing ship, the Master of which is responsible for the manoeuvring and conduct of all ships being towed.

2-14 "PSPC" within the context of these practices and procedures, means Public Services and Procurement Canada (PSPC) - Esquimalt Graving Dock (EGD) and designated PSPC Officers employed at this facility. In the case of vessels undergoing work of any kind at the PSPC EGD facilities, permission from a PSPC Officer will be deemed to have the same authority as that of a harbour official.

2-15 "SCALING" includes scraping, sanding, chipping, grinding, sandblasting, hydroblasting or any other means of dislodging paint, rust or other unwanted material from the hull, superstructure, machinery or equipment contained on-board, or otherwise attached to a ship.

2-16 "SEAPLANE" includes any aircraft designed to manoeuvre on the water.
2-17 "SHIP" means every description of vessel, boat or craft designed, used or capable of being used, solely or partly for marine navigation, whether self-propelled or not and without regard to the method of propulsion, and includes a seaplane and a raft or boom of logs or lumber.

2-18 "SMALL VESSEL" means all ships less than 20 metres in length.
2-19 "TOWED SHIP" means any ship that is not self-propelled, and in order to manoeuvre, it must be pushed or pulled by another ship.

2-20 "TRAFFIC CONTROL OFFICER" refers to the Officer of the Watch, on duty, in the Queen's Harbour Master Harbour Control Office, or in the Regional Joint Operations Centre, Maritime Forces Pacific.

2-21 "VESSEL" see Ship definition.

3. Authority of Harbour Official

3-1 A harbour official may issue instructions directly to a ship. These instructions may be given verbally, electronically, or in writing. Notwithstanding the means by which they are conveyed, they carry the same weight.

3-2 A harbour official is the sole authority concerning all matters related to marine traffic control, within the limits of Esquimalt Harbour, including assigning berths or anchorages, or authorizing a ship to stay. In the absence of authorization from a harbour official, a ship taking up a position in the Esquimalt Harbour limits, because of the information obtained from other sources, may have to change its position upon receipt of instruction from a harbour official.

4. Entry, Movement, Departure Clearances

4-1 All ships, prior to entering, moving within, or departing Esquimalt Harbour shall contact the Queen's Harbour Master (QHM) Operations, on VHF Channel 10, or by telephone at 250-363-2160. Ships are to give as much advance notice as is practicable. The following information shall be conveyed in the clearance request:
a. ship name;
b. port of registry, if applicable;
c. time of arrival;
d. estimated time of departure;
e. length, breadth, and draft of the ship;
f. the presence of dangerous goods on-board; and
g. harbour destination.

4-2 No ship that has explosives (Class 1 as indicated in the Transportation of Dangerous Goods Act) on-board shall enter, move, or depart within the limits of Esquimalt Harbour unless authorized by a harbour official.

4-3 Ships requesting clearance from a harbour official, to enter Esquimalt Harbour and berth at a private facility or the PSPC EGD, shall first obtain permission from the owner or official of the facility in question.

5. Speed Limits

5-1 All ships manoeuvring within the limits of Esquimalt Harbour shall proceed at the posted speed limit, if any, and otherwise at a safe speed, not to exceed 7 knots.

5-2 In special circumstances, a harbour official may grant permission for ships to exceed the speed limit.

5-3 Ships shall reduce speed to minimum wake when passing berthed ships or vessels engaged in any marine operation, or as directed by a harbour official.

6. Controlled Access Zones

6-1 Vessels are at all times to remain 100 metres away from stationary vessels and 200 metres away from vessels underway. Unauthorized intrusions could lead to Federal prosecution. Further information concerning Controlled Access Zones is available in the Canadian Coast Guard Notices to Mariners, National Defence - Military Notices.

6-2 Any vessel may be hailed by the Queen's Harbour Master, and/or hailed and approached by any Military Police or Military Force Protection vessel. Due to force protection/security requirements, access to Esquimalt Harbour may be restricted and/or blocked.

7. Contractor Requirements - Marine Projects

7-1 The contractor warrants that all vessels used in Esquimalt Harbour are mechanically sound, completely seaworthy, equipped with readily accessible lifesaving equipment, will be adequately manned, and in full compliance with the Canada Shipping Act, 2001 (S.C. (Statutes of Canada) 2001, c. 26). Contractors must provide on demand and no later than 24 hours after demand, true copies of all Canadian Maritime Documents to a harbour official for vessels and crew related to requirements listed in the Canada Shipping Act and associated regulations.

7-2 Contractors must provide, upon demand by a harbour official, a recent condition survey (within the last 4 years) carried out by a qualified and certified marine surveyor, for barges and other marine equipment operated by the contractor in the harbour, clearly indicating that their condition meets all seaworthy and safety standards, and their suitability for the proposed use.

7-3 Contractors must provide documentation, upon demand by a harbour official, showing that their marine assets in Esquimalt Harbour are insured.

7-4 Commercial vessels under 15 Gross Tonnage must provide proof of current enrollment in the Transport Canada Small Vessel Compliance Program.

8. Commercial Ships

8-1 Commercial ships intending to anchor at Royal Roads shall, via their Shipping Agent, first obtain permission and an anchorage position, from a harbour official, by contacting the Queen's Harbour Master (QHM) Operations, on VHF Channel 10, or by telephone at 250-363-2160. The required procedure to request anchorage at a Royal Roads anchorage is under the heading "Forms" at www.esquimaltharbour.ca. The completion and return of the form is to be administered at least 1 hour prior to arrival at the anchoring position.

8-2 With the permission of a harbour official, first had and obtained, commercial ships may anchor in the anchorages described below:

Anchorage	Latitude	Longitude	Depth (metres)	Swing Radius (metres)
A	$48^{\circ} 24.756 \mathrm{~N}$	$123^{\circ} 27.106 \mathrm{~W}$	40	450
B	$48^{\circ} 24.126 \mathrm{~N}$	$123^{\circ} 27.690 \mathrm{~W}$	35	365
C	$48^{\circ} 24.214 \mathrm{~N}$	$123^{\circ} 26.758 \mathrm{~W}$	35	450
D	$48^{\circ} 24.371 \mathrm{~N}$	$123^{\circ} 25.972 \mathrm{~W}$	35	450
F	$48^{\circ} 24.885 \mathrm{~N}$	$123^{\circ} 26.078 \mathrm{~W}$	25	365

8-3 Anchoring in any other area of the Controlled Access Zone is prohibited unless approved in advance by a harbour official.

9. Pleasure Craft

9-1 All pleasure craft entering the harbour must be licenced or registered in accordance with the Small Vessel Regulations. All pleasure craft are required to register their arrival, intended duration of stay, and departure from the harbour, by contacting the Queen's Harbour Master (QHM) Operations, on VHF Channel 10, or a harbour official at 250-363-2160. Upon arrival, pleasure craft reporting requirement information must be provided to a harbour official. The required procedure to request pleasure craft anchorage is under the heading "Forms" at www.esquimaltharbour.ca. The completion and return of the form is to be administered within 1 hour of arrival in the harbour.

9-2 Pleasure craft, whether power driven or sail, and small vessels, which are operating under the guidance of the Small Vessel Regulations, shall not impede the passage and manoeuvring of larger commercial ships or naval ships, within the limits of Esquimalt Harbour, and shall, at all times, maintain a lookout while underway.

9-3 Pleasure craft may only anchor north of a line drawn between the south end of Richards Island and the north end of Smart Island. Every pleasure craft anchored in Esquimalt Harbour shall be moored with two anchors and in the manner directed by a harbour official. A harbour official must first approve anchoring in any other area of the harbour.

9-4 The following activities are prohibited in Esquimalt Harbour:
a. rafting of pleasure craft at anchor; and
b. live-aboard vessels, whether temporary or permanent, including the use of houseboats, rafts, scows, boats or other floating structures when such structures are used for sleeping or dwelling purposes.

10. Derelict, Abandoned, Illegally Anchored or Moored Vessels

10-1 Where the owner or person in charge of a vessel, in the harbour, is not available or refuses or neglects to obey any order to move the vessel, the Harbour Authority may, at the risk and expense of the owner of the vessel:
a. take possession of and move the vessel;
b. use any means and force reasonably necessary to move the vessel;
c. berth, anchor, moor the vessel at any place satisfactory to the Harbour Authority; or
d. remove and dispose of the vessel.

11. Sewage Discharge

11-1 No ship or person on-board a ship, shall discharge sewage into the tidal waters of Esquimalt Harbour. Sewage means human excrement and waste from toilets and other receptacles intended to receive or retain human body waste or other waste; however, does not include galley or washing facility waste. In addition, any vessel in Esquimalt Harbour that has a toilet must be fitted with a functioning Transport Canada approved marine sanitation device, holding tank, or temporary storage.

12. Marine Spill Response

12-1 Any person, facility, vessel or property, referred to as the Responsible Party, which causes a marine spill into Esquimalt Harbour, shall be responsible for the reporting, clean-up, and cost of the incident.

12-2 The Responsible Party is required to immediately notify Emergency Management British Columbia at 1-800-663-3456, the Harbour Authority at 250-363-2160, and initiate clean-up.

12-3 Once notified, the Harbour Authority will assess the situation, monitor the response, and provide assistance, as necessary.

12-4 In the event that the Responsible Party is either unwilling or unable to respond, the Harbour Authority may assume control of the response. Alternately, the Harbour Authority may request assistance from the applicable Federal Authority (e.g. Environment Canada, Canadian Coast Guard).

13. Tug or Pilot Services

13-1 When circumstances and conditions threaten environmental protection, safety of port infrastructure or navigational safety, a harbour official may require ships to obtain the services of a Pilot and tug(s).

8/14 - DND EHMA - RDIMS 498801

14. Towing of Ships

14-1 The principal towing ship is at all times responsible for the safety and manoeuvring of its tow.

14-2 When entering, moving within, or departing Esquimalt Harbour, a ship shall use a towline length that permits immediate and positive control over the towed ship.

14-3 Ships are responsible for their tow and must ensure that sufficient assets are employed to account for all contingencies that may arise. Due to the risk of damage to other ships or port infrastructure, a trailing tug shall be secured when this is the safest course of action for the prevailing circumstances. An assist tug must accompany a tow in the following circumstances:
a. when proceeding east of a line drawn between Ashe Head and Grant Knoll; or
b. when arriving, departing, or working within 120 metres of Department of National Defence infrastructure, on the Colwood side of Esquimalt Harbour, incorporating D, F, and G Jetties.

14-4 Any deviation from these procedures must be approved, in advance, by the Harbour Authority.

15. Securing, Crewing, and Propulsion Requirements for Ships

15-1 All ships within the limits of Esquimalt Harbour shall have sufficient crew onboard to safely manoeuvre the ship alongside, or to depart a harbour facility, when instructed to do so by a harbour official. Crew, in sufficient numbers, shall be present at all times, to monitor the ship for safety and security purposes; to ensure that mooring lines and gangways are properly tended, and emergencies are responded to.

15-2 Propulsion power shall be available, at reasonable notice, to move the ship when instructed to do so by a harbour official. Before any repairs, maintenance, or other works are undertaken, that may hinder the ship's ability to move in a harbour facility or anchorage, clearance shall be obtained from a harbour official.

15-3 Anytime emergency repairs are commenced on a ship, at an Esquimalt Harbour facility, the Master of the ship will report to a harbour official the nature of the repairs, and outline the affect it has on the ship's ability to move. The Master shall provide an estimate of the time required to complete the repairs to a condition where the ship is capable of being safely moved.

15-4 Clearance will only be given to leave a ship unmanned, while within the limits of Esquimalt Harbour, if a harbour official is satisfied that the Master of the ship has made adequate securing arrangements; that mooring lines are tended, and that arrangements are in place to move the ship if instructed to do so. Since it is understood that the time required for preparing to move an unmanned ship may be longer than that required for a fully crewed ship, the length of the notification period will be agreed upon before this clearance is granted.

16. Turning of Propellers Alongside

16-1 A ship, when secured at a harbour facility in Esquimalt Harbour, shall not commence basin trials by turning shafts or engaging bow thrusters, without first obtaining permission from a harbour official, and taking the necessary precautions to not endanger the integrity of the harbour facility, its physical assets, other ships, or the environment.

16-2 Clearance may be conditional on extra precautions being followed, such as the use of additional mooring lines, tug assistance, and the equipment or machinery being run at minimum speed.

17. Scaling and Painting of Ships

17-1 A ship at anchor or at a berth, within the limits of Esquimalt Harbour, shall obtain clearance from a harbour official to perform scaling and painting of a ship's hull, machinery, or superstructure. Prior to clearance being granted, the person requesting the clearance shall make an assurance that adequate measures will be taken to protect the environment from the waste material created by the operation.

17-2 Scaling and painting shall not interfere with the operation of another user within the limits of Esquimalt Harbour. If a scaling operation involves hot work, then it shall not take place without a Hot Work Permit.

18. Equipment Protruding Beyond Ship's Side

18-1 Unless authorized, no rigging, cargo gear or other equipment on-board any ship berthed in Esquimalt Harbour shall overhang or project overboard, in a manner that may endanger life or property, or create a hazard to navigation. If any ship requires equipment to extend beyond the sides of the ship, they shall obtain clearance from a harbour official.

18-2 If any cargo gear or equipment is already swung out and another ship is manoeuvring in the vicinity, a harbour official may require the gear to be swung inboard until the danger is past.

19. Rafting of Ships

19-1 A ship may make fast to, or secure alongside another ship in Esquimalt Harbour, at a harbour facility, only with the clearance of a harbour official.

19-2 At Federal Government harbour facilities, every ship, when ordered by a harbour official, shall permit another ship to make fast to, or secure alongside it. Sufficient mooring lines, from the outboard ship, shall be passed ashore to ensure that excessive stresses are not placed on the inner ship's lines, and the outboard ship shall ensure that adequate fendering is provided.

19-3 To avoid overloading jetty bollards, ships shall assess the strain being placed on individual bollards before attaching multiple berthing lines.

20. Ship-to-Ship Transfers

20-1 No ship-to-ship transfer of goods shall take place until a harbour official has given clearance. Ship-to-ship transfers will be approved by a harbour official, only if the official has been apprised of the intention, and is of the opinion that all necessary steps shall be taken to preserve the integrity of the environment, and that there will be no adverse effects on other users of Esquimalt Harbour.

21. Activities that Require Pre-Authorized Approval

21-1 Pursuant to the Natural and Man-made Harbour Navigation and Use Regulations of the Canada Marine Act, the approval of a harbour official is required prior to the commencement of all activities, including but not limited to the following:
a. conducting a diving operation:
(1) prior to commencement and upon completion of diving operations; and
(2) all appropriate safety measures shall be taken, including but not limited to displaying flag Alpha, informing nearby vessels, and maintaining a constant listening watch on VHF Channel 10;
b. conducting a salvage operation:
(1) notice to harbour users to avoid area of salvage operation;
(2) measures taken to reduce or mitigate further risk or damage; and (3) emergency response resources notified;
c. transporting, loading, unloading, or transhipping explosives or other dangerous goods, industrial waste or pollutants:
(1) conducted at a specified facility or between adjacent ships, using appropriate cargo transfer equipment;
(2) measures taken to reduce or mitigate risk;
(3) displaying an all-around red light or flag Bravo; and emergency response resources notified;
d. carrying out a bunkering, fuelling or other oil transfer operation, a chemical transfer operation or a liquefied gas transfer operation:
(1) conducted at a specified fuelling facility, between adjacent ships, from a tanker truck ashore, or from a bunkering barge alongside, using appropriate cargo transfer equipment;
(2) measures taken to reduce or mitigate risk;
(3) displaying an all-around red light or flag Bravo; and emergency response resources notified;
e. conducting a dredging operation:
(1) results of the dredging operation will improve the use of the harbour;
(2) minimize impact on marine traffic and harbour use; and
(3) an environmental assessment must be completed and approved;
f. excavating or removing any material or substance:
(1) results of the excavation/removal operation will improve the use of the harbour;
(2) minimize impact on harbour use;
(3) an environmental assessment must be completed and approved; and
(4) coordination with upland property activities/landowners;
g. building, placing, rebuilding, repairing, altering, moving or removing any structure or work:
(1) results of these works will improve the use of the harbour;
(2) minimize impact on marine traffic and harbour use;
(3) an environmental assessment must be completed and approved; and
(4) coordination with upland property activities/landowners;
h. placing or operating a light or day marker:
(1) suitable device to be used;
(2) minimize impact on marine traffic and harbour use; and
(3) light characteristics are to be in accordance with The Canadian Aids to Navigation System;
i. casting adrift a ship, log or other object:
(1) minimize impact on marine traffic and harbour use; and (2) measures taken to mark obstruction and mitigate impacts;
j. conducting a race, regatta, trial, demonstration, organized event or similar activity:
(1) minimize impact on marine traffic and harbour use;
k. causing a fire or explosion, conducting blasting or setting off fireworks, including setting off a flare or other signalling device;

1. placing a placard, bill, sign or device;
m. swimming:
(1) permitted without permission in areas normally associated with recreational swimming;
n. launching a ship by slipway or crane;
o. conducting the take-off or landing of a seaplane;
p. laying up a ship;
q. placing, altering, removing or relocating an aid to navigation, buoy, mooring, float, picket, mark or sign;
r. mooring or anchoring a floating structure:
(1) ensure berthing or moorage in a specified area that does not interfere with harbour use and traffic;
(2) on-board measures taken to reduce or mitigate risk, including protecting the environment; and minimize the possibility of nuisance and nuisance complaints;
s. fishing or crabbing:
(1) as depicted on Canadian Hydrographic Services Chart 3419, fishing is prohibited at the entrance to Esquimalt Harbour, and in an area east of McCarthy Island; and
(2) it shall only be conducted in areas that minimize the impact on marine traffic, harbour use, and it shall be conducted in accordance with the Department of Fisheries and Oceans Canada licencing requirements; and
t. conducting aquacultural research or operations.

Appendix C-3 Safety \& Environment for Contractors

CFB ESQUIMALT
Safety \& Environment for Contractors

Produced: February 2015

EMERGENCY SERVICES -911

Formation Level Contacts

Base Construction Engineering Help Desk	$250-363-2009$
Base Logistics Hazardous Material Facility	$250-363-2654$
Harbour Control Office	$250-363-2160$
Queen's Harbour Master (duty cell)	$250-889-0444$
Formation Safety Officer	$250-363-7500$
\quad Ionizing Radiation Safety	$250-363-7500$
\quad Laser System Safety	$250-363-7500$
\quad Radio Frequency Safety (RadHaz)	$250-363-7500$
Formation Environment Officer	$250-363-5063$
Military Police Dispatch (non-emergency)	

External Contacts

WorkSafe BC

Provincial Emergency Program

$$
\text { EMERGENCY SERVICES - } 911
$$

"Notwithstanding that contractual work is conducted on DND land, the work of private contractors and their employees is normally subject to the laws of the Province or Territory in which the work is being conducted. However, this does not relieve the Department of all responsibility and special provisions must be incorporated to safeguard our employees and protect DND's and the CAF's legal liability". DND General Safety Program Vol 1, Chap 2.

This infoflip $®$ is designed to assist contractors and their employees in meeting their Safety and Environmental responsibilities as well as providing some guidance when working on DND property. It also contains information on when, how and who to contact for questions or guidance. It covers many facets of working with DND and can be used as a guide for commencement of work and a tool to contact the appropriate personnel for questions and advice.

General Safety Program

The Department of National Defence (DND) has a General Safety Program in place to ensure the safety and well-being of its employees and members. While a contractor is not considered an employee of DND, there are many aspects of the General Safety Program that will apply to non-employees, including contractors.

The General Safety program aims to:
\square Minimize personal suffering and financial losses;
\square Add to the efficiency of DND and the operational effectiveness of the Canadian Armed Forces (CAF); and
\square Meet legislative requirements; and contributes to the morale and well-being of all DND employees and CAF members.

Formation/Ship Safety and Environment Management Systems

The Formation and Ship Class Safety and Environment Management Systems provide guidance to DND personnel on implementation of the Maritime Forces Pacific Safety and Environment policy that is specific to the Formation or Ship Class.

The Safety and Environment Management System (SEMS) manual is used to satisfy the requirements of DND, Command and Formation Safety and Environmental policies and directions. It also provides the guidance to ensure employees and workers are compliant with Formation, Base, Provincial and National policy and legislation for the protection and safety of all workers on DND property.

In most cases, contractors should request a full copy of any SEMS directive that relates to the type of work or hazards they may encounter. This infoflip® merely highlights the key points.

Injury Prevention

The goal of any safety program is the prevention of accidents and injuries. This infoflip® contains information on several of the programs covered by the Formation or Ship Safety and Environment Management Systems.

Many of these programs outline the use of specific Personal Protective
Equipment. It is expected that contractors will comply with applicable legislation as well as DND standards where required.

Accessing DND Property

Most defence establishments have set procedures for accessing DND property. CFB Esquimalt is no exception. The security levels may change from time to time in response to potential threats, or as part of a training activity. Contractor ID cards may be required for access to most DND properties, and potentially building sites within it. Ensure you carry your Contractor ID with you at all times and be prepared to show it. All personnel accessing DND property are subject to search.

Parking

Vehicles require an access pass to enter most DND property. Be aware that there is little open parking on the base and you will be subject to ticketing/towing if you park improperly. Look for parking spots designated for contractors.

Secure Zones

Certain areas may be designated as Operations, Security, or High Security Zones and there are additional security requirements in these areas. For example, cell phones are not permitted in these areas and must be powered off, or secured elsewhere. You may also require a visitors pass or escort to access and move around these areas.
All contractor personnel should be aware of security requirements in the areas that they will be working in.

Designated or Controlled Materials

It is possible that your work as a contractor may require you to access documents or materials that are designated or controlled. This means there are additional requirements to protect the security of these documents or materials. For example, documents containing personal information on an individual may have a security designation of Protected A or Protected B. A user manual or set of schematics may be controlled if they are for systems that could affect national security if the details fell into the wrong hands. As well, ship equipment may be controlled and have special disposal requirements.

Be sure you are clear about the designation of documents or materials you have access to, and know whether it's a controlled item or document. Ask for direction on the standards for access, security and disclosure of these items

WorkSafeBC Workplace Inspections

If you or your organization is subject to a Worksafe BC inspection or investigation on CFB Esquimalt property, ensure you contact Formation Safety at 250-363-7500 so appropriate DND coordination is provided.

3 Accident Reporting

Although the goal is to eliminate accidents, there is still a chance one could happen, in spite of best efforts. When an accident happens, it's important to report it in a timely manner once the immediate requirement for first aid or emergency responders has been initiated.

First Aid

While contractors are responsible for providing their own first aid services for their workers, if immediate medical attention is required, there are first aid services available in many areas of CFB Esquimalt. It's advisable to enquire about the availability of first aid services in your work area so that you are familiar with its location and how to access it.

If emergency services are required, call 911. Note: many areas of the base have limited cell-phone coverage. Ensure you indicate CFB Esquimalt when talking to the 911 operator. If calling from a DND landline, you will also dial 911.

Automatic external defibrillator's (AEDs) are placed throughout CFB Esquimalt and in most cases, there is external signage on the buildings where they are located.

WorkSafeBC

All workers in BC are covered under the Workers Compensation Act and all accidents resulting in an injury must be reported to WorkSafeBC within three working days.

Refer to WorkSafeBC.com for detailed instructions on reporting an injury or death.

Hazardous Occurrence Reporting

In addition to the requirement to report an accident resulting in an injury to WorkSafe BC, accidents that result in a DND employee or military member being injured have additional reporting requirements under the General Safety Program. This also applies to accidents resulting in damage to DND property.

In the event of a severe injury, notify the Formation Safety Officer immediately at 250-363-7500.

While it isn't a contractor's responsibility to initiate the DND Hazardous Occurrence Reporting process, it's possible or likely that witness statements will be required, or the Hazardous Occurrence Investigator may contact you for more information. It is expected that contractors will cooperate to the best of their ability in all investigations.

Report all known or suspected injuries to the appropriate authorities.

4 Fall Protection

Fall Arrest Systems

Canada Occupational Health and Safety Regulations state that fall protection equipment (FPE) must be worn by all workers working 2.4 meters or more above a permanent safe level. The harnesses shall be CSA approved and must be inspected prior to each use.

Ladder Safety

In some instances, portable ladders are the more practical way to carry out the work required. Used correctly, they can be a very handy tool; used incorrectly, they can be a source of injury. The following are some useful points for the correct use of a portable ladder.

1. The base of the ladder should be placed no less than one-quarter and no more than one-third of the length of the ladder from a point directly below the top of the ladder.
2. Where possible, the ladder should be secured in place.
3. A portable ladder that provides access from one level to another shall extend at least three rungs above the higher level.
4. No person shall work from any of the three top rungs of any single or extension portable ladder or from the two top rungs of any portable step ladder.
5. Metal or wire-bound portable ladders shall not be used where there is potential to come into contact with a live electrical circuit or equipment.

Mobile Elevated Work Structures

Caution is to be used when working from a mobile elevated work structure and in particular, when moving or repositioning the structure. There are many overhead obstructions and certain areas, such as dock yard, are very busy and often cluttered as supplies are moved on and off ships. FPE is required for all personnel.

Ship Safety

The same safety standards apply aboard any Royal Canadian Navy (RCN) vessel. If work must be done at height, the appropriate fall arrest system must be used. Ship's personnel can provide detailed guidance and direction specific to their ship.

Warning Signs

If any work at height poses a secondary danger to other personnel, warning signs shall be placed in a conspicuous place, and at a sufficient distance from the job.

All work done in a confined space is considered risky due to the many potential hazards that may be present. Under no circumstances should a contractor enter a confined space unless they have been authorized to do so and have been briefed on procedures.

Contractors are required to follow the requirements of the applicable regulatory body. (Canada Labour Code, Province).

The Entry Supervisor completes their assessment of the space and level of risk. This will include atmospheric testing to determine if a hazardous condition exists. The Entry Supervisor initiates a Confined Space Entry Permit and briefs the Entry Team prior to the commencement of any work.

The contractor's Emergency Response Team (ERT) is notified prior to and after the commencement of work. If the ERT is not available, the work may be postponed. If the ERT becomes unavailable while the confined space work is being done, the work must stop immediately and personnel must exit the confined space.

DND is not mandated to provide rescue teams for confined space entry, but will respond, if available. All confined space entries shall have a hazard assessment completed and a written safe to enter certificate completed by a qualified person.

Confined Space Entry Procedures

1. Ensure all energy sources have been isolated/locked out.
2. Ensure adequate ventilation is provided and the atmosphere tested.
3. Implement your company's confined space procedure.
4. Ensure entrant, rescue team and sentry are qualified.
5. Ensure hazard assessment completed.
6. Ensure entry plan completed.
7. Ensure rescue plan completed.
8. Ensure personnel are briefed on hazards and work to be conducted.
9. Ensure entry log is in place and used.
10. Ensure safe to enter certificate is completed and posted by qualified person.
11. Ensure rescue team and equipment are in place.

Radio Frequency (RF) radiation, also known as nonionizing radiation, can pose a health hazard to personnel who are exposed to levels higher than Health Canada recommendations. These levels are individually known as the Maximum Exposure Limit (MEL).

Through measurement, the distances (MEL distances) one must remain away from any given radiating emitter have been determined. These distances are held by the ship or unit owning these RF emitters.

Contractor personnel will be briefed on the applicable MEL distances and emitter control procedures prior to accessing a site with RF emitters in it. This briefing will be given by the Officer of the Day on ships.

Buildings with RF emitters will have a DND/CAF employee appointed to grant access to the roof and this person will provide the briefing on RF hazards resident there.

Sources of Radio Frequency (RF) Radiation

The more obvious source of RF radiation is from ship board equipment such as radar and communication antennas.

There are also RF emitters located on various buildings. These include D250, D199, D211, D100, D218, N92A, and N50. Proper roof access procedures, obtained from the contracting authority, must be described to personnel prior to commencing work on any roof.

Indicators for Radio Frequency (RF) Radiation Hazard

Ships will use a series of coloured flags to indicate the status of their RF transmitting capabilities.

Hazards of Electromagnetic Radiation

1. Hazards of Electromagnetic Radiation to Fuel (HERF): There is potential for RF radiation to cause spark ignition of volatile combustibles such as gasoline, fuels or solvents.
2. Hazards of Electromagnetic Radiation to Ordnance (HERO): RF radiation may cause ordnance or ammunition to inadvertently fire without notice or indication.
3. Hazards of Electromagnetic Radiation to Personnel (HERP): RF radiation can heat and burn body tissue and may occur through exposure to a nearby source, or through direct contact with an antenna wire, cable or metal railings that may be reradiating fields.

Suspected or Confirmed Exposure

Any personnel who suspect that they are being over exposed to radio frequency radiation should immediately move away from the source of radiation. Any personnel who suspect or confirm they have been exposed to radio frequency radiation should seek immediate medical attention. Medical personnel are to be advised that there may have been an RF over exposure.

Hot Work is defined as "any activity which has the potential of generating a source of ignition." This includes welding, burning, grinding, or the use of any spark-producing equipment.

Before any Hot Work can be carried out, a Hot Work Certificate must be issued. Contact the Base Fire Hall 250-363-1906 to receive a permit and a copy of Fire Orders and Regulations for Contractors.

Prior to the Hot Work Certificate being issued, a hazard assessment must occur, including the following:
\square Remove all combustible or flammable materials
\square Ensure fire cloth, smoke curtains and ventilation are in place
\square Ensure all areas where a spark could land are protected
\square If applicable, ensure the compartment(s) has been certified gas free
\square Ensure electrical cables liable to be damaged have been covered with protective material

Once the Hot Work is to begin, the Fire Sentry(s) are to be briefed and will ensure the appropriate fire extinguisher(s) are on site.

Note: Gas free testing along with a new Hot Work Certificate must be conducted every 24 hours.

Completion of Hot Work

Once the Hot Work has been completed, the Fire Sentry(s) are required to stay on site for a minimum of 30 minutes. After inspecting the area, the Fire Sentry(s) will report to the customer or Fire Hall that the operation is complete.

Prohibited Hot Work

\square In compartments containing unsealed flammable material
\square On pipes containing any trace of fuel or lube oil
\square Within two (2) meters of a magazine or fittings that enter the magazine
\square On pipes containing any trace of sewage inside

In the event a fire is detected: Shout "FIRE, FIRE, FIRE" and exit the area in an orderly fashion. Notify the Base Fire Hall (911), no matter how small the fire.

9 lonizing Radiation

Exposure to ionizing radiation can be harmful as it damages the internal structures of living cells. High doses can cause death over a short period of time, or other long term health issues from low doses over longer periods of time.

Sources of lonizing Radiation

Potential sources of radiation can be specialized monitoring equipment, aircraft gauges, X-rays and even smoke detectors. The international symbol for ionizing radiation is the trefoil. In Canada, X-rays are identified by a different symbol.

Trefoil
DANGER

RAYONS-X-RAYS

X-Ray

Radiological Hazardous Occurrence (RHO)

 Procedures\square Hold your breath.
\square Attempt to breathe only once in fresh air!
\square Vacate the immediate area.
\square Secure the area if possible.
\square Call the Radiation Safety Officer.
\square Remain nearby until released.

Report all known or suspected injuries to the appropriate authorities. Accident Reporting (3)

10 Ionizing Radiation, continued

Suspected/Confirmed Contamination and/or Exposure

If there has been a suspected or confirmed over exposure, the person MUST be sent to the hospital. Ensure medical authorities are advised that the individual may have had a possible ionizing radiation over exposure and if applicable, that the source may be on the person's clothing.

As with any other injury or accident, the
 details must be reported to WorkSafe BC. It is the contractors responsibility to ensure this happens. Accident Reporting (3).

Containment and Clean-up

If DND/CAF personnel are not yet aware of the contamination, ensure they are notified immediately. Units holding radioactive materials will have a Unit Radiation Safety Officer who must be notified of the contamination.

Areas must be evacuated and cordoned off until the clean-up has been completed. Only qualified personnel are permitted to do the clean-up; contractors should not attempt to clean a contaminated area.

Industrial Radiography

Contractors must be licensed by the Canadian Nuclear Safety Commission (CNSC) for Nuclear Gauges (e.g. Troxler Gauges) and Gamma Radiography and they must be able to present these licenses upon demand when on DND/CAF property.

For X-ray Radiography, the contractor must have one person on staff who is a CGSB Level II radiographer (licensed by NRCan).

For Gamma Radiography, there must be one operator who is both CNSC - Certified Exposure Device Operator (CEDO) and NRCan - CGSB Level II certified.

XRF operators must be licensed by NRCan as at least a Level I XRF Operator.

All contractors must have an emergency plan that is accessible to the Base RadSO. Moreover, any contracted services intending to use ionizing radiation must inform the Base RadSO.

Exposure to high power laser light can be hazardous to eyes as well as skin. Lasers range from Class 1 to Class 4. Class 1 are not considered hazardous to skin, or eyes. Class 2 may be hazardous to the eyes but protection is normally afforded by the eye's natural aversion response to bright light. Class 3 lasers may be potentially harmful if under direct and specular viewing conditions. Class 4 lasers are capable of causing serious injury to both eye and skin, and could cause combustion of flammable materials.

Ships such as the Halifax Class contain a Class 4 laser system. Where a ship or unit has Class 3B or 4 laser systems, they will have a Unit Laser System Safety Officer (ULSSO) appointed who will ensure personnel are trained and briefed and that all laser safety policies, standards and procedures are adhered to. Contractor personnel should ensure they are familiar with these policies and procedures prior to commencement of work.

Area Control Where Laser Hazard Exists

Any area where a laser will be operated shall be well defined. In most situations, a laser warning sign such as the one shown here should be in place. All personnel must follow posted instructions and use appropriate Personal Protective Equipment (PPE) as required.

Optical Viewing Devices

Optical viewing devices such as binoculars, big eyes or telescopes shall not be carried or used in any controlled area without prior approval of the ULSSO. If laser operations are to be viewed with such devices, appropriate attenuating filters must be used in
 the optical viewing device.

Suspected or Confirmed Over Exposure

If there has been a suspected or confirmed over exposure involving laser radiation, the person MUST be examined by a physician. Ensure the medical authorities treating the person have been advised that there may have been a laser over exposure.

12 Environmental Issues

Spill Response and Reporting

All contractors who will have their own vehicles on DND property and/or will be using hazardous materials, must have response equipment, such as a spill kit, and personnel trained in their location and use. In the event of a spill, the contractor is responsible for immediately implementing spill response procedures. If a spill cannot be easily contained or cleaned up, the contractor must call the Base Fire Hall at 911. Contractors must also report all spills to their contract authorities and the Formation Environment Officer at 250-363-5063, as soon as possible

Contractors are responsible for the cost of cleaning up a spill they generated.

Sick, Injured or Abandoned Wildlife

Do not touch or disturb wildlife on DND properties, including wildlife that appear dead or injured. If you encounter:
\square dangerous animals, such as a bear or a cougar, report it to the Military Police at 250-363-4032 immediately; and
\square sick, injured, abandoned or dead wildlife, report it to the Base CE Help Desk at 250-363-2009.

Waste Disposal

Contractors are responsible for removing and appropriately treating/ disposing of all wastes in accordance with contract documentation. This includes all liquid wastes generated during project activities. Disposal of any waste in DND waste bins
 is prohibited. Disposal of untreated liquid wastes to the environment and/or storm/ sanitary sewers is prohibited.

Archaeological Features

Contractor personnel should be aware of the mitigation measures prior to commencement of work and ensure they are being implemented throughout the duration of the project. Prior to commencing any land alteration activities, contractor personnel should receive an archaeological briefing which their contract authority will coordinate.

13 Lockout / Tagout (LOTO)

Contractors working on systems requiring lockout or tagout procedures will be expected to follow the existing policy as outlined in Formation Safety and Environment Systems (FSEMS) Directive S14 The lockout / tagout procedures will be used in conjunction with other work safety standards (Confined Space Entry (5), Burning and Welding (8)) but not in lieu of their safety standards.

Approved Padlocks or Lockout Devices

Locks shall be sequentially numbered and will be identified as belonging to the contractor. The customer will have locks meeting the same standard and identified as belonging to them. The contractor must coordinate LOTO requirements with the applicable unit owning the equipment and keep a register of locks issued, including the date, person's name, contractor name, system worked on and the location of the lock or device.

Only one key shall be issued with a padlock and in the event of a lost key, the lock must be destroyed once it has been removed in accordance with procedures. Replacement keys will not be produced.

Zero Energy Checks must be completed before starting work to ensure the lockout is effective.

Removal of Locks

Normally the person who applied a lock is the only one who can remove it. In exceptional circumstances, the MSE and CSE Department Heads (or their delegates) may authorize the removal of the lock under the following circumstances:
\square The machinery / equipment / system shall be verified safe to operate
\square The owner identified on the tag shall be contacted for permission to remove his/her lock
\square Details shall be entered in the Lockout Register
In the case of critical systems onboard the submarines, the owner of a lock will leave the key for his/her lock with the LOTO Coordinator if they leave the sub (ie, leave after working hours), and will draw the key prior to commencing work the following shift.

Contractor Responsibilities

"The unit Contract Officer/Coordinator is to ensure the contractor is aware of the Lockout/Tagout procedures detailed in this Directive. Contractors shall report immediately to the relevant department to be provided a Point of Contact and to be briefed on the procedure to be followed while working onboard."
FSEMS Directive SD14

14 Emergency Evacuation

Due to the risk of a significant emergency occurring such as an earthquake or tsunami, the base has stood up a Mass Notification System to give warning to all personnel. In the event that the Tsunami Warning System has detected a tsunami threat, an audible warning system will sound throughout the base. Immediately head for higher ground. Look for signs to indicate tsunami evacuation routes:

EVACUATION SITE

There is
more than one tsunami evacuation site; be sure you are familiar with the one closest, and most accessible to your location. It's important to remember that personnel are expected to travel to the evacuation sites by foot except in cases when an individual is physically unable to walk. Roads will become congested very quickly otherwise.

Tsunami Hazard Zones

Areas most at risk for a tsunami are indicated by warning signs. These signs are marking what is referred to as the inundation zones, or the areas of lower elevation most likely to be affected by a tsunami.

Mass Notification System

The Mass Notification System is also intended to deliver an audible signal to indicate other emergency situations such as an active aggressor. The Mass Notification System will be tested on the first Wednesday of each month for approximately 1 minute commencing at 11:00 am.

Threat of Violence or Terrorism

In the event there is a threat of violence requiring lock-down procedures:
\square Escape or hide out; call 911.
\square Secure self and location; lock doors, windows.
\square Mitigate vulnerabilities; close blinds, turn off lights.
\square Stay put; wait for authorities to release you.
\square Take action as a last resort.

Situations that may trigger a requirement to call Emergency Services can include medical, fire or even a threat of violence. CFB Esquimalt Emergency Services works with municipal Emergency Services to support all locations occupied by DND. In the event of an emergency, call 911. If calling from a cell phone, inform the dispatcher that you are calling from Canadian Forces Base (CFB) Esquimalt. Provincial Dispatchers will notify and dispatch the appropriate Emergency Services in your area. Emergency procedures must be discussed with the contracting authority prior to commencing work and be included in the contractor's safety plan.

Major Disasters

There are protocols in place to deal with large scale emergencies such as earthquakes. It's important in such a situation to follow the directions of DND/CAF personnel on muster points and protocols to follow. A full accounting of all personnel is to be completed after buildings have been evacuated, and this includes registering non-DND personnel such as contractors and cleaners.

In the absence of clear instructions, look for the closest E-Box and proceed there. The E-Boxes are placed throughout DND property and can easily be
 identified by their orange colour and letter E on the side.

NOTE: Do not depart your location until you have registered with one of the base's E -Boxes. If you fail to do so, valuable time may be spent searching for you.

Building Evacuations

All personnel, including contractors, should be familiar with the evacuation procedures for the site they are working in. Diagrams will be found in all buildings showing exits and locations of emergency equipment such as fire extinguishers and first aid kits. Take the time to review the diagrams and ask questions if you're unsure of local procedures.

EVACUATION PLAN

15 Emergency Response

16 Workplace Violence

Workplace violence constitutes any action, conduct, threat or gesture of a person towards an employee in their workplace that can reasonably be expected to cause harm, injury or illness to that employee. It includes, but is not limited to, the following:

Threatening behaviour - such as shaking fists, destroying property or throwing objects.

Verbal or written threats - any expression of an intent to inflict harm, including:
\square Direct threats - clear and explicit communication which distinctly indicates that the potential offender intends to do harm, for example: "I am going to make you pay for what you did to me".
\square Conditional threats - involves a condition, for example: "If you don't get off my back, you'll regret it".
\square Veiled threats - usually involves body language or behaviours that leave little doubt in the mind of the victim that the perpetrator intends harm, for example: "Do you think anyone would care if someone beats up the boss?"

Harassment - any behaviour that demeans, embarrasses, humiliates, annoys, alarms, or verbally abuses a person and that is known to be, or would be expected to be unwelcome. This includes words, gestures, intimidation, bullying, or other inappropriate behaviours.

Verbal abuse - including swearing, insults, or condescending language.

Physical attacks - including hitting, shoving, pushing or kicking the victim, or inciting a dog to attack.

National Defence Policy

"The Canadian Forces and the Department of National Defence have a zero tolerance for all forms of work place violence."
"Incidents of work place violence, should they occur, will be responded to promptly by responsible and competent authorities to ensure that the work place remains a respectful and safe environment for everyone."

National Defence Occupational Health and Safety - Prevention of Violence in the Work Place Policy Statement.

Report all known or suspected injuries to the appropriate authorities. Accident Reporting (3)

This publication was produced for Contractors and their employees as a guide to Department of National Defence and CFB Esquimalt Safety and Environment programs. While every effort has been made to provide current and relevant information, Contractors must remain vigilant about ensuring they are fully informed of current legislation as it pertains to worker safety; occupational health and safety; and environmental controls.

This infoflip® is intended to be a quick reference and in many cases, Contractors will require access to the full directives or procedures to ensure they are compliant.

Produced under the authority of Formation Safety and Environment, CFB Esquimalt.

Recommendations for changes or improvements can be directed to:

Formation Safety and Environment
CFB Esquimalt
PO Box 17000 Stn Forces
+ESQ FSE Safety @FSE@ Esquimalt (internal
email)
250-363-7500

Appendix C-4 Preliminary Job Hazard Analysis Check List

Public Works and
Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.

Project No.

Inspection Date:
Inspection/Job Hazard Analysis Conducted By:

Note:

1. This form is also intended for use as a checklist when making daily inspections of the worksite. Therefore some questions will not apply to the initial inspection/ job hazard analysis.
2. This form is intended as a guide only and does not necessarily cover every situation regulated by WORKSAFEBC or other jurisdictions. It is imperative that the Contractor be familiar with safety requirements and add anything that is relevant but not listed below. New items should be noted to the attention of the Project Manager for inclusion in future revisions. Contractors must finalize the JHA to reflect the methods/equipment etc. they will use to do the work.
3. Project Managers must review all items as part of creating preliminary JHA. Do not simply reuse this form from a previous project. Delete or add to "Hazard/action required" items as appropriate for your project and enter checkmarks or NA (not applicable) or TBD (to be determined with Contractor) under "Existing" column as appropriate.
4. CODES:

- "**" indicates covered in Basic Site Orientation for Contractors presentation by PWGSC.
- " S " indicates item covered in startup meeting with Contractor and up to Contractor to carry out appropriate action. Not covered in EGD orientation session.
- "O" indicates item covered in EGD project specific orientation session. This does not relieve the contractor of responsibility for training workers with regards to this item.

5. Column "WORKSAFEBC Ref." May also contain Canadian Occupational Safety \& Health (COSH) regulation references.

Add brief description of work to be done:

Significant Risks include but are not limited to:

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux

Project No.

	Cond No.	Condition	Existing $\sqrt{ }$	CODE	WORKS AFEBC Ref. \#	Hazard/ Action Required
$\begin{aligned} & \underset{4}{4} \\ & \underset{y y y y y y y}{\|c\|} \\ & \underset{y y y}{\|c\|} \\ & \hline \end{aligned}$	1.1		$\sqrt{ }$	S	$\begin{aligned} & 20.2 \\ & 24.9 \\ & 22.6 \\ & 29.8 \end{aligned}$	Contractor to provide NOP to WORKSAFEBC and provide copy to Project Manager before pre-startup safety orientation meeting. Note that WORKSAFEBC NOP Form 52E49 is used for general construction work and when asbestos or lead is involved. Use WORKSAFEBC Form 52E48 for NOP when diving, underground workings or aircraft are involved. NOP should go to WORKSAFEBC 4-5 days before starting work if possible and MUST be submitted no less than 24 hrs before commencing work. The white copy is for the site and the canary and pink copies go to the WORKSAFEBC. Photocopies should be posted on the safety notice board, placed on the project file, contract file and sent to the Regional Safety Coordinator. Note also the requirement to provide written notice to WORKSAFEBC before commencing (under Part 19) if workers, equipment, machinery or materials could come in contact with energized high voltage conductors or other exposed electrical equipment. Note application to underground workings in WORKSAFEBC section 22.2
	1.2	Multiple Contractor Coordination. - 2 or more employers? - Overlapping work areas - Appoint qualified safety coordinator - Post construction procedures and JHA	\checkmark	S	Review WORK SAFEBC 20.3	Contractor to appoint Worker Safety Representative and Construction Superintendent. Coordination with EGD personnel and others on site will be through Project Manager. Post Final JHA and procedures.
	1.3	Building and other permits obtained?	\checkmark	S		Building permit required for new construction.
	1.4	Notice of Project Posted?	\checkmark	S		Contractor will post on safety notice board.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.

Project No.

	1.5	Post emergency response plan and site plan? Workers trained in emergency response? Conduct risk assessment for: Work at high-angles Special needs individuals Others as required by 4.13 or identified in other sections below	\checkmark	*	$\begin{aligned} & \hline 4.13-4.18 \\ & 20.3 \end{aligned}$	Site plan and emergency response to be posted on safety notice board. Contractor to ensure all workers trained in emergency response for fire, earthquake, medical, bomb threats and hazardous materials accidents before starting work. Note the special rescue requirements for high-angle work and the need for written agreements to provide service.
	1.6	Regular Safety Meeting Minutes Posted?				Weekly safety meeting to be held. Contractor to provide minutes to Project Manager for posting.
	1.7	WORKSAFEBC Orders, Inspections or "Notice to Workers" Posted? Notification of compliance posted?		S	$\begin{aligned} & \text { Div. } 10 \\ & 183 \end{aligned}$	Contractor to provide any WORKSAFEBC inspections and/or orders to Project Manager and post any inspections and compliance reports.
	1.8	Regular Inspections carried out with Safety Rep and Posted? Conduct special inspection if required due to malfunction or accident.			$\begin{aligned} & \hline 3.5 \\ & 3.7 \\ & 3.8 \end{aligned}$	Provide inspection reports to P.M. and post.
	1.9	Contractor's workers safety representative identified for each employer? Alternatively, a Joint Committee set up if required by WORKSAFEBC Div. 4 ?		S	20.3 Div4 125-140	Worker Safety representative if 9 or more workers.
	1.10	Insufficient lighting?	\checkmark	S	4.65	Contractor to ensure lighting levels are sufficient for work to be performed. Provide portable lighting where necessary.
	1.11	Workers informed of the hazards of the job and that they have the right to refuse work they consider too hazardous without discriminatory action?	\checkmark	*	Review 3.12	To be covered in orientation session and reinforced by Contractor
	1.12	Workers with physical or mental impairment that could affect work must inform their supervisor.	\checkmark	*	4.19	To be covered in orientation session and reinforced by Contractor. Do not work at heights if subject to dizziness or if worker has a fear of heights
	1.13	Workers informed no alcohol, drugs or other substance so as to endanger self or others?	\checkmark	*	4.20	To be covered in orientation session and reinforced by Contractor. Inform First Aid attendant of any medications being taken as they may be important in case of accident.
	1.14	Firearms of any kind are prohibited on site.	\checkmark	*		To be covered in orientation session and reinforced by Contractor
	1.15	Duties of Employers, Workers, Supervisors and Owners	$\sqrt{ }$	*	$\begin{aligned} & \hline \text { Div. } 3 \\ & \text { 115-119 } \end{aligned}$	Review duties/responsibilities of parties involved. To be covered in orientation session.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.
Project No.

	$1.16$$1.17$	General Duty: In the absence of a specific requirement, all work must be carried out without undo risk of injury or disease to anyone.	\checkmark	*	2.2	To be covered in orientation session and reinforced by Contractor
		Do not remove or render inoperative any safeguard and ensure safeguards are in place before operating equipment.	$\sqrt{ }$	*	$\begin{aligned} & \hline 4.11 \\ & 4.12 \end{aligned}$	To be covered in orientation session and reinforced by Contractor
	1.17a	All workers must be given adequate instruction in the fire prevention and emergency evacuation procedures applicable to their workplace	\sqrt{V}			To be covered in orientation session and reinforced by Contractor
	1.18	Do not operate any EGD equipment. Only those trained and authorized by the contractor are to operate contractor's equipment.	$\sqrt{ }$		4.10	
	1.19	Ensure equipment inspection \& maintenance record (s) are readily available to equipment operators or inspectors.		*	4.9	To be covered in orientation session and reinforced by Contractor
	1.20	Workers must not engage in improper activity that could constitute a hazard to themselves or others including horseplay threats or physical force. Improper activity must be investigated.		*	4.24-4.31	To be covered in orientation session and reinforced by Contractor. Violence or harassment will not be tolerated. Contractor carry out risk assessment of injury from violence if there is potential for violence. Inform workers and prepare plans to minimize risk as required by 4.30
	1.21	Workers to restrict activity to designated areas of the site.	\checkmark	*		Restrictions to be discussed at pre-start-up safety orientation meeting.
	1.22	Workers informed of location of copy of WORKSAFEBC Regulations and Worker's Compensation Act.	$\sqrt{ }$	*		Cover at orientation meeting. Contractor to ensure current copy of Regulations and the Act is available on site.
	1.23	Written work procedures developed? Provided to P.M. and workers?	\checkmark	$\begin{array}{\|ll} \hline \mathrm{S} & \& \\ \mathrm{O} & \\ \hline \end{array}$		Contractor to document work procedures and sequence of activities and provide to Project Manager and workers before starting work.
	1.24	Do not work on site outside of agreed working hours.	\checkmark	*		EGD must ensure an employee is on site anytime contractors are on site. Therefore notice is required.
	1.25	If work damages a utility it must be reported.	$\sqrt{ }$	0	4.18	Immediately inform the Utility and then the Project Manager
	1.26	Wildlife, rodents may be encountered on the site.	$\sqrt{ }$	0		Be aware of potential for encounters with wildlife on the site. Rodents may leave droppings in crawl spaces that could present a hazard if dust is breathed. Also, raccoons may be aggressive if cornered and deer may protect their young.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.

Project No.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.
Project No.

	3.8	Substances under pressure?	TBD		5.36-5.47	0
	3.9	Controlling Worker Exposure	TBD	0	5.48-5.59	
	3.10	Ventilation controls?	TBD	0	5.60-5.71	
	3.11	Internal Combustion Engines operated in poorly ventilated areas?	TBD		5.72-5.75	-
	3.12	Hazardous Wastes \& Emissions	TBD		5.76-5.81	
	3.13	Personal Hygiene	$\sqrt{ }$	0	5.82-5.84	Wash hands before eating or smoking or at breaks as required by regulation.
	3.14	Emergency required? Washing \quad Facilities, eyewash	TBD	0	5.85-5.96	Contractor to provide emergency washing facilities where required due to hazardous substances.
	3.15	Emergency Procedures defined? Review First Aid, Fire, Spill Control.	TBD		$\begin{aligned} & \hline 5.97- \\ & 5.102 \end{aligned}$	Contractor to review emergency procedures with workers
	3.16	First Aid and Fire depts. aware of substance and quantities used and locations stored?	TBD	S	4.17	Contractor provide notice if required by regulations.
	3.17	Supervisor \& Workers trained? General WHMIS instruction as well as substance specific training?	TBD	S		Contractor to ensure Workers and Supervisors have WHMIS training and training in dealing with specific substances.
	3.18	Substance specific requirements?	TBD	S	PART 6	Review Part 6 and ensure compliance as per MSD sheets. See also sections 25, 28 and 29 below.
	3.19	Evaluate worker understanding of substance specific requirements and emergency/spill procedures during inspections.	TBD	S		Inspection item.
	3.20	Ensure containers for hazardous substances are maintained to ensure secure containment. Keep covered when not in use.	TBD	S	$\begin{aligned} & 5.20- \\ & 5.22 \end{aligned}$	Inspection item.
	3.21	Keep only enough for one shift, store balance of quantity in designated separate area. Ensure workplace/supplier labels are on EVERY container.	TBD	S	5.23	To reduce the risk of a major spill, fire etc. minimize quantities on site. Ensure workers can easily tell what is in every container. Inspection item.
	3.22	Store incompatible substances so that they can not mix in event of leakage, breakage etc.	TBD	S	5.24	Serious consequences can result from mixing certain substances. Ensure they cannot mix. Inspection item.
	3.23	Store hazardous substances so they can't fall, be damaged or exposed to extreme temperatures.	TBD	S	5.25	Inspection item.
	3.24	Ensure the designated storage area meets design requirements.	TBD	S	5.26	Inspection item.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada -

Project No.

5.6	Confined Space Entry Program followed?	\checkmark	S		EGD workers will Follow the program outlined in the binder in the Pump House. Contactor will follow own program. Inspection item.
5.7	Workers \& Supervisors Trained?	\checkmark	0		Ensure workers are trained in written procedures for entry, monitoring air quality and rescue. Only trained workers may participate in the work, rescue, monitoring etc.
5.8	Ventilation adequate?	\checkmark		$\begin{aligned} & 9.31 \\ & 9.33 \end{aligned}$	Check ventilation considering work to be done and airborne contaminants etc. Each job must be separately assessed.
5.9	Lockouts Performed when required?		0	$9.17-920$	Lockout may be required as part of the confined space entry procedure. Follow EGD lockout policy.
5.10	Rescue Equipment condition checked.		S)	Check equipment maintenance log.
5.11	Standby worker requirements being followed?	\checkmark	0	9.34-9.36	Inspection item.
5.12	Rescuer's trained and drills conducted?		0	9.37-9.38	Standby Rescuers to have performed drills in this area, otherwise conduct drill before starting work.
5.13	Notify Rescue personnel before workers enter and again when workers complete work unless agreement is for 24 hour service. Ensure rescuers monitor the signalling system.	\sqrt{V}	0	$\begin{aligned} & 9.39 \\ & 9.40 \end{aligned}$	Follow agreed protocol with rescuers. Generally must have rescuers on standby at entrance with Fire Dept. considered backup.
5.14	No cylinders of compressed gas inside confined space.	$\sqrt{ }$	S	9.48	Inspection item.
5.15	Welding/Cutting torches and hoses must be removed when not in use.	\checkmark	S	9.49	Inspection item.
5.16	Ensure electrical tools \& equipment meets WORKSAFEBC 9.50	\checkmark	S	9.50	Inspection item.
5.17	Use only non-sparking tools if flammable/explosive gases, vapors or liquids are present.	\checkmark	S	9.51	Inspection item.
5.18	Provide means of communication - radio for workers inside confined space.	\checkmark	0		Inspection item.
5.19	Ensure rescue equipment is inspected by Qualified Person before each use.	$\sqrt{ }$	S		Contractor to ensure inspection and document.
	Note: Follow Confined Space Entry program details as inspection guideline. These must be agreed with Rescuer personnel.	\checkmark	0		

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.
Project No.

	6.1	Has the EGD Lockout policy been reviewed and relevant sections complied with?	\checkmark	S		Policy to be reviewed by Contractor with workers as part of training.
	6.2	Each worker has own lock, no combination locks? Means of identifying lock owner?	\checkmark	0	$\text { PART } 10$	Every worker must have own lock and tag identifying worker and company.
	6.3	Lockout procedures documented for project?	\checkmark	0	$\text { PART } 10$	To be documented and agreed with J. Lezetc and permit issued before initiating lockout.
	6.4	Workers and Supervisors trained in lockout? Only certified electricians to do electrical work.	$\sqrt{ }$		$\text { PART } 10$	Contractor to ensure all Workers and Supervisors are trained in the lockout procedure. Contractor to provide proof of certification to Project Manager before start of work.
	6.5	All isolation points identified?			PART 10	To be done in conjunction with J. Lezetc and documented in lockout procedure.
	6.6	Electrical ground hazard?	7			To be done in conjunction with J. Lezetc and documented in lockout procedure.
	6.7	Pneumatic Devices hazard?	\checkmark	S		Document if this type of hazard exists and controls required.
	6.8	Potential Energy hazards? All parts secured against inadvertent movement?	$\sqrt{ }$	S		Document if this type of hazard exists and controls required.
	6.9	Kinetic Energy hazards? All parts secured against inadvertent movement?		S		Document if this type of hazard exists and controls required.
	6.10	Hydraulic Energy hazards?	\checkmark	S		Document if this type of hazard exists and controls required.
	6.11	Chemical Energy hazards (eg. Flammable, Combustible, corrosive) ?	\checkmark	S		Document if this type of hazard exists and controls required.
	6.12	Radiation hazards (eg microwave, lasers, Ultraviolet, infrared)	\checkmark	S		Document if this type of hazard exists and controls required.
	6.13	Thermal Energy hazards (eg, steam, hot water or other substances, refrigeration lines)	\checkmark	S		Document if this type of hazard exists and controls required.
	6.14	If over 750 V follow H.V. guidelines in lockout policy.	$\sqrt{ }$	0		Document if this type of hazard exists and controls required.
	6.15	No working NEAR energized H.V. equipment or conductors.	Not permitted	S	Lockout Policy	Not permitted.
	6.16	No working on energized lighting circuits.	Not permitted	S	Lockout Policy	Not permitted.
	6.17	Control the use of metal ladders, wire reinforced ladders,, metal scaffolds or work platforms.	\checkmark	S	19.10	Planned use of ladders, scaffolds etc. to be determined with Contractor and electrical risks assessed.
	6.18	No Qualified workers within 1 m . of uninsulated, energized parts.	Not permitted	S	Lockout Policy	Not permitted. Keep unqualified personnel at least 3 m . from energized parts.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.

Project No.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.

Project No.

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.

Project No.

	8.1	Workers aware they generally do not fight fires? First priority is to raise the alarm and get selves and others to safety.	\checkmark	*	0	Workers to fight fires only if small (2'x2') and they have been trained in fire extinguisher use and they are confident they can extinguish the fire. To be reinforced at orientation meeting and reinforced by Contractor.
	8.2	Fire Extinguishers Available and accessible?	$\sqrt{ }$			Contractor to ensure proper type and number of extinguishers available. Check monthly inspection and tags.
	8.3	Electrostatic Discharge	\checkmark	0		Contractor to determine risk of ignition due to discharge and take preventive measures.
	8.4	Ignition Sources eliminated or controlled if flammable gas or liquid used or stored?		0	5.27	No smoking on this project except in designated areas defined by Project Manager. Define any other ignition sources and controls required.
	8.5	Flammable gas concentrations		S\&O		Ensure adequate ventilation to comply with WORKSAFEBC regulations. Monitor flammable gas concentrations and use forced ventilation if required.
	8.6	Combustible materials		0		Keep area clear of combustibles. Practice good housekeeping. Store oily rags in approved metal containers with tight fitting lids and empty daily. Burning of waste is prohibited.
	8.7	No smoking in buildings, on cranes, in caissons or tunnels. Define other restrictions. Rules being followed?	$\sqrt{ }$	0	4.81	Contractor to enforce no smoking except in areas designated by the Project Manager.
	8.11	Do not use flammable liquids as a manual cleaning solvent.	\checkmark	S	5.32	Flammable fumes can collect on clothes and result in the worker being engulfed in flames should ignition occur. Also, these substances are often hazardous to health and can be absorbed through the skin. Contractor to reinforce with workers and monitor for compliance.
	8.12	Hot Work Permits issued and posted?	\checkmark	*		Obtain permit from Project Manager before starting any cutting, welding, brazing, soldering, grinding, heat-treating or other hot work like roof tarring, thawing pipe, hot riveting or using powder-driven fasteners.
	8.13	Fire Alarms explained?	$\sqrt{ }$	*		To be covered at pre-startup meeting and worker orientation session.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.

Project No.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.
Project No.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project No.

Project Title: Master.

APPENDIX A

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title：Master．

Project No．

	9.28	Hoisting and lowering work platforms done according to safe practices？			13.29	Operate as slowly as practicable．Lower under power if device powered．May not be controlled only by brakes． Ensure lower travel limit device is used where required． Carry out a trial lift before platform is occupied．
	9.29	Portable powered platform capable of raising／lowering by 2 or more separately controlled hoists？				Ensure controls located so one person can operate all hoists simultaneously．
	9.30	Ensure fall protection meeting WORKSAFEBC requirements is in place for suspended or elevating work platforms			13.33	Include in fall protection plan．Each person on a work platform attached to a crane boom must use a personal fall arrest system secured to an anchor on the boom or on the platform that is designated by the manufacturer，or a professional engineer．
	9.31	WORKSAFEBC approval obtained for high risk situations？		$\overline{\mathrm{S}}$	13.32	A swing stage，boatswain＇s chair and portable powered platform must not be used without prior permission of the Board if （a）one work platform will be used above or below any portion of another work platform， （b）a deck or planking will be used to span a gap between two independent work platforms， （c）the work platform will exceed 10 m （ 32 ft ）in length，or （d）the suspension height will exceed 91 m （ 300 ft ）．
尘	10.1	Hard Hats Worn at all times．Chinstraps available for high wind／bending over？	\checkmark	＊	8．11－8．13	Contractor to monitor and enforce hardhat and chinstrap usage．
	10.2	High Visibility Clothes，correct type for the job．	\checkmark	0	8．24－8．25	Wear high viz vests when required．Traffic Control Persons will have special requirements．
	10.3	Approved Buoyancy Equipment（note change in acceptable standards G8．27－2）	NA	0	8．26－8．30	Required if working within 5 feet of water．
	10.4	Safety Footwear	\checkmark	＊	8．22－8．33	Approved steel－toed footwear in good repair，required at all times meeting WORKSAFEBC requirements for the work to be performed．
	10.5	Approved Safety Eyewear／Face Shields．Note new guidelines re acceptable standards Nov／08	\checkmark	0	8．14－8．18	Eye protection required when energizing and de－energizing breakers．Also when doing any other work where flying objects may be encountered．Also may be required when using hazardous substances（TBD）．
	10.6	Wear Hearing Protection when required by WORKSAFEBC regulations．	\checkmark	0	7．1－7．9	Hearing protection required when in high noise situations exceeding WORKSAFEBC noise exposure limits． Implement and provide evidence of noise control and hearing conservation program where required by regulation．Post warning signs in high noise areas．

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.

Project No.

	10.7	Respiratory Protection \& Fit	\checkmark	0	8.32-8.37	Wear approved respiratory protection considering the respirator protection factor and maximum use concentration, MSD Sheets, exposure to oxygen deficient atmosphere when selecting respirators for workers that may be exposed to dusts or hazardous fumes/mists above exposure limits.
	10.71	Respirator fit tests conducted?	\checkmark		$\begin{aligned} & 8.38-8.41 \\ & 8.44 \end{aligned}$	Ensure proper fit tests per regulations and keep records. Workers must perform a positive or negative pressure user seal check in accordance with CSA Standard before each use.
	10.72	Worker's ability to use a respirator in doubt for medical reasons?		0	8.42	Ensure worker examined by a physician, and advice obtained re the ability of the worker to wear a respirator.
	10.73	Self Contained Breathing Apparatus (SCBA) used?			$\begin{aligned} & 8.35 \\ & 8.37 \\ & 8.45 \end{aligned}$	Ensure air quality complies with regulation 8.37. Ensure inspection and testing of compressed air cylinders must be done in accordance with CSA Standard and SCBA, including regulators, are serviced and repaired by qualified persons.
	10.8	Gloves, Aprons, leg protection		0	8.19-8.21	Wear protective clothing when performing work that could result in cuts, slivers, abrasions, etc. Check added requirements from MSD Sheets.
	10.9	Flame resistant clothing	\checkmark	0	8.31	Wear when welding or cutting or other hot work hazards
	10.10	Welding Goggles (2)	\checkmark	0		Wear when welding or cutting
	10.11	Welding Clothes (e.g. leather aprons, face shields, leather gauntlet gloves etc.)	\checkmark	0		Wear when welding or cutting. Also those working nearby may need to wear protective clothing.
	10.12	Vibration Reduction	\checkmark	0	$\begin{aligned} & \hline \text { 7.10-7.16; } \\ & 5.54 \end{aligned}$	Provide written exposure control plan where required by regulation and inform worker of hazards. Employer ensure equipment is labelled to identify hazard. Ensure hands and arms not exposed to cold if also exposed to vibration.
	10.13	Radiation Exposure Control	\checkmark	0	7.17-7.25	Provide written exposure control plan where required by regulation and inform worker of hazards.
	10.14	Personal clothing, rings, hair etc. OK	\checkmark	0	8.10	Ensure workers do not have loose clothing, long hair or rings which could become entangled if operating rotating power tools.
	10.15	Apply Sunscreen, to protect against sunburn on exposed skin.	\checkmark	0		Wear sunscreen when working outdoors.
	10.16	Safety belts, harnesses, lanyards \& shock absorbers	\checkmark	0		Follow fall protection plan and use prescribed equipment.
	10.17	Employees must wear suitable personal clothing for the work they are doing to reduce risk of injury.	\checkmark	S		Contractor to ensure workers wear suitable clothing.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

August 2011

Project No.

Project Title: Master.

APPENDIX A

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title：Master．
Project No．

	13.1	Note WorkSafeBC definitions for＂critical lift＂ ＂duty cycle work＂，＂load bearing component＂， ＂sign truck＂and＂tandem lift＂	\checkmark	S		Changes effective 1 Feb．／08 to add clarity．
	13．1a	Only EGD Operators operate EGD Cranes／hoists or other equipment．	\checkmark	＊		No plans to use any EGD equipment．Contractor to reinforce that only EGD workers are to operate EGD equipment．
	13．1b	Contractor supplied crane meets specifications and has required labelling etc per WORKSAFEBC regulation？			$14.2-14.8$	Ensure crane is marked with：a）Manufacturer，model，sr\＃ b）rated capacity or load chart． c）boom angle，boom extension and load measure（where applicable） d）any modifications to the crane or components
	13．1c	Crane Hoist documentation available？			14.12	Ensure manufacturer＇s crane／hoist manual，including instructions for assembly／disassembly，maintenance，and safe operation are readily available on site．
	13．1d	Inspection and maintenance carried out and documented including any modifications？ Operator to carry out start of shift inspection and document．	$\sqrt{ }$	S	14.13 to 14.16 14.35	（1）Each crane and hoist must be inspected and maintained at a frequency and to the extent required to ensure that every component is capable of carrying out its original design function with an adequate margin of safety． （2）A crane or hoist must not be used until any condition that could endanger workers is remedied． （3）Any repair to load bearing components of a crane or hoist must be certified by a professional engineer or the original equipment manufacturer．
	13．1e	Crane properly equipped？			$\begin{aligned} & \hline 14.17 \text { to } \\ & 14.33 \end{aligned}$	Ensure crane／hoist meets all WORKSAFEBC requirements for stops，audible warnings，guards，controls，operator protection， etc．as per WORKSAFEBC regulations
	13.2	Weight lifted determined and communicated to operator and all others involved in lift？	\checkmark	0	$\begin{aligned} & \hline 14.36 \\ & 14.38 \end{aligned}$	Contractor to ensure that load weights are accurately determined and communicated to the crane operator and others involved．Crane operators must not lift if there is any doubt about the safety of the lift．
	13.3	Ensure crane operators meet the trade qualification specified by WORKSAFEBC	\checkmark	S	14.34	Provide proof of qualification to Project Manager before starting work．
	13.4	Ensure workers stay clear of swinging loads and equipment when swinging creates a hazard	\checkmark	0	$\begin{aligned} & 14.40 \\ & 14.41 \end{aligned}$	Position equipment to ensure 2 ft ．clearance or more between crane parts etc．and obstructions in any area accessible to workers．
	13.5	Multiple Crane lift？Follow WORKSAFEBC regs	NA	S	14.42	No multiple crane lifts planned．
	13.6	Travel with load？Follow WORKSAFEBC regs．	\checkmark	S	14.43	Follow safe practices．

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.

Project No.

	13.7	Prevent passing over workers with load	$\sqrt{ }$	0	14.44	Contractor to ensure loads do not pass over workers.
	13.8	Load left suspended and unattended?	$\sqrt{ }$	0	14.45	Do not leave loads suspended \& unattended.
	13.9	Hook position over load to prevent side loading?	\checkmark	0	14.46	Ensure straight lifts are used. If lifts on an angle are necessary observe working load limit (WLL) reduction.
	13.10	Designated signalman? Use std signals? Use radio if possible.	\checkmark	0	$\begin{aligned} & 14.47 \\ & 14.49 \end{aligned}$	Ensure trained workers use standard signals when communicating with crane operator. Use dedicated 2-way radio communication on UHF at power assigned and coordinated by the WORKSAFEBC whenever possible.
	13.11	High voltage in vicinity? Risk of induced charge? Review and follow WORKSAFEBC requirements.		0	$\begin{aligned} & 14.51- \\ & 14.52 \end{aligned}$	No lifts planned near high voltage.
	13.12	Up-travel limit tested for bridge, gantry \& OH traveling cranes? (crane operator daily check)			14.55	If crane/hoist is not EGD operated equipment, Contractor to ensure operator has tested limits.
	$\begin{array}{r} 13.13 \\ a \\ \hline \end{array}$	Ensure mobile cranes are on surface capable of supporting the load		S	14.69	Contractor to check before lift.
	$\begin{array}{r} 13.13 \\ b \\ \hline \end{array}$	Mobile cranes or boom trucks inspected at least annually?		S	14.71	Ensure mobile cranes or boom trucks are inspected at least annually. Provide proof to Project Manager.
	13.14	Rigging/slinging work done by or under direct supervision of qualified workers familiar with the rigging to be used.		S	15.2	Contractor to use trained riggers following accepted good practices when performing lifts and provide a list of trained individuals to the Project Manager.
	13.15	Ensure rigging is identified with the manufacturer and Working Load Limit (WLL) as well as any other information required by WORKSAFEBC and meets the WORKSAFEBC requirements for the work to be performed.	$\sqrt{ }$	0	$\begin{aligned} & 15.5 \\ & 15.42 \\ & 15.46 \\ & 15.55 \\ & 15.59 \\ & \hline \end{aligned}$	Do not use rigging without proper permanent identification. DO NOT EXCEED the designated WLL; also applies to below-thehook lifting devices.
	13.16	Use only rigging permanently marked with an adequate working load limit considering the angle of lift, termination efficiencies, numbers of legs used, conditions for the lift, temperature restrictions and good rigging practices.	\checkmark	S	15.9	Follow good rigging practices. Ensure design factors comply with changes Jan/05.
	13.17	Ensure any attachments (rings, shackles, couplings etc) are designed for use with the rigging to which they are fastened.	$\sqrt{ }$	S		Contractor to ensure compatibility in design.
	13.18	Slings \& attachments must conform with specifications and be visually inspected before use on each shift.	\checkmark	S	$\begin{aligned} & 15.30 \\ & 15.31 \end{aligned}$	Remove defective equipment from service immediately.
	13.19	Do not subject the rigging to dynamic loading.	\checkmark	S		Apply the load slowly \& smoothly

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.
Project No.

	13.20	Do not use rope/slings with evidence of wear or distortion, broken strands, kinking, bird-caging, corrosion, heat or arc damage that meets the rejection criteria specified by WORKSAFEBC.	\checkmark	S	$\begin{aligned} & \hline 15.25- \\ & 15.27 \\ & 15.48-.49 \end{aligned}$	Remove equipment from service immediately if it meets rejection criteria.
	13.21	Do not use worn or damaged hooks that fail to meet WORKSAFEBC regulations.	\checkmark		15.29	Remove rejected hooks from service immediately.
	13.22	Protect slings from damage if passing over a sharp edge and store properly.	\checkmark		$\begin{aligned} & 15.37 \\ & 15.39 \end{aligned}$	
	13.23	Follow WORKSAFEBC rules for slinging to prevent slipping or overstressing the sling and when lifting multiple piece lifts.		S	$\begin{aligned} & 15.40 \\ & 15.41 \end{aligned}$	
	13.24	Hooks must have safety latches unless meeting the exemption of WORKSAFEBC 15.10(2)			15.10	
	13.25	Consider effect of wind on loads		S		Crane operator to use judgement and consider wind velocity in determining if lift can be safely made. Crane operator has final decision on making any lift.
\square						
	14.1	Does the contractor intend to use any mobile equipment on site other than trucks for transporting workers?	TBD	S	PART 16	To be determined. Define equipment to be used and any special requirements.
	14.2	Are contractor's vehicles safe for transport of worker's?	\checkmark	S	16.3	Contractor to ensure vehicles are properly equipped and maintained.
	14.3	Are workers obeying speed limits? Max speed 20kph	\checkmark	*	PART 16	Cover at start up orientation meeting.
	14.4	Are vehicles properly parked?	\checkmark	*	PART 16	Workers will be shown the designated parking areas. Do not park in areas where crane travels, Fire Lanes, blocking fire hydrants, fire/emergency alarm pull stations or fire extinguishers.
	14.5	Elevating work platform(s) operations manual and inspection certificate on site? Daily inspection log available?	\checkmark	S	PART 16	Requirements depend on contractor use of this type of equipment. TBD in final JHA
	14.6	Ensure seat belts used and roll over protection provided if required. Note guidelines Nov./08	\checkmark	0	PART 16	Requirements depend on contractor use of this type of equipment. TBD in final JHA
	14.7	Suspended work platforms/chairs used? Conform to specifications? Verify engineering design. Support structures in place?	NA	S	PART 16	Generally, not planned to be used. Check WORKSAFEBC regulations if suspended platforms to be used.

Project Title: Master.

Project No.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.

Project No.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.
Project No.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project No.
Project Title: Master.

APPENDIX A

	17.17	Dive site has copy of WORKSAFEBC reg. PART 24?	$\sqrt{ }$	O	24.15	Required
	17.18	Is there an appropriate way of entering and leaving the water, including rescuing an incapacitated diver?	\checkmark	0	24.15	Contractor to document in rescue plans.
	17.19	Dive site has equipment for voice communication with emergency services personnel?	\checkmark	O	24.15	Radio supplied by EGD to supervisor for continuous contact to pumphouse for fast 911 call if required. Work will be 7a.m to 4 p.m. only unless agreed ahead of time with Doug Ferrier.
	17.20	Divers on a lifeline wear suitable harness? Lifelines not attached to weight belt, free of knots \& splices.	\downarrow		24.16	Contractor has proper equipment and will ensure safe usage.
	17.21	Diver tender must tend lines at all times.	\checkmark	S	24.16	Agreed by contractor.
	17.22	Diving contractor has safety procedures documented and available at dive site?	$\sqrt{ }$	S\&O	24.17	Contractor's safety manual will be on site at all times.
	17.23	Diving supervisor's detailed plan presented in writing to EGD before work starting?	$\sqrt{ }$	S	24.18	Dive plan to be presented to Doug Ferrier and posted.
	17.24	Diving supervisor must not leave the area during diving operations.	\checkmark	S	24.19	Entire crew qualified to act as supervisor. Sufficient divers and supervisors will always be in the area during diving operations or no divers will be in the water.
	17.25	Before each dive has the crew briefing been carried out? This will include discussion of hazards, planned duration and maximum depth, decompression procedures, location of other divers, work to be done, recall signals and emergency procedures.	\checkmark	0	24.19	A briefing will be carried out ahead of the dives.
	17.26	Divers made aware of their responsibilities under 24.20?	\checkmark	0	24.20	Divers responsibilities to be reviewed with them by contractor as part of pre-start meeting. Diving will be one day only.
	17.27	If decompression is required check compliance with WORKSAFEBC regs 24.22- 24.25	\checkmark	S		No decompression planned as part of dives. Depth less than 50 ft .
	17.28	Ensure breathing mediums and equipment comply with WORKSAFEBC reg 24.26 to 24.29	$\sqrt{ }$	S		Contractor will ensure compliance.
	17.29	Ensure control of boat traffic and proper warning devices, flags etc.	\checkmark	0	24.30	Project manager to ensure ship engines will not be started during this project.
	17.30	If a hoisting device is used to raise or lower the diver dedicated for dive duration?	$\sqrt{ }$	S	24.32	Needs to be defined.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada
\square
Project Title: Master.
Project No.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

August 2011

Project Title: Master.

Project No.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project No.

Project Title: Master.

	18.19	Erection and temporary bracing of premanufactured open web joists and trusses or laminated beams must be according to written instructions from a P.Eng. or the manufacturer detailing safe erection procedures.	\checkmark	0	20.72	Contractor to ensure documentation is on site and that all workers have been trained in the prescribed erection procedures before work starting.
	18.20	Ensure crawl boards/ladders used for roof work are securely fastened	\checkmark		20.7	
	18.21	Work on roofs having slope 8 vertical to 12 horizontal or greater require nailed toeboards in conjunction with personal fall protection or safety nets.			20.7	Toe-holds must be used if the roofing material allows for it. Note: Exposed horizontal roof strapping may be used as toeholds as long as it provides safe footing.
	18.21a	Roof edge guarded?			20.76	The roof edge about a chute, bitumen spout and material hoist must have guardrails meeting the requirements of Part 4 (General Conditions) or barriers of at least equivalent strength to at least $2 \mathrm{~m}(6.5 \mathrm{ft})$ on each side of such a work area.
	18.22	Mechanical or powered equipment that has the potential to push or pull a worker over an unguarded roof edge, must not be used unless operated according to procedures acceptable to the Board.		S	20.77	Secure WORKSAFEBC approval of procedures if using this equipment.
	18.23	Loose insulation, polyethylene, roofs with smooth surfaces, asphalt and surfaces with water, snow, ice or frost increase the risk of losing footing.	\checkmark	S		Work under severe weather conditions will be under the control and advisement of their supervisor
	18.24	Avoid walking backwards on roofs.	\checkmark	S		Contractor's Supervisor will advise all workers of safe working practices

	19.0	Excavation work to be carried out?	NA		S	No excavation on this project.
	19.1	Written instructions/ drawings by P.Eng. available for excavation work ?	$\sqrt{ }$	0	20.78	Keep all instructions/ drawings readily available at the site. Train workers to follow instructions.
	19.2	All utilities accurately located \& danger determined?	$\sqrt{ }$	S\&O	20.79	Contractor to get details on utility location and necessary approvals before digging.
	19.3	Utilities instructions followed regarding excavation?	$\sqrt{ }$	S	20.79	Obtain necessary approvals and instructions.
	19.4	Nearby objects secured or removed if hazardous?	\checkmark	S\&O	20.80	Ensure any objects are removed as required to meet regulations depending on depth of excavation etc.
	19.5	Sloping/shoring requirements met as defined by P.Eng. or Geoscientist ?	$\sqrt{ }$	0	20.81-	Follow requirements of P.Eng. or Geoscientist

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.

Project No.

	19.6	Control of water addressed?	\checkmark	0		Ensure water in excavation is controlled to prevent possible trench wall collapse.
	19.7	Ladder provided in immediate work area extending min. 3 ' above ground?	\checkmark	S		Requirements to be determined in final JHA based on detailed construction plans.
	19.8	Barricades in place to prevent fall into trench if over 7.5' deep? If excavation is a hazard to workers, cover or guard it.	NA	0	20.88	No trenching over 7.5ft deep foreseen. Barricade work area and position flashing warning signs to prevent accidental falling into trench.
	19.9	End shoring in place equal to depth of excavation?	$\sqrt{ }$	S		
	19.10	Loose excavated materials well back from slopes/ trenches in use?		0	20.90	Keep at least 2' from excavation and 4' from any other excavation
\vec{a}	19.11	Are there soil contaminants expected or chance of encountering archeological materials?		0		Workers to be shown sample of archeological materials and instructed to stop excavating if they encounter possible archeological materials. Also provide workers with details of soil contaminants and potential risks. Stop work and immediately report to P.M. if anything is encountered including suspected soil contaminants.
	19.12	All Workers must be aware that soils on the site may contain hydrocarbons and metals such as arsenic, zinc, copper, lead.	\checkmark	0		All excavation and management of soils must be in compliance with the Interim Soil Management Plan for Munroe Head, Esquimalt Graving Dock and North Naden - stored fully contained, sampled, and disposed off-site if above federal industrial criteria. Project Manager to provide guidance for specific project.
	19.13	Ensure structure and adjoining structure are properly supported during demolition to the extent and manner prescribed by a P. Engineer IF Workers could be endangered by the demolition or adjoining structures could have their stability compromised.	\checkmark	S\&O	20.111	Follow demolition/ temporary support procedures and detailed schedule as defined by an Engineer in writing. Copy of the plan must be available on site.
	19.14	Ensure hazardous materials are identified before beginning demolition or salvage of machinery, equipment, buildings or structures.	\checkmark	S	20.112	Hazardous substances will be defined in the Environmental Assessment as well as by inspection with the Contractor. Details will be available at the site and procedures identified for safe containment and removal.
	19.15	Stop all work if hazardous materials are discovered during demolition and not previously identified.	\checkmark	0		Report to Project Manager immediately.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.
Project No.

Public Works and Government Services

Travaux publics et
Services gouvernementaux
Canada

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.
Project No.

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.

Project No.

	23.13	Wear eye protection at all times when pumping concrete. Wear gloves to protect against concrete.	\checkmark	O		Contractor to ensure protective equipment is used.
	23.14	Controls have functions identified and emergency shutoff to stop pumping?	$\sqrt{ }$	S	$\begin{aligned} & \hline 20.31 \\ & 20.36 \\ & \hline \end{aligned}$	Inspection item.
	23.15	Hydraulic valves have pressure relief and holding valves?	\checkmark		20.32	Inspection item.
	24.0	Blasting operations are not usually permitted at EGD.			PART 21	Use drilling and hoe-ram methods to break up rock.
	24.1	Ensure only competent workers trained in the proper methods of blasting, hazards of fire and mishandling and procedures to follow in event of fire or explosion are to be involved in blasting operations.			21.2, 21.7	Provide proof of formal training program and documentation of training session signed by workers trained and authorized to assist the Blaster of Record.
	24.2	Provide a qualified "Blaster of Record" who will exercise authority and visual supervision over all assistants or others involved during explosive loading, priming, fixing or firing.			21.5	Provide copy of blaster's certificate for anyone planned to conduct or direct blasting operations as the Blaster of Record. Ensure scope of the certificate is valid for the planned work. Keep ORIGINAL certificate at job site.
	24.3	Maintain records of blasting operation as required by regulations.			21.4	Blaster of Record maintain personal log of pre-blast loading details and results of post-blast inspection and log available for inspection at the site.
	24.4	Any dangerous incident, including unexpected result or problem with explosive products, or Blaster has failed to comply with regulations or safe practices, must be reported and all blasting operations and duties of the Blaster of Record will be suspended until agreed with Project Manager/WORKSAFEBC to continue.			$\begin{array}{\|l\|} \hline 21.3 \\ 21.13 \\ \hline \end{array}$	Notify Project Manager and WORKSAFEBC immediately and complete required reports.
旨	24.5	Comply with all other legislation besides WORKSAFEBC regulations including Explosives Act (Canada), Transportation of Dangerous Goods Act, 1992 (Canada) governing storage, handling and use of explosives.			21.6	Contractor to ensure understanding of regulations and comply with them.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.

Project No.

	24.6	Keep explosives and detonation materials separated until the last practical moment before bringing them together.			$\begin{array}{\|l\|} \hline 21.16- \\ 21.17 \\ 21.20 \\ 21.21 \end{array}$	Contractor to ensure safe and secure storage of explosives and detonation materials.
	24.7	Ensure signage is in place to identify magazines, day boxes, vehicles containing explosives and that all workers are aware of the location of storage and restrictions on access and activities around explosives and detonators.	C		21.18	Contractor to provide signage meeting regulations and ensure effective communication.
	24.8	No passengers in explosive vehicles other than those assigned to assist in handling explosives.	(2)		21.22	
	24.9	Ensure vehicles meet the transport requirements with proper separation of flammables and detonation devices from explosives. Ensure exposed ferrous metal in a conveyance is prevented from contacting packages containing explosive			$\begin{array}{\|l\|} \hline 21.23 \\ 21.24 \\ 21.25 \\ 21.27 \\ 21.32 \\ \hline \end{array}$	If transporting on a mobile drill rig, ensure special restrictions are met including attending by the Blaster of Record at all times. No trailers. If a semi-trailer is used, ensure power brakes can be operated from inside cab.
	24.10	Provide written procedures to address emergencies while transporting or working with explosives and ensure all workers are adequately instructed.	,		21.28	Provide documentation to Project Manager
	24.11	Operate vehicle transporting explosives according to regulations but not exceeding $90 \mathrm{~km} / \mathrm{h}$; do not exceed $\mathbf{8 0 \%}$ of manufacturer's load rating; follow special railway crossing requirements; ensure vehicles have been serviced before loading.			$\begin{aligned} & \hline 21.29 \\ & 21.30 \\ & 21.33 \\ & 21.34 \\ & \hline \end{aligned}$	
	24.12	Ensure vehicles containing explosives are parked away from habitation and bldgs containing flammables; premises are used for a purpose unlikely to cause an explosion or fire; vehicle is at all times attended by a qualified person.			21.35	Define overnight parking location(s) and ensure vehicles are attended.
	24.13	Follow manufacturer's recommended practices for storage, transport, handling and use of explosive materials. Do not use materials believed to be defective.			$\begin{aligned} & \hline 21.36 \\ & 21.37 \end{aligned}$	

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.

Project No.

	24.14	No smoking or open flame ignition sources on this project work site. Dispose of empty containers as recommended by manufacturer.			$\begin{array}{\|l\|} \hline 21.40 \\ 21.41 \\ 21.42 \\ \hline \end{array}$	Project manager will define designated smoking areas well away (min .15 m .) from where explosives are stored, handled or loaded into holes. Hot work permit required from Project Manager for this kind of work.
	24.15	Follow safe drilling procedures including location of utilities, stabilizing slopes to prevent slides and checking blasted areas for misfires before continuing.			$\begin{aligned} & \hline 21.42 \\ & 21.43 \\ & 21.44 \end{aligned}$	Ensure hole sizes are adequate and don't drill within 6 m . of a hole containing explosives or within 15 cm of a bootleg
	24.16	Follow proper loading practices including making up primers just before use, no carrying explosive material in clothes, no removal of wrappers,			$\begin{array}{\|l\|} \hline 21.45- \\ 21.48 \\ 21.67 \\ \hline 21.68 \\ \hline \end{array}$	Ensure tools are non-spark generating materials. Don't attach blasting circuit until just before being ready to fire and ensure logical sequence of detonation is used.
	24.17	If there is a sign of thunderstorm, suspend blasting			21.49	Lightning can result in an unplanned explosion. Suspend all blasting, clear the danger area and guard it.
	24.18	Loaded holes present a hazard in that someone could drive over them or tamper with them.			21.50	Do not leave loaded holes unattended overnight. Post a worker whose sole responsibility is the security of explosives.
	24.19	No driving vehicles over loaded holes an explosion could accidentally result.			21.51	
	24.20	Holes are hot after being "sprung" and could result in accidental explosion if loaded too soon.			21.52	Allow ample time for cool down.
	24.21	Accidental explosion could result if detonators are attached sooner than necessary			$\begin{aligned} & \hline 21.53 \\ & 21.54 \end{aligned}$	Don't interconnect detonating cords or attach detonators or detonator connectors until everything is in readiness for the blast.
	24.22	Static electricity or hazards from stray currents could result in accidental explosion if loading explosives pneumatically.			$\begin{aligned} & 21.55 \\ & 21.56 \end{aligned}$	Define procedures and ensure equipment used will prevent this hazard. Use only safety fuse assemblies with antistatic protection.
	24.23	Inadequate or damaged fuse assemblies can result in faster than planned ignition.			$\begin{array}{\|l\|} \hline 21.56 \\ 21.57 \\ \hline \end{array}$	Follow safe practices when lighting safety fuses.
	24.24	Stray currents or static electricity may cause unexpected detonation resulting in injury or death.			$\begin{array}{\|l\|} \hline 21.58 \\ 21.59 \\ \hline 21.60 \\ \hline \end{array}$	Follow safe practices to prevent unplanned detonation. Do not use electric detonators if extraneous current exceeds 50 milliamps.
	24.25	Radio frequency transmitters, including mobile units, can cause unplanned detonations.			$\begin{aligned} & 21.61 \text { to } \\ & 21.65 \end{aligned}$	Contractor to provide details demonstrating that all regulations are being met and get prior approval from Project Manager if electrical blasting circuits are to be used.

Project Title: Master.

Project No.

	24.26	Accessing the blasting area during a detonation could result in serious injury or death.	c		21.66	The Blaster of Record will ensure proper covers are used to control flying materials and that workers are posted at all necessary points to ensure no one enters the area and that a warning system is in place. Provide written warning procedures and blasting signals and post conspicuously. Ensure workers are trained in procedures and provide documentation to Project Manager. Project Manager will ensure all EGD occupants are made aware of the procedures and signals.
	24.27	Misfires or other hazards could injure workers if they enter the area after a blast. The Blaster may be hurt if entering the area as a result of electrical detonation of unexploded loads.			$\begin{array}{\|l\|} \hline 21.71 \\ 21.81 \\ \hline \end{array}$	Ensure the area is inspected by the Blaster before allowing anyone to enter. Blasters must disconnect all circuits and short circuit leads, and ensured the blasting machine switch is locked open. In the event of misfire, follow standard practice including waiting at least 10 minutes before anyone enters the blast area. Contractor to provide written procedures for the standard handling of misfires and ensure all workers understand the process.
	24.28	Ensure procedures are well defined and regulations reviewed if blasting is to involve underwater blasting, or seismic blasting			$\begin{aligned} & \hline 21.82- \\ & 21.85 \end{aligned}$	

	25.1	Workers possibly exposed to potentially hazardous levels of asbestos? E.g. - workplace has asbestos-containing materials present or used operation involves abatement of asbestoscontaining materials exposure to asbestos fibre in excess of 50% of exposure limits may occur	$\sqrt{ }$	0	$\text { PART } 6$ 6.2	Should the Contractor encounter any questionable situation involving asbestos, lead paints or other potentially hazardous substance, immediately stop work and report to Project Manager for direction.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.

Project No.

	25.0	Workers possibly exposed to potentially hazardous levels of asbestos? E.g. - workplace has asbestos-containing materials present or used - operation involves abatement of asbestoscontaining materials - exposure to asbestos fibre in excess of 50% of exposure limits may occur	NA	O	$\begin{array}{\|l\|} \hline \text { PART } 6 \\ 6.2 \end{array}$	No exposure to asbestos is foreseen under this JOB ORDER. Should the Contractor encounter any questionable situation, immediately stop work and report to PWGSC Representative for direction.
	25.2	Workplace exposure monitoring done and results provided to workers		0	5.53	
	25.3	Contractor exposure control plan developed meeting WORKSAFEBC 5.54 ?			6.3	Plan to include: - Purpose \& Responsibilities - Risk identification; assessment \& control - Education \& training - Written work procedures - Hygiene facilities \& decontamination procedures, when required - Health monitoring, when required - Documentation, when required
	25.4	Qualified person prepare and keep current an inventory of all asbestos-containing materials; identify all such materials by signs, labels etc.	\checkmark	0	$\begin{array}{\|l\|} \hline 6.4 \\ 6.5 \\ \hline \end{array}$	
	25.5	Qualified Risk assessment conducted by qualified person before any demolition, repair, etc work where asbestos-containing materials may be disturbed.	\checkmark	0	6.6	
	25.6	Procedures documented providing task-specific work direction addressing both hazards \& controls and eliminating or minimizing the airborne release of asbestos fibres	\checkmark	0	$\begin{array}{\|l\|} \hline 6.7 \\ 6.8 \\ \hline \end{array}$	WORKSAFEBC publication "Safe Work Procedures for Handling Asbestos" provides procedures acceptable to the Board.
	25.7	No use of pressure spraying to remove asbestoscontaining materials from buildings/structures	\checkmark	0	6.9	
0000004	25.8	No use of compressed air to clean up or remove asbestos-containing materials, dusts, fibres. Also no dry sweeping or dry mopping.	\checkmark	0	6.9	
	25.9	Employer must substitute material less hazardous than asbestos where practicable	$\sqrt{ }$	0	6.10	If not practicable, document why and make available to workers and health \& safety representative

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux

Project Title: Master.
Project No.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.

Project No.

Project No.

Project Title: Master.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.
Project No.

	27.7	Workers must be aware of the risks of electrical shock especially in wet or cramped conditions. Even a small shock can lead to a fall or other accident. Brain damage or death can result from a large shock.	\checkmark			Ensure workers use dry gloves, rubber-soled shoes or an insulating layer. Ensure work piece and frame of electrically powered machines are grounded. Keep electrode holders and cables dry and in good condition. Electrodes should not be changed with bare hands, with wet gloves or if standing on grounded surfaces or wet floors.
	27.8	Workers must be aware of dangers of welding on containers, pipes or structures or in any place that has held flammable or combustible materials unless thoroughly cleaned.	\checkmark			Fires, explosions or release of toxic vapours can result. Containers with unknown contents should be assumed flammable or combustible. Ensure a qualified person has tested
	27.9	Beware of backfires and flashbacks when using compressed gases.			12.120	Do not ignore these warnings. Undertake immediate corrective action. Ensure safety devices are used to prevent reverse flow and arrest flashbacks on oxyfuel systems
	27.10	Ensure fire prevention and fighting capabilities before welding/cutting.			12.121	Suitable fire extinguishing equipment must be available close to the work. Use a firewatcher if work is being done where other than a minor fore might develop. Maintain the fire watch at least $1 / 2$ hour after welding or cutting work is completed to detect smouldering fires. Keep areas clear of combustibles and cover those that cannot be removed with flame-resistant materials, Cover doorways, windows and cracks. Provide and use receptacles for electrode stubs.
	27.11	Welders must wear required personal protective equipment including flame resistant clothing, gauntlet gloves, etc.	\checkmark		12.123	Ensure welders wear all required special PPE
	27.12	Check Gas Cylinder Condition \& Securing/Upright storage, \& protection from sparks, flames, heat, physical damage or corrosion. Ensure pressure relief valves are present.	\checkmark	S	5.36	Cylinders of compressed gas can explode or become projectiles if exposed to excessive heat, or if the valve stem were to break should the tank be knocked over from a vertical position. Inspection item
	27.13	Ensure empty gas cylinders have regulator removed, capped \& are tagged as empty.	\checkmark	S		Identify empty tanks. Inspection item
	27.14	Ensure Cylinders are identified re type of gas and valid testing.	\checkmark	S	5.37-5.39	Cylinders must be pressure tested to ensure ability to perform safely and the test date recorded. The cylinder must be identified regarding the type of gas in the cylinder to prevent confusion and potential accidents. Inspection item Do not use cylinders or contents for other than intended purpose.

Public Works and Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project Title: Master.

Project No.

Public Works and
Government Services Canada

Travaux publics et
Services gouvernementaux
Canada

Project No.

Contractor's Superintendent: \qquad Date: \qquad
Distribution:
EGD Operations Manager
EGD Supervisors
Engineer-of Record
Resident Engineer/Construction Coordinator
Project File

Appendix D FSE Directives

Printed copies may not be current. Verify by comparing 'Date of Issue' with on-line version.

Directive SE5

SPILL RESPONSE

REFERENCES

A. CFB Esquimalt Emergency Response Plan
B. Canadian Environmental Protection Act (CEPA), 1999, Environmental Emergency (E2) Regulations (SOR/2003-307)
C. A-GG-040-004/AG-001, General Safety Program - Hazardous Materials Safety and Management Manual
D. MARCORD 66-5 - Hazardous Material Management
E. ED 4003-9, Hazardous Materials Management Plan
F. Transportation of Dangerous Goods (TDG) Act, Clear Language Regulations - Part 8
G. Environmental Management Act (S.B.C. 2003, c. 53), Spill Reporting Regulation (B.C. Reg. 263/90)
H. Environmental Directive (ED) 4003-1/2003, Spill Reporting
I. DAOD 4003-1 - Hazardous Materials Management
J. MARCORD 4-12 - Environmental Program
K. FSEMS Directive SE1, Safety and Environmental Emergency Incident Reporting
L. FSEMS Directive E8, Storage Tanks

PURPOSE

1. This Directive details MARPAC spill response requirements discussed in references A through L. Units that have quantities of HazMat in excess of specified amounts in Directive SE1 (Annex DSE1B, Table 1) and/or 50 litres of POL shall have spill response plans. Base emergency response procedures are detailed in the CFB Esquimalt Emergency Response Plan (reference A).

SCOPE

2. This Directive applies to all MARPAC integral and lodger units identified in Part 2, Annex 1A.

DEFINITIONS

3. Hazardous Material (HAZMAT). As defined by reference I, HAZMAT is any material that if handled improperly can endanger human health and well-being or the environment or equipment. Some examples of HAZMAT are poisons, corrosive agents, flammable substances, ammunition and explosives.
4. Spill. As defined by reference M, the intentional or unintentional abandonment, deposit, discharge, dump, emission, empty, exhaust, throw, inject, leak, pour, place, release, seep, or spray of material into the environment. A minor spill is defined as a spill that the Unit can contain and clean-up in its entirety without assistance. A major spill is defined as a spill that the Unit cannot contain and/or clean-up without assistance.
5. Environmental Emergency Plan. As defined by reference B, means a plan respecting the prevention of, preparedness for, response to and recovery from an environmental emergency in respect of a substance.

RESPONSIBILITIES

6. A Unit Commanding Officer (CO) or Base Branch Head (BH) of a unit that has quantities of HazMat in excess of specified amounts in Directive SE1 (Annex DSE1B, Table 1) and/or 50 litres of POL
shall ensure that their organization has an established and exercised spill response plan; the plan and exercise records shall be reviewed during scheduled FSE program verifications. A CO shall ensure that FSE is informed of all spills.
7. The Formation Safety and Environment Officer (FSEO) reports to the Base Commander (BComd) and provides safety and environmental advice and support to the Formation.
8. The Joint Operations Centre (JOC) is responsible for having a spill call-out procedure to ensure that appropriate organizations are contacted in the event of a spill incident. Contact information for FSE is available on the FSE website and in Annex DSE1A (RDIMS 195921).
9. The Queen's Harbour Master (QHM) is the CO of the Port Operations and Emergency Services Branch (POESB) and is the port authority for both Esquimalt and Nanoose Harbours. POESB controls the Base Emergency Response Plan (reference A) and provides spill response for all 911 calls to the POESB Fire Hall that is beyond the capability of first level response; further, the QHM is responsible for second and third level marine spill response for DND spills in Esquimalt and Nanoose Harbours and their approaches. Queen's Harbour Master also has the capability to deploy outside Esquimalt Harbour to assist with DND generated spills and may in some circumstances be the preferred responder depending on the location of the spill and the availability of Coast Guard and commercial assets in the vicinity.
10. The Base Construction Engineering Officer (BCEO) is responsible for providing second level HazMat emergency response for land-borne spills through the BCE HazMat Emergency Response Team (BCE HERT). The BCE HERT may also provide assistance to HMC Ships in Esquimalt Harbour.
11. Formation Environment Management Committee (FEMC). The FEMC provides a forum to discuss spill response, reporting, incidents and investigations.
12. A Unit General Safety Officer (UGSO), Environment Officer (UEnvO) or Unit Safety and Environment Officer (USEO) acts on the behalf of the CO/BH and is responsible for the Unit's spill response plan.
13. Contractors. Department of National Defence personnel (military and civilian) who are responsible for contractors working on MARPAC properties shall ensure that the requirements of this Directive, which may apply to the contract, are written into the contract and followed throughout its duration.
14. All Canadian Forces and DND civilian personnel are responsible to respond to spill incidents in order to ensure the safety of others and the protection of the environment.
15. Environmental Emergencies (E2) Regulations. In the event MARPAC integral or lodger units require storage of substances listed in Reference B, Schedule 1, column 1, and quantities are equal to or exceed those set out in column 3 (or if the substance is stored in a container that has a maximum capacity equal to or greater than the quantity set out in column 3), Units shall comply with E2 regulations using the following process (Refer to RDIMS 204999 for the E2 regulations process map):
a. submit a written notice to FSE within 30 days that contains the information set out in Schedule 2 of reference B and a completed certification form (Schedule 3 of reference B);
b. resubmit the above notice and certification to FSE within 20 days after the occurrence of any of the following changes:
any changes to the information reported IAW para 15a; or

Printed copies may not be current. Verify by comparing 'Date of Issue' with on-line version.
any increase of 10% or more in the maximum expected quantity of a substance reported IAW para 15a;
c. notify FSE and submit the certification form set out in Schedule 3 of reference B within 30 days if for 12 consecutive months the quantity of the substance in storage has been less than the quantity set out in column 3 of Schedule 1 of reference B;
d. if circumstances under subsection 4(1) of reference B apply, submit to FSE within 3 months an environmental emergency plan and fill in the certification form set out in Schedule 3. The plan shall meet subsections 4(2) and (3) of reference B and shall contain the information requested in Schedule 4;
e. implement and test the environmental emergency plan and submit a notice to FSE with the information requested in Schedule 5 of reference B within one year from the time the plan was written;
f. update and test the environmental emergency plan at least once a year to ensure that the plan continues to meet the requirements of subsections 4(2) and (3) of reference B;
g. keep copies of the plan readily available for the individuals responsible to implement it in the event of an emergency; and
h. keep with the plan, a record of the results from the annual updates and tests for a period of not less than five years.

DIRECTION

16. Spill Response Plan. All MARPAC Integral and Lodger Units that store quantities of HazMat in excess of specified amounts in Directive SE1 (Annex DSE1B, Table 1) and/or 50 litres of POL shall have established and exercised spill response plans. The General Safety Program, Hazardous Materials Safety and Management Manual (reference C) provides guidance for the creation of a spill response plan and should be consulted. MARPAC Units that are required to have a spill response plan shall exercise them once a year (reference D). Considerations for a response plan may include (Refer to RDIMS 205000 for the spill response plan process map):
a. determining high-risk locations where spills are probable;
b. identifying all tanks (defined in Directive E8) that the Unit has operational control of. Once determined these tanks shall be included in the Unit's Spill Response Plan. Note that Directive E8, Annex DE8A details mandatory information that shall be included in a Storage Tank Emergency Response Plan to respond to emergency situations, which includes but is not limited to spills;
c. posting the spill response plan or providing direction to it in high traffic areas (e.g., Safety and Environment Information Board);
d. reviewing records of previous spill reports;
e. identifying the most appropriate options and methods to improve performance and reduce risk (e.g., reducing the volume and range of HazMat, having secondary containment, etc.);

Printed copies may not be current. Verify by comparing 'Date of Issue' with on-line version.
f. exercising the spill response plan at least annually and revising as necessary based on lessons learned; and
g. monitoring the number and volume of spills and comparing information at the annual SEMS Management Review highlighting both achievements and shortcomings, and identifying priorities for the next year by setting measurable and achievable targets.
17. Spill Response Kits. Store kits in close proximity to locations where HazMat is stored. Every spill response kit shall have an inventory of required contents located at the top of the kit. PPE shall be located at the top of the spill kit to ensure easy access for the spill responder. Spill kits should be closed with a safety seal affixed to indicate if the kit has been used or tampered with. It is recommended that MARPAC units obtain spill kits through the POESB environmental protection office.

RESPONDING TO SPILLS AND REQUESTING ASSISTANCE

18. Initial Response. The unit responsible for a spill shall respond immediately without jeopardizing the health or safety of personnel in accordance with the procedures detailed in its spill response plan. Following the immediate first level response action, spill containment and clean up shall escalate as quickly as possible to the level of response required.
19. Levels of Response. MARPAC has defined three levels of spill response. A call out procedure flow chart for spills is available at Directive SE1, Annex DSE1A. First level response is the unit that caused the spill (responsible unit), second level response involves assistance from either POESB (Fire Services or EPO) or BCE HERT, and third level involves assistance from an organization external to DND. The unit that is responsible for the spill is also responsible for the disposal of the spilled product and the clean-up materials. The levels of response and the unit/agency associated with that level are defined below:
a. First level response is the responsibility of the unit that causes or discovers the spill. First level responder duties shall include securing the area, assessing the situation and responding to the spill to the best of their ability and, if required, request second level responders. In the event the first level responders are unable to contain and clean up the spill they shall turn the scene over to the second level responders who shall assume I/C responsibilities. The first level responder retains responsibility for reporting the spill and the storage and disposal of all HazWaste generated by the incident;
b. Second level response:
(1) contact POESB QHM/EPO for marine spills in Esquimalt and Nanoose Harbours and their approaches;
(2) contact the JOC for marine spills outside of Esquimalt and Nanoose Harbours and their approaches. The JOC shall contact Coast Guard and potentially POESB QHM/EPO depending on the location of the spill and the availability of Coast Guard and commercial assets in the vicinity;
contact the JOC for spills on non-DND land. The JOC shall contact the appropriate response organization;
(4) land-borne spills are divided into the following phases:
(a) Fire Services responds to 911 calls and shall secure and render the site safe. In specific instances Fire Services may commence site clean up if

Printed copies may not be current. Verify by comparing 'Date of Issue' with on-line version.
the I/C deems that such action is both within the capability and time constraints of Fire Services. The unit that caused the spill is responsible for the storage and disposal of all waste generated by the incident;
(b) in the event BCE HERT support is required, they shall commence the site clean up including the proper disposal of the contaminated material. The responsibility for paying for the disposal of material contaminated by the spill remains the responsibility of the unit that caused the spill;
(c) the I/C has the authority to use all available resources at the Base level through the responsible BH ;
c. third level response consists of the appropriate second level response agency with assistance from an OGD, an outside mutual aid agency and/or a contracted resource. The BComd must provide authorization to request external resources to aid in third level response.
20. Abandoning Spills. Consider the following before abandoning a spill (Refer to RDIMS 205138 for the abandoning spills process map):
a. under no circumstance shall a land-borne spill be abandoned;
b. unless overridden by immediate operational concerns (determined by the CO/BH), selfgenerated marine spills of non-miscible (e.g., POL) substances shall not be abandoned unless all of the following criteria have been met:
(1) the slick poses no threat to any shoreline or Marine Protected Area (MPA);
(2) it is not possible to clean up the spill with the equipment available; and
response assistance would arrive after the spill had broken up or dispersed.

TRAINING

21. Ensuring Competence. To ensure spill response team members competence, annual refresher drills, maintaining physical fitness and the ability to wear PPE are recommended (Annex A of reference E).

PROGRAM CHECKLIST

22. The program checklist is a tool used to perform self verifications to ensure compliance with environmental regulations. The checklists are posted on the FSE website or can found in RDIMS 213214.

RECORDS

23. The Unit shall keep the following records:
a. E2 spill response plans and exercises of these plans;
b. Unit level spill response plan exercises;
c. Spill responder training records; and
d. Spill reports (under Directive SE1).

Printed copies may not be current. Verify by comparing ‘Date of Issue’ with on-line version.

[^0]: ${ }^{1}$ Sample EHWW-31 was not photographed due to camera malfunction.

[^1]: ${ }^{2}$ Drillers provided data in imperial units. Lengths were converted to metres in data tables.

[^2]: Data Memorandum
 Wood Waste Remediation Project

[^3]: Data Memorandum
 Wood Waste Remediation Projec

[^4]: Data Memorandum
 Wood Waste Remediation Projec

[^5]: Data Memorandum
 Wood Waste Remediation Projec

[^6]: Data Memorandum
 Wood Waste Remediation Projec

[^7]: Data Memorandum
 Wood Waste Remediation Projec

[^8]: Data Memorandum
 Wood Waste Remediation Projec

[^9]: Data Memorandum
 Wood Waste Remediation Projec

[^10]: Data Memorandum
 Wood Waste Remediation Projec

[^11]: Data Memorandum
 Wood Waste Remediation Projec

[^12]: Data Memorandum
 Wood Waste Remediation Projec

[^13]: Data Memorandum
 Wood Waste Remediation Projec

[^14]: Data Memorandum
 Wood Waste Remediation Projec

[^15]: Data Memorandum
 Wood Waste Remediation Projec

[^16]: Data Memorandum
 Wood Waste Remediation Projec

[^17]: Data Memorandum
 Wood Waste Remediation Project

[^18]: Data Memorandum
 Wood Waste Remediation Projec

[^19]: Data Memorandum
 Wood Waste Remediation Projec

[^20]: Data Memorandum
 Wood Waste Remediation Project

[^21]: Data Memorandum
 Wood Waste Remediation Project

[^22]: Data Memorandum
 Wood Waste Remediation Project

[^23]: Data Memorandum
 Wood Waste Remediation Project

[^24]: Data Memorandum
 Wood Waste Remediation Project

[^25]: Data Memorandum
 Wood Waste Remediation Project

[^26]: Data Memorandum
 Wood Waste Remediation Project

[^27]: Data Memorandum
 Wood Waste Remediation Project

[^28]: Data Memorandum
 Wood Waste Remediation Project

[^29]: Data Memorandum
 Wood Waste Remediation Project

[^30]: Analyses:

[^31]: 1 See project SAP/QAPP for analyte lists and test methods
 2 Email sample confirmation report to labdata@anchorqea.com

[^32]: Additional notes/comments:

[^33]: Additional notes/comments:
 Please homogenize sample and subsample necessary volume to send out for PCB and D/F analysis

[^34]: Comments: RDL - Reported Detection Limit; G/S - Guideline / Standard
 9802505 Analysis based on "as received"
 Analysis performed at AGAT Vancouver (unless marked by *)

[^35]: Comments: RDL - Reported Detection Limit; G/S - Guideline / Standard
 9802785 Analysis based on "as received"
 Analysis performed at AGAT Vancouver (unless marked by *)

[^36]: SD = Standard Deviation
 There were no statistically significant effects relative to the control seawater.
 ${ }^{1}$ Indicates samples that were statistically significantly different relative to reference site REF17.
 ${ }^{2}$ Indicates samples that were statistically significantly different relative to reference site REF18.

[^37]: Additional notes/comments:

[^38]: Additional notes/comments:

[^39]: 1 Current at the time of reporting (2002).

[^40]: 2 As identified in Table 2.4, Section 2.3.3.4, a lease for log booming was current in 2005. However, no log booming was observed on aerial footage review after 1997.

[^41]: 3 It should be noted that these are the minimum requirements for projects with no contaminant history, and Environment Canada was not contacted to determine needs for additional site-specific analytical requirements.

[^42]: 4 Bathymetry at the Esquimalt Graving Docks may differ significantly from wood waste remediation areas, and benthic invertebrate community structure varies with seafloor depth.

[^43]: * Please refer to the Reference Information section for an explanation of any qualifiers detected.

[^44]: 1 Current at the time of reporting (2002).

[^45]: 2 As identified in Table 2.4, Section 2.3.3.4, a lease for log booming was current in 2005. However, no log booming was observed on aerial footage review after 1997.

[^46]: 3 It should be noted that these are the minimum requirements for projects with no contaminant history, and Environment Canada was not contacted to determine needs for additional site-specific analytical requirements.

[^47]: 4 Bathymetry at the Esquimalt Graving Docks may differ significantly from wood waste remediation areas, and benthic invertebrate community structure varies with seafloor depth.

[^48]: ${ }^{1}$ A QP is defined as a person who is registered and/or licensed in the relevant jurisdiction with his or her appropriate professional association and/or licensing authority, acts under that professional association's and/or licensing authority's code of ethics, and is subject to disciplinary action by that professional association and/or licensing authority, and through suitable education, experience, accreditation, and knowledge can be reasonably relied on to provide advice within his or her area of expertise. This definition was adapted from the Municipal Wastewater Regulation (pursuant to the BC Environmental Management Act).

[^49]: ${ }^{2}$ For reference, a turbidity reading of 5 NTU is the upper limit for drinking water turbidity. Prior to Metro Vancouver implementing filtration, this was the approximate cloudiness of Vancouver tap water on a "bad day."

[^50]: ${ }^{3}$ Ice packs or ice in sealed bags. Loose ice is not recommended due to the potential for sampling containers to shift and break when the ice melts (BC MOE 2013).

