ANNEX A Site Photographs

Photo 1: A view of the home at 2425 Glenview Avenue, Kamloops, BC, looking south/southwest. The impact area has been levelled since the date of the photograph.

Photo 2: A view of the main impact area prior to being filled in/levelled. Note the crack in the foundation on the right edge of the building. The basement window of the home is boarded up at the top left of the photograph.

Photo 3: A view of the drilling investigation, positioned over location MW20-01

Photo 4: The soil stratigraphy within MW20-01 for the interval of 4.6 m bgs to 6.1 m bgs; see the borehole log for this monitoring well location in the Annexes to the specifications.

Photo 5: A view of the west side of the home at 2425 Glenview Avenue, looking south; the severed hydro-electric and telecommunications connections are visible at the top right corner of the home; the Fortis BC gas meter is present on the west side of the home, midway along the wall. The fence shown in the photograph, and associated anchor ropes, will be removed prior to remediation.

Photo 6: A view of the front yard of the property at 2425 Glenview Avenue, looking north. The flagstone walkway is visible at the bottom right of the photograph and gravel driveway on the right of the photograph.

Photo 7: A view of the front yard of the property at 2425 Glenview Avenue, looking south. The fence shown in the photograph will be removed prior to remediation. The storage container in the driveway to the home is located outside the Work Area as defined in the drawings.

Photo 8: A view of MW20-03, in front of the entrance to the home, this monitoring well is to be protected. The flagstone walkway is visible in the left side of the photograph.

Photo 9: A view of the basement wall/foundation, looking north. The boarded-up basement window visible in Photo 2 is visible. Cracking of the foundation is evident.

ANNEX B Stage II Preliminary Site Investigation

REPORT

Kamloops Snowbirds Incident Clean Up,

Property A Stage 2 Preliminary Site Investigation Results

Submitted to:

Public Services and Procurement Canada

Attention: Dave Osguthorpe 1230 Government Street, Suite 401 Victoria, BC V8W 3X4

Submitted by:

Golder Associates Ltd.

Suite 200 - 2920 Virtual Way, Vancouver, British Columbia, V5M 0C4, Canada

+1 604 296 4200

20145856-011-R-Rev0

23 July 2020

Distribution List

- 1 Copy (e-pdf) Public Services and Procurement Canada
- 1 Copy (e-pdf) Golder Associates Ltd.

Executive Summary

Introduction

Golder Associates Ltd. (Golder) was retained by Public Services and Procurement Canada (PSPC) on behalf of the Department of National Defence (DND) to conduct a Stage 2 Preliminary Site Investigation (Stage 2 PSI) for the Snowbirds Environmental Cleanup project located at 2425 Glenview Avenue, Kamloops, BC (the Site).

The purpose of the Stage 2 PSI is to evaluate whether or not the potential contaminants of concern (PCOCs) associated with the aircraft crash and firefighting response at the Site are present at concentrations exceeding the relevant numerical regulatory standards, and to provide vertical and lateral delineation of contaminants of concern (COCs).

This report was prepared in accordance with terms and conditions of Public Works and Government Services Canada (PWGSC) Contaminated Sites Characterization Contract (reference EZ897-191444/002/VAN) dated 25 October 2019, Golder's workplan dated 20 May 2020 and the subsequent amendments, "*Request for Amendment (#2) to Task Authorization 700514134 to Undertake Additional Soil Sampling to Support the Department of National Defence Snowbird Kamloops Environmental Clean-up Project*" dated 8 June 2020, and "*Request for Amendment (#3) to Task Authorization 700514134 to Undertake Supplemental Tasks to Support Remediation Planning Related to the Department of National Defence Kamloops Snowbird Environmental Clean-Up Project*" dated 24 June 2020.

One area of potential environmental concern (APEC) was identified at the Site based on the preliminary site reconnaissance; the APEC consisted of the main crash site and front yard of the home where chemicals on board the aircraft impacted and spilled to the ground surface, and areas of the Site where aqueous film-forming foam (AFFF) was deployed as part of the fire fighting response.

Scope of Work

The scope of work for the Stage 2 PSI was as follows:

- Develop a Site-specific Health and Safety Environment Plan (HaSEP) for undertaking investigation activities at the Site.
- Conduct preliminary surficial soil sampling at the Site on an expedited basis
- Conduct a sub-surface investigation program, including clearance of proposed drilling areas by a utility locator, in the outdoor areas of the Site that included drilling eight boreholes with four locations completed as monitoring wells and two of these locations also completed with soil vapour probes.
- Conduct a sub-slab investigation within the basement of the home that included coring through the concrete foundation in two locations to advance a borehole in one location and install a temporary sub-slab vapour port in the second location.
- Collect soil samples from the borehole locations for analysis of the PCOCs.
- Develop the four groundwater monitoring wells to improve connection to the aquifer and to remove sediment introduced during drilling.

- Measure field parameters in the groundwater recovered from the monitoring wells including pH, temperature, electrical conductivity, and reduction-oxidation potential (redox), and collect groundwater samples for analysis of PCOCs.
- Purge soil vapour monitoring wells and the sub-slab soil vapour sampling port. Collect soil vapour samples for analysis of PCOCs. Review the analytical data provided by the laboratory, and compare the results to the applicable provincial standards.
- Summarize the findings of the investigation in this report, including borehole logs, analytical data tables, figures, and conclusions. This Stage 2 PSI has been prepared in accordance with the British Columbia Ministry of Environment & Climate Change Strategy (BC ENV) Technical Guidance 11 Guidance for a Stage 2 PSI and Detailed Site Investigation.

Summary and Recommendations

Soil

Golder conducted an initial surficial sampling program on 25 and 26 May 2020 that included collecting surficial samples from 12 locations from the Site to assess the presence of contamination relating to the main crash site and front yard of the home where chemicals on board the aircraft impacted and spilled to the ground surface, and areas of the Site where AFFF was deployed as part of the fire fighting response. Hydrocarbon, VOC, and metals contamination was identified in the surficial sample collected at the impact site of the main body of the aircraft (SS20-18). Hydrocarbon contamination was also identified at the location approximately 5.5 m to the east of the impact site of the main body of the aircraft (SS20-17).

Following the initial surficial sampling program, a subsurface investigation was conducted to provide further characterization of the quality of soil, groundwater, and soil vapour and to provide soil delineation for SS20-17 and SS20-18. Between 10 and 12 June 2020, eight boreholes were advanced with two locations completed as monitoring wells and two locations completed as nested groundwater and soil vapour monitoring wells. Hydrocarbon and VOC contamination was identified in the soils at the impact site of the main body of the aircraft from ground surface in SS20-18 to a depth of 4.0 m bgs in MW20-02. Samples analyzed in MW20-02 at a depth of 4.6-4.75 m bgs met the CSR standards for COCs. Hydrocarbon contamination was also identified in the borehole located approximately 3 m north of the impact site of the main body of the aircraft (BH20-05) from surface to 2.55 m bgs and VOC contamination was identified from surface to 1.05 m bgs.

To assess the possibility for soil contamination following preferential pathways beneath the foundation of the house, an additional subsurface investigation was conducted on 26 June 2020. Soil contamination was not identified in the borehole advanced through the concrete foundation of the house.

Soil contamination identified in locations SS20-17, SS20-18, MW20-02 and BH20-05 has been delineated laterally to the north, south east and west and vertically to a depth of 4.3 m bgs at MW20-02/SS20-18 (inferred to be halfway between the deepest sample that exceeded the standards and the next sample below standards). The following parameters were retained as COCs in soil and should be remediated: LEPHs, HEPHs, 2-methylnaphthalene, naphthalene, VPHs, n-nonane, BTEX, cadmium, and chromium. Quinoline and 1,2-dibromoethane were retained as soil PCOCs based on elevated laboratory detection limits in select soil samples. The elevated detection limits observed for quinoline and 1,2-dibromoethane were in locations where there are COCs present; both parameters were laterally and vertically delineated, and the areas with elevated laboratory detection limits will be incidentally remediated for other COCs.

Groundwater

The groundwater monitoring wells were sampled on 19 June 2020. The concentration of the PCOCs in the groundwater samples met the applicable BC CSR standards.

No PCOCs were retained as COCs for groundwater at the Site. Groundwater quality at the Site should be assessed for seasonal variations; it is expected that this requirement would be addressed following remediation of soil at the Site.

Soil Vapour

The soil vapour probes installed in the outdoor areas of the Site were sampled on 18 June 2020. To assess soil vapour quality underneath the foundation of the house, a sub-slab soil vapour probe was installed and sampled on 26 June 2020.

The analytical results for the three soil vapour locations sampled indicated that the outdoor air exposure met the BC CSR RL standards. Indoor air exposure did not meet the BC CSR RL standards.

The PCOCs VPH, benzene, total xylenes, 1,3-butadiene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and methyl-cyclohexane were retained as COCs and should be assessed again following soil remediation and for seasonal variations. Naphthalene was retained as a soil vapour PCOC based on elevated laboratory detection limits in SV20-09.

It is expected that removal of contamination in soil will incidentally address soil vapour contamination identified above.

Recommendations

Based on the results of the Stage 2 PSI, soil containing concentrations of LEPHs, HEPHs, VPHs, 2methylnaphthalene, naphthalene, BTEX, cadmium, chromium, and n-nonane exceeding the CSR RL_{LD} standards is present in the area of SS20-18/MW20-02, SS20-17, and BH20-05. Soil exceeding the BC HWR Leachate Quality Standard for leachable ethylbenzene was also identified in one borehole location.

The following recommendation is provided to address the soil contamination identified at the Site:

- Conduct a remedial excavation to remove the contaminated soil in the area of the impact site of the main body of the aircraft and backfill the area with clean soil to return the Site back to the landowners.
- If monitoring wells must be decommissioned during remediation, install post-remediation groundwater monitoring wells to assess post-remediation groundwater quality, and undertake seasonal groundwater monitoring in the dry season (i.e. August/September) and wet season (i.e. December/January) to assess for seasonal variability.
- If soil vapour probes must be decommissioned during remediation, install post-remediation soil vapour monitoring probes to assess post-remediation soil vapour quality, and undertake seasonal soil vapour monitoring in the dry and wet seasons to assess for seasonal variability.

A remedial action plan is currently being developed by Golder and a draft plan has been issued to PSPC/DND for review (Golder reference number 20145856-005-R-RevA).

A summary of the COCs and recommendations is provided below.

Media	PCOC	сос	Recommendations	
Soil PCOC	LEPHs, HEPHs, PAH, VPHs	2-methylnapthalene, naphthalene, LEPH, HEPH, VPH	Remediation	
	Benzene, ethylbenzene, toluene, xylene	Benzene, ethylbenzene, toluene, xylene	Remediation	
	aluminium, antimony, barium, cadmium, chromium, cobalt, lead, titanium, and zinc	cadmium, chromium	Remediation	
	PFBS, PFOS	-		
	ethylene glycol	-		
	isopropylbenzene, 1-propylbenzene, 1,3,5-trimethylbenzene, butylbenzenes, 1,2-dichloroethane	-		
	MTBE, styrene, N-nonane	n-nonane	Remediation	
	1,2 dibromoethane	-		
Groundwater	LEPHw, EPHw10-19, PAHs, VPHw, VHw6-10	-	Assess post remediation and for seasonal variations	
	benzene, toluene, ethylbenzene, xylene	-		
	aluminium, antimony, barium, cadmium, chromium, cobalt, lead, titanium, and zinc	-		
	PFBS, PFOS, PFOA	-		
	1,2-dibromoethane, n-nonane	-		
Soil Vapour	benzene, toluene, ethylbenzene, xylene	Benzene and total xylenes	Assess post remediation and for	
	styrene, MTBE, naphthalene, VPH, 1,2- dibromoethane, 1,2-dichloroethane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and isopropylbenzene,1,3-butadiene, methyl- cyclohexane, n-decane and n-hexane	VPH, 1,3-butadiene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and methyl-cyclohexane	Seasonal variations	

*quinoline and 1,2-dibromoethane are retained as soil PCOC based on elevated laboratory detection limits in select soil samples.

**naphthalene is retained as a soil vapour PCOC based on elevated laboratory detection limits at SV20-09.

Notice to Readers

This report was prepared in accordance with terms and conditions of the Public Works and Government Services Canada (PWGSC) Contaminated Sites Characterization Contract (reference EZ897-191444/002/VAN) dated 25 October 2019 and Golder's workplan dated 20 May 2020, amendment titled "Request for Amendment (#2) to Task Authorization 700514134 to Undertake Additional Soil Sampling to Support the Department of National Defence Snowbird Kamloops Environmental Clean-up Project" dated 8 June 2020 and amendment titled, "Request for Amendment (#3) to Task Authorization 700514134 to Undertake Supplemental Tasks to Support the Department of National Defence Snowbird Kamloops Environmental Clean-up Project" dated 2 June 2020.

The inferences concerning Site conditions contained in this report are based on information obtained during the assessment conducted by Golder personnel, and are based solely on the condition of the properties at the time of the Site reconnaissance, supplemented by historical and interview information obtained by Golder, as described in this report.

This report was prepared, based in part, on information obtained from historic information sources. In evaluating the subject Site, Golder has relied in good faith on information provided. We accept no responsibility for any deficiency or inaccuracy contained in this report as a result of our reliance on the aforementioned information.

The findings and conclusions documented in this report have been prepared for the specific application to this project, and have been developed in a manner consistent with that level of care normally exercised by environmental and geotechnical professionals currently practicing under similar conditions in the jurisdiction.

With respect to regulatory compliance issues, regulatory statutes are subject to interpretation. These interpretations may change over time, these should be reviewed.

Table of Contents

1.0	INTRO	DDUCTION	1
	1.1	Scope of Work	1
	1.2	Professional Statement	2
	1.3	Background Information	2
	1.3.1	Background on the Crash	2
	1.3.2	Initial Emergency and Spill Response Efforts	3
	1.3.3	Preliminary Site Reconnaissance	3
	1.3.4	Area of Potential Environmental Concern	4
	1.3.5	Potential Contaminants of Concern	4
	1.3.6	Site Description	5
	1.3.7	Topography	6
	1.3.8	Surficial Geology	6
	1.3.9	Hydrogeological Setting	6
	1.3.10	Groundwater and Surface Water Use	7
	1.3.11	Climatic Conditions	7
	1.3.12	Utilities	7
	1.3.13	Contaminant Fate and Transport	8
	1.3.14	Pathways for Exposure and Potential Receptors	8
2.0	REGU	ILATORY FRAMEWORK	9
	2.1	Land Use Definition	9
	2.2	CSR Standards	9
	2.2.1	Soil Standards	9
	2.2.2	Water Quality Standards1	0
	2.2.3	Soil Vapour1	0
	2.3	BC Hazardous Waste Regulation1	1
3.0	FIELD) METHODS1	2
	3.1	Health and Safety and Utility Locates1	2

	3.2	PFAS Sampling Procedures13		
	3.3	Soil Sampling	.14	
	3.3.1	Surficial Soil Sampling	.14	
	3.3.2	Subsurface Investigations	.15	
	3.3.2.1	Outdoor Daylighting and Drilling	.15	
	3.3.2.2	Indoor Sub-Slab Drilling	.16	
	3.3.2.3	Monitoring Well Installation	.16	
	3.3.3	Soil Sampling	.17	
	3.4	Groundwater Sampling	.18	
	3.4.1	Groundwater Development	.18	
	3.4.2	Groundwater Purging and Sampling	.18	
	3.5	Soil Vapour Sampling	.19	
	3.5.1	Soil Vapour Probe Installation and Leak Tracer Testing	.19	
	3.5.2	Soil Vapour Sample Collection	.20	
	3.6	Sample Handling and Laboratory Analyses	.20	
	3.7	Waste Management and Disposal	.20	
	3.8	Survey	.21	
	3.9	Quality Assurance and Quality Control (QA/QC)	.21	
4.0	RESU	LTS	.23	
	4.1	Soil	.23	
	4.1.1	Soil – Field Observations	.23	
	4.1.2	Soil – Analytical Results	.24	
	4.1.2.1	Hydrocarbons	.24	
	4.1.2.2	Volatile Organic Compounds	.25	
	4.1.2.3	Glycols	.26	
	4.1.2.4	Metals	.26	
	4.1.2.5	PFAS	.26	
	4.1.2.6	Leachable BTEX	.26	
	4.1.3	Summary of Soil Analytical Results	.27	
	4.1.4	Soil – Discussion and Recommendation	.27	

	5.2	Field Duplicate Samples	31
	5.1	Equipment Blanks and Trip Blanks	31
	5.2	Field Duplicate Samples	31
	5.2.1	Soil	31
	5.2.2	Groundwater	31
	5.2.3	Soil Vapour	32
	5.3	Laboratory QA/QC Program	32
	5.3.1	Soil	32
	5.3.2	Groundwater	32
	5.3.3	Soil Vapour	33
	5.4	Summary of QA/QC Results	33
6.0	SUM	MARY AND RECOMMENDATIONS	34
	6.1	Soil	34
	6.2	Groundwater	34
	6.3	Soil Vapour	35
	6.4	Recommendations	35
7.0	CLOS	SURE	37
gΛ	DECE	PENCES	20
0.0	REFE	RENCEJ	38

TABLES

Table 1: Property Information	6
Table 2: SOIL PCOC and SAMPLE COUNT	23
Table 3: Summary of Soil Samples Exceeding CSR and BC HWR Standards	27
Table 4: Summary of Groundwater Elevation	28
Table 5: Stabilized Groundwater Field Parameters	28
Table 6: Stabilized Soil Vapour Field Parameters	29
Table 7: Summary of COCs and Recommendations	36

FIGURES

Figure 1: Key Plan Figure 2: Soil Analytical Results – Hydrocarbons Figure 3: Soil Analytical Results – BTEX/VOC Figure 4: Soil Analytical Results – Metals Figure 5: Soil Analytical Results – PFAS Figure 6: Cross Sections A-A' and B-B' Figure 7: Groundwater Analytical Results Figure 8: Soil Vapour Analytical Results

APPENDICES

APPENDIX A Site Photos

APPENDIX B DND Spill Report Form

APPENDIX C Potential Contaminants of Concern

APPENDIX D Borehole, Monitoring Well and Soil Vapour Logs

APPENDIX E Soil Disposal Manifests

APPENDIX F Laboratory Certificates of Analysis

APPENDIX G Geotechnical Investigation Technical Memorandum

List of Acronyms

α	vertical vapour attenuation factor
Allnorth	Allnorth Consultants Ltd.
ALS	ALS Environmental
AFFF	aqueous film-forming foam
AW	aquatic life
AW-F	aquatic life (freshwater)
BC ENV	British Columbia Ministry of Environment and Climate Change Strategy
BTEX	benzene, toluene, ethylbenzene, xylenes
Cair	estimated air concentration
Cvapour	measured soil or sub-slab vapour concentration
CSR	Contaminated Sites Regulation
COC	contaminant of concern
CSAP	Contaminated Sites Approved Professional
DF	difference factor
DND	Department of National Defence
DQO	data quality objectives
DW	drinking water
EMA	Environmental Management Act
EMBC	Emergency Management BC
EPH	extractable petroleum hydrocarbons
Golder	Golder Associates Ltd.
HaSEP	Health and Safety Environment Plan
HDPE	high-density polyethylene
HEPH	heavy extractable petroleum hydrocarbons
HWR	Hazardous Waste Regulation
KFR	Kamloops Fire Rescue
LEPH	light extractable petroleum hydrocarbons
Lynx Creek	Lynx Creek Industrial and Hydrovac Ltd.
m asl	metres above sea level
m bgs	metres below ground surface

m btoc	metres below top of casing
MTBE	methyl tert-butyl ether
OTM	On the Mark Locates Ltd.
PAH	polycyclic aromatic hydrocarbons
PCOC	potential contaminant of concern
PFAS	per- and polyfluoroalkyl substances
PFOA	perfluorooctanoic acid
PFBS	perfluorobutane sulfonate
PFHpA	perfluoroheptanoic acid
PFOS	perfluorooctane sulfonate
PFNA	perfluorononanoic acid
PHC	petroleum hydrocarbon
PID	photoionization detector
ppm	parts per million
PSI	Preliminary Site Investigation
PSPC	Public Services and Procurement Canada
PVC	polyvinyl chloride
PWGSC	Public Works and Government Services Canada
QA/QC	Quality Assurance and Quality Control
RCAF	Royal Canadian Air Force
Rocky Mountain	Rocky Mountain Soil Sampling Inc
RPD	Relative Percent Difference
SOP	Standard Operating Procedure
Stage 2 PSI	Stage 2 Preliminary Site Investigation
Sumas	Sumas Environmental Services Inc.
VOC	volatile organic compounds

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) was retained by Public Services and Procurement Canada (PSPC) on behalf of the Department of National Defence (DND) to conduct a Stage 2 Preliminary Site Investigation (Stage 2 PSI) for the Snowbirds Environmental Cleanup project located at 2425 Glenview Avenue, Kamloops, BC (the Site).

The purpose of the Stage 2 PSI is to evaluate whether or not the potential contaminants of concern (PCOCs) associated with the aircraft crash and firefighting response at the Site are present at concentrations exceeding the relevant numerical regulatory standards, and to provide vertical and lateral delineation of contaminants of concern (COCs).

This report was prepared in accordance with terms and conditions of Public Works and Government Services Canada (PWGSC) Contaminated Sites Characterization Contract (reference EZ897-191444/002/VAN) dated 25 October 2019, Golder's workplan dated 20 May 2020 and the subsequent amendments, "*Request for Amendment (#2) to Task Authorization 700514134 to Undertake Additional Soil Sampling to Support the Department of National Defence Snowbird Kamloops Environmental Clean-up Project*" dated 8 June 2020, and "*Request for Amendment (#3) to Task Authorization 700514134 to Undertake Supplemental Tasks to Support Remediation Planning Related to the Department of National Defence Kamloops Snowbird Environmental Clean-Up Project*" dated 24 June 2020.

1.1 Scope of Work

The scope of work for the Stage 2 PSI was as follows:

- Develop a Site-specific Health and Safety Environment Plan (HaSEP) for undertaking investigation activities at the Site.
- Conduct preliminary surficial soil sampling at the Site on an expedited basis.
- Conduct a sub-surface investigation program, including clearance of proposed drilling areas by a utility locator, in the outdoor areas of the Site that included drilling eight boreholes with four locations completed as monitoring wells and two of these locations also completed with soil vapour probes.
- Conduct a sub-slab investigation within the basement of the home that included coring through the concrete foundation in two locations to advance a borehole in one location and install a temporary sub-slab vapour port in the second location.
- Collect soil samples from the borehole locations for analysis of the PCOCs described in Section 1.3.5.
- Develop the four groundwater monitoring wells to improve connection to the aquifer and to remove sediment introduced during drilling.
- Measure field parameters in the groundwater recovered from the monitoring wells including pH, temperature, electrical conductivity, and reduction-oxidation potential (redox), and collect groundwater samples for analysis of PCOCs.
- Purge soil vapour monitoring wells and the sub-slab soil vapour sampling port. Collect soil vapour samples for analysis of PCOCs. Review the analytical data provided by the laboratory, and compare the results to the applicable provincial standards.

Summarize the findings of the investigation in this report, including borehole logs, analytical data tables, figures, and conclusions. This Stage 2 PSI has been prepared in accordance with the British Columbia Ministry of Environment & Climate Change Strategy (BC ENV) Technical Guidance 11 – Guidance for a Stage 2 PSI and Detailed Site Investigation.

1.2 **Professional Statement**

Pursuant to Section 63 of the Contaminated Sites Regulation, Golder confirms that this Stage 2 PSI report has been prepared in accordance with the applicable sections of the Contaminated Sites Regulation (Part 5, 6, 9, and 14).

The senior reviewer for this report, Erik von Krogh, has demonstrated experience in the assessment described in this report, and is familiar with the assessment work carried out at the Site. This report was prepared by professionals familiar with the *Environmental Management Act* (EMA) and the Contaminated Sites Regulation (CSR). Primary project participants and report authors were Alison Verde (PEng), Alanna Umphrey (AScT), and Erik von Krogh (RPBio, PMP). The services performed as described in this report were conducted in a manner consistent with the level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to the time limits, financial and physical constraints applicable to the services.

1.3 Background Information

1.3.1 Background on the Crash

On 17 May 2020, shortly after takeoff from the Kamloops Airport, a Royal Canadian Air Force (RCAF) CT114 Tutor Snowbird aircraft crashed immediately adjacent the home on the Site, a privately-owned residential property located near the intersection of Glenview Avenue and Schreiner Street in Kamloops, BC. The aircraft is understood to have been destroyed on impact, and was reportedly carrying "JP8/F34" jet fuel, which ignited and caused damage to the adjacent residential structure at 2425 Glenview Avenue. As a result of the crash and explosion, the tail section of the aircraft was thrown across the street, coming to rest near a power pole on the City of Kamloops boulevard, on the north side of Glenview Avenue. A resident of a home on the north side of Glenview Avenue showed DND a video recording of a fireball project from the crash site northwards across the street. The front of the home at the Site was severely damaged by fire, and it appears the fire caused substantial damage to the western portion of the roof of the home. It is inferred the crash caused cracking of the basement wall/foundation of the home immediately adjacent the crash location. The crash severed the overhead power and telecommunication lines, which were removed from the Site during the emergency response.

An aerial photograph of the crash site following extinguishment of the fire is included in Appendix A.

The Site is located approximately 900 metres east of the Kamloops Airport, in the Brocklehurst neighbourhood of Kamloops, BC. Further to a Site visit and discussions with PSPC/DND, the extent of the impact area was observed to include the Site and adjoining private residential properties and municipal roadway (Glenview Avenue) which are under provincial jurisdiction and regulated under the BC ENV Contaminated Sites Regulation (CSR); the CSR is the primary regulation applicable at the Site, and the applicable land use is Residential low density (RLLD).

1.3.2 Initial Emergency and Spill Response Efforts

Kamloops Fire Rescue (KFR) and emergency responders from the Kamloops Airport attended the scene to extinguish the fire. The fire was reported to be extinguished using Ansulite 3% (DC-3 formulation) aqueous film-forming foam (AFFF), intended for use on Class B hydrocarbon fuel fires. This AFFF product is reported to contain per- and poly-fluorinated substances (PFAS), and specifically perfluorooctanoic acid (PFOA), though it is reported to not contain high concentrations of perfluorooctanesulfonic acid (PFOS)¹. Based on verbal reports from first responders and images/video captured by news media, the AFFF was observed to be deployed over the front lawn and roof of the home at the Site; it is inferred the AFFF may have flowed over the roof and down the southwest drain onto the lawn downgradient from the drainpipe. AFFF was observed on Glenview Avenue, and was reported to have accumulated in low gravel areas adjacent to the paved roadway of Glenview Avenue.

A DND Hazmat Incident/Spill Report form was prepared by DND on 17 May 2020 and is included as Appendix B. The form documented that the crash caused the release of 4.2 L of engine oil, 5.9 L of hydraulic oil, 1552 L of JP8/F34 fuel, and 168.2 L of diesel. In addition to the DND Hazmat Incident/Spill Report form, DND indicated that an Emergency Management BC (EMBC) incident report was submitted to BC ENV; EMBC incident report number 200560. EMBC documented the incident in their weekly incident report for the period of 11 to 17 May 2020; it was noted that the BC ENV Response Officer raised the incident to urgent status due to heightened media/public interest.

The aircraft and debris were removed by DND, and a backhoe was used to remove fragments of the aircraft from the main impact site. Based on observations during drilling, noted below, it appeared that a depth of soil approximately 2 m deep was disturbed by the crash and subsequent excavation. Following retrieval of aircraft fragments, the soil was replaced in the excavation hole.

Following the emergency response, contractors, acting on behalf of the homeowners, erected temporary modular fencing to secure the Site and limit access to the home and yard.

1.3.3 Preliminary Site Reconnaissance

On 20 May 2020, Mr. Erik von Krogh and Mr. Aaron Keryluke of Golder participated in a preliminary reconnaissance of the Site to assist with developing a scope of work for the Stage 2 PSI. The Golder representatives met personnel from PSPC (Mr. Dave Osguthorpe), DND (Ms. Marie Goulden; Major Al Jacula), and BC ENV Emergency Response Officer (Mr. Rick Wagner) to perform a reconnaissance of the Site, review the emergency response efforts undertaken between 17 May and 20 May 2020, and assess visible impacts to exterior areas of the home and yard.

Subsequent to the preliminary site reconnaissance, on 25 May 2020, DND established a land use agreement with the homeowners at the Site permitting access to the Site for site characterization purposes.

¹ https://www.ansul.com/en/us/DocMedia/F-2017100.pdf

1.3.4 Area of Potential Environmental Concern

Based on the preliminary site reconnaissance, one area of potential environmental concern (APEC) was identified at the Site based on the preliminary site reconnaissance; the APEC consisted of the main crash site and front yard of the home where chemicals on board the aircraft impacted and spilled to the ground surface, and areas of the Site where AFFF was deployed as part of the fire fighting response. It is noted that a formal Stage 1 Preliminary Site Investigation was not undertaken to evaluate historical or current uses of the Site, and to evaluate whether there may be other APECs related to the historic or current use of the Site. The scope of this Stage 2 PSI is limited to the assessment of the APEC related to the crash of the Snowbird aircraft and the subsequent firefighting response.

1.3.5 Potential Contaminants of Concern

The crash of the aircraft and the resulting fire-fighting effort were considered to have the potential to cause contamination to soil, groundwater, and soil vapour in the vicinity of the crash. Based on information provided by DND (see Appendix C) regarding potential chemicals stored on the aircraft, as well as reference to the material safety data sheet for Ansulite 3%, potential contaminants of concern (PCOC) were selected. PCOCs are chemical substances that are regulated under the BC ENV CSR and which may pose a potential unacceptable risk to human or ecological health.

PCOCs were considered to be as follows:

Soil

- PCOCs related to fuels and lubricants understood to be carried by the aircraft: light and heavy extractable petroleum hydrocarbons (LEPHs/HEPHs), polycyclic aromatic hydrocarbons (PAHs), volatile petroleum hydrocarbons (VPHs), benzene, toluene, ethylbenzene and xylenes (BTEX)
- PCOCs related to the aircraft paint, batteries, etc.: aluminium, antimony, barium, cadmium, chromium, cobalt, lead, titanium, and zinc.
- PCOCs related to AFFF firefighting agents deployed following the crash: perfluorobutane sulfonate (PFBS) and perfluorooctane sulfonate (PFOS).
- PCOC related to fuel additives, methyl carbitol fuel additive grade: ethylene glycol.
- Further to the list of primary PCOCs above, it is noted that the Contaminated Sites Approved Professional Society (CSAP) have developed a document titled, "PCOC Selection and Guidance" to inform PCOC selection. CSAP considers there to be a potential for secondary PCOCs to be present when elevated concentrations of primary contaminants are measured. To address this uncertainty, the soil sample exhibiting the highest concentrations of primary hydrocarbon-related contaminants was analysed for secondary PCOCs as follows: N-nonane, isopropylbenzene, 1-propylbenzene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, butylbenzenes, barium, methyl tert-butyl ether (MTBE), styrene, 1,2 dibromoethane, and 1,2-dichloroethane.

In addition, petroleum hydrocarbon fractions defined by the Canadian Council for Ministers of the Environment as part of the Canada-wide Standards for Petroleum Hydrocarbons were analysed in a subset of samples for information purposes.

Groundwater

- The primary PCOCs for groundwater were: LEPHw, EPHw10-19, PAHs, VPHw, VHw6-10, benzene, toluene, ethylbenzene, xylene, dissolved metals (aluminum, antimony, barium, cadmium, chromium, cobalt, lead, titanium, and zinc), PFBS, PFOS, and perfluorooctanoic acid (PFOA).
- Secondary PCOCs identified in soil were only included as PCOCs in groundwater if the concentration in soil samples exceeded the applicable CSR standards. Laboratory detection limits for 1,2-dibromoethane in soil were elevated above the applicable CSR standards, therefore 1,2-dibromoethane was retained as a PCOC in groundwater. Concentrations of n-nonane in soil were above applicable CSR standards and n-nonane was retained as a PCOC in groundwater.

Soil Vapour

Soil vapour PCOCs were selected based on primary and secondary PCOCs above and based on regulated substances in soil vapour and include: BTEX, styrene, MTBE, naphthalene, VPH, 1,2-dibromoethane, 1,2-dichloroethane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and isopropylbenzene. Additional soil vapour parameters selected for analysis include: 1,3-butadiene, methyl cyclohexane, n-decane and n-hexane based on the laboratory fuel and diesel package.

1.3.6 Site Description

The Site is zoned RT-1 (Two Family Residential; City of Kamloops 2020) and is 21 m wide in the west-east direction, and approximately 55 m long in the north-south direction, with a total approximate area of 1,185 m² as reported by the City of Kamloops (2020). The Site is occupied by a single-story residential home with a basement, which occupies approximately 180 m², which is approximately 15% of the property land area.

Based on review of orthophotographs available on the Kamloops CityMap², it appears the home was built before 1974. Golder contacted the City of Kamloops to request building plans for the home. The City of Kamloops informed Golder that building plans for the home were not available and they were not able to provide further property information related to the age of the home or construction details; therefore plans for the home were not available from the homeowner. The basement floor of the home is estimated to be approximately 1.7 m below ground surface, and the floor was observed to be approximately 100 mm thick. In an email dated 23 May 2020 to DND, the homeowner indicated they had lived in the home since 1990 and they reported that the home did not have perimeter drains or sumps in the basement. The home was reported to be heated using natural gas, and the homeowner was not aware that other heat sources, such as heating oil stored in aboveground- or underground-storage tanks, had been used at the home prior to 1990. Based on an email from the homeowner's insurance company on 16 June 2020, it is understood that the interior of the home contained asbestos-products and that an abatement has been undertaken by Thomson Valley Restorations in the crash- and fire-damaged portions of the home.

On 17 June 2020, a structural engineer from Apple Consulting Engineering Services, of Kamloops, BC, acting on behalf of the homeowner, performed a reconnaissance of the basement of the home and developed a plan for temporary bracing to support the northern basement wall/foundation that was directly impacted by the crash.

² <u>https://www.kamloops.ca/city-services/maps-apps</u>

On 25 June 2020, the homeowner's structural engineer inspected the bracing that had been installed, as well as a support wall constructed to provide additional support the first floor of the home.

The front yard of the Site is predominantly grass (residential lawn). There is a flagstone walkway leading from the gravel driveway to the entrance of the home; the flagstone pathway forms a small triangular-shaped landscaped area adjacent the driveway. Based on publicly available street-level images, there appeared to be landscaping shrubs and vegetation on the northwest area in front of the home, in the area where the aircraft crashed. The back of the home is developed with a flagstone patio, a deck and grass (residential lawn). A garden is present in the far south area of the property.

Relevant property information regarding the Site is presented in the following Table 1.

Table 1: Property Information	mation	Infor	Property	1:	Table
-------------------------------	--------	-------	----------	----	-------

Civic Address	2425 Glenview Avenue, Kamloops, BC
Legal Description	PL 13661, LT 4, DL 251
Parcel Identifier	002-859-068
Latitude/Longitude	50°42'9.37"N 120°25'0.60"W

1.3.7 Topography

The Site is located at an elevation of approximately 345 to 346 m (City of Kamloops 2020) and topography in the surrounding area was observed to be fairly flat. Locally, there appears to be a topographic low point north of the property on municipal land, adjacent Glenview Avenue. There did not appear to be a surface water flow pathway from the Site to the storm drain rock pits located at the intersection of Glenview Avenue and Schreiner Street.

1.3.8 Surficial Geology

The Geological Survey of Canada Map 9-1963 describes geology on-site as Alluvial stream channel and floodplain, deposits: gravel, sand, and mucky peat.

The soils encountered as part of this investigation were observed to consist of silt and sand from surface to approximately 3.4 metres below ground surface (m bgs), underlain by fine sand and grading to coarse sand at approximately 5.2 m bgs.

1.3.9 Hydrogeological Setting

Groundwater was observed during this investigation at approximately 5.1 m bgs. Groundwater flow is expected to be influenced by regional topography and is inferred to flowing in a south to southwest direction toward the Thompson River approximately 180 m south of the Site.

The impacts from the recent release of fuel to the ground surface are expected to be limited to near surface groundwater systems, and therefore consideration to deeper or regional aquifers and/or hydro-stratigraphic units was not considered relevant to this investigation.

1.3.10 Groundwater and Surface Water Use

A search of the BC Water Resource Atlas was undertaken in June 2020 for an area within 500 m of the approximate centre of the Site, located in the areas considered to be up-gradient or cross-gradient with respect to inferred regional groundwater flow. No water wells were identified. The Site is located approximately 180 m north of the Thompson River and 4.5 km west of the North Thompson River. The Thompson River flows to the West towards Kamloops Lake located approximately 10 km west of the Site.

1.3.11 Climatic Conditions

Climate information is inferred to be similar to that recorded at the 'Kamloops A' weather station, approximately 1.7 km southwest of the Site. According to the 29-year average from 1981 to 2010 inclusive, the average annual mean temperature at 'Kamloops A' is approximately 9.3°C and the average annual precipitation is 277.6 millimetres (Environment Canada 2019). Mean precipitation ranges from 12.4 millimetres in February, to 31.4 millimetres in July. An average of approximately 63.5 centimetres of snow falls per year.

1.3.12 Utilities

Based on information obtained from BC One Call, the City of Kamloops and private utility locates performed onsite, the following utilities are understood to be located at the Site:

- BC Hydro electrical overhead lines; the power lines are understood to have been severed and were pulled back to the power pole due to the aircraft incident.
- Cable and telecommunication lines understood to have been overhead; the cable and telecommunication lines are understood to have been severed and were pulled back to the power pole due to the aircraft incident.
- Municipal sanitary and water utility lines run underground from Glenview Avenue to the northwest area of the house. The City of Kamloops (2020) reports that the water line is located "5.79 m from NW & 0.3 m O/S [off-set]".
- Fortis BC natural gas utility line runs underground from Glenview Avenue to a meter on the west side of the home, near the northwest corner of the house. The utility line was identified by a private utility locater and noted to be present at a depth of approximately 1.2 m bgs.
- Stormwater in the area drains along the roadway into rockpit sumps that are located on the north and south sides of Glenview Avenue, west of the intersection with Schreiner Street. There are no defined drainage channels or swales directing surface water long Glenview Avenue, and it is not expected that surface water would have flowed from the Site to the rock drains, as the front yard of the home constitutes a local topographic low point. The rock pits were observed during the preliminary site reconnaissance and appeared to contain standing water; there was no sheen observed on the water.

1.3.13 Contaminant Fate and Transport

Based on our visual observations, the PCOCs related to the aircraft paint, batteries, and other solid aircraft components were expected to be localized to the crash area.

PCOCs related to fuels and liquid petroleum hydrocarbons were expected to be potentially present in a wider area, from the main crash area northward towards the street and the location of the tail section. This is because it was considered possible for liquid PCOCs to be released northwards in the direction of the fireball observed by a resident of a home on the north side of Glenview Avenue.

PCOCs related to AFFF and the firefighting efforts were expected to be potentially present across the front lawn of the Site, as well as in a localized area to the south of the home where liquids sprayed onto the roof of the home may have drained to the ground surface.

Contaminant fate and transport in the subsurface was expected to be somewhat limited by the presence of the silt and sand soils, which may have reduced infiltration into the subsurface. PCOCs related to AFFF were considered likely to bind preferentially to organic soils present in the near-surface topsoil. It was therefore considered possible for light non-aqueous phase liquids (LNAPL) to be present in the shallow soils, particularly in the main crash site where soils were disturbed during removal of the wreckage. LNAPL has the potential to migrate downwards by gravity through the soil column, and if enough mass was present, LNAPL could come to rest at the water table. Possible preferential flow pathways present in the vicinity of the crash site include:

- Possible higher permeability fill adjacent the foundation and below the slab of the basement floor.
- Utilities crossing through the crash area which may have more permeable backfill materials than the surrounding soils.
- There are cracks in the foundation wall and basement floor which constitute preferential flow pathways for soil vapour.

It was also considered possible that the PCOCs could migrate towards the groundwater table as a result of precipitation infiltrating into the soils.

PCOCs related to the fuels on the aircraft are considered volatile, and volatile contaminants are expected to be present in soil gas in the main crash area. The volatile substances were released immediately adjacent to the home, and the crash is inferred to have caused cracking to the foundation. Therefore, vapour intrusion into the home was considered possible.

1.3.14 Pathways for Exposure and Potential Receptors

Pathways for exposure include possible ingestion of, inhalation of (i.e. dust), or skin contact with, contaminated soil and surface water (i.e., puddles accumulating in the area of contamination) and possible inhalation of volatile contamination in ambient air (both outdoors and indoors). Exposure to contaminated groundwater is not expected due to the depth of groundwater (>5 m) and groundwater is not expected to be used for drinking water at the Site or immediately downgradient.

Human and ecological receptors that may be exposed to contamination at the Site include the homeowners, contractors involved in the remediation of the Site and restoration of the home, small wildlife (birds and small mammals) that may enter the Site to consume plants or contaminated soil/water, soil invertebrates and insects in the shallow soil, and plants.

2.0 REGULATORY FRAMEWORK

In British Columbia, environmental matters pertaining to contaminated sites generally fall under the jurisdiction of the BC Ministry of Environment and Climate Change (BC ENV), pursuant to the Environmental Management Act (EMA, SBC 2003, Chapter 53 assented to 23 October 2003, updated to 17 June 2020). The key regulation under the EMA that relates to the assessment and remediation of contaminated sites is the Contaminated Sites Regulation (BC Reg. 375/96, O.C. 1480/96 and M271/2004, as updated [includes amendments up to BC Reg. 13/2019, 24 January 2019]). The standards listed in the CSR provide numerical concentrations for the evaluation of soil, sediment, vapour, and groundwater quality and remedial requirements, and identify soil disposal criteria for soil that is subject to provincial laws and regulations.

In addition, the BC Hazardous Waste Regulation (HWR 2017) under the EMA provides requirements for the off-site handling, transportation and disposal of materials classified as "hazardous waste" in BC, as well as facility requirements. The federal Transportation of Dangerous Goods also governs transportation of hazardous waste.

A summary of the BC CSR and HWR relevant to the Site are presented below.

2.1 Land Use Definition

The Site is zoned RT-1, residential, by the City of Kamloops. Based on the current and future use of the Site and the zoning at the Site, land use at the Site is considered residential low density.

2.2 CSR Standards

2.2.1 Soil Standards

The CSR provides both matrix and generic numerical soil standards for use in the assessment of soil quality at properties subject to investigation. The CSR soil standards are divided into eight categories based on land use and include standards for wildlands that are natural (WL_N) and reverted (WL_R), agricultural (AL), urban park (PL), residential that is low density (RL_{LD}) and high density (RL_{HD}), commercial land use (CL) and industrial land use (IL). As indicated in Section 2.1, the land use at the Site is considered to be RL_{LD} .

Matrix numerical soil standards are provided in CSR Schedule 3.1 – Part 1: *Matrix – Numerical Soil Standards*, based on site-specific factors of human health protection and environmental protection. When parameter concentrations were compared with Schedule 3.1 matrix standards, the most conservative standards of the following human health site-specific factors were applied:

- Human Health Protection
 - intake of contaminated soil
 - groundwater used for drinking water
- Environmental Protection
 - toxicity to soil invertebrates and plants
 - groundwater flow to surface water used by freshwater aquatic life

Generic numerical soil standards are also provided in the CSR Schedule 3.1 – Part 2: Generic Numerical Soil Standards to Protect Human Health, and CSR Schedule 3.1 – Part 3: Generic Numerical Soil Standards to Protect Ecological Health.

The Site is not used for agricultural purposes; therefore, the Schedule 3.1 – Part 1 site-specific pathways for the protection of livestock (i.e., livestock ingesting soil and fodder, and groundwater used for livestock watering) and irrigation were not considered applicable to the Site.

2.2.2 Water Quality Standards

The CSR provides Generic Numerical Water Standards for the assessment of groundwater quality (CSR Schedule 3.2). Based on guidance provided in BC ENV Protocol 21 *Water Use Determination* (ENV 2017a), the CSR groundwater standards for the protection of aquatic life in freshwater bodies (AW-FW) and drinking water (DW) were considered applicable to the Site.

2.2.3 Soil Vapour

The CSR provides Generic Numerical Vapour Standards (Schedule 3.3), for four categories based on land use: agricultural/urban park/residential, commercial, industrial and parkade land uses. As stated in Section 2.1, the land use is considered to be residential and the CSR residential land use soil vapour standards were applied to the Site.

Vapour Attenuation Factor

The BC ENV Protocol 22 Application of Vapour Attenuation Factors to Characterize Vapour Contamination (BC ENV 2017b) allows for the application of vertical vapour attenuation factor to predict indoor and outdoor vapour concentrations when transitioning from the subsurface soil vapour concentrations to indoor or outdoor concentrations, as follows:

$$C_{air} = C_{vapour} \times \alpha$$

where C_{air} is the estimated air concentration of the substance, C_{vapour} is the measured soil or sub-slab vapour concentration of the substance, and α is the vertical vapour attenuation factor chosen from Table 2 in Protocol 22.

Specific depth-dependant attenuation factors are applied, based on distance between the potential vapour source and site users, the land use and buildings at the site, exposure type (i.e., indoor or outdoor), vapour probe type (sub-slab versus sub-surface) and final screened depth of soil vapour probe sampled during the investigation. For conservative purposes, attenuation factors were applied to soil vapour data collected from the Site to estimate both indoor and outdoor soil vapour concentrations. Based on the depth to the top of the sand pack at each outdoor soil vapour location, the appropriate outdoor vapour attenuation factor was applied in accordance with Protocol 22. None of the conditions in Protocol 22 that preclude applying the attenuation factor were applicable to the Site, including i) groundwater in contact with buildings or there is active pumping or drawdown of groundwater, or ii) vapour under pressure (i.e., landfill).

Based on the cracks within the basement wall there is a preferential pathway for vapour. According to Protocol 22, when there is a preferential pathway, attenuation factors can not be applied to assess indoor exposure.

2.3 BC Hazardous Waste Regulation

The BC Hazardous Waste Regulation (HWR) specifies requirements for the siting, construction, operation, performance, management, maintenance and closure of facilities for the storage, use, treatment and disposal of hazardous waste. Of importance to this project, the HWR outlines testing protocols for hazardous waste and provides standards to identify hazardous waste. The HWR includes a standard for waste oil that is defined by a total concentration of petroleum hydrocarbons by weight of 3% or higher.

Furthermore, the HWR provides Leachate Quality Standards for comparison to leachate results in Schedule 4, Part 3 of the regulation. For comparison purposes, standards listed in Table 1 of Schedule 4 of the HWR were used for screening leachate results from toxicity characteristic leaching procedure (TCLP) testing. The TCLP test is commonly requested by landfill operators/waste disposal contractors to assess whether or not the leachate from a contaminated material is potentially hazardous and would trigger additional handling and documentation procedures.

3.0 FIELD METHODS

Sampling and analysis plans were developed in an iterative manner, and the investigations were undertaken in phases. The first phase of the investigation involved a grid-based surficial soil sampling program including characterization of near-surface soils in the main crash area. The second phase of the investigation involved borehole drilling to provide vertical delineation of observed surficial contamination. A third phase of investigation was undertaken within the building to evaluate soil conditions and soil vapour concentrations below the floor of the basement (approximately 2 m from the northern basement wall).

Field investigation methods carried out as part of this Stage 2 PSI program were conducted in general accordance with Golder's Standard Procedures for the following activities:

- Utility clearance, surficial soil sampling, daylighting, drilling and soil sampling
- Soil headspace screening
- Installing groundwater and soil vapour monitoring wells
- Groundwater monitoring well development, purging and sampling
- Soil vapour purging and sampling
- Waste management
- Quality Assurance / Quality Control (QA/QC) sample collection and analysis

The following sections outline and summarize the methods utilized for the field investigation program conducted as part of this Stage 2 PSI.

3.1 Health and Safety and Utility Locates

Prior to undertaking the field investigation program, a health and safety plan was developed. The plan addressed potential health and safety issues that had been identified on the Site and provided mitigation measures to address those potential risks. A BC One Call was placed prior to the intrusive investigations to assess the potential presence of on-site utilities. The health and safety plan was updated and implemented throughout the duration of the investigation.

Proposed outdoor borehole locations were assessed for the presence of underground utilities and/or obstructions by Quadra Utility Locating Ltd. of Vancouver, BC on 10 June 2020. Indoor sampling locations were assessed for the presence of underground utilities, obstructions, and potential rebar in the concrete floor by Lynx Creek Industrial and Hydrovac Ltd. (Lynx Creek) of Kamloops, BC on 12 June 2020.

On 12 June 2020, intrusive investigation work was conducted inside the house at the Site. The homeowner's insurance company subcontracted Apple Engineering Services (Apple Engineering) of Kamloops, BC to inspect the condition of the foundation of the house and provide recommendations regarding the safety of working within the basement. A temporary bracing system was designed and reviewed by Apple Engineering prior to Golder entering the house.

Due to the potential for elevated vapour concentrations related to the aircraft fuel, Golder field personnel wore a portable gas detector during intrusive investigations with sensors to measure the lower explosive limit (LEL), and concentrations of oxygen, hydrogen sulfide, and carbon monoxide with alarms set to sound when concentrations were outside of the limits for safe working conditions.

3.2 **PFAS Sampling Procedures**

Golder has developed a specialized sampling protocol for soil, and groundwater when analyzing samples for PFAS to reduce the potential for cross-contamination. Due to the very low detection limits for PFAS (parts per trillion), the potential for cross-contamination between samples and other sources is considered high.

Golder field personnel adhered to standard operating procedures (SOPs) for sampling for PFAS as follows:

- SOP-0 Planning and Sample Submission
- SOP-1 General Field Methods for PFAS Sampling
- SOP-2 Quality Assurance/Quality Control Protocols for PFAS Sampling
- SOP-3 PFAS Program Monitoring Well Development, Purging and Sampling
- SOP-4 PFAS Soil Sampling

The following sampling methods were used when collecting samples for analysis of PFAS:

- Field personnel avoided the use of shampoo, moisturizer, sunscreen, insect repellant, or other scented personal hygiene products for a 12-hour period prior to field activities.
- Field personnel wore natural fibre clothing such as cotton. During wet conditions, the use of a PVC rain suit was permitted. Field personnel did not wear any other synthetic, water resistant, waterproof, stain-resistant, or coated Tyvek clothing on sampling days (i.e., GoreTex[™]).
- Field personnel avoided the use of paper bags and other paper packaging, aluminum foil, wax paper or coated textiles to transport food to site as historically food packages have been treated with PFAS to resist wetting.

During the sampling of the various media, the following procedures were followed:

- Only non-waterproof, loose leaf paper was used with a pencil and aluminum clip boards to record field notes.
- Field personnel avoided use of non-dedicated field equipment, with dedicated sampling equipment used where possible.
- Non-essential personnel were not allowed within 10 m of sampling.
- Ice cubes were used in the coolers, with no gel-filled ice packs used.
- Non-dedicated sampling equipment was decontaminated prior to use by cleaning with a solution of Liquinox[™] soap and deionized, laboratory certified PFAS-free water. The equipment was then rinsed with PFAS-free water and allowed to air dry.

The following procedure was followed for hydro-excavation and drilling, in addition to regular soil sampling procedures discussed in Section 3.3:

- A sample of the water used for hydro-excavation was collected prior to use of the water supply and equipment, and analyzed for PFAS to be certain that the supplied water did not contain PFAS.
- Equipment operators were instructed to only touch soil when wearing clean nitrile gloves.
- Prior to approaching the samples, nitrile gloves were donned. Sample bottles were marked with a pencil prior to sampling. Sample bottles were filled with soil and stored in ice filled coolers.
- When drilling, augers were rinsed with Liquinox[™] soap and water prior to use.

The following procedures were followed during groundwater sampling for PFAS, in addition to regular groundwater sampling procedures discussed in Section 3.4:

- Field personnel collected depth to bottom of the well measurements at the groundwater monitoring wells only prior to development, and following sampling.
- Samples for PFAS were collected in HDPE bottles and stored in ice-filled coolers.

Additional QA/QC protocols were added to the standard QA/QC procedures outlined in Section 3.9:

- Equipment blanks were collected from soil sampling equipment (laboratory certified PFAS-free water run over shovel) and groundwater water sampling equipment (laboratory certified PFAS-free water run through peristaltic pump) on days PFAS sampling was conducted.
- One trip blank sample (laboratory pre-filled sample) was submitted with the groundwater samples to the laboratory.

Samples were packed securely in ice-filled coolers and delivered directly to sample reception at ALS Environmental Ltd (ALS) in Kamloops, BC on the day of sampling or the following morning. The samples were shipped by ALS in Kamloops to ALS in Burnaby, BC for analysis. Completed Golder Chain-of-Custody forms were submitted with each shipment.

3.3 Soil Sampling

3.3.1 Surficial Soil Sampling

Soil sampling procedures were consistent with generally accepted industry standards and with the ENV guidance document titled, "Technical Guidance #1, Technical Guidance on Contaminated Sites – Site Characterization and Confirmation Testing" (BC ENV TG #1) (2009a).

An initial surficial soil sampling program was conducted on 25 and 26 May 2020 to assess the potential for surficial soil contamination at the Site. Nine surficial soil samples were collected on-site (SS20-09 through SS20-18; See Figure 2). The surficial soil samples were collected by digging with a hand shovel to a depth of 0.15 m bgs. An additional surficial soil sample was collected on 2 June 2020 (SS20-19) to provide further soil characterization and at the outflow of a downspout on the south side of the home, where it was inferred that figure fighting foam could have flowed off the roof of the home.

The location of surficial soil samples were recorded using a handheld GPS unit. Soil sampling was conducted as described in Section 3.3.3 and soil samples collected for PFAS also followed the sampling procedures as described in Section 3.2.

3.3.2 Subsurface Investigations

3.3.2.1 Outdoor Daylighting and Drilling

A drilling program was undertaken between 10 and 12 June 2020 to attempt to achieve lateral and vertical soil delineation and to support remediation planning. Based on proximity to known utilities, eight boreholes were hydro-excavated by Lynx Creek of Kamloops, BC on 10 June 2020. Lynx Creek advanced boreholes by hydro-excavation to depths ranging from 3.0 to 3.4 m bgs. Location BH20-07 was only hydro-excavated to 0.6 m bgs as that was the target depth for the borehole. The following borehole locations were advanced at the location of surficial soil sample exceedances to provide further soil characterization with depth:

- BH20-06 was advanced at the location of SS20-17
- BH20-07 was advanced at the location of SS20-10
- MW20-02 was advanced at the location of SS20-18

Slurry generated from the hydro-excavating was transported by Lynx Creek to the Sumas Environmental Services Inc. (Sumas) facility in Kamloops BC as hazardous waste as described in Section 3.7.

Following completion of hydro-excavation, five borehole locations (MW20-01, MW20-02, MW20-03, MW20-04, and BH20-08) were advanced to a maximum depth of 6.1 m bgs on 11 and 12 June 2020 by On the Mark Locates Ltd. (OTM) of Kelowna, BC. Drilling was undertaken using a truck-mounted solid stem auger drill rig at MW20-01, MW20-02, MW20-03, and BH20-08. Based on access limitations, drilling was undertaken using a portable mini track auger drill rig at MW20-04. Boreholes MW20-02, and MW20-04 were completed as groundwater monitoring wells as described in Section 3.3.2.3. MW20-01(SV20-01) and MW20-03(SV20-03) were installed as nested groundwater and soil vapour monitoring wells as described in Section 3.5.1. When drilling, augers were rinsed with Liquinox[™] and water prior to use.

Boreholes BH20-05, BH20-06, BH20-07, and BH20-08 were backfilled in accordance with the BC ENV Groundwater Protection Regulation (BC ENV 2016) with hydrated bentonite chips from the bottom of the borehole to 0.6 m bgs and 10/20 silica sand from 0.6 m bgs to 0.1 m bgs and the ground surface was restored with topsoil that was removed prior to drilling.

Soil cuttings generated from the drilling program were classified as hazardous waste based on results from the preliminary soil sampling which indicated the total petroleum hydrocarbon content in the soil exceeded 3% by weight. The soil cuttings were stored in 205 L drum(s) at the Site and were removed under hazardous waste manifest by Sumas on 13 June 2020 to a licensed off-site facility (see Section 3.7).

Soils were observed in the field for colour, potential staining, soil type, and measured for headspace vapours as described in Section 3.3.3. Borehole logs are presented in Appendix D and borehole locations are presented on Figure 2.

3.3.2.2 Indoor Sub-Slab Drilling

In order to assess the sub-slab soil quality and potential requirements for remedial excavation beneath the footing of the home, a sub-slab intrusive investigation was conducted on 26 June 2020.

As noted in Section 1.3.6, bracing and a temporary supporting wall was constructed by contractors performing work on behalf of the homeowner; the edge of the temporary supporting wall was estimated to be approximately 2 m from the north wall of the basement. One borehole location (BH20-10; Figure 2) was advanced adjacent the temporary supporting wall and approximately 1.5 m from the west wall in the basement of the home at the Site by Rocky Mountain Soil Sampling Inc. (Rocky Mountain) of Vancouver, BC. Prior to characterizing the soils below the slab, the concrete foundation at the borehole location was cored by drilling an anchor bolt to which a coring machine was affixed, then coring a 15 cm diameter round hole through the thickness of the concrete floor. The anchor bolt was removed following coring.

The subsurface soils were characterized using a "pionjar" drill equipped with a split spoon soil sampling device. BH20-10 was advanced to a depth of 2.7 m below the basement floor (approximately 4.4 m below the ground surface outside the home). BH20-10 was backfilled in accordance with the Groundwater Protection Regulation (BC ENV 2016) using a combination of hydrated bentonite chips and sand. A layer of sand was placed above the bentonite to mitigate the risk of bentonite heave. The concrete was then restored to establish a flush surface.

One temporary sub-slab vapor port (SV20-09; Figure 2) was also installed in the basement of the house on 26 June 2020 as described in Section 3.5.1.

Due to the limited volume of soil cuttings generated from the sub-slab investigations, cuttings were stored on-site in a 205-L drum with the groundwater purge water. The drum will be transported off-site to a licensed facility (see Section 3.7) at the conclusion of the investigation, or as part of remediation activities.

3.3.2.3 Monitoring Well Installation

Four monitoring wells were installed during the drilling program including MW20-04 on 11 June 2020 and MW20-01, MW20-02, and MW20-03 on 12 June 2020. The selected depths of the screen interval for the monitoring wells were based on observed depths to water, the soil stratigraphy observed in the borehole, and based on groundwater flow. The screen interval for the four monitoring wells installed was from 4.7 to 6.2 m bgs. The monitoring well screens were installed in a sand layer overlain by silty sand.
The monitoring wells were constructed without the use of glues or solvents. The well risers were constructed of 51 millimetre (mm) diameter, pre-washed, wrapped and threaded Schedule 40, threaded polyvinyl chloride (PVC) pipe. The well screens were constructed of 1.5 metre length sections of No. 10 size slotted PVC pipe. A clean 10/20 size filter sand pack was placed around the screened portion of the wells to approximately 0.3 m above the top of the screen and 0.3 m below the bottom of the screen. A bentonite seal was used to fill the annular space between the sand pack to 0.9 m bgs. The annular space from 0.9 m bgs to ground surface was filled with sand to reduce heaving of the ground surface related to expansion of the bentonite as it is hydrated. The monitoring wells were completed with flush mount casings, set in concrete.

Monitoring well construction details are provided in the borehole logs in Appendix D. Monitoring well locations are shown in Figure 2.

3.3.3 Soil Sampling

Soil sampling procedures were consistent with generally accepted industry standards and with the ENV guidance document titled, "Technical Guidance #1, Technical Guidance on Contaminated Sites – Site Characterization and Confirmation Testing" (BC ENV TG #1) (2009a).

Samples were observed in the field for colour, sheen, staining, and soil type. Soil samples were collected for field headspace screening of organic vapour using an RKI Instruments RKI Eagle 2 gas monitor equipped with a photoionization detector (PID), and sensors for carbon dioxide (CO₂), carbon monoxide (CO), and methane (CH₄). Prior to use at the Site, the RKI Eagle was calibrated with a calibration gas containing 100 parts per million (ppm) isobutylene gas, 30% CO₂, 50% CO, and 2.5% CH₄ as per operating instructions, and was re-checked for calibration on a regular basis during the investigation program.

Soil samples were selected for analysis based on several factors including: when field observations such as visual signs of contamination or elevated headspace readings were identified, within each unit of soil stratigraphy, and at specific depths to achieve vertical and lateral delineation.

Select soil samples were submitted to ALS for analysis based on PCOCs/COCs identified in Section 1.3.5, including: LEPHs, HEPHs, PAHs, VPHs, BTEX, aluminum, antimony, barium, cadmium, chromium, cobalt, lead, titanium, zinc, PFBS, PFOS, ethylene glycol, 1,2,4-trimethylbenzene, n-nonane, isopropylbenzene, 1-propylbenzene, 1,3,5-trimethylbenzene, butylbenzenes, MTBE, styrene, 1,2 dibromoethane, and/or 1,2-dichloroethane.

Soil samples collected for the analysis of PFAS were collected in a 250 mL pre-cleaned HDPE jar supplied by the laboratory, ALS Environmental (ALS). Soil samples collected for the analysis of non-volatile parameters were collected in pre-cleaned 125 mL glass jars supplied by ALS. Soil samples collected for the analysis of potential volatile hydrocarbon parameters were collected using methanol field preservation in accordance with the laboratory and BC ENV procedures. Soil samples collected from the Site were appropriately-labelled and stored in coolers filled with ice for transport to the analytical laboratory, accompanied by appropriately-completed, Chain-of-Custody forms.

Any tool(s) used to collect the samples were washed with laboratory-grade detergent (Liquinox[™]) and rinsed with distilled water. Nitrile gloves were worn when handling sampling equipment and samples and were changed between each sample and sample location.

3.4 Groundwater Sampling

3.4.1 Groundwater Development

The groundwater monitoring wells were developed on 12 June 2020 following installation and prior to sampling. The purpose of groundwater monitoring well development was to remove drilling-related sediment and silt that had settled in the monitoring well since the time of well installation, and to improve the hydraulic connection of the monitoring well with the surrounding soil.

The water level was measured prior to development using a water level tape and the volume of water within the monitoring well was calculated. During development, water was removed from the monitoring well using dedicated high-density polyethylene (HDPE) tubing and Waterra[™] inertial foot valves. While purging the well, *in-situ* water quality parameters (pH, temperature, dissolved oxygen, redox potential, and specific conductivity) were recorded. The wells were purged until the water quality parameters stabilized. The water quality parameters of the drill water were also measured, and it was confirmed that the water quality parameters of the groundwater at the end of development were different than the drill water parameters.

Development groundwater was collected and stored in a 205-L drum on-site prior to disposal at a licensed off-site facility (see Section 3.7).

3.4.2 Groundwater Purging and Sampling

Following groundwater monitoring well development, the monitoring wells were allowed seven days for the groundwater to equilibrate prior to sampling. The newly installed monitoring wells were sampled on 19 June 2020. Groundwater sampling procedures were consistent with generally accepted industry standards and with the ENV guidance document titled, "Technical Guidance #8, Technical Guidance on Contaminated Sites – Groundwater Investigation and Characterization" (2017d).

The groundwater level was measured prior to sampling using a water level tape and the volume of water within the monitoring well was calculated. The monitoring wells were purged and sampled using low-flow sampling techniques using a peristaltic pump with dedicated 6 mm diameter HDPE tubing. When sampling with the peristaltic pump, the inlet tubing was placed at the midpoint of the well screen. During purging, a YSI Pro Plus[™] multi-meter was used to monitor *in-situ* water quality parameters (pH, temperature, dissolved oxygen, redox potential, and specific conductivity), with the measurements recorded on Groundwater Sampling Sheets. When consecutive parameter measurements were within approximately 10%, purging was terminated and groundwater samples were collected. During purging, care was taken to avoid excessive agitation of the well water so that re-suspension of finer particulate in the water column would be minimized.

Groundwater samples were collected in clean, laboratory-supplied sample bottles. Water samples for dissolved metals were field-filtered using a 0.45 micrometre (μ m) in-line filter. At least 1 litre of water was purged through the filter prior to sampling to reduce the risk of cross-contamination if metals were present in the filter. As necessary, samples were preserved in the field using chemicals supplied by the laboratory. Standard Golder protocols were followed during groundwater sampling to minimize the possibility of cross-contaminating the wells and the samples, including decontamination of any non-dedicated equipment used to collect the samples and nitrile gloves worn and changed when handling sampling equipment.

Purge water from the monitoring wells sampled was collected and stored in a 205-L drum on-site prior to disposal at a licensed off-site facility (see Section 3.7).

Groundwater samples were submitted to ALS for analysis based on PCOCs identified in Section 1.3.5 including LEPHw, EPHw10-19, PAHs, VPHw, VHw6-10, BTEX, dissolved metals (aluminium, antimony, barium, cadmium, chromium, cobalt, lead, titanium, and zinc), PFBS, PFOS, PFOA, 1,2-dibromoethane and n-nonane.

3.5 Soil Vapour Sampling

3.5.1 Soil Vapour Probe Installation and Leak Tracer Testing

Two soil vapour probes were installed in the annulus of groundwater monitoring wells at the Site on 12 June 2020 during the drilling program at locations MW20-01 (SV20-01) and MW20-03 (SV20-03). The locations of the soil vapour probes were chosen to assess the soil vapour quality and potential for vapour migration in relation to indoor and outdoor exposure to the home and off-site properties.

The probes were installed by OTM using pre-constructed 25mm PVC pipe with a 0.15 m in length slotted screen. A solid PVC cap was fitted to the top of the PVC pipe following installation and was replaced with a PVC cap with a brass fitting to connect tubing prior to sampling. The soil vapour probe screens were installed at a depths of approximately 3.4 m to 3.55 m bgs (SV20-01) and 3.85 to 4.0 m bgs (SV20-03). Clean 10/20 silica sand was placed in the annulus adjacent to the screen, approximately 0.15 m above and below the screen. Hydrated granular bentonite was placed in the annulus approximately 0.30 m below and above the sand pack and hydrated bentonite chips were placed above the bentonite powder up to 0.3 m bgs. The soil vapour monitoring wells were assembled without the use of glues or solvents that might compromise the quality of soil vapour samples.

One sub-slab soil vapour probe was installed on 26 June 2020 by Rocky Mountain using a hammer drill to drill a hole (approximately 15 mm in width) through the concrete floor in the basement of the house. A temporary vapour port (injection packer) was then installed in the drill hole in order to assess soil vapour quality beneath the house foundation. Following sampling, the temporary port was removed and the hole was filled with concrete to re-establish the grade of the floor.

Soil vapour probe construction logs are presented in Appendix D. The location of the soil vapour probes are shown on Figure 2.

Following completion of the soil vapour probe installation (permanent and temporary locations) and prior to the collection of the soil vapour samples, helium leak tracer tests were undertaken at each of the soil vapour probe locations. Leak tracer testing was undertaken to measure the integrity of the soil vapour probe installation. Helium detected during the collection of field parameters from the probe may be indicative of a faulty installation or a loose connection within the probe components. The leak test was undertaken by placing a rigid plastic shroud over the soil vapour probe, filling the shroud with pure helium (~99.9 %) gas. A Dielectric MGD-2002 helium detector was used to measure the concentration of helium under the shroud and in the screening sample from the Tedlar® bag. The concentrations measured were recorded on Soil Vapour Sampling forms. The helium leak tracer test was successful at each of the three soil vapour probe locations at the Site.

3.5.2 Soil Vapour Sample Collection

Soil vapour sampling procedures were consistent with generally accepted industry standards and with the ENV guidance document titled, "Technical Guidance #4, Vapour Investigation and Remediation" (2017c).

Following installation, the outdoor soil vapour probes were allowed six days to equilibrate prior to sampling. The ground conditions at the time of vapour sampling were dry; it had not rained for several days prior to sampling. The indoor temporary sampling location was sampled approximately 15 minutes after installing the sampling port. Prior to sampling, soil vapour probes were purged using an SKC® pump set to a flow rate of approximately 200 to 300 mL/minute. Approximately three probe volumes of air were purged from the outdoor soil vapour probes and 3 litres of soil vapour were purged from the temporary indoor location. During purging, measurements of oxygen, carbon dioxide, hydrogen sulphide (H₂S) and methane were recorded using a Landtec GEM 2000 and organic vapours were measured using a Mini-RAE 3000 PID equipped with a 10.6 eV lamp calibrated with 100 ppm isobutylene. Field measurements were recorded on Soil Vapour Sampling forms.

Following the purging process, the soil vapour probes were allowed to equilibrate for a period of approximately 10 minutes. Soil vapour samples were subsequently collected using laboratory-provided 1.4 L Summa canisters with dedicated laboratory-provided 20-minute flow control regulators.

Duplicate soil vapour samples were collected by using a t-splitter connection to fill both Summa canisters concurrently. One flow regulator was connected to the t-splitter to control the flow rate to both the sample and the duplicate.

Soil vapour samples were submitted to ALS for analysis based on PCOCs identified in 1.3.5 including BTEX, styrene, MTBE, naphthalene, VPH, 1,2-dibromoethane, 1,2-dichloroethane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, isopropylbenzene, 1,3-butadiene, methyl-cyclohexane, n-decane, and n-hexane based on the laboratory fuel and diesel package.

3.6 Sample Handling and Laboratory Analyses

Soil and water samples were packed securely in ice-filled coolers and delivered at the end of the field day to the ALS depot in Kamloops or driven by Golder to the ALS depot in Burnaby, BC on the day following sampling. Summa canisters were packed securely in a cooler and delivered to the ALS depot in Kamloops. Completed Golder Chain-of-Custody forms were submitted with each shipment. Once samples were received by ALS in Kamloops, samples were logged, repacked as needed, and shipped via ground to the ALS laboratory in Burnaby, BC. ALS is CALA certified for analytical methods used for this program.

3.7 Waste Management and Disposal

Slurry generated from the hydro-excavating was transported by Lynx Creek to the Sumas facility in Kamloops BC. Soil cuttings generated during the outdoor drilling program and purged water generated during groundwater well development was collected and stored in steel, 205-litre (L) drums and transported off-site on 13 June 2020 by Sumas.

Based on the results of the initial surficial soil sampling, the soil was expected to contain greater than 3% of petroleum hydrocarbons by weight and therefore was classified as hazardous waste under the BC HWR. Material was transported to Sumas under a transportation of dangerous goods (TDG) manifest (BCG 00321) where the material was treated as hazardous waste and was stabilized prior to transport to Secure Energy Pembina Class 1 and Class 2 Landfill.

Purge water generated during monitoring well sampling and a limited amount of soil produced during the indoor sub-slab drilling program remain on-site in a 205-L drum. Following completion of the field program, the drum will be picked up and transported to the Sumas Kamloops facility for disposal.

The soil disposal manifests, disposal certificate, a letter documenting hazardous waste disposal methods, and the Secure Energy Pembina operating permit are provided in Appendix E.

3.8 Survey

The locations and elevations of investigation points, including the surficial soil sampling locations, boreholes, groundwater monitoring wells, soil vapour monitoring wells, and the temporary soil vapour sub-slab port, were surveyed by Allnorth Consultants Ltd. (Allnorth) of Kamloops, BC on 10 June and 26 June 2020.

3.9 Quality Assurance and Quality Control (QA/QC)

To assess and document that the sampling and analytical data were interpretable, meaningful and reproducible, conformance to a Golder QA/QC program was followed.

The quality assurance (QA) measures used in the collection, preservation and shipment of samples included the following management controls:

- 1) Sampling methods were consistent with established Golder protocols, industry standards and provincial/federal requirements.
- 2) Field notes were recorded during all stages of the investigation.
- Chain-of-Custody procedures were used for the shipment of samples to the laboratories. Samples included in a shipment were identified on a Golder Chain-of-Custody form, with one copy retained by Golder personnel, after sign-off.
- 4) The analysis of approximately one duplicate sample for every 10 samples analysed per analytical parameter was targeted for each media.
- 5) Samples were stored in coolers and chilled with ice (soil and groundwater), during transport and prior to submission to the analytical laboratory and analysed within recommended holding times.

The quality control (QC) measures established for the field program included the following technical aspects:

Submission of blind field duplicate samples (i.e., paired sample analyses). A blind field duplicate sample is a second sample of a certain media (e.g., soil or water) from the same location that is submitted to the analytical laboratory under a separate label such that the laboratory has no prior knowledge that it is a duplicate.

The relative percent difference (RPD) between paired sample results was used to assess duplicate sample data. The RPD is a measure of the variability between two outcomes from the same procedure or process and is calculated by:

$$RPD (\%) = \frac{(X_1 - X_2)}{average(X_1, X_2)} x100$$

where X_1 is the original sample result, and X_2 is the paired analysis result.

Where the concentration of a given parameter is less than five times the method detection limit (MDL), the laboratory results are considered to be less precise, and the RPD is not calculated. For parameters with concentrations less than five times the MDL, but still above the MDL, the difference factor (DF) between paired analyses results is calculated by:

$$DF = \frac{(X_1 - X_2)}{MDL}$$

where X_1 is the original sample result and X_2 is the paired analysis result.

Golder's internal data quality objectives (DQOs) for samples were as follows:

- an RPD less than or equal to 35% for soil and less than 50% for PAH parameters in soil
- an RPD less than or equal to 20% for groundwater
- an RPD less than or equal to 50% for soil vapour
- a DF less than or equal to 2.0 (for soil, groundwater, or soil vapour)

4.0 **RESULTS**

The following sections present the field observations recorded and the laboratory analytical results from the samples submitted for analysis during the Stage 2 PSI.

4.1 Soil

Soil sampling procedures were consistent with generally accepted industry standards and with the BC ENV guidance document titled, "Technical Guidance #1, Technical Guidance on Contaminated Sites – Site Characterization and Confirmation Testing" (BC ENV TG1; BC ENV 2009). The table below indicates the primary PCOC, secondary PCOC, sample locations and sample density.

	Table 2: S	OIL PCOC	and SAMP	LE COUNT
--	------------	----------	----------	----------

	Analytes - PCOC	Sample Locations	Number of Samples analyzed (including duplicates)			
Primary PCOC	LEPHs/HEPHs, PAH, VPHs	SS20-09 to SS20-18, MW20-01 to	46 (6)			
	втех	BH20-08, BH20-10	44 (6)			
	aluminium, antimony, barium, cadmium, chromium, cobalt, lead, titanium, and zinc.	SS20-14, SS20-15, SS20-16, SS20-17, SS20-18	7 (2)			
	cadmium, chromium - only	MW20-01, MW20-02, MW20-3, MW20-04, BH20-05, BH20-08, BH20-10	24 (3)			
	PFBS, PFOS	SS20-10, SS20-18, SS20-19, BH20-07	8 (2)			
	ethylene glycol	MW20-02	1			
Secondary PCOC	isopropylbenzene, 1-propylbenzene, 1,3,5-trimethylbenzene, butylbenzenes, 1,2-dichloroethane	MW20-02	1			
	MTBE, styrene, N-nonane	SS20-09 to SS20-18, MW20-01 to MW20-04, BH20-05, BH20-06, BH20-08, BH20-10	44 (6)			
	1,2 dibromoethane	SS20-09 to SS20-18, MW20-01 to MW20-04, BH20-05, BH20-08, BH20-10	41 (6)			

4.1.1 Soil – Field Observations

Soil conditions were observed at surficial soil sample locations SS20-09 to SS20-19 and boreholes MW20-01, MW20-02, MW20-03, MW20-04, BH20-05 to BH20-08, and BH20-10, and are documented in the borehole logs that are provided in Appendix D. The soil stratigraphy at the Site was generally described as silt and sand from ground surface to approximately 3.4 m bgs underlain by fine sand and grading to coarse sand at approximately 5.2 m bgs.

Visual evidence of contamination such as sheen or staining were not observed in the boreholes, however recorded headspace vapour levels were measured to a maximum concentration of 2,002 parts per million (ppm) in borehole BH20-05 at 0.9 to 1.05 m bgs; headspace measurements for samples analysed by the laboratory are presented in Tables 1a and 1b following the report. Headspace vapour level versus depth profiles are provided on the borehole logs in Appendix D.

4.1.2 Soil – Analytical Results

Soil analytical results are presented in the Tables 1A through 1D Series and summarized in Figures 2 to 6. Laboratory analytical reports are provided in Appendix F. Individual parameter groups are discussed below and soil analytical results are summarized in Section 4.1.3.

4.1.2.1 Hydrocarbons

During the initial surficial soil sampling program, 12 samples, including two field duplicates, were analyzed for soil primary PCOCs: LEPHs, HEPHs, PAH, and VPHs. The following exceedances were identified during the initial surficial soil sampling program:

- SS20-17 from 0.05 to 0.15 m bgs: contained concentrations of naphthalene and LEPHs exceeding the CSR RL_{LD} standards.
- SS20-18 from 0.05 to 0.15 m bgs: contained concentrations of LEPHs, HEPHs, VPHs and 2-methylnaphthalene exceeding the CSR RL_{LD} standards.
- Due to high concentrations of test parameters, laboratory detection limits for naphthalene and quinoline in the sample and duplicate collected at SS20-18 from 0.05 to 0.15 m bgs were elevated above the CSR RLLD standards.

During the subsurface investigations, an additional 34 soil samples, including four field duplicates, were analyzed for LEPHs, HEPHs, PAH, and VPHs. The following exceedances were identified during the subsurface investigations:

- MW20-02 from 1.8 to 1.95 m bgs: contained concentrations of LEPHs and VPHs exceeding the CSR RLLD standards. Laboratory detection limits of naphthalene were elevated above CSR RLLD standards due to high concentrations in other analyzed parameters.
- MW20-02 from 3.7 to 4.0 m bgs: contained concentrations of LEPHs and VPHs exceeding the CSR RL_{LD} standards. Laboratory detection limits of naphthalene were elevated above CSR RL_{LD} standards due to high concentrations in other analyzed parameters.
- BH20-05 from 0.05 to 0.15 m bgs: contained concentrations of LEPHs and VPHs exceeding the CSR RLLD standards. Laboratory detection limits of naphthalene were elevated above CSR RLLD standards due to high concentrations in other analyzed parameters.

- BH20-05 from 0.9 to 1.05 m bgs: contained concentrations of LEPHs and VPHs exceeding the CSR RLLD standards. Laboratory detection limits of naphthalene and quinoline were elevated above CSR RLLD standards due to high concentrations in other analyzed parameters.
- BH20-05 from 2.4 to 2.55 m bgs: contained concentrations of LEPHs exceeding the CSR RL_{LD} standard. Laboratory detection limits of naphthalene was elevated above CSR RL_{LD} standards due to high concentrations in other analyzed parameters.

Based on soil analytical results, 2-methylnapthalene, naphthalene, LEPHs, HEPHs, and VPHs were retained as COCs in soil. Based on the elevated concentration of quinoline in select samples, quinoline was retained as a PCOC.

4.1.2.2 Volatile Organic Compounds

During the initial surficial soil sampling program, 12 samples (including two field duplicates) were analyzed for soil primary PCOCs including: BTEX. The surficial soil sample collected at the main aircraft impact site (SS20-18) was also analyzed soil secondary PCOCs including: for styrene, 1,2-dibromoethane, MTBE, n-nonane, butylbenzene, 1.2-dichloroethane, 1,3,5-trimethylbenzene, isopropylbenzene, and 1-propylbenzene. The following exceedances were identified during the initial surficial soil sampling program:

- SS20-17 from 0.05 to 0.15 m bgs: contained a concentration of n-nonane of exceeding the CSR RLLD standard.
- SS20-18 from 0.05 to 0.15 m bgs: contained concentrations of n-nonane, benzene, toluene, ethylbenzene, and xylenes exceeding the CSR RL_{LD} standards. Laboratory detection limit of 1,2-dibromoethane was elevated above CSR RL_{LD} standards due to high concentrations in other analyzed parameters.

Given that the secondary PCOCs butylbenzene, 1,2-dichloroethane, 1,3,5-trimethylbenzene, isopropylbenzene, and 1-propylbenzene did not exceed the CSR RL_{LD} standards, they were not retained as COCs and no further analysis was considered necessary. During the subsurface investigations, an additional 32 soil samples (including four field duplicates) were analyzed for n-nonane, BTEX, styrene, and MTBE and 29 of those samples were also analyzed for 1,2-dibromoethane to determine if it should be retained as a COC. The following exceedances were identified during the subsurface investigations:

- MW20-02 at 1.8 to 1.95 m bgs: contained concentrations of benzene, toluene, ethylbenzene, and xylene exceeding the applicable CSR RL_{LD} standards.
- MW20-02 at 3.7 to 4.0 m bgs: contained concentrations of n-nonane, benzene, toluene, and xylene exceeding the applicable CSR RL_{LD} standards
- BH20-05 at 0.05 to 0.15 m bgs and 0.9 to 1.05 m bgs: contained concentrations of n-nonane, benzene, toluene, ethylbenzene, and xylene exceeding the applicable CSR RL_{LD} standards.

Based on soil analytical results, benzene, toluene, ethylbenzene, and xylenes were retained as COCs in soil. Based on the elevated concentration of 1,2-dibromoethane in select samples, 1,2-dibromoethane was retained as a PCOC.

4.1.2.3 Glycols

During the initial surficial soil sampling program, the sample collected at SS20-18 at the crash site of the main body of the aircraft was analyzed for ethylene glycol. The concentrations of analyzed ethylene glycol was less than the applicable CSR RL_{LD} standards and therefore, is not retained as a COC in soil and no further analysis was completed.

4.1.2.4 Metals

Seven soil samples (including two field duplicates) were collected in the upper 0.15 m of five surficial sampling locations across the Site and analyzed for the metals PCOCs including aluminum, antimony, barium, cadmium, chromium, cobalt, lead, titanium, and zinc. The following exceedances were identified:

 SS20-18 from 0.05 to 0.15 m bgs: contained concentrations of cadmium and total chromium exceeding the CSR RL_{LD} standard.

Given that cadmium and chromium were the only metals with concentrations above the CSR RL_{LD} standard during the surficial soil sampling program, the following metals were not retained as PCOCs for the subsurface investigation: aluminum, antimony, barium, cobalt, lead, titanium, and zinc. An additional 24 samples (including three field duplicates) at seven locations were collected and analyzed for cadmium and chromium during the subsurface investigations at Site to provide lateral and vertical delineation. The concentration of cadmium and chromium in the 24 samples collected during the subsurface investigations were less than the applicable CSR RL_{LD} standards.

Based on soil analytical results, cadmium and chromium are retained as COCs in soil.

4.1.2.5 **PFAS**

Eight soil samples, including two field duplicates, were collected within the top 0.45 m bgs across the Site and analyzed for PFAS parameters. Concentrations of PFAS parameters were detectable above the laboratory reporting limit but concentrations of PFBS and PFOS were well below the CSR RL_{LD} standards.

Therefore, PFBS and PFOS were not retained as COCs in soil.

4.1.2.6 Leachable BTEX

Due to high concentrations of BTEX reported in the samples collected at MW20-02 from 3.7 to 4.0 m bgs and BH20-05 from 0.9 to 1.05 m bgs, the samples were also analyzed for leachable BTEX and compared to the BC HWR Leachate Quality Standards to permit decision making regarding off-site transportation and disposal requirements. The sample collected at BH20-05 exceeded the leachate quality standard for ethylbenzene and soil at this location is therefore considered hazardous waste.

4.1.3 Summary of Soil Analytical Results

The following Table 3 presents a summary of the soil samples which contained concentrations of COCs greater than the applicable CSR RL_{LD} and/or BC HWR standards identified at the Site.

Location	Depth (m bgs)	Parameter Exceeding CSR RLLD Standards	Parameter Exceeding BC HWR
SS20-17	0.05 to 0.15	n-nonane, naphthalene, LEPHs	
SS20-18 ¹	0.05 to 0.15	Cadmium, chromium, n-nonane, benzene, toluene, ethylbenzene, xylenes, 2-methylnaphthalene, LEPHs, HEPHs, and VPHs	Sum of LEPH, HEPH, and VPH greater than 3% by weight
MW20-02	1.8 to 1.95	Benzene, toluene, ethylbenzene, xylenes, LEPHs, and VPHs	
	3.7 to 4.0	n-nonane, benzene, toluene, xylenes, LEPHs, and VPHs	
BH20-05	0.05 to 0.15	n-nonane, benzene, toluene, ethylbenzene, xylenes, LEPHs, and VPHs	
	0.9 to 1.05	n-nonane, benzene, toluene, ethylbenzene, xylenes, LEPHs, and VPHs	Leachable ethylbenzene
	2.4 to 2.55	LEPHs	

Table 3: Summary of Soil Samples Exceeding CSR and BC HWR Standards

¹ Surficial soil sample SS20-18 was collected at the same location as MW20-02.

4.1.4 Soil – Discussion and Recommendation

In order for the Site to meet the CSR numerical RL_{LD} standards, the following parameters in soil should be remediated: LEPHs, HEPHs, 2-methylnaphthalene, naphthalene, VPHs, n-nonane, BTEX, cadmium, and chromium.

Quinoline and 1,2-dibromoethane were retained as soil PCOC based on elevated laboratory detection limits in select soil samples. The elevated detection limits observed for quinoline and 1,2-dibromoethane were in locations where there are COCs present; both parameters were laterally and vertically delineated, and the areas with elevated laboratory detection limits will be incidentally remediated for other COCs.

The soil contamination exceeding the BC CSR RLLD standards has been delineated as follows:

Soil contamination identified in locations SS20-17, SS20-18, MW20-02 and BH20-05, has been delineated laterally to the north, south east and west (see Figures 2 through 5) and vertically to a depth of 4.3 m bgs (see Figure 6).

4.2 Groundwater

4.2.1 Groundwater – Field Observations

The depth to the groundwater in the monitoring wells at the time of groundwater sampling ranged from approximately 4.79 to 4.85 metres below top of casing (m btoc) during the 19 June 2020 sampling event. The depth to groundwater and groundwater elevations are presented in the following Table 4. Groundwater in the area of the Site is generally expected to flow south to southwest. The groundwater elevation in the four monitoring wells at the Site was measured between 340.62 to 340.67 metres above sea level (m asl).

Monitoring Well Location	Depth to Groundwater (m btoc)	Elevation of Top of Casing (m asl)	Ground Elevation (m asl)	Groundwater Elevation (m asl)
MW20-01	4.84	345.47	345.71	340.63
MW20-02	4.79	345.41	345.59	340.62
MW20-03	4.85	345.48	345.68	340.63
MW20-04	4.84	345.54	345.78	340.67

Table 4: Summary of Groundwater Elevation

Stabilized field parameters recorded prior to collection of groundwater samples are presented in Table 5 below.

Table 5: Stabilized	Groundwater Field I	Parameters

Monitoring Well Location	Temperature (°C)	рН (pH units)	Specific Conductivity (µS/cm)	Reduction- Oxidation Potential (mV)	Dissolved Oxygen (mg/L)
MW20-01	13.6	6.48	667	110.1	4.16
MW20-02	13.5	6.52	586.6	117.5	4.29
MW20-03	13.4	6.60	630.5	111.9	4.70
MW20-04	12.1	6.60	562.4	116.8	4.86

4.2.2 Groundwater – Analytical Results

Groundwater analytical results are presented in the Tables 2 series and summarized on Figure 7. The laboratory analytical report is provided in Appendix F. Groundwater samples were collected from monitoring wells MW20-01, MW20-02, MW20-03, and MW20-04 on 19 June 2020. The samples were analyzed for PCOCs as described in Section 1.3.5, LEPHw, EPHw10-19, PAHs, VPHw, VHw6-10, BTEX, dissolved metals (aluminium, antimony, barium, cadmium, chromium, cobalt, lead, titanium, and zinc), PFBS, PFOS, PFOA, 1,2-dibromoethane and n-nonane.

The laboratory analytical results indicated that the concentrations of PCOCs in the four samples, and one field duplicate sample, were less than the applicable CSR standards.

4.2.3 Groundwater – Discussion

No PCOCs have been retained as COCs for groundwater at the Site. Groundwater quality at the Site should be assessed for seasonal variations.

As groundwater contamination was not measured at the Site, a formal assessment of groundwater flow direction and contour mapping was not performed.

4.3 Soil Vapour

4.3.1 Soil Vapour – Field Observations

Stabilized field parameters recorded prior to collection of soil vapour samples on 18 and 26 June 2020 are presented in the following Table 6.

Soil Vapour Probe Location	Sample Date	PID (ppm)	Methane (%)	Carbon Dioxide (%)	Oxygen (%)
SV20-01	18 June 2020	16.7	0	1.3	17.6
SV20-03	18 June 2020	6.4	0	1.0	17.4
SV20-09 (subslab)	26 June 2020	0.1	0.1	1.3	17.9

 Table 6: Stabilized Soil Vapour Field Parameters

4.3.2 Soil Vapour – Analytical Results

Soil vapour analytical results are presented in Table 3 following the report and summarized on Figure 8. The laboratory analytical reports are provided in Appendix F. Soil Vapour samples were collected from locations SV20-01 and SV20-03 on 18 June 2020 and from SV20-09 (sub-slab sample from the basement of the home) on 26 June 2020. The samples were analyzed for PCOCs as described in Section 1.3.5; BTEX, styrene, MTBE, naphthalene, VPH, 1,2-dibromoethane, 1,2-dichloroethane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, isopropylbenzene, 1,3-butadiene, methyl-cyclohexane, n-decane, and n-hexane.

As discussed in Section 2.2.3, the analytical results were compared to the CSR RL standards without an attenuation factor to assess indoor air exposure. The analytical results for the outdoor soil vapour monitoring wells, SV20-01 and SV20-03, were also compared to the CSR RL standards with an attenuation factor to assesses outdoor air exposure.

The soil vapour analytical results indicated:

- Outdoor air exposure met the BC CSR RL standards.
- Indoor air exposure did not meet the BC CSR RL standards for VPH, benzene, xylenes, 1,3-butadiene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and/or methyl-cyclohexane in the soil vapour samples collected from SV20-01, SV20-03, and SV20-09.
- The laboratory detection limit for naphthalene in the sample collected from SV20-09 was greater than the CSR RL standard due to high concentration of other analytes.

Soil vapour concentrations were highest at SV20-01, which is located within approximately 2 m of the main crash site where soil concentrations were highest. SV20-03 is located approximately 2.5 m of the main crash site, while SV20-09 was located inside the home approximately 2 m south from the foundation wall. Concentrations of volatile and semi-volatile contaminants were generally highest at SV20-01, and it is inferred there is a gradient of decreasing soil vapour concentration with increasing distance from the areas of highest soil contamination. Consideration was given to off-site properties and off-site receptors with respect to soil vapour exposure and based on application of appropriate attenuation factors for the current and inferred future off-site property uses (a residential home with a basement extending to approximately 1.5 m bgs free of preferential pathways), migration of soil vapour contamination is not occurring from the Site to off-site properties.

4.3.3 Soil Vapour – Discussion

The PCOCs VPH, benzene, total xylenes, 1,3-butadiene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and methyl-cyclohexane have been retained as COCs and should be assessed again after soil remediation and for seasonal variations. Naphthalene was retained as a soil vapour PCOC based on elevated laboratory detection limits in SV20-09.

It is expected that the removal of volatile and semi volatile contamination in soil will incidentally address soil vapour contamination identified above.

5.0 QUALITY ASSURANCE AND QUALITY CONTROL

5.1 Equipment Blanks and Trip Blanks

The results of the laboratory analysis of equipment blanks, trip blanks, and the sample collected of the water used for hydro-excavation are presented in Table 4 following the report. The laboratory analytical results indicated that the concentration of analyzed parameters were less than laboratory detection limits in the three equipment blanks, one trip blank and one sample of water collected from the water source used for hydro-excavation.

5.2 Field Duplicate Samples

The RPDs and DFs that were calculated for the Stage 2 PSI soil, groundwater, and soil vapour samples and were evaluated against the project targets for the media type (as described in Section 3.9) are presented in Table 5 (soil), Table 6 (groundwater) and Table 7 (soil vapour) following the report.

5.2.1 Soil

- Seven duplicate soil pairs were analyzed during the investigations. DFs values ranged from up to 2.7 which met the project targets with the exception of MW20-02 (3.7 to 4.0 m bgs) with a DF of 2.7.
- RPD values ranged from 1.0% to 197%. A summary of the RPDs that exceeded the project targets is listed below:
 - SS20-18 (0.05 to 0.15 m bgs): 8:2 fluorotelemer sulfonic acid (8:2 FTS); perfluroheptanoic acid (PFHpA); perfluorononanoic acid (PFNA); 1,2,4-trimethylbenzene; 1,3,5-trimethylbenzene; 1-propylbenzene; benzene; ethylbenzene; isopropylbenzne; m-p-xylenes; o-xylenes; sec-butylbenzene; toluene; VPH; and xylenes
 - SS20-17 (0.05 to 0.15 m bgs): 1-methylnaphthalene, 2-methylnaphthalene, fluorene, LEPHs, and phenanthrene
 - MW20-02 (3.7 to 4.0 m bgs): 1-propylbenzene, benzene, toluene, xylene

These elevated RPDs are inferred to be related to heterogeneity in the soil samples. The elevated RPDs are not expected to affect classification as to whether or not these samples exceeded the BC CSR RL_{LD} standards as the samples which had elevated RPDs contained concentrations of COCs greater than two times the CSR RL_{LD} standards. Samples SS20-17, SS20-18, and MW20-02 from 3.7 to 4.0 m bgs contained concentrations of one or more parameters that exceeded the CSR RL_{LD} standards in only one sample in the duplicate pair. As a conservative measure, the parameter was considered to exceed the CSR RL_{LD} standards.

5.2.2 Groundwater

One duplicate groundwater pair was analyzed during the groundwater investigations at MW20-02.

- The RPDs were calculated and ranged up to 18 % which met the project targets.
- DFs were calculated and ranged up to 0.8 which met the project targets.

5.2.3 Soil Vapour

One duplicate soil vapour pair was analyzed during the soil vapour investigation at SV20-03. The following DFs and RPDs were calculated:

- The RPDs for all parameters ranged up to 9% which met the project targets.
- DFs were calculated and ranged up to 0.125 which met the project targets.

5.3 Laboratory QA/QC Program

The laboratory QA/QC program consisted of one or more of the following analysis: analysis of method blank, laboratory duplicate, matrix spike, laboratory control samples. The laboratory QA/QC results are presented in the laboratory certificates of analysis provided in Appendix F.

5.3.1 Soil

The results of the laboratory QA/QC program for the soil samples collected during the Stage 2 PSI indicated:

- The reported concentration of laboratory duplicates were outside ALS DQO due to sample heterogeneity for several samples during the initial surficial soil sampling program and subsurface investigations.
- Laboratory control sample recovery was above the ALS DQO for PFAS for several samples during the initial surficial soil sampling program and subsurface investigations. The lab reported that non-detected sample results were considered reliable and results above the detection limit have been qualified.
- Method blanks exceeded the ALS DQO for PFBA for several samples during the initial surficial soil sampling program and subsurface investigations. The laboratory reported detection limits have been adjusted for samples with measured concentrations below five times the method blank concentration.
- Matrix spike recovery could not be accurately calculated for several PFAS due to high analyte background in sample during the initial surficial soil sampling program and subsurface investigations.
- Relative percent difference could not be calculated in several samples due to the result being less than the detection limit.

5.3.2 Groundwater

The results of the laboratory QA/QC program for the surface water and groundwater samples collected during the Stage 2 PSI indicated:

- Method blank exceeds ALS DQO for PFBA for several samples. PFBA was not detected in the groundwater samples analysed during the investigation.
- Detection level raised for acenaphthene, fluorene, naphthalene, quinoline due to chromatographic interference due to co-elution.

5.3.3 Soil Vapour

The results of the laboratory QA/QC program for the soil vapour samples collected during the PSI indicated:

- Laboratory Method Blanks were below detection.
- Laboratory control sample duplicates were within internal ALS QAQC standards.
- Detection limit adjusted for required dilution for several VOC parameters (methyl-cyclohexane, n-Hexane).
- Analytical interference of parameter 1,2- Dichloroethane may be present, results may be biased high.
- Detection limit raised because of dilution required due to high concentration of test analytes for VH(C6-C13) and VPH(C6-C13) hydrocarbons and all VOC parameters analyzed except methyl-cyclohexane, n-Hexane, 1,2 Dichloroethane.

5.4 Summary of QA/QC Results

Based on the results of the blank samples, field duplicates, and laboratory QA/QC program, the analytical results are considered to be acceptable for the purposes of this investigation.

Blank samples contained concentrations of PFAS less than the detection limit. This indicates that crosscontamination of samples with PFAS from sampling equipment, atmosphere, or sample handling procedures at levels that could impact the interpretation of the results was unlikely to have occurred. Water used during hydroexcavation was also unlikely to have introduced PFAS contamination to the boreholes.

Duplicate soil, groundwater, and soil vapour samples with calculated RPDs and DFs above the Golder internal targets were concluded to be due to sample heterogeneity. Samples that contained concentrations of one or more parameters that exceeded the CSR RL_{LD} standards in only one sample in the duplicate pair were considered to exceed the CSR RL_{LD} standards as a conservative measure. Also, at least one other parameter exceeded the CSR RL_{LD} standards in the samples where only one parameter exceeded in a duplicate pair.

The laboratory QA/QC program indicated that there were qualifiers noted in the laboratory analytical data. The qualifiers generally resulted in adjustment of reported detection limits and the laboratory results were considered acceptable for the purposes of this investigation.

6.0 SUMMARY AND RECOMMENDATIONS6.1 Soil

Golder conducted an initial surficial sampling program on 25 and 26 May 2020 that included collecting surficial samples from 12 locations from the Site to assess the presence of contamination relating to the main crash site and front yard of the home where chemicals on board the aircraft impacted and spilled to the ground surface, and areas of the Site where AFFF was deployed as part of the fire fighting response. Hydrocarbon, VOC, and metals contamination was identified in the surficial sample collected at the impact site of the main body of the aircraft (SS20-18). Hydrocarbon contamination was also identified at the location approximately 5.5 m to the east of the impact site of the main body of the aircraft (SS20-17).

Following the initial surficial sampling program, a subsurface investigation was conducted to provide further characterization of the quality of soil, groundwater, and soil vapour and to provide soil delineation for SS20-17 and SS20-18. Between 10 and 12 June 2020, eight boreholes were advanced with two locations completed as monitoring wells and two locations completed as nested groundwater and soil vapour monitoring wells. Hydrocarbon and VOC contamination was identified in the soils at the impact site of the main body of the aircraft from ground surface in SS20-18 to a depth of 4.0 m bgs in MW20-02. A sample analyzed in MW20-02 at a depth of 4.6-4.75 m bgs met the CSR RL_{LD} standards for COCs. Hydrocarbon contamination was also identified in the borehole located approximately 3 m north of the impact site of the main body of the aircraft (BH20-05) from surface to 2.55 m bgs and VOC contamination was identified from surface to 1.05 m bgs at this location.

To assess the possibility for soil contamination following preferential pathways beneath the foundation of the house, an additional indoor subsurface investigation was conducted on 26 June 2020. Soil contamination was not identified in the borehole advanced through the concrete foundation of the house.

Soil contamination identified in locations SS20-17, SS20-18, MW20-02 and BH20-05 has been delineated laterally to the north, south east and west and vertically to a depth of 4.3 m bgs at MW20-02/SS20-18 (inferred to be halfway between the deepest sample that exceeded the standards and the next sample below standards, except to the south where it is assumed the lateral extent of contamination was constrained by the presence of the building foundation and footing). As the contamination source is surficial and concentrations decrease with elevation, BH20-05 is inferred to decrease to concentrations meeting CSR standards at a depth of approximately 3.0 m bgs, based on review of a similar concentration profile in MW20-02. The following parameters were retained as COCs in soil and should be remediated: LEPHs, HEPHs, 2-methylnaphthalene, naphthalene, VPHs, n-nonane, BTEX, cadmium, and chromium. Quinoline and 1,2-dibromoethane were retained as soil PCOC based on elevated laboratory detection limits in select soil samples. The elevated detection limits observed for quinoline and 1,2-dibromoethane were laterally and vertically delineated, and the areas with elevated laboratory detection limits will be incidentally remediated for other COCs.

6.2 Groundwater

The groundwater monitoring wells were sampled on 19 June 2020. The concentration of the PCOCs in the groundwater samples met the applicable BC CSR standards.

No PCOCs were retained as COCs for groundwater at the Site. Groundwater quality at the Site should be assessed for seasonal variations; it is expected that this requirement would be addressed following remediation of soil at the Site.

6.3 Soil Vapour

The soil vapour probes installed in the outdoor areas of the Site were sampled on 18 June 2020. To assess soil vapour quality underneath the foundation of the house, a sub-slab soil vapour probe was installed and sampled on 26 June 2020.

The analytical results for the three soil vapour locations sampled indicated that the outdoor air exposure met the BC CSR RL standards. Indoor air exposure did not meet the BC CSR RL standards.

The PCOCs VPH, benzene, total xylenes, 1,3-butadiene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and methyl-cyclohexane were retained as COCs and should be assessed again for indoor air following soil remediation and taking into account for seasonal variations. Naphthalene was retained as a soil vapour PCOC based on elevated laboratory detection limits in SV20-09.

It is expected that removal of contamination in soil will incidentally address soil vapour contamination identified above.

6.4 Recommendations

Based on the results of the Stage 2 PSI, soil containing concentrations of LEPHs, HEPHs, VPHs, 2-methylnaphthalene, naphthalene, BTEX, cadmium, chromium, and n-nonane exceeding the CSR RL_{LD} standards are present in the area of SS20-18/MW20-02, SS20-17, and BH20-05. Soil exceeding the BC HWR Leachate Quality Standard for leachable ethylbenzene was also identified in one borehole location at BH20-05, and the total concentration of petroleum hydrocarbons in SS20-18 exceeded 3% by weight, and soil at this location is considered to be hazardous waste.

The following recommendation is provided to address the soil contamination identified at the Site:

- Conduct a remedial excavation to meet numerical standards to remove the contaminated soil in the area of the impacted site associated with the main body of the aircraft and backfill the area with clean soil in order to return the Site back to the landowners.
- If monitoring wells must be decommissioned during remediation, install post-remediation groundwater monitoring wells to assess post-remediation groundwater quality, and undertake a round of post-remediation groundwater monitoring. If the post-remediation groundwater monitoring event indicates that groundwater concentrations of PCOCs are not present above the CSR standards, no further work will be required and the monitoring wells can be decommissioned.
- If soil vapour probes must be decommissioned during remediation, install post-remediation soil vapour monitoring probes to assess post-remediation soil vapour quality, and undertake seasonal soil vapour monitoring in the dry and wet seasons to assess for seasonal variability and stability.

It is recommended that remediation be undertaken to remove contaminated soil and incidentally address soil vapour contamination. A remedial action plan (RAP) has been prepared under separate cover (Golder reference number 20145856-005-R-RevB). The RAP reviews the results from the Stage 2 PSI and provides recommendations in terms of remedial extents, volumes, and remediation activities required to perform remediation.

A summary of the COCs and recommendations is provided below.

Media	PCOC	coc	Recommendations				
Soil PCOC	LEPHs, HEPHs, PAH, VPHs	2-methylnapthalene, naphthalene, LEPH, HEPH, VPH	Remediation				
	Benzene, ethylbenzene, toluene, xylene	Benzene, ethylbenzene, toluene, xylene	Remediation				
	aluminium, antimony, barium, cadmium, chromium, cobalt, lead, titanium, and zinc	cadmium, chromium	Remediation				
	PFBS, PFOS	-	-				
	ethylene glycol	-	-				
	isopropylbenzene, 1-propylbenzene, 1,3,5-trimethylbenzene, butylbenzenes, 1,2-dichloroethane	-	-				
	MTBE, styrene, N-nonane	n-nonane	Remediation				
	1,2 dibromoethane	-	-				
Groundwater	LEPHw, EPHw10-19, PAHs, VPHw, VHw6-10	-	Assess post- remediation and for				
	benzene, toluene, ethylbenzene, xylene	-					
	aluminium, antimony, barium, cadmium, chromium, cobalt, lead, titanium, and zinc	-					
	PFBS, PFOS, PFOA	-					
	1,2-dibromoethane, n-nonane	-					
Soil Vapour	benzene, toluene, ethylbenzene, xylene	Benzene and total xylenes	Assess post- remediation and for				
	styrene, MTBE, naphthalene, VPH, 1,2-dibromoethane, 1,2-dichloroethane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and isopropylbenzene,1,3-butadiene, methyl-cyclohexane, n-decane and n-hexane	VPH, 1,3-butadiene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and methyl-cyclohexane	Seasonal variations				

*quinoline and 1,2-dibromoethane are retained as soil PCOC based on elevated laboratory detection limits in select soil samples.

** Naphthalene was retained as a soil vapour PCOC based on elevated laboratory detection limits in SV20-09.

23 July 2020

7.0 CLOSURE

We trust this information is sufficient for your needs at this time. Should you have any questions or concerns, please do not hesitate to contact the undersigned at 604-296-4200.

Golder Associates Ltd.

Alanna Umphrey, AScT Environmental Technician

Alison Verde, PEng Environmental Engineer

AU/AV/EvK/syd

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/128990/project files/6 deliverables/issued to client_for wp/20145856-011-r-rev0/20145856-011-r-rev0-kamloops stage 2 psi-23jul_20.docx

8.0 **REFERENCES**

- BC ENV (BC Ministry of Environment and Climate Change Strategy). 1988. Hazardous Waste Regulation. (OC 268/88, as updated [includes amendments up to BC Reg 243/2016, 1 November 2017]).
- BC ENV. 1996a. *Environmental Management Act*. SBC 2003 Chapter 53. Current to 30 January 2019. Victoria BC: http://www.bclaws.ca/civix/document/id/complete/statreg/03053_01#part1
- BC ENV. 1996b. Contaminated Sites Regulation. (BC Reg. 375/96, O.C. 1480/96 and M040/2019, as updated [includes amendments up to BC Reg. 11/2019 and 13/2019, updated to 24 January 2019]). Victoria, BC.
- BC ENV. 2009. Technical Guidance 1 on Contaminated Sites: Site Characterization and Confirmation Testing. Available at [http://www2.gov.bc.ca/gov/content/environment/air-land-water/site-remediation/guidance-resources/technical-guidance].
- BC ENV. 2016. Groundwater Protection Regulation. (BC Reg. 39/2016, O.C. 113/2016, as updated [includes amendments up to BC Reg 152/2016, 10 June 2016]). Victoria, BC.
- BC ENV. 2017a. Protocol 21 on Contaminated Sites: Water Use Determination. Version 2.0. Available at [https://www2.gov.bc.ca/gov/content/environment/air-land-water/site-remediation/guidance-resources/protocols].
- BC ENV. 2017b. Protocol 22 on Contaminated Sites: Application of Vapour Attenuation Factors to Characterize Vapour Contamination. Version 2.0. Available at [https://www2.gov.bc.ca/gov/content/environment/air-land-water/site-remediation/guidance-resources/protocols].
- BC ENV. 2017c. Technical Guidance #4, Vapour Investigation and Remediation. Version 2.0. Available at [https://www2.gov.bc.ca/assets/gov/environment/air-land-water/site-remediation/docs/technical-guidance/tg04.pdf].
- BC ENV. 2017d. Technical Guidance #8, Technical Guidance on Contaminated Sites Groundwater Investigation and Characterization. Version 2.0. Available at [https://www2.gov.bc.ca/assets/gov/environment/air-landwater/site-remediation/docs/technical-guidance/tg08.pdf].
- City of Kamloops. (2020). Kamloops CityMap. Accessed 16 June 2020. Available at [https://www.kamloops.ca/homes-business/community-planning-zoning/zoning-property-information].
- Geological Survey of Canada (1963). Map 9-1963 Surficial Geology, Kamloops Lake, British Columbia.
- Province of British Columbia. iMapBC. Accessed 16 June 2020. Available at: [https://www2.gov.bc.ca/gov/content/data/geographic-data-services/web-based-mapping/imapbc?keyword=imapbc].

Table 1A: SOIL ANALYTICAL RESULTS METALS, BTEX, VOCs, GLYCOLs SNOWBIRD ENVIRONMENTAL CLEAN-UP KAMLOOPS, BC

			Locatio	n SS20-09	SS20-10	SS20-11	SS20-12	SS20-13	SS20-14	SS20-15	SS20-16	SS20-17	SS20-17	SS20-18	SS20-18	MW20-01	MW20-01	MW20-01	MW20-01	MW20-01	MW20-01	MW20-01	MW20-01	MW20-02	MW20-02
		5	Sample Nan	e 02905-01	02905-03	02905-05	02905-07	02905-09	02905-11	02906-01	02906-03	02906-05	02906-07	02903-03	02903-07	02926-04	02926-05	02926-06	02926-07	02927-03	02931-01	02927-04	02931-02	02926-02	02928-01
			Sample Da	te 26-May-20	26-May-20	26-May-20	26-May-20	26-May-20	26-May-20	26-May-20	26-May-20	26-May-20	26-May-20	25-May-20	25-May-20	11-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	12-Jun-2020
		5	Sample Dep	th 0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.9-1.05 m	2.4 - 2.55 m	4.0 - 4.15 m	4.6 - 4.9 m	5.5 - 5.65 m	5.8 - 6.1 m	1.8-1.95 m	3.7-4.0 m
			aboratory	D L2451986-1	L2451986-3	L2451986-5	L2451986-7	L2451986-9	L2451986-11	L2451986-13	L2451986-15	L2451986-17	L2451986-19	L2451374-15	L2451374-19	L2460211-4	L2460211-5	L2460211-6	L2460211-7	L2460211-15	L2460211-20	L2460211-16	L2460211-21	L2460211-2	VA20A0304-
		OAOC Re	lated Samn	e									1 2451986-17		12451374-15	12460211-5	12460211-4								v MZOA6304-
			QAC	c								FDA	ED FD	FDA	FD	FDA	ED FD								FDA
Parameter		CSR MCS	5 Unit									1 BA	10	10,1		TBA	10								- DA
Field + Physical	REED																								-
			nnm	<0.1	<0.1	9	<0.1	1	1	3	1	426	426	878	878	4	4	2	2	2		<0.1	-	944	1742
Moisture Percent			%	13.8	17.7	14.2	9.02	29.2	21.4	15.0	15.8	18.9	20.9	24.5	24.8	17.9	17.4	20.0	-	-		-0.1		25.3	11 3
nH			nH units	-	-	-	5.02	-	6.96	6.61	6 71	6 11	5.86	6.81	6.93	8.05	8 14	8.06	8 16	7 72	6 79	7 38	7 39	20.0	7 19
Metals			pri unito	1					0.00	0.01	0.71	0.11	0.00	0.01	0.00	0.00	0.14	0.00	0.10	1.12	0.70	1.00	1.00		7.10
Aluminum	40000	НН	ma/ka		-	-	-	-	26800	20100	23400	18400	21500	19500	18500	-	-	-	-	-	-	-	-	<u> </u>	<u> </u>
Antimony	20	FH	ma/ka	-	-	_	-	-	0.16	0.22	0.18	0.26	0.28	3 43	2 47	_	-	_	-	-	-	-	-	_	-
Barium	350	DW	ma/ka	-	-	_	-	-	193	132	150	128	147	159	149	_	-	_	-	-	-	-	-	_	-
Cadmium	1-20	AWF. I. pł	H ma/ka	-	-	-	-	-	0.266	0.202	0.147	0.169	0.173	32.8	26.6	0.139	0.166	0.118	0.080	0.035	0.065	0.063	0.090	-	0.118
Chromium	60	AWF. DW	/ ma/ka	-	-	-	-	-	58.9	45.4	50.2	45.1	49.5	75.8	79.8	45.9	43.2	39.8	41.2	20.0	27.7	15.8	16.9	-	21.6
Cobalt	25	AWF.DW.	l ma/ka	-	-	-	-	-	15.5	13.6	15.4	14.1	15.0	14.8	14.5	-	-	-	-			-	-	-	
Lead	120	í	mg/kg	-	-	-	-	-	14.2	12.5	12.1	13.3	13.7	11.2	11.6	-	-	-	-	-	-	-	-	-	-
Titanium			mg/kg	-	-	-	-	-	1930	1530	1630	1550	1650	1550	1530	-	-	-	-	-	-	-	-	-	-
Zinc	450	т	mg/kg	-	-	-	-	-	119	82.8	85.3	75.4	81.7	138	134	-	-	-	-	-	-	-	-	-	-
Other Analytes																									
n-Butylbenzene	800	HH	mg/kg	-	-	-	-	-	-	-	-	-	-	< 69	< 150	-	-	-	-	-	-	-	-	-	-
n-Nonane	4.5	НН	mg/kg	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	4.29	5.25	194	557	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	-	80.5
sec-Butylbenzene	1500	НН	mg/kg	-	-	-	-	-	-	-	-	-	-	29.5	56.3	-	-	-	-	-	-	-	-	-	-
tert-Butylbenzene	1500	HH	mg/kg	-	-	-	-	-	-	-	-	-	-	< 2.5	< 2.5	-	-	-	-	-	-	-	-	-	-
Glycols																									
Diethylene Glycol			mg/kg	-	-	-	-	-	-	-	-	-	-	<10	-	-	-	-	-	-	-	-	-	-	-
Ethylene Glycol	10	DW	mg/kg	-	-	-	-	-	-	-	-	-	-	<10	-	-	-	-	-	-	-	-	-	-	-
1,2-Propylene Glycol			mg/kg	-	-	-	-	-	-	-	-	-	-	<10	-	-	-	-	-	-	-	-	-	-	-
Triethylene Glycol	30000	HH	mg/kg	-	-	-	-	-	-	-	-	-	-	<10	-	-	-	-	-	-	-	-	-	-	-
VOCs + BTEX		_																							
1,2-dibromoethane	3.5	HH	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.15	<0.20	< 8.5	< 13	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	-	<0.400
1,2-dichloroethane	5	EH	mg/kg	-	-	-	-	-	-	-	-	-	-	< 0.050	< 0.050	-	-		-	-	-	-	-	-	-
Benzene	0.035	DW	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0091	0.0089	1.65	3.43	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.399	0.345
Toluene	0.5	AWF	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.126	0.135	22.1	40.8	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	7.03	8.12
Ethylbenzene	15	DW	mg/kg	< 0.015	< 0.015	< 0.015	< 0.015	<0.015	< 0.015	< 0.015	<0.015	0.838	0.828	57.7	97.1	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	15.2	12.8
Xylenes, Total	6.5	DW	mg/kg	< 0.075	< 0.075	<0.075	<0.075	<0.075	<0.075	<0.075	<0.075	6.34	5.93	369	603	< 0.075	<0.075	<0.075	<0.075	<0.075	<0.075	<0.075	<0.075	91.1	/2.1
o-Xylene	-		mg/kg	< 0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	2.89	2.18	112	187	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	29.9	20.2
Styrene	5	EH	mg/kg	< 0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 2.5	< 2.5	< 0.050	<0.050	<0.050	< 0.050	< 0.050	<0.050	<0.050	< 0.050	<0.050	< 0.050
Methyl tert-Butyl Ether	4000	нн	mg/kg	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20	<0.20	<0.20	< 0.20	< 0.20	<0.20	< 0.20	<0.20	<0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.200
m,p-Aylenes			mg/kg	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	3.45	3.75	257	416	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	01.3	51.9
1,2,4-1rimethylbenzene	150	uр	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	4.51	4.15	248	4/3	-	-	-	-	-	-	-	-	-	-
	150	HH	mg/kg	-	-	-	-	-	-	-	-	-	-	70.7	137	-	-	-	-	-	-	-	-	-	-
1 Propulsonzene	1500	HH	mg/kg	-	-	-	-	-	-	-	-	-	-	29.8 75.5	50.3	-	-	-	-	-	-	-	-	-	-
1-Propyidenzene	1500	нн	mg/kg	-	-	-	-	-	-	-	-	-	-	15.5	128	-	-	-	-	-	-	-	-	-	-

Notes

¹ Standards shown are from the Contaminated Sites Regulation ("CSR"; BC Reg. 375/96, O.C. 1480/96 including amendments up to BC Reg. 13/2019, 24 January 2019

Land Use abbreviations: RL_{LD} (low density residential) The most conservative standard (MCS) is applied of the following site specific factors: AWF - freshwater aquatic life; DW - drinking water; EH - ecological health; HH - human health; I - intake of contaminated soil; T - toxicity to soil invertebrates and plants

* The depth of samples collected at BH20-10 are expressed as depth below outdoor ground surface Indicates parameter was below laboratory equipment detection limit.
 Chemical not analyzed or criteria not defined.
 CAS RN = Chemical Abstracts Service Registry Number
 FDA = field duplicate available; FD = field duplicate mg/kg = miligrams/kilogram pH = standard is pH dependent QAQC = Quality Assurance/Quality Control

values highlighted yellow exceed the CSR RL_{LD} standard

Output generated by GalReport.

100

Table 1A: SOIL ANALYTICAL RESULTS METALS, BTEX, VOCs, GLYCOLs SNOWBIRD ENVIRONMENTAL CLEAN-UP KAMLOOPS, BC

			Location	MW20-02	MW20-02	MW20-02	MW20-03	MW20-03	MW20-03	MW20-04	MW20-04	MW20-04	MW20-04	MW20-04	BH20-05	BH20-05	BH20-05	BH20-06	BH20-08	BH20-08	BH20-08	BH20-08	BH20-10	BH20-10	BH20-10	BH20-10
		5	Sample Name	02928-02	02928-03	02928-04	02925-04	02925-05	02926-12	02925-08	02925-09	02927-05	02927-06	02927-07	02925-10	02925-11	02925-12	02925-02	02926-08	02926-09	02926-10	02928-05	02945-01	02945-02	02945-03	02945-04
			Sample Date	12-Jun-2020	12-Jun-2020	12-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	12-Jun-2020	26-Jun-2020	26-Jun-2020	26-Jun-2020	26-Jun-2020
		5	ample Depti	3.7-4.0 m	4.6-4.75 m	5.8-5.95 m	0.05-0.15 m	0.9-1.05 m	3.96-4.11 m	0.9-1.05 m	2.4-2.55 m	3.4 - 3.7 m	4.0 - 4.6 m	5.5 - 5.65 m	0.05-0.15 m	0.9-1.05 m	2.4-2.55 m	0.9-1.05 m	0.05-0.15 m	0.9-1.05 m	0.9-1.05 m	4.0-4.3 m	2.3-2.45 m*	3.2-3.35 m*	4.25-4.4 m*	4.25-4.4 m*
		I	_aboratory II	002	002	VA20A0304-	L2459618-4	L2459618-5	L2460211-12	L2459618-8	L2459618-9	L2460211-17	L2460211-18	L2460211-19	L2459618-10	L2459618-11	L2459618-12	L2459618-2	L2460211-8	L2460211-9	L2460211-10	005	L2466948-1	L2466948-2	L2466948-3	L2466948-4
		QAQC Re	lated Sample	VA20A6304-																L2460211-10	L2460211-9				L2466948-4	L2466948-3
			QAQ	FD																FDA	FD				FDA	FD
Parameter	CSR RLLD ¹		Unit																							
Field + Physical																										
PID			ppm	1742	38	22	122	14	442	86	4	20	98	2	1122	2002	104	8	6	4	4	2	<0.1	<0.1	<0.1	<0.1
Moisture, Percent			%	14.3	13.0	11.7	15.5	16.3	9.55	15.9	18.7	-	-	-	25.2	21.8	21.8	23.5	21.0	13.8	12.0	4.80	4.66	2.01	2.91	2.36
pH			pH units	7.29	7.39	-	6.51	6.93	-	-	-	7.70	7.56	6.93	7.13	7.20	7.50	-	-	-	-	8.31	7.35	7.55	7.37	7.43
Metals																										
Aluminum	40000	HH	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Antimony	20	EH	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Barium	350	DW	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium	1-20	AWF, I, pł	H mg/kg	0.097	0.039	-	0.203	0.116	-	-	-	0.046	0.034	0.142	0.227	0.121	0.218	-	-	-	-	0.032	0.042	0.048	0.037	0.035
Chromium	60	AWF, DW	mg/kg	23.0	20.2	-	45.6	52.6	-	-	-	17.7	18.9	26.0	58.2	53.8	45.0	-	-	-	-	11.3	17.5	18.6	19.7	16.3
Cobalt	25	AWF,DW,	I mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	120	I	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Titanium	450	-	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	450	I	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Other Analytes	000																									
n-Butylbenzene	800	НН	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
n-Nonane	4.5	НН	mg/kg	2.30	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	233	304	1.25	<0.050	<0.060	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
sec-Butylbenzene	1500	НН	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1500	пп	під/кд	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Giycols Diathulana Chuaol			malka																							
Ethylene Clycol	10		mg/kg	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.2 Propylone Glycol	10	Dvv	mg/kg	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Triethylene Glycol	30000	нн	mg/kg	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
VOCs + BTEX	50000	1111	iiig/kg				-					-			-	-		-	-		-		_		-	-
1 2-dibromoethane	3.5	нн	ma/ka	<0.050	<0.050	-	<0.050	<0.050	_	<0.050	<0.050	<0.050	<0.050	<0.050	<0.60	<0.90	<0.050	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
1.2-dichloroethane	5	EH	mg/kg	-0.000	-0.000	-	-0.000	-0.000	-	-0.000	~0.000	-0.000	-0.000	-0.000	-0.00	-0.30	-0.000		-0.000	-0.000	-0.000	~0.000	-0.000	-0.000	-0.000	-0.000
Benzene	0.035	DW	ma/ka	< 0.0050	<0.0050	<0.0050	<0.0050	0.0074	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.818	1.93	0.0115	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Toluene	0.5	AWE	ma/ka	0.053	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	15.1	28.3	0.145	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Ethylbenzene	15	DW	ma/ka	0.114	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	25.5	49.5	0.270	-	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015
Xvlenes, Total	6.5	DW	ma/ka	0.884	< 0.075	< 0.075	< 0.075	< 0.075	< 0.075	< 0.075	< 0.075	<0.075	< 0.075	< 0.075	154	298	1.78	-	< 0.075	< 0.075	< 0.075	< 0.075	< 0.075	< 0.075	< 0.075	<0.075
o-Xylene			mg/kg	0.330	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	50.9	97.3	0.615	-	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Styrene	5	EH	mg/kg	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.057	0.173	< 0.050	-	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Methyl tert-Butyl Ether	4000	HH	mg/kg	<0.200	<0.200	< 0.050	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20	<0.20	<0.200	<0.20	<0.20	<0.20	<0.20
m,p-Xylenes			mg/kg	0.554	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	103	200	1.16	-	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050
1,2,4-Trimethylbenzene			mg/kg	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3,5-Trimethylbenzene	150	HH	mg/kg		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Isopropylbenzene	1500	HH	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1-Propylbenzene	1500	HH	ma/ka		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes

¹ Standards shown are from the Contaminated Sites Regulation ("CSR"; BC Reg. 375/96, O.C. 1480/96 including amendments up to BC Reg. 13/2019, 24 January 2019

Land Use abbreviations: RL_LD (low density residential)

Lano use audieviations: KL_{LD} (low density residential) The most conservative standard (MCS) is applied of the following site specific factors: AWF - freshwater aquatic life; DW - drinking water; EH - ecological health; IH - human health; I - intake of contaminated soil; T - toxicity to soil invertebrates and plants

 * The depth of samples collected at BH20-10 are expressed as depth below outdoor ground surface

outdoor ground surface < Indicates parameter was below laboratory equipment detection limit. - Chemical not analyzed or criteria not defined. CAS RN = Chemical Abstracts Service Registry Number FDA = field duplicate available; FD = field duplicate mg/kg = milligrams/kilogram pH = standard is pH dependent QAQC = Quality Assurance/Quality Control 100

values highlighted yellow exceed the CSR RL_{LD} standard

Output generated by GalReport.

Table 1B: SOIL ANALYTICAL RESULTS HYDROCARBONS SNOWBIRD ENVIRONMENTAL CLEAN-UP KAMLOOPS, BC

			Location	SS20-09	SS20-10	SS20-11	SS20-12	SS20-13	SS20-14	SS20-15	SS20-16	SS20-17	SS20-17	SS20-18	SS20-18	MW20-01	MW20-01	MW20-01	MW20-01	MW20-01	MW20-01	MW20-01	MW20-01	MW20-02	MW20-02	MW20-02
		Sa	ample Name	02905-01	02905-03	02905-05	02905-07	02905-09	02905-11	02906-01	02906-03	02906-05	02906-07	02903-03	02903-07	02926-04	02926-05	02926-06	02926-07	02927-03	02931-01	02927-04	02931-02	02926-02	02928-01	02928-02
		5	Sample Date	26-May-20	25-May-20	25-May-20	11-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	12-Jun-2020	12-Jun-2020									
		Sa	mple Depth	0.05-0.15 m	0.9-1.05 m	2.4 - 2.55 m	4.0 - 4.15 m	4.6 - 4.9 m	5.5 - 5.65 m	5.8 - 6.1 m	1.8-1.95 m	3.7-4.0 m	3.7-4.0 m													
		La	aboratory ID	L2451986-1	L2451986-3	L2451986-5	L2451986-7	L2451986-9	L2451986-11	L2451986-13	L2451986-15	L2451986-17	L2451986-19	L2451374-15	L2451374-19	L2460211-4	L2460211-5	L2460211-6	L2460211-7	L2460211-15	L2460211-20	L2460211-16	L2460211-21	L2460211-2	VA20A8304-001	VA20A8304-002
		QAQC Rela	ated Sample										L2451986-17		L2451374-15	L2460211-5	L2460211-4								VA20A8304-002	VA20A8304-001
			QAQC									FDA	FD	FDA	FD	FDA	FD								FDA	FD
Parameter	CSR RLLD ¹	CSR MCS	Unit																							
Field + Physical																										
PID			ppm	<0.1	<0.1	9	<0.1	1	1	3	1	426	426	878	878	4	4	2	2	2	-	<0.1	-	944	1742	1742
pH			pH units	-	-	-	-	-	6.96	6.61	6.71	6.11	5.86	6.81	6.93	8.05	8.14	8.06	8.16	7.72	6.79	7.38	7.39	-	7.19	7.29
Hydrocarbons																										
Acenaphthene	950	HH	mg/kg	< 0.0050	< 0.0050	< 0.040	< 0.0050	<0.0050	<0.0050	<0.040	< 0.0050	<0.30	<0.20	< 4.0	< 3.0	<0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.70	<0.200	<0.200
Acenaphthylene			mg/kg	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	<0.20	<0.070	< 2.0	< 1.0	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.16	< 0.0300	< 0.0400
Anthracene	2.5	т	mg/kg	< 0.0040	< 0.0040	< 0.0040	< 0.0040	<0.0040	< 0.0040	< 0.0040	<0.0040	< 0.020	<0.0080	< 0.20	< 0.20	<0.0040	< 0.0040	< 0.0040	< 0.0040	<0.0040	< 0.0040	< 0.0040	<0.0040	< 0.040	<0.0100	<0.0100
Benz(a)anthracene	1	EH	mg/kg	< 0.010	<0.010	<0.010	<0.010	<0.020	<0.010	<0.010	<0.010	<0.010	<0.010	< 0.20	< 0.20	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo(a)pyrene	5	I	mg/kg	<0.020	<0.010	<0.010	<0.010	0.017	<0.010	<0.020	<0.010	<0.020	0.012	0.024	0.02	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo(b,j) fluoranthene	1	EH	mg/kg	0.016	<0.010	0.014	<0.010	0.031	<0.010	0.013	<0.010	0.015	0.016	< 0.020	< 0.030	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo[b,j,k]fluoranthene			mg/kg	0.016	< 0.015	<0.015	<0.015	0.031	<0.015	<0.015	< 0.015	< 0.015	0.016	< 0.022	< 0.032	< 0.015	<0.015	<0.015	< 0.015	< 0.015	<0.015	<0.015	< 0.015	< 0.015	< 0.015	< 0.015
Benzo(g,h,i)perylene			mg/kg	<0.010	<0.010	<0.010	<0.010	0.021	<0.010	<0.010	<0.010	0.011	0.010	0.017	0.016	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo(k)fluoranthene	1	EH	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	< 0.010	< 0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Chrysene	200	нн	mg/kg	<0.010	<0.010	<0.010	<0.010	< 0.030	<0.010	0.010	<0.010	<0.020	0.012	< 0.020	< 0.020	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Dibenz(a,h)anthracene	1	EH	mg/kg	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050
Fluoranthene	50	т	mg/kg	0.019	<0.010	0.016	<0.010	0.031	0.011	0.016	<0.010	0.026	0.024	0.113	0.087	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Fluorene	600	нн	mg/kg	<0.010	<0.010	0.044	<0.010	<0.010	<0.010	0.067	<0.010	0.261	0.167	4.52	4.06	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.812	<0.300	0.240
Indeno(1,2,3-c,d)pyrene	1	EH	mg/kg	0.010	<0.010	<0.010	<0.010	0.018	<0.010	<0.010	<0.010	0.010	<0.010	0.014	0.013	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
1-Methylnaphthalene	250	нн	mg/kg	0.024	<0.010	0.314	<0.010	<0.010	<0.010	0.206	<0.010	3.17	2.07	49.3	42.3	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	8.21	2.24	2.50
2-methylnaphthalene	60	нн	mg/kg	0.029	<0.010	0.340	<0.010	<0.010	<0.010	0.221	<0.010	4.52	2.95	68.9	59.2	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	11.7	3.22	3.57
Naphthalene	0.6	Т	mg/kg	<0.010	<0.010	<0.080	<0.010	<0.010	<0.010	<0.040	<0.010	2.30	1.61	< 41	< 35	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<6.5	<2.00	<2.00
Phenanthrene	5	EH	mg/kg	<0.010	<0.010	0.026	<0.010	0.011	<0.010	0.045	<0.010	0.144	0.096	< 2.0	< 2.0	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.40	<0.090	<0.100
Pyrene	10	EH	mg/kg	0.016	<0.010	0.014	<0.010	0.025	<0.010	0.016	<0.010	0.033	0.028	0.231	0.221	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.054	0.014	0.018
Quinoline	2.5	НН	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.40	<0.30	< 4.0	< 4.0	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<1.5	<0.300	<0.400
Benzo(a)pyrene Total Potency Equivalence (TPE)			mg/kg	<0.020	<0.020	<0.020	<0.020	0.026	<0.020	<0.020	<0.020	<0.020	<0.020	0.04	0.036	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.010	<0.010
Index of Additive Cancer Risk (IACR)			none	0.19	<0.15	0.16	<0.15	0.33	<0.15	0.17	<0.15	0.19	0.20	0.49	0.51	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.11	<0.11
EPH (C10-C19)		_	mg/kg	<200	<200	300	<200	<200	<200	310	<200	2150	1490	46000	41000	<200	<200	<200	<200	<200	<200	<200	<200	8920	2300	2780
LEPH (C10-C19) Less PAHs	1000	EH/HH	mg/kg	<200	<200	300	<200	<200	<200	310	<200	2150	1490	46000	41000	<200	<200	<200	<200	<200	<200	<200	<200	8920	2300	2780
EPH (C19-C32)			mg/kg	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	1760	1450	<200	<200	<200	<200	<200	<200	<200	<200	240	<200	<200
HEPH (C19-C32) Less PAHs	1000	EH/HH	mg/kg	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	1760	1450	<200	<200	<200	<200	<200	<200	<200	<200	240	<200	<200
VPH (C6-C10)	200	EH/HH	mg/kg	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	4630	8200	<100	<100	<100	<100	<100	<100	<100	<100	860	1510	36
VHC (C6-C10)			mg/kg	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	5080	8900	<100	<100	<100	<100	<100	<100	<100	<100	980	1600	37
Petroleum Hydrocarbons - F1 (C6-C10)			mg/kg		-	-	-	-	-	-	-	86	90	5470	9580	-	-	-	-	-	-	-	-	-	-	-
Petroleum Hydrocarbons - F2 (C10-C16)			mg/kg	-	-	-	-	-	-	-	-	653	82	38800	36100	-	-	-	-	-	-	-	-	-	-	-
Petroleum Hydrocarbons - F3 (C16-C34)	1		mg/kg	-	-	-	-	-	-	-	-	77	<50	5360	4900	-	-	-	-	-	-	-	-	-	-	-
Petroleum Hydrocarbons - F4 (C34-C50)	1		mg/kg	-	-	-	-	-	-	-	-	<50	<50	< 250	< 250	-	-	-	-	-	-	-	-	-	-	-

Notes

Notes ¹ Standards shown are from the Contaminated Sites Regulation ("CSR"; BC Reg. 375/96, O.C. 1480/96 including amendments up to BC Reg. 13/2019, 24 January 2019 Land Use abbreviations: RL_{LD} (low density residential) The most conservative standard (MCS) is applied of the following site specific factors: AWF -freshwater aquatic life; DW - drinking water; EH - ecological health; HH - human health; I -intake of contaminated soil; T - toxicity to soil invertebrates and plants

* The depth of samples collected at BH20-10 are expressed as depth below outdoor ground surface < Indicates parameter was below laboratory equipment detection limit. - Chemical not analyzed or criteria not defined. CAS RN = Chemical Abstracts Service Registry Number FDA = field duplicate available; FD = field duplicate mg/kg = milligram/kilogram QAQC = Quality Assurance/Quality Control

values highlighted yellow exceed the CSR RL_{LD} standard 100

Output generated by GalReport.

Table 1B: SOIL ANALYTICAL RESULTS HYDROCARBONS SNOWBIRD ENVIRONMENTAL CLEAN-UP KAMLOOPS, BC

														B1100.05	B1100.05	B1100.05	81100.00	B1100.00	B1100.00	51100.00	81100.00	B1100.00	B1100.10	81100 10	B1100.10	B1100.10
			Location	MW20-02	MW20-02	MW20-03	MW20-03	MW20-03	MW20-04	MW20-04	MW20-04	MW20-04	MW20-04	BH20-05	BH20-05	BH20-05	BH20-06	BH20-08	BH20-08	BH20-08	BH20-08	BH20-08	BH20-10	BH20-10	BH20-10	BH20-10
		Sa	ample Name	02928-03	02928-04	02925-04	02925-05	02926-12	02925-08	02925-09	02927-05	02927-06	02927-07	02925-10	02925-11	02925-12	02925-02	02926-08	02926-09	02926-10	02926-11	02928-05	02945-01	02945-02	02945-03	02945-04
		S	Sample Date	12-Jun-2020	12-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	12-Jun-2020	26-Jun-2020	26-Jun-2020	26-Jun-2020	26-Jun-2020
		Sa	mple Depth	4.6-4.75 m	5.8-5.95 m	0.05-0.15 m	0.9-1.05 m	3.96-4.11 m	0.9-1.05 m	2.4-2.55 m	3.4 - 3.7 m	4.0 - 4.6 m	5.5 - 5.65 m	0.05-0.15 m	0.9-1.05 m	2.4-2.55 m	0.9-1.05 m	0.05-0.15 m	0.9-1.05 m	0.9-1.05 m	2.4-2.55 m	4.0-4.3 m	2.3-2.45 m*	3.2-3.35 m*	4.25-4.4 m*	4.25-4.4 m*
		La	aboratory ID	VA20A8304-003	VA20A8304-004	L2459618-4	L2459618-5	L2460211-12	L2459618-8	L2459618-9	L2460211-17	L2460211-18	L2460211-19	L2459618-10	L2459618-11	L2459618-12	L2459618-2	L2460211-8	L2460211-9	L2460211-10	L2460211-11	VA20A8304-005	L2466948-1	L2466948-2	L2466948-3	L2466948-4
		QAQC Rela	ated Sample																L2460211-10	L2460211-9					L2466948-4	L2466948-3
	-	-	QAQC																FDA	FD					FDA	FD
Parameter	CSR RLLD ¹	CSR MCS	Unit																							
Field + Physical																										
PID			ppm	38	22	122	14	442	86	4	20	98	2	1122	2002	104	8	6	4	4	4	2	<0.1	<0.1	<0.1	<0.1
pH			pH units	7.39	-	6.51	6.93	-	-	-	7.70	7.56	6.93	7.13	7.20	7.50	-	-	-	-	-	8.31	7.35	7.55	7.37	7.43
Hydrocarbons																										
Acenaphthene	950	HH	mg/kg	<0.0060	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.60	<2.0	<0.20	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050
Acenaphthylene	0.5	-	mg/kg	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.20	<0.40	< 0.030	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050
Anthracene	2.5		mg/kg	<0.0040	<0.0040	<0.0040	<0.0040	< 0.0040	< 0.0040	<0.0040	< 0.0040	< 0.0040	<0.0040	< 0.030	< 0.090	<0.0070	< 0.0040	< 0.0040	< 0.0040	<0.0040	<0.0040	<0.0040	< 0.0040	<0.0040	< 0.0040	< 0.0040
Benz(a)anthracene	5	En	mg/kg	<0.010	<0.010	< 0.010	<0.010	<0.010	<0.010	< 0.010	<0.010	< 0.010	<0.010	< 0.010	<0.040	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	< 0.010	<0.010	<0.010
Benzo(a)pyrene Benzo(h i) fluoranthene	1	сц сц	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Benzolb i kifluoranthene		LII	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo(a b i)pen/ene			mg/kg	<0.010	<0.010	<0.010	<0.010	<0.013	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.013	<0.013	<0.013	<0.010	<0.010	<0.010	<0.013	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo(k)fluoranthene	1	EH	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Chrysene	200	нн	ma/ka	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Dibenz(a.h)anthracene	1	EH	ma/ka	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Fluoranthene	50	т	mg/kg	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	<0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.020	< 0.010	< 0.010	< 0.010	<0.010	< 0.010	< 0.010	<0.010	< 0.010	< 0.010	< 0.010	<0.010
Fluorene	600	HH	mg/kg	<0.010	< 0.010	< 0.010	< 0.010	< 0.010	<0.010	< 0.010	< 0.010	< 0.010	<0.010	1.00	2.65	0.169	< 0.010	<0.010	< 0.010	< 0.010	< 0.010	<0.010	< 0.010	< 0.010	<0.010	<0.010
Indeno(1,2,3-c,d)pyrene	1	EH	mg/kg	<0.010	<0.010	< 0.010	<0.010	<0.010	< 0.010	<0.010	< 0.010	<0.010	<0.010	< 0.010	< 0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	< 0.010	< 0.010	<0.010
1-Methylnaphthalene	250	HH	mg/kg	0.050	0.014	< 0.010	<0.010	<0.010	< 0.010	< 0.010	< 0.010	< 0.010	<0.010	9.46	23.9	1.66	< 0.010	<0.010	<0.010	< 0.010	< 0.010	<0.010	<0.010	< 0.010	< 0.010	<0.010
2-methylnaphthalene	60	HH	mg/kg	0.064	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	13.6	34.3	2.44	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Naphthalene	0.6	т	mg/kg	<0.020	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<9.0	<30	<2.0	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Phenanthrene	5	EH	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.328	0.862	0.061	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Pyrene	10	EH	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	< 0.010	<0.010	0.023	0.044	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Quinoline	2.5	HH	mg/kg	<0.010	<0.010	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<2.0	<4.0	<0.30	<0.050	<0.050	<0.050	<0.050	<0.050	<0.010	<0.050	<0.050	<0.050	<0.050
Benzo(a)pyrene Total Potency Equivalence (TPE)			mg/kg	<0.010	<0.010	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.010	<0.020	<0.020	<0.020	<0.020
Index of Additive Cancer Risk (IACR)			none	<0.11	<0.11	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.11	<0.15	<0.15	<0.15	<0.15
EPH (C10-C19)			mg/kg	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	11300	24000	1510	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200
LEPH (C10-C19) Less PAHs	1000	EH/HH	mg/kg	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	11300	24000	1510	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200
EPH (C19-C32)	1000		mg/kg	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	270	310	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200
	1000	EH/HH	mg/kg	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	270	310	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200
	200	EH/HH	mg/kg	<10	-	<100	<100	<100	<100	<100	<100	<100	<100	2240	3530	<100	-	<100	<100	<100	-	<10	<100	<100	<100	<100
Patroleum Hydrocarbons E1 (C6 C10)			mg/kg	<10	-	<100	<100	<100	<100	<100	<100	<100	<100	2440	3910	<100	-	<100	<100	<100	-	<10	<100	<100	<100	<100
Petroleum Hydrocarbons - F2 (C10-C16)			mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Petroleum Hydrocarbons - F3 (C16-C34)			mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Petroleum Hydrocarbons - F4 (C34-C50)			ma/ka	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
renoleum riyurocarbons - 14 (C34-C30)			шулу	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes

Notes ¹ Standards shown are from the *Contaminated Sites Regulation* ("CSR"; BC Reg. 375/96, O.C. 1480/96 including amendments up to BC Reg. 13/2019, 24 January 2019 Land Use abbreviations: R_{LD} (low density residential) The most conservative standard (MCS) is applied of the following site specific factors: AWF -freshwater aquatic life; DW - drinking water; EH - ecological health; HH - human health; I -intake of contaminated soil; T - toxicity to soil invertebrates and plants

* The depth of samples collected at BH20-10 are expressed as depth below outdoor ground surface < Indicates parameter was below laboratory equipment detection limit. - Chemical not analyzed or criteria not defined. CAS RN = Chemical Abstracts Service Registry Number FDA = field duplicate available; FD = field duplicate mg/kg = milligram/kilogram QAQC = Quality Assurance/Quality Control

values highlighted yellow exceed the CSR RL_{LD} standard 100 Output generated by GalReport.

Table 1C: SOIL ANALYTICAL RESULTS PER- AND POLYFLUORINATED ALKYL SUBSTANCES SNOWBIRD ENVIRONMENTAL CLEAN-UP KAMLOOPS, BC

			Location	SS20-10	SS20-18	SS20-18	SS20-19	BH20-07	BH20-07	BH20-07
		Sa	mple Name	02905-03	02903-03	02903-07	02910-01	02929-01	02929-02	02929-03
		S	ample Date	26-May-20	25-May-20	25-May-20	2-Jun-20	10-Jun-2020	10-Jun-2020	10-Jun-2020
		Sar	nple Depth	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.15-0.30	0.15-0.30	0.30-0.45
	Laboratory			L2451986-3	L2451374-15	L2451374-19	L2455146-01	L2459618-13	L2459618-14	L2459618-15
	QA	QC Relat	ted Sample			L2451374-15			L2459618-13	
			QAQC		FDA	FD		FDA	FD	
Parameter	CSR RLLD ¹	CSR MCS	Unit							
8:2 Fluorotelomer sulfonic acid(8:2 FTS)			mg/kg	0.00626	1.04	1.57	0.00056	<0.00010	<0.00010	<0.00010
6:2 Fluorotelomer sulfonic acid(6:2 FTS)			mg/kg	0.117	8.70	10.7	0.00094	<0.00015	0.00035	<0.00010
Perfluorobutane sulfonate (PFBS)	300	HH	mg/kg	<0.00010	0.00012	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Perfluorohexane sulfonate (PFHXS)			mg/kg	<0.00010	0.00028	0.00038	<0.00010	<0.00010	<0.00010	<0.00010
perfluorooctane sulfonate (PFOS)	0.35	DW	mg/kg	<0.00050	0.00086	0.00125	0.00168	<0.00035	<0.00035	<0.00035
Perfluorobutanoic acid (PFBA)	-		mg/kg	<0.13	<0.24	<0.13	< 0.30	<0.30	<0.30	<0.30
Perfluoroheptanoic Acid (PFHpA)			mg/kg	0.00020	0.00201	0.00291	0.00040	<0.00010	<0.00010	<0.00010
Perfluorohexanoic Acid (PFHxA)			mg/kg	0.0228	0.183	0.154	0.00150	0.00017	0.00016	<0.00010
Perfluorononanoic Acid (PFNA)	cid (PFNA) mg/kg		mg/kg	<0.00010	0.00070	0.00108	<0.00010	<0.00010	<0.00010	<0.00010
Perfluorooctanoic acid (PFOA)	pic acid (PFOA) mg/kg			0.00055	0.0154	0.0205	0.00028	<0.00010	<0.00010	<0.00010
Perfluoropentanoic Acid (PFPeA)	entanoic Acid (PFPA) mg/kg				0.0103	0.0077	0.00108	0.00017	0.00011	<0.00010

¹ Standards shown are from the Contaminated Sites Regulation ("CSR"; BC Reg. 375/96, O.C. 1480/96 including amendments up to BC Reg. 13/2019, 24 January 2019

Land Use abbreviations: RL_{LD} (low density residential)

The most conservative standard (MCS) is applied of the following site specific factors: AWF - freshwater aquatic life; DW - drinking water; EH - ecological health; HH - human health; I - intake of contaminated soil;

T - toxicity to soil invertebrates and plants

FDA = field duplicate available; FD = field duplicate

mg/kg = milligram/kilogram

QAQC = Quality Assurance/Quality Control

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Output generated by GalReport.

100

values highlighted yellow exceed the CSR RLLD standard

Table 1D: SOIL ANALYTICAL RESULTS BTEX TCLP SNOWBIRD ENVIRONMENTAL CLEAN-UP KAMLOOPS, BC

		Location	MW20-02	BH20-05
	Sa	mple Name	02928-01	02925-11
	S	ample Date	12-Jun-2020	10-Jun-2020
	Sample De	pth (mbgs)	3.7-4.0	0.9-1.05
	Laborato	ory Number	VA20A8304-001	L2459618-11
Parameter	Haz	Unit		
i arameter	Waste ¹	onit		
benzene, TCLP	0.5	mg/L	<0.0050	0.0242
ethylbenzene, TCLP	0.24	mg/L	0.0816	0.305
toluene, TCLP	2.4	mg/L	0.0428	0.406
xylene, m+p-, TCLP		mg/L	0.363	1.36
xylene, o-, TCLP		mg/L	0.216	0.742
xylenes, total, TCLP	30	mg/L	0.580	2.10

¹Standards shown are from the BC Hazardous Waste Regulation BC Reg 63/88 O.C. 268/88 includes amendments up to BC Reg 243/2016, 1 November 2017.

mbgs = metres below ground surface

mg/L = milligrams per litre

TCLP = toxicity characteristic leaching procedure

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Table 2A: GROUNDWATER ANALYTICAL RESULTS DISSOLVED METALS SNOWBIRD ENVIRONMENTAL CLEAN-UP KAMLOOPS, BC

Location			MW20-01	MW20-02	MW20-02	MW20-03	MW20-04
Sample Name			02934-03	02934-04	02934-05	02934-02	02934-01
Sample Date	000 AVA ((1)	000 DW(1)	19-Jun-2020	19-Jun-2020	19-Jun-2020	19-Jun-2020	19-Jun-2020
Laboratory ID	CSR AW-F	CSR DW [®]	VA20A8760-003	VA20A8760-004	VA20A8760-005	VA20A8760-002	VA20A8760-001
QAQC				FDA	FD		
Parameter							
Field + Physical							
Dissolved Oxygen, field measured (mg/L)			4.16	4.29	4.29	4.70	5.22
Conductivity, field measured (µS/cm)			667	586.6	586.6	630.5	562.4
Oxidation Reduction Potential, field measured (mV)			110.1	117.5	117.5	111.9	116.8
pH, field measured (unitless)			6.48	6.52	6.52	6.60	6.60
Temperature, field measured (°C)			13.6	13.5	13.5	13.4	12.1
Metals, Dissolved							
Aluminum		9500	3.4	2.2	2.6	2.2	1.9
Antimony	90	6	0.10	<0.1	<0.1	0.10	<0.1
Cadmium	0.5 - 4 ^H	5	0.133	0.111	0.118	0.082	0.0236
Chromium ⁽²⁾	10	50	<0.5	<0.5	<0.5	<0.5	<0.5
Cobalt	40	20 ⁽³⁾	3.64	1.64	1.56	1.51	0.77
Lead	40 - 160	10	<0.05	<0.05	<0.05	<0.05	0.25
Titanium	1000		<0.3	<0.3	<0.3	<0.3	<0.3
Zinc	75 - 2400	3000	3.60	3.20	3.10	1.70	1.70

Notes:

All concentrations in micrograms per litre (ug/L), unless otherwise noted.

⁽¹⁾ Standards shown are from the Contaminated Sites Regulation ("CSR", BC Reg. 375/96 and O.C. 1480/96. Includes amendments up to BC Reg 13/2019, 24 January 2019)

⁽²⁾ The standard for Hexavalent Chromium has been applied for dissolved Chromium.

⁽³⁾ Interim background concentration for Cobalt as detailed in Technical Bulletin 3 is applied to replace CSR DW Standard.

Site-specific pathways include: AW-F = Protection of Freshwater Aquatic Life, DW = Protection of Drinking Water

FDA = Field Duplicate Available, FD = Field Duplicate, QA/QC = Quality Assurance/Quality Control

H = standard is Hardness dependent.

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Italics indicate detection limit exceeds applicable standard.

Table 2B: GROUNDWATER ANALYTICAL RESULTS HYDROCARBONS SNOWBIRD ENVIRONMENTAL CLEAN-UP KAMLOOPS, BC

Location			MW20-01	MW20-02	MW20-02	MW20-03	MW20-04
Sample Name			02934-03	02934-04	02934-05	02934-02	02934-01
Sample Date			19-Jun-2020	19-Jun-2020	19-Jun-2020	19-Jun-2020	19-Jun-2020
	CSR AW-F ⁽¹⁾	CSR DW ⁽¹⁾	VA20A8760-003	VA20A8760-004	VA20A8760-005	VA20A8760-002	VA20A8760-001
Laboratory ID			VA20A0700-003		FD	VA20A0700-002	VA20A0700-001
Barameter				FDA	FD		
Parameter							
Hydrocarbons							
Acenaphthene	60	250	<0.010	<0.020	<0.020	<0.010	<0.010
Acenaphthylene			<0.010	<0.010	<0.010	<0.010	<0.010
Acridine	0.5		<0.010	<0.010	<0.010	<0.010	<0.010
Anthracene	1	1000	<0.010	<0.010	<0.010	<0.010	<0.010
Benz(a)anthracene	1	0.07	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo(a)pyrene	0.1	0.01	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Benzo(g,h,i)perylene			<0.010	<0.010	<0.010	<0.010	<0.010
Benzo(k)fluoranthene			<0.010	<0.010	<0.010	<0.010	<0.010
Benzo(b,j) fluoranthene		0.07	<0.010	<0.010	<0.010	<0.010	<0.010
benzo(b+j+k)fluoranthene			<0.015	<0.015	<0.015	<0.015	<0.015
Chrysene	1	7	<0.010	<0.010	<0.010	<0.010	<0.010
Dibenz(a,h)anthracene		0.01	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Fluoranthene	2	150	<0.010	<0.010	<0.010	<0.010	<0.010
Fluorene	120	150	<0.010	<0.020	<0.020	<0.010	<0.010
Indeno(1,2,3-c,d)pyrene			<0.010	<0.010	<0.010	<0.010	<0.010
1-Methylnaphthalene		5.5	<0.010	0.113	0.135	<0.010	<0.010
2-Methylnaphthalene		15	<0.010	0.072	0.081	<0.010	<0.010
Naphthalene	10	80	<0.050	<0.080	<0.090	<0.050	<0.050
Phenanthrene	3		<0.020	<0.020	<0.020	<0.020	<0.020
Pyrene	0.2	100	<0.010	<0.010	<0.010	<0.010	<0.010
Quinoline	34	0.05	<0.050	<0.080	<0.100	<0.050	<0.050
Extractable Petroleum Hydrocarbons (C10-C19)	5000	5000	<250	<250	<250	<250	<250
Light Extractable Petroleum Hydrocarbons (C10-C19)	500		<250	<250	<250	<250	<250
Extractable Petroleum Hydrocarbons (C19-C32)			<250	<250	<250	<250	<250
Heavy Extractable Petroleum Hydrocarbons (C19-C32)			<250	<250	<250	<250	<250
Volatile Hydrocarbons (C6-C10)	15000	15000	<100	<100	<100	<100	<100
Volatile Petroleum Hydrocarbons (C6-C10)	1500		<100	<100	<100	<100	<100

Notes:

All concentrations in micrograms per litre (ug/L), unless otherwise noted.

⁽¹⁾ Standards shown are from the Contaminated Sites Regulation ("CSR", BC Reg. 375/96 and O.C. 1480/96. Includes amendments up to BC Reg 13/2019, 24 January 2019) Site-specific pathways include: AW-F = Protection of Freshwater Aquatic Life, DW = Protection of Drinking Water

FDA = Field Duplicate Available, FD = Field Duplicate, QA/QC = Quality Assurance/Quality Control

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Italics indicate detection limit exceeds applicable standard.

Table 2C: GROUNDWATER ANALYTICAL RESULTS BTEX and VOLATILES SNOWBIRD ENVIRONMENTAL CLEAN-UP KAMLOOPS, BC

Location			MW20-01	MW20-02	MW20-02	MW20-03	MW20-04
Sample Name			02934-03	02934-04	02934-05	02934-02	02934-01
Sample Date		OOD DW(1)	19-Jun-2020	19-Jun-2020	19-Jun-2020	19-Jun-2020	19-Jun-2020
Laboratory ID	CSR AW-F	CSR Dw ^w	VA20A8760-003	VA20A8760-004	VA20A8760-005	VA20A8760-002	VA20A8760-001
QAQC				FDA	FD		
Parameter							
dibromoethane 1.2-		0.5	<0.2	<0.2	<0.2	<0.2	<0.2
n-nonane		1	<1.0	<1.0	<1.0	<1.0	<1.0
trimethylbenzene, 1.2.4-			<1.0	<1.0	<1.0	<1.0	<1.0
Benzene	400	5	<0.50	<0.50	<0.50	<0.50	<0.50
Ethylbenzene	2000	140	<0.50	<0.50	< 0.50	<0.50	<0.50
Toluene	5	60	<0.50	<0.50	<0.50	<0.50	<0.50
Xylenes, Total	300	90	<0.75	0.86	0.80	<0.75	<0.75
o-Xylene			<0.50	0.86	0.80	<0.50	<0.50
m,p-Xylenes			<0.50	<0.50	<0.50	<0.50	<0.50
Methyl tert-Butyl Ether	34000	95	<0.50	<0.50	<0.50	<0.50	<0.50
Styrene	720	800	<0.50	<0.50	<0.50	<0.50	<0.50

Notes:

All concentrations in micrograms per litre (ug/L), unless otherwise noted.

⁽¹⁾ Standards shown are from the Contaminated Sites Regulation ("CSR", BC Reg. 375/96 and O.C. 1480/96. Includes amendments up to BC Reg 13/2019, 24 January 2019) Site-specific pathways include: AW-F = Protection of Freshwater Aquatic Life, DW = Protection of Drinking Water

FDA = Field Duplicate Available, FD = Field Duplicate, QA/QC = Quality Assurance/Quality Control

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Italics indicate detection limit exceeds applicable standard.

Location			MW20-01	MW20-02	MW20-02	MW20-03	MW20-04
SCN			02934-03	02934-04	02934-05	02934-02	02934-01
Laboratory ID		000	VA20A8760-003	VA20A8760-004	VA20A8760-005	VA20A8760-002	VA20A8760-001
Date Sampled	CSR AW-F	CSR DW	19-Jun-2020	19-Jun-2020	19-Jun-2020	19-Jun-2020	19-Jun-2020
QA/QC				FD	FDA		
Parameter							
Perfluoroalkylated Substances							
fluorotelomer sulfonic acid, 6:2 [6:2 FTS]			<0.010	0.024	0.032	<0.010	0.024
fluorotelomer sulfonic acid, 8:2 [8:2 FTS]			<0.010	<0.010	<0.010	<0.010	<0.010
perfluorobutane sulfonic acid [PFBS]		80	<0.020	<0.020	<0.020	<0.020	<0.020
perfluorobutanoic acid [PFBA]			<0.80	<0.80	<0.80	<0.80	<0.80
perfluoroheptanoic acid [PFHpA]			<0.020	<0.020	<0.020	<0.020	<0.020
perfluorohexane sulfonic acid [PFHxS]			<0.020	<0.020	<0.020	<0.020	<0.020
perfluorohexanoic acid [PFHxA]			<0.020	<0.020	<0.020	<0.020	<0.020
perfluorononanoic acid [PFNA]			<0.020	<0.020	<0.020	<0.020	<0.020
perfluorooctane sulfonic acid [PFOS]	60	0.3	<0.010	<0.010	<0.010	<0.010	<0.010
perfluorooctanoic acid [PFOA]		0.2	<0.010	<0.010	<0.010	<0.010	<0.010
perfluoropentanoic acid [PFPeA]			<0.020	<0.020	<0.020	<0.020	<0.020

Notes

All concentrations in micrograms per litre (ug/L), unless otherwise noted.

(1) Standards shown are from the Contaminated Sites Regulation ("CSR", BC Reg. 375/96 and O.C. 1480/96. Includes amendments up to BC Reg 13/2019, 24 January 2019)

Site-specific pathways include: AW-F = Protection of Freshwater Aquatic Life, DW = Protection of Drinking Water

FDA = field duplicate; FD = field duplicate

QA/QC = quality assurance/quality control

SCN = sample control number

Table 3: SOIL VAPOUR ANALYTICAL RESULTS SNOWBIRD ENVIRONMENTAL CLEAN-UP KAMLOOPS, BC

		Location	SV20	0-01	SV2	0-03	SV2	0-03	SV20-09
		SCN	0293	3-03	0293	3-01	0293	33-02	02936-01
		Sample Date	2020-	06-18	2020-	06-18	2020-	-06-18	2020-06-26
		LAB Control number	L2463	621-3	L2463	621-1	L2463	3621-2	L2466950-1
	s	ampling Depth (mbgs)	3.8-	4.1	3.8-	4.1	3.5	-3.8	
		QAQC	n in the second s	J	ſ	J	FD L24	63621-1	Ν
		Laboratory COA	L24636	521-V2	L2463	521-V2	L2463	621-V2	L2466950
		,	Indoor Air	Outdoor Air	Indoor Air	Outdoor Air	Indoor Air	Outdoor Air	Indoor Air
		Attenuation factor (α)	Unattenuated	0.00000061	Unattenuated	0.00000061	Unattenuated	0.00000061	Unattenuated
Parameter	CSR ¹ (RL)	Units							
Field									
Carbon Dioxide, field measured		%	1	.3	:	L		1.3	
Methane, field measured		%	()	()		0	0.1
Oxygen, field measured		%	17	.6	17	.4	17	7.4	17.9
Vacuum H2O		In	()	()		0	0
PID		ppm	16	5.7	6	.4	6	.4	0.1
Helium, field measured		%	()	()		0	-
Flow Rate		mL/min	29	92	29	96	2	310	
Depth to Top of Sand Pack		m	3	.4	3.	85	3.	-	
Hydrocarbons									
Naphthalene	3	ug/m3	<3.0	0.000018	<3.0	0.000018	<3.0	0.0000018	< 3.3
Volatile Petroleum Hydrocarbons in Vapour (C6-C13)	1000	ug/m3	71000	0.043	26000	0.016	27300	0.0167	13600
Volatile Hydrocarbons in Vapour (C6-C13)		ug/m3	72100	0.0440	26300	0.0160	27600	0.0168	13900
VOCs + BTEX									
1,2-dibromoethane (Ethylene Dibromide) (EDB)	0.5	ug/m3	<0.38	0.00000047	<0.38	0.0000023	<0.38	0.0000023	< 0.19
1,2-dichloroethane	7	ug/m3	3.55	0.00000217	1.20	0.0000073	1.19	0.00000726	3.83
Benzene	1.5	ug/m3	44.7	0.0000273	11.9	0.00000726	12.3	0.00000750	4.85
Toluene	5000	ug/m3	165	0.000101	33.7	0.0000206	29.8	0.0000182	33.8
Ethylbenzene	1000	ug/m3	106	0.0000647	14.2	0.0000866	14.0	0.000085	8.2
Xylenes, Total	100	ug/m3	261	0.000159	< 20	0.000012	< 20	0.000012	40.3
o-Xylene		ug/m3	85.1	0.0000519	10.1	0.00000616	9.6	0.0000059	10.7
Styrene	1000	ug/m3	< 8.5	0.0000052	< 8.5	0.0000052	< 8.5	0.0000052	< 2.1
Methyl tert-Butyl Ether	3000	ug/m3	< 7.2	0.0000044	< 7.2	0.0000044	< 7.2	0.0000044	< 1.8
m,p-Xylenes		ug/m3	176	0.000107	< 17	0.000010	< 17	0.000010	29.6
1,3-Butadiene	2	ug/m3	36.7	0.0000224	18.7	0.0000114	17.1	0.0000104	< 0.55
1,2,4-Trimethylbenzene	7	ug/m3	9.25	0.0000002	2.19	0.0000001	1.89	0.0000005	9.4
1,3,5-Trimethylbenzene	3.5	ug/m3	21.1	0.0000129	<0.98	0.000006	<0.98	0.000006	2.5
Isopropylbenzene	400	ug/m3	28.7	0.0000175	< 9.8	0.0000060	< 9.8	0.0000060	< 2.5
Methyl Cyclohexane	1500	ug/m3	2900	0.0018	990	0.000604	1050	0.000641	1660
n-Decane	2500	ug/m3	< 29	0.000018	< 29	0.000018	< 29	0.000018	< 7.3
n-Hexane	700	ug/m3	696	0.000425	223	0.000136	231	0.000141	200

Notes

All values are in $\mu g/m^3$ unless otherwise noted.

Standards shown are from the Contaminated Sites Regulation (CSR), B.C. Reg. 375/96, O.C. 1480/96, including amendments up to 24 January 2019 (B.C. Reg 13/2019).

Land Use abbreviations: RL (Agricultural, Urban Park, Residential)

Applied attenuation factors (α) obtained from Table 1 of BC Ministry of Environment Protocol #22 - Application of Vapour Attenuation Factors to Characterize Vapour Contamination (Effective 1 November 2017). * Compared to vapour standards.

** Raw laboratory data (without attenuation) are shown for reference only and are not compared to the vapour standards.

mL/min = millilitres per minute

ppm - parts per million

QA/QC = Quality Assurance / Quality Control; FDA = Field Duplicate Available; FD = Field Duplicate

VPHv = Volatile petroleum hydrocarbons, carbon range 6-13

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Output generated by GalReport.

Table 4: Results of Quality Assurance Samples SNOWBIRD ENVIRONMENTAL CLEAN-UP KAMLOOPS, BC

Location			02915-01	02913-01	02930-01	02934-06	02934-07
Sample Name			COK-01 (Hydrovac Water)	Equip Blank	Equip Blank	Equip Blank	Trip Blank
Sample Date Laboratory ID	CSR AW-F ⁽¹⁾	CSR DW ⁽¹⁾	2-Jun-20 L2455588-1	2-Jun-20 L2455148-1	10-Jun-2020 L2459640-1	19-Jun-20 VA20A8760-006	19-Jun-20 VA20A8760-007
QAQC			EB		EB	EB	ТВ
Parameter							
Metals, Dissolved		9500			_	<1	د1
Antimony	90	6	-	-	-	<0.1	<0.1
Cadmium	0.5 - 4 ^H	5	-	-	-	<0.005	<0.005
Chromium ⁽²⁾	10	50	-	-	-	<0.5	<0.5
Cobalt	40	20 ⁽³⁾	-	-	-	<0.1	<0.1
Lead	40 - 160	10	-	-	-	<0.05	<0.05
Titanium	1000		-	-	-	<0.3	<0.3
Zinc	75 - 2400	3000	-	-	-	<1	<1
Hydrocarbons							
Acenaphthene	60	250	-	-	-	<0.010	<0.010
Acenaphthylene			-	-	-	<0.010	<0.010
Acridine	0.5		-	-	-	<0.010	<0.010
Anthracene	1	1000	-	-	-	<0.010	<0.010
Benz(a)anthracene	1	0.07	-	-	-	<0.010	<0.010
Benzo(g,h,i)pervlene	0.1	0.01	-	-	-	<0.010	<0.000
Benzo(k)fluoranthene			-	-	-	<0.015	<0.015
Benzo(b,j) fluoranthene		0.07	-	-	-	<0.010	<0.010
benzo(b+j+k)fluoranthene			-	-	-	<0.010	<0.010
Chrysene	1	7	-	-	-	<0.010	<0.010
Dibenz(a,h)anthracene	2	0.01	-	-	-	<0.0050	<0.0050
Fluorene	120	150	-	-	-	<0.010	<0.010
Indeno(1,2,3-c,d)pyrene	120	150	-	-	-	<0.010	<0.010
1-Methylnaphthalene		5.5	-	-	-	<0.010	<0.010
2-Methylnaphthalene		15	-	-	-	<0.010	<0.010
Naphthalene	10	80	-	-	-	< 0.050	< 0.050
Phenanthrene	3	100	-	-	-	<0.020	< 0.020
Quinoline	34	0.05	-	-	-	<0.010	<0.010
Extractable Petroleum Hydrocarbons (C10-C19)	5000	5000	-	-	-	<250	<250
Light Extractable Petroleum Hydrocarbons (C10-C19)	500		-	-	-	<250	<250
Extractable Petroleum Hydrocarbons (C19-C32)			-	-	-	<250	<250
Heavy Extractable Petroleum Hydrocarbons (C19-C32)	15000	15000	-	-	-	<250	<250
Volatile Petroleum Hydrocarbons (C6-C10)	15000	15000	-	-	-	<100	<100
	1000					-200	-100
VOCs + BTEX							
dibromoethane, 1,2-		0.5	-	-	-	<0.2	<0.2
n-nonane		1	-	-	-	<1.0	<1.0
trimethylbenzene, 1,2,4-	400	-	-	-	-	<1.0	<1.0
Ethylbenzene	2000	5 140	-	-	-	< 0.50	<0.50
Toluene	5	60	-	-	-	<0.50	<0.50
Xylenes, Total	300	90	-	-	-	<0.75	<0.75
o-Xylene			-	-	-	<0.50	<0.50
m,p-Xylenes	24000	05	-	-	-	<0.50	< 0.50
Methyl tert-Butyl Ether Styrene	34000	95 800	-	-	-	< 0.50	< 0.50
Styrene	720	800	-	-	-	<0.50	<0.50
Perfluoroalkylated Substances							
fluorotelomer sulfonic acid, 6:2 [6:2 FTS]			<0.010	<0.010	<0.010	<0.010	<0.010
fluorotelomer sulfonic acid, 8:2 [8:2 FTS]		80	<0.010	<0.010	< 0.010	< 0.010	<0.010
perfluorobutanoic acid [PFBA]		80	<0.020 <0.80	<0.020 <0.80	<0.020 <0.80	<0.020 <0.80	<0.020 <0.80
perfluoroheptanoic acid [PFHpA]			<0.020	<0.020	<0.020	<0.020	<0.020
perfluorohexane sulfonic acid [PFHxS]			<0.020	<0.020	<0.020	<0.020	<0.020
perfluorohexanoic acid [PFHxA]			<0.020	<0.020	<0.020	<0.020	<0.020
perfluorononanoic acid [PFNA]			<0.020	<0.020	<0.020	<0.020	<0.020
perfluorooctane sultonic acid [PFOS]	60	0.3	<0.010	<0.010	< 0.010	< 0.010	<0.010
perfluoropentanoic acid [PFDA]		0.2	<0.010	<0.010	<0.010 <0.010	<0.010	<0.010
			\$0.020	-0.020	NU.UZU	NU.020	-0.020

Notes:

All concentrations in micrograms per litre (ug/L), unless otherwise noted.

FDA = Field Duplicate Available, FD = Field Duplicate, QA/QC = Quality Assurance/Quality Control

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

EB= Equipment Blank

TB= Trip Blank

FB= Field Blanks

Table 5 QAQC SOIL RESULTS SNOWBIRD ENVIRONMENTAL CLEAN-UP KAMLOOPS, BC

Relative Percent Difference Calculations

Relative Fercent Difference Galculations														ā										-								
Sample Location	1	RPD			SS20-18	SS20-18			SS20-17 02906.05	SS20-17 02006.07			BH20-07	BH20-07			BH20-08	BH20-08			MW20-01	MW20-01			BH20-10	BH20-10			MW20-02	MW20-02		
Sample Collection Date	Units	Alert	DF Alert	RDL	25-May-20	25-May-20	RPD (%)	DF	26-May-20	26-May-20	RPD (%)	DF	10-Jun-2020	10-Jun-2020	RPD (%)	DF	11-Jun-2020	11-Jun-2020	RPD (%)	DF	11-Jun-2020	11-Jun-2020	RPD (%)	DF	26-Jun-2020	26-Jun-2020	RPD (%)	DF	12-Jun-2020	12-Jun-2020	RPD (%)	DF
Sample Matrix	Ì	Limit	Limit		so	so		(unitless)	so	so	. ,	(unitless)	SO	SO	. ,	(unitless)	SO	SO	. ,	(unitless)	SO	SO	• • •	unitless)	SO	SO	. ,	(unitless)	SO	SO	(un	itless)
Sample Depth					0.05 - 0.15 m	0.05 - 0.15 m			0.05 - 0.15 m	0.05 - 0.15 m			0.15 - 0.3 m	0.15 - 0.3 m			0.91 - 1.07 m	0.91 - 1.07 m	ı		0.05 - 0.15 m	0.05 - 0.15 m			4.25-4.4 m	4.25-4.4 m			3.7-4.0 m	3.7-4.0 m		
Field + Physical	-																															
Moisture, Percent	%	>35%	>2	0.25	24.5	24.8	1	n/c	18.9	20.9	10	n/c	18.6	21.3	14	n/c	13.8	12.0	14	n/c	17.9	17.4	3	n/c	2.91	2.36	21	n/c	11.3	14.3	23	n/c
PFI Hydrocarbons	pri units	23076	~2	0.10	0.01	0.93	2	TI/C	0.11	5.60	4	TI/C	-	-	11/0	TI/C	-	-	11/C	TI/C	0.05	0.14	1.00	TI/C	1.31	7.43		TI/C	7.19	1.29	1	1/0
1-Methylnaphthalene	ma/ka	>50%	>2	0.010	49.3	42.3	15	n/c	3 17	2.07	42	n/c	-	-	n/c	n/c	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	2 24	2 50	11	n/c
2-methylnaphthalene	mg/kg	>50%	>2	0.010	68.9	59.2	15	n/c	4.52	2.95	42	n/c	_	-	n/c	n/c	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	3.22	3.57	10	n/c
Acenaphthene	mg/kg	>50%	>2	0.0050	< 4.0	< 3.0	n/c	n/c	< 0.30	< 0.20	n/c	n/c	-	-	n/c	n/c	< 0.0050	< 0.0050	n/c	0	< 0.0050	< 0.0050	n/c	0	< 0.0050	< 0.0050	n/c	0	< 0.200	< 0.200	n/c	0
Acenaphthylene	mg/kg	>50%	>2	2.0	< 2.0	< 1.0	n/c	n/c	< 0.20	< 0.070	n/c	n/c	-	-	n/c	n/c	< 0.0050	< 0.0050	n/c	0	< 0.0050	< 0.0050	n/c	0	< 0.0050	< 0.0050	n/c	0	< 0.0300	< 0.0400	n/c	n/c
Anthracene	mg/kg	>50%	>2	0.0040	< 0.20	< 0.20	n/c	0	< 0.020	< 0.0080	n/c	n/c	-	-	n/c	n/c	< 0.0040	< 0.0040	n/c	0	< 0.0040	< 0.0040	n/c	0	< 0.0040	< 0.0040	n/c	0	< 0.0100	< 0.0100	n/c	0
Benz(a)anthracene	mg/kg	>50%	>2	0.010	< 0.20	< 0.20	n/c	0	< 0.010	< 0.010	n/c	0	-	-	n/c	n/c	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0
Benzo(a)pyrene	mg/kg	>50%	>2	0.010	0.024	0.020	n/c	0.4	< 0.020	0.012	n/c	n/c	-	-	n/c	n/c	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0
Benzo(b i) fluoranthene	mg/kg	>50%	>2	0.020	< 0.020	< 0.030	n/c	0.2 n/c	0.020	0.016	n/c	0 10	-	-	n/c	n/c	< 0.020	< 0.020	n/c	0	< 0.020	< 0.020	n/c	0	< 0.020	< 0.020	n/c	0	< 0.010	< 0.010	n/c	0
Benzo(a,h,i)pervlene	ma/ka	>50%	>2	0.010	0.017	0.016	n/c	0.1	0.011	0.010	n/c	0.10	_	_	n/c	n/c	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	õ
Benzo(k)fluoranthene	mg/kg	>50%	>2	0.010	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	-	-	n/c	n/c	< 0.010	< 0.010	n/c	Ō	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	Ō
Benzo[b,j,k]fluoranthene	mg/kg	>50%	>2	0.015	< 0.022	< 0.032	n/c	n/c	< 0.015	0.016	n/c	0.067	-	-	n/c	n/c	< 0.015	< 0.015	n/c	0	< 0.015	< 0.015	n/c	0	< 0.015	< 0.015	n/c	0	< 0.015	< 0.015	n/c	0
Chrysene	mg/kg	>50%	>2	0.010	< 0.020	< 0.020	n/c	0	< 0.020	0.012	n/c	n/c	-	-	n/c	n/c	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0
Dibenz(a,h)anthracene	mg/kg	>50%	>2	0.0050	< 0.0050	< 0.0050	n/c	0	< 0.0050	< 0.0050	n/c	0	-	-	n/c	n/c	< 0.0050	< 0.0050	n/c	0	< 0.0050	< 0.0050	n/c	0	< 0.0050	< 0.0050	n/c	0	< 0.0050	< 0.0050	n/c	0
EPH (C10-C19)	mg/kg	>50%	>2	200	46000	41000	11	n/c	2150	1490	<u>36</u>	n/c	-	-	n/c	n/c	< 200	< 200	n/c	0	< 200	< 200	n/c	0	< 200	< 200	n/c	0	2300	2780	19	n/c
ELIOranthene	mg/kg	>50%	>2	0.010	0.113	0.087	26	n/c	< 200 0.026	0.024	n/c	0.20		-	n/c	n/c	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0
Fluorene	ma/ka	>50%	>2	0.010	4.52	4.06	11	n/c	0.261	0.167	44	n/c	_	-	n/c	n/c	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	< 0.300	0.240	n/c	n/c
HEPH (C19-C32) Less PAHs	mg/kg	>50%	>2	200	1760	1450	19	n/c	< 200	< 200	n/c	0	-	-	n/c	n/c	< 200	< 200	n/c	Ő	< 200	< 200	n/c	Ő	< 200	< 200	n/c	Ő	< 200	< 200	n/c	0
Indeno(1,2,3-c,d)pyrene	mg/kg	>50%	>2	0.010	0.014	0.013	n/c	0.10	0.010	< 0.010	n/c	0	-	-	n/c	n/c	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0
Index of Additive Cancer Risk (IACR)	none	>50%	>2	0.15	0.49	0.51	n/c	n/c	0.19	0.20	n/c	0.067	-	-	n/c	n/c	< 0.15	< 0.15	n/c	0	< 0.15	< 0.15	n/c	0	< 0.15	< 0.15	n/c	0	< 0.11	< 0.11	n/c	0
LEPH (C10-C19) Less PAHs	mg/kg	>50%	>2	200	46000	41000	11	n/c	2150	1490	<u>36</u>	n/c	-	-	n/c	n/c	< 200	< 200	n/c	0	< 200	< 200	n/c	0	< 200	< 200	n/c	0	2300	2780	19	n/c
Naphthalene	mg/kg	>50%	>2	0.010	< 41	< 35	n/c	n/c	2.30	1.61	35	n/c	-	-	n/c	n/c	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	< 2.00	< 2.00	n/c	0
Petroleum Hydrocarbons - F1 (C6-C10)	mg/kg	>50%	>2	10	5470	9580	55	n/c	80	90	5	n/c	-	-	n/c	n/c	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	-	-	n/c	n/c	-	-	n/c	n/c n/c
Petroleum Hydrocarbons - F1 (Co-C10)-B1EX	mg/kg	>50%	>2	20	2020	26100	<u>50</u> 7	n/c	652	-	1/0	n/c	-	-	n/c	n/c	< 0.010	< 0.010	n/c	0	< 0.010	< 0.010	n/c	0	-	-	n/c	n/c	-	-	n/c	.1/C
Petroleum Hydrocarbons - F3 (C16-C34)	mg/kg	>50%	>2	50	5360	4900	á	n/c	77	< 50	<u>155</u> n/c	0.54		-	n/c	n/c	< 100	< 100	n/c	0	< 100	< 100	n/c	0	-	-	n/c	n/c	-	-	n/c	n/c
Petroleum Hydrocarbons - F4 (C34-C50)	ma/ka	>50%	>2	50	< 250	< 250	n/c	0.0	< 50	< 50	n/c	0.04	_	-	n/c	n/c	< 100	< 100	n/c	0	< 100	< 100	n/c	0	_	-	n/c	n/c	_	_	n/c	n/c
Phenanthrene	ma/ka	>50%	>2	0.010	< 2.0	< 2.0	n/c	0.0	0.144	0.096	40	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	< 0.010	< 0.010	n/c	0	< 0.090	< 0.100	n/c	n/c
Pyrene	mg/kg	>50%	>2	0.010	0.231	0.221	4	n/c	0.033	0.028	n/c	0.50	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	< 0.010	< 0.010	n/c	0	0.014	0.018	n/c	0.4
Quinoline	mg/kg	>50%	>2	0.050	< 4.0	< 4.0	n/c	0.0	< 0.40	< 0.30	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	< 0.050	< 0.050	n/c	0	< 0.300	< 0.400	n/c	n/c
VHC (C6-C10)	mg/kg	>50%	>2	100	5080	8900	<u>55</u>	n/c	< 100	< 100	n/c	0	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	< 100	< 100	n/c	0	1600	37	<u>191</u>	n/c
VPH (C6-C10)	mg/kg	>50%	>2	100	4630	8200	<u>56</u>	n/c	< 100	< 100	n/c	0	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	< 100	< 100	n/c	0	1510	36	n/c	<u>2.7</u>
Glycols																		-														
Diethylene Glycol	mg/kg	>35%	>2	10	< 10	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c n/c
Pronvlene Glycol 12-	mg/kg	>35%	>2	10	< 10	-	n/c	n/c	-	-	n/c	n/c		-	n/c	n/c	-		n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c
Triethylene Glycol	mg/kg	>35%	>2	10	< 10	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c
Metals				1										•				•									· · · · ·					
Aluminum	mg/kg	>35%	>2	50	19500	18500	5	n/c	18400	21500	16	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c
Antimony	mg/kg	>35%	>2	0.10	3.43	2.47	33	n/c	0.26	0.28	n/c	0.20	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c
Barium	mg/kg	>35%	>2	0.50	159	149	6	n/c	128	147	14	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c
Cadmium	mg/kg	>35%	>2	0.020	32.8	26.6	21	n/c	0.169	0.173	2	n/c	-	-	n/c	n/c	-	-	n/c	n/c	0.139	0.166	18	n/c	0.037	0.035	n/c	0.1	0.118	0.097	20	n/c
Chromium	mg/kg	>35%	>2	0.50	75.8	79.8	5	n/c	45.1	49.5	9	n/c	-	-	n/c	n/c	-	-	n/c	n/c	45.9	43.2	6	n/c	19.7	16.3	19	n/c	21.6	23.0	6	n/c
Cobait	mg/kg	>35%	>2	0.10	14.8	14.5	2	n/c	14.1	15.0	0	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c n/c
Titanium	mg/kg	>35%	>2	1.0	1550	1530	4	n/c	1550	1650	6	n/c		-	n/c	n/c	-		n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c
Zinc	ma/ka	>35%	>2	2.0	138	134	3	n/c	75.4	81.7	8	n/c	_	_	n/c	n/c	_		n/c	n/c	_	2	n/c	n/c	_	-	n/c	n/c	_	_	n/c	n/c
PFAS																								-								
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	ug/kg	>35%	>2	0.10	8700	10700	n/c	n/c	-	-	n/c	n/c	< 0.15	< 0.35	n/c	1.3	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	ug/kg	>35%	>2	0.10	1040	1570	<u>41</u>	n/c	-	-	n/c	n/c	< 0.10	< 0.10	n/c	0	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c
Perfluorobutane Sulfonate	ug/kg	>35%	>2	0.10	0.12	< 0.10	n/c	0.20	-	-	n/c	n/c	< 0.10	< 0.10	n/c	0	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c
Perfluorobutanoic acid (PFBA)	ug/kg	>35%	>2	190	< 240	< 130	n/c	n/c	-	-	n/c	n/c	< 300	< 300	n/c	0	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c
Pertiuoroheptanoic Acid (PFHpA)	ug/kg	>35%	>2	0.10	2.01	2.91	<u>37</u>	n/c	-	-	n/c	n/c	< 0.10	< 0.10	n/c	0	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c
Perfluoronexane sulfonate (PEHXS)	ug/kg	>35%	>2	0.10	< 0.30	< 0.40	n/c	n/c	-	-	n/c	n/c	< 0.10	< 0.10	n/c	0	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/C
Perfluoronexanoic Acid (PENA)	ug/kg	>35%	>2	0.10	0.70	104	43	n/c	-	-	n/c	n/c	< 0.17	< 0.10	n/c	0 1	_	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c
Perfluorooctane sulfonate (PFOS)	ug/ka	>35%	>2	0.35	0.86	1,25	n/c	1.1	_	_	n/c	n/c	< 0.35	< 0.35	n/c	0	-	-	n/c	n/c		_	n/c	n/c	-	-	n/c	n/c	_		n/c	n/c
Perfluorooctanoic acid (PFOA)	ug/kg	>35%	>2	0.10	15.4	20.5	28	n/c	-	-	n/c	n/c	< 0.10	< 0.10	n/c	Ő	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c
Perfluoropentanoic Acid (PFPeA)	ug/kg	>35%	>2	0.10	10.3	7.7	29	n/c	-	-	n/c	n/c	0.17	0.11	n/c	0	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c
VOCs + BTEX																																
1,2,4-Trimethylbenzene	mg/kg	>35%	>2	0.050	248	473	<u>62</u>	n/c	4.51	4.15	8	n/c	-	-	n/c	n/c	< 0.050	< 0.050	n/c	0	< 0.050	< 0.050	n/c	0	-	-	n/c	n/c	-	-	n/c	n/c
1,2-dibromoethane	mg/kg	>35%	>2	0.050	< 8.5	< 13	n/c	n/c	< 0.15	< 0.20	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	< 0.050	< 0.050	n/c	0	< 0.400	< 0.050	n/c	n/c
1,2-aicnioroethane	mg/kg	>35%	>2	0.050	< 0.050	< 0.050	n/c	U.00	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	л/с n/c
1,3,5-1111110tNyIDenzene	ma/ka	>35%	>2	2.5	/U./ 75 F	137	<u>64</u> 52	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	- 0.0050	- 0.0050	n/c	n/c	- 0.345	- 0.0050	n/c	n/C
	mg/kg	~0070	>2	2.5 0.0050	1 65	3.43	<u>32</u> 70	n/c	0.0091	0 0080	n/c	0.040		1 -	n/c	n/c	< 0.0050	< 0.0050	n/c	0	< 0.0050	-	n/c	0	< 0.0000	< 0.0050	n/c	0	12.8	0.0000	194	.#C
Benzene	mg/kg mg/kg	>35%		0.015	57.7	97.1	51	n/c	0.838	0,828	1	n/c	_	-	n/c	n/c	< 0.015	< 0.015	n/c	õ	< 0.015	< 0.015	n/c	ŏ	-	-	n/c	n/c	-	-	n/c	n/c
Ethylbenzene	mg/kg mg/kg mg/ka	>35% >35%	>2	0.015			51	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-	-	n/c	n/c	-		n/c	n/c
Benzene Elsopropylbenzene	mg/kg mg/kg mg/kg mg/kg	>35% >35% >35%	>2 >2	2.5	29.8	50.3								1	n/c	n/c	< 0.050	< 0.050	n/c	0												
For option Letter Benzene Ethylbenzene m.p-Xylenes	mg/kg mg/kg mg/kg mg/kg mg/kg	>35% >35% >35% >35%	>2 >2 >2 >2	2.5 0.050	29.8 257	50.3 416	47	n/c	3.45	3.75	8	n/c	-	-	11/0				100	0	< 0.050	< 0.050	n/c	0	< 0.050	< 0.050	n/c	0	51.9	0.554	<u>196</u>	n/c
Propynolizere Benzene Ethylbenzene Isopropylbenzene m.pXylenes Methyl tert-Butyl Ether	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	>35% >35% >35% >35% >35%	>2 >2 >2 >2 >2	2.5 0.050 0.20	29.8 257 < 0.20	50.3 416 < 0.20	47 n/c	n/c 0.00	3.45 < 0.20	3.75 < 0.20	8 n/c	n/c 0	-	-	n/c	n/c	< 0.20	< 0.20	n/c	0	< 0.050 < 0.20	< 0.050 < 0.20	n/c n/c	0 0	< 0.050 < 0.20	< 0.050 < 0.20	n/c n/c	0	51.9 < 0.200	0.554 < 0.200	<u>196</u> n/c	n/c 0
Puopholitzene Benzene Ethylbenzene m.pXylenes Methyl tert-Butyl Ether n-Butylbenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	>35% >35% >35% >35% >35% >35%	>2 >2 >2 >2 >2 >2 >2	0.015 2.5 0.050 0.20 69	29.8 257 < 0.20 -	50.3 416 < 0.20 -	47 n/c n/c	n/c 0.00 n/c	3.45 < 0.20	3.75 < 0.20	8 n/c n/c	n/c 0 n/c	-	-	n/c n/c	n/c n/c	< 0.20	< 0.20	n/c n/c	0 0 n/c	< 0.050 < 0.20	< 0.050 < 0.20	n/c n/c n/c	0 0 n/c	< 0.050 < 0.20	< 0.050 < 0.20	n/c n/c n/c	0 0 n/c	51.9 < 0.200 -	0.554	<u>196</u> n/c n/c	n/c 0 n/c
Propriorizere Benzene Ethylbenzene m.p-Xylenes Methyl tert-Butyl Ether n-Butylbenzene n-Nonane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	>35% >35% >35% >35% >35% >35% >35%	>2 >2 >2 >2 >2 >2 >2 >2 >2	0.015 2.5 0.050 0.20 69 0.050	29.8 257 < 0.20	50.3 416 < 0.20	47 n/c n/c n/c	n/c 0.00 n/c n/c	3.45 < 0.20 - 4.29	3.75 < 0.20 - 5.25	8 n/c n/c 20	n/c 0 n/c n/c	-	-	n/c n/c n/c	n/c n/c n/c	< 0.20	< 0.20	n/c n/c n/c	0 n/c 0	< 0.050 < 0.20 - < 0.050	< 0.050 < 0.20 - < 0.050	n/c n/c n/c	0 0 n/c 0	< 0.050 < 0.20 - < 0.050	< 0.050 < 0.20 - < 0.050	n/c n/c n/c	0 0 n/c 0	51.9 < 0.200 - 80.5	0.554 < 0.200 - 2.30	<u>196</u> n/c n/c n/c	n/c 0 n/c n/c
Propynolizere Benzene Ethylbenzene m.p.Xylenes Methyl tert-Butyl Ether n-Butylbenzene o-Xylene sex-Butylbenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	>35% >35% >35% >35% >35% >35% >35% >35%	>2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2	0.015 2.5 0.050 0.20 69 0.050 0.050 2.5	29.8 257 < 0.20 - - 112 29.5	50.3 416 < 0.20 - - 187 56.3	47 n/c n/c 50	n/c 0.00 n/c n/c n/c	3.45 < 0.20 - 4.29 2.89	3.75 < 0.20 - 5.25 2.18	8 n/c 20 28	n/c 0 n/c n/c n/c	-	-	n/c n/c n/c n/c	n/c n/c n/c n/c	< 0.20 - < 0.050 < 0.050	< 0.20 < 0.050 < 0.050	n/c n/c n/c n/c	0 n/c 0 0	< 0.050 < 0.20 - < 0.050 < 0.050	< 0.050 < 0.20 - < 0.050 < 0.050	n/c n/c n/c n/c n/c	0 0 n/c 0 0	< 0.050 < 0.20 - < 0.050 < 0.050	< 0.050 < 0.20 - < 0.050 < 0.050	n/c n/c n/c n/c	0 0 n/c 0 0	51.9 < 0.200 80.5 20.2	0.554 < 0.200 2.30 0.330	196 n/c n/c n/c 194	n/c 0 n/c n/c n/c
Purophonizere Benzene Ethylbenzene m.pXylenes Methyl tert-Butyl Ether n-Butylbenzene n-Nonane o-Xylene sec-Butylbenzene Styrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	>35% >35% >35% >35% >35% >35% >35% >35%	>2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >	0.015 2.5 0.050 0.20 69 0.050 0.050 2.5 0.050	29.8 257 < 0.20 - 112 29.5 < 2.5	50.3 416 < 0.20 - - 187 56.3 < 2.5	47 n/c n/c 50 62	n/c 0.00 n/c n/c n/c n/c	3.45 < 0.20 - 4.29 2.89 - < 0.050	3.75 < 0.20 - 5.25 2.18 - < 0.050	8 n/c 20 28 n/c	n/c 0 n/c n/c n/c n/c	-	-	n/c n/c n/c n/c n/c	n/c n/c n/c n/c n/c	< 0.20 - < 0.050 < 0.050	< 0.20 < 0.050 < 0.050	n/c n/c n/c n/c n/c	0 n/c 0 n/c n/c	< 0.050 < 0.20 - < 0.050 < 0.050 -	< 0.050 < 0.20 - < 0.050 < 0.050 -	n/c n/c n/c n/c n/c n/c	0 0 n/c 0 0 n/c n/c	< 0.050 < 0.20 - < 0.050 < 0.050 - < 0.050	< 0.050 < 0.20 - < 0.050 < 0.050 - < 0.050	n/c n/c n/c n/c n/c n/c	0 0 0 0 n/c	51.9 < 0.200 - 80.5 20.2 - < 0.050	0.554 < 0.200 2.30 0.330	196 n/c n/c n/c 194 n/c n/c	n/c 0 n/c n/c n/c n/c 0
Puopholitzene Benzene Ethylbenzene m.p-Xylenes Methyl tert-Butyl Ether n-Nonane o-Xylene sec-Butylbenzene Styrene tert-Butylbenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	>35% >35% >35% >35% >35% >35% >35% >35%	>2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >	0.015 2.5 0.050 0.20 69 0.050 0.050 2.5 0.050 2.5	29.8 257 < 0.20 - 112 29.5 < 2.5 < 2.5	50.3 416 < 0.20 - - 187 56.3 < 2.5 < 2.5	47 n/c n/c 50 62 n/c	n/c 0.00 n/c n/c n/c 0.0 0.0	3.45 < 0.20 - 4.29 2.89 - < 0.050	3.75 < 0.20 - 5.25 2.18 - < 0.050	8 n/c 20 28 n/c n/c n/c	n/c 0 n/c n/c n/c 0 n/c	-		n/c n/c n/c n/c n/c n/c	n/c n/c n/c n/c n/c n/c	< 0.20 - < 0.050 < 0.050 - - < 0.050	< 0.20 < 0.050 < 0.050 - -	n/c n/c n/c n/c n/c n/c	0 n/c 0 n/c n/c 0	< 0.050 < 0.20 - < 0.050 < 0.050 - -	< 0.050 < 0.20 - < 0.050 < 0.050 - - < 0.050	n/c n/c n/c n/c n/c n/c n/c	0 0 n/c 0 n/c n/c 0	< 0.050 < 0.20 < 0.050 < 0.050 - < 0.050	< 0.050 < 0.20 - < 0.050 < 0.050 - < 0.050	n/c n/c n/c n/c n/c n/c n/c	0 0 n/c 0 0 n/c 0 0	51.9 < 0.200 - 80.5 20.2 - < 0.050	0.554 < 0.200 2.30 0.330 < 0.050	196 n/c n/c n/c 194 n/c n/c	n/c 0 n/c n/c n/c 0 1/c
Propriorizerie Benzene Ethylbenzene mXylenes Methyl tert-Butyl Ether n-Butylbenzene n-Nonane o-Xylene sec-Butylbenzene Styrene tert-Butylbenzene Toluene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	>35% >35% >35% >35% >35% >35% >35% >35%	>2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >	2.5 0.050 0.20 69 0.050 0.050 2.5 0.050 2.5 0.050 2.5 0.050	29.8 257 < 0.20 - 112 29.5 < 2.5 < 2.5 22.1	50.3 416 < 0.20 - - 187 56.3 < 2.5 < 2.5 40.8	47 n/c n/c 50 62 n/c n/c 59	n/c 0.00 n/c n/c n/c 0.0 0.0 0.0 n/c	3.45 < 0.20 - 4.29 2.89 - < 0.050 - 0.126	3.75 < 0.20 - 5.25 2.18 - < 0.050 - 0.135	8 n/c 20 28 n/c n/c n/c n/c	n/c 0 n/c n/c n/c 0 n/c 0.18	-		n/c n/c n/c n/c n/c n/c n/c	n/c n/c n/c n/c n/c n/c n/c	< 0.20 - < 0.050 < 0.050 - - < 0.050 < 0.050	< 0.20 - < 0.050 < 0.050 - - < 0.050 < 0.050	n/c n/c n/c n/c n/c n/c n/c n/c	0 n/c 0 n/c n/c 0 0	< 0.050 < 0.20 - < 0.050 < 0.050 - - < 0.050 < 0.050	< 0.050 < 0.20 - < 0.050 < 0.050 - < 0.050 < 0.050	n/c n/c n/c n/c n/c n/c n/c n/c	0 0 0 0 n/c n/c 0 0	< 0.050 < 0.20 - - < 0.050 - - < 0.050 - - < 0.050	< 0.050 < 0.20 - < 0.050 - < 0.050 - < 0.050	n/c n/c n/c n/c n/c n/c n/c n/c	0 0 n/c 0 n/c 0 n/c 0 0	51.9 < 0.200 - 80.5 20.2 - < 0.050 - 8.12	0.554 < 0.200 - 2.30 0.330 - < 0.050 - 0.053	196 n/c n/c n/c 194 n/c n/c n/c 197	n/c 0 n/c n/c n/c 0 n/c n/c

Duplicates

 Xylenes, Total
 Integring
 For the construction

 Notes:
 All values are expressed in mg/kg unless otherwise noted

 SCN = sample control number
 FDA = field duplicate

 FDA = field duplicate
 evaluable

 QA/QC = quality assurance/quality control

 RDL = reported detection limit indicates the minimum concentration that could be measured by laboratory instrumentation for a specific sample.

 Relative Percent Difference (RPD) is calculated when the mean value is greater than five times the method reporting limit; Golder's internal QA/QC target is less than 35% (less than 50% for PAHs).

 Difference Factor (DF) is calculated when the mean value is less than five times the method reporting limit; Golder's internal QA/QC target is less than 35% (less than 50% for PAHs).

 Difference Factor (DF) is calculated when the mean value is less than five times the method reporting limit; Golder's internal QA/QC target is less than 2.

 NA = not applicable; NC = not calculated

 BOLD font indicates the parameter analyzed exceeds Golder's internal QA/QC targets.

Relative Percent Difference Calculations

Sample Location Sample Name Sample Collection Date Sample Matrix Diovine 4 Europe	CAS #	Units	RPD Alert Limit	DF Alert Limit	RDL	5X RDL	ls either result >5X RDL	MW20-02 02934-04 20-06-19 12:00:00 A WG	MW20-02 02934-05 20-06-19 12:00:00 / WG	RPD (%)	DF (unitless)
6:2 Fluorotelomer sulfonate	6:2FTS	ua/L	>50%	>2	0.010	0.05	no	0.024	0.032	n/c	0.8
8:2 Fluorotelomer sulfonate	8:2FTS	ug/L	>50%	>2	0.01	0.05	no	< 0.010	< 0.010	n/c	0
n-Nonane	111-84-2	ug/L	>50%	>2	1.0	5	no	< 1.0	< 1.0	n/c	0
Field + Physical				-	n	1					
Conductivity, field measured	FIELD_EL_COND	uS/cm	>50%	>2	-	-	no	586.6	586.6	n/c	-
Dissolved Oxygen, lield measured Ovidation Reduction Potential, field measured		mg/L m\/	>50%	>2	-	-	no	4.29	4.29	n/c	-
pH, field measured	FIELD pH	pH units	>50%	>2	-	_	no	6.52	6.52	n/c	_
Temperature, field measured	FIELD_TEMP	ˈdeg c	>50%	>2	-	-	no	13.5	13.5	n/c	-
Hydrocarbons											
1-Methylnaphthalene	90-12-0	ug/L	>50%	>2	0.010	0.05	yes	0.113	0.135	18	n/c
2-methylnaphthalene	91-57-6	ug/L	>50%	>2	0.010	0.05	yes	0.072	0.081	12	n/c
Acenaphthene	83-32-9	ug/L	>50%	>2	0.020	0.1	no	< 0.020	< 0.020	n/c	0
Acridine	260-94-6	ug/L	>50%	>2	0.010	0.05	no	< 0.010	< 0.010	n/c	0
Anthracene	120-12-7	ug/L	>50%	>2	0.010	0.05	no	< 0.010	< 0.010	n/c	0
Benz(a)anthracene	56-55-3	ug/L	>50%	>2	0.010	0.05	no	< 0.010	< 0.010	n/c	0
Benzo(a)pyrene	50-32-8	ug/L	>50%	>2	0.0050	0.025	no	< 0.0050	< 0.0050	n/c	0
Benzo(b,j) fluoranthene	Benz_Fluo_bj	ug/L	>50%	>2	0.010	0.05	no	< 0.010	< 0.010	n/c	0
Benzo(k)fluoranthene	191-24-2	ug/L	>50%	>2	0.010	0.05	no	< 0.010	< 0.010	n/c	0
Benzolb.i.kifluoranthene	Benz Fluo bik	ug/L	>50%	>2	0.015	0.075	no	< 0.010	< 0.010	n/c	0
Chrysene	218-01-9	ug/L	>50%	>2	0.010	0.05	no	< 0.010	< 0.010	n/c	0
Dibenz(a,h)anthracene	53-70-3	ug/L	>50%	>2	0.0050	0.025	no	< 0.0050	< 0.0050	n/c	0
Extractable Petroleum Hydrocarbons (C10-C19)	PHC-E-C10C19	ug/L	>50%	>2	250	1250	no	< 250	< 250	n/c	0
Extractable Petroleum Hydrocarbons (C19-C32)	PHC-E-C19C32	ug/L	>50%	>2	250	1250	no	< 250	< 250	n/c	0
Fluoranthene	206-44-0	ug/L	>50%	>2	0.010	0.05	no	< 0.010	< 0.010	n/c	0
Heavy Extractable Petroleum Hydrocarbons (C19-C32) Less PAHs	PHC-E-C19C32PAH	ug/L	>50%	>2	250	1250	no	< 250	< 250	n/c	0
Indeno(1,2,3-c,d)pyrene	193-39-5	ug/L	>50%	>2	0.010	0.05	no	< 0.010	< 0.010	n/c	0
Light Extractable Petroleum Hydrocarbons (C10-C19) Less PAHs	PHC-E-C10C19PAH	ug/L	>50%	>2	250	1250	no	< 250	< 250	n/c	0
Naphthalene	91-20-3	ug/L	>50%	>2	0.080	0.4	no	< 0.080		n/c	n/c
Naphthalene	91-20-3	ug/L	>50%	>2	0.090	0.45	no		< 0.090	n/c	n/c
Phenanthrene	85-01-8	ug/L	>50%	>2	0.020	0.1	no	< 0.020	< 0.020	n/c	0
Quinoline	91-22-5	ug/L	>50%	>2	0.010	0.05	no	< 0.010	< 0.010	n/c	n/c
Quinoline	91-22-5	ug/L	>50%	>2	0.100	0.5	no	0.000	< 0.100	n/c	n/c
Volatile Hydrocarbons (C6-C10)	VH-C6C10	ug/L	>50%	>2	100	500	no	< 100	< 100	n/c	0
Volatile Petroleum Hydrocarbons (C6-C10)	VPH-C6C10	ug/L	>50%	>2	100	500	no	< 100	< 100	n/c	0
Metals, Dissolved	7400.00 5		. 500/		0.0010	0.005		0.0000	0.0000		0.4
Aluminum	7429-90-5	mg/L	>50%	>2	0.0010	0.005	no	0.0022	0.0026	n/c	0.4
Cadmium	7440-38-0	mg/L	>50%	>2	0.00010	0.0005	Ves	0.00010	0.000118	6	n/c
Chromium	7440-47-3	mg/L	>50%	>2	0.00050	0.0025	no	< 0.00050	< 0.00050	n/c	0
Cobalt	7440-48-4	mg/L	>50%	>2	0.00010	0.0005	yes	0.00164	0.00156	5	n/c
Lead	7439-92-1	mg/L	>50%	>2	0.000050	0.00025	no	< 0.000050	< 0.000050	n/c	0
Titanium	7440-32-6	mg/L	>50%	>2	0.00030	0.0015	no	< 0.00030	< 0.00030	n/c	0
ZINC BC Groundwater: PEAAs	7440-00-0	mg/L	>50%	>2	0.0010	0.005	no	0.0032	0.0031	n/c	0.1
Perfluoro-1-Octanesulfonate (PEOS)	1763-23-1	ua/L	>50%	>2	0.010	0.05	no	< 0.010	< 0.010	n/c	0
Perfluorobutanoic acid	375-22-4	ug/L	>50%	>2	0.80	4	no	< 0.80	< 0.80	n/c	0
Perfluoroheptanoic Acid (PFHpA)	375-85-9	ug/L	>50%	>2	0.020	0.1	no	< 0.020	< 0.020	n/c	0
Perfluorohexane sulfonate (PFHXS)	355-46-4	ug/L	>50%	>2	0.020	0.1	no	< 0.020	< 0.020	n/c	0
Perfluorohexanoic Acid (PFHxA)	307-24-4	ug/L	>50%	>2	0.020	0.1	no	< 0.020	< 0.020	n/c	0
Perfluoro-n-ocianoic acid (PFOA) Perfluorononanoic Acid (PENA)	330-07-1	ug/L	>50%	>2	0.010	0.05	no	< 0.010	< 0.010	n/c	0
Perfluoropentanoic Acid (PEPeA)	2706-90-3	ug/L	>50%	>2	0.020	0.1	no	< 0.020	< 0.020	n/c	0
PFAS											
Perfluorobutane Sulfonate	45187-15-3	ug/L	>50%	>2	0.020	0.1	no	< 0.020	< 0.020	n/c	0
VOCs + BTEX						_					
1,2,4-Trimethylbenzene	95-63-6	ug/L	>50%	>2	1.0	5	no	< 1.0	< 1.0	n/c	0
I,Z-albromoetnane (Etnylene Dibromide) (EDB)	100-93-4	ug/L	>50%	>2	0.2	1	no	< 0.2 < 0.50	< 0.2	n/c	0
Ethylbenzene	100-41-4	ug/L ug/l	>50%	>2	0.50	2.5	no	< 0.50	< 0.50	n/c	0
m.p-Xvlenes	179601-23-1	ug/L	>50%	>2	0.50	2.5	no	< 0.50	< 0.50	n/c	0 0
Methyl tert-Butyl Ether	1634-04-4	ug/L	>50%	>2	0.50	2.5	no	< 0.50	< 0.50	n/c	0
o-Xylene	95-47-6	ug/L	>50%	>2	0.50	2.5	no	0.86	0.80	n/c	0.12
Styrene	100-42-5	ug/L	>50%	>2	0.50	2.5	no	< 0.50	< 0.50	n/c	0
i oluene Xvlenes, Total	108-88-3	ug/L	>50%	>2	0.50 0.7F	2.5	no	< 0.50	< 0.50	n/c	0
Nienes, rolai VHCs	1330-20-7	ug/L	~ 50%	-2	0.75	3.15	110	0.80	0.80	n/C	0.08
Volatile Hydrocarbons (C6-C10)	VH-C6C10	ua/L	>50%	>2	100	500	no	< 100	< 100	n/c	0
Volatile Petroleum Hydrocarbons (C6-C10)	VPH-C6C10	ug/L	>50%	>2	100	500	no	< 100	< 100	n/c	0

Notes: All values are expressed in ug/L unless otherwise noted SCN = sample control number FDA = field duplicate available FD = field duplicate available FD = field duplicate QA/QC = quality assurance/quality control RDL = reported detection limit indicates the minimum concentration that could be measured by laboratory instrumentation for a specific sample. Relative Percent Difference (RPD) is calculated when the mean value is greater than five times the method reporting limit; Golder's internal QA/QC target is less than 35% (less than 50% for PAHs). Difference Factor (DF) is calculated when the mean value is less than five times the method reporting limit; Golder's internal QA/QC target is less than 2. NA = not applicable; NC = not calculated **BOLD** font indicates the parameter analyzed exceeds Golder's internal QA/QC targets.

BOLD font indicates the parameter analyzed exceeds Golder's internal QA/QC targets.
Table 7 QAQC SOIL VAPOUR RESULTS SNOWBIRD ENVIRONMENTAL CLEAN-UP KAMLOOPS, BC

Relative Percent Difference Calculations

Sample Location Sample Name Sample Collection Date Sample Matrix	CAS #	Units	RPD Alert Limit	DF Alert Limit	RDL	SV20-03 02933-01 2020-06-18 SV	SV20-03 02933-02 2020-06-18 SV	RPD (%)	DF (unitless)
Hydrocarbons	-								-
Naphthalene	91-20-3	ug/m3	>50%	>2	13	< 3	< 3	n/c	0
Volatile Hydrocarbons in Vapour (C6-C13)	VH-vC6C13	ug/m3	>50%	>2	1000	26300	27600	5	n/c
Volatile Petroleum Hydrocarbons in Vapour (C6-C13)	PHC-V-vC6C13	ug/m3	>50%	>2	3900	26000	27300	5	n/c
VOCs + BTEX									
1,2,4-Trimethylbenzene	95-63-6	ug/m3	>50%	>2	9.8	2.19	1.89	n/c	0.031
1,2-dibromoethane (Ethylene Dibromide) (EDB)	106-93-4	ug/m3	>50%	>2	0.77	<0.38	<0.38	n/c	0
1,2-dichloroethane	107-06-2	ug/m3	>50%	>2	0.40	1.20	1.19	n/c	0.0250
1,3,5-Trimethylbenzene	108-67-8	ug/m3	>50%	>2	9.8	<0.98	<0.98	n/c	0
1,3-Butadiene	106-99-0	ug/m3	>50%	>2	2.2	18.7	17.1	9	n/c
Benzene	71-43-2	ug/m3	>50%	>2	3.2	11.9	12.3	n/c	0.125
Ethylbenzene	100-41-4	ug/m3	>50%	>2	8.7	14.2	14.0	n/c	0.0230
Isopropylbenzene	98-82-8	ug/m3	>50%	>2	9.8	< 9.8	< 9.8	n/c	0
m,p-Xylenes	179601-23-1	ug/m3	>50%	>2	17	< 17	< 17	n/c	0
Methyl Cyclohexane	108-87-2	ug/m3	>50%	>2	40	990	1050	6	n/c
Methyl tert-Butyl Ether	1634-04-4	ug/m3	>50%	>2	7.2	< 7.2	< 7.2	n/c	0
n-Decane	124-18-5	ug/m3	>50%	>2	29	< 29	< 29	n/c	0
n-Hexane	110-54-3	ug/m3	>50%	>2	35	223	231	4	n/c
o-Xylene	95-47-6	ug/m3	>50%	>2	8.7	10.1	9.6	n/c	0.057
Styrene	100-42-5	ug/m3	>50%	>2	8.5	< 8.5	< 8.5	n/c	0
Toluene	108-88-3	ug/m3	>50%	>2	7.5	33.7	29.8	n/c	0.52
Xylenes, Total	1330-20-7	ug/m3	>50%	>2	20	< 20	< 20	n/c	0

Notes:

All values are expressed in ug/L unless otherwise noted

SCN = sample control number

FDA = field duplicate available

FD = field duplicate

QA/QC = quality assurance/quality control

RDL = reported detection limit indicates the minimum concentration that could be measured by laboratory instrumentation for a specific sample.

Relative Percent Difference (RPD) is calculated when the mean value is greater than five times the method reporting limit; Golder's internal QA/QC target is less than 35% (less than 50% for PAHs).

Difference Factor (DF) is calculated when the mean value is less than five times the method reporting limit; Golder's internal QA/QC target is less than 2.

NA = not applicable; NC = not calculated

BOLD font indicates the parameter analyzed exceeds Golder's internal QA/QC targets.

KEY MAP - NOT TO SCALE LEGEND RK BC St. John Batchelor Hil 921/09 Anto 17818 2111111 Brecklehur T 7 2 H J.F. Stopping Cooline REFERENCE(S) BACKGROUND IM IMAGE IS INTENDI LOT BOUNDARIES 2020-05-28 SITE SURVEY PRI FILE No.: 2001767 KEY PLAN BACKG 50000 NTS - 92/00 DATIM: ND82 B OCATION KAMLOOPS Duff DATUM: NAD83, F

MONITORING WELL LOCATION

VAPOUR PROBE LOCATION

SURFICIAL SOIL SAMPLE LOCATION

MONITORING WELL WITH EMBEDDED VAPOUR PROBE LOCATION

BOREHOLE LOCATION

SITE BOUNDARY LOT BOUNDARY

٠

 ϕ

♥

 \forall

THIS DRAWING IS INTENDED FOR CLIENTS ONE TIME USE ONLY AND IT IS N NAY PARTY, INCLUDING, BUT NOT LIMITED TO, THE CLIENT, ITS EMPLOYEE F A SPECIFIC PROJECT OR FUTURE PROJECTS, WHETHER CLIENTS OR O MANIPULATION, ADAPTATION, MODIFICATION, ALTERATION, MISUSE OR REI NOT INTENDED OR REPRESENTED BY GOLDER TO BE SU ES, AGENTS, SUBCONTRACTORS OR SUBSEQUENT OWN OTHERWISE, WITHOUT GOLDER'S PRIOR WRITTEN PERM EUSE UNAUTHORIZED BY GOLDER WILL BE AT CLIENTS S

CLIENT PUBLIC SERVICES AND PROCUREMENT CANADA

PROJECT SNOWBIRDS ENVIRONMENTAL CLEANUP KAMLOOPS, BC

TITLE PROJECT LOCATION MAP AND SITE PLAN

AGE (2017) SUPPLIED BY THE CITY OF KAMLOOPS	CONSULTANT		YYYY-MM-DD	2020-0	7-17
DED FOR INDICATIVE PURPOSES ONLY	<u> </u>		DESIGNED	AU	
S OBTAINED FROM THE CITY OF KAMLOOPS ON		COLDED	PREPARED	RTJ	
OVIDED BY ALLNORTH IN DWG FORMAT ON 2020-07-08 7SP_200707_To Client.dwg		GOLDER	REVIEWED	AV	
GROUND AND BASE MAPPING FROM CANMATRIX 1:			APPROVED	EVK	
9 PROJECTION: UTM ZONE 10	PROJECT NO. 20145856	PHASE 1000		REV. 0	FIGURE 1

				66.30.00	6620.10	6620.11	6620 12	6620 12	6620.14	6620.15	6620.16	6620.17	6620.17	6620.18	6620.18	N#4/20.01	N#N/20.01	N/14/20.01	1
		6	Location	SS20-09	SS20-10	SS20-11	SS20-12	SS20-13	SS20-14	SS20-15	SS20-16	3520-17	3520-17	5520-18	SS20-18	11 100 20-01	11 100 20-01	11 hum 2020	1
		Sam	pie Date	26/1Vlay/20	26/1Vlay/20	26/ May/20	26/1Vlay/20	26/Iviay/20	26/ May/20	26/1Vlay/20	26/1viay/20	26/ May/ 20	26/IVIay/20	25/May/20	25/May/20	11-Jun-2020	11-Jun-2020	11-Jun-2020	1
		Sampl	e Depth	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.05-0.15 m	0.9-1.05 m	1
			QAQC									FDA	FD	FDA	FD	FDA	FD		1
Parameter	r	CSR	Unit															1	1
		RL																	1
PID			ppm	<0.1	<0.1	9	<0.1	1	1	3	1	426	426	878	878	4	4	2	1
2-methylnaphthale	ne	60	mg/kg	0.029	<0.010	0.340	<0.010	<0.010	<0.010	0.221	<0.010	4.52	2.95	68.9	59.2	<0.010	<0.010	<0.010	1
Vaphthalene		0.6	mg/kg	<0.010	<0.010	<0.080	<0.010	<0.010	<0.010	<0.040	<0.010	2.30	1.61	<i>< 41</i>	< 35	<0.010	<0.010	<0.010	1
Quinoline		2.5	mg/kg	<0.050	<0.050	< 0.050	< 0.050	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050						< 4.0	< 4.0	<0.050	<0.050	<0.050	i i
LEPH	1	L000	mg/kg	<200	<200	300	<200	<200	<200	310	<200	2150	1490	46000	41000	<200	<200	<200	1
HEPH	1	L000	mg/kg	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	1760	1450	<200	<200	<200	1
/PH (C6-C10)		200	mg/kg	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	4630	8200	<100	<100	<100	1
				1 84/20 01	5 8 4 / OO OI	N 814/200 001	N 80 M (202, 001	N 814/20 01	5 8 M 20 00	N 814/20, 02	104/20.02	N#4/20.02	104/20.02	N #4/20.02	A 814/200_000	N IN M (20, 02	N#14/20.04	N 84420 04	
		<u> </u>	Location	11 1 2020	11 100 2020	11 1 2020	11 100 2020	11	1010020-02	1010020-02	1010020-02	1010020-02	1010020-02	10.10.2020	10 100 2020	10 hun 2020	10 100 2020	10.1	
		Sam	pie Date	11-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	12-Jun-2020	12-Jun-2020	12-Jun-2020	12-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020	
		Sampi	e Depth	2.4-2.55 m	4.U - 4.15 m	4.6-4.9 m	5.5 - 5.65 m	5.8-6.1 M	1.8-1.95 m	3.7-4.0 m	3.7-4.0 m	4.6-4.75 m	5.8-5.95 m	0.05-0.15 m	0.9-1.05 m	3.96-4.11 m	0.9-1.05 m	2.4-2.55 m	
		66D	QAQC							FDA	FD								
Parameter	r l'	LSK	Unit																
		RLLD																	
ID			ppm	2	2	-	<0.1	-	944	1742	1742	38	22	122	14	442	86	4	
-methylnaphthale	ne	60	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	11.7	3.22	3.57	0.064	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	
laphthalene		0.6	mg/kg	<0.010	< 0.010	<0.010	<0.010	<0.010	<6.5	<2.00	<2.00	<0.020	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	
Quinoline		2.5	mg/kg	<0.050	<0.050	<0.050	<0.050	< 0.050	<1.5	< 0.300	<0.400	<0.010	<0.010	<0.050	<0.050	< 0.050	<0.050	<0.050	
EPH	1	LOOO	mg/kg	<200	<200	<200	<200	<200	8920	2300	2780	<200	<200	<200	<200	<200	<200	<200	
HEPH	1	L000	mg/kg	<200	<200	<200	<200	<200	240	<200	<200	<200	<200	<200	<200	<200	<200	<200	
/PH (C6-C10)		200	mg/kg	<100	<100	<100	<100	<100	860	1510	36	<10	-	<100	<100	<100	<100	<100	1
							81120.05	BU 120.05	BU120 05	BU 120.000	BU 20.00	51120.00	DU 100.000	BU 120, 00	84120.00	0000.40		01120.40	01100.40
		_	Location	NW20-04	NW/20-04	MW20-04	BH20-05	BH20-05	BH20-05	BH20-06	BH20-08	BH20-08	BH20-08	BH20-08	BH20-08	BH20-10	BH20-10	BH20-10	BH20-10
		Sam	ple Date	11-Jun-2020	11-Jun-2020	11-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	12-Jun-2020	26-Jun-2020	26-Jun-2020	26-Jun-2020	26-Jun-2020
	Sample Depth 3.4 - 3.7 m 4.0 - 4.6 m 5.5 - 5.65 m							0.9-1.05 m	2.4-2.55 m	0.9-1.05 m	0.05-0.15 m	0.9-1.05 m	0.9-1.05 m	2.4-2.55 m	4.0-4.3 m	2.3-2.45 m*	3.2-3.35 m*	4.25-4.4 m*	4.25-4.4 m*
		cen	QAQL									FDA	FD					FDA	FD
Parameter	r	LSR	Unit																
		RLD																	
PID			ppm	20	98	2	1122	2002	104	8	6	4	4	4	2	<0.1	<0.1	<0.1	<0.1
2-methylnaphthale	ne	60	mg/kg	<0.010	<0.010	<0.010	13.6	34.3	2.44	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Vaphthalene		0.6	mg/kg	<0.010	<0.010	<0.010	<9.0	<30	<2.0	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Quinoline		2.5	mg/kg	<0.050	<0.050	<0.050	<2.0	<4.0	<0.30	<0.050	<0.050	<0.050	<0.050	<0.050	<0.010	<0.050	<0.050	<0.050	<0.050
EPH	1	1000	mg/kg	<200	<200	<200	11300	24000	1510	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200
HEPH	1	1000	mg/kg	<200	<200	<200	270	310	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200
/PH (C6-C10)		200	mg/kg	<100	<100	<100	2240	3530	<100	-	<100	<100	<100	-	<10	<100	<100	<100	<100
EGEND							NOTES						CLIENT						
	SITE BOUND	ARY					1. THE LOC	ATION OF BH2	0-08 IS APPRO	DXIMATE			PUBLIC	SERVICE	S AND PF	ROCUREM	IENT CAN	ADA	
I	LOT BOUND	١RY					2. RESULTS	ARE IN mg/kg	(MILLIGRAMS	S PER KILOGR	AM) UNLESS								
÷ 1	MONITORING	G WEL	L LOCAT	ION															
÷ i	BOREHOLE I	OCAT	ION				(CSR BC	REG 375/96 AN	ND O.C. 1480/9	6 INCLUDES	AMENDMENTS	UP TO BC	PROJECT						
•	MONITORING WELL WITH EMBEDDED VAPOUR PROBE LOCATION REG 13/2019, 24 JANUARY 2019																		
\	VAPOUR PR	OBE LO	OCATION	J			4. RL _{LD} = RE	SIDENTIAL LC	W DENSITY				KAMLOO	JPS, BC					
ė i	SURFICIAL S	OIL SA		OCATION			5. LEPH = L 6. HEPH = L		TABLE PETRU				TITLE						
	SOIL PARAM	ETER	SARELE	SS THAN APP	PLICABLE CSR	RLip	7. VPH = VC	LATILE PETRO	DLEUM HYDR	OCARBONS	OCARDONS		SOIL AN	IALYTICA	L RESUL	TS - HYDF	ROCARBC	NS	
	STANDARDS					LD	8. ppm = PA	RTS PER MILL	ION										
	ONE OF MOR	RE SOI	IL PARAN	IETER EXCEE	DS APPLICAB	LE CSR RL _D	9. PAH = PC	LYCYCLIC AR	OMATIC HYDI	ROCARBONS									
	STANDARDS						10. FIGURE	IN THE TABLE			URI VCEED THE AR		CONSULTAI	NI		YYYY	-MM-DD	2020-07-17	
							REGULA	TORY CRITER	RIA	DIELLOWEX	CEED THE AF	FLICABLE				DESIC	GNED	AU	
EFERENCE(S)							12. * THE DE	PTH OF SAM	PLES COLLEC	TED AT BH20-	10 ARE EXPRE	ESSED AS							
ACKGROUND IMAG	GE (2017) SUF	PLIED	BY THE	CITY OF KAN	ILOOPS		DEPTH	BELOW OUTD	OOR GROUNE	SURFACE		05		GO	LDE	R PREP	ARED	RIJ	
AGE IS INTENDED		I IVE F			ON 2020 05 1	10	13. ONLY DA			AINED AS CO	NIAMINANTS	OF				REVIE	EWED	AV	
					5 UN 2020-05-2	20		ENDED FOR CLIENT'S ONE		IOT INTENDED OR REPRESE	ENTED BY GOI DER TO PE S	UITABLE FOR RELISE PY	-					EVK	
ILE No.: 2001767SP	200707 To (Client	inin DVVC Iwa	5 FURIVIAT UN	a ∠UZU-U/-Uŏ		ANY PARTY, INCLUDII OF A SPECIFIC PROJE	IG, BUT NOT LIMITED TO, TI CT OR FUTURE PROJECTS	E CLIENT, ITS EMPLOYEES WHETHER CLIENT'S OR O	5, AGENTS, SUBCONTRACT THERWISE, WITHOUT GOLD	ORS OR SUBSEQUENT OWN ER'S PRIOR WRITTEN PERM	IERS ON ANY EXTENSION			DULLOF				
ATUM NADRA PPC			NF 10				MANIPULATION, ADAP GOLDER EXPRESSLY	TATION, MODIFICATION, AL DISCLAIMS ALL LIABILITY A RISK EXCEPT WHERE WAY	TERATION, MISUSE OR REI GAINST ALL THIRD PARTIES TTEN AGREEMENT STATES	USE UNAUTHORIZED BY GO S RELYING, USING OR MAKI	LDER WILL BE AT CLIENT'S NG DECISIONS ON THIS DRUNG IS THE PROPERTY OF CO	SOLE RISK. AWING, THIRD PARTIES OLDER ASSOCIATES TR	PROJECT N	U.	PHASE		REV		FIGUF
THE MADUS, FRU	JOLOHON. U	. w 20					JU J	NON ZAGEFT WHERE WRI	ADREEMENT STATES	Somerwide, This DRAWI	IS IS THE PROPERTY OF G	OLDER ROOUGRIEG LID.	2017/685	h	111111		n		-

Ayrenes	0.5	IIIg/Kg	NU.075	<0.073	NU.073	91.1	/2.1	0.004	<0.07J	<0.07J	<0.075	<0.0/J	NU.U/3	<0.075	<0.075	<0.075	<0.0/J	<0.075
							BU 33. 65	BU 22 25	BU 22 25	D1100.05	D1100.00	BU 100 .00	BUB6 68	BU 132 - 02	BU 22 42	DU 00. 40	01100.40	
	Com	Location	MW20-01	MW20-01	MW20-01	MW20-02	BH20-05	BH20-05	BH20-05	BH20-06	BH20-08	BH20-08	BH20-08	BH20-08	BH20-10	BH20-10	BH20-10	BH20-10
	Sam	ipie Date	11-Jun-2020	E E E E E E E	E 9 6 1 m	1919Em	10-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	12-Jun-2020	20-JUN-2020	20-Jun-2020	26-Jun-2020	26-Jun-2020
	Sauth		4.0-4.5111	5.5 - 5.65 11	5.6-0.111	1.0-1.99 11	0.05-0.15 m	0.5-1.05 11	2.4-2.55111	0.5-1.05 11	0.05-0.15 m	6.9-1.03 m	0.9-1.05 m	4.0-4.5111	2.3-2.45 111	5.2-5.55 111	4.23-4.4 m	4.23-4.4 III FD
	CSR	4, 40										TON						
Parameter	RLLD	Unit																
PID		ppm	-	<0.1	-	944	1122	2002	104	8	6	4	4	2	<0.1	<0.1	<0.1	<0.1
n-Nonane	4.5	mg/kg	<0.050	<0.050	<0.050	-	233	304	1.25	<0.050	<0.060	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
1,2-dibromoethane	e <u>3.5</u>	mg/kg	<0.050	<0.050	<0.050	-	<0.60	<0.90	<0.050	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Benzene	0.035	mg/kg	<0.0050	<0.0050	<0.0050	0.399	0.818	1.93	0.0115	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Toluene	0.5	mg/kg	<0.050	<0.050	<0.050	7.03	15.1	28.3	0.145	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Ethylbenzene	15	mg/kg	<0.015	<0.015	<0.015	15.2	25.5	49.5	0.270	-	<0.015	<0.015	<0.015	<0.015	<0.015	< 0.015	<0.015	<0.015
Xylenes	6.5	mg/kg	<0.075	<0.075	<0.075	91.1	154	298	1.78	-	<0.075	<0.075	<0.075	<0.075	<0.075	<0.075	<0.075	<0.075
 ◆ ◆ ◆ ◆ ◆ ● ● 	MONITOR BOREHOL MONITOR VAPOUR SURFICIA SOIL PAR STANDAR	OT BOUNDARY 2. RESULTS ARE IN mg/kg (MILLIGRAMS PER KILOGRAM) UNLESS IONITORING WELL LOCATION STANDARDS SHOWN ARE FROM THE CONTAMINATED SITES REGULATIO OREHOLE LOCATION STANDARDS SHOWN ARE FROM THE CONTAMINATED SITES REGULATIO IONITORING WELL WITH EMBEDDED VAPOUR PROBE LOCATION STANDARDS SHOWN ARE FROM THE CONTAMINATED SITES REGULATIO VAPOUR PROBE LOCATION REG 13/2019, 24 JANUARY 2019 VAPOUR PROBE LOCATION FESIDENTIAL LOW DENSITY SOULT PROBE LOCATION STANDARDENE, TOLUENE, ETHYLBENZENE, XYLENE OIL PARAMETERS ARE LESS THAN APPLICABLE CSR RLLD FIGURE TO BE READ WITH ACCOMPANYING REPORT VALUES IN THE FADEL COLOURD AND PROSED THE ADDUCADED VALUES IN THE FADEL COLOURD AND EXCEPT THE ADDUCADED						REGULATION NTS UP TO BC	PROJECT SNOW KAMLO TITLE SOIL A	BIRDS EN DOPS, BC	IVIRONME	ENTAL CLE	EANUP X/VOC					
		NORE SOI	L PARAMETER	EXCEEDS APP	PLICABLE CSR	RL _{LD} 9. * TH	E DEPTH OF	SAMPLES COLI	ECTED AT BH	20-10 ARE EXF	PRESSED AS	CONSULT	ΓΑΝΤ		YYY	Y-MM-DD	2020-07-17	
	STANDAR	03				DEI 10. ON	PTH BELOW O	UTDOOR GROU PARAMETERS	JND SURFACE RETAINED AS	CONTAMINAN	ITS OF	_			DES	IGNED	AU	
REFERENCE(S) BACKGROUND IMAC	GE (2017) \$	SUPPLIED	BY THE CITY	CONCERN ARE INCLUDED IN THE FIGURE DF KAMLOOPS							GC	יסונ		PARED	RTJ			
IMAGE IS INTENDED	FOR IND	ICATIVE P	URPOSES ON	LY MLOOPS ON 20	20-05-28									REV	IEWED	AV		
SITE SURVEY PROV	THE DRAWING IS INTENDED FOR CLEATE ON FOR THE USE ONLY AND IT IS NOT INTENDED OR REPRESENTED BY GOLDER TO BE SUITABLE FOR THE DRAWING IS INTENDED FOR CLEATE ON FOR CLEAT					TO BE SUITABLE FOR REUSE NT OWNERS ON ANY EXTENS N PERMISSION. ANY	BY			APP	ROVED	EVK						
FILE No.: 2001767SP DATUM: NAD83, PRO	LE No.: 2001767SP_200707_To Client.dwg Mediate Client.dwg Control Client.dwg Control Client.dwg Control Client.dwg Control Client.dwg Control Client.dwg Client Cli					E OR REUSE UNAUTHORIZE PARTIES RELYING, USING T STATES OTHERWISE, THIS	D BY GOLDER WILL BE AT CL OR MAKING DECISIONS ON T DRAWING IS THE PROPERT	JENT'S SOLE RISK. HIS DRAWING. THIRD PARTIE Y OF GOLDER ASSOCIATES I	PROJECT 201458	^т NO. 856	PHASE 1000		REV 0	/.	FIGURE			

	Jamp	ie bepui	0.05-0.15 m	0.05-0.15111	0.03-0.1311	0.05-0.15 m	0.05-0.15 11	0.05-0.15 m	0.05-0.1511	0.05-0.15111	0.03-0.13 111	0.5 1.05 11	2.7 2.3311	4.0 4.10111	4.0 4.511	5.5 5.05 m	5.6 0.111	
		QAQC				FDA	FD	FDA	FD	FDA	FD							4
Parameter	CSR RL _{LD}	Unit																
рН		рΗ	6.96	6.61	6.71	6.11	5.86	6.81	6.93	8.05	8.14	8.06	8.16	7.72	6.79	7.38	7.39	1
Cadmium	1-20	mg/kg	0.266	0.202	0.147	0.169	0.173	32.8	26.6	0.139	0.166	0.118	0.080	0.035	0.065	0.063	0.090	
Chromium	60	mg/kg	58.9	45.4	50.2	45.1	49.5	75.8	79.8	45.9	43.2	39.8	41.2	20.0	27.7	15.8	16.9	
		Location	MW20-02	MW20-02	MW20-02	MW20-03	MW20-03	MW20-04	MW20-04	MW20-04	BH20-05	BH20-05	BH20-05	BH20-08	BH20-10	BH20-10	BH20-10	BH20-10
	Sam	ple Date	12-Jun-2020	12-Jun-2020	12-Jun-2020	10-Jun-2020	10-Jun-2020	11-Jun-2020	11-Jun-2020	11-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020	12-Jun-2020	26-Jun-2020	26-Jun-2020	26-Jun-2020	26-Jun-2020
	Samp	e Depth	3.7-4.0 m	3.7-4.0 m	4.6-4.75 m	0.05-0.15 m	0.9-1.05 m	3.4 - 3.7 m	4.0 - 4.6 m	5.5 - 5.65 m	0.05-0.15 m	0.9-1.05 m	2.4-2.55 m	4.0-4.3 m	2.3-2.45 m*	3.2-3.35 m*	4.25-4.4 m*	4.25-4.4 m*
		QAQC	FDA	FD													FDA	FD
Parameter	RL _{LD}	Unit																
рН		рН	7.19	7.29	7.39	6.51	6.93	7.70	7.56	6.93	7.13	7.20	7.50	8.31	7.35	7.55	7.37	7.43
Cadmium	1-20	mg/kg	0.118	0.097	0.039	0.203	0.116	0.046	0.034	0.142	0.227	0.121	0.218	0.032	0.042	0.048	0.037	0.035
Chromium	60	mg/kg	21.6	23.0	20.2	45.6	52.6	17.7	18.9	26.0	58.2	53.8	45.0	11.3	17.5	18.6	19.7	16.3
 ◆ ◆ ◆ ◆ ◆ ● ●	LOT MON BOF MON VAP SUR SUR SUR STA	BOUNDAI BOUNDAI BEHOLE LO ITORING OUR PRO FICIAL SC PARAME NDARDS, OF MORI NDARDS	RY WELL LOCATH DCATION WELL WITH EN BE LOCATION DIL SAMPLE LC TTERS ARE LES E SOIL PARAM	ON MBEDDED VAPO DCATION SS THAN APPLI ETER EXCEED	OUR PROBE LO ICABLE CSR RL S APPLICABLE	2 CATION 4 5 6 7 10 8 CSR RL _{LD}	. RESULTS ARE NOTED OTHE . STANDARDS : (CSR BC REG REG 13/2019, . RL _{LD} = RESIDE . FIGURE TO BE . VALUES IN TH REGULATORY .* THE DEPTH DEPTH BELOI. . ONLY DATA FI ARE INCLUDE	E IN mg/kg (MILL RWISE SHOWN ARE FF 375/96 AND C.0. 24 JANUARY 20 NTIAL LOW DE E READ WITH A E TABLE HIGHI (CRITERIA OF SAMPLES C OR PARAMETE D IN THE FIGUI	JGRAMS PER K ROM THE CONT 2. 1480/96 INCL 119 INSITY CCOMPANYING LIGHTED YELLG OLLECTED AT ROUND SURFA RS RETAINED / RE	SILOGRAM) UNI AMINATED SIT UDES AMENDA BREPORT DW EXCEED TH BH20-10 ARE E CE CE AS CONTAMINA	LESS ES REGULATIC MENTS UP TO E HE APPLICABLE EXPRESSED AS	PROJEC SNOV KAMI TITLE ERN SOIL	DT WBIRDS E LOOPS, BO	NVIRONM	ENTAL CL	EANUP FALS		
						-							LTANT			YY-MM-DD	2020-07-17	
						R		MAGE (2017) SI				_						
						B	MAGE IS INTEN	DED FOR INDIC	ATIVE PURPOS	SES ONLY	ILUUPS		💊 G (DLD	ER –	PARED	RIJ	
							LOT BOUNDARIES OBTAINED FROM THE CITY OF KAMLOOPS ON 2020-05-28					8			RE	/IEWED	AV	
THIS DRAWING IS INTENDED ANY PARTY, INCLUDING, BUT OF A SPECIFIC PROJECT OR	FOR CLIENT'S ON NOT LIMITED TO FUTURE PROJEC	E TIME USE ONLY A THE CLIENT, IT'S EI IS, WHETHER CLIEF	AND IT IS NOT INTENDED OF MPLOYEES, AGENTS, SUBCI NT'S OR OTHERWISE, WITH	REPRESENTED BY GOLDER ONTRACTORS OR SUBSEQUE OUT GOLDER'S PRIOR WRITTE	TO BE SUITABLE FOR REUSE NT OWNERS ON ANY EXTENS EN PERMISSION. ANY	ION F	SITE SURVEY PROVIDED BY ALLNORTH IN DWG FORMAT ON 2020-07-08 FILE No.: 2001767SP 200707 To Client.dwg								APF	PROVED	EVK	
MANIPULATION, ADAPTATION GOLDER EXPRESSLY DISCLA DO SO AT THEIR OWN RISK. E	, MODIFICATION, IMS ALL LIABILITY EXCEPT WHERE V	ALTERATION, MISU AGAINST ALL THIR RITTEN AGREEMEI	SE OR REUSE UNAUTHORIZ 20 PARTIES RELYING, USING NT STATES OTHERWISE, TH	ED BT GOLDER WILL BE AT C OR MAKING DECISIONS ON 1 IS DRAWING IS THE PROPERT	LIENT'S SOLE RISK. THIS DRAWING. THIRD PARTIE TY OF GOLDER ASSOCIATES L	ть. D	ATUM: NAD83,	PROJECTION:	UTM ZONE 10			PROJEC 2014	CT NO. 5856	PHASE		RE 0	V.	FIGURE

25 mm IF THIS MEAS

E

All a	E 682 390	E 682 400	E 682 4	110	「二十二	E	<u> </u> 682 420
				0 1:150	2.5	5	
	SITE BOUNDARY - LOT BOUNDARY	NOTES 1. THE LOCATION OF BH20-08 IS APPROXIMATE 2. RESULTS ARE IN mg/kg (MILLIGRAMS PER KILOGRAM) UNLESS NOTED OTHERWISE	CLIENT PUBLIC SER	VICES AND PROCU	UREMENT CAN	NADA	
↔ ↔	MONITORING WELL LOCATION BOREHOLE LOCATION	3. STANDARDS SHOWN ARE FROM THE CONTAMINATED SITES REGULATION (CSR BC REG 375/96 AND O.C. 1480/96 INCLUDES AMENDMENTS UP TO BC REG 13/2019, 24 JANUARY 2019 4. RL _{LD} = RESIDENTIAL LOW DENSITY	PROJECT SNOWBIRDS KAMLOOPS,	ENVIRONMENTAL	L CLEANUP		
\bullet	VAPOUR PROBE LOCATION SURFICIAL SOIL SAMPLE LOCATION	5. PFAS = PERFLUORINATED AND POLYFLUORINATED ALKYL SUBSTANCES 6. PFAS INCLUDES: PERFLUOROBUTANE SULFONATE (PFBS) AND PERFLUOROOCTANCE SULFONATE (PFOS) 7. FIGURE TO BE READ WITH ACCOMPANYING REPORT	TITLE SOIL ANALY	TICAL RESULTS -	PFAS		
	SOIL PARAMETERS ARE LESS THAN APPLICABLE CSR RL _{LD} STANDARDS,	8. ONLY DATA FOR PARAMETERS RETAINED AS CONTAMINANTS OF CONCERN ARE INCLUDED IN THE FIGURE	CONSULTANT		YYYY-MM-DD	2020-07-17	
	ONE OF MORE SOIL PARAMETER EXCEEDS APPLICABLE CSR RL_LD				DESIGNED	AU	
\bigcirc	STANDARDS	KEFEKENGE(5) BACKGROUND IMAGE (2017) SUPPLIED BY THE CITY OF KAMLOOPS	- 🔼 G		PREPARED	RTJ	
		IMAGE IS INTENDED FOR INDICATIVE PURPOSES ONLY	· 💙 🍟	SEDER	REVIEWED	AV	
THIS DRAWING IS INTENDED FOR ANY PARTY, INCLUDING, BUT NOT OF A SPECIFIC PROJECT OR FUTU	R CLIENT'S ONE TIME USE ONLY AND IT IS NOT INTENDED OR REPRESENTED BY GOLDER TO BE SUITABLE FOR REUSE BY T LIMITED TO, THE CLIENT, ITS EMPLOYEES, AGENTS, SUBCONTRACTORS OR SUBSEQUENT OWNERS ON ANY EXTENSION URE PROJECTS, WHETHER CLIENTS OR OTHERWISE, WITHOUT GOLDERS PRIOR WHITTEN PERMISSION, ANY	SITE SURVEY PROVIDED BY ALLNORTH IN DWG FORMAT ON 2020-07-08	·		APPROVED	EVK	
MANIPULATION, ADAPTATION, MOD GOLDER EXPRESSLY DISCLAMS A DO SO AT THEIR OWN RISK. EXCER	DIREACTION, ALTERATION, MISUE OR REUSE UNAUTIOREZED BY GOLDER WILL ER AT CLEMPTS SOLCE RISK. LA LUBALTY AGARCHELT LA THERD PARTES EN HUN LISING OF MUNICIPATION CONTROL FOR A THERD PARTES AL LUBALTY AGARCHELT TA LA THERD PARTES IN THE ON ANY OF THE PARTES AND THE PARTES AND THE PARTES AND THE PARTES PT MISES WHITTEN AGREEMENT STATES OTHERWISE. THE DRAWNING IS THE INFORMATIVE OF GALERY ASSOCIATES I.D.	FILE No.: 2001767SP_200707_To Client.dwg DATUM: NAD83, PROJECTION: UTM ZONE 10	PROJECT NO. 20145856	PHASE 1000	RE 0	EV.	FIGURE

Benzene	0.03	5 mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.818	1.93	0.0115		<n m50<="" th=""><th><0.0050</th><th><0.0050</th><th>-</th><th><0.0050</th><th><0.0050</th><th><0.0050</th><th><0.0050</th><th><0.0050</th></n>	<0.0050	<0.0050	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Toluene	0.00	mg/kg	<0.0050	<0.0000	<0.0000	<0.00.00	<0.0050	<0.0050	<0.0050	15.1	78.3	0.0115		<0.0050	<0.0050	<0.0050	-	<0.0000	<0.0050	<0.0050	<0.0050	<0.0050
Fthylhenzene	15	mg/kg	<0.050	<0.050	<0.000	<0.050	<0.050	<0.050	<0.030	25.5	49.5	0.270		<0.050	<0.030	<0.050	-	<0.050	<0.050	<0.030	<0.030	<0.030
Yvlenes Total	65	mg/kg	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	154	708	1 78		<0.015	<0.015	<0.015	-	<0.015	<0.015	<0.015	<0.015	<0.015
2-methylnanhthalene	60	mg/kg	0.064	<0.075	<0.075	<0.075	<0.075	<0.075	<0.075	13.6	2.50	2.44	<0.010	<0.075	<0.075	<0.073	<0.010	<0.075	<0.075	<0.075	<0.075	<0.075
Nanhthalene	0.6	ma/ka	<0.004	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	- <u>-</u> 9.0	<30	<2.14	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Quinoline	2.5	ma/ka	<0.020	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<2.0	<10	<0.30	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010
LEDH	100	mg/kg	<200	<200	<200	<200	<200	<200	<200	11300	24000	1510	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200
HERH	100	mg/kg	<200	<200	<200	<200	<200	<200	<200	270	310	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200
VPH	200	$m\sigma/k\sigma$	<10	<200	<100	<100	<100	<100	<100	270	3530	<100	~200	<100	<100	<100	~200	<10	<100	<100	<100	<100
LEGEND APF	JEND TEST HOLE GRAPHICS CLIENT APPROXIMATE GROUND SURFACE NO DESCRIPTION AVAILABLE SAND (SP) Image: Silt (MH) CATION FSET (0S) SOIL STRATIGRAPHY SILT (ML) SILT (ML) VAPOUR PROBE VARIOUS COMBINATIONS OF THE ABOVE SYMBOLS HAVE BEEN USED TO REPRESENT MIXTURES OF THE ABOVE MATERIALS. SILT (ML) PROJECT													4								
soi	L SC L COI L COI	REEN IN NCENTRA	TERVAL ATION MEET ATION IS GR	IS APPLICAE REATER THA	BLE STANDA N ONE OR N	RDS 1. 1.0RE 3.	OTES THE LOCATI RESULTS AI STANDARDS	ON OF BH2 RE IN mg/kg S SHOWN A	0-08 IS APPI (MILLIGRAN RE FROM TI	ROXIMATE //S PER KILC HE CONTAM) GRAM) UNI	LESS NOTED) OTHERWIS		ROSS-S	ECTION	A-A' AN	ND B-B'				
APF		BLE STAI					REG 375/96	AND O.C. 14	480/96 INCL	JDES AMEN	DMENTS UP	P TO BC REG	6 13/2019, 24		ONSULTANT			Y	YYYY-MM-DC	20	020-07-17	
STA	NDA	RDS	JUNGENTR			4.	RL _{LD} = RESI	DENTIAL LO	W DENSITY									- C	DESIGNED	A	U	
ШТ 👤 мел	SUR	ED WATE	R LEVEL (J	UNE 10-12, 2	2020)	5. 6.	HEPH = HEA	VY EXTRAC	CABLE PETR	OLEUM HYI	DROCARBO	NS				<u> </u>		en ^è	PREPARED	R	TJ	
						7. 5.	7. VPH = VOLATILE PETROLEUM HYDROCARBONS 5. FIGURE TO BE READ WITH ACCOMPANYING REPORT 6. VALUES IN THE TABLE HIGHLIGHTED YELLOW EXCEED THE APPLICABLE REGULATOR									GO	LUI		REVIEWED	A	V	
THIS DRAWING IS INTENDED FOR CLIENT	'S ONE TI	ME USE ONLY AND	IT IS NOT INTENDED C	OR REPRESENTED BY GO	OLDER TO BE SUITABLE	FOR REUSE BY 6.								ATORY				-		F	VK	
OF A SPECIFIC PROJECT OR FUTURE PR MANIPULATION, ADAPTATION, MODIFICA GOLDER EXPRESSLY DISCLAIMS ALL LIA DO SO AT THEIR OWN RISK. EXCEPT WHI	DJECTS, W TION, ALTE BILITY AG/ ERE WRITT	WHETHER CLIENTS ERATION, MISUSE MINST ALL THIRD F TEN AGREEMENT	S OR OTHERWISE, WITH OR REUSE UNAUTHOR PARTIES RELYING, USIN STATES OTHERWISE, T	HOUT GOLDER'S PRIOR IZED BY GOLDER WILL B IG OR MAKING DECISION HIS DRAWING IS THE PR	WRITTEN PERMISSION. E AT CLIENT'S SOLE RI NS ON THIS DRAWING. T ROPERTY OF GOLDER A	Here on any extrement association any among here parties among here parties above invict interparties above invict interparties above invict interparties								PF	ROJECT NO.		PHASE	,		REV.		FIGURE
														2	0145856		1000			0		

25 mm

	5.0		5.0		5.5				
	Indoor Air	Outdoor Air	Indoor Air	Outdoor Air	Indoor Air	Outdoor Air	Indoor Air		
	Att	entuation factor (α)	Unattenuated	0.00000061	Unattenuated	0.00000061	Unattenuated	0.00000061	Unattenuated
Parameter	CSR ² (AL/PL/RL)	Units							
Naphthalene	3	ug/m3	< 13	0.0000079	< 13	0.0000079	< 13	0.0000079	< 3.3
Volatile Petroleum Hydrocarbons in Vapour (C6-C13)	1000	ug/m3	71000	0.043	26000	0.016	27300	0.0167	13600
1,2-dibromoethane	0.5	ug/m3	< 0.77	0.00000047	< 0.77	0.00000047	< 0.77	0.00000047	< 0.19
Benzene	1.5	ug/m3	44.7	0.0000273	11.9	0.00000726	12.3	0.00000750	4.85
Xylenes, Total	100	ug/m3	261	0.000159	< 20	0.000012	< 20	0.000012	40.3
1,3-Butadiene	2	ug/m3	36.7	0.0000224	18.7	0.0000114	17.1	0.0000104	< 0.55
1,2,4-Trimethylbenzene	7	ug/m3	< 9.8	0.0000060	< 9.8	0.0000060	< 9.8	0.0000060	9.4
1,3,5-Trimethylbenzene	3.5	ug/m3	21.1	0.0000129	< 9.8	0.0000060	< 9.8	0.0000060	2.5
Methyl Cyclohexane	1500	ug/m3	2900	0.0018	990	0.000604	1050	0.000641	1660

LEGEND

	SITE BOUNDARY
	LOT BOUNDARY
$\overline{\mathbf{A}}$	VAPOUR PROBE LOCATION
*	MONITORING WELL WITH EMBEDDED VAPOUR PROBE LOCATION
\bigcirc	SOIL VAPOUR PARAMETERS ARE LESS THAN APPLICABLE CSR SANDARDS
\bigcirc	ONE OR MORE SOIL VAPOUR PARAMETER EXCEEDS APPLICABLE CSR STANDARDS

NOTES

- NOTES
 1. RESULTS ARE IN µg/m³ (MICROGRAMS PER CUBIC METRE) UNLESS NOTED OTHERWISE
 2. STANDARDS SHOWN ARE FROM THE CONTAMINATED SITES REGULATION (CSR BC REG 375/96 AND O.C. 1480/96 INCLUDES AMENDMENTS UP TO BC REG 13/2019, 24 JANUARY 2019
 3. AL/RL/PL = AGRICULTURAL LAND USE/PARK LAND USE/RESIDENTIAL LAND USE
 4. FIGURE TO BE READ WITH ACCOMPANYING REPORT
 5. VALUES IN THE TABLE HIGHLIGHTED YELLOW EXCEED THE APPLICABLE REGULATORY CRITERIA
 6. ONLY DATA FOR PARAMETERS RETAINED AS CONTAMINANTS OF CONCERN ARE INCLUDED IN THE FIGURE
 7. TO EVALUATE SOIL VAPOUR INDOOR EXPOSURE, NO ATTENUATION FACTOR WAS APPLIED DUE TO CRACKS IN THE FOUNDATION AND BASEMENT SLAB

REFERENCE(S) BACKGROUND IMAGE (2017) SUPPLIED BY THE CITY OF KAMLOOPS IMAGE GEOREFERENCED BY GOLDER AND INTENDED FOR INDICATIVE PURPOSES ONLY

LOT BOUNDARIES OBTAINED FROM THE CITY OF KAMLOOPS ON 2020-05-28 DATUM: NAD83, PROJECTION: UTM ZONE 10

CLIENT

PUBLIC SERVICES AND PROCUREMENT CANADA

PROJECT SNOWBIRDS ENVIRONMENTAL CLEANUP KAMLOOPS, BC

TITLE

SOIL VAPOUR ANALYTICAL RESULTS

	YYYY-MM-DD	2020-07-17	
	DESIGNED	AU	
GOLDEP	PREPARED	RTJ	
GOLDER	REVIEWED	AV	
	APPROVED	EVK	
PHASE 1000	RE 0	W.	FIGURE
	GOLDER PHASE 1000	GOLDER YYYY-MM-DD DESIGNED PREPARED REVIEWED REVIEWED APPROVED REVIEWED 1000 0	YYYY-MM-DD 2020-07-17 DESIGNED AU PREPARED RTJ REVIEWED AV APPROVED EVK PHASE REV. 1000 0

S ON ANY SION, ANY

APPENDIX A

Photo 1: Aerial view of the crash Site obtained 23 May 2020.

Photo 2: Photo looking South towards the crash site taken 26 May 2020.

Photo 3: Surficial soil sampling location SS20-17 (collected 26 May 2020).

Photo 4: Soils obtained from Auger drilling on 11 June 2020.

Photo 5: Auger drill rig onsite on 11 June 2020.

Photo 6: Auger drill rig onsite at location MW20-02 on 11 June 2020 for soil sampling and monitoring well installation.

Photo 7: Soil sampling from auger rig on 11 June 2020.

Photo 8: Looking downhole at MW20-03 on 11 June 2020.

Photo 9: Groundwater sampling at MW20-04 on 18 June 2020.

Photo 10: Equipment decontamination with PFAS-free water bath 18 June 2020.

Photo 11: Soil vapour sampling at MW20-03 on 19 June 2020.

Photo 12: Flow regulator and vacuum gauge of Summa Cannister samples.

Photo 13: Background soil sample obtained 0.05 - 0.15 m below ground surface on 19 June 2020

Photo 14: Borehole location BH20-10 after concrete was patched (bottom left of photo).

Photo 15: Temporary sub-slab vapour probe SV20-09 in the concrete slab foundation of the house.

APPENDIX B

DND Spill Report Form

HAZMAT INCIDENT/SPILL REPORT FORM

A. GENERAL INFORMATION (All sections must be completed and information typed or printed)								
1. Name of person submitting report	2. Te	elephone	3. Unit	4. Section				
Cheryl-Ann Beckles	306-	229-2881	15 Wing	Environment				
5. Spill Initially reported to: B.C Ministry of Environment and Climate Cha (EMBC) 1-800-663-3456. The EMBC Incide	ange Strat nt Report	tegy, Emergen Number is 200	cy Management E 560 .	British Columbia				
a. Section/ Unit: 15 Wing, 431 Sqn								
b. Date (dd/mm/yyyy): 17/05/2020		c. Time (HH:	MM): 15:56					
d. Method: verbal \square , phone X , or emai		<u> </u>						
6. Date and Time of Occurrence/Discovery	у	Date and Tin	ne Clean-Up					
Date (dd/mm/yyyy): 17/05/2020		Date (dd/mm	/уууу):					
Time (HH:MM): ~11:45		Time (HH:MN	И):					
B. SPILL INCIDENT INFORMATION								
7. Materials Spilled/Release: fuels and oils								
8. Quantity Spilled (litres or kilograms):	9. Q	uantity Recov	ered (litres or kil	ograms):				
Engine Oil – 4.2 L								
Hydraulic Fluid – 5.9 L								
F34,JP8 - 1552 L								
Diesel – 168.2 L								
10. Source of Spill: CT114 Tutor								
11. Cause of Spill: Crash incident								
12. Effects of Spill:								
13. Action taken to Mitigate Effects:								
B. LOCATION								
14. Site of spill/incident: Residential area of Kamloops, British Colum	bia.							
15. Did spill: (check all that apply)	Distance	from drain o	r catch basin:	metres				
enter catch basin or storm drain? Di		e to property b	oundary:	metres				
enter surface water?	Distance	e to surface wa	ater:	metres				

C. WEATHER

16. Conditions and Temperature (°C): ~ 14°C

D. CLEAN-UP

17. Contaminated spill response material and equipment collected from site?

18. Disposal location of contaminated material (B132?):

19. Actions taken to replace used spill response equipment:

20. ADDITIONAL INFORMATION

W Env O Office use only									
Reported Incident to DRMIS?	Notified External Agencies? Yes, B.C Ministry of Environment and Climate Change Strategy, Emergency Management British Columbia (EMBC) The EMBC Incident Report Number is 200560.								
Required follow up actions:									
Is a Significant Incident Required?	W Env O completed site visit? Yes, Marie Goulden, 19 Wing Environment Officer								

APPENDIX C

Potential Contaminants of Concern

CT-114 Tutor Fact Sheet

Hazarda	Quantity	Location							
Hazaros	Quantity	Location	Land	Mitigation	Water	Mitigation	Air	Regulation	Human Health
AFFF	Not on board aircrafts. Used to put out fires in crashes.	A fire suppressant.	Aqueous film forming foams (AFFF) fire suppressing system may contain Perfluorooctane Sulfonate (PFOS), which is a known toxicant and is extremely difficult to remove by biodegradation, either naturally or accelerated.) N/A	Toxic to aquatic organisms. Fluorinated surfactants are persistent chemicals. Foams generally have high BOD values and their rapid biodegradation can deplete dissolved oxygen levels in water bodies which, in turm, may lead to asphyxiation of aquatic organisms (WHMIS MSDS).	N/A	N/A	This substance has been added to the CEPA List of Toxic Substances. It is entering or may enter the environment in a quantity or concentration or under conditions that have or may have an immediate or long-term harmful effect on the environment or its biological diversity. In addition, stocks of PFOS-based AFFFs placed on the market before December 27, 2006, may be used until June 27, 2011.	Routes of entry include dermal, inhalation and ingestion. Potential health effects include skin and eye irritation. Potentially a hepatoxin and immune suppressant. Not a carcinogen (WHMIS MSDS).
Batteries (NiCad)	Two (2) batteries	Front of aircraft	NiCad batteries contain cadmium, which is a toxic heavy metal and therefore requires special care during battery disposal. Cadmium strongly adsorbs to organic matter in soils. When cadmium is present in soils it can be extremely dangerous.	Phyto-remediation of cadmium and other heavy metals (lead, zinc) from soils can be accomplished by the use of such "hyperaccumulator" plants as Alpine pennycress that can accumulate up to 1,000 mg of cadmium per kg of dry plant matter.	In aquatic ecosystems cadmium can bio accumulate in mussels, oysters, shrimps, lobsters and fish. The susceptibility to cadmium can vary greatly between aquatic organisms. Salt water organisms are known to be more resistant to cadmium poisoning than freshwater organisms. Animals eating or drinking cadmium sometimes get high blood pressures, liver disease and nerve or brain damage. (Lenntech - www.lenntech.com)	y N/A - 1	When heated in air, it volatises and burns readily with a bright flame producing a brownish- yellow cadmium oxide fume. The fumes are toxic and the yellowish powder it forms is amorphous.	Regulated by CEPA - Schedule I Exposure Limits - TWA: 0.01 (ppm) Acute oral toxicity (LD50): 890 mg/kg for animals Acute toxicity of the dust (LC50): 229.9 mg/m3 4 hour(s) for animals WHMIS :CLASS D-1A: Material causing immediate and serious toxic effects	Cadmium is first transported to the liver through the blood. There, it bonds to proteins to form complexes that are transported to the kidneys. Cadmium accumulates in the kidneys, where it damages filtering mechanisms. This causes the excretion of essential proteins and sugars from the body and further kidney damage. It takes a long time for cadmium that has accumulated in kidneys to be excreted from the human body. Other health effects that can be caused by cadmium are: - Diarrhea, stomach pains and severe vomiting - Bone fracture - Reproductive failure and possibly even infertility - Damage to the central nervous system - Damage to the immune system - Psychological disorders - Possibly DNA damage or cancer development (Lenntech - www.lenntech.com)
Cadmium	Unknown	N/A	NiCd batteries contain cadmium, which is a toxic heavy metal and therefore requires special care during battery disposal. Cadmium strongly adsorbs to organic matter in soils. When cadmium is present ir soils it can be extremely dangerous to terrestrial plants and animals.(Lenntech)	Phyto-remediation of cadmium and other heavy metals (lead, zinc) from soils can be accomplished by the use of n such "hyperaccumulator" plants as Alpine pennycress that can accumulate up to 1,000 mg of cadmium per kg of dry plant matter. (Lenntech)	In aquatic ecosystems cadmium can bio- accumulate in mussels, oysters, shrimps, lobsters and fish. The susceptibility to cadmium can vary greatly between aquatic organisms. Salt-water organisms are known to be more resistant to cadmium poisoning than freshwater organisms. Ingestion of cadmium by animals can result in high blood-pressures, liver disease and nerve or brain damage (Lenntech)	N/A	When heated in air, it volatises and burns readily with a bright flame producing a brownish- yellow cadmium oxide fume. The fumes are toxic and the yellowish powder it forms is amorphous. (Lenntech)	Regulated by CEPA - Schedule I Exposure Limits - TWA: 0.01 (ppm) Acute oral toxicity (LD50): 890 mg/kg for animals Acute toxicity of the dust (LC50): 229.9 mg/m ³ 4 hour(s) for animals WHMIS :CLASS D-1A: Material causing immediate and serious toxic effects	Cadmium is first transported to the liver through the blood. There, it bonds to proteins to form complexes that are transported to the kidneys. Cadmium accumulates in the kidneys, where it damages filtering mechanisms. This causes the excretion of essential proteins and sugars from the body and further kidney damage. It takes a long time for cadmium that has accumulated in kidneys to be excreted from the human body. Other health effects that can be caused by cadmium are: - Diarrhea, stomach pains and severe vomiting - Bone fracture - Reproductive failure and possibly even infertility - Damage to the central nervous system - Damage to the immune system - Possibly DNA damage or cancer development (Lenntech - www.lenntech.com)
Engine Oil	4.18 Litres	Engine of aircraft.	Engine oils contain PAH's, which can cause toxicity and long term effects.	e Clean up of soil required - possible testing depending on quantity. Remove contaminated soils, and dispose of as per DND Hazwaste policy.	May be toxic to aquatic organisms, depending on type of fluid.	Remove all ignition sources Collect leaking liquid in sealable containers. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Complete protective clothing including self-contained breathing apparatus	. N/A	Spill reporting to EC required if more than 100L spilled as per DND requirement.	Found in modern jet oil, tricresyl phosphate (TCP) can lead to drowsiness, headaches, respiratory problems or neurological illnesses, a condition scientifically know as Aerotoxic Syndrome. TCP is used only in jet engine oil, where it acts as an anti-wear.(Witkowski, 2010)
Fire Extinguishers	Unknown	Unknown	Agent Unknown	Agent Unknown	Agent Unknown	Agent Unknown	Agent Unknown	Agent Unknown	Agent Unknown
Fuel	+ 2 Auxiliary Tanks (379.2 Litres)	between wings, and External auxiliary tanks slung from the fuselage.	Hydrocardon contamination in soil.	Diean up of soll required - possible testing depending on quantity. Remove contaminated soils, and dispose of as per DND Hazwaste policy.	UII spreads into a triin layer on the water surface as a sheen. Once in the water, oil undergoes weathering, a process that describes the physical, chemical, and biological changes that occur when oil interacts with the environment. Weathering reduces the more toxic elements in oil products over time, as exposure to air, sunlight, wave and tidal action and certain microscopic organisms degrades and/or disperses oil. Weathering rates depend on factors such as type of oil, weather, temperature, and the type of shoreline and bottom that occur in the spill area. Jet Fuels are highly volatile and evaporate quickly. It is one of the most acutely toxic oils and generally affect aquatic life (fish, invertebrates, and plants) that live in the upper water column.	Sincemove all ignition sources Collect leaking liquid in sealable containers. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Complete protective clothing including self-contained breathing apparatus.	. IN/A	release of any substance which is deleterious to fish or fish habitat is prohibited. Spill reporting to EC required if more than 100L as per DND requirement	Potentual symptoms: skin irritation (itching, burning, redness, rash), dermatitis, headache, fatigue, anorexia, dizziness, difficulty concentrating, poor coordination. Acute symptoms from ingestion include vomiting, diarrhea, cramps; drowsiness, restlessness, irritability, loss of consciousness, death, pneumonitis (from aspiration). (US Dept. of Labour OSHA)

CT-114 Tutor Fact Sheet

			Impacts										
Hazards	Quantity	Location	Land	Mitigation	Water	Mitigation	Air	Regulation	Human Health				
HFCs and CFCs	Unknown	Air conditioning equipment	Many different types of CFC's and HFC's. A common one is Freon 113 (CFC). Because it is a liquid that does not bind well to soil, Freon 113 that makes its way into the ground can move through the ground and enter groundwater. Plants and animals are not likely to store Freon. (US EPA)	N/A	N/A	N/A	Ozone depleting substance.	Environment Canada - Must report leaks more thar 100kg. Ozone Depleting Substances Regulation Prepare for risks that a thoughtful and reasonable person would foresee; and respond to risks and incidents as soon as possible (DAOD 4003).	N/A				
Hydraulic Fluid	4.59 Litres	See Fact Sheet	If spilled on soil, some of the ingredients in the hydraulic fluids mixture may stay on the top, while others may sink into the groundwater. How fast the ingredients move through soil depends on many things. These include how much is spilled, how much rain falls on the spill, and the type of soil (for example, hydraulic fluids will move quickly in sandy soil, but will move slower in heavy clay).	Clean up of soil required - possible testing depending on quantity. Remove contaminated soils, and dispose of as per DND Hazwaste policy.	In water, some ingredients of hydraulic fluids will transfer to the bottom and stay there. Fish may contain some hydraulic fluid ingredients. Eventually, the ingredients of hydraulic fluids are degraded in the environment, but complete degradation may take more than a year. (ATSDR)	Remove all ignition sources. Collect leaking liquid in sealable containers. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Complete protective clothing including self-contained breathing apparatus.	Remove all ignition sources. Collect leaking liquid in sealable containers. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Complete protective clothing including self- contained breathing apparatus. Remove contaminated soils, and dispose of as per DND Hazwaste policy.	Spill reporting to EC required if more than 100L spilled, as per DND requirement. Under the federal Fisheries Act, the release of any substance which is deleterious to fish or fish habitat is prohibited.	The Department of Health and Human Services (DHHS), the International Agency for Research on Cancer (IARC), and EPA have not classified mineral oil hydraulic fluids, polyalphaolefin hydraulic fluids, and organophosphate ester hydraulic fluids for carcinogenic effects. Hydraulic fluids are often complex mixtures of many chemical components. A particular hydraulic fluid can differ in its chemical components from another hydraulic fluid even if the two fluids are in the same class. Thus, effects of exposure may differ. (ATSDR)				
Lead	Unknown	Battery coverings in air crafts	Lead may be absorbed by soil particles and organic materials, especially those near the source of the lead.	Remove contaminated soils, and dispose of as per DND Hazwaste requirement.	Lead is largely insoluble in water, it is usually a minor constituent of surface and ground water. Because of lead's low solubility in water, its "uptake" in plants is usually limited.	N/A	N/A	Under the federal Fisheries Act, the release of any substance which is deleterious to fish or fish habitat is prohibited. Shipping or transport of substances containing lead are regulated under the federal Transportation of Dangerous Goods Act, while use of compounds containing lead are controlled by the Hazardous Products Act, the Food and Drug Act, and the Pest Control Products Act. Lead is also included in the Workplace Hazardous Materials Information System, operated by Health Canada. CEPA has reduced the lead content limit from 5000 mg/kg (0.5 percent by weight) to 600 mg/kg (0.06 percent by weight). Canadian Drinking Water Quality Guidelines - Max. Acceptable Concentration - 0.01 mg/L	Short-term exposure to high levels of lead can cause vomiting, diarrhea, convulsions, coma or even death. Severe cases of lead poisoning are rare in Canada.(Heatlh Canada)				
Lead Paints	Unknown	Outer shell of aircraft - older models only.	Lead may be absorbed by soil particles and organic materials, especially those near the source of the lead.	Remove contaminated soils, and dispose of as per DND Hazwaste requirement.	Lead is largely insoluble in water, it is usually a minor constituent of surface and ground water. Because of lead's low solubility in water, its "uptake" in plants is usually limited.	N/A	N/A	Shipping or transport of substances containing lead are regulated under the federal Transportation of Dangerous Goods Act, while use of compounds containing lead are controlled by the Hazardous Products Act, the Food and Drug Act, and the Pest Control Product Act.	Under the Surface Coating Materials Regulations, which came into effect in 2005, the lead limit was further reduced from 1976 levels. Paint manufacturers could no longer add lead to their paint. Some specialty coatings can contain higher levels of lead, but if they do, they must be labelled to warn against applying the paint to surfaces that children and pregnant women might come in contact with. Most indoor and outdoor paints produced before 1950 contained substantial amounts of lead. Stripping or sanding of old paint that contains lead may result in inhalation of lead particles.(Health Canada)				
Oxygen System	Two (2) bottles	Located on each side o the aircraft in front of wings.	If grease or oil is exposed to high concentrations of pressurized oxygen, can cause explosions.	N/A	N/A	N/A	If there is physical damage to the cylinder, valves or plumbing, it can cause an explosive rupture. Oil grease and other foreign matter on oxygen equipment can cause violent explosions.	N/A	Liquid oxygen (a cryogenic fluid) may cause dangerous burns, and vessels in which it is stored may cause skin to freeze to them. Splashing, and eye damage, may occur. If a container is defective or seriously damaged or tampered with, it may burst violently, creating shrapnel. Flammable substances, may flare up suddenly and uncontrollably in the presence of pure oxygen. Some substances that readily burn react so fast with the boil-off of pure liquid oxygen that they may explode. Oxygen gas that boils off can "supercharge" the surroundings, exposing individuals breathing that atmosphere to possible oxygen toxicity.				

Additional Fuel 2 Auxiliary Tanks:189.6 litres each

2 Smoke Tanks: 84.1 litres each

Source: Post Crash Environmental Guidelines, Department of National Defence, 2004

UNIVAR CANADA LTD. ISSUE DATE:2015-04-27 Annotation:

Material Safety Data Sheet

LA2199 Methyl Carbitol Fuel Additive Grade

1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

Product Id: LA2199 Product Name: Methyl Carbitol Fuel Additive Grade Synonyms: None Chemical Family: None Known Application: Solvent. Fuel Additive.

Distributed By: Univar Canada Ltd. 9800 Van Horne Way Richmond, BC V6X 1W5

Prepared By: The Environment, Health and Safety Department of Univar Canada Ltd. **Preparation date of MSDS:** 27/Apr/2015 **Telephone number of preparer:** 1-866-686-4827

24-Hour Emergency Telephone Number (CANUTEC): (613) 996-6666

2. HAZARDS IDENTIFICATION

Potential Acute Health Effects:

Eye Contact: May cause pain disproportionate to the level of irritation to eye tissue. May cause slight transient (temporary) eye irritation.

Skin Contact: Prolonged contact is essentially nonirritating to skin. Prolonged skin contact is unlikely to result in absorption of harmful amounts.

Inhalation: No significant irritation expected from a single short-term exposure.

Ingestion: Very low toxicity if swallowed. Harmful effects not anticipated from swallowing small amounts.

3. COMPOSITION/INFORMATION ON INGREDIENTS

Ingredients	Percentage (W/W)	LD50s and LC50s Route & Species:
Diethylene Glycol Monomethyl Ether 111-77-3	99-100	LC50 Inhalation Vapor >400 ppm (Rat) 13hrs LD50 Dermal >2000 mg/kg (Rabbit) LD50 Oral 4140 mg/kg (Rat)
Ethylene Glycol 107-21-1	0.1-1	Oral LD50 Rat = 4000 mg/kg

Note: No additional remark.

LA2199 Methyl Carbitol Fuel Additive Grade Page 1 of 8

4. FIRST AID MEASURES

Eye Contact: Flush eyes thoroughly with water for several minutes. Remove contact lenses after the initial 1-2 minutes and continue flushing for several additional minutes. If effects occur, consult a physician, preferably an ophthalmologist. **Skin Contact:** Wash skin with plenty of water.

Inhalation: Remove person to fresh air. If not breathing, give artificial respiration. If breathing is difficult, get immediate medical attention.

Ingestion: Do NOT induce vomiting unless directed to do so by medical personnel. Do not give anything by mouth to an unconscious person. If vomiting occurs spontaneously, keep head below hips to prevent aspiration of liquid into the lungs. Seek medical attention.

Notes to Physician: Treatment based on sound judgment of physician and individual reactions of patient.

5. FIRE FIGHTING MEASURES

Flash Point: 91 °C / 197 °F

Flash Point Method: Tag Closed Cup ASTM D3278

Autoignition Temperature: 240°C /464°F

Flammable Limits in Air (%): Lower: 1.38% Upper: 22.7%

Extinguishing Media: Water fog or fine spray, carbon dioxide, dry chemical, foam. Alcohol resistant foams (ATC type) are preferred if available. General purpose synthetic foams (including AFFF) or protein foams may function, but much less effectively. Do not use direct water stream, which will spread fire.

Special Exposure Hazards: Isolate and restrict area access. Move containers from fire area if you can do it without risk. Use water spray to cool fire-exposed containers and structures. Consider use of unmanned hose holder or monitor nozzles. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. Always stay away from the end of tanks. Violent steam generation or eruption may occur upon application of direct water stream to hot liquids. Container may rupture from gas generation in a fire situation.

Hazardous Decomposition/Combustion Materials (under fire conditions): Decomposition products can include and are not limited to: Carbon monoxide. Carbon dioxide.

Special Protective Equipment: Fire fighters should wear full protective clothing, including self-contained breathing equipment.

NFPA RATINGS FOR THIS PRODUCT ARE: HEALTH 2, FLAMMABILITY 2, INSTABILITY 0 **HMIS RATINGS FOR THIS PRODUCT ARE:** HEALTH 2, FLAMMABILITY 2, REACTIVITY 0

6. ACCIDENTAL RELEASE MEASURES

Personal Precautionary Measures: Wear appropriate protective equipment.

Environmental Precautionary Measures: Prevent from entering into soil, ditches, sewers, waterways and/or groundwater. Consult local authorities.

Procedure for Clean Up: Isolate spill and stop leak where safe. Restrict access to unprotected personnel. Small spills: soak up with absorbent material and scoop into containers. Large spills : prevent contamination of waterways. Dike and pump into suitable containers. Clean up residual with absorbent material, place in appropriate container and flush with water.

7. HANDLING AND STORAGE

Handling: For industrial use only. Handle and open containers with care. Avoid contact with eyes, skin and clothing. Do not ingest. Avoid inhalation of chemical. Empty containers may contain hazardous product residues. Keep the containers closed when not in use. Protect against physical damage. Use appropriate personnel protective equipment. Spills of these organic materials on hot fibrous insulations may lead to lowering of the autoignition temperature possibly resulting in spontaneous combustion. Do not cut, drill, grind, weld or perform similar operations on or near containers. Use with adequate ventilation.

Storage: Store in a cool, dry, well ventilated area, away from heat and ignition sources. Place away from incompatible materials. Store in accordance with good industrial practices. Store in the following materials(s): Carbon steel. Stainless steel. Phenolic lined steel drums. Do not store in aluminum, copper, copper alloys and galvanized containers. Storage Period: Bulk - 6 Months, Steel drums - 24 Months.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Engineering Controls:

Provide general and/or local exhaust ventilation to control airborne levels below the exposure guidelines. **Respiratory Protection:** If exposure exceeds occupational exposure limits, use an appropriate NIOSH approved respirator. In case of spill or leak resulting in unknown concentration, use a NIOSH approved supplied air respirator. Organic vapor respirator.

Gloves:

Appropriate chemical resistant gloves should be worn. Impervious gloves. Butyl rubber gloves.

Skin Protection: Normal work coveralls.

Eyes: Safety glasses with side shields or chemical goggles.

Other Personal Protection Data: Ensure that eyewash stations and safety showers are proximal to the work-station location.

Ingredients	Exposure Limit - ACGIH	Exposure Limit - OSHA	Immediately Dangerous to Life or Health - IDLH				
Diethylene Glycol Monomethyl Ether	Not available.	Not available.	Not Available.				
Ethylene Glycol	100 mg/m ³ Ceiling	50 ppm Ceiling 125 mg/m ³ Ceiling	Not Available.				

9. PHYSICAL AND CHEMICAL PROPERTIES

Physical State: Liquid Color: Colorless Odor: Mild Sweet pH Not Available. Specific Gravity: 1.020 @ 20°C Boiling Point: 194°C /381°F Freezing/Melting Point: -69°C / -92°F Vapor Pressure: 0.19 mmHg @ 20°C Vapor Density: 4.2 % Volatile by Volume: 100 Evaporation Rate: 0.02 Solubility: Soluble in water. VOCs: Not Available. Viscosity: 3.5 mPa.s @ 25°C Molecular Weight: 120.2 g/mol Other: Not Available.

10. STABILITY AND REACTIVITY

Chemical Stability: Stable.

Hazardous Polymerization: Will not occur.

Conditions to Avoid: Product can oxidize at elevated temperatures. Generation of gas during decomposition can cause pressure in closed systems.

Materials to Avoid: Strong oxidizers. Strong acids and bases.

Hazardous Decomposition Products: Decomposition products can include and are not limited to: Aldehydes. Ketones. Organic acids.

Additional Information:

No additional remark.

11. TOXICOLOGICAL INFORMATION

Principle Routes of Exposure

Ingestion: Very low toxicity if swallowed. Harmful effects not anticipated from swallowing small amounts. **Skin Contact:** Prolonged contact is essentially nonirritating to skin. Prolonged skin contact is unlikely to result in absorption of harmful amounts.

Inhalation: No significant irritation expected from a single short-term exposure.

LA2199 Methyl Carbitol Fuel Additive Grade Page 3 of 8

11. TOXICOLOGICAL INFORMATION

Eye Contact: May cause pain disproportionate to the level of irritation to eye tissue. May cause slight transient (temporary) eye irritation.

Additional Information: In animals, diethylene glycol methyl ether has been reported to produce effects in the liver and kidney and, only after very high oral doses, in the testes and thymus.

Acute Test of Product: Acute Oral LD50: Not Available. Acute Dermal LD50: Not Available. Acute Inhalation LC50: Not Available.

Carcinogenicity:

Ingredients	IARC - Carcinogens	ACGIH - Carcinogens
Diethylene Glycol	Not listed.	Not listed.
Monomethyl Ether		
Ethylene Glycol	Not listed.	A4

Carcinogenicity Comment: No additional information available.

Reproductive Toxicity/ Teratogenicity/ Embryotoxicity/ Mutagenicity: In animals, diethylene glycol methyl ether is slightly toxic to the fetus at doses nontoxic to the mother following skin contact; birth defects have been seen only following high oral doses which have little relevance to human exposure.

UNIVAR CANADA LTD. ISSUE DATE:2015-04-27 Annotation:

12. ECOLOGICAL INFORMATION

Ecotoxicological Information:

Ingredients	Ecotoxicity - Fish Species Data	Acute Crustaceans Toxicity:	Ecotoxicity - Freshwater Algae Data
Diethylene Glycol Monomethyl Ether	5741 mg/L LC50 (Pimephales promelas) 96 h 7500 mg/L LC50 (Lepomis macrochirus) 96 h 7500 mg/L LC50 (Lepomis macrochirus) 96 h static	Not Available.	500 mg/L EC50 Desmodesmus subspicatus 72 h
Ethylene Glycol	14 - 18 mL/L LC50 (Oncorhynchus mykiss) 96 h static 40000 - 60000 mg/L LC50 (Pimephales promelas) 96 h static 16000 mg/L LC50 (Poecilia reticulata) 96 h static 27540 mg/L LC50 (Lepomis macrochirus) 96 h static 40761 mg/L LC50 (Oncorhynchus mykiss) 96 h static 41000 mg/L LC50 (Oncorhynchus mykiss) 96 h	Not Available.	6500 - 13000 mg/L EC50 Pseudokirchneriella subcapitata 96 h

UNIVAR CANADA LTD. ISSUE DATE:2015-04-27 Annotation:

Other Information: Movement & Partitioning Bioconcentration potential is low (BCF less than 100 or log Pow less than 3). Potential for mobility in soil is very high (Koc between 0 and 50). Henry's Law Constant (H): 4.43E-8 atm*m3/mole; 25 °C Estimated Partition coefficient, n-octanol/water (log Pow): -1.18 Estimated Partition coefficient, soil organic carbon/water (Koc): < 1 Estimated

Persistence and Degradability

Material is readily biodegradable. Passes OECD test(s) for ready biodegradability. Material is ultimately biodegradable (reaches > 70% mineralization in OECD test(s) for inherent biodegradability).

Indirect Photo degradation with OH Radicals

Rate Constant - 2.60E-11 cm3/s Atmospheric Half-life - 4.9 h Method - Estimated

OECD Biodegradation Tests: Biodegradation - 77.9 % ;100 % Exposure Time - 28 d ; 28 d Method - OECD 301B Test ; OECD 302B Test

Biological oxygen demand (BOD): BOD 10 20.8 % BOD 20 65.9 %

Theoretical Oxygen Demand: 1.73 mg/mg

ECOTOXICITY

Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50 >100 mg/L in the most sensitive species tested).

13. DISPOSAL CONSIDERATIONS

Disposal of Waste Method: Disposal of all wastes must be done in accordance with municipal, provincial and federal regulations.

Contaminated Packaging: Empty containers should be recycled or disposed of through an approved waste management facility.

14. TRANSPORT INFORMATION

DOT (U.S.):

DOT Shipping Name: Not Regulated. DOT Hazardous Class Not Applicable. DOT UN Number: Not Applicable. DOT Packing Group: Not Applicable. DOT Reportable Quantity (Ibs): Not Available. Note: No additional remark. Marine Pollutant: No.

TDG (Canada): TDG Shipping Name: Not Regulated. Hazard Class: Not Applicable. UN Number: Not Applicable. Packing Group: Not Applicable. Note: No additional remark. Marine Pollutant: No.

> LA2199 Methyl Carbitol Fuel Additive Grade Page 6 of 8

15. REGULATORY INFORMATION

U.S. TSCA Inventory Status: All components of this product are either on the Toxic Substances Control Act (TSCA) Inventory List or exempt.

Canadian DSL Inventory Status: All components of this product are either on the Domestic Substances List (DSL), the Non-Domestic Substances List (NDSL) or exempt.

U.S. Regulatory Rules

Ingredients	CERCLA/SARA - Section 302:	SARA (311, 312) Hazard Class:	CERCLA/SARA - Section 313:					
Diethylene Glycol	Not Listed.	Not Listed.	Not Listed.					
Monomethyl Ether								
Ethylene Glycol	Not Listed.	Listed	Listed					

California Proposition 65: Not Listed. MA Right to Know List: Listed. New Jersey Right-to-Know List: Listed. Pennsylvania Right to Know List: Listed.

Additional Notes: Not Available.

WHMIS Hazardous Class:

B3 COMBUSTIBLE LIQUIDS D2A VERY TOXIC MATERIALS D2B TOXIC MATERIALS

	16. OTHER INFORMATION
Additional Information:	This product has been classified in accordance with the hazard criteria of the Canadian Controlled Products Regulations (CPR) and the MSDS contains all the information required by the CPR.
Disclaimer:	NOTICE TO READER: Univar, expressly disclaims all express or implied warranties of merchantability and fitness for a particular purpose, with respect to the product or information provided herein, and shall under no circumstances be liable for incidental or consequential damages.
	Do not use ingredient information and/or ingredient percentages in this MSDS as a product specification. For product specification information refer to a Product Specification Sheet and/or a Certificate of Analysis. These can be obtained from your local Univar Sales Office.
	All information appearing herein is based upon data obtained from the manufacturer and/or recognized technical sources. While the information is believed to be accurate, Univar makes no representations as to its accuracy or sufficiency. Conditions of use are beyond Univar's control and therefore users are responsible to verify this data under their own operating conditions to determine whether the product is suitable for their particular purposes and they assume all risks of their use, handling, and disposal of the product, or from the publication or use of, or reliance upon, information contained herein. This information relates only to the product designated herein, and does not relate to its use in combination with any other material or in any other process.
	END OF MSDS

APPENDIX D

Borehole, Monitoring Well and Soil Vapour Logs

PROJECT No.: 20145856 / 1000 / 2	

RECORD OF MONITORING WELL: MW20-01

SHEET 1 OF 1 DATUM: Ground Surface

CLIENT: Public Services and Procurement Canada PROJECT: CFB Comox Snowbird Environmental Cleanup LOCATION: Kamloops, BC N: 5619948.42 E: 682392.26

DRILLING DATE: 06/11&12/2020 DRILLING CONTRACTOR: Lynx Creek/On the Mark

ц	ų	U	탈	SOIL PROFILE		GEOTECH SAMP			MPLE	es d	S CHEMISTRY SAMPLES		PII pp	PID ppm \oplus			⊕	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m					סר	PIEZOMETER STANDPIPE	R,		
	SCAL RES MET		MET		ГОТ		с		.3m	ö	%	² - m			5	50 10	00 15	50 200		20	40	6	08	0	ONA	OR THERMISTO	R
ПЦ		LLIN	ВG	DESCRIPTION	A P	LEV.	ABE	۲,	/S/0.	N N N		4BE	SCN	LYSE	PI	D				w.	ATER	CON	ITEN	Г%	DITI S. TE	INSTALLATIO	DN
		DRI			LA D	EPTH (m)	SZ	ŕ-	ΓO	S S		SZ		ANAI	рр	m				Wp	⊢-c	w		w	AD		
			ä		S	(,	_	-	m		"	\rightarrow			50	00 10	00 15	00 200	0	10	20	3	04	0			
_	0		$ \dashv$	Ground Surface	T PRO	345.47																					
_				(ML-SM) SILI and SAND; brown, trace organics, no staining; moist, firm,		0.00	1	ΗV			F	1 0	2926-04/05		₽											Flushmount &	A 4 1
-																											
E																										Sand	
_				- grades to no organics at 0.6m depth																						Calla	3 2 -
_	1					ŀ	2	ΗV				2 0	2926-06		₽						6						8 8 -
						F						-									Ī						- 22 -
E			ы																								- 22
E			drov							1	00																- 25
_			Ŧ																								
	2																									Bentonite Chips	- 22
E	2																										8 8 -
E																											
E						Ľ	3	ΗV			E	3 0	2926-07		Ð						¢	,					
_				(OD) CAND fines light heaving an		342.72																					- 22
E	2			staining; moist, loose.	<u>.</u>	342.57 2.90																				Granular	88
-	3			(SM) SILTY SAND, fine; brown, no					F																	Bentonite	-
						342.11																				PVC Pipe	
E				(SW) SAND, fine to medium; grey, no staining; moist, loose to compact.		3.35																				Vapour Probe Sand	4 8 -
-				-																1						Granular	
-			ug;)							1										1						Bentonite	
-	4	=	Cas				4	AS			ŀ	4 0)2927-03		€				ľ	₽							16-
F		er Dr	j:6 in																								김 김 -
F		I Aug	asing																								레벨루
F		untec	5																								i H] -
F	~	k Mo	Auge																	X						10/00 0/1	:日日 -
-	5	Trac	Stem	- wet at 5 m depth																	$\boldsymbol{\lambda}$					10/20 Silica Sand	1日1-
F			Nol																								:日日 -
-			오			-	5	AS		2	\vdash	5 0)2927-04		-						\sim					#10 Screen	-
-						F	-				F	-			Ĩ											.)目() -
-				- grades to fine to coarse at 5.2m																							
F	0			deput, becoming dense		220.22																•				l l	日日
E			4			6.25		+			+	-														L	
E				End of Monitoring Well.																							-
-																											-
9/7/2	-																										-
/james	'																										-
018 ŋ																											-
IRO) 2																											_
0/ENV																											-
= (GE	8																										-
EHOL	0																										-
- BOR																											-
DE L																											-
tput Fe																											-
о́	۵																										-
^o roject	5																										_
nique I																											-
																											-
T ION																											-
AL_NA	10																										-
INT_G																											
erver:G		-														SC	DIL C	LAS	SIFIC		ON S	YST	EM: (GACS			
al IM S	DE	PT	H SO	CALE				Ì			G	i (DLC	Ε	R							LO	GGE	D: RM			
Nation	1 :	50)					1													С	HEC	CKED	: EvK			
-	_		_						_			_		_				_	_		_	_					
RECORD OF MONITORING WELL: MW20-02

SHEET 1 OF 1 DATUM: Ground Surface

CLIENT: Public Services and Procurement Canada PROJECT: CFB Comox Snowbird Environmental Cleanup LOCATION: Kamloops, BC N: 5619949.82 E: 682395.85

DRILLING DATE: 06/10&12/2020 DRILLING CONTRACTOR: Lynx Creek/On the Mark

щ	Ċ	DDH	SOIL PROFILE			GEC	DTEC	CH SA	AMPL	LES	СН	EMISTRY SAMP	PLES	PII pp	D m			Ð	DYN/ RESI	AMIC STAN	PENE CE, B	TRATI LOWS	ON 5/0.3m	lG IG	PIEZOMETE STANDPIP	ER,
SCA RES		MET		PLOT		R		0.3m	ġ	% %	К		ED	5	0 10	00 15	50 20	0	2	04	06	8 0	30 \	TIONA	OR THERMISTO	OR
MET			DESCRIPTION	ATA F	ELEV.	JMBE	TYPE	WS/C	DRE N	CORE	JMBE	SCN	ALYS	PIE ppi	D m				N	ATE!		NTEN	Т%	AB. TE	INSTALLATI	ON
D				STR/	(m)	Ŋ		BLO	8	REC	z		AN		00 10	00 15	00 20	000	Wp 1	0 ⊢ (∋ <u>**</u> ∩ 3	0 4	H WI	۲۹		
		-	Ground Surface		345.59													.00		0 2						
-		Π	FILL - disturbed during wreckage	\otimes	0.00																				Concrete	P, P, -
_			removal and backlining																							
E																									Sand	
_																									Gand	88-
	1																									
-					1	1	ΗV				1	02926-01														
E		ovac																								
-		Hydro								100																- 12 - 12 - 12
_			(ML-SM) SILT and SAND; brown,		343.76 1.83	2	ΗV				2	02926-02/03														- 125
- :	2		trace organics, no staining; moist, firm.		3/3 36																					
E			(ML) SILT, trace sand; brown with red		2.24																					
_			mottling, no staining; moist, soft.																							- 222
_																									Bentonite Chips	- 2020
- :	3																									
-					242.24																				PVC Pipe	
E			(SP) SAND, fine; brown, no staining;		342.24																					
-			moist, loose.																							- 22
-		(; j				3	AS		1	70	3	02928-01/02														80
	4 .≡	Casi																								
	Dr. Dr	g:6 in			341.22																					3333
-	Allo	Casin	(SW) SAND, fine to coarse; brown to grey, no staining; wet, loose to		4.37		46	-			4	02028 02		Ф												- 222
-	Animte	ger	compact.			4	AO				4	02928-03		Ψ												87 87 - () -
	5 2	em Au																								
E	F	ow Ste																								
-		Р Н							2																10/20 Silica Sand	
-																									#10 Screen	1380 -
E,	6					5	AS				5	02928-04		⊕												
-					339.34																					
-			End of Monitoring Well.		6.25																					-
E			-																							-
9/7/20																										_
ames	7																									-
018 ry																										-
(IRO) 2																										-
EO/EN																										-
OLE (G	8																									_
I I I																										-
1 I																										-
put For																										-
	۵																									-
Project																										-
Unique T T				1																						-
				1																						-
													1													-
	0			1																						_
/er:GIN				1																						
N Ser	EP	TH S	CALE							C	2 /		F	P	50	JIL C	LAS	SIF	ICAT	ION S	nol N∩l	EIVI: (GAUS	1		
ational 1	: 5	50					<	V			ינ		C	R							CHE	CKED	D: Evk	(
z																										

RECORD OF MONITORING WELL: MW20-03

SHEET 1 OF 1 DATUM: Ground Surface

CLIENT: Public Services and Procurement Canada PROJECT: CFB Comox Snowbird Environmental Cleanup LOCATION: Kamloops, BC N: 5619952.81 E: 682399.32

DRILLING DATE: 06/10&12/2020 DRILLING CONTRACTOR: Lynx Creek/On the Mark

щ	Ľ	물	SOIL PROFILE	_		GEC	OTEC	снs	AMF	PLES	СН	EMISTRY SAMP	PLES	PI pp	D m			⊕	DYN/ RESI	AMIC I STAN	PENE CE, B	TRATI	ON ;/0.3m	ט∟	PIEZOMETE STANDPIPE	ER,
SCAL	l U	MET		LOT		ъ		.3m	ö	۲%	2			5	50 1	00 1	50 20	00	2	04	0 6	0 8	10 \	IONA STIN	OR THERMISTO)R
PTH		DNG	DESCRIPTION	TA P	ELEV.	MBE	ΥPE	VS/0	R N	ORE	MBE	SCN	ΓλSE	PI	D	1			W	ATEF	R CON	NTEN	Т%	DDITI B. TE	INSTALLATIO	NC
DEI	B			TRA.	(m)	Ī	-	PLOV	Ś	LO O	P		ANA	pp	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Wp		∋w_		WI	LAE		
	_			ω.						-	-			5	00 10	000 18	500 20	000	1	02	03	04	-0			
-	0		Ground Surface	- The second se	345.68			-		-	<u> </u>					-									Fluchmount 9	p p
F			moist, loose.		0.03	1	HV				1	02925-04				Ð									Concrete	9 9 -
F			(SM) SILT, trace rootlets; dark brown, no staining: moist, soft.																							à (c) -
F																									Sand	8 8 -
F					344.81																					5 S -
-	1		(ML-SM) SILT and SAND; grey, trace organics, no staining; moist, firm.		0.86	2	HV	1			2	02925-05		⊕										Sieve		
E																										2020
E		ovac			344.15																					- 26 C
E		Hydr	(ML-SM) SILT and SAND; grey with		1.52					100																- 62 20 20
E																									Bentonite Chins	- 85 8
F	2																								Demonite onipo	- 28 -
F																										- 55 -
F						3	HV				3	02926-06		⊕										Sieve		- 120 -
-								1																		1997 - 1997 -
F			(SP) SAND fine trace rounded		342.78																					8 8 -
-	3	\vdash	gravel; brown, no staining; moist,		2.50																				Granular Bentonite	
-			loose.																							
E																									Vapour Probe Sand	
_									1	80															Granular	
E	4	ing;)							1	00														0:	Bentonite	
_	[•] _≡	I. Cas				4	AS	-			4	02926-12/02927-0	01	₽										Sieve		i (-
F	der D	g:6																							PVC Pipe	88-
E	d Auc	Casin								-	4															88:
F	ounte	jer (目 -
<u> </u>	5 2	n Aug																							10/20 Silica	880 -
F	Tra	/ Ster	(CIAD SAND find to modium trace		340.50																				Sand	目 =
F		입어	coarse sand, interbedded fine sand						2	90															#10 Screen	380 -
-			seams; reddish brown, no staining; wet, loose to compact.			5	AS	1			5	02927-02		€										Sieve		[[[[] -
-																										LED -
-	6		(SP) SAND; grey, no staining; wet,		5.94																					目 -
F		Ц	loose to compact.		339.43																					
E			End of Monitoring Woll		0.25																					-
E			End of Monitoring Weil.																							-
1 1																										-
mes 9	7																									
1 I I																										-
20/20																										-
ENVIE																										-
(GEO																										-
HOLE	8																									-
BOR																										-
DB:m:BC																										-
I I																										-
0 1 1 1 1	9																									_
Projec																										-
Unique																										-
AALIM																										-
																										-
	0																									_
GINT																										
Server											_			-	S	OIL	CLAS	SSIF	ICAT	ION S	SYST	EM: 0	GACS	6		
)EP1	TH S	CALE					U		(G	OLD	Ε	R	1						LO	GGE	D: RM	1		
1 Natio	: 5	0																		(CHE	CKED): Evk	(

RECORD OF MONITORING WELL: MW20-04

SHEET 1 OF 1 DATUM: Ground Surface

CLIENT: Public Services and Procurement Canada PROJECT: CFB Comox Snowbird Environmental Cleanup LOCATION: Kamloops, BC N: 5619937.26 E: 682395.85

DRILLING DATE: 06/10&11/2020 DRILLING CONTRACTOR: Lynx Creek/On the Mark

щ	c	P P P	SOIL PROFILE			GEC	DTEC	CH S	AMPL	LES	СН	EMISTRY SAMP	PLES	PII pp	D m			Ð	DYN RES	IAMIC	PENI	ETR BLO	RATION WS/0.	N .3m	טר	PIEZOMETE STANDPIP	ER, E
SCAL	ā	MET		LOT		æ		3m	ö	, %	æ		Q	5	50 1	00 15	50 20	00	2	20	40	60	80	۷	STIN		_ חר
AETH 8		NGI	DESCRIPTION	IA PI	ELEV.	MBEF	Ρ	/S/0.	KE N	VERY	MBEF	SCN	LYSE	PI	D				v	VATE	RCC	DNT	ENT	%	DITIO	INSTALLATI	ON
DEP		RIF		TRA	DEPTH (m)	Ĩ	ŕ	SLOW	Ъ,	RECO	Ĩ		ANA	рр	m				W	p	OW		<u>ا</u>	ΝI	LAE		
	+			٥ ن			_	ш		_				50	00 10	00 15	500 20	000	1	10 : 	20	30	40	+			
(Т	Ground Surface (SM) SILT, trace rootlets; light brown,	24	345.54	1	HV			_	1	02925-07			⊕						-	+		-			P P -
-			no staining; moist, soft.			-	110				<u> </u>	02323-07														Concrete	a a -
-																											8 8 -
-																										Sand	88-
Ē.							1.87					02025-00															
E						2	ΠV				2	02925-08			Ð												
-		ac																									
-		ydrov								100																	
-		ľ																									
- 2	2																										
-					242.45																						- 12
-			(SP) SAND, fine; light brown, no		2.39	3	ΗV				3	02925-09		₽													- 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12
F			staining; moist, loose.																							Bentonite Chips	
Ē.																											
È	ĺ																									PVC Pipe	
F									1					~													- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
						4	AS				4	02927-05		₽													
-		sing;)																									- 12
- 4	-	n. Cas										1															
_		ing:6 i				5	AS		2		5	02927-06			e	Ð											
-		(Cas										-															- - -
-	Molu	Auger	(SW) SAND, fine to coarse; brown,		340.81																						[] <u> </u>
	Track	Stem /	no staining; wet, loose to compact. - interbedded fine grey sand lenses																								
_		ollow 8	from 4.7m depth to 6.1 m depth																							10/20 Silica Sand	080 E
-		Ť				6	45		3		6	02027.07	Ι.													#10 Screen	ie -
							7.0					02021-01		ľ													
- 6	;				330.44																						
-		-	End of Monitoring Woll		6.10																						
E																											-
F																											-
9/7/20																											-
james																											-
2018 ŋ																											-
I I																											-
3EO/EP																											-
U L	1																										
BOREI																											-
m:BC																											-
I I																											-
																											-
le Proje																											-
M Uniqu																											-
I I																											-
																											-
10 ⁻																											
Server:G	-		1			-						1			S		CLAS	SSIF	ICAT	ION	SYS	TEI	M: GA	ACS			
D N	EP	THS	SCALE					¢		C	G (OLD	Ε	R							LC	CGC	GED:	RM			
1 Natio	: 5	50						V													CHE	ECK	KED: I	EvK			

PROJECT	No.:	20145856	Ι	1000	1	2

RECORD OF BOREHOLE: BH20-05

CLIENT: Public Services and Procurement Canada PROJECT: CFB Comox Snowbird Environmental Cleanup LOCATION: Kamloops, BC N: 5619952.85 E: 682395.72

SHEET 1 OF 1 DATUM: Ground Surface

DRILLING DATE: 06/10/2020 DRILLING CONTRACTOR: Lynx Creek

ш		(1)	<u>p</u>	SOIL PROFILE			GEO	DTEC	CH S	AMP	LES	СН	EMISTRY SAMF	PLES	PII	D			⊕	DYNA RESIS	MIC P	ENET	RATIC	DN 10.3m	. ()		ER,
SCAL	ŝ	G RIC	É.		-OT		~		Зm		%	~		Q	5	50 1	00 18	50 20	0	20	40) 6	0 80	₀ ۲	STING	OR	
PTH 6	AETR	ILLIN	DN N	DESCRIPTION	LA PL	ELEV.	MBEF	Ρ	/S/0.:	RE No	ORE VERY	MBEF	SCN	LYSE	PI	D	1		_	WA	ATER	CON	ITENT	%	DITIO 3. TES	INSTALLATI	ON
DEF	~	R	RILL		TRAT	DEPTH (m)	Ñ	ŕ	PON	COF	RECO	Ñ		ANAI	рр	m				Wp	⊢-∈	w		WI	AD		
	_		<u> </u>		ω'										50	00 10	00 15	500 20	00	10	20) 3(0 40	0			
-	0		+	Ground Surface (ML-SM) SILT and SAND; grey to		345.66 0.00	1	HV	-			1	02925-10						_								- S.S.
E				brown, trace organics, no staining;			<u> </u>	110				<u> </u>	02020-10													10/20 Silica	[2] - [2] -
E																										Sand	201
-																											
_																											
-	1						2	ΗV	-			2	02925-11					¢]								
F				- grades to brown at 1.2m depth		1																					-
F			ovac	.							100																-
-			Hydr								100																-
F																										Bentonite Chips	-
-	2																										
F				 grades to brown with orange mottling at 2.1m depth 																							-
-				- trace fine to medium light grey sand			3	HV	1			3	02925-12				⊕										-
F				from 2.4m to 3m depth					1																		
F																											-
F	3	L	-			342.56													_								
E				End of Borehole.																							-
E																											-
F																											-
E	4																										-
F																											-
-																											-
F																											-
-																											-
	5																										_
F																											-
F																											-
E																											-
																											-
_	6																										
E																											-
E																											-
E																											-
1 1																											-
ames -	7																										
18 ryj																											-
30) 20																											-
I I																											-
(GEO																											-
- HOLE	8																										-
BOR																											-
BC T																											-
I T																											-
0 .0	9																										_
Project																											-
I I																1											-
ALIM L																											-
																											-
GAL_N	10																										_
GINT																											
Server:														_		S	OILC	CLAS	SIF	ICATIO	ON S	YSTI	EM: C	SACS	6		
MI IW	DEF	PTF	H SO	CALE							C	G (OLD	Ε	R							LOC	GGED): RM	1		
Natio	1:	50)					•													C	CHEC	KED	: EvK	(

PROJECT	No.:	20145856 /	1000 / 2
I I CODEOI	140	201100007	10007 2

RECORD OF BOREHOLE: BH20-06

CLIENT: Public Services and Procurement Canada PROJECT: CFB Comox Snowbird Environmental Cleanup LOCATION: Kamloops, BC N: 5619949.86 E: 682402.26

SHEET 1 OF 1 DATUM: Ground Surface

DRILLING DATE: 06/10/2020 DRILLING CONTRACTOR: Lynx Creek

щ	c	, p	SOIL PROFILE			GEC	TEC	CH S/	AMPL	.ES	СН	EMISTRY SAMP	PLES	PI	D			⊕	DYN RES	AMIC STAN	PENE CE, B	TRATI	ION 5/0.3m	.0	PIEZOMETI	ER,
SCAL		METIN		LOT		۲		3m	ö	%	Я		G		50 1	00 1	50 20	00	2	0 4	0 6	i0 8	30 \	ONAL	OR	
TH		NG	DESCRIPTION	TA PI	ELEV.	MBEI	ΥPE	VS/0.	N H	ЧЧ ЧЧ С ЧЧ	MBEI	SCN	LYSE	PI	D			_	v	/ATE	R COI	NTEN	Т%	ĔΠ.	INSTALLATI	ON
DEF				TRAT	DEPTH (m)	Ñ	ŕ	NO	В В	500	NN		ANAI	pp	m				Wp		∋ ^w		H WI	LAE		
	_	ā		S	(,			В		<u>"</u>				5	00 10	000 15	500 20	000	1	0 2	0 3	0 4	10			
-	0 -		Ground Surface (SW) SAND, fine; brown, no staining; moist, loose.		345.81	1	HV				1	02925-01	•	€											10/20 Silica	
Ē			(SM) SILT; light brown, no staining; moist, soft.		0.46 345.15 0.66																				Sand	
-	1		(SM) SILT; light brown with orange mottling, no staining; moist, soft. - rootlets from 0.7m to 1.2m depth		0.00	2	ΗV			-	2	02925-02		⊕												
-		drovac								100																
		H																							Bantonita China	-
	2																								Dentorine Orlips	
-			- trace fine sand from 2.4m to 2.6m depth			3	ΗV				3	02925-03		₽												
	3				342.76 3.05																					-
			End of Borehole.																							-
																										-
-	4																									
																										-
-	5																									-
																										-
-																										-
	6																									
																										-
mes 9/7/20	7																									-
0) 2018 ryjs																										-
GEO/ENVIR																										-
	8																									
Form:BC_B																										
sct ID: Output	9																									-
Unique Proje																										-
ATIONALIM																										-
	0																									_
M Server:	DEP	TH S	SCALE		•					<u> </u>	2	ם ו ר	F	P	S	OIL	CLAS	SSIF	ICAT	ION S	SYST	EM:		Б И		
National	: {	50					<			<u> </u>				R							CHE	CKEE	D: Evh	<		

PROJECT	No.:	20145856/	1000 /	2
				_

RECORD OF BOREHOLE: BH20-07

CLIENT: Public Services and Procurement Canada PROJECT: CFB Comox Snowbird Environmental Cleanup LOCATION: Kamloops, BC N: 5619960.85 E: 682401.43

SHEET 1 OF 1 DATUM: Ground Surface

DRILLING DATE: 06/10/2020 DRILLING CONTRACTOR: Lynx Creek

			SOIL PROFILE			GEO	DTEC	CH S.	AMP	LES	СН	EMISTRY SAMP	PLES	P	ID			Ф	DYN/	AMIC		TRATI	ION	(1)	PIEZOMET	ER,
	ES	G RIG		от				E		%				pr	om 50 1	00 1	50 20	00 00	2	0 4	юе, в ю 6	i0 8	30.311	NAL TING	STANDPIF OR	Έ
L L	ETR			A PL	ELEV.	BER	Ы	S/0.3	No E	ERY.	BER	SCN	YSEI	Р	ID	1	1 20		w		R CON	NTEN	Τ%	TES	THERMIST	or Ion
- - - -	.≥	DRI	DESCRIPTION	RAT/	DEPTH	NUM	₽	NO.	CORI	SS	NUM	SCN	NAL	pp	om				Wp	- H	0W		- WI	ADC LAB.	-	
_				STI	(m)			BL		R			<	5	500 10	000 15	500 20	000	1	0 2	20 3	0 4	40			
_	0	_	Ground Surface		345.43																					1 10 11
_	-	6	(ML) SILT, trace fine sand; brown, no		0.00		1.0.7					00000 04/00													10/20 Silica Sand	12A -
E		drow				1	HV			100	1	02929-01/02		₽											Ganu	
E		Ĺ			344.82																				Bentonite Chips	
_			End of Borebole		0.61																					-
_	1																									_
E	·																									-
E																										-
E																										-
E																										-
E	2																									-
-																										_
F																							Ì			-
F																							1			-
F																							Ì			-
F	3																						1			_
F														1												-
F																							1			-
F														1												-
F																										-
F	4																									_
-																										-
-																										-
F																										-
E																										-
E	5																									-
E																										-
E																										-
_																										-
_																										-
-	6																									
-																										-
_																										-
_																										-
9/7/20																										-
ames	7																									-
018 ryj														1												-
RO) 2(1			-
D/ENV																							1			-
E (GE(0													1												-
L -	0																						1			-
BOF																							1			-
arm:B(1			-
utput F														1												-
0.0	9																						1			-
Projec	ŕ																						1			-
I I																							1			-
ALIM (1												-
ATION																							1			-
- I	10													1												_
GINT_C																										
Server		_												-	S	OIL	CLAS	SSIF	ICAT	ION S	SYST	EM:	GACS	3		
al IM S	DE	PTH	ISCALE							C	G (OLD	Ε	R	2						LO	GGE	D: RN	1		
Natior	1:	50					<	V					_								CHE	CKED	D: Evł	<		

RECORD OF BOREHOLE: BH20-08

SHEET 1 OF 1 DATUM: Ground Surface

CLIENT: Public Services and Procurement Canada PROJECT: CFB Comox Snowbird Environmental Cleanup LOCATION: Kamloops, BC

DRILLING DATE: 06/11&13/2020 DRILLING CONTRACTOR: Lynx Creek/On the Mark

ш	,	, p	SOIL PROFILE	SOIL PROFILE							CHEMISTRY SAMPLES			PID ppm ⊕				DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m				ION 5/0.3m	. (7	PIEZOMETER, STANDPIPE		
SCAL		METH		-0T		~		Зm		%	~				50 100 150 200		2	20 4	10 6	50 8	30 \	STIN	OR			
TH S		NG N	DESCRIPTION	A PL	ELEV.	ABEF	μ	/S/0.:	Ň	ORE VERY	ABEF	SCN	-YSE	PI	PID _		WATE			VATE	R CO	NTEN	T %	DITIO	INSTALLATI	OR ON
DEF				FRAT	DEPTH (m)	Ŋ	F	ΓO	В	ECO	NN N		ANAI	pp	ppm 🗌		□ Wp ⊢			Wp I────── I W			AD LAB			
	+	ā		S	(,	<u> </u>	_	8		ш. 			È	5	00 10	000 15	500 20	000	1	0 2	20 3 T	30 4	40			
-	0		Ground Surface		0.00						_			÷												
_			brown, no staining; moist, soft.		0.00	1	HV	1			1	02926-08		Ð											10/20 Silica	
F																									Sand	
-																										
E			(SP) SAND, fine, trace silt; grey with orange mottling, no staining; moist,		0.66																					
E	1		loose.			2	ΗV]			2	02926-09/10		₽												_
E																										
E		ovac								100																
_		Hydro								100																
_																										-
F	2																									-
F																										
-						3	HV	{			3	02926-11		Ð												-
_			(CD) SAND fine trace modium condi		2.60			1			-			Ē												-
-			brown, no staining; moist, loose.		2.09																					-
-	3	+	-																							-
-																									Bentonite Chips	-
F																									Domorato orașo	-
F										100																
E		asing							1	100																-
_	4	ŭ i				4	AS	-			4	02928-05/06		€												
_	1001	ing:6																								
F	V P04	(Cas																								
E	ano M	nger																								-
_	5	em Al	- grades to wet at 4.9m depth		·																					-
F	ľ	st St																								-
F		HOIE							2	100																
F						5	AS	1			5	02928-07		€												-
-			(SW) SAND fine to coarse: brown		5.79																					-
	6		no staining; wet, loose.																							_
-			End of Borehole.		6.10																					
-																										
Ē																										
9/7/2(_																									-
/james	'																									
2018 ŋ																										
(IRO)																										
I I																										
GE	8																									_
L I																										-
BO																										
Form:E																										
Dutput																										-
et D:	9																									-
e Proje																										
Unique T																										-
NALIM																										-
NATIO																										-
	0																									
er:GIN]																										
M Servi)EP	TH 9	SCALE							^	-		F		S	UIL (JLAS	SIF	ICAT	ION	SYST	EM:	GACS	5		
tional It	· 1	50					k			C	יכ		E	К								GGE	ע: RIV ייי⊐יר	1		
Nat	. :	50																			CHE	UNEL	J. EVK	`		

RECORD OF BOREHOLE: BH20-10

SHEET 1 OF 1 DATUM: Ground Surface

CLIENT: Public Services and Procurement Canada PROJECT: CFB Comox Snowbird Environmental Cleanup LOCATION: Kamloops, BC N: 5619945.57 E: 682395.29

DRILLING DATE: 06/26/2020 DRILLING CONTRACTOR: Rocky Mountain Drilling

щ		НОП	SOIL PROFILE				GEOTECH SAMPLES CHEMISTRY SAMPLES PID ppm							PID ppm ⊕			DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m				ON /0.3m	<u>_</u> 0				
SCAL		MET				Я			lo.	۲ %	ж		ED	5	0 10	0 15	0 200		20 4	0 6	0 8	0 \	IONAL	OR THERMIST	OR	
PTH			DESCRIPTION	VTA P	ELEV.	IMBE	ΓΥΡΕ	WS/0	REV	OVER 1	IMBE	SCN SCN		S PID PD PD		PID ppm		/	VATE	ER CONTENT %			DDIT B. TE	INSTALLATI	INSTALLATION	
DE		궤		STRA	(m)	Z		BLO	8	REC	Z		ANA	50	0 100	0 150	0 2000	′ Wp ⊢ €		H⊖W IW		WI	LA			
	+		. 1.1 m holes around surface elevation	0)	344 47			_		+				50	100	0 150	0 2000		10 2	20 3	0 4	0				
_	0		CONCRETE SLAB	PA	344.47					+									-					10/20 Silica	-	
_			(CL) SILTY CLAY; brown; soft, dry.		0.10																			Sand		
-		2 mm	(SP) SAND; grey; soft, dry.		344.01 0.46																				-	
-		ing:10	- rust coloured staining at 0.6m depth			1	SS			þ	1	02945-01	6	Ð											-	
_	1	(Cas																								
-	1	pler																								
-		n San																							-	
-		Spoo				2	SS			╞	2	02945-02		€										Bentonite Chips		
_		Split																							-	
_	2	ill with																								
_		jar Dr																								
_		Pion																								
_					341.73	3	SS				3	02945-03 & DUP	e	€												
-			End of Borehole.		2.74																				-	
E	3																								-	
E																									-	
-																									-	
-																									-	
-	4																								_	
E																									-	
-																									-	
-																									-	
-	_																								-	
_	5																								-	
_																									-	
-																									-	
_																									-	
-	6																									
-																									-	
E																									-	
-																									-	
9/7/20																									-	
james	7																									
2018 ry																									-	
(IRO)																										
EO/EN																									-	
	8																									
OREHC																									-	
BCB																									-	
ut Forn																		1							-	
0 outp																		1							-	
roject II	9																								-	
nique P.																		1							-	
																		1							-	
ATION,																									-	
al-	10																								-	
GINT_C																										
Server:										_		• · =	_	_	SO	IL C	LASSI	FICA		SYST	EM: C	GACS	3			
onal IM	JEF		GCALE					Ų	5	G	i (DLD	E	R						LO	GGEI	D: AL	J			
Nati	: :	50							-											CHEC	KED	: Evk	<			

APPENDIX E

Soil Disposal Manifests

MOVEMENT DOCUMENT / MANIFEST DOCUMENT DE MOUVEMENT / MANIFESTE

This Movement document/manifest conforms to all federal and provincial environmental legislation. Ce document de mouvement/manifeste est conforme aux législations fédérale et provinciale sur l'environnement.

BA76176-2

Movement Document / Manifest Reference No. Nº de référence du document de mouvement/manifeste

4623 BYRNE ROAD BURNABY, BC V5J 3H6 TELEPHONE (604) 682-6678 FAX (604) 687-8108 HEAD OFFICE (604) 682-6678

	Certified S	cale Ticket	
PROJECT NO .: _	3A 76176	-2	
TIME & DATE:			
CLIENT:	17:57:29	10/06/2020	
MATERIAL:		na tra e ini dit e ana tan dan sar	
DESCRIPTION:	<c il="" td="" 🗌<=""><td>>C/IL 🗌</td><td>sw 🗆</td></c>	>C/IL 🗌	sw 🗆
		SUSPECT	
GROSS WT:			
TARE WT:	3312		
NET WT:	<u> </u>	<u> </u>	
TRUCKING CO.:	analys years grang grang and years grang grang grang	A construction of the second	
TRUCK NO.:	free		
DRIVER:	0ho/h		
	W.	NO.: B-	194484
	Chiefer and the second second second		1

MOVEMENT DOCUMENT / MANIFEST DOCUMENT DE MOUVEMENT / MANIF

City / Ville

City / Ville

Province

....

Shipment

Envoi

Notice Line No

N° de ligne de

la notification

Province

Province

Province

Shipping name

Appellation réglementaire

This Movement document/manifest conforms to all federal

and provincial environmental legislation. Ce document de mouvement/manifeste est conforme aux législations

Generator / consignor

Company name / Nom de l'entreprise

Mailing address / Adresse postale

Intended Receiver / consignee

Mailing address / Adresse postale

Prov. code

Code prov.

Notice No.

N° de notification

E-mail / Courrier électronique

City / Ville

(ii) (前)

(iv)

(iii)

(iv)

Réceptionnaire / destinataire prévu

E-mail / Courrier électronique

Producteur / expéditeur

GARLIN STULLEN LE DEFER

Receiving site address / Adresse du lieu de destination

Shipping site address / Adresse du lieu de l'expédition

A

City / Ville

fédérale et provinciale sur l'environnement.

6-2

22

MIFEST / MANIFESTE			но, н.				Movement Docume N° de référence du c	nt / Manifest I document de	Reference No. mouvement/manifeste	B	A76	176	-2	×	
Registration No. / Provincial ID No.	B Carrier	Registration No. / Prov N° d'immatriculation	incial ID No. - d'id. provincial	e i von sti U utrali		23	Reference Nos. of other n N° de référence des autre	novement docu is documents d	iment(s)/manifest(s) used / ie mouvement/manifestes u	tilisés	3. 16.3	84.		27	
<u>CG 00321</u>	Company name / Nom de l'	entreprise	June Colling	20.36	9/11		C Receiver / c Réceptionn	onsignee aire / dest	inataire	Registration No. N° d'immatricu	. / Provincial ID lation - d'id. p	No. provincial		28	
vince Postal code / Code postal	Mailing address / Adresse p	ostale City / Ville	e Province	Po	stal code / Cod	e postal	Receiver / Les renseig	consignee info gnements du	ormation same as in Par réceptionnaire / destinata	tA aire sont les même	es qu'à la Parti	e A			
Tel. No. / Nº de tél.	E-mail / Courrier électroniqu	le De de	24 Kinni Lonval (1)	Tel. No. /	N° de tél.	117	Company name / N	lom de l'entre	No, complete the	box below / Non,	remplir la case	ci-dessous		٦	
	Vehicle / Véhicule Trailer - Rail car No. 1	Regi	stration No. / N° d'immati	iculation	U	Prov. 24	Mailing address / A	dresse postal	e				9 494 9 <u>5 608 9</u> 20 20 20 20	_	
ovince Postal code / Code postal	1 ^{er} remorque - wagon Trailer - Rail car No. 2 2 ^e remorque - wagon			andan (balan)			City / Ville			Province	Post	al code / Cod	e postal	_	
2 Registration No. / Provincial ID No. N° d'immatriculation - d'id. provincial Port of entry Point d'entrée Port of entry International use only Port of exit Point de sortie International use only							E-mail / Courrier él	ectronique	1		Tel. No. / N	° de tél.			
Postal code / Code posta Tel. No. / N° de tél. () Postal code / Code postal	Attestation du transport de leur hivraison au rócopit B sont exacts et complets. Name de lagent autoriré (c	Insgin da bosto avoir reçu le mnnaire / destinataire, tels n (print): aractères d'imprimerie) : Mois Day / Jour	s déchets ou matières recy qu'îts figurent à la partie A d	clables du prod t que les renseig Tel. No. / 1 (ucteur / expédii gnements inscr V° de tél.	teur en vue its à la partie	Vecerving site addi Vear / Année Z 0 If waste or recyclabl company name/ Si I transférés, préciser	e received / D Month C e material to es dechets o le nom du d	ate de réception / Mois Day / Jo C Day / Jo C Day / Jo be transferred, specifi pu matières recyclables estinataire	ur Tim O y intended 3 s doivent être	Registration	No./Proving iculation/d'ic	cial ID No provincia	29 4. al	
name 4 Class/ sub. c glementaire Classe	Classe ⁵ ⁶ F ass(es) UN No. (6 (s) sub. N ² NU	acking / risk gr. 7 Gr. d'emballage/ de risque Quan	Units Intiy shipped L or / ou Ko tité expédiée Unités	⁸ Packaging No. / N°	/Contenant ⁹ Codes Int-ext.	10 Phys. state État phys.	Quantity received Quantité reçue	Units 31 Lor / ou kg Unités	Comments Commentaires	Code / Code de manutention	Accepted Accepté	nt / Envoi 34 Refused Refusé	Deco Pack. Cont.	Veh. Véh	
Argent Parts Aut	K Acar	N/A 131	100-6	(03	hourses	3680	K4	haket	-01	V ·			V	
and a second a second	e comé lo de sur el			a	a 34			1							
		1807 Contraction of the						-solog Safel							
12 13 14	15	16 17	Vational code in		1/64	19	If handling code "O	ther" (specify						36	
f/De DorRcode Code Ann Code Dou R Code Code Code	sel Annex VIII or DECD Code lexe VIII de Bâle H code I Code OCDE Code H	Y code Expo Code Y Exports	ry of / Code du pays ort Import ation Importattion	Cu Cod	ustoms code(s) e(s) de douane	si code (s) Si code de manutention « autre » (specier) Receiver / consignee cartification : l'certify that the information contained in erar C is correct and complete. / Attestation du réceptionnaire / destinataire : J'atteste que tous les renseignements à la partie C sont exacts et complets					horized person ent autorisé (ca v + &	a person (print) orisé (caractère d'imprimerie)			

Signatur

Special handling / Manutention spéciale Attached /Ci-joint: As follows/ Ci-contre :

						and the second	172			
Tel. No. / Nº de tél.	21 Date shi Year / Année	oped / Date d'exp Month / Mois	édition Day / Jour	Time /	Heure	Scheduled Year / Anné	arrival dat e Mont	ate / Date d'arr nth / Mois		prévue ay / Jou
(por the life should be a first the	200	26	1. 4	19	101	210	0	6	1	0

marked and labelled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. Attestation du producteur / expéditeur: J'atteste que tous les renseignements à la partie A sont exacts et complets. Je déclare que le contenu de ce chargement est décrit ci-dessus de façon complète et exacte par la désignation officielle de transport et qu'il est

Generator / consignor certification: I certify that the information contained in Part A is correct and complete. I hereby declare that

the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged,

Of / De

conver ablement classé, emballé, marqué, étiqueté, muni de plaques-étiquettes et à tous égards bien conditionné pour être transporté conformément aux réglementations internationales et nationales applicables.

Instructions on reverse Instructions au verso

Name of authorized person (print)

Signature

Nom de l'agent autorisé (caractère d'imprimerie)

Copy / Copie 3 (yellow / jaune

Tel. No. / Nº de to

MOVEMENT DOCUMENT / MANIFEST DOCUMENT DE MOUVEMENT / MANIFESTE

This Movement document/manifest conforms to all federal and provincial environmental legislation.

ŝ. 100

Ce document de mouvement/manifeste est conforme aux législations fédérale et provinciale sur l'environnement.

BA76154-9

Movement Document / Manifest Reference No. Nº de référence du document de mouvement/manifeste

A Generator / consignor Registration No. / Provincial ID No. 1 Producteur / expéditeur N° d'immatriculation - d'id. provincial	B Carrier Transporteur N° d'immatriculation - d'id. provincial	Reference Nos. of other movement document(s)/manifest(s) used / 2 N° de référence des autres documents de mouvement/manifestes utilisés							
BC6 00521	Company name / Nem de l'enfrancise	Receiver / consignee Registration No. / Provincial ID No. Nº dimensional ID No.							
Department & Matimu Defence	the converter of the second se	Sings this fairs Viburs 45454							
tailing address / Adresse postale City / Ville Province Postal code / Code postal	Mailing address / Adresse postale City / Ville Province Postal code / Code postal	Receiver / consignee information same as in Part A							
and Course destroying	Email Courting Alectronians	No, complete the box below / Non, remplir la case ci-dessous							
Tel. No. / Nº de tél.	Tel. No. / Nº de tél.	Company name / Nom de l'entreprise							
Shipping site address / Adresse du lieu de l'expédition	Vehicle / Véhicule Registration No. / Nº d'immatriculation Prov. 24								
2425 Clerinternallye	Trailer - Rail car No. 1 1 ^{er} remorque - wagon	Mailing address / Adresse postale							
xty / Ville Province Postal code / Code postal	Trailer - Rail car No. 2 2º remorque - wagon	Citv / Ville Province Postal code / Code postal							
Interded Baseline (analysis)	Port of entry Port of exit 25								
Réceptionnaire / destinataire prévu N° d'immatriculation - d'id. provincial ID No.	Point d'entrée Point de sortie Point de sortie	E-mail / Courrier électronique Tel. No. / N° de tél.							
SUMAS EAVELING IN CONSIGNATION RASHEP4598	Carrier Certification : I certify that I have received waste or recyclable material from the generator/ consignor for 26 delivery to the receiver / consignee as set out in Part A and that the information contained in Part B is complete and correct	· ()							
Mailing address / Adresse postale City / Ville Province Postal code / Code postal	Attestation du transporteur : J'atteste avoir reçu les déchets ou matières recyclables du producteur / expéditeur en vue de leur livraison au réceptionnaire / destinataire, tels qu'ils figurent à la partie A et que les renseignements inscrits à la partie	receiving are address indresse od ned de desultation							
E-mail / Courrier électronique Tel. No. / N ^e de tél.	B sont exacts et complets. Name of authorized person (print): Tel No / Nº do tél	Date received / Date de réception Time / Heure							
106,0 Sumas, het 290 874 4151	Nom de l'agent autoriré (caractères d'imprimerie) :	Year/Année Month/Mois Day/Jour							
Receiving site address / Adresse du lieu de destination	in the second	2006 arrowdeble material to be transforred experit intended. 31 Registration No (Provincial ID No.							
City / Ville Province Postal code / Code postal	Year/Année Month/Mois Day/Jour Signature:	trans or resplation international to or unificance, spool if internation in the international intern							
Prov. code 3 Shipping name 4 Class / C Code prov. Appellation rediementaire Classe /	Classe ⁵ ⁶ Packing / risk gr. 7 (ss(es)) UN No. Gr. d'embalage/ e arch W NU de ricrue Quantity shipped L or / ou Kg No. / N° Codes e berb W NU	Juantity received Units 31 Comments 32 Handling 33 Shipment / Envoi 34 Decon Quantité reçue L or / ou kg Commentaires Code / Code Accepted Refused Parks 40 Unités Commentaires de manutention Accepted Refused Commentaires							
NA Hydrovac Sturry Prosent NI	Kandra Martin and	530 K6 SCALE 03							
De diamana de la compañía de la comp	a constant as produced as a constant of the second as a se								
ii) 🏕									
N)									
11 12 13 14 Base	15 16 17 National code in country of / Code du pays 18 19 If	f handling code "Other" (specify) Si code de manutention « autre » (spécifier)							
Notice No. N° de notification N° de ligne de la notification Envoi Of / De D or R code Code C anne Envoi Of / De Code D ou R Code C code C ou C	ECD Code ws VIII de Bale H code Y code Export Import Customs code(s) R Code OCDE Code H Code Y Exportation Importation Code(s) de douanes A a que code Code Y Code Y Expontation Code (s) de douanes A a que code Code Y Co	teceiver / consignee certification : l certify that the formation contained in Part C is correct and complete. / Ittestation du réceptionnaire / destinataire : J'atteste ue tous les renseignements à la partie C sont exacts et omplets.							
(7)	The second	Signature Tel. No. / N° de tél.							
• nternation	al use only	250-374-415							
[M]	se contra	pecial handling / Manutention spéciale Attached /Ci-joint: As follows/ Ci-contre :							
Generator / consignor certification: Leertify that the information contained in Part A is correct and complete. He contents of this consignment are fully and accurately described above by the proper shipping name, and an marked and labelled/placarded, and are in all respects in proper condition for transport according to applicable national governmental regulations. Aftestation du producteur / exoéditeur: J'afteste que tous les renseignements à la partie A sont exacts et cc	I hereby declare that a classified, packaged, international and molets. Je déclare que Signature Signature	Image: Strength of the streng							
e contenu de ce chargement est décrit ci-dessus de façon complète et exacte par la désignation officielle de tr convenablement classé, emballé, marqué, étiqueté, muni de plaques-étiquettes et à tous égards bien condition conformément aux réglementations internationales et nationales applicables.	ansport et qu'il est né pour être transporté Instructions on rever Instructions au verse	o Copy / Copie 3 (yellow / jau							

MOVEMENT DOCUMENT / MANIFEST DOCUMENT DE MOUVEMENT / MANIFESTE

This Movement document/manifest conforms to all federal and provincial environmental legislation.

Ce document de mouvement/manifeste est conforme aux législations

fédérale et provinciale sur l'environnement.

BA76157-2

5

Movement Document / Manifest Reference No. Nº de référence du document de mouvement/manifeste

A Generate Product	or / consigr eur / expéd	nor iteur		Regis N° d'ii	tration No. / Provinc mmatriculation - d'id.	al ID No. provincial	B	Carrier Transporteur	Registration N° d'imma	n No. / Provincia triculation - d'i	al ID No. d. provincial			23	Reference Nos. of other N° de référence des aut	movement doci res documents d	ument(s)/manifest(s) use de mouvement/manifeste	d / s utilisés			21
Company name / No	om de l'entrepri	ise	and and and and and and and and and and	B	<u>G00</u>	52	Comp	oany name / Nom de	e l'entreprise	from 1	20 0	44	:01		C Receiver / Réception	consignee naire / dest	inataire	Registration N N° d'immatric	o. / Provincial I culation - d'id.	D No. provincial	2
Des	arti	nent	of N	Ation	Val Del	DNO	2	SAW	AJ L	EN VIL	40 N M	EN	1MC	de nostal	Sinas	Knu	Sogvice S	KIBA	6845	98	
Aailing address / Ad	Iresse postale	City/V	11e 1 a 7	Province	Postal	code / Code p	ostal	ig address / Adresse	e postale	City / Ville	Provi	162	3 Byrn	de postal	Les rense	ignements du	réceptionnaire / destir	ataire sont les mên	nes qu'à la Parl	tie A	
mail / Courrier éle	ctronique	Sta Man	18-140 18-140	a tor	Tel. No. / Nº d	e tél.	E-ma	il / Courrier électron	ique	D	1	Te	I. No. / N° de tél.	1230		es / Oui		ne box below / Non	i, rempiir ia casi	e ci-dessous	040402025
Shipping site addres	SS / Adresse d	u lieu de l'exnéd	tion .	6.CP	150-	\$35-8	1%/	hicle / Véhicule	1 NG 0	Registrat	ion No. / N° d'imr	(natriculation	TBBCI	Prov. 2	Company name /	Nom de l'entre	eprise				
247	S	Transt	ewy	AVP			Traile 1 ^{re} rer	r - Rail car No. 1 morque - wagon	M	1984	-	AR AN A	is.	BC	Mailing address / /	Adresse postal	le				
ity / Ville	last	50		Province	Postal	code / Code p	postal 2º rei	er - Rail car No. 2 morque - wagon							City / Ville	-	<u>.</u>	Province	Pos	tal code / Cod	de postal
1-(AW	1000	2			e V	D 76	Port	of entry	amotional use a	uniu.	Port of exit	Interna	tional use only	25	·						
Réceptionnaire /	destinataire p	révu	o. You also	read	N° d'immatriculatio	n - d'id. provi	ncial Carri	d'entree	pertify that I have	received waste	or recyclable mate	rial from the	nenerator / consian	r for 24	E-mail / Courrier é	lectronique			Tel. No. / M	N° de tél.	
Mailing address	Adresse postal	e City	Ville	Provinc	KISWt e Post	al code / Code	postal Attes	ery to the receiver / station du transpor	consignee as sei teur : J'atteste a	t out in Part A ar voir reçu les déc	nd that the informa chets ou matières i	ion contained ecyclables du	d in Part B is complete producteur / expé	te and correct. diteur en vue	Receiving site add	ress / Adresse	e du lieu de destinatior		-()		
456	Dem	\mathbb{N}	AL				de lei B sor	ur livraison au récep nt exacts et complet	tionnaire / destin s.	ataire, tels qu'ils	figurent à la partie	A et que les	renseignements ins	crits à la partie							
E-mail / Courrier é	lectronique	01 0	27		Tel. No. / Nº de	tél.	Nam	e of authorized pers de l'agent autoriré	son (print): (caractères d'imp	orimerie):		Tel.	No. / Nº de tél.		Dal Year / Année	e received / Da	ate de réception / Mois Day /	Jour	me / Heure		29
Receiving site add	iress / Adresse	du lieu de desti	nation		l and filegenerics of a	Active A	P	SILLE	12.18	4.44	<u> </u>	250	8741	4.51	20	0	61	3		A.M.	P.M.
City / Ville	im	· ·	Province	Sec. 19	Postal	code / Code p	ostal	ar/Année Month	n/Mois Da	y/Jour	Signature :		1 (1) 1 (1)		If waste or recyclab company name/ Si	e material to les dechets o	be transferred, spec ou matières recyclab	ify intended es doivent être	³⁰ Registration N° d'immatr	n No./Provine riculation/d'ic	cial ID No. d provincial
40	UPB	G ma	A.C.	-			_ 2	BO	61	13	12		and an and the second		uansieres, preciser		ssunatane		1		1
Prov. co	ode 3		Sh	hipping name		4 0	Class / Classe ⁵ Sub. class(es)	UN No.	Packing / risk gr. Gr. d'emballage	Quantiy s	hipped Lor/ou	8 Pack Kg No./N	caging/Contenant	Phys. state État phys	Quantity received Quantité reçue	Lor/oukg	Comments Commentaires	32 Handling 3 Code / Code	Accepted	Refused	Pack. Ver
)	in the second	00111	Appena	TA A	- R C	(Jasse(s) sub.		de nsque		peuce Unite	5		Lucpijo.	5-22	1/1		03	Accepte	I Veluse	Conc Ver
NA	1	AN IONE	HA7	ARD	$a = \epsilon$	pul	NE	NE	NA	Jan II.	Murp		03	Germania	CALLER MANS	KO					
		afa anta		×*	articles	than	that the are a series	fel un la constante de la const	Cattor - 1	and the states		1									
ii)					360	11															
.v)						100.201	1.6		signit angeba											3	
		11	8	12	1 13	14		15	16 17	a la contra		1		10							3
							Basel Annex	VIII or	ne senten er en er en er	Nation country of /	al code in Code du pays			15	If handling code "O Si code de manute	ther" (specify) ntion « autre »	(spécifier)				
Notice N N° de notifi	No.	Notice Line No N° de ligne de	Shipment	Of/De	D or R code	C code	OECD Coc Annexe VIII de	le Bâle H code	Y code	Export	Import		Customs code(s	es	Receiver / consig	nee certificati	ion : I certify that the	Name of aut	horized person	(print)	
(i)		la notification	Envoi		Code D ou R		ou Code OC	DE Code F	1 Code r	LAponation	Importation				Attestation du récu que tous les renseig	eptionnaire / o nements à la j	destinataire : J'atteste partie C sont exacts el	Nom de rag	ent autorise (Ca		annene)
ii)											in constru				complets.			Jee .	my iul	n.R	
ij				ally satis.			non, entre		2 2 d ²⁰			-	5 Z		Signature	1			Iel. No. / N	r de tel.	
iii)	1965 B. 11. 18		e		all	0	Πa		45	C.	0		y			SU	2	and the second second	270-	374-4	115
(iv)	ante de la		30							1.000					Special handling / M	anutention sp nt: 🔲 A	éciale s follows/ Ci-contre :	PL.	H(A)	ζŲ.	22
Generator / cons the contents of thi	ignor certifi is consignme	cation: certify nt are fully and	that the inform accurately des	nation contail	ned in Part A is con by the proper shi	rect and con oping name,	plete. I hereby and are classif	declare that ied, packaged,	Name of aut	norized person (ent autorisé (car	print) actère d'imprimerie	:)	Tel. No. / N° de tél.	20	21 Date shipped	/ Date d'expéd	dition Tim	e/Heure Sch	eduled arrival d r / Année Mo	late / Date d'a nth / Mois	arrivée prévue Day / Jour
marked and labell national governme	led/placarded ental regulation	, and are in all i ons.	respects in pro	oper condition	n for transport acco	ording to app	licable internati	ional and	0	5	Macle	NIP	604 619	5%7	Year / Annee Mo		Day/Jour	0161 2	17/1	561	Fix
Attestation du pr le contenu de ce d	roducteur / e chargement e	xpéditeur: J'at st décrit ci-des	teste que tous sus de façon c	s les renseigr complète et e	ements à la partie xacte par la désigr	A sont exact ation officiel	s et complets. le de transport	Je déclare que et qu'il est	Signature	Ragan	A a	L	Instructio	ns on re	verse		A Dest Dest	127 128 Span			1
convenablement of	classé, embal	lé, marqué, étic	queté, muni de nales et nation	e plaques-étic ales applicat	quettes et à tous ég ples.	gards bien co	nditionné pour	etre transporté		and a Ca	Alter Jam		Instructio	ns au ve	erso		Cor	v / Copi	ie 3 (ve	llow	/ iaun

08 June 2020

Golder Associates Ltd. Attn: Alanna Umphrey, Environmental Technician 2nd Floor, 3795 Carey Road Victoria, BC V8Z-6T8

Re: ALS Lab Report L2451986 and L2451374 for PFOS & VOC/Hydrocarbon

Dear Alanna

Sumas Environmental Services Inc. (Sumas) has reviewed contaminated soil data as described in ALS Lab Report L2451986 and L2451374.

This letter is to confirm Sumas Kamloops is permitted to receive this waste as described by these lab reports for transfer and disposal to a licensed disposal facility.

The hydrovac slurry and drill cuttings will be treated as hazardous, stabilized at Sumas Kamloops and sent for disposal via TDG Manifest to the Secure Energy Pembina Class 1 and 2 Landfill. This landfill is a hazardous waste landfill permitted to accept drilling waste, Class 1 and 2 contaminated soils, asbestos, and various industrial wastes.

Certificates of Disposal for the waste will be issued after the waste has been shipped for final disposal.

Please let me know if you need any more information.

Sincerely,

Sumas Environmental Services Inc. Rob Griffiths Field Service Manager 456 Dene Drive Kamloops BC V2H-1P4

Appendix A

Government of Alberta

Environment

APPROVAL

PROVINCE OF ALBERTA

ENVIRONMENTAL PROTECTION AND ENHANCEMENT ACT R.S.A. 2000, c.E-12, as amended.

APPROVAL NO.	48516-01-00								
	005-48516								
APPLICATION NO.									
EFFECTIVE DATE:	February 26, 2010								
EXPIRY DATE:	March 31, 2019								
APPROVAL HOLDER:	PEMBINA AREA LANDFILL LTD.								
ACTIVITY: CONSTRUCTION, O	PERATION AND RECLAMATION OF THE								
Pembina Area Landfill, consisting o tonnes per year of hazardous waste	of a Class I and Class II Landfill, where more than 10,000 e and non-hazardous waste are disposed of								
IS SUBJECT TO THE ATTACHED TERMS AND CONDITIONS.									
R									
Designated Directo	David Helmer, P.Eng.								
	February 26, 2010								
	Date Signed								

PART 1: DEFINITIONS

SECTION 1.1: DEFINITIONS

- 1.1.1 All definitions from the Act and the regulations under the *Environmental Protection and Enhancement Act* apply except where expressly defined.
- 1.1.2 In all PARTS of this approval:
 - (a) "Act" means the *Environmental Protection and Enhancement Act*, R.S.A. 2000, c.E-12, as amended;
 - (b) "action leakage rate" means the amount of leakage that would occur through the primary liner, based on two holes per hectare, each with a diameter of 2 mm and that is calculated to be 790 L/ha/day;
 - (c) "active landfill area" means the portion of the landfill that has received or is receiving waste for disposal, where the final barrier layer has not been placed, and includes areas that are being used for interim management of waste prior to disposal;
 - (d) "APEGGA" means the Association of Professional Engineers, Geologists and Geophysicists of Alberta;
 - (e) "application" means the written submissions to the Director in respect of application number 005-48516;
 - (f) "Aquatic and Terrestrial Ecosystem Monitoring Plan" means the Pembina Area Landfill Aquatic and Terrestrial Monitoring Plan (Oct. 2008) submitted in Appendix E of the application, and authorized in writing by the Director in a letter dated July 9, 2009, subject to 4.7.2;
 - (g) "as-built plans" means survey plans, signed and stamped by a professional registered with APEGGA, that document variances from design or construction plans that were either approved or authorized according to the terms and condition of this approval;
 - (h) "bulk liquid" means a liquid transported in a vehicle tank or body that is not contained in barrels or other such containers;
 - (i) "cell" means a designed or designated area of the landfill comprised of an excavation or earthen structure in which waste is enclosed by a cover;
 - (j) "cell closure" means the capping of a cell with a barrier layer and topsoil at a minimum;

- (k) "Class I cell" means a cell designed with the following at a minimum:
 - (i) a primary liner consisting of an 80 mil (2.0 mm) HDPE geomembrane,
 - (ii) a secondary liner consisting of a composite liner,
 - (iii) a leachate collection and removal system above the primary liner, and
 - (iv) a leak detection system between the primary and secondary liners;
- (I) "Class II cell" means a cell designed with the following at a minimum:
 - (i) for cells constructed before January 1, 2010:
 - (A) a clay liner, and
 - (B) a leachate collection and removal system above the clay liner, and
 - (ii) for cells constructed after January 1, 2010:
 - (A) a composite liner, and
 - (B) a leachate collection and removal system above the composite liner;
- (m) "clay liner" means a liner that:
 - (i) is comprised of clay material compacted to achieve an in-place hydraulic conductivity of 1×10^{-9} metres/second or less, and
 - (ii) for Class I cells, has a minimum thickness of 1.0 metre at all points measured perpendicular to the slope, and
 - (iii) for Class II cells with a single liner design, has a minimum thickness of 1.0 metre at all points measured perpendicular to the slope, and
 - (iv) for Class II cells with a composite liner design, has a minimum thickness of 0.6 metres at all points measured perpendicular to the slope;
- (n) "compliance boundary" means the locations where measurements of groundwater quality for regulatory purposes are taken to assess the landfill's performance;
- (o) "composite liner" means a liner comprised of either:

- (i) a clay liner directly overlain by a 60 mil (1.5 mm) HDPE geomembrane, or
- (ii) an alternate design to the satisfaction of the Director;
- (p) "construction quality assurance" means an integrated system of management activities involving planning, implementation, documentation, assessment, reporting and quality improvement to identify the level to which construction is in compliance with the specifications;
- (q) "construction quality control" means the overall system of technical activities that measures the attributes and performance of construction to verify that construction meets the specifications;
- (r) "control chart" means a graph plotting analytical concentrations versus time, with control points designed to alert the analyst to trends beyond normal sampling variability, before established criteria are exceeded;
- (s) "cover" means soil or other material that is used to cover compacted waste in a cell;
- (t) "day" means any sampling period of 24 consecutive hours unless otherwise specified;
- (u) "decommissioning" means the dismantling and decontamination undertaken subsequent to the termination or abandonment of any activity or any part of any activity regulated under the Act;
- (v) "decontamination" means the treatment or removal of substances from the landfill and affected lands;
- (w) "Director" means an employee of the Government of Alberta designated as a Director under the Act;
- "dismantling" means the removal of buildings, structures, process and pollution abatement equipment, vessels, storage facilities, material handling facilities, railways, roadways, pipelines and any other installations that are being or have been used or held for or in connection with the landfill;
- (y) "final closure" means the period of time when waste is no longer placed in the defined portion of the landfill and activities are undertaken to complete the final cover system and decommission components and facilities that are no longer required, and this period of time includes the construction of any additional components or monitoring systems that are necessary for post-closure;

- (z) "final cover" means a designed system, natural or man made, that is placed on the surface of a cell that has reached its maximum designated waste elevation to control transmission of moisture and conforms to the end use plan;
- (aa) "geomembrane" means a sheet of manufactured synthetic material designed to control the migration of liquid and gas;
- (bb) "grab sample" means an individual sample collected in less than 30 minutes and which is representative of the substance sampled;
- (cc) "groundwater" means groundwater as defined in the Water Act;
- (dd) "HDPE" means high density polyethylene;
- (ee) "hydraulic conductivity" means the ease with which water can be transported through a material;
- (ff) "ISO 17025" means the international standard, developed and published by International Organization for Standardization (ISO), specifying management and technical requirements for laboratories;
- (gg) "incompatible wastes" means substances which when mixed can produce effects which are harmful to human health or the environment such as heat, pressure, fire, explosion, violent reaction, toxic dusts, mists, fumes or gases, or flammable fumes or gases;
- (hh) "landfill" means all buildings, structures, cells, storage facilities, material handling facilities, process and pollution abatement equipment, vessels, trenches, roadways, berms, monitoring wells, pipelines and other installations, and includes the land, located on Southwest Quarter of Section 17, Southeast Quarter of Section 18, Northwest Quarter of Section 8 and Northeast Quarter of Section 7 Township 50, Range 11, West of the 5th Meridian, that is being or has been used or held for or in connection with the Pembina Area Landfill;
- (ii) "leachate" means a liquid that has been in contact with waste in a cell and has undergone chemical or physical changes;
- (jj) "leachate collection system" means a system that gathers leachate so that it may be removed from the landfill and which could include a permeable drainage layer, a network of perforated pipes, and sumps or manholes from where leachate can be removed;
- (kk) "liner" means a continuous layer placed beneath and at the sides of a cell that is compatible with the waste and restricts the migration of leachate;

- (II) "local environmental authority" means the Department of Environment, in the Province of Alberta, or the agency that has the equivalent responsibilities for any jurisdiction outside the Province;
- (mm) "major ions" are defined as the following dissolved constituents: calcium, magnesium, sodium, potassium, iron, manganese, chloride, carbonate, bicarbonate, nitrate and nitrite (as nitrogen), fluoride, and sulphate;
- (nn) "maximum acceptable leachate head" means the maximum depth of leachate above the;
 - (i) primary liner in a multiple liner design, or
 - (ii) clay liner in a single liner design

not including the sumps;

- (oo) "maximum designated waste elevation" means the maximum elevation of waste of approximately 982 metres above sea level (ASL) as described in the application;
- (pp) "monitoring system" means all equipment used for sampling, conditioning, analyzing or recording data in respect of any parameter listed or referred to in this approval including equipment used for continuous monitoring;
- (qq) "monitoring well" means a well drilled at a site to measure groundwater levels or collect groundwater samples for the purpose of physical, chemical, or biological analysis to determine the concentration of groundwater constituents;
- (rr) "month" means calendar month;
- (ss) "municipal solid waste" means solid waste resulting from or incidental to municipal, community, commercial, institutional and recreation activities, and includes garbage, rubbish, ashes, street cleanings, abandoned automobiles, and all other solid wastes except hazardous waste, industrial solid waste, oilfield waste and biomedical waste;
- (tt) "new cell" means a cell that is constructed on or after January 1, 2010;
- (uu) "nutrients" are defined as the following dissolved constituents: ammonium (as nitrogen), nitrate and nitrite (as nitrogen), total kjeldahl nitrogen, total organic carbon, and total phosphate;
- (vv) "petroleum hydrocarbon fractions" are defined as extractable F2 (C_{10} - C_{16}) and F3 (C_{16} - C_{34}) constituents analyzed by GC-FID technology;

- (ww) "post-closure" means:
 - (i) a minimum period of 25 years from the final closure of the landfill,
 - (ii) the groundwater quality in the groundwater monitoring wells meets the quality objectives specified in the approval, and
 - the quality and quantity of leachate generated from the leachate collection system meet objectives that, in the opinion of the Director, show the landfill has stabilized;
- (xx) "primary liner" means the uppermost liner in a multiple liner design;
- (yy) "QA/QC" means quality assurance and quality control;
- (zz) "representative grab sample" means a grab sample consisting of equal volume portions of water collected from at least four sites between 0.20-0.30 metres below the water surface within a pond;
- (aaa) "run-off" means any rainwater or meltwater that drains as surface flow from the active landfill area, excluding leachate;
- (bbb) "run-off control system" means any parts of the landfill that collect, store or treat run-off such as berms and run-off control ponds as described in the application;
- (ccc) "run-on" means any rainwater or meltwater that may drain as surface flow into the active landfill area;
- (ddd) "run-on control system" means parts of the landfill that divert run-on away from the active landfill area;
- (eee) "secondary liner" means the lowermost liner in a Class I cell design;
- (fff) "soil" means mineral or organic earthen materials that can be, have been, or are being altered by weathering, biological processes, or human activity;
- (ggg) "structural components" means liners, leachate collection systems, leak detection systems, final cover systems, surface water management systems and any other landfill components that are necessary for the protection of human health and the environment;
- (hhh) "subsoil" means the layer of soil directly below the topsoil, to a maximum depth of 1.2 metres below the topsoil surface, that consists of the B and C horizons as defined in *The System of Soil Classification for Canada*, Agriculture and Agri-

.....

TERMS AND CONDITIONS ATTACHED TO APPROVAL

Food Canada, 1998, Publication 1643, Third Edition, as amended or replaced from time to time;

- (iii) "suitable quality" means topsoil having a good, fair or poor rating as described in the *Soil Quality Criteria Relative to Disturbance and Reclamation,* Alberta Agriculture March, 1987, as amended;
- (jjj) "surface water management system" means a system that manages run-off and run-on;
- (kkk) "TDGR" means the *Transportation of Dangerous Goods Regulations* (SOR/2001-286) made under the *Transportation of Dangerous Goods Act*, 1992 (Canada), as amended;
- "tank" means a stationary device, designed to contain an accumulation of a substance, which is constructed primarily of non-earthen materials that provide structural support;
- (mmm)"third-party hazardous waste" means hazardous waste generated on property that is not owned by the approval holder;
- (nnn) "topsoil" means the uppermost layers of soil that consist of the L,F,H,O, and A horizons as defined in *The System of Soil Classification for Canada*, Agriculture and Agri-Food Canada, 1998, Publication 1643, Third Edition, as amended or replaced from time to time;
- (000) "trace metals" are defined as the following dissolved constituents: aluminum, antimony, arsenic, boron, barium, beryllium, bismuth, cadmium, cobalt, chromium, copper, lithium, molybdenum, nickel, phosphorus, lead, selenium, silver, strontium, thallium, tin, titanium, vanadium, and zinc;
- (ppp) "waste storage area(s)" means the area(s) designated for waste storage prior to treatment or final disposal, as authorized in writing by the Director;
- (qqq) "week" means any consecutive 7-day period unless otherwise specified;
- (rrr) "working face" means that portion of the active landfill area where waste is currently being deposited, spread and compacted; and
- (sss) "year" means a calendar year, unless otherwise specified.

TERMS AND CONDITIONS ATTACHED TO APPROVAL

PART 2: GENERAL

SECTION 2.1: GENERAL

- 2.1.1 The approval holder shall immediately report to the Director by telephone any contravention of the terms and conditions of this approval at 1-780-422-4505.
- 2.1.2 The approval holder shall submit a written report to the Director within 7 days of the reporting pursuant to 2.1.1.
- 2.1.3 The terms and conditions of this approval are severable. If any term or condition of this approval or the application of any term or condition is held invalid, the application of such term or condition to other circumstances and the remainder of this approval shall not be affected thereby.
- 2.1.4 The approval holder shall notify the Director in writing within 30 days of all changes in the corporate status of the approval holder.
- 2.1.5 The approval holder shall immediately notify the Director in writing if any of the following events occur:
 - (a) the approval holder is served with a petition into bankruptcy;
 - (b) the approval holder files an assignment in bankruptcy or Notice of Intent to make a proposal;
 - (c) a receiver or receiver-manager is appointed;
 - (d) an application for protection from creditors is filed for the benefit of the approval holder under any creditor protection legislation; or
 - (e) any of the assets which are the subject matter of this approval are seized for any reason.
- 2.1.6 If the approval holder monitors for any substances or parameters which are the subject of operational limits as described in this approval more frequently than is required and using procedures authorized in this approval, then the approval holder shall provide the results of such monitoring as an addendum to the reports required by this approval.
- 2.1.7 All abbreviations used in this approval follow those given in *Standard Methods for the Examination of Water and Wastewater* published jointly by the American Public Health Association, the American Water Works Association, and the Water Environment Federation, 1998, as amended, unless otherwise specified in this approval.

••••••

TERMS AND CONDITIONS ATTACHED TO APPROVAL

2.1.8 *Environmental Protection and Enhancement Act* Approval No. 48516-00-00, as amended, is cancelled.

SECTION 2.2: RECORD KEEPING

- 2.2.1 The approval holder shall record and retain all the following information in respect of any sampling conducted or analyses performed in accordance with this approval for a minimum of ten years, unless otherwise authorized in writing by the Director:
 - (a) the place, date and time of sampling;
 - (b) the dates the analyses were performed;
 - (c) the analytical techniques, methods or procedures used in the analyses;
 - (d) the names of the persons who collected and analyzed each sample; and
 - (e) the results of the analyses.

SECTION 2.3: ANALYTICAL REQUIREMENTS

- 2.3.1 With respect to any sample required to be taken pursuant to this approval, the approval holder shall ensure that:
 - (a) collection;
 - (b) preservation;
 - (c) storage;
 - (d) handling; and
 - (e) analysis;

shall be conducted in accordance with the following unless otherwise authorized in writing by the Director:

- (i) for air monitoring:
 - (A) the Methods Manual for Chemical Analysis of Atmospheric Pollutants, Alberta Environment, 1993, as amended; and
 - (B) the *Air Monitoring Directive*, Alberta Environment, 1989, as amended;

- (ii) for run-on, run-off, leachate, leak detection liquid, and groundwater parameters:
 - (A) the Standard Methods for the Examination of Water and Wastewater, published jointly by the American Public Health Association, American Water Works Association, and the Water Environment Federation, 1998, as amended;
- (iii) for whole effluent toxicity tests:
 - (A) the Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Rainbow Trout, Environment Canada, Environmental Protection Series 1/RM/13, July 1990, as amended;
 - (B) the Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Daphnia Magna, Environment Canada, Environmental Protection Series 1/RM/14, July 1990, as amended;
 - (C) the Biological Test Method: Growth Inhibition Test Using the Freshwater Alga Selenastrum capricornutum, Environment Canada, Environmental Protection Series, November 1992, as amended;
 - (D) the Biological Test Method: Test of Reproduction and Survival Using the Cladoceran Ceriodaphnia dubia, Environment Canada, Environmental Protection Series 1/RM/21, February 1992, as amended;
 - (E) the Biological Test Method: Test of Larval Growth and Survival Using Fathead Minnows, Environment Canada, Environmental Protection Series 1/RM/22, February 1992, as amended; and
 - (F) the Biological Test Method: Toxicity Test Using Luminescent Bacteria (Photobacterium phosphoreum), Environment Canada, Environmental Protection Series, 1/RM/24, November 1992, as amended;
 - (iv) for soil samples:
 - (A) Soil Sampling and Methods of Analysis, Lewis Publishers, 1993, as amended;

- (B) the Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, USEPA, SW-846, September 1986, as amended;
- (C) the Soil Quality Criteria Relative to Disturbance and Reclamation, Alberta Agriculture, March 1987, as amended;
- (D) the Guidance Manual on Sampling, Analysis and Data Management for Contaminated Sites – Volume I: Main Report, CCME EPC-NCS62E, 1993, as amended; and
- (E) the Guidance Manual on Sampling, Analysis and Data Management for Contaminated Sites – Volume II: Analytical Method Summaries, CCME EPC-NCS66E, 1993, as amended;
- (v) for waste analysis:
 - (A) the Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, USEPA, SW-846, September 1986, as amended; or
 - (B) the Methods Manual for Chemical Analysis of Water and Wastes, Alberta Environmental Centre, Vegreville, Alberta, 1996, AECV96-M1 as amended; or
 - (C) the *Toxicity Characteristic Leaching Procedure (TCLP)* USEPA Regulation 40 CFR261, Appendix II, Method No. 1311, as amended; or
 - (D) the Standard Methods for the Examination of Water and Wastewater, American Public Health Association, American Water Works Association, and the Water Environment Federation, as amended; or
 - (E) the Interim Compilation of Test Methods and Methods of Dangerous Goods Regulations, Environment Canada, as amended.
- 2.3.2 The approval holder shall analyze all samples that are required to be obtained by this approval in a laboratory accredited pursuant to ISO 17025, as amended, for the specific parameter(s) to be analyzed, unless otherwise authorized in writing by the Director.
- 2.3.3 The approval holder shall comply with the terms and conditions of any written authorization issued by the Director under 2.3.2.

TERMS AND CONDITIONS ATTACHED TO APPROVAL

PART 3: LANDFILL CONSTRUCTION

SECTION 3.1: GENERAL

- 3.1.1 The approval holder shall construct the landfill as described in the application, unless otherwise specified in this approval.
- 3.1.2 Prior to the construction of any:
 - (a) cell;
 - (b) surface water management system; or
 - (c) cell closure system

the approval holder shall submit to the Director, the following plans for the proposed construction, signed and stamped by a professional registered with APEGGA:

- (i) a Design Plan and Specifications for the proposed construction;
- (ii) a Construction Quality Assurance Plan; and
- (iii) a Construction Quality Control Plan.
- 3.1.3 The approval holder shall only construct each of the following as authorized in writing by the Director:
 - (a) cell;
 - (b) surface water management system; and
 - (c) cell closure system.
- 3.1.4 The Design Plan and Specifications in 3.1.2 for any new cell shall include at a minimum all of the following:
 - (a) a composite liner for any Class II cells;
 - (b) a primary liner and secondary liner for any Class I cells;
 - (c) a leachate collection system capable of maintaining the maximum acceptable leachate head for any new cells;
 - (d) a leak detection system for any Class I cells; and

- (e) a surface water management system for any new cells to prevent flow onto and off of the active landfill area for events up to at least the peak discharge from a 1 in 25 year 24 hour duration rainfall event.
- 3.1.5 The Design Plan and Specifications in 3.1.2 for any cell closure shall include, at a minimum, all of the following unless otherwise authorized in writing by the Director:
 - (a) a final barrier layer to the satisfaction of the Director;
 - (b) a topsoil layer, above the final barrier layer, with a minimum thickness to the satisfaction of the Director;
 - (c) a contoured profile having no slope exceeding 30%;
 - (d) a contoured profile such that no water pools over the cells; and
 - (e) a vegetative cover.
- 3.1.6 The approval holder shall not deviate from the Design Plan and Specifications, as submitted under 3.1.2, unless the following conditions are met:
 - (a) the deviation results in a minor adjustment to the Design Plan and Specifications in 3.1.2 to suit field conditions encountered; and
 - (b) the deviation will result in an equivalent design performance of the landfill.
- 3.1.7 Prior to commencing the operation of any new cell following construction, the approval holder shall:
 - (a) have constructed the surface water management system for that cell;
 - (b) implement a groundwater monitoring system for that cell, as necessary, subject to 4.11.2; and
 - (c) submit to the Director a summary report of the Construction Quality Assurance and Construction Quality Control results signed and stamped by a professional registered with APEGGA.
- 3.1.8 The summary report in 3.1.7 shall contain the following information, as a minimum:
 - (a) confirmation that the landfill has been constructed according to:
 - (i) the Construction Quality Assurance Plan;
 - (ii) the Construction Quality Control Plan; and

•••••

TERMS AND CONDITIONS ATTACHED TO APPROVAL

- (iii) the Design Plan and Specifications subject to the deviations as per 3.1.6;
- (b) documentation of any minor deviations as per 3.1.6; and
- (c) confirmation by the professional registered with APEGGA, that deviations as per 3.1.6 will result in an equivalent design performance of the landfill.
- 3.1.9 The approval holder shall notify the Director in writing at least 14 days prior to commencing operations of any new cell.
- 3.1.10 The approval holder shall maintain:
 - (a) the integrity of the liners;
 - (b) the integrity of the leachate collection and removal system; and
 - (c) the integrity of the leak detection system.

SECTION 3.2: SOIL CONSERVATION

- 3.2.1 The approval holder shall conserve all topsoil from disturbed land at the landfill.
- 3.2.2 The topsoil in 3.2.1 shall be used for reclamation of the landfill.
- 3.2.3 The approval holder shall not use topsoil for cover of the working face.
- 3.2.4 The approval holder shall salvage all subsoil from disturbed land at the landfill.
- 3.2.5 The approval holder shall locate all topsoil stockpiles at the landfill.
- 3.2.6 When topsoil and subsoil are stockpiled, the stockpiles shall be constructed as follows:
 - (a) topsoil and subsoil shall be stockpiled on stable foundations;
 - (b) topsoil shall be stockpiled in a manner that prevents admixing with subsoil;
 - (c) subsoil shall be stockpiled in a manner that prevents admixing with topsoil;
 - (d) topsoil and subsoil shall be stockpiled separately from each other;
 - (e) stockpiles shall be stabilized to control wind and water erosion;
 - (f) stockpiles shall be accessible and retrievable; and
 - (g) topsoil stockpiles shall be revegetated.
 - 2

- 3.2.7 The approval holder shall immediately suspend topsoil and subsoil salvage when:
 - (a) wet or frozen field conditions will result in the admixing, degradation, or compaction of topsoil or subsoil; or
 - (b) high wind velocities, any other field conditions or landfill operations will result in the admixing, degradation, or loss of topsoil or subsoil.
- 3.2.8 The approval holder shall only recommence topsoil and subsoil salvage when suspended under 3.2.7, if field conditions referred to in 3.2.7 no longer exist.

PART 4: LANDFILL OPERATIONS, LIMITS, MONITORING AND REPORTING

SECTION 4.1: GENERAL

- 4.1.1 The approval holder shall maintain the geographical boundaries of the cells within Subdivision 4 of Section 17 and Subdivision 1 of Section 18, Township 50, Range 11, West of the 5th Meridian, as described in Plan No. 19-4807-3-2 (TEL - September 2009) submitted with the application.
- 4.1.2 The approval holder shall maintain the final waste elevation of the landfill to no more than the maximum designated waste elevation.
- 4.1.3 The approval holder shall:
 - (a) operate, and
 - (b) maintain

the following waste management facilities at the landfill:

- (i) Class I waste disposal areas;
- (ii) Class II waste disposal areas;
- (iii) any waste storage areas; and
- (iv) subject to 4.4.13(f), waste treatment areas.
- 4.1.4 In addition to 4.1.3 the approval holder shall operate the following infrastructure components at the landfill, at a minimum:
 - (a) leachate collection and removal systems;
 - (b) leak detection system;

- (c) run-on control systems;
- (d) run-off control systems;
- (e) groundwater monitoring wells;
- (f) a weigh scale; and
- (g) site access control

as described in the application.

- 4.1.5 The approval holder shall maintain the infrastructure components listed in 4.1.4.
- 4.1.6 The approval holder shall operate all above ground tanks to conform to the *Guideline for Secondary Containment for Above Ground Storage Tanks,* Alberta Environment, 1997, as amended, unless otherwise authorized in writing by the Director.

LANDFILL AUDIT

- 4.1.7 The approval holder shall cause the landfill to be audited by an independent third-party environmental consultant or organization to assess compliance with the terms and conditions of this approval:
 - (a) at least once every three years; and
 - (b) commencing on or before August 31, 2011 for the first audit.
- 4.1.8 The approval holder shall submit the Audit Report specified in 4.1.7, in the Annual Landfill Operation Report as required in 4.10.11.
- 4.1.9 The requirements in 4.1.7 and 4.1.8 do not relieve the approval holder of any duty under the Act or its regulations or this approval.

SECTION 4.2: OPERATIONS PLAN

- 4.2.1 The approval holder shall:
 - (a) develop;
 - (b) maintain; and
 - (c) implement
 - an Operations Plan that does not contravene the requirements of this approval.

APPROVAL NO. 48516-01-00 Page 17 of 40

.....

TERMS AND CONDITIONS ATTACHED TO APPROVAL

- 4.2.2 The Operations Plan shall include, at a minimum, all of the following:
 - (a) waste acceptance policies and procedures;
 - (b) policies and procedures for wastes requiring special handling, if accepted;
 - (c) a leachate monitoring and management program, including measures to minimize the leachate head;
 - (d) a leak detection liquid monitoring and management program;
 - (e) a run-on and run-off management program, including but not limited to inspections of the run-on control system and run-off control system;
 - (f) an ambient air monitoring program;
 - (g) operating procedures for nuisance management;
 - (h) an emergency response plan; and
 - (i) any other information requested in writing by the Director.
- 4.2.3 The approval holder shall:
 - (a) review the Operations Plan annually at a minimum; and
 - (b) update the Operations Plan as required.
- 4.2.4 The approval holder shall retain a copy of the Operations Plan at the landfill.
- 4.2.5 The approval holder shall submit to the Director an up-to-date Operations Plan when requested in writing by the Director.

SECTION 4.3: AIR

OPERATIONS

- 4.3.1 The approval holder shall not release any effluent streams to the atmosphere except as provided in this approval.
- 4.3.2 The approval holder shall only release effluent streams to the atmosphere from the following sources:
 - (a) the space ventilation exhaust stacks;

.....

TERMS AND CONDITIONS ATTACHED TO APPROVAL

- (b) the space heater exhaust vents; and
- (c) any other source authorized in writing by the Director or by an amendment to this approval.
- 4.3.3 Except as provided for by the Director in writing, the approval holder shall control fugitive emissions and any source not specified in 4.3.2 in accordance with 4.3.4 of this approval.
- 4.3.4 With respect to fugitive emissions and any source not specified in 4.3.2, the approval holder shall not release a substance or cause to be released a substance that causes or may cause any of the following:
 - (a) impairment, degradation or alteration of the quality of natural resources; or
 - (b) material discomfort, harm or adverse affect to the well being or health of a person; or
 - (c) harm to property or to plant or animal life.
- 4.3.5 The approval holder shall not burn any debris by means of an open fire unless authorized in writing by the Director.
- 4.3.6 For any waste disposed of at the landfill that is subject to wind dispersal, the approval holder shall immediately apply cover on top of the waste to minimize entrainment of particulate matter.

AIR MONITORING AND REPORTING

- 4.3.7 The approval holder shall implement the ambient air monitoring program as described in the Ambient Air Monitoring Program Summary submitted as an addendum to the application and as amended.
- 4.3.8 The approval shall only implement revisions to the ambient air monitoring program in 4.3.7 as authorized in writing by the Director.
- 4.3.9 The approval holder shall submit to the Director the following Ambient Air Monitoring Reports:
 - (a) a monthly report
 - (i) by the end of each month following the month in which the information was collected, and
 - (ii) containing the ambient air monitoring results for that month

.....

TERMS AND CONDITIONS ATTACHED TO APPROVAL

unless otherwise authorized in writing by the Director; and

- (b) an annual report
 - (i) by March 31 of each year following the year in which the information was collected, and
 - (ii) containing a summary and evaluation of the ambient air monitoring results for that year.

SECTION 4.4: WASTE ACCEPTANCE

- 4.4.1 The approval holder shall classify and characterize all wastes entering the landfill in accordance with the following:
 - (a) Waste Control Regulation, AR 192/96, as amended; and
 - (b) the Alberta User Guide for Waste Managers, May 1995, as amended.
- 4.4.2 Excluding inert waste, municipal solid waste, and flyash, the approval holder shall obtain, at a minimum, a detailed chemical and physical representative analysis of the wastes prior to disposal into the landfill at the following times:
 - (a) the first time a waste is received from a new waste generator;
 - (b) the first time a delivery is received from a different process associated with a known waste generator;
 - (c) the first time a waste is received from a different location associated with a known waste generator; and
 - (d) when the nature or composition of the waste that was previously characterized by the generator changes.
- 4.4.3 The approval holder shall not dispose of the following at the landfill:
 - (a) explosives (Class 1 *Transportation of Dangerous Goods Regulation* (TDGR) wastes);
 - (b) radioactive wastes regulated under the Canadian Nuclear Safety Act (Canada);
 - (c) radioactive wastes (Class 7 TDGR wastes);
 - (d) biological, biomedical and/or pathological waste (as defined in the *Waste Control Regulation, AR 192/96*, as amended);
TERMS AND CONDITIONS ATTACHED TO APPROVAL

- (e) waste containing free liquids (as determined by the US EPA Method 9095 Paint Filter Liquids Test, specified in Test Methods for Evaluating Solid Wastes Physical/Chemical Methods, US EPA Publication No. SW-846, as amended);
- (f) material containing ozone depleting substances; and
- (g) domestic wastewater.
- 4.4.4 The approval holder shall dispose of no greater than 2,000 tonnes of municipal solid waste in the landfill each year.
- 4.4.5 The approval holder shall not dispose of hazardous waste in any Class II cell.
- 4.4.6 The approval holder shall remove all waste that the landfill is not authorized to dispose of within 7 days of receiving the waste.
- 4.4.7 The approval holder shall remove wastes from the landfill, that the landfill is not authorized to dispose of, to a facility holding a current Approval, Registration, or as otherwise authorized under the Act, or to facilities approved by a local environmental authority outside of Alberta.
- 4.4.8 The approval holder shall prevent incompatible wastes from mixing.
- 4.4.9 All wastes shall be transferred only at designated transfer areas designed to contain spills and leaks.
- 4.4.10 Hazardous waste or hazardous recyclables stored in containers or tanks shall be stored in accordance with the *Hazardous Waste Storage Guidelines*, June 1988, Alberta Environment, as amended.
- 4.4.11 Notwithstanding 4.1.6, all tanks within the tank farm shall be equipped, at a minimum, with all of the following:
 - (a) sensors for detecting the level in each tank;
 - (b) high level alarms that activate when a tank overfill is imminent;
 - (c) automatic shut-off devices or sufficient free board space above the high level sensor to allow operators time to prevent overfill from occurring; and
 - (d) earthen dikes or equivalent secondary containment structures capable of containing 110% of the volume of the largest tank within the bermed area plus 10% of the aggregate capacity of all other tanks in the bermed area.

TERMS AND CONDITIONS ATTACHED TO APPROVAL

- 4.4.12 The approval holder shall use the following when transferring substances to, from, or between containers, tanks, or trucks:
 - (a) couplings equipped with seals that are compatible with the substance transferred;
 - (b) the necessary precautions to prevent spills when the couplings are disconnected; and
 - (c) transfer areas and associated curbing, paving, catchment areas and portable secondary containment devices.
- 4.4.13 The approval holder shall only carry out the following activities at the landfill in relation to hazardous waste as follows:
 - (a) commingling of hazardous waste or hazardous recyclables shall be conducted only:
 - (i) to make maximum use of available container or tank capacity, and
 - (ii) if the resultant mixture has the same TDG hazard classification as any one of the individual components;
 - (b) phase separation by gravity settling shall be conducted only without the addition of any chemicals designed to accelerate settling;
 - dispersion of solids into liquids by natural or mechanical means shall be conducted only if the resultant mixture has the same TDG hazard classification as the original waste;
 - (d) physical segregation of hazardous from non-hazardous articles or components from the same container shall be conducted only if, no process equipment is used;
 - (e) crushing of used filters, rags, absorbent materials, and empty containers shall be conducted only for the purpose of volume reduction and liquid recovery unless otherwise authorized in writing by the Director; and
 - (f) energy recovery or treatment of third-party hazardous waste only as authorized in writing by the Director.
- 4.4.14 Notwithstanding 4.4.13(f), the approval holder shall not incinerate hazardous waste at the landfill.

,....

TERMS AND CONDITIONS ATTACHED TO APPROVAL

SPECIAL WASTES

- 4.4.15 The approval holder shall dispose of asbestos wastes in accordance with the *Guidelines* for the Disposal of Asbestos Waste, Alberta Environmental Protection, as amended.
- 4.4.16 The approval holder shall dispose of contaminated sulphur and sulphur containing wastes in accordance with the *Guidelines for the Disposal of Sulphur Containing Solid Wastes*, Alberta Environmental Protection, as amended, unless an alternate method proposed by the approval holder is authorized in writing by the Director.

SECTION 4.5: LEACHATE AND LEAK DETECTION LIQUID MANAGEMENT

- 4.5.1 The approval holder shall dispose of:
 - (a) leachate removed from the leachate collection system, and
 - (b) leak detection liquid removed from the leak detection system

only by one or more of the following methods:

- (i) disposal to facilities holding a current Approval, Registration or as otherwise authorized under the Act to accept such waste;
- (ii) disposal to facilities approved by a local environmental authority outside of Alberta to accept such waste;
- (iii) recirculation through the cell from which it was taken; or
- (iv) disposal to a deep well approved by the Alberta Energy Resources Conservation Board.
- 4.5.2 Subject to 4.5.3, during landfill operations, closure and post-closure, the maximum acceptable leachate head shall not exceed 300 mm.
- 4.5.3 Notwithstanding 4.5.2, the maximum acceptable leachate head may be exceeded during times of higher than expected precipitation events for a period of not more than 14 days from the end of the event.
- 4.5.4 The volume of liquid in the leak detection system, as monitored in TABLE 4.10-D, shall not exceed the action leakage rate in any cell.

SECTION 4.6: SURFACE WATER MANAGEMENT

4.6.1 The approval holder shall not release any substances from the run-off control system to the surrounding watershed except as authorized by this approval.

- 4.6.2 The approval holder shall not allow run-on to enter the active landfill area.
- 4.6.3 The approval holder shall direct all run-off to the run-off control system as specified in the application.
- 4.6.4 The approval holder shall dispose of run-off collected within the tank farm berm area only to the following:
 - (a) a deep well approved by the Alberta Energy Resources Conservation Board;
 - (b) the run-off control pond(s) within the run-off control system; or
 - (c) as otherwise authorized in writing by the Director.
- 4.6.5 Releases from the run-off control system shall comply with the limits for the parameters specified in TABLE 4.6-A.

TABLE 4.6-A	RUN-OFF	LIMITS
-------------	----------------	--------

Parameter	Maximum Concentration or Range (in mg/L unless otherwise specified)
Chemical Oxygen Demand	50 mg/L
Total Suspended Solids	25 mg/L
Chloride, dissolved	250 mg/L
Ammonia, dissolved (expressed as Nitrogen)	5 mg/L
H	6.0 – 9.5 pH units
Oil or other substances	Not present in amounts sufficient to create a visible film or sheen
96-Hour Multiple Concentration Acute Lethality Test Using Rainbow Trout (<i>Oncorhynchus</i> <i>mykiss</i>)	50% or greater survival
48-Hour Static Acute Lethality Test Using Daphnia magna	Result must "PASS" test

- 4.6.6 Subject to 4.6.5, the approval holder shall only release the run-off from the run-off control system to the Paddy Creek drainage basin.
- 4.6.7 The approval holder shall only use flocculants for the run-off control pond(s) within the run-off control system as authorized in writing by the Director.

TERMS AND CONDITIONS ATTACHED TO APPROVAL

- 4.6.8 Subject to 4.6.7, the approval holder shall maintain a record of flocculants that are added to the run-off control ponds within the run-off control system including, at a minimum, the following:
 - (a) the location of the addition of flocculants;
 - (b) the type of flocculants added;
 - (c) the concentration of flocculants in the run-off control pond(s); and
 - (d) the date of addition.

SECTION 4.7: AQUATIC AND TERRESTRIAL ECOSYSTEM

- 4.7.1 The approval holder shall implement the Aquatic and Terrestrial Ecosystem Monitoring Plan, subject to 4.7.2.
- 4.7.2 The approval holder shall only implement revisions to the Aquatic and Terrestrial Ecosystem Monitoring Plan in 4.7.1 as authorized in writing by the Director.
- 4.7.3 The approval holder shall submit to the Director an Annual Aquatic and Terrestrial Ecosystem Monitoring Report:
 - (a) by March 31 of each year following the year in which the information was collected; and,
 - (b) containing a summary and evaluation of the ecosystem and terrestrial monitoring results for the respective year.

SECTION 4.8: DOMESTIC WASTEWATER

- 4.8.1 The approval holder shall not release any substance from the domestic wastewater system to the surrounding watershed except as authorized by this approval.
- 4.8.2 The approval holder shall release domestic wastewater only to a holding tank(s) with subsequent disposal to a wastewater treatment facility holding a current Approval or Registration under the Act.
- 4.8.3 Sludge produced by the domestic wastewater collection system shall be disposed of only at a facility holding a current Approval or Registration under the Act.

SECTION 4.9: SPECIAL REPORTING

4.9.1 The approval holder shall report to the Director in writing on the status of the Regional Advisory Panel by March 31 of each year.

TERMS AND CONDITIONS ATTACHED TO APPROVAL

- 4.9.2 The approval holder shall report to the Director in writing by March 31 of each year the waste type and amount received at the landfill from within the following geographic areas in Alberta:
 - (a) the area west of the 5th Meridian, south of Township 62, north of Township 35, and east of the Alberta/British Columbia border; and
 - (b) the remaining portion of Alberta that is outside the geographic area described in 4.9.2(a).

SECTION 4.10: LANDFILL MONITORING AND REPORTING

LANDFILL OPERATIONS

4.10.1 The approval holder shall monitor operations at the landfill as required in TABLE 4.10-A.

ſ					
Monitoring/ Measuring Activity	Frequency	Method	Sampling Location	Reporting	
Weighing and observing type of waste received	Continuously (when operating)	Measurement	At entrance to landfill	Annually, as per 4.10.11, on or before March 31 of the year following the year in which the information was collected	
Weighing and observing type of material removed	Continuously (when operating)	Measurement	At entrance to landfill		
Tracking general location of waste deposited	Daily (when operating)	By estimation	At active landfill area or GPS co-ordinates		

TABLE 4.10-A: OPERATIONS - MONITORING AND REPORTING REQUIREMENTS

- 4.10.2 The approval holder shall submit a monthly report to the Director within 30 days following the month in which the information was collected.
- 4.10.3 The monthly report referred to in 4.10.2 shall contain the following information:
 - (a) an opening waste inventory balance in kilograms or litres, or other units to the satisfaction of the Director, by waste class or material type;
 - (b) the amount and type of waste received from within the province and from outside the province;

TERMS AND CONDITIONS ATTACHED TO APPROVAL

- (c) the amount and type of waste shipped, recycled, disposed off-site and disposed on-site;
- (d) any adjustments including consolidation and processing adjustments;
- (e) closing balance in kilograms or litres, or other units to the satisfaction of the Director; and
- (f) other information as authorized in writing by the Director.
- 4.10.4 Excluding the general location of waste deposited, the approval holder shall compile all the information required by 4.4.1 and Table 4.10-A in an Annual Waste Management Summary report:
 - (a) as specified in TABLE 4.10-B; and
 - (b) pursuant to or in compliance with Industrial Waste Identification and Management Options, May 1996 as amended, and the Alberta User Guide for Waste Managers, May 1995, as amended.

TABLE 4.10-B: ANNUAL WASTE MANAGEMENT SUMMARY

		Uniform	1 Waste C	ode	Quantity (e	e.g. kg or L)	Stored	Recy	cled	Dispo	sed
Waste Name	wc	PIN	Class	Mgmt	Hazardous	Non- hazardous	On-Site	On- site	Off- site	On- site	Off- site
· · · · · · · · · · · · · · · · · · ·											
				TOTAL	·····						

LEACHATE AND LEAK DETECTION LIQUID

4.10.5 Subject to TABLE 4.10-C, the approval holder shall monitor:

- (a) leachate; and
- (b) leak detection liquid

at the landfill as required in TABLE 4.10-D.

.....

TERMS AND CONDITIONS ATTACHED TO APPROVAL

TABLE 4.10-C: LEACHATE AND LEAK DETECTION LIQUID MONITORING PARAMETERS

PARAMETERS				
List A	List B			
pH (laboratory)	pH (laboratory)			
Electrical Conductivity (laboratory)	Electrical Conductivity (laboratory)			
Major Ions	Major Ions			
Trace Metals (dissolved) Petroleum Hydrocarbon Fractions				
Nutrients				
Chemical Oxygen Demand				
Petroleum Hydrocarbon Fractions				

TABLE 4.10-D: LEACHATE AND LEAK DETECTION LIQUID MONITORING AND REPORTING REQUIREMENTS

Monitoring Activity	Frequency	Method	Sampling Location	REPORTING		
Leachate head	At least once every three working days and immediately prior to leachate removal	Measurement	At leachate collection system sump(s) of each cell			
Leachate analysis, as ner	At least four times per year, each in different months:		At each leachate			
TABLE 4.10-C	a) semi-annually for List A; and	and Grab sample collection system sump An Measurement At leachate collection system sump(s) Ma		Annually, as per 4.10.11, on or before March 31 of		
	b) semi-annually for List B					
Volume of leachate removed from the leachate collection system	As removed					
Presence of any leak detection liquid	At least once every three working days and immediately prior to leak detection liquid removal At each leak detection system sump		At each leak detection system sump	following the year in which		
Leak detection liquid	At least four times per year, each in different months:	Orah a smalla	At each leak detection	was collected		
analysis, as per TABLE	a) semi-annually for List A; and	Grab sample	system sump			
4.10 0	b) semi-annually for List B					
Volume of leak detection liquid removed from the leak detection system	As removed	Measurement	At leak detection system sump			

4.10.6 If the volume of liquid removed from the leak detection system exceeds the action leakage rate, in addition to reporting pursuant to 2.1.1, the approval holder shall submit a response action plan to the Director within 30 days of the excess.

SURFACE WATER

- 4.10.7 The approval holder shall monitor the run-off control system as required in TABLE 4.10-E.
- 4.10.8 The approval holder shall report to the Director the results of the run-off control system monitoring as required in TABLE 4.10-E.

TABLE 4.10-E: RUN-OFF RELEASE MONITORING AND REPORTING

Parameters	Frequency	Sample Type	Sample Location	Reporting
Chemical Oxygen Demand Total Suspended Solids Chloride, dissolved	(a) prior to each release, and (b) during any unanticipated			
(expressed as Nitrogen) pH Oil or other substances	release from the run-off control system	m the trol Represent- ative grab	Each run-off pond from which a release (a) is to occur.	Annually, on or before March 31 of the year following the year in which
96-Hour Multiple Concentration Acute Lethality Test Using Rainbow Trout (Oncorhynchus mykiss)	Prior to the first release of each month	sample	or (b) is occurring	the information was collected
48-Hour Static Acute Lethality Test Using Daphnia magna		L Fatimatod	Discharge Point	
Volume	When released	Estimated		

- 4.10.9 The approval holder shall analyze a representative grab sample from each run-off pond of the run-off control system at least once per year for the parameters outlined in TABLE 4.10-F.
- 4.10.10 The approval holder shall submit the results of the analyses in 4.10.9 to the Director on or before March 31 of the following year.

TABLE 4.10-F: RUN-OFF ANNUA	_ MONITORING PARAMETERS
-----------------------------	-------------------------

PARAMETERS					
Biochemical Oxygen Demand	Chemical Oxygen Demand	Chromium (hexavalent)	рН		
Phenol (Total)	Polychlorinated Biphenyls	Total Suspended Solids	Cyanide (Total)		
Major Ions	Nutrients	Petroleum Hydrocarbon Fractions	Trace Metals (dissolved)		

ANNUAL LANDFILL OPERATION REPORT

- 4.10.11 The approval holder shall submit to the Director, an Annual Landfill Operation Report which shall include, at a minimum, all of the following information:
 - (a) a summary of the information monitored as required in TABLE 4.10-A and TABLE 4.10-D;
 - (b) a summary of landfill inspections conducted by the approval holder;
 - (c) a summary of the performance of the surface water management systems;
 - (d) a summary of any operational problems and emergencies related to this approval and how they were handled;
 - (e) a summary of the performance of the leachate collection system, including a comparison to the maximum acceptable leachate head;
 - (f) a summary of the performance of the leak detection system, including a comparison to the action leakage rate;
 - (g) an up-to-date financial security estimate in accordance with 4.13.2;
 - (h) the results of any audit conducted in accordance with 4.1.8 for a given year;
 - (i) a record of public complaints and the approval holder's responses;
 - (j) a summary of the cell closures and operation commencements during the reporting year;
 - (k) a summary of contraventions reported pursuant to 2.1.1 related to landfill operations; and
 - (I) any other information requested in writing by the Director.

SECTION 4.11: GROUNDWATER

- 4.11.1 The approval holder shall operate the groundwater monitoring system for the landfill in accordance with the groundwater monitoring program titled Groundwater Monitoring Plan, dated January 26, 2010, submitted with the application and as amended.
- 4.11.2 The approval holder shall only implement revisions to the groundwater monitoring program in 4.11.1 as authorized in writing by the Director.
- 4.11.3 The approval holder shall:
 - (a) collect a representative groundwater sample from each of the groundwater monitor wells designated as points of compliance in the groundwater monitoring program; and
 - (b) analyze the sample for the parameters listed in the groundwater monitoring program, unless otherwise authorized in writing by the Director.
- 4.11.4 The groundwater quality in the monitoring wells, designated as points of compliance in the groundwater monitoring program, shall not exceed the higher of:
 - (a) the objectives established in the *Guidelines for Canadian Drinking Water Quality*, Health Canada, as amended; or,
 - (b) the limits established in the Alberta Tier 1 or Tier 2 Soil and Groundwater Remediation Guidelines, Alberta Environment, 2009, as amended;

unless the representative background level for any parameter naturally exceeds the objective established in the guidelines referred to in (a) and (b).

- 4.11.5 The approval holder shall implement the remediation or risk management program as described in the Operations Plan, when groundwater quality exceeds the groundwater performance criteria in 4.11.4 (a) and (b).
- 4.11.6 The samples extracted from the groundwater monitor wells shall be collected using scientifically acceptable purging, sampling and preservation procedures so that a representative groundwater sample is obtained.
- 4.11.7 All groundwater monitor wells shall be:
 - (a) protected from damage; and
 - (b) locked except when being sampled, unless otherwise authorized in writing by the Director.

.....

TERMS AND CONDITIONS ATTACHED TO APPROVAL

- 4.11.8 If a representative groundwater sample cannot be collected because the groundwater monitoring well is damaged or is no longer capable of producing a representative groundwater sample:
 - (a) the groundwater monitoring well shall be cleaned, repaired or replaced; and
 - (b) a representative groundwater sample shall be collected and analyzed during the next scheduled sampling event

unless otherwise authorized in writing by the Director.

- 4.11.9 In addition to the sampling information recorded in 2.2.1, the approval holder shall record the following sampling information for all groundwater samples collected:
 - (a) a description of purging and sampling procedures;
 - (b) the static elevations, above sea level, of fluid phases in the groundwater monitoring well prior to purging;
 - (c) the temperature of each sample at the time of sampling;
 - (d) the pH of each sample at the time of sampling; and
 - (e) the specific conductance of each sample at the time of sampling.
- 4.11.10 The approval holder shall compile an Annual Groundwater Monitoring Program Report which shall include, at a minimum, all of the following information:
 - (a) a legal description of the landfill and a map illustrating the landfill boundaries;
 - (b) a topographic map of the landfill;
 - (c) a description of the landfill activity and processes;
 - (d) a map showing the location of all surface and groundwater users, and, a listing describing surface water and water well use details, within at least a three kilometre radius of the landfill;
 - (e) a general hydrogeological characterization of the region within a five kilometre radius of the landfill;
 - (f) a detailed hydrogeological characterization of the landfill;
 - (g) a geological cross-section(s) of the landfill;

- (h) a map of surface drainage patterns located within the landfill;
- (i) a map of groundwater monitoring well locations and a description of the existing groundwater monitoring program for the landfill;
- (j) a summary of any changes to the groundwater monitoring program made since the last groundwater monitoring program report;
- (k) analytical data recorded as required in 4.11.6 and 4.11.9;
- (I) a summary of fluid elevations recorded as required in 4.11.9(b) and an interpretation of changes in fluid elevations;
- (m) an interpretation of groundwater flow patterns;
- (n) an interpretation of the analytical results including the following:
 - (i) diagrams indicating the location of any contamination identified,
 - (ii) probable sources of contamination, and
 - (iii) the extent of contamination identified;
- (o) a summary and interpretation of the data collected since the groundwater monitoring program began including:
 - (i) control charts which indicate trends in contaminant concentrations, and
 - (ii) the migration of contaminants;
- (p) a description of the following:
 - (i) contaminated groundwater remediation techniques employed,
 - (ii) source elimination measures employed,
 - (iii) risk assessment studies undertaken, and
 - (iv) risk management studies undertaken;
- (q) a sampling schedule for the following year;
- (r) recommendations, as follows:

- (i) for changes to the groundwater monitoring program to make it more effective, and
- (ii) for remediation, risk assessment or risk management of contamination identified.
- 4.11.11 The Annual Groundwater Monitoring Program Report shall be signed and stamped by a professional registered with APEGGA, or signed by another professional as authorized in writing by the Director.
- 4.11.12 The approval holder shall submit two copies of the Annual Groundwater Monitoring Program Report to the Director on or before March 31 of the year following the year in which the information on which the report is based was collected, unless otherwise authorized in writing by the Director.

SECTION 4.12 : SOIL MONITORING

- 4.12.1 The approval holder shall develop and document proposals for the Soil Monitoring Program in accordance with the Soil Monitoring Directive, Alberta Environment, May 1996, as amended.
- 4.12.2 The approval holder shall submit the Soil Monitoring Program proposals to the Director according to the following schedule:
 - (a) for the first soil monitoring proposal, no later than November 30, 2010; and
 - (b) for the second soil monitoring proposal, no later than November 30, 2015; or

unless otherwise authorized in writing by the Director.

- 4.12.3 If the Soil Monitoring Program proposals are found deficient by the Director, the approval holder shall correct all the deficiencies as outlined by the Director within 120 days of the deficiency letter.
- 4.12.4 The approval holder shall implement the Soil Monitoring Program proposals as authorized in writing by the Director.
- 4.12.5 The approval holder shall implement QA/QC provisions in accordance with the CCME Guidance Manual on Sampling, Analysis and Data Management for Contaminated Sites, Volume I, Report CCME EPC-NCS62E, Winnipeg, Manitoba, December 1993, as amended.

STANDARDS

- 4.12.6 For sampling locations which meet the conditions in C.1 of the Soil Monitoring Directive, May 1996, as amended, the concentration of substances in soil shall be compared to values in the following:
 - (a) for petroleum hydrocarbons, Alberta Soil and Water Quality Guidelines for Hydrocarbons at Upstream Oil and Gas Facilities, Alberta Environment, 2001, as amended;
 - (b) for salt, *Salt Contamination Assessment and Remediation Guidelines,* Alberta Environment, 2001, as amended;
 - (c) for substances not included in 4.12.6 (a) or (b), Canadian Environmental Quality Guidelines, Canadian Council of Ministers of the Environment, PN1299, 1999, as amended, excluding values determined before 1997;
 - (d) for substances not found in 4.12.6 (a) to (c), for soil which will be remediated to an agricultural, residential, or parkland land use, *Alberta Tier I Criteria for Contaminated Soil Assessment and Remediation*, Alberta Environmental Protection, March 1994, as amended; and
 - (e) for substances not found in 4.12.6 (a) to (c), for soil which will be remediated to a commercial or industrial land use, the *Interim Canadian Environmental Quality Criteria for Contaminated Sites*, Canadian Council of Ministers of the Environment, EPC-CS34, September 1991, as amended.
- 4.12.7 For sampling locations which do not meet the conditions in C.1 of the *Soil Monitoring Directive*, May 1996, as amended, or if substances are present that are not listed in the standards referred to in 4.12.6 (a) to 4.12.6 (e), the concentrations of substances in soil shall be compared to values derived using methods in C.2 of the *Soil Monitoring Directive*.

REPORTING

- 4.12.8 The approval holder shall submit two copies of each Soil Monitoring Program Report to the Director summarizing the data obtained from the soil monitoring referred to in 4.12.4 according to the following schedule:
 - (a) for the first soil monitoring report, no later than October 31, 2011; and
 - (b) for the second soil monitoring report, no later than October 31, 2016; or

unless otherwise authorized in writing by the Director.

TERMS AND CONDITIONS ATTACHED TO APPROVAL

4.12.9 The Soil Monitoring Program reports shall be as prescribed in the reporting requirements of the *Soil Monitoring Directive*, May 1996, as amended.

SOIL MANAGEMENT PROGRAM

- 4.12.10 If the Soil Monitoring Program, or any other soil monitoring, reveals that there are substances present in the soil at concentrations greater than the applicable concentrations in 4.12.6 or 4.12.7, the approval holder shall develop and document a Soil Management Program Proposal in accordance with the *Guideline for Monitoring and Management of Soil Contamination Under EPEA Approvals*, Chemicals Assessment and Management Division, May 1996, as amended, or as otherwise authorized in writing by the Director.
- 4.12.11 If required pursuant to 4.12.10, the approval holder shall submit a Soil Management Program Proposal to the Director within six months after the date that the Soil Monitoring Report referred to in 4.12.8 is due.
- 4.12.12 The Soil Management Program Proposal shall include, at a minimum, all of the following:
 - (a) steps to be taken to control sources of contamination;
 - (b) remediation objectives for substances identified by soil monitoring as exceeding the applicable maximum standards in 4.12.6 or 4.12.7;
 - (c) proposed steps for management of soil contamination; and
 - (d) a schedule for implementing the Soil Management Program.
- 4.12.13 If the Soil Management Program Proposal is found deficient by the Director, the approval holder shall correct all the deficiencies as outlined by the Director by the date specified in the deficiency letter.
- 4.12.14 The approval holder shall implement the Soil Management Program as authorized in writing by the Director.
- 4.12.15 If the approval holder must implement a Soil Management Program pursuant to 4.12.14, the approval holder shall submit a written Soil Management Program Report to the Director on or before March 31 of each year, unless otherwise authorized in writing by the Director.
- 4.12.16 The Soil Management Program Report shall include, at a minimum, all of the following information:

TERMS AND CONDITIONS ATTACHED TO APPROVAL

- (a) a summary of actions taken under the Soil Management Program during the previous year;
- (b) a description and interpretation of results obtained, including any soil testing, from the Soil Management Program; and
- (c) events planned for the current year including any deviations from the program authorized in writing by the Director

SECTION 4.13: FINANCIAL SECURITY REQUIREMENTS

- 4.13.1 The approval holder shall annually review and revise the cost estimate for reclamation of the landfill including decommissioning, reclamation, closure and post-closure.
- 4.13.2 The approval holder shall:
 - (a) adjust the financial security of the landfill based on the review in 4.13.1 or due to inflation; and
 - (b) submit to the Director for review the revised estimate of financial security as part of the Annual Landfill Operation Report in 4.10.11.
- 4.13.3 The approval holder shall provide additional financial security as required in writing by the Director.
- 4.13.4 The approval holder shall ensure the required financial security is maintained and renewed for the landfill at least 30 days prior to the date it expires.
- 4.13.5 The approval holder shall renew the financial security for the waste landfill 30 days prior to the date of expiry of the financial security.

PART 5: FINAL CLOSURE, RECLAMATION AND POST-CLOSURE

SECTION 5.1: FINAL CLOSURE AND RECLAMATION

- 5.1.1 The approval holder shall submit a Final Closure Plan to the Director at least 180 days prior to permanently ceasing the landfill operation.
- 5.1.2 The Final Closure Plan shall include, at a minimum, all of the following:
 - (a) a schedule for completion of the final closure;
 - (b) a plan for completion of the final cover system;
 - (c) a drawing that shows the proposed slopes of the final cover;

.....

TERMS AND CONDITIONS ATTACHED TO APPROVAL

- (d) a plan for replacement of soil;
- (e) a plan for remediation of areas affected by subsidence and differential settlement;
- (f) a plan for erosion control;
- (g) a plan for restoration of surface water drainage;
- (h) plans for changes to the groundwater monitoring systems, including but not limited to the addition or deletion of components of those systems;
- (i) plans for changes to the leachate collection systems, including but not limited to the addition or deletion of components of those systems;
- (j) plans for decommissioning and removal of buildings, storage areas, processing areas or any other property that will no longer be required; and
- (k) a Quality Assurance/Quality Control Program.
- 5.1.3 The Final Closure Plan shall be signed and stamped by a professional registered with APEGGA, or signed by another professional as authorized in writing by the Director.
- 5.1.4 If the Final Closure Plan is found deficient by the Director, the approval holder shall correct all deficiencies as outlined in writing by the Director within 60 days of the deficiency letter.
- 5.1.5 The approval holder shall implement the Final Closure Plan as authorized in writing by the Director.
- 5.1.6 The approval holder shall commence closure of individual cells no later than 180 days following the cell reaching the maximum designated waste elevation, unless otherwise authorized in writing by the Director.
- 5.1.7 Within 90 days of completion of cell closure, the approval holder shall submit to the Director a Closure Report.
- 5.1.8 The Closure Report in 5.1.7 shall include, at a minimum, all of the following:
 - (a) as-built plans and details on the location of cells that have been closed;
 - (b) certified construction QA/QC procedures employed during cover construction and installation; and
 - (c) survey reports showing the final cover elevations.

TERMS AND CONDITIONS ATTACHED TO APPROVAL

- 5.1.9 The approval holder shall notify the Director of the proposed date of the completion of final closure of the landfill at least 180 days prior to the proposed date.
- 5.1.10 The approval holder shall commence final closure of the landfill:
 - (a) no later than 180 days after the landfill reaches the maximum designated waste elevation; or
 - (b) if no waste is received at the landfill for disposal for a period of 180 days.
- 5.1.11 The approval holder shall notify the Director of the date of commencement of final closure of the landfill no later that 30 days following commencement of final closure.
- 5.1.12 The approval holder shall complete final closure of the landfill no later than 180 days following the date of commencement of final closure specified in 5.1.9 or another time authorized in writing by the Director.
- 5.1.13 The approval holder shall submit a Final Closure Report signed and stamped by a professional registered with APEGGA, or signed by another professional as authorized in writing by the Director, within 90 days following completion of the final closure of the landfill.
- 5.1.14 The Final Closure Report shall include, at a minimum, all of the following:
 - (a) the date of completion of the final closure;
 - (b) a statement including supporting evidence that the final closure has been completed in accordance with the final closure plan;
 - (c) a description of any deviations to the final closure plan and the reasons for the deviations;
 - (d) a description of the final cover system and the installation methods and procedures used;
 - (e) an estimate of the maximum quantity of waste placed in the landfill for disposal over the life of the landfill;
 - (f) a description of how the following elements have been, or will be dealt with:
 - (i) the final use of the closed areas;
 - (ii) drainage restorations;
 - (iii) soil replacement;

.....

TERMS AND CONDITIONS ATTACHED TO APPROVAL

- (iv) final cover slopes;
- (v) erosion control;
- (vi) re-vegetation and condition of the site; and
- (vii) subsidence and differential settlement remediation; and
- (g) as-built plans, signed and stamped by a professional registered with APEGGA, for the landfill showing the location of fill areas, final grades and structural components.

SECTION 5.2: POST-CLOSURE

- 5.2.1 The approval holder shall submit to the Director, an up-to-date Post-Closure Plan, no less than 180 days prior to the proposed date of the completion of final closure of the landfill.
- 5.2.2 The approval holder shall include the following in the Post-Closure Plan at a minimum:
 - (a) a plan for maintaining the integrity of the final cover systems;
 - (b) a plan for maintaining the surface water management systems;
 - (c) a plan for maintaining the groundwater monitoring system;
 - (d) the groundwater monitoring program including performance standards and points of compliance;
 - (e) a plan for maintaining the leachate collection and monitoring system;
 - (f) a plan for maintaining the leak detection system;
 - (g) quality and quantity objectives of leachate that show the landfill has stabilized;
 - (h) a plan for remediating areas affected by subsidence and differential settlement;
 - (i) a plan for erosion control;
 - (j) a plan for maintaining vegetative cover; and
 - (k) any other information requested in writing by the Director.

- 5.2.3 If the Post-Closure Plan is found deficient by the Director, the approval holder shall correct all deficiencies as outlined in writing by the Director within 60 days of the deficiency letter.
- 5.2.4 The approval holder shall implement the Post-Closure Plan as authorized in writing by the Director.

POST CLOSURE MONITORING AND REPORTING

- 5.2.5 The approval holder shall monitor the landfill in accordance with the Post-Closure Plan for the duration of post-closure.
- 5.2.6 The approval holder shall compile an Annual Post-Closure Report.
- 5.2.7 The Annual Post-Closure Report shall include the following at a minimum:
 - (a) the annual groundwater monitoring report;
 - (b) details on any repairs and maintenance of the final cover system and vegetation;
 - (c) a report of any remedial or corrective actions taken; and
 - (d) any other information requested in writing by the Director.
- 5.2.8 The approval holder shall submit one copy of the Annual Post-Closure Report to the Director on or before March 31 of the year following the year in which the information on which the report is based was collected, unless otherwise authorized in writing by the Director.

February 26, 2010 Date Signed

DESIGNATED DIRECTOR UNDER THE ACT David Helmer P.Eng.

AMENDING APPROVAL

PROVINCE OF ALBERTA

ENVIRONMENTAL PROTECTION AND ENHANCEMENT ACT R.S.A. 2000, c.E-12, as amended.

APPROVAL NO.	48516-01-02
APPLICATION NO.	0010-48516
EFFECTIVE DATE:	October 14, 2015
EXPIRY DATE:	MARCH 31, 2019
APPROVAL HOLDER	SECURE ENERGY SERVICES INC.
ACTIVITY: Construction, Opera	tion and Reclamation of the Pembina Area Landfill
Consisting of a Class I per year of hazardous	and Class II Landfill, where more than 10,000 tonnes waste and non-hazardous waste are disposed of.

is subject to the attached terms and conditions.

30 Designated Director under the Act

Todd Aasen, P.Eng.

October 14, 2015
Date Signed

TERMS AND CONDITIONS ATTACHED TO APPROVAL

Environmental Protection and Enhancement Act Approval No. 48516-01-00 is hereby further amended as follows:

- 1. A sub-clause is added under Clause 4.5.1:
 - 4.5.1 (v) or as otherwise authorized in writing by the Director.
- 2. Clause 4.6.6 is repealed and replaced with the following:
 - 4.6.6 Subject to 4.6.5, the approval holder shall only release the run-off from the runoff control system to the Paddy Creek drainage basin, or as otherwise authorized in writing by the Director.

DATED October 14, 2015

DESIGNATED DIRECTOR UNDER THE ACT

AMENDING APPROVAL

PROVINCE OF ALBERTA

ENVIRONMENTAL PROTECTION AND ENHANCEMENT ACT R.S.A. 2000, c.E-12, as amended.

APPROVAL NC	48516-01-03)
APPLICATION	0011-48516 NO.
EFFECTIVE DA	November 10, 2015 TE:
EXPIRY DATE:	June 1, 2020
APPROVAL HC	SECURE ENERGY SERVICES INC.
ACTIVITY: Co	onstruction, Operation and Reclamation of the Pembina Area Landfill
Cons per y	isting of a Class I and Class II Landfill, where more than 10,000 tonnes ear of hazardous waste and non-hazardous waste are disposed of.
is subject to the	attached terms and conditions.
Desig	gnated Director under the Act Todd Aasen, P.Eng.
	November 10, 2015 Date Signed

APPROVAL NO. 48516-01-03 Page 2 of 2

TERMS AND CONDITIONS ATTACHED TO APPROVAL

Environmental Protection and Enhancement Act Approval No. 48516-01-00-00 is hereby further amended as follows:

- 1. Clause 3.1.1 is repealed and replaced with the following:
 - 3.1.1 The approval holder shall construct the landfill as described in the applications submitted in August, 1998 and in September, 2015, unless otherwise specified in this approval.

DATED November 10, 2015

DESIGNATED DIRECTOR UNDER THE ACT

AMENDING APPROVAL

PROVINCE OF ALBERTA

ENVIRONMENTAL PROTECTION AND ENHANCEMENT ACT R.S.A. 2000, c.E-12, as amended.

	NO.:	48516-01-04
APPLICATIO	N NO.:	009-48516
EFFECTIVE	DATE:	July 14, 2016
EXPIRY DAT	E:	March 31, 2019
APPROVAL I	HOLDER:	Secure Energy Services Inc.
ACTIVITY:	Construction, opera	tion and reclamation of the Pembina Area Landfill
	Consisting of a Clas per year of hazardo	s I and Class II Landfill, where more than 10,000 tonnes us waste and non-hazardous waste are disposed of.
is amended a	as per the attached	erms and conditions.
De	signated Director u	nder the Act Todd Aasen, P.Eng.

July 14, 2016 Date Signed

Environmental Protection and Enhancement Act Approval No. 48516-01-00 is hereby further amended as follows:

- 1. Part 1: DEFINITIONS, SECTION 1.1: DEFINITIONS, the following clauses are added:
 - 1.1.2 (g.1) "bulk form" means NORM waste that is not packaged in a container;
 - (ee.1) "IAEA" means the International Atomic Energy Association;
 - (ee.2) "IAEA Regulations" means IAEA Regulations within the meaning of the *Packaging and Transport of Nuclear Substances Regulations, 2015* [Canada], as amended;
 - (tt.1) "NORM" means Naturally Occurring Radioactive Materials;
 - (tt.2) "NORM Waste" means any waste material with concentrations of NORM above the limits specified in Tables 5.1, 5.2, or 5.3 of the *Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM)*, Health Canada, 2011, as amended;
 - (ooo.1) "type IP-1" means type IP-1 within the meaning of the *Packaging and Transport of Nuclear Substances Regulations, 2015* [Canada], as amended;

2. **PART 3: LANDFILL CONSTRUCTION, SECTION 3.1: GENERAL**, the following clauses are added:

- 3.1.11 The approval holder shall install a gate monitor specified in the applicant's submission dated February 19, 2016 which forms part of the application, on or before December 31, 2016, or as otherwise authorized in writing by the Director.
- 3.1.12 The approval holder shall notify the Director in writing within 30 days after completion of installation of the gate monitor in 3.1.11.

3. PART 4: LANDFILL OPERTIONS, LIMITS, MONITORING AND REPORTING, SECTION 4.3: AIR, under <u>AIR MONITORING AND REPORTING</u>, the following clause is added:

- 4.3.10 The approval holder shall implement the air monitoring program as described in the Operations Plan (Revision 10, dated December 1, 2015) for NORM waste handling submitted with application #009-48516.
- 4. **PART 4: LANDFILL OPERATIONS, LIMITS, MONITORING AND REPORTING, SECTION 4.4: WASTE ACCEPTANCE,** the clause 4.4.1 (b) is replaced by the following:
 - 4.4.1 (b) the Alberta User Guide for Waste Managers, August 1996, as amended.
- 5. **PART 4: LANDFILL OPERATIONS, LIMITS, MONITORING AND REPORTING, SECTION 4.4: WASTE ACCEPTANCE,** under <u>SPECIAL WASTES</u>, the following clauses are added:

TERMS AND CONDITIONS ATTACHED TO APPROVAL

- 4.4.17 The approval holder is only permitted to receive and dispose of NORM waste into the Class I landfill cells.
- 4.4.18 The approval holder shall operate the landfill in accordance with the Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM), Health Canada, 2011, as amended.
- 4.4.19 The Class I landfill cells shall not accept NORM waste prior to installation of the gate monitor in 3.1.11.
- 4.4.20 All waste loads entering the Class I landfill cells shall be scanned for NORM by the gate monitor in 3.1.11.
- 4.4.21 If the gate monitor in 3.1.11 is not operational, the approval holder shall:
 - (a) notify the Director in writing;
 - use a handheld monitor (Ludlum Model 3-97 or RadCom MSpec or Tracerco NORM IS) to scan all waste loads entering the Class I landfill cells for NORM;
 - (c) replace or fix the gate monitor within 15 days after notification in (a); or
 - (d) as otherwise authorized in writing by the Director.
- 4.4.22 Prior to the acceptance of NORM waste, the approval holder shall conduct background monitoring for the parameters in TABLE 4.9-A by taking a representative grab sample from each of the listed sample locations in TABLE 4.9-A.
- 4.4.23 The approval holder shall notify the Director in writing at least 14 days prior to commencing acceptance of NORM waste.
- 4.4.24 The approval holder shall implement the following with respect to NORM waste handling, submitted with application #009-48516:
 - (a) In-Coming Waste Monitoring-Class 1 (Gate Screening) (LF 0014, dated June 7, 2016);
 - (b) NORMs Secondary Screening and Detection (handheld monitoring) (LF 0022, dated June 7, 2016);
 - (c) NORMs Waste Rejection (LF 0023, dated on June 7, 2016);
 - (d) NORMs Low Level Dust Monitoring Procedure (LF 0052, dated June 7, 2016);

TERMS AND CONDITIONS ATTACHED TO APPROVAL

- (e) NORMs Monthly Area and Fence Line Dose Monitoring Program (LF 0056, dated June 7, 2016);
- (f) NORMs Active Area Unloading Dose Monitoring Procedure (LF 0057, dated June 7, 2016);
- (g) NORMs Acceptance and Handling Procedure (LF 0073, dated June 7, 2016);
- (h) NORMs Decontamination and Hygiene Procedure (LF 0080, dated June 7, 2016);
- (i) Operations Plan (Revision 10, dated December 1, 2015);
- (j) NORM Radiation Protection Plan (dated October 2015);
- (k) NORM Radiological Monitoring Program (dated July 2014);
- 4.4.25 The approval holder shall only implement revisions to the plans, programs and procedures described in 4.3.10 and 4.4.24 as authorized in writing by the Director.
- 4.4.26 The approval holder shall not accept NORM waste that exceeds the maximum concentration limits set out in TABLE 4.4-A.

TABLE 4.4-A: ACCEPTANCE LIMITS FOR NORM WASTE UNIFORMLY DISPERSED IN SOIL OR OTHER MEDIA

Status of Equilibrium	Maximum Concentration of Source Material	Sum of Concentrations Parent(s) and all progeny present	
Natural uranium in equilibrium with progeny	<500 mg/kg / 6 Bq/g (²³⁸ U activity)	≤ 70 Bq/g	
Natural thorium in equilibrium with progeny	<500 mg/kg / 2 Bq/g (²³² Th activity)	or	
Any mixture of Thorium and Uranium	Sum of ratios ≤ 1 *	≤10 times the activity concentration limit for exempt	
²²⁶ Ra or ²²⁸ Ra with progeny in bulk form	18.5 Bq/g (combined radium isotopes)	material values set out in the IAEA Regulations whichever is less	
²²⁶ Ra or ²²⁸ Ra with progeny in reinforced type IP-1 containers	55 Bq/g (combined radium isotopes)		
²³⁰ Th (with no progeny)	0.1 mg/kg / ≤70 Bq/g	not applicable	

Sum of ratios is calculated as described in the *Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM)*, Health Canada, 2011, as amended

4.4.27 All accepted NORM waste containing ²²⁶Ra greater than 8 Bq/g shall be disposed

TERMS AND CONDITIONS ATTACHED TO APPROVAL

at least 6 meters from the outer edge of the final cover.

- 4.4.28 Radioisotope analysis for NORM waste shall be:
 - (a) recorded and kept at the facility; and
 - (b) made available to the Director upon request.
- 4.4.29 The total isotope activity at the landfill at any time shall not exceed the maximum activity limits for each of the isotopes in TABLE 4.4-B.

TABLE 4.4-B: MAXIMUM ISOTOPE ACTIVITY LEVELS PER CLASS I CELL

Isotope	Maximum Activity
Radium – 226	1080 GBq
Lead - 210	1080 GBq
Radium – 228	360 GBq
Thorium – 228	360 GBq

4.4.30 No person working at the landfill shall receive an estimated incremental annual effective dose of 1 mSv/year or greater.

6. **PART 4: LANDFILL OPERATIONS, LIMITS, MONITORING AND REPORTING, SECTION 4.9: SPECIAL REPORTING**, the following clauses are added:

NORM REPORTING

- 4.9.3 In addition to the requirements of 4.10.5, the approval holder shall monitor the following:
 - (a) leachate and leak detection liquids of Class I cells;

for NORM as required in TABLE 4.9-A.

- 4.9.4 In addition to the requirements of 4.10.7, 4.10.8 and 4.11.3(b), the approval holder shall monitor the following:
 - (a) surface water from the run-off control system of Class I area;
 - (b) groundwater from all monitoring wells;
 - (c) fence line; and
 - (d) work areas;

TERMS AND CONDITIONS ATTACHED TO APPROVAL

for NORM as required in TABLE 4.9-A, or as otherwise authorized in writing by the Director.

4.9.5 The approval holder shall report to the Director the results of the NORM monitoring as required in TABLE 4.9-A.

TABLE 4.9-A: NORM	SAMPLING AND	REPORTING	REQUIREMENTS

Parameters	Frequency	Sample Type	Sample Location	Reporting	
Uranium-238					
Thorium-230		Representative grab sample	Each of the following:		
Radium-226				(a) Leachate and Leak	Appually on or
Lead-210	Annually		Detection	before March 31 of	
Thorium-232	grab bampio		grab sumple	(b) Surface	the year following
Radium-228			(c) Groundwater.	the year in which the information was	
Thorium-228					collected
Radon gas		Point in time	Each of the following:		
Low level radioactive dust	Quarterly	sample	(a) Fence line; (b) Work area.		

- 4.9.6 In addition to 2.1.1, if the monitoring results in 4.9.3 and 4.9.4 exceed the Unconditional Derived Release Limits in the *Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM)*, 2011, as amended, the approval holder shall immediately notify the Director in writing.
- 4.9.7 If the monitoring results in 4.9.3 and 4.9.4 exceed the Unconditional Derived Release Limits in the *Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM)*, 2011, as amended, the approval holder shall submit a remediation plan in writing to the Director within 30 days of providing notice to the Director in accordance with 4.9.6.
- 4.9.8 If the remediation plan in 4.9.7 is found deficient by the Director, the approval holder shall:
 - (a) correct all the deficiencies as identified in writing by the Director; and
 - (b) submit the revised remediation plan in a time frame identified in writing by the Director.
- 4.9.9 The approval holder shall implement the remediation plan in 4.9.7 as authorized in writing by the Director.
- 4.9.10 The approval holder shall conduct a radiation dose survey of the ground

immediately above the portions of the cells that have received NORM wastes and include the results in the annual report.

- 7. PART 4: LANDFILL OPERATIONS, LIMITS, MONITORING AND REPORTING, SECTION 4.10: LANDFILL MONITORING AND REPORTING, under ANNUAL LANDFILL OPERATION REPORT, the following clauses are added:
 - 4.10.11 (m) air monitoring data on NORM waste handling; and
 - (n) the total landfill isotope activity per isotope in accordance with 4.4.26.
- 8. PART 5: FINAL CLOSURE, RECLAMATION AND POST-CLOSURE, SECTION 5.1: FINAL CLOSURE AND RECLAMATION, the following clauses are added:
 - 5.1.2 (I) plans to conduct a radiation dose survey of the final cover immediately above the portions of the cells that have received NORM wastes.
 - 5.1.14(f) (viii) any portions of the landfill that exceed a radiation dose of 0.3 mSv/year.
 - 5.1.14 (h) a radiation dose survey of the final cover immediately above the portions of the cells that have received NORM wastes and the results.
- 9. PART 5 FINAL CLOSURE, RECLAMATION AND POST-CLOSURE, SECTION 5.2: POST CLOSURE, the following clauses are added:
 - 5.2.5(i) The post closure plan identified in 5.2.2 shall include isotope specific radiological monitoring including but not limited to groundwater, leachate, radon gas monitoring, surface and perimeter radiation surveys.

July 14, 2016 Date Signed

DESIGNATED DIRECTOR UNDER THE ACT Todd Aasen, P.Eng.

Aberta Environment and Parks

AMENDING APPROVAL

PROVINCE OF ALBERTA

ENVIRONMENTAL PROTECTION AND ENHANCEMENT ACT R.S.A. 2000, c.E-12, as amended.

APPROVAL NO.	48516-01-05	
APPLICATION NO.	012-48516	
EFFECTIVE DATE:	March 23, 2017	
EXPIRY DATE:	MARCH 31, 2019	
APPROVAL HOLDER	SECURE ENERGY SERVICES INC.	
ACTIVITY: Construction, Opera	tion and Reclamation of the Pembina Area Landfill	
Consisting of a Class I and Class II Landfill, where more than 10,000 tonnes per year of hazardous waste and non-hazardous waste are disposed of.		
is subject to the attached terms ar	nd conditions.	
	1000	

Designated Director under the Act The Todd Aasen, P.Eng.

March 23, 2017

Date Signed

Environmental Protection and Enhancement Act Approval No. 48516-01-00 is hereby further amended as follows:

1. **SECTION 4.6: SURFACE WATER AMAGEMENT**, TABLE 4.6-A: RUN-OFF LIMITS is repealed and replaced with the following:

Parameter	Maximum Concentration or Range (in mg/L unless otherwise specified)
Chemical Oxygen Demand (COD)	90 mg/L
Total Suspended Solids (TSS)	25 mg/L
Total Dissolved Solids (TDS)	2500 mg/L
Chloride	250 mg/L
Sodium	200 mg/L
Sulphate	500 mg/L
Ammonia-nitrogen	5 mg/L
pH	6.0 – 9.5 pH units
Oil and Grease	No visible sheen

TABLE 4.6-A: RUN-OFF LIMITS

,

2. SECTION 4.10: LANDFILL MONITORING AND REPORTING, TABLE 4.10-E: RUN-OFF RELEASE MONITORING AND REPORTING is repealed and replaced with the following:

TABLE 4.10-E: RUN-OFF RELEASE MONITORING AND REPORTING

Parameter	Frequency	Sample Type	Sample Location	Reporting	
Chemical Oxygen Demand (COD)					
Total Suspended Solids (TSS)	(a) Prior to each release, and (b) during any unanticipated release from the run-off control system				
Total Dissolved Solids (TDS)		(a) Prior to each release, and (b) during any		Each run off	
Chloride			pond from		
Sodium		Representa	which a	Annually, on or before	
Sulphate		system sam	sample	is to occur,	March 31 of the year following the year in
Ammonia-nitrogen]	Vhen COD of ample exceeds he limit in TABLE 4.6-A.	or (b) is occurring	which the information was collected	
рН					
Oil and grease					
Biochemical Oxygen Demand (BOD)	When COD of sample exceeds the limit in TABLE 4.6-A.				
Volume	When released	Estimated	Discharge Point		

Abertan Environment and Parks

AMENDING APPROVAL

PROVINCE OF ALBERTA

ENVIRONMENTAL PROTECTION AND ENHANCEMENT ACT R.S.A. 2000, c.E-12, as amended.

APPROVAL NO.:	48516-01-07
APPLICATION NO.:	015-48516
EFFECTIVE DATE:	MARCH 31, 2020
EXPIRY DATE:	MARCH 31, 2021
APPROVAL HOLDER:	SECURE ENERGY SERVICES INC.
ACTIVITY: Construction, operation Pembina Area Landfill	n and reclamation of the SECURE Energy Services Inc.
Pursuant to Division 2, of Part 2, of 2000, c.E-12, as amended, the exp 2021.	the <i>Environmental Protection and Enhancement Act</i> , R.S.A. iry date of Approval No. 48516-01-00 is extended to March 31,
Designated Director	under the ActTodd Aasen, P.Eng.

March 4, 2020

Date Signed

CERTIFICATE OF DISPOSAL

Issued to: Site address: Golder Associates Ltd. 2425 Glenview Ave, Kamloops, BC, V2B 4L5

Shipping Document:

- Manifest BA76176-2
- Manifest BA76154-9
- Manifest BA76157-2

This certifies that the waste originating from the above mentioned address was received by Sumas Environmental Services Inc., receiver # KIGWGP4598 on June 10, 11 and 13th, 2020.

Sumas has taken possession and ownership of the waste material upon receipt and is responsible for treatment and disposal of the waste material in British Columbia and/or in Alberta in accordance with all municipal, provincial and federal regulations.

Jeremy White Reference No: RG040130 Date: 07/07/20
APPENDIX F

Laboratory Certificates of Analysis

GOLDER ASSOCIATES LTD. ATTN: Alison Verde 200-2920 Virtual Way Vancouver BC V5M 0C4 Date Received:25-MAY-20Report Date:03-JUN-20 12:11 (MT)Version:FINAL REV. 4

Client Phone: 604-297-2036

Certificate of Analysis

Lab Work Order #: L2451374

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 20145856 02903, 02904

Comments:

29-MAY-2020 The DL for PFOS has been adjusted.
31-MAY-2020 Glycols data has been added.
1-JUN-2020 Additional VOC data is included for L2451374-11. PFAS data has been refactored to report in mg/kg.
2-JUN-2020 Additional PFAS compounds are included.
3-JUN-2020 Additional VOC data is included.

amber Springer

Amber Springer, B.Sc Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2451374 CONTD.... PAGE 2 of 10 03-JUN-20 12:11 (MT) Version: FINAL REV. 4

	Sample ID Description Sampled Date Sampled Time Client ID	L2451374-1 SOIL 25-MAY-20 10:40 02904-01	L2451374-3 SOIL 25-MAY-20 11:10 02904-03	L2451374-5 SOIL 25-MAY-20 11:40 02904-05	L2451374-7 SOIL 25-MAY-20 12:00 02904-07	L2451374-9 SOIL 25-MAY-20 12:20 02904-09
Grouping	Analyte					
SOIL						
Physical Tests	Moisture (%)	13.9	14.8	17.0	11.8	10.5
	pH (1:2 soil:water) (pH)	7.27	7.73	7.12		
Metals	Aluminum (Al) (mg/kg)	15900	15400	18800		
	Antimony (Sb) (mg/kg)	0.23	0.34	0.16		
	Barium (Ba) (mg/kg)	113	116	147		
	Cadmium (Cd) (mg/kg)	0.112	0.210	0.223		
	Chromium (Cr) (mg/kg)	38.3	38.5	42.9		
	Cobalt (Co) (mg/kg)	14.4	13.0	14.8		
	Lead (Pb) (mg/kg)	8.78	23.6	14.9		
	Titanium (Ti) (mg/kg)	1360	1130	1330		
	Zinc (Zn) (mg/kg)	62.6	68.3	79.6		
Volatile Organic Compounds	VOC Sample Container	Field MeOH				
	Benzene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	n-Butylbenzene (mg/kg)					
	sec-Butylbenzene (mg/kg)					
	tert-Butylbenzene (mg/kg)					
	1,2-Dibromoethane (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	1,2-Dichloroethane (mg/kg)					
	Ethylbenzene (mg/kg)	<0.015	<0.015	<0.015	<0.015	<0.015
	Isopropylbenzene (mg/kg)					
	Methyl t-butyl ether (MTBE) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	n-Nonane (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	n-Propylbenzene (mg/kg)					
	Styrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Toluene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	1,2,4-Trimethylbenzene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	1,3,5-Trimethylbenzene (mg/kg)					
	ortho-Xylene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	meta- & para-Xylene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Xylenes (mg/kg)	<0.075	<0.075	<0.075	<0.075	<0.075
	Surrogate: 4-Bromofluorobenzene (SS) (%)	113.0	102.2	94.2	98.2	101.9
	Surrogate: 1,4-Difluorobenzene (SS) (%)	104.5	100.3	96.3	96.7	99.3
Hydrocarbons	EPH10-19 (mg/kg)	<200	<200	<200	<200	<200
	EPH19-32 (mg/kg)	<200	<200	<200	<200	<200
	LEPH (mg/kg)	<200	<200	<200	<200	<200
	HEPH (mg/kg)	<200	<200	<200	<200	<200
	F1 (C6-C10) (mg/kg)			<10		

L2451374 CONTD.... PAGE 3 of 10 03-JUN-20 12:11 (MT) Version: FINAL REV. 4

	Sample ID Description Sampled Date Sampled Time Client ID	L2451374-11 SOIL 25-MAY-20 12:40 02904-11	L2451374-13 SOIL 25-MAY-20 13:15 02903-01	L2451374-15 SOIL 25-MAY-20 13:40 02903-03	L2451374-17 SOIL 25-MAY-20 02903-05	L2451374-19 SOIL 25-MAY-20 02903-07
Grouping	Analyte					
SOIL						
Physical Tests	Moisture (%)	12.2	11.1	24.5	17.1	24.8
	pH (1:2 soil:water) (pH)			6.81	7.11	6.93
Metals	Aluminum (Al) (mg/kg)			19500	18700	18500
	Antimony (Sb) (mg/kg)			3.43	0.16	2.47
	Barium (Ba) (mg/kg)			159	136	149
	Cadmium (Cd) (mg/kg)			32.8	0.188	26.6
	Chromium (Cr) (mg/kg)			75.8	42.3	79.8
	Cobalt (Co) (mg/kg)			14.8	13.8	14.5
	Lead (Pb) (mg/kg)			11.2	14.6	11.6
	Titanium (Ti) (mg/kg)			1550	1380	1530
	Zinc (Zn) (mg/kg)			138	79.7	134
Volatile Organic Compounds	VOC Sample Container	Field MeOH	Field MeOH	Field MeOH	Field MeOH	Field MeOH
	Benzene (mg/kg)	<0.0050	<0.0050	1.65	<0.0050	3.43
	n-Butylbenzene (mg/kg)	<0.050		<69		<150
	sec-Butylbenzene (mg/kg)	<0.050		29.5		56.3
	tert-Butylbenzene (mg/kg)	<0.050		<2.5		<2.5
	1,2-Dibromoethane (mg/kg)	<0.050	<0.050	<8.5	<0.050	<13
	1,2-Dichloroethane (mg/kg)	<0.050		<0.050		<0.050
	Ethylbenzene (mg/kg)	<0.015	<0.015	57.7	<0.015	97.1
	Isopropylbenzene (mg/kg)	<0.050		29.8		50.3
	Methyl t-butyl ether (MTBE) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	n-Nonane (mg/kg)	<0.050	<0.050	194	<0.050	557
	n-Propylbenzene (mg/kg)	<0.050		75.5		128
	Styrene (mg/kg)	<0.050	<0.050	<2.5	<0.050	<2.5
	Toluene (mg/kg)	<0.050	<0.050	22.1	<0.050	40.8
	1,2,4-Trimethylbenzene (mg/kg)	<0.050	<0.050	248	<0.050	473
	1,3,5-Trimethylbenzene (mg/kg)	<0.050		70.7		137
	ortho-Xylene (mg/kg)	<0.050	<0.050	112	<0.050	187
	meta- & para-Xylene (mg/kg)	<0.050	<0.050	257	<0.050	416
	Xylenes (mg/kg)	<0.075	<0.075	369	<0.075	603
	Surrogate: 4-Bromofluorobenzene (SS) (%)	98.5	102.0	95.0	106.5	128.0
	Surrogate: 1,4-Difluorobenzene (SS) (%)	94.0	101.3	95.0	127.0	104.5
Hydrocarbons	EPH10-19 (mg/kg)	<200	<200	46000	<200	41000
	EPH19-32 (mg/kg)	<200	<200	1760	<200	1450
	LEPH (mg/kg)	<200	<200	46000	<200	41000
	HEPH (mg/kg)	<200	<200	1760	<200	1450
	F1 (C6-C10) (mg/kg)			5470	<10	9580

L2451374 CONTD.... PAGE 4 of 10 03-JUN-20 12:11 (MT) Version: FINAL REV. 4

	Sample ID Description Sampled Date Sampled Time Client ID	L2451374-1 SOIL 25-MAY-20 10:40 02904-01	L2451374-3 SOIL 25-MAY-20 11:10 02904-03	L2451374-5 SOIL 25-MAY-20 11:40 02904-05	L2451374-7 SOIL 25-MAY-20 12:00 02904-07	L2451374-9 SOIL 25-MAY-20 12:20 02904-09
Grouping	Analyte					
SOIL						
Hydrocarbons	F1-BTEX (mg/kg)			<10		
	F2 (C10-C16) (mg/kg)			<30		
	F3 (C16-C34) (mg/kg)			<50		
	F4 (C34-C50) (mg/kg)			<50		
	Volatile Hydrocarbons (VH6-10) (mg/kg)	<100	<100	<100	<100	<100
	VPH (C6-C10) (mg/kg)	<100	<100	<100	<100	<100
	Chrom. to baseline at nC50			YES		
	Surrogate: 2-Bromobenzotrifluoride (%)	92.0	92.8	93.4	89.8	84.5
	Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)			94.2		
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	113.2	100.8	95.4	90.6	98.6
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Acenaphthylene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Anthracene (mg/kg)	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
	Benz(a)anthracene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(a)pyrene (mg/kg)	<0.010	0.011	<0.010	<0.010	<0.010
	Benzo(b&j)fluoranthene (mg/kg)	0.017	0.015	<0.010	<0.010	<0.010
	Benzo(b+j+k)fluoranthene (mg/kg)	0.017	<0.015	<0.015	<0.015	<0.015
	Benzo(g,h,i)perylene (mg/kg)	0.011	0.012	<0.010	<0.010	<0.010
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Chrysene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Dibenz(a,h)anthracene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Fluoranthene (mg/kg)	0.016	0.012	<0.010	0.011	0.010
	Fluorene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Indeno(1,2,3-c,d)pyrene (mg/kg)	0.011	<0.010	<0.010	<0.010	<0.010
	1-Methylnaphthalene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	2-Methylnaphthalene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Naphthalene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Phenanthrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Pyrene (mg/kg)	0.014	0.012	<0.010	<0.010	<0.010
	Quinoline (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Surrogate: Chrysene d12 (%)	106.1	109.7	106.1	107.3	99.2
	Surrogate: Naphthalene d8 (%)	95.8	100.1	97.9	98.5	91.2
	Surrogate: Phenanthrene d10 (%)	104.3	108.6	105.4	106.9	98.4
	B(a)P Total Potency Equivalent (mg/kg)	<0.020	<0.020	<0.020	<0.020	<0.020
	IACR (CCME)	0.19	0.18	<0.15	<0.15	<0.15
Glycols	Diethylene Glycol (ma/ka)				1	

L2451374 CONTD.... PAGE 5 of 10 03-JUN-20 12:11 (MT) Version: FINAL REV. 4

	Sample ID Description Sampled Date Sampled Time Client ID	L2451374-11 SOIL 25-MAY-20 12:40 02904-11	L2451374-13 SOIL 25-MAY-20 13:15 02903-01	L2451374-15 SOIL 25-MAY-20 13:40 02903-03	L2451374-17 SOIL 25-MAY-20 02903-05	L2451374-19 SOIL 25-MAY-20 02903-07
Grouping	Analyte					
SOIL						
Hydrocarbons	F1-BTEX (mg/kg)			5020	<10	8830
	F2 (C10-C16) (mg/kg)			38800	<30	36100
	F3 (C16-C34) (mg/kg)			5360	<50	4900
	F4 (C34-C50) (mg/kg)			DLHC <250	<50	DLHC <250
	Volatile Hydrocarbons (VH6-10) (mg/kg)	<100	<100	5080	<100	8900
	VPH (C6-C10) (mg/kg)	<100	<100	4630	<100	8200
	Chrom. to baseline at nC50			YES	YES	YES
	Surrogate: 2-Bromobenzotrifluoride (%)	92.7	86.1	SMI Not Reportable	94.2	Not Reportable
	Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)			Not Reportable	95.1	Not Reportable
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	100.7	102.4	Not Reportable	103.8	Not Reportable
Polycyclic Aromatic Hvdrocarbons	Acenaphthene (mg/kg)	<0.0050	<0.0050	<4.0	<0.0050	<3.0
	Acenaphthylene (mg/kg)	<0.0050	<0.0050	DLCI	<0.0050	DLCI <1.0
	Anthracene (mg/kg)	<0.0040	<0.0040	DLCI <0.20	<0.0040	DLCI <0.20
	Benz(a)anthracene (mg/kg)	<0.010	<0.010	DLQ <0.20	0.011	DLQ <0.20
	Benzo(a)pyrene (mg/kg)	DLQ <0.020	<0.010	0.024	0.017	0.020
	Benzo(b&j)fluoranthene (mg/kg)	0.013	<0.010	DLQ <0.020	0.023	DLQ <0.030
	Benzo(b+j+k)fluoranthene (mg/kg)	<0.015	<0.015	<0.022	0.023	<0.032
	Benzo(g,h,i)perylene (mg/kg)	<0.010	<0.010	0.017	0.014	0.016
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Chrysene (mg/kg)	<0.010	<0.010	<0.020	0.014	<0.020
	Dibenz(a,h)anthracene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Fluoranthene (mg/kg)	0.018	<0.010	0.113	0.033	0.087
	Fluorene (mg/kg)	<0.010	<0.010	4.52	<0.010	4.06
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.010	<0.010	0.014	0.015	0.013
	1-Methylnaphthalene (mg/kg)	<0.010	<0.010	49.3	<0.010	42.3
	2-Methylnaphthalene (mg/kg)	<0.010	<0.010	68.9	<0.010	59.2
	Naphthalene (mg/kg)	<0.010	<0.010	<41	<0.010	<35 DLQ
	Phenanthrene (mg/kg)	<0.010	<0.010	<2.0	0.011	<2.0
	Pyrene (mg/kg)	0.015	<0.010	0.231	0.027	0.221
	Quinoline (mg/kg)	<0.050	<0.050	<4.0	<0.050	<4.0
	Surrogate: Chrysene d12 (%)	103.3	109.2	94.5	106.8	101.9
	Surrogate: Naphthalene d8 (%)	95.5	98.3	Not Reportable	95.5	Not Reportable
	Surrogate: Phenanthrene d10 (%)	103.6	109.3	121.2	105.4	109.6
	B(a)P Total Potency Equivalent (mg/kg)	<0.020	<0.020	0.040	0.025	0.036
	IACR (CCME)	0.17	<0.15	0.49	0.28	0.51
Glycols	Diethylene Glycol (mg/kg)			~10		

L2451374 CONTD.... PAGE 6 of 10 03-JUN-20 12:11 (MT) Version: FINAL REV. 4

	Sample ID Description Sampled Date Sampled Time Client ID	L2451374-1 SOIL 25-MAY-20 10:40 02904-01	L2451374-3 SOIL 25-MAY-20 11:10 02904-03	L2451374-5 SOIL 25-MAY-20 11:40 02904-05	L2451374-7 SOIL 25-MAY-20 12:00 02904-07	L2451374-9 SOIL 25-MAY-20 12:20 02904-09
Grouping	Analyte					
SOIL						
Glycols	Ethylene Glycol (mg/kg)					
	1,2-Propylene Glycol (mg/kg)					
	Triethylene Glycol (mg/kg)					
Perfluorinated Compounds	8:2 Fluorotelomer sulfonic acid(8:2 FTS) (mg/kg)			<0.00010		
	6:2 Fluorotelomer sulfonic acid(6:2 FTS) (mg/kg)			<0.00010		
	Perfluorobutane sulfonic acid (PFBS) (mg/kg) Perfluorobexane sulfonic acid (PFHxS)			<0.00010		
	(mg/kg) Perfluorooctane sulfonic acid (PFOS)			<0.00010		
	(mg/kg)			CO.000000		
	Perfluorobutanoic acid (PFBA) (mg/kg)			<0.15		
	Perfluoroheptanoic acid (PFHpA) (mg/kg)			<0.00010		
	Perfluorohexanoic acid (PFHxA) (mg/kg)			0.00010		
	Perfluorononanoic acid (PFNA) (mg/kg)			<0.00010		
	Perfluorooctanoic acid (PFOA) (mg/kg)			0.00035		
	remuoropentanoic aciu (rrrea) (mg/kg)			<0.00010		

L2451374 CONTD.... PAGE 7 of 10 03-JUN-20 12:11 (MT) Version: FINAL REV. 4

	Sample ID Description Sampled Date Sampled Time Client ID	L2451374-11 SOIL 25-MAY-20 12:40 02904-11	L2451374-13 SOIL 25-MAY-20 13:15 02903-01	L2451374-15 SOIL 25-MAY-20 13:40 02903-03	L2451374-17 SOIL 25-MAY-20 02903-05	L2451374-19 SOIL 25-MAY-20 02903-07
Grouping	Analyte					
SOIL						
Glycols	Ethylene Glycol (mg/kg)			<10		
	1,2-Propylene Glycol (mg/kg)			<10		
	Triethylene Glycol (mg/kg)			<10		
Perfluorinated Compounds	8:2 Fluorotelomer sulfonic acid(8:2 FTS) (mg/kg)			DLHC 1.04	<0.00010	1.57 DLHC
	6:2 Fluorotelomer sulfonic acid(6:2 FTS) (mg/kg)			8.70 DLHC	0.00071	10.7 DLHC
	Perfluorobutane sulfonic acid (PFBS) (mg/kg)			0.00012	<0.00010	<0.00010
	Perfluorohexane sulfonic acid (PFHxS) (mg/kg)			0.00028	<0.00010	0.00038
	(mg/kg)			0.00086	<0.00050	0.00125
	Perfluorobutanoic acid (PFBA) (mg/kg)			<0.24	<0.19	<0.13
	Perfluoroheptanoic acid (PFHpA) (mg/kg)			0.00201	<0.00010	0.00291
	Perfluorohexanoic acid (PFHxA) (mg/kg)			0.183	0.00013	0.154
	Perfluorononanoic acid (PFNA) (mg/kg)			0.00070	<0.00010	0.00108
	Perfluorooctanoic acid (PFOA) (mg/kg)			0.0154	0.00032	0.0205

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Duplicate	Zinc (Zn)	DUP-H	L2451374-1, -15, -17, -19, -3, -5
Laboratory Control Sample	Perfluorobutanoic acid (PFBA)	LCS-H	L2451374-15, -17, -19, -5
Method Blank	Perfluorobutanoic acid (PFBA)	MB-LOR	L2451374-15, -17, -19, -5
Matrix Spike	Perfluorobutanoic acid (PFBA)	MS-B	L2451374-15, -17, -19, -5

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLB	Detection Limit Raised. Analyte detected at comparable level in Method Blank.
DLCI	Detection Limit Raised: Chromatographic Interference due to co-elution.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLQ	Detection Limit raised due to co-eluting interference. GCMS qualifier ion ratio did not meet acceptance criteria.
DUP-H	Duplicate results outside ALS DQO, due to sample heterogeneity.
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
SMI	Surrogate recovery could not be measured due to sample matrix interference.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**		
EPH-TUMB-FID-VA	Soil	EPH in Solids by Tumbler and GCFID	BC MOE EPH GCFID		
Analysis is in accordance of samples are extracted with chromatography with flame equivalent to Light and Heat	with BC MOE a 1:1 mixture ionization de avy Extractab	Lab Manual method "Extractable Petroleum Hydrocarb e of hexane and acetone using a rotary extraction techn tection (GC-FID). EPH results include Polycyclic Arom le Petroleum Hydrocarbons (LEPH/HEPH).	ons in Solids by GC/FID", v2.1, July 1999. Soil ique modified from EPA 3570 prior to gas natic Hydrocarbons (PAH) and are therefore not		
F1-BTX-CALC-VA	Soil	F1-Total BTX	CCME CWS PHC TIER 1 (2001)		
This analysis is carried out in accordance with the "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil - Tier 1 Method, Canadian Council of Ministers of the Environment, December 2000." For F1 (C6-C10) and F1-BTEX, a subsample of the sediment/soil is extracted with methanol and analysed by purge & trap GC/FID. The F1-BTEX result is then calculated as follows:					
F1-BTEX: F1 (C6-C10) mir	nus benzene,	toluene, ethylbenzene and xylenes (BTEX).			
F1-HSFID-VA	Soil	CCME F1 by headspace GCMS	CCME CWS PHC (Pub# 1310)		
The soil methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. The F1 fraction concentration is measured using flame ionization detection.					
F2F4-TUMB-H/A-FID-VA	Soil	CWS F2-F4 Hydrocarbons by Tumbler GCFID	CCME PETROLEUM HYDROCARBONS		
This analysis is carried out in accordance with the "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil - Tier 1 Method, Canadian Council of Ministers of the Environment, December 2000." For C10 to C50 hydrocarbons (F2, F3, F4) and gravimetric heavy hydrocarbons (F4G-sg), a subsample of the sediment/soil is extracted with 1:1 hexane:acetone using a rotary extractor. The extract undergoes a silica-gel clean-up to remove polar compounds. F2, F3 & F4 are analyzed by on-column GC/FID, and F4G-sg is analyzed gravimetrically.					
Notes: 1. F2 (C10-C16): Sum of a 2. F3 (C16-C34): Sum of a 3. F4 (C34-C50): Sum of a 4. F4G: Gravimetric Heavy 5. F4G-sg: Gravimetric He 6. Where F4 (C34-C50) an CCME standard for F4. 7. The gravimetric heavy h 8. This method is validated 9. Data from analysis of qu 10. Reported results are ex-	II hydrocarbor II hydrocarbor Hydrocarbor avy Hydrocarl d F4G-sg res ydrocarbon re for use. ality control s cpressed as n	ns that elute between nC10 and nC16. Ins that elute between nC16 and nC34. Ins that elute between nC34 and nC50. Is poons (F4G) after silica gel treatment. Its are reported for a sample, the larger of the reported esults (F4G-sg), cannot be added to the C6 to C50 hydr amples is available upon request. hilligrams per dry kilogram.	d values is used for comparison against the relevant rocarbon results.		
FUELS-HSMS-VA	Soil	VOCs in soil by Headspace GCMS	EPA 5035A/5021A/8260C		
The soil methanol extract i gas chromatograph. Targe	s added to wa	ater and reagents, then heated in a sealed vial to equilib concentrations are measured using mass spectrometry	prium. The headspace from the vial is transferred into a detection.		
GLY-EXT-FID-VA	Soil	Glycols in Soil by Wrist Shaker GCFID	SW-846, METHOD 8015B, EPA		

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 8015B, published by the United States Environmental Protection Agency (EPA). The procedure involves extraction of a subsample of the sediment/soil with deionized water, followed by treatment of the extract with a strong base (NaOH) and benzoyl chloride to form the corresponding benzoate esters. The benzoate esters

Reference Information

are then extracted with iso-octane and the extract is analyzed by capillary column gas chromatography with flame ionization detection (FID).

LEPHs and HEPHs LEPH/HEPH-CALC-VA Soil

LEPHs and HEPHs are measures of Light and Heavy Extractable Petroleum Hydrocarbons in soil. Results are calculated by subtraction of applicable PAH concentrations from EPH10-19 and EPH19-32, as per the BC Lab Manual LEPH/HEPH calculation procedure.

LEPHs = EPH10-19 minus Naphthalene and Phenanthrene.

HEPHs = EPH19-32 minus Benz(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenz(a,h)anthracene, indeno(1,2,3c,d)pyrene, and Pyrene.

MET-200.2-CCMS-VA Soil Metals in Soil by CRC ICPMS

Soil/sediment is dried, disaggregated, and sieved (2 mm). Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS.

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including AI, Ba, Be, Cr, S, Sr, Ti, TI, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

MOISTURE-VA Soil Moisture content

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of two hours.

PAH-TMB-H/A-MS-VA Soil PAH - Rotary Extraction (Hexane/Acetone)

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846. Methods 3570 & 8270, published by the United States Environmental Protection Agency (EPA). The procedure uses a mechanical shaking technique to extract a subsample of the sediment/soil with a 1:1 mixture of hexane and acetone. The extract is then solvent exchanged to toluene. The final extract is analysed by capillary column gas chromatography with mass spectrometric detection (GC/MS). Surrogate recoveries may not be reported in cases where interferences from the sample matrix prevent accurate quantitation. Because the two isomers cannot be readily chromatographically separated, benzo(j)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

Benzo(a)pyrene Total Potency Equivalents [B(a)P TPE] represents the sum of estimated cancer potency relative to B(a)P for all potentially carcinogenic unsubstituted PAHs, and is calculated as per the CCME PAH Soil Quality Guidelines reference document (2010).

Perfluorinated Compounds by LC/MS-MS PFAS-LL-EX-LCMS-WT Soil

Soil sample was extracted with alkaline organic solvent. Dilute organic extract with water (10% organic/water) then passed through SPE. Final extract of Perfluorinated compounds are analyzed by LC/MS-MS.

PH-1:2-VA Soil pH in Soil (1:2 Soil:Water Extraction)

This analysis is carried out in accordance with procedures described in "pH, Electrometric in Soil and Sediment - Prescriptive Method", Rev. 2005, Section B Physical, Inorganic and Misc. Constituents, BC Environmental Laboratory Manual. The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

VH-HSFID-VA Soil

This analysis involves the extraction of a subsample of the sediment/soil with methanol. Aliquots of the methanol extract are then added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is analyzed for Volatile Hydrocarbons (VH) by capillary column gas chromatography with flame-ionization detection (GC/FID). The methanol extraction and VH analysis are carried out in accordance with the British Columbia Ministry of Environment, Lands and Parks (BCMELP) Analytical Method for Contaminated Sites "Volatile Hydrocarbons in Solids by GC/FID" (Version 2.1 July 1999).

VH-SURR-FID-VA	Soil	VH Surrogates for Soils	
----------------	------	-------------------------	--

VOC-M-HSMS-VA Soil misc VOCs in soil by Headspace GCMS BC Env. Lab Manual (VH in Solids) EPA 5035A/5021A/8260C

BC Env. Lab Manual (VH in Solids)

The soil methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection.

VOC-M2-HSMS-VA Soil Misc VOCs in soil by Headspace GCMS EPA 5035A/5021A/8260C

VH in soil by Headspace GCFID

The soil methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection.

VOC7-L-HSMS-VA Soil VOCs in soil by Headspace GCMS EPA 5035A/5021A/8260C

The soil methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection.

VOC7/VOC-SURR-MS-VA	Soil	VOC7 and/or VOC Surrogates for Soils	EPA 5035A/5021A/8260C
VPH-CALC-VA	Soil	VPH is VH minus select aromatics	BC MOE VPH

VPHs measures Volatile Petroleum Hydrocarbons in soil. Results are calculated by subtraction of specific Monocyclic Aromatic Hydrocarbons from VH6-10, as per the BC Lab Manual VPH calculation procedure.

VPHs = VH6-10 minus Benzene, Toluene, Ethylbenzene, Xylenes, and Styrene

BC MOE LEPH/HEPH

EPA 200.2/6020A (mod)

CCME PHC in Soil - Tier 1 (mod)

EPA 3570/8270

MOFCC F3506

BC WLAP METHOD: PH. ELECTROMETRIC, SOIL

Reference Information

XYLENES-CALC-VA

Sum of Xylene Isomer Concentrations

EPA 8260B & 524.2

Calculation of Total Xylenes

Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

02903

02904

Soil

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Client: COLDER ASSOCIATES LTD. 2002 Windu Way Vancouver EV MM CC4 Contact: Alison Variab Test Marix Reference Result Qualifier Units RPD Limit Analyzed EPH-TUMB-FID-VA Soil Batch R5098150 L245137-15 Suit Suit EPH1019 4000 1226137-15 mg/kg 2,9 40 27.MAY-20 WG3329533-3 DUP L245137-15 mg/kg 8,0 40 27.MAY-20 WG3329532-1 IRM ALS PHC RM3 103.9 % 70-130 27.MAY-20 WG3329532-1 IRM ALS PHC RM3 103.5 % 70-130 27.MAY-20 WG3329532-1 MB - 70-130 27.MAY-20 90.0 % 70-130 27.MAY-20 EPH10-19 - 100.2 % 0 200 27.MAY-20 EPH10-19 - 90.0 % 0 200 27.MAY-20 EPH10-19 - 90.0 m				Workorder: I	_2451374	1	Report Date:	03-JUN-20	Pa	age 1 of 11
Contact: Native Neede Reference Routi Qualifier Units RPD Limit Analyzed Test Matrix Reference Rosuit Qualifier Units RPD Limit Analyzed Batch R5098150 K5098150 K5098151 K5098151 <td>Client:</td> <td>GOLDER 200-2920 Vancouve</td> <td>ASSOCIATES L Virtual Way er BC V5M 0C4</td> <td>TD.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Client:	GOLDER 200-2920 Vancouve	ASSOCIATES L Virtual Way er BC V5M 0C4	TD.						
Test Matrix Reference Result Qualitier Units RPD Linit Analyzed EPH-TUMB-FID-VA Soil	Contact:	AllSON VE								<u> </u>
EPH-TUMB-FIC-V Soli Back R50=0 WG329933-3 DVP L2451374-15 Number of the second s	Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Batch R5098150 WG3329853-3 DUP L281374-15 EPH10-19 1600 42500 mg/kg 7.9 40 27-MAY-20 EPH10-19 1760 1620 mg/kg 8.0 40 27-MAY-20 WG3329853-4 IRM ALS PHC RM3 mg/kg 7.9 40 27-MAY-20 FPH10-19 103.9 % 70-130 27-MAY-20 27-MAY-20 FPH10-19 104.0 % 70-130 27-MAY-20 FPH10-19 100.2 % 70-130 27-MAY-20 FPH10-19 2 400 mg/kg 200 27-MAY-20 FPH10-19 2 400 mg/kg 200 27-MAY-20 FPH10-19 2 400 mg/kg 200 27-MAY-20 FPH10-19 2 400 27-MAY-20 40 27-MAY-20 FPH10-52 S0H 10400 mg/kg 7.9 40 29-MAY-20 FPH10-56 S0H 10400	EPH-TUMB-FID-	VA	Soil							
WG332953-3 DUP L2451374-15 EPH10-19 4000 42500 mg/kg 7.9 4.0 27-MAY-20 WG3329533-4 IRM ALS PHC RM3 70-130 27-MAY-20 WG3329533-4 IRM ALS PHC RM3 70-130 27-MAY-20 WG3329533-2 LCS 100.2 % 70-130 27-MAY-20 WG3329533-3 LCS 70-130 27-MAY-20 200 27-MAY-20 WG3329533-1 MB 70-130 27-MAY-20 27-MAY-20 WG3329533-1 MB 70-130 27-MAY-20 200 27-MAY-20 WG3329533-1 MB 70-130 27-MAY-20 200 27-MAY-20 Surrogate: 2-Bromobenzotrifluoride 99.0 % 60-140 27-MAY-20 Surrogate: 2-Bromobenzotrifluoride 99.0 % 60-140 29-MAY-20 WG3329822-1 MB 10400 mg/kg 7.9 40 29-MAY-20 F2/C100-C16) 104.0 % 70-130 28-MAY-20 20 <td>Batch</td> <td>R5098150</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Batch	R5098150								
EPH19-32 1760 1620 mg/kg 8.0 40 27-MAY-20 WG3329533-4 IRM ALS PHC RM3 70-130 27-MAY-20 EPH19-32 104.0 % 70-130 27-MAY-20 WG3329533-2 LCS 70-130 27-MAY-20 EPH19-32 103.5 % 70-130 27-MAY-20 WG3329533-1 MB 200 27-MAY-20 200 27-MAY-20 WG3329533-1 MB -200 mg/kg 200 27-MAY-20 Betch R5071997 200 27-MAY-20 200 27-MAY-20 WG332952.2 DUP 4200 mg/kg 200 27-MAY-20 Batch R5071997 200 7-MAY-20 20 27-MAY-20 WG332982.2 DUP L2451374-19 mg/kg 7.9 40 29-MAY-20 WG332982.2 LCS 104.0 mg/kg 10 29-MAY-20 WG332982.2 LCS 104.0 mg/kg 2.2 40 29-MAY-20 WG332983.3 DUP L2451374-15 10 29-MAY-20	WG3329533-3 EPH10-19	B DUP		L2451374-15 46000	42500		mg/kg	7.9	40	27-MAY-20
M0332953-1 IRM ALS PHC RM3 % 70-130 27-MAY-20 EPH10-19 104.0 % 70-130 27-MAY-20 EPH10-19 100.0 % 70-130 27-MAY-20 EPH10-19 100.2 % 70-130 27-MAY-20 EPH10-19 200 % 70-130 27-MAY-20 EPH10-19 -200 mg/kg 200 27-MAY-20 Surogate: 2-Bromobenzotrifluoride 9.0 % 60-140 27-MAY-20 Batch R507197 2451374-19 mg/kg 7.9 40 29-MAY-20 F1 (F6 C10) 10400 mg/kg 7.9 40 29-MAY-20 WG3329822-1 MB -10 mg/kg 7.9 40 29-MAY-20 F2F-TUME-H/A-FID-VA Soiit	EPH19-32			1760	1620		mg/kg	8.0	40	27-MAY-20
EPH19-32 104.0 % 70.130 27.MAY-20 WG332953-2 LCS 70.130 27.MAY-20 EPH10-19 100.2 % 70.130 27.MAY-20 WG3329533-1 MB 70.130 27.MAY-20 WG3329533-1 MB 70.130 27.MAY-20 WG3329533-1 MB 70.130 27.MAY-20 EPH10-19 -200 mg/kg 200 27.MAY-20 EPH19-32 -200 mg/kg 200 27.MAY-20 EPH19-32 -200 mg/kg 200 27.MAY-20 EPH19-32 Suirogate: 2-Bromobenzotrifluoride 90.0 % 60.140 27.MAY-20 Batch R5071997 WG3329822-1 Soil 7.9 40 29.MAY-20 WG3329822-1 MB -104.0 % 7.9 40 29.MAY-20 WG33298333 DUP L2451374-19 9 96.0 104.0 % 7.9 40 28.MAY-20 F2/C4-TUMB-H/JA-FID-VA Soil	WG3329533- 4 EPH10-19	IRM		ALS PHC RM3	103.9		%		70-130	27-MAY-20
WG3329533-2 LCS Total Zt.MAV-20 EPH10-19 100.2 % 70-130 27.MAV-20 EPH19-32 103.5 % 70-130 27.MAV-20 WG3329533-1 MB - 200 mg/kg 200 27.MAY-20 EPH10-19 -200 mg/kg 200 27.MAY-20 27.MAY-20 EPH19-32 -200 mg/kg 200 27.MAY-20 Surrogate: 2-Bromobenzotrifluoride 99.0 % 60-140 27.MAY-20 Batch R5071997 L2451374-19 mg/kg 200 29.MAY-20 WG3329822-2 LCS 104.0 % 70-130 28.MAY-20 WG3329822-2 LCS 104.0 % 70-130 28.MAY-20 WG3329822-1 MB -10 mg/kg 10 28.MAY-20 F24-TUMB-H/A-FID-VA Soil -10 mg/kg 3.3 40 27.MAY-20 F3 (C16-C34) 5360 5190 mg/kg 3.3 40 27.M	EPH19-32				104.0		%		70-130	27-MAY-20
EPH10-19 100.2 % 70-130 27-MAY-20 EPH19-32 103.5 % 70-130 27-MAY-20 WG332953-1 MB	WG3329533-2									
EPH19-32 103.5 % 70.130 27.MAY-20 Berth 10-19 -200 mg/kg 200 27.MAY-20 EPH19-32 -200 mg/kg 200 27.MAY-20 Surragate: 2-Bromobenzotrifluoride 99.0 % 60.140 27.MAY-20 F1-HSFID-VA Soil 50 27.MAY-20 60.140 27.MAY-20 F1 (G6-C10) Soil 98.0 % 60.140 27.MAY-20 WG3329822-3 DUP L2451374-19 g580 10400 mg/kg 7.9 40 29.MAY-20 WG3329822-3 DUP L2451374-19 g580 10400 % 70.130 28.MAY-20 WG3329822-1 MB . 104.0 % 70.130 28.MAY-20 WG3329822-1 MB . . 70.130 28.MAY-20 F1 (G6-C10) . 104.0 % 70.130 27.MAY-20 F2 (G10-C16) 70.130 27.MAY-20 F3 (C16-C34) <td>EPH10-19</td> <td></td> <td></td> <td></td> <td>100.2</td> <td></td> <td>%</td> <td></td> <td>70-130</td> <td>27-MAY-20</td>	EPH10-19				100.2		%		70-130	27-MAY-20
WG332953-1 MB	EPH19-32				103.5		%		70-130	27-MAY-20
EPH19-32 -200 mg/kg 200 27-MAY-20 Surrogate: 2-Bromobenzotrifluoride 90.0 % 60-14.0 27-MAY-20 F1-HSFID-VA Soil Batch R5071997 g580 10400 mg/kg 7.9 40 29-MAY-20 WG3329822-3 DUP 12451374-19 g580 10400 mg/kg 7.9 40 29-MAY-20 WG3329822-2 LCS 104.0 % 70-130 28-MAY-20 F1 (C6-C10) 104.0 % 70-130 28-MAY-20 WG3329822-2 LCS 104.0 % 70-130 28-MAY-20 WG3329822-1 MB - 104.0 % 70-130 28-MAY-20 WG3329833-3 DUP - 104.0 mg/kg 10 28-MAY-20 F2(C10-C16) 38800 38700 mg/kg 0.2 40 27-MAY-20 F3 (C16-C34) 38800 38700 mg/kg 3.3 40 27-MAY-20 F4 (C34-C50) 250 c50	WG3329533- 1 EPH10-19	MB			<200		mg/kg		200	27-MAY-20
Surrogate: 2-Bromobenzottifluoride 99.0 % 60-140 27 -MAY-20 F1-HSFID-VA Soil Z451374-19 9580 10400 mg/kg 7.9 40 29-MAY-20 WG3329822-3 DUP Z451374-19 9580 10400 mg/kg 7.9 40 29-MAY-20 WG3329822-1 LCS 104.0 % 7.9 40 29-MAY-20 WG3329822-1 LCS 104.0 % 7.0-130 28-MAY-20 WG3329822-1 LCS 104.0 % 70-130 28-MAY-20 WG3329822-1 LCS 104.0 % 70-130 28-MAY-20 WG3329833-3 DUP L2451374-15 70-130 28-MAY-20 F2 (C10-C16) Soil 38800 38700 mg/kg 0.2 40 27-MAY-20 F3 (C16-C34) S3800 38700 mg/kg 0.2 40 27-MAY-20 F4 (C34-C50) 205 205 RD-N mg/kg 0.3 40 27-MAY-20 F3 (C16-C34) ALS PHC RM 98.8 % 70-130 27-MAY-2	EPH19-32				<200		mg/kg		200	27-MAY-20
F1-HSFID-VA Soil Batch R5071997 P1 (G6-C10) L2451374-19 9580 ng/kg 7.9 40 29-MAY-20 Batch R5083600 WG3329822-2 LCS 104.0 %C 7.9 40 29-MAY-20 Batch R5083600 WG3329822-2 LCS 104.0 %C 7.9 40 29-MAY-20 WG3329822-1 MB F1 (G6-C10) 104.0 %C 7.0130 28-MAY-20 WG3329822-1 MB F1 (G6-C10) Soil 20-MAY-20 %G 7.0130 28-MAY-20 WG3329822-1 MB F1 (G6-C10) Soil 20-MAY-20 %G 7.0130 28-MAY-20 WG3329823-3 DUP L2451374-15 (G16-C34) Soil 90-MA mg/kg 3.3 40 27-MAY-20 F2 (C10-C16) L2451374-15 (G16-C34) Soil 98.8 %A 70-130 27-MAY-20 F3 (C16-C34) ALS PHC RM3 (G16-C34) 98.8 %A 70-130 27-MAY-20 F3 (C16-C34) E3 (G16-C34) 96.8 %A 70-130	Surrogate: 2-	Bromobenz	zotrifluoride		99.0		%		60-140	27-MAY-20
Batch R5071997 WG3329822-3 DUP F1 (C6-C10) 9580 WG3329822-2 LCS F1 (C6-C10) 104.0 WG3329822-2 LCS F1 (C6-C10) 104.0 WG3329822-2 LCS F1 (C6-C10) 104.0 WG3329822-1 MB F1 (C6-C10) <10	F1-HSFID-VA		Soil							
WG3329822-3 DUP F1 (C6-C10) L2451374-19 9580 Indextore Indextore<	Batch	R5071997								
F1 (C6-C10) 9580 10400 mg/kg 7.9 40 29-MAY-20 Batch R5083660 WG3329822-2 LCS 104.0 % 70-130 28-MAY-20 WG3329822-1 MB 104.0 % 70-130 28-MAY-20 WG3329822-1 MB -10 mg/kg 10 28-MAY-20 WG3329822-1 MB -10 10 28-MAY-20 WG3329822-1 MB -10 28-MAY-20 F1 (C6-C10) -10 -10 28-MAY-20 WG3329833-3 DUP -10 28-MAY-20 F2 (C10-C16) Soil	WG3329822-3	B DUP		L2451374-19						
Batch R5083660 WG3329822-2 LCS F1 (C6-C10) 104.0 % 70-130 28-MAY-20 WG3329822-1 MB < 10 mg/kg 10 $28-MAY-20$ WG3329822-1 MB < 10 mg/kg 10 $28-MAY-20$ F2 (C10-C10) Soil < 10 $28-MAY-20$ $28-MAY-20$ F2 (C10-C16) Soil < 10 $28-MAY-20$ $28-MAY-20$ F2 (C10-C16) Soil < 10 $28-MAY-20$ $28-MAY-20$ F2 (C10-C16) Soil < 10 $28-MAY-20$ $28-MAY-20$ F3 (C16-C34) Soil < 10 8800 38700 mg/kg 0.2 40 $27-MAY-20$ F4 (C34-C50) 23800 38700 mg/kg 0.2 40 $27-MAY-20$ F2 (C10-C16) 8880 3870 mg/kg 0.2 40 $27-MAY-20$ F2 (C10-C16) 68.8 $\%$ $70-130$ $27-MAY-20$ F2 (C10-C1	F1 (C6-C10)			9580	10400		mg/kg	7.9	40	29-MAY-20
Batch R5083660 WG3329822-2 LCS F1 (G6-C10) 104.0 % 70-130 28-MAY-20 WG3329822-1 MB . .10 28-MAY-20 WG3329822-1 MB .10 28-MAY-20 F1 (G6-C10) .10 28-MAY-20 F2F4-TUMB-H/JA-FID-VA Soil										
WG3329822-2 LCS F1 (C6-C10) 104.0 % 70-130 28-MAY-20 WG3329822-1 MB <10	Batch	R5083660								
Index.0 % 70-130 28-MAY-20 WG3329822-1 MB	WG3329822-2	2 LCS			101.0		0/		70.400	
WG3229622-1 MB <10 mg/kg 10 28-MAY-20 F2 f-4-TUMB-H/A-FID-VA Soil Soil Soil Soil Soil Soil Batch R5099551 L2451374-15 Soil Soil Soil Soil Soil Soil F2 (C10-C16) 38800 38700 mg/kg 0.2 40 27-MAY-20 F3 (C16-C34) 5360 5190 mg/kg 3.3 40 27-MAY-20 F4 (C34-C50) <250 <250 RPD-NA mg/kg N/A 40 27-MAY-20 F2 (C10-C16) 88.8 % 70-130 27-MAY-20 F3 (C16-C34) 94.6 % 70-130 27-MAY-20 F3 (C16-C34) 94.6 % 70-130 27-MAY-20 F4 (C34-C50) 91.6 % 70-130 27-MAY-20 F4 (C34-C50) 91.6 % 70-130 27-MAY-20 F3 (C16-C34) 91.6 % 70-130 27-MAY-20 F5 (C10-C16) 106.1 % 70-130 27-MAY-20 F3 (C16-C34)		MD			104.0		70		70-130	28-MAY-20
F2F4-TUMB-H/A-FID-VA Soil Batch R5099551 WG3329533-3 DUP L2451374-15 F2 (C10-C16) 38800 38700 mg/kg 0.2 40 27-MAY-20 F3 (C16-C34) 5360 5190 mg/kg 3.3 40 27-MAY-20 F4 (C34-C50) <250	F1 (C6-C10)	NIB			<10		mg/kg		10	28-MAY-20
Batch R50999551 WG3329533-3 DUP L2451374-15 F2 (C10-C16) 38800 38700 mg/kg 0.2 40 27-MAY-20 F3 (C16-C34) 5360 5190 mg/kg 3.3 40 27-MAY-20 F4 (C34-C50) <250	F2F4-TUMB-H/A		Soil							
WG3329533-3 DUP L2451374-15 F2 (C10-C16) 38800 38700 mg/kg 0.2 40 27-MAY-20 F3 (C16-C34) 5360 5190 mg/kg 3.3 40 27-MAY-20 F4 (C34-C50) <250	Batch	R5099551	0011							
F2 (C10-C16) 38800 38700 mg/kg 0.2 40 27-MAY-20 F3 (C16-C34) 5360 5190 mg/kg 3.3 40 27-MAY-20 F4 (C34-C50) <250	WG3329533-3	B DUP		L2451374-15						
F3 (C16-C34) 5360 5190 mg/kg 3.3 40 27-MAY-20 F4 (C34-C50) <250 RPD-NA mg/kg N/A 40 27-MAY-20 WG3329533-4 IRM ALS PHC RM3 PHC RM3 F3	F2 (C10-C16)		38800	38700		mg/kg	0.2	40	27-MAY-20
F4 (C34-C50) <250 <250 RPD-NA mg/kg N/A 40 27-MAY-20 WG3329533-4 IRM ALS PHC RM3 F2 (C10-C16) 98.8 % 70-130 27-MAY-20 F3 (C16-C34) 94.6 % 70-130 27-MAY-20 F4 (C34-C50) 97.1 % 70-130 27-MAY-20 WG3329533-2 LCS F2 (C10-C16) 106.1 % 70-130 27-MAY-20 F3 (C16-C34) 100.2 % 70-130 27-MAY-20	F3 (C16-C34)		5360	5190		mg/kg	3.3	40	27-MAY-20
WG3329533-4 IRM ALS PHC RM3 F2 (C10-C16) 98.8 % 70-130 27-MAY-20 F3 (C16-C34) 94.6 % 70-130 27-MAY-20 F4 (C34-C50) 97.1 % 70-130 27-MAY-20 WG3329533-2 LCS 70-130 27-MAY-20 F2 (C10-C16) 106.1 % 70-130 27-MAY-20 F3 (C16-C34) 100.2 % 70-130 27-MAY-20	F4 (C34-C50)		<250	<250	RPD-N	A mg/kg	N/A	40	27-MAY-20
F3 (C16-C34)94.6%70-13027-MAY-20F4 (C34-C50)97.1%70-13027-MAY-20WG3329533-2LCSF2 (C10-C16)106.1%70-13027-MAY-20F3 (C16-C34)100.2%70-13027-MAY-20	WG3329533-4 F2 (C10-C16	IRM		ALS PHC RM3	98.8		%		70-130	27-MAY-20
F4 (C34-C50) 97.1 % 70-130 27-MAY-20 WG3329533-2 LCS 106.1 % 70-130 27-MAY-20 F3 (C16-C34) 100.2 % 70-130 27-MAY-20	F3 (C16-C34)			94.6		%		70-130	27-MAY-20
WG3329533-2LCSF2 (C10-C16)106.1F3 (C16-C34)100.2%70-13027-MAY-20	F4 (C34-C50)			97.1		%		70-130	27-MAY-20
F3 (C16-C34) 100.2 % 70-130 27-MAY-20	WG3329533-2 F2 (C10-C16				106.1		%		70-130	27 - M∆⊻-20
10-150 Z1-WA1-20	F3 (C16-C34	,)			100.2		%		70-130	27-MAV-20
F4 (C34-C50) 99.8 % 70-130 27-MAV-20	F4 (C34-C50)			99.8		%		70-130	27-MAY-20

		Workorder:	L245137	74 Re	eport Date: 0	3-JUN-20	Pa	ge 2 of 11
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F2F4-TUMB-H/A-FID-VA	Soil							
Batch R5099551								
WG3329533-1 MB								
F2 (C10-C16)			<30		mg/kg		30	27-MAY-20
F3 (C16-C34)			<50		mg/kg		50	27-MAY-20
F4 (C34-C50)			<50		mg/kg		50	27-MAY-20
Surrogate: 2-Bromobenzotrifluoride, F2-		2-F4	93.3		%		60-140	27-MAY-20
FUELS-HSMS-VA	Soil							
Batch R5081765								
WG3329822-3 DUP Isopropylbenzene		L2451374-19 50.3	54.0		mg/kg	7.2	50	28-MAY-20
1,2,4-Trimethylbenzene	9	473	474		mg/kg	0.3	50	28-MAY-20
1,3,5-Trimethylbenzene)	137	132		mg/kg	3.1	50	28-MAY-20
1,2-Dibromoethane		<13	<13	RPD-NA	mg/kg	N/A	50	28-MAY-20
1,2-Dichloroethane		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	28-MAY-20
n-Propylbenzene		128	137		mg/kg	7.1	50	28-MAY-20
WG3329822-2 LCS								
Isopropylbenzene			114.8		%		70-130	27-MAY-20
1,2,4-Trimethylbenzene	9		116.4		%		70-130	27-MAY-20
1,3,5-Trimethylbenzene	9		118.4		%		70-130	27-MAY-20
1,2-Dibromoethane			91.9		%		70-130	27-MAY-20
1,2-Dichloroethane			88.7		%		70-130	27-MAY-20
n-Propylbenzene			115.9		%		70-130	27-MAY-20
WG3329822-1 MB								
Isopropylbenzene			<0.050		mg/kg		0.05	27-MAY-20
1,2,4-Trimethylbenzene)		<0.050		mg/kg		0.05	27-MAY-20
1,3,5-Trimethylbenzene	9		<0.050		mg/kg		0.05	27-MAY-20
1,2-Dibromoethane			<0.050		mg/kg		0.05	27-MAY-20
1,2-Dichloroethane			<0.050		mg/kg		0.05	27-MAY-20
n-Propylbenzene			<0.050		mg/kg		0.05	27-MAY-20
GLY-EXT-FID-VA	Soil							
Batch R5102449								
WG3332028-3 DUP		L2451374-15	-10		ma/ka	N1/A	10	04 MAY 00
Fthylong Cluscel		<10	<10		mg/kg	N/A	40	31-IVIAY-20
		<10	<10	RPD-NA	mg/kg	N/A	40	31-MAY-20
		<10	<10	RPD-NA	mg/кg	N/A	40	31-MAY-20
i rietnyiene Giycol		<10	<10	RPD-NA	mg/ĸg	N/A	40	31-MAY-20

WG3332028-2 LCS

		Workorder	r: L245137	74	Report Date: 0	3-JUN-20	Pa	ge 3 of 11
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
GLY-EXT-FID-VA	Soil							
Batch R510244	9							
WG3332028-2 LCS								
1,2-Propylene Glycol			103.6		%		70-130	31-MAY-20
Ethylene Glycol			99.3		%		70-130	31-MAY-20
Diethylene Glycol			101.5		%		70-130	31-MAY-20
Triethylene Glycol			103.0		%		70-130	31-MAY-20
WG3332028-1 MB 1,2-Propylene Glycol			<10		mg/kg		10	31-MAY-20
Ethylene Glycol			<10		mg/kg		10	31-MAY-20
Diethylene Glycol			<10		mg/kg		10	31-MAY-20
Triethylene Glycol			<10		mg/kg		10	31-MAY-20
MET-200.2-CCMS-VA	Soil							
Batch R509995	5							
WG3329538-4 CRN	1	VA-CANME	T-TILL2					
Aluminum (Al)			92.6		%		70-130	27-MAY-20
Antimony (Sb)			93.4		%		70-130	27-MAY-20
Barium (Ba)			98.5		%		70-130	27-MAY-20
Cadmium (Cd)			103.4		%		70-130	27-MAY-20
Chromium (Cr)			93.6		%		70-130	27-MAY-20
Cobalt (Co)			94.7		%		70-130	27-MAY-20
Lead (Pb)			97.5		%		70-130	27-MAY-20
Titanium (Ti)			91.3		%		70-130	27-MAY-20
Zinc (Zn)			94.0		%		70-130	27-MAY-20
WG3329538-2 DUP		L2451374-1	5					
Aluminum (Al)		19500	20100		mg/kg	3.0	40	27-MAY-20
Antimony (Sb)		3.43	3.28		mg/kg	4.6	30	27-MAY-20
Barium (Ba)		159	161		mg/kg	1.1	40	27-MAY-20
Cadmium (Cd)		32.8	28.2		mg/kg	15	30	27-MAY-20
Chromium (Cr)		75.8	79.8		mg/kg	5.1	30	27-MAY-20
Cobalt (Co)		14.8	14.8		mg/kg	0.5	30	27-MAY-20
Lead (Pb)		11.2	11.2		mg/kg	0.0	40	27-MAY-20
Titanium (Ti)		1550	1540		mg/kg	0.7	40	27-MAY-20
Zinc (Zn)		138	220	DUP-	H mg/kg	46	30	27-MAY-20
WG3329538-3 LCS Aluminum (Al)			94.8		%		80-120	27-MAY-20
Antimony (Sb)			99.2		%		80-120	27-MAY-20
Barium (Ba)			96.9		%		80-120	27-MAY-20

		Workorder:	L245137	'4	Report Date: 0	3-JUN-20	Pa	ige 4 of 11
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-VA	Soil							
Batch R509995	55							
WG3329538-3 LCS	;							
Cadmium (Cd)			99.0		%		80-120	27-MAY-20
Chromium (Cr)			94.7		%		80-120	27-MAY-20
Cobalt (Co)			94.3		%		80-120	27-MAY-20
Lead (Pb)			97.8		%		80-120	27-MAY-20
Titanium (Ti)			92.6		%		80-120	27-MAY-20
Zinc (Zn)			94.9		%		80-120	27-MAY-20
WG3329538-1 MB Aluminum (Al)			<50		ma/ka		50	27-MAV-20
Antimony (Sb)			<0.10		ma/ka		0.1	27-MAV-20
Barium (Ba)			<0.10		mg/kg		0.1	27-MAY 20
Cadmium (Cd)			<0.00		mg/kg		0.02	27 MAX 20
Chromium (Cr)			<0.50		mg/kg		0.02	27 MAX 20
Cobalt (Co)			<0.00		ma/ka		0.0	27-MAV-20
Lead (Pb)			<0.50		mg/kg		0.1	27-MAV-20
Titanium (Ti)			<1.0		mg/kg		1	27-MAV-20
$Z_{inc}(Z_n)$			<2.0		mg/kg		2	27 MAX 20
	Soil		12.0				2	27-101/11-20
Batch R509897	2							
WG3329540-3 DUF	2	L2451374-7						
Moisture		11.8	11.5		%	1.9	20	26-MAY-20
WG3329540-2 LCS Moisture	5		100.8		%		90-110	26-MAY-20
WG3329540-1 MB								
Moisture			<0.25		%		0.25	26-MAY-20
PAH-TMB-H/A-MS-VA	Soil							
Batch R509741	6							
WG3329533-3 DUF)	L2451374-15						
Acenaphthene		<4.0	<3.0	RPD-	NA mg/kg	N/A	50	28-MAY-20
Acenaphthylene		<2.0	<2.0	RPD-	NA mg/kg	N/A	50	28-MAY-20
Anthracene		<0.20	<0.20	RPD-	NA mg/kg	N/A	50	28-MAY-20
Benz(a)anthracene		<0.20	<0.20	RPD-	NA mg/kg	N/A	50	28-MAY-20
Benzo(a)pyrene		0.024	0.027		mg/kg	12	50	28-MAY-20
Benzo(b&j)fluoranthe	ne	<0.020	<0.030	RPD-	NA mg/kg	N/A	50	28-MAY-20
Benzo(g,h,i)perylene		0.017	0.020		mg/kg	12	50	28-MAY-20
Benzo(k)fluoranthene		<0.010	<0.020	RPD-	NA mg/kg	N/A	50	28-MAY-20

		Workorder:	L245137	4 Re	eport Date: 0	3-JUN-20	Pa	ige 5 of 11
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-VA	Soil							
Batch R5097416								
WG3329533-3 DUP		L2451374-15						
Chrysene		<0.020	<0.030	RPD-NA	mg/kg	N/A	50	28-MAY-20
Dibenz(a,h)anthracene		<0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	28-MAY-20
Fluoranthene		0.113	0.123		mg/kg	8.4	50	28-MAY-20
Fluorene		4.52	3.92		mg/kg	14	50	28-MAY-20
Indeno(1,2,3-c,d)pyrene	•	0.014	0.016		mg/kg	17	50	28-MAY-20
1-Methylnaphthalene		49.3	43.4		mg/kg	13	50	28-MAY-20
2-Methylnaphthalene		68.9	60.6		mg/kg	13	50	28-MAY-20
Naphthalene		<41	<37	RPD-NA	mg/kg	N/A	50	28-MAY-20
Phenanthrene		<2.0	<2.0	RPD-NA	mg/kg	N/A	50	28-MAY-20
Pyrene		0.231	0.248		mg/kg	7.3	50	28-MAY-20
Quinoline		<4.0	<4.5	RPD-NA	mg/kg	N/A	50	28-MAY-20
WG3329533-5 IRM Acenaphthene		ALS PAH RM	2 98.2		%		60-130	28-MAY-20
Acenaphthylene			114.5		%		60-130	28-MAY-20
Anthracene			116.6		%		60-130	28-MAY-20
Benz(a)anthracene			91.6		%		60-130	28-MAY-20
Benzo(a)pyrene			102.7		%		60-130	28-MAY-20
Benzo(b&j)fluoranthene			94.5		%		60-130	28-MAY-20
Benzo(g,h,i)perylene			102.4		%		60-130	28-MAY-20
Benzo(k)fluoranthene			95.8		%		60-130	28-MAY-20
Chrysene			97.1		%		60-130	28-MAY-20
Dibenz(a,h)anthracene			100.6		%		60-130	28-MAY-20
Fluoranthene			92.7		%		60-130	28-MAY-20
Fluorene			95.0		%		60-130	28-MAY-20
Indeno(1,2,3-c,d)pyrene	•		98.2		%		60-130	28-MAY-20
1-Methylnaphthalene			94.2		%		60-130	28-MAY-20
2-Methylnaphthalene			88.9		%		60-130	28-MAY-20
Naphthalene			93.5		%		50-130	28-MAY-20
Phenanthrene			92.1		%		60-130	28-MAY-20
Pyrene			95.0		%		60-130	28-MAY-20
WG3329533-2 LCS			05.2		0/		00 400	00 MAY 00
Acenaphthelese			95.2		70 0/		60-130	28-MAY-20
Acenaphthylene			95.0		<i></i> %		60-130	28-MAY-20
Anthracene			98.6		%		60-130	28-MAY-20

TestMatrixReferenceResultQualifierUnitsRPDLimitAnalyzedPAH-TMB-H/A-MS-VASoilBatchR5097416WG3329533-2LCSBenz(a)anthracene91.9%60-13028-MAY-20Benzo(a)pyrene96.7%60-13028-MAY-20Benzo(b&j)fluoranthene93.8%60-13028-MAY-20Benzo(g,h,i)perylene89.4%60-13028-MAY-20Benzo(k)fluoranthene92.6%60-13028-MAY-20Benzo(k)fluoranthene92.6%60-13028-MAY-20			Workorder: L2451374			Report Date: 0	3-JUN-20	Page 6 of 11		
PAH-TMB-H/A-MS-VA Soil Batch R5097416 WG3329533-2 LCS Benz(a)anthracene 91.9 Benzo(a)pyrene 96.7 Benzo(b&j)fluoranthene 93.8 Benzo(b&j)fluoranthene 93.8 Benzo(g,h,i)perylene 89.4 Benzo(k)fluoranthene 92.6 Benzo(k)fluoranthene 92.6	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
Batch R5097416 WG3329533-2 LCS Benz(a)anthracene 91.9 % 60-130 28-MAY-20 Benzo(a)pyrene 96.7 % 60-130 28-MAY-20 Benzo(b&j)fluoranthene 93.8 % 60-130 28-MAY-20 Benzo(b&j)fluoranthene 93.8 % 60-130 28-MAY-20 Benzo(b&j)fluoranthene 93.4 % 60-130 28-MAY-20 Benzo(b,h)perylene 89.4 % 60-130 28-MAY-20 Benzo(k)fluoranthene 92.6 % 60-130 28-MAY-20	PAH-TMB-H/A-MS-VA	Soil								
WG3329533-2 LCS Benz(a)anthracene 91.9 % 60-130 28-MAY-20 Benzo(a)pyrene 96.7 % 60-130 28-MAY-20 Benzo(b&j)fluoranthene 93.8 % 60-130 28-MAY-20 Benzo(g,h,i)perylene 89.4 % 60-130 28-MAY-20 Benzo(k)fluoranthene 92.6 % 60-130 28-MAY-20	Batch R5097416									
Benz(a)anthracene 91.9 % 60-130 28-MAY-20 Benzo(a)pyrene 96.7 % 60-130 28-MAY-20 Benzo(b&j)fluoranthene 93.8 % 60-130 28-MAY-20 Benzo(b&j)fluoranthene 93.8 % 60-130 28-MAY-20 Benzo(g,h,i)perylene 89.4 % 60-130 28-MAY-20 Benzo(k)fluoranthene 92.6 % 60-130 28-MAY-20	WG3329533-2 LCS									
Benzo(a)pyrene 96.7 % 60-130 28-MAY-20 Benzo(b&j)fluoranthene 93.8 % 60-130 28-MAY-20 Benzo(g,h,i)perylene 89.4 % 60-130 28-MAY-20 Benzo(k)fluoranthene 92.6 % 60-130 28-MAY-20	Benz(a)anthracene			91.9		%		60-130	28-MAY-20	
Benzo(b&j)fluoranthene 93.8 % 60-130 28-MAY-20 Benzo(g,h,i)perylene 89.4 % 60-130 28-MAY-20 Benzo(k)fluoranthene 92.6 % 60-130 28-MAY-20	Benzo(a)pyrene			96.7		%		60-130	28-MAY-20	
Benzo(g,h,i)perylene 89.4 % 60-130 28-MAY-20 Benzo(k)fluoranthene 92.6 % 60-130 28-MAY-20	Benzo(b&j)fluoranthene	•		93.8		%		60-130	28-MAY-20	
Benzo(k)fluoranthene92.6%60-13028-MAY-20	Benzo(g,h,i)perylene			89.4		%		60-130	28-MAY-20	
	Benzo(k)fluoranthene			92.6		%		60-130	28-MAY-20	
Chrysene 89.0 % 60-130 28-MAY-20	Chrysene			89.0		%		60-130	28-MAY-20	
Dibenz(a,h)anthracene 92.0 % 60-130 28-MAY-20	Dibenz(a,h)anthracene			92.0		%		60-130	28-MAY-20	
Fluoranthene 95.3 % 60-130 28-MAY-20	Fluoranthene			95.3		%		60-130	28-MAY-20	
Fluorene 93.8 % 60-130 28-MAY-20	Fluorene			93.8		%		60-130	28-MAY-20	
Indeno(1,2,3-c,d)pyrene 90.6 % 60-130 28-MAY-20	Indeno(1,2,3-c,d)pyrene	9		90.6		%		60-130	28-MAY-20	
1-Methylnaphthalene 96.7 % 60-130 28-MAY-20	1-Methylnaphthalene			96.7		%		60-130	28-MAY-20	
2-Methylnaphthalene 92.9 % 60-130 28-MAY-20	2-Methylnaphthalene			92.9		%		60-130	28-MAY-20	
Naphthalene 94.8 % 50-130 28-MAY-20	Naphthalene			94.8		%		50-130	28-MAY-20	
Phenanthrene 95.0 % 60-130 28-MAY-20	Phenanthrene			95.0		%		60-130	28-MAY-20	
Pyrene 98.1 % 60-130 28-MAY-20	Pyrene			98.1		%		60-130	28-MAY-20	
Quinoline 89.3 % 60-130 28-MAY-20	Quinoline			89.3		%		60-130	28-MAY-20	
WG3329533-1 MB	WG3329533-1 MB									
Acenaphthene <0.0050 mg/kg 0.005 28-MAY-20	Acenaphthene			<0.0050		mg/kg		0.005	28-MAY-20	
Acenaphthylene <0.0050 mg/kg 0.005 28-MAY-20	Acenaphthylene			<0.0050		mg/kg		0.005	28-MAY-20	
Anthracene <0.0040 mg/kg 0.004 28-MAY-20	Anthracene			<0.0040		mg/kg		0.004	28-MAY-20	
Benz(a)anthracene <0.010 mg/kg 0.01 28-MAY-20	Benz(a)anthracene			<0.010		mg/kg		0.01	28-MAY-20	
Benzo(a)pyrene <0.010 mg/kg 0.01 28-MAY-20	Benzo(a)pyrene			<0.010		mg/kg		0.01	28-MAY-20	
Benzo(b&j)fluoranthene <0.010 mg/kg 0.01 28-MAY-20	Benzo(b&j)fluoranthene	•		<0.010		mg/kg		0.01	28-MAY-20	
Benzo(g,h,i)perylene <0.010 mg/kg 0.01 28-MAY-20	Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	28-MAY-20	
Benzo(k)fluoranthene <0.010 mg/kg 0.01 28-MAY-20	Benzo(k)fluoranthene			<0.010		mg/kg		0.01	28-MAY-20	
Chrysene <0.010 mg/kg 0.01 28-MAY-20	Chrysene			<0.010		mg/kg		0.01	28-MAY-20	
Dibenz(a,h)anthracene <0.0050 mg/kg 0.005 28-MAY-20	Dibenz(a,h)anthracene			<0.0050		mg/kg		0.005	28-MAY-20	
Fluoranthene <0.010 mg/kg 0.01 28-MAY-20	Fluoranthene			<0.010		mg/kg		0.01	28-MAY-20	
Fluorene <0.010 mg/kg 0.01 28-MAY-20	Fluorene			<0.010		mg/kg		0.01	28-MAY-20	
Indeno(1,2,3-c,d)pyrene <0.010 mg/kg 0.01 28-MAY-20	Indeno(1,2,3-c,d)pyrene	9		<0.010		mg/kg		0.01	28-MAY-20	
1-Methylnaphthalene <0.010 mg/kg 0.01 28-MAY-20	1-Methylnaphthalene			<0.010		mg/kg		0.01	28-MAY-20	
2-Methylnaphthalene <0.010 mg/kg 0.01 28-MAY-20	2-Methylnaphthalene			<0.010		mg/kg		0.01	28-MAY-20	
Naphthalene <0.010 mg/kg 0.01 28-MAY-20	Naphthalene			<0.010		mg/kg		0.01	28-MAY-20	
Phenanthrene <0.010 mg/kg 0.01 28-MAY-20	Phenanthrene			<0.010		mg/kg		0.01	28-MAY-20	

		Workorder:	L245137	4 Re	port Date: 0	3-JUN-20	Pa	ige 7 of 11
Test Ma	atrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-VA Sc	bil							
Batch R5097416								
WG3329533-1 MB			0.040					
Pyrene			<0.010		mg/kg		0.01	28-MAY-20
Quinoline			<0.050		mg/kg		0.05	28-MAY-20
Surrogate: Naphthalene d8	-		103.5		%		50-130	28-MAY-20
Surrogate: Phenanthrene d1	0		111.3		%		60-130	28-MAY-20
Surrogate: Chrysene d12			110.4		%		60-130	28-MAY-20
PFAS-LL-EX-LCMS-WT Sc	bil							
Batch R5100187								
WG3329893-3 DUP		L2451374-5	-0.10		ua/ka	N1/A	50	00 1441/ 00
Perfluorobatarie sulfonic aci		<0.10	<0.10	RPD-NA	ug/kg	N/A	50	28-MAY-20
Periluoronexane sulfonic aci		<0.10	<0.10	RPD-NA	ug/kg	N/A	50	28-MAY-20
Periluoroociarie suitoriic acid	A)	<0.30	<0.50	RPD-NA	ug/kg	N/A	50	28-MAY-20
Perfluoroportopoio acid (PE		<100	<200	RPD-NA	ug/kg	N/A	50	28-MAY-20
Periluoropentanoic acid (PFI	PeA)	<0.10	<0.10	RPD-NA	ug/kg	N/A	50	28-MAY-20
Periluorohexanoic acid (PFF	1XA)	0.10	0.12		ug/kg	11	50	28-MAY-20
Perfluoroactanoic acid (PF)		<0.10	<0.10	RPD-NA	ug/kg	N/A	50	28-MAY-20
Periluorooctanoic acid (PFO	A)	0.35	0.37		ug/kg	6.2	50	28-MAY-20
6:2 Elucrotolomor autorio or		<0.10	<0.10	RPD-NA	ug/kg	N/A	50	28-MAY-20
8:2 Fluorotelomer sulfonic ad	$d(0.2 \pm 1.5)$	<0.10	<0.10	RPD-NA	ug/kg	N/A	50	28-MAY-20
8.2 Fluoroteiomer sullonic ad	Ciu(6.2 F I 5)	<0.10	<0.10	RPD-NA	ug/kg	N/A	50	28-MAY-20
Perfluorobutane sulfonic acid	d (PFBS)		62.7		%		50-150	28-MAY-20
Perfluorohexane sulfonic aci	d (PFHxS)		50.0		%		50-150	28-MAY-20
Perfluorooctane sulfonic acio	d (PFOS)		73.3		%		50-150	28-MAY-20
Perfluorobutanoic acid (PFB	A)		N/A	LCS-H	%		50-150	28-MAY-20
Perfluoropentanoic acid (PFI	, PeA)		94.7		%		50-150	28-MAY-20
Perfluorohexanoic acid (PFF	, IxA)		101.3		%		50-150	28-MAY-20
Perfluoroheptanoic acid (PFI	, HpA)		61.3		%		50-150	28-MAY-20
Perfluorooctanoic acid (PFO	A)		107.3		%		50-150	28-MAY-20
Perfluorononanoic acid (PFN	JA)		58.7		%		50-150	28-MAY-20
6:2 Fluorotelomer sulfonic ad	cid(6:2 FTS)		99.3		%		50-150	28-MAY-20
8:2 Fluorotelomer sulfonic ad	cid(8:2 FTS)		64.7		%		50-150	28-MAY-20
WG3329893-1 MB	. ,							
Perfluorobutane sulfonic acid	d (PFBS)		<0.10		ug/kg		0.1	28-MAY-20
Perfluorohexane sulfonic aci	id (PFHxS)		<0.10		ug/kg		0.1	28-MAY-20
Perfluorooctane sulfonic acid	d (PFOS)		<0.50		ug/kg		0.5	28-MAY-20

	Workorder:	L245137	74 R	eport Date: 0	3-JUN-20	Pa	ge 8 of 11
Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PFAS-LL-EX-LCMS-WT Soil							
Batch R5100187							
WG3329893-1 MB		45	MB-LOR	ua/ka		20	29 MAV 20
Porfluoropontanoia acid (PEPaA)		+J	WIB-LOIX	ug/kg		20	28-IMAY-20
		<0.10		ug/kg		0.1	28-MAY-20
		<0.10		ug/kg		0.1	28-MAY-20
		<0.10		ug/kg		0.1	28-MAY-20
		<0.10		ug/kg		0.1	28-MAY-20
		<0.10		ug/kg		0.1	28-MAY-20
6:2 Fluorotelomer sulfonic acid(6:2 FTS)		<0.10		ug/kg		0.1	28-MAY-20
8:2 Fluorotelomer sulfonic acid(8:2 FTS)		<0.10		ug/kg		0.1	28-MAY-20
WG3329893-4 MS Perfluorobutane sulfonic acid (PFBS)	L2451374-5	62.4		%		50-150	28-MAY-20
Perfluorohexane sulfonic acid (PFHxS)		50.2		%		50-150	28-MAY-20
Perfluorooctane sulfonic acid (PFOS)		80.8		%		50-150	28-MAY-20
Perfluorobutanoic acid (PFBA)		N/A	MS-B	%		-	28-MAY-20
Perfluoropentanoic acid (PFPeA)		82.1		%		50-150	28-MAY-20
Perfluorohexanoic acid (PFHxA)		90.7		%		50-150	28-MAY-20
Perfluoroheptanoic acid (PFHpA)		62.3		%		50-150	28-MAY-20
Perfluorooctanoic acid (PFOA)		91.1		%		50-150	28-MAY-20
Perfluorononanoic acid (PFNA)		67.8		%		50-150	28-MAY-20
6:2 Fluorotelomer sulfonic acid(6:2 FTS)		93.7		%		50-150	28-MAY-20
8:2 Fluorotelomer sulfonic acid(8:2 FTS)		70.0		%		50-150	28-MAY-20
PH-1:2-VA Soil							
Batch R5099555							
WG3329538-2 DUP	L2451374-15						
pH (1:2 soil:water)	6.81	6.80	J	рН	0.01	0.2	27-MAY-20
VH-HSFID-VA Soil							
Batch R5071997							
WG3329822-3 DUP	L2451374-19						
Volatile Hydrocarbons (VH6-10)	8900	9630		mg/kg	7.9	40	29-MAY-20
Batch R5083660							
WG3329822-2 LCS							
Volatile Hydrocarbons (VH6-10)		109.1		%		70-130	28-MAY-20
WG3329822-1 MB							
Volatile Hydrocarbons (VH6-10)		<100		mg/kg		100	28-MAY-20

		Workorder:	L245137	4 Re	eport Date: 0	3-JUN-20	Pa	ge 9 of 11
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-M-HSMS-VA	Soil							
Batch R5081765								
WG3329822-3 DUP		L2451374-19						
sec-Butylbenzene		56.3	56.0		mg/kg	0.6	50	28-MAY-20
tert-Butylbenzene		<2.5	<2.5	RPD-NA	mg/kg	N/A	50	28-MAY-20
n-Butylbenzene		<150	<150	RPD-NA	mg/kg	N/A	50	28-MAY-20
WG3329822-2 LCS sec-Butylbenzene			119.0		%		60-140	27-MAY-20
tert-Butylbenzene			120.8		%		60-140	27-MAY-20
n-Butylbenzene			139.8		%		60-140	27-MAY-20
WG3329822-1 MB								
sec-Butylbenzene			<0.050		mg/kg		0.05	27-MAY-20
tert-Butylbenzene			<0.050		mg/kg		0.05	27-MAY-20
n-Butylbenzene			<0.050		mg/kg		0.05	27-MAY-20
VOC-M2-HSMS-VA	Soil							
Batch R5081765								
WG3329822-3 DUP		L2451374-19						
n-Nonane		557	562		mg/kg	0.8	50	28-MAY-20
WG3329822-2 LCS n-Nonane			118.7		%		70-130	27-MAY-20
WG3329822-1 MB			0.050					
n-ivonane			<0.050		mg/kg		0.05	27-MAY-20
VOC7-L-HSMS-VA	Soil							
Batch R5081765								
WG3329822-3 DUP		L2451374-19	2 55		malka	0.5	10	
Ethulh ensense		3.43	3.55		mg/kg	3.5	40	28-MAY-20
		97.1	101		mg/kg	4.4	40	28-MAY-20
	DE)	<0.20	<0.20	RPD-NA	mg/kg	N/A	40	28-MAY-20
Styrene		<2.5	<2.5	RPD-NA	mg/kg	N/A	40	28-MAY-20
loluene		40.8	42.5		mg/kg	4.1	40	28-MAY-20
meta- & para-Xylene		416	440		mg/kg	5.6	40	28-MAY-20
ortho-Xylene		187	195		mg/kg	4.3	40	28-MAY-20
WG3329822-2 LCS Benzene			97.9		%		70-130	27-MAY-20
Ethylbenzene			111.7		%		70-130	27-MAY-20
Methyl t-butyl ether (MT	BE)		102.7		%		70-130	27-MAY-20
Styrene			108.3		%		70-130	27-MAY-20
Toluene			106.8		%		70-130	27-MAY-20

		Workorder	: L245137	4	Report Date: 03	3-JUN-20	Pa	ge 10 of 11
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC7-L-HSMS-VA	Soil							
Batch R508176 WG3329822-2 LCS meta- & para-Xylene	65 6		97.6		%		70-130	27-MAY-20
ortho-Xylene			109.7		%		70-130	27-MAY-20
WG3329822-1 MB			<0.0050		ma/ka		0.005	27 MAV 20
Ethylbenzene			<0.015		mg/kg		0.005	27-MAY-20
Methyl t-butyl ether (N	ITBE)		<0.20		mg/kg		0.2	27-MAY-20
Styrene			<0.050		mg/kg		0.05	27-MAY-20
Toluene			<0.050		mg/kg		0.05	27-MAY-20
meta- & para-Xylene			<0.050		mg/kg		0.05	27-MAY-20
ortho-Xylene			<0.050		mg/kg		0.05	27-MAY-20

Workorder: L2451374

Report Date: 03-JUN-20

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
DUP-H	Duplicate results outside ALS DQO, due to sample heterogeneity.
J	Duplicate results and limits are expressed in terms of absolute difference.
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

·	—EPH10-19 — — — — — — — — — — — — — — — — — — —	EPH19-32→
nC10	nC19	nC32
174'C	330°C	467°C
346'F	626°F	873°F
\leftarrow Gasoline \rightarrow	•	-Motor Oils/ Lube Oils/ Grease
← Diesel/ Jet Fuels →		

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

<	—EPH10-19 — — — — — — — — — — — — — — — — — — —	EPH19-32→
nC10	nC19	nC32
174'C	330°C	467°C
346'F	626°F	873°F
\leftarrow Gasoline \rightarrow	•	———Motor Oils/ Lube Oils/ Grease ———————————————————————————————————
← Diesel/ Jet Fuels →		

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

<	—EPH10-19 — — — — — — — — — — — — — — — — — — —	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626"F	873°F
\leftarrow Gasoline \rightarrow	·	Notor Oils/ Lube Oils/ Grease ────→
← Diesel/ Jet Fuels →		

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

<	—EPH10-19 — — — — — — — — — — — — — — — — — — —	EPH19-32→
nC10	nC19	nC32
174'C	330°C	467°C
346'F	626°F	873°F
\leftarrow Gasoline \rightarrow	•	—Motor Oils/ Lube Oils/ Grease ———————————————————————————————————
← Diesel/ Jet Fuels →		

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

·	—EPH10-19 — — — — — — — — — — — — — — — — — — —	EPH19-32→
nC10	nC19	nC32
174'C	330°C	467°C
346'F	626°F	873°F
\leftarrow Gasoline \rightarrow	•	-Motor Oils/ Lube Oils/ Grease
← Diesel/ Jet Fuels →		

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

·	—EPH10-19 — → ←	EPH19-32→
nC10	nC19	nC32
174'C	330°C	467°C
346'F	626°F	873°F
\leftarrow Gasoline \rightarrow	·	-Motor Oils/ Lube Oils/ Grease
÷	Diesel/ Jet Fuels	>

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

<	—EPH10-19 — — — — — — — — — — — — — — — — — — —	EPH19-32→
nC10	nC19	nC32
174'C	330°C	467°C
346'F	626°F	873°F
\leftarrow Gasoline \rightarrow	• •	-Motor Oils/ Lube Oils/ Grease
← Diesel/ Jet Fuels →		

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

ALS Sample ID: L2451374-15

·	—EPH10-19 — — — — — — — — — — — — — — — — — — —	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
← Gasoline –	÷	───Motor Oils/ Lube Oils/ Grease ────
← Diesel/ Jet Fuels →		

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

Note: This chromatogram was produced using GC conditions that are specific to the ALS Canada EPH method. Refer to the ALS Canada EPH Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

Response - MilliVolts

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

	2 [3		,	
nC10	nC16	nC34	nC50	
174°C	287°C	481'C	575°C	
346'F	549'F	898'F	1067°F	
←Gasolir	1e→ ←	Motor C	Dils/ Lube Oils/ Grease ———	
← Diesel/ Jet Fuels →				

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

	2 [3		,	
nC10	nC16	nC34	nC50	
174°C	287°C	481'C	575°C	
346'F	549'F	898'F	1067°F	
←Gasolir	1e→ ←	Motor C	Dils/ Lube Oils/ Grease ———	
← Diesel/ Jet Fuels →				

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

·	—EPH10-19 — — — — — — — — — — — — — — — — — — —	EPH19-32→
nC10	nC19	nC32
174'C	330°C	467°C
346'F	626°F	873°F
\leftarrow Gasoline \rightarrow	·	—Motor Oils/ Lube Oils/ Grease ────→
	Diesel/ Jet Fuels	`

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

<	—EPH10-19 — — — — — — — — — — — — — — — — — — —	EPH19-32→
nC10	nC19	nC32
174'C	330°C	467°C
346'F	626°F	873°F
\leftarrow Gasoline \rightarrow	•	———Motor Oils/ Lube Oils/ Grease ———————————————————————————————————
← Diesel/ Jet Fuels →		

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

<	—EPH10-19 — — — — — — — — — — — — — — — — — — —	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626"F	873°F
\leftarrow Gasoline \rightarrow	·	Notor Oils/ Lube Oils/ Grease ────→
<	Diesel/ Jet Fuels	`

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

	2 — X F3 —		r4>	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
←Gasoli	1e→ ←	Motor	Oils/ Lube Oils/ Grease	,
<	— Diesel/ Jet Fuels — \longrightarrow			

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ESED																		Γ <u>ν</u>	on IC	4
								Сору	LOW: Lab	YELL	эг Сору	Golde	WHITE:					·	Lichlorethine	Q
Time		ŝ	Date	ned by:	oler ope	;) Co(emp (°C			ndition:	pment Co I Intact:	Ship Seai			y:	Shipped	- L.	store, 1	persone put	ي-ر
TimeBOSO	log	SMRM		¥	, by:	for Lat	eceived	<u><u></u></u>			ybill No.:	Way		 	f Shipmer	Method o	- tr not	1, Danal P	nments: * Ad	- Co
mpany	Cor	ignature	d by: Si	Receive		ne	Ŏ Tii	6061	ate 105/05	א קע	npany SLDEC	Con Con		Signature	hed by: S	Relinquis	*	and a	npler's Signature:	Sar
		X						È		8		4	511: 21	4	4	0.0 , 44 ,		5520-07	- 12	
	X	X			<u>א</u>	×	/ \	Х	- <u>-</u>	 	<u> </u>		04:61			, 5.0 , 5.0 , 7.0		70-0600	11	
		<u>х</u>							4			N	Se: CI			0.2		90-0-06	- 10	
	X				X	X		Х					06:01			0.15		3520-06	- 09	T
		X										·	50: 01			200 2 2 0 2 2		5570-05	- 08	
	Χ				X	X	-	×					00:61			21.0		50-0655	- 07	Τ
		X							1 30.00	PCO AL	0 1		511:11			0 Q 12 V 1		40-0655	- 06	1
	χ		X	× X	X	X	X	%	1 20- Col	seo V	FD		N:uo			0.05 2.05 2.05		40-0655	- 05	
		X							٢				11:15	<u>.</u>		0,437		20-0655	- 04	Γ
	X			× Y	X	X		X	Ц				01:11			0.05-1		50-052	- 03	
		X					_		<u> </u>				Sh:01			0 0 1 1		20-0655	- 02	
	X	 		X X	X	Х	e 1	— X			٨ß	190 (2 10: 40	25/os/JC	60	0.05 -		20-0655	10- 40he	0
Remarks (over)	RUSH (Select	Hold	PFBS/P -Health	Chronie Li	i,), 4 - te be Alunnon, m	BTEX	CCME PH	I F DH /	(over)	vde vde (nple QA pe Co (ov	id Sam I) (ov	Time Sample (HH:MM	Date Sampled (D / M / Y)	Sample Matrix (over)	Sample Depth (m)	Sa. #	Sample Location	Sample Control Number (SCN)	
	TAT abo	1 Styre	FUS/1 Cared	odnivn Colbil tenim	ninethi 2nzere Honory	VPF	C FI		Conteir			351	08 Q	Quote N			by e-mail	ts to be issued	Note: Final Report	
	ve)	108- re	AOTO	+,	- I; ,	(- 4	eis Dau	sys)	ular (5 De ၃၀၃၇	רם Reg	2 PC	⊮ ⊠ Other	y 🗆 72 h	ater Qualit	BC Wa	S M	: □ 24 hr ⊠ St cct	Turnaround Time Criteria: ⊠ CSR	
connerts	ж С	*	quired	lyses Re	Ana				70	9399	2178	y Code: t: ⊠	ulS Facilit ulS uploac	E				Ver	office Name:	<u> </u>
ict: BER SPRING	Conta AMC	4188	61. 12	10ne/Fax)4 - ン	Teleph	r.com	goide	2: @	nail Address : (ROGH	older E-n , ∨oンい	.com)golder	idress 1: @	r E-mail Ad ERDビ	3olde AU	253	104) 298-5	4200 Fax (6	lephone (604) 296-] d
		and H	- oudre	1 1.35	Addres		de	ntact: Ver	Golder Cor AliSon		Ø	S N N	CLE	Title:	N _b		Č			20
		59.		atory Nar	Labors AL			-					856	UILS	Ψ <u>ä</u>			2451374 C		
04 page⊥ofs	29	No. ()			ST	JUE	REC	SIS	ANALY)RD//	RECC	DY F	USTO	OFC	AN					

	AIN OF C	USTODY	RECOR	D/ANALY	'SIS RE	QUES		No.	0290	3 page of
	Project Numbe	145856				·	aboratory Nam LS Bい	na by		
L2451374-COFC	Short Title: らいのいち・	rd Cleanu	Ð	Golder Co A \. Sor	untact: Verde	A	adress: 8081 L	ougheed	Hwy	-
V; Telephone (604) 296-4200 Fax (604) 298-5253	Golder E-mail / AUERDE	Address 1: @golc	Golde Golde そいの	r E-mail Address いいがROGH	2: @gold	er.com	Sort - 22	3 - 4188	Contact:	R JARINGER
Office Name:		Oule Eacility Co	58216	0722						
Vancouver		Quis Facility Co		997			Analyses Rec	quired		
Turnaround Time: □ 24 hr □ 48 hr Criteria: □ CSR □ CCME □ BC W	/ater Quality	2hr 쬐 Other 그익	ם Regular M∿ך	(5 Days)	ers ≻AH -4		12 1 14, 2-00	≥₹0A c	ove)	
Note: Final Reports to be issued by e-mail	Quote	No.: 0803	51		:ontain 2 モー/ F	1PH	enzer nhang coning cabe	05/1 Cina 1015	TAT ab	
Sample Control Sample	Sample Date		Sample QAQC	Related	er of C . / HE P	× / \ +r	7:70 2. C.	Con	\산 (Select	Remarks
Number (SCN) Location Sa. # Depth (m)	(over) (D / M /	Y) (HH:MM)	l ype Code (over) (over)	(over)	Numb LEPH CCAE	BTE:	Alumini Dor Chrom 1800	PERS - HI See	Ho Rush	(over)
50.0 BO-065 10 - 5060	150/56 05	96 13:15 6	RAB		Ч Х	×	· · ·		X	
- 02 50-08 0.3		00:51							X	
- 03 552 81 - 0653 - 0		13: HO	FDA	10-60120	ۍ X X	X	х Х Х	χ χ	X	
-04 5520-18 0.3-		13: 45	FOA	80-6060	-E"					
- 05 OUP A			FD	50-1101-05	л Х Х	X	Υ X	X	X	
-06 DUP A 0.3.			FO	20-110669						
- 07 DUP B 0.15			FD	50- to b CO		<u>х</u> х	<u>χ</u> χ	X X	Χ	
- 5.0 B - V	V V		1 50	10-tolco	F.					
- 09	•									
- 10										
1 1 1										
- 12										
Sampler's Signature	ished by: Signature	ι Ψ	Company Go lder	Date 25 /09	0(02/	Ìme	Received	d by: Signature	Gom	pany
Comments: >> n-nonere : supropy Method	of Shipment:		Waybill No.:		Receiv	ed for Lab b	40 *	25M	Wabdo	MOSOR 3950M
-trimethyl benzene, butyl benzed shippe	d by:		Shipment Condi Seal Intact:	tion:	Temp (°C) Coole	er opened by:	Date	-	Time
1,2 - dibornethore, 1,2 -		WHITE: G	older Copy	YELLOW: L	аb Сору			 		ī 2 7
TUT K			·							

GOLDER ASSOCIATES LTD. ATTN: Alison Verde 200-2920 Virtual Way Vancouver BC V5M 0C4 Date Received:26-MAY-20Report Date:04-JUN-20 15:31 (MT)Version:FINAL REV. 2

Client Phone: 604-297-2036

Certificate of Analysis

Lab Work Order #: L2451986

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 20145856 02905, 02906

Comments:

2-JUN-2020 Additional PFAS parameters are included.4-JUN-2020 Additional VOC and Hydrocarbon data is included.

amber Springer

Amber Springer, B.Sc Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2451986 CONTD.... PAGE 2 of 10 04-JUN-20 15:31 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2451986-1 Soil 26-MAY-20 08:35 02905-01	L2451986-3 Soil 26-MAY-20 08:45 02905-03	L2451986-5 Soil 26-MAY-20 09:00 02905-05	L2451986-7 Soil 26-MAY-20 09:30 02905-07	L2451986-9 Soil 26-MAY-20 10:00 02905-09
Grouping	Analyte					
SOIL						
Physical Tests	Moisture (%)	13.8	17.7	14.2	9.02	29.2
	pH (1:2 soil:water) (pH)					
Metals	Aluminum (Al) (mg/kg)					
	Antimony (Sb) (mg/kg)					
	Barium (Ba) (mg/kg)					
	Cadmium (Cd) (mg/kg)					
	Chromium (Cr) (mg/kg)					
	Cobalt (Co) (mg/kg)					
	Lead (Pb) (mg/kg)					
	Titanium (Ti) (mg/kg)					
	Zinc (Zn) (mg/kg)					
Volatile Organic	VOC Sample Container	Field MeOH				
Compoundo	Benzene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dibromoethane (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Ethylbenzene (mg/kg)	<0.015	<0.015	<0.015	<0.015	<0.015
	Methyl t-butyl ether (MTBE) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	n-Nonane (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Styrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Toluene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	1,2,4-Trimethylbenzene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	ortho-Xylene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	meta- & para-Xylene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Xylenes (mg/kg)	<0.075	<0.075	<0.075	<0.075	<0.075
	Surrogate: 4-Bromofluorobenzene (SS) (%)	82.8	75.8	95.9	94.0	78.2
	Surrogate: 1,4-Difluorobenzene (SS) (%)	100.0	86.8	99.1	96.8	87.8
Hydrocarbons	EPH10-19 (mg/kg)	<200	<200	300	<200	<200
	EPH19-32 (mg/kg)	<200	<200	<200	<200	<200
	LEPH (mg/kg)	<200	<200	300	<200	<200
	HEPH (mg/kg)	<200	<200	<200	<200	<200
	F1 (C6-C10) (mg/kg)					
	F2 (C10-C16) (mg/kg)					
	F3 (C16-C34) (mg/kg)					
	F4 (C34-C50) (mg/kg)					
	Volatile Hydrocarbons (VH6-10) (mg/kg)	<100	<100	<100	<100	<100
	VPH (C6-C10) (mg/kg)	<100	<100	<100	<100	<100
	Chrom. to baseline at nC50					
	Surrogate: 2-Bromobenzotrifluoride (%)	82.6	87.2	81.5	86.0	87.0

L2451986 CONTD.... PAGE 3 of 10 04-JUN-20 15:31 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2451986-11 Soil 26-MAY-20 10:30 02905-11	L2451986-13 Soil 26-MAY-20 11:10 02906-01	L2451986-15 Soil 26-MAY-20 11:40 02906-03	L2451986-17 Soil 26-MAY-20 12:10 02906-05	L2451986-19 Soil 26-MAY-20 12:10 02906-07
Grouping	Analyte					
SOIL						
Physical Tests	Moisture (%)	21.4	15.0	15.8	18.9	20.9
	pH (1:2 soil:water) (pH)	6.96	6.61	6.71	6.11	5.86
Metals	Aluminum (Al) (mg/kg)	26800	20100	23400	18400	21500
	Antimony (Sb) (mg/kg)	0.16	0.22	0.18	0.26	0.28
	Barium (Ba) (mg/kg)	193	132	150	128	147
	Cadmium (Cd) (mg/kg)	0.266	0.202	0.147	0.169	0.173
	Chromium (Cr) (mg/kg)	58.9	45.4	50.2	45.1	49.5
	Cobalt (Co) (mg/kg)	15.5	13.6	15.4	14.1	15.0
	Lead (Pb) (mg/kg)	14.2	12.5	12.1	13.3	13.7
	Titanium (Ti) (mg/kg)	1930	1530	1630	1550	1650
	Zinc (Zn) (mg/kg)	119	82.8	85.3	75.4	81.7
Volatile Organic Compounds	VOC Sample Container	Field MeOH				
	Benzene (mg/kg)	<0.0050	<0.0050	<0.0050	0.0091	0.0089
	1,2-Dibromoethane (mg/kg)	<0.050	<0.050	<0.050	<0.15	<0.20
	Ethylbenzene (mg/kg)	<0.015	<0.015	<0.015	0.838	0.828
	Methyl t-butyl ether (MTBE) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	n-Nonane (mg/kg)	<0.050	<0.050	<0.050	4.29	5.25
	Styrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Toluene (mg/kg)	<0.050	<0.050	<0.050	0.126	0.135
	1,2,4-Trimethylbenzene (mg/kg)	<0.050	<0.050	<0.050	4.51	4.15
	ortho-Xylene (mg/kg)	<0.050	<0.050	<0.050	2.89	2.18
	meta- & para-Xylene (mg/kg)	<0.050	<0.050	<0.050	3.45	3.75
	Xylenes (mg/kg)	<0.075	<0.075	<0.075	6.34	5.93
	Surrogate: 4-Bromofluorobenzene (SS) (%)	75.8	94.3	100.4	101.7	84.2
	Surrogate: 1,4-Difluorobenzene (SS) (%)	89.0	98.8	99.7	99.9	87.0
Hydrocarbons	EPH10-19 (mg/kg)	<200	310	<200	2150	1490
	EPH19-32 (mg/kg)	<200	<200	<200	<200	<200
	LEPH (mg/kg)	<200	310	<200	2150	1490
	HEPH (mg/kg)	<200	<200	<200	<200	<200
	F1 (C6-C10) (mg/kg)				86	90
	F2 (C10-C16) (mg/kg)				653	82
	F3 (C16-C34) (mg/kg)				77	<50
	F4 (C34-C50) (mg/kg)				<50	<50
	Volatile Hydrocarbons (VH6-10) (mg/kg)	<100	<100	<100	<100	<100
	VPH (C6-C10) (mg/kg)	<100	<100	<100	<100	<100
	Chrom. to baseline at nC50				YES	YES
	Surrogate: 2-Bromobenzotrifluoride (%)	90.2	82.1	87.3	103.1	98.4

L2451986 CONTD.... PAGE 4 of 10 04-JUN-20 15:31 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2451986-1 Soil 26-MAY-20 08:35 02905-01	L2451986-3 Soil 26-MAY-20 08:45 02905-03	L2451986-5 Soil 26-MAY-20 09:00 02905-05	L2451986-7 Soil 26-MAY-20 09:30 02905-07	L2451986-9 Soil 26-MAY-20 10:00 02905-09
Grouping	Analyte					
SOIL						
Hydrocarbons	Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)					
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	95.0	104.9	97.1	113.4	117.3
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.0050	<0.0050	<0.040	<0.0050	<0.0050
	Acenaphthylene (mg/kg)	<0.0050	<0.0050	<0.010	<0.0050	<0.0050
	Anthracene (mg/kg)	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
	Benz(a)anthracene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.020
	Benzo(a)pyrene (mg/kg)	<0.020	<0.010	<0.010	<0.010	0.017
	Benzo(b&j)fluoranthene (mg/kg)	0.016	<0.010	0.014	<0.010	0.031
	Benzo(b+j+k)fluoranthene (mg/kg)	0.016	<0.015	<0.015	<0.015	0.031
	Benzo(g,h,i)perylene (mg/kg)	<0.010	<0.010	<0.010	<0.010	0.021
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Chrysene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.030
	Dibenz(a,h)anthracene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Fluoranthene (mg/kg)	0.019	<0.010	0.016	<0.010	0.031
	Fluorene (mg/kg)	<0.010	<0.010	0.044	<0.010	<0.010
	Indeno(1,2,3-c,d)pyrene (mg/kg)	0.010	<0.010	<0.010	<0.010	0.018
	1-Methylnaphthalene (mg/kg)	0.024	<0.010	0.314	<0.010	<0.010
	2-Methylnaphthalene (mg/kg)	0.029	<0.010	0.340	<0.010	<0.010
	Naphthalene (mg/kg)	<0.010	<0.010	<0.080	<0.010	<0.010
	Phenanthrene (mg/kg)	<0.010	<0.010	0.026	<0.010	0.011
	Pyrene (mg/kg)	0.016	<0.010	0.014	<0.010	0.025
	Quinoline (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Surrogate: Chrysene d12 (%)	95.0	96.8	84.6	93.1	88.0
	Surrogate: Naphthalene d8 (%)	96.5	100.0	86.9	96.2	92.5
	Surrogate: Phenanthrene d10 (%)	95.6	97.5	86.6	94.5	91.0
	B(a)P Total Potency Equivalent (mg/kg)	<0.020	<0.020	<0.020	<0.020	0.026
	IACR (CCME)	0.19	<0.15	0.16	<0.15	0.33
Perfluorinated Compounds	8:2 Fluorotelomer sulfonic acid(8:2 FTS) (mg/kg)		0.00626			
	6:2 Fluorotelomer sulfonic acid(6:2 FTS) (mg/kg)		0.117			
	Pertluorobutane sulfonic acid (PFBS) (mg/kg)		<0.00010			
	Perfluoronexane sulfonic acid (PFHxS) (mg/kg)		<0.00010			
	(mg/kg)		<0.00050			
	Perfluorobutanoic acid (PFBA) (mg/kg)		<0.13			

L2451986 CONTD.... PAGE 5 of 10 04-JUN-20 15:31 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2451986-11 Soil 26-MAY-20 10:30 02905-11	L2451986-13 Soil 26-MAY-20 11:10 02906-01	L2451986-15 Soil 26-MAY-20 11:40 02906-03	L2451986-17 Soil 26-MAY-20 12:10 02906-05	L2451986-19 Soil 26-MAY-20 12:10 02906-07
Grouping	Analyte					
SOIL						
Hydrocarbons	Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)				92.4	89.3
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	115.4	85.3	108.7	123.0	89.7
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.0050	<0.040	<0.0050	<0.30	<0.20
	Acenaphthylene (mg/kg)	<0.0050	OLCI	<0.0050	ollci <0.20	DLCI <0.070
	Anthracene (mg/kg)	<0.0040	<0.0040	<0.0040	DLCI <0.020	DLCI <0.0080
	Benz(a)anthracene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(a)pyrene (mg/kg)	<0.010	<0.020	<0.010	olq <0.020	0.012
	Benzo(b&j)fluoranthene (mg/kg)	<0.010	0.013	<0.010	0.015	0.016
	Benzo(b+j+k)fluoranthene (mg/kg)	<0.015	<0.015	<0.015	<0.015	0.016
	Benzo(g,h,i)perylene (mg/kg)	<0.010	<0.010	<0.010	0.011	0.010
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Chrysene (mg/kg)	<0.010	0.010	<0.010	<0.020	0.012
	Dibenz(a,h)anthracene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Fluoranthene (mg/kg)	0.011	0.016	<0.010	0.026	0.024
	Fluorene (mg/kg)	<0.010	0.067	<0.010	0.261	0.167
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.010	<0.010	<0.010	0.010	<0.010
	1-Methylnaphthalene (mg/kg)	<0.010	0.206	<0.010	3.17	2.07
	2-Methylnaphthalene (mg/kg)	<0.010	0.221	<0.010	4.52	2.95
	Naphthalene (mg/kg)	<0.010	<0.040	<0.010	2.30	1.61
	Phenanthrene (mg/kg)	<0.010	0.045	<0.010	0.144	0.096
	Pyrene (mg/kg)	<0.010	0.016	<0.010	0.033	0.028
	Quinoline (mg/kg)	<0.050	<0.050	<0.050	<0.40	<0.30
	Surrogate: Chrysene d12 (%)	98.0	129.9	123.9	81.8	76.8
	Surrogate: Naphthalene d8 (%)	103.7	124.6	129.2	86.2	82.3
	Surrogate: Phenanthrene d10 (%)	101.7	122.7	124.9	86.5	81.3
	B(a)P Total Potency Equivalent (mg/kg)	<0.020	<0.020	<0.020	<0.020	<0.020
	IACR (CCME)	<0.15	0.17	<0.15	0.19	0.20
Perfluorinated Compounds	8:2 Fluorotelomer sulfonic acid(8:2 FTS) (mg/kg)					
	6:2 Fluorotelomer sulfonic acid(6:2 FTS) (mg/kg)					
	Pertluorobutane sulfonic acid (PFBS) (mg/kg)					
	Perfluoronexane sulfonic acid (PFHxS) (mg/kg)					
	Periluorooctane suitonic acid (PFOS) (mg/kg)					
	Periluorobutanoic acid (PFBA) (mg/kg)					

L2451986 CONTD.... PAGE 6 of 10 04-JUN-20 15:31 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2451986-1 Soil 26-MAY-20 08:35 02905-01	L2451986-3 Soil 26-MAY-20 08:45 02905-03	L2451986-5 Soil 26-MAY-20 09:00 02905-05	L2451986-7 Soil 26-MAY-20 09:30 02905-07	L2451986-9 Soil 26-MAY-20 10:00 02905-09
Grouping	Analyte					
SOIL						
Perfluorinated	Perfluoroheptanoic acid (PFHpA) (mg/kg) Perfluorohexanoic acid (PFHxA) (mg/kg)		0.00020 DLHC			
	Perfluorononanoic acid (PFNA) (mg/kg)		<0.00010			
	Perfluorooctanoic acid (PFOA) (mg/kg)		0.00055			
	Perfluoropentanoic acid (PFPeA) (mg/kg)		0.00137			

L2451986 CONTD.... PAGE 7 of 10 04-JUN-20 15:31 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2451986-11 Soil 26-MAY-20 10:30 02905-11	L2451986-13 Soil 26-MAY-20 11:10 02906-01	L2451986-15 Soil 26-MAY-20 11:40 02906-03	L2451986-17 Soil 26-MAY-20 12:10 02906-05	L2451986-19 Soil 26-MAY-20 12:10 02906-07
Grouping	Analyte					
SOIL						
Perfluorinated	Perfluoroheptanoic acid (PFHpA) (mg/kg)					
	Perfluorohexanoic acid (PFHxA) (mg/kg)					
	Perfluorononanoic acid (PFNA) (mg/kg)					
	Perfluorooctanoic acid (PFOA) (mg/kg)					
	Perfluoropentanoic acid (PFPeA) (mg/kg) Perfluoropentanoic acid (PFPeA) (mg/kg)					

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Laboratory Control Sample	Perfluorobutanoic acid (PFBA)	LCS-H	L2451986-3
Method Blank	Perfluorobutanoic acid (PFBA)	MB-LOR	L2451986-3
Matrix Spike	6:2 Fluorotelomer sulfonic acid(6:2 FT	MS-B	L2451986-3
Matrix Spike	8:2 Fluorotelomer sulfonic acid(8:2 FT	MS-B	L2451986-3
Matrix Spike	Perfluorobutanoic acid (PFBA)	MS-B	L2451986-3
Matrix Spike	Perfluorohexanoic acid (PFHxA)	MS-B	L2451986-3
Matrix Spike	Perfluoropentanoic acid (PFPeA)	MS-B	L2451986-3

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLB	Detection Limit Raised. Analyte detected at comparable level in Method Blank.
DLCI	Detection Limit Raised: Chromatographic Interference due to co-elution.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLQ	Detection Limit raised due to co-eluting interference. GCMS qualifier ion ratio did not meet acceptance criteria.
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
EPH-TUMB-FID-VA	Soil	EPH in Solids by Tumbler and GCFID	BC MOE EPH GCFID

Analysis is in accordance with BC MOE Lab Manual method "Extractable Petroleum Hydrocarbons in Solids by GC/FID", v2.1, July 1999. Soil samples are extracted with a 1:1 mixture of hexane and acetone using a rotary extraction technique modified from EPA 3570 prior to gas chromatography with flame ionization detection (GC-FID). EPH results include Polycyclic Aromatic Hydrocarbons (PAH) and are therefore not equivalent to Light and Heavy Extractable Petroleum Hydrocarbons (LEPH/HEPH).

F1-HSFID-VA Soil CCME F1 by headspace GCMS

CCME CWS PHC (Pub# 1310)

CCME PETROLEUM HYDROCARBONS

The soil methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. The F1 fraction concentration is measured using flame ionization detection.

F2F4-TUMB-H/A-FID-VA Soil CWS F2-F4 Hydrocarbons by Tumbler GCFID

This analysis is carried out in accordance with the "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil - Tier 1 Method, Canadian Council of Ministers of the Environment, December 2000." For C10 to C50 hydrocarbons (F2, F3, F4) and gravimetric heavy hydrocarbons (F4G-sg), a subsample of the sediment/soil is extracted with 1:1 hexane:acetone using a rotary extractor. The extract undergoes a silica-gel clean-up to remove polar compounds. F2, F3 & F4 are analyzed by on-column GC/FID, and F4G-sg is analyzed gravimetrically.

Notes:

1. F2 (C10-C16): Sum of all hydrocarbons that elute between nC10 and nC16.

2. F3 (C16-C34): Sum of all hydrocarbons that elute between nC16 and nC34.

3. F4 (C34-C50): Sum of all hydrocarbons that elute between nC34 and nC50.

4. F4G: Gravimetric Heavy Hydrocarbons

5. F4G-sg: Gravimetric Heavy Hydrocarbons (F4G) after silica gel treatment.

6. Where F4 (C34-C50) and F4G-sg results are reported for a sample, the larger of the reported values is used for comparison against the relevant CCME standard for F4.

7. The gravimetric heavy hydrocarbon results (F4G-sg), cannot be added to the C6 to C50 hydrocarbon results.

VOCs in soil by Headspace GCMS

8. This method is validated for use.

9. Data from analysis of quality control samples is available upon request.

10. Reported results are expressed as milligrams per dry kilogram.

FUELS-HSMS-VA

EPA 5035A/5021A/8260C

The soil methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection.

LEPH/HEPH-CALC-VA Soil LEPHs and HEPHs

Soil

LEPHs and HEPHs are measures of Light and Heavy Extractable Petroleum Hydrocarbons in soil. Results are calculated by subtraction of applicable PAH concentrations from EPH10-19 and EPH19-32, as per the BC Lab Manual LEPH/HEPH calculation procedure.

LEPHs = EPH10-19 minus Naphthalene and Phenanthrene.

HEPHs = EPH19-32 minus Benz(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenz(a,h)anthracene, indeno(1,2,3-c,d)pyrene, and Pyrene.

MET-200.2-CCMS-VA Soil Metals in Soil by CRC ICPMS

EPA 200.2/6020A (mod)

BC MOE LEPH/HEPH

Reference Information

Soil/sediment is dried, disaggregated, and sieved (2 mm). Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including AI, Ba, Be, Cr, S, Sr, Ti, TI, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method.

nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS.

Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion. Soil CCME PHC in Soil - Tier 1 (mod) **MOISTURE-VA** Moisture content This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of two hours. PAH-TMB-H/A-MS-VA Soil PAH - Rotary Extraction (Hexane/Acetone) EPA 3570/8270 This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3570 & 8270, published by the United States Environmental Protection Agency (EPA). The procedure uses a mechanical shaking technique to extract a subsample of the sediment/soil with a 1:1 mixture of hexane and acetone. The extract is then solvent exchanged to toluene. The final extract is analysed by capillary column gas chromatography with mass spectrometric detection (GC/MS). Surrogate recoveries may not be reported in cases where interferences from the sample matrix prevent accurate quantitation. Because the two isomers cannot be readily chromatographically separated, benzo(i)fluoranthene is reported as part of the benzo(b)fluoranthene parameter. Benzo(a)pyrene Total Potency Equivalents [B(a)P TPE] represents the sum of estimated cancer potency relative to B(a)P for all potentially carcinogenic unsubstituted PAHs, and is calculated as per the CCME PAH Soil Quality Guidelines reference document (2010). PFAS-LL-EX-LCMS-WT Perfluorinated Compounds by LC/MS-MS MOFCC F3506 Soil Soil sample was extracted with alkaline organic solvent. Dilute organic extract with water (10% organic/water) then passed through SPE. Final extract of Perfluorinated compounds are analyzed by LC/MS-MS. pH in Soil (1:2 Soil:Water Extraction) **PH-1:2-VA** Soil BC WLAP METHOD: PH, ELECTROMETRIC, SOIL This analysis is carried out in accordance with procedures described in "pH, Electrometric in Soil and Sediment - Prescriptive Method", Rev. 2005, Section B Physical, Inorganic and Misc. Constituents, BC Environmental Laboratory Manual. The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe. **VH-HSFID-VA** Soil VH in soil by Headspace GCFID BC Env. Lab Manual (VH in Solids) This analysis involves the extraction of a subsample of the sediment/soil with methanol. Aliguots of the methanol extract are then added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is analyzed for Volatile Hydrocarbons (VH) by capillary column gas chromatography with flame-ionization detection (GC/FID). The methanol extraction and VH analysis are carried out in accordance with the British Columbia Ministry of Environment, Lands and Parks (BCMELP) Analytical Method for Contaminated Sites "Volatile Hydrocarbons in Solids by GC/FID" (Version 2.1 July 1999). BC Env. Lab Manual (VH in Solids) **VH-SURR-FID-VA** Soil VH Surrogates for Soils VOC-M2-HSMS-VA Soil Misc VOCs in soil by Headspace GCMS EPA 5035A/5021A/8260C The soil methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOC7-L-HSMS-VA Soil VOCs in soil by Headspace GCMS EPA 5035A/5021A/8260C The soil methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOC7/VOC-SURR-MS-VA Soil VOC7 and/or VOC Surrogates for Soils EPA 5035A/5021A/8260C **VPH-CALC-VA** Soil VPH is VH minus select aromatics BC MOE VPH VPHs measures Volatile Petroleum Hydrocarbons in soil. Results are calculated by subtraction of specific Monocyclic Aromatic Hydrocarbons from VH6-10, as per the BC Lab Manual VPH calculation procedure. VPHs = VH6-10 minus Benzene, Toluene, Ethylbenzene, Xylenes, and Styrene **XYLENES-CALC-VA** Soil Sum of Xylene Isomer Concentrations EPA 8260B & 524.2 Calculation of Total Xylenes Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero.

Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Reference Information

Chain of Custody Numbers:

02905

02906

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. *mg/kg* - *milligrams per kilogram based on dry weight of sample*.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

			Workorder:	L2451986	Re	port Date:	04-JUN-20	Pa	ge 1 of 9
Client:	GOLDER 200-2920 Vancouve Alison Ve	ASSOCIATES L Virtual Way F BC V5M 0C4 rde	TD.						
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
FPH-TUMB-FID-V	/Δ	Soil							
Batch F	R5100246								
WG3330406-3	DUP		L2451986-9	.000		~~~// <i>c</i> ~	N//A	40	
EPH10-19 EPH19-32			<200 <200	<200 <200	RPD-NA RPD-NA	mg/kg ma/ka	N/A N/A	40 40	28-MAY-20 28-MAY-20
WG3330406-4	IRM		ALS PHC RM3	-200				-10	20 1071-20
EPH10-19				101.4		%		70-130	28-MAY-20
EPH19-32				101.7		%		70-130	28-MAY-20
WG3330406-2 EPH10-19	LCS			94.7		%		70-130	28-MAY-20
EPH19-32				93.6		%		70-130	28-MAY-20
WG3330406-1 EPH10-19	MB			<200		mg/kg		200	28-MAY-20
EPH19-32				<200		mg/kg		200	28-MAY-20
Surrogate: 2-I	Bromobenz	zotrifluoride		87.8		%		60-140	28-MAY-20
F1-HSFID-VA		Soil							
Batch F	R5071997								
WG3330714-2 F1 (C6-C10)	LCS			94.9		%		70-130	29-MAY-20
WG3330714-1 F1 (C6-C10)	MB			<10		mg/kg		10	29-MAY-20
Batch F	R5083660								
WG3334077-2	LCS								
F1 (C6-C10)	MD			117.6		%		70-130	04-JUN-20
F1 (C6-C10)	IVID			<10		mg/kg		10	04-JUN-20
F2F4-TUMB-H/A-	FID-VA	Soil							
Batch F	R5107521								
WG3334087-6 F2 (C10-C16)	DUP		L2451986-17 653	866		ma/ka	28	40	04- 11 INI-20
F3 (C16-C34)			77	97		ma/ka	23	40	04-11 IN-20
F4 (C34-C50)	1		<50	<50	RPD-NA	mg/kg	N/A	40	04-JUN-20
WG3334087-4	IRM		ALS PHC RM3						
F2 (C10-C16)				99.3		%		70-130	04-JUN-20
F3 (C16-C34)				94.7		%		70-130	04-JUN-20
F4 (C34-C50)				96.1		%		70-130	04-JUN-20
WG3334087-2 F2 (C10-C16)	LCS			103.9		%		70-130	04-JUN-20
F3 (C16-C34)	1			99.6		%		70-130	04-JUN-20

		Workorder:	L245198	6 Re	eport Date: 0	4-JUN-20	Pa	ige 2 of 9
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F2F4-TUMB-H/A-FID-VA	Soil							
Batch R5107521								
WG3334087-2 LCS F4 (C34-C50)			95.9		%		70-130	04-JUN-20
WG3334087-1 MB F2 (C10-C16)			<30		mg/kg		30	04-JUN-20
F3 (C16-C34)			<50		mg/kg		50	04-JUN-20
F4 (C34-C50)			<50		mg/kg		50	04-JUN-20
Surrogate: 2-Bromober	zotrifluoride, F2	-F4	91.2		%		60-140	04-JUN-20
FUELS-HSMS-VA	Soil							
Batch R5071978	1							
WG3330714-3 DUP 1,2,4-Trimethylbenzene	9	L2451986-9 <0.050	<0.050	RPD-NA	mg/kg	N/A	50	28-MAY-20
1,2-Dibromoethane		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	28-MAY-20
WG3330714-2 LCS 1,2,4-Trimethylbenzene	9		103.4		%		70-130	28-MAY-20
1,2-Dibromoethane			109.8		%		70-130	28-MAY-20
WG3330714-1 MB								
1,2,4-Trimethylbenzene	9		<0.050		mg/kg		0.05	28-MAY-20
1,2-Dibromoethane			<0.050		mg/kg		0.05	28-MAY-20
MET-200.2-CCMS-VA	Soil							
Batch R5100170	1							
WG3330407-4 CRM Aluminum (Al)		VA-CANMET	-TILL2 97.6		%		70-130	29-MAY-20
Antimony (Sb)			95.9		%		70-130	29-MAY-20
Barium (Ba)			99.9		%		70-130	29-MAY-20
Cadmium (Cd)			99.2		%		70-130	29-MAY-20
Chromium (Cr)			100.1		%		70-130	29-MAY-20
Cobalt (Co)			98.2		%		70-130	29-MAY-20
Lead (Pb)			96.8		%		70-130	29-MAY-20
Titanium (Ti)			105.4		%		70-130	29-MAY-20
Zinc (Zn)			99.1		%		70-130	29-MAY-20
WG3330407-3 LCS Aluminum (Al)			97.2		%		80-120	29-MAY-20
Antimony (Sb)			106.6		%		80-120	29-MAY-20
Barium (Ba)			101.6		%		80-120	29-MAY-20
Cadmium (Cd)			102.3		%		80-120	29-MAY-20
Chromium (Cr)			99.0		%		80-120	29-MAY-20

		Workorder:	L245198	6	Report Date: 0	4-JUN-20	Pa	ige 3 of 9
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-VA	Soil							
Batch R510017	D							
WG3330407-3 LCS								
Cobalt (Co)			96.1		%		80-120	29-MAY-20
Lead (Pb)			101.8		%		80-120	29-MAY-20
Titanium (Ti)			96.4		%		80-120	29-MAY-20
Zinc (Zn)			100.1		%		80-120	29-MAY-20
WG3330407-1 MB Aluminum (Al)			<50		mg/kg		50	29-MAY-20
Antimony (Sb)			<0.10		mg/kg		0.1	29-MAY-20
Barium (Ba)			<0.50		mg/kg		0.5	29-MAY-20
Cadmium (Cd)			<0.020		mg/kg		0.02	29-MAY-20
Chromium (Cr)			<0.50		mg/kg		0.5	29-MAY-20
Cobalt (Co)			<0.10		mg/kg		0.1	29-MAY-20
Lead (Pb)			<0.50		mg/kg		0.5	29-MAY-20
Titanium (Ti)			<1.0		mg/kg		1	29-MAY-20
Zinc (Zn)			<2.0		mg/kg		2	29-MAY-20
MOISTURE-VA	Soil							
Batch R509967	D							
WG3330408-3 DUP Moisture		L2451986-9 29.2	29.0		%	0.7	20	27-MAY-20
WG3330408-2 LCS Moisture			99.4		%		90-110	27-MAY-20
WG3330408-1 MB								
Moisture			<0.25		%		0.25	27-MAY-20
PAH-TMB-H/A-MS-VA	Soil							
Batch R510073	9	10151000 0						
Acenaphthene		<0.0050	<0.0050	RPD-N	A mg/kg	N/A	50	29-MAY-20
Acenaphthylene		<0.0050	<0.0050	RPD-N	A mg/kg	N/A	50	29-MAY-20
Anthracene		<0.0040	<0.0040	RPD-N	A mg/kg	N/A	50	29-MAY-20
Benz(a)anthracene		<0.020	<0.020	RPD-N	A mg/kg	N/A	50	29-MAY-20
Benzo(a)pyrene		0.017	0.021		mg/kg	21	50	29-MAY-20
Benzo(b&j)fluoranthen	e	0.031	0.033		mg/kg	6.1	50	29-MAY-20
Benzo(g,h,i)perylene		0.021	0.025		mg/kg	19	50	29-MAY-20
Benzo(k)fluoranthene		<0.010	<0.010	RPD-N	A mg/kg	N/A	50	29-MAY-20
Chrysene		<0.030	<0.020	RPD-N	A mg/kg	N/A	50	29-MAY-20
Dibenz(a,h)anthracene	9	<0.0050	<0.0050	RPD-N	A mg/kg	N/A	50	29-MAY-20

	Workorder: L2451986 Re			eport Date: ()4-JUN-20	Page 4 of 9		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-VA	Soil							
Batch R5100739								
WG3330406-3 DUP		L2451986-9						
Fluoranthene		0.031	0.031		mg/kg	0.6	50	29-MAY-20
Fluorene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	29-MAY-20
Indeno(1,2,3-c,d)pyrene		0.018	0.021		mg/kg	15	50	29-MAY-20
1-Methylnaphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	29-MAY-20
2-Methylnaphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	29-MAY-20
Naphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	29-MAY-20
Phenanthrene		0.011	0.013		mg/kg	11	50	29-MAY-20
Pyrene		0.025	0.029		mg/kg	12	50	29-MAY-20
Quinoline		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	29-MAY-20
WG3330406-5 IRM		ALS PAH RM	2		0/		00.400	
Acenaphthene			95.7		% 0/		60-130	29-MAY-20
Acenaphthylene			108.1		% 0/		60-130	29-MAY-20
Anthracene			112.4		%		60-130	29-MAY-20
Benz(a)anthracene			90.0		%		60-130	29-MAY-20
Benzo(a)pyrene			94.6		%		60-130	29-MAY-20
Benzo(b&j)fluoranthene			91.4		%		60-130	29-MAY-20
Benzo(g,h,ı)perylene			94.2		%		60-130	29-MAY-20
Benzo(k)fluoranthene			90.7		%		60-130	29-MAY-20
Chrysene			95.7		%		60-130	29-MAY-20
Dibenz(a,h)anthracene			90.5		%		60-130	29-MAY-20
Fluoranthene			88.6		%		60-130	29-MAY-20
Fluorene			92.9		%		60-130	29-MAY-20
Indeno(1,2,3-c,d)pyrene			88.5		%		60-130	29-MAY-20
1-Methylnaphthalene			91.3		%		60-130	29-MAY-20
2-Methylnaphthalene			89.3		%		60-130	29-MAY-20
Naphthalene			95.0		%		50-130	29-MAY-20
Phenanthrene			88.5		%		60-130	29-MAY-20
Pyrene			90.5		%		60-130	29-MAY-20
WG3330406-2 LCS			00.4		0/		00.400	00 MAX 00
Acenaphthelena			09.4		70 9/.		60-130	29-MAY-20
Anthracono			90.3 07 7		/0 0/		00-130	29-MAY-20
			91.1		70 0/		60-130	29-MAY-20
Benzelajantnracene			102.0		% 0/		60-130	29-MAY-20
Benzo(a)pyrene			94.6		%		60-130	29-MAY-20
Benzo(b&j)fluoranthene			100.1		%		60-130	29-MAY-20

		Workorder: L2451986			Report Date: 04-JUN-20		Page 5 of 9	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-VA	Soil							
Batch R510073	9							
WG3330406-2 LCS								
Benzo(g,h,i)perylene			102.8		%		60-130	29-MAY-20
Benzo(k)fluoranthene			95.9		%		60-130	29-MAY-20
Chrysene			100.1		%		60-130	29-MAY-20
Dibenz(a,h)anthracene	;		93.7		%		60-130	29-MAY-20
Fluoranthene			96.1		%		60-130	29-MAY-20
Fluorene			97.6		%		60-130	29-MAY-20
Indeno(1,2,3-c,d)pyren	ie		98.8		%		60-130	29-MAY-20
1-Methylnaphthalene			99.8		%		60-130	29-MAY-20
2-Methylnaphthalene			99.8		%		60-130	29-MAY-20
Naphthalene			104.9		%		50-130	29-MAY-20
Phenanthrene			97.7		%		60-130	29-MAY-20
Pyrene			99.98		%		60-130	29-MAY-20
Quinoline			102.8		%		60-130	29-MAY-20
WG3330406-1 MB								
Acenaphthene			<0.0050		mg/kg		0.005	29-MAY-20
Acenaphthylene			<0.0050		mg/kg		0.005	29-MAY-20
Anthracene			<0.0040		mg/kg		0.004	29-MAY-20
Benz(a)anthracene			<0.010		mg/kg		0.01	29-MAY-20
Benzo(a)pyrene			<0.010		mg/kg		0.01	29-MAY-20
Benzo(b&j)fluoranthen	е		<0.010		mg/kg		0.01	29-MAY-20
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	29-MAY-20
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	29-MAY-20
Chrysene			<0.010		mg/kg		0.01	29-MAY-20
Dibenz(a,h)anthracene	9		<0.0050		mg/kg		0.005	29-MAY-20
Fluoranthene			<0.010		mg/kg		0.01	29-MAY-20
Fluorene			<0.010		mg/kg		0.01	29-MAY-20
Indeno(1,2,3-c,d)pyren	ne		<0.010		mg/kg		0.01	29-MAY-20
1-Methylnaphthalene			<0.010		mg/kg		0.01	29-MAY-20
2-Methylnaphthalene			<0.010		mg/kg		0.01	29-MAY-20
Naphthalene			<0.010		mg/kg		0.01	29-MAY-20
Phenanthrene			<0.010		mg/kg		0.01	29-MAY-20
Pyrene			<0.010		mg/kg		0.01	29-MAY-20
Quinoline			<0.050		mg/kg		0.05	29-MAY-20
Surrogate: Naphthalen	e d8		100.3		%		50-130	29-MAY-20

		Workorder: L2451986		6 Re	Report Date: 04-JUN-20		Page 6 of 9	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-VA	Soil							
Batch R5100739								
WG3330406-1 MB			400.4		0/		/	
Surrogate: Phenanthre			100.1		%		60-130	29-MAY-20
Surrogate: Chrysene di	12		93.2		%		60-130	29-MAY-20
PFAS-LL-EX-LCMS-WT	Soil							
Batch R5102071								
WG3330882-3 DUP Perfluorobutane sulfoni	c acid (PEBS)	L2451986-3 ∠0.10	<0.10		ua/ka	NI/A	50	20 MAY 20
Perfluorobexane sulfon	ic acid (PEHxS)	<0.10	<0.10		ug/kg	N/A	50	29-WAT-20
Perfluorooctane sulfoni	c acid (PEOS)	<0.10	<0.10		ug/kg		50	29-WAY 20
Perfluorobutanoic acid	(PFBA)	<130	<200		ug/kg	N/A	50	29-WAT-20
Perfluoropentanoic acio		1 37	1 35		ug/kg	1 0	50	29-MAY 20
Perfluorobexanoic acid		22.8	20.6		ug/kg	1.5	50	29-MAY 20
Perfluorohentanoic acid		0.20	0.10		ug/kg	70	50	29-MAX 20
Perfluorooctanoic acid		0.20	0.15		ug/kg	1.9	50	29-MAY 20
Perfluoropopapoic acid		0.00<0.10	0.00 ∽0.10		ug/kg	N/A	50	29-IVIA 1-20
6.2 Fluorotelomer sulfo	nic acid(6:2 FTS)	117	128	RED-NA	ug/kg	0.0	50	29-MAT-20
8:2 Fluorotelomer sulfo	nic acid(8:2 FTS)	6.26	5 71		ug/kg	9.0	50	29-MAY-20
WG3330882-2 I CS		0.20	0.71		ug/kg	9.2	50	29-WAT-20
Perfluorobutane sulfoni	c acid (PFBS)		78.7		%		50-150	29-MAY-20
Perfluorohexane sulfon	ic acid (PFHxS)		66.7		%		50-150	29-MAY-20
Perfluorooctane sulfoni	c acid (PFOS)		87.3		%		50-150	29-MAY-20
Perfluorobutanoic acid	(PFBA)		N/A	LCS-H	%		50-150	29-MAY-20
Perfluoropentanoic acid	I (PFPeA)		89.3		%		50-150	29-MAY-20
Perfluorohexanoic acid	(PFHxA)		102.0		%		50-150	29-MAY-20
Perfluoroheptanoic acic	l (PFHpA)		90.0		%		50-150	29-MAY-20
Perfluorooctanoic acid	(PFOA)		115.3		%		50-150	29-MAY-20
Perfluorononanoic acid	(PFNA)		88.0		%		50-150	29-MAY-20
6:2 Fluorotelomer sulfo	nic acid(6:2 FTS)		84.0		%		50-150	29-MAY-20
8:2 Fluorotelomer sulfo	nic acid(8:2 FTS)		84.0		%		50-150	29-MAY-20
WG3330882-1 MB								
Perfluorobutane sulfoni	c acid (PFBS)		<0.10		ug/kg		0.1	29-MAY-20
Perfluorohexane sulfon	ic acid (PFHxS)		<0.10		ug/kg		0.1	29-MAY-20
Perfluorooctane sulfoni	c acid (PFOS)		<0.50		ug/kg		0.5	29-MAY-20
Perfluorobutanoic acid	(PFBA)		24	MB-LOR	ug/kg		20	29-MAY-20
Perfluoropentanoic acid	l (PFPeA)		<0.10		ug/kg		0.1	29-MAY-20
Perfluorohexanoic acid	(PFHxA)		<0.10		ug/kg		0.1	29-MAY-20

	Workorder:	L245198	6 F	Report Date: 0	4-JUN-20	Pa	ige 7 of 9
Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PFAS-LL-EX-LCMS-WT Soil							
Batch R5102071							
WG3330882-1 MB							
Perfluoroheptanoic acid (PFHpA)		<0.10		ug/kg		0.1	29-MAY-20
Perfluorooctanoic acid (PFOA)		<0.10		ug/kg		0.1	29-MAY-20
Perfluorononanoic acid (PFNA)		<0.10		ug/kg		0.1	29-MAY-20
6:2 Fluorotelomer sulfonic acid(6:2 FTS))	<0.10		ug/kg		0.1	29-MAY-20
8:2 Fluorotelomer sulfonic acid(8:2 FTS)		<0.10		ug/kg		0.1	29-MAY-20
WG3330882-4 MS Perfluorobutane sulfonic acid (PFBS)	L2451986-3	64.8		%		50-150	29-MAY-20
Perfluorohexane sulfonic acid (PFHxS)		57.6		%		50-150	29-MAY-20
Perfluorooctane sulfonic acid (PFOS)		91.9		%		50-150	29-MAY-20
Perfluorobutanoic acid (PFBA)		N/A	MS-B	%		-	29-MAY-20
Perfluoropentanoic acid (PFPeA)		N/A	MS-B	%		-	29-MAY-20
Perfluorohexanoic acid (PFHxA)		N/A	MS-B	%		-	29-MAY-20
Perfluoroheptanoic acid (PFHpA)		71.0		%		50-150	29-MAY-20
Perfluorooctanoic acid (PFOA)		97.5		%		50-150	29-MAY-20
Perfluorononanoic acid (PFNA)		80.4		%		50-150	29-MAY-20
6:2 Fluorotelomer sulfonic acid(6:2 FTS))	N/A	MS-B	%		-	29-MAY-20
8:2 Fluorotelomer sulfonic acid(8:2 FTS))	N/A	MS-B	%		-	29-MAY-20
VH-HSFID-VA Soil							
Batch R5071997							
WG3330714-3 DUP Volatile Hydrocarbons (VH6-10)	L2451986-9 <100	<100	RPD-N/	۹ mg/kg	N/A	40	29-MAY-20
WG3330714-2 LCS							
Volatile Hydrocarbons (VH6-10)		93.4		%		70-130	29-MAY-20
WG3330714-1 MB Volatile Hydrocarbons (VH6-10)		<100		mg/kg		100	29-MAY-20
VOC-M2-HSMS-VA Soil							
Batch R5071978							
WG3330714-3 DUP n-Nonane	L2451986-9 <0.050	<0.050	RPD-N/	\ mg/kg	N/A	50	28-MAY-20
WG3330714-2 LCS n-Nonane		105.6		%		70-130	28-MAY-20
WG3330714-1 MB n-Nonane		<0.050		mg/kg		0.05	28-MAY-20

		Workorder:	L245198	6 Re	port Date: 0	4-JUN-20	Pa	ge 8 of 9
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-M2-HSMS-VA	Soil							
Batch R5081765								
WG3334077-2 LCS								
n-Nonane			99.8		%		70-130	03-JUN-20
wG3334077-1 MB			<0.050		ma/ka		0.05	02 11 10 20
	Soil		20.000		mg/ng		0.05	03-3011-20
Potob PE071079	3011							
WG3330714-3 DUP		1 2451986-9						
Benzene		<0.0050	<0.0050	RPD-NA	mg/kg	N/A	40	28-MAY-20
Ethylbenzene		<0.015	<0.015	RPD-NA	mg/kg	N/A	40	28-MAY-20
Methyl t-butyl ether (MTE	BE)	<0.20	<0.20	RPD-NA	mg/kg	N/A	40	28-MAY-20
Styrene		<0.050	<0.050	RPD-NA	mg/kg	N/A	40	28-MAY-20
Toluene		<0.050	<0.050	RPD-NA	mg/kg	N/A	40	28-MAY-20
meta- & para-Xylene		<0.050	<0.050	RPD-NA	mg/kg	N/A	40	28-MAY-20
ortho-Xylene		<0.050	<0.050	RPD-NA	mg/kg	N/A	40	28-MAY-20
WG3330714-2 LCS								
Benzene			103.0		%		70-130	28-MAY-20
Ethylbenzene			108.4		%		70-130	28-MAY-20
Methyl t-butyl ether (MTE	BE)		103.8		%		70-130	28-MAY-20
Styrene			89.7		%		70-130	28-MAY-20
Toluene			95.9		%		70-130	28-MAY-20
meta- & para-Xylene			113.6		%		70-130	28-MAY-20
ortho-Xylene			92.3		%		70-130	28-MAY-20
WG3330714-1 MB			0.0050				0.005	
Denzene			<0.0050		mg/kg		0.005	28-MAY-20
Ethylpenzene			<0.015		mg/kg		0.015	28-MAY-20
	3E)		<0.20		mg/kg		0.2	28-MAY-20
Styrene			<0.050		mg/kg		0.05	28-MAY-20
			<0.050		mg/kg		0.05	28-MAY-20
meta- & para-xyiene			<0.050		тg/кg		0.05	28-MAY-20
onno-xyiene			<0.050		mg/kg		0.05	28-MAY-20

Workorder: L2451986

Report Date: 04-JUN-20

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

·	—EPH10-19 — — — — — — — — — — — — — — — — — — —	EPH19-32→		
nC10	nC19	nC32		
174'C	330°C	467°C		
346'F	626°F	873°F		
\leftarrow Gasoline \rightarrow	•	-Motor Oils/ Lube Oils/ Grease		
← Diesel/ Jet Fuels →				

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

<	EPH10-19	EPH19-32→		
nC10	nC19	nC32		
174'C	330°C	467°C		
346'F	626°F	873°F		
\leftarrow Gasoline \rightarrow	· «	—Motor Oils/ Lube Oils/ Grease ────		
← Diesel/ Jet Fuels →				

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

<	EPH10-19	– EPH19-32 ———→		
nC10	nC19	nC32		
174'C	330°C	467°C		
346'F	626°F	873°F		
\leftarrow Gasoline \rightarrow	• «Mot	or Oils/ Lube Oils/ Grease		
← Diesel/ Jet Fuels →				

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

·	—EPH10-19 — — — — — — — — — — — — — — — — — — —	EPH19-32→		
nC10	nC19	nC32		
174'C	330°C	467°C		
346'F	626°F	873°F		
\leftarrow Gasoline \rightarrow	•	-Motor Oils/ Lube Oils/ Grease		
← Diesel/ Jet Fuels →				

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

<	EPH10-19	_ EPH19-32→		
nC10	nC19	nC32		
174'C	330°C	467°C		
346'F	626°F	873°F		
\leftarrow Gasoline \rightarrow		tor Oils/ Lube Oils/ Grease ────→		
← Diesel/ Jet Fuels →				

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

<	EPH10-19	EPH19-32→		
nC10	nC19	nC32		
174'C	330°C	467°C		
346'F	626°F	873°F		
\leftarrow Gasoline \rightarrow	· •	—Motor Oils/ Lube Oils/ Grease ────→		
← Diesel/ Jet Fuels →				

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

·	—EPH10-19 — — — — — — — — — — — — — — — — — — —	EPH19-32→		
nC10	nC19	nC32		
174'C	330°C	467°C		
346'F	626°F	873°F		
\leftarrow Gasoline \rightarrow	•	-Motor Oils/ Lube Oils/ Grease		
← Diesel/ Jet Fuels →				

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

	—EPH10-19 — — — — — — — — — — — — — — — — — — —	— EPH19-32 ———→		
nC10	nC19	nC32		
174'C	330°C	467°C		
346'F	626°F	873°F		
\leftarrow Gasoline \rightarrow	→	tor Oils/ Lube Oils/ Grease ────		
← Diesel/ Jet Fuels →				

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

<	EPH10-19	EPH19-32→		
nC10	nC19	nC32		
174'C	330°C	467°C		
346'F	626°F	873°F		
\leftarrow Gasoline \rightarrow	•	──Motor Oils/ Lube Oils/ Grease ────→		
← Diesel/ Jet Fuels →				

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

<	—EPH10-19 — — — — — — — — — — — — — — — — — — —	EPH19-32→		
nC10	nC19	nC32		
174'C	330°C	467°C		
346'F	626°F	873°F		
\leftarrow Gasoline \rightarrow	·	——Motor Oils/ Lube Oils/ Grease ────→		
← Diesel/ Jet Fuels →				

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

← F	2 —→ F3 —		— F4 — →	
nC10	nC16	nC34	nC50	
174°C	287'C	481°C	575°C	
346'F	549'F	898'F	1067'F	
←Gasolin	ie→ ←	Mot	tor Oils/ Lube Oils/ Grease—	· · · · · · · · · · · · · · · · · · ·
← Diesel/ Jet Fuels →				

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

← F2-			F4→	
nC10	nC16	nC34	nC50	
174'C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
←Gasoline-	→	Motor	r Oils/ Lube Oils/ Grease——	······ ,
	Diesel/ Jet Fuels \longrightarrow			

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

<	_EPH10-19	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
\leftarrow Gasoline \rightarrow	<	──Motor Oils/ Lube Oils/ Grease ────
← Diesel/ Jet Fuels →		

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.
CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

← I	F2 →→ F3		- F4>	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
←Gasoli	ne→ ←	— Moto	r Oils/ Lube Oils/ Grease—	······ · · · · · · · · · · · · · · · ·
	— Diesel/ Jet Fuels ———→			

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

	یمہ ۱۱ ۱۱ ۱۱ ۱۱ ۱			IN OF CUSTODY RECORD/ANALYSIS REQUES											ST No. 02905 page⊥of⊋							
		1986-COFC			Proje	ct Number:	20145	856							Lab A	oratory LS	Nam	e: /rn//	, by			
2	L240	1000 000 0			Short	Title:	oird (Elean	υP	Golder A\.5	Conta	gerd	e		bbA	Address: 2021 Joucherd Hun						
Vancouver , Telephone (втіцsn Co 604) 296	olumbia, Canad -4200 Fax (6	da V5M 0 604) 298-	C4 5253	Golde AV	er E-mail Add	Iress 1: @go	golder.com							Tele	phone	/Fax:	3-	418	38	Contact A M	SER SPRINGLI
Office Na	me:							1	797	270												
$\int $	nco	UVEr				EQu EQu	IS Facility (IS upload:	Code: <u>~\</u> X	10 34		_				А	nalyse	es Rec	quired				
Turnarou Criteria:	und Time 제 CSR	e: 🗌 24 hr	Other 🕤		Regular (5 Days)	S	HH			5		۲. ۲.	FOA	R		()	· · ·				
Note: Final Reports to be issued by e-mail Quote No.:								7351	ay or) ₄ 0	ntainei	0/14	h-1	Hd	47322	hora	+12910	9/50	Stro		VT abov	
Sample (Number	Control (SCN)	Sample Location	Sa. #	Sample Depth (m)	Sample Matrix (over)	Date Sampled (D / M / Y)	Time Sampled (HH:MM)	Sample Type (over)	QAQC Code (over)	Related SCN (over)	Number of Co	LEPH/HE	CCME DHC	BTEX / VI	17- 17'E'I	Bluminum, Ant Barian, Cod	chron. C.	PF BS/PF	See come	PloH	RUSH (Select T/	Remarks (over)
02905	- 01	5570-09		0.05-	50	26/05/20	8.35	GRAB			4	X		\times	×						X	
ſ	- 02	5520-61		0.3-	1	1	8:40				4									×		
	- 03	5520-10		0.05 -			8:45				5	×		X	×			\times			X	- 12
	- 04	5520-10		0.3- 3.4			8:50				4	Í								X		
	- 05	5520-11		0.05-			9:00				4	X		\mathbf{x}	\times						\times	- ')
	- 06	5530-11		0-3-			9:10				21									X		
	- 07	5520-12		0.05-			9:30				4	\mathbf{x}		X	\times						\times	- C
	- 08	5570-12		0.3			9:35				Ц									X		- 5 -
	- 09	5520.13		0.15			10:00				4	$\overline{\times}$		\times	X						\times	- 1 <u>1</u> -
	- 10	5520-13-		0-3- 0-4			10:05	1			Ц	· · · ·			-		· · ·			X		· - -
	- 11	5570-14		0.05-			10:30				Ч	\times		\times	×	×	\times					
*	- 12	5570-14		0.3 =	y	J	10:35	1			Ч							- n		\mathbf{X}		
Sampler's S	Signature	th		Relinqu	ished by: (Compar GOL	DER	Date 26 / 05	12	026	Tin	ne	 	Re	ceived	lby: S	Signatu	ire	Con	npany
Comments: benzene	# N-	nonune, propylbenza	.suprop	子 Method	of Shipme	ent:		Waybill	No.:			Re	ceived	for	10 by			Da	te	nau	2021	Time 233 on
bor.n.	MTBE	, styrene,	1 benzen	^e Shipped	l by:			Shipme Seal Int	nt Conditie act:	on:		Te	mp (°C 21	;) Co	oler o	peneo	JC	Da p	لي. الم		24	Time
d. troma	ne there	2, 1,2 -	dichl	05-			WHITE:	Golder C	opy	YELLOW:	Lab C	ору (<u>3/</u>			6	<u>)</u> ,) ? ⁽	5,3	3°¢		ECEN
Y ON	JCE:	*											20	l I			ŗ	ŢC	Q	cu	يعنا)

ŧ.

|---+ |

				Projec	ct Number:	01458	56							Lab	oratory tLS	/Nam Bu	e: xrnal	59			
L245	986-COFC			Short	Title: Snowt	ord C	-leany Al.son Verde							Address: 8001 Lougheed Hwy							
lephone (604) 296	-4200 Fax (6	04) 298-5	5253	Golde	r E-mail Add ERDE	ress 1: @g@	older.co	m JO	E-mail Addres	ss 2:	@0	golde	r.com	Tele	ou -	25	3 - 2	188	3	Contact ANC	ER SPRING
Office Name:	Jer				EQu	IS Facility (IS upload:	Code:	17832	270-	-				A	nalvs	es Rei	nuired				
Turnaround Time Criteria: 🗵 CSR	e: □ 24 hr ⊠ CCI	ИE	□ 48 hr □ BC W	ater Quali	ty N	Other 🤉	9 Mar	Regular ງ ີ 20ວ	(5 Days) O	lers	HPA	4-1		52	5	- 7 - N	PEUA	×		ove)	
Note: Final Repo	rts to be issued	by e-mai	1		Quote No	.: 3035	1			ontair	/Hd	5	Hd	Itan.	2 rich	Colloc.	05/1	5.		LAT ab	
Sample Control Number (SCN)	Sample Location	Sa. #	Sample Depth (m)	Sample Matrix (over)	Date Sampled (D / M / Y)	Time Sampled (HH:MM)	Sample Type (over)	e QAQC Code (over)	Related SCN (over)	Number of C	TEPH/HEI	CCME PH	BTEX / U	4 17 ' 1	Plurin, R.	Chronin, Chronin,	PF (35 / PF - Heol In (See (uni	Huld	RUSH (Select 1	Remarks (over)
2906 - 01	5520-15		0.05-	50	26/5/20	11:10	GRAB)		4	X		×	X	X	X			·····	\times	
- 02	5570-15		0.3-	1	1	11:15	1		4	4									\times		_
- 03	5520-16		0.05-			11:40				4	×		\times	\times	×	X				\times	
- 04	5520-16		6.3- 0.4			11:45				4									\times		
- 05	5520-17		0.05-			12:10		FDA	02906-07	5	\times		\times	\times	\times	\times				\times	_ 1 1
- 06	5520-17		0-3-			12:15		FDA	02406-08	4									X		
- 07	5520-17		0.05-			12:10		FD	02905-05	5	\times		$ \times $	\times	\times	$ \times $				\times	C
- 08	5570-17		0,3- 0.4			12:15		FD	00706-06	Ч									\times		
- 09	5520-01-		0.15			13:00					\star		×	× -	10		×			\times	
🖌 - 10	5520-01		-0.4	- k		13:05	¥-	-											\star		
- 11													·								
- 12										-											
mpler's Signature	ah		Relinqu	ished by:	Signaturé		Compa	iny Sec	Date 26/0	5/	202	o Tir	ne		Re	ceive	d by: S	Signatu	ire	Con	npany
Comments: * 1- Noncine, isoprogri Method of Shipment: Ibenzene, 1- propylbenzene, 1,3,5						Waybil	I No.:			Re	ceive	d for La	برو ماد	1-		Da		aj	2020	Time 233	
butylbenzene, stypene, 1,2 - 2							Seal Intact:				Sooler opened by: Date Time Time U. 10 AM										

GOLDER ASSOCIATES LTD. ATTN: Alison Verde 200-2920 Virtual Way Vancouver BC V5M 0C4 Date Received:03-JUN-20Report Date:05-JUN-20 11:38 (MT)Version:FINAL

Client Phone: 604-297-2036

Certificate of Analysis

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L2455588 NOT SUBMITTED 20145856

amber Springer

Amber Springer, B.Sc Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2455588 CONTD.... PAGE 2 of 3 05-JUN-20 11:38 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2455588-1 WG 02-JUN-20 15:30 02915-01		
Grouping	Analyte			
WATER	-			
Perfluorinated Compounds	8:2 Fluorotelomer sulfonic acid(8:2 FTS) (ug/L)	<0.010		
	6:2 Fluorotelomer sulfonic acid(6:2 FTS) (ug/L)	<0.010		
	Perfluorobutane sulfonic acid (PFBS) (ug/L)	<0.020		
	Perfluorohexane sulfonic acid (PFHxS) (ug/L)	<0.020		
	Perfluorooctane sulfonic acid (PFOS) (ug/L)	<0.010		
	Perfluorobutanoic acid (PFBA) (ug/L)	<0.80		
	Perfluoroheptanoic acid (PFHpA) (ug/L)	<0.020		
	Perfluorohexanoic acid (PFHxA) (ug/L)	<0.020		
	Perfluorononanoic acid (PFNA) (ug/L)	<0.020		
	Perfluorooctanoic acid (PFOA) (ug/L)	<0.010		
	Perfluoropentanoic acid (PFPeA) (ug/L)	<0.020		

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
PFAS-DI-EX-LCMS-WT	Water	PFC's by Direct Injection LC/MS-MS	MOECC E3533 and E3457
An aliquot of water is analy	yzed for PFC	s by direct injection LC/MS/MS	
** ALS test methods may inc	orporate mod	difications from specified reference methods to i	mprove performance.
The last two letters of the a	bove test co	de(s) indicate the laboratory that performed an	alytical analysis for that test. Refer to the list below:
Laboratory Definition Coc	le Laboi	ratory Location	
WT	ALS E	NVIRONMENTAL - WATERLOO, ONTARIO, O	CANADA
Chain of Custody Numbers	s:		
GLOSSARY OF REPORT Surrogate - A compound th applicable tests, surrogates mg/kg - milligrams per kilog mg/kg wwt - milligrams per k mg/L - milligrams per litre. < - Less than. D.L The reported Detection N/A - Result not available.	TERMS at is similar i s are added t gram based c kilogram bas cilogram bas cilogram base on Limit, also Refer to qua	in behaviour to target analyte(s), but that does to samples prior to analysis as a check on reco on dry weight of sample. Sed on wet weight of sample. ed on lipid-adjusted weight of sample. o known as the Limit of Reporting (LOR). lifier code and definition for explanation.	not occur naturally in environmental samples. For very.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder:	L2455588	Re	port Date:	05-JUN-20	Pa	ge 1 of 3
Client:	GOLDER ASSOCIATES 200-2920 Virtual Way Vancouver BC V5M 0C4 Alicon Verde	LTD.						-
	Motrix	Deference	Popult	Qualifier	Unito	חמפ	Limit	Applygod
Test	Watrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PFAS-DI-EX-L	CMS-WT Water							
Batch	R5109629							
WG333555	4-3 DUP	L2455588-1	0.040					05 11 11 00
Perfluorob		<0.020	<0.010	RPD-NA	ug/L	N/A	20	05-JUN-20
Dorfluoroo	etane sulfonic acid (PFRXS)	<0.020	<0.010	RPD-NA	ug/L	N/A	20	05-JUN-20
Periluoroo		<0.010	<0.010	RPD-NA	ug/L	N/A	20	05-JUN-20
Perfluorob		<0.80	<0.10	RPD-NA	ug/L	N/A	20	05-JUN-20
Derfluereb		<0.020	<0.010	RPD-NA	ug/L	N/A	20	05-JUN-20
Perfluoron		<0.020	<0.010	RPD-NA	ug/L	N/A	20	05-JUN-20
Perfluoron	eptanoic acid (PFHpA)	<0.020	<0.010	RPD-NA	ug/L	N/A	20	05-JUN-20
Perfluoroo	ctanoic acid (PFOA)	<0.010	<0.010	RPD-NA	ug/L	N/A	20	05-JUN-20
Perfluoron	onanoic acid (PFNA)	<0.020	<0.010	RPD-NA	ug/L	N/A	20	05-JUN-20
6:2 Fluorot	elomer sulfonic acid(6:2 FTS)	<0.010	<0.010	RPD-NA	ug/L	N/A	20	05-JUN-20
8:2 Fluorot	elomer sulfonic acid(8:2 FTS)	<0.010	<0.010	RPD-NA	ug/L	N/A	20	05-JUN-20
WG333555 Perfluorobi	4-2 LCS utane sulfonic acid (PEBS)		87.3		%		50-150	05- II INI-20
Perfluoroh	exane sulfonic acid (PFHxS)		92.0		%		50-150	05- ILINI-20
Perfluoroo	ctane sulfonic acid (PEOS)		97.3		%		50-150	05-1011-20
Perfluorobi	utanoic acid (PEBA)		63.2		%		50 150	05-JUN-20
Perfluorop	entanoic acid (PEPeA)		110.7		%		50 150	05-3011-20
Perfluorob	exanoic acid (PEHxA)		112.0		0/		50-150	05-JUN-20
Perfluoroh	entanoic acid (PEHnA)		106.7		70 0/		50-150	05-JUN-20
Perfluoroo	eptanoic acid (PEOA)		102.2		70 0/		50-150	05-JUN-20
Perfluorop			105.5		70 0/.		50-150	05-JUN-20
C:2 Elucrot	ulanoic aciu (FFNA)		00.7		/0		50-150	05-JUN-20
0.2 Fluorot	colomer sulfonic acid(0.2 FTS)		90.7		70 0/		50-150	05-JUN-20
			07.3		70		50-150	05-JUN-20
WG333555 Perfluorobi	4-1 MB utane sulfonic acid (PFBS)		<0.010		ua/l		0.01	05- II INI-20
Perfluoroh	exane sulfonic acid (PFHxS)		<0.010		ua/l		0.01	05- IUN-20
Perfluoroo	ctane sulfonic acid (PEOS)		<0.010		ua/l		0.01	05- IUN-20
Perfluorobi	utanoic acid (PEBA)		<0.010		ug/L		0.01	05-JUN-20
Perfluorop	entanoic acid (PEPeA)		<0.10		ug/L		0.1	05-JUN-20
Perfluorob	exanoic acid (PFHxA)		<0.010		ug/L		0.01	05-301-20
Perfluoroh	entanoic acid (PEHnA)		<0.010		ug/L		0.01	05-JUN-20
Parfluoroo	$c_{\text{ranoic acid}}(\text{PFOA})$		<0.010		ug/L		0.01	
Derflueren	onanoic acid (PENA)		<0.010		ug/L		0.01	
6.2 Elucrot	colomor cultonic acid(6:2 ETC)		<0.010		ug/L		0.01	05-JUN-20
			<0.010		ug/L		0.01	05-JUN-20
o:∠ ⊢luorot	elother suironic acid(8:2 FTS)		<0.010		ug/L		0.01	05-JUN-20

	Workorder:	L245558	38	Report Date: (5-JUN-20	Pa	age 2 of 3
Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PFAS-DI-EX-LCMS-WT Water							
Batch R5109629							
Perfluorobutane sulfonic acid (PFBS)	L2455588-1	77.3		%		50-150	05-JUN-20
Perfluorohexane sulfonic acid (PFHxS)		80.0		%		50-150	05-JUN-20
Perfluorooctane sulfonic acid (PFOS)		86.0		%		50-150	05-JUN-20
Perfluorobutanoic acid (PFBA)		68.0		%		50-150	05-JUN-20
Perfluoropentanoic acid (PFPeA)		100.7		%		50-150	05-JUN-20
Perfluorohexanoic acid (PFHxA)		103.3		%		50-150	05-JUN-20
Perfluoroheptanoic acid (PFHpA)		96.0		%		50-150	05-JUN-20
Perfluorooctanoic acid (PFOA)		94.7		%		50-150	05-JUN-20
Perfluorononanoic acid (PFNA)		99.3		%		50-150	05-JUN-20
6:2 Fluorotelomer sulfonic acid(6:2 FTS)		96.0		%		50-150	05-JUN-20
8:2 Fluorotelomer sulfonic acid(8:2 FTS)		97.3		%		50-150	05-JUN-20

Workorder: L2455588

Report Date: 05-JUN-20

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

			СН		AIN OF CUSTODY RECORD/ANALYSIS REQUES										No. 02915 page <u>1</u> of <u>1</u>					
Go	lder ciates			Projec	t Number:	14585	6						Labo	oratory Na ALS	me: Bur	inaby				
200 – 2920 Virtual W	ay			Short	Title:	bird	Clea	NUP	Golder	Conta	ct: Verd	L	Add	ress: POB	104	cheed	Hur			
Vancouver, British Co	lumbia, Canad 4200 Eax (f	da V5M 00	C4	Golde	r E-mail Add	ress 1:		Golder	E-mail Addre	ss 2:	- -		Tele	phone/Fax		3	Contac	t:		
Office Name:	4200 T 8X (C			AU		@g@	blder.cor	n 30		T	@g		om (- 204	800	-410	O HAD	o springer		
	ave				EQu	IS Facility (<u>اح : ode</u>	1837	270	_										
Turnaround Time Criteria: 🖸 CSR	: 24 hr ¹ CC	ME	□ 48 hr □ BC W	ater Quali	EQU 72 hr ty	Other T		Regular ((5 Days)	sis	۲. ۲. بهر			nalyses R	equired		ve)			
Note: Final Report	ts to be issued	d by e-mai	il		Quote No	28034	<u>ร</u> ิเ			ontaine	SV 14		-	4 .			rAT abo			
Sample Control Number (SCN)	Sample Location	Sa. #	Sample Depth (m)	Sample Matrix (over)	Date Sampled (D / M / Y)	Time Sampled (HH:MM)	Sample Type (over)	QAQC Code (over)	Related SCN (over)	Number of C	PF1351 PT(- Health		•			-	RUSH (Select 1	Remarks (over)		
02915 -01	CUX-01			ws	2/6/20	15:30	Grab			1	X									
- 02																				
- 03			<u> </u>																	
- 04								L												
- 05			<u> </u>									l	Ι		ļ]				
- 06			1		L2455588	B-COFC		 		ļ	1			~ 1	I			· · · · · · · · · · · · · · · · · · ·		
- 07			<u> </u>	··				r – – –				< (
- 08															j			· · · · · · · · · · · · · · · · · · ·		
- 09																				
- 10																				
- 11																				
- 12	-	1																		
Sampler's Signature:	h		Relinqui	ished by:	Signature		Compar	žer-	Date 2/6	,12	0	Time		Receiv	ed by:	Signature	e Co	mpany		
Comments:			Method	of Shipme	ent:		Waybill	No.:			Red	ceived for	r Lab by:	()-	J De	^{at} gun 0	3 2020	Time 840am		
	:		Shipped	l by:		_	Shipme Seal Int	nt Conditi act:	on:		Ter	^{np (°C)} ろ,4	Cooler o	ppened by	: Da		ne	Time 10:25AM		
						WHITE:	Golder C	бору	YELLOW:	Lab (Сору			IC	n Di	tab	es			

÷

GOLDER ASSOCIATES LTD. ATTN: Alison Verde 200-2920 Virtual Way Vancouver BC V5M 0C4 Date Received:11-JUN-20Report Date:18-JUN-20 13:08 (MT)Version:FINAL REV. 2

Client Phone: 604-297-2036

Certificate of Analysis

Lab Work Order #: L2459618

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 20145856 02925, 02929

Comments:

18-JUN-2020 TCLP BETX data is included for L2459618-11.

amber Springer

Amber Springer, B.Sc Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2459618 CONTD.... PAGE 2 of 11 18-JUN-20 13:08 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2459618-2 SO 10-JUN-20 12:52 02925-02	L2459618-4 SO 10-JUN-20 12:52 02925-04	L2459618-5 SO 10-JUN-20 12:52 02925-05	L2459618-8 SO 10-JUN-20 12:52 02925-08	L2459618-9 SO 10-JUN-20 12:52 02925-09
Grouping	Analyte					
SOIL						
Physical Tests	% Moisture (%)					
	Moisture (%)	23.5	15.5	16.3	15.9	18.7
	pH (1:2 soil:water) (pH)		6.51	6.93		
Metals	Cadmium (Cd) (mg/kg)		0.203	0.116		
	Chromium (Cr) (mg/kg)		45.6	52.6		
Volatile Organic Compounds	VOC Sample Container	Field MeOH				
	Benzene (mg/kg)		<0.0050	0.0074	<0.0050	<0.0050
	1,2-Dibromoethane (mg/kg)		<0.050	<0.050	<0.050	<0.050
	Ethylbenzene (mg/kg)		<0.015	<0.015	<0.015	<0.015
	Methyl t-butyl ether (MTBE) (mg/kg)		<0.20	<0.20	<0.20	<0.20
	n-Nonane (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Styrene (mg/kg)		<0.050	<0.050	<0.050	<0.050
	Toluene (mg/kg)		<0.050	<0.050	<0.050	<0.050
	ortho-Xylene (mg/kg)		<0.050	<0.050	<0.050	<0.050
	meta- & para-Xylene (mg/kg)		<0.050	<0.050	<0.050	<0.050
	Xylenes (mg/kg)		<0.075	<0.075	<0.075	<0.075
	Surrogate: 4-Bromofluorobenzene (SS) (%)	91.3	85.6	93.3	94.4	80.6
	Surrogate: 1,4-Difluorobenzene (SS) (%)	90.8	88.2	93.3	98.8	81.4
Hydrocarbons	EPH10-19 (mg/kg)	<200	<200	<200	<200	<200
	EPH19-32 (mg/kg)	<200	<200	<200	<200	<200
	LEPH (mg/kg)	<200	<200	<200	<200	<200
	HEPH (mg/kg)	<200	<200	<200	<200	<200
	Volatile Hydrocarbons (VH6-10) (mg/kg)		<100	<100	<100	<100
	VPH (C6-C10) (mg/kg)		<100	<100	<100	<100
	Surrogate: 2-Bromobenzotrifluoride (%)	85.5	86.5	86.7	82.5	83.3
	Surrogate: 3,4-Dichlorotoluene (SS) (%)		107.0	110.8	72.7	96.4
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Acenaphthylene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Anthracene (mg/kg)	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
	Benz(a)anthracene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(a)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(b&j)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(b+j+k)fluoranthene (mg/kg)	<0.015	<0.015	<0.015	<0.015	<0.015
	Benzo(g,h,i)perylene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Chrysene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010

L2459618 CONTD.... PAGE 3 of 11 18-JUN-20 13:08 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2459618-10 SO 10-JUN-20 12:52 02925-10	L2459618-11 SO 10-JUN-20 12:52 02925-11	L2459618-12 SO 10-JUN-20 12:52 02925-12	L2459618-13 SO 10-JUN-20 12:52 02929-01	L2459618-14 SO 10-JUN-20 12:52 02929-02
Grouping	Analyte	-				
SOIL						
Physical Tests	% Moisture (%)				18.6	21.3
	Moisture (%)	25.2	21.8	21.8		
	pH (1:2 soil:water) (pH)	7.13	7.20	7.50		
Metals	Cadmium (Cd) (mg/kg)	0.227	0.121	0.218		
	Chromium (Cr) (mg/kg)	58.2	53.8	45.0		
Volatile Organic Compounds	VOC Sample Container					
	Benzene (mg/kg)	0.818	1.93	0.0115		
	1,2-Dibromoethane (mg/kg)	<0.60	<0.90	<0.050		
	Ethylbenzene (mg/kg)	25.5	49.5	0.270		
	Methyl t-butyl ether (MTBE) (mg/kg)	<0.20	<0.20	<0.20		
	n-Nonane (mg/kg)	233	304	1.25		
	Styrene (mg/kg)	0.057	0.173	<0.050		
	Toluene (mg/kg)	15.1	28.3	0.145		
	ortho-Xylene (mg/kg)	50.9	97.3	0.615		
	meta- & para-Xylene (mg/kg)	103	200	1.16		
	Xylenes (mg/kg)	154	298	1.78		
	Surrogate: 4-Bromofluorobenzene (SS) (%)	92.0	116.0	116.1		
	Surrogate: 1,4-Difluorobenzene (SS) (%)	80.0	104.0	103.7		
Hydrocarbons	EPH10-19 (mg/kg)	11300	24000	1510		
	EPH19-32 (mg/kg)	270	310	<200		
	LEPH (mg/kg)	11300	24000	1510		
	HEPH (mg/kg)	270	310	<200		
	Volatile Hydrocarbons (VH6-10) (mg/kg)	2440	3910	<100		
	VPH (C6-C10) (mg/kg)	2240	3530	<100		
	Surrogate: 2-Bromobenzotrifluoride (%)	Not Reportable	Not Reportable	102.4		
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	Not Reportable	Not Reportable	108.2		
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.60	<2.0	<0.20		
	Acenaphthylene (mg/kg)	DLCI <0.20	olci <0.40	DLCI <0.030		
	Anthracene (mg/kg)	<0.030	DLQ <0.090	DLQ <0.0070		
	Benz(a)anthracene (mg/kg)	<0.010	<0.040	<0.010		
	Benzo(a)pyrene (mg/kg)	<0.010	<0.010	<0.010		
	Benzo(b&j)fluoranthene (mg/kg)	<0.010	<0.010	<0.010		
	Benzo(b+j+k)fluoranthene (mg/kg)	<0.015	<0.015	<0.015		
	Benzo(g,h,i)perylene (mg/kg)	<0.010	<0.010	<0.010		
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010	<0.010		
	Chrysene (mg/kg)	<0.010	<0.010	<0.010		

	Sample ID Description Sampled Date Sampled Time Client ID	L2459618-15 SO 10-JUN-20 12:52 02929-03		
Grouping	Analyte			
SOIL				
Physical Tests	% Moisture (%)	23.8		
	Moisture (%)			
	pH (1:2 soil:water) (pH)			
Metals	Cadmium (Cd) (mg/kg)			
	Chromium (Cr) (mg/kg)			
Volatile Organic Compounds	VOC Sample Container			
	Benzene (mg/kg)			
	1,2-Dibromoethane (mg/kg)			
	Ethylbenzene (mg/kg)			
	Methyl t-butyl ether (MTBE) (mg/kg)			
	n-Nonane (mg/kg)			
	Styrene (mg/kg)			
	Toluene (mg/kg)			
	ortho-Xylene (mg/kg)			
	meta- & para-Xylene (mg/kg)			
	Xylenes (mg/kg)			
	Surrogate: 4-Bromofluorobenzene (SS) (%)			
	Surrogate: 1,4-Difluorobenzene (SS) (%)			
Hydrocarbons	EPH10-19 (mg/kg)			
	EPH19-32 (mg/kg)			
	LEPH (mg/kg)			
	HEPH (mg/kg)			
	Volatile Hydrocarbons (VH6-10) (mg/kg)			
	VPH (C6-C10) (mg/kg)			
	Surrogate: 2-Bromobenzotrifluoride (%)			
	Surrogate: 3,4-Dichlorotoluene (SS) (%)			
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)			
	Acenaphthylene (mg/kg)			
	Anthracene (mg/kg)			
	Benz(a)anthracene (mg/kg)			
	Benzo(a)pyrene (mg/kg)			
	Benzo(b&j)fluoranthene (mg/kg)			
	Benzo(b+j+k)fluoranthene (mg/kg)			
	Benzo(g,h,i)perylene (mg/kg)			
	Benzo(k)fluoranthene (mg/kg)			
	Chrysene (mg/kg)			

L2459618 CONTD.... PAGE 5 of 11 18-JUN-20 13:08 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2459618-2 SO 10-JUN-20 12:52 02925-02	L2459618-4 SO 10-JUN-20 12:52 02925-04	L2459618-5 SO 10-JUN-20 12:52 02925-05	L2459618-8 SO 10-JUN-20 12:52 02925-08	L2459618-9 SO 10-JUN-20 12:52 02925-09
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Dibenz(a,h)anthracene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Fluorene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	1-Methylnaphthalene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	2-Methylnaphthalene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Naphthalene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Phenanthrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Quinoline (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Surrogate: Chrysene d12 (%)	106.4	110.7	107.6	100.0	99.1
	Surrogate: Naphthalene d8 (%)	98.7	104.1	99.6	95.2	95.1
	Surrogate: Phenanthrene d10 (%)	100.8	105.9	102.7	96.4	95.2
	B(a)P Total Potency Equivalent (mg/kg)	<0.020	<0.020	<0.020	<0.020	<0.020
	IACR (CCME)	<0.15	<0.15	<0.15	<0.15	<0.15
Perfluorinated Compounds	8:2 Fluorotelomer sulfonic acid(8:2 FTS) (mg/kg)					
	6:2 Fluorotelomer sulfonic acid(6:2 FTS) (mg/kg)					
	Perfluorobutane sulfonic acid (PFBS) (mg/kg)					
	Perfluorohexane sulfonic acid (PFHxS) (mg/kg)					
	Perfluorooctane sulfonic acid (PFOS) (mg/kg) Perfluorobutanoic acid (PFBA) (ma/kg)					
	Perfluoroheptanoic acid (PFHpA) (mg/kg)					
	Perfluorobexanoic acid (PEHxA) (mg/kg)					
	Perfluorononanoic acid (PENA) (mg/kg)					
	Perfluorooctanoic acid (PEQA) (mg/kg)					
	Perfluoropentapoic acid (PEPeA) (mg/kg)					

L2459618 CONTD.... PAGE 6 of 11 18-JUN-20 13:08 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2459618-10 SO 10-JUN-20 12:52 02925-10	L2459618-11 SO 10-JUN-20 12:52 02925-11	L2459618-12 SO 10-JUN-20 12:52 02925-12	L2459618-13 SO 10-JUN-20 12:52 02929-01	L2459618-14 SO 10-JUN-20 12:52 02929-02
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Dibenz(a,h)anthracene (mg/kg)	<0.0050	<0.0050	<0.0050		
	Fluoranthene (mg/kg)	<0.010	DLQ <0.020	<0.010		
	Fluorene (mg/kg)	1.00	2.65	0.169		
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.010	<0.010	<0.010		
	1-Methylnaphthalene (mg/kg)	9.46	23.9	1.66		
	2-Methylnaphthalene (mg/kg)	13.6	34.3	2.44		
	Naphthalene (mg/kg)	DLQ <9.0	DLQ <30	DLQ <2.0		
	Phenanthrene (mg/kg)	0.328	0.862	0.061		
	Pyrene (mg/kg)	0.023	0.044	<0.010		
	Quinoline (mg/kg)	<2.0	DLCI <4.0	<0.30		
	Surrogate: Chrysene d12 (%)	86.0	106.4	102.8		
	Surrogate: Naphthalene d8 (%)	80.5	120.0	101.7		
	Surrogate: Phenanthrene d10 (%)	85.0	106.0	101.2		
	B(a)P Total Potency Equivalent (mg/kg)	<0.020	<0.020	<0.020		
	IACR (CCME)	<0.15	<0.15	<0.15		
Perfluorinated Compounds	8:2 Fluorotelomer sulfonic acid(8:2 FTS) (mg/kg)				<0.00010	<0.00010
	6:2 Fluorotelomer sulfonic acid(6:2 FTS) (mg/kg)				<0.00015	0.00035
	Perfluorobutane sulfonic acid (PFBS) (mg/kg)				<0.00010	<0.00010
	Perfluorohexane sulfonic acid (PFHxS) (mg/kg)				<0.00010	<0.00010
	(mg/kg)				<0.00035	<0.00035
	Perfluorobutanoic acid (PFBA) (mg/kg)				<0.30	<0.30
	Periluoroneptanoic acid (PEHpA) (mg/kg)				<0.00010	<0.00010
					0.00017	0.00016
	Perhuorononanoic acid (PFNA) (mg/kg)				<0.00010	<0.00010
	Periluorooctanoic acid (PFOA) (mg/kg)				<0.00010	<0.00010
					0.00017	0.00011

	Sample ID Description Sampled Date Sampled Time Client ID	L2459618-15 SO 10-JUN-20 12:52 02929-03		
Grouping	Analyte			
SOIL				
Polycyclic Aromatic Hydrocarbons	Dibenz(a,h)anthracene (mg/kg)			
	Fluoranthene (mg/kg)			
	Fluorene (mg/kg)			
	Indeno(1,2,3-c,d)pyrene (mg/kg)			
	1-Methylnaphthalene (mg/kg)			
	2-Methylnaphthalene (mg/kg)			
	Naphthalene (mg/kg)			
	Phenanthrene (mg/kg)			
	Pyrene (mg/kg)			
	Quinoline (mg/kg)			
	Surrogate: Chrysene d12 (%)			
	Surrogate: Naphthalene d8 (%)			
	Surrogate: Phenanthrene d10 (%)			
	B(a)P Total Potency Equivalent (mg/kg)			
	IACR (CCME)			
Perfluorinated Compounds	8:2 Fluorotelomer sulfonic acid(8:2 FTS) (mg/kg)	<0.00010		
	6:2 Fluorotelomer sulfonic acid(6:2 FTS) (mg/kg)	<0.00010		
	Perfluorobutane sulfonic acid (PFBS) (mg/kg)	<0.00010		
	Perfluorohexane sulfonic acid (PFHxS) (mg/kg)	<0.00010		
	Perfluorooctane sulfonic acid (PFOS) (mg/kg)	<0.00035		
	Perfluorobutanoic acid (PFBA) (mg/kg)	<0.30		
	Perfluoroheptanoic acid (PFHpA) (mg/kg)	<0.00010		
	Perfluorohexanoic acid (PFHxA) (mg/kg)	<0.00010		
	Perfluorononanoic acid (PFNA) (mg/kg)	<0.00010		
	Perfluorooctanoic acid (PFOA) (mg/kg)	<0.00010		
	Perfluoropentanoic acid (PFPeA) (mg/kg)	<0.00010		

L2459618 CONTD.... PAGE 8 of 11 18-JUN-20 13:08 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2459618-11 SO 10-JUN-20 12:52 02925-11		
Grouping	Analyte			
WASTE				
Waste Characterizations	Benzene (mg/L)	0.0242		
	Toluene (mg/L)	0.406		
	Ethylbenzene (mg/L)	0.305		
	meta- & para-Xylene (mg/L)	1.36		
	ortho-Xylene (mg/L)	0.742		
	Xylenes (mg/L)	2.10		

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Laboratory Control Sample	6:2 Fluorotelomer sulfonic acid(6:2 FT	LCS-H	L2459618-13, -14, -15
Laboratory Control Sample	Perfluorobutanoic acid (PFBA)	LCS-H	L2459618-13, -14, -15
Method Blank	6:2 Fluorotelomer sulfonic acid(6:2 FT	MB-LOR	L2459618-13, -14, -15
Matrix Spike	Perfluorobutanoic acid (PFBA)	MS-B	L2459618-13, -14, -15

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLB	Detection Limit Raised. Analyte detected at comparable level in Method Blank.
DLCI	Detection Limit Raised: Chromatographic Interference due to co-elution.
DLQ	Detection Limit raised due to co-eluting interference. GCMS qualifier ion ratio did not meet acceptance criteria.
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
SMI	Surrogate recovery could not be measured due to sample matrix interference.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
EPH-TUMB-FID-VA	Soil	EPH in Solids by Tumbler and GCFID	BC MOE EPH GCFID
Analysis is in accordance v samples are extracted with chromatography with flame equivalent to Light and Hea	vith BC MOE a 1:1 mixture ionization de avy Extractabl	Lab Manual method "Extractable Petroleum Hydrocarb of hexane and acetone using a rotary extraction techn tection (GC-FID). EPH results include Polycyclic Arom e Petroleum Hydrocarbons (LEPH/HEPH).	ons in Solids by GC/FID", v2.1, July 1999. Soil ique modified from EPA 3570 prior to gas natic Hydrocarbons (PAH) and are therefore not
FUELS-HSMS-VA	Soil	VOCs in soil by Headspace GCMS	EPA 5035A/5021A/8260C
The soil methanol extract is gas chromatograph. Targe	added to wa t compound o	ter and reagents, then heated in a sealed vial to equilib concentrations are measured using mass spectrometry	orium. The headspace from the vial is transferred into a detection.
LEPH/HEPH-CALC-VA	Soil	LEPHs and HEPHs	BC MOE LEPH/HEPH
LEPHs and HEPHs are me PAH concentrations from E	asures of Lig PH10-19 and	ht and Heavy Extractable Petroleum Hydrocarbons in s I EPH19-32, as per the BC Lab Manual LEPH/HEPH ca	oil. Results are calculated by subtraction of applicable alculation procedure.
LEPHs = EPH10-19 minus	Naphthalene	and Phenanthrene.	
HEPHs = EPH19-32 minus c,d)pyrene, and Pyrene.	Benz(a)anth	racene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzol	(k)fluoranthene, Dibenz(a,h)anthracene, indeno(1,2,3-
MET-200.2-CCMS-VA	Soil	Metals in Soil by CRC ICPMS	EPA 200.2/6020A (mod)
Soil/sediment is dried, disa nitric and hydrochloric acid	ggregated, ar s. Instrumenta	nd sieved (2 mm). Strong Acid Leachable Metals in the al analysis is by Collision / Reaction Cell ICPMS.	e <2mm fraction are solubilized by heated digestion with
Limitations: This method is partially recovered (matrix of Volatile forms of sulfur (e.g	s intended to l dependent), ir . sulfide, H2S	liberate environmentally available metals. Silicate mine including AI, Ba, Be, Cr, S, Sr, Ti, TI, V, W, and Zr. Eler b) may be excluded if lost during sampling, storage, or c	erals are not solubilized. Some metals may be only mental Sulfur may be poorly recovered by this method. digestion.
MOISTURE-VA	Soil	Moisture content	CCME PHC in Soil - Tier 1 (mod)
This analysis is carried out	gravimetrical	ly by drying the sample at 105 C for a minimum of two	hours.
MOISTURE-WT	Soil	% Moisture	CCME PHC in Soil - Tier 1 (mod)
PAH-TMB-H/A-MS-VA	Soil	PAH - Rotary Extraction (Hexane/Acetone)	EPA 3570/8270
This analysis is carried out the United States Environm sediment/soil with a 1:1 miz column gas chromatograph the sample matrix prevent reported as part of the benz	using proced nental Protect xture of hexar ny with mass s accurate quar zo(b)fluoranth	ures adapted from "Test Methods for Evaluating Solid V ion Agency (EPA). The procedure uses a mechanical s ne and acetone. The extract is then solvent exchanged spectrometric detection (GC/MS). Surrogate recoveries ntitation. Because the two isomers cannot be readily ch ene parameter.	Waste" SW-846, Methods 3570 & 8270, published by shaking technique to extract a subsample of the to toluene. The final extract is analysed by capillary may not be reported in cases where interferences from romatographically separated, benzo(j)fluoranthene is
Benzo(a)pyrene Total Pote carcinogenic unsubstituted	ncy Equivaler PAHs, and is	nts [B(a)P TPE] represents the sum of estimated cance calculated as per the CCME PAH Soil Quality Guidelir	er potency relative to B(a)P for all potentially nes reference document (2010).
PFAS-LL-EX-LCMS-WT	Soil	Perfluorinated Compounds by LC/MS-MS	MOECC E3506

Soil sample was extracted with alkaline organic solvent. Dilute organic extract with water (10% organic/water) then passed through SPE. Final extract

of Perfluorinated compounds are analyzed by LC/MS-MS.

PH-12.4A Soil PH In Soil (1-2 Soil/Water Extraction) BC WLAP METHOD: PH, ELECTROMETRIC, SOIL This starwing is carind out in accordance with procedures described in "JH. Electometric in Soil and Sediment - Prescriptive Method: Nex: 2005, starwing with descripted Mini 10, starwing with the descripted Mini 10, starwing with the descripted Mini 10, starwing with the descripted PH accords are then added to water and reagents, then heated in a sealed vial to equilibrium. The headspace GCMS EC Env. Lab Manual (VH in Solids by GC/PD (VH in Solids by GC/PD). The method with a starwing dor Valatile Hydrocarbons (VH b) segnitary column gas dromatography with fame-solication detection (GC/PD). The method with a save are carried out in accordance with the British Columbia Ministry of Environment, Lands and Parks (EC/MELT) Analytical Method for Contamined Stars Valatile Hydrocarbons in Solids by GC/PD (Verlat) 1999. VH-SURF, FDVA Soil VH Surrogates for Soils EC Env. Lab Manual (VH in Solids) VpCCM2-HSMSVA Soil VI Surgates for Soils EPA 5035A/5021A/8260C The soil methanel extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace form the vial is transferred into z gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VpCCAL-HSMSVA Soil VOCS is noil by Headspace GCMS EPA 5035A/5021A/8260C The soil methanel extract is added to water and reagen		,		
This analysis is carried out in accordance with procedures described in 'pH, Electrometric in Soil and Sediment - Processorptive Method', Rev. 2005. Section B Physical, Inorganic and Misc. Constituents, BC Environmental Laboratory Manual. The proceedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1.2 ratio of sediment to water. The pH of the solution is then measured using a standard pH prote. WH-HSPID-VA Soil VH in soil by Headspace GCPID B C Env. Lab Manual (VH in Solids) This analysis involves the variation of a subsample of the sedimental obstration and VH analysis are carried out in accordance with the British Columbia Ministry of Environment, Lands and Parks (BCMELP) Analytical Method for Contaminated Sites 'Volatile Hydrocarbons in Solids by GC/FID (Version 2.1 July 1999). VPSURE-RTID-VA Soil VH Surrogates for Soils BE C Env. Lab Manual (VH in Solids) The soil methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Targie compound concentrations are measured using mass spectrometry detection. VPC7-LHSME-VA Soil VCCs in soil by Headspace GCMS EPA 5035A/3021A/8260C The soil methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Targie compound concentrations are measured using mass spectrometry detection. VPC7-LHSME-VA Soil VCC1 water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Targie compound concentrations are measured using mass spectrometry detection. VPC7-LHSME VA Soil VCC1 water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Targie compound concentrations are measured using mass spectrometry detection. VPC7-LHSME VA Soil VCC1 water and theadspace f	PH-1:2-VA	Soil	pH in Soil (1:2 Soil:Water Extraction)	BC WLAP METHOD: PH, ELECTROMETRIC, SOIL
VH-H SPL-VA Sol VH in solid by Headspace GCFID BC Env. Lab Manual (VH in Solids) This analysis involves the extraction of a subannel of the sodimension with methanol. Aliqued or the methanol extraction adjustion of extraining methanol extraction and VH in Anysis are carried out in accordance with the British Columbia Ministry of Environment, Lands and Parks (BCMELP) Analytical Method for Contaminated Sites "Volatile Hydrocarbons in Solids by GC/FID. Version 21.1 July 1998). Sol VH Surrogates for Solis BC Env. Lab Manual (VH in Solids) Version 21.1 July 1998). Sol VH Surrogates for Solis BC Env. Lab Manual (VH in Solids) Version 21.1 July 1998). Sol VH Surrogates for Solis BC Env. Lab Manual (VH in Solids) Vorsion 21.1 July 1998). Sol VH Surrogates for Solis BC Env. Lab Manual (VH in Solids) VOC7L-LHSMS-VA Sol VH CC in solib pHeadspace GCMS EPA 6036A/5021 /#2800C The sol methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOC7-LLPVA Wate BT EX to Wate by TCP USEP A Method 1311 The sol methanol extract is added to water and reagents, iten heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chrom	This analysis is carried out Section B Physical, Inorgar sieved (No. 10 / 2mm) sam standard pH probe.	in accordar nic and Miso ple with dei	nce with procedures described in "pH, Electrometric c. Constituents, BC Environmental Laboratory Man ionized/distilled water at a 1:2 ratio of sediment to v	c in Soil and Sediment - Prescriptive Method", Rev. 2005, ual. The procedure involves mixing the dried (at <60°C) and water. The pH of the solution is then measured using a
This analysis involves the extraction of a subsample of the sediment/soll with methanol. Aliguots of the methanol extract are then added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is analyzed for Volatile Hydrocarbons (VH) by capitally column gas chromatography with fiame-ionization detection (GC/FID). The methanol extraction and VH analysis are carried out in accordance with the British Columbia Ministry of Environment, Lands and Parks (BCMELP) Analytical Method for Contaminated Sites 'Volatile Hydrocarbons in Solids by GC/FID (Version 2.1 July 1999). VI+SURF.FID-VA Soli VI Surrogates for Solis BC Env. Lab Manual (VH in Solids) VOC-M2-HSMS-VA Soli Misc VOCs in soil by Headspace GCMS EPA 5035A/5021A/8260C. The soli methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into <i>c</i> gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOC7-L-HSMS-VA Wate BTEX in Waste by TCLP USEPA Method 1311 This analysis is carried out in accordance with the extraction procedure outlined in Test Methods for Evaluating Solid Waste - Physical/Chemical Method Volume 1C' SW-946 EPA Method 1311. This analysis to readorduce the detator at a 20:11 (guid to solid artific to for 50 at Duru suing extraction full at 1. Following extraction, the equilibrium. The headspace for Method 1311 Methods Volume 1C' SW-946 EPA Method 1311. published by the United States Environmental Protection. Wetractated in a Zeno Headspace Extractor at 20:11 (guid to solid artific to for 20 at Durus using extraction full at 1. Following extraction, the equilibrium. The headspace for Solis UC/CPA Soli VPH H VH minus select aromatics BC MOE VPH WPH measures Volatile Petroleum Hydrocarbons in soli. Results are calculated by subtraction of specific Monocyclic Aromatic Hydrocarbons from VHE-10, as per the BC Lab Manual VPH calculation procedure. WHE vHE-10 minus Benzene, Tulybenzen	VH-HSFID-VA	Soil	VH in soil by Headspace GCFID	BC Env. Lab Manual (VH in Solids)
VH-SURR-FID-VA Soil VH Surrogates for Soils BC Env. Lab Manual (VH in Solids) VOC-M2-HSMS-VA Soil Misc VOCs in soil by Headspace GCMS EPA 5036A/5021/4/8260C The soil methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOC7-LHSMS-VA Soil VOCs in soil by Headspace GCMS EPA 5036A/5021/4/8260C The soil methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOC7-TCLP-VA Waste BTEX in Waste by TCLP USEPA Method 1311 This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Soild Waste - Physical/Chemical Methods Volume 1C" SW-846 EPA Method 1311 (puid to soild states Environmental Protection Agency (EPA). A representative sample equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOC7-SURR-MS-VA Soil VOC7 and/or VOC Surrogates for Soils EPA 5036A/5021/48260C VPH-CALC-VA Soil VDC7 and/or VOC Surrogates for Soils EPA 5036A/5021/48260C VPH-CALC-VA Soil VDC7 and/or	This analysis involves the e reagents, then heated in a s chromatography with flame Columbia Ministry of Enviro (Version 2.1 July 1999).	extraction of sealed vial -ionization onment, Lar	f a subsample of the sediment/soil with methanol. A to equilibrium. The headspace from the vial is ana detection (GC/FID). The methanol extraction and V nds and Parks (BCMELP) Analytical Method for Co	Aliquots of the methanol extract are then added to water and alyzed for Volatile Hydrocarbons (VH) by capillary column gas /H analysis are carried out in accordance with the British antaminated Sites "Volatile Hydrocarbons in Solids by GC/FID"
VOC-M2-HSMS-VA Soil Misc VOCs in soil by Headspace GCMS EPA 5035A/5021A/8260C The soil methanol extract is added to water and reagents, then heads in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOC7-L-HSMS-VA Soil VOCs in soil by Headspace GCMS EPA 5035A/5021A/8260C The soil methanol extract is added to water and reagents, then heat din a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOC7-TCLP-VA Waste BTEX in Waste by TCLP USEPA Method 1311 This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Vole Viet Sepa et a 20.1 liquid to solids ratio for 16 to 20 hours using extraction fluid #1. Following extraction, the liquid extract is separated from the solid phase by filtation and preserved. The extract, with added reagents, is then heated in a seeled vial to equilibrium. The headspace form the vial is transferred into a gas chromatograph. Target compour concentrations are measured using mass spectrometry detection. VOC7.VOC-SURR-MS-VA Soil VOC7 and/or VOC Surrogates for Soils EPA 5035A/5021A/8260C VPH-CALC-VA Soil VPH is VH minus select aromatics BC MOE VPH VPHs measures volatile Patroleum Hydrocabons in soil. Results are calculated by sub	VH-SURR-FID-VA	Soil	VH Surrogates for Soils	BC Env. Lab Manual (VH in Solids)
The soli methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOC7-I-HSNS-VA Soil VOCs in soil by Headspace GOMS EPA 5035A/5021A/8260C The soil methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOC7-ICH-VA Waste BTEX in Waste by TCLP USEPA Method 1311 This analysis is carried out in accordance with the extraction procedure outlined in 'Test Methods for Valuating Solid Waste - Physical/Chemical Methods Young C'SW-A86 EPA Method 1311, published by the United States Environmental Protection Agency (EPA). A representative sample of waste is extracted in a Zero Headspace Extractor at a 20-1 liquid to solids ratio for 16 to 20 hours using extraction the solid phase by filtration and preserved. The extract, with added reagents, is then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOC7VOCSURR-MS-VA Soil VOC7 and/or VOC Surrogates for Soils EPA 5035A/5021A/8260C VPH-CALC-VA Soil VPH is VH minus select aromatics BC MOE VPH VPHs measures Volatile Petroleum Hydrocarbons in soil. Results are calculated by subtraction of specific Monocyclic Aromatic Hydrocarbons from VHe-10 amits Benzene, Toluene, Ethylbenzene, Xylenes, and Syrene XYLENES-CALC-VA Soil Sum of Xylene Isomer Concentrations CALCULATION Calculation of Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. XYLENES-TCLP-CALC-V	VOC-M2-HSMS-VA	Soil	Misc VOCs in soil by Headspace GCMS	EPA 5035A/5021A/8260C
VOC7-L-HSMS-VA Soil VOCs in soil by Headspace GCMS EPA 5035A/5021A/8260C The soil methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a sandard vial to equilibrium. The headspace from the vial is transferred into a sandard vial to equilibrium. The headspace from the vial is transferred into a sandard vial to equilibrium. The sheadspace from the vial the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Void E PA Method 1311, uplicable dby the United States Environmental Protection Agency (EPA). A representative sample of waste is extracted in a 2ea Headspace Extractor at a 20:1 liquid extraction approxemental Protection Agency (EPA). A representative sample of waste is extracted in a 2ea Headspace Extractor at a 20:1 liquid extract, with added reagents, is then headed in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations from VHE-10, as present to ECL abManual VPH calculation proceedure. VPCTVOC_SURR-MS-VA Soil VOC7 and/or VOC Surrogates for Soils EPA 5035A/5021A/8260C VPH-CALC-VA Soil VPH is VH minus select aromatics BC MOE VPH VPHS = VHE-10 minus Benzene, Toluene, Ethylbenzene, Xylene	The soil methanol extract is gas chromatograph. Targe	added to v t compound	water and reagents, then heated in a sealed vial to d concentrations are measured using mass spectro	equilibrium. The headspace from the vial is transferred into a ometry detection.
The soil methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOC7-TCLP-VA Wast BTEX in Waste by TCLP USEPA Method 1311 This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Volume 1C" SW-846 EPA Method 1311, published by the United States Environmental Protection Agency (EPA). A representative sample of waste is extracted in a Zero Headspace Extractor at a 20:1 liquid to solids ratio for 16 to 20 hours using extraction fluid #1. Following extraction at a 20:1 liquid to solids ratio for 16 to 20 hours using extraction fluid #1. Following extraction, requilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOCT/OCC-SUR-MS-VA Soil VOC7 and/or VOC Surrogates for Soils EPA 5035A/5021A/8260C VPH-CALC-VA Soil VPH is VH minus select aromatics BC MOE VPH VPHs measures Valatile Patroleum Hydrocarbons in soil. Results are calculated by subtraction of specific Monocyclic Aromatic Hydrocarbons from VH6-10, as per the BC Lab Manual VPH calculation procedure. VPHs = VH6-10 minus Benzene, Toluene, Ethylbenzene, Xylenes, and Styrene XYLENES-CALC-VA Soil Sum of Xylene Isomer Concentrations EPA 8260B & 524.2 Calculation of Total Xylenes Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. XYLENES-TCLP-CALC-VA Waste Sum of Xylene Isomer Concentrations CALCULATION Calculation of Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. XYLENES-TCLP-CALC-VA Waste Sum of Xylene Isomer specific ference methods to improve performance. The DL for Total Xylenes is set to a value no less than the square root of the	VOC7-L-HSMS-VA	Soil	VOCs in soil by Headspace GCMS	EPA 5035A/5021A/8260C
VOC7-TCLP-VA Waste BTEX in Waste by TCLP USEPA Method 1311 This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Volume 1C" SW-846 EPA Method 1311, published by the United States Environmental Protection Agency (EPA). A representative sample of waste is extracted in a Zero Headspace Extractor at a 20:1 liquid to solids ratio for 16 to 20 hours using extraction fluid #1. Following extraction, the liquid extract is separated from the solid phase by filtration and preserved. The extract, with added reagents, is then heated in a seeled via lo equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOC7 and/or VOC Surgates for Soils EPA 5035A/5021A/8260C VPH-CALC-VA Soil VOC7 and/or VOC Surgates for Soils EPA 5035A/5021A/8260C VPH VPH-CALC-VA Soil VOC7 and/or VOC Surgates for Soils EPA 5035A/5021A/8260C VPH VPH-CALC-VA Soil VOC7 and/or VOC Surgates for Soils EPA 8060 & 524.2 Calculation of present BC Lab Manual VPH calculation procedure. VPH is VH minus select aromatics BC MOE VPH VPHs = VH6-10 minus Benzene, Toluene, Ethylbenzene, Xylenes, and Styrene XVLENES-CALC-VA Soil Sum of Xylene Isomer Concentrations EPA 8260B & 524.2 Calculation of Total Xylenes is set to a value no less than the square r	The soil methanol extract is gas chromatograph. Targe	added to v t compound	water and reagents, then heated in a sealed vial to d concentrations are measured using mass spectro	equilibrium. The headspace from the vial is transferred into a ometry detection.
This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Volume 1C" SW-846 EPA Method 1311, published by the United States Environmental Protection Agency (EPA). A representative sample of waste is extracted in a Zero Headspace Extractor at a 20:1 liquid to solids ratio for 16 to 20 hours using extraction fluid #1. Following extraction, the liquid extract is separated from the solid phase by filtration and preserved. The extract, with added reagents, is then heated in a sealed vial to equilibrium. The headspace Extractors are using mass spectrometry detection. VOC7/VOC-SURR-MS-VA Soil VOC7 and/or VOC Surrogates for Soils EPA 5035A/5021A/8260C VPH-CALC-VA Soil VOC7 and/or VOC Surrogates for Soils EPA 5035A/5021A/8260C VPH-CALC-VA Soil VPH is VH minus select aromatics BC MOE VPH VPH-CALC-VA Soil VPH is VH minus select aromatics BC MOE VPH VPH-CALC-VA Soil Soim of Xylenes, and Styrene XYLENES-CALC-VA Soil Sum of Xylenes, and Styrene XYLENES-CALC-VA Soil Sum of Xylene Isomer Concentrations EPA 8260B & 524.2 Calculation of Total Xylenes Calculation of Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. XYLENES-CALC-VA Sum of Xylene Isomer Concentrations CALCULATION	VOC7-TCLP-VA	Waste	BTEX in Waste by TCLP	USEPA Method 1311
VOC7.VUC-SURR-MS-VA Soil VOC7 and/or VOC Surrogates for Soils EPA 5035A/5021A/8260C VPH-CALC-VA Soil VPH is VH minus select aromatics BC MOE VPH VPH-CALC-VA Soil VPH is VH minus select aromatics BC MOE VPH VPH-Sace-VA Soil VPH is VH minus select aromatics BC MOE VPH VPHs pressures Volatile Petroleum Hydrocarbons in soil. Results are calculated by subtraction of specific Monocyclic Aromatic Hydrocarbons from VH6-10, as per the BC Lab Manual VPH calculation procedure. VPHs a VH6-10 minus Benzene, Toluene, Ethylbenzene, Xylenes, and Styrene XYLENES-CALC-VA Soil Sum of Xylene Isomer Concentrations EPA 8260B & 524.2 Calculation of Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. XYLENES-TCLP-CALC-VA Waste Sum of Xylene Isomer Concentrations CALCULATION Calculation of Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. ALS Lest methods may incorporate modifications from specified reference methods to improve performance. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. Methods may incorporate modifications from specified reference methods to improve performance. The L for Total Xylenes is set to a value no less than the square root	Methods Volume 1C" SW- of waste is extracted in a Z- liquid extract is separated fi equilibrium. The headspace spectrometry detection.	846 EPA M ero Headsp rom the sol	lethod 1311, published by the United States Enviro ace Extractor at a 20:1 liquid to solids ratio for 16 t id phase by filtration and preserved. The extract, w rial is transferred into a gas chromatograph. Target	information of the second seco
VPH-CALC-VA Soil VPH is VH minus select aromatics BC MOE VPH VPHs measures Volatile Petroleum Hydrocarbons in soil. Results are calculated by subtraction of specific Monocyclic Aromatic Hydrocarbons from VH6-10, as per the BC Lab Manual VPH calculation procedure. VPHs VPHs weasures Volatile Petroleum Hydrocarbons in soil. Results are calculated by subtraction of specific Monocyclic Aromatic Hydrocarbons from VH6-10, as per the BC Lab Manual VPH calculation procedure. VPH set Streng	VOC7/VOC-SURR-MS-VA	Soil	VOC7 and/or VOC Surrogates for Soils	EPA 5035A/5021A/8260C
VPHs measures Volatile Petroleum Hydrocarbons in soil. Results are calculated by subtraction of specific Monocyclic Aromatic Hydrocarbons from VH6-10, as per the BC Lab Manual VPH calculation procedure. VPHs = VH6-10 minus Benzene, Toluene, Ethylbenzene, Xylenes, and Styrene XYLENES-CALC-VA Soil Sum of Xylene Isomer Concentrations EPA 8260B & 524.2 Calculation of Total Xylenes Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. XYLENES-TCLP-CALC-VA Waste Sum of Xylene Isomer Concentrations CALCULATION Calculation of Total Xylenes Sum of Xylene Isomer Concentrations CALCULATION Calculation of Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. * ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Labora	VPH-CALC-VA	Soil	VPH is VH minus select aromatics	BC MOE VPH
XYLENES-CALC-VA Soil Sum of Xylene Isomer Concentrations EPA 8260B & 524.2 Calculation of Total Xylenes Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. XYLENES-TCLP-CALC-VA Waste Sum of Xylene Isomer Concentrations CALCULATION Calculation of Total Xylenes Sum of Xylene Isomer Concentrations CALCULATION Calculation of Total Xylenes Sum of Xylene Isomer Concentrations CALCULATION Calculation of Total Xylenes Sum of Xylene Isomer Concentrations CALCULATION Calculation of Total Xylenes Sum of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. * ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA VA ALS ENVIRONMENTAL - VANCOU	VPHs measures Volatile Pe VH6-10, as per the BC Lab VPHs = VH6-10 minus Ben	etroleum Hy Manual VF Izene, Tolue	vdrocarbons in soil. Results are calculated by subtr PH calculation procedure. ene, Ethylbenzene, Xylenes, and Styrene	action of specific Monocyclic Aromatic Hydrocarbons from
Calculation of Total Xylenes Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. XYLENES-TCLP-CALC-VA Waste Sum of Xylene Isomer Concentrations CALCULATION Calculation of Total Xylenes Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. * ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA :hain of Custody Numbers: 02925 0299	XYLENES-CALC-VA	Soil	Sum of Xylene Isomer Concentrations	EPA 8260B & 524.2
Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. XYLENES-TCLP-CALC-VA Waste Sum of Xylene Isomer Concentrations CALCULATION Calculation of Total Xylenes Sum of Xylene Isomer Concentrations CALCULATION Calculation of Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. * ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA Chain of Custody Numbers: 02925	Calculation of Total Xylenes	S		
XYLENES-TCLP-CALC-VA Waste Sum of Xylene Isomer Concentrations CALCULATION Calculation of Total Xylenes Sum of Xylene Isomer Concentrations CALCULATION Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. * ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA *hain of Custody Numbers: 02925	Total Xylenes is the sum of The DL for Total Xylenes is	the concer set to a va	ntrations of the ortho, meta, and para Xylene isome lue no less than the square root of the sum of the s	ers. Results below detection limit (DL) are treated as zero. squares of the DLs of the individual Xylenes.
Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. * ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA :hain of Custody Numbers: 02925 02925 02929	XYLENES-TCLP-CALC-VA Calculation of Total Xylenes	Waste s	Sum of Xylene Isomer Concentrations	CALCULATION
* ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA chain of Custody Numbers: 02925 02925 02929	Total Xylenes is the sum of The DL for Total Xylenes is	the concer set to a va	ntrations of the ortho, meta, and para Xylene isome lue no less than the square root of the sum of the s	ers. Results below detection limit (DL) are treated as zero. squares of the DLs of the individual Xylenes.
The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA Chain of Custody Numbers: 02925 02925 02929	* ALS test methods may inco	orporate mo	difications from specified reference methods to imp	prove performance.
Laboratory Definition Code Laboratory Location WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA Columbers: 02925	The last two letters of the ab	ove test co	de(s) indicate the laboratory that performed analytic	ical analysis for that test. Refer to the list below:
WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA Chain of Custody Numbers: 02925 02929	Laboratory Definition Code	e Labor	ratory Location	
VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA thain of Custody Numbers: 02925 02929	WT	ALS E	NVIRONMENTAL - WATERLOO, ONTARIO, CAN	NADA
Chain of Custody Numbers:	VA	ALS E	NVIRONMENTAL - VANCOUVER, BRITISH COLI	UMBIA, CANADA
02925 02929	Chain of Custody Numbers:			
	02925	02929		

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

			Workorder:	L2459618	B Re	port Date:	18-JUN-20	Pa	ge 1 of 8
Client:	GOLDER 200-2920 Vancouve Alison Ve	R ASSOCIATES L) Virtual Way er BC V5M 0C4	TD.						
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
				Result	Quanter	Units		Linit	Analyzou
EPH-TUMB-FID-	VA	Soil							
Batch WG3341491∹ EPH10-19	R5117830 3 DUP		L2459618-2 <200	<200	RPD-NA	mg/kg	N/A	40	15-JUN-20
EPH19-32			<200	<200	RPD-NA	mg/kg	N/A	40	15-JUN-20
WG3341491-	4 IRM		ALS PHC RM	3					
EPH10-19				94.7		%		70-130	15-JUN-20
EPH19-32				99.3		%		70-130	15-JUN-20
WG3341491- EPH10-19	2 LCS			94.5		%		70-130	15-JUN-20
EPH19-32				97.9		%		70-130	15-JUN-20
WG3341491- EPH10-19	1 MB			<200		ma/ka		200	15-JUN-20
EPH19-32				<200		mg/kg		200	15-JUN-20
Surrogate: 2-	Bromoben	zotrifluoride		84.0		%		60-140	15-JUN-20
FUELS-HSMS-V	A	Soil							
Batch	R5117129								
WG3341494-2 1,2-Dibromoe	2 LCS ethane			95.3		%		70-130	13-JUN-20
WG3341494- 1,2-Dibromoe	1 MB ethane			<0.050		mg/kg		0.05	13-JUN-20
MET-200.2-CCM	S-VA	Soil							
Batch	R5117551								
WG3341489-	4 CRM		SCP SS-2						
Cadmium (C	d) \r)			100.0		%		70-130	15-JUN-20
	,) חווס מ		1 2450040 4	100.3		70		70-130	15-JUN-20
Cadmium (C	z D0F d)		0.203	0.155		mg/kg	27	30	15-JUN-20
Chromium (C	Cr)		45.6	47.4		mg/kg	3.8	30	15-JUN-20
WG3341489-	3 LCS								
Cadmium (C	d)			100.3		%		80-120	15-JUN-20
Chromium (C	Cr)			97.1		%		80-120	15-JUN-20
WG3341489- Cadmium (C	1 MB d)			<0.020		ma/ka		0.02	15IUN-20
Chromium (C	r)			<0.50		mg/kg		0.5	15-JUN-20
```									-

MOISTURE-VA

Soil



		Workorder:	L245961	8 R(	eport Date: 1	18-JUN-20	Pa	ige 2 of 8
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MOISTURE-VA	Soil							
Batch R511702	23							
WG3341490-3 DUF Moisture	2	<b>L2459618-2</b>	23.9		%	17	20	12 IUN 20
WG3341400-2 LCS		20.0	20.0		70	1.7	20	12-3011-20
Moisture	•		99.7		%		90-110	12-JUN-20
WG3341490-1 MB Moisture			<0.25		%		0.25	12-JUN-20
MOISTURE-WT	Soil							
Batch R511774	47							
WG3342049-2 LCS	6		00.6		0/		00.440	
			99.0		/0		90-110	16-JUN-20
% Moisture			<0.25		%		0.25	16-JUN-20
PAH-TMB-H/A-MS-VA	Soil							
Batch R51176	63							
WG3341491-3 DUF	2	L2459618-2						
Acenaphthene		<0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	15-JUN-20
Acenaphthylene		<0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	15-JUN-20
Anthracene		<0.0040	<0.0040	RPD-NA	mg/kg	N/A	50	15-JUN-20
Benz(a)anthracene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20
Benzo(a)pyrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20
Benzo(b&j)fluoranthe	ne	<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20
Benzo(g,h,i)perylene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20
Benzo(k)fluoranthene	•	<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20
Chrysene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20
Dibenz(a,h)anthracer	ie	<0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	15-JUN-20
Fluoranthene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20
Fluorene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20
Indeno(1,2,3-c,d)pyre	ne	<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20
1-Methylnaphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20
2-Methylnaphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20
Naphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20
Phenanthrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20
Pyrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20
Quinoline		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	15-JUN-20
WG3341491-5 IRM Acenaphthene		ALS PAH RM	<b>2</b> 98.7		%		60-130	15-JUN-20



		Workorder: L2459618			Report Date: 18-JUN-20		Page 3 of 8	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-VA	Soil							
Batch R5117663								
WG3341491-5 IRM		ALS PAH R	M2					
Acenaphthylene			115.0		%		60-130	15-JUN-20
Anthracene			112.5		%		60-130	15-JUN-20
Benz(a)anthracene			102.4		%		60-130	15-JUN-20
Benzo(a)pyrene			104.0		%		60-130	15-JUN-20
Benzo(b&j)fluoranthene			101.1		%		60-130	15-JUN-20
Benzo(g,h,i)perylene			102.9		%		60-130	15-JUN-20
Benzo(k)fluoranthene			97.4		%		60-130	15-JUN-20
Chrysene			109.8		%		60-130	15-JUN-20
Dibenz(a,h)anthracene			102.7		%		60-130	15-JUN-20
Fluoranthene			100.5		%		60-130	15-JUN-20
Fluorene			98.2		%		60-130	15-JUN-20
Indeno(1,2,3-c,d)pyrene	;		106.5		%		60-130	15-JUN-20
1-Methylnaphthalene			97.3		%		60-130	15-JUN-20
2-Methylnaphthalene			96.1		%		60-130	15-JUN-20
Naphthalene			99.8		%		50-130	15-JUN-20
Phenanthrene			98.5		%		60-130	15-JUN-20
Pyrene			103.1		%		60-130	15-JUN-20
WG3341491-2 LCS								
Acenaphthene			101.0		%		60-130	15-JUN-20
Acenaphthylene			99.0		%		60-130	15-JUN-20
Anthracene			101.9		%		60-130	15-JUN-20
Benz(a)anthracene			103.1		%		60-130	15-JUN-20
Benzo(a)pyrene			95.6		%		60-130	15-JUN-20
Benzo(b&j)fluoranthene			101.7		%		60-130	15-JUN-20
Benzo(g,h,i)perylene			96.2		%		60-130	15-JUN-20
Benzo(k)fluoranthene			97.9		%		60-130	15-JUN-20
Chrysene			91.4		%		60-130	15-JUN-20
Dibenz(a,h)anthracene			99.8		%		60-130	15-JUN-20
Fluoranthene			100.3		%		60-130	15-JUN-20
Fluorene			99.8		%		60-130	15-JUN-20
Indeno(1,2,3-c,d)pyrene	)		103.4		%		60-130	15-JUN-20
1-Methylnaphthalene			99.4		%		60-130	15-JUN-20
2-Methylnaphthalene			98.9		%		60-130	15-JUN-20
Naphthalene			100.1		%		50-130	15-JUN-20



Test         Matrix         Reference         Result         Qualifier         Units         RPD         Limit         Analyzed           PAH-TMB-H/A-MS-VA         Soil         Batch         R5117663         %         60-130         15-JUN-20           Phenanthrene         99.98         %         60-130         15-JUN-20           Pyrene         104.5         %         60-130         15-JUN-20           Quinoline         101.3         %         60-130         15-JUN-20           WG3341491-1         MB         Acenaphthene         <0.0050         mg/kg         0.005         15-JUN-20           MG3341491-1         MB         Acenaphthene         <0.0050         mg/kg         0.005         15-JUN-20           MG3341491-1         MB         Acenaphthene         <0.0050         mg/kg         0.005         15-JUN-20           Mcanaphthene         <0.0050         mg/kg         0.004         15-JUN-20         Benz(a)anthracene         <0.0040         mg/kg         0.01         15-JUN-20           Benzo(a)pyrene         <0.010         mg/kg         0.01         15-JUN-20         Benzo(b)////////////////////////////////////			Workorder: L2459618		8	Report Date: 18-JUN-20		Page 4 of 8	
PAH-TMB-H/A-MS-VA         Soil           Batch         R511763           WG3341491-2         LCS           Phenanthrene         99.98         %         60-130         15-JUN-20           Quinoline         104.5         %         60-130         15-JUN-20           Quinoline         101.3         %         60-130         15-JUN-20           WG3341491-1         MB               Acenaphthene         <0.0050         mg/kg         0.005         15-JUN-20           Acenaphthene         <0.0050         mg/kg         0.005         15-JUN-20           Acenaphthene         <0.0050         mg/kg         0.001         15-JUN-20           Benz(a)anthracene         <0.0040         mg/kg         0.01         15-JUN-20           Benz(a)anthracene         <0.010         mg/kg         0.01         15-JUN-20           Benzo(a)pyrene         <0.010         mg/kg         0.01         15-JUN-20           Benzo(bå)fluoranthene         <0.010         mg/kg         0.01         15-JUN-20           Benzo(k)fluoranthene         <0.010         mg/kg         0.01         15-JUN-20           Benzo(k)fluoranthene         <0.010	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Batch         R5117663           WG3341491-2         LCS           Phenanthrene         99.98         %         60-130         15-JUN-20           Pyrene         104.5         %         60-130         15-JUN-20           Quinoline         101.3         %         60-130         15-JUN-20           WG3341491-1         MB            15-JUN-20           VG3341491-1         MB           0.005         15-JUN-20           Accenaphthylene         <0.0050	PAH-TMB-H/A-MS-VA	Soil							
WG3341491-2         LCS           Phenanthrene         99.98         %         60-130         15-JUN-20           Pyrene         104.5         %         60-130         15-JUN-20           Quinoline         101.3         %         60-130         15-JUN-20           WG3341491-1         MB               Acenaphthene         <0.0050	Batch R5117663	3							
Phenanthrene         99.98         %         60-130         15-JUN-20           Pyrene         104.5         %         60-130         15-JUN-20           Quinoline         101.3         %         60-130         15-JUN-20           WG3341491-1         MB            15-JUN-20           Acenaphthene         <0.0050	WG3341491-2 LCS								
Pyrene         104.5         %         60-130         15-JUN-20           Quinoline         101.3         %         60-130         15-JUN-20           WG3341491-1         MB                Acenaphthene         <0.0050	Phenanthrene			99.98		%		60-130	15-JUN-20
Quinoline         101.3         %         60-130         15-JUN-20           WG3341491-1         MB           Acenaphthene         <0.0050	Pyrene			104.5		%		60-130	15-JUN-20
WG3341491-1         MB           Acenaphthene         <0.0050	Quinoline			101.3		%		60-130	15-JUN-20
Acenaphthylene       <0.0050	WG3341491-1 MB Acenaphthene			<0.0050		mg/kg		0.005	15-JUN-20
Anthracene       <0.0040	Acenaphthylene			<0.0050		mg/kg		0.005	15-JUN-20
Benz(a)anthracene         <0.010         mg/kg         0.01         15-JUN-20           Benzo(a)pyrene         <0.010	Anthracene			<0.0040		mg/kg		0.004	15-JUN-20
Benzo(a)pyrene         <0.010         mg/kg         0.01         15-JUN-20           Benzo(b&j)fluoranthene         <0.010	Benz(a)anthracene			<0.010		mg/kg		0.01	15-JUN-20
Benzo(b&j)fluoranthene       <0.010	Benzo(a)pyrene			<0.010		mg/kg		0.01	15-JUN-20
Benzo(g,h,i)perylene       <0.010	Benzo(b&j)fluoranthen	e		<0.010		mg/kg		0.01	15-JUN-20
Benzo(k)fluoranthene       <0.010	Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	15-JUN-20
Chrysene         <0.010         mg/kg         0.01         15-JUN-20           Dibenz(a,h)anthracene         <0.0050	Benzo(k)fluoranthene			<0.010		mg/kg		0.01	15-JUN-20
Dibenz(a,h)anthracene         <0.0050         mg/kg         0.005         15-JUN-20           Fluoranthene         <0.010	Chrysene			<0.010		mg/kg		0.01	15-JUN-20
Fluoranthene       <0.010       mg/kg       0.01       15-JUN-20         Fluorene       <0.010	Dibenz(a,h)anthracene	9		<0.0050		mg/kg		0.005	15-JUN-20
Fluorene         <0.010         mg/kg         0.01         15-JUN-20           Indeno(1,2,3-c,d)pyrene         <0.010	Fluoranthene			<0.010		mg/kg		0.01	15-JUN-20
Indeno(1,2,3-c,d)pyrene         <0.010         mg/kg         0.01         15-JUN-20           1-Methylnaphthalene         <0.010	Fluorene			<0.010		mg/kg		0.01	15-JUN-20
1-Methylnaphthalene <0.010 mg/kg 0.01 15-JUN-20	Indeno(1,2,3-c,d)pyren	ie		<0.010		mg/kg		0.01	15-JUN-20
	1-Methylnaphthalene			<0.010		mg/kg		0.01	15-JUN-20
2-Methylnaphthalene <0.010 mg/kg 0.01 15-JUN-20	2-Methylnaphthalene			<0.010		mg/kg		0.01	15-JUN-20
Naphthalene         <0.010         mg/kg         0.01         15-JUN-20	Naphthalene			<0.010		mg/kg		0.01	15-JUN-20
Phenanthrene         <0.010         mg/kg         0.01         15-JUN-20	Phenanthrene			<0.010		mg/kg		0.01	15-JUN-20
Pyrene <0.010 mg/kg 0.01 15-JUN-20	Pyrene			<0.010		mg/kg		0.01	15-JUN-20
Quinoline <0.050 mg/kg 0.05 15-JUN-20	Quinoline			<0.050		mg/kg		0.05	15-JUN-20
Surrogate: Naphthalene d8         96.0         %         50-130         15-JUN-20	Surrogate: Naphthalen	ie d8		96.0		%		50-130	15-JUN-20
Surrogate: Phenanthrene d10         98.5         %         60-130         15-JUN-20	Surrogate: Phenanthre	ene d10		98.5		%		60-130	15-JUN-20
Surrogate: Chrysene d12         104.2         %         60-130         15-JUN-20	Surrogate: Chrysene d	112		104.2		%		60-130	15-JUN-20
PFAS-LL-EX-LCMS-WT Soil	PFAS-LL-EX-LCMS-WT	Soil							
Batch R5118857	Batch R5118857	7							
WG3342031-3 DUP L2459618-13	WG3342031-3 DUP	in anid (DEDS)	L2459618-13	-0.10		1	<b>N</b> 1/A		
Permuoropolitarie suitorile acid (PEBxS)     <0.10     RPD-NA     ug/kg     N/A     50     16-JUN-20       Berfluoropolitario solid (DEBxS)     <0.40			<0.10	<0.10	RPD-N		N/A	50	16-JUN-20
Perfluoronexane sulfonic acid (PEOS) <0.10 <0.10 RPD-NA ug/kg N/A 50 16-JUN-20	Periluoronexane sulfor		<0.10	<0.10	RPD-N	IA ug/kg	N/A	50	16-JUN-20
Ferrituorouctarie suitoriic acid (FFUS)     <0.35     <0.50     RPD-NA     Ug/kg     N/A     50     16-JUN-20       Deeffusies under a side (PEDA)     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -200     -2			<0.35	<0.00	RPD-N	IA Ug/Kg	N/A	50	16-JUN-20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			<300	<2U 0.1E	KPD-N		N/A	50	16-JUN-20



	Workorder:	L245961	8 Re	port Date: 1	8-JUN-20	Pa	ige 5 of 8
Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PFAS-LL-EX-LCMS-WT Soil							
Batch R5118857							
WG3342031-3 DUP	L2459618-13						
Perfluorohexanoic acid (PFHxA)	0.17	0.15		ug/kg	15	50	16-JUN-20
Perfluoroheptanoic acid (PFHpA)	<0.10	<0.10	RPD-NA	ug/kg	N/A	50	16-JUN-20
Perfluorooctanoic acid (PFOA)	<0.10	<0.10	RPD-NA	ug/kg	N/A	50	16-JUN-20
Perfluorononanoic acid (PFNA)	<0.10	<0.10	RPD-NA	ug/kg	N/A	50	16-JUN-20
6:2 Fluorotelomer sulfonic acid(6:2 FTS)	<0.15	0.12		ug/kg	9.9	50	16-JUN-20
8:2 Fluorotelomer sulfonic acid(8:2 FTS)	<0.10	<0.10	RPD-NA	ug/kg	N/A	50	16-JUN-20
WG3342031-2 LCS Perfluorobutane sulfonic acid (PFBS)		65.3		%		50-150	16-JUN-20
Perfluorohexane sulfonic acid (PFHxS)		58.0		%		50-150	16-JUN-20
Perfluorooctane sulfonic acid (PFOS)		62.7		%		50-150	16-JUN-20
Perfluorobutanoic acid (PFBA)		N/A	LCS-H	%		50-150	16-JUN-20
Perfluoropentanoic acid (PFPeA)		71.3		%		50-150	16-JUN-20
Perfluorohexanoic acid (PFHxA)		68.0		%		50-150	16-JUN-20
Perfluoroheptanoic acid (PFHpA)		64.0		%		50-150	16-JUN-20
Perfluorooctanoic acid (PFOA)		76.7		%		50-150	16-JUN-20
Perfluorononanoic acid (PFNA)		58.0		%		50-150	16-JUN-20
6:2 Fluorotelomer sulfonic acid(6:2 FTS)		N/A	LCS-H	%		50-150	16-JUN-20
8:2 Fluorotelomer sulfonic acid(8:2 FTS)		68.7		%		50-150	16-JUN-20
WG3342031-1 MB							
Perfluorobutane sulfonic acid (PFBS)		<0.10		ug/kg		0.1	16-JUN-20
Perfluorohexane sulfonic acid (PFHxS)		<0.10		ug/kg		0.1	16-JUN-20
Perfluorooctane sulfonic acid (PFOS)		<0.50		ug/kg		0.5	16-JUN-20
Perfluorobutanoic acid (PFBA)		<20		ug/kg		20	16-JUN-20
Perfluoropentanoic acid (PFPeA)		<0.10		ug/kg		0.1	16-JUN-20
Perfluorohexanoic acid (PFHxA)		<0.10		ug/kg		0.1	16-JUN-20
Perfluoroheptanoic acid (PFHpA)		<0.10		ug/kg		0.1	16-JUN-20
Perfluorooctanoic acid (PFOA)		<0.10		ug/kg		0.1	16-JUN-20
Perfluorononanoic acid (PFNA)		<0.10		ug/kg		0.1	16-JUN-20
6:2 Fluorotelomer sulfonic acid(6:2 FTS)		0.23	MB-LOR	ug/kg		0.1	16-JUN-20
8:2 Fluorotelomer sulfonic acid(8:2 FTS)		<0.10		ug/kg		0.1	16-JUN-20
WG3342031-4 MS Perfluorobutane sulfonic acid (PFBS)	L2459618-13	50.7		%		50-150	16-JUN-20
Perfluorohexane sulfonic acid (PFHxS)		51.3		%		50-150	16-JUN-20
Perfluorooctane sulfonic acid (PFOS)		59.9		%		50-150	16-JUN-20
Perfluorobutanoic acid (PFBA)		N/A	MS-B	%		-	16-JUN-20



	Workorder:	L245961	8	Report Date: 1	8-JUN-20	Pa	ge 6 of 8
Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PFAS-LL-EX-LCMS-WT Soil							
Batch R5118857							
WG3342031-4 MS	L2459618-13						
Perfluoropentanoic acid (PFPeA)		57.8		%		50-150	16-JUN-20
Perfluorohexanoic acid (PFHxA)		67.1		%		50-150	16-JUN-20
Perfluoroheptanoic acid (PFHpA)		54.6		%		50-150	16-JUN-20
Perfluorooctanoic acid (PFOA)		63.9		%		50-150	16-JUN-20
Perfluorononanoic acid (PFNA)		52.0		%		50-150	16-JUN-20
6:2 Fluorotelomer sulfonic acid(6:2 FTS)		63.8		%		50-150	16-JUN-20
8:2 Fluorotelomer sulfonic acid(8:2 FTS)		53.3		%		50-150	16-JUN-20
PH-1:2-VA Soil							
Batch R5117619							
WG3341489-2 DUP	L2459618-4						
pH (1:2 soil:water)	6.51	6.47	J	рН	0.04	0.2	15-JUN-20
VH-HSFID-VA Soli							
Batch R5117484							
Volatile Hydrocarbons (VH6-10)		108.6		%		70-130	13-JUN-20
WG3341494-1 MB							
Volatile Hydrocarbons (VH6-10)		<100		mg/kg		100	13-JUN-20
VOC-M2-HSMS-VA Soil							
Batch R5117129							
WG3341494-3 DUP	L2459618-2						
n-Nonane	<0.050	<0.050	RPD-N	A mg/kg	N/A	50	13-JUN-20
WG3341494-2 LCS		00.3		0/_		70 400	40.1110.00
		30.5		70		70-130	13-JUN-20
n-Nonane		<0.050		mg/kg		0.05	13-JUN-20
VOC7-L-HSMS-VA Soil							
Batch R5117129							
WG3341494-2 LCS Benzene		91.3		%		70-130	13- II IN-20
Ethylbenzene		91.9		%		70-130	13-JUN-20
Methyl t-butyl ether (MTBE)		109.8		%		70-130	13-JUN-20
Styrene		91.0		%		70-130	13-JUN-20
Toluene		92.8		%		70-130	13-JUN-20
meta- & para-Xylene		104.9		%		70-130	13-JUN-20



		Workorder	: L245961	8	Report Date: 1	8-JUN-20	Pa	ige 7 of 8
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC7-L-HSMS-VA	Soil							
Batch R511712 WG3341494-2 LCS ortho-Xylene	9		90.2		%		70-130	13-JUN-20
WG3341494-1 MB Benzene			<0.0050		mg/kg		0.005	13-JUN-20
Ethylbenzene			<0.015		mg/kg		0.015	13-JUN-20
Methyl t-butyl ether (N	ITBE)		<0.20		mg/kg		0.2	13-JUN-20
Styrene			<0.050		mg/kg		0.05	13-JUN-20
Toluene			<0.050		mg/kg		0.05	13-JUN-20
meta- & para-Xylene			<0.050		mg/kg		0.05	13-JUN-20
ortho-Xylene			<0.050		mg/kg		0.05	13-JUN-20
VOC7-TCLP-VA	Waste							
Batch R508837 WG3344413-1 MB	6							
Benzene			<0.0050		mg/L		0.005	18-JUN-20
Ethylbenzene			<0.0050		mg/L		0.005	18-JUN-20
Toluene			<0.0050		mg/L		0.005	18-JUN-20
meta- & para-Xylene			<0.0050		mg/L		0.005	18-JUN-20
ortho-Xylene			<0.0050		mg/L		0.005	18-JUN-20

Workorder: L2459618

Report Date: 18-JUN-20

#### Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

#### Sample Parameter Qualifier Definitions:

Qualifier Descript	ion
J Duplicate	results and limits are expressed in terms of absolute difference.
LCS-H Lab Contr results, if	ol Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other reported, have been qualified.
MB-LOR Method B level.	lank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank
MS-B Matrix Sp	ike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA Relative F	Percent Difference Not Available due to result(s) being less than detection limit.

#### Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.



·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	<	Motor Oils/ Lube Oils/ Grease
<i>~</i>	Diesel/ Jet Fuels	>

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	÷	Motor Oils/ Lube Oils/ Grease
<i>~</i>	Diesel/ Jet Fuels	

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	÷	Motor Oils/ Lube Oils/ Grease
<i>~</i>	Diesel/ Jet Fuels	

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	÷	Motor Oils/ Lube Oils/ Grease
<i>~</i>	Diesel/ Jet Fuels	

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	÷	Motor Oils/ Lube Oils/ Grease
<i>~</i>	Diesel/ Jet Fuels	

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	<	Motor Oils/ Lube Oils/ Grease
<i>~</i>	Diesel/ Jet Fuels	>

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



«	EPH10-19	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	·	
← Diesel/ Jet Fuels →		

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.
# ALS Sample ID: L2459618-11



<	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174'C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	·	Motor Oils/ Lube Oils/ Grease
	Diesel/ Jet Fuels	>

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

Note: This chromatogram was produced using GC conditions that are specific to the ALS Canada EPH method. Refer to the ALS Canada EPH Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

# BC EPH HYDROCARBON DISTRIBUTION REPORT



·	_EPH10-19	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873'F
$\leftarrow$ Gasoline $\rightarrow$	÷	
<i>.</i>	Diesel/ Jet Fuels	

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

Note: This chromatogram was produced using GC conditions that are specific to the ALS Canada EPH method. Refer to the ALS Canada EPH Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

	In lock-up	deport ALS KAM 10005	Dinand at after hours	Commenter of IND	Sampler's Signature:	V - 12 V 8-861	-11 3'-36"	- 10 BH20-65 2".6"	<i>µ</i> ¹ / ₁ 3, 5 ↑ 60 -	-08 3'-36"	- 07 MW2004 2"-6"	1/3/5 1 90-	- 05 3'-36"	-04 MW20-03 2"-6"	-03 + 8'-26'	- 02 3'.3'6"	02975-01 BHW-06 2".6"	Sample Control Sample Number (SCN) Location Sar#	Note: Final Reports to be issued by e-mai	Turnaround Time: ∐ 24 hr Criteria: ⊠.CSR ⊠ CCME	Vancouver	Telephone (604) 296-4200 Fax (604) 298-9	200 2920 Virtual Way Vancouver, British Columbia, Canada V5M 00	Associates	
	WHITE: 0	Shipped by:		A A A A A A A A A A A A A A A A A A A	Relinquished by: Signature	J V V 16:00											€ 50 16/6/20 12:52	SampleSampleDateTimeDepthMatrixSampledSampled{m}(over)(D / M / Y)(HH:MM)	Quote No.:	BC Water Quality BC Water Quality	EQuIS Facility EQUIS upload:	AVERDE @g	Short Hile: Shout Sick	Project Number:	CHAIN OF CUSTOD
ب.	Golder Copy YELLOW: Lab Cop	Shipment Condition: Seal Intact:	Waybill No.:	Golder 10/6/20	Company Date / /	¥ 4	1	1		I	7	<b>_</b>		5.	L L		GRAR 4	Sample QAQC Related Type Code SCN (over) (over) (over) Number of C	Contain	Cre 15th, 2020	code: 217832270	polder.com TOLSEN	Clean -UP AVison V	958	Y RECORDIANALYSI
	yv (	Terpo (°C) Cooler opened by: Date	Received for Labry: JUN 1 Pate 2020	80.0	Time / Received by: Signatu		I	111										Moistur Grain Si 2-rethylin 1. naphth LEPH/HE BTEX n-noran Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Codmium, Coddia Coddia Coddia Coddia Coddia Coddia Coddia Coddia Coddia Coddia Coddia Coddia Coddia Coddia Coddia Coddia Coddia Coddia Coddia Coddia Coddia Coddia Coddia	e napth valene PH/11 e Chron	SK alere JPH inn rese	Analyses Required	@golder.com 004-253-41	erde 8081 Loughe	Laboratory Name: ALS Burnch	S REQUEST No
ESED		Time	830 ^{Time}		Ire Company		-						1000000000000000000000000000000000000	a la		>		PFAS ( RUSH (Select (over)	Health Canada TAT abo	ve)		88 Anbor Springer	ed Hwy		2. 02925 page 1 of 2

In lock-up	topt at NS Kan	Comments: Or Ice	Sampler's Signature:	- 12	- 11	- 10	- 09	- 08	- 07	- 06	- 05	- 04	- 03 🔻	<ul> <li>✓ - 02</li> </ul>	02929-01 RHZO	Sample Control Sam Number (SCN) Locat	Note: Final Reports to be	Criteria:	Office Name:	Vancouver, British Columbia, Telephone (604) 296-4200	Associa	
- -	Sup Crark	Mett	Reli											6-1	07 6"-	ion Sa.# Sam	issued by e-mail		NC on her	Canada V5M 0C4 Fax (604) 298-5253	tes	
	ped by:	nod of Shipment:	nquished by: Signature										N A 113		11 10 10/20	ple Sample Date oth Matrix Samplec <u>1</u> . (over) (D / M / Y +)	Quote I	8 hr 21 C Water Quality		Golder E-mail A AUE-R1	Project Number: Short Title:	CHAIN OF C
WHITE: Golder Co	Shipment Seal Intac	Waybill N	Company				(	8-COFC					=	12:1<	INSO GRAB	Time Sample I Sampled Type ) (HH:MM) (over)	No.: Q80351	N Other June 15	tulS Facility Code: _2.) tulS upload: _⊠	<i>tw bl⊺i</i> ∕ (_teAn- ddress 1: 0£`@golder.com	2014505	USTODY RE(
py YELLOW: La	Condition: :t:	o::	or Date 0/6/2											FD 72929-01	FDA 02979-02	QAQC Related Code SCN (over) (over)		Regular (5 Days) イト 2 GZO	7437270	$\frac{u \cap A_{1.5}}{\text{dolder E-mail Address}}$	Goliter Cc	CORD/ANALY
ь Сору	Temp (°C) co	Received for Lat	D Time		<u> </u>											Number of C	Contain Heath ana¢	ers (a		Sm Verde 2: V @golder.com	ontact:, /	SIS REQUE
	pler opened by: Dat	o by:	Received by: S																Analyses Required	8081 L.m. Telephone/Fax: 1.6.4 - 258-41	Laboratory Name: XLS By Address:	ST
an Nasar Nasar	te Tin	N 1 1 2020	Signature Compan								- *			X	X	H6 (d RUSH (Select	TAT abo	ve)		185 Contact	heren	No. 02929
ESED	ne	Y.	ıy							AM IN PO	in lox			11 m hald		Remarks (over)				- Solin you		page 2 of X



GOLDER ASSOCIATES LTD. ATTN: Alison Verde 200-2920 Virtual Way Vancouver BC V5M 0C4 Date Received:11-JUN-20Report Date:15-JUN-20 13:36 (MT)Version:FINAL

Client Phone: 604-297-2036

# **Certificate of Analysis**

#### Lab Work Order #: L2459640

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 20145856 02930

Comments: ADDITIONAL 12-JUN-20 14:11

amber Springer

Amber Springer, B.Sc Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

**RIGHT SOLUTIONS** RIGHT PARTNER

L2459640 CONTD.... PAGE 2 of 3 15-JUN-20 13:36 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2459640-1 H2O 10-JUN-20 12:00 02930-01		
Grouping	Analyte			
WATER				
Perfluorinated Compounds	8:2 Fluorotelomer sulfonic acid(8:2 FTS) (ug/L)	<0.010		
	6:2 Fluorotelomer sulfonic acid(6:2 FTS) (ug/L)	<0.010		
	Perfluorobutane sulfonic acid (PFBS) (ug/L)	<0.020		
	Perfluorohexane sulfonic acid (PFHxS) (ug/L)	<0.020		
	Perfluorooctane sulfonic acid (PFOS) (ug/L)	<0.010		
	Perfluorobutanoic acid (PFBA) (ug/L)	<0.80		
	Perfluoroheptanoic acid (PFHpA) (ug/L)	<0.020		
	Perfluorohexanoic acid (PFHxA) (ug/L)	<0.020		
	Perfluorononanoic acid (PFNA) (ug/L)	<0.020		
	Perfluorooctanoic acid (PFOA) (ug/L)	<0.010		

#### QC Samples with Qualifiers & Comments:

ption		Parameter	Qualifier	Applies to Sample Number(s)
		Perfluorohexanoic acid (PFHxA)	MS-B	L2459640-1
		Perfluoropentanoic acid (PFPeA)	MS-B	L2459640-1
ndividual P	arameters L	.isted:		
Descriptio	n			
Matrix Spi	ke recovery	could not be accurately calculated due to	b high analyte	background in sample.
eferences	:			
	Matrix	Test Description		Method Reference**
MS-WT	Water	PFC's by Direct Injection LC/MS-MS		MOECC E3533 and E3457
ater is analy	zed for PFCs	s by direct injection LC/MS/MS		
ds may inco	prporate mod	ifications from specified reference metho	ods to improve	performance.
ers of the ab	ove test cod	e(s) indicate the laboratory that performe	ed analytical ar	nalysis for that test. Refer to the list below:
nition Code	e Labora	tory Location		
	ALS EN	VIRONMENTAL - WATERLOO, ONTAI	RIO, CANADA	
V Numbers:				
	ndividual F Descriptio Matrix Spi Pferences VS-WT ater is analy ds may inco rs of the ab nition Code	ndividual Parameters L Description Matrix Spike recovery of Second Spike recovery of Matrix MS-WT Water Matrix MS-WT WATER MS-WT WATER MATRIX MS-WT WATER MATRIX	ption       Parameter         Perfluorohexanoic acid (PFHxA)         Perfluoropentanoic acid (PFPeA)         ndividual Parameters Listed:         Description         Matrix Spike recovery could not be accurately calculated due to         eferences:         Matrix         Test Description         MS-WT       Water         PFC's by Direct Injection LC/MS-MS         ater is analyzed for PFCs by direct injection LC/MS/MS         ds may incorporate modifications from specified reference methors of the above test code(s) indicate the laboratory that performed         nition Code       Laboratory Location         ALS ENVIRONMENTAL - WATERLOO, ONTAI         v Numbers:	ption       Parameter       Qualifier         Perfluorohexanoic acid (PFHxA)       MS-B         Perfluoropentanoic acid (PFPeA)       MS-B         ndividual Parameters Listed:

02930

#### GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.



		Workorder:	L245964	0	Report Date:	15-JUN-20	Pa	ge 1 of 2
Client:	GOLDER ASSOCIATES L 200-2920 Virtual Way Vancouver BC V5M 0C4	TD.						
Contact:	Alison Verde							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PFAS-DI-EX-LO	CMS-WT Water							
Batch	R5117660							
WG3341075	5-2 LCS							
Perfluorobu	itane sulfonic acid (PFBS)		78.7		%		50-150	12-JUN-20
Perfluorohe	exane sulfonic acid (PFHxS)		86.0		%		50-150	12-JUN-20
Perfluorooc	tane sulfonic acid (PFOS)		82.0		%		50-150	12-JUN-20
Perfluorobu	itanoic acid (PFBA)		118.0		%		50-150	12-JUN-20
Perfluorope	entanoic acid (PFPeA)		102.0		%		50-150	12-JUN-20
Perfluorohe	exanoic acid (PFHxA)		104.7		%		50-150	12-JUN-20
Perfluorohe	eptanoic acid (PFHpA)		97.3		%		50-150	12-JUN-20
Perfluorooc	tanoic acid (PFOA)		93.3		%		50-150	12-JUN-20
Perfluorono	nanoic acid (PFNA)		98.7		%		50-150	12-JUN-20
6:2 Fluorote	elomer sulfonic acid(6:2 FTS)		76.0		%		50-150	12-JUN-20
8:2 Fluorote	elomer sulfonic acid(8:2 FTS)		83.3		%		50-150	12-JUN-20
WG3341075	5-1 MB							
Perfluorobu	tane sulfonic acid (PFBS)		<0.010		ug/L		0.01	12-JUN-20
Perfluorohe	exane sulfonic acid (PFHxS)		<0.010		ug/L		0.01	12-JUN-20
Perfluorooc	tane sulfonic acid (PFOS)		<0.010		ug/L		0.01	12-JUN-20
Perfluorobu	itanoic acid (PFBA)		<0.10		ug/L		0.1	12-JUN-20
Perfluorope	entanoic acid (PFPeA)		<0.010		ug/L		0.01	12-JUN-20
Perfluorohe	exanoic acid (PFHxA)		<0.010		ug/L		0.01	12-JUN-20
Perfluorohe	eptanoic acid (PFHpA)		<0.010		ug/L		0.01	12-JUN-20
Perfluorooc	tanoic acid (PFOA)		<0.010		ug/L		0.01	12-JUN-20
Perfluorono	nanoic acid (PFNA)		<0.010		ug/L		0.01	12-JUN-20
6:2 Fluorote	elomer sulfonic acid(6:2 FTS)		<0.010		ug/L		0.01	12-JUN-20
8:2 Fluorote	elomer sulfonic acid(8:2 FTS)		<0.010		ug/L		0.01	12-JUN-20

Workorder: L2459640

Report Date: 15-JUN-20

#### Legend:

Limit	ALS Control Limit (Data Quality Objectives)
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

#### Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

in lock-up	depot at ALS Kam hep	Comments: ON ICC	Sampler's Signature:	- 12	 - 10	- 09	- 08	- 07	- 06	- 05	- 04	- 03	- 02 Blank	12930 - 01 Eguiput	Sample Control Sample Number (SCN) Location Sa. #	Note: Final Reports to be issued by e-mail	Turnaround Time: □ 24 hr Criteria: ☑ CSR 및 CCME	Vince Name: Vancerived	200 – 2920 Virtual Way Vancouver, British Columbia, Canada V5M 00 Telephone (604) 296-4200 Fax (604) 298-5	Associates	
WHITE: Golder Copy YELLOW: Lab	Shipped by: Shipment Condition: Seal Intact:	Method of Shipment: Waybill No.:	Relinquished by: Signature Date Company			L2459640-COFC					~			- H-O 10/2/20 12:00 WO	SampleSampleDateTimeSampleQAQCRelatedDepthMatrixSampledSampledTypeCodeSCN(m)(over)(D / M / Y)(HH:MM)(over)(over)(over)	Quote No.: 080351	□ 48 hr □ 72 hr □ Regular (5 Days) □ BC Water Quality ☑ Other \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	C EQuIS Facility Code: 211を32270 EQUIS upload: 図	253 Golder E-mail Address 1: AVERDE @golder.com Golder E-mail Address AVERDE @golder.com JOLSEN	Project Number: 20145856	CHAIN OF CUSTODY RECORD/ANALY
Copy ESED	Temp(°C) Cooler opened by: Date Time	Received for Lab by: T Date JUN Time 1020	20 Time Sg Received by: Signature Company							StirCleA	a hall sis				Number of C PFAS - - - - - - - - - - - - - - - - - - -	TAT abo	ve)	Analyses Required	ntact: <u>Str. 1/e c / P</u> 2: @golder.com Gontact:	Laboratory Name: ALS BUINAL	SIS REQUEST No. (12930 page 2 of 1



GOLDER ASSOCIATES LTD. ATTN: Alison Verde 200-2920 Virtual Way Vancouver BC V5M 0C4 Date Received:12-JUN-20Report Date:30-JUN-20 19:00 (MT)Version:FINAL REV. 3

Client Phone: 604-297-2036

# **Certificate of Analysis**

#### Lab Work Order #: L2460211

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 20145856 02926, 02927, 02931

Comments:15-JUN-2020PAH data is included for L2460211-5.16-JUN-2020Additional rush data is included.23-JUN-2020Rush data is included for L2460211-2.30-JUN-2020Addition data included for samples L2460211-7, -15 to -21

amber Springer

Amber Springer, B.Sc Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company



www.alsglobal.com

**RIGHT SOLUTIONS RIGHT PARTNER** 

L2460211 CONTD.... PAGE 2 of 12 30-JUN-20 19:00 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L2460211-2 SO 11-JUN-20 08:00 02926-02	L2460211-4 SO 11-JUN-20 08:00 02926-04	L2460211-5 SO 11-JUN-20 08:00 02926-05	L2460211-6 SO 11-JUN-20 08:00 02926-06	L2460211-7 SO 11-JUN-20 08:00 02926-07
Grouping	Analyte	-				
SOIL						
Physical Tests	pH (1:2 soil:water) (pH)		8.05	8.14	8.06	8.16
Metals	Cadmium (Cd) (mg/kg)		0.139	0.166	0.118	0.080
	Chromium (Cr) (mg/kg)		45.9	43.2	39.8	41.2
Volatile Organic Compounds	VOC Sample Container	Field MeOH				Field MeOH
	Benzene (mg/kg)	0.399	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dibromoethane (mg/kg)		<0.050	<0.050	<0.050	<0.050
	Ethylbenzene (mg/kg)	15.2	<0.015	<0.015	<0.015	<0.015
	Methyl t-butyl ether (MTBE) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	n-Nonane (mg/kg)		<0.050	<0.050	<0.050	<0.050
	Styrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Toluene (mg/kg)	7.03	<0.050	<0.050	<0.050	<0.050
	ortho-Xylene (mg/kg)	29.9	<0.050	<0.050	<0.050	<0.050
	meta- & para-Xylene (mg/kg)	61.3	<0.050	<0.050	<0.050	<0.050
	Xylenes (mg/kg)	91.1	<0.075	<0.075	<0.075	<0.075
	Surrogate: 4-Bromofluorobenzene (SS) (%)	96.0	103.8	111.2	98.9	104.7
	Surrogate: 1,4-Difluorobenzene (SS) (%)	92.0	120.0	116.1	111.2	109.1
Hydrocarbons	EPH10-19 (mg/kg)	8920	<200	<200	<200	<200
	EPH19-32 (mg/kg)	240	<200	<200	<200	<200
	LEPH (mg/kg)	8920	<200	<200	<200	<200
	HEPH (mg/kg)	240	<200	<200	<200	<200
	Volatile Hydrocarbons (VH6-10) (mg/kg)	980	<100	<100	<100	<100
	VPH (C6-C10) (mg/kg)	860	<100	<100	<100	<100
	Surrogate: 2-Bromobenzotrifluoride (%)	Not Reportable	87.6	88.6	88.5	83.2
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	Not Reportable	89.6	107.2	101.2	116.6
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.70	<0.0050	<0.0050	<0.0050	<0.0050
-	Acenaphthylene (mg/kg)	DLCI <0.16	<0.0050	<0.0050	<0.0050	<0.0050
	Anthracene (mg/kg)	DLCI <0.040	<0.0040	<0.0040	<0.0040	<0.0040
	Benz(a)anthracene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(a)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(b&j)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(b+j+k)fluoranthene (mg/kg)	<0.015	<0.015	<0.015	<0.015	<0.015
	Benzo(g,h,i)perylene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Chrysene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Dibenz(a,h)anthracene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050

L2460211 CONTD.... PAGE 3 of 12 30-JUN-20 19:00 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L2460211-8 SO 11-JUN-20 08:00 02926-08	L2460211-9 SO 11-JUN-20 08:00 02926-09	L2460211-10 SO 11-JUN-20 08:00 02926-10	L2460211-11 SO 11-JUN-20 08:00 02926-11	L2460211-12 SO 11-JUN-20 14:30 02926-12
Grouping	Analyte					
SOIL						
Physical Tests	pH (1:2 soil:water) (pH)					
Metals	Cadmium (Cd) (mg/kg)					
	Chromium (Cr) (mg/kg)					
Volatile Organic Compounds	VOC Sample Container					Field MeOH
	Benzene (mg/kg)	<0.0050	<0.0050	<0.0050		<0.0050
	1,2-Dibromoethane (mg/kg)	<0.050	<0.050	<0.050		
	Ethylbenzene (mg/kg)	<0.015	<0.015	<0.015		<0.015
	Methyl t-butyl ether (MTBE) (mg/kg)	<0.20	<0.20	<0.20		<0.20
	n-Nonane (mg/kg)	<0.060	<0.050	<0.050		<0.050
	Styrene (mg/kg)	<0.050	<0.050	<0.050		<0.050
	Toluene (mg/kg)	<0.050	<0.050	<0.050		<0.050
	ortho-Xylene (mg/kg)	<0.050	<0.050	<0.050		<0.050
	meta- & para-Xylene (mg/kg)	<0.050	<0.050	<0.050		<0.050
	Xylenes (mg/kg)	<0.075	<0.075	<0.075		<0.075
	Surrogate: 4-Bromofluorobenzene (SS) (%)	99.0	105.7	98.8		81.0
	Surrogate: 1,4-Difluorobenzene (SS) (%)	105.2	108.3	103.6		89.4
Hydrocarbons	EPH10-19 (mg/kg)	<200	<200	<200	<200	<200
	EPH19-32 (mg/kg)	<200	<200	<200	<200	<200
	LEPH (mg/kg)	<200	<200	<200	<200	<200
	HEPH (mg/kg)	<200	<200	<200	<200	<200
	Volatile Hydrocarbons (VH6-10) (mg/kg)	<100	<100	<100		<100
	VPH (C6-C10) (mg/kg)	<100	<100	<100		<100
	Surrogate: 2-Bromobenzotrifluoride (%)	86.1	90.5	89.6	77.9	75.8
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	120.8	119.4	114.9		89.3
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Acenaphthylene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Anthracene (mg/kg)	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
	Benz(a)anthracene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(a)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(b&j)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(b+j+k)fluoranthene (mg/kg)	<0.015	<0.015	<0.015	<0.015	<0.015
	Benzo(g,h,i)perylene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Chrysene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Dibenz(a,h)anthracene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050

L2460211 CONTD.... PAGE 4 of 12 30-JUN-20 19:00 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L2460211-15 SO 11-JUN-20 14:30 02927-03	L2460211-16 SO 11-JUN-20 14:30 02927-04	L2460211-17 SO 11-JUN-20 14:30 02927-05	L2460211-18 SO 11-JUN-20 14:30 02927-06	L2460211-19 SO 11-JUN-20 14:30 02927-07
Grouping	Analyte					
SOIL						
Physical Tests	pH (1:2 soil:water) (pH)	7.72	7.38	7.70	7.56	6.93
Metals	Cadmium (Cd) (mg/kg)	0.035	0.063	0.046	0.034	0.142
	Chromium (Cr) (mg/kg)	20.0	15.8	17.7	18.9	26.0
Volatile Organic Compounds	VOC Sample Container	Field MeOH				
	Benzene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dibromoethane (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Ethylbenzene (mg/kg)	<0.015	<0.015	<0.015	<0.015	<0.015
	Methyl t-butyl ether (MTBE) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	n-Nonane (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Styrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Toluene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	ortho-Xylene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	meta- & para-Xylene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Xylenes (mg/kg)	<0.075	<0.075	<0.075	<0.075	<0.075
	Surrogate: 4-Bromofluorobenzene (SS) (%)	107.4	109.5	105.8	117.5	92.1
	Surrogate: 1,4-Difluorobenzene (SS) (%)	108.2	115.0	114.4	127.1	97.3
Hydrocarbons	EPH10-19 (mg/kg)	<200	<200	<200	<200	<200
	EPH19-32 (mg/kg)	<200	<200	<200	<200	<200
	LEPH (mg/kg)	<200	<200	<200	<200	<200
	HEPH (mg/kg)	<200	<200	<200	<200	<200
	Volatile Hydrocarbons (VH6-10) (mg/kg)	<100	<100	<100	<100	<100
	VPH (C6-C10) (mg/kg)	<100	<100	<100	<100	<100
	Surrogate: 2-Bromobenzotrifluoride (%)	84.7	86.8	85.0	89.9	88.9
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	107.3	123.7	81.3	115.6	116.5
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Acenaphthylene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Anthracene (mg/kg)	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
	Benz(a)anthracene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(a)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(b&j)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(b+j+k)fluoranthene (mg/kg)	<0.015	<0.015	<0.015	<0.015	<0.015
	Benzo(g,h,i)perylene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Chrysene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Dibenz(a,h)anthracene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050

L2460211 CONTD.... PAGE 5 of 12 30-JUN-20 19:00 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L2460211-20 SO 11-JUN-20 13:00 02931-01	L2460211-21 SO 11-JUN-20 13:00 02931-02		
Grouping	Analyte				
SOIL					
Physical Tests	pH (1:2 soil:water) (pH)	6.79	7.39		
Metals	Cadmium (Cd) (mg/kg)	0.065	0.090		
	Chromium (Cr) (mg/kg)	27.7	16.9		
Volatile Organic Compounds	VOC Sample Container	Soil Jar	Soil Jar		
	Benzene (mg/kg)	<0.0050	<0.0050		
	1,2-Dibromoethane (mg/kg)	<0.050	<0.050		
	Ethylbenzene (mg/kg)	<0.015	<0.015		
	Methyl t-butyl ether (MTBE) (mg/kg)	<0.20	<0.20		
	n-Nonane (mg/kg)	<0.050	<0.050		
	Styrene (mg/kg)	<0.050	<0.050		
	Toluene (mg/kg)	<0.050	<0.050		
	ortho-Xylene (mg/kg)	<0.050	<0.050		
	meta- & para-Xylene (mg/kg)	<0.050	<0.050		
	Xylenes (mg/kg)	<0.075	<0.075		
	Surrogate: 4-Bromofluorobenzene (SS) (%)	96.0	95.8		
	Surrogate: 1,4-Difluorobenzene (SS) (%)	89.5	92.3		
Hydrocarbons	EPH10-19 (mg/kg)	<200	<200		
	EPH19-32 (mg/kg)	<200	<200		
	LEPH (mg/kg)	<200	<200		
	HEPH (mg/kg)	<200	<200		
	Volatile Hydrocarbons (VH6-10) (mg/kg)	<100	<100		
	VPH (C6-C10) (mg/kg)	<100	<100		
	Surrogate: 2-Bromobenzotrifluoride (%)	87.7	84.4 SURR-		
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	107.1	62.6		
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.0050	<0.0050		
	Acenaphthylene (mg/kg)	<0.0050	<0.0050		
	Anthracene (mg/kg)	<0.0040	<0.0040		
	Benz(a)anthracene (mg/kg)	<0.010	<0.010		
	Benzo(a)pyrene (mg/kg)	<0.010	<0.010		
	Benzo(b&j)fluoranthene (mg/kg)	<0.010	<0.010		
	Benzo(b+j+k)fluoranthene (mg/kg)	<0.015	<0.015		
	Benzo(g,h,i)perylene (mg/kg)	<0.010	<0.010		
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010		
	Chrysene (mg/kg)	<0.010	<0.010		
	Dibenz(a,h)anthracene (mg/kg)	<0.0050	<0.0050		

L2460211 CONTD.... PAGE 6 of 12 30-JUN-20 19:00 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L2460211-2 SO 11-JUN-20 08:00 02926-02	L2460211-4 SO 11-JUN-20 08:00 02926-04	L2460211-5 SO 11-JUN-20 08:00 02926-05	L2460211-6 SO 11-JUN-20 08:00 02926-06	L2460211-7 SO 11-JUN-20 08:00 02926-07
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Fluorene (mg/kg)	0.812	<0.010	<0.010	<0.010	<0.010
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	1-Methylnaphthalene (mg/kg)	8.21	<0.010	<0.010	<0.010	<0.010
	2-Methylnaphthalene (mg/kg)	11.7	<0.010	<0.010	<0.010	<0.010
	Naphthalene (mg/kg)	<6.5	<0.010	<0.010	<0.010	<0.010
	Phenanthrene (mg/kg)	<0.40	<0.010	<0.010	<0.010	<0.010
	Pyrene (mg/kg)	0.054	<0.010	<0.010	<0.010	<0.010
	Quinoline (mg/kg)	DLCI <1.5	<0.050	<0.050	<0.050	<0.050
	Surrogate: Chrysene d12 (%)	94.2	104.1	92.0	106.2	96.3
	Surrogate: Naphthalene d8 (%)	109.3	95.7	86.2	99.9	91.9
	Surrogate: Phenanthrene d10 (%)	104.0	99.2	92.1	101.4	96.7
	B(a)P Total Potency Equivalent (mg/kg)	<0.020	<0.020	<0.020	<0.020	<0.020
	IACR (CCME)	<0.15	<0.15	<0.15	<0.15	<0.15

L2460211 CONTD.... PAGE 7 of 12 30-JUN-20 19:00 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L2460211-8 SO 11-JUN-20 08:00 02926-08	L2460211-9 SO 11-JUN-20 08:00 02926-09	L2460211-10 SO 11-JUN-20 08:00 02926-10	L2460211-11 SO 11-JUN-20 08:00 02926-11	L2460211-12 SO 11-JUN-20 14:30 02926-12
Grouping	Analyte					
SOIL	-					
Polycyclic Aromatic Hydrocarbons	Fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
-	Fluorene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	1-Methylnaphthalene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	2-Methylnaphthalene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Naphthalene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Phenanthrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Quinoline (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Surrogate: Chrysene d12 (%)	109.4	102.9	101.0	85.4	86.9
	Surrogate: Naphthalene d8 (%)	104.5	99.3	98.3	82.0	85.2
	Surrogate: Phenanthrene d10 (%)	105.6	100.2	99.7	86.7	88.5
	B(a)P Total Potency Equivalent (mg/kg)	<0.020	<0.020	<0.020	<0.020	<0.020
	IACR (CCME)	<0.15	<0.15	<0.15	<0.15	<0.15

L2460211 CONTD.... PAGE 8 of 12 30-JUN-20 19:00 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L2460211-15 SO 11-JUN-20 14:30 02927-03	L2460211-16 SO 11-JUN-20 14:30 02927-04	L2460211-17 SO 11-JUN-20 14:30 02927-05	L2460211-18 SO 11-JUN-20 14:30 02927-06	L2460211-19 SO 11-JUN-20 14:30 02927-07
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
-	Fluorene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	1-Methylnaphthalene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	2-Methylnaphthalene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Naphthalene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Phenanthrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Quinoline (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Surrogate: Chrysene d12 (%)	98.7	94.2	92.8	94.7	101.0
	Surrogate: Naphthalene d8 (%)	96.0	96.5	95.2	98.4	102.9
	Surrogate: Phenanthrene d10 (%)	94.8	93.6	92.3	92.5	101.3
	B(a)P Total Potency Equivalent (mg/kg)	<0.020	<0.020	<0.020	<0.020	<0.020
	IACR (CCME)	<0.15	<0.15	<0.15	<0.15	<0.15

L2460211 CONTD.... PAGE 9 of 12 30-JUN-20 19:00 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L2460211-20 SO 11-JUN-20 13:00 02931-01	L2460211-21 SO 11-JUN-20 13:00 02931-02		
Grouping	Analyte				
SOIL					
Polycyclic Aromatic Hydrocarbons	Fluoranthene (mg/kg)	<0.010	<0.010		
	Fluorene (mg/kg)	<0.010	<0.010		
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.010	<0.010		
	1-Methylnaphthalene (mg/kg)	<0.010	<0.010		
	2-Methylnaphthalene (mg/kg)	<0.010	<0.010		
	Naphthalene (mg/kg)	<0.010	<0.010		
	Phenanthrene (mg/kg)	<0.010	<0.010		
	Pyrene (mg/kg)	<0.010	<0.010		
	Quinoline (mg/kg)	<0.050	<0.050		
	Surrogate: Chrysene d12 (%)	95.3	103.2		
	Surrogate: Naphthalene d8 (%)	93.1	92.3		
	Surrogate: Phenanthrene d10 (%)	92.7	99.6		
	B(a)P Total Potency Equivalent (mg/kg)	<0.020	<0.020		
	IACR (CCME)	<0.15	<0.15		

#### **Qualifiers for Sample Submission Listed:**

Qualifier	Description
VOCC	Soil jar was submitted as VOC sample container. VOC results may be biased low, and do not meet federal (CCME) or provincial requirements (for BC, AB-Tier1, MB, ON, SK) Sample#20 and 21

#### **Qualifiers for Individual Samples Listed:**

Sample Number	Client Sample ID	Qualifier	Description
L2460211-20	02931-01	VOCC	Soil jar was submitted as VOC sample container. VOC results may be biased low, and do not meet federal (CCME) or provincial requirements (for BC, AB-Tier1, MB, ON, SK).
L2460211-21	02931-02	VOCC	Soil jar was submitted as VOC sample container. VOC results may be biased low, and do not meet federal (CCME) or provincial requirements (for BC, AB-Tier1, MB, ON, SK).

#### **QC Samples with Qualifiers & Comments:**

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Duplicate	EPH10-19	DUP-H	L2460211-2
Duplicate	Chromium (Cr)	DUP-H	L2460211-15, -16, -17, -18, -19, -20, -21, -7
Duplicate	1-Methylnaphthalene	DUP-H	L2460211-2
Duplicate	Fluorene	DUP-H	L2460211-2
Laboratory Control Sample	n-Nonane	LCS-ND	L2460211-10, -4, -5, -6, -8, -9
Laboratory Control Sample	n-Nonane	LCS-ND	L2460211-20, -21

Qualifiers for	Qualifiers for Individual Parameters Listed:				
Qualifier	Description				
DLCI	Detection Limit Raised: Chromatographic Interference due to co-elution.				
DLQ	Detection Limit raised due to co-eluting interference. GCMS qualifier ion ratio did not meet acceptance criteria.				
DUP-H	Duplicate results outside ALS DQO, due to sample heterogeneity.				
LCS-ND	Lab Control Sample recovery was slightly outside ALS DQO. Reported non-detect results for associated samples were unaffected.				
SMI	Surrogate recovery could not be measured due to sample matrix interference.				
SURR-ND	Surrogate recovery marginally exceeded ALS DQO. Reported non-detect results for associated samples were deemed to be unaffected.				

#### **Test Method References:**

ALS Test Code	Matrix	Test Description	Method Reference**
EPH-TUMB-FID-VA	Soil	EPH in Solids by Tumbler and GCFID	BC MOE EPH GCFID
Analysis is in accordance w samples are extracted with chromatography with flame equivalent to Light and Hea	ith BC MOE a 1:1 mixture ionization de vy Extractabl	Lab Manual method "Extractable Petroleum Hydrocarbo of hexane and acetone using a rotary extraction techni tection (GC-FID). EPH results include Polycyclic Arom e Petroleum Hydrocarbons (LEPH/HEPH).	ons in Solids by GC/FID", v2.1, July 1999. Soil ique modified from EPA 3570 prior to gas atic Hydrocarbons (PAH) and are therefore not
FUELS-HSMS-VA	Soil	VOCs in soil by Headspace GCMS	EPA 5035A/5021A/8260C
The soil methanol extract is gas chromatograph. Targe	added to wa t compound o	ter and reagents, then heated in a sealed vial to equilib concentrations are measured using mass spectrometry	rium. The headspace from the vial is transferred into a detection.
GRAIN SIZE-SK	Soil	Grain Size Analysis	SSIR-51 METHOD 3.2.1
Particle size distribution is of the pipette sedimentation m	determined by nethod for cla	<ul> <li>a combination of techniques. Dry sieving is performed y particles.</li> </ul>	I for coarse particles, wet sieving for sand particles and
LEPH/HEPH-CALC-VA	Soil	LEPHs and HEPHs	BC MOE LEPH/HEPH
LEPHs and HEPHs are me PAH concentrations from E	asures of Lig PH10-19 and	nt and Heavy Extractable Petroleum Hydrocarbons in s EPH19-32, as per the BC Lab Manual LEPH/HEPH ca	oil. Results are calculated by subtraction of applicable alculation procedure.
LEPHs = EPH10-19 minus	Naphthalene	and Phenanthrene.	

HEPHs = EPH19-32 minus Benz(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenz(a,h)anthracene, indeno(1,2,3-c,d)pyrene, and Pyrene.

MET-200.2-CCMS-VA Soil Metals in Soil by CRC ICPMS

Soil/sediment is dried, disaggregated, and sieved (2 mm). Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS.

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only

EPA 200.2/6020A (mod)

CCME PHC in Soil - Tier 1 (mod)

BC Env. Lab Manual (VH in Solids)

BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

EPA 3570/8270

partially recovered (matrix dependent), including Al, Ba, Be, Cr, S, Sr, Ti, Tl, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

#### MOISTURE-VA Soil Moisture content

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of two hours.

#### PAH-TMB-H/A-MS-VA Soil PAH - Rotary Extraction (Hexane/Acetone)

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3570 & 8270, published by the United States Environmental Protection Agency (EPA). The procedure uses a mechanical shaking technique to extract a subsample of the sediment/soil with a 1:1 mixture of hexane and acetone. The extract is then solvent exchanged to toluene. The final extract is analysed by capillary column gas chromatography with mass spectrometric detection (GC/MS). Surrogate recoveries may not be reported in cases where interferences from the sample matrix prevent accurate quantitation. Because the two isomers cannot be readily chromatographically separated, benzo(j)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

Benzo(a)pyrene Total Potency Equivalents [B(a)P TPE] represents the sum of estimated cancer potency relative to B(a)P for all potentially carcinogenic unsubstituted PAHs, and is calculated as per the CCME PAH Soil Quality Guidelines reference document (2010).

PH-1:2-VA Soil pH in Soil (1:2 Soil:Water Extraction)

This analysis is carried out in accordance with procedures described in "pH, Electrometric in Soil and Sediment - Prescriptive Method", Rev. 2005, Section B Physical, Inorganic and Misc. Constituents, BC Environmental Laboratory Manual. The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

#### VH-HSFID-VA Soil VH in soil by Headspace GCFID

This analysis involves the extraction of a subsample of the sediment/soil with methanol. Aliquots of the methanol extract are then added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is analyzed for Volatile Hydrocarbons (VH) by capillary column gas chromatography with flame-ionization detection (GC/FID). The methanol extraction and VH analysis are carried out in accordance with the British Columbia Ministry of Environment, Lands and Parks (BCMELP) Analytical Method for Contaminated Sites "Volatile Hydrocarbons in Solids by GC/FID" (Version 2.1 July 1999).

VH-SURR-FID-VA	Soil	VH Surrogates for Soils	BC Env. Lab Manual (VH in Solids)		
VOC-HSMS-VA	Soil	VOCs in soil by Headspace GCMS	EPA 5035A/5021A/8260C		
The soil methanol extract is gas chromatograph. Target	added to wa compound c	ter and reagents, then heated in a sealed vial to equilib concentrations are measured using mass spectrometry	prium. The headspace from the vial is transferred into a detection.		
VOC-M2-HSMS-VA	Soil	Misc VOCs in soil by Headspace GCMS	EPA 5035A/5021A/8260C		
The soil methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection.					
VOC7-L-HSMS-VA	Soil	VOCs in soil by Headspace GCMS	EPA 5035A/5021A/8260C		
The soil methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection.					
VOC7/VOC-SURR-MS-VA	Soil	VOC7 and/or VOC Surrogates for Soils	EPA 5035A/5021A/8260C		
VPH-CALC-VA	Soil	VPH is VH minus select aromatics	BC MOE VPH		
VPHs measures Volatile Pe VH6-10, as per the BC Lab VPHs = VH6-10 minus Ben	VPHs measures Volatile Petroleum Hydrocarbons in soil. Results are calculated by subtraction of specific Monocyclic Aromatic Hydrocarbons from VH6-10, as per the BC Lab Manual VPH calculation procedure. VPHs = VH6-10 minus Benzene, Toluene, Ethylbenzene, Xylenes, and Styrene				
XYLENES-CALC-VA	Soil	Sum of Xylene Isomer Concentrations	EPA 8260B & 524.2		
Calculation of Total Xylenes	;				
Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes.					
ALS test methods may incorporate modifications from specified reference methods to improve performance.					
The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:					

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

#### Chain of Custody Numbers:

#### **GLOSSARY OF REPORT TERMS**

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.



			Workorder:	L2460211	Re	port Date:	30-JUN-20	Pa	ige 1 of 25
Client:	GOLDER 200-2920 Vancouve	ASSOCIATES L Virtual Way er BC V5M 0C4	TD.						
Tost		Matrix	Poforonco	Pocult	Qualifier	Unite	PPD	Limit	Analyzod
1651		Wallix	Reference	Result	Quaimei	Units	KF D		Anaryzeu
EPH-TUMB-FID-\	/Α	Soil							
Batch F	R5117830								
WG3341710-3 EPH10-19	DUP		<b>L2460211-5</b> <200	<200	RPD-NA	mg/kg	N/A	40	15-JUN-20
EPH19-32			<200	<200	RPD-NA	mg/kg	N/A	40	15-JUN-20
WG3341710-4	IRM		ALS PHC RM3	02.8		%		70 120	45 JUN 20
EPH19-32				92.0 96.0		%		70-130	15-JUN-20
WG3341710-2	201			00.0		70		70-130	13-3011-20
EPH10-19	203			96.5		%		70-130	15-JUN-20
EPH19-32				95.9		%		70-130	15-JUN-20
WG3341710-1	МВ								
EPH10-19				<200		mg/kg		200	15-JUN-20
EPH19-32				<200		mg/kg		200	15-JUN-20
Surrogate: 2-E	Bromobenz	totrifluoride		89.6		%		60-140	15-JUN-20
Batch F	R5119096								
WG3342711-3 EPH10-19	DUP		<b>L2460211-7</b> <200	<200	RPD-NA	mg/kg	N/A	40	16-JUN-20
EPH19-32			<200	<200	RPD-NA	mg/kg	N/A	40	16-JUN-20
WG3342711-4 FPH10-19	IRM		ALS PHC RM3	91 9		%		70 120	16 JUN 20
EPH19-32				94.6		%		70-130	16-JUN-20
WG3342711-2	LCS			04.0		70		70-130	10-3011-20
EPH10-19				93.6		%		70-130	16-JUN-20
EPH19-32				96.7		%		70-130	16-JUN-20
WG3342711-1 FPH10-19	MB			<200		ma/ka		200	16- II IN-20
EPH19-32				<200		ma/ka		200	16-JUN-20
Surrogate: 2-E	Bromobenz	otrifluoride		80.4		%		60-140	16-JUN-20
Batch F	85130219								
WG3347576-3	DUP		L2460211-2						
EPH10-19			8920	5520	DUP-H	mg/kg	47	40	23-JUN-20
EPH19-32			240	<200	RPD-NA	mg/kg	N/A	40	23-JUN-20
WG3347576-4 EPH10-19	IRM		ALS PHC RM3	94.5		%		70-130	23-JUN-20
EPH19-32				93.6		%		70-130	23-JUN-20
WG3347576-2	LCS			02.2		0/		70.400	00 1111 00
EPH10-19				93.3		70 0/		70-130	23-JUN-20
EFH19-32				92. I		70		70-130	23-JUN-20



			Workorder: L2460211		1 Re	Report Date: 30-JUN-20			Page 2 of 25		
Test	М	atrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
EPH-TUMB-FID-V	a s	oil									
Batch R	5130219										
WG3347576-1	MB										
EPH10-19				<200		mg/kg		200	23-JUN-20		
EPH19-32				<200		mg/kg		200	23-JUN-20		
Surrogate: 2-Bi	omobenzotr	ifluoride		88.0		%		60-140	23-JUN-20		
Batch R	5132236										
WG3348924-3	DUP		L2460211-21	-200		ma/ka	N1/A	40			
EPH10-32			<200	<200		mg/kg	N/A	40	25-JUN-20		
WC2248024 4				~200	KPD-NA	Шулку	IN/A	40	25-JUN-20		
EPH10-19				<b>9</b> 2.1		%		70-130	25-JUN-20		
EPH19-32				94.4		%		70-130	25-JUN-20		
WG3348924-2	LCS										
EPH10-19				88.6		%		70-130	25-JUN-20		
EPH19-32				82.8		%		70-130	25-JUN-20		
WG3348924-1	МВ										
EPH10-19				<200		mg/kg		200	25-JUN-20		
EPH19-32				<200		mg/kg		200	25-JUN-20		
Surrogate: 2-Br	omobenzotr	ifluoride		83.3		%		60-140	25-JUN-20		
Batch R	5136000										
WG3352606-3	DUP		L2460211-15	-200		ma/ka	N1/A	40			
EPH10-19			<200	<200		mg/kg	N/A	40	30-JUN-20		
LFII19-32	IDM			<200	RPD-NA	шу/ку	N/A	40	30-JUN-20		
EPH10-19				<b>9</b> 3.8		%		70-130	30-JUN-20		
EPH19-32				95.0		%		70-130	30-JUN-20		
WG3352606-2	LCS										
EPH10-19				93.8		%		70-130	30-JUN-20		
EPH19-32				94.9		%		70-130	30-JUN-20		
WG3352606-1	MB										
EPH10-19				<200		mg/kg		200	30-JUN-20		
EPH19-32				<200		mg/kg		200	30-JUN-20		
Surrogate: 2-Bi	omobenzotr	ifluoride		87.5		%		60-140	30-JUN-20		
FUELS-HSMS-VA	s	oil									
Batch R5	5112127										
WG3341835-3 1,2-Dibromoeth	<b>DUP</b> nane		<b>L2460211-8</b> <0.050	<0.050	RPD-NA	mg/ka	N/A	50	15-JUN-20		
WG3349012-3	DUP		L2460211-19								



			Workorder: L2460211			Report Date: 30-JUN-20			Page 3 of 25		
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
FUELS-HSMS-VA		Soil									
Batch R51	12127										
WG3349012-3 1,2-Dibromoetha	DUP ne		<b>L2460211-19</b> <0.050	<0.050	RPD-NA	mg/kg	N/A	50	24-JUN-20		
WG3341835-2 1,2-Dibromoetha	LCS ne			107.9		%		70-130	15-JUN-20		
WG3349012-2 1,2-Dibromoetha	LCS ne			105.8		%		70-130	24-JUN-20		
WG3341835-1 1,2-Dibromoetha	MB ne			<0.050		mg/kg		0.05	15-JUN-20		
WG3349012-1 1,2-Dibromoetha	MB ne			<0.050		mg/kg		0.05	24-JUN-20		
Batch R51	17129										
<b>WG3349866-3</b> 1,2-Dibromoetha	DUP ne		<b>L2460211-21</b> <0.050	<0.050	RPD-NA	mg/kg	N/A	50	25-JUN-20		
WG3349866-2 1,2-Dibromoetha	LCS ne			102.8		%		70-130	25-JUN-20		
WG3349866-1 1,2-Dibromoetha	MB ne			<0.050		mg/kg		0.05	25-JUN-20		
MET-200.2-CCMS-V	A	Soil									
Batch R51	17551										
WG3341709-4	CRM		SCP SS-2								
Cadmium (Cd)				109.3		%		70-130	15-JUN-20		
Chromium (Cr)				97.6		%		70-130	15-JUN-20		
WG3341709-2 Cadmium (Cd)	DUP		<b>L2460211-4</b> 0.139	0.127		mg/kg	8.9	30	15-JUN-20		
Chromium (Cr)			45.9	41.7		mg/kg	9.6	30	15-JUN-20		
WG3341709-3 Cadmium (Cd)	LCS			99.5		%		80.120	15 JUN 20		
Chromium (Cr)				98.5		%		80-120	15-JUN-20		
WG3341709-1	мв			00.0		<i>,</i> ,,		00 120	13 3011 20		
Cadmium (Cd)				<0.020		mg/kg		0.02	15-JUN-20		
Chromium (Cr)				<0.50		mg/kg		0.5	15-JUN-20		
Batch R51	32027										
WG3348942-4	CRM		SCP SS-2								
Cadmium (Cd)				104.7		%		70-130	25-JUN-20		
				102.4		%		70-130	25-JUN-20		
WG3348942-2 Cadmium (Cd)	DUP		<b>L2460211-15</b> 0.035	0.041		mg/kg	16	30	25-JUN-20		
Chromium (Cr)			20.0	32.7	DUP-H	mg/kg	48	30	25-JUN-20		



		Workorder:	L246021	L2460211 Report		ort Date: 30-JUN-20		Page 4 of 25	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-200.2-CCMS-VA	Soil								
Batch R5132027	,								
WG3348942-3 LCS									
Cadmium (Cd)			97.4		%		80-120	25-JUN-20	
Chromium (Cr)			93.3		%		80-120	25-JUN-20	
WG3348942-1 MB			-0.020		m a /l ca		0.00	05 1111 00	
Chromium (Cu)			<0.020		mg/kg		0.02	25-JUN-20	
Chiomium (Ci)			<0.50		шу/ку		0.5	25-JUN-20	
PAH-TMB-H/A-MS-VA	Soil								
Batch R5116579									
Acenaphthene		<b>L2460211-5</b>	<0.0050	RPD-NA	ma/ka	N/A	50	15- ILINI-20	
Acenaphthylene		<0.0050	<0.0050		ma/ka	N/A	50	15-JUN-20	
Anthracene		<0.0040	<0.0040		ma/ka	N/A	50	15- IUN-20	
Benz(a)anthracene		<0.010	<0.010	RPD-NA	ma/ka	N/A	50	15-JUN-20	
Benzo(a)pyrene		<0.010	<0.010	RPD-NA	ma/ka	N/A	50	15-JUN-20	
Benzo(b&j)fluoranthene	9	<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20	
Benzo(g,h,i)perylene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20	
Benzo(k)fluoranthene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20	
Chrysene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20	
Dibenz(a,h)anthracene		<0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	15-JUN-20	
Fluoranthene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20	
Fluorene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20	
Indeno(1,2,3-c,d)pyrene	e	<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20	
1-Methylnaphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20	
2-Methylnaphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20	
Naphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20	
Phenanthrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20	
Pyrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JUN-20	
Quinoline		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	15-JUN-20	
WG3342529-5 IRM		ALS PAH RM	12						
Acenaphthene			90.6		%		60-130	15-JUN-20	
Acenaphthylene			105.4		%		60-130	15-JUN-20	
Anthracene			102.9		%		60-130	15-JUN-20	
Benz(a)anthracene			92.3		%		60-130	15-JUN-20	
Benzo(a)pyrene			93.2		%		60-130	15-JUN-20	
Benzo(b&j)fluoranthene	9		90.7		%		60-130	15-JUN-20	
Benzo(g,h,i)perylene			92.4		%		60-130	15-JUN-20	



	Matrix	Workorder: L2460211			Report Date: 30-JUN-20		Page 5 of 25	
Test		Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-VA	Soil							
Batch R5116579								
WG3342529-5 IRM		ALS PAH RM	<b>/</b> 12					
Benzo(k)fluoranthene			81.5		%		60-130	15-JUN-20
Chrysene			97.4		%		60-130	15-JUN-20
Dibenz(a,h)anthracene			94.6		%		60-130	15-JUN-20
Fluoranthene			91.7		%		60-130	15-JUN-20
Fluorene			91.7		%		60-130	15-JUN-20
Indeno(1,2,3-c,d)pyrene	ł		90.7		%		60-130	15-JUN-20
1-Methylnaphthalene			90.0		%		60-130	15-JUN-20
2-Methylnaphthalene			86.7		%		60-130	15-JUN-20
Naphthalene			91.0		%		50-130	15-JUN-20
Phenanthrene			91.1		%		60-130	15-JUN-20
Pyrene			92.7		%		60-130	15-JUN-20
WG3342529-2 LCS								
Acenaphthene			94.4		%		60-130	15-JUN-20
Acenaphthylene			92.9		%		60-130	15-JUN-20
Anthracene			95.0		%		60-130	15-JUN-20
Benz(a)anthracene			93.1		%		60-130	15-JUN-20
Benzo(a)pyrene			97.1		%		60-130	15-JUN-20
Benzo(b&j)fluoranthene			94.6		%		60-130	15-JUN-20
Benzo(g,h,i)perylene			89.6		%		60-130	15-JUN-20
Benzo(k)fluoranthene			95.2		%		60-130	15-JUN-20
Chrysene			94.0		%		60-130	15-JUN-20
Dibenz(a,h)anthracene			93.5		%		60-130	15-JUN-20
Fluoranthene			95.5		%		60-130	15-JUN-20
Fluorene			94.7		%		60-130	15-JUN-20
Indeno(1,2,3-c,d)pyrene	1		89.9		%		60-130	15-JUN-20
1-Methylnaphthalene			91.7		%		60-130	15-JUN-20
2-Methylnaphthalene			91.1		%		60-130	15-JUN-20
Naphthalene			89.6		%		50-130	15-JUN-20
Phenanthrene			94.4		%		60-130	15-JUN-20
Pyrene			97.8		%		60-130	15-JUN-20
Quinoline			87.4		%		60-130	15-JUN-20
WG3342529-1 MB								
Acenaphthene			<0.0050		mg/kg		0.005	15-JUN-20
Acenaphthylene			<0.0050		mg/kg		0.005	15-JUN-20
Anthracene			<0.0040		mg/kg		0.004	15-JUN-20



		Workorder	: L246021	1	Report Date: 3	0-JUN-20	Page 6 of 25		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
PAH-TMB-H/A-MS-VA	Soil								
Batch R51165	79								
WG3342529-1 MB									
Benz(a)anthracene			<0.010		mg/kg		0.01	15-JUN-20	
Benzo(a)pyrene			<0.010		mg/kg		0.01	15-JUN-20	
Benzo(b&j)fluoranthe	ene		<0.010		mg/kg		0.01	15-JUN-20	
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	15-JUN-20	
Benzo(k)fluoranthene	e		<0.010		mg/kg		0.01	15-JUN-20	
Chrysene			<0.010		mg/kg		0.01	15-JUN-20	
Dibenz(a,h)anthrace	ne		<0.0050		mg/kg		0.005	15-JUN-20	
Fluoranthene			<0.010		mg/kg		0.01	15-JUN-20	
Fluorene			<0.010		mg/kg		0.01	15-JUN-20	
Indeno(1,2,3-c,d)pyre	ene		<0.010		mg/kg		0.01	15-JUN-20	
1-Methylnaphthalene			<0.010		mg/kg		0.01	15-JUN-20	
2-Methylnaphthalene			<0.010		mg/kg		0.01	15-JUN-20	
Naphthalene			<0.010		mg/kg		0.01	15-JUN-20	
Phenanthrene			<0.010		mg/kg		0.01	15-JUN-20	
Pyrene			<0.010		mg/kg		0.01	15-JUN-20	
Quinoline			<0.050		mg/kg		0.05	15-JUN-20	
Surrogate: Naphthale	ene d8		88.6		%		50-130	15-JUN-20	
Surrogate: Phenanth	rene d10		93.2		%		60-130	15-JUN-20	
Surrogate: Chrysene	d12		90.9		%		60-130	15-JUN-20	
Batch R51176	63								
WG3341710-5 IRM	1	ALS PAH R	<b>/</b> 12						
Acenaphthene			95.4		%		60-130	15-JUN-20	
Acenaphthylene			105.4		%		60-130	15-JUN-20	
Anthracene			104.6		%		60-130	15-JUN-20	
Benz(a)anthracene			97.7		%		60-130	15-JUN-20	
Benzo(a)pyrene			97.5		%		60-130	15-JUN-20	
Benzo(b&j)fluoranthe	ene		93.4		%		60-130	15-JUN-20	
Benzo(g,h,i)perylene			96.9		%		60-130	15-JUN-20	
Benzo(k)fluoranthene	e		90.6		%		60-130	15-JUN-20	
Chrysene			86.0		%		60-130	15-JUN-20	
Dibenz(a,h)anthrace	ne		99.5		%		60-130	15-JUN-20	
Fluoranthene			95.3		%		60-130	15-JUN-20	
Fluorene			95.5		%		60-130	15-JUN-20	
Indeno(1,2,3-c,d)pyre	ene		98.5		%		60-130	15-JUN-20	



		Workorder: L2460211			Report Date: 30-JUN-20		Page 7 of 25	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-VA	Soil							
Batch R5117663								
WG3341710-5 IRM		ALS PAH RM	<b>/</b> 12					
1-Methylnaphthalene			93.7		%		60-130	15-JUN-20
2-Methylnaphthalene			91.5		%		60-130	15-JUN-20
Naphthalene			95.5		%		50-130	15-JUN-20
Phenanthrene			94.9		%		60-130	15-JUN-20
Pyrene			97.4		%		60-130	15-JUN-20
WG3341710-2 LCS Acenaphthene			99.98		%		60-130	15-JUN-20
Acenaphthylene			98.1		%		60-130	15-JUN-20
Anthracene			98.9		%		60-130	15-JUN-20
Benz(a)anthracene			108.3		%		60-130	15-JUN-20
Benzo(a)pyrene			92.9		%		60-130	15-JUN-20
Benzo(b&j)fluoranthene			99.5		%		60-130	15-JUN-20
Benzo(g,h,i)perylene			107.8		%		60-130	15-JUN-20
Benzo(k)fluoranthene			102.5		%		60-130	15-JUN-20
Chrysene			100.4		%		60-130	15-JUN-20
Dibenz(a,h)anthracene			102.8		%		60-130	15-JUN-20
Fluoranthene			100.2		%		60-130	15-JUN-20
Fluorene			98.7		%		60-130	15-JUN-20
Indeno(1,2,3-c,d)pyrene	•		110.6		%		60-130	15-JUN-20
1-Methylnaphthalene			99.5		%		60-130	15-JUN-20
2-Methylnaphthalene			98.0		%		60-130	15-JUN-20
Naphthalene			100.1		%		50-130	15-JUN-20
Phenanthrene			98.3		%		60-130	15-JUN-20
Pyrene			104.2		%		60-130	15-JUN-20
Quinoline			97.1		%		60-130	15-JUN-20
WG3341710-1 MB								
Acenaphthene			<0.0050		mg/kg		0.005	15-JUN-20
Acenaphthylene			<0.0050		mg/kg		0.005	15-JUN-20
Anthracene			<0.0040		mg/kg		0.004	15-JUN-20
Benz(a)anthracene			<0.010		mg/kg		0.01	15-JUN-20
Benzo(a)pyrene			<0.010		mg/kg		0.01	15-JUN-20
Benzo(b&j)fluoranthene			<0.010		mg/kg		0.01	15-JUN-20
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	15-JUN-20
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	15-JUN-20
Chrysene			<0.010		mg/kg		0.01	15-JUN-20



		Workorder: L2460211			eport Date: 3	80-JUN-20	Page 8 of 25		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
PAH-TMB-H/A-MS-VA	Soil								
Batch R5117	663								
WG3341710-1 MI Dibenz(a,h)anthrace	<b>B</b> ene		<0.0050		mg/kg		0.005	15-JUN-20	
Fluoranthene			<0.010		mg/kg		0.01	15-JUN-20	
Fluorene			<0.010		mg/kg		0.01	15-JUN-20	
Indeno(1,2,3-c,d)py	rene		<0.010		mg/kg		0.01	15-JUN-20	
1-Methylnaphthalen	e		<0.010		mg/kg		0.01	15-JUN-20	
2-Methylnaphthalen	e		<0.010		mg/kg		0.01	15-JUN-20	
Naphthalene			<0.010		mg/kg		0.01	15-JUN-20	
Phenanthrene			<0.010		mg/kg		0.01	15-JUN-20	
Pyrene			<0.010		mg/kg		0.01	15-JUN-20	
Quinoline			<0.050		mg/kg		0.05	15-JUN-20	
Surrogate: Naphtha	lene d8		116.1		%		50-130	15-JUN-20	
Surrogate: Phenant	hrene d10		122.6		%		60-130	15-JUN-20	
Surrogate: Chrysen	e d12		125.7		%		60-130	15-JUN-20	
Batch R5118	802								
WG3342711-3 DU	JP	L2460211-7							
Acenaphthene		<0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	16-JUN-20	
Acenaphthylene		<0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	16-JUN-20	
Anthracene		<0.0040	<0.0040	RPD-NA	mg/kg	N/A	50	16-JUN-20	
Benz(a)anthracene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	16-JUN-20	
Benzo(a)pyrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	16-JUN-20	
Benzo(b&j)fluoranth	iene	<0.010	<0.010	RPD-NA	mg/kg	N/A	50	16-JUN-20	
Benzo(g,h,i)perylen	e	<0.010	<0.010	RPD-NA	mg/kg	N/A	50	16-JUN-20	
Benzo(k)fluoranther	ne	<0.010	<0.010	RPD-NA	mg/kg	N/A	50	16-JUN-20	
Chrysene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	16-JUN-20	
Dibenz(a,h)anthrace	ene	<0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	16-JUN-20	
Fluoranthene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	16-JUN-20	
Fluorene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	16-JUN-20	
Indeno(1,2,3-c,d)py	rene	<0.010	<0.010	RPD-NA	mg/kg	N/A	50	16-JUN-20	
1-Methylnaphthalen	e	<0.010	<0.010	RPD-NA	mg/kg	N/A	50	16-JUN-20	
2-Methylnaphthalen	e	<0.010	<0.010	RPD-NA	mg/kg	N/A	50	16-JUN-20	
Naphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	16-JUN-20	
Phenanthrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	16-JUN-20	
Pyrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	16-JUN-20	
Quinoline		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	16-JUN-20	
WG3342711-5		ALS PAH RM	/12						



		Workorder: L2460211			Report Date: 30-JUN-20		Page 9 of 25	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-VA	Soil							
Batch R5118802								
WG3342711-5 IRM		ALS PAH RM	/12					
Acenaphthene			91.3		%		60-130	16-JUN-20
Acenaphthylene			101.3		%		60-130	16-JUN-20
Anthracene			98.4		%		60-130	16-JUN-20
Benz(a)anthracene			89.9		%		60-130	16-JUN-20
Benzo(a)pyrene			90.6		%		60-130	16-JUN-20
Benzo(b&j)fluoranthene	•		87.3		%		60-130	16-JUN-20
Benzo(g,h,i)perylene			90.4		%		60-130	16-JUN-20
Benzo(k)fluoranthene			82.6		%		60-130	16-JUN-20
Chrysene			94.3		%		60-130	16-JUN-20
Dibenz(a,h)anthracene			92.6		%		60-130	16-JUN-20
Fluoranthene			90.4		%		60-130	16-JUN-20
Fluorene			91.2		%		60-130	16-JUN-20
Indeno(1,2,3-c,d)pyrene	9		88.0		%		60-130	16-JUN-20
1-Methylnaphthalene			90.1		%		60-130	16-JUN-20
2-Methylnaphthalene			87.6		%		60-130	16-JUN-20
Naphthalene			91.9		%		50-130	16-JUN-20
Phenanthrene			90.2		%		60-130	16-JUN-20
Pyrene			91.6		%		60-130	16-JUN-20
WG3342711-2 LCS								
Acenaphthene			101.3		%		60-130	16-JUN-20
Acenaphthylene			99.0		%		60-130	16-JUN-20
Anthracene			98.9		%		60-130	16-JUN-20
Benz(a)anthracene			97.9		%		60-130	16-JUN-20
Benzo(a)pyrene			99.6		%		60-130	16-JUN-20
Benzo(b&j)fluoranthene	•		99.0		%		60-130	16-JUN-20
Benzo(g,h,i)perylene			96.2		%		60-130	16-JUN-20
Benzo(k)fluoranthene			102.9		%		60-130	16-JUN-20
Chrysene			99.5		%		60-130	16-JUN-20
Dibenz(a,h)anthracene			101.1		%		60-130	16-JUN-20
Fluoranthene			101.4		%		60-130	16-JUN-20
Fluorene			99.8		%		60-130	16-JUN-20
Indeno(1,2,3-c,d)pyrene	9		95.8		%		60-130	16-JUN-20
1-Methylnaphthalene			99.3		%		60-130	16-JUN-20
2-Methylnaphthalene			98.2		%		60-130	16-JUN-20



		Workorder: L2460211			Report Date: 30-JUN-20		Page 10 of 25	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-VA	Soil							
Batch R5118802								
WG3342711-2 LCS								
Naphthalene			98.1		%		50-130	16-JUN-20
Phenanthrene			99.3		%		60-130	16-JUN-20
Pyrene			103.8		%		60-130	16-JUN-20
Quinoline			93.8		%		60-130	16-JUN-20
WG3342711-1 MB			~0.0050		ma/ka		0.005	16 1111 20
Acenaphthylene			<0.0050		mg/kg		0.005	16-JUN-20
Anthracene			<0.0030		mg/kg		0.005	16-JUN-20
Renz(a)anthracene			<0.0040		mg/kg		0.004	16-JUN-20
Benzo(a)pyrene			<0.010		mg/kg		0.01	16-JUN-20
Benzo(b&i)fluoranthene			<0.010		mg/kg		0.01	16-JUN-20
Benzo(a h i)pervlene			<0.010		mg/kg		0.01	16-JUN 20
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	16-JUN-20
Chrysene			<0.010		mg/kg		0.01	16-JUN-20
Dibenz(a.h)anthracene			<0.0050		mg/kg		0.005	16-JUN-20
Fluoranthene			<0.010		ma/ka		0.01	16-JUN-20
Fluorene			<0.010		ma/ka		0.01	16-JUN-20
Indeno(1.2.3-c.d)pvrene			<0.010		ma/ka		0.01	16-JUN-20
1-Methylnaphthalene			<0.010		mg/kg		0.01	16-JUN-20
2-Methylnaphthalene			<0.010		mg/kg		0.01	16-JUN-20
Naphthalene			<0.010		mg/kg		0.01	16-JUN-20
Phenanthrene			<0.010		mg/kg		0.01	16-JUN-20
Pyrene			<0.010		mg/kg		0.01	16-JUN-20
Quinoline			<0.050		mg/kg		0.05	16-JUN-20
Surrogate: Naphthalene d	8		92.8		%		50-130	16-JUN-20
Surrogate: Phenanthrene	d10		94.6		%		60-130	16-JUN-20
Surrogate: Chrysene d12			91.4		%		60-130	16-JUN-20
Batch R5130179								
WG3347576-3 DUP		L2460211-2						
Acenaphthene		<0.70	<0.50	RPD-N	IA mg/kg	N/A	50	23-JUN-20
Acenaphthylene		<0.16	<0.15	RPD-N	A mg/kg	N/A	50	23-JUN-20
Anthracene		<0.040	<0.040	RPD-N	IA mg/kg	N/A	50	23-JUN-20
Benz(a)anthracene		<0.010	<0.010	RPD-N	IA mg/kg	N/A	50	23-JUN-20
Benzo(a)pyrene		<0.010	<0.010	RPD-N	IA mg/kg	N/A	50	23-JUN-20



		Workorder:	rkorder: L2460211 Re		eport Date: 3	80-JUN-20	Page 11 of 25	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-VA	Soil							
Batch R513017	9							
WG3347576-3 DUP	0	L2460211-2	-0.010		malka	N1/A	50	
	e	<0.010	<0.010		mg/kg	N/A	50	23-JUN-20
Benzo(g,11,1)perylene		<0.010	<0.010		mg/kg	N/A	50	23-JUN-20
Christopo		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	23-JUN-20
Dibonz(a b)anthracono	<b>`</b>	<0.010	<0.010		mg/kg	N/A	50	23-JUN-20
Elucronthono	;	<0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	23-JUN-20
Fluoranciene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	23-JUN-20
		0.812	0.460	DUP-H	mg/kg	50	50	23-JUN-20
1 Methylaenhtheleae	le	<0.010	<0.010	RPD-NA	mg/kg	N/A	50	23-JUN-20
		0.21	4.00	DOP-H	mg/kg	51	50	23-JUN-20
2-ivieuryinaprimaiene		11.7	7.01		mg/kg	50	50	23-JUN-20
Dhananthrona		<0.5	<4.0	RPD-NA	mg/kg	N/A	50	23-JUN-20
Prienanumene		<0.40	<0.30	RPD-NA	mg/kg	N/A	50	23-JUN-20
Pyrene		0.054	0.034		mg/kg	47	50	23-JUN-20
Quinoine		<1.5	<1.5	RPD-NA	тід/кд	N/A	50	23-JUN-20
WG3347576-5 IRM Acenaphthene		ALS PAH RM	<b>2</b> 97.6		%		60-130	23-JUN-20
Acenaphthylene			103.4		%		60-130	23-JUN-20
Anthracene			104.9		%		60-130	23-JUN-20
Benz(a)anthracene			88.3		%		60-130	23-JUN-20
Benzo(a)pyrene			89.8		%		60-130	23-JUN-20
Benzo(b&j)fluoranthen	е		87.6		%		60-130	23-JUN-20
Benzo(g,h,i)perylene			92.9		%		60-130	23-JUN-20
Benzo(k)fluoranthene			90.1		%		60-130	23-JUN-20
Chrysene			96.2		%		60-130	23-JUN-20
Dibenz(a,h)anthracene	;		93.8		%		60-130	23-JUN-20
Fluoranthene			93.7		%		60-130	23-JUN-20
Fluorene			96.8		%		60-130	23-JUN-20
Indeno(1,2,3-c,d)pyrer	e		88.2		%		60-130	23-JUN-20
1-Methylnaphthalene			95.8		%		60-130	23-JUN-20
2-Methylnaphthalene			94.4		%		60-130	23-JUN-20
Naphthalene			98.6		%		50-130	23-JUN-20
Phenanthrene			94.3		%		60-130	23-JUN-20
Pyrene			95.4		%		60-130	23-JUN-20

WG3347576-2 LCS



		Workorder: L2460211			Report Date: 30-JUN-20		Page 12 of 25	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-VA	Soil							
Batch R5130179								
WG3347576-2 LCS								
Acenaphthene			95.2		%		60-130	23-JUN-20
Acenaphthylene			93.2		%		60-130	23-JUN-20
Anthracene			94.7		%		60-130	23-JUN-20
Benz(a)anthracene			92.1		%		60-130	23-JUN-20
Benzo(a)pyrene			95.2		%		60-130	23-JUN-20
Benzo(b&j)fluoranthene	)		91.4		%		60-130	23-JUN-20
Benzo(g,h,i)perylene			91.8		%		60-130	23-JUN-20
Benzo(k)fluoranthene			97.5		%		60-130	23-JUN-20
Chrysene			94.2		%		60-130	23-JUN-20
Dibenz(a,h)anthracene			95.3		%		60-130	23-JUN-20
Fluoranthene			95.4		%		60-130	23-JUN-20
Fluorene			94.6		%		60-130	23-JUN-20
Indeno(1,2,3-c,d)pyrene	Э		89.8		%		60-130	23-JUN-20
1-Methylnaphthalene			92.8		%		60-130	23-JUN-20
2-Methylnaphthalene			92.1		%		60-130	23-JUN-20
Naphthalene			91.7		%		50-130	23-JUN-20
Phenanthrene			93.5		%		60-130	23-JUN-20
Pyrene			98.1		%		60-130	23-JUN-20
Quinoline			88.7		%		60-130	23-JUN-20
WG3347576-1 MB								
Acenaphthene			<0.0050		mg/kg		0.005	23-JUN-20
Acenaphthylene			<0.0050		mg/kg		0.005	23-JUN-20
Anthracene			<0.0040		mg/kg		0.004	23-JUN-20
Benz(a)anthracene			<0.010		mg/kg		0.01	23-JUN-20
Benzo(a)pyrene			<0.010		mg/kg		0.01	23-JUN-20
Benzo(b&j)fluoranthene	•		<0.010		mg/kg		0.01	23-JUN-20
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	23-JUN-20
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	23-JUN-20
Chrysene			<0.010		mg/kg		0.01	23-JUN-20
Dibenz(a,h)anthracene			<0.0050		mg/kg		0.005	23-JUN-20
Fluoranthene			<0.010		mg/kg		0.01	23-JUN-20
Fluorene			<0.010		mg/kg		0.01	23-JUN-20
Indeno(1,2,3-c,d)pyrene	e		<0.010		mg/kg		0.01	23-JUN-20
1-Methylnaphthalene			<0.010		mg/kg		0.01	23-JUN-20



		Workorder:	L246021	1 Re	Report Date: 30-JUN-20		Page 13 of 25	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-VA	Soil							
Batch R513017	9							
WG3347576-1 MB								
2-Methylnaphthalene			<0.010		mg/kg		0.01	23-JUN-20
Naphthalene			<0.010		mg/kg		0.01	23-JUN-20
Phenanthrene			<0.010		mg/kg		0.01	23-JUN-20
Pyrene			<0.010		mg/kg		0.01	23-JUN-20
Quinoline			<0.050		mg/kg		0.05	23-JUN-20
Surrogate: Naphthalen	ne d8		101.2		%		50-130	23-JUN-20
Surrogate: Phenanthre	ene d10		103.2		%		60-130	23-JUN-20
Surrogate: Chrysene d	112		100.2		%		60-130	23-JUN-20
Batch R513204	3							
WG3348924-3 DUP		L2460211-21						
Acenaphthene		<0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	25-JUN-20
Acenaphthylene		<0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	25-JUN-20
Anthracene		<0.0040	<0.0040	RPD-NA	mg/kg	N/A	50	25-JUN-20
Benz(a)anthracene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	25-JUN-20
Benzo(a)pyrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	25-JUN-20
Benzo(b&j)fluoranthen	ie	<0.010	<0.010	RPD-NA	mg/kg	N/A	50	25-JUN-20
Benzo(g,h,i)perylene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	25-JUN-20
Benzo(k)fluoranthene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	25-JUN-20
Chrysene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	25-JUN-20
Dibenz(a,h)anthracene	Э	<0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	25-JUN-20
Fluoranthene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	25-JUN-20
Fluorene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	25-JUN-20
Indeno(1,2,3-c,d)pyrer	ne	<0.010	<0.010	RPD-NA	mg/kg	N/A	50	25-JUN-20
1-Methylnaphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	25-JUN-20
2-Methylnaphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	25-JUN-20
Naphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	25-JUN-20
Phenanthrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	25-JUN-20
Pyrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	25-JUN-20
Quinoline		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	25-JUN-20
WG3348924-5 IRM		ALS PAH RM	2					
Acenaphthene			87.6		%		60-130	25-JUN-20
Acenaphthylene			86.4		%		60-130	25-JUN-20
Anthracene			85.0		%		60-130	25-JUN-20
Benz(a)anthracene			83.1		%		60-130	25-JUN-20
Benzo(a)pyrene			82.4		%		60-130	25-JUN-20



	Matrix	Workorder: L2460211			Report Date: 30-JUN-20		Page 14 of 25	
Test		Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-VA	Soil							
Batch R5132043	3							
WG3348924-5 IRM		ALS PAH R	<b>/</b> 12					
Benzo(b&j)fluoranthen	е		86.4		%		60-130	25-JUN-20
Benzo(g,h,i)perylene			84.1		%		60-130	25-JUN-20
Benzo(k)fluoranthene			77.8		%		60-130	25-JUN-20
Chrysene			86.4		%		60-130	25-JUN-20
Dibenz(a,h)anthracene	9		86.2		%		60-130	25-JUN-20
Fluoranthene			87.3		%		60-130	25-JUN-20
Fluorene			88.3		%		60-130	25-JUN-20
Indeno(1,2,3-c,d)pyren	ie		84.8		%		60-130	25-JUN-20
1-Methylnaphthalene			82.8		%		60-130	25-JUN-20
2-Methylnaphthalene			80.5		%		60-130	25-JUN-20
Naphthalene			84.0		%		50-130	25-JUN-20
Phenanthrene			86.9		%		60-130	25-JUN-20
Pyrene			88.8		%		60-130	25-JUN-20
WG3348924-2 LCS								
Acenaphthene			88.3		%		60-130	25-JUN-20
Acenaphthylene			87.8		%		60-130	25-JUN-20
Anthracene			96.9		%		60-130	25-JUN-20
Benz(a)anthracene			98.6		%		60-130	25-JUN-20
Benzo(a)pyrene			98.1		%		60-130	25-JUN-20
Benzo(b&j)fluoranthen	e		99.8		%		60-130	25-JUN-20
Benzo(g,h,i)perylene			93.0		%		60-130	25-JUN-20
Benzo(k)fluoranthene			95.6		%		60-130	25-JUN-20
Chrysene			92.0		%		60-130	25-JUN-20
Dibenz(a,h)anthracene	;		95.3		%		60-130	25-JUN-20
Fluoranthene			97.1		%		60-130	25-JUN-20
Fluorene			92.6		%		60-130	25-JUN-20
Indeno(1,2,3-c,d)pyren	ie		96.9		%		60-130	25-JUN-20
1-Methylnaphthalene			75.8		%		60-130	25-JUN-20
2-Methylnaphthalene			75.1		%		60-130	25-JUN-20
Naphthalene			66.1		%		50-130	25-JUN-20
Phenanthrene			96.6		%		60-130	25-JUN-20
Pyrene			101.9		%		60-130	25-JUN-20
Quinoline			79.8		%		60-130	25-JUN-20
WG3348924-1 MB								
Acenaphthene			<0.0050		mg/kg		0.005	25-JUN-20


		Workorder:	L246021	1	Report Date: 3	0-JUN-20	Page 15 of 25		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
PAH-TMB-H/A-MS-VA	Soil								
Batch R51320	043								
WG3348924-1 ME	3								
Acenaphthylene			<0.0050		mg/kg		0.005	25-JUN-20	
Anthracene			<0.0040		mg/kg		0.004	25-JUN-20	
Benz(a)anthracene			<0.010		mg/kg		0.01	25-JUN-20	
Benzo(a)pyrene			<0.010		mg/kg		0.01	25-JUN-20	
Benzo(b&j)fluoranthe	ene		<0.010		mg/kg		0.01	25-JUN-20	
Benzo(g,h,i)perylene	9		<0.010		mg/kg		0.01	25-JUN-20	
Benzo(k)fluoranthen	e		<0.010		mg/kg		0.01	25-JUN-20	
Chrysene			<0.010		mg/kg		0.01	25-JUN-20	
Dibenz(a,h)anthrace	ene		<0.0050		mg/kg		0.005	25-JUN-20	
Fluoranthene			<0.010		mg/kg		0.01	25-JUN-20	
Fluorene			<0.010		mg/kg		0.01	25-JUN-20	
Indeno(1,2,3-c,d)pyr	ene		<0.010		mg/kg		0.01	25-JUN-20	
1-Methylnaphthalene	Э		<0.010		mg/kg		0.01	25-JUN-20	
2-Methylnaphthalene	е		<0.010		mg/kg		0.01	25-JUN-20	
Naphthalene			<0.010		mg/kg		0.01	25-JUN-20	
Phenanthrene			<0.010		mg/kg		0.01	25-JUN-20	
Pyrene			<0.010		mg/kg		0.01	25-JUN-20	
Quinoline			<0.050		mg/kg		0.05	25-JUN-20	
Surrogate: Naphthal	ene d8		95.9		%		50-130	25-JUN-20	
Surrogate: Phenanth	nrene d10		101.0		%		60-130	25-JUN-20	
Surrogate: Chrysene	e d12		108.3		%		60-130	25-JUN-20	
Batch R51382	217								
WG3352606-3 DU	JP	L2460211-15	;						
Acenaphthene		<0.0050	<0.0050	RPD-N	A mg/kg	N/A	50	30-JUN-20	
Acenaphthylene		<0.0050	<0.0050	RPD-N	A mg/kg	N/A	50	30-JUN-20	
Anthracene		<0.0040	<0.0040	RPD-N	A mg/kg	N/A	50	30-JUN-20	
Benz(a)anthracene		<0.010	<0.010	RPD-N	A mg/kg	N/A	50	30-JUN-20	
Benzo(a)pyrene		<0.010	<0.010	RPD-N	A mg/kg	N/A	50	30-JUN-20	
Benzo(b&j)fluoranthe	ene	<0.010	<0.010	RPD-N	A mg/kg	N/A	50	30-JUN-20	
Benzo(g,h,i)perylene	e	<0.010	<0.010	RPD-N	A mg/kg	N/A	50	30-JUN-20	
Benzo(k)fluoranthen	e	<0.010	<0.010	RPD-N	A mg/kg	N/A	50	30-JUN-20	
Chrysene		<0.010	<0.010	RPD-N	A mg/kg	N/A	50	30-JUN-20	
Dibenz(a,h)anthrace	ene	<0.0050	<0.0050	RPD-N	A mg/kg	N/A	50	30-JUN-20	
Fluoranthene		<0.010	<0.010	RPD-N	A mg/kg	N/A	50	30-JUN-20	



		Workorder: L2460211		1 Re	Report Date: 30-JUN-20			Page 16 of 25		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
PAH-TMB-H/A-MS-VA	Soil									
Batch R5138217										
WG3352606-3 DUP		L2460211-15								
Fluorene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	30-JUN-20		
Indeno(1,2,3-c,d)pyrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	30-JUN-20		
1-Methylnaphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	30-JUN-20		
2-Methylnaphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	30-JUN-20		
Naphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	30-JUN-20		
Phenanthrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	30-JUN-20		
Pyrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	30-JUN-20		
Quinoline		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	30-JUN-20		
WG3352606-5 IRM Acenaphthene		ALS PAH RM	<b>2</b> 88.3		%		60-130	30-JUN-20		
Acenaphthylene			94.5		%		60-130	30-JUN-20		
Anthracene			83.1		%		60-130	30-JUN-20		
Benz(a)anthracene			83.2		%		60-130	30-JUN-20		
Benzo(a)pyrene			80.8		%		60-130	30-JUN-20		
Benzo(b&j)fluoranthene			81.5		%		60-130	30-JUN-20		
Benzo(g,h,i)perylene			81.1		%		60-130	30-JUN-20		
Benzo(k)fluoranthene			79.7		%		60-130	30-JUN-20		
Chrysene			91.8		%		60-130	30-JUN-20		
Dibenz(a,h)anthracene			87.7		%		60-130	30-JUN-20		
Fluoranthene			85.3		%		60-130	30-JUN-20		
Fluorene			86.7		%		60-130	30-JUN-20		
Indeno(1,2,3-c,d)pyrene			76.1		%		60-130	30-JUN-20		
1-Methylnaphthalene			87.9		%		60-130	30-JUN-20		
2-Methylnaphthalene			85.2		%		60-130	30-JUN-20		
Naphthalene			87.5		%		50-130	30-JUN-20		
Phenanthrene			83.8		%		60-130	30-JUN-20		
Pyrene			87.1		%		60-130	30-JUN-20		
WG3352606-2 LCS										
Acenaphthene			101.9		%		60-130	30-JUN-20		
Acenaphthylene			97.7		%		60-130	30-JUN-20		
Anthracene			86.9		%		60-130	30-JUN-20		
Benz(a)anthracene			87.8		%		60-130	30-JUN-20		
Benzo(a)pyrene			88.4		%		60-130	30-JUN-20		
Benzo(b&j)fluoranthene			87.8		%		60-130	30-JUN-20		
Benzo(g,h,i)perylene			88.6		%		60-130	30-JUN-20		



		Workorder: L2460211			Report Date: 3	0-JUN-20	Page 17 of 25		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
PAH-TMB-H/A-MS-VA	Soil								
Batch R5138217									
WG3352606-2 LCS									
Benzo(k)fluoranthene			96.5		%		60-130	30-JUN-20	
Chrysene			92.4		%		60-130	30-JUN-20	
Dibenz(a,h)anthracene			88.2		%		60-130	30-JUN-20	
Fluoranthene			95.1		%		60-130	30-JUN-20	
Fluorene			96.8		%		60-130	30-JUN-20	
Indeno(1,2,3-c,d)pyrene	e		82.1		%		60-130	30-JUN-20	
1-Methylnaphthalene			101.0		%		60-130	30-JUN-20	
2-Methylnaphthalene			98.7		%		60-130	30-JUN-20	
Naphthalene			98.4		%		50-130	30-JUN-20	
Phenanthrene			92.6		%		60-130	30-JUN-20	
Pyrene			99.6		%		60-130	30-JUN-20	
Quinoline			81.8		%		60-130	30-JUN-20	
WG3352606-1 MB									
Acenaphthene			<0.0050		mg/kg		0.005	30-JUN-20	
Acenaphthylene			<0.0050		mg/kg		0.005	30-JUN-20	
Anthracene			<0.0040		mg/kg		0.004	30-JUN-20	
Benz(a)anthracene			<0.010		mg/kg		0.01	30-JUN-20	
Benzo(a)pyrene			<0.010		mg/kg		0.01	30-JUN-20	
Benzo(b&j)fluoranthene	•		<0.010		mg/kg		0.01	30-JUN-20	
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	30-JUN-20	
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	30-JUN-20	
Chrysene			<0.010		mg/kg		0.01	30-JUN-20	
Dibenz(a,h)anthracene			<0.0050		mg/kg		0.005	30-JUN-20	
Fluoranthene			<0.010		mg/kg		0.01	30-JUN-20	
Fluorene			<0.010		mg/kg		0.01	30-JUN-20	
Indeno(1,2,3-c,d)pyrene	Э		<0.010		mg/kg		0.01	30-JUN-20	
1-Methylnaphthalene			<0.010		mg/kg		0.01	30-JUN-20	
2-Methylnaphthalene			<0.010		mg/kg		0.01	30-JUN-20	
Naphthalene			<0.010		mg/kg		0.01	30-JUN-20	
Phenanthrene			<0.010		mg/kg		0.01	30-JUN-20	
Pyrene			<0.010		mg/kg		0.01	30-JUN-20	
Quinoline			<0.050		mg/kg		0.05	30-JUN-20	
Surrogate: Naphthalene	e d8		92.9		%		50-130	30-JUN-20	
Surrogate: Phenanthrer	ne d10		90.7		%		60-130	30-JUN-20	



		Workorder:	L246021	1 R	eport Date: 3	30-JUN-20	Pa	ge 18 of 25
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-VA	Soil							
Batch R51382	17							
WG3352606-1 MB	-14.0		00.0		0/			
Surrogale. Chrysene	012		88.8		%		60-130	30-JUN-20
PH-1:2-VA	Soil							
Batch R51176	20							
WG3341709-2 DUI	P	L2460211-4	0.04		<b>5</b> 4	0.01		
pH (1.2 soll.water)		8.05	8.04	J	рп	0.01	0.2	15-JUN-20
Batch R51351	68							
WG3348942-2 DUI	P	L2460211-15						
pH (1:2 soil:water)		7.72	7.73	J	рН	0.01	0.2	27-JUN-20
VH-HSFID-VA	Soil							
Batch R50888	62							
WG3347680-3 DUI		L2460211-2	1050					
Volatile Hydrocarbon	s (VH6-10)	980	1250		mg/kg	25	40	23-JUN-20
WG3347680-2 LCS Volatile Hydrocarbon	<b>3</b> s (VH6-10)		70.2		%		70-130	23-JUN-20
WG3347680-1 MB								
Volatile Hydrocarbon	s (VH6-10)		<100		mg/kg		100	23-JUN-20
Batch R51158	28							
WG3341835-3 DUI		L2460211-8	~100		ma/ka	NI/A	40	45 11 10 00
	s (viio-io)		<100	RPD-INA	шу/ку	IN/A	40	15-JUIN-20
Volatile Hydrocarbon	- s (VH6-10)	<100	<100	RPD-NA	mg/kg	N/A	40	25-JUN-20
WG3341835-2 LCS	6							
Volatile Hydrocarbon	s (VH6-10)		111.6		%		70-130	15-JUN-20
WG3349012-2 LCS	5							
Volatile Hydrocarbon	s (VH6-10)		72.2		%		70-130	25-JUN-20
WG3341835-1 MB Volatile Hydrocarbon	s (VH6-10)		<100		mg/kg		100	15-JUN-20
WG3349012-1 MB								
Volatile Hydrocarbon	s (VH6-10)		<100		mg/kg		100	25-JUN-20
Batch R51174	84							
WG3349866-3 DUI		L2460211-21	.100				40	00 11 11 1 00
	s (vho-10)	<100	<100	RPD-NA	тg/кg	N/A	40	26-JUN-20
Volatile Hydrocarbon	<b>s</b> s (VH6-10)		99.5		%		70-130	16-JUN-20



		Workorder:	L246021	1 Re	port Date: 3	30-JUN-20	Pa	ge 19 of 25
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VH-HSFID-VA	Soil							
Batch R5117	7484							
WG3349866-2 Lo Volatile Hydrocarbo	<b>CS</b> ons (VH6-10)		108.4		%		70-130	26-JUN-20
WG3342742-1 M Volatile Hydrocarbo	<b>B</b> ons (VH6-10)		<100		mg/kg		100	16-JUN-20
WG3349866-1 M Volatile Hydrocarbo	B ons (VH6-10)		<100		mg/kg		100	26-JUN-20
VOC-M2-HSMS-VA	Soil							
Batch R5112	2127							
WG3341835-3 D n-Nonane	UP	<b>L2460211-8</b> <0.060	<0.070	RPD-NA	mg/kg	N/A	50	15-JUN-20
WG3349012-3 D n-Nonane	UP	<b>L2460211-19</b> <0.050	<0.050	RPD-NA	mg/kg	N/A	50	24-JUN-20
WG3341835-2 Lo n-Nonane	cs		132.8	LCS-ND	%		70-130	15-JUN-20
WG3349012-2 Lo n-Nonane	cs		97.7		%		70-130	24-JUN-20
WG3341835-1 M n-Nonane	В		<0.050		mg/kg		0.05	15-JUN-20
WG3349012-1 M n-Nonane	В		<0.050		mg/kg		0.05	24-JUN-20
Batch R5117	7129							
WG3349866-3 D n-Nonane	UP	<b>L2460211-21</b> <0.050	<0.050	RPD-NA	mg/kg	N/A	50	26-JUN-20
WG3342742-2 Lo n-Nonane	CS		85.5		%		70-130	16-JUN-20
WG3349866-2 Lo n-Nonane	CS		54.9	LCS-ND	%		70-130	26-JUN-20
WG3342742-1 M n-Nonane	В		<0.050		mg/kg		0.05	16-JUN-20
WG3349866-1 M n-Nonane	В		<0.050		mg/kg		0.05	26-JUN-20
VOC7-L-HSMS-VA	Soil							
Batch R5088	3376							
WG3347680-3 D Benzene	UP	<b>L2460211-2</b> 0.399	0.353		mg/kg	12	40	23-JUN-20
Ethylbenzene		15.2	14.9		mg/kg	1.9	40	23-JUN-20
Methyl t-butyl ether	(MTBE)	<0.20	<0.20	RPD-NA	mg/kg	N/A	40	23-JUN-20
Styrene		<0.050	<0.050	RPD-NA	mg/kg	N/A	40	23-JUN-20



		Workorder:	L246021	1 I	Report Date: 3	0-JUN-20	Page 20 of 25		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
VOC7-L-HSMS-VA	Soil								
Batch R5088	376								
WG3347680-3 DU	JP	L2460211-2							
Toluene		7.03	7.48		mg/kg	6.1	40	23-JUN-20	
meta- & para-Xylen	e	61.3	60.7		mg/kg	0.9	40	23-JUN-20	
ortho-Xylene		29.9	29.3		mg/kg	1.7	40	23-JUN-20	
WG3347680-2 LC Benzene	CS		87.2		%		70-130	23-JUN-20	
Ethylbenzene			94.6		%		70-130	23-JUN-20	
Methyl t-butyl ether	(MTBE)		99.1		%		70-130	23-JUN-20	
Styrene			87.9		%		70-130	23-JUN-20	
Toluene			92.6		%		70-130	23-JUN-20	
meta- & para-Xylen	e		92.7		%		70-130	23-JUN-20	
ortho-Xylene			91.5		%		70-130	23-JUN-20	
WG3347680-1 MI	В								
Benzene			<0.0050		mg/kg		0.005	23-JUN-20	
Ethylbenzene			<0.015		mg/kg		0.015	23-JUN-20	
Methyl t-butyl ether	(MTBE)		<0.20		mg/kg		0.2	23-JUN-20	
Styrene			<0.050		mg/kg		0.05	23-JUN-20	
Toluene			<0.050		mg/kg		0.05	23-JUN-20	
meta- & para-Xylen	e		<0.050		mg/kg		0.05	23-JUN-20	
ortho-Xylene			<0.050		mg/kg		0.05	23-JUN-20	
Batch R5112	127								
WG3341835-3 DU	JP	L2460211-8							
Benzene		<0.0050	<0.0050	RPD-N	A mg/kg	N/A	40	15-JUN-20	
Ethylbenzene		<0.015	<0.015	RPD-N	4 mg/kg	N/A	40	15-JUN-20	
Methyl t-butyl ether	(MTBE)	<0.20	<0.20	RPD-N	4 mg/kg	N/A	40	15-JUN-20	
Styrene		<0.050	<0.050	RPD-N	A mg/kg	N/A	40	15-JUN-20	
Toluene		<0.050	<0.050	RPD-N	A mg/kg	N/A	40	15-JUN-20	
meta- & para-Xylen	e	<0.050	<0.050	RPD-N	A mg/kg	N/A	40	15-JUN-20	
ortho-Xylene		<0.050	<0.050	RPD-N	A mg/kg	N/A	40	15-JUN-20	
WG3349012-3 DU Benzene	JP	<b>L2460211-19</b> <0.0050	<0.0050	RPD-N	A mg/kg	N/A	40	24-JUN-20	
Ethylbenzene		<0.015	<0.015	RPD-N	A mg/kg	N/A	40	24-JUN-20	
Methyl t-butyl ether	(MTBE)	<0.20	<0.20	RPD-N	Ą mg/kg	N/A	40	24-JUN-20	
Styrene		<0.050	<0.050	RPD-N	Ą mg/kg	N/A	40	24-JUN-20	
Toluene		<0.050	<0.050	RPD-N	A mg/kg	N/A	40	24-JUN-20	
meta- & para-Xylen	e	<0.050	<0.050	RPD-N	A mg/kg	N/A	40	24-JUN-20	



		Workorder:	1 Re	Report Date: 30-JUN-20			Page 21 of 25		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
VOC7-L-HSMS-VA	Soil								
Batch R51121	27								
WG3349012-3 DU ortho-Xylene	P	<b>L2460211-19</b> <0.050	<0.050	RPD-NA	mg/kg	N/A	40	24-JUN-20	
WG3341835-2 LC3 Benzene	6		101.8		%		70-130	15-JUN-20	
Ethylbenzene			110.4		%		70-130	15-JUN-20	
Methyl t-butyl ether (l	MTBE)		104.5		%		70-130	15-JUN-20	
Styrene			93.0		%		70-130	15-JUN-20	
Toluene			105.5		%		70-130	15-JUN-20	
meta- & para-Xylene			110.1		%		70-130	15-JUN-20	
ortho-Xylene			109.3		%		70-130	15-JUN-20	
WG3349012-2 LC: Benzene	6		103.3		%		70-130	24- II INI-20	
Ethylbenzene			111.8		%		70-130	24-JUN-20	
Methyl t-butyl ether (l	MTBE)		107.3		%		70-130	24-JUN-20	
Styrene	,		90.6		%		70-130	24-JUN-20	
Toluene			108.9		%		70-130	24-JUN-20	
meta- & para-Xylene			113.2		%		70-130	24-JUN-20	
ortho-Xylene			109.1		%		70-130	24-JUN-20	
WG3341835-1 MB									
Benzene			<0.0050		mg/kg		0.005	15-JUN-20	
Ethylbenzene			<0.015		mg/kg		0.015	15-JUN-20	
Methyl t-butyl ether (I	MTBE)		<0.20		mg/kg		0.2	15-JUN-20	
Styrene			<0.050		mg/kg		0.05	15-JUN-20	
Toluene			<0.050		mg/kg		0.05	15-JUN-20	
meta- & para-Xylene			<0.050		mg/kg		0.05	15-JUN-20	
ortho-Xylene			<0.050		mg/kg		0.05	15-JUN-20	
WG3349012-1 MB Benzene			<0.0050		mg/kg		0.005	24-JUN-20	
Ethylbenzene			<0.015		mg/kg		0.015	24-JUN-20	
Methyl t-butyl ether (l	MTBE)		<0.20		mg/kg		0.2	24-JUN-20	
Styrene			<0.050		mg/kg		0.05	24-JUN-20	
Toluene			<0.050		mg/kg		0.05	24-JUN-20	
meta- & para-Xylene			<0.050		mg/kg		0.05	24-JUN-20	
ortho-Xylene			<0.050		mg/kg		0.05	24-JUN-20	



		Workorder: L2460211		1 Re	Report Date: 30-JUN-20			Page 22 of 25		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
VOC7-L-HSMS-VA	Soil									
Batch R5117	129									
WG3349866-3 DI	UP	L2460211-21								
Benzene		<0.0050	<0.0050	RPD-NA	mg/kg	N/A	40	26-JUN-20		
Ethylbenzene	<i></i>	<0.015	<0.015	RPD-NA	mg/kg	N/A	40	26-JUN-20		
Methyl t-butyl ether	(MTBE)	<0.20	<0.20	RPD-NA	mg/kg	N/A	40	26-JUN-20		
Styrene		<0.050	<0.050	RPD-NA	mg/kg	N/A	40	26-JUN-20		
Toluene		<0.050	<0.050	RPD-NA	mg/kg	N/A	40	26-JUN-20		
meta- & para-Xylen	e	<0.050	<0.050	RPD-NA	mg/kg	N/A	40	26-JUN-20		
ortho-Xylene		<0.050	<0.050	RPD-NA	mg/kg	N/A	40	26-JUN-20		
WG3342742-2 LC Benzene	CS		92.7		%		70-130	16-JUN-20		
Ethylbenzene			94.1		%		70-130	16-JUN-20		
Methyl t-butyl ether	(MTBE)		111.7		%		70-130	16-JUN-20		
Styrene			88.7		%		70-130	16-JUN-20		
Toluene			95.8		%		70-130	16-JUN-20		
meta- & para-Xylen	e		106.2		%		70-130	16-JUN-20		
ortho-Xylene			90.6		%		70-130	16-JUN-20		
WG3349866-2 LC	cs									
Benzene			99.98		%		70-130	26-JUN-20		
Ethylbenzene			95.7		%		70-130	26-JUN-20		
Methyl t-butyl ether	(MTBE)		120.2		%		70-130	26-JUN-20		
Styrene			93.8		%		70-130	26-JUN-20		
Toluene			99.4		%		70-130	26-JUN-20		
meta- & para-Xylen	e		109.0		%		70-130	26-JUN-20		
ortho-Xylene			93.7		%		70-130	26-JUN-20		
WG3342742-1 M	В									
Benzene			<0.0050		mg/kg		0.005	16-JUN-20		
Ethylbenzene			<0.015		mg/kg		0.015	16-JUN-20		
Methyl t-butyl ether	(MTBE)		<0.20		mg/kg		0.2	16-JUN-20		
Styrene			<0.050		mg/kg		0.05	16-JUN-20		
Toluene			<0.050		mg/kg		0.05	16-JUN-20		
meta- & para-Xylen	e		<0.050		mg/kg		0.05	16-JUN-20		
ortho-Xylene			<0.050		mg/kg		0.05	16-JUN-20		
WG3349866-1 M	В									
Benzene			<0.0050		mg/kg		0.005	26-JUN-20		
Ethylbenzene			<0.015		mg/kg		0.015	26-JUN-20		
Methyl t-butyl ether	(MTBE)		<0.20		mg/kg		0.2	26-JUN-20		



		Workorder: L24602			Report Date: 30	30-JUN-20		Page 23 of 25	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
VOC7-L-HSMS-VA	Soil								
Batch R511712 WG3349866-1 MB	9								
Styrene			<0.050		mg/kg		0.05	26-JUN-20	
Toluene			<0.050		mg/kg		0.05	26-JUN-20	
meta- & para-Xylene			<0.050		mg/kg		0.05	26-JUN-20	
ortho-Xylene			<0.050		mg/kg		0.05	26-JUN-20	

Workorder: L2460211

Report Date: 30-JUN-20

#### Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

#### Sample Parameter Qualifier Definitions:

Qualifier	Description
DUP-H	Duplicate results outside ALS DQO, due to sample heterogeneity.
J	Duplicate results and limits are expressed in terms of absolute difference.
LCS-ND	Lab Control Sample recovery was slightly outside ALS DQO. Reported non-detect results for associated samples were unaffected.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2460211

Report Date: 30-JUN-20

Page 25 of 25

#### Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Volatile Organic Compounds	5						
VOC in Soil Methanol Extrac	ction						
	20	11-JUN-20 13:00	25-JUN-20 07:54	48	331	hours	EHT
	21	11-JUN-20 13:00	25-JUN-20 07:54	48	331	hours	EHT
Hydrocarbons							
EPH in Solids by Tumbler a	nd GCFID						
	15	11-JUN-20 14:30	29-JUN-20 20:53	14	18	days	EHT
	16	11-JUN-20 14:30	29-JUN-20 20:53	14	18	days	EHT
	17	11-JUN-20 14:30	29-JUN-20 20:53	14	18	days	EHT
	18	11-JUN-20 14:30	29-JUN-20 20:53	14	18	days	EHT
	19	11-JUN-20 14:30	29-JUN-20 20:53	14	18	days	EHT
	20	11-JUN-20 13:00	29-JUN-20 20:53	14	18	days	EHT
Polycyclic Aromatic Hydroca	rbons						
PAH - Rotary Extraction (He	exane/Acetor	ne)					
	15	11-JUN-20 14:30	29-JUN-20 20:53	14	18	days	EHT
	16	11-JUN-20 14:30	29-JUN-20 20:53	14	18	days	EHT
	17	11-JUN-20 14:30	29-JUN-20 20:53	14	18	days	EHT
	18	11-JUN-20 14:30	29-JUN-20 20:53	14	18	davs	EHT
	19	11-JUN-20 14:30	29-JUN-20 20:53	14	18	days	EHT
	20	11-JUN-20 13:00	29-JUN-20 20:53	14	18	days	EHT

#### Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR: Exceeded ALS recommended hold time prior to sample receipt.
EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT: Exceeded ALS recommended hold time prior to analysis.
Rec. HT: ALS recommended hold time (see units).

#### Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2460211 were received on 12-JUN-20 08:30.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.



819-58th Street, Saskatoon, SK S7K 6X5



#### **Summary of Results**

Unified Soil Classification System (USCS)			
Size Class	Size Range	Wt. (%)	
Cobbles	> 3"	0	
Gravel	4.75mm - 3"	0	
Coarse Sand	2.0mm - 4.75mm	0	
Medium Sand	0.425mm - 2.0mm	25	
Fine Sand	0.075mm - 0.425mm	64	
Fines	< 0.075mm	11	

Canadian Soil Survey Committee (CSSC)			
Size Class	Size Range	Wt. (%)	
Cobbles	> 3"	0	
Gravel	2mm - 3"	1	
Sand	0.05mm - 2mm	92	
Silt	0.002mm - 0.05mm	7	
Clay	< 0.002mm	1	
Texture	Sample contains material greater than 4.75mm		

Method Reference: Can. Soc. Soil Sci. (1993) Method 47.2



819-58th Street, Saskatoon, SK S7K 6X5



#### **Summary of Results**

Unified Soil Classification System (USCS)			
Size Class	Size Range	Wt. (%)	
Cobbles	> 3"	0	
Gravel	4.75mm - 3"	3	
Coarse Sand	2.0mm - 4.75mm	9	
Medium Sand	0.425mm - 2.0mm	43	
Fine Sand	0.075mm - 0.425mm	40	
Fines	< 0.075mm	6	

Canadian Soil Survey Committee (CSSC)			
Size Class	Size Range	Wt. (%)	
Cobbles	> 3"	0	
Gravel	2mm - 3"	11	
Sand	0.05mm - 2mm	84	
Silt	0.002mm - 0.05mm	4	
Clay	< 0.002mm	0	
Texture	Sample contains	material grea	ater than 4.75mm.



819-58th Street, Saskatoon, SK S7K 6X5



#### Summary of Results

Unified Soil Classification System (USCS)			
Size Class Size Range		Wt. (%)	
Cobbles	> 3"	0	
Gravel	4.75mm - 3"	2	
Coarse Sand	2.0mm - 4.75mm	1	
Medium Sand	0.425mm - 2.0mm	3	
Fine Sand	0.075mm - 0.425mm	29	
Fines	< 0.075mm	65	

Canadian Soil Survey Committee (CSSC)			
Size Class	Size Range	Wt. (%)	
Cobbles	> 3"	0	
Gravel	2mm - 3"	3	
Sand	0.05mm - 2mm	42	
Silt	0.002mm - 0.05mm	48	
Clay	< 0.002mm	8	
Texture	Sample contains	material grea	ater than 4.75mm.



819-58th Street, Saskatoon, SK S7K 6X5



#### **Summary of Results**

Unified Soil Classification System (USCS)			
Size Class	Size Range	Wt. (%)	
Cobbles	> 3"	0	
Gravel	4.75mm - 3"	1	
Coarse Sand	2.0mm - 4.75mm	0	
Medium Sand	0.425mm - 2.0mm	2	
Fine Sand	0.075mm - 0.425mm	35	
Fines	< 0.075mm	62	

Canadian Soil Survey Committee (CSSC)			
Size Class	Size Range	Wt. (%)	
Cobbles	> 3"	0	
Gravel	2mm - 3"	1	
Sand	0.05mm - 2mm	48	
Silt	0.002mm - 0.05mm	46	
Clay	< 0.002mm	5	
Texture	Sample contains	material grea	ater than 4.75mm.

Method Reference: Can. Soc. Soil Sci. (1993) Method 47.2



<	—EPH10-19 — — — — — — — — — — — — — — — — — — —	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	·	——Motor Oils/ Lube Oils/ Grease ────→
<i>←</i>	Diesel/ Jet Fuels	>

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



<	—EPH10-19 — — — — — — — — — — — — — — — — — — —	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	·	——Motor Oils/ Lube Oils/ Grease ────→
<i>←</i>	Diesel/ Jet Fuels	>

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	÷	Motor Oils/ Lube Oils/ Grease
<i>~</i>	Diesel/ Jet Fuels	

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	÷	Motor Oils/ Lube Oils/ Grease
<i>~</i>	Diesel/ Jet Fuels	

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	<	Motor Oils/ Lube Oils/ Grease
<i>~</i>	Diesel/ Jet Fuels	>

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	<	Motor Oils/ Lube Oils/ Grease
<i>~</i>	Diesel/ Jet Fuels	>

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



<	—EPH10-19 — — — — — — — — — — — — — — — — — — —	EPH19-32→
nC10	nC19	nC32
174'C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	•	—Motor Oils/ Lube Oils/ Grease ———————————————————————————————————
<	Diesel/ Jet Fuels	>

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



<	—EPH10-19 — — — — — — — — — — — — — — — — — — —	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626"F	873°F
$\leftarrow$ Gasoline $\rightarrow$	·	Notor Oils/ Lube Oils/ Grease ────→
<	Diesel/ Jet Fuels	<del>`</del>

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	<	Motor Oils/ Lube Oils/ Grease
<i>~</i>	Diesel/ Jet Fuels	>

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	<	Motor Oils/ Lube Oils/ Grease
<i>~</i>	Diesel/ Jet Fuels	>

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	÷	Motor Oils/ Lube Oils/ Grease
<i>~</i>	Diesel/ Jet Fuels	

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



<	EPH10-19	EPH19-32→
nC10	nC19	nC32
174'C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	·	—Motor Oils/ Lube Oils/ Grease ────→
<	Diesel/ Jet Fuels	>

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — — — — — — — — — — — — — — — — — — —	EPH19-32→
nC10	nC19	nC32
174'C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	•	-Motor Oils/ Lube Oils/ Grease
<	Diesel/ Jet Fuels	>

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	<	Motor Oils/ Lube Oils/ Grease
<i>~</i>	Diesel/ Jet Fuels	>

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



«	-EPH10-19	EPH19-32→	
nC10	nC19	nC32	
174'C	330°C	467°C	
346'F	626°F	873°F	
$\leftarrow$ Gasoline $\rightarrow$	÷	Motor Oils/ Lube Oils/ Grease	· · · · · · · · · · · · · · · · · · ·
<i>←</i>	Diesel/ Jet Fuels		

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	<	Motor Oils/ Lube Oils/ Grease
<i>~</i>	Diesel/ Jet Fuels	>

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	÷	Motor Oils/ Lube Oils/ Grease
<i>~</i>	Diesel/ Jet Fuels	

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Motor Oils/ Lube Oils/ Grease
← Diesel/ Jet Fuels →		

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Motor Oils/ Lube Oils/ Grease
← Diesel/ Jet Fuels →		

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Motor Oils/ Lube Oils/ Grease
← Diesel/ Jet Fuels →		

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Motor Oils/ Lube Oils/ Grease
← Diesel/ Jet Fuels →		

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.


·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	<	Motor Oils/ Lube Oils/ Grease
<i>~</i>	Diesel/ Jet Fuels	>

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

			<b>U</b> II								<u> </u>									
<b>GO</b> A SSO	lder ciates			Proje	ct Number;	20149	585	G					L	aborato AL	ry Narr	ne: איזער	nab	54		
00 – 2920 Virtual Wa	V			Short	Title:	ibich	Clea	n-v	> Golder (	Contac	:t:	ado	A	ddress:	51 1		ممار	2	Ц	
ancouver, British Co elephone (604) 296-	lumbia, Canad 4200 Fax (6	la V5M 00 04) 298-5	C4 5253	Golde		dress 1: E @qq	older.cor	Golde n 50	r E-mail Addres	ss 2:	@.q	older.c	om	elephon	e/Fax:	3-	<u>5''E</u> 418	8	Contac Ant	er sornet
Office Name:							\		20070									<u> </u>	<u></u>	
Vanc	duver	•			EQ	ulS Facility C ulS upload:	ode: <u>_}\</u> ⊠	10 1	2210					Analys	ses Re	quired	d	•		
Turnaround Time Criteria: 🛛 CSR	: 🗆 2 ² 4 hr 😡 CCM	ИE	□ 48 hr □ BC Wa	ater Quali	□ 72 h ty [	r Ø Other 了	une 15	Regular	(5 Days) よりつつ	lers		hr Hrelore		HAN		in,	etta	ج ج	ove)	
Note: Final Repor	ts to be issued	by e-mai	1		Quote N	0.: 8035	1			contair		5-2	a lene		2	Chier	200	HeoH	TAT ab	
Sample Control Number (SCN)	Sample Location	Sa. #	Sample Depth ( <del>m)</del>	Sample Matrix (over)	Date Sampled (D / M / Y)	Time Sampled (HH:MM)	Sample Type (over)	QAQC Code (over)	Related SCN (over)	Number of C	noishcre	Fich Siz	NaptK	ISTEX	N- DOAL	codrin,	L'P - C	PFAS -1	RUSH (Select	Remarks (over)
07976-01	MW70-07	•	36"-4	50	11/6/25	0500	Gras			4	5									
, - 02	1		6-6'6"	1				FOA	0272603	4	ł									* Hold For
- 03	$\checkmark$		*					FD	02926-02	4										analysist selec
- 04	MW20.01		2"-6"					FDA	02926-06	5		)	$\langle \rangle$	$\langle   \chi \rangle$		X	X			) hne 12/20
- 05			dr					FO	02926-05	4		>	< )	x x		X	X			No grain SILP
- 06			3'-3'6"							5	X	$\times x$	$\langle \rangle$	<u>&lt;   x</u>		X	Ý			• \-
- 07			8-864						, ,	5	X	X								
- 08	RHZC-08		2"-6"							4	1			-,		1			i	·
- 09	1		3'36					FOA	02326.10	4	<i>.</i>									
- 10			V		-			FD	07926-09	4	£				4602				-	
\11	V		8-86"			Y				LI	1				1002					
[₩] - 12	MW20-03		13-136	V	V	14:30	$\vee$	FDA	02927-01	21-	~					1	<u> </u>			. J
ampler's Signature:	A	<b>~</b>	Relinqui	shed by:	Signature		Compar GC C	K	Date //	;/20	<u></u>	Time	,50	) R	eceive	d by:	Signat	ure	Cor	npany
omments: GN 1	CE	~ KL	Method	of Shipm	aht.		Waybill	No.:	/	1	Re	ceived fo	r Lab	1		Da	ate	June	90	Time 30
after hor	irs lock	-up	Shipped	by:			Shipme Seal Int	nt Condit act:	ion:		Ter	mp (°C)	Cool		ed by:	Da	ate	:17		Time

.

۲

١.

				СН	AIN (	OF CU	STOD	Y RE	CORI	D/ANAL	YSI	IS F	REQL	JEST	rỳ			Nọ.	.02	292	27 page Z of 3
	Go	lder			Projec	t Number:	01452	356	· ·					La	borator AL	y Nam	ie: 5υ <b>Γ</b> Ω	nabi	1	•	13
200 – 2920 Virtu	al Wa	ay av			Short	Title:	spird	Clear	1-UF		Contac	ct: کور ک	-de	Ad	dress:	21 1	<u></u>	chae		Ч.,,	<u> </u>
Vancouver, Britis Telephone (604)	sh Co 296-	lumbia, Canad 4200 Fax (6	la V5M 00 i04) 298-5	C4 5253	Golde	r E-mail Add	ress 1: @q	older.cor	n Golder	E-mail Addres	ss 2:	@a	older.c	Te	lephone	e/Fax:	<u>~~</u>	118 418	8	Contac	t: et Sochaet
Office Name:	,								1797	272											JPI J-
<u>\</u>		couver				EQu EQu	IS Facility ( IS upload:	;ode: _ <u>≁</u> ⊠r	1105						Analys	es Re	quirec	ł		-	
Turnaround Criteria: 🔀	Time CSR	: □ 24 hr ` □ 24 cCl	ИE	□ 48 hr □ BC Wa	ater Qualit	□ 72 hr ty   2	d Other 🔫	[] Sure 15	Regular (	(5 Days) つ <b>つの</b>	ers		sk Nelere	Hd			くぞう	hoe	4	(ə'n	
Note: Final F	Repor	ts to be issued	by e-mai	1		Quote No	8035	1			ontain	0)	re - S	DI/IT		5	L PIC	moet	16011	rAT abo	
Sample Cont Number (SC	rol N)	Sample Location	Sa. #	Sample Depth (m)	Sample Matrix (over)	Date Sampled (D / M / Y)	Time Sampled (HH:MM)	Sample Type (over)	QAQC Code (over)	Related SCN (over)	Number of C	moisture	Grein Sin	LEPH/HE	BTEX	n-nonan	Cuchium ,	1,2 - d.bn	PFRS - 1	RUSH (Select 1	Remarks (over)
02927 -	01	MW20-03		13-136"	50	116/20	14.35	Grab	FD	07926-12	4										
-	02	ł		18-186	SO			1			4										- Hold for
	03	MW20-01		13-136"							5	$\times$	X	_		<b> </b>		ļ			analysis
-	04	J		18-1869							5	X	X	_							selection )me
-	05	Mw20-04		11-12',							Ц					_					12/20
-	05			13-15			Ψ	$  \cdot  _{i}$			4										
• •	07	V		18-186	'Ψ 	$\mathbb{V}$	16:30	4			4					ļ					······································
	08 00				- <u>}</u>								····				,				
	U9 10				<u>}</u>																
· · · · · · · · · · · · · · · · · · ·	11											╏╴╹		الالالالا 24ا_	60211	-COF	∎∎ I II II =C			-	
. <b>–</b>	12				V^/	<u>-</u>					· · - · · · -		• •••• •• ••• ••			 m · · ·		1	~ 1  1	力	<u> </u>
Sampler's Signa	ature:	184	-	Relinqui	shed by:	Signature		Compar Go lo	le	Date // 6	5/2	0	Time	S: SÒ		eceive	d by:	Signati	ure	Со	mpany
Comments:	ち	Ice.	_	Method	of Shipme	ent:		Waybill	No.:	1	1	Re	ceived fo	r Lab b	Y:		Da	ate JJ	one	20	Time 830
Lette AFter	xt L	ALS KAN	~100ps	Shipped	by:			Shipme Seal Int	nt Conditi act:	ion:		Ter	np (°C) 26	Coole	r opene	d by:	Da	ate Jun	13		Time 9am
			0-				WHITE:	Golder C	ору	YELLOW:	Lab C	Сору			-						ESED

in in a

an un

			-														ur 🙀
				СН		OF CU	STOD	Y RE	COR	)/ANAL	YSI	S REQ	UEST		No.	0293	31 page3_of 3
	0	lder ciates			Projec	ct Number:	2014	5856					Labo	ratory Narr Å	IE: ALS	~ · ·	
00 – 2920 Virtua	al Wa				Short	Title: Sia	milid	Clean	nun	Golder	Contac	t: Vordo	Addre	^{ess:} ົົດໃ	SII	Las & F	tun BRY
ancouver, Britisl	h Co	lumbia, Canad	la V5M 00	24	Golde	er E-mail Add	ress 1:		Golder	E-mail Addre	ss 2:	101-0	Telep	hone/Fax:	000 1100	Contac	* // .
	290-					AVERD	<u>E @go</u>	older.cor	n	0625	<u>EN</u>	@golder.	com	604-	255-4122	s An	Le Springer
Office Name:		Van	courr	·		EQu EQu	IS Facility ( IS upload:	ode: <u>21</u>	18322	.76	-		An	alyses Re	quired		
Turnaround T Criteria:	ime: SR	: 24 hr CCI	ME	□ 48 hr □ BC W	ater Quali	ty 🛛 72 hr	Other \	Lave 19	Regular ( たっつ	5 Days) 0 <b>2:6</b>	ers					ove)	
Note: Final R	epor	ts to be issued	l by e-mail			Quote No	 Q80	351	, <u>, c</u>		ontain	5				TAT abc	
Sample Contr Number (SCN	ol I)	Sample Location	Sa. #	Sample Depth (m)	Sample Matrix (over)	Date Sampled (D / M / Y)	Time Sampled (HH:MM)	Sample Type (over)	QAQC Code (over)	Related SCN (over)	Number of C	Srain St				RUSH (Select	Remarks (over)
12931 - (	)1	MWZ0-01		15-16	50	11/6/20	(300	Grab			1						
- (	)2	V		19-201	V	V	V	d.			Ì						Hold 6
- (	)3	<u>.</u>	) : "		R							·					applusis
- (	)4				*												sclection
- 0	)5																June 12/20
- (	)6																1
- (	)7				ter open open	·											_
- (	)8													·			
- (	)9																
- 1	0	·								· ·		<u> </u>	L24602	11-COE	01.1.11.1. <b>118</b> .18 <b>.1</b> 11 ?		
- 1	1											I,					
1	2	-													Î Î		-
Sampler's Signat	ture:	M		Relinqui	ished by:	Signature		Compar	Ϊ Ø Γ	Date H	11/6	20 Tim	g (SD	Receive	d by: Signati	ure Co	mpany
Comments: ()	$\sqrt{ }$	0,		Method	of Shipme	ent: V		Waybill	No.:	<b>I</b>	+++	Received	or Cab by		Date 9	30 12	Time
lest at	<b>A</b> (	S Kamlo	zagos	Shipped	l by:		· · · · · · · · · · · · · · · · · · ·	Shipmer Seal Intr	nt Conditi act:	on:		Temp (°C)		pened by: T	Date	n 13	Time 9 am
after ho	3W	3 lak-	up	-			WHITE:	Golder C	ору	YELLOW:	Lab C	ору				**	·

٨.		5
		- 22
200 - C	- 222	

ESED

j۴. ீத ź.



GOLDER ASSOCIATES LTD. ATTN: Alison Verde 200-2920 Virtual Way Vancouver BC V5M 0C4 Date Received:19-JUN-20Report Date:08-JUL-20 14:43 (MT)Version:FINAL REV. 2

Client Phone: 604-297-2036

# Certificate of Analysis

Lab Work Order #: L2463621

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 20145856/1000 02933

Comments:

8-JUL-2020 Detection limits have been lowered for some compounds.

amber Springer

Amber Springer, B.Sc Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

**RIGHT SOLUTIONS RIGHT PARTNER** 

### ALS ENVIRONMENTAL ANALYTICAL REPORT

L2463621 CONTD.... PAGE 2 of 4 08-JUL-20 14:43 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2463621-1 SV 18-JUN-20 16:45 02933-01	L2463621-2 SV 18-JUN-20 16:45 02933-02	L2463621-3 SV 18-JUN-20 18:00 02933-03	
Grouping	Analyte				
CANISTER					
Volatile Organic Compounds	Benzene (ppb(V))	DLHC 3.7	DLHC 3.9	DLHC 14.0	
	Benzene (ug/m3)	DLHC 11.9	DLHC 12.3	DLHC 44.7	
	1,3-Butadiene (ppb(V))	DLHC 8.5	DLHC 7.7	DLHC 16.6	
	1,3-Butadiene (ug/m3)	DLHC 18.7	DLHC 17.1	DLHC 36.7	
	Decane (ppb(V))	<5.0	DLHC <5.0	DLHC <5.0	
	Decane (ug/m3)	DLHC <29	DLHC <29	DLHC <29	
	1,2-Dibromoethane (ppb(V))	OLHC <0.05	DLHC <0.05	DLHC <0.05	
	1,2-Dibromoethane (ug/m3)	OLHC <0.38	DLHC <0.38	DLHC <0.38	
	1,2-Dichloroethane (ppb(V))	0.30	0.29	0.88	
	1,2-Dichloroethane (ug/m3)	1.20 AI	1.19	3.55 ^{AI}	
	Ethylbenzene (ppb(V))	3.3 DLHC	3.2	DLHC 24.4	
	Ethylbenzene (ug/m3)	DLHC 14.2	DLHC 14.0	DLHC 106	
	n-Hexane (ppb(V))	63 DLA	66 DLA	DLA 197	
	n-Hexane (ug/m3)	223 DLA	231 DLA	DLA 696	
	Isopropylbenzene (ppb(V))	<2.0	<2.0	5.8	
	Isopropylbenzene (ug/m3)	<9.8	<9.8	DLHC 28.7	
	Methylcyclohexane (ppb(V))	246	261 DLA	723 DLA	
	Methylcyclohexane (ug/m3)	990 DLA	1050 DLA	2900 DLA	
	MTBE (ppb(V))	<2.0	<2.0	<2.0	
	MTBE (ug/m3)	<7.2	<7.2	<7.2	
	Naphthalene (ppb(V))	<0.57	<0.57	<0.57	
	Naphthalene (ug/m3)	<3.0 DLA	<3.0	<3.0	
	Styrene (ppb(V))	<2.0	<2.0	<2.0	
	Styrene (ug/m3)	<8.5	<8.5	<8.5	
	Toluene (ppb(V))	8.9	7.9	43.9 DLHC	
	Toluene (ug/m3)	33.7	29.8 DLHC	165	
	1,2,4-Trimethylbenzene (ppb(V))	0.44	0.38	1.88	
	1,2,4-Trimethylbenzene (ug/m3)	2.19	1.89	9.25	
	1,3,5-Trimethylbenzene (ppb(V))	<0.20	<0.20	4.3	
	1,3,5-Trimethylbenzene (ug/m3)	<0.98	<0.98	21.1 DLHC	
	o-Xylene (ppb(V))	2.3	2.2 DLHC	19.6	
	o-Xylene (ug/m3)	10.1 DLHC	9.6	85.1	
	m&p-Xylene (ppb(V))	<4.0	<4.0	40.5	
	m&p-Xylene (ug/m3)	<17 DLHC	<17 DLHC	176 DLHC	
	Xylenes (Total) (ppb(V))	<4.5	<4.5	60.1	
	Xylenes (Total) (ug/m3)	<20	<20	261	

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

## ALS ENVIRONMENTAL ANALYTICAL REPORT

L2463621 CONTD.... PAGE 3 of 4 08-JUL-20 14:43 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2463621-1 SV 18-JUN-20 16:45 02933-01	L2463621-2 SV 18-JUN-20 16:45 02933-02	L2463621-3 SV 18-JUN-20 18:00 02933-03	
Grouping	Analyte				
CANISTER					
Volatile Organic Compounds	Surrogate: 4-Bromofluorobenzene (%)	71.4 76.0	70.6 76.0	75.5 74.8	
Hydrocarbons	VHv(C6-C13) (ug/m3)	DLHC 26300	DLHC 27600	DLHC 72100	
	VPHv(C6-C13) (ug/m3)	DLHC 26000	DLHC 27300	DLHC 71000	
Miscellaneous	Batch Proof ID	200410.326	200410.305	200410.307	
	Canister ID	01400-0489	01400-0373	01400-0116	
	Pressure on Receipt (in Hg)	-6.7	-6.9	-4.7	
	Regulator ID	G347	G347	G266	

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

### **Reference Information**

#### **Qualifiers for Individual Parameters Listed:**

Qualifier	Description
AI	Analytical interferences may be present. Result may be biased high.
DLA	Detection Limit adjusted for required dilution
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

#### **Test Method References:**

ALS Test Code	Matrix	Test Description	Method Reference**
CAN-DATA-WT	Canister	Canister Information	EPA TO-15
Batch Proof ID, Canister ID	, Pressure or	n Receipt, Regulator ID.	
VHV(C6-C13)-MS-BC-WT	Canister	Total Hydrocarbons (C6-C13)	BC MOE LABORATORY MANUAL (2016)
VOC-GCMS-WT	Canister	Volatile Organic Compounds	EPA TO-15

This analysis is performed using procedures adapted from EPA Method TO-15. Air samples are collected into cleaned evacuated canisters. A volume of air sample is transferred from the canister to a preconcentrator system where the analytes are trapped & focused. The analytes are then thermally desorbed into a GC-MSD for analysis. Test results are not blank corrected unless indicated by a qualifier.

Canister samples will be retained for 7 calendar days after final report. If you require a longer canister storage time, please contact your account manager.

VOC-L-GCMS-WT	Canister	Volatile Organic Compounds Low Level	EPA TO-15
---------------	----------	--------------------------------------	-----------

This analysis is performed using procedures adapted from EPA Method TO-15. Air samples are collected into cleaned evacuated canisters. A volume of air sample is transferred from the canister to a preconcentrator system where the analytes are trapped & focused. The analytes are then thermally desorbed into a GC-MSD for analysis. Test results are not blank corrected unless indicated by a qualifier.

Canister samples will be retained for 7 calendar days after final report. If you require a longer canister storage time, please contact your account manager.

VPH-CALC-WT	Canister	VPHv is VHv minus BTEX/Styrene/nC6/nC10	EPA TO15, BC Lab Manual
XYLENES-SUM-CALC-WT	Canister	Sum of Xylene Isomer Concentrations	CALCULATION

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

#### Laboratory Definition Code Laboratory Location

WT

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

#### **Chain of Custody Numbers:**

02933

#### **GLOSSARY OF REPORT TERMS**

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

ma/kg - milligrams per kilogram based on drv weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to gualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.



		Workorder:	L2463621		Report Date: 08	-JUL-20	Pag	ge 1 of 4
Client: GOLDE 200-292 Vancour	R ASSOCIATES L 20 Virtual Way ver BC V5M 0C4 /erde	TD.						
	Motrix	Poforonoo	Pocult	Qualifiar	Unito	חפפ	Limit	Analyzed
Test	Watrix	Reference	Result	Quaimer	Units	RPD	Limit	Analyzed
CAN-DATA-WT	Canister							
Batch R5130787 WG3348347-1 MB Pressure on Receipt	7		-29.8		in Hg			23-JUN-20
VHV(C6-C13)-MS-BC-WT	Canister							
Batch R5142608 WG3355933-2 LCS	3		07.2		9/		50.450	00 11 11 00
			97.3		70		50-150	03-JUL-20
WG3355933-3 LCSL VHv(C6-C13)	)	<b>WG3355933-2</b> 97.3	95		%	2.1	50	03-JUL-20
<b>WG3355933-1 MB</b> VHv(C6-C13)			<100		ug/m3		100	06-JUL-20
VOC-GCMS-WT	Canister							
Batch R5142608 WG3355933-2 LCS	3							
1,2,4-Trimethylbenzen	e		101.2		%		70-130	06-JUL-20
1,3,5-Trimethylbenzen	e		99.3		%		70-130	06-JUL-20
1,3-Butadiene			98.9		%		70-130	06-JUL-20
Benzene			99.5		%		70-130	06-JUL-20
Decane			98.5		%		70-130	06-JUL-20
Etnyibenzene			100.3		%		70-130	06-JUL-20
			91.5		70		70-130	06-JUL-20
Mothylovelobovano			102.9		70 0/		70-130	06-JUL-20
MTRE			102.1		78 %		50-150 70 120	06-JUL-20
n-Hexane			107.2		%		70-130	06-00-20
Naphthalene			89.8		%		70-130	06-1111-20
o-Xvlene			100.7		%		70-130	06-1111-20
Styrene			98.7		%		70-130	06-1111-20
Toluene			101.9		%		70-130	06-JUL-20
WG3355933-3 LCSI 1.2.4-Trimethylbenzen	<b>)</b> e	<b>WG3355933-2</b> 101.2	93		%	82	25	06-1111-20
1,3,5-Trimethylbenzen	e	99.3	94		%	5.2	25	06-JUL-20
1,3-Butadiene		98.9	99		%	0.2	25	06-JUL-20
Benzene		99.5	99		%	0.3	25	06-JUL-20
Decane		98.5	94		%	4.8	25	06-JUL-20
Ethylbenzene		100.3	98		%	2.3	25	06-JUL-20



		Workorder:	L246362	1	Report Date: 08	3-JUL-20	Pa	ige 2 of 4
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-GCMS-WT	Canister							
Batch R5142608								
WG3355933-3 LCSD		WG3355933-2			<b>0</b> (			
Isopropylbenzene		91.5	88		%	4.3	25	06-JUL-20
m&p-Xylene		102.9	99		%	3.7	25	06-JUL-20
Methylcyclohexane		102.1	102		%	0.2	50	06-JUL-20
MTBE		101.2	101		%	0.1	25	06-JUL-20
n-Hexane		102.1	100		%	1.8	25	06-JUL-20
Naphthalene		89.8	88		%	2.2	25	06-JUL-20
o-Xylene		100.7	97		%	3.3	25	06-JUL-20
Styrene		98.7	96		%	2.2	25	06-JUL-20
Toluene		101.9	99		%	2.7	25	06-JUL-20
WG3355933-1 MB			~0.20		ppb(V)		0.2	
1,2,4-Trimethylbenzene			<0.20		ppb(V)		0.2	06-JUL-20
1,3,5-Thillethyldenzene			<0.20		ppb(v)		0.2	06-JUL-20
Ponzono			<0.10		ppb(v)		0.1	06-JUL-20
Decano			<0.10		ppb(v)		0.1	06-JUL-20
Ethylhonzono			<0.30		ppb(v)		0.5	06-JUL-20
			<0.20		ppb(v)		0.2	06-JUL-20
			<0.20		ppb(v)		0.2	06-JUL-20
Methylevelehevene			<0.40		ppb(v)		0.4	06-JUL-20
			<0.20		ppb(v)		0.2	06-JUL-20
			<0.20		ppb(V)		0.2	06-JUL-20
n-Hexane			<0.20		ppb(V)		0.2	06-JUL-20
			<0.25		ppb(v)		0.25	06-JUL-20
o-xyiene			<0.20		ppb(V)		0.2	06-JUL-20
Styrene			<0.20		ppb(V)		0.2	06-JUL-20
			<0.20		ppb(V)		0.2	06-JUL-20
Surrogate: 4-Bromofluo	robenzene		88.2		%		70-130	06-JUL-20
VOC-L-GCMS-WT	Canister							
Batch R5142608								
WG3355933-2 LCS			94.6		%		70 400	
			06.2		/0		70-130	
		WOODEFEEE	90.2		/0		70-130	06-JUL-20
1,2-Dibromoethane		94.6	93		%	1.6	25	06-1111-20
1.2-Dichloroethane		96.2	93		%	29	25	06-1111-20
.,						2.0	20	00000-20

WG3355933-1 MB



		Workorder:	L246362	1	Report Date:	08-JUL-20	Pa	ige 3 of 4
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-L-GCMS-WT	Canister							
Batch R5142608 WG3355933-1 MB	3							
1,2-Dibromoethane			<0.010		ppb(V)		0.01	06-JUL-20
1,2-Dichloroethane			<0.010		ppb(V)		0.01	06-JUL-20
Surrogate: 4-Bromofluc	orobenzene		88.2		%		70-130	06-JUL-20

Workorder: L2463621

Report Date: 08-JUL-20

#### Legend:

Limit DUP	ALS Control Limit (Data Quality Objectives)
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

#### Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.



## Batch Proof Report

Batch ID	Canister ID	Parameters	Value	Units	Date	Analyst
B200410.314	01400-0431	1,1,1-Trichloroethane	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,1,1,2-Tetrachloroethane	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,1,2,2-Tetrachloroethane	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,1,2-Trichloroethane	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,1-Dichloroethane	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,1-Dichloroethene	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,2,4-Trichlorobenzene	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,2,4-Trimethylbenzene	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,2-Dibromoethane	<0.01	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,2-Dichlorobenzene	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,2-Dichloroethane	<0.01	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,2-Dichloropropane	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,3,5-Trimethylbenzene	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,3-Butadiene	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,3-Dichlorobenzene	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,4-Dichlorobenzene	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,4-Dioxane	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	2-Chlorophenol	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	2-Hexanone	<1.0	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	4-Ethyltoluene	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Acetone	<0.50	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Allyl Chloride	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Benzene	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Benzyl Chloride	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Bromodichloromethane	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Bromobenzene	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Bromoform	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Bromomethane	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Carbon Disulfide	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Carbon Tetrachloride	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Chlorobenzene	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Chloroethane	<0.02	ppb(V)	23-Apr-20	662
B200410.314	01400-0431	Chloroform	<0.02	ppb(v)	23-Apr-20	CG2
B200410.314	01400-0431	Chloromethane	<0.20	ppb(v)	23-Apr-20	662
B200410.314	01400-0431	cis-1,2-Dichloroethene	<0.02	ppp(v)	23-Apr-20	662
B200410.314	01400-0431	Cis-1,3-Dichloropropene	<0.02	ppp(v)	23-Apr-20	662
B200410.514	01400-0451	Dibromochloromothono	<0.20	ppp(v)	25-Apr-20	662
D200410.514	01400-0431	Diplomochioromethane	<0.20	ppb(v)	23-Apt-20	CG2
B200410.314	01400-0431	Ethyl Acotato	<0.20	ppb(v)	23-Apr-20	CC2
B200410.314 B200410.314	01400-0431	Ethyl Benzene	<0.20	ppb(v)	23-Apr-20	CG2
B200410.314 B200410 314	01400-0431	Freon 113	<0.02	nnh(V)	23-Apr-20	CG2
B200410.314 B200410.314	01400-0431	Freon 114	<0.20	nnh(V)	23-Apr 20	CG2
B200410 314	01400-0431	Hexachlorobutadiene	<0.20	nnh(V)	23-Apr-20	CG2
B200410 314	01400-0431	Isooctane	<0.02	nnh(V)	23-Apr-20	CG2
B200410 314	01400-0431	Isopropyl Alcohol	<1.0	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Isopropylbenzene	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	m&p-Xylene	< 0.04	(V)dqq	23-Apr-20	CG2
B200410.314	01400-0431	Methyl Ethyl Ketone	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Methylcyclohexane	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Methyl Isobutyl Ketone	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Methylene Chloride	< 0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	MTBE	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Naphthalene	<0.05	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	n-Decane	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	n-Heptane	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	n-Hexane	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	o-Xylene	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Propylene	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Styrene	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Tetrachloroethylene	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Tetrahydrofuran	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Ioluene	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	trans-1,2-Dichloroethene	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	trans-1,3-Dichloropropene	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Irichloroethylene	< 0.02	ppb(V)	23-Apr-20	CG2
в200410.314	01400-0431	irichlorofluoromethane	< 0.20	ppb(V)	23-Apr-20	CG2
в200410.314	01400-0431	vinyi Acetate	< 0.50	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	vinyl Bromide	<0.20	ppb(V)	23-Apr-20	CG2

ADDRESS 60 Northland Rd, Unit 1 Waterloo, ON, N2V 2B8 Canada PHONE +1 519 886-6910 FAX +1 519 886-9047 ALS CANADA LTD. Part of the ALS Group A Campbell Brothers Limited Company

#### www.alsglobal.com



01400-0431	Vinyl Chloride	<0.02	ppb(V)	23-Apr-20	CG2
01400-0431	4-Bromofluorobenzene	96.8	%	23-Apr-20	CG2

L246 ancouver, British Co elephone (604) 296	3621-COFC	604) 298-5	5253 ⁻	Golde	Title: CFB er E-mail Add	2014 9 ress 1: e @gg	5856 Iox Si older.cor	nowbre Golder n ala	Golder E-mail Addre	Contact	Jride Ogola	der.com	Addre	ALS ess: 8 phone/Fax	En. 081	100 <u>L</u> 325	mont sugs	<u>c</u> <u>c</u> ontact	1 Huy Bu	<u>(re</u>
Office Name: Vancovi	Her Vir	TUPIL	WAY		EQu EQu	IS Facility C IS upload:	Code: _2	1783	3370				An	alyses Re	equired					
Turnaround Time Criteria: 夕 CSR	: L 24 hr L CCI	ME	☐ 48 hr ☐ BC W	ater Quali	ity [	Other	₩	Regular (	(5 Days)	ners	el Tue							bove)		
Note: Final Report	ts to be issued	by e-mai	I T		Quote No	<u>ନ୍</u> ଳୁ ପୁ	80	351		Contai	S D S							t TAT a		
Sample Control Number (SCN)	Sample Location	Sa. #`	Sample Depth (m)	Sample Matrix (over)	Date Sampled (D / M / Y)	Time Sampled (HH:MM)	Sample Type (over)	QAQC Code (over)	Related SCN (over)	Number of	Caroline Peul							RUSH (Selec	Remarks (over)	
2933 <b>- 01</b>	SV20-03		3.8	SI	18106/20	16:45	GRNB	FP	2433-02	1	$\times$									
- 02	5020-03		3.8	SV		16:45		FDA	2933-01	· (	<u>×</u>									
- 03	5020-01		35	SU	V	18:00	L													
- 04																				
- 05				·														-+		<u> </u>
- 00		u		<u> </u>		·····									-					
- 07					•															
- 00						<u> </u>									-					<u></u>
- 10																		-		
- 11					3 Pc - 2 ⁴										-			-+	<u> </u>	
- 12		<u>.</u>	<u>``</u> `	·												· · ·				
ampler's Signature:			Relinqu	ished by:	Signature		Compar Grou	1y 0F.K	Date June 19	7 20.	20	Time 19:0	00	Receive	ed by:	Signatu	ıre	Con	npany	
omments: U	t must me	et	Method	of Shipme	ent:		Waybill	No.:			Recei	ved for La	ab by:	U	Da	ate Ju	ml	19	11me7:19	
Dexcum a take	( ME		Shipped	l by:			Shipme	nt Conditi	ion:		Temp	(°C) C	ooler o	pened by:	Da	ite			Time	ネ



GOLDER ASSOCIATES LTD. ATTN: Alison Verde 200-2920 Virtual Way Vancouver BC V5M 0C4 Date Received:26-JUN-20Report Date:30-JUN-20 17:49 (MT)Version:FINAL

Client Phone: 604-297-2036

# **Certificate of Analysis**

#### Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 20145856/1000 02945

L2466948

amber Springer

Amber Springer, B.Sc Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company



www.alsglobal.com

**RIGHT SOLUTIONS** RIGHT PARTNER

### ALS ENVIRONMENTAL ANALYTICAL REPORT

L2466948 CONTD.... PAGE 2 of 5 30-JUN-20 17:49 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2466948-1 SO 26-JUN-20 13:30 02945-01	L2466948-2 SO 26-JUN-20 14:00 02945-02	L2466948-3 SO 26-JUN-20 14:15 02945-03	L2466948-4 SO 26-JUN-20 14:15 02945-04	
Grouping	Analyte					
SOIL						
Physical Tests	Moisture (%)	4.66	2.01	2.91	2.36	
	pH (1:2 soil:water) (pH)	7.35	7.55	7.37	7.43	
Metals	Cadmium (Cd) (mg/kg)	0.042	0.048	0.037	0.035	
	Chromium (Cr) (mg/kg)	17.5	18.6	19.7	16.3	
Volatile Organic Compounds	VOC Sample Container	Field MeOH	Field MeOH	Field MeOH	Field MeOH	
	Benzene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	
	1,2-Dibromoethane (mg/kg)	<0.050	<0.050	<0.050	<0.050	
	Ethylbenzene (mg/kg)	<0.015	<0.015	<0.015	<0.015	
	Methyl t-butyl ether (MTBE) (mg/kg)	<0.20	<0.20	<0.20	<0.20	
	n-Nonane (mg/kg)	<0.050	<0.050	<0.050	<0.050	
	Styrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	
	Toluene (mg/kg)	<0.050	<0.050	<0.050	<0.050	
	ortho-Xylene (mg/kg)	<0.050	<0.050	<0.050	<0.050	
	meta- & para-Xylene (mg/kg)	<0.050	<0.050	<0.050	<0.050	
	Xylenes (mg/kg)	<0.075	<0.075	<0.075	<0.075	
	Surrogate: 4-Bromofluorobenzene (SS) (%)	104.1	105.0	97.4	104.1	
	Surrogate: 1,4-Difluorobenzene (SS) (%)	112.3	110.4	111.9	112.6	
Hydrocarbons	EPH10-19 (mg/kg)	<200	<200	<200	<200	
	EPH19-32 (mg/kg)	<200	<200	<200	<200	
	LEPH (mg/kg)	<200	<200	<200	<200	
	HEPH (mg/kg)	<200	<200	<200	<200	
	Volatile Hydrocarbons (VH6-10) (mg/kg)	<100	<100	<100	<100	
	VPH (C6-C10) (mg/kg)	<100	<100	<100	<100	
	Surrogate: 2-Bromobenzotrifluoride (%)	67.8	78.1	75.1	80.1	
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	110.9	116.6	110.7	118.7	
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	
	Acenaphthylene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	
	Anthracene (mg/kg)	<0.0040	<0.0040	<0.0040	<0.0040	
	Benz(a)anthracene (mg/kg)	<0.010	<0.010	<0.010	<0.010	
	Benzo(a)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	
	Benzo(b&j)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	
	Benzo(b+j+k)fluoranthene (mg/kg)	<0.015	<0.015	<0.015	<0.015	
	Benzo(g,h,i)perylene (mg/kg)	<0.010	<0.010	<0.010	<0.010	
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	
	Chrysene (mg/kg)	<0.010	<0.010	<0.010	<0.010	
	Dibenz(a,h)anthracene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	

### ALS ENVIRONMENTAL ANALYTICAL REPORT

L2466948 CONTD.... PAGE 3 of 5 30-JUN-20 17:49 (MT) Version: FINAL

	02945-01	14:00 02945-02	14:15 02945-03	14:15 02945-04	
Analyte					
Fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	
Fluorene (mg/kg)	<0.010	<0.010	<0.010	<0.010	
Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	
1-Methylnaphthalene (mg/kg)	<0.010	<0.010	<0.010	<0.010	
2-Methylnaphthalene (mg/kg)	<0.010	<0.010	<0.010	<0.010	
Naphthalene (mg/kg)	<0.010	<0.010	<0.010	<0.010	
Phenanthrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	
Pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	
Quinoline (mg/kg)	<0.050	<0.050	<0.050	<0.050	
Surrogate: Chrysene d12 (%)	77.0	83.4	79.5	84.8	
Surrogate: Naphthalene d8 (%)	76.1	86.6	84.3	92.5	
Surrogate: Phenanthrene d10 (%)	75.9	82.5	80.6	87.3	
B(a)P Total Potency Equivalent (mg/kg)	<0.020	<0.020	<0.020	<0.020	
IACR (CCME)	<0.15	<0.15	<0.15	<0.15	
	Fluorene (mg/kg) Indeno(1,2,3-c,d)pyrene (mg/kg) 1-Methylnaphthalene (mg/kg) 2-Methylnaphthalene (mg/kg) Naphthalene (mg/kg) Pyrene (mg/kg) Quinoline (mg/kg) Surrogate: Chrysene d12 (%) Surrogate: Naphthalene d8 (%) Surrogate: Phenanthrene d10 (%) B(a)P Total Potency Equivalent (mg/kg) IACR (CCME)	Fluorene (mg/kg)       <0.010	Fluorene (mg/kg)       <0.010	Fluorene (mg/kg)         <0.010	Fluorene (mg/kg)         -0.010         -0.010         -0.010         -0.010           Indeno(1,2,3-c,d)pyrene (mg/kg)         -0.010         -0.010         -0.010         -0.010           1-Methylnaphthalene (mg/kg)         -0.010         -0.010         -0.010         -0.010           Naphthalene (mg/kg)         -0.010         -0.010         -0.010         -0.010           Naphthalene (mg/kg)         -0.010         -0.010         -0.010         -0.010           Phenanthrene (mg/kg)         -0.010         -0.010         -0.010         -0.010           Pyrene (mg/kg)         -0.010         -0.010         -0.010         -0.010           Quinoline (mg/kg)         -0.050         -0.050         -0.050         -0.050           Surrogate: Chrysene d12 (%)         77.0         83.4         79.5         84.8           Surrogate: Naphthalene d8 (%)         76.1         86.6         84.3         92.5           Surrogate: Phenanthrene d10 (%)         75.9         82.5         80.6         87.3           G(a)P Toal Potency Equivalent (mg/kg)         -0.020         -0.020         -0.020         -0.020           IACR (CCME)         -0.15         -0.15         -0.15         -0.15         -0.15

### **Reference Information**

L2466948 CONTD.... PAGE 4 of 5 30-JUN-20 17:49 (MT) Version: FINAL

ALS Test Code	Matrix	Test Description	Method Reference**
	Soil	EPH in Solids by Tumbler and GCEID	
Analysis is in accordance w samples are extracted with chromatography with flame equivalent to Light and Hea	vith BC MOE a 1:1 mixture ionization de vy Extractabl	Lab Manual method "Extractable Petroleum Hydrocarbo of hexane and acetone using a rotary extraction techni tection (GC-FID). EPH results include Polycyclic Aroma le Petroleum Hydrocarbons (LEPH/HEPH).	ons in Solids by GC/FID", v2.1, July 1999. Soil que modified from EPA 3570 prior to gas atic Hydrocarbons (PAH) and are therefore not
FUELS-HSMS-VA	Soil	VOCs in soil by Headspace GCMS	EPA 5035A/5021A/8260C
The soil methanol extract is gas chromatograph. Targe	added to wa t compound o	ater and reagents, then heated in a sealed vial to equilib concentrations are measured using mass spectrometry	rium. The headspace from the vial is transferred into a detection.
LEPH/HEPH-CALC-VA	Soil	LEPHs and HEPHs	BC MOE LEPH/HEPH
LEPHs and HEPHs are mean PAH concentrations from E	asures of Lig PH10-19 and	ht and Heavy Extractable Petroleum Hydrocarbons in so I EPH19-32, as per the BC Lab Manual LEPH/HEPH ca	bil. Results are calculated by subtraction of applicable localation procedure.
LEPHs = EPH10-19 minus	Naphthalene	and Phenanthrene.	
HEPHs = EPH19-32 minus c,d)pyrene, and Pyrene.	Benz(a)anth	racene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(	k)fluoranthene, Dibenz(a,h)anthracene, indeno(1,2,3-
MET-200.2-CCMS-VA	Soil	Metals in Soil by CRC ICPMS	EPA 200.2/6020A (mod)
Soil/sediment is dried, disagen itric and hydrochloric acids	ggregated, ar s. Instrumenta	nd sieved (2 mm). Strong Acid Leachable Metals in the al analysis is by Collision / Reaction Cell ICPMS.	<2mm fraction are solubilized by heated digestion with
Limitations: This method is partially recovered (matrix o Volatile forms of sulfur (e.g.	intended to l dependent), ir sulfide, H2S	liberate environmentally available metals. Silicate mine ncluding AI, Ba, Be, Cr, S, Sr, Ti, TI, V, W, and Zr. Elen ) may be excluded if lost during sampling, storage, or di	rals are not solubilized. Some metals may be only nental Sulfur may be poorly recovered by this method. gestion.
MOISTURE-VA	Soil	Moisture content	CCME PHC in Soil - Tier 1 (mod)
This analysis is carried out	gravimetrical	ly by drying the sample at 105 C for a minimum of two h	ours.
PAH-TMB-H/A-MS-VA	Soil	PAH - Rotary Extraction (Hexane/Acetone)	EPA 3570/8270
the United States Environm sediment/soil with a 1:1 mix column gas chromatograph the sample matrix prevent a reported as part of the benz Benzo(a)pyrene Total Poter	ental Protect sture of hexar y with mass s accurate quar co(b)fluoranth	tion Agency (EPA). The procedure uses a mechanical sine and acetone. The extract is then solvent exchanged spectrometric detection (GC/MS). Surrogate recoveries notitation. Because the two isomers cannot be readily christene parameter.	haking technique to extract a subsample of the to toluene. The final extract is analysed by capillary may not be reported in cases where interferences from omatographically separated, benzo(j)fluoranthene is
carcinogenic unsubstituted	PÁHs, and is	s calculated as per the CCME PAH Soil Quality Guidelin	es reference document (2010).
PH-1:2-VA	Soil	pH in Soil (1:2 Soil:Water Extraction)	BC WLAP METHOD: PH, ELECTROMETRIC, SOIL
This analysis is carried out i Section B Physical, Inorgan sieved (No. 10 / 2mm) sam standard pH probe.	in accordanc iic and Misc. ple with deior	e with procedures described in "pH, Electrometric in So Constituents, BC Environmental Laboratory Manual. Th nized/distilled water at a 1:2 ratio of sediment to water.	il and Sediment - Prescriptive Method", Rev. 2005, ne procedure involves mixing the dried (at <60°C) and The pH of the solution is then measured using a
/H-HSFID-VA	Soil	VH in soil by Headspace GCFID	BC Env. Lab Manual (VH in Solids)
This analysis involves the e reagents, then heated in a s chromatography with flame- Columbia Ministry of Enviro (Version 2.1 July 1999).	extraction of a sealed vial to -ionization de nment, Land	a subsample of the sediment/soil with methanol. Aliquots equilibrium. The headspace from the vial is analyzed for etection (GC/FID). The methanol extraction and VH anal s and Parks (BCMELP) Analytical Method for Contamin	s of the methanol extract are then added to water and or Volatile Hydrocarbons (VH) by capillary column gas ysis are carried out in accordance with the British ated Sites "Volatile Hydrocarbons in Solids by GC/FID"
/H-SURR-FID-VA	Soil	VH Surrogates for Soils	BC Env. Lab Manual (VH in Solids)
OC-M2-HSMS-VA	Soil	Misc VOCs in soil by Headspace GCMS	EPA 5035A/5021A/8260C
The soil methanol extract is gas chromatograph. Target	added to wa t compound o	ter and reagents, then heated in a sealed vial to equilib concentrations are measured using mass spectrometry	rium. The headspace from the vial is transferred into a detection.
OC7-L-HSMS-VA	Soil	VOCs in soil by Headspace GCMS	EPA 5035A/5021A/8260C
The soil methanol extract is gas chromatograph. Targe	added to wa t compound o	ter and reagents, then heated in a sealed vial to equilib concentrations are measured using mass spectrometry	rium. The headspace from the vial is transferred into a detection.
/OC7/VOC-SURR-MS-VA	Soil	VOC7 and/or VOC Surrogates for Soils	EPA 5035A/5021A/8260C
/PH-CALC-VA	Soil	VPH is VH minus select aromatics	BC MOE VPH
VPHs measures Volatile Pe VH6-10, as per the BC Lab VPHs = VH6-10 minus Ben	etroleum Hyd Manual VPH zene, Toluen	rocarbons in soil. Results are calculated by subtraction I calculation procedure. ne, Ethylbenzene, Xylenes, and Styrene	of specific Monocyclic Aromatic Hydrocarbons from

XYLENES-CALC-VA Soil Sum of Xylene Isomer Concentrations

### **Reference Information**

Calculation of Total Xylenes

Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory	Definition Co	de Laborator	location

VA

Laboratory Location

ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

#### Chain of Custody Numbers:

02945

#### **GLOSSARY OF REPORT TERMS**

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample. mg/kg wwt - milligrams per kilogram based on wet weight of sample. mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample. mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.



			Workorder:	L2466948	B Re	port Date:	30-JUN-20	Pa	ge 1 of 6
Client:	GOLDER 200-2920 Vancouve Alison Ve	ASSOCIATES L Virtual Way er BC V5M 0C4 erde	TD.						
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analvzed
	•	Sail							
Batch R	A 5136000	3011							
<b>WG3351628-3</b> EPH10-19	DUP		<b>L2466948-1</b> <200	<200	RPD-NA	mg/kg	N/A	40	30-JUN-20
EPH19-32			<200	<200	RPD-NA	mg/kg	N/A	40	30-JUN-20
WG3351628-4	IRM		ALS PHC RM3	3					
EPH10-19				97.1		%		70-130	30-JUN-20
EPH19-32				98.2		%		70-130	30-JUN-20
EPH10-19	LCS			96.3		%		70-130	30-JUN-20
EPH19-32				98.7		%		70-130	30-JUN-20
<b>WG3351628-1</b> EPH10-19	MB			<200		mg/kg		200	30-JUN-20
EPH19-32				<200		mg/kg		200	30-JUN-20
Surrogate: 2-B	romobenz	zotrifluoride		81.3		%		60-140	30-JUN-20
FUELS-HSMS-VA		Soil							
Batch R	5117129								
WG3351696-2 1,2-Dibromoeth	LCS hane			107.5		%		70-130	28-JUN-20
WG3351696-1 1,2-Dibromoeth	MB hane			<0.050		mg/kg		0.05	28-JUN-20
MET-200.2-CCMS	-VA	Soil							
Batch R	5135986								
WG3351629-4	CRM		SCP SS-2	100.0		0/			
Cadmium (Cd)				103.0		%		70-130	30-JUN-20
	ם ווח		1 2466048 2	110.5		70		70-130	30-JUN-20
Cadmium (Cd)	DUP		<b>L2400940-2</b> 0.048	0.041		mg/kg	16	30	30-JUN-20
Chromium (Cr)	)		18.6	16.2		mg/kg	14	30	30-JUN-20
WG3351629-3	LCS								
Cadmium (Cd)				100.7		%		80-120	30-JUN-20
Chromium (Cr)				105.2		%		80-120	30-JUN-20
WG3351629-1 Cadmium (Cd)	MB			<0.020		ma/ka		0.02	3011 IN-20
Chromium (Cr)				<0.50		mg/kg		0.5	30-JUN-20
( )									

MOISTURE-VA

Soil



Test         Matrix         Reference         Result         Qualifier         Units         RPD         Limit         Analyzed           MOISTURE-VA         Soil
MOISTURE-VA         Soil           Batch         R5135391           WG3351627-3         DUP           Moisture         4.66         4.76         %         2.2         20         27.JUN-20           WG3351627-2         LCS         99.8         %         90-110         27.JUN-20           WG3351627-2         LCS         %         0.25         27.JUN-20           WG3351627-1         MB         -         -0.25         %         0.25         27.JUN-20           PAH-TMB-H/A-MS-VA         Soil         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -
BatchR5135391MG3351627-3DUPL266948-1 (ACS)%2.22027-JUN-20WG3351627-1CS99.8%2.22027-JUN-20WG3351627-1MB-2.25%%2.262.212.2027-JUN-20WG3351627-1Soil-2.25%0.252.7JUN-2027-JUN-20BatchR513217CMG351628-3DUPL266948-1Acenaphthene4.0050RPD-NAmg/kgN/A5030-JUN-20Acenaphthene0.0050RPD-NAmg/kgN/A5030-JUN-20Acenaphthene0.0010RPD-NAmg/kgN/A5030-JUN-20Acenaphthene </td
WG3351627-3 MoistureDUPL2466948-1MG351627-2 MoistureLCS99.8%2.22027-JUN-20WG3351627-1 MB99.8%90.11027-JUN-20WG3351627-1 MBSoil-0.25%0.2527-JUN-20PH-TMS-H/A-MS-VA MoistureSoil0.25%0.2527-JUN-20PAH-TMS-H/A-MS-VA MoistureSoil0.2570-2527-JUN-20Batch AcenaphtheneC0050<0.0050
WG3351627-2         LCS         99.8         %         90-110         27.JUN-20           WG3351627-1         MB         <0.25
Midsture         99.8         %         90-110         27-JUN-20           WG3351627-1         MB         Moisture         0.25         27-JUN-20           PAH-TMB-H/A-MS-VA         Soil         Soil         Soil         Soil         Soil         Soil           Batch         R5138217         K         Soil         Soil         Soil         Soil         Soil         Soil           Acenaphthene         <0.0050         <0.0050         RPD-NA         mg/kg         N/A         50         30-JUN-20           Acenaphthene         <0.0050         <0.0050         RPD-NA         mg/kg         N/A         50         30-JUN-20           Anthracene         <0.0040         <0.0040         RPD-NA         mg/kg         N/A         50         30-JUN-20           Benzo(a)anthracene         <0.010         RD-NA         mg/kg         N/A         50         30-JUN-20           Benzo(baj)fluoranthene         <0.010         <0.010         RPD-NA         mg/kg         N/A         50         30-JUN-20           Benzo(baj)fluoranthene         <0.010         <0.010         RPD-NA         mg/kg         N/A         50         30-JUN-20           Benzo(baj)fluoranthene         <0.010         <
WG3351E27-1         MB           Moisture         <0.25
PH-TMB-H/A-MS-VA         Soil           Batch         R5138217           WG3351628-3         DUP         L2466948-1           Acenaphthene         <0.0050
Batch         R5138217           WG33351628-3         DUP         L2466948-1           Acenaphthene         <0.0050
WG3351628-3         DUP         L2466948-1           Acenaphthene         <0.0050
Acenaphthene       <0.0050
Acenaphthylene         <0.0050         RPD-NA         mg/kg         N/A         50         30-JUN-20           Anthracene         <0.0040
Anthracene         <0.0040         <0.0040         RPD-NA         mg/kg         NA         50         30-JUN-20           Benz(a)anthracene         <0.010
Benz(a)anthracene         <0.010         <0.010         RPD-NA         mg/kg         N/A         50         30-JUN-20           Benzo(a)pyrene         <0.010
Benzo(a)pyrene         <0.010         <0.010         RPD-NA         mg/kg         N/A         50         30-JUN-20           Benzo(b&j)fluoranthene         <0.010
Benzo(b&j)fluoranthene         <0.010         RPD-NA         mg/kg         N/A         50         30-JUN-20           Benzo(g,h,i)perylene         <0.010
Benzo(g,h,i)perylene         <0.010         <0.010         RPD-NA         mg/kg         N/A         50         30-JUN-20           Benzo(k)fluoranthene         <0.010
Benzo(k)fluoranthene         <0.010         <0.010         RPD-NA         mg/kg         N/A         50         30-JUN-20           Chrysene         <0.010
Chrysene         <0.010         <0.010         RPD-NA         mg/kg         N/A         50         30-JUN-20           Dibenz(a,h)anthracene         <0.0050
Dibenz(a,h)anthracene         <0.0050         <0.0050         RPD-NA         mg/kg         N/A         50         30-JUN-20           Fluoranthene         <0.010
Fluoranthene         <0.010         <0.010         RPD-NA         mg/kg         N/A         50         30-JUN-20           Fluorene         <0.010
Fluorene         <0.010         <0.010         RPD-NA         mg/kg         N/A         50         30-JUN-20           Indeno(1,2,3-c,d)pyrene         <0.010
Indeno(1,2,3-c,d)pyrene         <0.010         RPD-NA         mg/kg         N/A         50         30-JUN-20           1-Methylnaphthalene         <0.010
1-Methylnaphthalene         <0.010         RPD-NA         mg/kg         N/A         50         30-JUN-20           2-Methylnaphthalene         <0.010
2-Methylnaphthalene         <0.010         <0.010         RPD-NA         mg/kg         N/A         50         30-JUN-20           Naphthalene         <0.010
Naphthalene         <0.010         <0.010         RPD-NA         mg/kg         N/A         50         30-JUN-20           Phenanthrene         <0.010
Phenanthrene <0.010 <0.010 RPD-NA mg/kg N/A 50 30-JUN-20
Pyrene <0.010 <0.010 RPD-NA mg/kg N/A 50 30-JUN-20
Quinoline <0.050 <0.050 RPD-NA mg/kg N/A 50 30-JUN-20
WG3351628-5         IRM         ALS PAH RM2           Acepaphthene         102.8         %         60-130         30.0000 (0.0000)
Acenaphtivlene 114.4 % 60.130 30.101.20
Anthracene 103.9 % 60.120 30.101.20
Benz(a)anthracene 99.4 % 60.420 20.410 20
Benzo(a)pyrene 114.0 % 60.420 20.111.00
Benzo(b&i)fluoranthene 02.6 % 60.400 20.000.000
Benzo(a b.i)pervlene 101.2 % 60.130 30.001-20



		Workorder	: L246694	18	Report Date: 3	30-JUN-20	Pa	age 3 of 6
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-VA	Soil							
Batch R5138217								
WG3351628-5 IRM		ALS PAH RM	A2					
Benzo(k)fluoranthene			114.8		%		60-130	30-JUN-20
Chrysene			106.0		%		60-130	30-JUN-20
Dibenz(a,h)anthracene			99.0		%		60-130	30-JUN-20
Fluoranthene			104.2		%		60-130	30-JUN-20
Fluorene			101.1		%		60-130	30-JUN-20
Indeno(1,2,3-c,d)pyrene	•		89.7		%		60-130	30-JUN-20
1-Methylnaphthalene			101.9		%		60-130	30-JUN-20
2-Methylnaphthalene			98.0		%		60-130	30-JUN-20
Naphthalene			100.9		%		50-130	30-JUN-20
Phenanthrene			107.5		%		60-130	30-JUN-20
Pyrene			107.2		%		60-130	30-JUN-20
WG3351628-2 LCS								
Acenaphthene			99.5		%		60-130	30-JUN-20
Acenaphthylene			95.4		%		60-130	30-JUN-20
Anthracene			89.8		%		60-130	30-JUN-20
Benz(a)anthracene			91.4		%		60-130	30-JUN-20
Benzo(a)pyrene			86.6		%		60-130	30-JUN-20
Benzo(b&j)fluoranthene			89.9		%		60-130	30-JUN-20
Benzo(g,h,i)perylene			97.7		%		60-130	30-JUN-20
Benzo(k)fluoranthene			101.5		%		60-130	30-JUN-20
Chrysene			101.9		%		60-130	30-JUN-20
Dibenz(a,h)anthracene			93.6		%		60-130	30-JUN-20
Fluoranthene			97.6		%		60-130	30-JUN-20
Fluorene			97.7		%		60-130	30-JUN-20
Indeno(1,2,3-c,d)pyrene	•		89.9		%		60-130	30-JUN-20
1-Methylnaphthalene			95.9		%		60-130	30-JUN-20
2-Methylnaphthalene			94.1		%		60-130	30-JUN-20
Naphthalene			91.0		%		50-130	30-JUN-20
Phenanthrene			94.0		%		60-130	30-JUN-20
Pyrene			100.9		%		60-130	30-JUN-20
Quinoline			92.2		%		60-130	30-JUN-20
WG3351628-1 MB								-
Acenaphthene			<0.0050		mg/kg		0.005	30-JUN-20
Acenaphthylene			<0.0050		mg/kg		0.005	30-JUN-20
Anthracene			<0.0040		mg/kg		0.004	30-JUN-20



	Workorder:	L246694	8	Report Date: 3	0-JUN-20	Pa	ige 4 of 6
Test Ma	trix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-VA So	bil						
Batch R5138217							
WG3351628-1 MB							
Benz(a)anthracene		<0.010		mg/kg		0.01	30-JUN-20
Benzo(a)pyrene		<0.010		mg/kg		0.01	30-JUN-20
Benzo(b&j)fluoranthene		<0.010		mg/kg		0.01	30-JUN-20
Benzo(g,h,i)perylene		<0.010		mg/kg		0.01	30-JUN-20
Benzo(k)fluoranthene		<0.010		mg/kg		0.01	30-JUN-20
Chrysene		<0.010		mg/kg		0.01	30-JUN-20
Dibenz(a,h)anthracene		<0.0050		mg/kg		0.005	30-JUN-20
Fluoranthene		<0.010		mg/kg		0.01	30-JUN-20
Fluorene		<0.010		mg/kg		0.01	30-JUN-20
Indeno(1,2,3-c,d)pyrene		<0.010		mg/kg		0.01	30-JUN-20
1-Methylnaphthalene		<0.010		mg/kg		0.01	30-JUN-20
2-Methylnaphthalene		<0.010		mg/kg		0.01	30-JUN-20
Naphthalene		<0.010		mg/kg		0.01	30-JUN-20
Phenanthrene		<0.010		mg/kg		0.01	30-JUN-20
Pyrene		<0.010		mg/kg		0.01	30-JUN-20
Quinoline		<0.050		mg/kg		0.05	30-JUN-20
Surrogate: Naphthalene d8		100.2		%		50-130	30-JUN-20
Surrogate: Phenanthrene d1	0	94.6		%		60-130	30-JUN-20
Surrogate: Chrysene d12		95.8		%		60-130	30-JUN-20
PH-1:2-VA So	il						
Batch R5135695							
WG3351629-2 DUP	L2466948-2						
pH (1:2 soil:water)	7.55	7.37	J	рН	0.18	0.2	29-JUN-20
VH-HSFID-VA So	<b>i</b> l						
Batch R5117484							
WG3351696-2 LCS Volatile Hydrocarbons (VH6-	10)	112.8		%		70-130	29-JUN-20
WG3351696-1 MB Volatile Hydrocarbons (VH6-	10)	<100		mg/kg		100	29-JUN-20
VOC-M2-HSMS-VA So	bil						
Batch R5112127							
WG3351696-2 LCS n-Nonane		107.0		%		70-130	30-JUN-20
WG3351696-1 MB							



		Workorder	: L246694	8	Report Date: 30	-JUN-20	Pa	ge 5 of 6
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-M2-HSMS-VA	Soil							
Batch R5112127 WG3351696-1 MB n-Nonane			<0.050		mg/kg		0.05	30-JUN-20
VOC7-L-HSMS-VA	Soil							
Batch R5117129 WG3351696-2 LCS								
Benzene			107.4		%		70-130	28-JUN-20
Ethylbenzene			107.2		%		70-130	28-JUN-20
Methyl t-butyl ether (MTB	E)		128.0		%		70-130	28-JUN-20
Styrene			99.4		%		70-130	28-JUN-20
Toluene			109.4		%		70-130	28-JUN-20
meta- & para-Xylene			124.7		%		70-130	28-JUN-20
ortho-Xylene			103.8		%		70-130	28-JUN-20
WG3351696-1 MB								
Benzene			<0.0050		mg/kg		0.005	28-JUN-20
Ethylbenzene			<0.015		mg/kg		0.015	28-JUN-20
Methyl t-butyl ether (MTB	E)		<0.20		mg/kg		0.2	28-JUN-20
Styrene			<0.050		mg/kg		0.05	28-JUN-20
Toluene			<0.050		mg/kg		0.05	28-JUN-20
meta- & para-Xylene			<0.050		mg/kg		0.05	28-JUN-20
ortho-Xylene			<0.050		mg/kg		0.05	28-JUN-20

Workorder: L2466948

Report Date: 30-JUN-20

#### Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

#### Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

#### Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.



«	-EPH10-19	EPH19-32→	
nC10	nC19	nC32	
174'C	330°C	467°C	
346'F	626°F	873°F	
$\leftarrow$ Gasoline $\rightarrow$	÷	Motor Oils/ Lube Oils/ Grease	· · · · · · · · · · · · · · · · · · ·
<i>←</i>	Diesel/ Jet Fuels		

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	<	Motor Oils/ Lube Oils/ Grease
<i>~</i>	Diesel/ Jet Fuels	>

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	<	Motor Oils/ Lube Oils/ Grease
<i>~</i>	Diesel/ Jet Fuels	>

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	<	Motor Oils/ Lube Oils/ Grease
<i>~</i>	Diesel/ Jet Fuels	>

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.



·	—EPH10-19 — — → ←	EPH19-32→
nC10	nC19	nC32
174°C	330°C	467°C
346'F	626°F	873°F
$\leftarrow$ Gasoline $\rightarrow$	<	Motor Oils/ Lube Oils/ Grease
<i>~</i>	Diesel/ Jet Fuels	>

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

CHAIN OF CUSTODY RECORD/ANALYSIS REQUEST

No. 02945 mana

	meet (	onments: ON ICE	sampler's Signature;	- 12	5:	- 11	- 10	- 09	- 08	- 07	- 06	- 05	- 04 B	- 03 PH	- 02 G	40 10 - 51400	Sample Control S Number (SCN) Lo	Note: Final Reports to	Criteria: 🖾 CSR	Vancou	Office Name:	Telephone (604) 296-420	200 – 2920 Virtual Way Vancouver, British Colum	Assoc	
	( ME	, S V						_					120-10	120-10	476 0	26-10	ample	be issued	Z4 nr	Ver		0 Fax (6)		ates	} 
								_	L246								Sa. #	by e-mail				)4) 298-52	- V5M 00		
	Shipped b	Method of	Relinquis					_	)6948-C				5	n v	1.5	ý V	Sample Depth (m)		⊥ 48 hr ⊥ BC Wa			253	4		G
	¥.	Shipmen	ned by: S					_	OFC				4			50	Sample Matrix (over)		ater Qualit			Golde A∪ t	Short	Projec	ן
			ignature					:					4		_	2612120	Date Sampled (D / M / Y)	Quote N	y 🗆 72 h			r E-mail Ad P DE	Hille:	t Number:	
								-					51.11	14:15	oo:hl	13:30	Time Sampled (HH:MM)	28084 1	⊓ Other	ulS Facility ulS upload:		dress 1; @c	rid m	101115	
	Shipmei	Waybill	Compar								- ~		4		-	600	Sample Type (over)			Code:		jolder.cc	Clea	9561	
Act.	nt Conditio act:	No.:	Q Y				;						ξO	FDV			QAQC Code (over)		Regular	AL183		)m Golde		1000	
	on:		Date みん/06								,		62-54PCO	10-21-64			Related SCN (over)		(5 Days)	0776		ァE-mail Addre シャクト やんイ	Golder		DANAL
;			12020	-		-							4			F 1	Number of C	Contain	ers	-		NSS 2:	Contact: へしず		.1010
		Received	Tin				_						Ę			x X	2-nethyl	- PH repthol	91 G			@aolde	Ŕ		
╞	Coole	15	Ö,								_		4		_	X	nopthalen avinoli					r.com			
	er opene	Y.	R	-												X X	BIEX/	<b>Chion</b>	ium	Analy		Telephor	Address 2081	Laborato Als	-
	d by:		ceived b										4			X	n-nanare			ses Req		ne/Fax: רק	100	Name Range	
	Date		y: Signa	-					-			_	4		_	<	1,2 2:0	Tonuel	hne	uired	(	Ē	- and	<u>,                                    </u>	7
		5005	lture		_				_													5	I H		io. 
		5	Compa				_						4		-  >	$\langle  $	RUSH (Select 1	TAT abo	ve)		1 T	Contact:	r I		- - -
	ime	ションファ	лу														Remarks (over)				05.00				O page _ of

ź

WHITE: Golder Copy YELLOW: Lab Copy

ESED



GOLDER ASSOCIATES LTD. ATTN: Alison Verde 200-2920 Virtual Way Vancouver BC V5M 0C4 Date Received: 26-JUN-20 Report Date: 02-JUL-20 16:22 (MT) Version: FINAL

Client Phone: 604-297-2036

# **Certificate of Analysis**

#### Lab Work Order #: L2466950

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 20145856/1000 02936

amber Springer

Amber Springer, B.Sc Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company



www.alsglobal.com

**RIGHT SOLUTIONS** RIGHT PARTNER

### ALS ENVIRONMENTAL ANALYTICAL REPORT

L2466950 CONTD.... PAGE 2 of 4 02-JUL-20 16:22 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2466950-1 SV 26-JUN-20 11:55 02936-01			
Grouping	Analyte				
CANISTER					
Volatile Organic	Benzene (ppb(V))	1.52			
	Benzene (ug/m3)	DLHC 4.85			
	1,3-Butadiene (ppb(V))	OLHC <0.25			
	1,3-Butadiene (ug/m3)	<0.55			
	Decane (ppb(V))	DLHC <1.3			
	Decane (ug/m3)	<7.3			
	1,2-Dibromoethane (ppb(V))	DLHC <0.025			
	1,2-Dibromoethane (ug/m3)	DLHC <0.19			
	1,2-Dichloroethane (ppb(V))	0.946			
	1,2-Dichloroethane (ug/m3)	AI 3.83			
	Ethylbenzene (ppb(V))	DLHC 1.89			
	Ethylbenzene (ug/m3)	DLHC 8.2			
	n-Hexane (ppb(V))	DLA 56.7			
	n-Hexane (ug/m3)	DLA 200			
	Isopropylbenzene (ppb(V))	<0.50			
	Isopropylbenzene (ug/m3)	<2.5			
	Methylcyclohexane (ppb(V))	DLA 414			
	Methylcyclohexane (ug/m3)	DLA 1660			
	MTBE (ppb(V))	OLHC <0.50			
	MTBE (ug/m3)	<1.8			
	Naphthalene (ppb(V))	OLHC <0.63			
	Naphthalene (ug/m3)	OLHC <3.3			
	Styrene (ppb(V))	DLHC <0.50			
	Styrene (ug/m3)	DLHC <2.1			
	Toluene (ppb(V))	DLHC 8.97			
	Toluene (ug/m3)	DLHC 33.8			
	1,2,4-Trimethylbenzene (ppb(V))	DLHC 1.91			
	1,2,4-Trimethylbenzene (ug/m3)	DLHC 9.4			
	1,3,5-Trimethylbenzene (ppb(V))	DLHC 0.51			
	1,3,5-Trimethylbenzene (ug/m3)	DLHC 2.5			
	o-Xylene (ppb(V))	DLHC 2.46			
	o-Xylene (ug/m3)	DLHC 10.7			
	m&p-Xylene (ppb(V))	DLHC 6.8			
	m&p-Xylene (ug/m3)	DLHC 29.6			
	Xylenes (Total) (ppb(V))	9.3			
	Xylenes (Total) (ug/m3)	40.3			

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

### ALS ENVIRONMENTAL ANALYTICAL REPORT

L2466950 CONTD.... PAGE 3 of 4 02-JUL-20 16:22 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2466950-1 SV 26-JUN-20 11:55 02936-01		
Grouping	Analyte			
CANISTER				
Volatile Organic Compounds	Surrogate: 4-Bromofluorobenzene (%)	94.0		
	)//////CC_C(2)////m2)	80.7		
Hydrocarbons	VHV(C6-C13) (ug/m3)	13900		
Miscellaneous	Batch Proof ID	13600		
Miscenarieous	Canister ID	200410.31		
	Pressure on Receipt (in Hg)	2.5		
	Regulator ID	-3.3 G247		
		0211		

### **Reference Information**

#### **Qualifiers for Individual Parameters Listed:**

Qualifier	Description
AI	Analytical interferences may be present. Result may be biased high.
DLA	Detection Limit adjusted for required dilution
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

#### Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**	
CAN-DATA-WT	Canister	Canister Information	EPA TO-15	
Batch Proof ID, Canister ID, Pressure on Receipt, Regulator ID.				
VHV(C6-C13)-MS-BC-WT	Canister	Total Hydrocarbons (C6-C13)	BC MOE LABORATORY MANUAL (2016)	
VOC-GCMS-WT	Canister	Volatile Organic Compounds	EPA TO-15	

This analysis is performed using procedures adapted from EPA Method TO-15. Air samples are collected into cleaned evacuated canisters. A volume of air sample is transferred from the canister to a preconcentrator system where the analytes are trapped & focused. The analytes are then thermally desorbed into a GC-MSD for analysis. Test results are not blank corrected unless indicated by a qualifier.

Canister samples will be retained for 7 calendar days after final report. If you require a longer canister storage time, please contact your account manager.

VOC-L-GCMS-WT	Canister	Volatile Organic Compounds Low Level	EPA TO-15
---------------	----------	--------------------------------------	-----------

This analysis is performed using procedures adapted from EPA Method TO-15. Air samples are collected into cleaned evacuated canisters. A volume of air sample is transferred from the canister to a preconcentrator system where the analytes are trapped & focused. The analytes are then thermally desorbed into a GC-MSD for analysis. Test results are not blank corrected unless indicated by a qualifier.

Canister samples will be retained for 7 calendar days after final report. If you require a longer canister storage time, please contact your account manager.

VPH-CALC-WT	Canister	VPHv is VHv minus BTEX/Styrene/nC6/nC10	EPA TO15, BC Lab Manual
XYLENES-SUM-CALC-WT	Canister	Sum of Xylene Isomer Concentrations	CALCULATION

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

#### Laboratory Definition Code Laboratory Location

WТ

VVI

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

#### Chain of Custody Numbers:

02936

#### GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.


# **Quality Control Report**

		Workorder:	L2466950	)	Report Date: 02	-JUL-20	Pa	ge 1 of 3
Client: GOLD 200-2 Vanco Contact: Alison	DER ASSOCIATES L 920 Virtual Way puver BC V5M 0C4 1 Verde	TD.						
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
								· · · · · <b>,</b> - · · ·
VHV(C6-C13)-MS-BC-W	T Canister							
Batch R51392	(56 C							
VHv(C6-C13)	5		100.9		%		50-150	30-JUN-20
WG3353837-3 LC	SD	WG3353837-2						
VHv(C6-C13)		100.9	102		%	0.6	50	30-JUN-20
WG3353837-1 MB	3							
VHv(C6-C13)			<100		ug/m3		100	02-JUL-20
VOC-GCMS-WT	Canister							
Batch R51392	256							
WG3353837-2 LC	S		07.2		0/		70.400	
1,2,4-Trimethylbenze			97.5		70 0/		70-130	30-JUN-20
1 3-Butadiene			90.1		78 %		70-130	30-JUN-20
Benzene			97.9		%		70-130	30-JUN-20
Decane			96.7		%		70-130	30-JUN-20
Ethylbenzene			100.7		%		70-130	30-JUN-20
Isopropylbenzene			91.8		%		70-130	30-JUN-20
m&p-Xvlene			102.3		%		70-130	30-JUN-20
Methylcyclohexane			101.0		%		50-150	30-JUN-20
MTBE			103.3		%		70-130	30-JUN-20
n-Hexane			99.98		%		70-130	30-JUN-20
Naphthalene			90.3		%		70-130	30-JUN-20
o-Xylene			101.4		%		70-130	30-JUN-20
Styrene			99.7		%		70-130	30-JUN-20
Toluene			101.1		%		70-130	30-JUN-20
WG3353837-3 LC	SD	WG3353837-2						
1,2,4-Trimethylbenze	ene	97.3	98		%	1.2	25	30-JUN-20
1,3,5-Trimethylbenze	ene	98.1	100		%	2.3	25	30-JUN-20
1,3-Butadiene		97.9	97		%	0.7	25	30-JUN-20
Benzene		99.1	99		%	0.3	25	30-JUN-20
Decane		96.7	99		%	1.9	25	30-JUN-20
Ethylbenzene		100.7	102		%	0.9	25	30-JUN-20
Isopropylbenzene		91.8	93		%	0.9	25	30-JUN-20
m&p-Xylene		102.3	104		%	1.7	25	30-JUN-20
Methylcyclohexane		101.0	102		%	1.0	50	30-JUN-20
MTBE		103.3	102		%	1.5	25	30-JUN-20
n-Hexane		99.98	98		%	1.7	25	30-JUN-20



# **Quality Control Report**

		Workorder: L2466950		Report Date: 02	2-JUL-20	Page 2 of 3		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-GCMS-WT	Canister							
Batch R5139256	i							
WG3353837-3 LCSE	)	WG3353837	-2					
Naphthalene		90.3	91		%	0.6	25	30-JUN-20
o-Xylene		101.4	103		%	1.3	25	30-JUN-20
Styrene		99.7	101		%	1.2	25	30-JUN-20
Toluene		101.1	101		%	0.2	25	30-JUN-20
WG3353837-1 MB 1,2,4-Trimethylbenzene	9		<0.20		ppb(V)		0.2	02-JUL-20
1,3,5-Trimethylbenzene	e		<0.20		ppb(V)		0.2	02-JUL-20
1,3-Butadiene			<0.10		ppb(V)		0.1	02-JUL-20
Benzene			<0.10		ppb(V)		0.1	02-JUL-20
Decane			<0.50		ppb(V)		0.5	02-JUL-20
Ethylbenzene			<0.20		ppb(V)		0.2	02-JUL-20
Isopropylbenzene			<0.20		ppb(V)		0.2	02-JUL-20
m&p-Xylene			<0.40		ppb(V)		0.4	02-JUL-20
Methylcyclohexane			<0.20		ppb(V)		0.2	02-JUL-20
MTBE			<0.20		ppb(V)		0.2	02-JUL-20
n-Hexane			<0.20		ppb(V)		0.2	02-JUL-20
Naphthalene			<0.25		ppb(V)		0.25	02-JUL-20
o-Xylene			<0.20		ppb(V)		0.2	02-JUL-20
Styrene			<0.20		ppb(V)		0.2	02-JUL-20
Toluene			<0.20		ppb(V)		0.2	02-JUL-20
Surrogate: 4-Bromofluc	probenzene		86.8		%		70-130	02-JUL-20
VOC-L-GCMS-WT	Canister							
Batch R5139256	;							
WG3353837-2 LCS								
1,2-Dibromoethane			107.2		%		70-130	02-JUL-20
1,2-Dichloroethane			108.4		%		70-130	02-JUL-20
WG3353837-3 LCSE 1,2-Dibromoethane	)	<b>WG3353837</b> 107.2	<b>-2</b> 109		%	1.5	25	02-JUL-20
1,2-Dichloroethane		108.4	108		%	0.1	25	02-JUL-20
WG3353837-1 MB								
1,2-Dibromoethane			<0.010		ppb(V)		0.01	02-JUL-20
1,2-Dichloroethane			<0.010		ppb(V)		0.01	02-JUL-20
Surrogate: 4-Bromofluc	probenzene		98.6		%		70-130	02-JUL-20

## **Quality Control Report**

Workorder: L2466950

Report Date: 02-JUL-20

### Legend:

Limit	ALS Control Limit (Data Quality Objectives)
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

### Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.



## Batch Proof Report

Batch ID	Canister ID	Parameters	Value	Units	Date	Analyst
B200410.314	01400-0431	1,1,1-Trichloroethane	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,1,1,2-Tetrachloroethane	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,1,2,2-Tetrachloroethane	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,1,2-Trichloroethane	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,1-Dichloroethane	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,1-Dichloroethene	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,2,4-Trichlorobenzene	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,2,4-Trimethylbenzene	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,2-Dibromoethane	<0.01	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,2-Dichlorobenzene	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,2-Dichloroethane	<0.01	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,2-Dichloropropane	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,3,5-Trimethylbenzene	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,3-Butadiene	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,3-Dichlorobenzene	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,4-Dichlorobenzene	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	1,4-Dioxane	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	2-Chlorophenol	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	2-Hexanone	<1.0	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	4-Ethyltoluene	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Acetone	<0.50	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Allyl Chloride	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Benzene	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Benzyl Chloride	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Bromodichloromethane	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Bromobenzene	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Bromoform	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Bromomethane	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Carbon Disulfide	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Carbon Tetrachloride	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Chlorobenzene	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Chloroethane	<0.02	ppb(V)	23-Apr-20	662
B200410.314	01400-0431	Chloroform	<0.02	ppb(v)	23-Apr-20	CG2
B200410.314	01400-0431	Chloromethane	<0.20	ppb(v)	23-Apr-20	662
B200410.314	01400-0431	cis-1,2-Dichloroethene	<0.02	ppp(v)	23-Apr-20	662
B200410.314	01400-0431	Cis-1,3-Dichloropropene	<0.02	ppp(v)	23-Apr-20	662
B200410.514	01400-0451	Dibramachlaramathana	<0.20	ppb(v)	25-Apr-20	662
D200410.514	01400-0431	Diplomochioromethane	<0.20	ppb(v)	23-Apt-20	CG2
B200410.314	01400-0431	Ethyl Acotato	<0.20	ppb(v)	23-Apr-20	CC2
B200410.314 B200410.314	01400-0431	Ethyl Benzene	<0.20	ppb(v)	23-Apr-20	CG2
B200410.314 B200410 314	01400-0431	Freon 113	<0.02	nnh(V)	23-Apr-20	CG2
B200410.314 B200410.314	01400-0431	Freon 114	<0.20	nnh(V)	23-Apr 20	CG2
B200410 314	01400-0431	Hexachlorobutadiene	<0.20	nnh(V)	23-Apr-20	CG2
B200410 314	01400-0431	Isooctane	<0.02	nnh(V)	23-Apr-20	CG2
B200410 314	01400-0431	Isopropyl Alcohol	<1.0	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Isopropylbenzene	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	m&p-Xylene	< 0.04	(V)dqq	23-Apr-20	CG2
B200410.314	01400-0431	Methyl Ethyl Ketone	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Methylcyclohexane	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Methyl Isobutyl Ketone	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Methylene Chloride	< 0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	MTBE	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Naphthalene	<0.05	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	n-Decane	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	n-Heptane	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	n-Hexane	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	o-Xylene	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Propylene	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Styrene	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Tetrachloroethylene	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Tetrahydrofuran	<0.20	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Ioluene	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	trans-1,2-Dichloroethene	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	trans-1,3-Dichloropropene	<0.02	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	Irichloroethylene	< 0.02	ppb(V)	23-Apr-20	CG2
в200410.314	01400-0431	i richlorofluoromethane	< 0.20	ppb(V)	23-Apr-20	CG2
в200410.314	01400-0431	vinyi Acetate	< 0.50	ppb(V)	23-Apr-20	CG2
B200410.314	01400-0431	vinyl Bromide	<0.20	ppb(V)	23-Apr-20	CG2

ADDRESS 60 Northland Rd, Unit 1 Waterloo, ON, N2V 2B8 Canada PHONE +1 519 886-6910 FAX +1 519 886-9047 ALS CANADA LTD. Part of the ALS Group A Campbell Brothers Limited Company

## www.alsglobal.com



01400-0431	Vinyl Chloride	<0.02	ppb(V)	23-Apr-20	CG2
01400-0431	4-Bromofluorobenzene	96.8	%	23-Apr-20	CG2

ESED		- to	Ambre	b Copy	ELLOW: La	opy YE	Golder (	WHITE:			27	) - -	0) Got 15	AUMPHRET
													46	sont Rouri
Time	Date T	r opened by:		Ten	1:	nt Conditior lact:	Shipme Seal Int			by:	Shipped			Meet (CME
		X	eived for Lat	Rec		No.:	Waybill	-	i f	of Shipme	Method	4	े <b>।</b> इ	Detection 1
any	r: Signature Comp	Received by	Time	5/2020	Date 26700	log my	Compa Co		signature	shed by:	Relinqui		M	Sampler's Signature:
														- 12
														- 11
														- 10
														- 09
				_	<u>.</u>									- 08
					(					_	_	-		- 07
					J	C		]		Ô	3950-CC	L2466	]	- 06
														- 05
														- 04
														- 03
													~	- 02
	X			- X			620	011.55	519191	5	0,15		90-0602	02956 - 01
Remarks (over)	RUSH (Select			Rumber of C GAS + F FUEL P	Related SCN (over)	e QAQC Code (over)	Sample I Type (over)	Time Samplec (HH:MM)	Date Sampled (D / M / Y)	Sample Matrix (over)	Sample Depth (m)	Sa. #	Sample Location	Sample Control Number (SCN)
	FAT abo			Contain STESER ACVAG				2803	Quote N			d by e-ma	rts to be issue	Note: Final Report
	ve)			ers	5 Days)	] Regular (t		r Ar Other	ty □ 72 h	/ater Quali		ME	:: <b>⊠</b> 24 hr ⊠ ⊠ CC	Turnaround Time Criteria: ⊡ CSR
(		Analysee Dogu			076	17832	: ⊠de:⊇	ulS Facility ulS upload	ПО				le L	Utice Name:
a sty the	14188 Contact: Any	「elephone/Fax: らい・フミス	jolder.com	s 2: @(	E-mail Addres しらEハ	Golder SO	golder.co	dress 1: @	er E-mail Ac と	AC	5253	(604) 298-	-4200 Fax (	Telephone (604) 296
	suched Huy	Address: XOX L	de	ontact:	Golder C		ans	2 (1)	Title:	ເ Shor	5	nda Vam u	'ay olumbia Cana	200 – 2920 Virtual W Vancouver, British Ci
	Inoby	ALS BU					1000	195	OILI SS	Proje		•	Diger	Asso Asso
6 page 1 of 1	No. 0293	î	REQUES	<b>YSIS</b>	D/ANAL	ECOR	OY R	USTO	OFC		<u></u>			



#### **CERTIFICATE OF ANALYSIS** Page : VA20A8304 : 1 of 5 :1 Laboratory Golder Associates Ltd. : Vancouver - Environmental : Alison Verde Account Manager : Amber Springer Address : 200-2920 Virtual Way : 8081 Lougheed Highway Vancouver BC Canada V5M 0C4 Burnaby BC Canada V5A 1W9 · 604 297 2036 Telephone : +1 604 253 4188 **Date Samples Received** : 20145856 : 13-Jun-2020 13:03 : -----Date Analysis Commenced : 13-Jun-2020 : 02928 Issue Date : 18-Jun-2020 18:09 : -----: -----: Q80351 No. of samples received : 7

No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

### **Signatories**

Work Order

Amendment

Client

Contact

Address

Telephone

C-O-C number

Quote number

Project

Sampler

PO

Site

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Brieanna Allen	Department Manager - Organics	Organics, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Ophelia Chiu	Supervisor - Organics Instrumentation	Organics, Burnaby, British Columbia
Paul Cushing	Team Leader - Organics	Organics, Burnaby, British Columbia



### **General Comments**

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
%	percent
µg/L	micrograms per litre
mg/kg	milligrams per kilogram
mg/L	milligrams per litre
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in reports identified as "Preliminary Report" are considered authorized for use.

### Workorder Comments

Additional data is included for VA20A8304-4.

### Qualifiers

Qualifier	Description
DLCI	Detection Limit Raised: Chromatographic interference due to co-elution.
DLQ	Detection Limit raised due to co-eluting interference. GCMS qualifier ion ratio did not meet acceptance criteria.
SMI	Surrogate recovery could not be measured due to sample matrix interference.



## Analytical Results

Sub-Matrix: Soil			Cl	ient sample ID	02928-01	02928-02	02928-03	02928-04	02928-05
(Matrix: Soil/Solid)									
			Client sampli	ng date / time	12-Jun-2020 14:30	12-Jun-2020 14:30	12-Jun-2020 14:30	12-Jun-2020 14:30	12-Jun-2020 14:30
Analyte	CAS Number	Method	LOR	Unit	VA20A8304-001	VA20A8304-002	VA20A8304-003	VA20A8304-004	VA20A8304-005
					Result	Result	Result	Result	Result
Physical Tests									
moisture		E144	0.25	%	11.3	14.3	13.0	11.7	4.80
pH (1:2 soil:water)		E108	0.10	pH units	7.19	7.29	7.39		8.31
Metals									
cadmium	7440-43-9	E440	0.020	mg/kg	0.118	0.097	0.039		0.032
chromium	7440-47-3	E440	0.50	mg/kg	21.6	23.0	20.2		11.3
TCLP VOCs									
benzene, TCLP	71-43-2	E615A	0.0050	mg/L	<0.0050				
ethylbenzene, TCLP	100-41-4	E615A	0.0050	mg/L	0.0816				
toluene, TCLP	108-88-3	E615A	0.0050	mg/L	0.0428				
xylene, m+p-, TCLP	179601-23-1	E615A	0.0050	mg/L	0.363				
xylene, o-, TCLP	95-47-6	E615A	0.0050	mg/L	0.216				
xylenes, total, TCLP	1330-20-7	E615A	0.0075	mg/L	0.580				
TCLP VOCs Surrogates									
bromofluorobenzene, 4-, TCLP	460-00-4	E615A	2.5	%	108				
difluorobenzene, 1,4-, TCLP	540-36-3	E615A	2.5	%	93.7				
Volatile Organic Compounds									
benzene	71-43-2	E611A	0.0050	mg/kg	0.345	<0.0050	<0.0050	<0.0050	<0.0050
dibromoethane, 1,2-	106-93-4	E611H	0.050	mg/kg	<0.400 DLCI	<0.050	<0.050		<0.050
ethylbenzene	100-41-4	E611A	0.015	mg/kg	12.8	0.114	<0.015	<0.015	<0.015
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.050	mg/kg				<0.050	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.200	mg/kg	<0.200	<0.200	<0.200		<0.200
nonane, n-	111-84-2	E611H	0.050	mg/kg	80.5	2.30	<0.050	<0.050	<0.050
styrene	100-42-5	E611A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050
toluene	108-88-3	E611A	0.050	mg/kg	8.12	0.053	<0.050	<0.050	<0.050
xylene, m+p-	179601-23-1	E611A	0.050	mg/kg	51.9	0.554	<0.050	<0.050	<0.050
xylene, o-	95-47-6	E611A	0.050	mg/kg	20.2	0.330	<0.050	<0.050	<0.050
xylenes, total	1330-20-7	E611A	0.075	mg/kg	72.1	0.884	<0.075	<0.075	<0.075
Volatile Organic Compounds Surrogates									
bromofluorobenzene, 4-	460-00-4	E611A	0.050	%	110	101	101	89.7	109
bromofluorobenzene, 4-	460-00-4	E611H	0.050	%	110	101	101	89.7	109



## Analytical Results

Sub-Matrix: Soil			C	lient sample ID	02928-01	02928-02	02928-03	02928-04	02928-05
(Matrix: Soil/Solid)									
			Client sampl	ing date / time	12-Jun-2020 14:30	12-Jun-2020 14:30	12-Jun-2020 14:30	12-Jun-2020 14:30	12-Jun-2020 14:30
Analyte	CAS Number	Method	LOR	Unit	VA20A8304-001	VA20A8304-002	VA20A8304-003	VA20A8304-004	VA20A8304-005
					Result	Result	Result	Result	Result
Volatile Organic Compounds Surrogates									
difluorobenzene, 1,4-	540-36-3	E611A	0.050	%	106	99.8	93.8	94.1	105
difluorobenzene, 1,4-	540-36-3	E611H	0.050	%	106	99.8	93.8	94.1	105
Hydrocarbons				_					
ЕРН (С10-С19)		E601A	200	mg/kg	2300	2780	<200	<200	<200
EPH (C19-C32)		E601A	200	mg/kg	<200	<200	<200	<200	<200
VHs (C6-C10)		E581.VH+F1	10	mg/kg	1600	37	<10		<10
HEPHs		EC600A	200	mg/kg	<200	<200	<200	<200	<200
LEPHs		EC600A	200	mg/kg	2300	2780	<200	<200	<200
VPHs		EC580A	10	mg/kg	1510	36	<10		<10
Hydrocarbons Surrogates									
bromobenzotrifluoride, 2- (EPH surr)	392-83-6	E601A	5.0	%	118	126	88.1	82.5	85.9
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%	ND SMI	104	107		99.2
Polycyclic Aromatic Hydrocarbons					DIC	Dig	DICI		
acenaphthene	83-32-9	E641A-L	0.0050	mg/kg	<0.200	<0.200	<0.0060	<0.0050	<0.0050
acenaphthylene	208-96-8	E641A-L	0.0050	mg/kg	<0.0300 DECI	<0.0400 DECI	<0.0050	<0.0050	<0.0050
acridine	260-94-6	E641A-L	0.010	mg/kg	<0.050 DLCI	<0.060 DLCI	<0.010	<0.010	<0.010
anthracene	120-12-7	E641A-L	0.0040	mg/kg	<0.0100 DLQ	<0.0100 DLQ	<0.0040	<0.0040	<0.0040
benz(a)anthracene	56-55-3	E641A-L	0.010	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010
benzo(a)pyrene	50-32-8	E641A-L	0.010	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010
benzo(b+j)fluoranthene		E641A-L	0.010	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010
benzo(b+j+k)fluoranthene		E641A-L	0.015	mg/kg	<0.015	<0.015	<0.015	<0.015	<0.015
benzo(g,h,i)perylene	191-24-2	E641A-L	0.010	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010
benzo(k)fluoranthene	207-08-9	E641A-L	0.010	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010
chrysene	218-01-9	E641A-L	0.010	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010
dibenz(a,h)anthracene	53-70-3	E641A-L	0.0050	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
fluoranthene	206-44-0	E641A-L	0.010	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010
fluorene	86-73-7	E641A-L	0.010	mg/kg	<0.300 DLQ	0.240	<0.010	<0.010	<0.010
indeno(1,2,3-c,d)pyrene	193-39-5	E641A-L	0.010	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010
methylnaphthalene, 1-	90-12-0	E641A-L	0.010	mg/kg	2.24	2.50	0.050	0.014	<0.010
methylnaphthalene, 2-	91-57-6	E641A-L	0.010	mg/kg	3.22	3.57	0.064	<0.010	<0.010
naphthalene	91-20-3	E641A-L	0.010	mg/kg	<2.00 DLQ	<2.00 ^{DLQ}	<0.020 DLQ	<0.010	<0.010



## Analytical Results

Sub-Matrix: Soil			Cl	ient sample ID	02928-01	02928-02	02928-03	02928-04	02928-05
(Matrix: Soil/Solid)									
			Client sampli	ng date / time	12-Jun-2020 14:30	12-Jun-2020 14:30	12-Jun-2020 14:30	12-Jun-2020 14:30	12-Jun-2020 14:30
Analyte	CAS Number	Method	LOR	Unit	VA20A8304-001	VA20A8304-002	VA20A8304-003	VA20A8304-004	VA20A8304-005
					Result	Result	Result	Result	Result
Polycyclic Aromatic Hydrocarbons									
phenanthrene	85-01-8	E641A-L	0.010	mg/kg	<0.090 DLQ	<0.100 DLQ	<0.010	<0.010	<0.010
pyrene	129-00-0	E641A-L	0.010	mg/kg	0.014	0.018	<0.010	<0.010	<0.010
quinoline	6027-02-7	E641A-L	0.010	mg/kg	<0.300 DLCI	<0.400 DLCI	<0.010	<0.010	<0.010
B(a)P total potency equivalents [B(a)P TPE]		E641A-L	0.020	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010
IACR (CCME)		E641A-L	0.15	mg/kg	<0.11	<0.11	<0.11	<0.11	<0.11
Polycyclic Aromatic Hydrocarbons Surrogates									
acridine-d9	34749-75-2	E641A-L	0.010	%	94.4	88.0	97.2	80.6	79.7
chrysene-d12	1719-03-5	E641A-L	0.010	%	104	97.9	110	94.8	92.2
naphthalene-d8	1146-65-2	E641A-L	0.010	%	96.0	96.1	100	91.4	86.3
phenanthrene-d10	1517-22-2	E641A-L	0.010	%	106	97.6	108	95.0	89.9

Please refer to the General Comments section for an explanation of any qualifiers detected.



## **QUALITY CONTROL REPORT**

Work Order	·VA20A8304	Page	1 of 14
Amendment	[:] 1		
Client	: Golder Associates Ltd.	Laboratory	: Vancouver - Environmental
Contact	: Alison Verde	Account Manager	: Amber Springer
Address	:200-2920 Virtual Way	Address	8081 Lougheed Highway
	Vancouver BC Canada V5M 0C4		Burnaby, British Columbia Canada V5A 1W9
Telephone	: 604 297 2036	Telephone	:+1 604 253 4188
Project	: 20145856	Date Samples Received	: 13-Jun-2020 13:03
PO	:	Date Analysis Commenced	: 13-Jun-2020
C-O-C number	: 02928	Issue Date	: 18-Jun-2020 18:09
Sampler	:		
Site	:		
Quote number	: Q80351		
No. of samples received	: 7		
No. of samples analysed	: 5		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Brieanna Allen	Department Manager - Organics	Organics, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Ophelia Chiu	Supervisor - Organics Instrumentation	Organics, Burnaby, British Columbia
Paul Cushing	Team Leader - Organics	Organics, Burnaby, British Columbia



### **General Comments**

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

- Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.
- CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.
- DQO = Data Quality Objective.
- LOR = Limit of Reporting (detection limit).
- RPD = Relative Percentage Difference
- # = Indicates a QC result that did not meet the ALS DQO.



## Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Soil/Solid	ıb-Matrix: Soil/Solid				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC Lot: 49441)											
VA20A8304-001	02928-01	pH (1:2 soil:water)		E108	0.10	pH units	7.19	7.05	1.97%	5%	
Physical Tests (QC	Lot: 49442)										
VA20A8190-001	Anonymous	moisture		E144	0.25	%	6.56	6.30	4.19%	20%	
Physical Tests (QC Lot: 50627)											
VA20A8168-001	Anonymous	moisture		E144	0.25	%	8.55	8.66	1.29%	20%	
Metals (QC Lot: 49440)											
VA20A8304-001	02928-01	cadmium	7440-43-9	E440	0.020	mg/kg	0.118	0.088	0.030	Diff <2x LOR	
		chromium	7440-47-3	E440	0.50	mg/kg	21.6	19.5	10.3%	30%	
Volatile Organic Co	mpounds (QC Lot: 4948	36)									
KS2000662-001	Anonymous	benzene	71-43-2	E611A	0.0050	mg/kg	<0.0050	<0.0050	0	Diff <2x LOR	
		ethylbenzene	100-41-4	E611A	0.015	mg/kg	<0.015	<0.015	0	Diff <2x LOR	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.200	mg/kg	<0.200	<0.200	0	Diff <2x LOR	
		styrene	100-42-5	E611A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		toluene	108-88-3	E611A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		xylene, m+p-	179601-23-1	E611A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		xylene, o-	95-47-6	E611A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
Volatile Organic Co	mpounds (QC Lot: 4948	38)							-		
VA20A8304-001	02928-01	dibromoethane, 1,2-	106-93-4	E611H	0.400	mg/kg	<0.400	<0.400	0	Diff <2x LOR	
		nonane, n-	111-84-2	E611H	0.275	mg/kg	80.5	48.6	49.5%	50%	
Volatile Organic Co	mpounds (QC Lot: 5070	)5)									
VA20A8304-004	02928-04	benzene	71-43-2	E611A	0.0050	mg/kg	<0.0050	<0.0050	0	Diff <2x LOR	
		ethylbenzene	100-41-4	E611A	0.015	mg/kg	<0.015	<0.015	0	Diff <2x LOR	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		styrene	100-42-5	E611A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		toluene	108-88-3	E611A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		xylene, m+p-	179601-23-1	E611A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		xylene, o-	95-47-6	E611A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
Volatile Organic Co	mpounds (QC Lot: 5070	)6)									
VA20A8304-004	02928-04	dibromoethane, 1,2-	106-93-4	E611H	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		nonane, n-	111-84-2	E611H	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
Hydrocarbons (QC	Lot: 49439)										

Page	: 4 of 14
Work Order	: VA20A8304 Amendment 1
Client	: Golder Associates Ltd.
Project	20145856



Sub-Matrix: Soil/Solid			Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Hydrocarbons (QC	Lot: 49439) - continued										
VA20A8190-001	Anonymous	EPH (C10-C19)		E601A	200	mg/kg	<200	<200	0	Diff <2x LOR	
		EPH (C19-C32)		E601A	200	mg/kg	<200	<200	0	Diff <2x LOR	
Hydrocarbons (QC	Lot: 49485)										
KS2000662-001	Anonymous	VHs (C6-C10)		E581.VH+F1	10	mg/kg	<10	<10	0	Diff <2x LOR	
Hydrocarbons (QC Lot: 50623)											
VA20A8168-001	Anonymous	EPH (C10-C19)		E601A	200	mg/kg	790	930	140	Diff <2x LOR	
		EPH (C19-C32)		E601A	200	mg/kg	300	340	40	Diff <2x LOR	
Polycyclic Aromatic	Hydrocarbons (QC Lot	: 49438)									
VA20A8190-001	Anonymous	acenaphthene	83-32-9	E641A-L	0.0050	mg/kg	<0.0050	<0.0050	0	Diff <2x LOR	
		acenaphthylene	208-96-8	E641A-L	0.0050	mg/kg	<0.0050	<0.0050	0	Diff <2x LOR	
		acridine	260-94-6	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		anthracene	120-12-7	E641A-L	0.0040	mg/kg	<0.0040	<0.0040	0	Diff <2x LOR	
		benz(a)anthracene	56-55-3	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		benzo(a)pyrene	50-32-8	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		benzo(b+j)fluoranthene		E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		benzo(g,h,i)perylene	191-24-2	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		benzo(k)fluoranthene	207-08-9	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		chrysene	218-01-9	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		dibenz(a,h)anthracene	53-70-3	E641A-L	0.0050	mg/kg	<0.0050	<0.0050	0	Diff <2x LOR	
		fluoranthene	206-44-0	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		fluorene	86-73-7	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		indeno(1,2,3-c,d)pyrene	193-39-5	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		methylnaphthalene, 1-	90-12-0	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		methylnaphthalene, 2-	91-57-6	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		naphthalene	91-20-3	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		phenanthrene	85-01-8	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		pyrene	129-00-0	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		quinoline	6027-02-7	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
Polycyclic Aromatic	Hvdrocarbons (QC Lot	: 50622)						I		I	
VA20A8168-001	Anonymous	acenaphthene	83-32-9	E641A-L	0.0090	mg/kg	<0.0090	<0.0075	0.0015	Diff <2x LOR	
		acenaphthylene	208-96-8	E641A-L	0.0060	mg/kg	<0.0060	<0.0080	0.0020	Diff <2x LOR	
		acridine	260-94-6	E641A-L	0.030	mg/kg	<0.030	<0.040	0.010	Diff <2x LOR	
		anthracene	120-12-7	E641A-L	0.0200	mg/kg	<0.0200	<0.0200	0	Diff <2x LOR	
		benz(a)anthracene	56-55-3	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		benzo(a)pyrene	50-32-8	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
1				1	1	-					(

# Page: 5 of 14Work Order: VA20A8304 Amendment 1Client: Golder Associates Ltd.Project: 20145856



Sub-Matrix: Soil/Solid	b-Matrix: Soil/Solid				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Polycyclic Aromatic	Hydrocarbons (QC L	_ot: 50622) - continued									
VA20A8168-001	Anonymous	benzo(b+j)fluoranthene		E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		benzo(g,h,i)perylene	191-24-2	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		benzo(k)fluoranthene	207-08-9	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		chrysene	218-01-9	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		dibenz(a,h)anthracene	53-70-3	E641A-L	0.0050	mg/kg	<0.0050	<0.0050	0	Diff <2x LOR	
		fluoranthene	206-44-0	E641A-L	0.030	mg/kg	<0.030	<0.030	0	Diff <2x LOR	
		fluorene	86-73-7	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		indeno(1,2,3-c,d)pyrene	193-39-5	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		methylnaphthalene, 1-	90-12-0	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		methylnaphthalene, 2-	91-57-6	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		naphthalene	91-20-3	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		phenanthrene	85-01-8	E641A-L	0.010	mg/kg	<0.010	<0.020	0.010	Diff <2x LOR	
		pyrene	129-00-0	E641A-L	0.010	mg/kg	0.202	0.192	5.21%	50%	
		quinoline	6027-02-7	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	



### Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Soil/Solid						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 49442)						
moisture		E144	0.25	%	<0.25	
Physical Tests (QCLot: 50627)						
moisture		E144	0.25	%	<0.25	
Metals (QCLot: 49440)						
cadmium	7440-43-9	E440	0.02	mg/kg	<0.020	
chromium	7440-47-3	E440	0.5	mg/kg	<0.50	
TCLP VOCs (QCLot: 49450)						
benzene, TCLP	71-43-2	E615A	5	µg/L	<5.0	
ethylbenzene, TCLP	100-41-4	E615A	5	µg/L	<5.0	
toluene, TCLP	108-88-3	E615A	5	μg/L	<5.0	
xylene, m+p-, TCLP	179601-23-1	E615A	5	µg/L	<5.0	
xylene, o-, TCLP	95-47-6	E615A	5	μg/L	<5.0	
Volatile Organic Compounds (QCLot	: 49486)					
benzene	71-43-2	E611A	0.005	mg/kg	<0.0050	
ethylbenzene	100-41-4	E611A	0.015	mg/kg	<0.015	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.05	mg/kg	<0.050	
styrene	100-42-5	E611A	0.05	mg/kg	<0.050	
toluene	108-88-3	E611A	0.05	mg/kg	<0.050	
xylene, m+p-	179601-23-1	E611A	0.05	mg/kg	<0.050	
xylene, o-	95-47-6	E611A	0.05	mg/kg	<0.050	
Volatile Organic Compounds (QCLot	: 49488)					
dibromoethane, 1,2-	106-93-4	E611H	0.05	mg/kg	<0.050	
nonane, n-	111-84-2	E611H	0.05	mg/kg	<0.050	
Volatile Organic Compounds (QCLot	: 50705)					
benzene	71-43-2	E611A	0.005	mg/kg	<0.0050	
ethylbenzene	100-41-4	E611A	0.015	mg/kg	<0.015	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.05	mg/kg	<0.050	
styrene	100-42-5	E611A	0.05	mg/kg	<0.050	
toluene	108-88-3	E611A	0.05	mg/kg	<0.050	
xylene, m+p-	179601-23-1	E611A	0.05	mg/kg	<0.050	
xylene, o-	95-47-6	E611A	0.05	mg/kg	<0.050	
Volatile Organic Compounds (QCLot	: 50706)					1
dibromoethane, 1,2-	106-93-4	E611H	0.05	mg/kg	<0.050	
					1	

Page	: 7 of 14
Work Order	: VA20A8304 Amendment 1
Client	: Golder Associates Ltd.
Project	: 20145856



### Sub-Matrix: Soil/Solid

		1					1		
Analyte	CAS Number	Method		LOR	Unit	Result	Qualifier		
Volatile Organic Compounds (QCLot: 50706) - continued									
nonane, n-	111-84-2	E611H		0.05	mg/kg	<0.050			
Hydrocarbons (QCLot: 49439)									
EPH (C10-C19)		E601A		200	mg/kg	<200			
EPH (C19-C32)		E601A		200	mg/kg	<200			
Hydrocarbons (QCLot: 49485)	Hydrocarbons (QCLot: 49485)								
VHs (C6-C10)		E581.VH+F1		10	mg/kg	<10			
Hydrocarbons (QCLot: 50623)									
EPH (C10-C19)		E601A		200	mg/kg	<200			
EPH (C19-C32)		E601A		200	mg/kg	<200			
						<200			
Polycyclic Aromatic Hydrocarbons	(QCLot: 49438)								
acenaphthene	83-32-9	E641A-L		0.005	mg/kg	< 0.0050			
	208.06.8	F6444 I		0.005	malka	<0.0050			
acenaphthylene	200-90-0	E04TA-L		0.005	iiig/kg	<0.0050			
acridine	260-94-6	E641A-L		0.01	mg/kg	<0.010			
anthracene	120-12-7	E641A-L		0.004	ma/ka	<0.0040			
benz(a)anthracene	56-55-3	E641A-L		0.01	ma/ka	<0.010			
benzo(a)pyrene	50-32-8	E641A-L		0.01	mg/kg	<0.010			
henzo(h+i)fluoranthene		E641A-I		0.01	ma/ka	<0.010			
henzo(a hi)nen/ene	191-24-2	E641A-I		0.01	mg/kg	<0.010			
	207_08_9			0.01	mg/kg	<0.010			
	218 01 0			0.01	mg/kg	<0.010			
chrysene	210-01-3			0.01	iiig/kg	<0.010			
dibenz(a,h)anthracene	53-70-3	E641A-L		0.005	mg/kg	<0.0050			
fluoranthene	206-44-0	E641A-L		0.01	mg/kg	<0.010			
						<0.010			
fluorene	86-73-7	E641A-L		0.01	mg/kg	<0.010			
indeno(1,2,3-c,d)pyrene	193-39-5	E641A-L		0.01	mg/kg	<0.010			
methylnaphthalene, 1-	90-12-0	E641A-L		0.01	mg/kg	<0.010			
methylnaphthalene, 2-	91-57-6	E641A-L		0.01	mg/kg	<0.010			
naphthalene	91-20-3	E641A-L		0.01	mg/kg	<0.010			
						<0.010			
phenanthrene	85-01-8	E641A-L		0.01	mg/kg	<0.010			
pyrene	129-00-0	E641A-L		0.01	mg/kg	<0.010			
quinoline	6027-02-7	E641A-L		0.01	mg/kg	<0.010			
Polycyclic Aromatic Hydrocarbons	(QCLot: 50622)								



### Sub-Matrix: Soil/Solid

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Polycyclic Aromatic Hydrocarbons (C	CLot: 50622) - continu	ed				
acenaphthene	83-32-9	E641A-L	0.005	mg/kg	<0.0050	
					<0.0050	
acenaphthylene	208-96-8	E641A-L	0.005	mg/kg	<0.0050	
acridine	260-94-6	E641A-L	0.01	mg/kg	<0.010	
anthracene	120-12-7	E641A-L	0.004	mg/kg	<0.0040	
benz(a)anthracene	56-55-3	E641A-L	0.01	mg/kg	<0.010	
benzo(a)pyrene	50-32-8	E641A-L	0.01	mg/kg	<0.010	
benzo(b+j)fluoranthene		E641A-L	0.01	mg/kg	<0.010	
benzo(g,h,i)perylene	191-24-2	E641A-L	0.01	mg/kg	<0.010	
benzo(k)fluoranthene	207-08-9	E641A-L	0.01	mg/kg	<0.010	
chrysene	218-01-9	E641A-L	0.01	mg/kg	<0.010	
					<0.010	
dibenz(a,h)anthracene	53-70-3	E641A-L	0.005	mg/kg	<0.0050	
fluoranthene	206-44-0	E641A-L	0.01	mg/kg	<0.010	
fluorene	86-73-7	E641A-L	0.01	mg/kg	<0.010	
indeno(1,2,3-c,d)pyrene	193-39-5	E641A-L	0.01	mg/kg	<0.010	
methylnaphthalene, 1-	90-12-0	E641A-L	0.01	mg/kg	<0.010	
methylnaphthalene, 2-	91-57-6	E641A-L	0.01	mg/kg	<0.010	
naphthalene	91-20-3	E641A-L	0.01	mg/kg	<0.010	
					<0.010	
phenanthrene	85-01-8	E641A-L	0.01	mg/kg	<0.010	
pyrene	129-00-0	E641A-L	0.01	mg/kg	<0.010	
quinoline	6027-02-7	E641A-L	0.01	mg/kg	<0.010	



## Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Soil/Solid			Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	/ Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 49441)									
pH (1:2 soil:water)		E108		pH units	6 pH units	100	95.0	105	
Physical Tests (QCLot: 49442)									
moisture		E144	0.25	%	50 %	100	90.0	110	
Physical Tests (QCLot: 50627)									
moisture		E144	0.25	%	50 %	99.4	90.0	110	
Metals (QCLot: 49440)									
cadmium	7440-43-9	E440	0.02	mg/kg	10 mg/kg	93.9	80.0	120	
chromium	7440-47-3	E440	0.5	mg/kg	25 mg/kg	96.5	80.0	120	
Volatile Organic Compounds (QCLot:	49486)								
benzene	71-43-2	E611A	0.005	mg/kg	2.5 mg/kg	89.4	70.0	130	
ethylbenzene	100-41-4	E611A	0.015	mg/kg	2.5 mg/kg	93.0	70.0	130	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.05	mg/kg	5 mg/kg	97.5	70.0	130	
styrene	100-42-5	E611A	0.05	mg/kg	2.5 mg/kg	82.5	70.0	130	
toluene	108-88-3	E611A	0.05	mg/kg	2.5 mg/kg	100	70.0	130	
xylene, m+p-	179601-23-1	E611A	0.05	mg/kg	5 mg/kg	93.3	70.0	130	
xylene, o-	95-47-6	E611A	0.05	mg/kg	2.5 mg/kg	95.7	70.0	130	
Volatile Organic Compounds (QCLot:	49488)								
dibromoethane, 1,2-	106-93-4	E611H	0.05	mg/kg	2.5 mg/kg	104	70.0	130	
nonane, n-	111-84-2	E611H	0.05	mg/kg	2.5 mg/kg	105	70.0	130	
Volatile Organic Compounds (QCLot:	50705)								
benzene	71-43-2	E611A	0.005	mg/kg	2.5 mg/kg	94.2	70.0	130	
ethylbenzene	100-41-4	E611A	0.015	mg/kg	2.5 mg/kg	99.6	70.0	130	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.05	mg/kg	5 mg/kg	99.2	70.0	130	
styrene	100-42-5	E611A	0.05	mg/kg	2.5 mg/kg	82.4	70.0	130	
toluene	108-88-3	E611A	0.05	mg/kg	2.5 mg/kg	99.5	70.0	130	
xylene, m+p-	179601-23-1	E611A	0.05	mg/kg	5 mg/kg	104	70.0	130	
xylene, o-	95-47-6	E611A	0.05	mg/kg	2.5 mg/kg	99.4	70.0	130	
Volatile Organic Compounds (QCLot:	50706)								
dibromoethane, 1,2-	106-93-4	E611H	0.05	mg/kg	2.5 mg/kg	102	70.0	130	
nonane, n-	111-84-2	E611H	0.05	mg/kg	2.5 mg/kg	99.8	70.0	130	
Hydrocarbons (OCI of: 49439)									

Page	: 10 of 14
Work Order	: VA20A8304 Amendment 1
Client	: Golder Associates Ltd.
Project	· 20145856



Matrix: Soil/Solid					Laboratory Control Sample (LCS) Report							
					Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number Me	ethod	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Hydrocarbons (QCLot: 49439) - cont	inued											
EPH (C10-C19)	E6	601A	200	mg/kg	1134.37 mg/kg	101	70.0	130				
EPH (C19-C32)	E6	601A	200	mg/kg	575.98 mg/kg	104	70.0	130				
Hydrocarbons (QCLot: 49485)												
VHs (C6-C10)	E5	581.VH+F1	10	mg/kg	85.8 mg/kg	102	70.0	130				
Hvdrocarbons (QCLot: 50623)												
EPH (C10-C19)	E6	601A	200	mg/kg	1134.37 mg/kg	97.6	70.0	130				
EPH (C19-C32)	E6	501A	200	mg/kg	575.98 mg/kg	94.4	70.0	130				
					10183 mg/kg	89.7	70.0	130				
Polvcvclic Aromatic Hvdrocarbons (C	QCLot: 49438)											
acenaphthene	83-32-9 E6	641A-L	0.005	mg/kg	0.5 mg/kg	107	60.0	130				
					0.638 mg/kg	90.8	60.0	130				
acenaphthylene	208-96-8 E6	641A-L	0.005	mg/kg	0.5 mg/kg	105	60.0	130				
					0.2 mg/kg	114	60.0	130				
acridine	260-94-6 E6	641A-L	0.01	mg/kg	0.5 mg/kg	102	60.0	130				
anthracene	120-12-7 E6	641A-L	0.004	mg/kg	0.5 mg/kg	109	60.0	130				
benz(a)anthracene	56-55-3 E6	641A-L	0.01	mg/kg	0.5 mg/kg	106	60.0	130				
benzo(a)pyrene	50-32-8 E6	641A-L	0.01	mg/kg	0.5 mg/kg	93.1	60.0	130				
benzo(b+j)fluoranthene	E6	641A-L	0.01	mg/kg	0.5 mg/kg	114	60.0	130				
benzo(g,h,i)perylene	191-24-2 E6	641A-L	0.01	mg/kg	0.5 mg/kg	130	60.0	130				
benzo(k)fluoranthene	207-08-9 E6	641A-L	0.01	mg/kg	0.5 mg/kg	99.7	60.0	130				
chrysene	218-01-9 E6	641A-L	0.01	mg/kg	0.5 mg/kg	106	60.0	130				
					0.666 mg/kg	104	60.0	130				
dibenz(a,h)anthracene	53-70-3 E6	641A-L	0.005	mg/kg	0.5 mg/kg	95.9	60.0	130				
fluoranthene	206-44-0 E6	641A-L	0.01	mg/kg	0.5 mg/kg	107	60.0	130				
					1.757 mg/kg	89.1	60.0	130				
fluorene	86-73-7 E6	641A-L	0.01	mg/kg	0.5 mg/kg	107	60.0	130				
indeno(1,2,3-c,d)pyrene	193-39-5 E6	641A-L	0.01	mg/kg	0.5 mg/kg	116	60.0	130				
methylnaphthalene, 1-	90-12-0 E6	641A-L	0.01	mg/kg	0.5 mg/kg	104	60.0	130				
methylnaphthalene, 2-	91-57-6 E6	641A-L	0.01	mg/kg	0.5 mg/kg	103	60.0	130				
naphthalene	91-20-3 E6	641A-L	0.01	mg/kg	0.5 mg/kg	99.1	50.0	130				
					1.03 mg/kg	91.0	50.0	130				
phenanthrene	85-01-8 E6	641A-L	0.01	mg/kg	0.5 mg/kg	107	60.0	130				
pyrene	129-00-0 E6	641A-L	0.01	mg/kg	0.5 mg/kg	110	60.0	130				
quinoline	6027-02-7 E6	641A-L	0.01	mg/kg	0.5 mg/kg	100	60.0	130				
Polycyclic Aromatic Hydrocarbone (	)CL ot: 50622)			-								
acenaphthene	83-32-9 E6	541A-L	0.005	mg/kq	0.5 ma/ka	90.5	60.0	130				
				5.5	0.638 mg/kg	81.7	60.0	130				

Page	: 11 of 14
Work Order	: VA20A8304 Amendment 1
Client	: Golder Associates Ltd.
Project	: 20145856



Sub-Matrix: Soil/Solid					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Polycyclic Aromatic Hydrocarbons (C	CLot: 50622) - continued	ł									
acenaphthylene	208-96-8	E641A-L	0.005	mg/kg	0.5 mg/kg	88.8	60.0	130			
acridine	260-94-6	E641A-L	0.01	mg/kg	0.5 mg/kg	80.5	60.0	130			
anthracene	120-12-7	E641A-L	0.004	mg/kg	0.5 mg/kg	86.1	60.0	130			
benz(a)anthracene	56-55-3	E641A-L	0.01	mg/kg	0.5 mg/kg	85.8	60.0	130			
benzo(a)pyrene	50-32-8	E641A-L	0.01	mg/kg	0.5 mg/kg	87.8	60.0	130			
benzo(b+j)fluoranthene		E641A-L	0.01	mg/kg	0.5 mg/kg	85.2	60.0	130			
benzo(g,h,i)perylene	191-24-2	E641A-L	0.01	mg/kg	0.5 mg/kg	84.8	60.0	130			
benzo(k)fluoranthene	207-08-9	E641A-L	0.01	mg/kg	0.5 mg/kg	90.0	60.0	130			
chrysene	218-01-9	E641A-L	0.01	mg/kg	0.5 mg/kg	90.1	60.0	130			
					0.666 mg/kg	86.5	60.0	130			
dibenz(a,h)anthracene	53-70-3	E641A-L	0.005	mg/kg	0.5 mg/kg	87.7	60.0	130			
fluoranthene	206-44-0	E641A-L	0.01	mg/kg	0.5 mg/kg	90.3	60.0	130			
fluorene	86-73-7	E641A-L	0.01	mg/kg	0.5 mg/kg	88.9	60.0	130			
indeno(1,2,3-c,d)pyrene	193-39-5	E641A-L	0.01	mg/kg	0.5 mg/kg	81.7	60.0	130			
methylnaphthalene, 1-	90-12-0	E641A-L	0.01	mg/kg	0.5 mg/kg	90.8	60.0	130			
methylnaphthalene, 2-	91-57-6	E641A-L	0.01	mg/kg	0.5 mg/kg	89.9	60.0	130			
naphthalene	91-20-3	E641A-L	0.01	mg/kg	0.5 mg/kg	90.7	50.0	130			
					1.03 mg/kg	84.4	50.0	130			
phenanthrene	85-01-8	E641A-L	0.01	mg/kg	0.5 mg/kg	88.4	60.0	130			
pyrene	129-00-0	E641A-L	0.01	mg/kg	0.5 mg/kg	91.9	60.0	130			
quinoline	6027-02-7	E641A-L	0.01	mg/kg	0.5 mg/kg	83.8	60.0	130			



### Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias.

Sub-Matrix: Soil/Solid	b-Matrix: Soil/Solid				Matrix Spike (MS) Report						
					Spike	Recovery (%)	Recovery L	.imits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	MS	Low	High	Qualifier		
TCLP VOCs (QCLo	ot: 49450)										
VA20A8304-001	02928-01	benzene, TCLP	71-43-2	E615A	250 µg/L	92.0	50.0	140			
		ethylbenzene, TCLP	100-41-4	E615A	250 µg/L	114	50.0	140			
		toluene, TCLP	108-88-3	E615A	250 µg/L	101	50.0	140			
		xylene, m+p-, TCLP	179601-23-1	E615A	500 µg/L	115	50.0	140			
		xylene, o-, TCLP	95-47-6	E615A	250 µg/L	112	50.0	140			
Volatile Organic Co	mpounds (QCLot: 4	9486)									
KS2000662-001	Anonymous	benzene	71-43-2	E611A	3.125 mg/kg	94.5	60.0	140			
		ethylbenzene	100-41-4	E611A	3.125 mg/kg	101	60.0	140			
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	3.125 mg/kg	98.9	60.0	140			
		styrene	100-42-5	E611A	3.125 mg/kg	85.5	60.0	140			
		toluene	108-88-3	E611A	3.125 mg/kg	101	60.0	140			
		xylene, m+p-	179601-23-1	E611A	6.25 mg/kg	100	60.0	140			
		xylene, o-	95-47-6	E611A	3.125 mg/kg	99.1	60.0	140			
Volatile Organic Co	mpounds (QCLot: 4	9488)									
VA20A8304-001	02928-01	dibromoethane, 1,2-	106-93-4	E611H	3.125 mg/kg	89.6	60.0	140			
		nonane, n-	111-84-2	E611H	3.125 mg/kg	ND	60.0	140			
Volatile Organic Co	mpounds (QCLot: 5	0705)									
VA20A8304-004	02928-04	benzene	71-43-2	E611A	3.125 mg/kg	95.5	60.0	140			
		ethylbenzene	100-41-4	E611A	3.125 mg/kg	102	60.0	140			
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	6.25 mg/kg	101	60.0	140			
		styrene	100-42-5	E611A	3.125 mg/kg	87.7	60.0	140			
		toluene	108-88-3	E611A	3.125 mg/kg	81.0	60.0	140			
		xylene, m+p-	179601-23-1	E611A	6.25 mg/kg	104	60.0	140			
		xylene, o-	95-47-6	E611A	3.125 mg/kg	101	60.0	140			
Volatile Organic Co	mpounds (QCLot: 5	0706)									
VA20A8304-004	02928-04	dibromoethane, 1,2-	106-93-4	E611H	3.125 mg/kg	103	60.0	140			
		nonane, n-	111-84-2	E611H	3.125 mg/kg	113	60.0	140			
Hydrocarbons (QC	Lot: 49485)										
KS2000662-001	Anonymous	VHs (C6-C10)		E581.VH+F1	171.9 mg/kg	100	60.0	140			



## Reference Material (RM) Report

A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

Sub-Matrix: Soil/Solid				Refere	nce Material (RM) Re	port			
					RM Target	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier
Metals (QCLot:	49440)								
QC-49440-003	SCP SS-2	cadmium	7440-43-9	E440	0.91 mg/kg	95.4	70.0	130	
QC-49440-003	SCP SS-2	chromium	7440-47-3	E440	101 mg/kg	97.6	70.0	130	
Hydrocarbons (	QCLot: 49439)								
QC-49439-003	Petroleum Hydrocarbon IRM	EPH (C10-C19)		E601A	7113 mg/kg	94.9	70.0	130	
QC-49439-003	Petroleum Hydrocarbon IRM	EPH (C19-C32)		E601A	10183 mg/kg	97.0	70.0	130	
Hydrocarbons (	QCLot: 50623)								
QC-50623-003	Petroleum Hydrocarbon IRM	EPH (C10-C19)		E601A	7113 mg/kg	85.2	70.0	130	
Polycyclic Arom	atic Hydrocarbons (QC	CLot: 49438)							
QC-49438-003	RM	anthracene	120-12-7	E641A-L	0.32 mg/kg	117	60.0	130	
QC-49438-003	RM	benz(a)anthracene	56-55-3	E641A-L	0.545 mg/kg	98.9	60.0	130	
QC-49438-003	RM	benzo(a)pyrene	50-32-8	E641A-L	0.135 mg/kg	84.7	60.0	130	
QC-49438-003	RM	benzo(b+j)fluoranthene		E641A-L	0.793 mg/kg	89.6	60.0	130	
QC-49438-003	RM	benzo(g,h,i)perylene	191-24-2	E641A-L	0.377 mg/kg	113	60.0	130	
QC-49438-003	RM	benzo(k)fluoranthene	207-08-9	E641A-L	0.34 mg/kg	78.2	60.0	130	
QC-49438-003	RM	dibenz(a,h)anthracene	53-70-3	E641A-L	1.196 mg/kg	90.1	60.0	130	
QC-49438-003	RM	fluorene	86-73-7	E641A-L	0.989 mg/kg	92.8	60.0	130	
QC-49438-003	RM	indeno(1,2,3-c,d)pyrene	193-39-5	E641A-L	0.445 mg/kg	101	60.0	130	
QC-49438-003	RM	methylnaphthalene, 1-	90-12-0	E641A-L	1.256 mg/kg	90.2	60.0	130	
QC-49438-003	RM	methylnaphthalene, 2-	91-57-6	E641A-L	1.088 mg/kg	88.2	60.0	130	
QC-49438-003	RM	phenanthrene	85-01-8	E641A-L	1.13 mg/kg	90.6	60.0	130	
QC-49438-003	RM	pyrene	129-00-0	E641A-L	1.325 mg/kg	90.5	60.0	130	
Polycyclic Arom	atic Hydrocarbons (QC	CLot: 50622)							
QC-50622-003	RM	acenaphthylene	208-96-8	E641A-L	0.2 mg/kg	95.1	60.0	130	
QC-50622-003	RM	anthracene	120-12-7	E641A-L	0.32 mg/kg	89.1	60.0	130	
QC-50622-003	RM	benz(a)anthracene	56-55-3	E641A-L	0.545 mg/kg	79.0	60.0	130	
QC-50622-003	RM	benzo(a)pyrene	50-32-8	E641A-L	0.135 mg/kg	81.6	60.0	130	
QC-50622-003	RM	benzo(b+j)fluoranthene		E641A-L	0.793 mg/kg	78.0	60.0	130	

Page	: 14 of 14
Work Order	: VA20A8304 Amendment 1
Client	: Golder Associates Ltd.
Project	20145856



Sub-Matrix: Soil/Sol	id					Refere	nce Material (RM) Re	port	
					RM Target	Recovery (%)	Recovery I	imits (%)	
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier
Polycyclic Aroma	atic Hydrocarbons (QC	Lot: 50622) - continued							
QC-50622-003	RM	benzo(g,h,i)perylene	191-24-2	E641A-L	0.377 mg/kg	84.1	60.0	130	
QC-50622-003	RM	benzo(k)fluoranthene	207-08-9	E641A-L	0.34 mg/kg	72.6	60.0	130	
QC-50622-003	RM	dibenz(a,h)anthracene	53-70-3	E641A-L	1.196 mg/kg	82.0	60.0	130	
QC-50622-003	RM	fluoranthene	206-44-0	E641A-L	1.757 mg/kg	81.3	60.0	130	
QC-50622-003	RM	fluorene	86-73-7	E641A-L	0.989 mg/kg	82.0	60.0	130	
QC-50622-003	RM	indeno(1,2,3-c,d)pyrene	193-39-5	E641A-L	0.445 mg/kg	79.2	60.0	130	
QC-50622-003	RM	methylnaphthalene, 1-	90-12-0	E641A-L	1.256 mg/kg	83.0	60.0	130	
QC-50622-003	RM	methylnaphthalene, 2-	91-57-6	E641A-L	1.088 mg/kg	80.6	60.0	130	
QC-50622-003	RM	phenanthrene	85-01-8	E641A-L	1.13 mg/kg	81.2	60.0	130	
QC-50622-003	RM	pyrene	129-00-0	E641A-L	1.325 mg/kg	82.4	60.0	130	



## QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: VA20A8304	Page	: 1 of 10
Amendment	: <b>1</b>		
Client	: Golder Associates Ltd.	Laboratory	: Vancouver - Environmental
Contact	: Alison Verde	Account Manager	: Amber Springer
Address	: 200-2920 Virtual Way	Address	: 8081 Lougheed Highway
	Vancouver BC Canada V5M 0C4		Burnaby, British Columbia Canada V5A 1W9
Telephone	: 604 297 2036	Telephone	: +1 604 253 4188
Project	: 20145856	Date Samples Received	: 13-Jun-2020 13:03
PO	:	Issue Date	: 18-Jun-2020 18:09
C-O-C number	: 02928		
Sampler	:		
Site	:		
Quote number	: Q80351		
No. of samples received	:7		
No. of samples analysed	. 5		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

### Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

## **Summary of Outliers**

### **Outliers : Quality Control Samples**

- <u>No</u> Method Blank value outliers occur.
- No Duplicate outliers occur.
- <u>No</u> Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

### **Outliers: Reference Material (RM) Samples**

• No Reference Material (RM) Sample outliers occur.

### **Outliers : Analysis Holding Time Compliance (Breaches)**

• No Analysis Holding Time Outliers exist.

### **Outliers : Frequency of Quality Control Samples**

• <u>No</u> Quality Control Sample Frequency Outliers occur.



## Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 15:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 15:00 is used for calculation purposes.

Matrix: Soil/Solid					Ev	aluation: × =	Holding time exce	edance ; 🔹	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Hydrocarbons : BC PHC - EPH by GC-FID										
Glass soil jar/Teflon lined cap										
02928-01	E601A	12-Jun-2020	14-Jun-2020	14	1 days	✓	15-Jun-2020	40 days	1 days	✓
				days						
Hydrocarbons : BC PHC - EPH by GC-FID										
Glass soil jar/Teflon lined cap										
02928-02	E601A	12-Jun-2020	14-Jun-2020	14	1 days	✓	15-Jun-2020	40 days	1 days	✓
				days						
Hydrocarbons : BC PHC - EPH by GC-FID										
Glass soil jar/Teflon lined cap										
02928-03	E601A	12-Jun-2020	14-Jun-2020	14	1 days	✓	15-Jun-2020	40 days	1 days	1
				days						
Hydrocarbons : BC PHC - EPH by GC-FID										
Glass soil jar/Teflon lined cap										
02928-05	E601A	12-Jun-2020	14-Jun-2020	14	1 days	✓	15-Jun-2020	40 days	1 days	✓
				days						
Hydrocarbons : BC PHC - EPH by GC-FID										
Glass soil jar/Teflon lined cap										
02928-04	E601A	12-Jun-2020	17-Jun-2020	14	5 days	✓	18-Jun-2020	40 days	0 days	✓
				days						
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass soil methanol vial										
02928-01	E581.VH+F1	12-Jun-2020	14-Jun-2020	40	1 days	✓	15-Jun-2020	38 days	0 days	1
				days						
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass soil methanol vial										
02928-02	E581.VH+F1	12-Jun-2020	14-Jun-2020	40	1 days	✓	15-Jun-2020	38 days	0 days	✓
				days						



Matrix: Soil/Solid					E١	aluation: × =	Holding time exce	edance ; 🔹	<pre>/ = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass soil methanol vial										
02928-03	E581.VH+F1	12-Jun-2020	14-Jun-2020	40	1 days	✓	15-Jun-2020	38 days	0 days	✓
				days						
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass soil methanol vial										
02928-05	E581.VH+F1	12-Jun-2020	14-Jun-2020	40	1 days	✓	15-Jun-2020	38 days	0 days	✓
				days						
Metals : Metals in Soil/Solid by CRC ICPMS									· · · · ·	
Glass soil jar/Teflon lined cap										
02928-01	E440	12-Jun-2020	14-Jun-2020	180	1 days	✓	14-Jun-2020	178	0 days	✓
				days				days		
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap										
02928-02	E440	12-Jun-2020	14-Jun-2020	180	1 days	✓	14-Jun-2020	178	0 days	✓
				days				days		
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap										
02928-03	E440	12-Jun-2020	14-Jun-2020	180	1 days	1	14-Jun-2020	178	0 days	✓
				days	2			days	-	
Metals : Metals in Soil/Solid by CRC ICPMS		1		-				-		
Glass soil jar/Teflon lined cap										
02928-05	E440	12-Jun-2020	14-Jun-2020	180	1 days	1	14-Jun-2020	178	0 days	✓
				days	2			days	-	
Physical Tasts : Moistura Content by Gravimetry				-				-		
Glass soil jar/Teflon lined can										
02928-01	E144	12-Jun-2020					13-Jun-2020	14 davs	0 davs	1
								,	- <b>,</b>	
Physical Tasts - Maistura Contant by Gravimatry										
Class soil iar/Teflen lined can										
02928-02	F144	12-Jun-2020					13-Jun-2020	14 days	0 davs	1
		12 0011 2020					10 0411 2020		e aaje	
Dhusiaal Tasta Maisture Contant bu Cravington										
Class soil jar/Toflon lined can										
	F144	12-Jun-2020					13-Jun-2020	14 days	0 davs	1
		12 0011 2020					10 0011 2020			



Matrix: Soil/Solid					Ev	aluation: × =	Holding time exce	edance ; 🗸	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual		-	Rec	Actual	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
02928-05	E144	12-Jun-2020					13-Jun-2020	14 days	0 days	1
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
02928-04	E144	12-Jun-2020					17-Jun-2020	14 days	5 days	~
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
02928-01	E108	12-Jun-2020	14-Jun-2020	30	1 days	✓	15-Jun-2020	28 days	1 days	✓
				days						
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
02928-02	E108	12-Jun-2020	14-Jun-2020	30	1 days	✓	15-Jun-2020	28 days	1 days	✓
				days						
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
02928-03	E108	12-Jun-2020	14-Jun-2020	30	1 days	✓	15-Jun-2020	28 days	1 days	1
				days						
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
02928-05	E108	12-Jun-2020	14-Jun-2020	30	1 days	✓	15-Jun-2020	28 days	1 days	✓
				days						
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS (Low Level CCME)										
Glass soil jar/Teflon lined cap	50444	10 1				,	45 1 0000			,
02928-01	E641A-L	12-Jun-2020	14-Jun-2020	14	1 days	•	15-Jun-2020	40 days	0 days	•
				days						
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS (Low Level CCME)										
Glass soil jar/Teflon lined cap		40 hun 0000	14 km 0000		4	,	45 km 0000	10 -	0 days	,
02928-02	E04TA-L	12-Jun-2020	14-Jun-2020	14	Tdays	•	15-Jun-2020	40 days	0 days	¥
				days						
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS (Low Level CCME)										
Glass soil jar/ letion lined cap	E6/14-I	12- lun-2020	14- lun-2020	14	1 days	1	15- lun-2020	10 dave	0 days	1
V2320-03	LU4 IA-L	12-5011-2020	14-Juil-2020	14 dave	i udys	*	13-3ull-2020	+0 uays	0 uays	*
				uays						



Matrix: Soil/Solid					Ev	aluation: × =	Holding time exce	edance ; •	<pre>/ = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS (Low Level CCME)										
Glass soil jar/Teflon lined cap 02928-05	E641A-L	12-Jun-2020	14-Jun-2020	14	1 days	✓	15-Jun-2020	40 days	0 days	1
				uays						
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS (Low Level CCME)		1								
02928-04	E641A-L	12-Jun-2020	17-Jun-2020	14 days	5 days	1	18-Jun-2020	40 days	0 days	*
TCLP VOCs : BTEX by Headspace GC-MS (TCLP)										
Glass vial (sodium bisulfate) 02928-01	E615A	13-Jun-2020	14-Jun-2020	14 days	1 days	√	15-Jun-2020	13 days	0 days	✓
Volatile Organic Compounds : BTEX by Headspace GC-MS										
Glass soil methanol vial 02928-01	E611A	12-Jun-2020	14-Jun-2020	40 days	1 days	4	15-Jun-2020	38 days	0 days	*
Volatile Organic Compounds : BTEX by Headspace GC-MS					1					
Glass soil methanol vial 02928-02	E611A	12-Jun-2020	14-Jun-2020	40 days	1 days	~	15-Jun-2020	38 days	0 days	*
Volatile Organic Compounds : BTEX by Headspace GC-MS										
Glass soil methanol vial 02928-03	E611A	12-Jun-2020	14-Jun-2020	40 days	1 days	✓	15-Jun-2020	38 days	0 days	✓
Volatile Organic Compounds : BTEX by Headspace GC-MS										
Glass soil methanol vial 02928-05	E611A	12-Jun-2020	14-Jun-2020	40 days	1 days	✓	15-Jun-2020	38 days	0 days	✓
Volatile Organic Compounds : BTEX by Headspace GC-MS										
Glass soil methanol vial 02928-04	E611A	12-Jun-2020	17-Jun-2020	40 days	5 days	✓	18-Jun-2020	34 days	0 days	✓
Volatile Organic Compounds : VOCs (BC Special List) by Headspace GC-MS										
Glass soil methanol vial 02928-01	E611H	12-Jun-2020	14-Jun-2020	40 days	1 days	✓	15-Jun-2020	38 days	0 days	✓



Matrix: Soil/Solid					Ev	aluation: × =	Holding time exce	edance ; •	<pre>&lt; = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation					
Container / Client Sample ID(s)			Preparation	Holding Times		Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Volatile Organic Compounds : VOCs (BC Special List) by Headspace GC-MS										
Glass soil methanol vial 02928-02	E611H	12-Jun-2020	14-Jun-2020	40 days	1 days	✓	15-Jun-2020	38 days	0 days	✓
Volatile Organic Compounds : VOCs (BC Special List) by Headspace GC-MS										
Glass soil methanol vial 02928-03	E611H	12-Jun-2020	14-Jun-2020	40 days	1 days	1	15-Jun-2020	38 days	0 days	4
Volatile Organic Compounds : VOCs (BC Special List) by Headspace GC-MS										
Glass soil methanol vial 02928-05	E611H	12-Jun-2020	14-Jun-2020	40 days	1 days	✓	15-Jun-2020	38 days	0 days	*
Volatile Organic Compounds : VOCs (BC Special List) by Headspace GC-MS										
Glass soil methanol vial 02928-04	E611H	12-Jun-2020	17-Jun-2020	40 days	5 days	1	18-Jun-2020	34 days	0 days	✓

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).



## **Quality Control Parameter Frequency Compliance**

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Soil/Solid	Evaluation: $\star$ = QC frequency outside specification; $\checkmark$ = QC frequency within specification.												
Quality Control Sample Type			Frequency (%)										
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation						
Laboratory Duplicates (DUP)													
BC PHC - EPH by GC-FID	E601A	49439	2	16	12.5	5.0	✓						
BTEX by Headspace GC-MS	E611A	49486	2	16	12.5	5.0	✓						
Metals in Soil/Solid by CRC ICPMS	E440	49440	1	4	25.0	5.0	✓						
Moisture Content by Gravimetry	E144	49442	2	30	6.6	6.6 5.0							
PAHs by Hex:Ace GC-MS (Low Level CCME)	E641A-L	49438	2	28	7.1	5.0	✓						
pH by Meter (1:2 Soil:Water Extraction)	E108	49441	1	4	25.0	5.0	✓						
VH and F1 by Headspace GC-FID	E581.VH+F1	49485	1	19	5.2	5.0	✓						
VOCs (BC Special List) by Headspace GC-MS	E611H	49488	2	8	25.0	5.0							
Laboratory Control Samples (LCS)													
BC PHC - EPH by GC-FID	E601A	49439	4	16	25.0	10.0	1						
BTEX by Headspace GC-MS	E611A	49486	2	16	12.5	5.0	✓						
Metals in Soil/Solid by CRC ICPMS	E440	49440	2	4	50.0	10.0	✓						
Moisture Content by Gravimetry	E144	49442	2	30	6.6	5.0	✓						
PAHs by Hex:Ace GC-MS (Low Level CCME)	E641A-L	49438	4	28	14.2	10.0	✓						
pH by Meter (1:2 Soil:Water Extraction)	E108	49441	1	4	25.0	5.0	✓						
VH and F1 by Headspace GC-FID	E581.VH+F1	49485	1	19	5.2	5.0	✓						
VOCs (BC Special List) by Headspace GC-MS	E611H	49488	2	8	25.0	5.0	✓						
Method Blanks (MB)													
BC PHC - EPH by GC-FID	E601A	49439	2	16	12.5	5.0	✓						
BTEX by Headspace GC-MS	E611A	49486	2	16	12.5	5.0	✓						
BTEX by Headspace GC-MS (TCLP)	E615A	49450	1	1	100.0	5.0	✓						
Metals in Soil/Solid by CRC ICPMS	E440	49440	1	4	25.0	5.0	✓						
Moisture Content by Gravimetry	E144	49442	2	30	6.6	5.0	✓						
PAHs by Hex:Ace GC-MS (Low Level CCME)	E641A-L	49438	2	28	7.1	5.0	✓						
VH and F1 by Headspace GC-FID	E581.VH+F1	49485	1	19	5.2	5.0	✓						
VOCs (BC Special List) by Headspace GC-MS	E611H	49488	2	8	25.0	5.0	✓						
Matrix Spikes (MS)													
BTEX by Headspace GC-MS	E611A	49486	2	16	12.5	5.0	1						
BTEX by Headspace GC-MS (TCLP)	E615A	49450	1	1	100.0	5.0	✓						
VH and F1 by Headspace GC-FID	E581.VH+F1	49485	1	19	5.2	5.0	✓						
VOCs (BC Special List) by Headspace GC-MS	E611H	49488	2	8	25.0	5.0	✓						



## Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
pH by Meter (1:2 Soil:Water Extraction)	E108 Vancouver - Environmental	Soil/Solid	BC Lab Manual	pH is determined by potentiometric measurement with a pH electrode at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C), and is carried out in accordance with procedures described in the BC Lab Manual (prescriptive method). The procedure involves mixing the dried (at <60 °C) and sieved (10mesh/2mm) sample with ultra pure water at a 1:2 ratio of sediment to water. The pH is then measured by a standard pH probe.
Moisture Content by Gravimetry	E144 Vancouver - Environmental	Soil/Solid	CCME PHC in Soil - Tier 1	Moisture is measured gravimetrically by drying the sample at 105°C for a minimum of six hours or to constant weight. Moisture content is calculated as the weight loss (due to water) divided by the wet weight of the sample, expressed as a percentage.
Metals in Soil/Solid by CRC ICPMS	E440 Vancouver - Environmental	Soil/Solid	EPA 6020B (mod)	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCl. This method is intended to liberate metals that may be environmentally available. Silicate minerals are not solubilized. Dependent on sample matrix, some metals may be only partially recovered, including Al, Ba, Be, Cr, Sr, Ti, Tl, V, W, and Zr. Volatile forms of sulfur (including sulfide) may not be captured, as they may be lost during sampling, storage, or digestion. Analysis is by Collision/Reaction Cell ICPMS.
VH and F1 by Headspace GC-FID	E581.VH+F1 Vancouver - Environmental	Soil/Solid	BC MOE Lab Manual / CCME PHC in Soil - Tier 1 (mod)	Volatile Hydrocarbons (VH and F1) is analyzed by static headspace GC-FID. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
BC PHC - EPH by GC-FID	E601A Vancouver - Environmental	Soil/Solid	BC MOE Lab Manual (EPH in Solids by GC/FID) (mod)	Extractable Petroleum Hydrocarbons (EPH) are analyzed by GC-FID.
BTEX by Headspace GC-MS	E611A Vancouver - Environmental	Soil/Solid	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
VOCs (BC Special List) by Headspace GC-MS	E611H Vancouver - Environmental	Soil/Solid	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
BTEX by Headspace GC-MS (TCLP)	E615A Vancouver - Environmental	Soil/Solid	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
PAHs by Hex:Ace GC-MS (Low Level CCME)	E641A-L Vancouver - Environmental	Soil/Solid	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by GC-MS.

VA20A8304 Amendment 1

: Golder Associates Ltd.

20145856



Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
VPH: VH-BTEX-Styrene	EC580A Vancouver - Environmental	Soil/Solid	BC MOE Lab Manual (VPH in Water and Solids) (mod)	Volatile Petroleum Hydrocarbons (VPH) is calculated as follows: VH-BTEX = Volatile Hydrocarbons (VH6-10) minus benzene, toluene, ethylbenzene, xylenes (BTEX) and styrene.
LEPH and HEPH: EPH-PAH	EC600A Vancouver - Environmental	Soil/Solid	BC MOE Lab Manual (LEPH and HEPH) (mod)	Light Extractable Petroleum Hydrocarbons (LEPH) and Heavy Extractable Petroleum Hydrocarbons (HEPH) are calculated as follows: LEPH = Extractable Petroleum Hydrocarbons (EPH10-19) minus Naphthalene and Phenanthrene; HEPH = Extractable Petroleum Hydrocarbons (EPH19-32) minus Benz(a)anthracene, Benzo(b+j+k)fluoranthene, Benzo(a)pyrene, Dibenz(a,h)anthracene, Indeno(1,2,3-cd)pyrene, and Pyrene.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Leach 1:2 Soil:Water for pH	EP108 Vancouver - Environmental	Soil/Solid	BC WLAP METHOD: PH, ELECTROMETRIC, SOIL	The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water.
Digestion for Metals and Mercury	EP440 Vancouver - Environmental	Soil/Solid	EPA 200.2 (mod)	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCI. This method is intended to liberate metals that may be environmentally available.
VOCs Methanol Extraction for Headspace Analysis	EP581 Vancouver - Environmental	Soil/Solid	EPA 5035A (mod)	VOCs in samples are extracted with methanol. Extracts are then prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
VOCs Preparation for Headspace Analysis (TCLP)	EP582 Vancouver - Environmental	Soil/Solid	EPA 5021A (mod)	Liquid obtained after the TCLP process is prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
PHCs and PAHs Hexane-Acetone Tumbler Extraction	EP601 Vancouver - Environmental	Soil/Solid	CCME PHC in Soil - Tier 1 (mod)	Samples are subsampled and Petroleum Hydrocarbons (PHC) and PAHs are extracted with 1:1 hexane:acetone using a rotary extractor.
TCLP Leachate Preparation (VOCs)	EPP582 Vancouver - Environmental	Soil/Solid	EPA 1311	An extract produced by the Toxicity Characteristic Leaching Procedure (TCLP) as per EPA 1311.

	Environmenta Vancouver	al Division	Ì	СН	AIN (	OF CU	STOD	Y RE	CORI	D/ANAL	YSI	SR	EQU	EST	-			No.	02	292	8 page	of	
	VA20A8304 Project Number: 20145856										Lat	oratory A1 S	y Nam	e: burn	nabi	 4							
Sh DC4						rt Title: Snowbird Clean-up Golder Contact: Alison Verde								Add	Address: 8081 Lougheed Huy							8. 2.	
298-5253						AVERDE @golder.com SOLSEN @golder.com									604-253-4188 Ander Springe						ringer "		
	Telephone : +16	04 253 4189	ret			EQu EQu	EQuIS Facility Code: 2\783270 EQuIS upload: Analyses Required											_			Ţ.		
	Turnaround Time Criteria: 🗹 CSR	: □ 24 hr ☑ CCM	ME	48 hr BC W	ater Quali	□ 72 hr ty 5	Other -	June )	Regular <u>らい</u> ,	(5 Days) ういつい	ners		L'A	Han			5	etrec.	ج	(avo			
	Note: Final Repor	ts to be issued	by e-mai	1	÷ ·	Quote No	<u>, 980</u>	351			Contai	بر م ا ر	Tel Le	LEPH			Y C Fe		1 ech	t TAT at		4. 1	
	Sample Control Number (SCN)	Sample Location	Sa. #	Sample Depth (m)	Sample Matrix (over)	Date Sampled (D / M / Y)	Time Sampled (HH:MM)	Sample Type (over)	QAQC Code (over)	Related SCN (over)	Number of	Moistur	Oreno o	TEPH/H	BTEX	N- 7000	Cudal Cudal	9.12 - C'V	PENS-1 Hold O	RUSH (Select	Rem (ov	arks /er)	
4	52928-01	MW20-02	•	12-13	50	12/1/20	14:30	Gral	FDA	02928-0Z	4		XX		<u> </u>	Х	X	X					
	- 02			L	*				FD	C2228-N	4		X	<u> </u> <del>×</del>	X	×	×	$\boldsymbol{\times}$	7		· ·		
	- 03			15-156"	<u>′  </u> ′						4		×	<u>                                     </u>	X		X	$\times$	- / V	v			
ŀ	- 04	RH70-05	·	12-14					CNA	67.978-06	4		y	<u> </u>	×		NSM ²	$\prec$	X	<u> </u>			
f	- 06		······	his 1-1			V		FD	02928-05	4						NÜZ		X				
	- 07	V		18-18'6"	V		17.30	V			4								X				
	- 08				-						<u>ر</u>						*		1			_	
	- 09		·•						<del></del>										F		- ·		
	- 10					3		للجمير														<u> </u>	
,	- 12	± 1								<u> </u>													
	Sampler's Signature:	AAX	<u> </u>	Relinqui	shed by:	Signature		Compar	No c	Date	;/z	<u>_</u>	Time 12		Re	ceived	d by: S	Signati	ure	Corr	ipany		
j	Comments:	ICP.	, ,	Method	of Shipme	ent:		Waybill	No.:		1-	Rec	eived for	Lab by	<u>l</u>		Da	te	ent	1B	Time _{}.}	031	
1				Shipped	by:	-6,	-		Shipment Condition:			Temp (°C) Co		Cooler	ooler opened by:		Da	Date -		<u> </u>	Time	- 6	
:		j			- ]		WHITE:	Golder C	ору	YELLOW: I	Lab C	ору		10	¢-C	<u>c</u> it	7	^.	5		ે. ૨	ESED	


# **CERTIFICATE OF ANALYSIS**

Work Order	: VA20A8760	Page	: 1 of 8
Client	: Golder Associates Ltd.	Laboratory	: Vancouver - Environmental
Contact	: Alison Verde	Account Manager	: Amber Springer
Address	: 200-2920 Virtual Way Vancouver BC Canada V5M 0C4	Address	8081 Lougheed Highway Burnaby BC Canada V5A 1W9
Telephone	: 604 297 2036	Telephone	: +1 604 253 4188
Project	: 20145856/1000	Date Samples Received	: 19-Jun-2020 19:19
PO	:	Date Analysis Commenced	: 19-Jun-2020
C-O-C number	: 02934	Issue Date	: 26-Jun-2020 13:07
Sampler	:		
Site	:		
Quote number	: Q80351		
No. of samples received	: 7		
No. of samples analysed	: 7		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Angelo Salandanan	Lab Assistant	Metals, Burnaby, British Columbia
Cristina Alexandre	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Jashan Kaur	Lab Assistant	Metals, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Ophelia Chiu	Supervisor - Organics Instrumentation	Organics, Burnaby, British Columbia
Sandra Cummings	Interim Department Manager - LCMS	LCMS, Waterloo, Ontario



#### **General Comments**

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
μg/L	micrograms per litre
mg/L	milligrams per litre

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in reports identified as "Preliminary Report" are considered authorized for use.

#### **Qualifiers**

Qualifier	Description
DLCI	Detection Limit Raised: Chromatographic interference due to co-elution.



Sub-Matrix: Groundwater		Client sample ID		02934-01	02934-02	02934-03	02934-04	02934-05	
(Matrix: Water)									
			Client sampli	ng date / time	19-Jun-2020 10:55	19-Jun-2020 11:55	19-Jun-2020 12:35	19-Jun-2020 13:20	19-Jun-2020 13:20
Analyte	CAS Number	Method	LOR	Unit	VA20A8760-001	VA20A8760-002	VA20A8760-003	VA20A8760-004	VA20A8760-005
					Result	Result	Result	Result	Result
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0019	0.0022	0.0034	0.0022	0.0026
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	0.00010	0.00010	<0.00010	<0.00010
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0000236	0.0000820	0.000133	0.000111	0.000118
chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	0.00077	0.00151	0.00364	0.00164	0.00156
lead, dissolved	7439-92-1	E421	0.000050	mg/L	0.000248	<0.000050	<0.000050	<0.000050	<0.000050
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0017	0.0017	0.0036	0.0032	0.0031
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	Field
Volatile Organic Compounds									
benzene	71-43-2	E611H	0.50	µg/L	<0.50	<0.50	<0.50	<0.50	<0.50
dibromoethane, 1,2-	106-93-4	E611H	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
ethylbenzene	100-41-4	E611H	0.50	µg/L	<0.50	<0.50	<0.50	<0.50	<0.50
methyl-tert-butyl ether [MTBE]	1634-04-4	E611H	0.50	µg/L	<0.50	<0.50	<0.50	<0.50	<0.50
nonane, n-	111-84-2	E611H	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
styrene	100-42-5	E611H	0.50	µg/L	<0.50	<0.50	<0.50	<0.50	<0.50
toluene	108-88-3	E611H	0.50	µg/L	<0.50	<0.50	<0.50	<0.50	<0.50
trimethylbenzene, 1,2,4-	95-63-6	E611H	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
xylene, m+p-	179601-23-1	E611H	0.50	µg/L	<0.50	<0.50	<0.50	<0.50	<0.50
xylene, o-	95-47-6	E611H	0.50	µg/L	<0.50	<0.50	<0.50	0.86	0.80
xylenes, total	1330-20-7	E611H	0.75	µg/L	<0.75	<0.75	<0.75	0.86	0.80
Volatile Organic Compounds Surrogates									
bromofluorobenzene, 4-	460-00-4	E611H	1.0	%	103	106	99.7	106	102
difluorobenzene, 1,4-	540-36-3	E611H	1.0	%	110	110	105	109	109
Hydrocarbons									
EPH (C10-C19)		E601A	250	µg/L	<250	<250	<250	<250	<250
EPH (C19-C32)		E601A	250	µg/L	<250	<250	<250	<250	<250
VHw (C6-C10)		E581.VH+F1	100	µg/L	<100	<100	<100	<100	<100
VPHw		EC580A	100	µg/L	<100	<100	<100	<100	<100
HEPHw		EC600A	250	µg/L	<250	<250	<250	<250	<250



Sub-Matrix: Groundwater			Cl	ient sample ID	02934-01	02934-02	02934-03	02934-04	02934-05
(Matrix: Water)									
			Client sampli	ng date / time	19-Jun-2020 10:55	19-Jun-2020 11:55	19-Jun-2020 12:35	19-Jun-2020 13:20	19-Jun-2020 13:20
Analyte	CAS Number	Method	LOR	Unit	VA20A8760-001	VA20A8760-002	VA20A8760-003	VA20A8760-004	VA20A8760-005
					Result	Result	Result	Result	Result
Hydrocarbons									
LEPHw		EC600A	250	µg/L	<250	<250	<250	<250	<250
Hydrocarbons Surrogates		50044	50			101	00.0	00.0	100
bromobenzotrifluoride, 2- (EPH surr)	392-83-6	E601A	50	%	98.2	104	99.0	98.2	106
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%	106	107	84.4	107	93.0
Polycyclic Aromatic Hydrocarbons								Dici	a ana DiCi
acenaphthene	83-32-9	E641A	0.010	µg/L	<0.010	<0.010	<0.010	< 0.020	< 0.020
acenaphthylene	208-96-8	E641A	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
acridine	260-94-6	E641A	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
anthracene	120-12-7	E641A	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
benz(a)anthracene	56-55-3	E641A	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
benzo(a)pyrene	50-32-8	E641A	0.0050	µg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
benzo(b+j)fluoranthene		E641A	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
benzo(b+j+k)fluoranthene		E641A	0.015	µg/L	<0.015	<0.015	<0.015	<0.015	<0.015
benzo(g,h,i)perylene	191-24-2	E641A	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
benzo(k)fluoranthene	207-08-9	E641A	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
chrysene	218-01-9	E641A	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
dibenz(a,h)anthracene	53-70-3	E641A	0.0050	µg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
fluoranthene	206-44-0	E641A	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
fluorene	86-73-7	E641A	0.010	µg/L	<0.010	<0.010	<0.010	<0.020 DLCI	<0.020 DLCI
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
methylnaphthalene, 1-	90-12-0	E641A	0.010	µg/L	<0.010	<0.010	<0.010	0.113	0.135
methylnaphthalene, 2-	91-57-6	E641A	0.010	µg/L	<0.010	<0.010	<0.010	0.072	0.081
naphthalene	91-20-3	E641A	0.050	µg/L	<0.050	<0.050	<0.050	<0.080 DLCI	<0.090 DLCI
phenanthrene	85-01-8	E641A	0.020	µg/L	<0.020	<0.020	<0.020	<0.020	<0.020
pyrene	129-00-0	E641A	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
quinoline	6027-02-7	E641A	0.050	µg/L	<0.050	<0.050	<0.050	<0.080 DLCI	<0.100 DLCI
Polycyclic Aromatic Hydrocarbons Surrogates									
acridine-d9	34749-75-2	E641A	0.010	%	112	113	110	116	113
chrysene-d12	1719-03-5	E641A	0.010	%	105	107	101	104	108
naphthalene-d8	1146-65-2	E641A	0.010	%	93.1	101	98.2	99.2	102
phenanthrene-d10	1517-22-2	E641A	0.010	%	114	117	114	119	117



Sub-Matrix: Groundwater			Cl	ient sample ID	02934-01	02934-02	02934-03	02934-04	02934-05
(Matrix: Water)									
Analyte	CAS Number	Method	Client sampli	ng date / time Unit	19-Jun-2020 10:55 VA20A8760-001	19-Jun-2020 11:55 VA20A8760-002	19-Jun-2020 12:35 VA20A8760-003	19-Jun-2020 13:20 VA20A8760-004	19-Jun-2020 13:20 VA20A8760-005
					Result	Result	Result	Result	Result
Perfluoroalkyl Substances (PFAS)									
fluorotelomer sulfonic acid, 6:2 [6:2 FTS]	27619-97-2	E745C	0.010	µg/L	0.024	<0.010	<0.010	0.024	0.032
fluorotelomer sulfonic acid, 8:2 [8:2 FTS]	39108-34-4	E745C	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
perfluorobutane sulfonic acid [PFBS]	375-73-5	E745C	0.010	µg/L	<0.020	<0.020	<0.020	<0.020	<0.020
perfluorobutanoic acid [PFBA]	375-22-4	E745C	0.10	µg/L	<0.80	<0.80	<0.80	<0.80	<0.80
perfluoroheptanoic acid [PFHpA]	375-85-9	E745C	0.010	µg/L	<0.020	<0.020	<0.020	<0.020	<0.020
perfluorohexane sulfonic acid [PFHxS]	355-46-4	E745C	0.010	µg/L	<0.020	<0.020	<0.020	<0.020	<0.020
perfluorohexanoic acid [PFHxA]	307-24-4	E745C	0.010	µg/L	<0.020	<0.020	<0.020	<0.020	<0.020
perfluorononanoic acid [PFNA]	375-95-1	E745C	0.010	µg/L	<0.020	<0.020	<0.020	<0.020	<0.020
perfluorooctane sulfonic acid [PFOS]	1763-23-1	E745C	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
perfluorooctanoic acid [PFOA]	335-67-1	E745C	0.010	µg/L	<0.010	<0.010	<0.010	<0.010	<0.010
perfluoropentanoic acid [PFPeA]	2706-90-3	E745C	0.010	µg/L	<0.020	<0.020	<0.020	<0.020	<0.020

Please refer to the General Comments section for an explanation of any qualifiers detected.



Sub-Matrix: Groundwater			Cli	ient sample ID	02934-06	02934-07	 	
(Matrix: Water)								
			Client sampli	ng date / time	19-Jun-2020 13:50	19-Jun-2020 19:00	 	
Analyte	CAS Number	Method	LOR	Unit	VA20A8760-006	VA20A8760-007	 	
					Result	Result	 	
Dissolved Metals		E 101	0.0040		0.0010	0.0010		
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	 	
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	<0.0000050	 	
chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	 	
cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	 	
dissolved metals filtration location		EP421	-	-	Field	Field	 	
Volatile Organic Compounds								
benzene	71-43-2	E611H	0.50	µg/L	<0.50	<0.50	 	
dibromoethane, 1,2-	106-93-4	E611H	0.2	µg/L	<0.2	<0.2	 	
ethylbenzene	100-41-4	E611H	0.50	µg/L	<0.50	<0.50	 	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611H	0.50	µg/L	<0.50	<0.50	 	
nonane, n-	111-84-2	E611H	1.0	µg/L	<1.0	<1.0	 	
styrene	100-42-5	E611H	0.50	µg/L	<0.50	<0.50	 	
toluene	108-88-3	E611H	0.50	µg/L	<0.50	<0.50	 	
trimethylbenzene, 1,2,4-	95-63-6	E611H	1.0	µg/L	<1.0	<1.0	 	
xylene, m+p-	179601-23-1	E611H	0.50	µg/L	<0.50	<0.50	 	
xylene, o-	95-47-6	E611H	0.50	µg/L	<0.50	<0.50	 	
xylenes, total	1330-20-7	E611H	0.75	µg/L	<0.75	<0.75	 	
Volatile Organic Compounds Surrogates								
bromofluorobenzene, 4-	460-00-4	E611H	1.0	%	108	106	 	
difluorobenzene, 1,4-	540-36-3	E611H	1.0	%	106	107	 	
Hydrocarbons								
EPH (C10-C19)		E601A	250	µg/L	<250	<250	 	
EPH (C19-C32)		E601A	250	µg/L	<250	<250	 	
VHw (C6-C10)		E581.VH+F1	100	µg/L	<100	<100	 	
VPHw		EC580A	100	µg/L	<100	<100	 	
HEPHw		EC600A	250	µg/L	<250	<250	 	
LEPHw		EC600A	250	µg/L	<250	<250	 	
1		1	1	1 I	1	1	1	1



Sub-Matrix: Groundwater			Cl	lient sample ID	02934-06	02934-07	 	
(Matrix: Water)								
			Client sampli	ing date / time	19-Jun-2020 13:50	19-Jun-2020 19:00	 	
Analyte	CAS Number	Method	LOR	Unit	VA20A8760-006	VA20A8760-007	 	
					Result	Result	 	
Hydrocarbons Surrogates		50044	50		22.2	101		
bromobenzotrifluoride, 2- (EPH surr)	392-83-6	E601A	50	%	96.2	104	 	
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%	118	113	 	
Polycyclic Aromatic Hydrocarbons		50444	0.010		0.010	0.040		
acenaphthene	83-32-9	E641A	0.010	µg/L	<0.010	<0.010	 	
acenaphthylene	208-96-8	E641A	0.010	µg/L	<0.010	<0.010	 	
acridine	260-94-6	E641A	0.010	µg/L	<0.010	<0.010	 	
anthracene	120-12-7	E641A	0.010	µg/L	<0.010	<0.010	 	
benz(a)anthracene	56-55-3	E641A	0.010	µg/L	<0.010	<0.010	 	
benzo(a)pyrene	50-32-8	E641A	0.0050	µg/L	<0.0050	<0.0050	 	
benzo(b+j)fluoranthene		E641A	0.010	µg/L	<0.010	<0.010	 	
benzo(b+j+k)fluoranthene		E641A	0.015	µg/L	<0.015	<0.015	 	
benzo(g,h,i)perylene	191-24-2	E641A	0.010	µg/L	<0.010	<0.010	 	
benzo(k)fluoranthene	207-08-9	E641A	0.010	µg/L	<0.010	<0.010	 	
chrysene	218-01-9	E641A	0.010	µg/L	<0.010	<0.010	 	
dibenz(a,h)anthracene	53-70-3	E641A	0.0050	µg/L	<0.0050	<0.0050	 	
fluoranthene	206-44-0	E641A	0.010	µg/L	<0.010	<0.010	 	
fluorene	86-73-7	E641A	0.010	µg/L	<0.010	<0.010	 	
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.010	µg/L	<0.010	<0.010	 	
methylnaphthalene, 1-	90-12-0	E641A	0.010	µg/L	<0.010	<0.010	 	
methylnaphthalene, 2-	91-57-6	E641A	0.010	µg/L	<0.010	<0.010	 	
naphthalene	91-20-3	E641A	0.050	µg/L	<0.050	<0.050	 	
phenanthrene	85-01-8	E641A	0.020	µg/L	<0.020	<0.020	 	
pyrene	129-00-0	E641A	0.010	µg/L	<0.010	<0.010	 	
quinoline	6027-02-7	E641A	0.050	µg/L	<0.050	<0.050	 	
Polycyclic Aromatic Hydrocarbons Surrogate	s							
acridine-d9	34749-75-2	E641A	0.010	%	107	110	 	
chrysene-d12	1719-03-5	E641A	0.010	%	102	104	 	
naphthalene-d8	1146-65-2	E641A	0.010	%	95.7	102	 	
phenanthrene-d10	1517-22-2	E641A	0.010	%	112	116	 	
Perfluoroalkyl Substances (PFAS)								
fluorotelomer sulfonic acid, 6:2 [6:2 FTS]	27619-97-2	E745C	0.010	µg/L	<0.010	<0.010	 	



Sub-Matrix: Groundwater			Cl	lient sample ID	02934-06	02934-07	 	
(Matrix: Water)								
			Client sampli	ing date / time	19-Jun-2020 13:50	19-Jun-2020 19:00	 	
Analyte	CAS Number	Method	LOR	Unit	VA20A8760-006	VA20A8760-007	 	
					Result	Result	 	
Perfluoroalkyl Substances (PFAS)								
fluorotelomer sulfonic acid, 8:2 [8:2 FTS]	39108-34-4	E745C	0.010	µg/L	<0.010	<0.010	 	
perfluorobutane sulfonic acid [PFBS]	375-73-5	E745C	0.010	µg/L	<0.020	<0.020	 	
perfluorobutanoic acid [PFBA]	375-22-4	E745C	0.10	µg/L	<0.80	<0.80	 	
perfluoroheptanoic acid [PFHpA]	375-85-9	E745C	0.010	µg/L	<0.020	<0.020	 	
perfluorohexane sulfonic acid [PFHxS]	355-46-4	E745C	0.010	µg/L	<0.020	<0.020	 	
perfluorohexanoic acid [PFHxA]	307-24-4	E745C	0.010	µg/L	<0.020	<0.020	 	
perfluorononanoic acid [PFNA]	375-95-1	E745C	0.010	µg/L	<0.020	<0.020	 	
perfluorooctane sulfonic acid [PFOS]	1763-23-1	E745C	0.010	µg/L	<0.010	<0.010	 	
perfluorooctanoic acid [PFOA]	335-67-1	E745C	0.010	µg/L	<0.010	<0.010	 	
perfluoropentanoic acid [PFPeA]	2706-90-3	E745C	0.010	µg/L	<0.020	<0.020	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.



# **QUALITY CONTROL REPORT**

Work Order	VA20A8760	Page	: 1 of 10
Client	: Golder Associates Ltd.	Laboratory	: Vancouver - Environmental
Contact	: Alison Verde	Account Manager	: Amber Springer
Address	200-2920 Virtual Way	Address	8081 Lougheed Highway
Telephone	:604 297 2036	Telephone	:+1 604 253 4188
Project	: 20145856/1000	Date Samples Received	: 19-Jun-2020 19:19
PO	:	Date Analysis Commenced	: 19-Jun-2020
C-O-C number	: 02934	Issue Date	: 26-Jun-2020 13:07
Sampler	:		
Site	:		
Quote number	: Q80351		
No. of samples received	:7		
No. of samples analysed	:7		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Angelo Salandanan	Lab Assistant	Metals, Burnaby, British Columbia
Cristina Alexandre	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Jashan Kaur	Lab Assistant	Metals, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Ophelia Chiu	Supervisor - Organics Instrumentation	Organics, Burnaby, British Columbia
Sandra Cummings	Interim Department Manager - LCMS	LCMS, Waterloo, Ontario

Page	: 2 of 10
Work Order	: VA20A8760
Client	: Golder Associates Ltd.
Project	: 20145856/1000



#### **General Comments**

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

- Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.
- CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.
- DQO = Data Quality Objective.
- LOR = Limit of Reporting (detection limit).
- RPD = Relative Percentage Difference
- # = Indicates a QC result that did not meet the ALS DQO.

Page	: 3 of 10
Work Order	: VA20A8760
Client	: Golder Associates Ltd.
Project	: 20145856/1000



### Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (	QC Lot: 51963)										
VA20A8250-002	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0215	0.0213	0.835%	20%	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00038	0.00037	0.000009	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0000318	0.0000267	0.0000050	Diff <2x LOR	
		chromium, dissolved	7440-47-3	E421	0.00050	mg/L	0.00478	0.00467	0.00011	Diff <2x LOR	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	0.00032	0.00031	0.000010	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0095	0.0101	0.0006	Diff <2x LOR	
Volatile Organic Co	mpounds (QC Lot: 5187	76)					1				1
VA20A8760-001	02934-01	benzene	71-43-2	E611H	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dibromoethane, 1,2-	106-93-4	E611H	0.2	µg/L	<0.2	<0.2	0	Diff <2x LOR	
		ethylbenzene	100-41-4	E611H	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611H	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		nonane, n-	111-84-2	E611H	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		styrene	100-42-5	E611H	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		toluene	108-88-3	E611H	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		trimethylbenzene, 1,2,4-	95-63-6	E611H	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		xylene, m+p-	179601-23-1	E611H	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		xylene, o-	95-47-6	E611H	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
Hydrocarbons (QC	Lot: 51875)										
VA20A8250-002	Anonymous	VHw (C6-C10)		E581.VH+F1	100	µg/L	<100	<100	0.00%	30%	
Perfluoroalkyl Subs	tances (PFAS) (QC Lot	: 54228)									
VA20A8760-007	02934-07	fluorotelomer sulfonic acid, 6:2 [6:2	27619-97-2	E745C	0.010	µg/L	<0.010	<0.010	0	Diff <2x LOR	
		FTS] fluorotelomer sulfonic acid, 8:2 [8:2	39108-34-4	E745C	0.010	µg/L	<0.010	<0.010	0	Diff <2x LOR	
		FTS] perfluorobutane sulfonic acid [PFBS]	375-73-5	E745C	0.020	ua/L	<0.020	<0.010	0.010	Diff <2x LOR	
		perfluorobutanoic acid [PFBA]	375-22-4	E745C	0.80	μq/L	<0.80	0.20	0.60	Diff <2x LOR	
		perfluoroheptanoic acid [PFHpA]	375-85-9	E745C	0.020	µg/L	<0.020	<0.010	0.010	Diff <2x LOR	
		perfluorohexane sulfonic acid	355-46-4	E745C	0.020	μg/L	<0.020	<0.010	0.010	Diff <2x LOR	
		[PFHXS] perfluorohexanoic acid [PFHxA]	307-24-4	E745C	0.020	µg/L	<0.020	<0.010	0.010	Diff <2x LOR	
		perfluorononanoic acid [PFNA]	375-95-1	E745C	0.020	µg/L	<0.020	<0.010	0.010	Diff <2x LOR	
1			1		1					1	1

: 4 of 10
: VA20A8760
: Golder Associates Ltd.
: 20145856/1000



Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Perfluoroalkyl Substances (PFAS) (QC Lot: 54228) - continued											
VA20A8760-007	02934-07	perfluorooctane sulfonic acid [PFOS]	1763-23-1	E745C	0.010	µg/L	<0.010	<0.010	0	Diff <2x LOR	
		perfluorooctanoic acid [PFOA]	335-67-1	E745C	0.010	µg/L	<0.010	<0.010	0	Diff <2x LOR	
		perfluoropentanoic acid [PFPeA]	2706-90-3	E745C	0.020	µg/L	<0.020	<0.010	0.010	Diff <2x LOR	

Page	: 5 of 10
Work Order	: VA20A8760
Client	: Golder Associates Ltd.
Project	: 20145856/1000



### Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 51963)						
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.000050	
chromium, dissolved	7440-47-3	E421	0.0005	mg/L	<0.00050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
Volatile Organic Compounds (QCLc	ot: 51876)					
benzene	71-43-2	E611H	0.5	µg/L	<0.50	
dibromoethane, 1,2-	106-93-4	E611H	0.2	µg/L	<0.2	
ethylbenzene	100-41-4	E611H	0.5	µg/L	<0.50	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611H	0.5	µg/L	<0.50	
nonane, n-	111-84-2	E611H	1	µg/L	NR	
styrene	100-42-5	E611H	0.5	µg/L	<0.50	
toluene	108-88-3	E611H	0.5	µg/L	<0.50	
trimethylbenzene, 1,2,4-	95-63-6	E611H	1	µg/L	<1.0	
xylene, m+p-	179601-23-1	E611H	0.5	µg/L	<0.50	
xylene, o-	95-47-6	E611H	0.5	µg/L	<0.50	
Hydrocarbons (QCLot: 51823)						
EPH (C10-C19)		E601A	250	µg/L	<250	
EPH (C19-C32)		E601A	250	µg/L	<250	
Hydrocarbons (QCLot: 51875)						
VHw (C6-C10)		E581.VH+F1	100	µg/L	<100	
Polycyclic Aromatic Hydrocarbons	(QCLot: 51824)					
acenaphthene	83-32-9	E641A	0.01	µg/L	<0.010	
acenaphthylene	208-96-8	E641A	0.01	µg/L	<0.010	
acridine	260-94-6	E641A	0.01	µg/L	<0.010	
anthracene	120-12-7	E641A	0.01	µg/L	<0.010	
benz(a)anthracene	56-55-3	E641A	0.01	µg/L	<0.010	
benzo(a)pyrene	50-32-8	E641A	0.005	µg/L	<0.0050	
benzo(b+j)fluoranthene		E641A	0.01	µg/L	<0.010	
benzo(b+j+k)fluoranthene		E641A	0.015	µg/L	<0.015	

Page	: 6 of 10
Work Order	: VA20A8760
Client	: Golder Associates Ltd.
Project	: 20145856/1000



#### Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Polycyclic Aromatic Hydrocarbons	(QCLot: 51824) - continu	ed				
benzo(g,h,i)perylene	191-24-2	E641A	0.01	µg/L	<0.010	
benzo(k)fluoranthene	207-08-9	E641A	0.01	µg/L	<0.010	
chrysene	218-01-9	E641A	0.01	μg/L	<0.010	
dibenz(a,h)anthracene	53-70-3	E641A	0.005	μg/L	<0.0050	
fluoranthene	206-44-0	E641A	0.01	μg/L	<0.010	
fluorene	86-73-7	E641A	0.01	μg/L	<0.010	
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.01	μg/L	<0.010	
methylnaphthalene, 1-	90-12-0	E641A	0.01	μg/L	<0.010	
methylnaphthalene, 2-	91-57-6	E641A	0.01	μg/L	<0.010	
naphthalene	91-20-3	E641A	0.05	μg/L	<0.050	
phenanthrene	85-01-8	E641A	0.02	μg/L	<0.020	
pyrene	129-00-0	E641A	0.01	µg/L	<0.010	
quinoline	6027-02-7	E641A	0.05	μg/L	<0.050	
Perfluoroalkyl Substances (PFAS) (	QCLot: 54228)					
fluorotelomer sulfonic acid, 6:2 [6:2 FTS]	27619-97-2	E745C	0.01	μg/L	<0.010	
fluorotelomer sulfonic acid, 8:2 [8:2 FTS]	39108-34-4	E745C	0.01	μg/L	<0.010	
perfluorobutane sulfonic acid [PFBS]	375-73-5	E745C	0.01	μg/L	<0.010	
perfluorobutanoic acid [PFBA]	375-22-4	E745C	0.1	μg/L	# 0.22	MB-LOR
perfluoroheptanoic acid [PFHpA]	375-85-9	E745C	0.01	μg/L	<0.010	
perfluorohexane sulfonic acid [PFHxS]	355-46-4	E745C	0.01	μg/L	<0.010	
perfluorohexanoic acid [PFHxA]	307-24-4	E745C	0.01	μg/L	<0.010	
perfluorononanoic acid [PFNA]	375-95-1	E745C	0.01	μg/L	<0.010	
perfluorooctane sulfonic acid [PFOS]	1763-23-1	E745C	0.01	µg/L	<0.010	
perfluorooctanoic acid [PFOA]	335-67-1	E745C	0.01	µg/L	<0.010	
perfluoropentanoic acid [PFPeA]	2706-90-3	E745C	0.01	µg/L	<0.010	

### Qualifiers

Qualifier MB-LOR Description

Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.



### Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water			Laboratory Control Sample (LCS) Report						
		-			Spike	Recovery (%)	Recovery	/ Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 51963)									
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	107	80.0	120	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	105	80.0	120	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	105	80.0	120	
chromium, dissolved	7440-47-3	E421	0.0005	mg/L	0.25 mg/L	106	80.0	120	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	106	80.0	120	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	105	80.0	120	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	97.8	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	105	80.0	120	
Volatile Organic Compounds (QCLot:	51876)								
benzene	71-43-2	E611H	0.5	µg/L	100 µg/L	96.7	70.0	130	
dibromoethane, 1,2-	106-93-4	E611H	0.2	µg/L	100 µg/L	102	70.0	130	
ethylbenzene	100-41-4	E611H	0.5	µg/L	100 µg/L	102	70.0	130	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611H	0.5	μg/L	200 µg/L	103	70.0	130	
styrene	100-42-5	E611H	0.5	µg/L	100 µg/L	86.7	70.0	130	
toluene	108-88-3	E611H	0.5	µg/L	100 µg/L	97.3	70.0	130	
trimethylbenzene, 1,2,4-	95-63-6	E611H	1	µg/L	100 µg/L	104	70.0	130	
xylene, m+p-	179601-23-1	E611H	0.5	µg/L	200 µg/L	103	70.0	130	
xylene, o-	95-47-6	E611H	0.5	µg/L	100 µg/L	99.9	70.0	130	
Hydrocarbons (QCLot: 51823)									
EPH (C10-C19)		E601A	250	µg/L	6491 µg/L	114	70.0	130	
EPH (C19-C32)		E601A	250	µg/L	3363 µg/L	114	70.0	130	
Hydrocarbons (QCLot: 51875)									
VHw (C6-C10)		E581.VH+F1	100	µg/L	6310 µg/L	90.1	70.0	130	
Polycyclic Aromatic Hydrocarbons (Q	CLot: 51824)								
acenaphthene	83-32-9	E641A	0.01	µg/L	0.5 µg/L	110	60.0	130	
acenaphthylene	208-96-8	E641A	0.01	µg/L	0.5 µg/L	115	60.0	130	
acridine	260-94-6	E641A	0.01	µg/L	0.5 µg/L	121	60.0	130	
anthracene	120-12-7	E641A	0.01	µg/L	0.5 µg/L	128	60.0	130	
benz(a)anthracene	56-55-3	E641A	0.01	µg/L	0.5 µg/L	119	60.0	130	
benzo(a)pyrene	50-32-8	E641A	0.005	µg/L	0.5 µg/L	115	60.0	130	
benzo(b+j)fluoranthene		E641A	0.01	µg/L	0.5 µg/L	113	60.0	130	

Page	: 8 of 10
Work Order	: VA20A8760
Client	: Golder Associates Ltd.
Project	: 20145856/1000



Sub-Matrix: Water						Laboratory Co.	ntrol Sample (LCS)	Report	Qualifier						
					Spike	Recovery (%)	Recovery	Limits (%)							
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier						
Polycyclic Aromatic Hydrocarbons (QCI	_ot: 51824) - continued	d													
benzo(b+j+k)fluoranthene		E641A	0.015	µg/L	1 µg/L	113	60.0	130							
benzo(g,h,i)perylene	191-24-2	E641A	0.01	µg/L	0.5 µg/L	106	60.0	130							
benzo(k)fluoranthene	207-08-9	E641A	0.01	µg/L	0.5 µg/L	113	60.0	130							
chrysene	218-01-9	E641A	0.01	µg/L	0.5 µg/L	112	60.0	130							
dibenz(a,h)anthracene	53-70-3	E641A	0.005	µg/L	0.5 µg/L	116	60.0	130							
fluoranthene	206-44-0	E641A	0.01	µg/L	0.5 µg/L	120	60.0	130							
fluorene	86-73-7	E641A	0.01	µg/L	0.5 µg/L	118	60.0	130							
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.01	µg/L	0.5 µg/L	118	60.0	130							
methylnaphthalene, 1-	90-12-0	E641A	0.01	µg/L	0.5 µg/L	104	60.0	130							
methylnaphthalene, 2-	91-57-6	E641A	0.01	µg/L	0.5 µg/L	104	60.0	130							
naphthalene	91-20-3	E641A	0.05	µg/L	0.5 µg/L	104	50.0	130							
phenanthrene	85-01-8	E641A	0.02	µg/L	0.5 µg/L	121	60.0	130							
pyrene	129-00-0	E641A	0.01	µg/L	0.5 µg/L	123	60.0	130							
quinoline	6027-02-7	E641A	0.05	μg/L	0.5 μg/L	119	60.0	130							
Perfluoroalkyl Substances (PFAS) (QCL	ot: 54228)														
fluorotelomer sulfonic acid, 6:2 [6:2 FTS]	27619-97-2	E745C	0.01	µg/L	0.3 µg/L	80.0	50.0	150							
fluorotelomer sulfonic acid, 8:2 [8:2 FTS]	39108-34-4	E745C	0.01	µg/L	0.3 µg/L	82.7	50.0	150							
perfluorobutane sulfonic acid [PFBS]	375-73-5	E745C	0.01	µg/L	0.3 µg/L	80.7	50.0	150							
perfluorobutanoic acid [PFBA]	375-22-4	E745C	0.1	µg/L	1 µg/L	145	50.0	150							
perfluoroheptanoic acid [PFHpA]	375-85-9	E745C	0.01	µg/L	0.3 µg/L	92.7	50.0	150							
perfluorohexane sulfonic acid [PFHxS]	355-46-4	E745C	0.01	µg/L	0.3 µg/L	82.7	50.0	150							
perfluorohexanoic acid [PFHxA]	307-24-4	E745C	0.01	µg/L	0.3 µg/L	92.0	50.0	150							
perfluorononanoic acid [PFNA]	375-95-1	E745C	0.01	μg/L	0.3 µg/L	100	50.0	150							
perfluorooctane sulfonic acid [PFOS]	1763-23-1	E745C	0.01	μg/L	0.3 µg/L	84.0	50.0	150							
perfluorooctanoic acid [PFOA]	335-67-1	E745C	0.01	μg/L	0.3 µg/L	96.0	50.0	150							
perfluoropentanoic acid [PFPeA]	2706-90-3	E745C	0.01	µg/L	0.3 µg/L	92.0	50.0	150							



### Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias.

Sub-Matrix: Water	ater			Matrix Spike (MS) Report						
					Spike	Recovery (%)	Recovery L	Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	MS	Low	High	Qualifier	
Dissolved Metals(	(QCLot: 51963)									
VA20A8250-003	Anonymous	aluminum, dissolved	7429-90-5	E421	0.2 mg/L	96.6	70.0	130		
		antimony, dissolved	7440-36-0	E421	0.02 mg/L	98.9	70.0	130		
		cadmium, dissolved	7440-43-9	E421	0.004 mg/L	97.8	70.0	130		
		chromium, dissolved	7440-47-3	E421	0.04 mg/L	92.0	70.0	130		
		cobalt, dissolved	7440-48-4	E421	0.02 mg/L	93.2	70.0	130		
		lead, dissolved	7439-92-1	E421	0.02 mg/L	91.0	70.0	130		
		titanium, dissolved	7440-32-6	E421	0.04 mg/L	90.2	70.0	130		
		zinc, dissolved	7440-66-6	E421	0.4 mg/L	97.1	70.0	130		
Volatile Organic Co	ompounds (QCLot: 5	51876)								
VA20A8760-001	02934-01	benzene	71-43-2	E611H	100 µg/L	92.4	60.0	140		
		dibromoethane, 1,2-	106-93-4	E611H	100 µg/L	99.6	60.0	140		
		ethylbenzene	100-41-4	E611H	100 µg/L	94.6	60.0	140		
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611H	200 µg/L	97.9	60.0	140		
		nonane, n-	111-84-2	E611H	100 µg/L	111	60.0	140		
		styrene	100-42-5	E611H	100 µg/L	80.4	60.0	140		
		toluene	108-88-3	E611H	100 µg/L	92.4	60.0	140		
		trimethylbenzene, 1,2,4-	95-63-6	E611H	100 µg/L	101	60.0	140		
		xylene, m+p-	179601-23-1	E611H	200 µg/L	96.6	60.0	140		
		xylene, o-	95-47-6	E611H	100 µg/L	94.1	60.0	140		
Hydrocarbons (QC	CLot: 51875)									
VA20A8250-003	Anonymous	VHw (C6-C10)		E581.VH+F1	6310 μg/L	84.0	60.0	140		
Perfluoroalkyl Sub	stances (PFAS) (QC	Lot: 54228)								
VA20A8760-007	02934-07	fluorotelomer sulfonic acid, 6:2 [6:2 FTS]	27619-97-2	E745C	0.3 µg/L	79.3	50.0	150		
		fluorotelomer sulfonic acid, 8:2 [8:2 FTS]	39108-34-4	E745C	0.3 µg/L	83.3	50.0	150		
		perfluorobutane sulfonic acid [PFBS]	375-73-5	E745C	0.3 µg/L	76.0	50.0	150		
		perfluorobutanoic acid [PFBA]	375-22-4	E745C	1 µg/L	124	50.0	150		
		perfluoroheptanoic acid [PFHpA]	375-85-9	E745C	0.3 µg/L	90.7	50.0	150		
		perfluorohexane sulfonic acid [PFHxS]	355-46-4	E745C	0.3 µg/L	80.0	50.0	150		
		perfluorohexanoic acid [PFHxA]	307-24-4	E745C	0.3 µg/L	89.3	50.0	150		
		perfluorononanoic acid [PFNA]	375-95-1	E745C	0.3 µg/L	91.3	50.0	150		
	1	perfluorooctane sulfonic acid [PFOS]	1763-23-1	E745C	0.3 µg/L	86.0	50.0	150		

Page	: 10 of 10
Work Order	: VA20A8760
Client	: Golder Associates Ltd.
Project	: 20145856/1000



									A second s		
Sub-Matrix: Water					Matrix Spike (MS) Report						
					Spike	Recovery (%)	Recovery L	.imits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	MS	Low	High	Qualifier		
Perfluoroalkyl Substances (PFAS) (QCLot: 54228) - continued											
VA20A8760-007	02934-07	perfluorooctanoic acid [PFOA]	335-67-1	E745C	0.3 µg/L	93.3	50.0	150			
		perfluoropentanoic acid [PFPeA]	2706-90-3	E745C	0.3 µg/L	90.0	50.0	150			



# QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: VA20A8760	Page	: 1 of 11
Client	: Golder Associates Ltd.	Laboratory	: Vancouver - Environmental
Contact	: Alison Verde	Account Manager	: Amber Springer
Address	: 200-2920 Virtual Way	Address	∶8081 Lougheed Highway
	Vancouver BC Canada V5M 0C4		Burnaby, British Columbia Canada V5A 1W9
Telephone	: 604 297 2036	Telephone	: +1 604 253 4188
Project	: 20145856/1000	Date Samples Received	: 19-Jun-2020 19:19
PO	:	Issue Date	: 26-Jun-2020 13:07
C-O-C number	: 02934		
Sampler	:		
Site	:		
Quote number	: Q80351		
No. of samples received	:7		
No. of samples analysed	:7		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

#### Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

**RPD: Relative Percent Difference.** 

### **Summary of Outliers**

#### **Outliers : Quality Control Samples**

- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- Method Blank value outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

#### **Outliers: Reference Material (RM) Samples**

• <u>No</u> Reference Material (RM) Sample outliers occur.

#### **Outliers : Analysis Holding Time Compliance (Breaches)**

• No Analysis Holding Time Outliers exist.

#### **Outliers : Frequency of Quality Control Samples**

• <u>No</u> Quality Control Sample Frequency Outliers occur.



**Outliers : Quality Control Samples** Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Method Blank (MB) Values								
Perfluoroalkyl Substances (PFAS)	QC-54228-001		perfluorobutanoic acid	375-22-4	E745C	0.22 µg/L MB-LOR	0.1 µg/L	Blank result exceeds
			[PFBA]					permitted value
Result Qualifiers						-		
Qualifier Descrip	tion							
MB-LOR Method below s	Blank exceeds ALS DG fix blank level.	0. Limits of Reporting ha	ave been adjusted for samples w	ith positive hits				



### Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 15:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 15:00 is used for calculation purposes.

Matrix: Water					Eva	aluation: 🗴 =	<ul> <li>Holding time excent</li> </ul>	edance ; ·	🗸 = Within	Holding Tim
Analyte Group	Method	Sampling Date	Ex	traction / P	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holdin	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
02934-01	E421	19-Jun-2020	20-Jun-2020	180	0 days	✓	20-Jun-2020	179	0 days	✓
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
02934-02	E421	19-Jun-2020	20-Jun-2020	180	0 days	1	20-Jun-2020	179	0 days	✓
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
02934-03	E421	19-Jun-2020	20-Jun-2020	180	0 days	1	20-Jun-2020	179	0 days	~
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
02934-04	E421	19-Jun-2020	20-Jun-2020	180	0 days	~	20-Jun-2020	179	0 days	✓
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)						,				,
02934-05	E421	19-Jun-2020	20-Jun-2020	180	0 days	~	20-Jun-2020	179	0 days	✓
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
02934-06	E421	19-Jun-2020	20-Jun-2020	180	0 days	~	20-Jun-2020	179	0 days	✓
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
02934-07	E421	19-Jun-2020	20-Jun-2020	180	0 days	✓	20-Jun-2020	179	0 days	✓
				days				days		



Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🔹	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Hydrocarbons : BC PHC - EPH by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
02934-01	E601A	19-Jun-2020	19-Jun-2020	14	0 days	✓	22-Jun-2020	40 days	2 days	✓
				days						
Hydrocarbons : BC PHC - EPH by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
02934-02	E601A	19-Jun-2020	19-Jun-2020	14	0 days	✓	22-Jun-2020	40 days	2 days	✓
				days						
Hydrocarbons : BC PHC - EPH by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
02934-03	E601A	19-Jun-2020	19-Jun-2020	14	0 days	✓	22-Jun-2020	40 days	2 days	✓
				days						
Hydrocarbons : BC PHC - EPH by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
02934-04	E601A	19-Jun-2020	19-Jun-2020	14	0 days	✓	22-Jun-2020	40 days	2 days	✓
				days						
Hydrocarbons : BC PHC - EPH by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
02934-05	E601A	19-Jun-2020	19-Jun-2020	14	0 days	✓	22-Jun-2020	40 days	2 days	✓
				days						
Hydrocarbons : BC PHC - EPH by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
02934-06	E601A	19-Jun-2020	19-Jun-2020	14	0 days	✓	22-Jun-2020	40 days	2 days	✓
				days						
Hydrocarbons : BC PHC - EPH by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
02934-07	E601A	19-Jun-2020	19-Jun-2020	14	0 days	1	22-Jun-2020	40 days	2 days	✓
				days						
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate)										
02934-01	E581.VH+F1	19-Jun-2020	19-Jun-2020	14	0 days	✓	20-Jun-2020	13 days	0 days	✓
				days						
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate)										
02934-02	E581.VH+F1	19-Jun-2020	19-Jun-2020	14	0 days	1	20-Jun-2020	13 days	0 days	✓
				days						



Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🔹	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	, Times	Eval
			Date	Rec	Actual			Rec	Actual	
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate)										
02934-03	E581.VH+F1	19-Jun-2020	19-Jun-2020	14	0 days	1	20-Jun-2020	13 days	0 days	✓
				days						
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate)										
02934-04	E581.VH+F1	19-Jun-2020	19-Jun-2020	14	0 days	1	20-Jun-2020	13 days	0 days	✓
				days						
Hydrocarbons : VH and F1 by Headspace GC-FID									1	
Glass vial (sodium bisulfate)										
02934-05	E581.VH+F1	19-Jun-2020	19-Jun-2020	14	0 days	✓	20-Jun-2020	13 days	0 days	✓
				days						
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate)										
02934-06	E581.VH+F1	19-Jun-2020	19-Jun-2020	14	0 days	1	20-Jun-2020	13 days	0 days	✓
				days						
Hydrocarbons : VH and F1 by Headspace GC-FID									1	
Glass vial (sodium bisulfate)										
02934-07	E581.VH+F1	19-Jun-2020	19-Jun-2020	14	0 days	✓	20-Jun-2020	13 days	0 days	✓
				days						
Perfluoroalkyl Substances (PFAS) : PFAS in Water by LC-MS-MS										
HDPE (teflon free)										
02934-01	E745C	19-Jun-2020	26-Jun-2020	14	6 days	1	26-Jun-2020	7 days	0 days	✓
				days						
Perfluoroalkyl Substances (PFAS) : PFAS in Water by LC-MS-MS									· · · ·	
HDPE (teflon free)										
02934-02	E745C	19-Jun-2020	26-Jun-2020	14	6 days	1	26-Jun-2020	7 days	0 days	✓
				days						
Perfluoroalkyl Substances (PFAS) : PFAS in Water by LC-MS-MS								_		
HDPE (teflon free)										
02934-03	E745C	19-Jun-2020	26-Jun-2020	14	6 days	~	26-Jun-2020	7 days	0 days	✓
				days						
Perfluoroalkyl Substances (PFAS) : PFAS in Water by LC-MS-MS										
HDPE (teflon free)						_				
02934-04	E745C	19-Jun-2020	26-Jun-2020	14	6 days	1	26-Jun-2020	7 days	0 days	✓
				days						



Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🗸	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	r Times Actual	Eval
Perfluoroalkyl Substances (PFAS) : PFAS in Water by LC-MS-MS										
HDPE (teflon free)										
02934-05	E745C	19-Jun-2020	26-Jun-2020	14 days	6 days	1	26-Jun-2020	7 days	0 days	1
Perfluoroalkyl Substances (PFAS) : PFAS in Water by LC-MS-MS										
HDPE (teflon free)										
02934-06	E745C	19-Jun-2020	26-Jun-2020	14 days	6 days	~	26-Jun-2020	7 days	0 days	✓
Perfluoroalkyl Substances (PFAS) : PFAS in Water by LC-MS-MS										
HDPE (teflon free) 02934-07	E745C	19-Jun-2020	26-Jun-2020	14 days	6 days	~	26-Jun-2020	7 days	0 days	√
Polycyclic Aromatic Hydrocarbons : PAHs by LVI GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate) 02934-01	E641A	19-Jun-2020	19-Jun-2020	14 days	0 days	1	20-Jun-2020	40 days	0 days	✓
Polycyclic Aromatic Hydrocarbons : PAHs by LVI GC-MS					1					
Amber glass/Teflon lined cap (sodium bisulfate) 02934-02	E641A	19-Jun-2020	19-Jun-2020	14 days	0 days	√	20-Jun-2020	40 days	0 days	✓
Polycyclic Aromatic Hydrocarbons : PAHs by LVI GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate) 02934-03	E641A	19-Jun-2020	19-Jun-2020	14 days	0 days	✓	20-Jun-2020	40 days	0 days	√
Polycyclic Aromatic Hydrocarbons : PAHs by LVI GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate) 02934-04	E641A	19-Jun-2020	19-Jun-2020	14 days	0 days	~	20-Jun-2020	40 days	0 days	✓
Polycyclic Aromatic Hydrocarbons : PAHs by LVI GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate) 02934-05	E641A	19-Jun-2020	19-Jun-2020	14 days	0 days	✓	20-Jun-2020	40 days	0 days	√
Polycyclic Aromatic Hydrocarbons : PAHs by LVI GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate) 02934-06	E641A	19-Jun-2020	19-Jun-2020	14 days	0 days	1	20-Jun-2020	40 days	0 days	✓



Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🔹	<pre>/ = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	q Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Polycyclic Aromatic Hydrocarbons : PAHs by LVI GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate)										
02934-07	E641A	19-Jun-2020	19-Jun-2020	14	0 days	✓	20-Jun-2020	40 days	0 days	✓
				days						
Volatile Organic Compounds : VOCs (BC Special List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
02934-01	E611H	19-Jun-2020	19-Jun-2020	14	0 days	1	20-Jun-2020	13 days	0 days	✓
				days						
Volatile Organic Compounds : VOCs (BC Special List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
02934-02	E611H	19-Jun-2020	19-Jun-2020	14	0 days	✓	20-Jun-2020	13 days	0 days	✓
				days						
Volatile Organic Compounds : VOCs (BC Special List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
02934-03	E611H	19-Jun-2020	19-Jun-2020	14	0 days	1	20-Jun-2020	13 days	0 days	✓
				days						
Volatile Organic Compounds : VOCs (BC Special List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
02934-04	E611H	19-Jun-2020	19-Jun-2020	14	0 days	1	20-Jun-2020	13 days	0 days	✓
				days						
Volatile Organic Compounds : VOCs (BC Special List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
02934-05	E611H	19-Jun-2020	19-Jun-2020	14	0 days	✓	20-Jun-2020	13 days	0 days	~
				days						
Volatile Organic Compounds : VOCs (BC Special List) by Headspace GC-MS										
Glass vial (sodium bisulfate)						,				,
02934-06	E611H	19-Jun-2020	19-Jun-2020	14	0 days	✓	20-Jun-2020	13 days	0 days	✓
				days						
Volatile Organic Compounds : VOCs (BC Special List) by Headspace GC-MS										
Glass vial (sodium bisulfate)	50444					,				
02934-07	E611H	19-Jun-2020	19-Jun-2020	14	0 days	*	20-Jun-2020	13 days	0 days	✓
				days						

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).



# **Quality Control Parameter Frequency Compliance**

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water	Evaluation: $\star$ = QC frequency outside specification; $\star$ = QC frequency within specification.									
Quality Control Sample Type			Co	unt		Frequency (%)				
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation			
Laboratory Duplicates (DUP)										
Dissolved Metals in Water by CRC ICPMS	E421	51963	1	10	10.0	5.0	✓			
PFAS in Water by LC-MS-MS	E745C	54228	1	8	12.5	5.0	✓			
VH and F1 by Headspace GC-FID	E581.VH+F1	51875	1	9	11.1	5.0	✓			
VOCs (BC Special List) by Headspace GC-MS	E611H	51876	1	7	14.2	5.0	✓			
Laboratory Control Samples (LCS)										
BC PHC - EPH by GC-FID	E601A	51823	1	7	14.2	5.0	✓			
Dissolved Metals in Water by CRC ICPMS	E421	51963	1	10	10.0	5.0	✓			
PAHs by LVI GC-MS	E641A	51824	1	7	14.2	5.0	✓			
PFAS in Water by LC-MS-MS	E745C	54228	1	8	12.5	5.0	✓			
VH and F1 by Headspace GC-FID	E581.VH+F1	51875	1	9	11.1	5.0	✓			
VOCs (BC Special List) by Headspace GC-MS	E611H	51876	1	7	14.2	5.0	✓			
Method Blanks (MB)										
BC PHC - EPH by GC-FID	E601A	51823	1	7	14.2	5.0	✓			
Dissolved Metals in Water by CRC ICPMS	E421	51963	1	10	10.0	5.0	✓			
PAHs by LVI GC-MS	E641A	51824	1	7	14.2	5.0	✓			
PFAS in Water by LC-MS-MS	E745C	54228	1	8	12.5	5.0	✓			
VH and F1 by Headspace GC-FID	E581.VH+F1	51875	1	9	11.1	5.0	✓			
VOCs (BC Special List) by Headspace GC-MS	E611H	51876	1	7	14.2	5.0	✓			
Matrix Spikes (MS)										
Dissolved Metals in Water by CRC ICPMS	E421	51963	1	10	10.0	5.0	✓			
PFAS in Water by LC-MS-MS	E745C	54228	1	8	12.5	5.0	✓			
VH and F1 by Headspace GC-FID	E581.VH+F1	51875	1	9	11.1	5.0	✓			
VOCs (BC Special List) by Headspace GC-MS	E611H	51876	1	7	14.2	5.0	✓			



# Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver -	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS.
	Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
VH and F1 by Headspace GC-FID	E581.VH+F1	Water	BC MOE Lab Manual / CCME PHC in Soil - Tier	Volatile Hydrocarbons (VH and F1) is analyzed by static headspace GC-FID. Samples are prepared in headspace vials and are heated and agitated on the headspace
	Vancouver -		1 (mod)	autosampler, causing VOCs to partition between the aqueous phase and the
	Environmental			headspace in accordance with Henry's law.
BC PHC - EPH by GC-FID	E601A	Water	BC MOE Lab Manual	Extractable Petroleum Hydrocarbons (EPH) are analyzed by GC-FID.
	Vancouver -			
	Environmental			
VOCs (BC Special List) by Headspace GC-MS	E611H	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the
	Vancouver -			headspace autosampler, causing VOCs to partition between the aqueous phase and
	Environmental			the headspace in accordance with Henry's law.
PAHs by LVI GC-MS	E641A	Water	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by large volume injection (LVI) GC-MS.
	Vancouver -			
	Environmental			
PFAS in Water by LC-MS-MS	E745C	Water	MOECC E3533	An aliquot of water is analyzed for PFAs by direct injection LC/MS/MS
	Waterloo -			
	Environmental			
VPH: VH-BTEX-Styrene	EC580A	Water	BC MOE Lab Manual (VPH in Water and	Volatile Petroleum Hydrocarbons (VPH) is calculated as follows: VPHw = Volatile Hydrocarbons (VH6-10) minus benzene, toluene, ethylbenzene, xylenes (BTEX) and
	Vancouver -		Solids) (mod)	styrene.
	Environmental			
LEPH and HEPH: EPH-PAH	EC600A	Water	BC MOE Lab Manual (LEPH and HEPH)	Light Extractable Petroleum Hydrocarbons (LEPH) and Heavy Extractable Petroleum Hydrocarbons (HEPH) are calculated as follows: LEPH = Extractable Petroleum
	Vancouver -		(mod)	Hydrocarbons (EPH10-19) minus Acenaphthene, Acridine, Anthracene, Fluorene,
	Environmental			Naphthalene and Phenanthrene; HEPH = Extractable Petroleum Hydrocarbons (EPH19-32) minus Benz(a)anthracene, Benzo(a)pyrene, Fluoranthene, and Pyrene.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals Water Filtration	ED404	Water	APHA 3030B	Water samples are filtered (0.45 $\mu$ m) and preserved with HNO3
	EP421	vvalci		
	Vancouver -			
	Environmental			

Page	: 11 of 11
Work Order	: VA20A8760
Client	: Golder Associates Ltd.
Project	20145856/1000



Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the
				headspace autosampler. An aliquot of the headspace is then injected into the
	Vancouver -			GC/MS-FID system.
	Environmental			
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are
				extracted using a hexane liquid-liquid extraction.
	Vancouver -			
	Environmental			
Preparation of PFAS in Water by Direct	EP745C	Water	MOECC E3533	An aliquot of water is analyzed for PFAs by direct injection LC/MS/MS
Injection				
	Waterloo -			
	Environmental			

	Go	lder ciates			Projec	ct Number:	20145	856	/100	0					Labo	oratory	Name	e: A	ils	Ehi	ATON	menlal
0 – 292 ancouve	20 Virtual Wa er, British Co	y umbia, Canad	la V5M 00	C4	Short		B Comox	Snow	BRD Er	UNICA Golder ( UP Alc	Contac	:t: )erde	) 14		Addı	ess:	807	51 2	00	He	ED	HWY BUIRD
elephon	e (604) 296-	4200 Fax (6	04) 298-	5253	av	erde	@go	older.cor	n alc	nna-um	22. 27124	/ @g	joldei	r.com		77	837	103	254	1	Amb	DER SPRINCIER
Office	Name: Vancou	Ver, Virtu	AC W	AY		EQui	IS Facility C IS upload:	Code: <u>2  </u>	7832	270	-				litena. D.Z.ni	nalys	es Rec	quired				
Turna Criteri	round Time: ia: 🗹 CSR	Ø 24 hr Ø CCI	ме	□ 48 hr □ BC W	ater Quali	☐ 72 hr ty □	) Other	Ŕ	Regular (	(5 Days)	ers				1, 1/04	\$7.6P		51		Cher	ove)	
Note:	Final Report	s to be issued	by e-ma	il		Quote No	 B Ø	0351	l		ontain				N-mon	hylle	Å	H/0	v	han	AT abc	
Sampl Numb	e Control ber (SCN)	Sample Location	Sa. #	Sample Depth (m)	Sample Matrix (over)	Date Sampled (D / M / Y)	Time Sampled (HH:MM)	Sample Type (over)	QAQC Code (over)	Related SCN (over)	Number of C	LEPH	BH	B7∈×	Aluminum, Chi	, 2, 4 trime	PFOS, Pro	VH /EP	n-nonu	1,2 dibic	RUSH (Select 1	Remarks (over)
2931	( - 01	40-05WM			WG	19106120	10:55				6	X	×	X	$\times$	×	×	X	×	×		
. (	- 02	410020-03			wG		11:55				6	×	X	X	X	$\times$	×	$\times$	×	×		
	- 03	MW20-01			WG		1235				6	×	×	$\times$	×	$\times$	$\times$	$\times$	$\times$	$\times$		
$- \mid$	- 04	MW20-02	· · · · ·		WG		13 <b>:20</b>		FD	2934-05	6	$\times$	$\times$	$\times$	$\times$	¥.	$\times$	$\times$	$\times$	×	$\times$	24 HI TAT
	- 05	MW20-02			WG		13:20		FUA	2.434-04	6	$\times$	$ $ $\leq$	$\times$	×_	$\times$	X	X	$\times$	$\times$	X	24 LTAT
J	- 06	EquiMANEN			wa		13:30		ËB	 	6	X	$\times$	$\checkmark$	$\times$	$\times$	$\times$	$\times$	$ \times $	$\times$		
	- 07	The Brank.			WG		19:00		TB.		6	$\times$	$\times$	$\times$	$\times$	$\times$	X	$\times$	$\times$	${\boldsymbol{x}}$		
<u></u>	- 08				(	Environme	ental Divi r	sion														
	- 09 - 10				 	Work Ord	er Reference 0A87	ê0														
	- 11																		-			
	- 12									 			<u> </u>									
	s Signature:			Relingu	ished _i				ER	Date	46	2020	ודו לין <b>ג</b>	ne 9°0()	>	Re	ceived	by: §	Signat	ure	Cor	npany
ommer S	unples O	nie		Method	of	relephone : + i	004 200 4100		þ.:			Re	ceiveo	l for La	ab by;	Ū		Da	ite	in	19	Time 7:19
2 ek	-clion lir	nit must (CME	meet	Shipped	l by:			Shipme Seal Int	nt Conditi act:	ion:		Te \	mp (°C 2_1	<u>})</u>   C	ooler o	pene	d by:	Da	ite	<u>, é</u>		Time
	·. ·						WHITE	Golder	Conv	YELLOW:	Lab C	onv			1	(1)	CUV	Ner		Ŷ		

Autorite a

---

APPENDIX G

Geotechnical Investigation Technical Memorandum





**TECHNICAL MEMORANDUM** 

DATE 13 July 2020

Project No. 20145856-007-TM-Rev0

TO Dave Osguthorpe Public Services and Procurement Canada

FROM Nikki Manche, Shawn Lange

EMAIL nicola_manche@golder.com, shawn_lange@golder.com

### PRELIMINARY GEOTECHNICAL INVESTIGATION – FACTUAL RESULTS CFB COMOX SNOWBIRD ENVIRONMENTAL CLEANUP, 2425 GLENVIEW AVENUE, KAMLOOPS, BC

Golder Associates Ltd. (Golder) was retained by Public Services and Procurement Canada (PSPC) on behalf of the Department of National Defence (DND) to conduct a Stage 2 Preliminary Site Investigation (Stage 2 PSI) at the location of the Royal Canadian Air Force (RCAF) aircraft crash site (the Site) in Kamloops, BC. As part of this investigation, Golder undertook geotechnical review, in-situ testing, and laboratory testing at one location on site to obtain information for the geotechnical aspects of the environmental cleanup as per our proposed scope of work in the amendment letter (our reference 20145856-002-L-Rev0), dated 8 June 2020.

This technical memorandum summarises the factual results of the geotechnical review, in-situ testing and laboratory testing.

This report was prepared in accordance with terms and conditions of the Public Works and Government Services Canada (PWGSC) Contaminated Sites Characterization Contract (reference EZ897-191444/002/Van) dated 25 October 2019 and Golder's workplan dated 20 May 2020 and subsequent amendment titled "*Request for Amendment (#2) to Task Authorization 700514134 to Undertake Additional Soil Sampling to Support the Department of National Defence Snowbird Kamloops Environmental Clean-up Project*" dated 8 June 2020.

# 1.0 BACKGROUND

Golder undertook a field investigation program between 10 and 12 June 2020 for the Stage 2 PSI which included hydro-excavation with auger drilling at five of these locations. Further details are provided in Golder's Draft Remediation Plan Report (our reference 20145856-005-R-RevB) dated 10 July 2020.

# 2.0 GEOTECHNICAL INVESTIGATION

Golder undertook a geotechnical Site visit during the Stage 2 PSI on 11 June 2020. During the Site visit, Nikki Manche from Golder's geotechnical group observed the hydro-excavated holes which had been undertaken the previous day, inspected the solid stem auger drilling and Dynamic Cone Penetration Test (DCPT) carried out at monitoring well MW20-01, and provided recommendations for geotechnical laboratory testing of the collected samples. The hydro-vacuum excavation work was carried out by Lynx Creek Industrial & Hydrovac Ltd. (Lynx Creek) from Kamloops and the auger drilling was carried out using a truck-mounted auger drilling rig owned and operated by On The Mark Locates Ltd. (On the Mark) from Kelowna.

The location of MW20-01 was adjacent to the north-west corner of the house at 2425 Glenview Avenue and is shown on the attached site plan, in Figure 1. A summary of the observations and test results are summarised in the following sections.

# 2.1 Subsurface Conditions

The soils observed within the auger drilling at MW20-01 consisted of alluvial firm silts and compact sands in the upper 3.3 metres below ground surface, overlying loose to compact sand becoming coarser and dense from approximately 5.2 metres below ground surface to the auger hole termination depth of approximately 6.3 metres below ground surface. Based on a review of samples retrieved from other auger holes across the site and the hydro-excavated holes across the site, the ground conditions described above were similar across the Site, but some variability was observed. Detailed descriptions of the soils encountered in MW20-01 are attached as Attachment 1.

Groundwater was observed in MW20-01 from approximately 5 metres below ground surface in the open auger hole at the time of drilling. During groundwater sampling, one week post groundwater well installation, groundwater was observed to be approximately 4.8 metres below ground surface. It is expected that groundwater elevation will fluctuate based on seasonal conditions.

Hydro-excavated hole sidewalls showed minimal sloughing in the upper 3 metres. The MW20-01 auger hole sidewall showed signs of sloughing below approximately 4.7 metres below ground surface and was unstable below the groundwater level.

# 2.2 Dynamic Cone Penetration Test Results

A DCPT was undertaken at the MW20-01 auger hole location in advance of putting down the auger hole. The DCPT measured the in-situ relative density of the soil that is approximately equivalent to Standard Penetration Test (SPT) results. The results of the DCPT probe are shown in Table 1 below as blow counts per 300 mm penetration.

### Table 1: DCPT Results at MW20-01

Depth Below Ground Surface	DCPT Blows/ 300 mm
0 – 3 m	N/A – Hydro Vacuum
3.0 – 3.3 m	13
3.3 – 3.6 m	14
3.6 – 3.9 m	12
3.9 – 4.2 m	8
4.2 – 4.5 m	6
4.5 – 4.8 m	8
4.8 – 5.1 m	15
5.1 – 5.4 m	31
5.4 – 5.7 m	36
5.7 – 6.0 m	47
6.0 – 6.3 m	48

# 2.3 Geotechnical Laboratory Test Results

Geotechnical laboratory testing of four selected samples was undertaken including four moisture content tests and four particle size distribution analyses/sieve tests with results summarised in Table 2 below. Laboratory test certificates are provided in Attachment 2.

Approximate Sample	Moisture Content (%)	Particle Size Distribution							
Surface		GRAVEL (%)	SAND (%)	SILT & CLAY (%)					
0.9 – 1.2 m	20	2	33	65					
2.4 – 2.7 m	21	1	37	62					
4.0 – 4.3 m	4	0	89	11					
5.4 – 5.7 m	16	3	91	6					

Table 2: Geotechnical Laboratory Test Results at MW20-01

# 3.0 ASSUMPTIONS

- The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.
- Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt and variability is expected between testholes.

# 4.0 NOTICE TO READERS

This report was prepared in accordance with terms and conditions of the Public Works and Government Services Canada (PWGSC) Contaminated Sites Characterization Contract (reference EZ897-191444/002/Van) dated 25 October 2019 and Golder's workplan dated 20 May 2020 and amendment titled "Request for Amendment (#2) to Task Authorization 700514134 to Undertake Additional Soil Sampling to Support the Department of National Defence Snowbird Kamloops Environmental Clean-up Project" dated 8 June 2020.

The inferences concerning Site conditions contained in this report are based on information obtained during the assessment conducted by Golder personnel, and are based solely on the condition of the properties at the time of the Site reconnaissance, supplemented by historical and interview information obtained by Golder, as described in this report.

This report was prepared, based in part, on information obtained from historic information sources. In evaluating the subject Site, Golder has relied in good faith on information provided. We accept no responsibility for any deficiency or inaccuracy contained in this report as a result of our reliance on the aforementioned information.

The findings and conclusions documented in this report have been prepared for the specific application to this project, and have been developed in a manner consistent with that level of care normally exercised by environmental and geotechnical professionals currently practicing under similar conditions in the jurisdiction.

With respect to regulatory compliance issues, regulatory statutes are subject to interpretation. These interpretations may change over time, these should be reviewed.

Project No. 20145856-007-TM-Rev0 13 July 2020

### 5.0 CLOSURE

We trust this information is sufficient for your needs at this time. Should you have any questions or concerns, please do not hesitate to contact the undersigned.

Golder Associates Ltd.

R -- -A.

Nikki Manche, BE Geotechnical Consultant

NM/SL/Imk

13,2020 LANGE S # 30149

Shawn Lange, PEng Associate, Senior Geotechnical Engineer

Attachments: Figure 1 - Investigation Locations

Attachment 1 - Monitoring Well Log MW20-01 (with Geotechnical data included) Attachment 2 - Laboratory Certificates of Analysis (Particle Size Distributions only)

https://golderassociates.sharepoint.com/sites/128990/project files/6 deliverables/issued to client_for wp/20145856-007-tm-rev0/20145856-007-tm-rev0-geotech inv_factual memo-13july_20.docx


THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIED FROM

**ATTACHMENT 1** 

Monitoring Well Log MW20-01 (with Geotechnical data included)



PROJECT No.: 20145856 / 1000 / 2	

#### **RECORD OF MONITORING WELL: MW20-01**

SHEET 1 OF 1 DATUM: Ground Surface

CLIENT: Public Services and Procurement Canada PROJECT: CFB Comox Snowbird Environmental Cleanup LOCATION: Kamloops, BC N: 5619948.42 E: 682392.26

DRILLING DATE: 06/11&12/2020 DRILLING CONTRACTOR: Lynx Creek/On the Mark

щ		PP	SOIL PROFILE		GE	OTE	снs	AMPL	ES (	CHEMISTRY SAMI	PLES	PI pp	D m			⊕	DYNAN RESIS	IIC PEI	BLC	RATION	n _ o	PIEZOMETEI STANDPIPE	R,
SCAL		MET		ГОТ	2		.3m	ö	%	۲	l 🛛	5	50 10	00 18	50 200		20	40	60	80	STIN	OR	R
TH		NG L	DESCRIPTION		- BE	Æ	/S/0.	N N N			-YSE	PI	D				WA	TER C	ONT	FENT %	ĔË.	INSTALLATIO	R N
DEF		동[글]		LA DEPT	HĮŞ		۲0	US S			NAL	рр	m				Wp	—0 ^V	1	— w	I AB		
		ä		LS (III)			B		~		~	5	00 10	00 15	00 200	0	10	20	30	40		4	
	0	_	Ground Surface	345.	47																		
E			(ML-SM) SILT and SAND;brown, trace organics no staining: moist firm	. 0.	1 00	HV	1		F	1 02926-04/05		₽										Flushmount &	
_																						Concrete	16:
E																						Sand	3
-			- grades to no organics at 0.6m																			Sanu	- 1
_	1				2	ш	-		$\vdash$	2 02026 06													
-	'				-		1		H	2 02920-00		ľ						Ť					
-																							- 20
-		lrova						1	100														
-		Hyc																					
_																						Bentonite Chips	
-	2																						
_																							
_					3	HV	1			3 02926-07		•						6					- 10 -
_				342.	72		1		F														
_			(SP) SAND, fine; light brown, no	342.	57																	1	š <u>š</u> _
-	3	-	(SM) SILTY SAND, fine; brown, no	2	30				_													Granular Bentonite	
_			staining; moist, firm.	342.	11																	PVC Pipe	: B =
_			(SW) SAND, fine to medium; grey, no	3.	35																	Vapour Probe	
-			staining, moist, iouse to compact.																			Sand	
-				· · · · · · · · · · · · · · · · · · ·				1									/					Bentonite	
-	4	Casin			4	AS	1			4 02927-03		€											
E	4	i.																					레 [] -
_		sing:																					레 [] -
-	1	(Caller																					:HU =
_		uger Nou															V					i i	:日日:
-	5	em A	- wet at 5 m depth																			10/20 Silica	泪:[-]-
_		ow S		· · · · · ·																		Sand	出!:
_		토		· · · · · · · ·			4	2										N				#10 Screen	:日日 :
_					5	AS	+		⊢	5 02927-04		€						٥N					泪!!!
_			- grades to fine to coarse at 5.2m																			ľ	:日白 :
-	6		depth, becoming dense															'					旧上
_	-			339.	22		-		+						$\vdash$	+		+	+			<u> </u>	
_			End of Monitoring Well.																				_
_																							_
9/7/20																							_
ames	7																						
18 ryj																							-
RO) 20																							_
ENVIE																							_
(GEO																							-
- HOLE	8																						_
BORE																							-
n:BC																							-
out For																							-
- -																							-
oject II	9																						-
ique Pi																							-
IN UN																							-
I I																							-
																							-
IT_GAI	10																						_
Iver:GIb												L	S			SIFIC		N SY		M: GAC	 cs		
I IM Sei	DEP	TH S	SCALE				1		G		F	P						L	OG	GED: F	RM		
lational	1:	50				<	V		J			•						C⊦	ECł	KED: E	νK		
_							_					_	_	_		_			_				

**ATTACHMENT 2** 

### Laboratory Certificates of Analysis





819-58th Street, Saskatoon, SK S7K 6X5



### **Summary of Results**

Unified Soil Classification System (USCS)				
Size Class	Size Range	Wt. (%)		
Cobbles	> 3"	0		
Gravel	4.75mm - 3"	0		
Coarse Sand	2.0mm - 4.75mm	0		
Medium Sand	0.425mm - 2.0mm	25		
Fine Sand	0.075mm - 0.425mm	64		
Fines	< 0.075mm	11		

Canadian Soil Survey Committee (CSSC)				
Size Class	Size Range	Wt. (%)		
Cobbles	> 3"	0		
Gravel	2mm - 3"	1		
Sand	0.05mm - 2mm	92		
Silt	0.002mm - 0.05mm	7		
Clay	< 0.002mm	1		
Texture	Sample contains	material grea	ater than 4.75mm	

Method Reference: Can. Soc. Soil Sci. (1993) Method 47.2



819-58th Street, Saskatoon, SK S7K 6X5



#### **Summary of Results**

Unified Soil Classification System (USCS)				
Size Class	Size Range	Wt. (%)		
Cobbles	> 3"	0		
Gravel	4.75mm - 3"	3		
Coarse Sand	2.0mm - 4.75mm	9		
Medium Sand	0.425mm - 2.0mm	43		
Fine Sand	0.075mm - 0.425mm	40		
Fines	< 0.075mm	6		

Canadian Soil Survey Committee (CSSC)				
Size Class	Size Range	Wt. (%)		
Cobbles	> 3"	0		
Gravel	2mm - 3"	11		
Sand	0.05mm - 2mm	84		
Silt	0.002mm - 0.05mm	4		
Clay	< 0.002mm	0		
Texture	Sample contains	material grea	ater than 4.75mm.	



819-58th Street, Saskatoon, SK S7K 6X5



### Summary of Results

Unified Soil Classification System (USCS)				
Size Class	Size Range	Wt. (%)		
Cobbles	> 3"	0		
Gravel	4.75mm - 3"	2		
Coarse Sand	2.0mm - 4.75mm	1		
Medium Sand	0.425mm - 2.0mm	3		
Fine Sand	0.075mm - 0.425mm	29		
Fines	< 0.075mm	65		

Canadian Soil Survey Committee (CSSC)				
Size Class	Size Range	Wt. (%)		
Cobbles	> 3"	0		
Gravel	2mm - 3"	3		
Sand	0.05mm - 2mm	42		
Silt	0.002mm - 0.05mm	48		
Clay	< 0.002mm	8		
Texture	Sample contains	material grea	ater than 4.75mm.	



819-58th Street, Saskatoon, SK S7K 6X5



### **Summary of Results**

Unified Soil Classification System (USCS)				
Size Class	Size Range	Wt. (%)		
Cobbles	> 3"	0		
Gravel	4.75mm - 3"	1		
Coarse Sand	2.0mm - 4.75mm	0		
Medium Sand	0.425mm - 2.0mm	2		
Fine Sand	0.075mm - 0.425mm	35		
Fines	< 0.075mm	62		

Canadian Soil Survey Committee (CSSC)				
Size Class	Size Range	Wt. (%)		
Cobbles	> 3"	0		
Gravel	2mm - 3"	1		
Sand	0.05mm - 2mm	48		
Silt	0.002mm - 0.05mm	46		
Clay	< 0.002mm	5		
Texture	Sample contains	material grea	ater than 4.75mm.	

Method Reference: Can. Soc. Soil Sci. (1993) Method 47.2



golder.com

# ANNEX C Structural Information



15 July 2020

Reference No. 20145856-012-L-Rev1

Dave Osguthorpe Public Services and Procurement Canada 401-1230 Government Street Victoria, BC V8W 3X4

#### PRE-REMEDIATION STRUCTURAL ASSESSMENT OF DAMAGED BASEMENT CONCRETE WALL FOR THE RESIDENCE AT 2425 GLENVIEW AVENUE, KAMLOOPS, BC – SNOWBIRD ENVIRONMENTAL CLEANUP PROJECT

Dear Mr. Osguthorpe:

Golder Associates Ltd. (Golder) subcontracted Watson Engineering Ltd (Watson) of Kamloops, BC to undertake a pre-remediation structural assessment of the basement foundation and walls of the home located at 2425 Glenview Avenue. Please find attached a pre-remediation structural assessment memorandum report prepared by Watson in support of the Snowbird Environmental Cleanup Project.

The work was completed in accordance with the terms and conditions of Public Works and Government Services Canada (PWGSC) Contaminated Sites Characterization Contract (reference EZ897-191444/002/VAN) dated 25 October 2019, Golder's workplan dated 20 May 2020, and the amendment titled, "*Request for Amendment (#2) to Task Authorization 700514134 to Undertake Additional Soil Sampling to Support the Department of National Defence Snowbird Kamloops Environmental Clean-up Project*" dated 8 June 2020.

We trust the attached meets with your requirements. Should there be any questions, please contact the undersigned.

Yours very truly,

Golder Associates Ltd.

Turle

Alison Verde, PEng Environmental Engineer

AV/EvK/lmk

Erik von Krogh, RPBio, PMP Associate, Project Director

Attachment: Watson Engineering Ltd. Memorandum: Structural Assessment of Damaged Concrete Basement Wall

https://golderassociates.sharepoint.com/sites/128990/project files/6 deliverables/issued to client_for wp/20145856-012-I-rev1/20145856-012-I-rev1-foundation assessment-15jul_20.docx

Golder Associates Ltd. Suite 200 - 2920 Virtual Way Vancouver, BC, V5M 0C4 Canada

T: +1 604 296 4200 +1 604 298 5253

760 Seymour Street, Kamloops, BC V2C 2H4 Voice: (250) 374-2244 E-mail: watson@direct.ca

#### Memorandum

To: Golder Associ Attn: Alanna Umpl	ciates Ltd. hrey, AScT	E-mail: Title:	Alanna_Umphrey@golder.com Environmental Technician	
From: Andrew Wate	son, P. Eng., Struct. Eng.	Date:	2020 July 13	
Project Number: 2067				
Project Name:2425 Glenview Avenue Residence Aircraft Accident DamageSubject:Structural Assessment Of Damaged Concrete Basement Wall				
Number Of Pages Including This Sheet: 11				
CC: Erik Von Krogh	Erik_VonKrogh@go	older.com		

### <u>Message</u>

Further to your request, we have completed an assessment of the Concrete Basement Wall at 2425 Glenview Avenue in Kamloops BC. We note that an initial site visit for this assessment was completed by Andrew Watson P.Eng. Struct. Eng. and Stephan Anderson AScT on 2020 June 26 with an additional follow-up site visit by Stephan Anderson AScT on 2020 June 30.

We understand that the Concrete Basement Wall was damaged as a result of an Aircraft Accident - specifically catastrophic loss of a Canadair CT-114 Tutor on 2020 May 17 resulting in impact immediately north of the Residence (as shown in Photo 1 and Photo 2) – and that the main purpose of our assessment is to consider the condition of the Concrete Basement Wall and the feasibility of safely excavating soil adjacent to (and perhaps under) the Concrete Basement Wall down to an elevation of approximately 4.3m below existing surface grade to permit removal/remediation of soil materials contaminated with jet fuel.

We note that the exact age of the Residence is unknown; however, its construction is typical of Residential Structures constructed in the area in the 1960s and 1970s. It is comprised of a single storey Timber Superstructure consisting of Pre-Fabricated Timber Trusses on Timber Stud Walls above ground on a Concrete Basement partly buried below ground. It was noted that the Concrete Basement Walls appeared to be constructed after installation of Floor Joists for the Main Floor as the Floor Joists were partly embedded in concrete.

We note that the Timber Superstructure on the west end of the Residence suffered significant damage due to fire after the initial impact including damage to the Roofing, extensive damage to the Roof Trusses caused by fire within the attic space and subsequent suppression of the fire (as shown in Photo 4), and damage to the Timber Stud Wall along the north side of the Residence. Significant damage also occurred to the Concrete Basement Wall due to indirect impact and significant transient soil pressures arising from the substantial impact of the Aircraft on soils immediately adjacent to the Concrete Basement Wall (as shown in Photos 5 through 8).

We note that the impact from the Aircraft resulted in contamination of soil materials immediately adjacent to the Concrete Basement Wall with jet fuel requiring remediation/removal of soil materials - and that subsequent soils investigation has revealed soil materials contaminated by hydrocarbons to a depth of at least 4.3m below grade immediately adjacent to the Concrete Basement Wall. We further note that the area of impact and anticipated excavation lies over or in close proximity to building utility services including buried water, sewer and gas lines (as shown in Photo 2 & Dwg. 1) - as well as overhead electrical utilities destroyed during the accident and/or fire.

# Watson Engineering Ltd. 760 Seymour Street, Kamloops, BC V2C 2H4 Voice: (250) 374-2244 E-mail: <u>watson@direct.ca</u>

### Memorandum



Photo 1: Front View Of 2425 Glenview Ave. From The North Side. Note Approximate Area Of Aircraft Impact And Anticipated Excavation For Remediation/Removal Of Contaminated Soils.



Photo 2: Kamloops GIS Location Map of 2425 Glenview Drive. Note Estimated Locations For Building Services Below Grade.

# Watson Engineering Ltd. 760 Seymour Street, Kamloops, BC V2C 2H4 Voice: (250) 374-2244 E-mail: <u>watson@direct.ca</u>

### Memorandum



Photo 3: Damage At North West Corner Of Residence Including Damage To Eaves/Soffit, Superficial Fire Damage To North Face Of Timber Stud Wall And Crack In Concrete Basement Wall Due To Exterior Soil Pressure.



Photo 4: Fire Damage To Roof Trusses And Ceiling At Main Floor Bedroom Inside Residence Immediately Adjacent Aircraft Impact Location.

760 Seymour Street, Kamloops, BC V2C 2H4 Voice: (250) 374-2244 E-mail: watson@direct.ca

#### Memorandum



Photo 5: Close Up Of Crack In Concrete Basement Wall At North West Corner Due To Exterior Soil Pressure

As noted previously, the Basement is partly buried and is constructed of concrete. The perimeter Concrete Basement Wall is approximately 2.3m (7' 6") tall and 200mm (8") thick and appears to be constructed without reinforcing steel. The Floor Slab is approximately 100mm (4") thick concrete based upon one hole cored through the Floor Slab as part of the Geotechnical/Environmental Investigation. It is unclear whether the Floor Slab is reinforced or not. No reinforcing steel was visible at the core hole; however, only one hairline crack was visible suggesting that the Floor Slab may have some reinforcement.

The Concrete Basement Walls appear to have been formed with plywood inside and out with steel snap ties connecting the formed surfaces. The exterior concrete above grade appears textured due to removal of stucco (as shown in Photo 5) – probably using a hammer-drill/chisel. The wall itself has areas of poor consolidation of concrete, minor cold joints, and a few hairline cracks typical of older residential construction (as shown in Photo 7); however, there is no evidence of water seepage through the concrete and the Concrete Basement Wall appears to have been generally sound prior to impact.

The 19' long Concrete Basement Wall along the north side of the Storage Room at the west end of the Residence appears to have been displaced approximately 50mm into the room (as shown in Photos 6 & 8) by substantial soil pressures during impact from the Aircraft forming a convex shape with a vertical crack near the west corner of the basement window and diagonal cracks from about midheight arching towards the Floor Slab on either side (as shown on Dwg. 1). There is an additional large arched crack on the east side of the north Concrete Basement Wall extending to the Floor Slab (as shown on Photo 6). All these cracks appear to be fresh cracks with well-defined sharp edges. The exterior crack in the west upper corner of the Concrete Basement Wall (shown in Photos 3 & 5) does not appear on the interior surface which is consistent with inward deflection of the wall under soil pressure. Though damaged by fire, the Timber Superstructure immediately above the Concrete Basement Wall does not appear to have been displaced relative to the Concrete Basement Wall below.

760 Seymour Street, Kamloops, BC V2C 2H4 Voice: (250) 374-2244 E-mail: watson@direct.ca

### Memorandum



Photo 6: Outline Of Damage At North And West Concrete Basement Walls With Temporary Stud Wall Support In Foreground



Photo 7: Close Up Of East Part of North Concrete Basement Wall In Storage Room Showing Cold Joint, Additional Arched Crack In Return Wall And Water Service.

760 Seymour Street, Kamloops, BC V2C 2H4 Voice: (250) 374-2244 E-mail: watson@direct.ca

#### Memorandum



Photo 8: View Along North Concrete Basement Wall In Storage Room Showing Convex Inward Deflection of Wall And Also Temporary Stud Wall Support.

There is an Arched Crack near the east end of the Concrete Basement Wall in the Storage Room where the Concrete Basement Wall returns turns 90° south for approximately 2' and then 90° eastwards again into the Family Room (as shown in Photo 7). This crack also appears new. The Concrete Basement Wall in the Family Room is covered with Gypsum Board so it is unclear whether there are any additional cracks in the Concrete Basement Wall in this area; however, there does not appear to be any damage to the painted Gypsum Board in the Family Room and/or Closet suggesting minimal – if any – displacement of the Concrete Basement Wall.

The 11' long Concrete Basement Wall along the west side of the Storage Room at the west end of the Residence is exposed with another new crack approximately 4mm wide running vertically from near centre of another basement window to the Floor Slab (as shown in Photo 6 and Dwg. 1).

As noted previously, the Floor Slab is in good condition with a hairline crack running diagonally from the vertical crack at the window in the west Concrete Basement Wall towards the north Concrete Basement Wall (as shown on Dwg. 1).

We note that a Temporary Stud Wall has been installed in the Storage Room between the Floor Slab and Main Floor (as shown in Photo 6 & 8) and that similar diagonal Timber Bracing has been installed to provide lateral support to the deflected Concrete Basement Wall (as shown in Photos 6 & 8); however, no additional support has been provided above between the Main Floor and Roof Trusses.

As noted previously, buried utilities enter through the Basement (as shown in Photo 2). The Water Service enters the Residence through the Floor Slab at the east end of the Storage Room (as shown in Photo 7) and is inferred to run to the City Water Main near the west end of the property. The Sewer Service is presumed to run parallel to the Water Service from the west corner of the property under the Floor Slab towards the Kitchen on the Main Floor and Basement Bathroom at the rear of the Residence. The Gas Service is presumed to run along the west side of the property and enter the Residence partway along the west wall.

760 Seymour Street, Kamloops, BC V2C 2H4 Voice: (250) 374-2244 E-mail: <u>watson@direct.ca</u>

### Memorandum



Drawing 1 2425 Glenview Ave. Basement Plan View Note: North and West Walls Folded Out to Show New Cracks (Base Sketch Provided By PSPC 2020 June 17 – Not To Scale)

760 Seymour Street, Kamloops, BC V2C 2H4 Voice: (250) 374-2244 E-mail: watson@direct.ca

### Memorandum

As noted previously, we understand that the intent is to excavate soil materials down to about 4.3m below grade for removal/remediation of soil materials contaminated with jet fuel. We understand that this will require excavation 'near vertical' in close proximity to the Concrete Basement Wall along the north side of the Residence (as shown in Figure 1 and Figure 2) and similar 'near vertical' excavation in proximity to the property line along the west side of the property (as shown in Figure 1 and Figure 3).



Figure 1 OrthoPhoto From Golder of Residence With Reference Sections A & B



Figure 2 Section A From Golder In North-South Direction Showing Excavation In Proximity To Residence.

760 Seymour Street, Kamloops, BC V2C 2H4 Voice: (250) 374-2244 E-mail: watson@direct.ca

### Memorandum



#### Figure 3

Section B From Golder In East-West Direction Showing Anticipated Excavation In Proximity To Property Line.

Based upon our own observations, the internal height of the Concrete Basement Wall is approximately 2.3m (7' 6") and the top of the Concrete Basement Wall is about 0.61m (2') above grade. This suggests that the top of the Floor Slab is about 1.7m (5' 6") below grade and that the proposed excavation to 4.3m below existing grade will be about 2.6m below Floor Slab. No specific information is available on the depth/details of the Footing for the Concrete Basement Wall.

We note that the Concrete Basement Wall is severely cracked. It appears to be plain unreinforced concrete and has limited capacity to support retained soils or even itself as a grade beam. We further note that the top of the Concrete Basement Wall has only nominal lateral support from the Main Floor as there is no positive anchorage and attachment between the Timber Floor Joists partly cast into the top of the Concrete Basement Wall – and that the capacity of the damaged Roof Trusses above are also significantly compromised.

We anticipate that excavation of soil materials outside of the Concrete Basement Walls might be completed safely down to Footing Elevation of the Concrete Basement Walls if the excavation is completed carefully to avoid displacement of the damaged Concrete Basement Walls and that continuous monitoring of the Concrete Basement Walls is provided to minimize displacement. If significant displacement is observed, measures should be taken immediately to stabilize the damaged Concrete Basement Walls.

We anticipate that any 'near vertical' excavation below footing elevation outside of the north Concrete Basement Wall would result in a reduction of foundation capacity for the Concrete Basement Wall. Any significant 'near vertical' excavation below Footing Elevation may result in some degree of physical undermining of the Concrete Basement Walls. We further note that physical undermining of the Concrete Basement Walls may be required intentionally for removal/remediation of contaminated soils if such contamination has spread under the Residence. We note that significant undermining of the damaged Concrete Basement Wall (without first adequately supporting the Concrete Basement Wall) may result in damaged portions of the Concrete Basement Wall falling into the excavation and/or collapse of the full height of the Concrete Basement Wall likely resulting in further damage to Main Floor and Roof of the Residence in the vicinity of the excavation.

760 Seymour Street, Kamloops, BC V2C 2H4 Voice: (250) 374-2244 E-mail: watson@direct.ca

#### Memorandum

We anticipate that if any significant physical undermining occurs (or is required to occur) beneath the Floor Slab, it would result in loss of foundation capacity for the Floor Slab and could compromise the Temporary Stud Wall and Bracing currently installed to stabilize the Concrete Basement Walls. Given the depth of excavation anticipated outside of the Concrete Basement Walls, we anticipate that (without adequately supporting the Concrete basement Walls, Footing and Floor Slab) such loss of support might extend significantly within the Basement.

We note that even if excavation to 4.3m below grade is completed without further compromising the integrity of the Concrete basement Wall and/or its supporting foundation soils, that there will likely challenges in backfilling the excavation to the underside of the Concrete Basement Wall and/or Floor Slab to restore support.

We note also that we anticipate that all of the above concerns will be exacerbated if surface water enters the excavation, if water from damaged utilities is encountered in the excavation and/or if ground water is encountered in the excavation.

Based upon the above, we conclude that:

- 1. The structure of the Residence is damaged as a result of the Aircraft Accident and that the capacity of the Concrete Basement Wall in particular is compromised.
- 2. Excavation of soil materials outside of the Concrete Basement Walls for removal/remediation of contaminated soil materials can likely be completed safely to the underside of the Concrete Basement Wall provided that excavation is completed carefully to avoid displacing damaged concrete.
- 3. Significant 'Near Vertical' Excavation of soil materials outside of the Concrete Basement Wall for removal/remediation of contaminated soil materials may be difficult to complete safely below the underside of the Concrete Basement Wall without providing some vertical support to the Concrete Basement Wall and ensuring that the Concrete Basement Wall is supported laterally at the elevation of the Main Floor to prevent toppling. As the Concrete Basement Wall is unreinforced and is all ready cracked, we anticipate that it has very limited capacity to span freely.
- 4. Excavation of soil materials for removal/remediation of contaminated soil materials below the Floor Slab may be difficult to complete safely providing some vertical support to the Floor Slab and potentially also the existing Temporary Stud Walls and Bracing.
- 5. Excavation must accommodate backfill to reinstate or replace excavated soil materials and restore vertical soil support to the Concrete Basement Wall and/or Floor Slab.

Based upon the above, we recommend that:

1. All excavation be completed in accordance with Worksafe BC Requirements and under the direction of a qualified Geotechnical Engineer to ensure that safe backslopes are maintained, that structures supported at the edge of the excavation do not present a hazard to the excavation together with associated workers and equipment, and that structures supported at the edge of the excavation (including the Residence and adjacent Residence/Structures) do not suffer damage due to settlement, loss of support and/or undermining.

760 Seymour Street, Kamloops, BC V2C 2H4 Voice: (250) 374-2244 E-mail: watson@direct.ca

### Memorandum

- 2. Excavation of soil materials be completed carefully down to the underside of footing elevation of the Concrete Basement Wall taking care to not to displace damaged concrete and monitoring the Concrete Basement Wall continuously for displacement and if any such displacement is observed that measures are immediately taken to stabilize the damaged Concrete Basement Wall. We anticipate that portions of the Concrete Basement Wall which are cracked and free to move independently will require restraint and that it would be desirable to provide some additional lateral restraint at the top of the Concrete Basement Wall to prevent toppling.
- 3. Excavation of soil materials adjacent to north of Concrete Basement Wall should:
  - Maintain vertical soil support for the Concrete Basement Wall; or
  - Provide independent vertical structural support for the Concrete Basement Wall; or
  - Accommodate temporary removal/reconstruction of the Concrete Basement Wall

And:

- Restrain or remove any portions of the Concrete Basement Wall that are free to move independently; and
- Provide effective lateral support at the top of the Concrete Basement Wall to prevent toppling.
- 4. Excavation of soil materials below the underside of the Floor Slab should:
  - Maintain vertical soil support for the Floor Slab (and also for any Temporary Stud Walls and Bracing supported on the Floor Slab); or.
  - Provide independent vertical support for the Floor Slab (and also for any Temporary Stud Walls and Bracing supported on the Floor Slab); or
  - Remove the Floor Slab.
- 5. Backfill of excavation below the footing elevation of the Concrete Basement Wall be completed to reinstate full vertical soil support of the Concrete Basement Wall and Floor Slab without further damage to the Residence.
- 6. Backfill of excavation above the footing elevation of the Concrete Basement Wall, if contemplated, be completed with compaction suitable to restore exterior grades with minimal settlement but without imposing larger lateral soil pressures which may damage the existing (damaged) unreinforced Concrete Basement Walls.
- 7. Further to the above, we recommend Pre-Excavation and Post-Backfill Inspection of the Residence in question and any adjacent Structures which may be impacted by the Work in conjunction with the Excavation Contractor to ensure that the condition of these Residences/Structures are well documented and unnecessary claims from damage due to the Work are avoided.

Should you have any questions or require further information, please contact the undersigned directly:

Stephan Anderson, AScT.



From:	Dan Sorge <dan@tvr.ca></dan@tvr.ca>
Sent:	June 25, 2020 12:22 PM
То:	Ryan G. Stade, P.Eng.
Cc:	Julie Van Dusen
Subject:	RE: EXT:RE: EXT:RE: EXT:RE: TVR JOB#20239-A MACRAE, Bud 2425 Glenview Ave Kamloops -
	BRACING COMPLETED - Ready for P.Eng Inspection

Hello Ryan & Julie,

The additional studs and ribbon brace requested this morning will be completed shortly (ie.. for the temporary floor joist support wall).

I have the carpenter returning and he should be on site any minute. Cheers.

From: Ryan G. Stade, P.Eng. <ryanstade@shaw.ca>
Sent: Thursday, June 25, 2020 9:31 AM
To: Dan Sorge <dan@tvr.ca>
Cc: 'Julie Van Dusen' <julie.vandusen@scm.ca>
Subject: EXT:RE: EXT:RE: EXT:RE: TVR JOB#20239-A MACRAE, Bud 2425 Glenview Ave Kamloops - BRACING COMPLETED - Ready for P.Eng Inspection

#### MacRae – 2425 Glenview Avenue, Kamloops Attention: Dan Sorge – TVR

#### Re: Temporary Bracing for Access to Drill Inspection Holes

Further to our meeting at the site this morning, I have the following comments:

1. Bracing to stabilize foundation wall is in place and in conformance with the details provided dated June 17th.

Drilling beside foundation wall can be completed with assurance the wall will not collapse on workers.
 (This does not provide any assurance with regard to possible combustion of flammable materials that may be in soil).

However, additional support wall to carry floor (in the event of wall collapse) is not yet completed. There is potential for the wall to collapse if enough material is removed from the exterior, but that is not planned at this point. We understand only narrow trenches may be excavated to examine soil at depth. This should allow keeping broken sections of concrete foundation in there current position.

To complete the temporary supporting wall, install 2x6 (or 2x4) studs to each of the existing 2x4 studs (4 more required) for continuous support of 2x6 header. Then add a 2x4 'ribbon' lateral brace, at about mid-height of studs, over the length of stud frame wall.

Note: the proposed drilling of 'inspection holes' beside foundation wall can begin immediately.

Let me know if you require anything further.

Sincerely,

Ryan G. Stade, P.Eng.



From: Dan Sorge <<u>dan@tvr.ca</u>> Sent: June 24, 2020 8:23 AM To: Ryan G. Stade, P.Eng. <<u>ryanstade@shaw.ca</u>> Subject: RE: EXT:RE: EXT:RE: TVR JOB#20239-A MACRAE, Bud 2425 Glenview Ave Kamloops - BRACING COMPLETED -Ready for P.Eng Inspection

Thanks Ryan,

The 2 guys that would do this are in Merrit right now, and would not be back on site till approx 230pm, so it will not get done before late in the day today. Thursday first thing may be best, if your schedule permits that.

From: Ryan G. Stade, P.Eng. <ryanstade@shaw.ca Sent: Wednesday, June 24, 2020 8:10 AM To: Dan Sorge <<u>dan@tvr.ca</u>> Subject: EXT:RE: TVR JOB#20239-A MACRAE, Bud 2425 Glenview Ave Kamloops - BRACING COMPLETED - Ready for P.Eng Inspection

Dan:

It appears you did exactly what I requested, but I assumed you would have installed double top plate. So this is good for the exterior wall bracing, but should have addition capacity for the floor load. I will suggest 2x6 on edge, nailed to existing studs, with 2x4 cripple to make "T" posts at 24 in. on centre.

Ryan

From: Dan Sorge <<u>dan@tvr.ca</u>>
Sent: June 24, 2020 8:03 AM
To: Ryan G. Stade, P.Eng. <<u>ryanstade@shaw.ca</u>>
Cc: julie.vandusen@scm.ca; Cathy Tucker <<u>cathy@tvr.ca</u>>
Subject: TVR JOB#20239-A MACRAE, Bud 2425 Glenview Ave Kamloops - BRACING COMPLETED - Ready for P.Eng
Inspection
Importance: High

Good Morning Ryan,

The Bracing in the basement storage room has been completed, and is ready for your inspection. We would be grateful if you could return to site asap and conduct a site inspection. (Julie will need a report from you that you are satisified with the work completed) (or if any additional work is required?).

Let me know when you are able to attend, as I would like to meet you there.

(See photo attached). Have a great day Best Regards, Dan Sorge Project Manager



940 Mc Master Way, Kamloops BC V2C 6K2 Cell: 250-682-0182 Phone: 250-372-1335 Fax: 250-372-5603 Website: <u>www.tvr.ca [tvr.ca]</u>





From:	Dan Sorge <dan@tvr.ca></dan@tvr.ca>
Sent:	June 25, 2020 12:41 PM
То:	Julie Van Dusen
Cc:	Cathy Tucker
Subject:	TVR JOB#20239-A MACRAE, Bud 2425 Glenview Ave Kamloops - BRACING COMPLETED - Better
	Photo
Attachments:	IMG_4582.jpg

Hi Julie, Further to the 2 photos Ryan emailed you this am, please find the attached. This photo shows the entire bracing and temp wall assemblies - at the affected exterior wall.

Best Regards, Dan Sorge Project Manager



940 Mc Master Way, Kamloops BC V2C 6K2 Cell: 250-682-0182 Phone: 250-372-1335 Fax: 250-372-5603 Website: <u>www.tvr.ca [tvr.ca]</u>



From:	Ryan G. Stade, P.Eng.
То:	"Dan Sorge"
Cc:	Julie Van Dusen
Subject:	RE: EXT:RE: EXT:RE: TVR JOB#20239-A MACRAE, Bud 2425 Glenview Ave Kamloops - BRACING COMPLETED - Ready for P.Eng Inspection
Date:	June 25, 2020 9:31:01 AM
Attachments:	image001.png
	image003.jpg
	20Jun25 (2).JPG
	20Jun25 (3).JPG

### MacRae – 2425 Glenview Avenue, Kamloops Attention: Dan Sorge – TVR

#### **Re: Temporary Bracing for Access to Drill Inspection Holes**

Further to our meeting at the site this morning, I have the following comments:

1. Bracing to stabilize foundation wall is in place and in conformance with the details provided dated June 17th.

2. Drilling beside foundation wall can be completed with assurance the wall will not collapse on workers.

(This does not provide any assurance with regard to possible combustion of flammable materials that may be in soil).

However, additional support wall to carry floor (in the event of wall collapse) is not yet completed. There is potential for the wall to collapse if enough material is removed from the exterior, but that is not planned at this point. We understand only narrow trenches may be excavated to examine soil at depth. This should allow keeping broken sections of concrete foundation in there current position.

To complete the temporary supporting wall, install 2x6 (or 2x4) studs to each of the existing 2x4 studs (4 more required) for continuous support of 2x6 header. Then add a 2x4 'ribbon' lateral brace, at about mid-height of studs, over the length of stud frame wall.

Note: the proposed drilling of 'inspection holes' beside foundation wall can begin immediately.

Let me know if you require anything further.

Sincerely,

Ryan G. Stade, P.Eng.



From: Dan Sorge <dan@tvr.ca>
Sent: June 24, 2020 8:23 AM
To: Ryan G. Stade, P.Eng. <ryanstade@shaw.ca>
Subject: RE: EXT:RE: EXT:RE: TVR JOB#20239-A MACRAE, Bud 2425 Glenview Ave Kamloops - BRACING COMPLETED - Ready for P.Eng Inspection

Thanks Ryan,

The 2 guys that would do this are in Merrit right now, and would not be back on site till approx 230pm, so it will not get done before late in the day today. Thursday first thing may be best, if your schedule permits that.

From: Ryan G. Stade, P.Eng. <ryanstade@shaw.ca>
Sent: Wednesday, June 24, 2020 8:10 AM
To: Dan Sorge <dan@tvr.ca>
Subject: EXT:RE: TVR JOB#20239-A MACRAE, Bud 2425 Glenview Ave Kamloops - BRACING
COMPLETED - Ready for P.Eng Inspection

Dan:

It appears you did exactly what I requested, but I assumed you would have installed double top plate.

So this is good for the exterior wall bracing, but should have addition capacity for the floor load. I will suggest 2x6 on edge, nailed to existing studs, with 2x4 cripple to make "T" posts at 24 in. on centre.

Ryan

From: Dan Sorge <<u>dan@tvr.ca</u>>
Sent: June 24, 2020 8:03 AM
To: Ryan G. Stade, P.Eng. <<u>ryanstade@shaw.ca</u>>
Cc: julie.vandusen@scm.ca; Cathy Tucker <<u>cathy@tvr.ca</u>>
Subject: TVR JOB#20239-A MACRAE, Bud 2425 Glenview Ave Kamloops - BRACING COMPLETED Ready for P.Eng Inspection
Importance: High

Good Morning Ryan,

The Bracing in the basement storage room has been completed, and is ready for your inspection. We would be grateful if you could return to site asap and conduct a site inspection. (Julie will need a report from you that you are satisified with the work completed) (or if any

additional work is required?).

Let me know when you are able to attend, as I would like to meet you there.

(See photo attached).

Have a great day

Best Regards, Dan Sorge Project Manager



940 Mc Master Way, Kamloops BC V2C 6K2 Cell: 250-682-0182 Phone: 250-372-1335 Fax: 250-372-5603 Website: <u>www.tvr.ca [tvr.ca]</u>