

Public Services & Procurement Canada

PROPOSED MCI HEAVY EQUIPMENT BUILDING, BEDFORD INSTITUTE OF OCEANOGRAPHY, DARTMOUTH, NOVA SCOTIA

Controlymical Investigation	October 30, 2020
Geotechnical Investigation 2004260	
FINAL VERSION	

Prepared by:

Richard w. News

Richard Henry, P.Eng. Project Manager Geotechnical Engineering

Approved by:

Jung a

Scott Simms, M.Eng., P.Eng., Team Leader Geotechnical Engineering

Production Team

Client

Public Services & Procurement Ian Sceles Canada

Englobe Corp.

Team Leader

Scott Simms, M.Eng., P.Eng.

Project Manager

Richard Henry, P.Eng.

iii

Revision and Publication Register			
Revision N°	Date	Modification and/or Publication Details	
00	2020-10-30	Final Report	

Property and Confidentiality

"This report can only be used for the purposes stated therein. Any use of the report must take into consideration the object and scope of the mandate by virtue of which the report was prepared, as well as the limitations and conditions specified therein and the state of scientific knowledge at the time the report was prepared. Englobe Corp. provides no warranty and makes no representations other than those expressly contained in the report.

This document is the work product of Englobe Corp. Any reproduction, distribution or adaptation, partial or total, is strictly forbidden without the prior written authorization of Englobe and its Client. For greater certainty, use of any and all extracts from the report is strictly forbidden without the written authorization of Englobe and its Client, given that the report must be read and considered in its entirety.

No information contained in this report can be used by any third party without the prior written authorization of Englobe and its Client. Englobe Corp. disclaims any responsibility or liability for any unauthorized reproduction, distribution, adaptation or use of the report.

If tests have been carried out, the results of these tests are valid only for the sample described in this report.

Englobe's subcontractors who have carried out on-site or laboratory work are duly assessed according to the purchase procedure of our quality system. For further information, please contact your project manager."

Table of Contents

1	INTRODUCTION	1
2	SITE AND PROJECT DESCRIPTION	1
3	INVESTIGATION PROCEDURE	1
4	SUBSURFACE CONDITIONS	1
4.1	Asphalt Pavement	2
4.2	Fill	
4.3	Glacial Till	2
4.4	Bedrock	3
4.5	Groundwater	3
5	DISCUSSION AND RECOMMENDATIONS FOR DESIGN	3
5.1	Site Development - General	~
J. I	Site Development - General	3
5.2		
-	Site Preparation, Excavation and Earthworks	4
5.2		4 4
5.2 5.3	Site Preparation, Excavation and Earthworks Re-use of On-site Materials and Backfilling	4 4 5
5.2 5.3 5.4	Site Preparation, Excavation and Earthworks Re-use of On-site Materials and Backfilling Foundation Design	4 4 5 5
5.2 5.3 5.4 5.5	Site Preparation, Excavation and Earthworks Re-use of On-site Materials and Backfilling Foundation Design Interpreted Soil and Bedrock Design Parameters	4 5 5 6
5.2 5.3 5.4 5.5 5.6	Site Preparation, Excavation and Earthworks Re-use of On-site Materials and Backfilling Foundation Design Interpreted Soil and Bedrock Design Parameters Floor Slabs	4 5 5 6
5.2 5.3 5.4 5.5 5.6 5.7	Site Preparation, Excavation and Earthworks Re-use of On-site Materials and Backfilling Foundation Design Interpreted Soil and Bedrock Design Parameters Floor Slabs De-Watering and Foundation Drainage	4 5 5 6 6
5.2 5.3 5.4 5.5 5.6 5.7 5.8	Site Preparation, Excavation and Earthworks	4 4 5 5 6 6 6

Tables

Table 1: Summary of Subsurface Conditions	2
Table 2: Limit States Design Parameters	5
Table 3: Interpreted Soil and Bedrock Design Parameters	5
Table 4: Flexible Pavement Design	6

Appendixes

Appendix ATerms and SymbolsAppendix BBorehole and Test Pit Logs

1 Introduction

Englobe Corp., at your request, has carried out a geotechnical investigation at the site of a proposed development at the Bedford Institute of Oceanography (BIO) in Dartmouth, Nova Scotia. The purpose of the work was to identify the subsurface soil and bedrock conditions at the site and make geotechnical recommendations regarding earthworks and foundation design.

This report presents our observations and preliminary engineering recommendations associated with the geotechnical investigation of the site. Included herein are the factual results of the field investigation including discussion of field procedures, subsurface conditions, laboratory analysis and recommendations for site development.

2 Site and Project Description

It is understood that an MCI heavy equipment building is proposed for construction at the BIO in Dartmouth, Nova Scotia. Detailed design of the structure has not been undertaken to date, however, preliminary indication is that the structure will be of conventional design and supported by a shallow foundation system.

3 Investigation Procedure

Fieldwork for the current investigation was carried out on October 16, 2020, when two (2) boreholes were drilled and three (3) test pits were excavated at the locations shown on the enclosed Figure 1. The borehole investigation was carried out using a truck mounted drill rig supplied by Nova Drilling from Mount Uniacke, NS. The test pits were excavated by a local earthworks contractor.

The investigation was carried out by qualified field engineering personnel who logged the subsurface conditions. The boreholes were advanced using continuous flight augers and casing with field sampling and testing performed in the open boreholes. Standard Penetration Tests (SPT) were carried out at regular intervals in select boreholes to obtain soil blow counts (i.e. N-values) using a 50-mm O.D. split spoon sampler. Disturbed soil samples were obtained from the boreholes using conventional techniques. Grab samples were obtained from the test pit locations.

4 Subsurface Conditions

An explanation of terms and symbols used in the report is provided in Appendix A. A summary of the encountered geologic conditions is provided in the Borehole Logs and Test Pit Logs in Appendix B.

1

It should be noted that the stratigraphic boundaries on the Borehole and Test Pit Logs typically represent a transition of one soil type to another and do not necessarily indicate an exact plane of geologic change. Subsurface conditions may vary between and beyond the test locations.

In summary, asphalt pavement or gravels were encountered overlying fill materials, undisturbed glacial till and inferred bedrock. Bedrock was inferred by excavator bucket refusal and split spoon refusal. The following table (Table 1) summarizes the subsurface conditions.

LOCATION	DEPTH TO GROUNDWATER (METRES)	DEPTH TO TILL (METRES)	DEPTH TO INFERRED BEDROCK (METRES) ^{2.}
BH 1	 1.	4.4	6.3
BH 2	 1.	1.8	3.4
TP 1		3.5	4.0
TP 2		2.4	3.4
TP 3		1.8	2.7

Table 1: Summary of Subsurface Conditions

1. Groundwater depth not observed due to water injection for coring process

2. Bedrock inferred by excavator bucket refusal or split spoon refusal

4.1 Asphalt Pavement

A layer of asphalt pavement was encountered at the surface of boreholes BH 1 and B2. The asphalt pavement was approximately 100 mm in thickness on average.

4.2 Fill

Fill was encountered in all boreholes and test pits either at the surface or beneath the asphalt pavement. The fill generally varied from sand and gravel to gravelly silty sand with occasional to some cobbles and boulders. Organics were encountered within the lower portions of the fill at test pit TP 1. Observations of the in situ deposits indicated that the material was grey to brown in colour and its moisture content was described as moist. Representative standard penetration N values recorded for the fill material ranged from 24 to greater than 50 blows per 300 mm, indicating a compact to dense material. The higher N-values recorded are due mainly to cobble and boulder content in the fill interfering with the test and not necessarily representative of *insitu* relative density. Observations of the test pits indicate the fill is in a losoe condition. The fill was proven to a total depth of 4.4 metres at borehole BH 1.

4.3 Glacial Till

Site-native glacial till deposits were encountered below the fill deposits at all boreholes and test pits. These typically compact soils ranged from gravelly silty sand, trace clay to silty sand, some gravel with trace clay. The till contained occasional to some cobbles and boulders.

Observations of the in situ deposits indicated that the material was light brown to grey in colour and its moisture content was described as moist. Representative standard penetration N values recorded for the till material ranged from 26 to in excess of 50 blows per 300 mm, indicating a compact to very dense material. The higher N-values recorded are due mainly to cobble and boulder content in the fill interfering with the test and not necessarily representative of insitu relative density. The till was proven to a total depth of 6.3 metres below the existing ground surface at borehole BH 1.

4.4 Bedrock

Bedrock geology mapping of the area indicates that the site is underlain by the Meguma Group of metasediments. Specifically, the Goldenville Formation which consists of greywacke, quartzite, slate, schist and gneiss underlies the area.

Inferred bedrock was encountered in all boreholes and test pits. Bedrock was inferred by excavator bucket refusal and split spoon refusal.

4.5 Groundwater

Groundwater observations were made during the field investigation through open-hole measurement at the test locations. A summary of the accumulated groundwater information is provided on the Borehole and Test Pit Logs in Appendix B.

During the current site investigation, groundwater was not observed during the drilling process in the boreholes due to water injection for the coring process. Groundwater was not encountered in the test pits. Perched groundwater should be expected during construction. Seasonal variations in groundwater levels can be expected.

5 Discussion and Recommendations for Design

5.1 Site Development - General

In the following paragraphs, a discussion of site development is presented in light of the observed subsurface conditions. The recommendations outlined in the following sections assume that the structure will be located generally in the area(s) investigated, as shown in Figure 1. Currently, it is understood that the new structure will be of conventional design and will be carried by a foundation system of spread and strip footings. Current recommendations are based on preliminary information currently available for the project. Once final design drawings are available for the site, a review of our report should be conducted.

The subsurface conditions encountered throughout the development area are relatively uniform and consist of either asphalt pavement or gravels overlying fill deposits, "undisturbed" glacial soils and bedrock. The presence of competent bearing stratum at shallow depth will allow for the use of a conventional shallow foundation system for the proposed structure.

5.2 Site Preparation, Excavation and Earthworks

To prepare the immediate building areas to receive foundations/slabs, it will be necessary to remove all fill materials, wet/loose soils and organics from beneath foundation and slab bearing areas. This material should be subexcavated to the level of competent soil (i.e. material noted on the Borehole and Test Pit Logs as Inferred Bedrock or Glacial Till).

Following this initial subexcavation, geotechnical evaluation of the exposed subgrade is recommended to identify any loose or soft areas. Any such areas identified should be subexcavated and replaced with an approved structural fill.

Contingent upon final design grades, a filling program to reach desired floor and foundation subgrade levels may be necessary. This would likely include reuse of select on-site fill materials. Processing of site materials to remove organics and oversized particles will be required to create a suitable product for reuse as structural fill. Depending on final design grades, filling may require importation of an approved structural fill to compensate for deficient quantities. The reuse of on-site materials will be contingent to a large extent on the condition of the materials after excavation, handling and stockpiling. Re-use of the on-site soils would be subject to their condition at time of earthworks.

Imported structural fill should consist of well-graded sand and gravel, or rockfill with a maximum particle size of 200 mm diameter. The fill is to be free of organics, debris, and slate and should have a fines (i.e. silt and clay sized) content not greater than 15 percent. Structural fill should be placed in lifts not exceeding 300 mm in thickness compacted to 100 percent of the material's standard Proctor maximum dry density or equivalent for rockfill. Water and loose/soft soils should be removed from excavations, and bearing stratum approved prior to fill placement. Quality control inspection and testing of engineered fill is recommended.

Temporary excavations in soil extending in depth greater than 1.2 m should be sloped at a minimum one horizontal to one vertical (1H:1V). Flatter side slopes may be required for stability of the excavation due to surface or groundwater infiltration, or soil condition.

5.3 Re-use of On-site Materials and Backfilling

Select portions of the fill deposits and glacial till would be considered suitable for reuse at the site as common material or, in some applications, as engineered fill. The reuse of on-site materials will be contingent on the condition of the materials after excavation, handling and stockpiling. Organic soils and wet soils are not suitable for structural fill; these soils should only be used in non-settlement sensitive areas of the site.

To qualify as engineered backfill, all boulders, debris and deleterious inclusions should be removed. Backfill should be placed in lifts and compacted using appropriate compaction equipment. Lift thickness should be limited to 400 mm using large vibratory rollers, and 250 mm using hand equipment (e.g. diesel plate tampers). The maximum particle size should be limited to 2/3 of the lift thickness.

Backfill against structures should be compacted to 95% of Standard Proctor Density.

5.4 Foundation Design

For design of foundations by Limit States Design, the factored bearing resistance (using a bearing resistance factor of 0.5) of strip footings with a minimum width of 0.6 metres and spread footings with a minimum width of 1.2 metres are as follows:

Table 2: Limit States Design Parameters

LIMIT STATES DESIGN PARAMETER	GLACIAL TILL / STRUCTURAL FILL	
Factored Geotechnical Resistance at Ultimate Limit States (ULS)	300 kPa	
Geotechnical Resistance at Serviceability Limit States (SLS)	200 kPa	

The effect of site conditions on seismic response should be considered in the design of foundations. Based on the subsurface soil conditions encountered in the test locations, the site may be considered as Class C for seismic site response (NBCC 2015 Table 4.1.8.4.A).

5.5 Interpreted Soil and Bedrock Design Parameters

Bedrock and soil parameters recommended for use in design are outlined in the following table. The parameters indicated have been summarized from known empirical correlations. The values indicated are provided as a guide and their specific use in design should be confirmed with the geotechnical engineer.

Parameter	GLACIAL TILL	IMPORTED STRUCTURAL FILL (I.E. CRUSHED GRAVEL OR ROCKFILL)
Total Unit Weight, kN/m3	21	21.5
Effective Unit Weight, kN/m ³	11	11.5
Effective Angle of Internal Friction	32°	36°
Active Earth Pressure Coeff.(Ka)	0.31	0.26
Passive Earth Pressure Coeff.(K _p)	3.3	3.85

Table 3: Interpreted Soil and Bedrock Design Parameters

5.6 Floor Slabs

Slab-on-grade floors for the proposed structure should be cast on a free-draining granular material (Nova Scotia Transportation and Infrastructure Renewal (NSTIR) Type 1 Gravel or equivalent) with a minimum thickness of 200 mm and compacted to 100 percent of the material's standard Proctor maximum dry density.

In heavily loaded areas (i.e. equipment storage, vehicle bay, etc.), the minimum thickness should be increased to 300 mm and may require the placement of rockfill to provide adequate subgrade strength.

To reach the level of the underslab base course, earthworks should be carried out in accordance with previous recommendations for foundation and subgrade preparation.

5.7 De-Watering and Foundation Drainage

During earthworks, water may be expected to enter excavations during precipitation events, as surface runoff or as seepage from within the soil and rock strata. The rate of infiltration into shallow excavations is expected to be minor to moderate and can be controlled by conventional dewatering techniques consisting of 50 to 75 mm diameter portable pumps and grading of excavations to sump locations.

Water pumped from excavations is expected to contain fines and will require care in disposal. Provision for proper site drainage in accordance with applicable municipal, provincial, and federal environmental requirements should be made at the construction stage. Consideration should be given to the environmental implications related to pumping and disposal of potentially environmentally impacted groundwater.

5.8 Erosion and Sediment Control Guidelines

Nova Scotia Environment has published a set of guidelines dealing with environmental protection, specifically, erosion and sedimentation control. The document is of a general nature, however, presents proven methods for lessening the impact of soil erosion on downstream receptors. The Guidelines should be adopted for construction.

5.9 Flexible Pavement Design

Reinstatement of asphalt paved areas will likely be required following building construction. It is expected that vehicle traffic will generally be large trucks, construction equipment, etc. A flexible pavement design recommended for the site is as follows:

Table 4: Flexible	Pavement Design
-------------------	-----------------

Ітем	HEAVY DUTY PAVEMENT
Asphalt Top Course – C mix *	40 mm
Asphalt Base Course – B mix *	50 mm

NSTIR Type 1 Gravel **	150 mm
NSTIR Type 2 Gravel **	350 mm

* Minimum compaction (asphalt pavement) – 92 % Theoretical Maximum Density (ASTM D2041) ** Minimum compaction (granular(s)) – 100 % Standard Proctor Maximum Dry Density

The above pavement designs assume a prepared subgrade levelled and compacted to 98 percent standard Proctor maximum dry density. An assessment of the prepared subgrade at time of construction may warrant re-evaluation of design gravel thickness.

Grading of parking and access areas should ensure positive drainage away from active site areas (i.e. to perimeter/adjacent ditches, catch basins, sheet flow off-site, etc.). At or near the proposed structure(s) a minimum of 2 percent positive grade should be maintained.

6 Comments on Construction

The following comments on specific construction aspects of the project are provided for the guidance of designers. The contractor undertaking the work should make their own interpretation of the factual information provided in this report as it affects their construction procedures and scheduling.

Portions of the in-situ soils are subject to loosening and softening in the presence of water. Construction methods and scheduling should reflect this. If construction takes place in the winter months care must be taken not to allow freezing of subsoil. Any fill or native soil that freezes must be sub excavated and replaced.

In periods of inclement weather or during extended work delays, foundation excavations within the site native soils should be protected by a granular pad (NSTIR Type 1 Gravel or equivalent), or working mat of lean concrete placed over the bearing soil immediately following excavation and preparation of the foundation contact area. It may be also necessary to insulate the founding strata during periods of sub-zero temperatures.

Geotechnical inspection and testing by qualified personnel is recommended during earthworks construction.

7 Closure

The geotechnical investigation undertaken has involved random sampling of site conditions. Should any conditions be encountered during constructions that are contrary to those reported herein, we request immediate notification so that reassessment can be undertaken.

LEGEND

- Approximate Test Pit Location
 - Approximate Borehole Location

Ce document est la propriété de Englobe et est protégé par la loi. Il est destiné exclusivement aux fins qui y sont mentionnées. Toute reproduction/adaptation, partielle ou totale, est strictement prohibée sans avoir préalablement obtenu l'autorisation écrite de Englobe Corp.

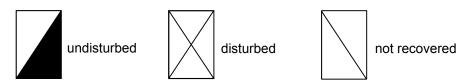
Public Services & Procurement Canada

Projet Geotechnical Investigation Proposed MCI Heavy Equipment Building Bedford Institute of Oceanography Dartmouth, Nova Scotia

Test Location Plan

📥 Englobe

Englobe Corp.


97 Troop Avenue Dartmouth, Nova Scotia B3B 2A7 902-468-6486

Discipline:			Pre	pared by	:	Verified by:	
Geotechnical				RH -			
Scale:			Dra	iwn by:		Approved by:	
	No Sca	le			JJ		-
Date: October 2020			Fig	Figure No:			
			_ _				I
Page setup: Paper Format: Layout1-LETTRE POR ANSI full bleed A (8.50 x 11.00 Inches)			gister No:				
			-				_
Resp.	Project	OTP	Project/ Disc	Phase/ Type	Réf. éle	ec. / No.Dessin	Rév.
148	2004260	000	1				1

Appendix A Terms and Symbols

SOIL SAMPLES

CONDITION – This column graphically indicates the depth and condition of the sample:

TYPE – The type of sample is indicated in this column as follows:

- A auger sample
- B block sample
- C rock core, or frozen soil core
- D drive sample
- G grab sample
- SS split spoon
- P Pitcher tube sample
- U tube sample (usually thin-walled)
- W wash or air return sample
- O other (see report text)

PENETRATION RESISTANCE – Unless otherwise noted this column refers to the number of blows (N) of a 140 pound (63.5 kg) hammer freely dropping 30 inches (0.76 m) required to drive a 2 inch (50.8 mm) O.D. open-end sampler 0.5 feet (0.15 m) to 1.5 feet (0.45 m) into the soil, or until 100 blows have been applied, in which case, the penetration is stated. This is the standard penetration test referred to in ASTM D 1586.

OTHER TESTS

In this column are tabulated results of other laboratory tests as indicated by the following symbols:

*C	Consolidation test
Fines	Percentage by weight smaller than #200 sieve
D _R	Relative density (formerly specific gravity)
k	Permeability coefficient
*MA	Mechanical grain size analysis and hydrometer test (if appropriate)
рр	Pocket pentrometer strength
*q	Triaxial compression test
q υ	Unconfined compressive strength
*SB	Shearbox test
SO ₄	Concentration of water-soluble sulphate
*ST	Swelling test
TV	Torvane shear strength
VS	Vane Shear Strength (undistrubed-remolded)
٤ _f	Unit strain at failure
γ	Unit weight of soil or rock
$\gamma_{\rm d}$	Dry unit weight of soil or rock
ρ	Density of soil or rock
ρ _d	Dry density of soil or rock

* The results of these tests usually are reported separately

SYMBOLS AND TERMS USED ON THE BOREHOLE AND TEST PIT RECORDS

SOIL DESCRIPTION

Behavioural properties (i.e. plasticity, permeability) take precedence over particle gradation in describing soils.

Terminology describing soil structure:

Desiccated	- having visible signs of weathering by oxidation of clay minerals, shrinkage cracks etc.
Fissured	- having cracks, and hence a blocky structure
Varved	-composed of regular alternating layers of silt and clay
Stratified	- composed of alternating layers or different soil types, e.g. silt and sand or silt and clay
Well Graded	- having wide range in grain sizes and substantial amounts of all intermediate particle sizes
Uniformly Graded	- predominantly of one grain size.

Terminology used for describing soil strata based upon the proportion of individual particle size present:

Trace, or occasional	Less than 10%
Some	10-20%
Adjective (e.g. silty or sandy)	20-35%
And (e.g. silt and sand)	35-50%

The standard terminology to describe cohesionless soils includes the relative density, as determined by laboratory test or by the Standard Penetration Test 'N' - value: the number of blows of 140 pound (64 kg) hammer falling 30 inches (760 mm), required to drive a 2 inch (50.8 mm) O.D. split spoon sampler one foot (305 mm) into the soil.

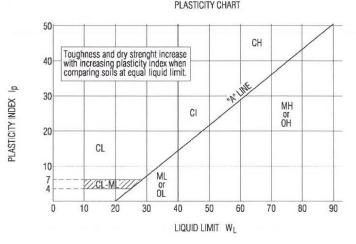
Relative Density	'N' Value	Relative Density %
Very loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe cohesive soils includes the consistency, which is based on undrained shear strength as measured by insitu vane tests, penetrometer tests, unconfined compression test, or occasionally by standard penetration tests.

Consistency	Undrained Shear S	Strength	'N' Value
	Kips/sq.ft.	kPa	
Very Soft	<0.25	<12.5	<2
Soft	0.25-0.5	12.5-25	2-4
Firm	0.5-1.0	25-50	4-8
Stiff	1.0-2.0	50-100	8-15
Very Stiff	2.0-4.0	100-200	15-30
Hard	>4.0	>200	>30

	MAJOR DIVISION GRO			IVIAUUD LIVIQUUN			GRAPHIC SYMBOL	COLOR CODE	TYPICAL DESCRIPTION	CLASS	ratory IFICATION Teria
	HIGHLY ORG	GANIC SOILS	Pt		ORANGE PEAT AND OTHER HIGHLY ORGANIC SOIL		STRONG COLOR OR ODOR, AND OFTEN FIBROUS TEXTURE				
COARSE-GRAINED SOLLS (MORE THAN HALF BY WEIGHT LARGER THAN NO. 200 SIEVE SIZE)	ш_	CLEAN GRAVELS	GW	12 - 0 - 0 - 2 - 0 - 2 - 2 - 2 - 2 - 2	RED	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES, <5% FINES	$Cu = \frac{D_{e0}}{D_{10}} > 4 Cc = -$	$\frac{(D_{30})^2}{D_{10} \times D_{60}} = 1 \text{ to } 3$			
	GRAVELS MORE THAN HALF COARSE FRACTION LARGER THAN NO.4 SIEVE SIZE	GLEAN GRAVELS	GP	. Ś Ч. т.	RED	POORLY-GRADED GRAVELS, AND GRAVEL-SAND MIXTURES, $<5\%$ Fines	NOT MEET ABOVE REQU				
	GRAN IORE THAN H FRACTION LJ NO.4 SIE	DIRTY GRAVELS	GM		YELLOW	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES >12% FINES	ATTERBER(BELOW "A" Ip<	LINE OR 4			
RGER THAN	2-	DINTI UNAVELO	GC		YELLOW	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES >12% FINES	ATTERBER ABOVE "A" Ip>	LINE OR			
WEIGHT LA		CLEAN SANDS	SW		RED	WELL-GRADED SANDS, GRAVELLY SANDS, <5% FINES	$Cu = \frac{D_{60}}{D_{10}} > 6 Cc = -$	$\frac{(D_{30})^2}{D_{10} \times D_{60}} = 1 \text{ to } 3$			
AN HALF BY	SANDS MORE THAN HALF COARSE FRACTION SMALLER THAN NO.4 SIEVE SIZE	OLEAN SANDS	SP		RED	POORLY-GRADED SANDS, OR GRAVELLY SANDS, <5% FINES	NOT MEET ABOVE REQU				
(MORE TH		DIRTY SANDS	SM		YELLOW	SILTY SANDS, SAND-SILT MIXTURES > 12% FINES	ATTERBER BELOW "A" Ip <	LINE OR			
	24	DIRTT SARDS	SC		YELLOW	CLAYEY SANDS, SAND-CLAY MIXTURES >12% FINES	ATTERBERI ABOVE "A" Ip>	LINE OR			
	BELC	SILTS DW "A" LINE ON	ML		GREEN	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY SANDS OF SLIGHT PLASTICITY	W _L < 50				
SIEVE SIZE)	NEGLI	STICITY CHART; GIBLE ORGANIC CONTENT	МН		BLUE	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS, FINE SANDY OR SILTY SOILS	W _L > 50				
SES NO.200		CLAYS	CL		GREEN	INORGANIC CLAYS OF LOW PLASTICITY, GRAVELLY, SANDY, OR SILTY CLAYS, LEAN CLAYS	W _L < 30				
VEIGHT PAS	PLAS	VE "A" LINE ON TICITY CHART; GIBLE ORGANIC	CI		GREEN- BLUE	INORGANIC CLAYS OF MEDIUM PLASTICITY SILTY CLAYS	W _L > 30, < 50	SEE CHART BELOW			
MORE THAN HALF BY WEIGHT PASSES NO.200 SIEVE SIZE)		CONTENT	СН		BLUE	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS	W _L > 50				
(MORE THA		TS & ORGANIC CLAYS	OL		GREEN	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	W _L < 50				
	BELOW "A" LINE ON PLASTICITY CHART		ОН		BLUE	ORGANIC CLAYS OF HIGH PLASTICITY	W _L > 50				

FILL


BEDROCK

1. All sieve sizes mentioned on this chart are U.S. Standard, ASTM E11.

TILL

- Boundary classifications possessing characteristics of two groups are given combined group symbols eg GW-GC is a well-graded gravel-sand mixture wtih clay binder between 5% and 12%.
- Soil fractions and limiting textural boundaries are in accordance with the Unified Soil Classification System, except that an inorganic clay of medium plasticity (Cl) is recognized.
- The following adjectives may be employed to define percentage ranges by weight of minor components:

and	50 - 36%
gravelly, sandy, silty, clayey, ect.	35 - 21%
some	20 - 11%
trace	10 - 1%

Englobe

Appendix B Borehole and Test Pit Logs

В

					REF	IOL	E LOC	3	
ight En	gia	C	e	PROJECT MCI Heavy Equipment Bui BIO, Dartmouth, Nova Sco	lding otia	9			
LOGGED/DWN. NMD	скр. RH	ł	DATE OF IN	DATE OF INVEST.20-10-16 JOB NO.			260.000	HOLE NO.	BH 1
CASING RESISTANCE		Z		SOIL DESCRIPTION	S	OILS	SAMPLE	DRILL	TYPE
blows/300mm		ELEVATION SOIL SYMBOL	DATUM E	kisting Ground Surface			JE RY	Excava	tor
WC % wp- ▲ w- ● wl- △	DEPTH	LEVATIC SOIL SYMBOL			COND.	TYPE	N-VALUE RQD/ RECOVER!	LYCAVA	
10 20 30 40 50	ft m		SURFACE E	ELEVATION	Ŭ		N-VALUE ROD/ RECOVERY	OTHER TE	ESTS
			Asphalt		7				
	1		FILL : san	d and gravel, trace silt, moist, grey.					
	- 1		oompaol,	inolot, groy.	Λ /				
	2				ΙV	SS	N=69		
	_		FILL: grav	elly silty sand, occasional to bles and boulders, compact	? /\				
	3		moist, gre	y to brown.		ss	90/100		
	1- -					1			
	-4								
					\square	SS	50/125		
	-5								
	_6								
	- 2-								
	7								
	-				IŇ	SS	N=45		
	-8				$\langle \rangle$				
	-				\times	SS	50/75		
	-9								
	10 3-								
	-10 3								
	-11				$\left \right\rangle$				
					X	SS	N=24		
	-12				$ \rangle \rangle$				
						1			
	-13 4-								
	-								
	- 14								
	15		TILL: silty	sand, some gravel, I to some cobbles and		,			
	- 15		occasiona boulders.	I to some cobbles and trace clay, compact, moist.	$\left \right $				
	-16		light brow	trace clay, compact, moist, n to greyish brown.	X	SS	N=26		
	_ 5-				$ / \setminus$				
	-17				<u> </u>	, in the second s			
	-								
	-18 -								
	-				\sim	ss	50/25		
	-19								
	6-								
	-20				X	SS	158/225		
			h		_/ \				

	1	1	BOR	EHOLE LOO	3	
📥 En	alo	De	PROJECT MCI Heavy Equipment Build	ding		
<u> </u>					Γ	
LOGGED/DWN. NMD	CKD. RH	DA	ATE OF INVEST.20-10-16 JOB NO.	2004260.000	HOLE NO. BH 1	
CASING RESISTANCE	NO		SOIL DESCRIPTION	SOIL SAMPLE	DRILL TYPE	
blows/300mm	DEDLH DEDLA	DA SVMBOL SOIL	ATUM Existing Ground Surface	COND. TYPE N-VALUE RQD/ RECOVERY	Excavator	
WC % wp- ▲ w- ● wl- △		SYN		COND. TYPE N-VALUE RECOVERS		
10 20 30 40 50	ft m 🖾		JRFACE ELEVATION	L L L	OTHER TESTS	
			IFERRED BEDROCK nd of Borehole at 6.3 metres on			
	22	l inf	ferred bedrock or large boulder. edrock inferred by split spoon fusal.			
	_23 7-					
	_24	Gr	roundwater depth not determined ue to water injection for coring			
		pro	ocess.			
	_25					
	26					
	8-					
	-27					
	-28					
	-29					
	- 9-					
	-30					
	31					
	-32					
	33 ¹⁰⁻					
	-34					
	-35					
	-36 ₁₁ -					
	-37					
	-38					
	-39					
	12-					
	-40					
	-41 -					

		PROJECT MCI Heavy Equipment Building BIO, Dartmouth, Nova Scotia							
e En		ne	PROJECT	dina					
	9.0		MCI Heavy Equipment Buil BIO, Dartmouth, Nova Scot						
LOGGED/DWN. NMD	CKD. RH	DATE OF IN	DATE OF INVEST.20-10-16 JOB NO.			HOLE NO. BH 2			
CASING RESISTANCE	NO		SOIL DESCRIPTION	SOIL	SAMPLE	DRILL TYPE			
blows/300mm	DEPTH DEPTH	TOBMYS	xisting Ground Surface		N-VALUE RQD/ RECOVERY	Excavator			
WC % wp- ▲ w- ● wl- △		SYN		COND.	N-VALUE ROD/ RECOVER'				
10 20 30 40 50	ft m ^H	SURFACE E	ELEVATION	0	REO N	OTHER TESTS			
		Asphalt		-					
	1	compact,	d and gravel, trace silt, moist, grey.	S ss	50/75				
		🗱 FILL: grav	elly silty sand, occasional to bles and boulders, compact,	Щü	00//0				
	-2	some cob	bles and boulders, compact, y to brown.						
	3		,						
				X ss	50/125				
	4								
				🖂 ss	50/125				
	-5				50/125				
	-								
	- 2-	TILL: silty	sand, some gravel, I to some cobbles and	ss	N=102				
	.7	boulders,	trace clay, compact to very	$ ^{3}$	N-102				
	-	dense, mo	bist, grey to brown.	\square					
	-8								
	-								
	-9								
	10 3-			ss	50/25				
	-			\square					
	-11			K ss	50/50				
			D BEDROCK // rehole at 3.4 metres on						
	-12	inferred b	edrock or large boulder. Inferred by split spoon						
	13 1	refusal.							
	-14	Groundwa due to wa	ater depth not determined ter injection for coring						
		process.	,						
	-15								
	-16								
	5-								
	-17								
	-								
	-18 -								
	-19								
	-20 6-								

						ST	PI	LOG		
📥 En	gl	0	D	e	PROJECT MCI Heavy Equipment Bui BIO, Dartmouth, Nova Sco	ldiną tia	g			
LOGGED/DWN. NMD	CKD. F	RH		DATE OF IN	IVEST.20-10-16 JOB NO.		2004	260.000	TEST PIT	TP 1
		N			SOIL DESCRIPTION	S	OILS	AMPLE	BACKHOE	TYPE
WC % wp- ▲ w- ● wl- △	DEPTH	ELEVATION	SYMBOL	DATUM E	xisting Ground Surface	COND.	TYPE	POCKET PENE.	Excava	tor
10 20 30 40 50	ft m	띠	×××××	SURFACE E				дш	OTHER TE	STS
	_			FILL : san	id and gravel, trace silt, moist, grey.	4				
	_1			FILL : san	dy gravel, some silt, some compact, moist, grey.					
	_2									
	_3 1 _4	-		organics (velly silty sand, trace roots, grubbings), Il to some cobbles and					
	-4 - -5	-		boulders,	loose, moist, grey to black.					
	-6									
	- 2 -7	-								
	- -8									
	- -9									
	10 3	-								
	-11									
	-12			TILL: silty clay, com greyish br	sand, some gravel, trace pact, moist, light brown to own.					
	-13 4	-		INFERRE End of Te	D BEDROCK st Pit at 4.0 metres on	7				
	- 14			inferred be	edrock or large boulder. nferred by excavator bucket					
	- 15 -			Test Pit di	ry upon completion.					
	-16 - 5	_			· ·					
	- 17									
	- 18	-								
	-19	_								
	-20									

						1			TE	ST	Pľ	r log		
			-1	7			7	h	PROJECT MCI Heavy Equipment Bu BIO, Dartmouth, Nova Sc	uldin	a			
					9				MCI Heavy Equipment Bu BIO, Dartmouth, Nova Sc	otia	y			
LOGGE	D/DWN	I. NMI	D		CKD	R	-1		DATE OF INVEST.20-10-16 JOB NO.			260.000	TEST PIT	TP 2
							NO		SOIL DESCRIPTION	S	OIL S	SAMPLE	BACKHOE TYI	PE
					DEP	тн	ELEVATION	SOIL	DATUM Existing Ground Surface		日	н. ш.	Excavator	
WC %	wp-	🔺 w- (• wl-	· △			ΞEV.	S YN		COND	TYPE	POCKET PENE.		
10	20	30	40	50	ft	m	Ē		SURFACE ELEVATION	0		й ^ц	OTHER TEST	S
									FILL : sand and gravel, trace silt, compact, moist, grey.	_				
					1				FILL: gravelly silty sand, occasional to	0				
••••					Ļ	_			some cobbles and boulders, loose, moist, grey to brownish grey.					
					2									
					-									
					-3	1-								
					1									
					-4									
					5	-								
					-									
					-6									
					-	2-								
					-7									
					-									
					-8	-			TILL: gravelly silty sand, occasional to	0				
					-9				TILL: gravelly silty sand, occasional to some cobbles and boulders, trace clay, compact, moist, greyish brown.					
					-9				,,, <u>-</u>					
					10	3-								
					-									
					-11					7				
					-	-			End of Test Pit at 3.4 metres on					
					-12				inferred bedrock or large boulder. Bedrock inferred by excavator bucket	t				
					10				refusal.					
					-13	4-			Test Dit das un en essent d'un					
					-14				Test Pit dry upon completion.					
					-									
					-15	-								
					-									
					-16	_								
					-	5-								
					-17									
					-18									
						1								
					-19									
					-	6-								
					-20	0								
					-									
L · · ·					L			I			<u> </u>	1		

									TE	ST	P۱	۲ LOG	
			- ľ		g		C	D	PROJECT MCI Heavy Equipment Bui BIO, Dartmouth, Nova Sco	Idin	9		
	GGED/DWN. NMD CKD. RH							DATE OF INVEST.20-10-16 JOB NO.			260.000	TEST PIT TP 3	
									SOIL DESCRIPTION			SAMPLE	BACKHOE TYPE
							ELEVATION	ы С Г	DATUM Existing Ground Surface				
					DEP	тн	UA1	SOIL		COND.	TYPE	POCKET PENE.	Excavator
WC %	wp- 20	▲ w- (30	● wl-	· △ 50	ft	m	ЕГЕ	0 [°]	SURFACE ELEVATION	00	Ē	PO(PE	OTHER TESTS
	20		+0						FILL : sand and gravel, trace silt,				
					-				compact, moist, grey.				
					_1				FILL: gravelly silty sand, occasional to	,			
					2	-			some cobbles and boulders, loose, moist, grey to brownish grey. 600 mm thick concrete block				
									600 mm thick concrete block				
					3								
					-	1-							
					-4								
					-								
					-5								
· · · · · · · · · · · · · · · · · · ·					6								
					-0	2-			TILL: gravelly silty sand, occasional to some cobbles and boulders, trace)			
					7	2			clay, compact, moist, greyish brown.				
					-								
					-8	_		<u>II</u> S					
					-								
					-9			\///	NFERRED BEDROCK	7			
					-10	3-			End of Test Pit at 2.7 metres on nferred bedrock or large boulder.				
									Bedrock inferred by excavator bucket refusal.				
					-11								
					-	-			Test Pit dry upon completion.				
					-12								
					-								
· · · · · · · · · · · · · · · · · · ·					-13	4-							
					-14								
					-								
					-15	-							
· · · · · · · · · · · · · · · · · · ·					-								
					-16	_							
					-	5-							
					-17								
					-18								
· · · · · · · · · · · · · · · · · · ·													
· · · · · · · · · · · · · · · · · · ·					-19								
					-	6-							
					-20	0							
					-								