

October 29, 2010

Project No. 09-1475-0026/6000 E/10/439

Mr. Andrew Mylly, B.Sc, PMP Public Works and Government Services Canada 641-800 Burrard Street Vancouver, BC V6Z 2V8

LETTER REPORT ON 2010 ASSESSMENT OF NORTH LANDING WHARF GABION STRUCTURE, ESQUIMALT GRAVING DOCK, ESQUIMALT, BC

Dear Mr. Mylly,

Public Works and Government Services Canada (PWGSC) retained Golder Associates Ltd. (Golder) to conduct an assessment of submerged, stone-filled wire-basket erosion protection mats (gabion mats) along the North Landing Wharf at the Esquimalt Graving Dock (EGD) in Esquimalt, British Columbia. The mats are connected together with wire ties to create a single gabion structure that extends along most of the North Landing Wharf at EGD.

This letter summarises the findings of this work. Accompanying the letter are two (2) digital video disks (DVDs) of underwater video, including an audio record of diver observations. This work was carried out on February 26, 2010, March 3 to 5, 2010, and March 10 and 11, 2010 (inclusive), under PWGSC Standing Offer No. E0276-040048/006/XSB "Remediation Consultants".

1.0 BACKGROUND

Stone-filled wire baskets (gabion mats) were installed along the North Landing Wharf for scour protection in 2002. The mats were wired together to create a continuous scour protection blanket. These mats were repaired in 2005 after a section was dislodged during a Coast Guard bollard pull test. The gabions were installed and repaired by Advance Subsea Services Ltd. of Sidney, BC.

"As-built" drawings are not available. The specifications for the gabion mat structure, as outlined in a 2005 document supplied by PWGSC¹, indicate that it was designed to be approximately 0.23 metres (m) thick, 3 m wide and approximately 250 m long. According to the specifications, the gabion mats were positioned atop

¹ Specifications for North Landing Wharf – Scour Protection at Esquimalt Graving Dock, Esquimalt, B.C., PWGSC Project Number 861229, August 2005

"filter cloth" (min. 0.45 millimetre (mm) thickness, 125 grams/m²). The gabion mats were specified to be constructed using 2.2 mm diameter galvanised and PVC-coated wire in a double-twist hexagonal mesh with 80 mm by 100 mm openings. The wire mesh was to be filled with minimum 100 mm to maximum 200 mm clean stone (measured in the largest dimension). Individual mats were specified to be approximately 3 m wide by 6 m long.

Based on the specifications, video of a previous inspection provided by PWGSC from December 9, 2008, and discussion of this video with the dive supervisor who supervised the survey (Pat Thompson, President/General Manager of South Coast Diving Ltd.), a current gap of 150 mm to 300 mm was anticipated between the toe of the south landing wharf wall and the crest of the mats.

Based on the specifications and drawings, the crest of the gabions was expected to be approximately 14.14 m below the wharf surface, (*i.e.*, approximately 13 m below the high water mark or 9.75 m below the low-low water level). Based on hydrographic survey data provided with the specifications (Canadian Hydrographic Services, 2000), the gabions were expected to slope slightly downward away from the toe of the wall at approximately 1:3 (vertical:horizontal, equivalent to 18 degrees).

PWGSC is currently planning remediation of the EGD water lot, and requires an assessment of the as-built layout of the gabion mat structure, as well as additional information on sediment chemistry in the vicinity of the gabion mat structure. PWGSC does not wish to remove or damage the mats for investigation purposes, and is deliberately avoiding drilling through or cutting the structure.

PWGSC authorised Golder on February 22, 2010, via electronic mail, to conduct an assessment of the existing gabion mat structure, as per the Golder letter "2010 Assessment of North Landing Wharf Gabion Mats, *Esquimalt Graving Dock, Esquimalt, BC*", dated February 19, 2010 (Golder Ref. 10-1475-0001, E/10/068). During the course of this field work, Anchor QEA, a consulting company separately employed by PWGSC on remedial options assessment for the Esquimalt Graving Dock water lot, commented on the advisability of probing in the vicinity of the gabions to measure the thickness of soft sediment. Golder subsequently obtained authorisation from PWGSC, via electronic mail on March 7, 2010, to proceed with a modified scope of work, described in the Golder letter "2010 Assessment of North Landing Wharf Gabion Mats, Esquimalt Graving Dock, *Esquimalt, BC*" dated March 9, 2010 (ref. 10-1475-0001, E/10/093).

2.0 SCOPE OF WORK AND METHODOLOGY

Golder worked with South Coast Diving Ltd. to conduct a brief diver-based assessment of gabion conditions and sediment conditions in the vicinity of the gabions. The scope of work included the following tasks:

- **Task 1000**: Control Points Establish vertical and horizontal control points for diver measurements.
- **Task 2000**: Reconnaissance Video– Conduct a video survey of the gabions, with limited hand probing.
- **Task 3000**: Gabion Measurement Diver measurement of gabion thickness and width.
- **Task 4000**: Sediment Coring Diver-based coring at the toe of the gabions.
- Task 5000: Surficial Sediment Sampling Diver-based collection of surficial grab samples, for example, between the wall toe and gabion crest, where diver-coring was not feasible on the basis of hand-probe results.

- **Task 6000**: Analytical Testing Submission of sediment samples to an analytical laboratory for select chemical analysis.
- Task 7000: Data Processing Data tabulation, the calculation of approximate gabion edge positions based on diver measurements, and the preparation of an updated Base Map in CAD (DXF) showing the inferred current measurements of the gabions.
- **Task 8000**: Reporting Preparation and submission of a concise summary of the investigation methodology and findings.
- **Task 9000**: Project Management Management of staff, subcontracting, health and safety and coordination with PWGSC.

As discussed in Section 1, an additional task (Task 10,000: Overburden Probing) was added at PWGSC's request on March 7, 2010. Task 10,000 comprised diver probing with a fixed probe and/or water lance ("jet probe") on up to four transects perpendicular to the North Landing Wharf wall at up to 10 metres from the base of the wall.

Key tasks are described in more detail below.

2.1 Control Points

Prior to mobilising divers, Focus Geomatics (Focus) of Victoria, BC, installed eleven (11) reference points along the edge of the North Landing Wharf. The survey data from Focus is attached in Appendix A. The reference locations were surveyed in the UTM coordinate system. These above-water reference points were surveyed using standard land survey methods. The survey locations were marked using nails installed into the wooden toe rail along the edge of the North Landing Wharf. Flagging tape was attached to the nails and the location number was marked with paint to identify the locations. Surveying of the reference point locations was completed on Friday, February 16, 2010. The survey points were numbered 1 to 11, with number 1 located at the west end of the North Landing Wharf.

2.2 Reconnaissance Video

Golder dropped weighted lines (lead lines) from the established control points. The lead lines were individually marked with different combinations of coloured flagging tape. Each lead line had a series of four "flags" tied to the line, spaced approximately 0.4 m apart. The flags were attached to each lead line in order to distinguish between the different locations during the dive survey. The reference flagging system for the lead lines is attached in Appendix A. The depth to the harbour bottom was measured at each lead line using a fibreglass tape measure with a lead weight on the end. The elevation, measured depth and calculated geodetic depth at each lead line location are listed in Table 1.

Lead Line Location	Reported Depth (m) below pin	Measured Elevation (m geodetic)	Measured Elevation (m chart)	Measured Elevation (m facility datum)
1 (west end)	13.01	-10.49	-8.62	-8.74
2	14.33	-11.49	-9.62	-9.74
3	14.27	-11.38	-9.51	-9.63
4	14.89	-12.05	-10.18	-10.30
5	14.86	-11.98	-10.11	-10.23
6	13.85	-10.93	-9.06	-9.18
7	15.05	-12.12	-10.25	-10.37
8	14.48	-11.52	-9.65	-9.77
9	14.04	-11.06	-9.19	-9.31
10	13.73	-10.76	-8.89	-9.01
11 (east end)	14.46	-11.48	-9.61	-9.73

Table 1. Depth at each reference location

A surface-supply diver from South Coast Diving Ltd. of Esquimalt, BC, was deployed to conduct a video survey of the gabions.

The diver began the survey at the east end of the North Landing Wharf, at the entrance to the Dry Dock. Specifically, recording was started when the diver reached the first caisson stop, the outermost sealing surface for the dock mouth caisson. At the time the video was filmed, the dock mouth caisson was located at Stop No. 2, slightly inboard.

During the video survey the diver carried visible indicators of scale and inclination. A scale bar was carried in order to show the scale of objects and features observed and an inclinometer was carried to measure the approximate angle of the gabions. A video record of this reconnaissance accompanies this letter. This video includes audio commentary of diver observations on the following:

- The gap between the Stop #1 Sill and the beginning of the gabions;
- The wire mesh on gabion mats;
- The toe of the wall at the crest of the gabion mats and crest of the gabion mats relative to the lead lines;
- The size of the gap between the wall and gabion structure crest;
- The toe of the gabions including the height and thickness of the gabion structure toe;
- Sediment accumulation on the gabion mats;

- Slope of the gabion mats;
- Debris material in the vicinity of the gabion mats;
- Surface conditions at the far (west) end of the gabion mat structure; and,
- Location and extent of exposed geotextile.

Information collected during the dive survey was tabulated and is attached in Appendix B.

During the video survey, the diver gently probed areas of accumulated sediments including sediment–filled depressions in the gabions, sediment-obscured gabion edges, wall defects and/or the gap between the crest of the gabions and the toe of the wall by hand to assess the suitability of areas for diver coring.

2.3 Gabion Measurement

Following the video survey, the dive team made a second pass along the gabion mat structure to measure the width of the gabion mats and carry out preliminary probing. Measurements and probing was carried out at each end of the gabion mat structure and at nine of the eleven lead lines. The gabion mat structure did not extend as far west as lead line 1 or as far east as lead line 11 (*i.e.*, is less than 242.5 m in length). Measurement of the gabion mat included the length from the wall of the north landing wharf to the toe of the gabions using a fibre glass tape measure. A 0.4 m long steel probe was used to probe the sediments between the crest of the gabions and the north landing wharf and sediments at the toe of the gabions. Measurements taken during the second pass are summarized in Appendix B. The inferred current gabion layout is shown in Figure 1.

2.4 Sediment Coring

Following assessment of the extent and condition of the gabions, a proprietary diver-based piston corer and expert oversight for South Coast Diving Ltd. was obtained from Research Support Services (RSS) of Bainbridge Island, Washington (Photograph 1, Appendix C).

Diver piston coring was repeatedly attempted on March 4 and 5, 2010 along the outer edge of the gabion mats. Divers reported that surficial material included cobbles and/or gravel, and were unable to recover core, with the exception of a relatively short core (80 cm) on the eastern end of the gabions (Photo 2, Appendix C), close to the mouth of the dry dock (sample DC10-01 and field duplicate DC10-06).

A sediment probe (Core Probe) was improvised to resemble the diver piston corer in order to assess if conditions were suitable for piston coring. The probe was constructed on-site by RSS personnel using a PVC core liner, a core cutter/catcher and slide hammer. Probing at the toe of the Gabions at lead lines 1, 2, 6 8 and between lead lines 10 and 11, determined that sediments were unsuitable for coring and that sediment collection would require a grab sampler.

2.5 Surficial Sediment Sampling

Table 2. Grab Samples Collected and Location

Based on observations made during sediment coring and probing attempts using the Core Probe, divers used a 0.2 m diameter, 0.31 m high, 9.7 litre (L) cylindrical stainless steel grab sampler provided by RSS (Photograph 3, Appendix C) to collect surficial sediment for grain size and chemical analysis. Diver collected material from five locations near the toe of the gabion mat structure. Due to the small volume of the core sample collected at the eastern end of the gabions, one of these grab samples was collected at the same location as the core (DC10-01). At the DC10-01 location, sediments from the core sample were submitted for chemical analysis and sediments from the grab sample were submitted for grain size analysis.

The locations of the five samples collected are listed in Table 2

_				
	San	nple		

Sample	Location
DC10-01	At the gabion structure toe between lead lines 10 and 11.
DC10-02	At the gabion structure toe at lead line 8
DC10-03	At the gabion structure toe at lead line 6
DC10-04	At the gabion structure toe at lead line 2
DC10-05	At the gabion structure toe at lead line 1

2.6 Analytical Testing

Based on observed lithology, visual indications of potential contamination and olfactory indications of potential contamination, six samples (five field samples and one duplicate, DC10-06) were processed by Golder, loaded into laboratory-provided pre-cleaned sample containers and transported under chain-of-custody procedures to ALS Laboratory Group (ALS) of Burnaby, BC. ALS is a certified analytical laboratory under the Canadian Association of Analytical Laboratories (CALA) system.

The samples were analysed for the following parameters:

- Moisture Content;
- ∎ pH;
- Sodium and Chloride by Saturated Paste Method;
- Canadian Council of Ministers of the Environment (CCME) Total Metals;
- Total Polychlorinated Biphenyls (PCBs); and,
- Tributyltin (TBT).

Tabulated laboratory data and the laboratory certificate of analysis are included in Appendix D.

Additionally, two samples (DC10-01 and DC10-05) were submitted to Golder's Canadian Standards Association (CSA) Certified Geotechnical Laboratory in Victoria, BC, for grain-size (sieve) analysis (Appendix F; ASTM C 136/CSA A23.2-2A).

2.7 Overburden Probing

Sediment thickness probing was conducted on March 10 and 11, 2010. This allowed for the prior scheduled facility sill clearing which took place on Tuesday, March 9, 2010, to be completed beforehand. During sill cleaning, divers used a water jet to blow accumulated sediment away from the concrete structure at Stop No. 1. Divers did not observe significant new deposition on the gabion mats on March 10th or 11th, 2010.

Based on the potential for relatively hard and/or rocky substrate, Golder provided the dive team with means for both hand probing and water lancing (jet probing). The jet probe consists of a water pump operated at surface to supply water under pressure to a "lance" carried by the diver (Photo 4, Appendix C). Pressurized water is discharged through end of the lance allowing the diver to more easily advance the probe into the sediment. The length of the lance can be adjusted to meet the needs of a particular program. For this project the lance was operated at 3.7 m in length. The hand probe consisted of a 2.53 m length of iron rebar with a tapered end and a welded "T" handle. Penetration was measured using a tape measure secured to the upper end of the probe to assess exposed probe length before penetration and again at maximum penetration.

Probing was carried out along four transects oriented perpendicular to the north landing wharf. Probing transects were between 9 and 10 m long and were aligned with lead lines 2, 5, 7 and 10. The location of the transects and probing sites is indicated on Figure 1. Probing information relayed by the working diver to the surface was recorded by Golder on field forms. Three probing locations were selected along each transect with up to two probes conducted at each location. Probing was conducted on both sides of the transects at a maximum distance of 1 m from the transect line. The position, depth and penetration depth of probes at each location was tabulated and are included in Appendix E.

3.0 RESULTS

3.1 Schedule

As mentioned previously, field work was completed on March 11, 2010. Analytical data with the exception of TBT was received from ALS on March 16, 2010. TBT data was not received before Monday, March 29. As arranged for in the proposal dated March 9, 2010 (ref. 10-1475-0001, E/10/093), TBT data will be forwarded when received.

Geotechnical analysis of sediment samples was received on March 25, 2010.

3.2 Gabion Assessment

The gabion mat structure substantially covers the area immediately along the toe of the North Landing Wharf. The nature of the substrate under the gabions is not known. The east end of the gabions was measured to be located approximately 3.0 metres west of lead line 11. The west end of the gabions is located approximately 1.2 m east of lead line 1. Lead line 1 marked the west corner of the north landing wharf. This implies an overall gabion mat structure lateral extent of approximately 238.3 m (1.7 metres less than the level end-to-end length of 40 individual 6 m mats).

The gabions are constructed of a plastic coated hexagonal wire mesh similar in appearance to chain-link fencing. The mesh apertures were measured during the dive survey to be approximately 80 mm, which is consistent with the specifications. The rocks inside the gabions were measured to have an average diameter of approximately 170 mm, consistent with the specification. The mats were measured to be approximately 3 m wide. Individual mats of approximately 6 m in length have been wired together. In several locations along the gabions, filter cloth was observed to protrude from beneath the gabions at the crest and toe.

The gap between the gabion crest and the wall was measured at each lead line; the measurements are included in Appendix B. The gap was measured to range between approximately 0.2 to 0.6 m. The width of the gabions from the north landing wharf wall was measured at each lead line; the measurements are included in Appendix B. The distance between the wall and the toe of the gabions was measured to be between approximately 2.8 and 3.4 m. The height of the gabions above the sediment at the toe was measured at each lead line; the measurements are included in Appendix B. The exposed height of the gabions was measured to range between approximately 0.00 (buried) and 0.25 m.

The toe of the gabions was observed by the dive crew to be buried in the sediment in some areas and slightly undermined in others, indicating locally variable net erosion and accretion of sediment. Observations by the divers, including probing, suggests that the area between the crest of the gabion mats and the wall of the north landing wharf is substantially underlain by concrete, rip-rap or similar hard substrate. Probing indicated a hard substrate under not more than 10 cm of sediment at the crest of the gabions in most locations.

3.3 Chemical Characterisation

The results from sediment chemistry analysis are presented in Appendix D. Samples from all five locations (DC10-01 through DC10-05) exceeded the CCME Probable Effects Limit (PEL) criteria for marine sediments.

Sample exceedences are as follows:

- Sample DC10-01 exceeded the PEL for arsenic, copper, lead, mercury, zinc, PCB-1254 (arochlor) and exceeded 10x the PEL for total polychlorinated biphenyls (PCBs).
- Sample DC10-02 exceeded the PEL for arsenic, copper, lead, mercury, PCB-1254 (arochlor) and exceeded 10x the PEL for zinc.
- Sample DC10-03 exceeded the PEL for cadmium and exceeded 10x the PEL for arsenic, copper, lead and zinc.
- Sample DC10-04 exceeded the PEL for cadmium, lead and mercury and exceeded 10x the PEL for arsenic, copper and zinc.
- Sample DC10-05 exceeded the PEL for copper, lead, mercury, zinc and total PCBs and exceeded 10x the PEL for arsenic.

3.4 Geotechnical Characterisation

Two samples (DC10-01 and DC10-05) were submitted for grain size analysis at the Golder geotechnical lab in Victoria, BC. The results of the grain size analysis indicate sediments near the gabion toe are composed primarily of gravel size (DC10-05) and/or sand size (DC10-01) particles. Sieve analysis tables and grain size distribution figures are included in Appendix F. The coarse nature of the sediments in the vicinity of the gabion mats creates a relatively unsuitable environment for diver piston cores.

3.5 Overburden Probing

Divers probed 14 locations in total. Penetration depths for the overburden probing are included in Appendix E. Probing locations are illustrated on Figure 1. Probing attempts at the gabion crest resulted in refusal of the probe at a maximum penetration depth of 0.05 m.

At approximately 5 probe locations, divers reported hitting what they believed to be solid rock. In most cases, divers found it difficult to determine the source of probe refusal. Refusal due to hard substrate and gravel were also reported by divers. Additional probes within 1 m of the original probe location were carried out to check the penetration depth of the refusal.

A summary table of overburden probe penetration results is presented in Table 3.

Location	Maximum penetration (m)	Minimum Penetration (m)	Average Penetration (m)
Gabion toe (Approximately 3 m from gabion crest)	1.81	0.15	0.88
6 m (along transect from gabion crest)	2.02	0.2	1.14
9 m (along transect from gabion crest)	1.23	0.23	0.87

Table 3: Overburden Probe Penetration Summary

Penetration depth was calculated by subtracting the exposed length of probe at refusal (a direct measurement using a fibreglass tape measure) from the initial probe length (also a direct measurement using a fibreglass tape measure).

Maximum and minimum probe penetration depths along the gabion toe were 1.81 m and 0.15 m, respectively with an average probe penetration of 0.88 m. Penetration depths at a distance of 6 m from the gabion crest (along transect) were 2.02m (maximum) and 0.2 m (minimum) with an average probe penetration of 1.14 m. The maximum and minimum probe penetration at a distance of 9 m the gabion crest were 1.23 m and 0.23 m, respectively, with an average penetration of 0.87 m.

Based on diver observations and the varied depth of refusal, it is inferred that the subgrade contains cobbles or boulders that prevent probe penetration. Overall, on the order of one metre of penetration was achieved towards the east (the dock mouth). Probe results from the transect at lead line 2 (to the west) indicate somewhat less penetration (on the order of 0.2 to 0.8 m).

4.0 DISCUSSION

Figure 1 summarises the assessment of gabion position and probing locations.

Based on diver observations, the gabions appear to be substantially consistent with the terms of the specifications provided to Golder for review. They are approximately 3 metres wide, and are relatively gently sloped downwards away from the toe of the wall (10 to 35 degrees, typically 15 to 20 degrees). The crest of the gabions is at an average elevation of about -9.52 m (relative to chart datum). The gap between the crest of the gabion mats and the North Landing Wharf wall was measured to range between approximately 0.2 to 0.6 m. The total measured lateral extent of the gabion structure along the North Landing Wharf was approximately 238.3 metres. No major areas of damage or displacement were visually apparent. Although areas are covered with up to approximately 0.1 m of soft sediments, the gabions' upper surface remains substantially exposed.

Diver observations and probing results indicate the space between the gabions and the wall of the North Landing Wharf is filled with hard material, possibly concrete, under a thin (5 to 10 cm) veneer of loose material.

Contamination in sediments around the gabions is consistent with waterlot contamination described elsewhere. Individual exceedences of 10 times the CCME PEL for substances such as arsenic, copper, lead, zinc and PCBs were detected in sediment samples.

Sediment in the vicinity of the gabions appears to be substantially gravels and sands. Probe penetration was limited by hard substrate, potentially either rubble or bedrock. The achieved penetration was variable throughout the site, to a maximum of approximately 2 m.

The observation of gravel and rubble is consistent with the account of North Landing Wharf construction given in the article "*The New Esquimalt Drydock*" by J.P. Forde, published in the Journal of the engineering Institute of Canada in December of 1925:

"...The site for this wharf was dredged to the rock bottom of the harbour, which lies at an average depth of 54² feet below low water level. Along this dredged area was built a rubble mound to a height of 32 feet below low water level³. The upper 12 inches of this mound consists of fine spawls and gravel and was levelled by means of a heavy steel beam dragged over it at the proper level by tugs. After an inspection by a diver and very close soundings indicated had shown that the top of the mound was level and that no low spots had been left, timber cribs with reinforced concrete outer surfaces were placed and ballasted with gravel..."

With regard to measurement accuracy, note that the underwater use of fibreglass tape measures is prone to more error than top-side work under more amenable conditions. Based on studies of underwater archaeological surveys⁴, Golder anticipates that a standard error of 25 mm or more is possible, and that up to 20% of diver reported measurements may be substantially in error (*i.e.*, diver may read off the wrong numeral). The inclinometer used for underwater work was selected for visibility and for ease of use wearing cold water gloves. It is estimated to be accurate to within +/- 5 degrees. Diver depth measurements by pneumofathometer using the KMACS air control box are accurate to within approximately +/- 150 mm.

⁴ Holt, Peter. 2003. "An Assessment of Quality in Underwater Archaeological Surveys Using Tape Measurements". The International Journal of Nautical Archaeology (2003) 32.2: 246-25 1

² 16.46 metres

³ *i.e.*, about 9.75 metres below low-low water.

Golder compared measurements, referred to the video survey and plotted results to attempt to identify outlying data. Based on this assessment, the interpolation between measurement points, the roughness of the paths traversed by the tape, and the potential positional error related to simultaneous error in length, depth and/or slope, Golder suggests that recorded positions should be considered approximate. For example, for probe points 9 metres from the North Landing Wharf Wall, simultaneous bearing, inclinometer and tape measure errors could lead to a lateral error on the order of 1 meter. Overall, the potential lateral error at the gabion toe is on the order of 0.3 meters. For operations with a risk of gabion mat damage, such as excavation, a design safety margin of 0.5 metres or more may be advisable at the indicated gabion toe. In light of potential positional error and the documented historic movement of the gabions because of extreme propwash, local soundings or diver inspection should be considered shortly before beginning potentially destructive operations.

5.0 CLOSURE

We trust that the above meets your requirements and sincerely appreciate the opportunity to be of service. Please do not hesitate to contact the undersigned with any questions or comments.

Yours very truly,

GOLDER ASSOCIATES LTD.

ORIGINAL SIGNED

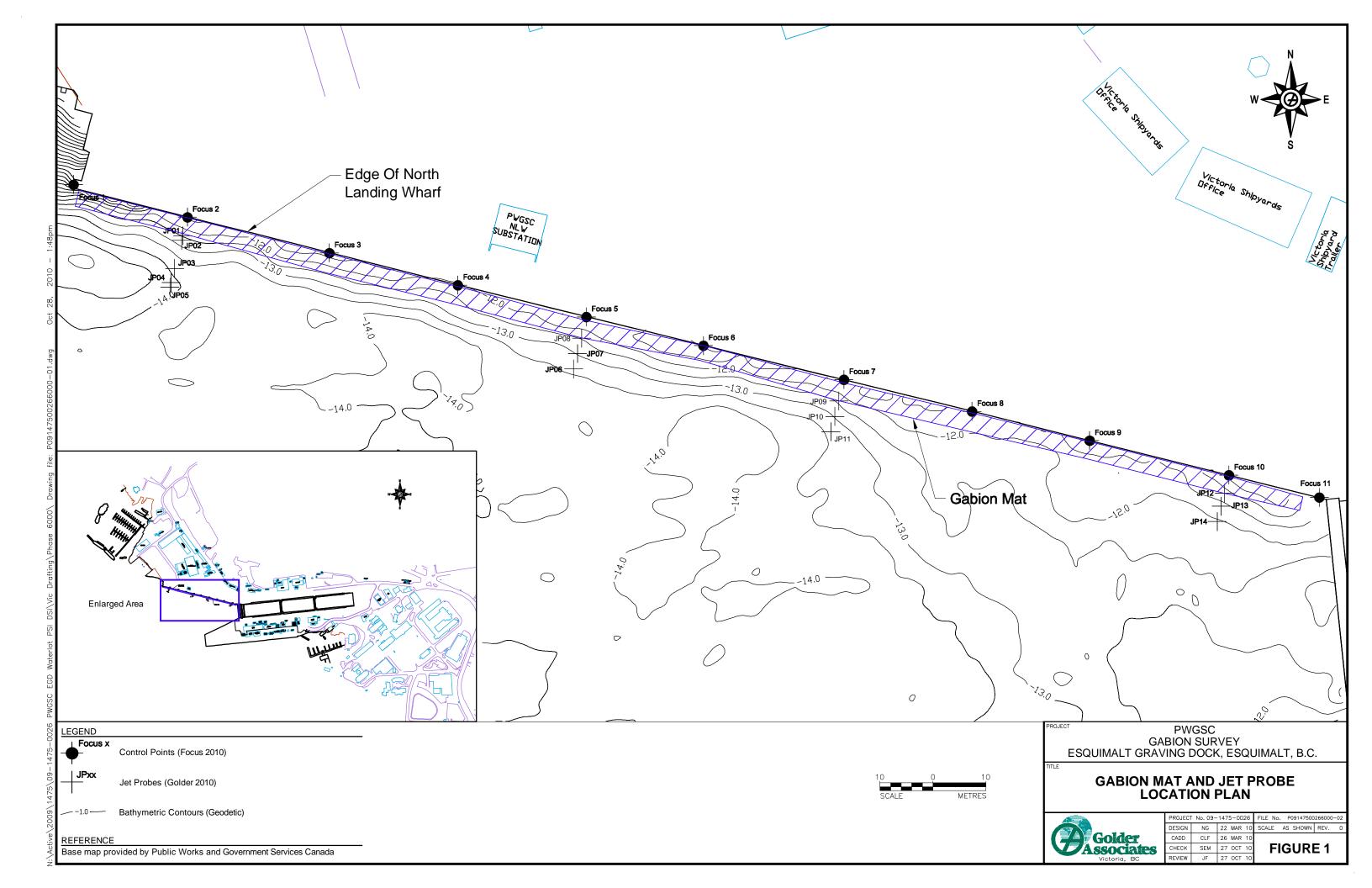
ORIGINAL SIGNED

Rachael Jones, B.Sc. Environmental Scientist Pete Craig, M.Sc. Environmental Scientist

Reviewed By:

ORIGINAL SIGNED

Tim Whalen, M.Sc., P.Eng. Associate


RJ/RPC/TW/kar/smh

Attachments Figures, Appendices

n:\final\2009\1475\09-1475\0026 pwgsc egd waterlot psi dsi\10-29-10 gabion assessment\pwgsc-egd-gabion assessment-10-11-golder 20101029.docx

FIGURES

APPENDIX A

Focus Location	Northing	Easting	Elevation (geodetic)	Flagging	Measured Depth (m) below pin	Measured Elevation (m geodetic)	Measured Elevation (m chart)	Measured Elevation (m facility datum)
1	5364971.329	468153.449	2.52	4 X black and yellow	13.01	-10.49	-8.62	-8.74
2	5364965.189	468174.961	2.84	2 X red and 2X black and yellow	14.33	-11.49	-9.62	-9.74
3	5364958.430	468201.748	2.89	4 X red	14.27	-11.38	-9.51	-9.63
4	5364952.356	468226.012	2.84	1 X yellow and 3 X red	14.89	-12.05	-10.18	-10.30
5	5364946.363	468250.267	2.88	2 X yellow and 2 X red	14.86	-11.98	-10.11	-10.23
6	5364940.945	468272.376	2.92	3 X yellow and 1 X red	13.85	-10.93	-9.06	-9.18
7	5364934.527	468298.897	2.93	4 X yellow	15.05	-12.12	-10.25	-10.37
8	5364928.532	468323.083	2.96	1 X red and white and 3 X yellow	14.48	-11.52	-9.65	-9.77
9	5364923.030	468345.285	2.97	2 X red and white and 2 X yellow	14.04	-11.06	-9.19	-9.31
10	5364916.494	468371.578	2.97	3 X red and white and 1 X yellow	13.73	-10.76	-8.89	-9.01
11	5364912.300	468388.651	2.97	4 X red and white	14.46	-11.48	-9.61	-9.73

Notes:

Chart Elevation = Geodetic Elevation + 1.87 m

Facility Datum Elevation = Geodetic Elevation + 1.75 m

Significant figures are as reported in field notes and subcontractor deliverables

Tape measure measurement using lead ball weight on varying bottom conditions on wall of varying plumbness introduces additional error

APPENDIX B

APPENDIX B Summary of Diver Measurements from Diver Video Survey Esquimalt Graving Dock, Esquimat, B.C.

	Diver Depth	Gap between gabion and		Toe height, off	
Lead Line	pneumo	wall	Slope of Gabions (deg)	harbour floor	Notes
	(metres / feet)	(metres / inches)		(metres / inches)	
1	-	-	-	-	
Most End	11.0 m / 36'	0.2 m / 8"	20, 2E(couth)	0.23 m / 9"	west end of gabions, approximately 1.2 m
West End	11.0 117 50	0.2 111 / 8	30 - 35 (south)	0.23 111 / 9	east of Lead Line 1
2	10.5 m / 34.5'	0.18 m / 7"	10 - 15 (south)	0.18 m / 7"	
3	10.5 m / 34.5'	0.25 - 0.3 m / 10" to 12"	10 - 15 (south)	0.18 m / 7"	
4	11.0 m / 36'	0.3 m / 24"	10 - 15 (south)	0.15 m / 6"	
5	10.7 m / 35'	0.76 m / 30"	20 (north)	0.25 m / 10"	gabion mats are lower in the middle
6	9.9 m / 32.5'	0	10 - 15 (south)	0.13 m / 5"	
7	10.7 m/ 35'	0.61 m / 24"	20 (north), 10 (south)	0.18 m / 7"	gabion mats are higher in the middle
8	10.1 m / 33'	0.36 m / 14"	5 (south)	0	toe flush with sediment or buried
9	9.8 m/ 32'	0.2 m / 8"	10 - 15 (south)	0.18 m / 7"	
10	9.6 m/ 31.5'	0.25 m / 10"	10 - 15 (south)	0.18 m / 7"	
East End	_	0.61 m / 24"	15 - 20 (south)	0.1 m / 4"	Gabion measures at east end of gabions, approximately 3 m west of 11
11	_	-	-	_	

Notes:

Significant figures are as reported in field notes and subcontractor deliverables

APPENDIX B Gabion Video Survey Observations Esquimalt Graving Dock, Esquimalt, B.C.

Date	Time	Lead Line Reference	Surface Marker	Length to Marker (m)	Gabion Width (m)	Probe Penetration at Gabion Toe (metres / inches)	Notes on Probing at Toe	Probe Penetration between Wall and Gabions (metres / inches)	Notes on F
		West End of	1	15.23		0.15 m / 6"	some rocks encountered with probe,	full penetration	some full penet
	13:20	Gabions	2	26.38	3.28	0.66 m / 26"	some full penetration	0.02 m / 1"	sediment over cond
		Gabions	3	51.41			some full perfectation	0	wall with poured
			Gabion Assessment Comments	metres (7 incl seams; furth and the wall i extends past	hes) thick; we er west - the e s 0.2 metres (last gabion ar	st of station 2 is a wirec end of the gabions with 8 inches), slope is 30-35	netres (7 inches), slope of gabion is 10- I seam between two gabions, toe is exp filter cloth showing, gabions stop appr 5 degrees down and away from wall, ga toe of the last gabion; around corner o	bosed with filter cloth ox 1.2 metres (4 feet) abion is 0.22 metres (9	showing; further we before end of wall, g inches) thick on side
			1	27		0.25m / 10"	feels rocky, filter cloth along the wall,	0	filter cloth ov
	13:45	2	2 3	14.9 31.23	3	0.2m / 8"	not full penetration	0.05 m / 2"	gabion mat wire
			Gabion Assessment Comments	toe of the gat between the	pion is 0.17 m two gabions,	etres (7 inches), further	s 0.25 to 0.3 metres (10 to 12 inches), west from station 3 a seam between t nounded in the centre, sloping down or ogether.	wo gabions has been w	vired together and re
			2	31.08		0.2 m/ 8"		solid	
			3	14.935		0.12m/ 5"	·	min. penetration	few inches of seidn
	14:00	3	4	29.44	3.42	0.33 m/ 13"	some large stones on surface		so much filter clo
						0.66 m/ 26"	+		does come ι
3-Mar-10			Gabion Assessment Comments 3	from wall at 1	LO-15 degrees	, toe of gabion is expose	d with sediment, gabion is approx 0.3 n ed 0.15 metres (6 inches), possible old er west, near station 3 - the top mesh	ship fenders just past t of the gabion is expose 0.07 m / 3"	oe of the gabions wi
	15:12	4	4	15.48 29.42	3.1	0.07 m / 3"	solid bottom, possibly rocks	0.3 m / 12"	mud with roc
			Gabion Assessment Comments	At station 5, f into wall at 20 (7 inches) thic	0 degrees, gal ck at toe; furt	pion is undercut at toe v	f 0.76 metres (2.5 feet) covered with so with filter cloth exposed - 0.25 metres (stitched together with wire and minor at the toe.	10 inches) from sea flo	oor to top of gabion -
			4	29.9		0.66 m / 26"		0	filter cloth comes u
	15:36	5	5	14.93	2.9		no resistance		as been poured be
			6	27.14					ga
			Gabion Assessment Comments	gabions slight	tly covered wi	th sediment but toe is s	ed with concrete, 10-15 degree slope o till visible; further west - gap between e near the toe but still intact near wall.	gabion and wall is fille	
			5	27.02		0.66 m / 26"		min. penetration	
	15:46	6	6	14.7	3	0.15 m / 6"	full penetration, some rocks		small layer of sec
			7	31.09					
			Gabion Assessment Comments	has a peak at approximatel	the centre wi y midway bet	th a slope of 10 degrees ween Station 7 and 6 - s	d to gabion mesh (Could be a separate s down and away from wall, and 20 deg space between gabion and wall is filled exposed; further along a seam stitched	grees down and into w in with concrete with	all, toe of gabion is 0 sediment above cone

Notes:

Significant figures are as reported in field notes and subcontractor deliverables

n Probing at Wall

etration, some shallow ncrete, filter cloth againts ed cement underneath e of gabion is 0.17 vest is another 2 wired gap between the gabion de of gabion, filter cloth and debris past the

overtop of cement

ires are plastic coated

vn and away from wall, rocks have been placed Is the harbour; further

dment over concrete, not loth at this location but e up over concrete

ping down and away with large stones in front

ocks under the mud

n is sloping down and n - gabion is 0.17 metres er cloth is exposed;

s up by the wall, concrete between the wall and the gabions

f gabion is exposed 6", further west - a seam

ediment over concrete

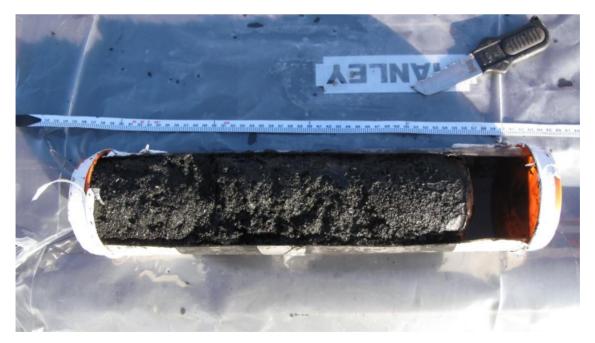
n gabion and wall, gabion 5 0.17 metres (7 inches); oncrete, filter cloth is

APPENDIX B Gabion Video Survey Observations Esquimalt Graving Dock, Esquimalt, B.C.

Date	Time	Lead Line Reference	Surface Marker	Length to Marker (m)	Gabion Width (m)	Probe Penetration at Gabion Toe (metres / inches)	Notes on Probing at Toe	Probe Penetration between Wall and Gabions (metres / inches)	Notes on P
			6	30.85		0.25 m		0.1 m	
	9:45	7	7	15.15	3.02	1.0 m	full penetration (1.0 m)		solid under
			8	29.52					
			Gabion Assessment Comments	toe of gabion between gabi	is buried; mic ion and wall is	dway between Station 8 s 0.3 metres (12 inches);	5 metre (14 inch) gap between gabion and 7 - concrete poured over gabion i further west - another seam between furhter west - gabions are sloped into t	nto a gap within the ga gabions approx 0.2 me	bion, toe of gabion is
			7	29.13		1.0 m		0	
	-	8	8	15.19	3.16	0.74 m	some gravel felt		no pe
			9	27.53		0.87 m			
		From Station 9 to Station 8	Gabion Inspection Comments	filling in gabio	on, gabion toe	e is 0.17 metres (7 inche	wn and awy from wall, gap between ga s); midway between station 9 and 8 se ame level as sea floor and/or buried in	am between two gabio	
			8	27.25		0.15 m	probe at 1 m offshore of gabion toe :	0	
	-	9	9	14.9	3.12	0.03 m	0.83 m, 0.8 m, 0.85 m		no pe
4-Mar-10			10	30.93		0.6 m			
				At station 10	there is a 0.2"				
				down and aw	ay from wall, a 0.25 to 0.3	rock inside gabion is ap	etween the gabion and wall, gabion to prox 0.17 metrea (7 inches) in diamete between gabion and wall, iron rebar a	er, mesh opening is 3" ir	diameter; midway
			Gabion Inspection	down and aw and 9 there is	ay from wall, a 0.25 to 0.3	rock inside gabion is ap	prox 0.17 metrea (7 inches) in diamete between gabion and wall, iron rebar a probe at 1 m offshore of gabion toe :	er, mesh opening is 3" ir	diameter; midway
	-	10	Gabion Inspection Comments 9 10	down and aw and 9 there is covered with 30.55 14.6	ay from wall, a 0.25 to 0.3	rock inside gabion is ap metre (10-12 inch) gap 0.32 m 0.22 m	prox 0.17 metrea (7 inches) in diamete between gabion and wall, iron rebar a probe at 1 m offshore of gabion toe : 0.46 m, 0.35 m, probe at 2m out	er, mesh opening is 3" ir t toe and inner edge of	diameter; midway
	-	10	Gabion Inspection Comments 9 10 11	down and aw and 9 there is covered with 30.55 14.6 23.9	ay from wall, a 0.25 to 0.3 sediment. 3.11	rock inside gabion is ap metre (10-12 inch) gap 0.32 m 0.22 m 0.35 m	prox 0.17 metrea (7 inches) in diameter between gabion and wall, iron rebar a probe at 1 m offshore of gabion toe : 0.46 m, 0.35 m, probe at 2m out from gabion toe : 0.5 m, 0.5 m	er, mesh opening is 3" ir t toe and inner edge of 0.05 m	n diameter; midway gabion acting as fran
	-	10	Gabion Inspection Comments 9 10	down and aw and 9 there is covered with 30.55 14.6 23.9 At east end o station 11 an	ay from wall, s a 0.25 to 0.3 sediment. 3.11 f gabion there	rock inside gabion is ap metre (10-12 inch) gap 0.32 m 0.22 m 0.35 m	prox 0.17 metrea (7 inches) in diameter between gabion and wall, iron rebar a probe at 1 m offshore of gabion toe : 0.46 m, 0.35 m, probe at 2m out from gabion toe : 0.5 m, 0.5 m gap between gabion and wall, 15-20 da	er, mesh opening is 3" ir t toe and inner edge of 0.05 m	n diameter; midway gabion acting as fran
	-		Gabion Inspection Comments 9 10 11 Gabion Assessment Comments 9	down and aw and 9 there is covered with 30.55 14.6 23.9 At east end o station 11 and 43.95	ay from wall, s a 0.25 to 0.3 sediment. 3.11 f gabion there	rock inside gabion is ap metre (10-12 inch) gap 0.32 m 0.22 m 0.35 m e is a 0.6 metre (2 foot) g	prox 0.17 metrea (7 inches) in diameter between gabion and wall, iron rebar a probe at 1 m offshore of gabion toe : 0.46 m, 0.35 m, probe at 2m out from gabion toe : 0.5 m, 0.5 m gap between gabion and wall, 15-20 da	er, mesh opening is 3" ir t toe and inner edge of 0.05 m	n diameter; midway gabion acting as fran
	-	east end of	Gabion Inspection Comments 9 10 11 Gabion Assessment Comments	down and aw and 9 there is covered with 30.55 14.6 23.9 At east end o station 11 an	ay from wall, s a 0.25 to 0.3 sediment. 3.11 f gabion there d 10 gabion t	rock inside gabion is ap metre (10-12 inch) gap 0.32 m 0.22 m 0.35 m e is a 0.6 metre (2 foot) g	prox 0.17 metrea (7 inches) in diameter between gabion and wall, iron rebar a probe at 1 m offshore of gabion toe : 0.46 m, 0.35 m, probe at 2m out from gabion toe : 0.5 m, 0.5 m gap between gabion and wall, 15-20 da	er, mesh opening is 3" ir t toe and inner edge of 0.05 m	n diameter; midway gabion acting as fran
	-		Gabion Inspection Comments 9 10 11 Gabion Assessment Comments 9	down and aw and 9 there is covered with 30.55 14.6 23.9 At east end o station 11 and 43.95	ay from wall, s a 0.25 to 0.3 sediment. 3.11 f gabion there	rock inside gabion is ap metre (10-12 inch) gap 0.32 m 0.22 m 0.35 m e is a 0.6 metre (2 foot) g	prox 0.17 metrea (7 inches) in diameter between gabion and wall, iron rebar a probe at 1 m offshore of gabion toe : 0.46 m, 0.35 m, probe at 2m out from gabion toe : 0.5 m, 0.5 m gap between gabion and wall, 15-20 da	er, mesh opening is 3" ir t toe and inner edge of 0.05 m	n diameter; midway gabion acting as fran
	-	east end of gabions, 3.04 m	Gabion Inspection Comments 9 10 11 Gabion Assessment Comments 9 10	down and aw and 9 there is covered with 30.55 14.6 23.9 At east end o station 11 and 43.95 20.28	ay from wall, s a 0.25 to 0.3 sediment. 3.11 f gabion there d 10 gabion t	rock inside gabion is ap metre (10-12 inch) gap 0.32 m 0.22 m 0.35 m e is a 0.6 metre (2 foot) g	prox 0.17 metrea (7 inches) in diameter between gabion and wall, iron rebar a probe at 1 m offshore of gabion toe : 0.46 m, 0.35 m, probe at 2m out from gabion toe : 0.5 m, 0.5 m gap between gabion and wall, 15-20 da	er, mesh opening is 3" ir t toe and inner edge of 0.05 m	n diameter; midway gabion acting as fran
	-	east end of gabions, 3.04 m	Gabion Inspection Comments 9 10 11 Gabion Assessment Comments 9 10 11	down and aw and 9 there is covered with 30.55 14.6 23.9 At east end o station 11 and 43.95 20.28 14.61	ay from wall, s a 0.25 to 0.3 sediment. 3.11 f gabion there d 10 gabion t	rock inside gabion is ap metre (10-12 inch) gap 0.32 m 0.22 m 0.35 m e is a 0.6 metre (2 foot) g	prox 0.17 metrea (7 inches) in diameter between gabion and wall, iron rebar a probe at 1 m offshore of gabion toe : 0.46 m, 0.35 m, probe at 2m out from gabion toe : 0.5 m, 0.5 m gap between gabion and wall, 15-20 da	er, mesh opening is 3" ir t toe and inner edge of 0.05 m	n diameter; midway gabion acting as fran

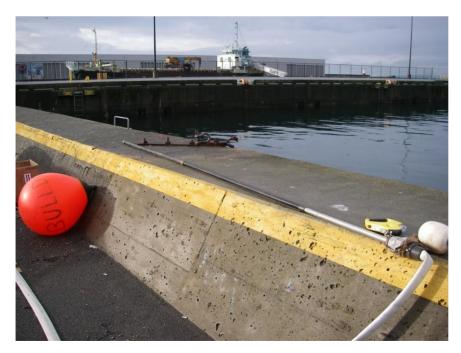
Notes:

Significant figures are as reported in field notes and subcontractor deliverables


Probing at Wall
erneath, cement?
vn and away from wall, i is exposed, gap le, coated wire used to
penetration
liment and shell debris n gabions at seam, filter
penetration
ch), slope is 15 degrees
y between station 10
ame of gabion, gabion
-
midway point between
-
s at this location

APPENDIX C

Photograph 1: Diver based piston core provided by RSS.


Photograph 2: 80 cm core retrieved using diver operated piston core.

Photograph 3: Stainless steel grab sampler provided by RSS.

Photograph 4: Jet Probe "lance" supplied by Golder Associates.

APPENDIX D

APPENDIX D Sediment Chemistry Esquimalt Graving Dock, Esquimalt, B.C.

Sample Location State Sample Control Number Depth Internal bolow multice Number Book Sample Control Number Depth Internal Bolow multice Sample Control Number Sample Control Number Depth Internal Bolow multice Sample Control Number Depth Internal Bolow Multin Sample Control Number Depth Internal Bolow Multice Sam					D040.04	D010.00	D010.00	D040.04	D010.05	DC10-06
Sample Control Number cross Standard for Marrier Sedmarrier Sedmarrier Sedmarrier Sedmarrier cross Standard for Marrier Sedmarrier cross Standard for Marrier Sedmarrier cross Standard for Marrier	Sample Location Study				DC10-01	DC10-02	DC10-03	DC10-04	DC10-05	DC10-06
Depth Interval below multine (m) Samplet prope QAAQC CCME * Image: PEL Image: PEL Image: PEL <					21537-01	21537-02	21537-03	21537-04	21537-05	21537-06
Sediment Sample Type QAVQC Sediment PEL ⁵ for Marine PEL ⁵ for Marine Sumple Type Typical ² for Marine Sumple Type Sumple Type S		CCME ⁴	CSR Standards		0.8	0.27	0.25	0.25	0.26	0.8
Sample Type QAQC PEL ⁴ Sediment ² Core Grab Grab <thg< td=""><td></td><td></td><td></td><td>10 x PEL</td><td></td><td>-</td><td></td><td></td><td></td><td></td></thg<>				10 x PEL		-				
QAACC Typical Typical Dup Dup Physical Parameters moistures (%) pH (pH units) 30.8 31.8 25.7 19.9 9.4.6 29.2 Subtracted Rise Extractables 8.307 8.21 8.34 8.40 8.37 8.21 8.34 Subtracted Rise Extractables 5000 8000 7800 4830 9.33.4 47.4 50.0 Solumin (Na) 41.6 50.0 416 73.0 300 3240 1370 450 111 Intimory anctic 41.6 50.0 416 73.0 300 3240 1370 450 111 Intimory 41.6 50.0 416 73.0 305 254 5.16 4.37 1.64 0.95 chonium 42 1000 1600 1130 130 142 133 136 63.3 447 cohalt 100 112 130.0 112 130.0 113 13.4 0.71 1.3.8 <td>Date Sampled</td> <td>Marine</td> <td>Estuarine</td> <td></td> <td>5-Mar-10</td> <td>5-Mar-10</td> <td>5-Mar-10</td> <td>5-Mar-10</td> <td>5-Mar-10</td> <td>5-Mar-10</td>	Date Sampled	Marine	Estuarine		5-Mar-10	5-Mar-10	5-Mar-10	5-Mar-10	5-Mar-10	5-Mar-10
Physical Parameters moisture (%) plf (pl mins) Number Sector Solution (%) Saturated Paste Extractables Chloride (C1) % Saturation Sodium (%) Number Sector Solution (%) Sector Solution (%) Sector <td>Sample Type</td> <td>PEL⁵</td> <td>Sediment²</td> <td></td> <td>Core</td> <td>Grab</td> <td>Grab</td> <td>Grab</td> <td>Grab</td> <td>Core</td>	Sample Type	PEL ⁵	Sediment ²		Core	Grab	Grab	Grab	Grab	Core
noisture (%) 30.8 31.8 25.7 19.9 34.6 25.2 pH (pH units) 30.8 31.8 8.40 8.37 8.21 8.34 Sturated Part Extractables 50.0 80.00 60.00 90.00 760.0 450.0 Sturated Part Extractables 3150 44.8 32.0 90.00 760.0 450.0 Sturated Part Extractables 41.6 50.0 416 73.0 309 32.40 731.0 4220 2255.0 Total Metals 114 1630 492 22.4 72 unition 41.6 50.0 416 73.0 309 32.40 131.0 450 111 bardium 42.2 50.0 42.0 0.65 2.54 5.16 4.37 1.64 0.55 comper 160 190.0 42.0 0.60 133.0 31.5 61.7 21.3 33.4 15.6 copper 188 23.2 199 21.20	QA/QC		Typical 3							Dup
noisture (%) 30.8 31.8 25.7 19.9 34.6 25.2 pH (pH units) 30.8 31.8 8.40 8.37 8.21 8.34 Sturated Part Extractables 50.0 80.00 60.00 90.00 760.0 450.0 Sturated Part Extractables 3150 44.8 32.0 90.00 760.0 450.0 Sturated Part Extractables 41.6 50.0 416 73.0 309 32.40 731.0 4220 2255.0 Total Metals 114 1630 492 22.4 72 unition 41.6 50.0 416 73.0 309 32.40 131.0 450 111 bardium 42.2 50.0 42.0 0.65 2.54 5.16 4.37 1.64 0.55 comper 160 190.0 42.0 0.60 133.0 31.5 61.7 21.3 33.4 15.6 copper 188 23.2 199 21.20										
nonetwore (%) pH (pH units) Sturnation Prote Extractables Cheroice (C1) % Sturnation Saturation	Physical Parameters									
pH (PH units) Saturated Paste Extractables 8.22 8.13 8.40 8.37 8.21 8.34 Saturated Paste Extractables Cholnds (C1) 5200 8900 6200 8000 7800 4930 Solimin (Na) 38.0 44.8 32.0 38.3 47.4 50.0 Total Metals 41.6 50.0 416 73.0 399 3240 429 224 72 antimony 41.6 50.0 416 185 235 370 356 2800 111 barium 41.2 1900 1600 416 50.0 416 43 114 1630 492 24 72 ausensic 41.6 50.0 416 185 235 370 356 280 166 total Metals 186 235 187 67.9 33.3 156 cobalt 1300 146 133 61.7 42.3 134 490 total Metals 130.0 34.8 157 67.9 33.3 156 total Metals 130.0 143 14.6 0.57 143 1.33 24.7 total Metals 120.0 1.30.0	-				30.8	31.8	25.7	19.9	34.6	29.2
Suturate Date Extractables Suturate Extractables Suturate Extractables Suturate Structubles S										
Chloride (C1) 5 Saturation 5200 8900 6200 80000 78000 4930 S Saturation 33150 4990 3270 4280 4220 2850 Total Metals antimory 41.6 50.0 416 73.0 309 3240 1310 450 1111 barium 42.2 5.0 416 73.0 309 3240 1310 450 1111 barium 4.2 5.0 416 73.0 309 3240 1310 450 1111 barium 4.2 5.0 416 73.0 309 3240 1310 450 111 cobati 160 190.0 1600 1600 416 130 41.7 42.3 1066 1980 1660 600 600 31.5 60.5 42.3 1060 130 34.8 157 67.9 33.3 15.6 copper 188 130.0 1120 130.0	1 4				-				-	
% Saturation Sodium (Na) 38.0 44.8 32.0 38.3 47.4 50.0 Sodium (Na) 71.0 42.0 42.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 72.0 arsenic 41.6 50.0 41.6 50.0 41.6 43.114 163.0 49.0 22.2 72.0 barium 42.0 5.0 41.6 73.0 30.9 32.40 131.0 44.0 116.0 beryllium 4.1 165.0 2.5.4 5.16 4.3.7 11.64 0.05 chonium (total) 160 190.0 1600 1080 130.0 14.8 133 61.7 42.3 14.4 15.0 42										
Sodium (Na) 3150 4990 3270 4280 4220 2850 Total Metals antimony arrenic 41.6 50.0 416 73.0 309 3240 1310 450 111 barium 41.6 50.0 416 73.0 309 3240 1310 450 111 barium 42 5.0 446 5.0 42 0.55 5.16 4.37 164 0.50 chomium (total) 42 5.0 1600 1600 143 133 61.7 42.3 1060 1600 1600 143 133 61.7 42.3 1060 1600 1080 2160 900 368 272 mecury 0.7 0.84 7.0 1120 219 319 2160 900 368 272 nolybdenum - 2.0 7.0 1.50 5.0 - 0.40 1.13 2.13 2.13 2.13 2.0 - 2.0										
Total Metals antimony arsenic 41.6 50.0 416 73.0 309 3240 1310 450 111 barium barium beryllium cadmium (total) 41.6 50.0 416 73.0 309 3240 1310 450 111 beryllium cadmium total) 41.6 50.0 42 160 151 <0.50										
antimony arsenic 41.6 50.0 416 73.0 309 3240 1310 450 111 barium berylium cadmium (total) 41.6 50.0 416 73.0 309 3240 1310 450 111 berylium cadmium (total) 4.2 5.0 186 235 370 356 280 166 copper 100 190.0 186 2.05 0.05 0.95 0.51 -0.50 -0.5	Sodium (Na)				3150	4990	3270	4280	4220	2850
antimony arsenic 41.6 50.0 416 73.0 309 3240 1310 450 111 barium berylium cadmium (total) 41.6 50.0 416 73.0 309 3240 1310 450 111 berylium cadmium (total) 4.2 5.0 186 235 370 356 280 166 copper 100 190.0 186 2.05 0.05 0.95 0.51 -0.50 -0.5	Total Metals									
arsenic 41.6 50.0 416 73.0 309 3240 1310 450 111 barium beryllium 185 235 370 356 280 166 cadmium 4.2 5.0 42 0.65 2.54 5.16 4.37 1.64 0.95 cobalt 0.00 1600 41.0 75.0 143 133 61.7 42.3 cobalt 130.0 34.8 157 67.9 33.3 156.6 copper 108 130.0 1120 130.0 1800 1600 423 1060 1600 603 447 nectury 0.7 0.84 7.0 15.0 5.67 0.360 0.713 1.13 2.13 nickel scienium 8.1 22.2 52.1 75.0 33.6 30.4 vandium 2.0 <0.0					43	114	1630	492	224	72
barium bergilium cadmium 185 235 370 356 280 165 beryllium cadmium 4.2 5.0 42 0.50 -0.50 0.95 0.51 -0.50 -0.50 -0.50 -0.50 -0.51 -0.50 -0.50 -0.50 -0.51 -0.50 -0.51 -0.50 -0.51 -0.50 -0.51 -0.50 -0.51 -0.50 -0.51 -0.50 -0.50 -0.51 -0.50		41.6	50.0	416						
beryllium cadmium (otal)		1110	50.0							
4.2 5.0 42 0.65 2.54 5.16 4.37 1.64 0.95 chromium (total) 160 190.0 1600 130.0 143 133 61.7 423 cobalt 1000 130.0 130.0 130.0 130.0 130.0 130.0 130.0 1660 603 447.7 lead 112 130.0 130.0 130.0 150 5.67 0.360 0.713 1.13 2.13 molybdenum 0.7 0.84 7.0 150 5.67 0.360 0.713 1.13 2.13 molybdenum 0.7 0.84 7.0 1.50 5.67 0.360 0.713 1.13 2.13 silver 1.0 <1.0										
cobalt 13.0 34.8 157 67.9 33.3 15.6 copper 108 130.0 1080 1080 1660 603 447 mercury 0.7 0.84 7.0 1120 130.0 1.13 2.13 nickel 0.7 0.84 7.0 1.50 5.67 0.360 0.713 1.13 2.13 selenium 25.9 32.2 139 112 46.7 13.8 silver		4.2	5.0	42	0.65	2.54	5.16		1.64	0.95
Looper lead 108 130.0 1080 123 1060 1980 1660 603 447 lead 112 130.0 1120 130.0 1120 219 319 2180 900 368 272 molybdenum 0.7 0.84 7.0 360 0.71 313.8 213 0.7 33.6 30.4 213 46.7 13.8 213 0.7 33.6 30.4 22.9 32.2 52.1 75.0 33.6 30.4 22.0 <2.0	chromium (total)	160	190.0	1600	41.0	75.0	143	133	61.7	42.3
Lead 112 130.0 1120 219 319 2180 900 368 272 mercury 0.7 0.84 7.0 1.50 5.67 0.360 0.713 1.13 2.13 nickel 8.1 22.2 139 112 46.7 13.8 selenium 8.1 22.2 52.1 75.0 33.6 30.4 selenium 25.9 32.2 52.1 75.0 44.0 <2.0	cobalt									
mercury molybdenum nickel selenium 0.7 0.84 7.0 1.50 5.67 0.360 0.713 1.13 2.13 nickel selenium 8.1 22.2 139 112 46.7 13.8 selenium 25.9 32.2 52.1 75.0 33.6 30.4 selenium 2.0 -6.0 -6.0 -2.1 -2.0 -2.0 -2.1 -2.0 -2.1 -2.0 -2.1 -2.0 -2.0 -2.1 -2.0 -2.0 -2.10 -2.0 -2.0										
molybdenum nickel 8.1 22.2 139 112 46.7 13.8 nickel selenium 25.9 32.2 52.1 75.0 33.6 30.4 selenium 25.9 32.2 52.1 75.0 42.0 <2.0										
nickel 25.9 32.2 52.1 75.0 33.6 30.4 selenium silver <2.0	5	0.7	0.84	7.0						
selenium selenium										
silver -2.0 -2.0 2.1 -2.0										
thallium <1.0										
tin 13.9 34.8 255 102 41.4 21.1 Uranium 1.13 3.92 4.98 5.85 2.14 1.10 vanadium 73.9 59.9 64.7 62.3 53.9 72.1 zinc 271 330.0 2710 375 3150 10000 4720 2050 471 Polychlorinated Biphenyls PCB-1016 -										
Uranium vanduum zinc 271 330.0 1.13 3.92 4.98 5.85 2.14 1.10 Polychlorinated Biphenyls 271 330.0 2710 375 3150 40.00 4720 2050 471 Polychlorinated Biphenyls PCB-1016 330.0 2710 375 3150 40.00 4720 2050 471 PCB-1016 PCB-121 0.050 <0.056										
Vanadium zinc 271 330.0 2710 73.9 59.9 64.7 62.3 53.9 72.1 Polychlorinated Biphenyls PCB-1016 330.0 2710 375 3150 10000 4720 2050 471 PCB-1016										
Zinc 271 330.0 2710 375 3150 10000 4720 2050 471 Polychlorinated Biphenyls PCB-1016 -					-					-
Polychlorinated Biphenyls CB-1016		271	330.0	2710						
PCB-1016 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < </td <td></td>										
PCB-1221 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <<<										
PCB-1232 < < <										
PCB-1242 0.063 0.138 <0.050 <0.060 0.518 PCB-1248 <0.050										
PCB-1248										
PCB-1254 (arochlor) 0.709 7.09 2.07 0.976 0.069 <0.050 0.431 1.41 PCB-1260 <0.050										
PCB-1260 PCB-1262 PCB-1262		0.709		7.09						
PCB-1262 < <0.050<0.050<0.050<0.050<0.060<0.050<0.060<0.050		0.707		1.09						
polychlorinated biphenyls (PCB-total) ⁶ 0.189 0.23 1.89 2.14 1.82 0.123 <0.050 0.525 2.56	(0.189	0.23	1.89						

Notes:

Results are expressed in micrograms per gram (ug/g), unless otherwise indicated.
 Sediment Quality Criteria (SEDQC) shown are from the BC Contaminated Sites Regulation (CSR) (B.C. Reg. 375/96, O.C. 1480/96 and M271/2004, including

amendments up to B.C. Reg. 343/2008, updated January 1, 2009) standards listed for marine sediments. Criteria shown are from Schedule 9 - Generic Numerical Sediment

Criteria.

Typical contaminated site (TCS) means a sediment site which is not a sensitive sediment site.
 Canadian Council of Ministers of the Environment (CCME). (1999). Canadian Environmental Quality Guidelines [Update 2002]. Guidelines listed are for marine sediments.

5. PEL = Probable Effects Limit

6. PCB-total means the sum of four to seven aroclor mixtures (1016, 1221, 1232, 1242, 1248, 1254 and/or 1260) or the sum of >= 20 individual PCB congeners.

09-1475-0026

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

		Certificate of Analy	sis
GOLDER ASSOCIAT			Report Date: 07-APR-10 13:34 (MT) Version: FINAL
ATTN: PETE CRAIC			Version: FINAL
2640 DOUGLAS STF	REET		
VICTORIA BC V8T	4M1		
Lab Work Order #:	L867711		Date Received: 09-MAR-10
Project P.O. #: Job Reference: Legal Site Desc: CofC Numbers:	NOT SUBMITTED 10-1475-0001 21537		
Other Information:			
Comments:	Dean Watt	W	
	Account Ma	anayer	

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the **ALS Laboratory Group** 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L867711 CONTD PAGE 2 of 5

ALS LABORATORY GROUP ANALYTICAL REPORT 07-APR-10 13:34 (MT)

SOIL Physical Tests % M pH (Saturated Paste Extractables % S Sod Metals Arse Bari Bery Cad Chro Cob Cop Lead Merd Moly Nick Sele Silve Thal Tin (Urar Van	Description Sampled Date Sampled Time Client ID nalyte	05-MAR-10 21537-01 30.8 8.22 5200 38.0 3150 43 73.0 185 <0.50 0.65 41.0 13.0 423 219 1.50	05-MAR-10 21537-02 31.8 8.13 8900 44.8 4990 114 309 235 <0.50 2.54 75.0 34.8 1060 319 5.67	05-MAR-10 21537-03 25.7 8.40 6200 32.0 3270 1630 3240 370 0.95 5.16 143 157 1980 2180	05-MAR-10 21537-04 19.9 8.37 8000 38.3 4280 492 1310 356 0.51 4.37 133 67.9 1660 900	05-MAR-10 21537-05 34.6 8.21 7800 47.4 4220 224 450 280 <0.50 1.64 61.7 33.3 603
SOIL Physical Tests % M pH (Saturated Paste Extractables % S Sod Metals Antii Bery Cad Chro Cob Cop Lead Merd Moly Nick Sele Silve Thal Tin (Urar Van	nalyte loisture (%) pH) oride (Cl) (mg/kg) aturation (%) ium (Na) (mg/kg) mony (Sb) (mg/kg) enic (As) (mg/kg) um (Ba) (mg/kg) //lium (Be) (mg/kg) mium (Cd) (mg/kg) omium (Cr) (mg/kg) per (Cu) (mg/kg) op (Cury (Hg) (mg/kg)	30.8 8.22 5200 38.0 3150 43 73.0 185 <0.50 0.65 41.0 13.0 423 219	31.8 8.13 8900 44.8 4990 114 309 235 <0.50 2.54 75.0 34.8 1060 319	25.7 8.40 6200 32.0 3270 1630 3240 370 0.95 5.16 143 157 1980	19.9 8.37 8000 38.3 4280 492 1310 356 0.51 4.37 133 67.9 1660	34.6 8.21 7800 47.4 4220 224 450 280 <0.50 1.64 61.7 33.3 603
SOIL Physical Tests % M pH (Saturated Paste Extractables % S Sod Metals Antii Bery Cad Chro Cob Cop Lead Merd Moly Nick Sele Silve Thal Tin (Urar Van	loisture (%) pH) pride (Cl) (mg/kg) aturation (%) ium (Na) (mg/kg) mony (Sb) (mg/kg) enic (As) (mg/kg) enic (As) (mg/kg) um (Ba) (mg/kg) filium (Be) (mg/kg) omium (Cr) (mg/kg) omium (Cr) (mg/kg) per (Cu) (mg/kg) d (Pb) (mg/kg) cury (Hg) (mg/kg)	8.22 5200 38.0 3150 43 73.0 185 <0.50 0.65 41.0 13.0 423 219	8.13 8900 44.8 4990 114 309 235 <0.50 2.54 75.0 34.8 1060 319	8.40 6200 32.0 3270 1630 3240 370 0.95 5.16 143 157 1980	8.37 8000 38.3 4280 492 1310 356 0.51 4.37 133 67.9 1660	8.21 7800 47.4 4220 224 450 280 <0.50 1.64 61.7 33.3 603
Physical Tests % M pH (Saturated Paste Chic Extractables % S Sod Metals Antii Bari Bery Cad Chic Wetals Antii Bery Cad Chic Cob Cop Leaa Mero Nick Sele Silve Thal Tin (Urar Van	pH) pride (Cl) (mg/kg) aturation (%) ium (Na) (mg/kg) mony (Sb) (mg/kg) enic (As) (mg/kg) um (Ba) (mg/kg) filium (Be) (mg/kg) prium (Cr) (mg/kg) per (Cu) (mg/kg) d (Pb) (mg/kg) cury (Hg) (mg/kg)	8.22 5200 38.0 3150 43 73.0 185 <0.50 0.65 41.0 13.0 423 219	8.13 8900 44.8 4990 114 309 235 <0.50 2.54 75.0 34.8 1060 319	8.40 6200 32.0 3270 1630 3240 370 0.95 5.16 143 157 1980	8.37 8000 38.3 4280 492 1310 356 0.51 4.37 133 67.9 1660	8.21 7800 47.4 4220 224 450 280 <0.50 1.64 61.7 33.3 603
pH (Saturated Paste Extractables % S Sod Metals Antii Arse Bari Bery Cad Chrc Cob Cop Leac Merc Moly Nick Sele Silve Thal Tin (Urar Van	pH) pride (Cl) (mg/kg) aturation (%) ium (Na) (mg/kg) mony (Sb) (mg/kg) enic (As) (mg/kg) um (Ba) (mg/kg) filium (Be) (mg/kg) prium (Cr) (mg/kg) per (Cu) (mg/kg) d (Pb) (mg/kg) cury (Hg) (mg/kg)	8.22 5200 38.0 3150 43 73.0 185 <0.50 0.65 41.0 13.0 423 219	8.13 8900 44.8 4990 114 309 235 <0.50 2.54 75.0 34.8 1060 319	8.40 6200 32.0 3270 1630 3240 370 0.95 5.16 143 157 1980	8.37 8000 38.3 4280 492 1310 356 0.51 4.37 133 67.9 1660	8.21 7800 47.4 4220 224 450 280 <0.50 1.64 61.7 33.3 603
Saturated Paste Extractables % S Sod Metals Antii Bery Cad Chro Cob Cop Leao Mero Nick Sele Silve Thal Tin o	pride (Cl) (mg/kg) aturation (%) ium (Na) (mg/kg) mony (Sb) (mg/kg) enic (As) (mg/kg) um (Ba) (mg/kg) /llium (Be) (mg/kg) mium (Cd) (mg/kg) per (Cu) (mg/kg) per (Cu) (mg/kg) d (Pb) (mg/kg) cury (Hg) (mg/kg)	8.22 5200 38.0 3150 43 73.0 185 <0.50 0.65 41.0 13.0 423 219	8.13 8900 44.8 4990 114 309 235 <0.50 2.54 75.0 34.8 1060 319	8.40 6200 32.0 3270 1630 3240 370 0.95 5.16 143 157 1980	8.37 8000 38.3 4280 492 1310 356 0.51 4.37 133 67.9 1660	8.21 7800 47.4 4220 224 450 280 <0.50 1.64 61.7 33.3 603
Extractables % S Sod Metals Antii Arse Bari Bery Cad Chro Cob Cop Lead Mery Nick Sele Silve Silve Thal Tin (aturation (%) ium (Na) (mg/kg) mony (Sb) (mg/kg) enic (As) (mg/kg) um (Ba) (mg/kg) filium (Be) (mg/kg) mium (Cd) (mg/kg) per (Cu) (mg/kg) d (Pb) (mg/kg) cury (Hg) (mg/kg)	5200 38.0 3150 43 73.0 185 <0.50 0.65 41.0 13.0 423 219	8900 44.8 4990 114 309 235 <0.50 2.54 75.0 34.8 1060 319	6200 32.0 3270 1630 3240 370 0.95 5.16 143 157 1980	8000 38.3 4280 492 1310 356 0.51 4.37 133 67.9 1660	7800 47.4 4220 224 450 280 <0.50 1.64 61.7 33.3 603
Sod Metals Antii Arse Bari Bery Cad Chro Cob Cop Lead Mery Nick Sele Silve Thal Tin (ium (Na) (mg/kg) mony (Sb) (mg/kg) enic (As) (mg/kg) um (Ba) (mg/kg) /llium (Be) (mg/kg) mium (Cd) (mg/kg) pmium (Cr) (mg/kg) alt (Co) (mg/kg) per (Cu) (mg/kg) d (Pb) (mg/kg) cury (Hg) (mg/kg)	3150 43 73.0 185 <0.50 0.65 41.0 13.0 423 219	4990 114 309 235 <0.50 2.54 75.0 34.8 1060 319	3270 1630 3240 370 0.95 5.16 143 157 1980	4280 492 1310 356 0.51 4.37 133 67.9 1660	4220 224 450 280 <0.50 1.64 61.7 33.3 603
Metals Antii Arse Bari Bery Cad Chro Cob Cop Lead Mero Nick Sele Silve Thal Tin (Urar Van	mony (Sb) (mg/kg) enic (As) (mg/kg) um (Ba) (mg/kg) /llium (Be) (mg/kg) mium (Cd) (mg/kg) omium (Cr) (mg/kg) alt (Co) (mg/kg) per (Cu) (mg/kg) d (Pb) (mg/kg) cury (Hg) (mg/kg)	43 73.0 185 <0.50 0.65 41.0 13.0 423 219	114 309 235 <0.50 2.54 75.0 34.8 1060 319	1630 3240 370 0.95 5.16 143 157 1980	492 1310 356 0.51 4.37 133 67.9 1660	224 450 280 <0.50 1.64 61.7 33.3 603
Arse Bari Bery Cad Chro Cob Cop Lead Mery Nick Sele Silve Thal Tin (Urar	enic (As) (mg/kg) um (Ba) (mg/kg) /llium (Be) (mg/kg) mium (Cd) (mg/kg) omium (Cr) (mg/kg) alt (Co) (mg/kg) per (Cu) (mg/kg) d (Pb) (mg/kg) cury (Hg) (mg/kg)	73.0 185 <0.50 0.65 41.0 13.0 423 219	309 235 <0.50 2.54 75.0 34.8 1060 319	3240 370 0.95 5.16 143 157 1980	1310 356 0.51 4.37 133 67.9 1660	450 280 <0.50 1.64 61.7 33.3 603
Bari Bery Cad Chro Cob Cop Lead Mero Moly Nick Sele Silve Thal Tin (Urar	um (Ba) (mg/kg) /llium (Be) (mg/kg) mium (Cd) (mg/kg) omium (Cr) (mg/kg) alt (Co) (mg/kg) per (Cu) (mg/kg) d (Pb) (mg/kg) cury (Hg) (mg/kg)	185 <0.50 0.65 41.0 13.0 423 219	235 <0.50 2.54 75.0 34.8 1060 319	370 0.95 5.16 143 157 1980	356 0.51 4.37 133 67.9 1660	280 <0.50 1.64 61.7 33.3 603
Bery Cad Chro Cob Cop Lead Moly Nick Sele Silve That Tin (Urar	/llium (Be) (mg/kg) mium (Cd) (mg/kg) omium (Cr) (mg/kg) alt (Co) (mg/kg) per (Cu) (mg/kg) d (Pb) (mg/kg) cury (Hg) (mg/kg)	<0.50 0.65 41.0 13.0 423 219	<0.50 2.54 75.0 34.8 1060 319	0.95 5.16 143 157 1980	0.51 4.37 133 67.9 1660	<0.50 1.64 61.7 33.3 603
Cad Chro Cob Cop Lead Mero Moly Nick Sele Silve Thal Tin (Urar Van	mium (Cd) (mg/kg) omium (Cr) (mg/kg) alt (Co) (mg/kg) per (Cu) (mg/kg) d (Pb) (mg/kg) cury (Hg) (mg/kg)	0.65 41.0 13.0 423 219	2.54 75.0 34.8 1060 319	5.16 143 157 1980	4.37 133 67.9 1660	1.64 61.7 33.3 603
Chro Cob Cop Lead Moly Nick Sele Silve That Tin (Urar Van	omium (Cr) (mg/kg) alt (Co) (mg/kg) per (Cu) (mg/kg) d (Pb) (mg/kg) cury (Hg) (mg/kg)	41.0 13.0 423 219	75.0 34.8 1060 319	143 157 1980	133 67.9 1660	61.7 33.3 603
Cob Cop Lead Mero Moly Nick Sele Silve That Tin (Urar Van	alt (Co) (mg/kg) per (Cu) (mg/kg) d (Pb) (mg/kg) cury (Hg) (mg/kg)	13.0 423 219	34.8 1060 319	157 1980	67.9 1660	33.3 603
Cop Lead Moly Nick Sele Silve That Tin (Uran	per (Cu) (mg/kg) d (Pb) (mg/kg) cury (Hg) (mg/kg)	423 219	1060 319	1980	1660	603
Lead Merr Moly Nick Sele Silve That Tin (Urar Van	d (Pb) (mg/kg) cury (Hg) (mg/kg)	219	319			
Mero Moly Nick Sele Silve Thal Tin (Urar Van	cury (Hg) (mg/kg)			2180	900	
Moly Nick Sele Silve That Tin (Urar Van		1.50	5.67			368
Nick Sele Silve Thai Tin (Uran Van	/bdenum (Mo) (ma/ka)		0.0.	0.360	0.713	1.13
Sele Silve Thai Tin (Uran Van		8.1	22.2	139	112	46.7
Silve Thai Tin (Urar Van	el (Ni) (mg/kg)	25.9	32.2	52.1	75.0	33.6
Thai Tin (Uran Van	enium (Se) (mg/kg)	<2.0	<6.0	<6.0	<4.0	<2.0
Tin (Urar Van	er (Ag) (mg/kg)	<2.0	<2.0	2.1	<2.0	<2.0
Urar Van	lium (TI) (mg/kg)	<1.0	<1.0	1.3	<1.0	<1.0
Van	(Sn) (mg/kg)	13.9	34.8	255	102	41.4
	nium (U) (mg/kg)	1.13	3.92	4.98	5.85	2.14
Zinc	adium (V) (mg/kg)	73.9	59.9	64.7	62.3	53.9
	(Zn) (mg/kg)	375	3150	10000	4720	2050
Biphenyls	3-1016 (mg/kg)	<0.050	<0.056	<0.050	<0.050	<0.060
	3-1221 (mg/kg)	<0.050	<0.056	<0.050	<0.050	<0.060
PCE	3-1232 (mg/kg)	<0.050	<0.056	<0.050	<0.050	<0.060
PCE	3-1242 (mg/kg)	0.063	0.138	<0.050	<0.050	<0.060
	3-1248 (mg/kg)	<0.050	<0.056	<0.050	<0.050	<0.060
PCE	3-1254 (mg/kg)	2.07	0.976	0.069	<0.050	0.431
PCE	3-1260 (mg/kg)	<0.050	0.705	0.054	<0.050	0.094
PCE	3-1262 (mg/kg)	<0.050	<0.056	<0.050	<0.050	<0.060
PCE	3-1268 (mg/kg)	<0.050	<0.056	<0.050	<0.050	<0.060
Tota	I Polychlorinated Biphenyls (mg/kg)	2.14	1.82	0.123	<0.050	0.525

L867711 CONTD.... PAGE 3 of 5 07-APR-10 13:34 (MT)

ALS LABORATORY GROUP ANALYTICAL REPORT

PH (pH) Saturated Paste Extractables Chloride Sodium (Metals Antimony Arsenic (Barium (Beryllium Cadmium Cadmium Chromiu Cobalt (C Copper (Lead (Pt Mercury Molybder Nickel (N Selenium Silver (A Thallium Tin (Sn) Uranium Vanadiu Zinc (Zn) PCB-122 PCB-123 PCB-123	ture (%)	05-MAR-10 21537-06		
SOIL Physical Tests % Moistu pH (pH) Saturated Paste Extractables % Satura Sodium (Metals Antimony Arsenic (Barium (Beryllium Cadmium Cadmium Cadmium Cadmium Cobalt (C Copper (Lead (Pt Mercury Molybdel Nickel (N Selenium Silver (A Thallium Tin (Sn) Uranium Vanadiuu Zinc (Zn) Polychlorinated Biphenyls PCB-122 PCB-122	/te ture (%)	21537-06		
SOIL Physical Tests % Moistu pH (pH) Saturated Paste Extractables % Satura Sodium (Metals Antimony Arsenic (Barium (Beryllium Cadmium Cadmium Cadmium Cadmium Cobalt (C Copper (Lead (Pt Mercury Molybdel Nickel (N Selenium Silver (A Thallium Tin (Sn) Uranium Vanadiuu Zinc (Zn) Polychlorinated Biphenyls PCB-122 PCB-123 PCB	ture (%)			
Physical Tests % MoisturpH (pH) Saturated Paste Chloride Extractables % Satura Sodium (Sodium (Metals Antimony Metals Antimony Metals Antimony Chloride Barium (Beryllium Cadmiun Chorniu Cobalt (C Copper (Lead (Pt Mercury Molybdea Nickel (N Selenium Silver (A Thallium Tin (Sn) Uranium Vanadiuu Zinc (Zn) Polychlorinated PCB-101 Biphenyls PCB-122 PCB-124 PCB-124				
PH (pH) Saturated Paste Extractables Chloride Sodium Metals Antimony Arsenic (Barium (Beryllium Cadmium Cadmium Cadmium Cadmium Cadmium Cobalt (C Copper (Lead (Pt Mercury Molybder Nickel (N Selenium Silver (A Thallium Tin (Sn) Uranium Vanadium Zinc (Zn) PCB-122 PCB-123 PCB-123				
Saturated Paste Chloride Extractables % Satura Sodium (Sodium (Metals Antimony Arsenic (Barium () Barium () Beryllium Cadmium Choride Cobalt (C Copper () Lead (Pb) Mercury Molybdet Nickel (N Selenium Silver (A Silver (A Thallium Tin (Sn) Uranium Vanadium Zinc (Zn) Polychlorinated PCB-101 Biphenyls PCB-122 PCB-123 PCB-124		29.2		
Extractables % Satura Sodium (Metals Antimony Arsenic (Barium (Beryllium Cadmium Cadmium Cadmium Cadmium Cobalt (C Copper (Lead (Pt Mercury Molybden Nickel (N Selenium Silver (A Thallium Tin (Sn) Uranium Vanadium Zinc (Zn) PCB-102 PCB-122 PCB-123 PCB-123		8.34		
Sodium (MetalsAntimonyArsenic (Barium (BerylliumCadmiumCadmiumCadmiumChromiuCobalt (CCopper (Lead (PtMolybdenNickel (NSeleniumSilver (AThalliumTin (Sn)UraniumVanadiumZinc (Zn)PolychlorinatedBiphenylsPCB-122PCB-124PCB-124	e (Cl) (mg/kg)	4930		
Metals Antimony Arsenic (Barium (Beryllium Cadmium Cadmium Chromiu Cobalt (C Copper (Lead (Pb Mercury Molybden Nickel (N Selenium Silver (A Thallium Tin (Sn) Uranium Vanadium Zinc (Zn) POB-102 PCB-122 PCB-123	ration (%)	50.0		
Arsenic (Barium (Beryllium Cadmium Chromiu Cobalt (C Copper (Lead (Pt Mercury Molybden Nickel (N Selenium Silver (A Thallium Tin (Sn) Uranium Vanadium Zinc (Zn) POlychlorinated Biphenyls PCB-122 PCB-123 PCB-124	(Na) (mg/kg)	2850		
Barium (Beryllium Cadmiun Chromiu Cobalt (C Copper (Lead (Pb Mercury Molybden Nickel (N Selenium Silver (A Thallium Tin (Sn) Uranium Vanadiun Zinc (Zn) POlychlorinated Biphenyls PCB-122 PCB-123	ny (Sb) (mg/kg)	72		
Beryllium Cadmiun Chromiu Cobalt (C Copper (Lead (Pt Mercury Molybden Nickel (N Selenium Silver (A Thallium Tin (Sn) Uranium Vanadiun Zinc (Zn) Polychlorinated Biphenyls PCB-122 PCB-123 PCB-124	(As) (mg/kg)	111		
Cadmiur Chromiu Cobalt (C Copper (Lead (Pt Mercury Molybder Nickel (N Selenium Silver (A Thallium Tin (Sn) Uranium Vanadiur Zinc (Zn) POlychlorinated Biphenyls PCB-122 PCB-123	(Ba) (mg/kg)	166		
Chromiu Cobalt (C Copper (Lead (Pb Mercury Molybder Nickel (N Selenium Silver (A Thallium Tin (Sn) Uranium Vanadiur Zinc (Zn) Polychlorinated Biphenyls PCB-122 PCB-123 PCB-124	m (Be) (mg/kg)	<0.50		
Cobalt (C Copper (Lead (Pt Mercury Molybder Nickel (N Selenium Silver (A Thallium Tin (Sn) Uranium Vanadiur Zinc (Zn) POlychlorinated Biphenyls PCB-122 PCB-123	m (Cd) (mg/kg)	0.95		
Copper (Lead (Pt Mercury Molybder Nickel (N Selenium Silver (A Thallium Tin (Sn) Uranium Vanadium Zinc (Zn) Polychlorinated Biphenyls PCB-122 PCB-123 PCB-124	um (Cr) (mg/kg)	42.3		
Lead (Pt Mercury Molybde Nickel (N Selenium Silver (A Thallium Tin (Sn) Uranium Vanadiuu Zinc (Zn) Polychlorinated Biphenyls PCB-122 PCB-123 PCB-124	(Co) (mg/kg)	15.6		
Mercury Molybder Nickel (N Selenium Silver (A Thallium Tin (Sn) Uranium Vanadiur Zinc (Zn) Polychlorinated Biphenyls PCB-122 PCB-123 PCB-124	(Cu) (mg/kg)	447		
Molybdei Nickel (N Selenium Silver (A Thallium Tin (Sn) Uranium Vanadiur Zinc (Zn) Polychlorinated Biphenyls PCB-122 PCB-123 PCB-124	'b) (mg/kg)	272		
Nickel (N Selenium Silver (A Thallium Tin (Sn) Uranium Vanadium Zinc (Zn) Polychlorinated Biphenyls PCB-101 PCB-122 PCB-123	ν (Hg) (mg/kg)	2.13		
Selenium Silver (A Thallium Tin (Sn) Uranium Vanadiur Zinc (Zn) Polychlorinated Biphenyls PCB-122 PCB-123 PCB-124	enum (Mo) (mg/kg)	13.8		
Silver (A Thallium Tin (Sn) Uranium Vanadium Zinc (Zn) Polychlorinated Biphenyls PCB-122 PCB-123 PCB-124	Ni) (mg/kg)	30.4		
Thallium Tin (Sn) Uranium Vanadiur Zinc (Zn) Polychlorinated Biphenyls PCB-122 PCB-123 PCB-124	m (Se) (mg/kg)	<2.0		
Tin (Sn) Uranium Vanadiuu Zinc (Zn) Polychlorinated Biphenyls PCB-122 PCB-123 PCB-124	Ag) (mg/kg)	<2.0		
Uranium Vanadiui Zinc (Zn) Polychlorinated Biphenyls PCB-122 PCB-123 PCB-124	n (TI) (mg/kg)	<1.0		
Vanadiu Zinc (Zn) Polychlorinated Biphenyls PCB-122 PCB-124 PCB-124) (mg/kg)	21.1		
Zinc (Zn) Polychlorinated PCB-101 Biphenyls PCB-122 PCB-123 PCB-124	n (U) (mg/kg)	1.10		
Polychlorinated PCB-101 Biphenyls PCB-122 PCB-122 PCB-124	um (V) (mg/kg)	72.1		
Biphenyls PCB-122 PCB-123 PCB-124	n) (mg/kg)	471		
PCB-123 PCB-124	16 (mg/kg)	<0.050		
PCB-124	221 (mg/kg)	<0.050		
	232 (mg/kg)	<0.050		
	242 (mg/kg)	0.518		
	248 (mg/kg)	<0.050		
	254 (mg/kg)	1.41		
	260 (mg/kg)	0.626		
	262 (mg/kg)	<0.050		
PCB-126	268 (mg/kg)	<0.050		
Total Pol	olychlorinated Biphenyls (mg/kg)	2.56		

Reference Information

L867711 CONTD PAGE 4 of 5 07-APR-10 13:34 (MT)

Test Method References:

	••		
ALS Test Code	Matrix	Test Description	Method Reference**
CL-PASTE-COLOR-VA	Soil	Chloride in paste by Colourimetric	SOIL SAMPLING AND METHODS OF ANALYSIS
This such with the standard of the	and de la secola de la	de suite est 's llo s'hoeverl's e suit Marine de states her's l	N. O. star have a second second second second

This analysis is adapted from the methods outlined in "Soil Sampling and Methods of Analysis" by M. Carter. In summary, 200 to 500 grams of sample is extracted for a minimum of 4 hours with an amount of deionized water as required to create a saturated paste. The sample is then filtered or centrifuged and decanted to produce an extract that is ready for analysis.

HG-CCME-CVAFS-VA Soil CVAFS Hg in Soil (CCME) BCMELP CSR SALM METHOD 8/EPA 245.7

BCMELP CSR SALM METHOD 8

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by atomic fluorescence spectrophotometry (EPA Method 7000 series).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

MET-CSR-FULL-ICP-VA Soil Metals in Soil by ICPOES (CSR SALM)

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

MOISTURE-VA Soil Moisture content

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

PCB-SE-ECD-VA Soil PCB by Extraction with GCECD

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3500, 3620, 3630, 3660, 3665 & 8082, published by the United States Environmental Protection Agency (EPA). The procedure involves a solid-liquid extraction of a subsample of the sediment/soil using a mixture of hexane and acetone. Water is added to the extract and the resulting hexane extract undergoes one or more of the following clean-up procedures (if required): florisil clean-up, silica gel clean-up, sulphur clean-up and/or sulphuric acid clean-up. The final extract is analysed by capillary column gas chromatography with electron capture detection (GC/ECD).

PH-1:2-VA Soi CSR pH by 1:2 Water Leach

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B Physical/Inorganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

SAR-CALC-MGKG-ICP-VA Soil

Saturated Paste Extraction (ICPOES)

Saturated paste sediment extracts are analyzed for metals by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B). Reported metals results have been converted into milligrams per dry kilogram. Sodium Adsorption Ratio (SAR) is calculated from the Sodium, Calcium, and Magnesium concentrations in the saturated paste extract of a sediment sample. The SAR calculation is described in "Soil Sampling and Methods of Analysis" by M. Carter.

ICPMS TI in Soil by CSR SALM **TL-CSR-MS-VA** Soil

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by either hotplate or block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma mass spectrometry (EPA Method 6020A).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

U-200.2-MS-VA Soil Uranium in Soil by ICPMS

EPA 200.2/6020A

This analysis is carried out using procedures from CSR Analytical Method: "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, 26 June 2009, and procedures adapted from EPA Method 200.2. The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 95 degrees Celsius for 2 hours by block digester using concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may

BCMELP/EPA SW-846 6010B

ASTM METHOD D2974-00

EPA 3630/8082 GCECD

BCMELP CSR SALM Method 8

BC WLAP METHOD: PH. ELECTROMETRIC, SOIL

Reference Information

be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

VA

ALS LABORATORY GROUP - VANCOUVER, BC, CANADA

Chain of Custody Numbers:

21537

GLOSSARY OF REPORT TERMS

Surrogate A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg milligrams per kilogram based on dry weight of sample.

mg/kg wwt milligrams per kilogram based on wet weight of sample.

mg/kg lwt milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L milligrams per litre.

< - Less than.

D.L. The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

			Workorder:	L867711		Report Date: 07-	APR-10	Paç	je 1 of 7
Client:	2640 DO	ASSOCIATES L UGLAS STREET A BC V8T 4M1							
Contact:	PETE CR								
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CL-PASTE-COL	OR-VA	Soil							
Batch WG1077919- [,] Chloride (Cl)	R1210605 1 MB			<10		mg/L		10	16-MAR-10
WG1079260- Chloride (Cl)	1 MB			<10		mg/L		10	16-MAR-10
HG-CCME-CVAF	S-VA	Soil							
Batch	R1209421								
WG1077231-			VA-CANMET-						
Mercury (Hg)				108		%		70-130	15-MAR-10
WG1077231-4 Mercury (Hg)			VA-NRC-PAC	52 113		%		70-130	15-MAR-10
WG1077231- Mercury (Hg))			<0.0050		mg/kg		0.005	15-MAR-10
WG1077231-2 Mercury (Hg)				<0.0050		mg/kg		0.005	15-MAR-10
	R1209682								
WG1077231- Mercury (Hg)			VA-NRC-PAC	S2 112		%		70-130	15-MAR-10
WG1077231-9 Mercury (Hg)			VA-CANMET-	TILL1 103		%		70-130	15-MAR-10
WG1077231-4 Mercury (Hg)				<0.0050		mg/kg		0.005	15-MAR-10
Batch	R1210612								
WG1077231- Mercury (Hg)			L867711-3 0.360	0.404		mg/kg	11	30	16-MAR-10
MET-CSR-FULL	-	Soil							
	R1209429			6 0					
WG1077231- Arsenic (As)			VA-NRC-PAC	52 26.6		mg/kg		13.3-33.3	12-MAR-10
Barium (Ba)				71		%		70-130	12-MAR-10
Cadmium (C	d)			2.16		mg/kg		0.98-2.98	12-MAR-10
Chromium (C	Cr)			106		%		70-130	12-MAR-10
Cobalt (Co)				8.3		mg/kg		4.8-12.8	12-MAR-10
Copper (Cu)				114		%		70-130	12-MAR-10
Lead (Pb)				100		%		70-130	12-MAR-10
Molybdenum	(Mo)			5.2		mg/kg		0-12.6	12-MAR-10
Nickel (Ni)				97		%		70-130	12-MAR-10

			Workorder	. 2007711	IX IX	eport Date: 0		Pa	ge 2 of 7
est		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-CSR-FULL-IC	P-VA	Soil							
Batch R12	209429								
WG1077231-10	CRM		VA-NRC-PA						
Tin (Sn)				18.3		mg/kg		9.1-29.1	12-MAR-10
Vanadium (V)				108		%		70-130	12-MAR-10
Zinc (Zn)				98		%		70-130	12-MAR-10
WG1077231-9 Arsenic (As)	CRM		VA-CANMET	-TILL1 17.3		mg/kg		5.4-25.4	12-MAR-10
Barium (Ba)				118		%		70-130	12-MAR-10
Beryllium (Be)				0.51		mg/kg		0-1.54	12-MAR-10
Chromium (Cr)				108		%		70-130	12-MAR-10
Cobalt (Co)				105		%		70-130	12-MAR-10
Copper (Cu)				112		%		70-130	12-MAR-10
Nickel (Ni)				18.5		mg/kg		7.4-27.4	12-MAR-10
Vanadium (V)				108		%		70-130	12-MAR-10
Zinc (Zn)				99		%		70-130	12-MAR-10
WG1077231-7 Antimony (Sb)	DUP		L867711-3 1630	1680		mg/kg	2.9	30	12-MAR-10
Arsenic (As)			3240	3470		mg/kg	6.9	30	12-MAR-10
Barium (Ba)			370	422		mg/kg	13	30	12-MAR-10
Beryllium (Be)			0.95	0.92	J	mg/kg	0.03	2	12-MAR-10
Cadmium (Cd)			5.16	5.65	0	mg/kg	9.0	30	12-MAR-10
Chromium (Cr)			143	180		mg/kg	23	30	12-MAR-10
Cobalt (Co)			157	167		mg/kg	6.4	30	12-MAR-10
Copper (Cu)			1980	2130		mg/kg	7.4	30	12-MAR-10
Lead (Pb)			2180	2590		mg/kg	17	30	12-MAR-10
Molybdenum (M	o)		139	164		mg/kg	16	30	12-MAR-10
Nickel (Ni)	,		52.1	60.6		mg/kg	15	30	12-MAR-10
Selenium (Se)			<6.0	<6.0	RPD-NA	mg/kg	N/A	30	12-MAR-10
Silver (Ag)			2.1	2.3	J	mg/kg	0.2	8	12-MAR-10
Tin (Sn)			255	275		mg/kg	7.7	30	12-MAR-10
Vanadium (V)			64.7	62.9		mg/kg	2.7	30	12-MAR-10
Zinc (Zn)			10000	10600		mg/kg	5.7	30	12-MAR-10
WG1077231-8 Antimony (Sb)	МВ			<10		mg/kg		10	12-MAR-10
Arsenic (As)				<5.0		mg/kg		5	12-MAR-10 12-MAR-10
Barium (Ba)				<1.0		mg/kg		5 1	12-MAR-10
Beryllium (Be)				<0.50		mg/kg		0.5	12-MAR-10 12-MAR-10

		Workorder:	L867711		Report Date: 0	7-APR-10	Pag	ge 3 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-CSR-FULL-ICP-VA	Soil							
Batch R1209429)							
WG1077231-8 MB								
Cadmium (Cd)			<0.50		mg/kg		0.5	12-MAR-10
Chromium (Cr)			<2.0		mg/kg		2	12-MAR-10
Cobalt (Co)			<2.0		mg/kg		2	12-MAR-10
Copper (Cu)			<1.0		mg/kg		1	12-MAR-10
Lead (Pb)			<30		mg/kg		30	12-MAR-10
Molybdenum (Mo)			<4.0		mg/kg		4	12-MAR-10
Nickel (Ni)			<5.0		mg/kg		5	12-MAR-10
Selenium (Se)			<2.0		mg/kg		2	12-MAR-10
Silver (Ag)			<2.0		mg/kg		2	12-MAR-10
Tin (Sn)			<5.0		mg/kg		5	12-MAR-10
Vanadium (V)			<2.0		mg/kg		2	12-MAR-10
Zinc (Zn)			<1.0		mg/kg		1	12-MAR-10
Batch R1209538	}							
WG1077231-3 CRM		VA-CANMET-	FILL1					
Arsenic (As)			17.2		mg/kg		5.4-25.4	12-MAR-10
Barium (Ba)			108		%		70-130	12-MAR-10
Beryllium (Be)			0.49		mg/kg		0-1.54	12-MAR-10
Chromium (Cr)			114		%		70-130	12-MAR-10
Cobalt (Co)			108		%		70-130	12-MAR-10
Copper (Cu)			108		%		70-130	12-MAR-10
Nickel (Ni)			18.0		mg/kg		7.4-27.4	12-MAR-10
Vanadium (V)			109		%		70-130	12-MAR-10
Zinc (Zn)			100		%		70-130	12-MAR-10
WG1077231-4 CRM		VA-NRC-PAC	52					
Arsenic (As)			25.8		mg/kg		13.3-33.3	12-MAR-10
Barium (Ba)			106		%		70-130	12-MAR-10
Cadmium (Cd)			2.30		mg/kg		0.98-2.98	12-MAR-10
Chromium (Cr)			105		%		70-130	12-MAR-10
Cobalt (Co)			9.0		mg/kg		4.8-12.8	12-MAR-10
Copper (Cu)			108		%		70-130	12-MAR-10
Lead (Pb)			103		%		70-130	12-MAR-10
Molybdenum (Mo)			5.3		mg/kg		0-12.6	12-MAR-10
Nickel (Ni)			102		%		70-130	12-MAR-10
Tin (Sn)			17.6		mg/kg		9.1-29.1	12-MAR-10
Vanadium (V)			109		%		70-130	12-MAR-10

		Workorder	. 2007711		Report Date: 0		Pa	ige 4 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-CSR-FULL-ICP-	VA Soil							
Batch R120	9538							
WG1077231-4 (Zinc (Zn)	CRM	VA-NRC-PA	C S2 101		%		70-130	12-MAR-10
WG1077231-1 Antimony (Sb)	MB		<10		mg/kg		10	12-MAR-10
Arsenic (As)			<5.0		mg/kg		5	12-MAR-10
Barium (Ba)			<1.0		mg/kg		1	12-MAR-10
Beryllium (Be)			<0.50		mg/kg		0.5	12-MAR-10
Cadmium (Cd)			<0.50		mg/kg		0.5	12-MAR-10
Chromium (Cr)			<2.0		mg/kg		2	12-MAR-10
Cobalt (Co)			<2.0		mg/kg		2	12-MAR-10
Copper (Cu)			<1.0		mg/kg		1	12-MAR-10
Lead (Pb)			<30		mg/kg		30	12-MAR-10
Molybdenum (Mo)			<4.0		mg/kg		4	12-MAR-10
Nickel (Ni)			<5.0		mg/kg		5	12-MAR-10
Selenium (Se)			<2.0		mg/kg		2	12-MAR-10
Silver (Ag)			<2.0		mg/kg		2	12-MAR-10
Tin (Sn)			<5.0		mg/kg		5	12-MAR-10
Vanadium (V)			<2.0		mg/kg		2	12-MAR-10
Zinc (Zn)			<1.0		mg/kg		1	12-MAR-10
WG1077231-2	ИВ							
Antimony (Sb)			<10		mg/kg		10	12-MAR-10
Arsenic (As)			<5.0		mg/kg		5	12-MAR-10
Barium (Ba)			<1.0		mg/kg		1	12-MAR-10
Beryllium (Be)			<0.50		mg/kg		0.5	12-MAR-10
Cadmium (Cd)			<0.50		mg/kg		0.5	12-MAR-10
Chromium (Cr)			<2.0		mg/kg		2	12-MAR-10
Cobalt (Co)			<2.0		mg/kg		2	12-MAR-10
Copper (Cu)			<1.0		mg/kg		1	12-MAR-10
Lead (Pb)			<30		mg/kg		30	12-MAR-10
Molybdenum (Mo)			<4.0		mg/kg		4	12-MAR-10
Nickel (Ni)			<5.0		mg/kg		5	12-MAR-10
Selenium (Se)			<2.0		mg/kg		2	12-MAR-10
Silver (Ag)			<2.0		mg/kg		2	12-MAR-10
Tin (Sn)			<5.0		mg/kg		5	12-MAR-10
Vanadium (V)			<2.0		mg/kg		2	12-MAR-10
Zinc (Zn)			<1.0		mg/kg		1	12-MAR-10

		Workorder:	L867711		Report Date: 0	7-APR-10	Pa	ige 5 of 7
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MOISTURE-VA	Soil							
Batch R1207386								
WG1077122-2 DUP % Moisture		L867711-4 19.9	18.4		%	7.8	30	10-MAR-10
	Soil							
PCB-SE-ECD-VA	5011							
Batch R1209583 WG1077208-2 CRM		VA-CRM911-	050					
Total Polychlorinated Bip	ohenyls		77		%		65-130	10-MAR-10
PCB-1254			77		%		65-130	10-MAR-10
WG1077208-1 MB Total Polychlorinated Bip	ohenvis		<0.050		mg/kg		0.05	10-MAR-10
PCB-1016	Shoriyio		<0.050		mg/kg		0.05	10-MAR-10
PCB-1221			<0.050		mg/kg		0.05	10-MAR-10
PCB-1232			<0.050		mg/kg		0.05	10-MAR-10
PCB-1242			<0.050		mg/kg		0.05	10-MAR-10
PCB-1248			<0.050		mg/kg		0.05	10-MAR-10
PCB-1254			<0.050		mg/kg		0.05	10-MAR-10
PCB-1260			<0.050		mg/kg		0.05	
PCB-1262			<0.050		mg/kg			10-MAR-10 10-MAR-10
PCB-1268			<0.050		mg/kg		0.05	
			<0.050		ilig/kg		0.05	10-MAR-10
PH-1:2-VA	Soil							
Batch R1207811								
WG1077231-7 DUP рН		L867711-3 8.40	8.30		рН	1.2	20	14-MAR-10
SAR-CALC-MGKG-ICP-VA	Soil							
Batch R1210622								
WG1077919-1 MB Sodium (Na)			<5.0		mg/L		5	16-MAR-10
WG1079260-1 MB Sodium (Na)			<5.0		mg/L		5	16-MAR-10
TL-CSR-MS-VA	Soil				Ū		C	
Batch R1209334								
WG1077231-10 CRM Thallium (Tl)		VA-NRC-PAC	CS2 0.4		mg/kg		0.2-0.6	13-MAR-10
WG1077231-3 CRM Thallium (TI)		VA-CANMET			mg/kg		0-0.3	13-MAR-10
WG1077231-4 CRM		VA-NRC-PAC			0.0		0.0	

	Workorder:	L867711		Report Date: 0	7-APR-10	Pa	ge 6 of 7
Test Ma	atrix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TL-CSR-MS-VA So	bil						
Batch R1209334							
WG1077231-4 CRM Thallium (TI)	VA-NRC-PAC	.52 0.4		mg/kg		0.2-0.6	13-MAR-10
WG1077231-9 CRM Thallium (Tl)	VA-CANMET	- TILL1 0.1		mg/kg		0-0.3	13-MAR-10
WG1077231-7 DUP Thallium (TI)	L867711-3 1.3	1.3	J	mg/kg	0.0	4	13-MAR-10
WG1077231-1 MB Thallium (TI)		<1.0		mg/kg		1	13-MAR-10
WG1077231-2 MB Thallium (TI)		<1.0		mg/kg		1	13-MAR-10
WG1077231-8 MB Thallium (Tl)		<1.0		mg/kg		1	13-MAR-10
U-200.2-MS-VA Sc	bil						
Batch R1209334							
WG1077231-10 CRM Uranium (U)	VA-NRC-PAC	:S2 91		%		70-130	13-MAR-10
WG1077231-3 CRM Uranium (U)	VA-CANMET	- TILL1 125		%		70-130	13-MAR-10
WG1077231-4 CRM	VA-NRC-PAC	S2					
Uranium (U)		101		%		70-130	13-MAR-10
WG1077231-9 CRM Uranium (U)	VA-CANMET	- TILL1 97		%		70-130	13-MAR-10
WG1077231-7 DUP Uranium (U)	L867711-3 4.98	5.07		mg/kg	1.8	39	13-MAR-10
WG1077231-1 MB Uranium (U)		<0.050		mg/kg		0.05	13-MAR-10
WG1077231-2 MB Uranium (U)		<0.050		mg/kg		0.05	13-MAR-10
WG1077231-8 MB Uranium (U)		<0.050		mg/kg		0.05	13-MAR-10

Workorder: L867711

Report Date: 07-APR-10

Legend:

•	
Limit	99% Confidence Interval (Laboratory Control Limits)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
DUP-H	Duplicate results outside ALS DQO, due to sample heterogeneity.
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

SAMPLE RECEIPT FORM / CHEMICAL ANALYSIS FORM

FILE #: PR100288

CLIENT:

ALS Environmental 1988 Triumph Street Vancouver, B.C. V5L 1K5

Phone – 604-253-4188 Email: selam.worku@alsenviro.com

RECEIVED BY: J. delPozo

DATE/TIME:

March 10, 2010 (8:30 a.m.)

CONDITION: okay, 4°C

# of Containers	Sample Type	Sample (Client Codes)	Lab Codes	Test Requested
1	Sediment	L867711-1 / 21537-01	PR100288	TBT
1	Sediment	L867711-2 / 21537-02	PR100289	TBT
1	Sediment	L867711-3 / 21537-03	PR100290	TBT
1	Sediment	L867711-4 / 21537-04	PR100291	TBT
1	Sediment	L867711-5 / 21537-05	PR100292	TBT
1	Sediment	L867711-6 / 21537-06	PR100293	TBT

STORAGE: stored at $< -10^{\circ}$ C

ANALYTES: HRGC/HRMS analysis for tributyltin (TBT)

SPECIAL INSTRUCTIONS:

METHODOLOGY

Reference Method: TBT: in house, SOP LAB04

Data summarized in Data Report Attached

Data emailed to: Selam Worku Date: April 6, 2010

Comments: Results relate only to items tested.

David Hope PChem, CEO

DATA REPORT

Client:	ALS Environmental	Date Extracted:	15-Mar-10
Contact:	Selam Worku	Date Analysed:	1-Apr-10

	Client ID: PRL ID:	L867711-1 / 21537-01 PR100288	L867711-2 / 21537-02 PR100289	L867711-3 / 21537-03 PR100290	L867711-4 / 21537-04 PR100291	L867711-5 / 21537-05 PR100292
Compound	DL µg/g	hð\ð	hð\ð	hð\ð	hð\ð	hð\ð
Tributyltin Chloride Dibutyltin dichloride Monobutyltin trichloride	0.001 0.001 0.001	4.84 0.438 0.071	3.22 0.477 0.074	3.54 0.269 0.078	0.647 0.132 0.055	3.10 0.265 0.040

Compound	DL µg/g	µg/g	µg/g	hā\ð	hâ\ð	hā\ð	
TBT ⁺ DBT ⁺⁺ MBT ⁺⁺⁺	0.001 0.001 0.001	4.32 0.335 0.045	2.87 0.366 0.046	3.15 0.206 0.049	0.577 0.101 0.035	2.76 0.203 0.025	
Surrogate Recoveries (%) Tributyltin - d27		97	84	89	59	85	

ND - none detected

.

Patrick Pond, CTO

Form Name: DOC14 Data Report TBT 11-Dec-09 DGH

DATA REPORT

Client:	ALS Environmental	Date Extracted:	15-Mar-10
Contact:	Selam Worku	Date Analysed:	1-Apr-10

	Client ID: PRL ID:		/ 21537-06 PR100293D
Compound	DL		Duplicate
	µg/g	µg/g	µg/g
Tributyltin Chloride	0.001	3.02	3.36
Dibutyltin dichloride	0.001	0.636	0.546
Monobutyltin trichloride	0.001	0.088	0.115

Compound	DL				
	µg/g	µg/g	µg/g		
TBT⁺	0.001	2.69	2.99		
DBT ⁺⁺	0.001	0.488	0.419		
MBT ⁺⁺⁺	0.001	0.055	0.072		
Surrogate Recoveries (%)					
Tributyltin - d27		92	83		

ND - none detected

Patrick Pond, CTO

Form Name: DOC14 Data Report TBT 11-Dec-09 DGH

QC REPORT

Client:	ALS Environmental	Date Extracted:	15-Mar-10
Contact:	Selam Worku	Date Analysed:	1-Apr-10

	Client ID: PRL ID:	blank TB10185B		Spike TB10186S	LOF	Recovery
Compound	DL µg/g	hð\ð		hð\ð	hð\ð	
Tributyltin Chloride Dibutyltin dichloride Monobutyltin trichloride	0.001 0.001 0.001	ND ND ND		0.024 0.010 0.018	0.025 0.025 0.025	97% 39% 71%
Compound	DL					
	µg/g	hð\ð				
TBT ⁺ DBT ⁺⁺	0.001 0.001	ND ND				
MBT ⁺⁺⁺	0.001	ND				
Surrogate Recoveries (% Tributyltin - d27)	56		51		

ND - none detected

Patrick Pond, CTO

Acronyms used in reporting organotins: TBT = Tributyltin DBT = Dibutyltin MBT = Monobutyltin

TBTCl = Tributyltin chloride DBTCl = Dibutyltin dichloride MBTCl = Monobutyltin trichloride

This method analyzes organotin derivatives in water, sediment and biota. The method cannot determine which organotin salt is present in the sample, therefore all data is quantified in terms of organotin chlorides and expressed as cation equivalents (TBT⁺, DBT⁺⁺, MBT⁺⁺⁺).

In sea water and under normal conditions, TBT exists as three species (hydroxide, chloride, and carbonate), which remain in equilibrium. At pH values less than 7.0, the predominate forms are $Bu_3SnOH_2^+$ and Bu_3SnCl , at pH 8, they are Bu_3SnCl , Bu_3SnOH , and $Bu_3SnCO_3^-$, and at pH values above 10, Bu_3SnOH and $Bu_3SnCO_3^-$ predominate. Source: <u>http://www.inchem.org/documents/ehc/ehc/ehc116.htm#SectionNumber:1.1</u>

TBT data has been reported in many conventions over the years. To convert to other units, use the multipliers below.

To convert	То:	Multiply by:
Tributyltin chloride	As Sn	0.3647
Tributyltin chloride	As TBTO	0.9760
Tributyltin chloride	As TBT ⁺	0.8911
Dibutyltin dichloride	As Sn	0.3907
Dibutyltin dichloride	As TBTO	0.9110
Dibutyltin dichloride	As DBT ⁺⁺	0.7666
Dibutyltin dichloride	As TBT^+	0.9546
Monobutyltin trichloride	As Sn	0.4207
Monobutyltin trichloride	As TBTO	0.8461
Monobutyltin trichloride	As MBT ⁺⁺⁺	0.6231
Monobutyltin trichloride	As TBT ⁺	1.0279
As Sn	As TBTO	2.8097

Acceptable recoveries for Tributyltin surrogate standards

Sediment/biota	TBT d ₂₇	20-150%
Water	TBT d ₂₇	10-130%

·	Comments:	0	Sampler's Signature	-12	-11	-10	e0-	-0-	1.	21537 -05	21537 -04	21537 -03	21537 -02	a1537-01	Number (SCN)	Sample Control	Fax: 604-298-5253	Status and the final reports should be sent to: Soo-4260 Still Creek Drive		Burnaby, British Columbia, Canada V5C 6C6 Telephone: 604-298-6623 Fax: 604-298-5253	Golder Associates	
Shipped by: Michelle Spani WHITE: Golder copy	Method of Shipment:	Relinquished by Signature	Relignaries by Signature						+ +					Citats Tros		Sample Date	Tel: 604-850-8786	202–2790 Gladwin Road		ייס bia, Canada V5C 6C6 3 Fax: 604-298-5253 3 Fax: 604-298-5253	איש Project Number: אופא ווס - ויץ אין	CHAIN-OF-CUST
Shipment Condition: Seal Intact: YELLOW: Lab copy PINK:	Waybill No.: DO13331530	Date	Company Date											2			Tel: 250-881-7372 Fax: 250-881-7470	Victoria. BC V8T 4M1		Golder E-mail Address:	0001	CHAIN-OF-CUSTODY RECORD/ANALYSIS REQUEST
Lab returns with Final Report	ŢĨ		8 7010 Time 09:30						x x x 9	× × × 8	8 × × × ×	× × × 4	× · < 7	6 X X X 4	Number of CC-12 Low Lev TBT TOTAL	~~~ *~~ PC	TALS B	MSTE	Ana	@golder.com	Laboratory Name: ALS Env Address: 8081	YSIS REQUEST
i by:		Received by: Signature	Received by: Signature																Analyses Required	Holfan: Holfan: Contact: 1-800-665-0243 Amore	Connental Lougherd Huy	Nº 21537
		Company	Company												RUSH (over)				8	0 9	the logbornab	pageof

The Part

32

APPENDIX E

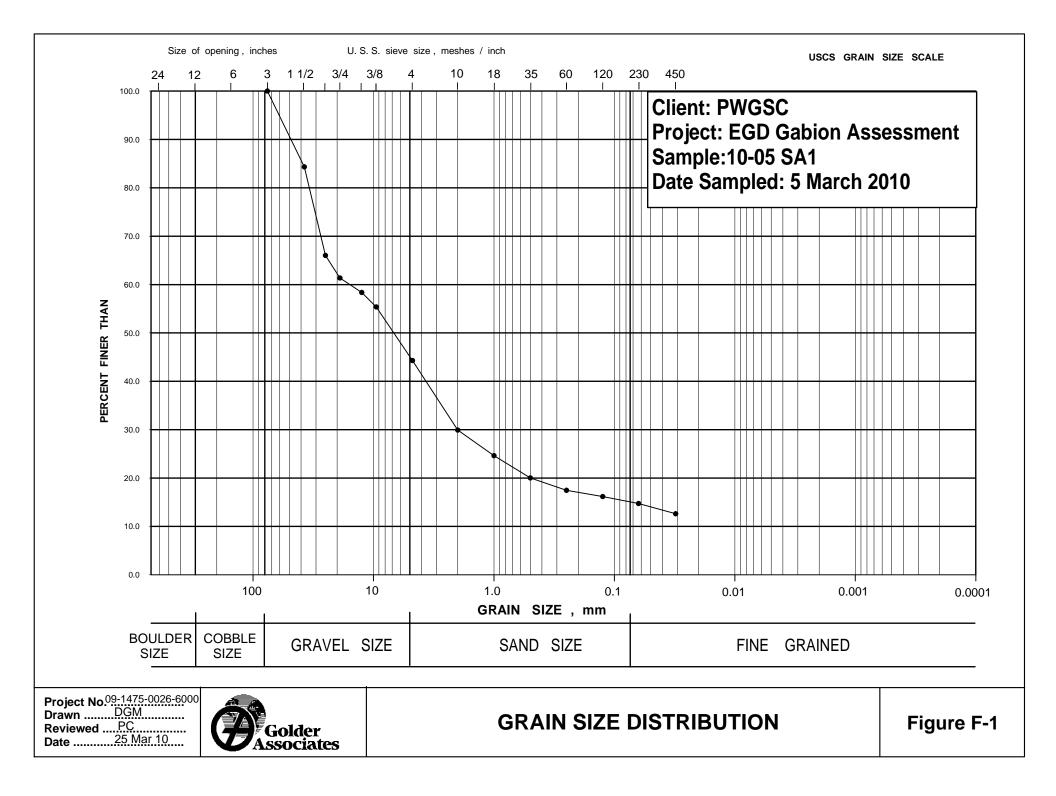
Date: Transect: Bearing: Probe length: Diver: Water depth (from nail to water line)	3/10/2010 TR # 1 at Station # 2 308° 3.7m (2 Rods) Dave 2.19m @ 11:04:40pm 2.29m @ 11:26:15pm						
Probe Location	Attempt #	Depth pneumo m / ft**	Probe depth (m) distance to mudline	Penetration depth (m)*	Distance along transect (m)	Time (hh:mm:ss)	Type of refusal
Base of Wall @ 0m along transect	1			0			Hit concrete, no penetration; probing not possible
JP-01 @ toe of gabion	1	11.9/39	3.55	0.15	3.5	14:20	Hit solid substrate
within 1m	2	11.97.39	3.05	0.65	3.5	14.20	Hit solid substrate
JP-02 (4m mark along transect)	1		3.55	0.15			Hit solid rock
within 1m	2	12.2 / 40	3.35	0.35	4	14:35	Hit solid rock
within 1m	3		3.53	0.17			Hit solid rock
JP-03 @ 6m along transect	1	12.5 / 41	3.38	0.32	6	14:43	Hit solid substrate
within 1m	2	12.07 11	3.5	0.2	ů		Hit solid substrate
JP-04 @ 9m along transect	1		2.9	0.8			Hit solid substrate
within 1m	2	14.0** / 46**	3.43	0.27	9	10:50**	Hit solid substrate
within 1m	3		3.47	0.23			Hit solid substrate
JP-05 @ 10m along transect	1		3.05	0.65	10		Hit solid substrate
within 1m	2	14.6** / 48**	3.11	0.59	10	11:00* *	Hit solid substrate
10.5m along transect	3		3	0	10.5		Hit solid substrate

* Penetration Depth = (probe length - probe depth (m) distance to mudline) ** Values were approximated based on dive records

Date: Transect: Bearing: Probe length: Diver: Water depth (from nail to water line)	10/03/2010 and 11/03/20 TR # 2 at Station #5 186° 2.53m (hand probe) Ian 2.19m @ 11:04:40pm 2.29m @ 11:26:15pm	2010 Hand probe used for these locations as the pump for the jet probe broke and needed to wait for repair person to fix it.								
Probe Location	Attempt #	Depth pneumo m / ft** Probe depth (m) distance to mudline Penetration depth (m)* Distance along transect (m) Time (hh:mm:ss) Type of refusal								
Probe attempt at base of wall	1			0.04	0		Probe penetrated 4-5 cm then hit something hard, likely concrete; probing not possible at this location			
JP-08 @ toe of gabion	1	12.5 / 41	1.37	1.16	2.64m (edge of gabions) Probe location at 3.0 m - positioned to avoid filter cloth		Hit solid rock			
within 1m	2		1.45	1.08	0.25 m from left side of transect		Hit solid rock			
JP-07 @ 6m	1	11.9 / 39	2	1.7	6	16:22	Hit hard substrate (gravel)			
within 1m	2	11.97.39	1.9	1.8	0		Hit gravel - can't push probe in any further			
JP-06 @ 9m from wall	1	12.2 / 40	2.48	1.22	9		Substrate appears to be mainly silt on surface- hit solid substrate			
within 1m	2	12.2740	2.62	1.08	3		Hit solid substrate			

* Penetration Depth = (probe length - probe depth (m) distance to mudline) ** Values were approximated based on dive records

Date: Transect: Bearing: Probe length: Diver: Water depth (from nail to water line)	3/11/2010 TR # 3 at Station #7 172° 3.7m (2 Rods) Dave 2.50m @ 12:47pm 2.615m @ 1:19pm								
Probe Location	Attempt #	Depth pneumo m / ft**	Probe depth (m) distance to mudline	Penetration depth (m)*	Distance along transect (m)	Time (hh:mm:ss)	Type of refusal		
Base of wall	1	n/a		0.05		12:24:45	5 cm penetration; no probing possible at this location		
JP-09 @ toe of gabion	1	12.3 / 40.5	2.73	0.97	2	12:47:45	Solid Rock		
within 1m	2	12.3740.3	1.89	1.81	3 12:47:45		Hit solid but with more force could push probe further		
JP-10 @ 6m along transect	1	12.9/42.5	3.17	0.53			Solid rock		
within 1m	2	12.3/42.3	1.68	2.02			Not solid but can't push past material		
JP-11 @ 9m along transect	1	13.6 / 44.5	2.58	1.12	9 13:09:35		Solid Rock		
within 1m	2	13.07 44.3	2.47	1.23	9	10.09.00	Solid rock		


* Penetration Depth = (probe length - probe depth (m) distance to mudline) ** Values were approximated based on dive records

Date: Transect: Bearing: Probe length: Diver: Water depth (from nail to water line)	3/11/2010 TR # 4 at Station #10 170° 3.7m (2 Rods) Steve 3.28m @ 15:52pm 3.33m @ 16:16pm								
Probe Location	Attempt #	Depth pneumo m / ft**	Probe depth (m) distance to mudline	Penetration depth (m)*	Distance along transect (m)	Time (hh:mm:ss)	Type of refusal		
Base of wall	1	n/a		0	0		no penetration, hit solid concrete		
JP-12 @ toe of gabion	1	11.1 / 36.5	3.15	0.55	3.5		water pressure on jet probe low possibly because intake in too low -hit something solid (gravel), diver could not push past		
within 1 m	2		3.06	0.64			Hit hard substrate (gravel) couldn't push past		
JP-13 @ 6m along transect	1	11.6 / 38	2.54	1.16	6	15:53:15	Hit hard substrate		
within 1m	2	11.07 30	2.3	1.4	6 15.55.15		Hit rock, could not push past		
JP-14 @ 9m along transect	1		2.73	0.97			Hit solid rock		
within 1m	2	11.9 / 39	2.8	0.9	9	16:02:15	Hit solid rock		
within 1m	3		2.85	0.85					

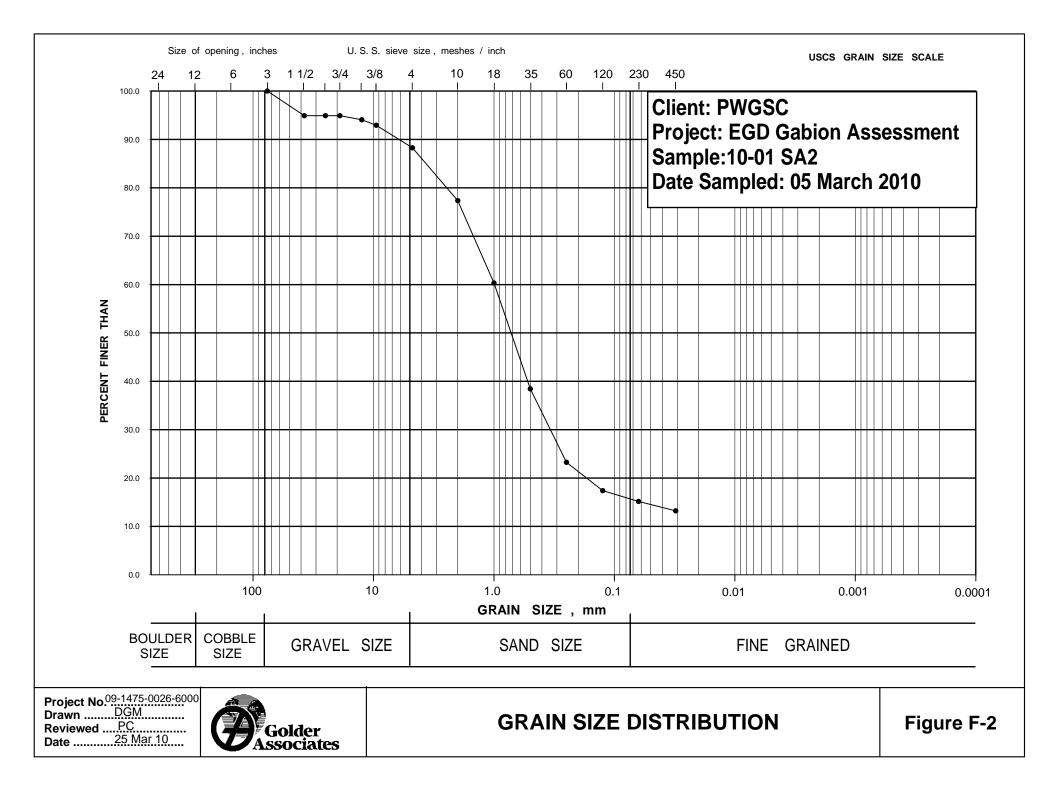
* Penetration Depth = (probe length - probe depth (m) distance to mudline) ** Values were approximated based on dive records

09-1475-0026

APPENDIX F

SIEVE ANALYSIS OF FINE AND COARSE AGGREGATE

ASTM C 136


Project #:	09-1475-0026			Phase:	6000				
Short Title:	2010 ASSESSMEN	IT OF NORTH LA	ANDING WHAF	RF GABION M	ATS				
Tested by:	DGM			Date:	25/03/2010				
Source:	Esquimalt Harbour								
Visual Description of Sample: Marine Sediments									
Auger Hole		Sample :	10-05 SA1		Depth :				
	1st SIEVING		2nd SIEVING	3	Wash Sieving	l			
	Weight befo		Weight before	e sieving	Weight after w		2445.5		
	Total weight	2791.8	1/4 Pass #4		Residual #200		6.3		
Sieve	Pass #4 Weight		Weight		Minus #200 % Retained	Diameter	352.6		
(CAN)	Retained	% Retained	Retained	% Retained	of Total	(mm)	% Passing		
3"	0	0.0			0	76.0	100		
1 1/2"	437.7	15.7			15.7	37.5	84.3		
1"	511.0	18.3			18.3	25.0	66.0		
3/4"	130.2	4.7			4.7	19.0	61.4		
1/2"	83.3	3.0			3.0	12.5	58.4		
3/8"	84.0	3.0			3.0	9.5	55.4		
#4	309.2	11.1			11.1	4.8	44.3		
#10	400.9	14.4			14.4	2.0	29.9		
#18	148.2	5.3			5.3	1.0	24.6		
#35	128.5	4.6			4.6	0.5	20.0		
#60	71.1	2.5			2.5	0.250	17.5		
#120	36.2	1.3			1.3	0.125	16.2		
#230	39.6	1.4			1.4	0.063	14.8		
#450	59.7	2.1			2.1	0.031	12.6		
Pan	352.6	12.6			12.6				

DEMADKG .

<u>REMARKS</u>	
Reported by:	Reviewed by:
<u>Notice</u> : The test data gi here may be provided u	ven herein pertain to the sample provided, and may not be applicable to material from other zones/depths. This report constitutes a testing service only. Interpretation of the data given upon request.
	GOLDER ASSOCIATES LTD., 2640 Douglas St. Victoria, BC, V8T 4 M1, Tel: 250-881-7372 Fax: 250-881-7470

N:/FINAL/2009/1475/09-1475-0026 PWGSC EGD Waterlot PSI DSI/03-31-10 Gabion Assessment/Appendix F - Geotechnical Characterization/ 10-05 sal Sieve Benthic TWL [Straight]

Golder Associates

SIEVE ANALYSIS OF FINE AND COARSE AGGREGATE

ASTM C 136

Project #:	09-1475-0026			Phase:	6000					
Short Title:	2010 ASSESSMEN	NT OF NORTH LA	ANDING WHAF	RF GABION M	ATS					
Tested by:	DGM			Date:	25/03/2010					
Source:	Esquimalt Harbour									
Visual Descri	Visual Description of Sample: Marine Sediments									
Auger Hole		Sample :	10-01 SA2		Depth :					
	1st SIEVING		2nd SIEVING	6	Wash Sieving	ļ	T			
	Weight befo	ore sieving	Weight before	e sieving	Weight after w		2090.2			
	Total weight	2403.9	1/4 Pass #4		Residual #200		3.8			
Sieve	Pass #4 Weight		Weight		Minus #200 % Retained	Diameter	317.5			
(CAN)	Retained	% Retained	Retained	% Retained	of Total	(mm)	% Passing			
3"		0.0			0.0	76.0	100			
1 1/2"	122.1	5.1			5.1	37.5	94.9			
1"	0.0	0.0			0.0	25.0	94.9			
3/4"	0.0	0.0			0.0	19.0	94.9			
1/2"	20.4	0.8			0.8	12.5	94.1			
3/8"	27.5	1.1			1.1	9.5	92.9			
#4	111.9	4.7			4.7	4.8	88.3			
#10	262.3	10.9			10.9	2.0	77.4			
#18	409.8	17.0			17.0	1.0	60.3			
#35	526.0	21.9			21.9	0.5	38.4			
#60	364.9	15.2			15.2	0.250	23.3			
#120	140.8	5.9			5.9	0.125	17.4			
#230	53.6	2.2			2.2	0.063	15.2			
#450	47.1	2.0			2.0	0.031	13.2			
Pan	317.5	13.2			13.2					

DEMADKC .

KLWARKS .			
Departed by	Deviewed by		
Reported by:	Reviewed by:		
		(SP®	INTERNATIONAL
			M E M B E R
Notice: The test data give	ren herein pertain to the sample provided, and may not be applicable to material from other zones/depths. This report constitutes a testing service only.	Interpretation of f	he data given
here may be provided u	pon request.		
	GOLDER ASSOCIATES LTD., 2640 Douglas St. Victoria, BC, V8T 4 M1, Tel: 250-881-7372 Fax: 250-881-7470		

N:/FINALl2009/1475/09-1475-0026 PWGSC EGD Waterlot PSI DSI/03-31-10 Gabion Assessment/Appendix F - Geotechnical Characterization/ 10-01 sa2 Sieve Benthic TWL [Straight]

Golder Associates