

Canada

Public Works and Travaux publics et Services gouvernementaux Canada

Public Works and Government Services Canada **Ontario Region**

PWGSC Project No.: R.013514.030

BURLINGTON LIFT BRIDGE, TOWERS, AND PIERS - STRUCTURAL MODELLING, ANALYSIS and SURVEYS

PHASE II **RS6: 3D MODELLING and STRUCTURAL ANALYSIS REPORT**

FINAL

MMM Group Limited April 2014

TABLE OF CONTENTS

Page

1.	INTR	INTRODUCTION1		
2.	EXIS'	TING STRUCTURE	.1	
	2.1	Structure Description	1	
		2.1.1 Lift Span	2	
		2.1.2 Towers	2	
		2.1.3 Approach Spans	2	
3.	ANAI	LYSIS ASSUMPTIONS	.3	
	3.1	General Assumptions	3	
4.	LOAI	DING	3	
	4.1	General	3	
	4.2	Permanent Loads	4	
	4.3	Transitory Loads	4	
		4.3.1 Live Loads	4	
		4.3.2 Temperature Loads	5	
		4.3.3 Wind Loads	5	
	4.4	Exceptional Loads	6	
	4.5	Vertical Lift Bridges - Special Loads	7	
	4.6	Load Combinations - Fully Closed Position (Lowered)	7	
	4.7	Load Combinations - Fully Open Position (Raised)	7	
	4.8	Fatigue	7	
5.	ANAI	LYSIS/MODELLING	.7	
6.	RESU	JLTS	.8	

APPENDICES

APPENDIX A	KEY PLAN AND GENERAL ARRANGEMENT DRAWINGS
APPENDIX B.1	FRAME MODEL DIAGRAMS
APPENDIX B.2	FRAME MODEL MEMBER NUMBERING SCHEME
APPENXIX B.3	FRAME MODEL SECTION NAMING SCHEME
APPENDIX B.4	FRAME MODEL SUPPORT CONDITIONS
APPENDIX B.5	FRAME MODEL MEMBER END RELEASES
APPENDIX C	DESIGN LOAD CALCULATIONS
APPENDIX D.1	CALCULATION SUMMARIES (PER SECTION)
APPENDIX D.2	FLOOR BEAM AND STRINGER DEMAND CHECK
APPENDIX D.3	LIFTING GIRDER DEMAND CHECK
APPENDIX D.4	DEFLECTIONS

File: https://www.ecollaboration.mmm.ca/livelinkdav/nodes/24441175/3213009 ky RS6 Report.docx

1. INTRODUCTION

MMM Group Ltd. (MMM) was retained by Public Works and Government Services Canada (PWGSC) to undertake a structural analysis including a three-dimensional frame model, evaluation of member capacities, and a fatigue review for the Burlington Lift Bridge.

This report presents the results of the structural analysis and three-dimensional modelling of the bridge as per section RS6 of the Terms of Reference. Member demands are reported in a tabular format.

This report should be read in conjunction with a separate report by MMM Group titled RS7: Member Capacities, April 2014, which presents the results for the member capacities compared to demands including capacity over demand (C/D) ratios.

A Key Plan showing the location of the structure and a General Arrangement drawing have been provided in Appendix A.

2. EXISTING STRUCTURE

2.1 Structure Description

Owned and operated by Public Works and Government Services Canada (PWGSC), the Burlington Lift Bridge is located between the cities of Burlington and Hamilton, Ontario on Eastport Drive spanning the Burlington Canal, which provides the only navigational opening into the Hamilton Harbour. The majority of traffic crosses the canal via the provincially owned Queen Elizabeth Way (QEW) James N. Allan Skyway; however, the lift bridge provides the only alternate vehicle crossing and is the only crossing available to pedestrians and cyclists. For the purposes of this report, the bridge is considered to run in the north-south direction.

The Burlington Lift Bridge is a tower-drive steel truss vertical lift bridge designed in 1958 by C.C. Parker and Associates of Hamilton, Ontario and constructed between 1959 and 1960 by the Hamilton Bridge Division of the Bridge and Tank Company of Canada Limited. The bridge, as originally constructed, served both rail and highway traffic in a side-by-side configuration. The railway corridor ran along the eastern half of the structure and the highway corridor ran along the western half of the structure. In 1982 the bridge underwent a major rehabilitation to convert it to a highway traffic only structure through the complete removal of the railway corridor and the addition of two new lanes of traffic. Despite the removal of the railway corridor, the following report shall refer to the east truss as the "railway truss" and the west truss as the "highway truss".

The bridge is comprised of two 12.60m (41'-4") approach spans, two 9.75m (32'-0") tower spans, and one 112.78m (370'-0") lift span. There is a 2.07m (6'-9.5") wide sidewalk with an aluminum pedestrian hand railing cantilevered from the outside of the highway truss. Two 3.375m wide northbound lanes and two 3.375m wide southbound lanes are provided on the bridge. A steel box beam barrier is located on either side of the roadway. A navigational clearance of approximately 36.58m (120'-0") is provided at high water level.

The substructure is comprised of two concrete tower piers supporting the towers, and two concrete conventional closed abutments at each end of the approach spans.

2.1.1 Lift Span

The lift span is a steel through truss structure that is 15.54m (51'-0") wide from centreline to centreline of the trusses with a vertical lift of 34.12m (111'-11"). Each truss is comprised of twelve 9.40m (30'-10") panels which vary in depth from 13.87m (45'-6") at the ends to 16.76m (55'-0") at the midspan.

Truss members (i.e. verticals, diagonals, and top and bottom chords) are comprised of built-up steel sections. Transverse floor beams and longitudinal stringers support an open steel grating deck. The sidewalk deck consists of a thin (50mm) concrete filled steel grating.

Portal and sway bracings are provided overhead at panel points.

In the fully closed position (i.e. open to highway traffic), support for the structure is provided at all four corners from below. Articulation is provided by two fixed supports (bearings) at the south end and two expansion rocker-type supports at the north end. One centring shoe is provided at each end of the lift span.

In any open position (i.e. raised to allow marine traffic), support for the structure is provided at all four corners by wire ropes attached to lifting girders at the ends of the lift span. The wire ropes then pass over sheaves at the top of each tower and are connected to a counterweight. Guide rollers are also provided at all eight corners of the structure and run along tracks on the front columns of the towers.

2.1.2 Towers

There are two steel braced towers at either end of the lift span. Each tower is 15.90m $(52^{\circ}-2^{\circ})$ wide from centreline to centreline of the columns, 9.75m $(32^{\circ}-0^{\circ})$ long from centreline to centreline of the columns, and is approximately 65m (213°) tall.

Tower members (i.e. columns, diagonal bracings, horizontals, etc.) are comprised of built-up steel sections. The roadway passing through the towers is referred to as the "tower span" and is comprised of transverse floor beams and longitudinal stringers supporting a 190mm (7.5") concrete deck with a 65mm (2.5") asphalt wearing surface.

There is a 2.47m (8'-1") wide sidewalk with an aluminum pedestrian hand railing cantilevered from the west side of the tower.

Each tower is supported on a concrete tower pier substructure.

At the top of each tower is a machine room which houses the required mechanical and electrical equipment necessary to raise and lower the lift span. Wire ropes connected to each end of the lift span pass over the sheaves and are connected to a counterweight (on each tower) which balances the weight of the lift span.

2.1.3 Approach Spans

There are two approach spans at either end of the bridge. Each is 15.90m (52'-2'') wide and 12.60m (41'-4'') in length.

Transverse floor beams and longitudinal stringers support a 190mm (7.5") concrete deck with a 65mm (2.5") asphalt wearing surface. There is a 2.47m (8'-1") wide sidewalk with an aluminum pedestrian hand railing cantilevered from the west side of the approach spans.

Each approach span is simply supported by the tower piers at one end and a concrete conventional closed abutment at the other. Articulation is provided by fixed bearings at the concrete abutments, and expansion bearings at the tower piers.

3. ANALYSIS ASSUMPTIONS

3.1 General Assumptions

The Burlington Lift Bridge was designed circa 1958 using the American Railway Engineering Association (AREA) "Part 2" 1956 for all movable components and structural components which support movable components, Canadian Standards Association (CSA) S1-1950 Specifications for Steel Railway Bridges, and CSA S6-1952 Specifications for Steel Highway Bridges. Coopers E-60 and H20-S16 design live loads were used for railway and highway components respectively.

The bridge was analyzed in accordance with the Canadian Highway Bridge Design Code (CHBDC) CAN/CSA-S6-06 including Supplement No. 3 (March 2013) using Section 5 Methods of Analysis along with Section 3 Loads and Section 13 Movable Bridges.

Gross section properties were used in the analysis for all members, as provided on the 1959/1960 fabrication/erection drawings. Further discussion is provided in the MMM Group report titled RS7: Member Capacities, April 2014.

For all steel, the following material properties were input into the software:

• Young's Modulus, E	= 200GPa;
----------------------	-----------

- Density of Steel, γ_s = 77 kN/m³; and
- Coefficient of thermal expansion, $\alpha_s = 11.7 \times 10^{-6}$ /K.

For further discussion of the material properties used in the model, refer to the MMM Group report titled RS7: Member Capacities, April 2014.

4. LOADING

4.1 General

For the analysis of the Burlington Lift Bridge, two loading scenarios were considered:

- 1. Bridge fully closed (i.e. lift span seated on bearings in locked position); and
- 2. Bridge fully raised (i.e. lift span at the top of its vertical range of movement).

As given by Section 13 of the CHBDC, when the bridge is in the fully closed position all loading requirements and load combinations relating to fixed bridges in Section 3 shall apply. When the bridge is in the fully raised position, only those specific loads and load combinations identified in Section 13 shall apply.

Refer to Appendix C for detailed design load calculations.

4.2 Permanent Loads

Calculated section properties, based on the 1959/1960 fabrication/erection drawings, permitted the analysis software to automatically calculate self-weight for all steel members.

A steel density of 77kN/m³, in accordance with the CHBDC, was used for all main and auxiliary steel members. The concrete density used for the sidewalk, tower span deck, and approach span deck was 23.5kN/m³, in accordance with the CHBDC. The lift span open grating steel deck was assumed to be 0.96kN/m² as provided by the manufacturer.

Self-weights for typical single and double latticed members were a by hand and the additional weight of the lacing bars was determined. This additional load was applied to all similar members.

The dead loads due to the barriers and sidewalk were applied as point loads to the bottom chords at panel point locations.

The lift span dead load in the model was increased to calibrate it with its actual measured weight, as identified in a letter to PWGSC titled Weighing the Bridge dated May 12, 2004. This approach is consistent with past practices when accounting for the additional weight of rivets, bolts, and gusset plates. This same factor was applied to all other steel in the towers and approach spans.

A small imbalance exists between the weight of the lift span and the weight of the two counterweights.

In a letter to PWGSC dated March 21, 2000 it was indicated that the structure is slightly span-heavy. This imbalance between the weight of the lift span and the combined weight of the two counterweights, in addition to the known weight of the lift span, permitted the calculation of the approximate weight of each counterweight.

An additional dead load was applied as point loads at the top of each tower to account for the sheaves, platforms, equipment, floor, roof, and live load within the machine house.

4.3 Transitory Loads

4.3.1 Live Loads

Four lanes were considered for live loading. We believe this scenario of loading is somewhat conservative: In our opinion, given the proximity of the trusses to the edges of the outside lanes, there is a low probability of four large trucks occupying the bridge simultaneously. This was used in conformance with Section 3 of the CHBDC.

The CL-625-ONT Truck Load and the CL-625-ONT Lane Load were used for the live load analysis, as given by Clause 3.8.3 of the CHBDC. Truck wheel loads were positioned directly over stringers to obtain their maximum load effects. As there is little torsional/plate stiffness in the open steel grating, the evaluation assumed no lateral distribution of live load through the grating. This slight conservative assumption increases the force effects in the stringers and floor beams only with a minimal effect on the trusses.

During the analysis, the design truck was moved longitudinally along each lane in 1.0m increments to generate force envelopes for each member. Eight unique load cases were considered for both truck and lane loading and are presented in Table 4-1 below.

	Lanes Loaded			
Load Case No.	Lane 1	Lane 2	Lane 3	Lane 4
1	Yes			
2	Yes	Yes		
3	Yes	Yes	Yes	
4	Yes	Yes	Yes	Yes
5		Yes	Yes	Yes
6			Yes	Yes
7				Yes
8	Yes			Yes

Table 4-1: Live Load Cases

The minimum sidewalk live load of 1.6kPa was considered as given by Clause 3.8.9 in the CHBDC.

4.3.2 Temperature Loads

Temperature effects were considered for truss components. A thermal gradient of 10°C was applied in two scenarios. The first load case is when the bottom chords are cooler than the top chords due to their proximity to the water and the second load case is when the east truss is warmer than the west truss due to morning warming effects from the sun.

4.3.3 Wind Loads

Design wind loads were applied to the lift span and towers. Given the span of less than 125m, an hourly mean reference wind pressure corresponding to a return period of 50 years was chosen as given by Clause 3.10.1.2 of the CHBDC. The hourly mean reference wind pressure used corresponded to the City of Burlington, Ontario as provided in Table A3.1.1 of the CHBDC, which represents hourly mean velocities recorded at the standard anemometer height of 10.0m above ground. A gust coefficient was given by Clause 3.10.1.4 of the CHBDC based on the height from the water level to the mid-depth of the trusses. Two different wind exposure coefficients were calculated for the lift span; one for the fully closed position and one for the fully raised position. A horizontal wind drag coefficient of 2.0 was used, as given by Clause 3.10.2.2, which accounts for the suction force applied to the back face of a member.

Horizontal drag was applied to both the windward and leeward trusses of the lift span, as it was assumed that there was no significant shielding. Vertical drag was applied to the lift span deck. Given the open grating, the floor plan area was assumed to be 85% of a solid deck as given by Clause 13.7.3.5 of the CHBDC. For truss members, the horizontal drag forces were distributed along the members as a uniformly distributed load, as a function of member width.

A horizontal drag load was applied to live load, in the fully closed position, assuming the entire length of the lift span and a vehicle height of 3.0m. This load was distributed along the length of the east bottom chord.

Similar to the lift span, horizontal wind loads were applied to the columns, horizontals, diagonal members, and machine house and elevator shaft cladding in the towers. The wind exposure coefficient was calculated from the top of the towers down in three steps rather than as a variable to simplify the analysis. Wind was applied at both right angles to the towers as well as on an oblique line at 45°. Shielding was not considered in the towers. These calculated wind loads were compared to the wind pressures specified in Clause 13.7.3.10 of the CHBDC (1.5kPa) and were found to be greater; therefore, the calculated wind loads were used.

In determining wind loads, PWGSC provided MMM with a maximum operating wind velocity of 80km/h for comparison to the design wind loading used in the model. The maximum operating wind velocity is the maximum velocity, based upon readings taken on-site, at which the lift span will be raised.

As given by CAN/CSA S6-06 Commentary PP 99, the following equation was used to convert the provided wind velocity to wind pressure:

$$q = 0.05v^2 = 0.05 \times (80)^2 = 320Pa = 0.32kPa$$
 (1)

where v = wind velocity in km/h and an air density of 1.29kg/m³ has been assumed and incorporated.

For the purposes of comparison, the provided maximum operating wind velocity is measured by on-site by an anemometer located near the top of the operator's house, approximately 16m above ground. It is our opinion that any amplification due to exposure would be minimal between this height and the fully open height.

Furthermore, the provided maximum operating wind velocity is measured in real-time by the anemometer on-site and provides wind velocities including gusts; therefore, no amplification related to gusts is required. On the contrary, the hourly wind reference pressures used when calculating the design wind have been averaged and do not account for wind gusts.

Finally, for the purposes of comparison only, the horizontal drag coefficient will not be used when calculating the design wind load. The reasoning for this is the 80km/h maximum operating wind velocity likely accounts for a load applied to *one face only* of a member, not accounting for any horizontal drag/suction applied to a back face.

Based on the above assumptions, the unfactored design wind loading used for the purposes of comparison is approximately four (4) times the maximum operating wind velocity. Nevertheless, even if gust and exposure coefficients were applied to the 80km/h maximum operating wind velocity, the unfactored design wind loading is calculated to be 1.4 times the maximum operating wind velocity.

4.4 Exceptional Loads

The only exceptional load considered was ice accretion. As given by Clause 3.12.6.2 of the CHBDC, ice accretion was assumed to consist of a 31mm radial build-up on all

surfaces of all members, including the inside surfaces of built-up members without solid plates. The weight of ice was assumed to be 9.8kN/m³.

Ice accretion was only considered for the fully closed position. The operational season is typically during months where ice accretion is not expected. Moreover, if a build-up of ice were to form on the lift span surfaces, it is unlikely the mechanical and electrical equipment used to raise the span would be able to overcome this additional load.

4.5 Vertical Lift Bridges - Special Loads

An operating impact load consisting of 20% of the lift span dead load was evenly distributed as a point load to each of the sheave girders in the towers, as given by Clause 13.7.10.2 of the CHBDC.

4.6 Load Combinations - Fully Closed Position (Lowered)

The above loads were combined as applicable for the calculation of ultimate limit states ULS1, ULS2, ULS3, ULS4, and ULS7 as given by Clause 3.5.1 of the CHBDC to determine the demands on each member. Serviceability limit states were not assessed as they are related to vibration of the structure. Given the substantial depth of the truss, the light pedestrian volumes, and the original design as a rail carrying structure, low deflections were obtained.

4.7 Load Combinations - Fully Open Position (Raised)

The above loads were combined as applicable for the calculation of ultimate limit states ULSV1, ULSV2, and ULSV3 as given by Clause 13.7.10.2 of the CHBDC to determine the demands on each member.

4.8 Fatigue

To assess the fatigue limit state, FLS1 as given by Clause 3.5.1 of the CHBDC, a single truck load was placed in a single lane down the centre of the bridge and combined with dead loads to determine the demands on each member. Further discussion on fatigue is provided in the MMM Group report titled RS8: Fatigue Study, April 2014.

5. ANALYSIS/MODELLING

A three-dimensional frame analysis model was created and analyzed using S-Frame Version 11 for both the fully closed and open positions. Each model is comprised of the north and south approach spans, north and south towers, and the lift span. The models are provided under separate cover.

Globally, the X-axis is along the longitudinal axis of the bridge, increase from south to north. The global Y-axis is along the transverse axis of the bridge, increasing from east to west. The global Z-axis represents the vertical axis of the bridge, increasing in the direction opposite of gravity. Locally, the x-axis represents the axial direction along a member. The local y-axis always corresponds with the horizontal plane of a member of the transverse axis of the bridge. The local z-axis always corresponds with the vertical axis of a member or the longitudinal axis of the bridge.

All member types have been modelled as beam elements. Where intermediate nodes split one physical member into several constituent analytical members, a new feature in the software was used to convert the analytical members into a single physical member.

In total, the models each contain approximately 1093 nodes and 1174 physical members consisting of 120 unique sections. All members have been numbered according to groups based on member type/location. All unique sections have been named based on span, element, and sub element. For example, LIFT-RLYT-L0U0 refers to the lift span, railway truss, member L0U0. Refer to Appendix B for details of the member numbering system and section naming conventions.

All main truss and tower members have been named in accordance with the original 1958 design drawings. Refer to Appendix A for drawings containing the naming conventions.

The majority of member end releases are all pin-pin, which indicates that moments about the local y-axis and z-axis have been released. Please note that every node is rigidly attached to at least one member, to avoid creating a "mechanism" and subsequent model instability. For diagrams of all member end releases, refer to Appendix B.

All spans have had support conditions applied that reflect what is physically present. The approach spans at the abutments have been released for rotation about the global Y-axis and translation about the global X-axis, and fixed in all other degrees of freedom. The tower supports at the base of each column have been released for moments about the global X-axis and Y-axis only, and fixed about all other degrees of freedom. Please see the following section for further discussion regarding modelling and results of the tower support conditions.

In the fully closed position, the lift span is simply supported at the lower four corners with translation fixed in the upper four corners along the global Y-axis, to simulate the effects of the guide rollers.

In the raised position, vertical support is provided at the top four corners to simulate the support provided by the wire ropes. Translational degrees of freedom are restricted to model the guide rollers. For diagrams of the support conditions, refer to Appendix B.

The top and bottom chords of the lift span were modelled as continuous members between every other panel point, in accordance with what is shown on the original design drawings and what is physically present (e.g. L0L2, L2L4, L4L6, etc.). Further discussion of this modelling approach is provided in the following section.

6. **RESULTS**

Results were obtained through the use of a linear elastic analysis type for both static and moving loads.

While performing quality control on the analysis results, it was observed that the top and bottom lateral bracings of the lift span and the lateral bracing of the tower span were developing forces under dead load. Due to the probable construction sequence and our understanding of the original design methodology, we modified the analysis as follows:

1. The dead load cases were analyzed with the area of the above noted bracings greatly reduced (so as not to attract significant load);

- 2. The remaining load cases were analyzed with the full area of the above noted bracings reinstated; and
- 3. The results of the two methods were superimposed on one another.

For the lift span truss members, the dead load results were compared to the stresses identified on the original 1958 design drawings. The results were found agree within 5%.

When modelling the structure using continuous top/bottom chords between every other panel point (as described in the previous section), bending moment was developed in addition to that from self-weight. MMM reviewed a version of the model without continuous top and bottom chords (i.e. all members are pin connected) and made the following observations:

- Axial force for top/bottom chords increased by 2-5% while moments decreased by 20%;
- Axial force for diagonals increased by 3% while moments remained unchanged; and
- Axial force and moments for vertical remained unchanged.

Further discussion of the moments is provided in the report by MMM Group titled RS7: Member Capacities.

For the towers, adding "torsional support" was investigated (i.e. restricting bending about the global Y axis) at the tower support locations. It was observed that deflections at the top of the towers were reduced by approximately 13% and moments were generated at the base of the towers (approximately 1430kN.m on the front columns and 790kN.m on the rear columns). MMM has reviewed the foundation/column base connection and is of the opinion that the actual connection is somewhere between fully fixed and fully pinned. Our evaluation/analysis has assumed the fully pinned connection which is conservative for deflections and forces in the bracing. We have also reviewed the column capacity for the fully fixed connection and have found this to be satisfactory.

As part of quality control, an approximate analysis of the dead load deflection for the lift span at mid-span under dead load and live loads (two lane loads) and at the top of the towers with the lift span in the fully closed position under longitudinal wind loading (i.e. wind blowing along the centreline of the roadway) was completed. The calculated deflections were compared to output from the S-Frame model and were found to be in agreement after making an allowance for additional 20%-30% web stiffening. This approximate check verifies the general validity of the model. It is also noted that the dead load forces in the lift span were compared to the dead load forces shown in the original design stress sheets as another independent review of the lift span model. These forces were observed to be very similar.

Refer to Appendix D for calculation summaries and results, containing the governing axial forces, moments, and shears for each section as well as hand calculations for the floor beam, stringer, and lifting girder demands.

Prepared By:

/Λ

Kyle Yusek, E.I.T. Designer – Bridge Engineering MMM Group Ltd.

Reviewed By:

Doug Dixon, M.A.Sc., P. Eng. Senior Project Manager - Bridge Engineering MMM Group Ltd.

APPENDIX A KEY PLAN AND GENERAL ARRANGEMENT DRAWINGS

KEY PLAN

Burlington Lift Bridge, Burlington Ontario

Scale: N.T.S.

— Ff	<u>RON</u>	TV	IEV

•	Public Works and Government Services Cano Travaux publics et Services gouvernementaux	ada Canada	
04			
03 02			
01		date	
Do not sc Verify all notify the	ale drawings. dimensions and conditions on site and Departmental Representative of all disc	immediately repancies.	
A Detail No. No. du détail B drawing no. – where detail required dessin no. – où détail exigé C drawing no. – where detailed dessin no. – où détaillé			
project ti titre du p	^{tle} projet Ontc	ario	
drawing t titre du c BURL LIFT	INGTON CANAL BRIDGE		
GENE	RAL ARRANGEMENT		
dessine p	ar by		
conc par	by		
approuve	par	ect manager	
offre project de	ate	Iministrateur de projets	
date du p	2014-04-09		
no. du pr	S3213009		
drawing n dessine n	o. S-1		

3

Sec. Y.

194 1 1 1 1

114

£ 16.7.8 *

· · ·

APPENDIX B.1 FRAME MODEL DIAGRAMS

Model: Fully Closed Position

Model: Raised Position

Model: Close-up of lift span at south end

APPENDIX B.2 FRAME MODEL MEMBER NUMBERING SCHEME

FRAME MODEL MEMBER NUMBERING SCHEME

LIFT SPAN 2X XXX

\triangleright	Railway Truss	21,XXX
	> Top Chord	21,1XX
	> Bottom Chord	21,2XX
	> Diagonals	21,3XX
	> Verticals	21,4XX
⊳	Highway Truss	22,XXX
	> Top Chord	22,1XX
	> Bottom Chord	22,2XX
	> Diagonals	22,3XX
	> Verticals	22,4XX
⊳	Floor Beams	23,XXX
	> End	23,1XX
	> Interior	23,2XX
≻	Stringers	24,XXX
	Lifting Girder	25,XXX
>	Lifting Girder Diaphragms	25,XXX 26,XXX
A A	Lifting Girder Diaphragms Traction Bracing	25,XXX 26,XXX 27,XXX
	Lifting Girder Diaphragms Traction Bracing Railway Stringers	25,XXX 26,XXX 27,XXX 28,XXX
	Lifting Girder Diaphragms Traction Bracing Railway Stringers Bracing	25,XXX 26,XXX 27,XXX 28,XXX 29,XXX
	Lifting Girder Diaphragms Traction Bracing Railway Stringers Bracing > Top Lateral	25,XXX 26,XXX 27,XXX 28,XXX 29,XXX 29,1XX
	Lifting Girder Diaphragms Traction Bracing Railway Stringers Bracing > Top Lateral > Bottom Lateral	25,XXX 26,XXX 27,XXX 28,XXX 29,XXX 29,1XX 29,2XX
	Lifting Girder Diaphragms Traction Bracing Railway Stringers Bracing > Top Lateral > Bottom Lateral > Portal Frame	25,XXX 26,XXX 27,XXX 28,XXX 29,XXX 29,XXX 29,1XX 29,2XX 29,3XX

TOWER 3X XXX

\triangleright	Columns	31,XXX
	> Top	31,1XX
	> Middle	31,2XX
	> Bottom	31,3XX
		~~ ~~~~~
	Bracing	32,XXX
	> Side	32,1XX
	> Front	32,2XX
	> Back	32,3XX
	Sheave Girders	33.XXX
-	> Front	33 1XX
	> Rear	33.2XX
	> Longitudinal	33,3XX
	C	
	Diaphragms	34,XXX
	Diaphragms Stringers	34,XXX 35 XXX
A A	Diaphragms Stringers	34,XXX 35,XXX
	Diaphragms Stringers Floor Beams	34,XXX 35,XXX 36,XXX
	Diaphragms Stringers Floor Beams	34,XXX 35,XXX 36,XXX
AAAA	Diaphragms Stringers Floor Beams Lateral Bracing	34,XXX 35,XXX 36,XXX 37,XXX
	Diaphragms Stringers Floor Beams Lateral Bracing Traction Bracing	34,XXX 35,XXX 36,XXX 37,XXX 38,XXX
AAAAA	Diaphragms Stringers Floor Beams Lateral Bracing Traction Bracing	34,XXX 35,XXX 36,XXX 37,XXX 38,XXX
AAAAAA	Diaphragms Stringers Floor Beams Lateral Bracing Traction Bracing Bracing (Sheave)	34,XXX 35,XXX 36,XXX 37,XXX 38,XXX 39,XXX

APPROACHES 4X XXX

	Stringers	41,XXX
\triangleright	Diaphragms	42,XXX

LIFT- RAILWAY TRUSS

RS-6 3D Modelling and Structural Analyses Filesame: CNUserNUsedRDEatop/0813009 BLB S-Frame FilesMar 5, 2014/0813009 KY BLB ANALYSIS RAISED 05:05/2014/TEL Description: Burlington Lift Bridge Engineer: KY

Page: 1 of 1

LIFT-HIGHNAY TRUSS

Thursday March 6 2014, 8:30 am

23102

23210

23209

* <u>R3208</u>

23207

23206

23205

23204

<u>*</u>**

8 8 8 8 <u>83202</u> 8 8 8 8 8 8 8 8 · eer

LIFT- FLOOR BEAMS - END

- INT

23201

© Copyright 1995-2013, S-FRAME Software Inc.

Thursday March 6 2014, 8:31 am

RS-6 3D Modelling and Structural Analyses Filename: CAUSerdWardelXDurkeyUSB12009 BLB. SPRAME FILENMER'S, 2014ABB13009 KY BLB. ANALYSIS RAISED 0503 2014-TEL Description: Burlington Lift Bridge Engineer: KY

Page: 1 of 1

LIFT - STEINGERS

Y The P X

Thursday March 6 2014, 8:31 am

RS-6 3D Modelling and Structural Analyses Filebame: C:WiserWusekRDadsep0813009 BLB S-Frame FilesMar 5, 20143B13009 KY BLB AMALYSIS RAISED 05 03.2014.TEL Description: Burlington Lift Bridge Engineer: KY

Page: 1 of 1

LIFT - LIFTING GIRDER

Thursday March 6 2014, 8:31 am

25001

RS-6 3D Modelling and Structural Analyses Filmam: CAUSERNULERAD BEIR STRAME FILENME'S, 2014/0813009 KY BEIR ANALYSIS RAISED 05:03:2014.TEL Description: Burlington Lift Bridge Engineer: KY

26187

2612 2612

2032 Pibo

2611

70696667

222170

Page: 1 of 1

LIFT- DIAPHRAGMS

S-FRAME Enterprise Version 11.00.18 © Copyright 1995-2013, S-FRAME Software Inc.

210

908988 818188 797877

Thursday March 6 2014, 8:32 am

RS-6 3D Modelling and Structural Analyses Filesme: CNUerNUeckKDeakop/0813009 BLB SFrame FilesMar 5, 20140813009 KY BLB ANALYSIS RAISED 05.07.2014 TEL

2009er/Wuekk/Deikop/8813009 BLB S-Frame Files/Mar 5, 2014/3813009 KY BLB ANALYSIS RAISED 05:03. Description: Burlington Lift Bridge Engineer: KY Page: 1 of 1

LIFT - TRACTION BRACING

© S-FRAME Enterprise Version 11.00.18 © Copyright 1995-2013, S-FRAME Software Inc.

Thursday March 6 2014, 8:32 am

YRXX

RS-6 3D Modelling and Structural Analyses Fileaum: C:Users/Usel&CDedteopl3613009 BLB S-Frame Files/Mar 5, 2014/3813009 KY BLB AFALYSIS RAISED 05:03:2014.TEL Description: Burlington Lift Bridge Engineer: KY

Page: 1 of 1

LIFT- TOP LATERAL BRACING

Thursday March 6 2014, 8:30 am

RS-6 3D Modelling and Structural Analyses Filename: CAUSERNWeekKNDestropUS813009 BLB 5-Frame FileNat 5, 2014/3813009 KY BLB ANALYSIS RAISED 05:03:2014-TEL Description: Burlington Lift Bridge

Engineer: KY

Page: 1 of 1

LIFT - BOT. LATERAL. BRACING

S-FRAME Enterprise Version 11.00.18 © Copyright 1995-2013, S-FRAME Software Inc.

Thursday March 6 2014, 8:30 am

RS-6 3D Modelling and Structural Analyses Filesam: CultersYluetRyDecktopY393009 BLB 5-Finne FilesMar 5. 2014/0813009 KY BLB ANALYSIS RAISED 05/03/2014.TEL Description: Burlington Lift Bridge Engineer: KY

Page: 1 of 1

LIFT PORTAL BRACING

Thursday March 6 2014, 8:31 am

RS-6 3D Modelling and Structural Analyses Filename: CNUter/WuelkWoekkop3813009 BLB 3-Frame FileNMer 5, 2014/8813009 KY BLB ANALYSIS RAISED 05/03/2014/TEL Description: Burlington Lift Bridge Engineer: KY

Page: 1 of 1

LIFT- SWAY BRACING

Thursday March 6 2014, 8:31 am

LIFT-RAILWAY STRINGERS

Thursday March 6 2014, 8:32 am
RS-6 3D Modelling and Structural Analyses Fileaum: C:U.Sert/YuzekK/Deditor/3813009 BLB S-Frame File/Mar 5, 2014/3813009 KY BLB ANALYSIS RAISED 05:03/2014.TEL Description: Burlington Lift Bridge Engineer: KY

Page: 1 of 1

APPROACHES - GIRDERS

RS-6 3D Modelling and Structural Analyses Filename: CMLMers/WusekK/Deatop/3813009 BLB S-Frame FilenMar 5, 2014/8813009 KY BLB ANALYSIS RAISED 05.03.2014.TEL Description: Burlington Lift Bridge

Engineer: KY

Page: 1 of 1

APPROACHES - DIAPHRAGMS

RS-6 3D Modelling and Structural Analyses Filesame: C:Usera/Wueld/Dedisop/3813009 BLB & Frame File/Mar 5, 2014/3813009 KY BLB ANALYSIS RAISED 05/03/2014.TEL Description: Burlington Lift Bridge Engineer: KY

Page: 1 of 1

TOWERS - COLUMNS

RS-6 3D Modelling and Structural Analyses Fleame: C:WeerWeekKVDeeteopUSI3009 BLB 3-Frame FilerWar 5, 2014/0813009 KY BLB ANALYSIS RAISED 05:03:2014.TEL Description: Burlington Lift Bridge

Engineer: KY

Page: 1 of 1

TOWERS - SIDE BRACING

RS-6 3D Modelling and Structural Analyses Filesme: CMUserNUsedRXDedtop3813009 BLB S-Frame FilesMar 5, 20140813099 KY BLB ANALYSIS RAISED 05.03.2014.TEL Description: Burlington Lift Bridge

Engineer: KY

Page: 1 of 1

TOWERS - FRONT BRACING

32223 32215 32222 32221 32228 32224 32216 32220 32217 32225 32226 32227 32219 32218

S-FRAME © Copyright 1995-2013, S-FRAME Software Inc.

RS-6 3D Modelling and Structural Analyses Filename: C:NUserNYWashK/DeaktopUSI3009 BLB S:Frame FilenMar 5. 2014/0513009 KY BLB ANALYSIS RAISED 05:03/2014.TEL Description: Burlington Lift Bridge Engineer: KY

Page: 1 of 1

TOWERS - BACK BRACING

32327 32321 3231632320 32330 32326 32317 32329 3231832325 32324 32325 32319

32305 32310 3230 1 32309 32308 32315 32302 32303 32312 3231332314 32304 Y R X

Page: 1 of 1

TOWER - FRONT TRANS. SHEAVE GIRDER

Thursday March 6 2014, 11:21 am

***** *33101

TOWERS - REAR TRANS. SHEAVE GIRDER

YR

Thursday March 6 2014, 11:21 am

RS-6 3D Modelling and Structural Analyses Filesme: CMUserNUsel&NDedetop13813009 BLB S-Frame FilesMar 5, 2014/8513009 KY BLB ANALYSIS RAISED 05/03/2014/TEL Description: Burlington Lift Bridge Engineer: KY

Page: 1 of 1

TOWERS - LONG. SHEAVE GIRDERS

YRADX

© S-FRAME Enterprise Version 11.00.18 © Copyright 1995-2013, S-FRAME Software Inc.

RS-6 3D Modelling and Structural Analyses Filesame: CNUsersYUsekKDDesteropd513009 BLB 5-Frame FilesMar 5, 2014/0513009 KY BLB AVALYSIS RANSED 05/03/2014.TEL Description: Burlington Lift Bridge Engineer: KY

Page: 1 of 1

TOWERS - DIAPHRAGMS

RS-6 3D Modelling and Structural Analyses Filename: C:Wier:WueckKWDecktop30513009 BLB S-Frame FilesMar 5, 20143613009 KY BLB ANALYSIS RAISED 05:03-2014.TEL Description: Burlington Lift Bridge Engineer: KY

Page: 1 of 1

TOWERS - STRINGERS

RS-6 3D Modelling and Structural Analyses Filename: CMIserWusekRDedtep13813009 BLB S-Finne FilerWar 5, 2014/0513009 KY BLB ANALYSIS RAISED 05/03.2014.TEL Description: Burlington Lift Bridge Engineer: KY

Page: 1 of 1

TOWERS - FLOOR BEAMS

RS-6 3D Modelling and Structural Analyses Filename: CMLeer(VLuezkk)Decktop)3813009 ELB S-Frame FilerMar 5, 2014(8813009 KV BLB ANALYSIS RAISED 05:03:2014.TEL Description: Burlington Lift Bridge Engineer: KY

Page: 1 of 1

TOWERS - LAT. BRACING

37005 37008 37007 37006

Engineer: KY

Page: 1 of 1

TOWERS - SOUTH TRACTION BRACING

RS-6 3D Modelling and Structural Analyses Filesame: CNUserVWusekKDeetsop3813009 BLB 5-Frame FilesWar 5, 2014/3613009 KY BLB ANALYSIS RAISED 05:03:2014.TEL

Description: Burlington Lift Bridge Engineer: KY Page: 1 of 1

TOWERS - NORTH TRACTION BRACING

RS-6 3D Modelling and Structural Analyses Filesame: CMUsers/Wasel&Deducep13813009 BLB S-Frame Files/Mar 5, 2014/8813009 KV BLB AFALYSIS RAISED 05:03:2014.TEL Description: Burlington Lift Bridge Engineer: KY

Page: 1 of 1

TOWERS - MACHINE HOUSE

30028 30039 30026 30045 30038 30040032 30049031 30037 30006 30049031 30037 30032 300480029 30035030 300480029 30008 30034027 30007

30011 30022 30000 3002016 30021 30000 30028014 30020 300001 30028014 30020 3006013 30028014 30020 30060010 30003 30004

> **S-FRAME** Enterprise Version 11.00.18 © Copyright 1995-2013, S-FRAME Software Inc.

Thursday March 6 2014, 11:23 am

 \bigcirc

RS-6 3D Modelling and Structural Analyses Filtrame: C4UserNYUneLKUVerlapyN13009 BLB SPrame FilerMar 5, 2014/0513009 KY BLB ANALYSIS KAKED 05.05 2014/TEL Description: Burlington Lift Bridge Engineer: KY

Page: 1 of 1

TOWERS - NORTH - SHEAVE GIRDER BRACING

Thursday March 6 2014, 1:34 pm

RS-6 3D Modelling and Structural Analyses Filerame: CAliserVivue&RDDreforg0313009 BLB 5-Frame: FilerAndref 5, 2014/0813009 KY BLB A/NALYSIS RAISED 05 03.2014 TEL Description: Burlington Lift Bridge Engineer: KY Page: 1 of 1

TOWERS - SOUTH SHEAVE GIRDER BRACING

Thursday March 6 2014, 1:34 pm

APPENDIX B.3 FRAME MODEL SECTION NAMING SCHEME

FRAME MODEL SECTION NAMING SCHEME

FORM	FORMAT: XXXX - XXXX - XXXX			
	1	2 3		
1.	SPAN:	Towers	- TOWR	
		Lift Span	- LIFT	
2	ELEMENT:	Railway Truss	- RLYT	
		Highway Truss	- HWYT	
		Floor Beam	- FLBM	
		Stringer	- STRG	
		Diaphragm	- DIAP	
		Traction Bracing	- TRBG	
		Girder	- GRDR	
		Portal Frame	- PORT	
		Sway Frame	- SWAY	
		Lifting Girder	- LFGR	
		Top Lateral	- TLAT	
		Bottom Lateral	- BLAT	
		Railway Stringer	- RLSTR	
		Front Column	- FCOL	
		Rear Column	- RCOL	
		Front Bracing	- FBRC	
		Back Bracing	- BBRC	
		Side Bracing	- SBRC	
		Stringer	- STRG	
		Floor Beam	- FLBM	
		Diaphragm	- DIAP	
		Lateral Bracing (Bot)	- BLAT	
		Traction Bracing	- TBRG	
		Sheave Girders	- SHVG	
		Sheave Bracing	- SHVB	

3 SUB-ELEMENT (If Applicable):

Vertical Truss Member LoU	o- LoUo (Typical for other truss members)
Intermediate	- INT
End	- END
Top Strut	- TSTR
Bottom Strut	- BSTR

Sway Bracing (Cross)	- SWBC
Sway Bracing (Vertical)	- SWBV
End Lateral Bracing	- LATD
End Lat. Bracing (Long)	- LATL
End Lat. Bracing (Trans)	- LATT
LIFT-STRG	- W24 x 84
LIFT-DIAP	- C12 x 207
LIFT-RLST	- W36 x 230
Upper Tower Column	- UCOL
Mid Tower Column	- MCOL
Lower Tower Column	- LCOL
Side Bracing Diagonals	- DIAG
Horizontals C, D, E, F	- HORIZ
Tower Front Floorbeam	- FRNT
Tower Rear Floorbeam	- REAR
Front Lateral Bracing	- FRTL
Railway Side Rear Lateral	- RLYR
Highway Side Rear Lateral	- HWYR
Member FC:FE', FC':FE	- UDIA
Member FE:FG, FE':FG	- MDIA
Member Sb:FC; Sb:RC	- SbFc
Member Cd:Ce; Cf:Cg;	- CdCe
Member Md:Me; Mf:Mg	- MdMe
Member Rc':Rc	- RcRc
Member FG:FG`	- Fg:Fg*
Member FF:FF`	- FfFf*
Member FE:FE`	- FeFe*
Member FD:FD`	- FdFd*
Member FG:RG	- FgRg
Member Fr:RH	- FhRh

* Rear Bracing similar but with "R" instead of "F"

OTHER

2L'S	- Miscellaneous Bracings
C's	- Diaphramgs
W24x84	- Original Stringers
W36x23	- Railway Stringers

APPENDIX B.4 FRAME MODEL SUPPORT CONDITIONS

SUPPORT CONDITIONS

APPROACH SPAN TOWER LIFT SPAN

2 34

LEGEND

SINGLE ARROW! TRANSLATION FIXED ALONG SPECIFIED AKES

McCORMICK RANKIN

A member of MMM GROUP

DOUBLE ARROW: ROTATION FIXED ABOUT SPECIFIED AXES

MRC

PROJECT BURUNGTON LIFT BRIDGE AWALYSIS W.O. 3213009.304

DESIGNED KY DATE Jan 24/14

CHECKED

DATE _____ PAGE ____ OF ____

RS-6 3D Modelling and Structural Analyses Filename: CNUSersVYUseKKNDesktop/3813009 BLB 5-Frame FilesV24.01.2014/V813009 KY BLB ANALYSIS 24.01.2014/TEL Description: Burlington Lift Bridge Engineer: KY

Page: 1 of 1

RS-6 3D Modelling and Structural Analyses Filesame: C-When YVsetk/CD-altergVS13009 ELB 5-Frame: FilesAME 25, 2014/0513009 KY BLB ANALYSIS RAISED 25.00:2014.TEL Description: Burlington Lift Bridge Engineer: KY

- NOTE: SIMULATING GUIDE ROLLERS WHEN A WIND IS APPLIED ALONG THE GLOBAL Y-AXIS.

LIFT SPAN SUPPORT CONDITIONS - PAISED

Thursday March 27 2014, 4:18 pm

5

APPENDIX B.5 FRAME MODEL MEMBER END RELEASES

MEMBER END RELEASES - LIFT SPAN LEGEND TYPICAL SWAY FRAME 2 RELEASED MOMENT 3 TRUSS - ABOUT LOCAL Y-AND Z-AKES (1.E. PIN) 4 BOTTOM LATERAL BRACING (LIFT SPAN) FIXED TORSION ABOUT LOCAL X-AXIS TOP BRACING, LATERAL AND END (LIFT SPAN) 5 AND FIXED MOMENT ABOUT LOCAL Y-AND Z-AXES FLOOR BEAMS (LIFT SPAN) 6 AY LOCAL AXES: STRINGERS (LIFT SPAN) 7 X STRINGER DIAPHRAGMS (LIFT SPAN) 8 TEACTION BRACING (LIFT SPAN) 9 RAILWAY STRINGERS (LIFT SPAN) 10 PROJECT BURNISTON LIFT BRIDGE - ANALYSIS W.O. 3213009.304 MRC McCORMICK RANKIN DESIGNED KY DATE JAV 16/14 A member of MMM GROUP _____ DATE _____ PAGE _/_ OF ____ CHECKED

MMM Group Ltd. 2655 North Sheridan Way Mississauga, Ontario 905-823-8500	RS-6 3D Modelling and Structural Analyses Filename: C:UlsersYYusekKDesktep3813009 PLB S:Frame Files416 01.2014Sections for Print/Sway Bracing.TEL Description: Burlington Lift Bridge Engineer: KY	Page: 1 of
		NOTE: PORTAL FRI AT ENDS I SIMILAR
	* JOINTS UZ, U4, U4 ONLY	
3	ONE CONTINUOUS MEMBER (TUP)	NE CONTINUOUS EMBER (TYP.)
	Ζ	SEE PAGE 3 FOR TRUSS MEMBER RELEASES
	×	

TYPKAL SWAY FRAME (LIFT SPAN) REV 01.22.2014 Scopyright 1995-2013, S-FRAME Software Inc.

 \bigcirc

) Modelling and Structural Analyses YusekKUDesktopU813009 BLB S-Frame Filest16.01.2014Vsections for Print(Truss Side.TEL Description: Burlington Lift Bridge Engineer: KY	Page: 1 of 1
rs	D Modelling and Structural Analyses rsYusekKyDesktopV3813009 BLB S-Frame Files\16.01.2014\Sections for Print\Truss Side.TEL Description: Burlington Lift Bridge Engineer: KY

RS-6 3D Modelling and Structural Analyses Filename: CMIkerNYDeckKYDeskrop0813009 BLB S-Frame FileN16 01,2014Sections for Print(Hotom Lateral Brasine (Lift)TEL

Description: Burlington Lift Bridge Engineer: KY Page: 1 of 1

ININING Group Ltd. 2655 North Sheridan Way Mississauga, Ontario 905-823-8500KS-6 3D Modelling and Structural Analyses Filename: CAUsersYUsekKUDesktop188 13009 BLB S-Frame FileAl6.01.2014(Sections for PrintTop Lateral Bracing TEL Description: Burlington Lift Bridge Engineer: KY	Page: 1 of 1
---	--------------

RS-6 3D Modelling and Structural Analyses Flename: CAUSersYUWSekKWDesktopV813009 BLB S-Frame Filex16.01.2014/Sections for Print/Bottom Lateral Bracing (Lift).TEL Description: Burlington Lift Bridge Engineer: KY

Page: 1 of 1

+ JOINTS LI, L3, L5 ONLY

 \bigcirc

Mississauga, Ontario 905-823-8500 Engineer: KY	
---	--

NOTE: STRINGERS ARE TO BE RELEASED ROZ TRANSLATION IN THE GLOBAL X-AXIS (AXIAL) AT THE SOUTH ENDS ONLY.

7

1 4 <u>5</u> 0. 1 01 1

RS-6 3D Modelling and Structural Analyses Filename: CM/sers/YuisekK/Desktop/3813009 BLB S-Frame Files/16.01.2014/Stections for Print/Bottom Lateral Bracing (Lift).TEL Description: Burlington Lift Bridge Engineer: KY

(LIFT SPAN)

9

RS-6 3D Modelling and Structural Analyses Filename: C:\Users\YusekK\Desktop\3813009 BLB S-Frame Files\21.01.2014\Railway Stringers PRINT.TEL

e: C:UsersYusekKUDesktop/3813009 BLB S-Frame Files/21.01.2014Wailway Stringers PF Description: Burlington Lift Bridge Engineer: KY Page: 1 of 1

RAILWAY STRINGERS (LIFT SPAN)

 \bigcirc

MEMBER END RELEAS	TES - Tou	VER				
TOWER SOMETRIC	(REFERENCE	ONLY)	2			
FRONT AND REAR FO	OOR BEAM.	5	3	•		
TOWER STRINGERS			4			
TOWER DIAPHRAGM	5 / 1. ja		5			
TOWER TRACTION.	BRACING		6			
TOWER LATERAL B	PRACING		7			
BRACING - SIDE			8			
BRACING - FRONT/R	PEAR		9			
SHEAVE GIRDERS		•	10			
\bigcirc			11			
MESSENGER CABLE I	BRACKE TS		12			
	PROJECT	BURLINGTON LIF	T BRIDGE +	WALY515	W.O.	3213009.304
MRC McCORMICK RANKIN	DESIGNED	147	DAT	E Jan 23/14		
	CHECKED		DAT	E	PAGE	OF

RS-6 3D Modelling and Structural Analyses Filename: C:USersYWsekKUDesktop3813009 BLB 8-Frame FilesV3:01:2014/3813009 KY BLB ANALYSIS 23:01:2014.TEL Description: Burlington Lift Bridge Engineer: KY

Page: 1 of 1

RS-6 3D Modelling and Structural Analyses Filename: C:Users\YusekK\Desktop\813009 BLB S-Frame Files\23.01.2014\Print Deck.TEL Description: Burlington Lift Bridge Engineer: KY

Page: 1 of 1

3

RS-6 3D Modelling and Structural Analyses Filename: C:Users\YusekK\Desktop\3813009 BLB S-Frame Files\23.01.2014\Print Deck.TEL Description: Burlington Lift Bridge Engineer: KY

Page: 1 of 1

TOWER STRINGERS

© S-FRAME Enterprise Version 11.00.18 © Copyright 1995-2013, S-FRAME Software Inc.

RS-6 3D Modelling and Structural Analyses Filename: C:Users\User

Page: 1 of 1

5

Enterprise Version 11.00.18 © Copyright 1995-2013, S-FRAME Software Inc.

RS-6 3D Modelling and Structural Analyses Filename: C:\Users\YusekK\Desktop\3813009 BLB S-Frame Files\23.01.2014\Print Deck.TEL Description: Burlington Lift Bridge Engineer: KY

Page: 1 of 1

MMM Group Ltd.
2655 North Sheridan Way
Mississauga, Ontario
905-823-8500RS-6 3D Modelling and Structural Analyses
Filename: CAUsers/YusekK/Desktop3813009 BLB S-Frame Files/23.01.2014/Print Deck.TEL
Description: Burlington Lift Bridge
Engineer: KY

Page: 1 of 1

RS-6 3D Modelling and Structural Analyses Filename: CAUSersiYusekKUDesktop3813009 BLB S-Frame Files423.01 20143813009 KY BLB ANALYSIS 23.01 2014.TEL Description: Burlington Lift Bridge Engineer: KY MMM Group Ltd. Page: 1 of 1 2655 North Sheridan Way Mississauga, Ontario 905-823-8500 (ONT, MEMBER (TYP.) APPROACH SPAN "REAR" LIFT SPAN "FRONT"

-> ×

RS-6 3D Modelling and Structural Analyses Filename: C:\Users\YusekK\Desktop\3813009 BLB S-Frame Files\24.01.2014\Print Sheave.TEL Description: Burlington Lift Bridge

Engineer: KY

Page: 1 of 1

MMM Group Ltd. 2655 North Sheridan Way Mississauga, Ontario 905-823-8500

SHEAVE GIRDER BOTTOM CHARD BRACING

11

APPENDIX C DESIGN LOAD CALCULATIONS

READ LOADS - DECK - APPROACH AND TOWER SPANS -> NOT SPECIFIED IN MEMO FROM DO JAN 27, 2014! 42 CONCRETE: 23.5 EN/m3 (190mm) 45 ASPHALT: 22 KN/M3 (64MM) => 23.5 <u>EN</u> × 0.19m = 4.465 EPa m³ 5. 873 EPa
 => 22 KN x 0.064m = 1.408 kPa DEAD LOADS - TOWER - MACHINE ROOM 9= 3.6 kPa [NBSC TABLE 4.1.5.3] -> ADD ADDITIONAL DEAD LOAD @ TOP OF TOWERS TO ACCOUNT FOR: SHEAVES PLATFORMS FLOOR ROOF CLADDING LIVE LOAD -> 450 KN TO BACK COL'S -> 1600EN TO FRONT COL'S PROJECT BLB - AWALYSIS ____ W.O. 3213009.304 CHECKED McCORMICK RANKIN member of MMM MMM GROUP ____ DATE ______ DATE ______ OF ______ OF _____

LIFT SPAN SIDEWALK - DEAD LOAD, · ASSUME SUPPORTED AT TRUSS VERTICALS ONLY 4 L= 30'-10" = 9398mm · CONCRETE: \$= 23.5 kN/m3 [2006 SHT101] W = 2809mm + = 50mm => qxLxWxt = 23.5 × 9.348 × 2.809 × 0.05 = 31,019 KN · Strel BRAKETS + FLOOR BEAMS: 4 ASSUME EQUIVALENT TO THREE "SIZ3" - L= 8.5' = 259/mm - M= 23 165/Ft = 0.336 KN/m => 3×0.336×2.591 = 2.612 KN · STRINGERS 1×21WF62 + 1×8123 => 62+23 = 85/65/F = 1.242 kN/m 1.242 KN/MX 9.398m = 11.700 KN · BRACING L: 31/2×3×3/8, 5-Z= 1.575m, 4-91/2" = 1.4605 L= J15752+ 1,46052 = 2.48m × 6 LEGS = 12.887m 25kNDends 11.6 kg x 12.887 k x <u>9.81 m</u> = 1.4166 kN · RAILING: ASSUME 20165/FT = 0.3 KN/M => 2.8 KN => 49.597 -650 PROJECT BLB - ANALYSIS W.O. 3213009.304 MRC McCORMICK RANKIN DATE Feb 6/14 DESIGNED KY A member of MMM GROUP N DIXON _____ DATE _____//// PAGE ____ OF ____ CHECKED

TRAFFIC BARRIER SELF WEIGHT - DEAD LOAD -> 3x HSS 102×102×6.4 => 0.534 EN/m × 112.776m = 60.2 EN (RAILS) (PER SIDE) -> POSTSi W50X37 => 0.366 EN/mx1.05m = 0.3843 EN ea. 45 50 POSTS PER SIDE = 19.2 EN PER SIDE => 60.2+19.2 = 80KN PER SIDE => 80/112,776 = 0.709 kN/m LENGTH. PROJECT BLB - ANAVLSIS W.O. 3213009.304 MRC DATE FEB 6/14 McCORMICK RANKIN DESIGNED KY A member of MMM GROUP DATE Aprilly PAGE OF CHECKED

SUMMARY OF LACING WEIGHT INCREASE - DEAD LOAD -> TOWER! (">VERT 4 SWELE PANEL: " I" -> 43% POUBLE LATTICE 4> Two PANELS: "1-1" -> 33% Lo HOR+ DIAG. -S TRUSS! 45 SINGLE PANEL, DL: "I" > 15%, 20% [CROSS SWAY BRACING] LAS DOUBLE PANEL, DL: 1-1 -> 27% [BOTT STRUTS] 4> FOUR PANEL, SL+DL: 101 -> 58% [70P STRUTS] > 77×134= 1.0318E-04 -> TOWER: 34% [FEW VERTICALS RELATIVE TO DIAG + HOR] => TEUSS: CROSS + BOT STEUTS = 24% -> 9.548 E-05 TOP STEUTS = 58% -> 1 2166E-04 A INCREASE STEEL DENSITY FOR THESE MEMBERS. PROJECT BLB - ANALYSIS W.O. 3213009.304 MRC DESIGNED DR DATE FEB 11/14 McCORMICK RANKIN A member of MMM GROUP CHECKED KY DATEFEL 11/14 PAGE OF

DEAD COUNTERWEIGHT LOAD [LIFT SFAN FULLY CLOSED] -> WEIGHT OF SPAN CWT GWT 1935.17 short tons [Ross Eng, 2004] = 1755 556,693 kg = 17220.011 KN -> /MBALANICE 23600 [MEASURED IMBALANCE] + 4500 [SIDEWALK MOD] = 28 100165 [DELCAN, 2000 = 124.995 kN == 17220.011 - 124.995 = 17095.016 kN -> FORCE PER COUNTERWEIGHT: [TWO COUNTERWEIGHTS] 17 095.016 = 8547.508 N. PER COUNTERWEIGHT -> FORCE PER SHEAVE' (FOUR PER TOWER) 8547.508 = 2136.877 KN [DUE TO TENSION FROM CWT ONLY] -> FORCE PER SHEAVE GIRPER' (TWO PER SHEAVE) 2136.877 = 1068,439 EN [DUE TO TENSION FROM CWT ONLY] 1068.439x2= 2136.877 KN [DUE TO DOWNWARD FORCE FROM LIFT SPAN] 4 EQUAL TO FORCE OF COUNTERWEIGHT -> APPLY AT 2'-6" FROM & FRONT COLUMNS (0.762m) PROJECT BLB AWALYSIS _____ W.O. <u>3213009.304</u> MRC McCORMICK RANKIN DESIGNED KY DATE FEB 11/13 A member of MMM GROUP ____ DATE April/14 PAGE ____ OF ____ Alpha CHECKED

$$\rightarrow WIND LOAD (FULLY CLOSED) TRUSS
$$\frac{1}{hbblenvThL} Deha
Write Deha Deha
Write QCeCgCh $\rightarrow Assume NO SHIELDONG \Rightarrow Krelo
q = 460R [THELE A3.1.1]
Ca = HIQ WIND [THELE 3.8]
Cg = 20 [c] $10.3]
Ch = 2.0 [c] $10.2.27
=> FH = 2024LPR $\rightarrow APRY TO MANN TRUSS MEMBERS, NEWLERT
BRACKISS.
WIND ON LIVE LOAD - LENGTH X 30m HEIGHT [c] $10.2.7]
. VERTICAL DRAG
WRITE DRAG
WRITE AD RAG
FV = gCeCgCv , Cv = 1.0 [c] $3.10.2.3]
Fv = 1.012 LPR $\rightarrow APRY AS UDL OVER PLAN AREA OF
PECK
DISE $5% OF Deck Area (c) $13.7.35]
=> Fv = 0.8602 LPR$$$$$$$

\times	PROJECT	BLB ANALYSIS		W.O
	DESIGNED	KY	DATE <u>FEB 11/14</u>	
	CHECKED	& S. S. W.	DATE April /14	PAGE OF 2

HOPPROJITAL WWD LANDING - TEUSS [TEANISVEESE] FULLY CLOSED

$$\Rightarrow$$
 SUBERIE HEAD
to TEUSS HENDEOS
- VERTICALS: CHOOSE THLEST (UGILL)
 $1'-9' \times 55'-0''$
= 0.53374 y 16.764 = 8.942 m² × 13 cm = 116.245 m²
- DIACONALS: (USIL) - LOACEST
 $2'-06'' \times 03.0534''$
= 0.6223 m × 19.219m = 11.960 m² × 12 cm = 143.517 m²
LIN 200 mm²
- TEP (HOPP
 $2'-66'' \times 330'0''$
 $- TEP (HOPP
 $2'-66'' \times 12.776 = 87.368 m²$
 $- BeT (HOP)
[ASSUME 344E AS TOP] = $87.368 m²$
 $- 51500 HALL (LOAG, MORELE)
 $- 28'' \times 320'0''$
 $= 0.584' \times 112.776 = 65.884' m² → 11824 m/m
(Hop)
 $25.700 HAEZ$
 $2.600 \times 112.776 = 68.748 m²$
 $= 5.69.13m²$
 $15.776 = 52.1/M'
 $2.776 = 2.5884' m²$
 $= 0.584' \times 112.776 = 68.748 m²$
 $= 0.584' \times 112.776 = 68.$$$$$$

HORIZONTAL WIND LOADING - TOWERS [TRANSVERSE] -> APPLY AS UDL PER UNIT MEMBER LENGTH - MEMBER WIDTHS: FRONT COLIMN: 0.972M REAR COLUMNI ASSUME 0.972M [CONSERVATIVE] HORIEONTAL : 0,622m JACKING GIRDER: 1.8 m DIAGONAL: 0.622m SHEAVE GIRDER: 2.134m ELEVATOR SHAFT: 1.829m * MACHINE ROOM CLAPPING: 4.572m & NOTE: ELEVATOR SHAFT LINE LOAD TO BE SUPERIMPOSED ONTO REAR WEST COLUMNS ONLY. -> CALCULATE HORIZONTAL DRAG : FH= g CeCgCh , Ch= 2.0 [CI 310, 2.2] [013,10,1.2] 9 = 460 Pa Cq= 2.0 [CI 3.10.1.3] [C13.10.1.4] LEVELS PER ORIGINAL CONTRACT DWG 19 OF 62 Ce, top = 1.5 => FH, BOT = 2024 kPg LEVEL G-K FM, MD = 2.392 LPa LEVEL E-6 FALTOF: 2.760 LAR LEVEL A-E NOTE, FH > LOADS SPECIFIED IN [CL 13.7.3.10] W.O. 3213009.304 PROJECT BLB ANALYSIS MRG DATE _ Feb 12/14 **McCORMICK RANKIN** DESIGNED A member of ANN MMM GROUP DATE April 14 PAGE OF 3 CHECKED

-> UDL LOADS (BASED ON MEMBER WIDTH): [70% LOADS IN BEAKKETS] + up FRONT GL - BOT 0.972 × 2024 = 1.967 EN/m [1:377] [1.628] - MID 0.972 x 2.392 = 2.325 ENIM - TOP 0.972 x 2.760 = 2.683 kN/m [1.878] 42 REAR COL - BOT SAME AS FRONT TOP 45 HORIZONTALS - BOT = 1.259 Kryhm [0.881] MID - 1.488 LN/m [1.042] TOP = 1.717 KN/m [1.202] 1> JACKING GIRDFE - BOT = 3.643 Kar/m [2.550] [0.8817 DIAGONIAL - BOT 1.259 /N/m [1.042] M10 1.488 2N/m F1.2027 TOP 1.717 WAShin 47 EXT. SHEAVE GIRDER: TOP 5.890 Hu/m [4.123] 45 ELEVATOR SHAFT - BOT 1.829× 2024 = 3.702 KN/m ADD TO REAR WETT CU. Mio 1.829 × 2.392 = 4.375 KN/m TOP 1.829 × 2.760 = 5.048 KM/m) (6ft Wide = 1.829m) ONLY - [3.0637 * NOTE: THE ABOVE CONVERTS WIND PRESSURE [3,534] TO FORCE PER UNIT LENGTH OF A MEMBER. 70% LOADS ARE USED TO, APPLY A WIND AT AN OBLIQUE ANGLE (45°). $= 7 \cos 45 = 0.7$ W.O. 3213009,304 PROJECT BLB ANALYSIS MRC DATE FEBIZIS McCORMICK RANKIN DESIGNED A member of MMM GROUP DATE ADM/14 PAGE 2 OF 3-CHECKED

HARIZONTAL WIND LOADING - TOWER - LONGITUDINAL [70% IN BRACKETS] -> LINE LOAD DUE TO MEMBER WIDTH!. LA COLUMN: BOT 1:219 X 2.024 = 2.468 KN/M [1.727] MID 2.916 KN/M [2.04]] TOP 3.3656 N/M [2.355] 4> HORIZONTALS: BOT 0.622 × 2024 = 1.260 km/m [0.882] HID: 1.489 [1.642] TOP: 1.718 [1.202] SAME FOR DIAGONIALS 4> Fq:Fq': BOT 1.537×2024 = 3.110 [2.177] 4> TRANSVERSE SHEAVE GIRDER: TOP 4.585 X 2.760 = 12.654 / M/m [8.858] - ASSUME FRONT 47 ELEVATOR SHAFT: MID: 1067x 2.392 = 2.552 [1.786] TOP: 2.944 [2.061] 45 MACHINE ROOM CLAPONG -> APPLY AREA LOAD = 2.760 LPa [1.932] PROJECT BLB ANALYSIS W.O. 3213009.304 MRC DATE Feb 12/13 McCORMICK RANKIN DESIGNED _ A member of MMM GROUP DATE April/14 PAGE 3 OF 3 CHECKED

WIND LOAD ON TRAFFIC -> LENGTH OF SPAN: 370' = 112.776m -> Assume ONE LINE OF TRUCKS -> MEIGHT OF VEHICLE = 3.0m [CHBDC] => SURFACE AREA = 338.328 m²

-> WIND LOAD:

2.024 KPax 338.328m2 = 684.776 KN

-> APPLY AS POINT LOAD TO FLOOR BEAMS AT CONNECTION TO RAILWAY TRUSS

> - 13 FLOORBEAMS - 11 INTERIOR, 2 ENDS (EQUIVALENT TO 12) => 684.776/12 = 57.065 kN => 11 INT (57.065 kN => 2 END (28.532 kN

A member of MICK RANKIN

PROJECT <u>BLB - Analysis</u> DESIGNED CHECKED

w.o. 3213109.304

PAGE ____ OF ___

DATE Fib 13/14

DATE April M

				lce		
			Perimeter	Thickness	Ice Density	Force
Member	Height (m)	Width (m)	(m)	(m)	(kN/m ³)	(kN/m)
Stringers (O/S only)	0.612	0.229	0.841	0.031	9.8	0.2554958
Columns*	0.972	0.800	7.088	0.031	9.8	2.1533344
Bracing**	0.622	0.829	5.804	0.031	9.8	1.7632552
Sheave Girder (O./S)	2.134	0.432	2.566	0.031	9.8	0.77949
Stringers (O/S only)	0.612	0.229	0.841	0.031	9.8	0.2554958
Truss*	0.775	0.660	5.740	0.031	9.8	1.743812
Sway**	0.533	0.622	2.310	0.031	9.8	0.701778
Lateral**	0.775	0.356	4.524	0.031	9.8	1.3743912
Floor Beam	1.994	0.508	10.008	0.031	9.8	3.0404304
Stringer	0.612	0.229	3.364	0.031	9.8	1.0219832
Lifting Girder	4.299	0.914	20.852	0.031	9.8	6.3348376
Diaphragms	0.305	0.074	1.516	0.031	9.8	0.4605608
Railway Stringers	0.927	0.418	5.380	0.031	9.8	1.634444
	Member Stringers (O/S only) Columns* Bracing** Sheave Girder (O./S) Stringers (O/S only) Truss* Sway** Lateral** Floor Beam Stringer Lifting Girder Diaphragms Railway Stringers	MemberHeight (m)Stringers (O/S only)0.612Columns*0.972Bracing**0.622Sheave Girder (O./S)2.134Stringers (O/S only)0.612Truss*0.775Sway**0.533Lateral**0.775Floor Beam1.994Stringer0.612Lifting Girder4.299Diaphragms0.305Railway Stringers0.927	MemberHeight (m)Width (m)Stringers (O/S only)0.6120.229Columns*0.9720.800Bracing**0.6220.829Sheave Girder (O./S)2.1340.432Stringers (O/S only)0.6120.229Truss*0.7750.660Sway**0.5330.622Lateral**0.7750.356Floor Beam1.9940.508Stringer0.6120.229Lifting Girder4.2990.914Diaphragms0.3050.074Railway Stringers0.9270.418	Member Stringers (O/S only)Height (m) 0.612Width (m) 0.229Perimeter (m) 0.841Columns* Bracing**0.9720.8007.088Sheave Girder (O./S) Stringers (O/S only)0.6220.8295.804D.6220.8295.8042.566D.6120.2290.8410.4322.566Stringers (O/S only)0.6120.2290.841Truss*0.7750.6605.740Sway**0.5330.6222.310Lateral**0.7750.3564.524Floor Beam1.9940.50810.008Stringer0.6120.2293.364Lifting Girder4.2990.91420.852Diaphragms0.3050.0741.516Railway Stringers0.9270.4185.380	Nember Height (m) Width (m) (m) (m) Stringers (O/S only) 0.612 0.229 0.841 0.031 Columns* 0.972 0.800 7.088 0.031 Bracing** 0.622 0.829 5.804 0.031 Sheave Girder (O./S) 2.134 0.432 2.566 0.031 Stringers (O/S only) 0.612 0.229 0.841 0.031 Truss* 0.775 0.660 5.740 0.031 Sway** 0.533 0.622 2.310 0.031 Lateral** 0.775 0.356 4.524 0.031 Floor Beam 1.994 0.508 10.008 0.031 Stringer 0.612 0.229 3.644 0.031 Ifting Girder 4.299 0.914 20.852 0.031 Stringer 0.612 0.229 3.644 0.031 Ifting Girder 4.299 0.914 20.852 0.031 Diaphragms 0.305 0.	NemberHeight (m)Width (m)(m)(m)(ke DensityStringers (O/S only)0.6120.2290.8410.0319.8Columns*0.9720.8007.0880.0319.8Bracing**0.6220.8295.8040.0319.8Sheave Girder (0./S)2.1340.4322.5660.0319.8Stringers (O/S only)0.6120.2290.8410.0319.8Sheave Girder (0./S)2.1340.4322.5660.0319.8Stringers (0/S only)0.6120.2290.8410.0319.8Truss*0.7750.6605.7400.0319.8Sway**0.5330.6222.3100.0319.8Lateral**0.7750.3564.5240.0319.8Floor Beam1.9940.50810.0080.0319.8Stringer0.6120.2293.640.0319.8Lifting Girder4.2990.91420.8520.0319.8Diaphragms0.3050.0741.5160.0319.8Railway Stringers0.9270.4185.3800.0319.8

* Assumes inside of member has ice accretion due to holes

** Assume lattice members are solid; treat as box or "I" section

NOTES:	Approach/Tower/Lift Span Decks:	Assume 31mm radial ice accrection [Cl. 3.12.6.2]
		Assume lift span open steel grating deck is 100% solid

Machine House Cladding/Roof:	9.8 kN/m3	x 0.031m	= 0.3038 kPa
	Apply as area	a load	

Designed:	KY	Date:
Checked:	DDw	Date:

19-Feb-14

MMM Group Ltd.

19/02/2014

TEMPERATURE STRAWS [CLOSED] - LOAD CASE 1: BOTTOM CHORD D'C COLER THAN TOP CHORD -> LOAD CASE 2' RAIL TRUSS (LAKE SIDE) 10 " VISENSE THAN THEY TRUSS · ASSUME THE COOLER MEMBER IS AT AMBIENT TEMPERATURE, AND WARMER MEMOER MAS IOS THERMAL LOAD APPLIED. PROJECT BLB - ANALYSIS W.O. 32/3009.304 MRC ____ DATE FEB 20/14 McCORMICK RANKIN DESIGNED A member of ANN MMM GROUP DATE Aprilli CHECKED

WWO DRAG - TRUSS ELONGITUDIWALJ - FULLY RAISED (OPEN) NERTICAL -> MORROWTAL DRAG: 4> FH= glelgCh -> Assume NO SHIELDING => Kx=1.0 9=460 Pa [TABLE . A3.1.1.7 (e = 1.4 C 120'+ (2) [TABLE 3.8] Cy = 2.0 [C1 3.10.1.3] Ch = 2.0 [C1 3.10.2.2] => FH = 2576 Pa > 1500 Pa -> .. USE 2576 Pa [TRANSVERSE] 40 APRLY AS LINE LOAD WET MEMBER WIDTH 4 LONG = 50% TRANSVERSE -> VERTICAL DEAG 4 FV = g Ce Cg Cv = 460x 1.4x 2.0x1.0 = 1288 Pa > 0.25 LPa =: Use 1.288/Pa IN APPLY TO 85% OF DECK AREA OVE TO OPEN STEEL GRATING => 1.288 × 0.85 = 1.095 kla VEETICAL -> LINE LOADS DUE TO HORIZONTAL DRAG. (50% IN BRACKETS) - TOP/BOT (HORD = 1.996 KN/M - VERTRAL = 1.374 ENIM - DIAGONAL = 1.603 ENIM TRANSVERSE HORIZONTAL - 510EWALK = 1.504 LIMM - STRINGER = 1.571 KN/M - TOP STEVI = 1.602 (0.801) -> ASSUME 85% SOLID => 0.681 KN/M - VERTICAL = 1.602 (0.801) > LONGTUDINAL HORIZONTAL - DIAGONAL = 1.602 (0.801) - BOTTOM STENT = 1.602 (0,801) - CROSS Brains = 1.531 (0.265) # USE 50% - Int FLEBH = 5.137 (2.568) - LIFT GEDR = 11.074 (5.537). W.O. <u>3214009.304</u> PROJECT BLB - ANALYSIS MRR DESIGNED KY DATE MAR 3/14 McCORMICK RANKIN A member of 🔊 🔊 🗛 🕺 А мета в Калание Санание Сан _ DATE DAM/14 PAGE ____ OF ____ CHECKED

THERMAL (TEMPERATURE) STEAMS - FULLY PAISED -> ASSUME ALL SOUTH AND WEST FACES ARE 10 C WARMER. 4 APRLY TO COLUMNS AND BRACING ONLY [TOWERS ONLY] PROJECT <u>BLB AWALYSIS</u> W.O. <u>3213001.304</u> MRC DATE 1412 3/14 McCORMICK RANKIN DESIGNED KA A member of MMM GROUP DATE Amil 14 PAGE __ OF __ CHECKED

IMPACT LOAD AND DEAD LOAD OF LIFT SPAN

-> WEIGHT OF LIFT SPAN:

DEAD (PER LOAD (SHEAVE LOAD [12055 ENG, 2004] 14 (KN) 20% => KN Loc. TONS - 7 SE 484.54 4309.958 1077,490 215.498 4287,632 214.382 4/82.03 1071.908 SW 4325.969 NE 486.34 216.299 1081.492 214,484 NW 482.26 4289,678 1072.420 17213.238 1935.17

101PACT

* FOUR SHEAVE GIRDERS SHALL BE ASSUMED TO EQUALLY SHARE THE LOAD AT EACH CORNER.

-> WEIGHT OF COUNTERWEIGHT!

8547,5086N EACH [SEE FEB 11/13 CALC] FORCE PER SHEAVE GIRDER: 1068.439 KN [DUE TO TENSION FROM CWT ONLY] 4= /MPALI (20%) PER SHEAVE GIRDER' 213,688 KN

PROJECT BLB ANALYSIS	W.O. 3213209.304
DESIGNED KY DATE MAR 3/	<u>///</u> /////////////////////////////////
CHECKED DATE HOM	14 PAGE OF

Public Works and Government Services Canada Burlington Lift Bridge

	-	
Lift	Spa	an

	DL*	DL	DL	DL Per Shv Gdr	Impact			
	(ton)	(kg)	(kN)	(1/4)**	(20%)			
SE	484.540	439567.420	4309.959	1077.490	215.498			
SW	482.030	437290.386	4287.632	1071.908	214.382			
NE	486.340	441200.353	4325.969	1081.492	216.298			
NW	482.260	437499.038	4289.678	1072.420	214.484			
			17213.238	4303.310	860.662			
Counterweight								
DL per shv gdr	Impact (20%)	Notes:	DL per shv gdr	previously calculat	ted.			
1068.439	213.688		Accounts for a	n imbalance betwe	en lift span and counte			
		weights (slightly span-heavy).						
Total								

	DL per shv gdr	Impact (20%)		
SE	2145.929	429.186		
SW	2140.347	428.069		
NE	2149.931	429.986		
NW	2140.859	428.172		

NOTES:

* Source: Ross Engineering, *Weighing the Bridge*, May 2004 ** Four sheave girders support each corner of the lift span (two sheaves each supported by two girders).

Impact load is 20% the weight of all moving components (lift span + counterweights).

Desi	gned	:

Checked:

KY Date:

04-Mar-14

APPENDIX D.1 CALCULATION SUMMARIES (PER SECTION)

Burlington Lift Bridge Summary of Sections - LOWERED

					M _a , M _b , N	1 _c , M _{max} (k	N.m)			
Section	Max C _f (kN)	Min C _f (kN)	Sta. 0	Sta. 1/4	Sta. 1/2	Sta. 3.4	Sta. End	M _{Max} Abs	Max Mf (kN.m)	Max V _f (kN)
2L3.5X3.5X.375	127	-110	0	1	-1	1	0	1	-1	-1
2L3-1/2x3-1/2x3/8	65	-220	0	0	0	0	0	0	0	0
2L4X4X.375	26	-25	0	0	0	0	0	0	0	1
2L4x4x3/8	143	-304	0	0	1	0	0	1	1	1
2L5X3.5X.375	35	-82	-4	-3	-3	-3	-4	4	-4	-2
2L5X5X.5	7	0	0	4	6	4	0	6	6	-3
2L5x5x3/8	252	-253	0	1	1	1	0	1	1	1
2L6X6X.375	122	-118	-9	-8	8	5	0	9	-9	3
2L6x6x1/2	471	-111	0	12	18	12	0	18	18	5
C12X20.7	644	-137	0	0	0	0	0	0	0	1
C15X33.9	3	-4	0	0	0	0	0	0	0	1
C310X37	618	-89	0	0	0	0	0	0	0	1
C380X50	4	-3	0	0	0	0	0	0	0	1
L4X4X.375	0	0	0	0	0	0	0	0	0	0
L5X5X.375	26	-27	0	0	0	0	0	0	0	0
L5X5X.5	13	-13	0	0	0	0	0	0	0	1
LIFT-BLAT	948	-557	0	70	51	70	0	70	70	15
LIFT-FLRB-END	62	-35	-3493	513	1493	536	-3332	3493	-3493	210
LIFT-FLRB-INT	86	-570	0	4673	6007	4168	0	6007	6007	402
LIFT-HWYT-LOL2	4123	2569	0	85	70	82	0	85	85	-19
LIFT-HWYT-L0U1	-3832	-6920	0	337	417	337	0	417	417	88
LIFT-HWYT-L2L4	7953	5753	0	176	176	171	0	176	176	-19
LIFT-HWYT-L2U3	-2025	-3567	0	115	153	115	0	153	153	33
LIFT-HWYT-L4L6	9753	7255	0	209	242	203	0	242	242	-37
LIFT-HWYT-L4U5	-879	-1506	0	108	143	108	0	143	143	19
LIFT-HWYT-U0L0	-163	-376	0	0	0	0	0	0	0	0
LIFT-HWYT-U0U1	414	-22	0	65	85	65	0	85	85	36
LIFT-HWYT-U1L1	720	257	0	0	0	0	0	0	0	0
LIFT-HWYT-U1L2	4787	2733	0	131	175	131	0	175	175	40
LIFT-HWYT-U1U3	-2636	-6239	0	136	107	132	0	136	136	34
LIFT-HWYT-U2L2	-179	-302	0	0	0	0	0	0	0	0
LIFT-HWYT-U3L3	1058	368	0	0	0	0	0	0	0	15
LIFT-HWYT-U3L4	2667	1491	0	98	131	98	0	131	131	17
LIFT-HWYT-U3U5	-4085	-9214	0	300	373	293	0	373	373	74
LIFT-HWYT-U4L4	89	-195	0	0	0	0	0	0	0	0
LIFT-HWYT-U5L5	906	276	0	0	0	0	0	0	0	0
LIFT-HWYT-U5L6	654	287	0	99	132	99	0	132	132	-6
LIFT-HWYT-U5U6	-4752	-10068	0	312	384	303	0	384	384	-47
LIFT-HWYT-U6L6	-183	-229	0	0	0	0	0	0	0	0
LIFT-LFGR	13	-58	0	602	825	602	0	825	825	-135
LIFT-PORT-BSTR	72	-40	0	38	22	38	0	38	38	12
LIFT-PORT-LATD	66	-77	0	6	8	6	0	8	8	1
LIFT-PORT-LATL	66	-77	0	15	20	15	0	20	20	4
LIFT-PORT-LATT	82	-93	0	1	1	1	0	1	1	2
LIFT-PORT-SWBC	98	-180	0	17	34	17	0	34	34	7
LIFT-PORT-SWBV	45	25	0	3	4	3	0	4	4	3
LIFT-RLYT-LOL2	3980	1521	0	85	71	83	0	85	85	20
LIFT-RLYT-LOU1	-3794	-6741	0	337	417	337	0	417	417	384
LIFT-RLYT-L2L4	8049	3160	0	184	170	177	0	184	184	320
LIFT-RLYT-L2U3	-2043	-3601	0	130	174	130	0	174	174	326
LIFT-RLYT-L4L6	9113	3929	0	241	242	230	0	242	242	1025
LIFT-RLYT-L4U5	-840	-1567	0	118	157	118	0	157	157	257
LIFT-RLYT-UOLO	-282	-406	0	0	0	0	0	0	0	310
LIFT-RLYT-U0U1	1139	-449	0	65	85	65	0	85	85	25

Burlington Lift Bridge Summary of Sections - LOWERED

	M _a , M _b , M _c , M _{max} (kN.m)									
Section	Max C _f (kN)	Min C _f (kN)	Sta. 0	Sta. 1/4	Sta. 1/2	Sta. 3.4	Sta. End	M _{Max} Abs	Max Mf (kN.m)	Max V _f (kN)
LIFT-RLYT-U1L1	690	283	0	0	0	0	0	0	0	0
LIFT-RLYT-U1L2	4872	2935	0	128	170	128	0	170	170	299
LIFT-RLYT-U1U3	-4730	-6763	0	195	160	187	0	195	195	65
LIFT-RLYT-U2L2	-114	-308	0	0	0	0	0	0	0	0
LIFT-RLYT-U3L3	782	301	0	0	0	0	0	0	0	0
LIFT-RLYT-U3L4	2649	1577	0	109	145	109	0	145	145	299
LIFT-RLYT-U3U5	-6961	-10007	0	305	338	290	0	338	338	62
LIFT-RLYT-U4L4	-118	-315	0	0	0	0	0	0	0	0
LIFT-RLYT-U5L5	775	412	0	0	0	0	0	0	0	0
LIFT-RLYT-U5L6	644	392	0	99	132	99	0	132	132	287
LIFT-RLYT-U5U6	-7693	-10891	0	337	380	319	0	380	380	94
LIFT-RLYT-U6L6	-237	-340	0	0	0	0	0	0	0	0
LIFT-SWAY-BSTR	70	-36	0	9	-15	9	0	15	-15	6
LIFT-SWAY-SWBC	87	-105	0	0	0	0	0	0	0	0
LIFT-SWAY-SWBV	23	-46	0	0	0	0	0	0	0	0
LIFT-SWAY-TSTR	212	-278	-25	27	19	27	0	27	27	11
LIFT-TLAT	538	-536	0	40	44	40	0	44	44	16
TOWR-BBRC-MDIA	1225	-1660	0	43	57	43	0	57	57	19
TOWR-BBRC-RcRc	99	62	0	207	276	207	0	276	276	70
TOWR-BBRC-RdRd	16	-98	0	20	-32	20	0	32	-32	-7
TOWR-BBRC-ReRe	329	88	0	27	-22	27	0	27	27	14
TOWR-BBRC-RfRf	848	12	0	19	-38	19	0	38	-38	14
TOWR-BBRC-RgRg	226	46	0	312	452	312	0	452	452	62
TOWR-BBRC-UDIA	72	-423	0	43	57	43	0	57	57	19
TOWR-BLAT-FRTL	554	-582	29	28	23	14	0	29	29	-7
TOWR-BLAT-HWYL	509	9	0	36	14	-9	0	36	36	17
TOWR-BLAT-RLYL	26	-543	0	37	12	-7	0	37	37	17
TOWR-FBRC-CdCe	63	-140	0	-19	-25	-19	0	25	-25	11
TOWR-FBRC-FdFd	366	107	0	20	-37	20	0	37	-37	8
TOWR-FBRC-FeFe	810	673	0	44	25	44	0	44	44	21
TOWR-FBRC-FfFf	1366	-1140	0	18	-48	18	0	48	-48	15
TOWR-FBRC-FgFg	459	347	0	567	934	567	0	934	934	13
TOWR-FBRC-MDIA	1777	-3139	0	46	61	46	0	61	61	21
TOWR-FBRC-MdMe	69	-31	0	-19	-25	-19	0	25	-25	10
TOWR-FBRC-UDIA	166	-1384	0	43	57	43	0	57	57	19
TOWR-FCOL-BCOL	-10183	-19458	0	-1505	-652	437	351	1505	-1505	-13
TOWR-FCOL-MCOL	-10073	-16596	351	156	-149	153	-171	351	351	25
TOWR-FCOL-UCOL	-11	-14547	-623	-467	-311	-156	216	623	-623	136
TOWR-FLBM-FRNT	44	28	0	941	1273	940	0	1273	1273	-272
TOWR-FLBM-REAR	72	2	0	2909	3930	2912	0	3930	3930	891
TOWR-RCOL-BCOL	-288	-6602	0	-775	-360	245	236	775	-775	257
TOWR-RCOL-MCOL	-176	-3920	236	93	-87	-87	-108	236	236	20
TOWR-RCOL-UCOL	-10	-2578	-126	-120	-160	-137	182	182	182	51
TOWR-SBRC-DIAG	919	-1589	0	15	-35	15	0	35	-35	11
TOWR-SBRC-FgRg	485	276	0	47	62	47	0	62	62	14
TOWR-SBRC-FhRh	568	-72	0	164	218	164	0	218	218	90
TOWR-SBRC-HORZ	452	266	0	43	58	43	0	58	58	24
TOWR-SBRC-SbFc	82	-534	0	15	20	15	0	20	20	12
TOWR-SHVG-G1	37	-34	0	1775	1256	665	0	1775	1775	2750
TOWR-SHVG-G2G3	20	-30	0	1786	1270	674	0	1786	1786	2755
TOWR-SHVG-G4	82	-76	0	1894	1416	786	0	1894	1894	2812
TOWR-SHVG-G6	56	-235	0	-275	-618	-276	0	618	-618	146
TOWR-SHVG-G7	561	221	0	31159	33498	31160	0	33498	33498	10610
TOWR-SHVG-G8	50	-34	0	3660	4000	3654	0	4000	4000	-1274
W10X22	0	-47	0	11	21	30	37	37	37	11
W12X26	0	-136	76	79	80	77	72	80	80	-5

Burlington Lift Bridge Summary of Sections - LOWERED

Section	Max C _f (kN)	Min C _f (kN)	Sta. 0	Sta. 1/4	Sta. 1/2	Sta. 3.4	Sta. End	M _{Max} Abs	Max Mf (kN.m)	Max V _f (kN)
W12X35	-2	-136	72	59	47	65	-82	82	-82	13
W16X36	0	0	30	24	19	26	31	31	31	-7
W24X84	0	0	0	503	676	534	0	676	676	29
W27X102	4	-8	-197	125	142	124	-192	197	-197	100
W33X130	0	0	-197	239	294	240	-202	294	294	125
W36X230	1811	-68	0	68	71	67	0	71	71	23
W690X152 *	14	-2	-206	124	136	122	-201	206	-206	73
W840X193 *	0	0	-203	238	286	239	-208	286	286	-130

Burlington Lift Bridge

				Ν	Λ _a , M _b , M	I _c , M _{max} (I	kN.m)			
Section	Max C _f (kN)	Min C _f (kN)	Sta. 0	Sta. 1/4	Sta. 1/2	Sta. 3/4	Sta. End	M_{Max} Abs	Max Mf (kN.m)	Max V _f (kN)
2L3.5X3.5X.375	403	-387	0	-1	-1	-1	0	1	-1	-1
2L3-1/2x3-1/2x3/8	83	-80	0	0	0	0	0	0	0	0
2L4X4X.375	26	-31	0	0	0	0	0	0	0	-1
2L4x4x3/8	75	-138	0	0	1	0	0	1	1	-1
2L5X3.5X.375	104	-239	0	0	-1	0	0	1	-1	-1
2L5X5X.5	5	-5	0	4	6	4	0	6	6	-3
2L5x5x3/8	70	-70	0	1	1	1	0	1	1	-1
2L6X6X.375	300	-294	0	17	20	14	0	20	20	8
2L6x6x1/2	104	-99	0	13	19	13	0	19	19	-6
C12X20.7	13	-12	0	0	0	0	0	0	0	0
C15X33.9	4	-1	0	0	0	0	0	0	0	-1
C310X37	12	-11	0	0	0	0	0	0	0	0
C380X50	1	-5	0	0	0	0	0	0	0	-1
L4X4X.375	0	0	0	0	0	0	0	0	0	0
L5X5X.375	31	-26	0	0	0	0	0	0	0	0
L5X5X.5	9	-9	0	0	0	0	0	0	0	-1
LIFT-BLAT	857	-732	0	37	39	37	0	39	39	14
LIFT-FLRB-END	610	-12	0	402	533	400	0	533	533	-134
LIFT-FLRB-INT	177	-76	0	1047	1383	987	0	1383	1383	351
LIFT-HWYT-LOL2	-2128	-2574	0	-4	-116	-3	0	116	-116	-35
LIFT-HWYT-LOU1	-4591	-5719	0	313	446	362	0	446	446	-105
LIFT-HWYT-L2L4	1446	1092	0	77	-49	76	0	77	77	-46
LIFT-HWYT-L2U3	-2413	-2936	0	118	158	118	0	158	158	-34
LIFT-HWYT-L4L6	2952	2581	0	94	-12	94	0	94	94	-42
LIFT-HWYT-L4U5	-971	-1215	0	112	149	112	0	149	149	-31
LIFT-HWYT-U0L0	5158	4247	0	-20	-26	-20	0	26	-26	-8
LIFT-HWYT-U0U1	3680	2258	0	49	64	49	0	64	64	-27
LIFT-HWYT-U1L1	536	326	0	-36	-56	-47	0	56	-56	15
LIFT-HWYT-U1L2	3893	3203	0	134	178	134	0	178	178	-41
LIFT-HWYT-U1U3	-980	-1626	0	55	-76	55	0	76	-76	-46
LIFT-HWYT-U2L2	-115	-218	0	-47	-75	-60	0	75	-75	18
LIFT-HWYT-U3L3	550	332	0	-53	-86	-63	0	86	-86	18
LIFT-HWYT-U3L4	2067	1700	0	101	134	101	0	134	134	-29
LIFT-HWYT-U3U5	-2823	-3947	0	168	87	168	0	168	168	-62
LIFT-HWYT-U4L4	-112	-222	0	-55	-90	-64	0	90	-90	18
LIFT-HWYT-U5L5	534	314	0	-57	-94	-66	0	94	-94	18
LIFT-HWYT-U5L6	458	316	0	102	136	102	0	136	136	-28
LIFT-HWYT-U5U6	-3533	-4722	0	176	91	176	0	176	176	-65
LIFT-HWYT-U6L6	-115	-228	0	-57	-94	-66	0	94	-94	18
LIFT-LFGR	530	4	0	456	634	456	0	634	634	153
LIFT-PORT-BSTR	148	-17	0	36	27	36	0	36	36	-15
LIFT-PORT-LATD	91	-71	0	3	4	3	0	4	4	-2
LIFT-PORT-LATL	92	-99	0	8	11	8	0	11	11	-5
LIFT-PORT-LATT	113	-120	0	0	0	0	0	0	0	-1
LIFT-PORT-SWBC	118	-163	0	16	30	16	0	30	30	-7
LIFT-PORT-SWBV	36	25	0	2	3	2	0	3	3	-2
LIFT-RLYT-LOL2	-1137	-1962	0	6	-112	6	0	112	-112	-35
LIFT-RLYT-LOU1	-4677	-5755	0	313	446	362	0	446	446	-105
LIFT-RLYT-L2L4	1484	867	0	82	-66	82	0	82	82	-53
LIFT-RLYT-L2U3	-2521	-3032	0	136	181	136	0	181	181	-39
LIFT-RLYT-L4L6	2942	1992	0	115	-52	115	0	115	115	-61
LIFT-RLYT-L4U5	-1004	-1251	0	123	164	123	0	164	164	-34
LIFT-RLYT-UOLO	5153	4362	0	-20	-26	-20	0	26	-26	-8
LIFT-RLYT-U0U1	3747	3194	0	49	64	49	0	64	64	-27
LIFT-RLYT-U1L1	492	260	0	-36	-56	-47	0	56	-56	15
LIFT-RLYT-U1L2	3974	3375	0	130	173	130	0	173	173	-40

Burlington Lift Bridge

				Ν	Λ _a , M _b , M	I _c , M _{max} (ł	‹N.m)			
Section	Max C _f (kN)	Min C _f (kN)	Sta. 0	Sta. 1/4	Sta. 1/2	Sta. 3/4	Sta. End	M_{Max} Abs	Max Mf (kN.m)	Max V _f (kN)
LIFT-RLYT-U1U3	-1302	-1977	0	102	-57	102	0	102	102	-59
LIFT-RLYT-U2L2	-105	-261	0	-47	-75	-60	0	75	-75	18
LIFT-RLYT-U3L3	551	325	0	-53	-86	-63	0	86	-86	18
LIFT-RLYT-U3L4	2136	1791	0	112	149	112	0	149	149	-32
LIFT-RLYT-U3U5	-4159	-4449	0	183	70	183	0	183	183	-70
LIFT-RLYT-U4L4	-123	-263	0	-55	-90	-64	0	90	-90	18
LIFT-RLYT-U5L5	537	323	0	-57	-94	-66	0	94	-94	18
LIFT-RLYT-U5L6	472	332	0	102	136	102	0	136	136	-28
LIFT-RLYT-U5U6	-5130	-5222	0	201	83	201	0	201	201	-77
LIFT-RLYT-U6L6	-143	-269	0	-57	-94	-66	0	94	-94	18
LIFT-SWAY-BSTR	69	-22	0	5	-11	5	0	11	-11	-6
LIFT-SWAY-SWBC	82	-112	0	7	11	7	0	11	11	-3
LIFT-SWAY-SWBV	17	-20	0	2	3	2	0	3	3	-1
LIFT-SWAY-TSTR	302	-323	-34	9	-35	11	0	35	-35	-10
LIFT-TLAT	694	-688	0	28	33	28	0	33	33	11
TOWR-BBRC-MDIA	658	-1223	0	25	33	25	0	33	33	-11
TOWR-BBRC-RcRc	143	70	0	167	223	167	0	223	223	-56
TOWR-BBRC-RdRd	374	-272	0	12	-17	12	0	17	-17	-12
TOWR-BBRC-ReRe	490	72	0	20	-10	20	0	20	20	-11
TOWR-BBRC-RfRf	609	-509	0	12	-26	12	0	26	-26	-13
TOWR-BBRC-RgRg	329	11	0	367	587	367	0	587	587	-111
TOWR-BBRC-UDIA	452	-803	0	25	33	25	0	33	33	-11
TOWR-BLAT-FRTI	608	-535	32	23	25	15	0	32	32	-7
	18	-535	0	30	15	-10	0	30	30	, 18
	608	3	0	40	13	-7	0	35 40	40	19
	23	-190	0	-19	-25	, _19	0	25	-25	-11
	601	-190	0	-15	-25	11	0	23	-23	-11
	1031	-20	0	30	-25	30	0	20	-25	-14
	1608	-1330	0	10	_27	10	0	35	-37	-15
	594	-1330	0	10 646	-57	10 646	0	37 1112	-57	-17
TOWN-FONC-FERE	204 2271	375	0	2040	20	2040	0	20	20	-105
	2371	-4001	0	20	20 25	20	0	50 25	20 25	-15
	50	-74	0	-19	-25	-19	0	25	-25	-11
	4602	-2090	0	25 4522	22	1260	061	22	22	-11
	-4602	-32221	0	-4522	-1/28	1209	901	4522	-4522	-2914
	-6339	-24207	901	200	541	107	-408	901	901	-442
	-12	-18420	-/4/	-200	1002	-187	393	1602	-/4/	1472
	42	12	0	1187	1002	1189	0	1002	1602	305
	28	-50	0	2078	3027	2073	0	3027	3027	820
	9109	-18404	0	-23//	-900	291	024	2377	-2377	-1503
	4550	-11008	624	219	-80	-93	-111	624	624	-107
	-10	-5703	-131	-149	-235	-252	282	282	282	84
TOWR-SBRC-DIAG	3328	-3914	0	-17	-56	-17	0	56	-56	-14
TOWR-SBRC-FgRg	564	397	0	28	38	28	0	38	38	-16
TOWR-SBRC-FNRh	1259	-/1/	0	156	208	156	0	208	208	-85
TOWR-SBRC-HORZ	1065	125	0	25	33	25	0	33	33	-14
TOWR-SBRC-SbFc	492	-1190	0	9	12	9	0	12	12	-7
TOWR-SHVG-G1	121	-68	0	2241	1571	825	0	2241	2241	3492
TOWR-SHVG-G2G3	78	-181	0	2254	1590	838	0	2254	2254	3498
TOWR-SHVG-G4	280	-174	0	2369	1743	954	0	2369	2369	3560
TOWR-SHVG-G6	662	-1230	0	-462	-999	-463	0	999	-999	-235
TOWR-SHVG-G7	884	156	0	39356	42238	39285	0	42238	42238	14236
TOWR-SHVG-G8	113	-22	0	4422	4819	4413	0	4819	4819	1567
W10X22	35	-75	0	7	13	19	25	25	25	7
W12X26	35	-163	44	44	44	43	42	44	44	-6
W12X35	-1	-163	28	23	17	-27	-39	39	-39	-10
W16X36	0	0	30	25	22	30	37	37	37	8

Burlington Lift Bridge

				N	M _a , M _b , M	I _c , M _{max} (kN.m)			
Section	Max C _f (kN)	Min C _f (kN)	Sta. 0	Sta. 1/4	Sta. 1/2	Sta. 3/4	Sta. End	M _{Max} Abs	Max Mf (kN.m)	Max V _f (kN)
W24X84	308	-234	-45	23	23	20	-45	45	-45	-22
W27X102	27	-5	0	170	226	170	0	226	226	-92
W33X130	0	0	-21	290	386	290	-21	386	386	-124
W36X230	167	-130	0	65	70	64	0	70	70	33
W690X152 *	5	-18	0	174	232	174	0	232	232	-95
W840X193 *	0	0	-21	299	399	299	-21	399	399	-128

APPENDIX D.2 FLOOR BEAM AND STRINGER DEMAND CHECK

Burlington Lift Bridge Stringer Demand Check - LIFT SPAN

1.0 Check Live Load for wheels 1, 2, and 3 of CL-625-ONT

[All references herein to CAN/CSA-S6-06 except where specified]

1.2 Determine position of wheels causing maximum moment

Span Leng	th, L		=	9,398	mm		CG	CL					٨	lote: Not t	o scale.	
					2	5	1 ^{°°}	ļ	7	0	-	70				
				1,117	\downarrow	3,564	V 1	8	18	1,200	ע נ	3481		Check: I	L= 9,398	ОК
			А І <	<u> </u>	4,681	_	∍	ļ	I	_	4,681	. — В	·	Check:	ОК	
1 3 Determin		nort rea	ction	e.												
1.5 Determin	e sup	portrea	ction	13												
ΣM _A =0 -> F _B	= =	((25 82	x kN	1117)	+	(70	x	4717)	+	(70	x	5917))	/	9,398		
F _A	=	83	kN													
1.4 Determin	e max	cimum b	endi	ng mon	nent											
M _{Truck}	=	F _A	x	4,717	-	25	х	3,600								
	=	83	х	4,717	-	25	х	3,600								
	=	301	kN∙n	n												
Check:	M	Truck	=	FB	х	4,681	-	70	х	1,200						
			=	82 201	X	4,681	-	70	х	1,200		OK				
			=	301	KINTI	1						UK				
1.5 Apply Dyr	namic	Load A	llowa	nce (DL	A)											
DLA	=	0.3			٨	lote: Ass	sume	no multi-	lane	reductio	n					[CL 3.8.4.5.3]
M _{max}	= (2	L +DLA)	x	301												
max	=	1.3	х	301												
	=	391	kN∙n	n		@ d	=	4,717	=>	4,717	/	L	=	0.502 *	* Say midspan	(conservative)
			~													

2.0 Check other live load wheel configurations

Note: It has been determined that wheel combinations 1 & 2, 2 & 3, 2 & 3 & 4, 4 & 5 do not govern.

Burlington Lift Bridge Stringer Demand Check - LIFT SPAN

[Can/CSA S16-01 PP 6-44]

3.0 Check Lane Live Loading for Moment

M_{Lane}	=	w	х	L ²	/	8	
	=	9	х	88	/	8	
	=	99	kN∙m				
				~ ~		N 4	
M _{Max}	=	IVI _{Lane}	+	0.8	х	IVI Truck	
	=	99	+	0.8	х	301	
	=	340	kN∙m				Does Not Govern

4.0 Check Dead Load Maximum Moment

	Self-Weight	=	1.23	kΝ	/m					
	L	=	9.398	m						
	M _{max} sw	=	w	x	1 ²	1	8			
	11107, 370	_	1 23	v	88	'	8			
		=	13.58	kN	∙m	'	0			
	Grating	=	1.24	kN	/m		Assume 0	.96k	Pa x 1.2954r	n wide
	L	=	9.398	m						
	M _{max, Grate}	=	w	х	L ²	/	8			
		=	1.24	х	88	/	8			
		=	13.73	kN	∙m					
	M _{max, DL}	=	M _{max, SW}	+	M _{max, Grate}					
		=	13.58	+	13.73					
		=	27	kN	∙m					
5.0 Factore	ed Maximu	n N	loments		** Note: S	iee	also 9.0 fo	or M	a, Mb, Mc	
	ULS1	=	1.10	х	M _{max, DL}	+	1.70	x	M _{max, LL}	
		=	1.10	х	27	+	1.70	х	391	
		=	695	kN	·m					

FLS1	=	1.00	х	M _{max, DL}	+	1.00	х	M _{max, LL}
	=	1.00	х	27	+	1.00	х	391
	=	418	kN∙r	n				

6.0 Maximum Shear

6.1 Unfactored Support Reactions due to Dead Loads

$V_{self-weight}$	=	w	х	L	/	2		A	Assume s	imply supported
	=	1.23	х	9.398	/	2				
	=	6	kN							
$V_{grating}$	=	w	х	L	/	2				
	=	1.24	х	9.398	/	2				
	=	6	kN							
V _{Max, DL}	=	$R_{self-weight}$	+	$R_{grating}$			$V_{F,Max,DL}$	=	1.1	X V _{Max, DL}

	ЛN	IMG	iR	OUP	St	Burli tringer De	ngton Li mand Ch	ift B neck	ridge : - LIFT :	SPAN		MMM Project No. 32130
	= =	6 12	+ kN	6		-		=	1.1 13	x kN	12	
6.2 Unfactor	ed Su	pport R	eacti	ons due t	o Live	e Load (Trucł	<)					
6.2.1 Wheels	1, 2,	and 3										
25 ↓ 3600	7 ↓	0 1200)	70 ↓ 9 398		4,598		ł				Note: Not to scale.
ΣM _A =0 -> R _B	= =	((70 63	x kN	3600)	+	(70 x	4800))	/	9,398			
R _A	=	102	kN		Does	Not Govern						
6.2.2 Wheels	2, 3,	and 4										
70 ↓ 1200 A <	7 ↓	0 6600)	87.5 ↓ 9,398		1,598	> B	5				Note: Not to scale.
ΣM _A =0 -> R _B	= =	((70 82	x kN	1200)	+	(87.5 x	7800))	/	9,398			
R _A	=	146	kN		<-	- Governs						
6.2.3 Wheels	3 and	d 4										
70 ↓ 6600	8 ↓	7.5 2798	8			0						Note: Not to scale.
A <			9	9,398			> B	5				
ΣM _A =0 -> R _B	= =	((88 61	x kN	6600))	/	9,398						
R _A	=	96	kN		Does	Not Govern						
6.2.4 Wheels	4 and	d 5										Note: Not to scale.
87.5	6 1/	0 2798	2			0						
<u>v 0000</u> A <	¥	2190	,	9,398		0	> B	5				
ΣM _A =0 -> R _B	= =	((60 42	x kN	6600))	/	9,398		/	9,398			
R _A	=	105	kN		Does	Not Govern						
6.2.5 Wheels	2, 3,	and 4; R	ever	se Directi	on							Note: Not to scale.
87.5	.7	0		70								
√ 6600	\downarrow	1200)	<u> </u>		1,598						

		MN	IM C	GR(OUP	Si	l tringei	Burli r Dei	ngton L mand C	MMM Projec	MMM Project No. 3213009			
2	ΣM _A =0 -> R	R _B = =	((70 107	x kN	6600)	+	(70	x	7800))	/	9,398			
	R _A	=	120	kN		Does	s Not Go	overn						
6	.3 Apply D	LA												
	V _{Truck}	=	146	kN										
	DLA	=	0.3								Note: Assume no multi-lane re	eduction	[CL 3.8.4.5.3]	
	V	(1 ⊥⊓ ۱		V.									
	Max, Truc	.k – (1 2) ×	Truck									
		-	1.5 190	x kN-i	140 m	<-	- Gover	ns						
7.0 Check	Lane Live	Loadin = = =	w 9 42	ear x x kN	L 9	 	2 2							
	V _{Max, Lane}	= = =	V _{Lane} 42 159	+ + kN	0.8 0.8	x x	V _{Truck} 146	Doe	es Not Go	vern	Note: Assume no multi-lane re	eduction		
8.0 Factor	ed Maxim	um Sh	ear											
	ULS1	= = =	1.10 1.10 335	x x kN	V _{Max, DL} 12	+ +	1.70 1.70	x x	V _{max, LL} 190		Combined Load Factor:	1.67		
	FLS1	= =	1.00 1.00	x x	V _{Max, DL} 12	+ +	1.00 1.00	x x	V _{max, LL} 190					

9.0 Factored Maximum Shear

=

201 kN

MMM Project No. 3213009

1.0 One Truck 1,-,-,-

[All references herein to CAN/CSA-S6-06 except where specified]

1.1 Stringer Factored Loads Assume each floor beam supports twice the maximum stringer reaction Includes DLA + Multi-Lane Reduction Factor

Lanes	=	1	->	R_L	=	1.0									[CL 3.8.4.2]
						ULS								ULS	
S1	=	335	х	2	=	671	kN	S7	=	13	х	2	=	26	kN
S2	=	13	х	2	=	26	kN	S8	=	13	х	2	=	26	kN
S3	=	335	х	2	=	671	kN	S9	=	13	х	2	=	26	kN
S4	=	13	х	2	=	26	kN	S10	=	13	х	2	=	26	kN
S5	=	13	х	2	=	26	kN	S11	=	13	х	2	=	26	kN
S6	=	13	х	2	=	26	kN	S12	=	13	х	2	=	26	kN

1.2 Stringer Spacing

				<u>Cumulative</u>						<u>Cumulative</u>	
A - S1	=	1.0668	m	1.0668	m	S6 - S7	=	1.2954	m	8.8392	m
S1 - S2	=	1.2954	m	2.3622	m	S7 - S8	=	1.1176	m	9.9568	m
S2 - S3	=	1.2954	m	3.6576	m	S8 - S9	=	1.1303	m	11.0871	m
S3 - S4	=	1.2954	m	4.953	m	S9 - S10	=	1.1303	m	12.2174	m
S4 - S5	=	1.2954	m	6.2484	m	S10 - S11	=	1.1303	m	13.3477	m
S5 - S6	=	1.2954	m	7.5438	m	S11 - S12	=	1.1303	m	14.478	m
						S12 - B	=	1.0668	m	15.5448	m

1.3 Support Reactions

	<u>ULS</u>	
$\Sigma M_A = 0 \rightarrow F_B =$	354	kN

=> F_A = 1243 kN

1.4 Factored Shear (ULS1)

		ULS				ULS	
А	=	1243	kN	S7	=	-226	kN
S1	=	573	kN	S8	=	-251	kN
S2	=	547	kN	S9	=	-277	kN
S3	=	-123	kN	S10	=	-302	kN
S4	=	-149	kN	S11	=	-328	kN
S5	=	-175	kN	S12	=	-354	kN
S6	=	-200	kN	В	=	354	kN

Check:

1.5 Factored Moments (ULS1)

ОК

		ULS		_	x/L			ULS		_	x/L
А	=	0	kN∙m	@	0.00	S7	=	1939	kN∙m	@	0.57
S1	=	1326	kN∙m	@	0.07	S8	=	1687	kN∙m	@	0.64
S2	=	2068	kN∙m	@	0.15	S9	=	1403	kN∙m	@	0.71
S3	=	2777	kN∙m	@	0.24	S10	=	1148	kN∙m	@	0.79
S4	=	2617	kN∙m	@	0.32	S11	=	748	kN∙m	@	0.86
S5	=	2424	kN∙m	@	0.40	S12	=	435	kN∙m	@	0.93
S6	=	2198	kN∙m	@	0.49	В	=	0	kN∙m	@	1.00

1.6 Factored Demands:

ULS1:

 $M_f = 2777 \text{ kN} \cdot \text{m}$

 $V_{f} = 1243 \text{ kN}$

MMM Project No. 3213009

2.0 Two Trucks 1,2,-,-

[All references herein to CAN/CSA-S6-06 except where specified]

<u>Cumulative</u>

2.1 Stringer Factored Loads Assume each floor beam supports twice the maximum stringer reaction Includes DLA + Multi-Lane Reduction Factor

Lanes	=	2	->	R,	=	0.9									[CL 3.8.4.2]
						ULS								<u>ULS</u>	[
S1	=	303	х	2	=	606	kN	S7	=	13	х	2	=	26	kN
S2	=	13	х	2	=	26	kN	S8	=	13	х	2	=	26	kN
S3	=	303	х	2	=	606	kN	S9	=	13	х	2	=	26	kN
S4	=	303	х	2	=	606	kN	S10	=	13	х	2	=	26	kN
S5	=	13	х	2	=	26	kN	S11	=	13	х	2	=	26	kN
S6	=	303	х	2	=	606	kN	S12	=	13	х	2	=	26	kN

2.2 Stringer Spacing

<u>Cumulative</u>													
	A - S1	=	1.0668	m	1.0668	m							
	S1 - S2	=	1.2954	m	2.3622	m							
	S2 - S3	=	1.2954	m	3.6576	m							
	S3 - S4	=	1.2954	m	4.953	m							
	S4 - S5	=	1.2954	m	6.2484	m							
	S5 - S6	=	1.2954	m	7.5438	m							

2.3 Support Reactions

ΣM _A =0 -> F _B =	<u>ULS</u> 801	kN	kN
=> F _A =	1828	kN	kN

2.4 Factored Shear (ULS1)

		<u>ULS</u>				<u>ULS</u>	
А	=	1828	kN	S7	=	-673	kN
S1	=	1222	kN	S8	=	-698	kN
S2	=	1197	kN	S9	=	-724	kN
S3	=	591	kN	S10	=	-750	kN
S4	=	-16	kN	S11	=	-775	kN
S5	=	-41	kN	S12	=	-801	kN
S6	=	-647	kN	В	=	801	kN

Check: OK

2.5 Factored Moments (ULS1)

		<u>ULS</u>			x/L			<u>ULS</u>			x/L
А	=	0	kN∙m	@	0.00	S7	=	4937	kN∙m	@	0.57
S1	=	1951	kN∙m	@	0.07	S8	=	4185	kN∙m	@	0.64
S2	=	3534	kN∙m	@	0.15	S9	=	3396	kN∙m	@	0.71
S 3	=	5084	kN∙m	@	0.24	S10	=	2635	kN∙m	@	0.79
S4	=	5849	kN∙m	@	0.32	S11	=	1730	kN∙m	@	0.86
S5	=	5829	kN∙m	@	0.40	S12	=	912	kN∙m	@	0.93
S6	=	5776	kN∙m	@	0.49	В	=	0	kN∙m	@	1.00

2.6 Factored Demands:

= 5849 kN∙m

 M_{f}

V_f = 1828 kN

MMM Project No. 3213009

3.0 Three Trucks 1,2,3,-

[All references herein to CAN/CSA-S6-06 except where specified]

3.1 Stringer Factored Loads Assume each floor beam supports twice the maximum stringer reaction Includes DLA + Multi-Lane Reduction Factor

Lanes	=	3	->	R_L	=	0.8									[CL 3.8.4.2]
						<u>ULS</u>								ULS	
S1	=	271	х	2	=	542	kN	S7	=	271	х	2	=	542	kN
S2	=	13	х	2	=	26	kN	S8	=	13	х	2	=	26	kN
S 3	=	271	х	2	=	542	kN	S9	=	271	х	2	=	542	kN
S4	=	271	х	2	=	542	kN	S10	=	13	х	2	=	26	kN
S5	=	13	х	2	=	26	kN	S11	=	13	х	2	=	26	kN
S6	=	271	х	2	=	542	kN	S12	=	13	х	2	=	26	kN

3.2 Stringer Spacing

			<u>C</u>	umulative	e				<u>(</u>	Cumulative	2
A - S1	=	1.0668	m	1.0668	m	S6 - S7	=	1.2954	m	8.8392	m
S1 - S2	=	1.2954	m	2.3622	m	S7 - S8	=	1.1176	m	9.9568	m
S2 - S3	=	1.2954	m	3.6576	m	S8 - S9	=	1.1303	m	11.0871	m
S3 - S4	=	1.2954	m	4.953	m	S9 - S10	=	1.1303	m	12.2174	m
S4 - S5	=	1.2954	m	6.2484	m	S10 - S11	=	1.1303	m	13.3477	m
S5 - S6	=	1.2954	m	7.5438	m	S11 - S12	=	1.1303	m	14.478	m
						S12 - B	=	1.0668	m	15.5448	m

3.3 Support Reactions

<u>ULS</u> $\Sigma M_A = 0 \rightarrow F_B =$ 1391 kN

=> F_A = 2012 kN

3.4 Factored Shear (ULS1)

		<u>ULS</u>				<u>ULS</u>	
А	=	2012	kN	S7	=	-747	kN
S1	=	1471	kN	S8	=	-772	kN
S2	=	1445	kN	S9	=	-1314	kN
S 3	=	904	kN	S10	=	-1340	kN
S4	=	362	kN	S11	=	-1365	kN
S5	=	336	kN	S12	=	-1391	kN
S6	=	-205	kN	В	=	1391	kN

Check: ОК

3.5 Factored Moments (ULS1)

		ULS			x/L			<u>ULS</u>		_	x/L
А	=	0	kN∙m	@	0.00	S7	=	7734	kN∙m	@	0.57
S1	=	2147	kN∙m	@	0.07	S8	=	6899	kN∙m	@	0.64
S2	=	4052	kN∙m	@	0.15	S9	=	6026	kN∙m	@	0.71
S 3	=	5924	kN∙m	@	0.24	S10	=	5765	kN∙m	@	0.79
S4	=	7095	kN∙m	@	0.32	S11	=	3027	kN∙m	@	0.86
S5	=	7564	kN∙m	@	0.40	S12	=	1541	kN∙m	@	0.93
S6	=	7999	kN∙m	@	0.49	В	=	0	kN∙m	@	1.00

3.6 Factored Demands:

ULS1:

M_f = 7999 kN⋅m

V_f = 2012 kN

MMM Project No. 3213009

4.0 Four Trucks 1,2,3,4

[All references herein to CAN/CSA-S6-06 except where specified]

4.1 Stringer Factored Loads Assume each floor beam supports twice the maximum stringer reaction Includes DLA + Multi-Lane Reduction Factor

Lanes	=	4	->	R_L	=	0.7										[CL 3.8.4.2]
						ULS									<u>ULS</u>	
S1	=	239	х	2	=	477	kN	9	S7 =	=	239	х	2	=	477	kN
S2	=	13	х	2	=	26	kN	5	58 =	=	13	х	2	=	26	kN
S 3	=	239	х	2	=	477	kN	5	S9 =	=	239	х	2	=	477	kN
S4	=	239	х	2	=	477	kN	S	10 =	=	239	х	2	=	477	kN
S5	=	13	х	2	=	26	kN	S	11 =	=	13	х	2	=	26	kN
S6	=	239	х	2	=	477	kN	S	12 =	=	239	х	2	=	477	kN

4.2 Stringer Spacing

			<u>C</u>	umulative	2				<u>(</u>	<u>Cumulative</u>	2
A - S1	=	1.0668	m	1.0668	m	S6 - S7	=	1.2954	m	8.8392	m
S1 - S2	=	1.2954	m	2.3622	m	S7 - S8	=	1.1176	m	9.9568	m
S2 - S3	=	1.2954	m	3.6576	m	S8 - S9	=	1.1303	m	11.0871	m
S3 - S4	=	1.2954	m	4.953	m	S9 - S10	=	1.1303	m	12.2174	m
S4 - S5	=	1.2954	m	6.2484	m	S10 - S11	=	1.1303	m	13.3477	m
S5 - S6	=	1.2954	m	7.5438	m	S11 - S12	=	1.1303	m	14.478	m
						S12 - B	=	1.0668	m	15.5448	m

4.3 Support Reactions

	ULS	
$\Sigma M_A = 0 \rightarrow F_B =$	2012	kN

=> F_A = 1907 kN

4.4 Factored Shear (ULS1)

		ULS				<u>ULS</u>	
А	=	1907	kN	S7	=	-530	kN
S1	=	1430	kN	S8	=	-555	kN
S2	=	1404	kN	S9	=	-1032	kN
S3	=	927	kN	S10	=	-1509	kN
S4	=	450	kN	S11	=	-1535	kN
S5	=	425	kN	S12	=	-2012	kN
S6	=	-52	kN	В	=	2012	kN

Check: ОК

4.5 Factored Moments (ULS1)

		<u>ULS</u>			x/L			<u>ULS</u>		_	x/L
А	=	0	kN∙m	@	0.00	S7	=	7973	kN∙m	@	0.57
S1	=	2035	kN∙m	@	0.07	S8	=	7381	kN∙m	@	0.64
S2	=	3887	kN∙m	@	0.15	S9	=	6754	kN∙m	@	0.71
S 3	=	5706	kN∙m	@	0.24	S10) =	6666	kN∙m	@	0.79
S4	=	6908	kN∙m	@	0.32	S11	=	3881	kN∙m	@	0.86
S5	=	7491	kN∙m	@	0.40	S12	2 =	2204	kN∙m	@	0.93
S6	=	8041	kN∙m	@	0.49	В	=	0	kN∙m	@	1.00

4.6 Factored Demands:

ULS1:

 M_f = 8041 kN·m

V_f = -2012 kN

MMM Project No. 3213009

1.0 One Truck 1,-,-,-

[All references herein to CAN/CSA-S6-06 except where specified]

1.1 Stringer Factored Loads Includes DLA + Multi-Lane Reduction Factor

Lanes	=	1	->	R_{L}	=	1.0									[CL 3.8.4.2]
						ULS								<u>ULS</u>	
S1	=	335	х	1	=	335	kN	S7	=	13	х	1	=	13	kN
S2	=	13	х	1	=	13	kN	S8	=	13	х	1	=	13	kN
S3	=	335	х	1	=	335	kN	S9	=	13	х	1	=	13	kN
S4	=	13	х	1	=	13	kN	S10	=	13	х	1	=	13	kN
S5	=	13	х	1	=	13	kN	S11	=	13	х	1	=	13	kN
S6	=	13	х	1	=	13	kN	S12	=	13	х	1	=	13	kN

1.2 Stringer Spacing

				<u>Cumulative</u>						<u>Cumulative</u>	
A - S1	=	1.0668	m	1.0668	m	S6 - S7	=	1.2954	m	8.8392	m
S1 - S2	=	1.2954	m	2.3622	m	S7 - S8	=	1.1176	m	9.9568	m
S2 - S3	=	1.2954	m	3.6576	m	S8 - S9	=	1.1303	m	11.0871	m
S3 - S4	=	1.2954	m	4.953	m	S9 - S10	=	1.1303	m	12.2174	m
S4 - S5	=	1.2954	m	6.2484	m	S10 - S11	=	1.1303	m	13.3477	m
S5 - S6	=	1.2954	m	7.5438	m	S11 - S12	=	1.1303	m	14.478	m
						S12 - B	=	1.0668	m	15.5448	m

1.3 Support Reactions

	ULS	
$\Sigma M_A = 0 \rightarrow F_B =$	177	kN

=> F_A = 622 kN

1.4 Factored Shear (ULS1)

		ULS				ULS	
Α	=	622	kN	S7	=	-113	kN
S1	=	286	kN	S8	=	-126	kN
S2	=	274	kN	S9	=	-138	kN
S 3	=	-62	kN	S10	=	-151	kN
S4	=	-74	kN	S11	=	-164	kN
S5	=	-87	kN	S12	=	-177	kN
S6	=	-100	kN	В	=	177	kN

ОК Check:

1.5 Factored Moments (ULS1)

		ULS		_	x/L			ULS		_	x/L
А	=	0	kN∙m	@	0.00	S7	=	969	kN∙m	@	0.57
S1	=	663	kN∙m	@	0.07	S8	=	843	kN∙m	@	0.64
S2	=	1034	kN∙m	@	0.15	S9	=	701	kN∙m	@	0.71
S3	=	1389	kN∙m	@	0.24	S10	=	574	kN∙m	@	0.79
S4	=	1309	kN∙m	@	0.32	S11	=	374	kN∙m	@	0.86
S5	=	1212	kN∙m	@	0.40	S12	=	217	kN∙m	@	0.93
S6	=	1099	kN∙m	@	0.49	В	=	0	kN∙m	@	1.00

kN

1.6 Factored Demands:

ULS1: V_f = 622 $M_f = 1389 \text{ kN} \cdot \text{m}$

MMM Project No. 3213009

2.0 Two Trucks 1,2,-,-

[All references herein to CAN/CSA-S6-06 except where specified]

<u>Cumulative</u>

S6-S7 = 1.2954 m 8.8392 m S7-S8 = 1.1176 m 9.9568 m S8-S9 = 1.1303 m 11.0871 m S9-S10 = 1.1303 m 12.2174 m S10-S11 = 1.1303 m 13.3477 m S11-S12 = 1.1303 m 14.478 m S12 - B = 1.0668 m 15.5448 m

2.1 Stringer Factored Loads Includes DLA + Multi-Lane Reduction Factor

Lanes	=	2	->	R_L	=	0.9									[CL 3.	8.4.2]
						<u>ULS</u>								<u>ULS</u>		
S1	=	303	х	1	=	303	kN	S7	=	13	х	1	=	13	kN	
S2	=	13	х	1	=	13	kN	S8	=	13	х	1	=	13	kN	
S3	=	303	х	1	=	303	kN	S9	=	13	х	1	=	13	kN	
S4	=	303	х	1	=	303	kN	S10	=	13	х	1	=	13	kN	
S5	=	13	х	1	=	13	kN	S11	=	13	х	1	=	13	kN	
S6	=	303	х	1	=	303	kN	S12	=	13	х	1	=	13	kN	

2.2 Stringer Spacing

2.3 Support Reactions

ΣM _A =0 -> F _B =	<u>ULS</u> 400	kN	kN
=> F _A =	914	kN	kN

2.4 Factored Shear (ULS1)

		<u>ULS</u>				<u>ULS</u>	
А	=	914	kN	S7	=	-336	kN
S1	=	611	kN	S8	=	-349	kN
S2	=	598	kN	S9	=	-362	kN
S3	=	295	kN	S10	=	-375	kN
S4	=	-8	kN	S11	=	-388	kN
S5	=	-21	kN	S12	=	-400	kN
S6	=	-324	kN	В	=	400	kN

Check: ОК

2.5 Factored Moments (ULS1)

		<u>ULS</u>			x/L			<u>ULS</u>		_	x/L
А	=	0	kN∙m	@	0.00	S7	=	2469	kN∙m	@	0.57
S1	=	975	kN∙m	@	0.07	S8	=	2093	kN∙m	@	0.64
S2	=	1767	kN∙m	@	0.15	S9	=	1698	kN∙m	@	0.71
S 3	=	2542	kN∙m	@	0.24	S10	=	1318	kN∙m	@	0.79
S4	=	2925	kN∙m	@	0.32	S11	=	865	kN∙m	@	0.86
S5	=	2914	kN∙m	@	0.40	S12	=	456	kN∙m	@	0.93
S6	=	2888	kN∙m	@	0.49	В	=	0	kN∙m	@	1.00

2.6 Factored Demands:

ULS1:

 $M_f = 2925 \text{ kN} \cdot \text{m}$

V_f = 914 kN

MMM Project No. 3213009

3.0 Three Trucks 1,2,3,-

[All references herein to CAN/CSA-S6-06 except where specified]

3.1 Stringer Factored Loads Includes DLA + Multi-Lane Reduction Factor

Lanes	=	3	->	R_{L}	=	0.8									[CL 3.8.4.2]
						<u>ULS</u>								ULS	
S1	=	271	х	1	=	271	kN	S7	=	271	х	1	=	271	kN
S2	=	13	х	1	=	13	kN	S8	=	13	х	1	=	13	kN
S 3	=	271	х	1	=	271	kN	S9	=	271	х	1	=	271	kN
S4	=	271	х	1	=	271	kN	S10) =	13	х	1	=	13	kN
S5	=	13	х	1	=	13	kN	S1:	=	13	х	1	=	13	kN
S6	=	271	х	1	=	271	kN	S12	2 =	13	х	1	=	13	kN

3.2 Stringer Spacing

			<u>C</u>	`umulativ	<u>e</u>				<u>(</u>	Cumulative	?
A - S1	=	1.0668	m	1.0668	m	S6 - S7	=	1.2954	m	8.8392	m
S1 - S2	=	1.2954	m	2.3622	m	S7 - S8	=	1.1176	m	9.9568	m
S2 - S3	=	1.2954	m	3.6576	m	S8 - S9	=	1.1303	m	11.0871	m
S3 - S4	=	1.2954	m	4.953	m	S9 - S10	=	1.1303	m	12.2174	m
S4 - S5	=	1.2954	m	6.2484	m	S10 - S11	=	1.1303	m	13.3477	m
S5 - S6	=	1.2954	m	7.5438	m	S11 - S12	=	1.1303	m	14.478	m
						S12 - B	=	1.0668	m	15.5448	m

3.3 Support Reactions

	ULS	
$\Sigma M_A = 0 \rightarrow F_B =$	695	kN

=> F_A = 1006 kN

3.4 Factored Shear (ULS1)

		ULS				<u>ULS</u>	
А	=	1006	kN	S7	=	-373	kN
S1	=	735	kN	S8	=	-386	kN
S2	=	723	kN	S9	=	-657	kN
S3	=	452	kN	S10	=	-670	kN
S4	=	181	kN	S11	=	-683	kN
S5	=	168	kN	S12	=	-695	kN
S6	=	-103	kN	В	=	695	kN

Check: ОК

3.5 Factored Moments (ULS1)

		<u>ULS</u>			x/L			<u>ULS</u>		_	x/L
А	=	0	kN∙m	@	0.00	S7	=	3867	kN∙m	@	0.57
S1	=	1073	kN∙m	@	0.07	S8	=	3450	kN∙m	@	0.64
S2	=	2026	kN∙m	@	0.15	S9	=	3013	kN∙m	@	0.71
S 3	=	2962	kN∙m	@	0.24	S10	=	2883	kN∙m	@	0.79
S4	=	3547	kN∙m	@	0.32	S11	=	1513	kN∙m	@	0.86
S5	=	3782	kN∙m	@	0.40	S12	=	771	kN∙m	@	0.93
S6	=	4000	kN∙m	@	0.49	В	=	0	kN∙m	@	1.00

3.6 Factored Demands:

ULS1:

 $M_f = 4000 \text{ kN} \cdot \text{m}$

V_f = 1006 kN

MMM Project No. 3213009

4.0 Four Trucks 1,2,3,4

[All references herein to CAN/CSA-S6-06 except where specified]

4.1 Stringer Factored Loads Includes DLA + Multi-Lane Reduction Factor

Lanes	=	4	->	R_L	=	0.7									[CL 3.8.4.2]
						<u>ULS</u>								ULS	
S1	=	239	х	1	=	239	kN	S7	=	239	х	1	=	239	kN
S2	=	13	х	1	=	13	kN	S8	=	13	х	1	=	13	kN
S3	=	239	х	1	=	239	kN	S9	=	239	х	1	=	239	kN
S4	=	239	х	1	=	239	kN	S10	=	239	х	1	=	239	kN
S5	=	13	х	1	=	13	kN	S11	=	13	х	1	=	13	kN
S6	=	239	х	1	=	239	kN	S12	=	239	х	1	=	239	kN

4.2 Stringer Spacing

			<u>C</u>	umulative	2				<u>(</u>	<u>Cumulative</u>	
A - S1	=	1.0668	m	1.0668	m	S6 - S7	=	1.2954	m	8.8392	m
S1 - S2	=	1.2954	m	2.3622	m	S7 - S8	=	1.1176	m	9.9568	m
S2 - S3	=	1.2954	m	3.6576	m	S8 - S9	=	1.1303	m	11.0871	m
S3 - S4	=	1.2954	m	4.953	m	S9 - S10	=	1.1303	m	12.2174	m
S4 - S5	=	1.2954	m	6.2484	m	S10 - S11	=	1.1303	m	13.3477	m
S5 - S6	=	1.2954	m	7.5438	m	S11 - S12	=	1.1303	m	14.478	m
						S12 - B	=	1.0668	m	15.5448	m

4.3 Support Reactions

	ULS	
$\Sigma M_A = 0 \rightarrow F_B =$	1006	kN

=> F_A = 954 kN

4.4 Factored Shear (ULS1)

		ULS				<u>ULS</u>	
А	=	954	kN	S7	=	-265	kN
S1	=	715	kN	S8	=	-278	kN
S2	=	702	kN	S9	=	-516	kN
S 3	=	464	kN	S10	=	-755	kN
S4	=	225	kN	S11	=	-767	kN
S5	=	212	kN	S12	=	-1006	kN
S6	=	-26	kN	В	=	1006	kN

Check: ОК

4.5 Factored Moments (ULS1)

		ULS		_	x/L			<u>ULS</u>		_	x/L
А	=	0	kN∙m	@	0.00	S7	=	3987	kN∙m	@	0.57
S1	=	1017	kN∙m	@	0.07	S8	=	3691	kN∙m	@	0.64
S2	=	1944	kN∙m	@	0.15	S9	=	3377	kN∙m	@	0.71
S3	=	2853	kN∙m	@	0.24	S10	=	3333	kN∙m	@	0.79
S4	=	3454	kN∙m	@	0.32	S11	=	1941	kN∙m	@	0.86
S5	=	3745	kN∙m	@	0.40	S12	=	1102	kN∙m	@	0.93
S6	=	4021	kN∙m	@	0.49	В	=	0	kN∙m	@	1.00

4.6 Factored Demands:

ULS1:

 M_f = 4021 kN·m

V_f = -1006 kN

MMM Project No. 3213009

1.0 One Truck

[All references herein to CAN/CSA-S6-06 except where specified]

1.1 Stringer Factored Loads Assume each floor beam supports 1.25x maximum stringer reaction (account for other axles) Includes DLA + Multi-Lane Reduction Factor Assume lane is down centre of structure (wheel path = S5, S7)

								-	•								
L	anes	=	1	->	RL	=	1.0										[CL 3.8.4.2]
							<u>FLS</u>									<u>FLS</u>	
	S1	=	13	х	1.25	=	16	kN		S7	=	201	х	1.25	=	252	kN
	S2	=	13	х	1.25	=	16	kN		S8	=	13	х	1.25	=	16	kN
	S3	=	13	х	1.25	=	16	kN		S9	=	13	х	1.25	=	16	kN
	S4	=	13	х	1.25	=	16	kN		S10	=	13	х	1.25	=	16	kN
	S5	=	201	х	1.25	=	252	kN		S11	=	13	х	1.25	=	16	kN
	S6	=	13	х	1.25	=	16	kN		S12	=	13	х	1.25	=	16	kN

1.2 Stringer Spacing

				<u>Cumulative</u>						<u>Cumulative</u>	
A - S1	=	1.0668	m	1.0668	m	S6 - S7	=	1.2954	m	8.8392	m
S1 - S2	=	1.2954	m	2.3622	m	S7 - S8	=	1.1176	m	9.9568	m
S2 - S3	=	1.2954	m	3.6576	m	S8 - S9	=	1.1303	m	11.0871	m
S3 - S4	=	1.2954	m	4.953	m	S9 - S10	=	1.1303	m	12.2174	m
S4 - S5	=	1.2954	m	6.2484	m	S10 - S12	L =	1.1303	m	13.3477	m
S5 - S6	=	1.2954	m	7.5438	m	S11 - S12	2 =	1.1303	m	14.478	m
						S12 - B	=	1.0668	m	15.5448	m

1.3 Support Reactions

	<u>FLS</u>	
$\Sigma M_A = 0 \rightarrow F_B =$	327	kN

=> F_A = 336 kN

1.4 Factored Shear (ULS1)

	<u>FLS</u>				<u>FLS</u>	
=	336	kN	S7	=	-247	kN
=	320	kN	S8	=	-263	kN
=	304	kN	S9	=	-279	kN
=	288	kN	S10	=	-295	kN
=	272	kN	S11	=	-311	kN
=	20	kN	S12	=	-327	kN
=	4	kN	В	=	327	kN
	= = = = =	$\begin{array}{r} FLS \\ = & 336 \\ = & 320 \\ = & 304 \\ = & 288 \\ = & 272 \\ = & 20 \\ = & 4 \end{array}$	FLS = 336 kN = 320 kN = 304 kN = 288 kN = 272 kN = 20 kN = 4 kN	FLS S7 = 336 kN S7 = 320 kN S8 = 304 kN S9 = 288 kN S10 = 272 kN S11 = 20 kN S12 = 4 kN B	FLS= 336 kNS7== 320 kNS8== 304 kNS9== 288 kNS10== 272 kNS11== 20 kNS12== 4 kNB=	FLSFLS= 336 kNS7=-247= 320 kNS8=-263= 304 kNS9=-279= 288 kNS10=-295= 272 kNS11=-311= 20 kNS12=-327=4kNB=327

Check:

1.5 Factored Moments (ULS1)

ОК

		FLS		_	x/L			<u>FLS</u>		_	x/L
Α	=	0	kN∙m	@	0.00	S7	=	1924	kN∙m	@	0.57
S1	=	358	kN∙m	@	0.07	S8	=	1648	kN∙m	@	0.64
S2	=	773	kN∙m	@	0.15	S9	=	1350	kN∙m	@	0.71
S 3	=	1167	kN∙m	@	0.24	S10) =	1071	kN∙m	@	0.79
S4	=	1540	kN∙m	@	0.32	S11	1 =	701	kN∙m	@	0.86
S5	=	1892	kN∙m	@	0.40	S12	2 =	385	kN∙m	@	0.93
S6	=	1919	kN∙m	@	0.49	В	=	0	kN∙m	@	1.00
	· -										

FLS1:	Mf	=	1924	kN∙m	Vf	=	336	kN
					- 1			

DEAD LOAD: UN-FACTORED & FACTORED 1.49 Km/m.x1.10 1.64 Km/m STRINGERS 0.22 km/m. x1.10 0.24 Kalm MIGC. STEEL - 15% DECK CONC. (71/2") 9.40 KN/M. X1.20 11.28km/m ASPHALT (2'12") 3.07 KN/M×1,50 4.61 KN/m 17.77 Kulm DEAD LOAD PER STRINGER TO REAR FLOOR BEAM: 17.77 Kal x (1) (12.598m + 9.690m) DEAD LOAD = 198,0 KN FACTORED ULS #1 TOTAL FACTORED LOAD PER STRINGER TO REAR FLOOR BEAM : 198.0 KM PEAD + 346.1 KN LIVE 544.1 KN 415#1 BLB - TOWER SPAN W.O. NO. 3213009 PROJECT **McCORMICK** MRC M. BOWSER DATE MARCH 31,2014 DESIGNED RANKIN _____ DATE ______ PAGE ____ OF ____ CORPORATION CHECKED

Mu	LTT - LANE	LOAD R	EDUCTIO	A FACTO	R5	
LOADE	D MODIFI S FACTOR (CL. 3.8.	LATTON LI 4.2)	FLOOR VELOAD ULS#1	BEAM FEDUCED LIVE LOAD	DEAD LOAD ULS#1	TOTAL ULS#1
1	1.0	× 1	346KN E	346 KN	+ 198 KN =	544 Km
2	0.9	× Z	46 KN =	311 KM	+ 198Km =	509 km
3	0.8	× 3	346km z	277Km -	+ 198KN =	475 KN
4	0.7	× 3	546Km =	= 242KN	+ 198KN =	440 km
		FRONT	FLOOR	BEAM		
1	1.0	x 204	5 KN =	ZOSKN	+ 86 KM =	291 KN
2	0.9 >	x 205	ikas 2	185 KN	+ 86KN =	271 KN
3	0.8 x	205	ika =	164 KN	+ 86KN =	250KN
4	0.7 x	c 205	KN =	144 KM	+ 86 km	230 KN
ARC	McCORMI	CK PROJECT	BLB-	TOWER SP	4N W.O. N	0. 3213000
	RANKIN CORPORATIO	DESIGNE	D M. Bov	DATE	204 51, 2014 PAGE	= 3 OF 3

1.0 Check Live Load for wheels 1, 2, and 3 of CL-625-ONT

[All references herein to CAN/CSA-S6-06 except where specified]

Check:	M _{Truck}	=	FB	х	6,281	-	70	x	1,200	
		=	82	х	6,281	-	70	х	1,200	
		=	433	kN∙	m					ОК

1.5 Apply Dynamic Load Allowance (DLA)

DLA	= 0.3			Note: Assume no multi-lane reduction							[CL 3.8.4.5.3]			
M _{max}	=	(1 +DLA) x	433										
	=	1.3	х	433										
	=	562	kN∙m		@ d	=	6,317	=>	6,317	/	L	=	0.501	* Say midspan (conservative)

Burlington Lift Bridge MMMGROUP Approach Stringer Demands - ULS - Tower Span **Burlington Lift Bridge** MMM Project No. 3213009

2.0 Check other live load wheel configurations

Note: It has been determined that wheel combinations 1 & 2, 2 & 3, 2 & 3 & 4, 4 & 5 do not govern.

3.0 Check Lane Live Loading for Moment

M_{Lane}	=	w	х	L ²	/	8	[Can/CSA S16-01 PP 6-44]
	=	9	х	159	/	8		
	=	179	kN∙r	n				
M _{Max}	=	M _{Lane}	+	0.8	x	M _{Truck}		
	=	179	+	0.8	х	433		
	=	525	kN∙r	n			Does Not Govern	

4.0 Check Dead Load Maximum Moment

Self-Weight	=	1.88	kN/n	n									
L	=	12.598	m										
M _{max, SW}	=	w	x	L ²	/	8	M _{max, deck}	=	w	х	L ²	/	8
	=	1.88	х	159	/	8		=	15.89	х	159	/	8
	=	37.30	kN∙n	า				=	315.24	kN	·m		
Deck	=	15.89	kN/n	n	A	Assume 0.96kPa x 1.2954m wide	M _{max, DL}	=	M _{max, SW}	+	M _{max, Grate}		
L	=	12.598	m					=	37.30	+	315.24		
								=	353	kN	·m		

5.0 Factored Maximum Moments

ULS1	=	1.10	х	$M_{max, DL}$	+	1.70	х	M _{max, LL}
	=	1.10	х	353	+	1.70	х	562
	=	1344	kN∙	m				
FLS1	=	1.00	х	$M_{max, DL}$	+	1.00	х	M _{max, LL}
	=	1.00	х	353	+	1.00	х	562
	=	915	kN∙	m				

6.0 Maximum Shear

6.1 Unfactored Support Reactions due to Dead Loads

$V_{self-weight}$	=	w	х	L	/	2		4	Assume s	simply supported
	=	1.88	х	12.598	/	2				
	=	12	kN							
V _{deck}	=	w	х	L	/	2				
	=	15.89	х	12.598	/	2				
	=	100	kN							
V _{Max, DL}	=	R _{self-weight}	+	R _{decking}			V _{F,Max, DL}	=	1.1	x V _{Max, DL}
	=	12	+	100				=	1.1	x 112
	=	112	kN					=	123	kN

Burlington Lift Bridge MMMGROUP Approach Stringer Demands - ULS - Tower Span MMM Project No. 3213009

6.2 Unfactored Support Reactions due to Live Load (Truck)

6.2.1 Wheels 1, 2, and 3

R _A	=	147	kN		Does	s Not Gove	ern				
ΣM _A =0 -> R ₁	s = =	((70 80	x kN	6600)	+	(70	х	7800))	/	12,598	
<u>v 0000</u> A <	¥_	120	-	<u>*</u> 12,598		+,7 <i>5</i> 0		> B			
87.5 V 6600	7 \	0 120i	C	70 √/		4.798					
6.2.5 Wheel	52,3,	and 4; F	Rever	se Directi	ion						Note: Not to
R _A	=	116	kN		Does	s Not Gove	ern				
ΣM _A =0 -> R ₁	s = =	((60 31	x kN	6600))	/	12,598			/	12,598	
A <				12,598				> B			
87.5 ↓ 6600	6 ↓	0 279	3			3,200					
o.z.4 wheel	5 4 df1(C L									Νοτε: Νοτ το
	-	7 L	N I N		DUE						Notes Not to
Β.	=	112	kN		Doe	Not Gov	orn				
ΣM _A =0 -> R ₁	, = =	((88 46	X kN	6600))	/	12,598					
A <				12,598				> B			
70 ↓ 6600	8 ↓	7.5 2798	8			3,200					Note: Not to
o.z.s wneels	s and	J 4									
	-	1 0 T 0 T 0 T 0 T 0 T 0 T 0 T 0 T 0 T 0	KIN		<-	- Governs					
R	_	167	LN			Courses					
ΣM _A =0 -> R ₁	3 = =	((70 61	X kN	1200)	+	(87.5	х	7800))	/	12,598	
A <	• •			12,598				> B			
70 ↓ 1200	7 ↓	0 660	D	87.5 ↓		4,798					Note: Not to
6.2.2 Wheels	52,3,	and 4									
R _A	=	118	kN		Does	s Not Gove	ern				
	=	47	KIN								
ΣM _A =0 -> R	3 =	((70	x	3600)	+	(70	x	4800))	/	12,598	
				12,598				> B			

6.3 Apply DLA

V _{Truck}	=	167	kN			
DLA	=	0.3			Note: Assume no multi-lane reduction	[CL 3.8.4.5.3]
V _{Max, Truck}	= (=	1 +DLA) x V _{Trucl} x 167	(
	=	217	kN∙m	< Governs		

7.0 Check Lane Live Loading for Shear

V_{Lane}	=	w	х	L	/	2	
	=	9	х	13	/	2	
	=	57	kN				
V _{Max, Lane}	=	V_{Lane}	+	0.8	x	V _{Truck}	Note: Assume no multi-lane reduction
	=	57	+	0.8	х	167	
	=	190	kN				Does Not Govern

8.0 Factored Maximum Shear

ULS1	=	1.10	х	$V_{\text{Max, DL}}$	+	1.70	х	$V_{\text{max, LL}}$	Combined Load Factor:	1.50
	=	1.10	х	112	+	1.70	х	217		
	=	491	kN							
FLS1	=	1.00	х	$V_{Max, DL}$	+	1.00	х	$V_{\text{max, LL}}$		
	=	1.00	х	112	+	1.00	х	217		
	=	329	kN							

Burlington Lift Bridge MMM GROUP Tower Stringer Demands - ULS - Tower Span

MMM Project No. 3213009

1.0 Check Live Load for wheels 1, 2, and 3 of CL-625-ONT

[All references herein to CAN/CSA-S6-06 except where specified]

Maximum bending moment occurs when the midpoint between the centre of gravity and the axle nearest is centred at mid-span.

1.2 Determine position of wheels causing maximum moment

Span Leng	th, L		=	9,690	mm		66	C					No	ote: Not	to scale.		
			_ A I<	<u>1,263</u>	25 ↓ 4,827	5 3,564 	↓ <u>1</u> ; >	CL 	7 <u>18↓</u> I <	0 <u>1,200</u> -	7 D ↓ 4,827	'0 <u>3627</u> B →I	I	Check: Check:	L= 9,6	90 K	ОК
1.3 Determin	e su	pport rea	ctior	IS													
ΣM _A =0 -> F _B	=	((25 82	x kN	1263)	+	(70	x	4863)	+	(70	x	6063))	/	9,690			
F _A	=	83	kN														
1.4 Determin	e ma	aximum b	endi	ng mon	nent												
M _{Truck}	= = =	F _A 83 313	x x kN∙r	4,863 4,863 n	-	25 25	x x	3,600 3,600									
Check:	Γ	M _{Truck}	= = =	FB 82 313	x x kN∙m	4,827 4,827	-	70 70	x x	1,200 1,200	1	ОК					
1.5 Apply Dyr	nami	ic Load Al	lowa	ince (DL	A)												
DLA	=	0.3			No	ote: Ass	sume i	no multi-	lane r	eductio	n					[0	CL 3.8.4.5.3]
M _{max}	= (= =	1 +DLA) 1.3 407	x x kN·r	313 313 n		@ d	=	4,863	=>	4,863	/	L	=	0.502	* Say mic	lspan (c	onservative)

Burlington Lift Bridge MMM GROUPTower Stringer Demands - ULS - Tower Span

2.0 Check other live load wheel configurations

Note: It has been determined that wheel combinations 1 & 2, 2 & 3, 2 & 3 & 4, 4 & 5 do not govern.

3.0 Check Lane Live Loading for Moment

M _{Lane}	=	w	х	L ²	/	8	[Can/CSA S16-01 PP 6-44]
	=	9	х	94	/	8	
	=	106	kN∙m	n			
M _{Max}	=	M_{Lane}	+	0.8	х	M _{Truck}	
	=	106	+	0.8	х	313	
	=	356	kN∙m	า			Does Not Govern

4.0 Check Dead Load Maximum Moment

Self-Weight	=	1.88	kN/m										
L	=	9.690	m										
M _{max, SW}	=	w	x	L ²	/	8	M _{max, deck}	=	w	х	L ²	/	8
	=	1.88	х	94	/	8		=	15.89	х	94	/	8
	=	22.07	kN∙m					=	186.50	kN∙	m		
Deck	=	15.89	kN/m		As	sume 0.96kPa x 1.2954m wide	$M_{max, DL}$	=	M _{max, SW}	+	M _{max, Grate}		
L	=	9.690	m					=	22.07	+	186.50		
								=	209	kΝ·	m		

5.0 Factored Maximum Moments

ULS1	=	1.10	х	$M_{max,DL}$	+	1.70	х	M _{max, LL}
	=	1.10	х	209	+	1.70	х	407
	=	921	kN∙	m				
FLS1	=	1.00	x	M _{max, DL}	+	1.00	х	M _{max, LL}
	=	1.00	х	209	+	1.00	х	407
	=	615	kN∙	m				

6.0 Maximum Shear

6.1 Unfactored Support Reactions due to Dead Loads

$V_{self-weight}$	=	w	х	L	/	2		A	ssume s	imply supported
	=	1.88	х	9.690	/	2				
	=	9	kN							
V _{deck}	=	w	x	L	/	2				
	=	15.89	х	9.690	/	2				
	=	77	kN							
V _{Max, DL}	=	R _{self-weight}	+	R _{grating}			$V_{F,Max, DL}$	=	1.1	x V _{Max, DL}
	=	9	+	77				=	1.1	x 86
	=	86	kN					=	95	kN

6.2 Unfactored Support Reactions due to Live Load (Truck)

6.2.1 Wheels 1, 2, and 3

25 ↓ 3600 A <	7 ↓	0 1200	9	70 ↓ 9,690		4,890)	> B			Note: Not to scale.
ΣM _A =0 -> R _B	= =	((70 61	x kN	3600)	+	(70	x	4800))	/	9,690	
R _A	=	104	kN		Does	Not Gov	vern				
6.2.2 Wheels	2, 3,	and 4									
70 ↓ 1200 A <	7 ↓	0 6600	0	87.5 ↓ 9,690		1,890)	> B			Note: Not to scale.
ΣM _A =0 -> R _B	=	((70 79	x kN	1200)	+	(87.5	x	7800))	/	9,690	
R _A	=	148	kN		<-	- Govern	s				
6.2.3 Wheels	3 and	14									
70 ↓ 6600 A <	8 ↓	7.5 2798		9,690		292		> B			Note: Not to scale.
ΣM _A =0 -> R _B	=	((88 60	x kN	6600))	/	9,690					
R _A	=	98	kN		Does	Not Gov	vern				
6.2.4 Wheels	4 and	15									Note: Not to scale.
87.5 ↓ 6600 A <	6 ↓	0 2798	ç	9,690		292		> B			
ΣM _A =0 -> R _B	= =	((60 41	x kN	6600))	/	9,690			/	9,690	
R _A	=	107	kN		Does	Not Gov	vern				
6.2.5 Wheels	2, 3,	and 4; R	evers	se Directi	on						Note: Not to scale.
87.5 ↓ 6600 A <	7 \	0 1200	ç	70 ↓ 9,690		1,890)	> B			
ΣM _A =0 -> R _B	= =	((70 104	x kN	6600)	+	(70	x	7800))	/	9,690	
R _A	=	123	kN		Does	Not Gov	vern				

Tower Span Prepared By: Matthew Bowser

Burlington Lift Bridge MMM GROUP Tower Stringer Demands - ULS - Tower Span

V _{Truck}	=	148	kN				
DLA	=	0.3				Note: Assume no multi-lane reduction	[CL 3.8.4.5.3]
V _{Max, Truck}	= (=	1 +DLA) 1.3) x x	V _{Truck} 148			
	=	193	kN∙r	n	< Governs		

7.0 Check Lane Live Loading for Shear

V _{Lane}	=	w	х	L	/	2	
	=	9	х	10	/	2	
	=	44	kN				
V _{Max, Lane}	=	V_{Lane}	+	0.8	х	V _{Truck}	Note: Assume no multi-lane reduction
	=	44	+	0.8	х	148	
	=	162	kN				Does Not Govern

8.0 Factored Maximum Shear

ULS1	=	1.10	х	$V_{Max, DL}$	+	1.70	х	$V_{max, LL}$	Combined Load Factor:	1.51
	=	1.10	х	86	+	1.70	х	193		
	=	423	kN							
FLS1	=	1.00	х	V _{Max, DL}	+	1.00	х	V _{max, LL}		
	=	1.00	х	86	+	1.00	х	193		
	=	279	kN							

MMM Project No. 3213009

1.0 One Truck 1,-,-,-

[All references herein to CAN/CSA-S6-06 except where specified]

1.1 Stringer Factored Loads Includes DLA + Multi-Lane Reduction Factor

Lanes	=	1	->	R_L	=	1.0							[CL 3.8.4.2]
		<u>ULS</u>								<u>ULS</u>			
S1	=	544	kN					S7	=	198	kN		
S2	=	544	kN					S8	=	198	kN		
S3	=	198	kN										
S4	=	198	kN										
S5	=	198	kN										
S6	=	198	kN										

1.2 Stringer Spacing

				<u>Cumulative</u>						<u>Cumulative</u>	
A - S1	=	1.245	m	1.245	m	S6 - S7	=	1.943	m	12.712	m
S1 - S2	=	1.524	m	2.769	m	S7 - S8	=	1.943	m	14.655	m
S2 - S3	=	2.057	m	4.826	m	S8 - B	=	1.245	m	15.900	m
S3 - S4	=	2.057	m	6.883	m						
S4 - S5	=	1.943	m	8.826	m						
S5 - S6	=	1.943	m	10.769	m						

1.3 Support Reactions

	ULS	
$\Sigma M_A = 0 \rightarrow F_B =$	868	kN
=> F _A =	1408	kN

1.4 Factored Shear (ULS1)

		<u>ULS</u>				<u>ULS</u>	
А	=	1408	kN	S7	=	-670	kN
S1	=	864	kN	S8	=	-868	kN
S2	=	320	kN	В	=	-868	kN
S3	=	122	kN				
S4	=	-76	kN				
S5	=	-274	kN				

Check: OK

S6

1.5 Factored Moments (ULS1)

=

-472 kN

		ULS			x/L
4	=	0	kN∙m	@	0.00
51	=	1753	kN∙m	@	0.08
S2	=	3070	kN∙m	@	0.17
S3	=	3728	kN∙m	@	0.30
S4	=	3979	kN∙m	@	0.43
S5	=	3832	kN∙m	@	0.56
S6	=	3299	kN∙m	@	0.68

Applied Loads:	$M_{\rm f}$	=	3979	kN∙m	$V_{\rm f}$	=	1408	kN
Girder Self Weight:	$M_{\rm f}$	=	165	kN∙m	$V_{\rm f}$	=	41	kN
ULS1:	$M_{\rm f}$		4144	kN∙m	$V_{\rm f}$	=	1449	kN

MMM Project No. 3213009

[CL 3.8.4.2]

1.0 Two Trucks 1,2,-,-

[All references herein to CAN/CSA-S6-06 except where specified]

1.1 Stringer Factored Loads	Includes DIA + Multi-Lane Reduction Factor
I.I Stilliger ractorea Loads	mendaes ber i manti Edite meddetion i detor

Lanes	=	2	->	R_L	=	0.9						
		ULS								ULS		
S1	=	509	kN					S7	=	198	kN	
S2	=	509	kN					S8	=	198	kN	
S3	=	509	kN									
S4	=	509	kN									
S5	=	198	kN									
S6	=	198	kN									

1.2 Stringer Spacing

				<u>Cumulative</u>						<u>Cumulative</u>	
A - S1	=	1.245	m	1.245	m	S6 - S7	=	1.943	m	12.712	m
S1 - S2	=	1.524	m	2.769	m	S7 - S8	=	1.943	m	14.655	m
S2 - S3	=	2.057	m	4.826	m	S8 - B	=	1.245	m	15.900	m
S3 - S4	=	2.057	m	6.883	m						
S4 - S5	=	1.943	m	8.826	m						
S5 - S6	=	1.943	m	10.769	m						

1.3 Support Reactions

	ULS	
$\Sigma M_A = 0 \rightarrow F_B =$	1088	kN
=> F _A =	1740	kN

1.4 Factored Shear (ULS1)

		ULS	
۱.	=	1740	kN
51	=	1231	kN
52	=	722	kN
S3	=	213	kN
S4	=	-296	kN
S5	=	-494	kN
S6	=	-692	kN

Check: OK

1.5 Factored Moments (ULS1)

		ULS		_	x/L			ULS			x/L
А	=	0	kN∙m	@	0.00	S7	=	3084	kN∙m	@	0.80
S1	=	2166	kN∙m	@	0.08	S8	=	1355	kN∙m	@	0.92
S2	=	4042	kN∙m	@	0.17	В	=	0	kN∙m	@	1.00
S3	=	5527	kN∙m	@	0.30						
S4	=	5965	kN∙m	@	0.43						
S5	=	5389	kN∙m	@	0.56						
S6	=	4429	kN∙m	@	0.68						

Applied Loads:	$M_{\rm f}$	=	5965	kN∙m	V _f	=	1740	kN
Girder Self Weight:	$M_{\rm f}$	=	165	kN∙m	V _f	=	41	kN
ULS1:	M _f		6130	kN∙m	V _f	=	1781	kN

MMM Project No. 3213009

[CL 3.8.4.2]

1.0 Three Trucks 1,2,3,-

[All references herein to CAN/CSA-S6-06 except where specified]

1.1 Stringer Factored Loads Includes DLA + Multi-Lane Reduction Factor

Lanes	=	3	->	R_{L}	=	0.8						
		ULS								ULS		
S1	=	475	kN					S7	=	198	kN	
S2	=	475	kN					S8	=	198	kN	
S3	=	475	kN									
S4	=	475	kN									
S5	=	475	kN									
S6	=	475	kN									

1.2 Stringer Spacing

				<u>Cumulative</u>						<u>Cumulative</u>	
A - S1	=	1.245	m	1.245	m	S6 - S7	=	1.943	m	12.712	m
S1 - S2	=	1.524	m	2.769	m	S7 - S8	=	1.943	m	14.655	m
S2 - S3	=	2.057	m	4.826	m	S8 - B	=	1.245	m	15.900	m
S3 - S4	=	2.057	m	6.883	m						
S4 - S5	=	1.943	m	8.826	m						
S5 - S6	=	1.943	m	10.769	m						

1.3 Support Reactions

	ULS	
$\Sigma M_A = 0 \rightarrow F_B =$	1396	kN
=> F _A =	1850	kN

1.4 Factored Shear (ULS1)

		<u>ULS</u>				
	=	1850	kN	S7	=	
L	=	1375	kN	S8	=	
2	=	900	kN	В	=	
3	=	425	kN			
4	=	-50	kN			
5	=	-525	kN			
66	=	-1000	kN			

Check: OK

1.5 Factored Moments (ULS1)

		ULS			x/L			ULS			x/L
А	=	0	kN∙m	@	0.00	S7	=	4065	kN∙m	@	0.80
S1	=	2303	kN∙m	@	0.08	S8	=	1738	kN∙m	@	0.92
S2	=	4399	kN∙m	@	0.17	В	=	0	kN∙m	@	1.00
S3	=	6251	kN∙m	@	0.30						
S4	=	7125	kN∙m	@	0.43						
S5	=	7028	kN∙m	@	0.56						
S6	=	6008	kN∙m	@	0.68						

Applied Loads:	$M_{\rm f}$	=	7125	kN∙m	,	V _f	=	1850	kN
Girder Self Weight:	M_{f}	=	165	kN∙m	,	V _f	=	41	kN
ULS1:	M_{f}		7290	kN∙m	,	V _f	=	1891	kN

MMM Project No. 3213009

[CL 3.8.4.2]

1.0 Four Trucks 1,2,3,4

[All references herein to CAN/CSA-S6-06 except where specified]

kN kN kN

1.1 Stringer Factored Loads	Includes DIA + Multi-Lane Reduction Factor
I.I Stilliger ractorea Loads	mendaes ber i manti Edite meddetion i detor

Lanes	=	4	->	R_L	=	0.7						
		ULS								ULS		
S1	=	440	kN					S7	=	440	kN	
S2	=	440	kN					S8	=	440	kN	
S3	=	440	kN									
S4	=	440	kN									
S5	=	440	kN									
S6	=	440	kN									

1.2 Stringer Spacing

				<u>Cumulative</u>						<u>Cumulative</u>	
A - S1	=	1.245	m	1.245	m	S6 - S7	=	1.943	m	12.712	m
S1 - S2	=	1.524	m	2.769	m	S7 - S8	=	1.943	m	14.655	m
S2 - S3	=	2.057	m	4.826	m	S8 - B	=	1.245	m	15.900	m
S3 - S4	=	2.057	m	6.883	m						
S4 - S5	=	1.943	m	8.826	m						
S5 - S6	=	1.943	m	10.769	m						

1.3 Support Reactions

	<u>ULS</u>	
$\Sigma M_A = 0 \rightarrow F_B =$	1735	kN
=> F _A =	1785	kN

1.4 Factored Shear (ULS1)

		ULS					
A	=	1785	kN	S7	S7	=	
S1	=	1345	kN	S8	S8	=	
S2	=	905	kN	В	В	=	
S3	=	465	kN				
S4	=	25	kN				
S5	=	-415	kN				
S6	=	-855	kN				

Check: OK

1.5 Factored Moments (ULS1)

		ULS		_	x/L			ULS			x/L
А	=	0	kN∙m	@	0.00	S7	=	4675	kN∙m	@	0.80
S1	=	2223	kN∙m	@	0.08	S8	=	2160	kN∙m	@	0.92
S2	=	4273	kN∙m	@	0.17	В	=	0	kN∙m	@	1.00
S3	=	6135	kN∙m	@	0.30						
S4	=	7092	kN∙m	@	0.43						
S5	=	7142	kN∙m	@	0.56						
S6	=	6336	kN∙m	@	0.68						

Applied Loads:	$M_{\rm f}$	=	7142	kN∙m	V _f	=	1785	kN
Girder Self Weight:	$M_{\rm f}$	=	165	kN∙m	V _f	=	41	kN
ULS1:	M _f		7307	kN∙m	V _f	=	1826	kN

MMM Project No. 3213009

1.0 One Truck 1,-,-,-

[All references herein to CAN/CSA-S6-06 except where specified]

1.1 Stringer Factored Loads Includes DLA + Multi-Lane Reduction Factor

Lanes	=	1	->	RL	=	1.0							[CL 3.8.4.2]
		ULS								<u>ULS</u>			
S1	=	291	kN					S7	=	86	kN		
S2	=	291	kN					S8	=	86	kN		
S3	=	86	kN										
S4	=	86	kN										
S5	=	86	kN										
S6	=	86	kN										

1.2 Stringer Spacing

				<u>Cumulative</u>						<u>Cumulative</u>	
A - S1	=	1.245	m	1.245	m	S6 - S7	=	1.943	m	12.712	m
S1 - S2	=	1.524	m	2.769	m	S7 - S8	=	1.943	m	14.655	m
S2 - S3	=	2.057	m	4.826	m	S8 - B	=	1.245	m	15.900	m
S3 - S4	=	2.057	m	6.883	m						
S4 - S5	=	1.943	m	8.826	m						
S5 - S6	=	1.943	m	10.769	m						

1.3 Support Reactions

$\Sigma M_A = 0 \rightarrow F_B =$	<u>ULS</u> 391	kN
=> F _A =	707	kN

1.4 Factored Shear (ULS1)

		<u>ULS</u>	
А	=	707	kN
S1	=	416	kN
S2	=	125	kN
S 3	=	39	kN
S4	=	-47	kN
S5	=	-133	kN
S6	=	-219	kN

Check:

1.5 Factored Moments (ULS1)

ОК

		ULS			x/L			ULS			x/L
А	=	0	kN∙m	@	0.00	S7	=	1079	kN∙m	@	0.80
S1	=	880	kN∙m	@	0.08	S8	=	487	kN∙m	@	0.92
S2	=	1515	kN∙m	@	0.17	В	=	0	kN∙m	@	1.00
S3	=	1772	kN∙m	@	0.30						
S4	=	1853	kN∙m	@	0.43						
S5	=	1762	kN∙m	@	0.56						
S6	=	1504	kN∙m	@	0.68						

Applied Loads:	M_{f}	=	1853	kN∙m	$V_{\rm f}$	=	707	kN
Girder Self Weight:	M_{f}	=	164	kN∙m	$V_{\rm f}$	=	38	kN
ULS1:	M _f		2017	kN∙m	V _f	=	745	kN

MMM Project No. 3213009

1.0 Two Trucks 1,2,-,-

[All references herein to CAN/CSA-S6-06 except where specified]

kN kN kN

1.1 Stringer Factored Loads Includes DLA + Multi-Lane Reduction Factor

Lanes	=	2	->	R_L	=	0.9							[CL 3.8.4.2]
		ULS								ULS			
S1	=	271	kN					S7	=	86	kN		
S2	=	271	kN					S8	=	86	kN		
S3	=	271	kN										
S4	=	271	kN										
S5	=	86	kN										
S6	=	86	kN										

1.2 Stringer Spacing

				<u>Cumulative</u>						<u>Cumulative</u>	
A - S1	=	1.245	m	1.245	m	S6 - S7	' =	1.943	m	12.712	m
S1 - S2	=	1.524	m	2.769	m	S7 - S8	5 =	1.943	m	14.655	m
S2 - S3	=	2.057	m	4.826	m	S8 - B	=	1.245	m	15.900	m
S3 - S4	=	2.057	m	6.883	m						
S4 - S5	=	1.943	m	8.826	m						
S5 - S6	=	1.943	m	10.769	m						

1.3 Support Reactions

	ULS	
$\Sigma M_A = 0 \rightarrow F_B =$	522	kN
=> F _A =	906	kN

1.4 Factored Shear (ULS1)

		<u>ULS</u>				
А	=	906	kN	S7	=	
S1	=	635	kN	S8	=	
S2	=	364	kN	В	=	
S 3	=	93	kN			
S4	=	-178	kN			
S5	=	-264	kN			
S6	=	-350	kN			

Check: OK

1.5 Factored Moments (ULS1)

		ULS		_	x/L			ULS			x/L
А	=	0	kN∙m	@	0.00	S7	=	1497	kN∙m	@	0.80
S1	=	1128	kN∙m	@	0.08	S8	=	650	kN∙m	@	0.92
S2	=	2096	kN∙m	@	0.17	В	=	0	kN∙m	@	1.00
S3	=	2844	kN∙m	@	0.30						
S4	=	3036	kN∙m	@	0.43						
S5	=	2690	kN∙m	@	0.56						
S6	=	2177	kN∙m	@	0.68						

Applied Loads:	M_{f}	=	3036	kN∙m	$V_{\rm f}$	=	906	kN
Girder Self Weight:	M_{f}	=	164	kN∙m	$V_{\rm f}$	=	38	kN
ULS1:	M_{f}		3200	kN∙m	V _f	=	944	kN

 Burlington Lift Bridge

 MMMGROUPFront Floor Beam Demands - ULS - Tower Span
 MMM Project No. 3213009

1.0 Three Trucks 1,2,3,-

[All references herein to CAN/CSA-S6-06 except where specified]

kΝ

kΝ

kΝ

1.1 Stringer Factored Loads Includes DLA + Multi-Lane Reduction Factor

Lanes	=	3	->	R_L	=	0.8							[CL 3.8.4.2]
		ULS		-						ULS			
S1	=	250	kN					S7	=	86	kN		
S2	=	250	kN					S8	=	86	kN		
S 3	=	250	kN										
S4	=	250	kN										
S5	=	250	kN										
S6	=	250	kN										

1.2 Stringer Spacing

				<u>Cumulative</u>						<u>Cumulative</u>	
A - S1	=	1.245	m	1.245	m	S6 - S7	- =	1.943	m	12.712	m
S1 - S2	=	1.524	m	2.769	m	S7 - S8	3 =	1.943	m	14.655	m
S2 - S3	=	2.057	m	4.826	m	S8 - B	=	1.245	m	15.900	m
S3 - S4	=	2.057	m	6.883	m						
S4 - S5	=	1.943	m	8.826	m						
S5 - S6	=	1.943	m	10.769	m						

1.3 Support Reactions

ΣM _A =0 -> F _B =	<u>ULS</u> 703	kN
=> F _A =	969	kN

1.4 Factored Shear (ULS1)

		ULS				Į
А	=	969	kN	S7	=	-(
S1	=	719	kN	S8	=	-
S2	=	469	kN	В	=	-
S 3	=	219	kN			
S4	=	-31	kN			
S5	=	-281	kN			
S6	=	-531	kN			

Check: OK

1.5 Factored Moments (ULS1)

		ULS		_	x/L			ULS			x/L
А	=	0	kN∙m	@	0.00	S7	=	2075	kN∙m	@	0.80
S1	=	1206	kN∙m	@	0.08	S8	=	876	kN∙m	@	0.92
S2	=	2301	kN∙m	@	0.17	В	=	0	kN∙m	@	1.00
S3	=	3265	kN∙m	@	0.30						
S4	=	3715	kN∙m	@	0.43						
S5	=	3654	kN∙m	@	0.56						
S6	=	3108	kN∙m	@	0.68						

1.6 Factored Demands:

Applied Loads:	M_{f}	=	3715	kN∙m	$V_{\rm f}$	=	969	kN
Girder Self Weight:	M_{f}	=	164	kN∙m	$V_{\rm f}$	=	38	kN
ULS1:	M_{f}		3879	kN∙m	V _f	=	1007	kN

_

MMM Project No. 3213009

1.0 Four Trucks 1,2,3,4

[All references herein to CAN/CSA-S6-06 except where specified]

. . . .

kΝ kΝ kΝ

1.1 Stringer Factored Loads Includes DLA + Multi-Lane Reduction Factor

Lanes	=	4	->	RL	=	0.7							[CL 3.8.	4.2]
		<u>ULS</u>		-						<u>ULS</u>				
S1	=	230	kN					S7	=	230	kN			
S2	=	230	kN					S8	=	230	kN			
S 3	=	230	kN											
S4	=	230	kN											
S5	=	230	kN											
S6	=	230	kN											

1.2 Stringer Spacing

				<u>Cumulative</u>						<u>Cumulative</u>	
A - S1	=	1.245	m	1.245	m	S6 - S7	=	1.943	m	12.712	m
S1 - S2	=	1.524	m	2.769	m	S7 - S8	=	1.943	m	14.655	m
S2 - S3	=	2.057	m	4.826	m	S8 - B	=	1.245	m	15.900	m
S3 - S4	=	2.057	m	6.883	m						
S4 - S5	=	1.943	m	8.826	m						
S5 - S6	=	1.943	m	10.769	m						

1.3 Support Reactions

$\Sigma M_A = 0 \rightarrow F_B =$	<u>01s</u> 907	kN
=> F _A =	933	kN

1.4 Factored Shear (ULS1)

		ULS	
А	=	933	kN
S1	=	703	kN
S2	=	473	kN
S3	=	243	kN
S4	=	13	kN
S5	=	-217	kN
S6	=	-447	kN

Check: ОК

1.5 Factored Moments (ULS1)

		ULS		_	x/L				ULS			x/L
Α	=	0	kN∙m	@	0.00	9	57	=	2444	kN∙m	@	0.80
S1	=	1162	kN∙m	@	0.08	9	88	=	1129	kN∙m	@	0.92
S2	=	2234	kN∙m	@	0.17		В	=	0	kN∙m	@	1.00
S 3	=	3207	kN∙m	@	0.30							
S4	=	3707	kN∙m	@	0.43							
S5	=	3733	kN∙m	@	0.56							
S6	=	3312	kN∙m	@	0.68							

Applied Loads:	M_{f}	=	3733	kN∙m	V _f	=	933	kN
Girder Self Weight:	M_{f}	=	164	kN∙m	V_{f}	=	38	kN
ULS1:	M _f		3897	kN∙m	V _f	=	971	kN
APPENDIX D.3 LIFTING GIRDER DEMAND CHECK

Project No.: 3213009 File : MMM GROUP By : Date : MAY 15/14 Checked by : Page : 2 of _2 Subject: BLB - LIFTING GIRDER DEMAND CHECK (3) FORCES (RAISED POSITION) MAX MOMENT = 13779 KNIM } OUTPUT FROM ANALYSIS SOFTWARE MAY SHEAR = 6304 KN Max 13779.4941 Max 6304.2129 Min -6304 2129 (9) CLOSEP POSITION · ONLY DEAD LOAD FROM NOUNTERWEIGHT IS ASSUMED TO ISE ACTING ON THE LIFTING GIRDER. [USE ULS1] 45 XD X W = 1.1 X 8547 = 9402 EN PER COUNTERWEIGHT. LAS FOUR ROPES PER COUNTERWEIGHT => P= 2350 KN · MAXIMUM MOMENT = 10081. KNim · MAXIMUM SHEAR = 4624KN Max 10081.9111 Max 4624.225

Matric Emm Crid

MMM Group Ltd. 2655 North Sheridan Way Mississauga, Ontario 905-823-8500 Page: 1 of 1

SUPPORT REACTIONS NOTE: FIXED AT BOTH ENDS.

Tuesday May 20 2014, 8:39 am

MMM Group Ltd. 2655 North Sheridan Way Mississauga, Ontario 905-823-8500 Page: 1 of 1

FORCES - RAISED PASITION (FACTORED ULSV3)

NOTE: SELF WEIGHT APPLIED BY SOFTWARE (AND FACTORED PER ULS V3)

Tuesday May 20 2014, 8:39 am

APPENDIX D.4 DEFLECTIONS

TRUSS MID-SPAN DEFLECTION APPROXIMATION: 1) PARAMETERS: LENGTH OF LIFT SPAN: 1= 370'-0" = 112 776mm HEIGHT OF TRUSS (AVERAGE) d = 45.5+55 = 50.25 = 15.316mm TOP CHORD: AREA -> SINCE DEFLECTION IS GOVERNED MORE BY MID-SPAN, USE AVERAGE AREA OF INNER CHORD SECTIONS (IE U3U5, USU6) A======= (104028 + 108905) = 106467 mm² SECOND MOMENT OF AREA, ITOP = AUG OF USUS, USUL = 11.534×10° mm4 BOTTOM CHORD: AREA (AVB OF L2LY, L4L6) = 79 919mm² = ABOT SECOND HOMENT OF AREA, IBOT = 5.628 × 10 mm 4 (AVG OF LELY, LYLL) ELASTIC MODULUS, E = 200 GPG (2) IDEALIZATION: -> LOC. OF NEUTRAL AXIS: -TOP CHORD, (ATOP, ITOP) Ay= ZAiyi · AS A BEAM: $= 2 d_2 = \frac{A_{TOP} \times (d_1 + d_2) + A_{BOT} \times O}{(A_{TOP} + A_{BOT})}$ N.A. dz S BOTTOM CHORD ABOT, 1807) = 8749mm A => d1 = 6567 mm · I - [ITOP + ATOP d, 2] + [IBOT + ABOT d2] A NOTE: HOP, IBOT ARE VERY SMALL, RELATIVELY. $= \int_{\overline{rep}}^{\overline{rep}} + \frac{4.591 \times 10^{12}}{10^{12}} + \int_{\overline{B07}}^{\overline{r0}} + 6.117 \times 10^{12} = 10.709 \times 10^{12} \text{ mm}^4$ PROJECT BLB - ANALYSIS W.O. <u>32/3009</u> MRC DESIGNED KX DATE MAY 13/14 **McCORMICK RANKIN** A member of MMM GROUP DATE Mg // PAGE 1 OF 3 CHECKED _

3 LOADING: -> DEAD LOAD: TOTAL = 17 213.238 KN [ROSS ENG, 2004] -> ASSUME DEAD LOAD IS EVENLY SHARED BETWEEN THE TWO TRUSSES 4> 8 606.619 KN -> APPLY DL AS UDL ALONG LENGTH OF IDEALIZED TRUSS (BEAM) 4 8606.619/112.766 = 76.316 4N/MLENGTH = W = 76.3/6 KN x m x 1000 = 76.3/6 N/mm PROJECT <u>BLB - AWALYSIS</u> _____ W.O. 3213009 MRC DESIGNED ______ DATE _____ DATE ______ DATE ______ DATE ______ ____ DATE _______ ____ McCORMICK RANKIN A member of MMM GROUP _____ DATE ______ My /14 PAGE ____ OF ____

(4) DEFLECTIONS! $\Delta_{DL} = \frac{5WL^{4}}{384E1} = 5\times76.316_{\text{MX}} 1/2776_{\text{MM}} \times \frac{1}{200000} \times \frac{1}{N} \times \frac{1}{10.709\times10^{12} \text{mm}}$ = 75 mm [Assumes NO WEB STIFFENING] Lo 1/ADL = 1500 5 COMPARISON TO S-FRAME RESULTS: · DEAD LOAD DEFLECTIONS: 12 HIGHWAY TRUSS RESULT = 69mm ("1/ADV = 1634) 75/69 = 1.1 -> :. ~ 10% WEB STIFFENING 40 RAILWAY TRUSS RESULT = 63mm (TAX = 1790) 75/13 = 1.2 -> : ~ 20% WEB STIFFENING PROJECT BLB ANALYSIS W.O. 32/3009 MRE DATE MAY 13/14 McCORMICK RANKIN DESIGNED KY A member of MMM GROUP DATE May 14 PAGE 3 OF 3 CHECKED

Project No. : 3213009 File : MMM GROUP By : Date : MAY 14/14 KY Checked by : Page : Ma Subject: BLB ANALYSIS TOWER DEFLECTION APPROXIMATION: 1) PARAMETERS: -> HEIGHT OF TOWER: 169'-238" = 51.572m (TO TOP OF 'B' LEVEL) -> DEPTH (LONGITUDINAL): 32'-0" = 9.754m -> FRONT COLUMN: AFCOL = AVG OF MID + TOP SECTIONS $= \frac{1}{2} (190 460 + 128 534)$ = 159 497 mm² IFCOL = AVG OF MID + TOP = 20.730 × 10° mm⁴ -> REAR COLUMN : ARCOL = 114125 mm 2 IRCOL = 13.516 × 10 mm 4 -> ELASTIC MODULUS: 200 000 MPa = 200 000 Mmm² 2 IDEALIZATION: -> LOC. OF N.A.: AY = E: AEYi di da > => $d_1 = AFCOL \times (d_1 + d_2) + A_{PCOL \times O}$ (AFCOL + A_{PCOL}) & FRONT COL. REARCOL = 5686 mm => da = 4068mm -> 1 = IFCOL + AFCOL d2 = 1/200L + APROL d12 N.A. = 1501 + 2.639×1012 + 1000 + 3.690 ×1012 = 6.329 ×10 12 mm 4 Matric - 5mm Grid

Project No. : 3213009 File : MMM GROUP By : Date : MAY 14/14 Checked by : Page : 2 of 3 Subject: BLB ANALYSIS 3 LOADING -> WIND LOAD: COLUMNS: TAKE AVERAGE OF MID AND TOP W = ± (2.916+3.365) = 3.141 KN/m PER COL (ASSUME TWO COLUMNS) = 2×3.141 = 6.282 LN/m height 4> (JUAPPUPLE TO ACCOUNT FOR HORIZONTALS AND DIAGONALS = 25.128 KN/m (Two FACES) [CONSERVATIVE] 1 (SEE BELOW) 42 POINT LOAD AT TOP OF EACH TRUSS: - TRANSVERSE SHEAVE GIRDER: 12.654 KN/mx 15.9m = 201.204 KN - (LADDING: 2.76 M2 x 15.9mx 4.572m= 205.638 KN P=> 401.842 LN NOTES: 1) CALCULATION OF EFFECT OF HOPIZONTALS AND DIAGONALS: HORIZONTAL LENGTH: 52'-2" (15 900mm) EA. Qty HORIZONTALS i 5 EA. 0,5x LENGTH x Z FACES (FRONT, BACK) LO SHARED B/W TWO COLUMS => LENGTH OF HORIZONTALS = 79500 mm DIAGONAL LENGTH: 1/837mm FA. Oty OSXLX 2 FACES 8 EA. => LENGTH = 94 696mm => TOTAL L=174.196m @ 6.282 KN/m = 1094 LN (CONVERT TO TOTAL FORCE) => 1094 LN / 51.5 m = 21 KN/m (Equivalent FORCE PER M HEAM, => 2/+6 = 25 -> ASSUMPTION VALID,

File : Project No. : Project No. : 32/3009 By : KY Checked by : Mg, JY, M MMM GROUP Date : Date: MAY 14/14 Page: <u>3</u> of <u>3</u> Subject: BLB ANALYSIS @ DEFLECTIONS $\Delta_{WIND_{NDE}} \frac{WL^{4}}{SEI} = 17mm (UDLONLY) = 32mm [No WEB STIFFENING] (Combined)$ $\Delta_{WIND, PT.} = \frac{PL^{3}}{SEI} = 15mm^{*}(P+ONLY) = 45\frac{1}{4}w = 1600$ + Combine deflections due to wind UDL and wind point load (D) COMPARISON: 40 S-FRAME RESULT: 26 mm VS CALCULATED 32mm 45 32/26 = 1,2 -> :. 20% WEB STIFFENING 4 NOTE: S-FRAME 1/2 = 1984

Burlington Lift Bridge Deflections - Lift Span

Panel Point	Dead Load		Live Load	(2 Lanes)	D + L	
	Δ (mm)	L / Δ	Δ (mm)	L / Δ	Δ (mm)	L/A
0 (S)	0		0		0	
1 (S)	-19	-6050	-2	46712	-21	5356
2 (S)	-36	-3167	-5	24975	-40	2811
3 (S)	-51	-2204	-7	17292	-58	1954
4 (S)	-62	-1805	-8	14258	-70	1602
5 (S)	-68	-1659	-9	12669	-77	1467
6	-69	-1634	-9	12384	-78	1444
5 (N)	-68	-1659	-9	12670	-77	1467
4 (N)	-62	-1807	-8	14263	-70	1604
3 (N)	-51	-2207	-7	17303	-58	1957
2 (N)	-36	-3170	-5	24999	-40	2814
1 (N)	-19	-6058	-2	46823	-21	5364
0 (N)	0		0		0	

Notes: Lift span deflections are provided along the Z-axis (i.e. vertical direction). Positive is "up" Live loading assumes two outside lanes loaded.

Burlington Lift Bridge Deflections - Tower

Level	Closed, x		Closed, y		Raised, x		Raised, y	
	Δ (mm)	L / Δ	Δ (mm)	L/A	Δ (mm)	L / Δ	Δ (mm)	L/A
0	0		0		0		0	
1	7	7244	-0.4	-122412	24	2158	13	3878
2	11	4661	-0.4	-116784	37	1381	14	3661
3	16	3324	-0.5	-104928	54	959	13	4100
4	20	2582	-0.4	-135502	70	737	11	4557
5	24	2122	-0.4	-123142	82	626	11	4800
6	26	1984	-0.5	-105615	89	580	15	3499

Note: Level 0 is at the bearing elevation, level 6 is at the sheave girder elevation.
Load case considered is longitudinal wind only.
Deflection based on northeast column of south tower

Tower span deflections are provided along the X-axis (north is positive) and the Y-axis (west is positive).