BURLINGTON LIFT BRIDGE, TOWERS, AND PIERS - STRUCTURAL MODELLING, ANALYSIS and SURVEYS

PHASE II RS6: 3D MODELLING and STRUCTURAL ANALYSIS REPORT

FINAL

TABLE OF CONTENTS
Page

1. INTRODUCTION 1
2. EXISTING STRUCTURE 1
2.1 Structure Description 1
2.1.1 Lift Span 2
2.1.2 Towers 2
2.1.3 Approach Spans 2
3. ANALYSIS ASSUMPTIONS 3
3.1 General Assumptions 3
4. LOADING 3
4.1 General 3
4.2 Permanent Loads 4
4.3 Transitory Loads 4
4.3.1 Live Loads 4
4.3.2 Temperature Loads 5
4.3.3 Wind Loads 5
4.4 Exceptional Loads 6
4.5 Vertical Lift Bridges - Special Loads 7
4.6 Load Combinations - Fully Closed Position (Lowered) 7
4.7 Load Combinations - Fully Open Position (Raised) 7
4.8 Fatigue 7
5. ANALYSIS/MODELLING 7
6. RESULTS 8

APPENDICES

APPENDIX A KEY PLAN AND GENERAL ARRANGEMENT DRAWINGS

APPENDIX B. 1 FRAME MODEL DIAGRAMS

APPENDIX B. 2 FRAME MODEL MEMBER NUMBERING SCHEME
APPENXIX B. 3 FRAME MODEL SECTION NAMING SCHEME
APPENDIX B. 4 FRAME MODEL SUPPORT CONDITIONS
APPENDIX B. 5 FRAME MODEL MEMBER END RELEASES

APPENDIX C DESIGN LOAD CALCULATIONS

APPENDIX D. 1	CALCULATION SUMMARIES (PER SECTION)
APPENDIX D. 2	FLOOR BEAM AND STRINGER DEMAND CHECK
APPENDIX D. 3	LIFTING GIRDER DEMAND CHECK
APPENDIX D. 4	DEFLECTIONS

File: https://www.ecollaboration.mmm.ca/livelinkdav/nodes/24441175/3213009 ky RS6 Report.docx

1. INTRODUCTION

MMM Group Ltd. (MMM) was retained by Public Works and Government Services Canada (PWGSC) to undertake a structural analysis including a three-dimensional frame model, evaluation of member capacities, and a fatigue review for the Burlington Lift Bridge.

This report presents the results of the structural analysis and three-dimensional modelling of the bridge as per section RS6 of the Terms of Reference. Member demands are reported in a tabular format.

This report should be read in conjunction with a separate report by MMM Group titled RS7: Member Capacities, April 2014, which presents the results for the member capacities compared to demands including capacity over demand (C/D) ratios.

A Key Plan showing the location of the structure and a General Arrangement drawing have been provided in Appendix A.

2. EXISTING STRUCTURE

2.1 Structure Description

Owned and operated by Public Works and Government Services Canada (PWGSC), the Burlington Lift Bridge is located between the cities of Burlington and Hamilton, Ontario on Eastport Drive spanning the Burlington Canal, which provides the only navigational opening into the Hamilton Harbour. The majority of traffic crosses the canal via the provincially owned Queen Elizabeth Way (QEW) James N. Allan Skyway; however, the lift bridge provides the only alternate vehicle crossing and is the only crossing available to pedestrians and cyclists. For the purposes of this report, the bridge is considered to run in the north-south direction.

The Burlington Lift Bridge is a tower-drive steel truss vertical lift bridge designed in 1958 by C.C. Parker and Associates of Hamilton, Ontario and constructed between 1959 and 1960 by the Hamilton Bridge Division of the Bridge and Tank Company of Canada Limited. The bridge, as originally constructed, served both rail and highway traffic in a side-by-side configuration. The railway corridor ran along the eastern half of the structure and the highway corridor ran along the western half of the structure. In 1982 the bridge underwent a major rehabilitation to convert it to a highway traffic only structure through the complete removal of the railway corridor and the addition of two new lanes of traffic. Despite the removal of the railway corridor, the following report shall refer to the east truss as the "railway truss" and the west truss as the "highway truss".

The bridge is comprised of two 12.60 m ($41^{\prime}-4$ ") approach spans, two 9.75 m ($32^{\prime}-0^{\prime \prime}$) tower spans, and one 112.78 m ($370^{\prime}-0$ ") lift span. There is a 2.07 m ($6^{\prime}-9.5^{\prime \prime}$) wide sidewalk with an aluminum pedestrian hand railing cantilevered from the outside of the highway truss. Two 3.375 m wide northbound lanes and two 3.375 m wide southbound lanes are provided on the bridge. A steel box beam barrier is located on either side of the roadway. A navigational clearance of approximately $36.58 \mathrm{~m}\left(120^{\prime}-0^{\prime \prime}\right)$ is provided at high water level.

The substructure is comprised of two concrete tower piers supporting the towers, and two concrete conventional closed abutments at each end of the approach spans.

2.1.1 Lift Span

The lift span is a steel through truss structure that is 15.54 m ($51^{\prime}-0$ ") wide from centreline to centreline of the trusses with a vertical lift of 34.12 m ($\left.111^{\prime}-11^{\prime \prime}\right)$. Each truss is comprised of twelve $9.40 \mathrm{~m}\left(30^{\prime}-10^{\prime \prime}\right)$ panels which vary in depth from $13.87 \mathrm{~m}\left(45^{\prime}-6{ }^{\prime \prime}\right)$ at the ends to $16.76 \mathrm{~m}\left(55^{\prime}-0^{\prime \prime}\right)$ at the midspan.

Truss members (i.e. verticals, diagonals, and top and bottom chords) are comprised of built-up steel sections. Transverse floor beams and longitudinal stringers support an open steel grating deck. The sidewalk deck consists of a thin (50 mm) concrete filled steel grating.

Portal and sway bracings are provided overhead at panel points.
In the fully closed position (i.e. open to highway traffic), support for the structure is provided at all four corners from below. Articulation is provided by two fixed supports (bearings) at the south end and two expansion rocker-type supports at the north end. One centring shoe is provided at each end of the lift span.

In any open position (i.e. raised to allow marine traffic), support for the structure is provided at all four corners by wire ropes attached to lifting girders at the ends of the lift span. The wire ropes then pass over sheaves at the top of each tower and are connected to a counterweight. Guide rollers are also provided at all eight corners of the structure and run along tracks on the front columns of the towers.

2.1.2 Towers

There are two steel braced towers at either end of the lift span. Each tower is 15.90 m ($52^{\prime}-2^{\prime \prime}$) wide from centreline to centreline of the columns, 9.75 m ($32^{\prime}-0$ ") long from centreline to centreline of the columns, and is approximately 65 m (213^{\prime}) tall.

Tower members (i.e. columns, diagonal bracings, horizontals, etc.) are comprised of built-up steel sections. The roadway passing through the towers is referred to as the "tower span" and is comprised of transverse floor beams and longitudinal stringers supporting a $190 \mathrm{~mm}\left(7.5^{\prime \prime}\right)$ concrete deck with a $65 \mathrm{~mm}(2.5 ")$ asphalt wearing surface.

There is a 2.47 m ($8^{\prime}-1$ ") wide sidewalk with an aluminum pedestrian hand railing cantilevered from the west side of the tower.

Each tower is supported on a concrete tower pier substructure.
At the top of each tower is a machine room which houses the required mechanical and electrical equipment necessary to raise and lower the lift span. Wire ropes connected to each end of the lift span pass over the sheaves and are connected to a counterweight (on each tower) which balances the weight of the lift span.

2.1.3 Approach Spans

There are two approach spans at either end of the bridge. Each is $15.90 \mathrm{~m}\left(52^{\prime}-2^{\prime \prime}\right)$ wide and $12.60 \mathrm{~m}\left(41^{\prime}-4 "\right)$ in length.

Transverse floor beams and longitudinal stringers support a $190 \mathrm{~mm}(7.5$ ") concrete deck with a $65 \mathrm{~mm}\left(2.5^{\prime \prime}\right)$ asphalt wearing surface. There is a $2.47 \mathrm{~m}\left(8^{\prime}-1 "\right)$ wide sidewalk with an aluminum pedestrian hand railing cantilevered from the west side of the approach spans.

Each approach span is simply supported by the tower piers at one end and a concrete conventional closed abutment at the other. Articulation is provided by fixed bearings at the concrete abutments, and expansion bearings at the tower piers.

3. ANALYSIS ASSUMPTIONS

3.1 General Assumptions

The Burlington Lift Bridge was designed circa 1958 using the American Railway Engineering Association (AREA) "Part 2" 1956 for all movable components and structural components which support movable components, Canadian Standards Association (CSA) S1-1950 Specifications for Steel Railway Bridges, and CSA S6-1952 Specifications for Steel Highway Bridges. Coopers E-60 and H20-S16 design live loads were used for railway and highway components respectively.

The bridge was analyzed in accordance with the Canadian Highway Bridge Design Code (CHBDC) CAN/CSA-S6-06 including Supplement No. 3 (March 2013) using Section 5 Methods of Analysis along with Section 3 Loads and Section 13 Movable Bridges.

Gross section properties were used in the analysis for all members, as provided on the 1959/1960 fabrication/erection drawings. Further discussion is provided in the MMM Group report titled RS7: Member Capacities, April 2014.

For all steel, the following material properties were input into the software:

- Young's Modulus, E = 200GPa;
- Density of Steel, $\gamma_{\mathrm{s}} \quad=77 \mathrm{kN} / \mathrm{m}^{3}$; and
- Coefficient of thermal expansion, $\alpha_{s}=11.7 \times 10^{-6} / \mathrm{K}$.

For further discussion of the material properties used in the model, refer to the MMM Group report titled RS7: Member Capacities, April 2014.

4. LOADING

4.1 General

For the analysis of the Burlington Lift Bridge, two loading scenarios were considered:

1. Bridge fully closed (i.e. lift span seated on bearings in locked position); and
2. Bridge fully raised (i.e. lift span at the top of its vertical range of movement).

As given by Section 13 of the CHBDC, when the bridge is in the fully closed position all loading requirements and load combinations relating to fixed bridges in Section 3 shall apply. When the bridge is in the fully raised position, only those specific loads and load combinations identified in Section 13 shall apply.

Refer to Appendix C for detailed design load calculations.

4.2 Permanent Loads

Calculated section properties, based on the 1959/1960 fabrication/erection drawings, permitted the analysis software to automatically calculate self-weight for all steel members.

A steel density of $77 \mathrm{kN} / \mathrm{m}^{3}$, in accordance with the CHBDC, was used for all main and auxiliary steel members. The concrete density used for the sidewalk, tower span deck, and approach span deck was $23.5 \mathrm{kN} / \mathrm{m}^{3}$, in accordance with the CHBDC. The lift span open grating steel deck was assumed to be $0.96 \mathrm{kN} / \mathrm{m}^{2}$ as provided by the manufacturer.

Self-weights for typical single and double latticed members were a by hand and the additional weight of the lacing bars was determined. This additional load was applied to all similar members.

The dead loads due to the barriers and sidewalk were applied as point loads to the bottom chords at panel point locations.

The lift span dead load in the model was increased to calibrate it with its actual measured weight, as identified in a letter to PWGSC titled Weighing the Bridge dated May 12, 2004. This approach is consistent with past practices when accounting for the additional weight of rivets, bolts, and gusset plates. This same factor was applied to all other steel in the towers and approach spans.

A small imbalance exists between the weight of the lift span and the weight of the two counterweights.

In a letter to PWGSC dated March 21, 2000 it was indicated that the structure is slightly span-heavy. This imbalance between the weight of the lift span and the combined weight of the two counterweights, in addition to the known weight of the lift span, permitted the calculation of the approximate weight of each counterweight.

An additional dead load was applied as point loads at the top of each tower to account for the sheaves, platforms, equipment, floor, roof, and live load within the machine house.

4.3 Transitory Loads

4.3.1 Live Loads

Four lanes were considered for live loading. We believe this scenario of loading is somewhat conservative: In our opinion, given the proximity of the trusses to the edges of the outside lanes, there is a low probability of four large trucks occupying the bridge simultaneously. This was used in conformance with Section 3 of the CHBDC.

The CL-625-ONT Truck Load and the CL-625-ONT Lane Load were used for the live load analysis, as given by Clause 3.8.3 of the CHBDC. Truck wheel loads were positioned directly over stringers to obtain their maximum load effects. As there is little torsional/plate stiffness in the open steel grating, the evaluation assumed no lateral distribution of live load through the grating. This slight conservative assumption increases the force effects in the stringers and floor beams only with a minimal effect on the trusses.

During the analysis, the design truck was moved longitudinally along each lane in 1.0 m increments to generate force envelopes for each member. Eight unique load cases were considered for both truck and lane loading and are presented in Table 4-1 below.

Table 4-1: Live Load Cases

	Lanes Loaded			
Load Case No.	Lane 1	Lane 2	Lane 3	Lane 4
1	Yes			
2	Yes	Yes		
3	Yes	Yes	Yes	
4	Yes	Yes	Yes	Yes
5		Yes	Yes	Yes
6			Yes	Yes
7				Yes
8	Yes			Yes

The minimum sidewalk live load of 1.6 kPa was considered as given by Clause 3.8.9 in the CHBDC.

4.3.2 Temperature Loads

Temperature effects were considered for truss components. A thermal gradient of $10^{\circ} \mathrm{C}$ was applied in two scenarios. The first load case is when the bottom chords are cooler than the top chords due to their proximity to the water and the second load case is when the east truss is warmer than the west truss due to morning warming effects from the sun.

4.3.3 Wind Loads

Design wind loads were applied to the lift span and towers. Given the span of less than 125 m , an hourly mean reference wind pressure corresponding to a return period of 50 years was chosen as given by Clause 3.10.1.2 of the CHBDC. The hourly mean reference wind pressure used corresponded to the City of Burlington, Ontario as provided in Table A3.1.1 of the CHBDC, which represents hourly mean velocities recorded at the standard anemometer height of 10.0 m above ground. A gust coefficient was given by Clause 3.10.1.3 of the CHBDC. An exposure coefficient was given by Clause 3.10.1.4 of the CHBDC based on the height from the water level to the mid-depth of the trusses. Two different wind exposure coefficients were calculated for the lift span; one for the fully closed position and one for the fully raised position. A horizontal wind drag coefficient of 2.0 was used, as given by Clause 3.10.2.2, which accounts for the suction force applied to the back face of a member.

Horizontal drag was applied to both the windward and leeward trusses of the lift span, as it was assumed that there was no significant shielding. Vertical drag was applied to the lift span deck. Given the open grating, the floor plan area was assumed to be 85% of a solid deck as given by Clause 13.7.3.5 of the CHBDC. For truss members, the horizontal drag forces were distributed along the members as a uniformly distributed load, as a function of member width.

A horizontal drag load was applied to live load, in the fully closed position, assuming the entire length of the lift span and a vehicle height of 3.0 m . This load was distributed along the length of the east bottom chord.

Similar to the lift span, horizontal wind loads were applied to the columns, horizontals, diagonal members, and machine house and elevator shaft cladding in the towers. The wind exposure coefficient was calculated from the top of the towers down in three steps rather than as a variable to simplify the analysis. Wind was applied at both right angles to the towers as well as on an oblique line at 45°. Shielding was not considered in the towers. These calculated wind loads were compared to the wind pressures specified in Clause 13.7.3.10 of the CHBDC (1.5kPa) and were found to be greater; therefore, the calculated wind loads were used.

In determining wind loads, PWGSC provided MMM with a maximum operating wind velocity of $80 \mathrm{~km} / \mathrm{h}$ for comparison to the design wind loading used in the model. The maximum operating wind velocity is the maximum velocity, based upon readings taken on-site, at which the lift span will be raised.

As given by CAN/CSA S6-06 Commentary PP 99, the following equation was used to convert the provided wind velocity to wind pressure:

$$
q=0.05 v^{2}=0.05 \times(80)^{2}=320 P a=0.32 k P a
$$

where $v=$ wind velocity in km / h and an air density of $1.29 \mathrm{~kg} / \mathrm{m}^{3}$ has been assumed and incorporated.

For the purposes of comparison, the provided maximum operating wind velocity is measured by on-site by an anemometer located near the top of the operator's house, approximately 16 m above ground. It is our opinion that any amplification due to exposure would be minimal between this height and the fully open height.

Furthermore, the provided maximum operating wind velocity is measured in real-time by the anemometer on-site and provides wind velocities including gusts; therefore, no amplification related to gusts is required. On the contrary, the hourly wind reference pressures used when calculating the design wind have been averaged and do not account for wind gusts.

Finally, for the purposes of comparison only, the horizontal drag coefficient will not be used when calculating the design wind load. The reasoning for this is the $80 \mathrm{~km} / \mathrm{h}$ maximum operating wind velocity likely accounts for a load applied to one face only of a member, not accounting for any horizontal drag/suction applied to a back face.

Based on the above assumptions, the unfactored design wind loading used for the purposes of comparison is approximately four (4) times the maximum operating wind velocity. Nevertheless, even if gust and exposure coefficients were applied to the $80 \mathrm{~km} / \mathrm{h}$ maximum operating wind velocity, the unfactored design wind loading is calculated to be 1.4 times the maximum operating wind velocity.

4.4 Exceptional Loads

The only exceptional load considered was ice accretion. As given by Clause 3.12.6.2 of the CHBDC, ice accretion was assumed to consist of a 31 mm radial build-up on all
surfaces of all members, including the inside surfaces of built-up members without solid plates. The weight of ice was assumed to be $9.8 \mathrm{kN} / \mathrm{m}^{3}$.

Ice accretion was only considered for the fully closed position. The operational season is typically during months where ice accretion is not expected. Moreover, if a build-up of ice were to form on the lift span surfaces, it is unlikely the mechanical and electrical equipment used to raise the span would be able to overcome this additional load.

4.5 Vertical Lift Bridges - Special Loads

An operating impact load consisting of 20% of the lift span dead load was evenly distributed as a point load to each of the sheave girders in the towers, as given by Clause 13.7.10.2 of the CHBDC.

4.6 Load Combinations - Fully Closed Position (Lowered)

The above loads were combined as applicable for the calculation of ultimate limit states ULS1, ULS2, ULS3, ULS4, and ULS7 as given by Clause 3.5.1 of the CHBDC to determine the demands on each member. Serviceability limit states were not assessed as they are related to vibration of the structure. Given the substantial depth of the truss, the light pedestrian volumes, and the original design as a rail carrying structure, low deflections were obtained.

4.7 Load Combinations - Fully Open Position (Raised)

The above loads were combined as applicable for the calculation of ultimate limit states ULSV1, ULSV2, and ULSV3 as given by Clause 13.7.10.2 of the CHBDC to determine the demands on each member.

4.8 Fatigue

To assess the fatigue limit state, FLS1 as given by Clause 3.5 .1 of the CHBDC, a single truck load was placed in a single lane down the centre of the bridge and combined with dead loads to determine the demands on each member. Further discussion on fatigue is provided in the MMM Group report titled RS8: Fatigue Study, April 2014.

5. ANALYSIS/MODELLING

A three-dimensional frame analysis model was created and analyzed using S-Frame Version 11 for both the fully closed and open positions. Each model is comprised of the north and south approach spans, north and south towers, and the lift span. The models are provided under separate cover.

Globally, the X -axis is along the longitudinal axis of the bridge, increase from south to north. The global Y-axis is along the transverse axis of the bridge, increasing from east to west. The global Z-axis represents the vertical axis of the bridge, increasing in the direction opposite of gravity. Locally, the x -axis represents the axial direction along a member. The local y-axis always corresponds with the horizontal plane of a member of the transverse axis of the bridge. The local z-axis always corresponds with the vertical axis of a member or the longitudinal axis of the bridge.

All member types have been modelled as beam elements. Where intermediate nodes split one physical member into several constituent analytical members, a new feature in the software was used to convert the analytical members into a single physical member.

In total, the models each contain approximately 1093 nodes and 1174 physical members consisting of 120 unique sections. All members have been numbered according to groups based on member type/location. All unique sections have been named based on span, element, and sub element. For example, LIFT-RLYT-L0U0 refers to the lift span, railway truss, member L0U0. Refer to Appendix B for details of the member numbering system and section naming conventions.

All main truss and tower members have been named in accordance with the original 1958 design drawings. Refer to Appendix A for drawings containing the naming conventions.

The majority of member end releases are all pin-pin, which indicates that moments about the local y-axis and z-axis have been released. Please note that every node is rigidly attached to at least one member, to avoid creating a "mechanism" and subsequent model instability. For diagrams of all member end releases, refer to Appendix B.

All spans have had support conditions applied that reflect what is physically present. The approach spans at the abutments have been released for rotation about the global Y-axis and translation about the global X -axis, and fixed in all other degrees of freedom. The tower supports at the base of each column have been released for moments about the global X -axis and Y -axis only, and fixed about all other degrees of freedom. Please see the following section for further discussion regarding modelling and results of the tower support conditions.

In the fully closed position, the lift span is simply supported at the lower four corners with translation fixed in the upper four corners along the global Y-axis, to simulate the effects of the guide rollers.

In the raised position, vertical support is provided at the top four corners to simulate the support provided by the wire ropes. Translational degrees of freedom are restricted to model the guide rollers. For diagrams of the support conditions, refer to Appendix B.

The top and bottom chords of the lift span were modelled as continuous members between every other panel point, in accordance with what is shown on the original design drawings and what is physically present (e.g. L0L2, L2L4, L4L6, etc.). Further discussion of this modelling approach is provided in the following section.

6. RESULTS

Results were obtained through the use of a linear elastic analysis type for both static and moving loads.

While performing quality control on the analysis results, it was observed that the top and bottom lateral bracings of the lift span and the lateral bracing of the tower span were developing forces under dead load. Due to the probable construction sequence and our understanding of the original design methodology, we modified the analysis as follows:

1. The dead load cases were analyzed with the area of the above noted bracings greatly reduced (so as not to attract significant load);
2. The remaining load cases were analyzed with the full area of the above noted bracings reinstated; and
3. The results of the two methods were superimposed on one another.

For the lift span truss members, the dead load results were compared to the stresses identified on the original 1958 design drawings. The results were found agree within 5%.

When modelling the structure using continuous top/bottom chords between every other panel point (as described in the previous section), bending moment was developed in addition to that from self-weight. MMM reviewed a version of the model without continuous top and bottom chords (i.e. all members are pin connected) and made the following observations:

- Axial force for top/bottom chords increased by 2-5\% while moments decreased by 20%;
- Axial force for diagonals increased by 3% while moments remained unchanged; and
- Axial force and moments for vertical remained unchanged.

Further discussion of the moments is provided in the report by MMM Group titled RS7: Member Capacities.

For the towers, adding "torsional support" was investigated (i.e. restricting bending about the global Y axis) at the tower support locations. It was observed that deflections at the top of the towers were reduced by approximately 13% and moments were generated at the base of the towers (approximately 1430 kN .m on the front columns and $790 \mathrm{kN} . \mathrm{m}$ on the rear columns). MMM has reviewed the foundation/column base connection and is of the opinion that the actual connection is somewhere between fully fixed and fully pinned. Our evaluation/analysis has assumed the fully pinned connection which is conservative for deflections and forces in the bracing. We have also reviewed the column capacity for the fully fixed connection and have found this to be satisfactory.

As part of quality control, an approximate analysis of the dead load deflection for the lift span at mid-span under dead load and live loads (two lane loads) and at the top of the towers with the lift span in the fully closed position under longitudinal wind loading (i.e. wind blowing along the centreline of the roadway) was completed. The calculated deflections were compared to output from the S-Frame model and were found to be in agreement after making an allowance for additional $20 \%-30 \%$ web stiffening. This approximate check verifies the general validity of the model. It is also noted that the dead load forces in the lift span were compared to the dead load forces shown in the original design stress sheets as another independent review of the lift span model. These forces were observed to be very similar.

Refer to Appendix D for calculation summaries and results, containing the governing axial forces, moments, and shears for each section as well as hand calculations for the floor beam, stringer, and lifting girder demands.

Prepared By:

Kyle Yusek, E.I.T.
Designer - Bridge Engineering MMM Group Ltd.

Reviewed By:

Doug Dixon, M.A.Sc., P. Eng.
Senior Project Manager - Bridge Engineering MMM Group Ltd.

APPENDIX A
 KEY PLAN AND GENERAL ARRANGEMENT DRAWINGS

KEY PLAN

Burlington Lift Bridge, Burlington Ontario
Scale: N.T.S.

APPENDIX B. 1
 FRAME MODEL DIAGRAMS

Model: Fully Closed Position

Model: Raised Position

Model: Close-up of lift span at south end

APPENDIX B. 2
 FRAME MODEL MEMBER NUMBERING SCHEME

FRAME MODEL MEMBER NUMBERING SCHEME

LIFT SPAN 2X XXX

> Railway Truss	21,XXX
> Top Chord	21,1XX
> Bottom Chord	21,2XX
> Diagonals	21,3XX
> Verticals	21,4XX
> Highway Truss	22,XXX
$>$ Top Chord	22,1XX
> Bottom Chord	22,2XX
> Diagonals	22,3XX
> Verticals	22,4XX
> Floor Beams	23,XXX
> End	23,1XX
> Interior	23,2XX
$>$ Stringers	24,XXX
> Lifting Girder	25,XXX
$>$ Diaphragms	26,XXX
> Traction Bracing	27,XXX
> Railway Stringers	28,XXX
$>$ Bracing	29,XXX
> Top Lateral	29,1XX
> Bottom Lateral	29,2XX
> Portal Frame	29,3XX
> Sway Frame	29,4XX

TOWER 3X XXX

$>$ Columns	$31, \mathrm{XXX}$	
	$>$ Top	$31,1 \mathrm{XX}$
$>$ Middle	$31,2 \mathrm{XX}$	
	$>$ Bottom	$31,3 \mathrm{XX}$

$>$ Bracing

$>$	Side	$32,1 \mathrm{XX}$
$>$	Front	$32,2 \mathrm{XX}$
$>$	Back	$32,3 \mathrm{XX}$

> Sheave Girders
33,XXX
> Front
33,1XX
$>$ Rear
33,2XX
> Longitudinal
33,3XX
> Diaphragms
34,XXX
$>$ Stringers
35,XXX
$>$ Floor Beams
36,XXX
> Lateral Bracing
37,XXX
$>$ Traction Bracing
38,XXX
$>$ Bracing (Sheave)
39,XXX
$>$ Machine House 30,XXX

APPROACHES 4X XXX
$>$ Stringers 41,XXX
$>$ Diaphragms 42,XXX

LIFT-KaILWAY TRUS5

LIFT- HIGhWAy TRUSS

LIFT-FLOOR BEAMS

- End
- Int

MMM Group Ltd. 2655 North Sheridan Way Mississauga, Ontario 905-823-8500	RS-6 3D Modelling and Structural Analyses Description: Burlington Lift Bridge Engineer: KY	Page: 1 of 1

LIF7 - STRINGERS

LIFT - LIFING GIRDER

MMM Group Ltd. 2655 North Sheridan Way Mississauga, Ontario 905-823-8500	RS-6 3D Modelling and Structural Analyses Filename: CilUserstYusekKDeskiopl3813009 BLB S-Frame FileslMar 5, 201413813009 KY BLB ANALYSIS RAISED 05.03.2014.TEL Description: Burlington Lift Bridge Engineer: KY	Page: 1 of 1

LIFI- DIAPARAGMS

MMM Group Ltd. 2655 North Sheridan Way Mississauga, Ontario 905-823-8500	RS-6 3D Modelling and Structural Analyses Filename: C:AUsersiYusekKLDesktopl3813009 BL B S-Frame FileslMar 5, 201413813009 KY BLB ANALYSIS RAISED 05.03.2014.TEL Description: Burlington Lift Bridge Engineer: KY	Page: 1 of 1

LIFT-TRACTION BRACING

MMM Group Ltd. 2655 North Sheridan Way Mississauga, Ontario 905-823-8500	RS-6 3D Modelling and Structural Analyses Filename: CilUsersiYusekK1Deskitopl3813009 BLB S-Frame FilesMar 5, 201413813009 KY BLB ANALYSIS RAISED 05.03.2014,TEL Description: Burlington Lift Bridge Engineer: KY	Page: 1 of 1

lift - Top lateral Bracmg

LIFT-Bot. Lhteral. Bracing

LIft Porith Bracho

LIFT-Sway BRacNG

MMM Group Lid. 2655 North Sheridan Way Mississauga, Ontario 905-823-8500	RS-6 3D Modelling and Structural Analyses Filename: C:IUsers\|YusekKDesktopl3813009 BLB S-Frame FileslMar 5, 20143813009 KY BLB ANALYSIS RAISED 05.03.2014.TEL Description: Burlington Lift Bridge Engineer: KY	Page: 1 of 1

LIFT-RAILWAY STRINGERS

Approaches - Girders

approaches - Diaphragms

Towers - Cocumns

TowERS - SIDE BRACING

Towers - Front bracing

Towers - Back Bracing

Tower - Front Trans. Sheave Girder

Towers - Rear trans. Sheave girder

TOWERS - LONG. SHEAVE GIRDERS

Towers - DIAPhratgms

MMM Group Ltd. 2655 North Sheridan Way Mississauga, Ontario 905-823-8500	RS-6 3D Modelling and Structural Analyses Filename: C:IUsersiYusekKDesktopl3813009 BLB S-Frame FileslMar 5, 201413813009 KY BLB ANALYSIS RAISED 05.03.2014.TEL Description: Burlington Lift Bridge Engineer: KY	Page: 1 of 1

Towers - Stringers

Towers - FLOor Beams

TowERS - LAT. BRACING

Towers- Soutte Tration Brating

Toweks North Frattion Spating

Towers - Machine House

TOWERS -.NORTH - SHEAVE GIRDER BRACING

Towers - South Sheave Girder brewing

APPENDIX B. 3
 FRAME MODEL SECTION NAMING SCHEME

FRAME MODEL SECTION NAMING SCHEME

FORMAT: XXXX - XXXX - XXXX
$\begin{array}{lll}1 & 2 & 3\end{array}$

1. SPAN:

Towers

- TOWR

Lift Span

- LIFT

2
ELEMENT: Railway Truss

- RLYT

Highway Truss

- HWYT

Floor Beam - FLBM
Stringer

- STRG

Diaphragm

- DIAP

Traction Bracing

- TRBG

Girder
Portal Frame

- GRDR

Sway Frame

- PORT

Lifting Girder

- SWAY

Top Lateral - TLAT
Bottom Lateral

- BLAT

Railway Stringer

- RLSTR

Front Column

- FCOL

Rear Column

- RCOL

Front Bracing - FBRC
Back Bracing - BBRC
Side Bracing - SBRC
Stringer - STRG
Floor Beam - FLBM
Diaphragm - DIAP
Lateral Bracing (Bot) - BLAT
Traction Bracing - TBRG
Sheave Girders - SHVG
Sheave Bracing - SHVB

3 SUB-ELEMENT (If Applicable):

Vertical Truss Member LoUo- LoUo (Typical for other truss members)
Intermediate

- INT

End

- END

Top Strut

- TSTR

Bottom Strut

- BSTR

Sway Bracing (Cross)	- SWBC
Sway Bracing (Vertical)	- SWBV
End Lateral Bracing	- LATD
End Lat. Bracing (Long)	- LATL
End Lat. Bracing (Trans)	- LATT
LIFT-STRG	- W24 x 84
LIFT-DIAP	- C12 x 207
LIFT-RLST	- W36 x 230
Upper Tower Column	- UCOL
Mid Tower Column	- MCOL
Lower Tower Column	- LCOL
Side Bracing Diagonals	- DIAG
Horizontals C, D, E, F	- HORIZ
Tower Front Floorbeam	- FRNT
Tower Rear Floorbeam	- REAR
Front Lateral Bracing	- FRTL
Railway Side Rear Lateral	- RLYR
Highway Side Rear Lateral	- HWYR
Member FC:FE', FC' FE	- UDIA
Member FE:FG, FE':FG	- MDIA
Member Sb:FC; Sb:RC	- SbFc
Member Cd:Ce; Cf:Cg;	- CdCe
Member Md:Me; Mf:Mg	- MdMe
Member Rc':Rc	- RcRc
Member FG:FG	- Fg :Fg*
Member FF:FF` & - FfFf* \\ \hline Member FE:FE`	- FeFe *
Member FD:FD`	- FdFd*
Member FG:RG	- FgRg
Member Fr:RH	- FhRh

[^0]
OTHER

2L'S	- Miscellaneous Bracings
C's	- Diaphramgs
W24x84	- Original Stringers
W36x23	- Railway Stringers

APPENDIX B. 4
 FRAME MODEL SUPPORT CONDITIONS

SUPPORT CONDITIONS

$$
\begin{array}{ll}
\text { APPROACH SPAN } & 2 \\
\text { TOWER } & 3 \\
\text { LIFT SPAN } & 4
\end{array}
$$

single arron:
TRANSLATION FIXED
ALONG SPECIFIED AXES

$$
\begin{aligned}
& \text { DOUBLE ARROW: } \\
& \text { EOTATION FIXED ABOUT } \\
& \text { SPECIFIED AXES }
\end{aligned}
$$

\qquad DATE \qquad PAGE $/$ OF \qquad

MMM Group Ltd. 2655 North Sheridan Way Mississauga, Ontario 905-823-8500	RS-6 3D Modelling and Structural Analyses Description: Burlington Lift Bridge Engineer: KY	Page: 1 of 1

MMM Group Ltd. 2655 North Sheridan Way Mississauga, Ontario 905-823-8500	RS-6 3D Modelling and Structural Analyses Description: Burlington Lift Bridge Engineer: KY	Page: 1 of 1

APPENDIX B. 5
 FRAME MODEL MEMBER END RELEASES

Mender end ReLeAses - Lat Span

Typical Sway frame 2
Truss 3
BOTTOM LATERAL BRACING (LINT 4 span)
TOP BRACING, LATERAL AND END (LIFT 5 SPAN)
Floor Beams (LIFT Span)
StRINGERS (LIFT SPAN) 7
STRINGER DIAPHRAGMS (LIFT SPAN) 8
traction Bracing (lift Span) 9
Railway Stringers (lift Span) 10

LEGEND

Released moment
-) about local y-

FIXED TORSION
ABOUT LOCAL X-AXS

- AND AXED MOMENT ABOUT LOCAL YAND Z-AXES

Note: Portal frames
AT ENDS ARE SIMILAR

$$
\text { * Joints } U_{2}, U_{4}, U_{4} \text { ONLY }
$$

Typical Sway Frame (LIFT Span)

TRuss (Lift span)

MMM Group Ltd. 2655 North Sheridan Way Mississauga, Ontario 905-823-8500	RS-6 3D Modelling and Structural Analyses Description: Burlington Lift Bridge Engineer: KY	Page: 1 of 1

MMM Group Ltd. 2655 North Sheridan Way Mississauga, Ontario 905-823-8500	RS-6 3D Modelling and Structural Analyses Filename: C:IUsers\YusekKIDesktopl3813009 BLB S-Frame Files\16.01.2014\Sections for Print\Top Lateral Bracing.TEL Description: Burlington Lift Bridge Engineer: KY	Page: 1 of 1

$$
\begin{aligned}
& \text { TOP BRACING (LIFT SPAN) } \\
& \text { - LATERAL } \\
& \text { - END }
\end{aligned}
$$

$$
\text { * Joints } L_{1}, L_{3}, L_{5} \text { ONLY }
$$

Rev 01.22:2014

MMM Group Ltd.
2655 North Sheridan Way Mississauga, Ontario 905-823-8500

RS-6 3D Modelling and Structural Analyses
Page: 1 of 1

Description: Burlington Lift Bridge
Engineer: KY

NOTE: STRINGER ARE TO BE RELEASED RR. TRANSLATION IN THE
GLOBAL X-AXIS (AXIAL) AT THE SOUTH ENDS ONLY.

MMM Group Ltd. 2655 North Sheridan Way Mississauga, Ontario 905-823-8500

RS-6 3D Modelling and Structural Analyses
 Description: Burlington Lift Bridge Engineer: KY

Ralway Stembers (Lift Span)

Member end Releases - Tower

TOWER ISOMETRIC (REFERENCE ONLY) 2
FRONT AND REAR FLOOR BEAMS 3
TOWER STINGERS 4
TOWER DIAPHRAGMS 5
TOWER TRACTION BraCING 6
toner Lateral Bracing 7
Bracing - Side 8
Bracing - Front/rear 9
Sheave Girders 10

Messenger Cable Brackets 12

MiSe McCORMICK RANKIN A member of $\triangle \triangle$ ммм Group
\qquad DATE \qquad OF \qquad

MMM Group Ltd.
2655 North Sheridan Way Mississauga, Ontario 905-823-8500

RS-6 3D Modelling and Structural Analyses
Description: Burlington Lift Bridge
Engineer: KY

Front and rear Floor beams

MMM Group Ltd.
2655 North Sheridan Way
Mississauga, Ontario
905-823-8500

RS-6 3D Modelling and Structural Analyses
Filename: C:IUsers\YusekKIDesktopl3813009 BLB S-Frame Files123.01.2014UPrint Deck.TEL Description: Burlington Lift Bridge Engineer: KY

MMM Group Ltd.
2655 North Sheridan Way Mississauga, Ontario 905-823-8500

RS-6 3D Modelling and Structural Analyses
Filename: C:IUsers\YusekKIDesktop\3813009 BLB S-Frame Files123.01.2014 Print Deck.TEL Description: Burlington Lift Bridge Engineer: KY

Toner Diaphragms

MMM Group Ltd.
2655 North Sheridan Way Mississauga, Ontario 905-823-8500

RS-6 3D Modelling and Structural Analyses
Filename: C:IUsersIYusekKIDesktop13813009 BLB S-Frame Files123.01.20144Print Deck.TEL
Description: Burlington Lift Bridge Engineer: KY

MMM Group Ltd.
2655 North Sheridan Way Mississauga, Ontario

905-823-8500

RS-6 3D Modelling and Structural Analyses
Filename: C:JUsers|YusekKIDesktop13813009 BLB S-Frame Files123.01.20141Print Deck.TEL Description: Burlington Lift Bridge Engineer: KY


```
APPROACH SPAN
"REAR"
```


LIFT SPAN
"FRONT"

Bracing - side

MMM Group Ltd.
2655 North Sheridan Way Mississauga, Ontario 905-823-8500

RS-6 3D Modelling and Structural Analyses
Page: 1 of 1

Filename: C:UUsersiYusekK1Desktop 13813009 BLB S-Frame Files L23.01.20143813009 KY BL _B ANALYSIS 23.01.2014. TEL
Description: Burlington Lift Bridge
Engineer: KY

MMM Group Ltd.
2655 North Sheridan Way Mississauga, Ontario

905-823-8500

RS-6 3D Modelling and Structural Analyses
Page: 1 of 1

Filename: C:IUsersIYusekKLDesktopl3813009 BLB S-Frame Filesl24.01.2014 Print Sheave.TEL Description: Burlington Lift Bridge Engineer: KY

MMM Group Ltd.
2655 North Sheridan Way Mississauga, Ontario

905-823-8500

RS-6 3D Modelling and Structural Analyses
Filename: C:UsersiYusekKIDesktop13813009 BLB S-Frame Files124.01.2014Print Sheave.TEL Description: Burlington Lift Bridge Engineer: KY

Sheave Girder Bottom Chard Brecing

APPENDIX C DESIGN LOAD CALCULATIONS

dead Loads - Deck - Approach and Tower Spans
\rightarrow NOT SPECIFIED IN MEMO FROM DD INN $27,2014:$
\triangle CONCRETE: $23.5 \mathrm{kN} / \mathrm{m}^{3} \quad(190 \mathrm{~mm})$
AS ASPHALT: $22 \mathrm{kN} / \mathrm{m}^{3} \quad$ (6 time)

$$
\left.\begin{array}{l}
\Rightarrow 23.5 \frac{\mathrm{kN}}{\mathrm{~m}^{3}} \times 0.19 \mathrm{~m}=4.465 \mathrm{kPa} \\
\Rightarrow 22 \frac{\mathrm{kN}}{\mathrm{~m}^{3}} \times 0.064 \mathrm{~m}=1.408 \mathrm{kPa}
\end{array}\right\} 5.873 \mathrm{kPa}
$$

Dead loads - Tower - MAChine Room

$$
q=3.6 \mathrm{kPa} \quad[\text { BC TABLE } 41.5,3]
$$

\rightarrow ADD ADDITIONAL DEAD LOAD C TOP OF TOWERS TO account for: sheaves
PLAT FORMS

FLOOR/ROOF CLADDING
live load

$$
\begin{aligned}
& \rightarrow 450 \mathrm{kN} \text { TO BACK COL'S } \\
& \rightarrow 1600 \mathrm{kN} \text { TO FRONT COL's }
\end{aligned}
$$

Lift Span sidewalk - Dear Load.

- Assume supported at truss verticals onay

$$
\Delta L=30^{\prime}-10^{\prime \prime}=9398 \mathrm{~mm}
$$

- Concrete: $\varphi=23.5 \mathrm{kN} / \mathrm{m}^{3}$

$$
\begin{aligned}
W & =2809 \mathrm{~mm} \\
t & =50 \mathrm{~mm} \\
\Rightarrow & \varphi \times 1 \times W_{\times t} \\
& =23.5 \times 9.398 \times 2.809 \times 0.05 \\
& =31.019 \mathrm{kN}
\end{aligned}
$$

- Steel Brackets + Floor Beams:
\triangle ASSUME EquIVALENT TO THREE "S IZ3"

$$
\begin{aligned}
& -L=8.5^{\prime}=259 / \mathrm{mm} \\
& -M=23 \mathrm{lb5} / \mathrm{ft}=0.336 \mathrm{kN} / \mathrm{m} \\
& \Rightarrow 3 \times 0.336 \times 2.591=2.612 \mathrm{kN}
\end{aligned}
$$

$[2006$ SHH 101$]$

- Stringers

$$
\begin{aligned}
& 1 \times 21 \mathrm{WF} 62+1 \times 8 I 23 \Rightarrow 62+23=8516=/ f=1.242 \mathrm{kN} / \mathrm{m} \\
& 1.242 \mathrm{kN} / \mathrm{m} \times 9.398 \mathrm{~m}=11.700 \mathrm{kN}
\end{aligned}
$$

- Bracing L3 $3^{1} 2 \times 3 \times 3$ 多, $\quad 5^{\prime}-2=1.575 \mathrm{~m}, 4^{\prime}-9 / 2^{\prime \prime}=1.4605$

$$
\begin{aligned}
& L=\sqrt{1.575^{2}+1.46 \mathrm{~K}^{2}}=2.148 \mathrm{~m} \times 6 \quad L E G 5=12.887 \mathrm{~m} \\
& 11.6 \mathrm{~kg} \times 12.887 \mathrm{~m} \times \frac{9.81 \mathrm{~m}}{\mathrm{~s}^{2}}=1.466 \mathrm{kN}
\end{aligned}
$$

- RAMING: ASSUME 20165/At $=0.3 \mathrm{kN} / \mathrm{m} \Rightarrow 2.8 \mathrm{kN} \Rightarrow 49.597=050 \mathrm{AN}$ BCD - ANALYSIS WhO. 3213009.304

\qquad d 1×0.5 DATE \qquad Sp/ 114 PAGE \qquad OF \qquad

$$
\begin{aligned}
& \text { traffic Barrier Self Weight - Dead lomid } \\
& \rightarrow \frac{3 \times+155102 \times 102 \times 6.4}{(\text { RANk })} \boldsymbol{\rightarrow}=0.534 \mathrm{kN} / \mathrm{mm} \times 112.776 \mathrm{~m}=\underset{(\text { PER } 210 \mathrm{kE})}{60.2 \mathrm{kN}} \\
& \rightarrow \text { P0575i } W 50 \times 37 \Rightarrow 0.366 \mathrm{kN} / \mathrm{m} \times 1.05 \mathrm{~m}=0.3843 \mathrm{kN} \text { ea. } \\
& \Leftrightarrow 50 \text { DOST PER SIDE }=19.2 \mathrm{kN} \text { PER SIDE } \\
& \Rightarrow 60.2+19.2 \div 80 \mathrm{kN} \text { PER pIPE } \\
& \Rightarrow 80 / 112.776=0.709 \mathrm{kN} / \mathrm{m} \text { LENGTH. }
\end{aligned}
$$

\qquad 1 OF \qquad

Summary of lacing weight lucrense - Dead Load
\rightarrow TOWER:

\rightarrow TRUSS:
\triangle Single panel, dr: $I^{\prime \prime} \rightarrow 15 \%, 20 \%$ [CROSS SWAY Bracing]
us Double Panel, pL: $1 . .1 \rightarrow 27 \%$ [BuTt STRUTS]
LA FOUR PANEL, SLADL: SIM $\rightarrow 58 \%$ [TOP STRUTS]

$$
=77 \times 134=1.0318 E-04
$$

\Longrightarrow TOWER: 34% [FEW VERTKALS RELATIVE 70 DIE + HOR]]
\Longrightarrow TRUSS: CROSS + BOT STRUTS $=24 \% \rightarrow 9.548 \mathrm{E}-05$

$$
\text { Top STEUTS }=58 \% \Rightarrow 12166 E-04
$$

* InCREASE STEEL DENSTTY for these members.
\qquad who. 3213009.304 DESIGNED DE DATE FEB I///4/
\qquad $k 4$ \qquad OF \qquad

DeAd
COMNTERWEIGHT LOAD [LIFT San fully Closed]
\rightarrow WEIGHT OF SPAN
1935.17 short tons [ROSS Eng, 2004$]$

$$
\begin{aligned}
& =1755556.693 \mathrm{~kg} \\
& =17220.011 \mathrm{kN}
\end{aligned}
$$

\rightarrow MBALANCE

$$
23600 \text { [MEASURED/MBALANCE] + } 4500[\text { SIDEWALL MOD] }=281001 \mathrm{bS} \text { [DELIAN, } 2000
$$

$$
=124.995 \mathrm{kN}=>17220.011-124.995=17095.016 \mathrm{kN}
$$

\longrightarrow FORCE PER COUNERWEIGAT: [TWO COUNTERWEIGHTS]

$$
\frac{17095.016}{2}=8547.508 \mathrm{kN} \text { PER COUNERWEIGHT }
$$

\rightarrow FORCE PER SHEAVE: (FOUR PER TOWER)

$$
\frac{8547.508}{4}=2136.877 \mathrm{kN} \quad[\text { DUE TO TENSION FROM CWT ONLY }]
$$

\rightarrow FORCE PER SHEAVE GIRDER. (TWO PER SHEAVE)

$$
\frac{2136.877}{2}=1068,439 \mathrm{KN} \text { [DUE TO TENSION FROM CWT ONLY] }
$$

$1068.439 \times 2=2136.817 \mathrm{kN}$ [DUE TO DOWNWARD FORCE FROM LIFT SPAN] \triangle Equal to FORCE OF COUNTERWEIGTIT
\rightarrow APRY AT $\begin{gathered}2^{2}-6^{\prime \prime} \\ (0.762 \mathrm{~m})\end{gathered}$ FROM \& FRONT COLUMNS
\qquad DATE
DATE \qquad
\qquad OF \qquad
\rightarrow WIND LOAD (FULLY CLOSED) TRUSS

- Horizontal Deal

$$
\leadsto F_{H}=q C_{e} C_{g} C_{n} \rightarrow \text { ASSUME NO SHIELDING } \Rightarrow K_{x}=1.0
$$

$$
q=460 \mathrm{~Pa} \quad\left[\begin{array}{ll}
\text { TABLE } & A 3.1 .1
\end{array}\right]
$$

$$
C_{e}=1.1 \mathrm{Clokm}[\text { TABLE } 3.8]
$$

$$
C_{g}=2.0 \quad\left[\begin{array}{ll}
\mathrm{Cl} & 3.10 .13
\end{array}\right]
$$

$$
C h=2.0 \quad\left[\begin{array}{ll}
3.10 .2 .2
\end{array}\right]
$$

$\Rightarrow F_{H}=2.024 \mathrm{kR} \rightarrow$ PRY TO MAN TRUSS MEMBERS, NEGLECT bracing s.

- Wind on live load - LengTh $\times 3.0 \mathrm{~m}$ height
- Vertical drag
\qquad
\qquad OF \qquad 2

$$
\begin{aligned}
& \Leftrightarrow F_{V}=q C_{e} C_{g} C_{V}, \quad C_{V}=10 \quad\left[\begin{array}{ll}
C l & 3.10 .2 .3
\end{array}\right] \\
& F_{V}=1.012 \angle P a \rightarrow \begin{array}{l}
\text { APR AS UrL OVER PLAN AREA OF } \\
\\
\text { DECK }
\end{array} \\
& \begin{array}{l}
\rightarrow \text { USE } 85 \% \text { OF DuCK AREA }[C 113,9.3 .5] \\
\text { (OPEN GRATiNG) }
\end{array} \\
& \Rightarrow F_{V}=0.8602 \nless P_{G}
\end{aligned}
$$

Horizontal Wind Lading - Truss [transverse] fully Closed
\rightarrow SURFACE AREA
METEUSS MEMBERS

- Vetetkals: Choose tallest (06:L6)

$$
\begin{aligned}
& 1^{\prime}-9^{\prime \prime} \times 55^{\prime}-0^{\prime \prime} \\
= & 0.5334 \mathrm{~m} \times 16.764 \mathrm{~m}= \\
& 8.942 \mathrm{~m}^{2} \times 13 \mathrm{eq}=116.245 \mathrm{~m}^{2} \\
& 41.080 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

- Diagonals: (U5:16) - LONGEST

$$
\begin{aligned}
& 2^{\prime}-0 \frac{1}{2} \times 63.053 \mathrm{ft} \\
= & 0.623 \mathrm{~m} \times 19.219 \mathrm{~m}= \\
& 11.960 \mathrm{~m}^{2} \times 12 \mathrm{ea}=143.517 \mathrm{~m}^{2} \\
& 41.260 \mathrm{mN} / \mathrm{m}
\end{aligned}
$$

- TOP CHORD

$$
\begin{aligned}
& 2^{\prime}-61^{\prime \prime} \times 370^{\prime}-0^{\prime \prime} \\
& 0.7747 \times 112.776=87.368 \mathrm{~m}^{2}
\end{aligned}
$$

- BOT CORD

$$
\text { [ASSUME SAME AS TOP] }=\frac{87.368 \mathrm{~m}^{2}}{41570 \mathrm{kN}}
$$

\rightarrow SIDEWALK (LONG. MEMBER)

$$
\triangle \text { STEINER }
$$

\qquad of 2

$$
\begin{aligned}
& \text { - } 23^{\prime \prime} \times 370^{\prime}-0^{\prime \prime} \\
& =0.584 \times 112.776=65.884 \mathrm{~m}^{2} \rightarrow 1.182 \mathrm{kN} / \mathrm{m} \\
& \begin{aligned}
& 24^{\prime \prime} \times 370^{\prime} \\
= & 0.610 \times 112.776=68.748 \mathrm{~m}^{2} \quad \rightarrow 1.235 \mathrm{kN} / \mathrm{m}
\end{aligned} \\
& 1.57+1.235=2.805 \\
& \text { (pLY) } \\
& \Rightarrow \text { ToTAL }=569.13 \mathrm{~m}^{2}
\end{aligned}
$$

Horizontal Wind Loading - Towers [transverse]
\rightarrow APPLYAS UDL PER UNI MEMBER LENGTH
\rightarrow MEMBER WIDTHS: FRONT COLIN: 0.972 m
rear Column: Assume 0.972 m [Conservative]
HORIZONTAL : $0,622 \mathrm{~m}$
Jacking Girder: 1.8 m
DAGGONAL: $\quad 0.622 \mathrm{~m}$
SHEAVE GIRDER: 2.134 m
ELEVATOR SHAFT 1.829 m *
Machine Rom Canoding: 4.572 m

* Note: ELEVATOR SHAFT LINE LOAD TO BE SUPERIMPOSED ONTO REAR WEST COLUMNS ONLY.
\rightarrow Calculate horizontal Drab: $F_{n}=q C e C g C_{n}, C_{n}=20 \quad[C 1$ 3.10.2.2]

$$
[0,3,10,1,2]
$$

$$
\left[c_{1}, 10,1,3\right]
$$

$$
[013,0,1,4]
$$

NOTE, FF $>$ LOADS SPECIFIED IN [CL 13.7.3.10]

$$
\begin{aligned}
& q=460 \text { 层 } \\
& C_{g}=2.0 \\
& \begin{array}{l}
\text { LEVELS PER ORIGMAL } \\
\text { CoNTRACT DWt } 19 \text { OF } 62
\end{array} \quad\left\{\begin{array}{l}
C_{e}, \text { bot }=1.1 \\
C_{e} \text {, mid }=1.3 \\
C_{e} \text {, top }=1.5
\end{array}\right. \\
& \Rightarrow F_{\text {H,BOT }}=2.024 \mathrm{kPa} \text { LEVEL GK } \\
& \text { FWD }=2.392 \mathrm{kPa} \text { LEVEL E-6 } \\
& \text { FH, Tot = } 2.760 \mathrm{kPa} \text { LEVEL AlE }
\end{aligned}
$$

\rightarrow VAL LOADS OASES ON MEMBER WIDTH): [TOO LOADS W PACKETS]
*
$\left.\begin{array}{rl}4 D & \text { FEAR KO L } \\ = & \text { BOT } \\ \text { MOP }\end{array}\right\}$ SAME AS FRONT
$4=$ HORIZONTALS - BOT $=1.259 \mathrm{kNh}$
MID $=1.488 \mathrm{kN} / \mathrm{m}$
TOP $=1.717 \mathrm{kN} / \mathrm{m}$
\Rightarrow JACK HG GIRDER $-B_{O T}=3.643 \mathrm{kN} / \mathrm{mm} \quad[2.550]$

- DiAGoNAL BOT $1.259 \mathrm{kN} / \mathrm{m}$
[0.881]
[1.042]
[1.202]
[a.881]
$[1.042]$
[1.202]

A~ ExT. Sheave GrIPer: TOP $5.890 \mathrm{kry} / \mathrm{m}$
[4.123]
$\left.\begin{array}{l}\Delta \text { ELEVATOR SHAFT - BOT } 1.829 \times 2024=3.702 \mathrm{kN} / \mathrm{mm} \\ (6 \mathrm{ft} \text { U ide }=1.829 \mathrm{~m})\end{array}\right\}$

* Note: the above converts wind pressure [3.534]

TO FORCE PER UNIT LENGTH OF A MEMBER.
70% LOADS ARE USED TO APPLY A WIND AT AN OBLIQUE ANGLE (45°).

$$
\Rightarrow \cos 45=0.7
$$

 \rightarrow Line Land due to merger with'

Δ Fgifg': BOT $1.537 \times 2.024=3.110 \quad[2.177]$
4 Teansuere Sheave Girder: Top $4.585 \times 2.760=12.654 \mathrm{~km} / \mathrm{m}[8.858]$-Assume Front \leadsto ELEVATOR SHAFT i MID: $1.067 \times 2.392=2.552$ [1.786]

4 MACHINE ROOM CLADDNG \rightarrow APPLY AREA LOAD $=2760 \mathrm{LPa}[1.952]$

Whing Load on Teaffic
\rightarrow EENGTH OF SPAN: $370^{\prime}=112.776 \mathrm{~m} \rightarrow$ ASSUME ONE LINE OF TEUEKS
\rightarrow HEILHT OF VEHILLE $=3.0 \mathrm{~m}$
[CMBDC]
\geq SURFACE AREA $=338.328 \mathrm{~m}^{2}$
\rightarrow WIND LOTD:

$$
2.024 \mathrm{kP} \times 338.328 \mathrm{~m}^{2}=684.776 \mathrm{kN}
$$

\longrightarrow APPLY AS POINT LOAD TO FLOOREEAMS AT CONNELTION TO RAILWAY TRUSS
. 13 FLOOREEAMS

- Il interion, 2 evos (Equinalent To 12)
$\Rightarrow 684.776 / 12=57.065 \mathrm{kN}$
$\Rightarrow \quad 11$ INTC 57.065 kN

$$
\Rightarrow 2 \text { ENDC } 28.532 \mathrm{kN}
$$

\qquad
\qquad DATE FEB $13 / 14$ DATE \qquad OF \qquad
\rightarrow Line Lohding

- ApPLY MLN/m UDL based on 3m lene [C1 A3.4.1] as Apay $4,5 \mathrm{kv} / \mathrm{m}$ line load depun each stringer [conservetine]
(Represents idedized wath)
LS EIGAT LOAD CASES:

$$
\begin{array}{ll}
1=- & -234 \\
12= & =34 \\
123 & =-14 \\
234 & 1-14
\end{array}
$$

\rightarrow ASSUMES NO STIFFRESS FPOM THE PECK

Span	Member	Ice					
		Height (m)	Width (m)	Perimeter (m)	Thickness (m)	Ice Density $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	Force (kN/m)
Approach	Stringers (0/S only)	0.612	0.229	0.841	0.031	9.8	0.2554958
Tower	Columns*	0.972	0.800	7.088	0.031	9.8	2.1533344
	Bracing**	0.622	0.829	5.804	0.031	9.8	1.7632552
	Sheave Girder (0./S)	2.134	0.432	2.566	0.031	9.8	0.77949
	Stringers (0/S only)	0.612	0.229	0.841	0.031	9.8	0.2554958
Lift	Truss*	0.775	0.660	5.740	0.031	9.8	1.743812
	Sway**	0.533	0.622	2.310	0.031	9.8	0.701778
	Lateral**	0.775	0.356	4.524	0.031	9.8	1.3743912
	Floor Beam	1.994	0.508	10.008	0.031	9.8	3.0404304
	Stringer	0.612	0.229	3.364	0.031	9.8	1.0219832
	Lifting Girder	4.299	0.914	20.852	0.031	9.8	6.3348376
	Diaphragms	0.305	0.074	1.516	0.031	9.8	0.4605608
	Railway Stringers	0.927	0.418	5.380	0.031	9.8	1.634444

* Assumes inside of member has ice accretion due to holes
** Assume lattice members are solid; treat as box or "I" section

NOTES: Approach/Tower/Lift Span Decks: Assume 31mm radial ice accrection [Cl. 3.12.6.2]
Assume lift span open steel grating deck is 100% solid
Machine House Cladding/Roof: $\quad 9.8 \mathrm{kN} / \mathrm{m} 3 \times 0.031 \mathrm{~m}=0.3038 \mathrm{kPa}$
Apply as area load

Tevpeerrues Stens [elose]]
\rightarrow LOAD CASE I: BOTHOM GHOW $10^{\circ} \mathrm{C}$ CCOLER TWMN TOP

- Assume tha cejoger AND WAFHER MEMGER

PEHBEE 15 AT AMBENF TEMAKRATURE, HAS TOG THGRMAR LOAB APRLED.

\rightarrow Morsontal Drag:

$$
\begin{aligned}
& \Leftrightarrow F_{H}=q C_{e} C_{g} C_{n} \rightarrow \text { ASSUME NO SHELDING } \Rightarrow K_{x}=1.0 \\
& q=460 \mathrm{Fa} \quad[\text { TTBLE }, ~ A 3.1 .1 .]
\end{aligned}
$$

$$
\begin{aligned}
& c_{g}=2.0 \quad\left[\begin{array}{lll}
C & 3.10 .1 .3
\end{array}\right] \\
& C_{n}=2.0 \quad\left[\begin{array}{ll}
C l & 3.10 .2 .2
\end{array}\right] \\
& \Rightarrow F_{\text {Hy }}=2576 \mathrm{~Pa}>1500 \mathrm{~Pa} \rightarrow \therefore \text { Use } 2576 \text { 屋 [Ttansuerse] } \\
& \text { LD APRLY AS LINE LOAD WET MEMRER WIDTH } \\
& \triangle \text { LONG }=50 \% \text { TRANSUERSE }
\end{aligned}
$$

$\rightarrow V_{\text {ERTMGR }}$ Denci

$$
\Delta F_{v}=q C_{e} C_{g} C_{V}=460 \times 14 \times 2.0 \times 10=1288 \mathrm{~Pa}>0.25 \mathrm{kPa} \rightarrow \therefore \text { Ur } 1.2881 \mathrm{kPa}
$$

\triangle APOLY TO 85% OF DECK AEEA OUE TO OPEN STEEL GRATING

$$
\Rightarrow 1.288 \times 0.85=1.095 \mathrm{kla} \text { VEETICAL }
$$

\rightarrow LINE LOADS DUE TO HORIZONTAL DRAG: (50% in brackets)

$\left.\begin{array}{l}\text { - Verveal }=1.602(0.801) \\ \text { - Digenal }=1.602(0.801)\end{array}\right\}$ lanotivinal horizontal

- BOTYOM STRNT $=1.602(0.801)$
- CFoss Bravin $=0.531(0.265)$
$-\ln ^{+}$FLRBA $=5.137(2.568) \quad \forall$ USE 50%
$-L_{\text {F7 }}$ GRDR $=11.074(5.537)$
\qquad OF \qquad
thermal (temperature) Steams - Fully Raised
\rightarrow ASSUME ALL SOUTH AND WEST FARES ARE $10^{\circ} \mathrm{C}$ WARMER, 4 APPLY TO COLUMNS AND BRACING ONLY [TOWERS ONLY]
impact Load and dead la ad of Lat Span
\rightarrow WEIGHT OF LIFT SPAN:

* Four sheave girders shall be assumed to equally share the load at each cornice.
\rightarrow WEIGHT OF GUUNTERWEIGHTI
8547,508 KN ENCH [SEE FEB $11 / 13$ CHE]
FORCE PER SHEAVE GIRDS: 1068.439 kN [DUE TO TENSION FROM CWT ONLY] $\triangle \operatorname{INPALC}(20 \%)$ PER SHEAVE GIRDER 213.688 kN

Lift Span

	DL*	DL	DL	DL Per Shv Gdr	Impact
	(ton)	(kg)	(kN)	$(1 / 4)^{* *}$	(20%)
SE	484.540	439567.420	4309.959	1077.490	215.498
SW	482.030	437290.386	4287.632	1071.908	214.382
NE	486.340	441200.353	4325.969	1081.492	216.298
NW	482.260	437499.038	4289.678	1072.420	214.484

Counterweight

DL per shv gdr	Impact (20\%)
1068.439	213.688

Total

SE
SW
NE
NW

DL per shv gdr	Impact (20\%)
2145.929	429.186
2140.347	428.069
2149.931	429.986
2140.859	428.172

NOTES: \quad * Source: Ross Engineering, Weighing the Bridge , May 2004
** Four sheave girders support each corner of the lift span (two sheaves each supported by two girders).

Impact load is 20% the weight of all moving components (lift span + counterweights).

Designed:
Checked:

APPENDIX D. 1
 CALCULATION SUMMARIES (PER SECTION)

			$\mathrm{M}_{\mathrm{a}}, \mathrm{M}_{\mathrm{b}}, \mathrm{M}_{\mathbf{c}}, \mathrm{M}_{\text {max }}$ (kN.m)						Max Mf (kN.m)	Max $\mathrm{V}_{\mathrm{f}}(\mathrm{kN})$
Section	Max $\mathrm{C}_{\mathrm{f}}(\mathrm{kN})$	Min $\mathrm{C}_{\mathrm{f}}(\mathrm{kN})$	Sta. 0	Sta. 1/4	Sta. 1/2	Sta. 3.4	Sta. End	$M_{\text {Max }} A b s$		
2L3.5X3.5X.375	127	-110	0	1	-1	1	0	1	-1	-1
2L3-1/2x3-1/2x3/8	65	-220	0	0	0	0	0	0	0	0
2L4X4X. 375	26	-25	0	0	0	0	0	0	0	1
2L4x4x3/8	143	-304	0	0	1	0	0	1	1	1
2L5X3.5X. 375	35	-82	-4	-3	-3	-3	-4	4	-4	-2
2L5X5X. 5	7	0	0	4	6	4	0	6	6	-3
2L5x5x3/8	252	-253	0	1	1	1	0	1	1	1
2L6X6X. 375	122	-118	-9	-8	8	5	0	9	-9	3
2L6x6x1/2	471	-111	0	12	18	12	0	18	18	5
C12X20.7	644	-137	0	0	0	0	0	0	0	1
C15X33.9	3	-4	0	0	0	0	0	0	0	1
C310X37	618	-89	0	0	0	0	0	0	0	1
C380X50	4	-3	0	0	0	0	0	0	0	1
L4X4X. 375	0	0	0	0	0	0	0	0	0	0
L5X5X. 375	26	-27	0	0	0	0	0	0	0	0
L5X5X. 5	13	-13	0	0	0	0	0	0	0	1
LIFT-BLAT	948	-557	0	70	51	70	0	70	70	15
LIFT-FLRB-END	62	-35	-3493	513	1493	536	-3332	3493	-3493	210
LIFT-FLRB-INT	86	-570	0	4673	6007	4168	0	6007	6007	402
LIFT-HWYT-LOL2	4123	2569	0	85	70	82	0	85	85	-19
LIFT-HWYT-LOU1	-3832	-6920	0	337	417	337	0	417	417	88
LIFT-HWYT-L2L4	7953	5753	0	176	176	171	0	176	176	-19
LIFT-HWYT-L2U3	-2025	-3567	0	115	153	115	0	153	153	33
LIFT-HWYT-L4L6	9753	7255	0	209	242	203	0	242	242	-37
LIFT-HWYT-L4U5	-879	-1506	0	108	143	108	0	143	143	19
LIFT-HWYT-UOLO	-163	-376	0	0	0	0	0	0	0	0
LIFT-HWYT-UOU1	414	-22	0	65	85	65	0	85	85	36
LIFT-HWYT-U1L1	720	257	0	0	0	0	0	0	0	0
LIFT-HWYT-U1L2	4787	2733	0	131	175	131	0	175	175	40
LIFT-HWYT-U1U3	-2636	-6239	0	136	107	132	0	136	136	34
LIFT-HWYT-U2L2	-179	-302	0	0	0	0	0	0	0	0
LIFT-HWYT-U3L3	1058	368	0	0	0	0	0	0	0	15
LIFT-HWYT-U3L4	2667	1491	0	98	131	98	0	131	131	17
LIFT-HWYT-U3U5	-4085	-9214	0	300	373	293	0	373	373	74
LIFT-HWYT-U4L4	89	-195	0	0	0	0	0	0	0	0
LIFT-HWYT-U5L5	906	276	0	0	0	0	0	0	0	0
LIFT-HWYT-U5L6	654	287	0	99	132	99	0	132	132	-6
LIFT-HWYT-U5U6	-4752	-10068	0	312	384	303	0	384	384	-47
LIFT-HWYT-U6L6	-183	-229	0	0	0	0	0	0	0	0
LIFT-LFGR	13	-58	0	602	825	602	0	825	825	-135
LIFT-PORT-BSTR	72	-40	0	38	22	38	0	38	38	12
LIFT-PORT-LATD	66	-77	0	6	8	6	0	8	8	1
LIFT-PORT-LATL	66	-77	0	15	20	15	0	20	20	4
LIFT-PORT-LATT	82	-93	0	1	1	1	0	1	1	2
LIFT-PORT-SWBC	98	-180	0	17	34	17	0	34	34	7
LIFT-PORT-SWBV	45	25	0	3	4	3	0	4	4	3
LIFT-RLYT-LOL2	3980	1521	0	85	71	83	0	85	85	20
LIFT-RLYT-LOU1	-3794	-6741	0	337	417	337	0	417	417	384
LIFT-RLYT-L2L4	8049	3160	0	184	170	177	0	184	184	320
LIFT-RLYT-L2U3	-2043	-3601	0	130	174	130	0	174	174	326
LIFT-RLYT-L4L6	9113	3929	0	241	242	230	0	242	242	1025
LIFT-RLYT-L4U5	-840	-1567	0	118	157	118	0	157	157	257
LIFT-RLYT-UOLO	-282	-406	0	0	0	0	0	0	0	310
LIFT-RLYT-U0U1	1139	-449	0	65	85	65	0	85	85	25

			$\mathrm{M}_{\mathrm{a}}, \mathrm{M}_{\mathrm{b}}, \mathrm{M}_{\mathrm{c}}, \mathrm{M}_{\text {max }}$ ($\mathbf{k N . m}$)						Max Mf (kN.m)	Max $\mathrm{V}_{\mathrm{f}}(\mathrm{kN}$)
Section	Max $\mathrm{C}_{\mathrm{f}}(\mathrm{kN})$	Min $\mathrm{C}_{\mathrm{f}}(\mathrm{kN})$	Sta. 0	Sta. 1/4	Sta. 1/2	Sta. 3.4	Sta. End	$M_{\text {Max }} A b s$		
LIFT-RLYT-U1L1	690	283	0	0	0	0	0	0	0	0
LIFT-RLYT-U1L2	4872	2935	0	128	170	128	0	170	170	299
LIFT-RLYT-U1U3	-4730	-6763	0	195	160	187	0	195	195	65
LIFT-RLYT-U2L2	-114	-308	0	0	0	0	0	0	0	0
LIFT-RLYT-U3L3	782	301	0	0	0	0	0	0	0	0
LIFT-RLYT-U3L4	2649	1577	0	109	145	109	0	145	145	299
LIFT-RLYT-U3U5	-6961	-10007	0	305	338	290	0	338	338	62
LIFT-RLYT-U4L4	-118	-315	0	0	0	0	0	0	0	0
LIFT-RLYT-U5L5	775	412	0	0	0	0	0	0	0	0
LIFT-RLYT-U5L6	644	392	0	99	132	99	0	132	132	287
LIFT-RLYT-U5U6	-7693	-10891	0	337	380	319	0	380	380	94
LIFT-RLYT-U6L6	-237	-340	0	0	0	0	0	0	0	0
LIFT-SWAY-BSTR	70	-36	0	9	-15	9	0	15	-15	6
LIFT-SWAY-SWBC	87	-105	0	0	0	0	0	0	0	0
LIFT-SWAY-SWBV	23	-46	0	0	0	0	0	0	0	0
LIFT-SWAY-TSTR	212	-278	-25	27	19	27	0	27	27	11
LIFT-TLAT	538	-536	0	40	44	40	0	44	44	16
TOWR-BBRC-MDIA	1225	-1660	0	43	57	43	0	57	57	19
TOWR-BBRC-RcRc	99	62	0	207	276	207	0	276	276	70
TOWR-BBRC-RdRd	16	-98	0	20	-32	20	0	32	-32	-7
TOWR-BBRC-ReRe	329	88	0	27	-22	27	0	27	27	14
TOWR-BBRC-RfRf	848	12	0	19	-38	19	0	38	-38	14
TOWR-BBRC-RgRg	226	46	0	312	452	312	0	452	452	62
TOWR-BBRC-UDIA	72	-423	0	43	57	43	0	57	57	19
TOWR-BLAT-FRTL	554	-582	29	28	23	14	0	29	29	-7
TOWR-BLAT-HWYL	509	9	0	36	14	-9	0	36	36	17
TOWR-BLAT-RLYL	26	-543	0	37	12	-7	0	37	37	17
TOWR-FBRC-CdCe	63	-140	0	-19	-25	-19	0	25	-25	11
TOWR-FBRC-FdFd	366	107	0	20	-37	20	0	37	-37	8
TOWR-FBRC-FeFe	810	673	0	44	25	44	0	44	44	21
TOWR-FBRC-FfFf	1366	-1140	0	18	-48	18	0	48	-48	15
TOWR-FBRC-FgFg	459	347	0	567	934	567	0	934	934	13
TOWR-FBRC-MDIA	1777	-3139	0	46	61	46	0	61	61	21
TOWR-FBRC-MdMe	69	-31	0	-19	-25	-19	0	25	-25	10
TOWR-FBRC-UDIA	166	-1384	0	43	57	43	0	57	57	19
TOWR-FCOL-BCOL	-10183	-19458	0	-1505	-652	437	351	1505	-1505	-13
TOWR-FCOL-MCOL	-10073	-16596	351	156	-149	153	-171	351	351	25
TOWR-FCOL-UCOL	-11	-14547	-623	-467	-311	-156	216	623	-623	136
TOWR-FLBM-FRNT	44	28	0	941	1273	940	0	1273	1273	-272
TOWR-FLBM-REAR	72	2	0	2909	3930	2912	0	3930	3930	891
TOWR-RCOL-BCOL	-288	-6602	0	-775	-360	245	236	775	-775	257
TOWR-RCOL-MCOL	-176	-3920	236	93	-87	-87	-108	236	236	20
TOWR-RCOL-UCOL	-10	-2578	-126	-120	-160	-137	182	182	182	51
TOWR-SBRC-DIAG	919	-1589	0	15	-35	15	0	35	-35	11
TOWR-SBRC-FgRg	485	276	0	47	62	47	0	62	62	14
TOWR-SBRC-FhRh	568	-72	0	164	218	164	0	218	218	90
TOWR-SBRC-HORZ	452	266	0	43	58	43	0	58	58	24
TOWR-SBRC-SbFc	82	-534	0	15	20	15	0	20	20	12
TOWR-SHVG-G1	37	-34	0	1775	1256	665	0	1775	1775	2750
TOWR-SHVG-G2G3	20	-30	0	1786	1270	674	0	1786	1786	2755
TOWR-SHVG-G4	82	-76	0	1894	1416	786	0	1894	1894	2812
TOWR-SHVG-G6	56	-235	0	-275	-618	-276	0	618	-618	146
TOWR-SHVG-G7	561	221	0	31159	33498	31160	0	33498	33498	10610
TOWR-SHVG-G8	50	-34	0	3660	4000	3654	0	4000	4000	-1274
W10X22	0	-47	0	11	21	30	37	37	37	11
W12X26	0	-136	76	79	80	77	72	80	80	-5

			$\mathrm{M}_{\mathrm{a}}, \mathrm{M}_{\mathrm{b}}, \mathrm{M}_{\mathrm{c}}, \mathrm{M}_{\text {max }}$ (kN.m)						Max Mf (kN.m)	Max $\mathrm{V}_{\mathrm{f}}(\mathbf{k N}$)
Section	Max $\mathrm{C}_{\mathrm{f}}(\mathrm{kN})$	Min $\mathrm{C}_{\mathrm{f}}(\mathrm{kN})$	Sta. 0	Sta. 1/4	Sta. 1/2	Sta. 3.4	Sta. End	$M_{\text {Max }} A b s$		
W12X35	-2	-136	72	59	47	65	-82	82	-82	13
W16X36	0	0	30	24	19	26	31	31	31	-7
W24X84	0	0	0	503	676	534	0	676	676	29
W27X102	4	-8	-197	125	142	124	-192	197	-197	100
W33×130	0	0	-197	239	294	240	-202	294	294	125
W36X230	1811	-68	0	68	71	67	0	71	71	23
W690X152	14	-2	-206	124	136	122	-201	206	-206	73
W840X193	0	0	-203	238	286	239	-208	286	286	-130

MMM GROUP
Burlington Lift Bridge
Summary of Sections - RAISED

			$\mathrm{M}_{\mathrm{a}}, \mathrm{M}_{\mathrm{b}}, \mathrm{M}_{\mathrm{c}}, \mathrm{M}_{\text {max }}$ (kN.m)						Max Mf (kN.m)	Max $\mathrm{V}_{\mathrm{f}}(\mathbf{k N}$)
Section	Max $\mathrm{C}_{\mathrm{f}}(\mathrm{kN})$	Min $\mathrm{C}_{\mathrm{f}}(\mathrm{kN})$	Sta. 0	Sta. 1/4	Sta. 1/2	Sta. 3/4	Sta. End	$\mathrm{M}_{\text {Max }}$ Abs		
2L3.5X3.5X.375	403	-387	0	-1	-1	-1	0	1	-1	-1
2L3-1/2x3-1/2x3/8	83	-80	0	0	0	0	0	0	0	0
2L4X4X. 375	26	-31	0	0	0	0	0	0	0	-1
$2 \mathrm{~L} 4 \times 4 \times 3 / 8$	75	-138	0	0	1	0	0	1	1	-1
2L5X3.5X. 375	104	-239	0	0	-1	0	0	1	-1	-1
2L5X5X. 5	5	-5	0	4	6	4	0	6	6	-3
2L5x5x3/8	70	-70	0	1	1	1	0	1	1	-1
2L6X6X. 375	300	-294	0	17	20	14	0	20	20	8
2L6x6x1/2	104	-99	0	13	19	13	0	19	19	-6
C12X20.7	13	-12	0	0	0	0	0	0	0	0
C15X33.9	4	-1	0	0	0	0	0	0	0	-1
C310X37	12	-11	0	0	0	0	0	0	0	0
C380X50	1	-5	0	0	0	0	0	0	0	-1
L4X4X. 375	0	0	0	0	0	0	0	0	0	0
L5X5X. 375	31	-26	0	0	0	0	0	0	0	0
L5X5X. 5	9	-9	0	0	0	0	0	0	0	-1
LIFT-BLAT	857	-732	0	37	39	37	0	39	39	14
LIFT-FLRB-END	610	-12	0	402	533	400	0	533	533	-134
LIFT-FLRB-INT	177	-76	0	1047	1383	987	0	1383	1383	351
LIFT-HWYT-LOL2	-2128	-2574	0	-4	-116	-3	0	116	-116	-35
LIFT-HWYT-LOU1	-4591	-5719	0	313	446	362	0	446	446	-105
LIFT-HWYT-L2L4	1446	1092	0	77	-49	76	0	77	77	-46
LIFT-HWYT-L2U3	-2413	-2936	0	118	158	118	0	158	158	-34
LIFT-HWYT-L4L6	2952	2581	0	94	-12	94	0	94	94	-42
LIFT-HWYT-L4U5	-971	-1215	0	112	149	112	0	149	149	-31
LIFT-HWYT-UOLO	5158	4247	0	-20	-26	-20	0	26	-26	-8
LIFT-HWYT-U0U1	3680	2258	0	49	64	49	0	64	64	-27
LIFT-HWYT-U1L1	536	326	0	-36	-56	-47	0	56	-56	15
LIFT-HWYT-U1L2	3893	3203	0	134	178	134	0	178	178	-41
LIFT-HWYT-U1U3	-980	-1626	0	55	-76	55	0	76	-76	-46
LIFT-HWYT-U2L2	-115	-218	0	-47	-75	-60	0	75	-75	18
LIFT-HWYT-U3L3	550	332	0	-53	-86	-63	0	86	-86	18
LIFT-HWYT-U3L4	2067	1700	0	101	134	101	0	134	134	-29
LIFT-HWYT-U3U5	-2823	-3947	0	168	87	168	0	168	168	-62
LIFT-HWYT-U4L4	-112	-222	0	-55	-90	-64	0	90	-90	18
LIFT-HWYT-U5L5	534	314	0	-57	-94	-66	0	94	-94	18
LIFT-HWYT-U5L6	458	316	0	102	136	102	0	136	136	-28
LIFT-HWYT-U5U6	-3533	-4722	0	176	91	176	0	176	176	-65
LIFT-HWYT-U6L6	-115	-228	0	-57	-94	-66	0	94	-94	18
LIFT-LFGR	530	4	0	456	634	456	0	634	634	153
LIFT-PORT-BSTR	148	-17	0	36	27	36	0	36	36	-15
LIFT-PORT-LATD	91	-71	0	3	4	3	0	4	4	-2
LIFT-PORT-LATL	92	-99	0	8	11	8	0	11	11	-5
LIFT-PORT-LATT	113	-120	0	0	0	0	0	0	0	-1
LIFT-PORT-SWBC	118	-163	0	16	30	16	0	30	30	-7
LIFT-PORT-SWBV	36	25	0	2	3	2	0	3	3	-2
LIFT-RLYT-LOL2	-1137	-1962	0	6	-112	6	0	112	-112	-35
LIFT-RLYT-LOU1	-4677	-5755	0	313	446	362	0	446	446	-105
LIFT-RLYT-L2L4	1484	867	0	82	-66	82	0	82	82	-53
LIFT-RLYT-L2U3	-2521	-3032	0	136	181	136	0	181	181	-39
LIFT-RLYT-L4L6	2942	1992	0	115	-52	115	0	115	115	-61
LIFT-RLYT-L4U5	-1004	-1251	0	123	164	123	0	164	164	-34
LIFT-RLYT-UOLO	5153	4362	0	-20	-26	-20	0	26	-26	-8
LIFT-RLYT-UOU1	3747	3194	0	49	64	49	0	64	64	-27
LIFT-RLYT-U1L1	492	260	0	-36	-56	-47	0	56	-56	15
LIFT-RLYT-U1L2	3974	3375	0	130	173	130	0	173	173	-40

MMM GROUP
Burlington Lift Bridge
Summary of Sections - RAISED

			$\mathrm{M}_{\mathrm{a}}, \mathrm{M}_{\mathrm{b}}, \mathrm{M}_{\mathrm{c}}, \mathrm{M}_{\text {max }}$ (kN.m)						Max Mf (kN.m)	Max $\mathrm{V}_{\mathrm{f}}(\mathrm{kN})$
Section	Max $\mathrm{C}_{\mathrm{f}}(\mathbf{k N}$)	Min $\mathrm{C}_{\mathrm{f}}(\mathrm{kN})$	Sta. 0	Sta. 1/4	Sta. 1/2	Sta. 3/4	Sta. End	$\mathrm{M}_{\text {Max }} \mathrm{Abs}$		
LIFT-RLYT-U1U3	-1302	-1977	0	102	-57	102	0	102	102	-59
LIFT-RLYT-U2L2	-105	-261	0	-47	-75	-60	0	75	-75	18
LIFT-RLYT-U3L3	551	325	0	-53	-86	-63	0	86	-86	18
LIFT-RLYT-U3L4	2136	1791	0	112	149	112	0	149	149	-32
LIFT-RLYT-U3U5	-4159	-4449	0	183	70	183	0	183	183	-70
LIFT-RLYT-U4L4	-123	-263	0	-55	-90	-64	0	90	-90	18
LIFT-RLYT-U5L5	537	323	0	-57	-94	-66	0	94	-94	18
LIFT-RLYT-U5L6	472	332	0	102	136	102	0	136	136	-28
LIFT-RLYT-U5U6	-5130	-5222	0	201	83	201	0	201	201	-77
LIFT-RLYT-U6L6	-143	-269	0	-57	-94	-66	0	94	-94	18
LIFT-SWAY-BSTR	69	-22	0	5	-11	5	0	11	-11	-6
LIFT-SWAY-SWBC	82	-112	0	7	11	7	0	11	11	-3
LIFT-SWAY-SWBV	17	-20	0	2	3	2	0	3	3	-1
LIFT-SWAY-TSTR	302	-323	-34	9	-35	11	0	35	-35	-10
LIFT-TLAT	694	-688	0	28	33	28	0	33	33	11
TOWR-BBRC-MDIA	658	-1223	0	25	33	25	0	33	33	-11
TOWR-BBRC-RcRc	143	70	0	167	223	167	0	223	223	-56
TOWR-BBRC-RdRd	374	-272	0	12	-17	12	0	17	-17	-12
TOWR-BBRC-ReRe	490	72	0	20	-10	20	0	20	20	-11
TOWR-BBRC-RfRf	609	-509	0	12	-26	12	0	26	-26	-13
TOWR-BBRC-RgRg	329	11	0	367	587	367	0	587	587	-111
TOWR-BBRC-UDIA	452	-803	0	25	33	25	0	33	33	-11
TOWR-BLAT-FRTL	608	-535	32	31	25	15	0	32	32	-7
TOWR-BLAT-HWYL	18	-535	0	39	15	-10	0	39	39	18
TOWR-BLAT-RLYL	608	3	0	40	13	-7	0	40	40	19
TOWR-FBRC-CdCe	23	-190	0	-19	-25	-19	0	25	-25	-11
TOWR-FBRC-FdFd	601	-20	0	11	-23	11	0	23	-23	-14
TOWR-FBRC-FeFe	1031	763	0	39	34	39	0	39	39	-15
TOWR-FBRC-Ffff	1608	-1330	0	10	-37	10	0	37	-37	-17
TOWR-FBRC-FgFg	584	375	0	646	1113	646	0	1113	1113	-185
TOWR-FBRC-MDIA	2371	-4001	0	28	38	28	0	38	38	-13
TOWR-FBRC-MdMe	56	-74	0	-19	-25	-19	0	25	-25	-11
TOWR-FBRC-UDIA	607	-2096	0	25	33	25	0	33	33	-11
TOWR-FCOL-BCOL	-4602	-32221	0	-4522	-1728	1269	961	4522	-4522	-2914
TOWR-FCOL-MCOL	-8339	-24267	961	200	341	819	-408	961	961	-442
TOWR-FCOL-UCOL	-12	-18420	-747	-560	510	-187	393	747	-747	1472
TOWR-FLBM-FRNT	42	12	0	1187	1602	1189	0	1602	1602	365
TOWR-FLBM-REAR	28	-56	0	2678	3627	2673	0	3627	3627	826
TOWR-RCOL-BCOL	9109	-18464	0	-2377	-955	591	624	2377	-2377	-1503
TOWR-RCOL-MCOL	4550	-11008	624	219	-80	-93	-111	624	624	-107
TOWR-RCOL-UCOL	-10	-5703	-131	-149	-235	-252	282	282	282	84
TOWR-SBRC-DIAG	3328	-3914	0	-17	-56	-17	0	56	-56	-14
TOWR-SBRC-FgRg	564	397	0	28	38	28	0	38	38	-16
TOWR-SBRC-FhRh	1259	-717	0	156	208	156	0	208	208	-85
TOWR-SBRC-HORZ	1065	125	0	25	33	25	0	33	33	-14
TOWR-SBRC-SbFc	492	-1190	0	9	12	9	0	12	12	-7
TOWR-SHVG-G1	121	-68	0	2241	1571	825	0	2241	2241	3492
TOWR-SHVG-G2G3	78	-181	0	2254	1590	838	0	2254	2254	3498
TOWR-SHVG-G4	280	-174	0	2369	1743	954	0	2369	2369	3560
TOWR-SHVG-G6	662	-1230	0	-462	-999	-463	0	999	-999	-235
TOWR-SHVG-G7	884	156	0	39356	42238	39285	0	42238	42238	14236
TOWR-SHVG-G8	113	-22	0	4422	4819	4413	0	4819	4819	1567
W10X22	35	-75	0	7	13	19	25	25	25	7
W12X26	35	-163	44	44	44	43	42	44	44	-6
W12X35	-1	-163	28	23	17	-27	-39	39	-39	-10
W16X36	0	0	30	25	22	30	37	37	37	8

Section		Max $\mathrm{C}_{\mathrm{f}}(\mathrm{kN})$	Min $\mathrm{C}_{\mathrm{f}}(\mathbf{k N}$)	$\mathrm{M}_{\mathrm{a}}, \mathrm{M}_{\mathrm{b}}, \mathrm{M}_{\mathbf{c}}, \mathrm{M}_{\text {max }}$ (kN.m)						Max Mf (kN.m)	Max $\mathrm{V}_{\mathrm{f}}(\mathbf{k N}$)	
		Sta. 0		Sta. 1/4	Sta. 1/2	Sta. 3/4	Sta. End	$\mathrm{M}_{\text {Max }}$ Abs				
W24X84			308	-234	-45	23	23	20	-45	45	-45	-22
W27X102		27	-5	0	170	226	170	0	226	226	-92	
W33X130		0	0	-21	290	386	290	-21	386	386	-124	
W36X230		167	-130	0	65	70	64	0	70	70	33	
W690x152	*	5	-18	0	174	232	174	0	232	232	-95	
W840X193	*	0	0	-21	299	399	299	-21	399	399	-128	

APPENDIX D. 2
 FLOOR BEAM AND STRINGER DEMAND
 CHECK

1.1 Determine centre of gravity of wheel loads

CG				
25		70	Wheel Loads (kN)	Note: Not to scale.
\downarrow	\downarrow	\downarrow		
A<-	3600	$\rightarrow K$	1200	$->B$

Total Length b / w Wheels 1 and $3, L_{t}=4,800 \mathrm{~mm}$

Centre of Gravity, $\mathrm{Cg}=\Sigma\left(\mathrm{F}_{\mathrm{i}} \mathrm{x} \quad \mathrm{d}_{\mathrm{i}}\right) / \Sigma \mathrm{Fi} \quad$ Sum of moments about point A

$$
\begin{aligned}
& =588,000 ~ / ~ \\
& =3,564 \mathrm{~mm}
\end{aligned}
$$

Dist. to nearest wheel $=36 \mathrm{~mm}$

Maximum bending moment occurs when the midpoint between the centre of gravity and the axle nearest is centred at mid-span.

1.2 Determine position of wheels causing maximum moment

Span Length, L
$=9,398 \mathrm{~mm}$

Note: Not to scale.

Check: $\mathrm{L}=9,398 \quad$ OK

Check: OK
1.3 Determine support reactions

$\Sigma \mathrm{M}_{\mathrm{A}}=0->\mathrm{F}_{\mathrm{B}}$	$=((25 \mathrm{x} 1117)+(70 \mathrm{x} 4717)+(70 \mathrm{x} 5917)) / 9,398$
	$=82 \mathrm{kN}$
F_{A}	$=83 \mathrm{kN}$

1.4 Determine maximum bending moment

$\mathrm{M}_{\text {Truck }}$	$=$	F_{A}	x	4,717	-	25	x	3,600
	$=$	83	x	4,717	-	25	x	3,600
	$=$	301	$\mathrm{kN} \cdot \mathrm{m}$					

Check: $\quad \begin{array}{lllllllll} & M_{\text {Truck }} & = & F B & x & 4,681 & - & 70 & x\end{array} 1,200$ $=301 \mathrm{kN} \cdot \mathrm{m} \quad \mathrm{OK}$
1.5 Apply Dynamic Load Allowance (DLA)

```
DLA = 0.3
Note: Assume no multi-lane reduction
                                    [CL 3.8.4.5.3]
M max =(1+DLA) x 301
        =1.3 x 301
        = 391 kN\cdotm @ d = 4,717 => 4,717 / L = 0.502 *Saymidspan (conservative)
```

2.0 Check other live load wheel configurations

Note: It has been determined that wheel combinations $1 \& 2,2 \& 3,2 \& 3 \& 4,4 \& 5$ do not govern.
3.0 Check Lane Live Loading for Moment

$\mathrm{M}_{\text {Lane }}$	$=$	w	x	L^{2}	$/$	8	
	$=$	9	x	88	$/$	8	
	$=$	99	$\mathrm{kN} \cdot \mathrm{m}$				
$\mathrm{M}_{\text {Max }}$	$=$	$\mathrm{M}_{\text {Lane }}$	+	0.8	x	$\mathrm{M}_{\text {Truck }}$	
	$=$	99	+	0.8	x	301	
	$=$	340	$\mathrm{kN} \cdot \mathrm{m}$			Does Not Govern	

4.0 Check Dead Load Maximum Moment

```
Self-Weight = 1.23 kN/m
L = 9.398 m
M max,SW = w x L L
        = 1.23 x 88 / 8
        = 13.58 kN.m
Grating = 1.24 kN/m Assume 0.96kPa x 1.2954m wide
L = 9.398 m
M Max,Grate = w x L L
    = 1.24 x 88 / 8
        = 13.73 kN\cdotm
M max,DL}=\mp@subsup{M}{\mathrm{ max, SW }}{}+\mp@subsup{M}{\mathrm{ max, Grate}}{
        =13.58 + 13.73
        = 27 kN\cdotm
```

5.0 Factored Maximum Moments \quad ** Note: See also 9.0 for Ma, Mb, Mc

ULS1	$=$	1.10	x	$\mathrm{M}_{\text {max, DL }}$	$+$	1.70	X	$\mathrm{M}_{\text {max, }} \mathrm{LL}$
	=	1.10	x	27	+	1.70	X	391
	=	695						
FLS1	=	1.00	X	$\mathrm{M}_{\text {max, } \mathrm{DL}}$	+	1.00	X	$\mathrm{M}_{\text {max, LL }}$
	=	1.00	x	27	$+$	1.00	X	391
	=	418						

6.0 Maximum Shear
6.1 Unfactored Support Reactions due to Dead Loads

$$
\begin{aligned}
& \mathrm{V}_{\text {self-weight }}=\mathrm{w} \mathrm{x} \text { L / } 2 \text { Assume simply supported } \\
& =1.23 \times 9.398 / 2 \\
& =6 \quad \mathrm{kN} \\
& V_{\text {grating }}=\quad \mathrm{w} \quad \mathrm{x} \quad \mathrm{~L} \quad / \quad 2 \\
& =1.24 \times 9.398 / 2 \\
& =6 \mathrm{kN} \\
& \mathrm{~V}_{\text {Max, DL }}=\mathrm{R}_{\text {self-weight }}+\mathrm{R}_{\text {grating }} \quad \mathrm{V}_{\mathrm{F}, \mathrm{Max}, \mathrm{DL}}=1.1 \quad \mathrm{x} \mathrm{~V}_{\text {Max, DL }}
\end{aligned}
$$

$=$	6	+	6
$=$	12	kN	

$=1.1 \mathrm{x}$
$=13 \mathrm{kN}$
6.2 Unfactored Support Reactions due to Live Load (Truck)
6.2.1 Wheels 1,2 , and 3

$\downarrow^{25} 3600$	\downarrow	1200		70 \downarrow		4,598				
A <--		9,398				--> B				
$\Sigma M_{A}=0->\mathrm{R}_{\text {B }}$		$\begin{gathered} (170 \\ 63 \end{gathered}$	$\begin{gathered} \mathrm{x} \\ \mathrm{kN} \end{gathered}$	3600)	+	170	x	4800)	/	9,398
$\mathrm{R}_{\text {A }}$	=	102	kN			Not G				

Note: Not to scale.

Note: Not to scale.

Note: Not to scale.

Note: Not to scale.

$\Sigma M_{A}=0->\mathrm{R}_{\text {B }}$	=	$\begin{gathered} \text { (} 70 \\ 107 \end{gathered}$	$\begin{gathered} \mathrm{x} \\ \mathrm{kN} \end{gathered}$	6600)	+	170	x	7800))	/	9,398
$\mathrm{R}_{\text {A }}$	=	120	kN			Not				

6.3 Apply DLA
$\mathrm{V}_{\text {Truck }}=146 \mathrm{kN}$

DLA $=0.3$ Note: Assume no multi-Iane reduction
[CL 3.8.4.5.3]
7.0 Check Lane Live Loading for Shear

8.0 Factored Maximum Shear

ULS1	=	1.10	x	$\mathrm{V}_{\text {Max, DL }}$	+	1.70	x	$\mathrm{V}_{\text {max }}$, LL	Combined Load Factor:	1.67
	=	1.10	x	12	+	1.70	x	190		
	=	335	kN							
FLS1	$=$	1.00	x	$\mathrm{V}_{\text {Max, DL }}$	+	1.00	x	$\mathrm{V}_{\text {max, LL }}$		
	=	1.00	x	12	+	1.00	x	190		
	=	201	kN							

9.0 Factored Maximum Shear
1.1 Stringer Factored Loads Assume each floor beam supports twice the maximum stringer reaction Includes DLA + Multi-Lane Reduction Factor

Lanes	=	1	->	R_{L}	=	1.0	
						ULS	
S1	=	335	x	2	=	671	kN
S2	=	13	x	2	=	26	kN
S3	=	335	x	2	=	671	kN
S4	=	13	x	2	=	26	kN
S5	=	13	x	2	=	26	kN
S6	=	13	x	2	=	26	kN

[CL 3.8.4.2]
1.2 Stringer Spacing

	Cumulative			
$\mathrm{A}-\mathrm{S} 1$	$=1.0668$	m	1.0668	
m				
$\mathrm{~S} 1-\mathrm{S} 2$	$=1.2954$	m	2.3622	

\[

\]

1.3 Support Reactions

$$
\left.\begin{array}{rl}
\Sigma M_{A}=0 & ->F_{B}
\end{array}\right) \frac{U L S}{354} \mathrm{kN}
$$

1.4 Factored Shear (ULS1)

		$\underline{\text { ULS }}$	
A	$=$	1243	kN
S 1	$=573$	kN	
S2	$=547$	kN	
S3	$=-123$	kN	
S4	$=-149$	kN	
S5	$=-175$	kN	
S6	$=-200$	kN	

		$\underline{U L S}$	
S7	$=$	-226	kN
S8	$=-251$	kN	
S9	$=-277$	kN	
S 10	$=-302$	kN	
S 11	$=-328$	kN	
S 12	$=-354$	kN	
B	$=354$	kN	

Check: OK
1.5 Factored Moments (ULS1)

ULS				x/L		ULS				x/L	
A	=	0	$\mathrm{kN} \cdot \mathrm{m}$	@	0.00	S7	=	1939	$\mathrm{kN} \cdot \mathrm{m}$	@	0.57
S1	=	1326	$\mathrm{kN} \cdot \mathrm{m}$	@	0.07	S8	=	1687	$\mathrm{kN} \cdot \mathrm{m}$	@	0.64
S2	=	2068	$\mathrm{kN} \cdot \mathrm{m}$	@	0.15	S9	=	1403	$\mathrm{kN} \cdot \mathrm{m}$	@	0.71
S3	=	2777	$\mathrm{kN} \cdot \mathrm{m}$	@	0.24	S10	=	1148	$\mathrm{kN} \cdot \mathrm{m}$	@	0.79
S4	=	2617	$\mathrm{kN} \cdot \mathrm{m}$	@	0.32	S11	=	748	$\mathrm{kN} \cdot \mathrm{m}$	@	0.86
S5	=	2424	$\mathrm{kN} \cdot \mathrm{m}$	@	0.40	S12	=	435	$\mathrm{kN} \cdot \mathrm{m}$	@	0.93
S6	=	2198	$\mathrm{kN} \cdot \mathrm{m}$	@	0.49	B	=	0	$\mathrm{kN} \cdot \mathrm{m}$	@	1.00

1.6 Factored Demands:

ULS1: $\quad \mathrm{M}_{\mathrm{f}}=2777 \mathrm{kN} \cdot \mathrm{m} \quad \mathrm{V}_{\mathrm{f}}=1243 \mathrm{kN}$
2.1 Stringer Factored Loads Assume each floor beam supports twice the maximum stringer reaction Includes DLA + Multi-Lane Reduction Factor

Lanes	$=2$	$->$	R_{L}	$=$	0.9		
				$\underline{U L S}$			
S1	$=$	303	x	2	$=$	606	kN
S2	$=$	13	x	2	$=$	26	kN
S3	$=303$	x	2	$=$	606	kN	
S4	$=303$	x	2	$=$	606	kN	
S5	$=13$	x	2	$=$	26	kN	
S6	$=303$	x	2	$=$	606	kN	

S7	$=13$	kN				
S8	$=13$	x	2	$=$	26	kN
S9	$=13$	x	2	$=26$	kN	
S10	$=13$	x	2	$=$	26	kN
S11	$=13$	x	2	$=26$	kN	
S12	$=13$	x	2	$=26$	kN	

[CL 3.8.4.2]
2.2 Stringer Spacing

2.3 Support Reactions

| $\Sigma M_{A}=0$ | $>F_{B}$ | $=\frac{U L S}{801}$ | kN |
| ---: | :--- | ---: | :--- |$\quad \mathrm{kN}$

2.4 Factored Shear (ULS1)

		$\underline{\text { ULS }}$	
A	$=1828$	kN	
S 1	$=1222$	kN	
S 2	$=$	1197	kN
S 3	$=591$	kN	
S 4	$=-16$	kN	
S5	$=-41$	kN	
S6	$=-647$	kN	

	$\underline{\text { ULS }}$	
S7	$=-673 \mathrm{kN}$	
S8	$=-698$	kN
S9	$=-724$	kN
S10	$=-750$	kN
S11	$=-775$	kN
S 12	$=-801$	kN
B	$=801 \mathrm{kN}$	

Check: OK
2.5 Factored Moments (ULS1)

ULS					x/L
A	=	0	$\mathrm{kN} \cdot \mathrm{m}$	@	0.00
S1	=	1951	$\mathrm{kN} \cdot \mathrm{m}$	@	0.07
S2	=	3534	$\mathrm{kN} \cdot \mathrm{m}$	@	0.15
S3	=	5084	$\mathrm{kN} \cdot \mathrm{m}$	@	0.24
S4	=	5849	$\mathrm{kN} \cdot \mathrm{m}$	@	0.32
S5	=	5829	$\mathrm{kN} \cdot \mathrm{m}$	@	0.40
S6	=	5776	$\mathrm{kN} \cdot \mathrm{m}$	@	0.49

		$\underline{U L S}$			x / L
	$=$	4937	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.57
S 8	$=$	4185	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.64
S 9	$=$	3396	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.71
S 10	$=$	2635	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.79
S 11	$=$	1730	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.86
S 12	$=$	912	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.93
B	$=$	0	$\mathrm{kN} \cdot \mathrm{m}$	$@$	1.00

2.6 Factored Demands:

ULS1: $\quad \mathrm{M}_{\mathrm{f}}=5849 \mathrm{kN} \cdot \mathrm{m} \quad \mathrm{V}_{\mathrm{f}}=1828 \mathrm{kN}$
3.1 Stringer Factored Loads Assume each floor beam supports twice the maximum stringer reaction Includes DLA + Multi-Lane Reduction Factor

Lanes	$=$	3	->	R_{L}	=	0.8	
						ULS	
S1	=	271	x	2	=	542	kN
S2	=	13	x	2	=	26	kN
S3	=	271	x	2	=	542	kN
S4	=	271	x	2	=	542	kN
S5	=	13	x	2	=	26	kN
S6	=	271	x	2	=	542	kN

S 7	$=$	271	x	2	$=$	542	kN
S 8	$=$	13	x	2	$=$	26	kN
S 9	$=$	271	x	2	$=$	542	kN
S 10	$=$	13	x	2	$=$	26	kN
S 11	$=$	13	x	2	$=$	26	kN
S 12	$=13$	x	2	$=$	26	kN	

[CL 3.8.4.2]
3.2 Stringer Spacing

3.3 Support Reactions

$$
\left.\begin{array}{rl}
\Sigma M_{A}=0 & \rightarrow F_{B}
\end{array}\right) \frac{U L S}{1391} \mathrm{kN}
$$

3.4 Factored Shear (ULS1)

| | $=\underline{\text { ULS }}$ |
| ---: | :--- | ---: |
| A | $=2012 \mathrm{kN}$ |
| S1 | $=1471 \mathrm{kN}$ |
| S2 | $=1445 \mathrm{kN}$ |
| S3 | $=904 \mathrm{kN}$ |
| S4 | $=362 \mathrm{kN}$ |
| S5 | $=336 \mathrm{kN}$ |
| S6 | $=-205 \mathrm{kN}$ |

		$\underline{\text { ULS }}$	
S7	$=-747$	kN	
S 8	$=-772$	kN	
$\mathrm{S9}$	$=-1314$	kN	
S 10	$=-1340$	kN	
S 11	$=-1365$	kN	
S 12	$=-1391$	kN	
B	$=1391$	kN	

Check: OK
3.5 Factored Moments (ULS1)

		$\frac{U L S}{0}$			x / L
A	$=$	0	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.00
S 1	$=$	2147	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.07
S 2	$=$	4052	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.15
S 3	$=$	5924	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.24
S 4	$=$	7095	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.32
S 5	$=$	7564	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.40
S 6	$=7999$	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.49	

		$\underline{U L S}$			x / L
	$=$	7734	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.57
S 8	$=$	6899	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.64
S 9	$=$	6026	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.71
S 10	$=$	5765	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.79
S 11	$=$	3027	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.86
S 12	$=$	1541	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.93
B	$=$	0	$\mathrm{kN} \cdot \mathrm{m}$	$@$	1.00

3.6 Factored Demands:

ULS1: $\quad \mathrm{M}_{\mathrm{f}}=7999 \mathrm{kN} \cdot \mathrm{m} \quad \mathrm{V}_{\mathrm{f}}=2012 \mathrm{kN}$
4.1 Stringer Factored Loads Assume each floor beam supports twice the maximum stringer reaction Includes DLA + Multi-Lane Reduction Factor

Lanes	$=$	$->$	R_{L}	$=$	0.7		
					$\underline{U L S}$		
S1	$=$	239	x	2	$=$	477	kN
S2	$=$	13	x	2	$=$	26	kN
S3	$=$	239	x	2	$=$	477	kN
S4	$=$	239	x	2	$=$	477	kN
S5	$=$	13	x	2	$=$	26	kN
S6	$=239$	x	2	$=$	477	kN	

S7	$=$	239	x	2	$=$	477	kN
S8	$=$	13	x	2	$=$	26	kN
S9	$=$	239	x	2	$=$	477	kN
S10	$=$	239	x	2	$=$	477	kN
S11	$=13$	x	2	$=$	26	kN	
S12	$=239$	x	2	$=$	477	kN	

[CL 3.8.4.2]
4.2 Stringer Spacing

4.3 Support Reactions

$$
\begin{aligned}
\Sigma M_{A}=0 \rightarrow F_{B} & =\frac{U L S}{2012} \mathrm{kN} \\
\Rightarrow F_{A} & =1907 \mathrm{kN}
\end{aligned}
$$

4.4 Factored Shear (ULS1)

		$\underline{\text { ULS }}$
A	$=1907$	kN
S1	$=1430$	kN
S2	$=1404$	kN
S3	$=927$	kN
S4	$=450$	kN
S5	$=425$	kN
S6	$=-52 \mathrm{kN}$	

| | | $\underline{\text { ULS }}$ |
| ---: | :--- | ---: | :--- |
| S7 | $=-530$ | kN |
| S 8 | $=-555$ | kN |
| S9 | $=-1032$ | kN |
| S 10 | $=-1509$ | kN |
| S 11 | $=-1535$ | kN |
| S 12 | $=-2012$ | kN |
| B | $=2012 \mathrm{kN}$ | |

Check: OK
4.5 Factored Moments (ULS1)

		$\frac{U L S}{0}$		
A	$=$	x / L		
S 1	$=$	2035	$\mathrm{kN} \cdot \mathrm{m} \cdot \mathrm{m}$	$@$
S 2	$=$	0.00		
S 2887	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.07	
S 3	$=$	5706	$\mathrm{kN} \cdot \mathrm{m}$	$@$
S 4	$=$	6908	$\mathrm{kN} \cdot \mathrm{m}$	$@$
S	0.24			
S 5	$=7491$	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.40
S 6	$=8041$	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.49

		$\underline{U L S}$			x / L
	$=$	7973	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.57
S 8	$=$	7381	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.64
S 9	$=$	6754	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.71
S 10	$=$	6666	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.79
S 11	$=$	3881	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.86
S 12	$=$	2204	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.93
B	$=$	0	$\mathrm{kN} \cdot \mathrm{m}$	$@$	1.00

4.6 Factored Demands:

ULS1: $\quad \mathrm{M}_{\mathrm{f}}=8041 \mathrm{kN} \cdot \mathrm{m} \quad \mathrm{V}_{\mathrm{f}}=-2012 \mathrm{kN}$
1.1 Stringer Factored Loads Includes DLA + Multi-Lane Reduction Factor

Lanes	$=1$	$->$	R_{L}	$=$	1.0		
					$\underline{U L S}$		
S1	$=$	335	x	1	$=$	335	kN
S 2	$=$	13	x	1	$=$	13	kN
S 3	$=$	335	x	1	$=$	335	kN
S 4	$=$	13	x	1	$=$	13	kN
S 5	$=$	13	x	1	$=$	13	kN
S 6	$=$	13	x	1	$=$	13	kN

[CL 3.8.4.2]

S 7	$=$	13	x	1	$=$	kN	
S 8	$=$	13	x	1	$=$	13	kN
S 9	$=$	13	x	1	$=$	13	kN
S 10	$=$	13	x	1	$=$	13	kN
S 11	$=$	13	x	1	$=$	13	kN
S 12	$=13$	x	1	$=$	13	kN	

1.2 Stringer Spacing

	Cumulative			
$\mathrm{S} 6-\mathrm{S} 7$	$=1.2954 \mathrm{~m}$			
S	8.8392			
m				
$\mathrm{~S}-\mathrm{S} 8$	$=1.1176 \mathrm{~m}$			
$\mathrm{~S}-\mathrm{S} 9.9568$	m			
$\mathrm{~S}-\mathrm{S} 10$	$=1.1303 \mathrm{~m}$			
11.0871 m				
$\mathrm{~S} 10-\mathrm{S} 11$	$=1.1303 \mathrm{~m}$			
m	12.2174 m			
$\mathrm{~S} 11-\mathrm{S} 12$	$=1.1303 \mathrm{~m}$			
S	14.477 m			
$\mathrm{~S} 12-\mathrm{B}$	$=1.0668 \mathrm{~m}$			
	15.5448 m			

1.3 Support Reactions

$$
\begin{aligned}
\Sigma M_{A}=0->F_{B} & =\frac{U L S}{177} \mathrm{kN} \\
\Rightarrow F_{A} & =622 \mathrm{kN}
\end{aligned}
$$

1.4 Factored Shear (ULS1)

		$\underline{\text { ULS }}$
A	$=622$	kN
S1	$=286$	kN
S2	$=274$	kN
S3	$=-62$	kN
S4	$=-74$	kN
S5	$=-87$	kN
S6	$=-100 \mathrm{kN}$	
Check:		

		$\underline{\text { ULS }}$	
S7	$=$	-113	kN
S8	$=-126$	kN	
$\mathrm{S9}$	$=-138$	kN	
S 10	$=$	-151	kN
S 11	$=-164$	kN	
S 12	$=-177$	kN	
B	$=177$	kN	

Check: OK
1.5 Factored Moments (ULS1)

1.6 Factored Demands:

ULS1: $\quad \mathrm{M}_{\mathrm{f}}=1389 \mathrm{kN} \cdot \mathrm{m} \quad \mathrm{V}_{\mathrm{f}}=622 \mathrm{kN}$
2.1 Stringer Factored Loads Includes DLA + Multi-Lane Reduction Factor

Lanes	=	2	->	R_{L}	=	0.9	
						ULS	
S1	=	303	x	1	=	303	kN
S2	=	13	X	1	=	13	kN
S3	=	303	x	1	=	303	kN
S4	=	303	x	1	=	303	kN
S5	=	13	x	1	=	13	kN
S6	=	303	x	1	=	303	kN

				ULS			
S7	$=$	13	x	1	=	13	kN
S8	=	13	x	1	=	13	kN
S9	=	13	x	1	=	13	kN
S10	=	13	x	1	=	13	kN
S11	=	13	x	1	=	13	kN
S12	=	13	x	1	=	13	kN

2.2 Stringer Spacing

		Cumulative
S6-S7	1.2954	m 8.8392
S7-58	1.1176	m 9.9568
S8-59	1.1303	m 11.0871
S9-S10	1.1303	m 12.2174
S10-S11	1.1303	m 13.3477
S11-S12	1.1303	m 14.478
S12-B	1.0668	15.5448

2.3 Support Reactions

$\Sigma M_{A}=0$	$->F_{B}$	$=\frac{U L S}{400}$	kN	kN
$\Rightarrow>F_{A}$	$=914$	kN	kN	

2.4 Factored Shear (ULS1)

| | | $\underline{U L S}$ |
| ---: | :--- | :--- | :--- |
| A | $=$ | kN |
| S 1 | $=611$ | kN |
| S 2 | $=598$ | kN |
| S 3 | $=295$ | kN |
| S 4 | $=-8$ | kN |
| S5 | $=-21$ | kN |
| S6 | $=-324$ | kN |

| | | $\underline{U L S}$ |
| ---: | :--- | :--- | :--- |
| S7 | $=-336$ | kN |
| S8 | $=-349$ | kN |
| S9 | $=-362$ | kN |
| S 10 | $=-375$ | kN |
| S 11 | $=-388$ | kN |
| S 12 | $=-400$ | kN |
| B | $=400$ | kN |

Check: OK
2.5 Factored Moments (ULS1)

	$=\frac{\text { ULS }}{0}$	$\mathrm{kN} \cdot \mathrm{m}$
A	$=$	
S1	$=975$	$\mathrm{kN} \cdot \mathrm{m}$
S2	$=1767$	$\mathrm{kN} \cdot \mathrm{m}$
S3	$=2542$	$\mathrm{kN} \cdot \mathrm{m}$
S4	$=2925$	$\mathrm{kN} \cdot \mathrm{m}$
S5	$=2914$	$\mathrm{kN} \cdot \mathrm{m}$
S6	$=2888$	$\mathrm{kN} \cdot \mathrm{m}$

	x / L
$@$	0.00
$@$	0.07
$@$	0.15
$@$	0.24
$@$	0.32
$@$	0.40
$@$	0.49

		$\underline{U L S}$			x / L
	$=$	2469	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.57
S 8	$=$	2093	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.64
S 9	$=$	1698	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.71
S 10	$=$	1318	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.79
S 11	$=$	865	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.86
S 12	$=$	456	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.93
B	$=$	0	$\mathrm{kN} \cdot \mathrm{m}$	$@$	1.00

2.6 Factored Demands:
ULS1: $\quad \mathrm{M}_{\mathrm{f}}=2925 \mathrm{kN} \cdot \mathrm{m} \quad \mathrm{V}_{\mathrm{f}}=914 \mathrm{kN}$
3.1 Stringer Factored Loads Includes DLA + Multi-Lane Reduction Factor

Lanes	$=$	3	$->$	R_{L}	$=$	0.8	
					$\underline{U L S}$		
S 1	$=$	271	x	1	$=$	271	kN
S 2	$=$	13	x	1	$=$	13	kN
S 3	$=$	271	x	1	$=$	271	kN
S 4	$=$	271	x	1	$=$	271	kN
S 5	$=$	13	x	1	$=$	13	kN
S 6	$=$	271	x	1	$=$	271	kN

					$\frac{\text { ULS }}{}$		
S7	$=$	271	x	1	$=$	kN	
S8	$=$	13	x	1	$=$	13	kN
S9	$=$	271	x	1	$=$	271	kN
S10	$=$	13	x	1	$=$	13	kN
S11	$=13$	x	1	$=$	13	kN	
S12	$=13$	x	1	$=$	13	kN	

3.2 Stringer Spacing

		Cu
S6-S7	1.2954	m 8.8392
S7-S8	1.1176	m 9.9568
S8-59	1.1303	m 11.0871
S9-S10	1.1303	m 12.2174
S10-S11	1.1303	m 13.3477
S11-S12	1.1303	m 14.478
S12-B	1.0668	m 15.5448

3.3 Support Reactions

$$
\begin{aligned}
\Sigma M_{A}=0 \rightarrow F_{B} & =\frac{U L S}{695} \mathrm{kN} \\
\Rightarrow F_{A} & =1006 \mathrm{kN}
\end{aligned}
$$

3.4 Factored Shear (ULS1)

		$\underline{\text { ULS }}$
A	$=1006$	kN
S1	$=735$	kN
S2	$=723$	kN
S3	$=452$	kN
S4	$=181$	kN
S5	$=168$	kN
S6	$=-103 \mathrm{kN}$	

		$\underline{\text { ULS }}$	
S7	$=-373$	kN	
S8	$=-386$	kN	
S9	$=-657$	kN	
S 10	$=-670$	kN	
S 11	$=-683$	kN	
S 12	$=-695$	kN	
B	$=695$	kN	

Check: OK
3.5 Factored Moments (ULS1)

		$\underline{U L S}$			x / L
	$=$	3867	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.57
S 8	$=$	3450	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.64
S 9	$=$	3013	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.71
S 10	$=$	2883	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.79
S 11	$=$	1513	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.86
S 12	$=$	771	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.93
B	$=$	0	$\mathrm{kN} \cdot \mathrm{m}$	$@$	1.00

3.6 Factored Demands:

ULS1: $\quad \mathrm{M}_{\mathrm{f}}=4000 \mathrm{kN} \cdot \mathrm{m} \quad \mathrm{V}_{\mathrm{f}}=1006 \mathrm{kN}$
4.1 Stringer Factored Loads Includes DLA + Multi-Lane Reduction Factor

Lanes	$=4$	$->$	R_{L}	$=$	0.7	
S1	$=239$	x	1	$=$	239	kN
S2	$=$	13	x	1	$=$	13
kN						
S3	$=239$	x	1	$=$	239	kN
S4	$=239$	x	1	$=$	239	kN
S5	$=13$	x	1	$=$	13	kN
S6	$=239$	x	1	$=$	239	kN

						ULS	
S7	=	239	x	1	=	239	kN
S8	=	13	x	1	=	13	kN
S9	=	239	x	1	=	239	kN
S10	=	239	x	1	=	239	kN
S11	=	13	x	1	=	13	kN
S12	=	239	x	1	=	239	kN

4.2 Stringer Spacing

		Cumulative
S6-S7	1.2954	m 8.8392
S7-S8	1.1176	m 9.9568
S8-59	1.1303	m 11.0871
S9-S10	1.1303	m 12.2174
S10-S11	1.1303	m 13.3477
S11-S12	1.1303	m 14.478
S12-B	1.0668	m 15.5

4.3 Support Reactions

```
        ULS
\(\Sigma M_{A}=0->F_{B}=1006 \mathrm{kN}\)
```

 \(\Rightarrow F_{A}=954 \mathrm{kN}\)
 4.4 Factored Shear (ULS1)

		$\underline{U L S}$
A	$=$	kN
S 1	$=715$	kN
S 2	$=702$	kN
S 3	$=464$	kN
S 4	$=225$	kN
S 5	$=212$	kN
S 6	$=-26$	kN

		$\underline{\text { ULS }}$	
S7	$=-265$	kN	
S8	$=-278$	kN	
S9	$=-516$	kN	
S 10	$=-755$	kN	
S 11	$=-767$	kN	
S 12	$=-1006$	kN	
B	$=1006$	kN	

Check: OK
4.5 Factored Moments (ULS1)

		$\underline{U L S}$			x / L
	$=$	3987	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.57
S 8	$=$	3691	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.64
S 9	$=$	3377	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.71
S 10	$=$	3333	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.79
S 11	$=$	1941	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.86
S 12	$=$	1102	$\mathrm{kN} \cdot \mathrm{m}$	$@$	0.93
B	$=$	0	$\mathrm{kN} \cdot \mathrm{m}$	$@$	1.00

4.6 Factored Demands:

ULS1: $\quad \mathrm{M}_{\mathrm{f}}=4021 \mathrm{kN} \cdot \mathrm{m} \quad \mathrm{V}_{\mathrm{f}}=-1006 \mathrm{kN}$

Assume each floor beam supports 1.25x maximum stringer reaction Includes DLA + Multi-Lane Reduction Factor Assume lane is down centre of structure (wheel path $=S 5, S 7$)															
Lanes	$=$	1	->	R_{L}	$=$	1.0									[CL 3.8.4.2]
						FLS								FLS	
S1	$=$	13	x	1.25	$=$	16	kN	S7	$=$	201	X	1.25		252	kN
S2	=	13	x	1.25	=	16	kN	S8	=	13	X	1.25		16	kN
S3	=	13	X	1.25	=	16	kN	S9	=	13	X	1.25	-	16	kN
S4	=	13	X	1.25	=	16	kN	S10	=	13	X	1.25	=	16	kN
S5	$=$	201	X	1.25	$=$	252	kN	S11	=	13	X	1.25	-	16	kN
S6	$=$	13	X	1.25	=	16	kN	S12	=	13	X	1.25	=	16	kN

1.2 Stringer Spacing

	Cumulative			
$\mathrm{A}-\mathrm{S} 1$	$=1.0668 \mathrm{~m}$	1.0668	m	
$\mathrm{~S} 1-\mathrm{S} 2$	$=1.2954 \mathrm{~m}$	2.3622	m	
$\mathrm{~S} 2-\mathrm{S} 3$	$=1.2954 \mathrm{~m}$	3.6576	m	
S3-S4	$=1.2954 \mathrm{~m}$	4.953	m	
S4-S5	$=1.2954 \mathrm{~m}$	6.2484	m	
S5-S6	$=1.2954 \mathrm{~m}$	7.5438	m	

	$\frac{\text { Cumulative }}{}$			
S6-S7	$=1.2954$	m	8.8392	m
$\mathrm{~S} 7-\mathrm{S} 8$	$=1.1176$	m	9.9568	m
$\mathrm{~S} 8-\mathrm{S} 9$	$=1.1303$	m	11.0871	m
$\mathrm{~S} 9-\mathrm{S} 10$	$=1.1303$	m	12.2174	m
$\mathrm{~S} 10-\mathrm{S} 11$	$=1.1303 \mathrm{~m}$	13.3477	m	
$\mathrm{~S} 11-\mathrm{S} 12$	$=1.1303 \mathrm{~m}$	14.478	m	
$\mathrm{~S} 12-\mathrm{B}$	$=1.0668 \mathrm{~m}$	15.5448 m		

1.3 Support Reactions

$$
\left.\begin{array}{rl}
\Sigma M_{A}=0 & ->F_{B}
\end{array}\right) \frac{F L S}{327} \mathrm{kN}
$$

1.4 Factored Shear (ULS1)

		$\underline{F L S}$
A	$=336$	kN
S 1	$=320$	kN
S 2	$=304$	kN
S 3	$=288$	kN
S 4	$=272$	kN
S 5	$=20$	kN
S 6	$=$	4

	$\frac{F L S}{}$		
S7	$=-247$	kN	
S8	$=-263$	kN	
S9	$=-279$	kN	
S10	$=-295$	kN	
S11	$=-311$	kN	
S12	$=-327$	kN	
B	$=327$	kN	

Check: OK
1.5 Factored Moments (ULS1)

1.6 Factored Demands:

FLS1: $\quad \mathrm{M}_{\mathrm{f}}=1924 \mathrm{kN} \cdot \mathrm{m} \quad \mathrm{V}_{\mathrm{f}}=336 \mathrm{kN}$

Tower span rear floor beam:

CL.625ONT. SON 140 kN 140 kN

EMOMENTS TO FIND MAX POINT LOAD TO fear floor beam
\therefore MAX LIVE lOAD TO reAr GIRDER FROM CL-625-ONT IS 325.8 kN .

ASSUME FOUR LANES LOADED;
MAX UN-FACTORED LIVE LOAD AT EACH STRINGER:

$$
\frac{325.8 \mathrm{kN} \times 4 \text { LANES }}{8 \text { STRINGERS }}=162.9 \mathrm{kN} \text { UN-FACTORED }
$$

APPLY DEA $=0.25$

$$
[C L \cdot 3.8 .4 \cdot 5.3]
$$

$162.9 \mathrm{kN} \times 1.25=203.6 \mathrm{kN}$ UN-FACTORED
$2036 \mathrm{kN} \times 1.7=346.1 \mathrm{kN}$ FACTORED ILS $\# 1$
\qquad DATE \qquad page \qquad of 3

DEAD LOAD:

STRINGERS
MISC. STEEL - 15%
DECK CONC. ($7^{\prime} / z^{\wedge}$)
ASpHALT ($21 / 2^{\prime \prime}$)

UN-FAUTORED α FACTORED
$1.49 \mathrm{kN} / \mathrm{m} \times 1.10 \quad 1.64 \mathrm{kN} / \mathrm{m}$
$0.22 \mathrm{kN} / \mathrm{m} \times 1.10 \quad 0.24 \mathrm{kN} / \mathrm{m}$
$9.40 \mathrm{kN} / \mathrm{m} . \times 1.20 \quad 11.28 \mathrm{kN} / \mathrm{m}$
$\frac{3.07 \mathrm{kN} / \mathrm{m} \times 1.50 \quad 4.61 \mathrm{k} / \mathrm{m}}{17.77 \mathrm{kN} / \mathrm{m}}$

DEAD LOAD PER STRINLER TO REAR FLOoR BEAM:

$$
17.77 \frac{\mathrm{ks}}{\mathrm{~m}} \times\left(\frac{1}{2}\right)(12.598 \mathrm{~m}+9.690 \mathrm{~m})
$$

DEAD LOAD $=198.0 \mathrm{kN}$ FACTORED ULS $\$ 1$
TOTAL FACTORED LOAD PER STRINGER TO REAR FLOOR BEAM:

$$
\begin{array}{r}
198.0 \mathrm{kN} \text { DEAD } \\
+346.1 \mathrm{kN} \text { LIVE } \\
\hline 544.1 \mathrm{kN} \text { ULS } 1
\end{array}
$$

\qquad DATE \qquad Page 2 of 3

MULTI-LANE LOAD REDUCTION FACTORS
REAR FLOOR BEAM
LOADED MODIFICATION LIVE LOAD REDUCED DEAD LOAD TOTAL
LANES FACTOR MLSLI LVELOAD ULSHI ULSWI

| 1 | 1.0 | $\times 346 \mathrm{kN}=346 \mathrm{kN}+198 \mathrm{kN}=544 \mathrm{kN}$ |
| :--- | :--- | :--- | :--- |
| 2 | $0.9 \times 346 \mathrm{kN}=311 \mathrm{kN}+198 \mathrm{kN}=509 \mathrm{kN}$ | |
| 3 | 0.8 | $\times 346 \mathrm{kN}=277 \mathrm{kN}+198 \mathrm{kN}=475 \mathrm{kN}$ |
| 4 | 0.7 | $\times 346 \mathrm{kN}=242 \mathrm{kN}+198 \mathrm{kN}=440 \mathrm{kN}$. |

FRONT FLOOR BEAM

1	1.0	x	$205 \mathrm{kN}=205 \mathrm{kN}+86 \mathrm{kN}=291 \mathrm{kN}$
2	0.9	x	$205 \mathrm{kN}=185 \mathrm{kN}+86 \mathrm{kN}=271 \mathrm{kN}$
3	0.8	x	$205 \mathrm{kN}=164 \mathrm{kN}+86 \mathrm{kN}=250 \mathrm{kN}$
$4 \square 0.7$	x	$205 \mathrm{kN}=144 \mathrm{kN}+86 \mathrm{kN}=230 \mathrm{kN}$	

\qquad
\qquad
\qquad 3

1.1 Determine centre of gravity of wheel loads

CG				
25		70	70	Wheel Loads (kN)
\downarrow	\downarrow	\downarrow		
A<-	3600	$\rightarrow K$	1200	$->B$

Total Length b / w Wheels 1 and $3, L_{t}=4,800 \mathrm{~mm}$

Centre of Gravity, $\mathrm{Cg}=\Sigma\left(\mathrm{F}_{\mathrm{i}} \mathrm{x} \quad \mathrm{d}_{\mathrm{i}}\right)$ / FFi Sum of moments about point A

$$
\begin{aligned}
& =588,000 ~ / ~ \\
& =3,564 \mathrm{~mm}
\end{aligned}
$$

Dist. to nearest wheel $=36 \mathrm{~mm}$

Maximum bending moment occurs when the midpoint between the centre of gravity and the axle nearest is centred at mid-span.

1.2 Determine position of wheels causing maximum moment

Span Length, L
$=12,598 \mathrm{~mm}$
Note: Not to scale

Check: $\mathrm{L}=12,598$ OK

Check: OK
1.3 Determine support reactions

```
\(\sum M_{A}=0->F_{B}=((25 x 2717)+(70 \times 6317)+(70 \times 7517)) / 12,598\)
    \(=82 \mathrm{kN}\)
    \(\mathrm{F}_{\mathrm{A}}=83 \mathrm{kN}\)
```

1.4 Determine maximum bending moment

	$M_{\text {Truck }}$	$=$	F_{A}	x	6,317	-	25	x
	$=$	3,600						
	83	x	6,317	-	25	x	3,600	

Check: $\quad \mathrm{M}_{\text {Truck }}=\mathrm{FB} \quad \mathrm{x}$ 6,281 - 70 x 1,200
$=82 \times 6,281-70 \times 1,200$
$=433 \mathrm{kN} \cdot \mathrm{m} \quad$ OK
1.5 Apply Dynamic Load Allowance (DLA)

DLA $=0.3$
Note: Assume no multi-lane reduction
[CL 3.8.4.5.3]
$\mathrm{M}_{\text {max }}=(1+$ DLA $) \mathrm{x} 433$
$=1.3 \mathrm{x} 433$
$=562 \mathrm{kN} \cdot \mathrm{m}$ @ d = 6,317 => 6,317 / L = $0.501{ }^{*}$ Say midspan (conservative)
2.0 Check other live load wheel configurations

Note: It has been determined that wheel combinations $1 \& 2,2 \& 3,2 \& 3 \& 4,4 \& 5$ do not govern.
3.0 Check Lane Live Loading for Moment

$$
\begin{array}{rlclccc}
\mathrm{M}_{\text {Lane }} & = & \mathrm{w} & \mathrm{x} & \mathrm{~L}^{2} & / & 8 \\
& = & 9 & \mathrm{x} & 159 & / & 8 \\
& = & 179 & \mathrm{kN} \cdot \mathrm{~m} & & & \\
& & & & \\
\mathrm{M}_{\text {Max }} & = & \mathrm{M}_{\text {Lane }} & + & 0.8 & \mathrm{x} & \mathrm{M}_{\text {Truck }} \\
& = & 179 & + & 0.8 & \mathrm{x} & 433
\end{array}
$$

[Can/CSA S16-01 PP 6-44]
4.0 Check Dead Load Maximum Moment

$$
\begin{aligned}
& \text { Self-Weight }=1.88 \mathrm{kN} / \mathrm{m} \\
& \mathrm{~L}=12.598 \mathrm{~m} \\
& \mathrm{M}_{\text {max, } \mathrm{sw}}=\mathrm{w} \quad \mathrm{x} \quad \mathrm{~L}^{2} / \mathrm{F} \\
& \begin{array}{llll}
= & 1.88 & x & 159
\end{array} \\
& =37.30 \mathrm{kN} \cdot \mathrm{~m} \quad=315.24 \mathrm{kN} \cdot \mathrm{~m} \\
& \text { Deck }=15.89 \mathrm{kN} / \mathrm{m} \quad \text { Assume } 0.96 \mathrm{kPa} \times 1.2954 \mathrm{~m} \text { wide } \\
& \mathrm{L}=12.598 \mathrm{~m} \\
& M_{\text {max, deck }}=\mathrm{w} \quad \mathrm{x} \quad \mathrm{~L}^{2} \quad / \quad 8 \\
& =15.89 \times 159 \quad / \quad 8 \\
& \mathrm{M}_{\text {max, } D L}=\mathrm{M}_{\text {max, } S W}+\mathrm{M}_{\text {max, Grate }} \\
& =37.30+315.24 \\
& =353 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

5.0 Factored Maximum Moments

ULS1	=	1.10	x	$\mathrm{M}_{\text {max, } \mathrm{DL}}$	+	1.70	X	$\mathrm{M}_{\text {max, }} \mathrm{LL}$
	=	1.10	x	353	+	1.70	X	562
	=	1344						
FLS1	=	1.00	X	$\mathrm{M}_{\text {max, DL }}$	+	1.00	X	$\mathrm{M}_{\text {max, }} \mathrm{LL}$
	=	1.00	x	353	+	1.00	X	562
	=	915						

6.0 Maximum Shear
6.1 Unfactored Support Reactions due to Dead Loads

$$
\begin{aligned}
& \mathrm{V}_{\text {self-weight }}=\mathrm{w} \mathrm{x} \mathrm{~L} / \mathrm{2} \text { Assume simply supported } \\
& \mathrm{V}_{\text {deck }} \quad=\quad \mathrm{w} \quad \mathrm{x} \quad \mathrm{~L} \quad / \quad 2 \\
& =15.89 \quad \mathrm{x} 12.598 / 2 \\
& =100 \mathrm{kN} \\
& V_{\text {Max, DL }}=R_{\text {self-weight }}+R_{\text {decking }} \\
& V_{F, M a x, D L}=1.1 \quad x V_{\text {Max, DL }} \\
& =12+100 \quad=1.1 \times 112 \\
& =112 \mathrm{kN} \quad=123 \mathrm{kN}
\end{aligned}
$$

6.2 Unfactored Support Reactions due to Live Load (Truck)
6.2.1 Wheels 1,2 , and 3

25	70			70		7,798				
$\downarrow 3600$	\downarrow	1200		\downarrow						
A <--				12,598				--> B		
$\Sigma M_{A}=0->\mathrm{R}_{B}$		$\begin{gathered} \text { (} 70 \\ 47 \end{gathered}$	$\begin{gathered} \mathrm{x} \\ \mathrm{kN} \end{gathered}$	3600)	+	170	x	4800))	/	12,598
$\mathrm{R}_{\text {A }}$	$=$	118	kN			Not Go				

Note: Not to scale.

Note: Not to scale.

Note: Not to scale.

Note: Not to scale.

Note: Not to scale.
6.3 Apply DLA

```
V
DLA = 0.3 Note: Assume no multi-lane reduction
V Max,Truck }=(1+DLA ) x V Truck
    = 1.3 x 167
    = 217 kN\cdotm <-- Governs
7.0 Check Lane Live Loading for Shear
\(\left.\begin{array}{llccccc}\mathrm{V}_{\text {Lane }} & = & \mathrm{w} & \mathrm{x} & \mathrm{L} & / & 2 \\ & = & 9 & \mathrm{x} & 13 & / & 2\end{array}\right] \quad\) Note: Assume no multi-lane reduction
8.0 Factored Maximum Shear
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline ULS1 & \(=\) & 1.10 & X & \(\mathrm{V}_{\text {Max, DL }}\) & \(+\) & 1.70 & X & \(\mathrm{V}_{\text {max, }} \mathrm{LL}\) & Combined Load Factor: & 1.50 \\
\hline & = & 1.10 & X & 112 & + & 1.70 & x & 217 & & \\
\hline & = & 491 & kN & & & & & & & \\
\hline FLS1 & \(=\) & 1.00 & X & \(\mathrm{V}_{\text {Max, DL }}\) & \(+\) & 1.00 & x & \(\mathrm{V}_{\text {max, }}\) LL & & \\
\hline & = & 1.00 & x & 112 & + & 1.00 & X & 217 & & \\
\hline & = & 329 & kN & & & & & & & \\
\hline
\end{tabular}
1.1 Determine centre of gravity of wheel loads
\begin{tabular}{ccccll} 
& \multicolumn{3}{c}{ CG } & & \\
25 & & 70 & 70 & Wheel Loads (kN) & Note: Not to scale. \\
\(\downarrow\) & \(\downarrow\) & \(\downarrow\) & & \\
A<- & 3600 & \(\rightarrow K\) & 1200 & \(->B\) & Spacing (mm)
\end{tabular}

Total Length \(\mathrm{b} / \mathrm{w}\) Wheels 1 and \(3, L_{t}=4,800 \mathrm{~mm}\)
Centre of Gravity, \(\mathrm{Cg}=\Sigma\left(\mathrm{F}_{\mathrm{i}} \mathrm{x} \quad \mathrm{d}_{\mathrm{i}}\right) / \mathrm{FFi} \quad\) Sum of moments about point \(A\)
\[
\begin{aligned}
& =588,000 ~ / ~ \\
& =3,564 \mathrm{~mm}
\end{aligned}
\]

Dist. to nearest wheel \(=36 \mathrm{~mm}\)
Maximum bending moment occurs when the midpoint between the centre of gravity and the axle nearest is centred at mid-span.

\subsection*{1.2 Determine position of wheels causing maximum moment}

Span Length, L
\(=9,690 \mathrm{~mm}\)


Note: Not to scale.

Check: \(\mathrm{L}=9,690 \quad\) OK
Check: OK
1.3 Determine support reactions
\begin{tabular}{rl}
\(\Sigma \mathrm{M}_{\mathrm{A}}=0->\mathrm{F}_{\mathrm{B}}\) & \(=((25 \mathrm{x} 1263)+(70 \mathrm{x} 4863)+(70 \mathrm{x} 6063)) / 9,690\) \\
& \(=82 \mathrm{kN}\) \\
\(\mathrm{F}_{\mathrm{A}}\) & \(=83 \mathrm{kN}\)
\end{tabular}
1.4 Determine maximum bending moment
\begin{tabular}{rlcllllll}
\(\mathrm{M}_{\text {Truck }}\) & \(=\) & \(\mathrm{F}_{\mathrm{A}}\) & x & 4,863 & - & 25 & x & 3,600 \\
& \(=\) & 83 & x & 4,863 & - & 25 & x & 3,600 \\
& \(=\) & 313 & \(\mathrm{kN} \cdot \mathrm{m}\)
\end{tabular}

Check: \(\quad M_{\text {Truck }}=F B \quad x \quad 4,827 \quad-\quad 70 \quad x \quad 1,200\)
\(=82 \times 4,827-70 \times 1,200\)
\(=313 \mathrm{kN} \cdot \mathrm{m} \quad\) OK
1.5 Apply Dynamic Load Allowance (DLA)

DLA
\(=0.3\)
Note: Assume no multi-lane reduction
[CL 3.8.4.5.3]
\(\mathrm{M}_{\max }=(1+\) DLA \() \mathrm{x} \quad 313\)
\(=1.3 \mathrm{x} 313\)
\(=407 \mathrm{kN} \cdot \mathrm{m}\) @ \(\mathrm{d}=4,863 \Rightarrow 4,863 / \mathrm{L}=0.502\) *Saymidspan (conservative)
2.0 Check other live load wheel configurations

Note: It has been determined that wheel combinations \(1 \& 2,2 \& 3,2 \& 3 \& 4,4 \& 5\) do not govern.
3.0 Check Lane Live Loading for Moment
\[
\begin{array}{rlclclcl}
\mathrm{M}_{\text {Lane }} & = & \mathrm{w} & \mathrm{x} & \mathrm{~L}^{2} & / & 8 & \\
& = & 9 & \mathrm{x} & 94 & / & 8 & \\
& = & 106 & \mathrm{kN} \cdot \mathrm{~m} & & & \text { [Can/CSA S16-01 PP 6-44] } \\
& & & & & \\
\mathrm{M}_{\text {Max }} & = & \mathrm{M}_{\text {Lane }} & + & 0.8 & \mathrm{x} & \mathrm{M}_{\text {Truck }} & \\
& = & 106 & + & 0.8 & \mathrm{x} & 313 & \\
& =356 & \mathrm{kN} \cdot \mathrm{~m} & & & \text { Does Not Govern } &
\end{array}
\]
4.0 Check Dead Load Maximum Moment
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Self-Weight & = & 1.88 & kN/m & & & & & & & & & & \\
\hline L & = & 9.690 & m & & & & & & & & & & \\
\hline \(\mathrm{M}_{\text {max, }}\) sw & = & w & x & \(L^{2}\) & / & 8 & \(\mathrm{M}_{\text {max, deck }}\) & \(=\) & w & x & \(L^{2}\) & / & 8 \\
\hline & = & 1.88 & x & 94 & / & 8 & & = & 15.89 & x & 94 & / & 8 \\
\hline & = & 22.07 & kN•m & & & & & = & 186.50 & \(\mathrm{kN} \cdot \mathrm{m}\) & & & \\
\hline Deck & = & 15.89 & kN/m & & & Assume 0.96kPa \(\times 1.2954 \mathrm{~m}\) wide & \(\mathrm{M}_{\text {max, DL }}\) & = & \(\mathrm{M}_{\text {max, }} \mathrm{sw}\) & & max, Grate & & \\
\hline L & = & 9.690 & m & & & & & = & 22.07 & & 86.50 & & \\
\hline
\end{tabular}
5.0 Factored Maximum Moments
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{ULS1} & = & 1.10 & x & \(\mathrm{M}_{\text {max, } \mathrm{DL}}\) & + & 1.70 & x & \(\mathrm{M}_{\text {max, LL }}\) \\
\hline & = & 1.10 & x & 209 & + & 1.70 & x & 407 \\
\hline & = & 921 & \multicolumn{6}{|l|}{kN.m} \\
\hline \multirow[t]{3}{*}{FLS1} & = & 1.00 & x & \(\mathrm{M}_{\text {max, }}\) DL & + & 1.00 & x & \(\mathrm{M}_{\text {max, LL }}\) \\
\hline & = & 1.00 & x & 209 & + & 1.00 & x & 407 \\
\hline & \(=\) & 615 & \multicolumn{6}{|l|}{\(\mathrm{kN} \cdot \mathrm{m}\)} \\
\hline
\end{tabular}
6.0 Maximum Shear
6.1 Unfactored Support Reactions due to Dead Loads
\[
\begin{aligned}
& \mathrm{V}_{\text {self-weight }}=\mathrm{w} \mathrm{x} \mathrm{~L} / \mathrm{2} \text { Assume simply supported } \\
& =1.88 \mathrm{x} 9.690 / 2 \\
& =9 \mathrm{kN} \\
& V_{\text {deck }}=w \quad \mathrm{w} \quad \mathrm{~L} \quad / \quad 2 \\
& =15.89 \mathrm{x} 9.690 / 2 \\
& =77 \mathrm{kN} \\
& \mathrm{~V}_{\text {Max, DL }}=R_{\text {self-weight }}+\mathrm{R}_{\text {grating }} \quad \mathrm{V}_{\mathrm{F}, \mathrm{Max}, \mathrm{DL}}=1.1 \times \mathrm{V}_{\text {Max, DL }} \\
& =9+77 \quad=1.1 \times \mathrm{x} 86 \\
& =86 \mathrm{kN} \quad=95 \mathrm{kN}
\end{aligned}
\]
6.2 Unfactored Support Reactions due to Live Load (Truck)
6.2.1 Wheels 1, 2, and 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 25 \\
& \downarrow \quad 3600
\end{aligned}
\] & \(\downarrow\) & \[
1200
\] & & \[
\begin{gathered}
70 \\
\downarrow
\end{gathered}
\] & & \multicolumn{3}{|l|}{4,890} & & \\
\hline A <-- & & \multicolumn{4}{|c|}{9,690} & \multicolumn{5}{|c|}{--> B} \\
\hline \(\Sigma M_{A}=0->\mathrm{R}_{\text {B }}\) & \(=\) & \[
\begin{gathered}
\text { ( } 70 \\
61
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{x} \\
\mathrm{kN}
\end{gathered}
\] & 3600 ) & + & 170 & x & 4800) ) & / & 9,690 \\
\hline \(\mathrm{R}_{\text {A }}\) & = & 104 & kN & & \multicolumn{6}{|l|}{Does Not Govern} \\
\hline
\end{tabular}

Note: Not to scale.

Note: Not to scale.

Note: Not to scale

Note: Not to scale.

Note: Not to scale.
6.2.5 Wheels 2, 3, and 4; Reverse Direction

\(\begin{aligned} \Sigma \mathrm{M}_{\mathrm{A}}=0->\mathrm{R}_{\mathrm{B}} & =((70 \mathrm{x} 6600)+(70 \mathrm{x} 7800)) / 9,690 \\ & =104 \mathrm{kN}\end{aligned}\)
\(\mathrm{R}_{\mathrm{A}}=123 \mathrm{kN}\) Does Not Govern
6.3 Apply DLA
```

V Truck
DLA = 0.3


```
    = 1.3 x 148
```

 = 1.3 x 148
 = 193 kN.m <-- Governs
    ```
    = 193 kN.m <-- Governs
```

7.0 Check Lane Live Loading for Shear

| $\mathrm{V}_{\text {Lane }}$ | $=$ | w | x | L | $/$ | 2 | |
| ---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | $=$ | 9 | x | 10 | $/$ | 2 | |
| | $=$ | 44 | kN | | | | |
| | | | | | | | |
| $\mathrm{V}_{\text {Max, Lane }}$ | $=$ | $\mathrm{V}_{\text {Lane }}$ | + | 0.8 | x | $\mathrm{V}_{\text {Truck }}$ | Note: Assume no multi-lane reduction |
| | $=$ | 44 | + | 0.8 | x | 148 | |
| | $=$ | 162 | kN | | | | Does Not Govern |

8.0 Factored Maximum Shear

| ULS1 | = | 1.10 | x | $\mathrm{V}_{\text {Max, DL }}$ | + | 1.70 | x | $\mathrm{V}_{\text {max, LL }}$ | Combined Load Factor: | 1.51 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | = | 1.10 | x | 86 | + | 1.70 | x | 193 | | |
| | = | 423 | kN | | | | | | | |
| FLS1 | = | 1.00 | x | $\mathrm{V}_{\text {Max, DL }}$ | + | 1.00 | x | $\mathrm{V}_{\text {max, }}$ Lu | | |
| | = | 1.00 | x | 86 | + | 1.00 | x | 193 | | |
| | $=$ | 279 | kN | | | | | | | |

1.1 Stringer Factored Loads Includes DLA + Multi-Lane Reduction Factor

[CL 3.8.4.2]
1.2 Stringer Spacing

| | Cumulative | | | |
| ---: | :--- | :---: | :---: | :---: |
| S6-S7 | $=1.943$ | | | |
| m | 12.712 | | | |
| $\mathrm{~S} 7-\mathrm{S} 8$ | $=1.943$ | | | |
| m | 14.655 | | | |
| $\mathrm{~S} 8-\mathrm{B}$ | $=1.245 \mathrm{~m}$ | | | |
| S | 15.900 | | | |

1.3 Support Reactions

$$
\left.\begin{array}{rl}
\Sigma M_{A}=0 & ->F_{B}
\end{array}\right) 868 \mathrm{kN}, ~=1408 \mathrm{kN} .
$$

1.4 Factored Shear (ULS1)

1.5 Factored Moments (ULS1)

1.6 Factored Demands:

| Applied Loads: | M_{f} | $=$ | 3979 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 1408 | kN |
| ---: | :--- | :--- | :---: | :--- | :--- | :--- | :---: | :--- |
| Girder Self Weight: | M_{f} | $=$ | 165 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 41 | kN |
| ULS1: | M_{f} | | 4144 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 1449 | kN |

1.1 Stringer Factored Loads Includes DLA + Multi-Lane Reduction Factor

[CL 3.8.4.2]

1.2 Stringer Spacing

| | $\frac{\text { Cumulative }}{}$ | | | |
| ---: | :--- | :---: | :---: | :---: |
| $\mathrm{A}-\mathrm{S} 1$ | $=1.245$ | | | |
| m | 1.245 | | | |
| $\mathrm{~S}-\mathrm{S} 2$ | $=1.524$ | | | |
| m | 2.769 | | | |
| $\mathrm{~S} 2-\mathrm{S} 3$ | $=2.057$ | | | |
| m | 4.826 | | | |
| m | | | | |
| $\mathrm{~S} 3-\mathrm{S} 4$ | $=2.057$ | | | |
| m | 6.883 | | | |
| $\mathrm{~S} 4-\mathrm{S} 5$ | $=1.943$ | | | |
| m | 8.826 | | | |
| S | m | | | |
| $\mathrm{~S}-\mathrm{S} 6$ | $=1.943 \mathrm{~m}$ | | | |
| m | 10.769 | | | |

| | Cumulative
 $\mathrm{S} 6-\mathrm{S} 7$$=1.943 \mathrm{~m}$ | | | | 12.712 m |
| ---: | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{~S} 7-\mathrm{S} 8$ | $=1.943$ | | | | |
| m | 14.655 m | | | | |
| $\mathrm{~S} 8-\mathrm{B}$ | $=1.245 \mathrm{~m}$ | | | | |

1.3 Support Reactions
$\Sigma M_{A}=0->F_{B}=\frac{U L S}{1088} \mathrm{kN}$
$\Rightarrow F_{A}=1740 \mathrm{kN}$
1.4 Factored Shear (ULS1)

| | | ULS | |
| :---: | :---: | :---: | :---: |
| A | = | 1740 | kN |
| S1 | = | 1231 | kN |
| S2 | = | 722 | kN |
| S3 | = | 213 | kN |
| S4 | = | -296 | kN |
| S5 | = | -494 | kN |
| S6 | = | -692 | kN |
| Check: | | OK | |

| | $\underline{\text { ULS }}$ | | |
| ---: | :--- | :--- | :--- |
| S7 | $=-890$ | kN | |
| S8 | $=-1088$ | kN | |
| B | $=-1088$ | kN | |

1.5 Factored Moments (ULS1)

| | | ULS | | | x / L |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $=$ | 0 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.00 |
| S 1 | $=$ | 2166 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.08 |
| S 2 | $=$ | 4042 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.17 |
| S 3 | $=$ | 5527 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.30 |
| S 4 | $=$ | 5965 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.43 |
| S 5 | $=$ | 5389 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.56 |
| S 6 | $=$ | 4429 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.68 |

| | | $\underline{U L S}$ | |
| ---: | :--- | :--- | :--- |
| $\mathrm{S7}$ | $=$ | 3084 | $\mathrm{kN} \cdot \mathrm{m}$ |
| S 8 | $=$ | 1355 | $\mathrm{kN} \cdot \mathrm{m}$ |
| B | $=0$ | $\mathrm{kN} \cdot \mathrm{m}$ | |

| | x / L |
| :---: | :---: |
| | 0.80 |
| $@$ | 0.92 |
| $@$ | 1.00 |

1.6 Factored Demands:

| Applied Loads: | M_{f} | $=$ | 5965 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 1740 | kN |
| ---: | :--- | :--- | :---: | :--- | :--- | :--- | :---: | :--- |
| Girder Self Weight: | M_{f} | $=$ | 165 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 41 | kN |
| ULS1: | M_{f} | | 6130 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 1781 | kN |

1.1 Stringer Factored Loads Includes DLA + Multi-Lane Reduction Factor

[CL 3.8.4.2]
1.2 Stringer Spacing

| | $\frac{\text { Cumulative }}{}$ | | | |
| ---: | :--- | :---: | :---: | :---: |
| $\mathrm{A}-\mathrm{S} 1$ | $=1.245$ | | | |
| m | 1.245 | | | |
| $\mathrm{~S} 1-\mathrm{S} 2$ | $=1.524$ | | | |
| m | 2.769 | | | |
| $\mathrm{~S} 2-\mathrm{S} 3$ | $=2.057$ | | | |
| m | 4.826 | | | |
| S | | | | |
| $\mathrm{~S}-\mathrm{S} 4$ | $=2.057$ | | | |
| m | 6.883 | | | |
| $\mathrm{~S}-\mathrm{S}$ | $=1.943$ | | | |
| m | 8.826 | | | |
| S | m | | | |
| $\mathrm{~S}-\mathrm{S} 6$ | $=1.943 \mathrm{~m}$ | | | |
| m | 10.769 | | | |

| | Cumulative
 $\mathrm{S} 6-\mathrm{S} 7$$=1.943 \mathrm{~m}$ | | | | 12.712 m |
| ---: | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{~S} 7-\mathrm{S} 8$ | $=1.943$ | | | | |
| m | 14.655 m | | | | |
| $\mathrm{~S} 8-\mathrm{B}$ | $=1.245 \mathrm{~m}$ | | | | |

1.3 Support Reactions

$$
\begin{aligned}
\Sigma M_{A}=0->F_{B} & =1396 \mathrm{kN} \\
\Rightarrow F_{A} & =1850 \mathrm{kN}
\end{aligned}
$$

1.4 Factored Shear (ULS1)

| | | $\underline{\text { ULS }}$ |
| ---: | :--- | ---: | :--- |
| A | $=1850$ | kN |
| S1 | $=1375$ | kN |
| S2 | $=900$ | kN |
| S3 | $=425$ | kN |
| S4 | $=-50$ | kN |
| S5 | $=-525$ | kN |
| S6 | $=-1000 \mathrm{kN}$ | |
| Check: | | |

| | $\underline{\text { ULS }}$ | | |
| ---: | :--- | :--- | :--- |
| S7 | $=-1198$ | kN | |
| S8 | $=-1396$ | kN | |
| B | $=-1396$ | kN | |

1.5 Factored Moments (ULS1)

| ULS | | | | x/L | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | = | 0 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.00 |
| S1 | = | 2303 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.08 |
| S2 | = | 4399 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.17 |
| S3 | = | 6251 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.30 |
| S4 | = | 7125 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.43 |
| S5 | = | 7028 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.56 |
| S6 | = | 6008 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.68 |

| | | $U L S$ | |
| ---: | :--- | :--- | :--- |
| $\mathrm{S7}$ | $=$ | 4065 | $\mathrm{kN} \cdot \mathrm{m}$ |
| S 8 | $=$ | 1738 | $\mathrm{kN} \cdot \mathrm{m}$ |
| B | $=$ | 0 | $\mathrm{kN} \cdot \mathrm{m}$ |

| | x / L |
| :--- | :---: |
| | 0.80 |
| $@$ | 0.92 |
| $@$ | 1.00 |

1.6 Factored Demands:

| Applied Loads: | M_{f} | $=$ | 7125 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 1850 | kN |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :--- |
| Girder Self Weight: | M_{f} | $=$ | 165 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 41 | kN |
| ULS1: | M_{f} | | 7290 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 1891 | kN |

1.1 Stringer Factored Loads Includes DLA + Multi-Lane Reduction Factor

[CL 3.8.4.2]
1.2 Stringer Spacing

| | $\frac{\text { Cumulative }}{}$ | | | |
| ---: | :--- | :---: | :---: | :---: |
| $\mathrm{A}-\mathrm{S} 1$ | $=1.245$ | | | |
| m | 1.245 | | | |
| $\mathrm{~S} 1-\mathrm{S} 2$ | $=1.524$ | | | |
| m | 2.769 | | | |
| $\mathrm{~S} 2-\mathrm{S} 3$ | $=2.057$ | | | |
| m | 4.826 | | | |
| S | | | | |
| $\mathrm{~S}-\mathrm{S} 4$ | $=2.057$ | | | |
| m | 6.883 | | | |
| $\mathrm{~S}-\mathrm{S}$ | $=1.943$ | | | |
| m | 8.826 | | | |
| S | m | | | |
| $\mathrm{~S}-\mathrm{S} 6$ | $=1.943 \mathrm{~m}$ | | | |
| m | 10.769 | | | |

| | Cumulative
 $\mathrm{S} 6-\mathrm{S} 7$$=1.943 \mathrm{~m}$ | | | | 12.712 m |
| ---: | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{~S} 7-\mathrm{S} 8$ | $=1.943$ | | | | |
| m | 14.655 m | | | | |
| $\mathrm{~S} 8-\mathrm{B}$ | $=1.245 \mathrm{~m}$ | | | | |

1.3 Support Reactions
$\Sigma M_{A}=0 \rightarrow F_{B}=\stackrel{\text { ULS }}{1735} \mathrm{kN}$
$\Rightarrow F_{A}=1785 \mathrm{kN}$
1.4 Factored Shear (ULS1)

| | $\underline{\text { ULS }}$ | |
| ---: | :--- | :--- | :--- |
| S7 | $=-1295$ | kN |
| S8 | $=-1735$ | kN |
| B | $=-1735 \mathrm{kN}$ | |

1.5 Factored Moments (ULS1)

| ULS | | | | x/L | | ULS | | | | | x/L |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | = | 0 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.00 | S7 | = | 4675 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.80 |
| S1 | = | 2223 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.08 | S8 | = | 2160 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.92 |
| S2 | = | 4273 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.17 | B | = | 0 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 1.00 |
| S3 | = | 6135 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.30 | | | | | | |
| S4 | = | 7092 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.43 | | | | | | |
| S5 | = | 7142 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.56 | | | | | | |
| S6 | = | 6336 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.68 | | | | | | |

1.6 Factored Demands:

| Applied Loads: | M_{f} | $=$ | 7142 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 1785 | kN |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :--- |
| Girder Self Weight: | M_{f} | $=$ | 165 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 41 | kN |
| ULS1: | M_{f} | | 7307 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 1826 | kN |

1.1 Stringer Factored Loads Includes DLA + Multi-Lane Reduction Factor

[CL 3.8.4.2]
1.2 Stringer Spacing

| | Cumulative | | | |
| ---: | :--- | :--- | :--- | :--- |
| A-S1 | $=1.245$ | m | 1.245 | m |
| $\mathrm{~S} 1-\mathrm{S} 2$ | $=1.524$ | m | 2.769 | m |
| $\mathrm{~S} 2-\mathrm{S} 3$ | $=2.057$ | m | 4.826 | m |
| $\mathrm{~S} 3-\mathrm{S} 4$ | $=2.057$ | m | 6.883 | m |
| S4-S5 | $=1.943$ | m | 8.826 | m |
| S5-S6 | $=1.943$ | m | 10.769 | m |

1.3 Support Reactions

$$
\left.\begin{array}{rl}
\Sigma M_{A}=0 & ->F_{B}
\end{array}\right) \frac{U L S}{391} \mathrm{kN}
$$

1.4 Factored Shear (ULS1)

| | | $\underline{\text { ULS }}$ |
| ---: | :--- | ---: | :--- |
| A 1 | $=707$ | kN |
| S 1 | $=416$ | kN |
| S 2 | $=125$ | kN |
| S 3 | $=39$ | kN |
| S4 | $=-47$ | kN |
| S5 | $=-133$ | kN |
| S6 | $=-219$ | kN |

Check: OK
1.5 Factored Moments (ULS1)

| | | $\frac{U L S}{}$ | | | x / L |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A | $=$ | 0 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.00 |
| S 1 | $=$ | 880 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.08 |
| S 2 | $=$ | 1515 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.17 |
| S 3 | $=$ | 1772 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.30 |
| S 4 | $=$ | 1853 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.43 |
| S 5 | $=$ | 1762 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.56 |
| S 6 | $=$ | 1504 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.68 |

| | | $\underline{\text { ULS }}$ | | | x / L |
| :---: | :---: | :---: | :--- | :--- | :---: |
| | $=$ | 1079 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.80 |
| S 8 | $=$ | 487 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.92 |
| B | $=$ | 0 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 1.00 |

1.6 Factored Demands:

| Applied Loads: | M_{f} | $=$ | 1853 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 707 | kN |
| ---: | :--- | :--- | :---: | :--- | :--- | :--- | :---: | :--- |
| Girder Self Weight: | M_{f} | $=$ | 164 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 38 | kN |
| ULS1: | M_{f} | | 2017 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 745 | kN |

1.1 Stringer Factored Loads

Includes DLA + Multi-Lane Reduction Factor

| Lanes | $=$ | 2 | -> | R_{L} | $=$ | 0.9 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | ULS | | | | | | | ULS | |
| S1 | $=$ | 271 | kN | | | | S7 | $=$ | 86 | kN |
| S2 | = | 271 | kN | | | | S8 | = | 86 | kN |
| S3 | = | 271 | kN | | | | | | | |
| S4 | = | 271 | kN | | | | | | | |
| S5 | = | 86 | kN | | | | | | | |
| S6 | = | 86 | kN | | | | | | | |

[CL 3.8.4.2]
1.2 Stringer Spacing

| | Cumulative | | | |
| ---: | :--- | :--- | :--- | :--- |
| $\mathrm{A}-\mathrm{S} 1$ | $=1.245$ | m | 1.245 | m |
| $\mathrm{~S} 1-\mathrm{S} 2$ | $=1.524$ | m | 2.769 | m |
| $\mathrm{~S} 2-\mathrm{S} 3$ | $=2.057$ | m | 4.826 | m |
| $\mathrm{~S} 3-\mathrm{S} 4$ | $=2.057$ | m | 6.883 | m |
| $\mathrm{~S} 4-\mathrm{S} 5$ | $=1.943$ | m | 8.826 | m |
| $\mathrm{~S} 5-\mathrm{S} 6$ | $=1.943$ | m | 10.769 | m |

| | Cumulative | | | |
| ---: | :--- | :--- | :--- | :--- |
| S6-S7 | $=1.943$ | m | 12.712 | m |
| $\mathrm{~S} 7-\mathrm{S} 8$ | $=1.943$ | m | 14.655 | m |
| $\mathrm{~S} 8-\mathrm{B}$ | $=1.245$ | m | 15.900 | m |

1.3 Support Reactions

$$
\left.\begin{array}{rl}
\Sigma M_{A}=0 & ->F_{B}
\end{array}\right)=522 \mathrm{kN}
$$

1.4 Factored Shear (ULS1)

| | | $\underline{\text { ULS }}$ |
| ---: | :--- | ---: |
| A | $=906$ | kN |
| S1 | $=635$ | kN |
| S2 | $=364$ | kN |
| S3 | $=93$ | kN |
| S4 | $=-178$ | kN |
| S5 | $=-264$ | kN |
| S6 | $=-350 \mathrm{kN}$ | |
| Check: | | |

| | $\underline{U L S}$ | | |
| ---: | :--- | ---: | :---: |
| S7 | $=-436$ | kN | |
| S8 | $=-522$ | kN | |
| B | $=-522$ | kN | |

1.5 Factored Moments (ULS1)

| ULS | | | | x/L | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | = | 0 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.00 |
| S1 | = | 1128 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.08 |
| S2 | = | 2096 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.17 |
| S3 | = | 2844 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.30 |
| S4 | = | 3036 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.43 |
| S5 | = | 2690 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.56 |
| S6 | = | 2177 | $\mathrm{kN} \cdot \mathrm{m}$ | @ | 0.68 |

| | $\underline{U L S}$ | | |
| ---: | :--- | :---: | :--- |
| S7 | $=1497$ | $\mathrm{kN} \cdot \mathrm{m}$ | |
| S8 | $=650$ | $\mathrm{kN} \cdot \mathrm{m}$ | |
| B | $=0$ | $\mathrm{kN} \cdot \mathrm{m}$ | |

| | x / L |
| :---: | :---: |
| $@$ | 0.80 |
| $@$ | 0.92 |
| $@$ | 1.00 |

1.6 Factored Demands:

| Applied Loads: | M_{f} | $=$ | 3036 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 906 | kN |
| ---: | :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| Girder Self Weight: | M_{f} | $=$ | 164 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 38 | kN |
| ULS1: | M_{f} | | 3200 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 944 | kN |

1.1 Stringer Factored Loads

Includes DLA + Multi-Lane Reduction Factor

[CL 3.8.4.2]
1.2 Stringer Spacing

| | Cumulative | | | |
| ---: | :--- | :--- | :--- | :--- |
| $\mathrm{A}-\mathrm{S} 1$ | $=1.245$ | m | 1.245 | m |
| $\mathrm{~S} 1-\mathrm{S} 2$ | $=1.524$ | m | 2.769 | m |
| $\mathrm{~S} 2-\mathrm{S} 3$ | $=2.057$ | m | 4.826 | m |
| $\mathrm{~S} 3-\mathrm{S} 4$ | $=2.057$ | m | 6.883 | m |
| $\mathrm{~S} 4-\mathrm{S} 5$ | $=1.943$ | m | 8.826 | m |
| $\mathrm{~S} 5-\mathrm{S} 6$ | $=1.943$ | m | 10.769 | m |

| | Cumulative | | | |
| ---: | :--- | :--- | :--- | :--- |
| S6-S7 | $=1.943$ | m | 12.712 | m |
| $\mathrm{~S} 7-\mathrm{S} 8$ | $=1.943$ | m | 14.655 | m |
| $\mathrm{~S} 8-\mathrm{B}$ | $=1.245$ | m | 15.900 | m |

1.3 Support Reactions

$$
\left.\begin{array}{rl}
\Sigma M_{A}=0 & ->F_{B}
\end{array}\right) \frac{U L S}{703} \mathrm{kN}
$$

1.4 Factored Shear (ULS1)

| | $\underline{\text { ULS }}$ | |
| ---: | :--- | ---: |
| A | $=969$ | kN |
| S1 | $=719$ | kN |
| S2 | $=469$ | kN |
| S3 | $=219$ | kN |
| S4 | $=-31$ | kN |
| S5 | $=-281$ | kN |
| S6 | $=-531 \mathrm{kN}$ | |
| Check: | | |

| | $\underline{U L S}$ | | |
| ---: | :--- | ---: | :---: |
| S7 | $=-617$ | kN | |
| S8 | $=-703$ | kN | |
| B | $=-703$ | kN | |

1.5 Factored Moments (ULS1)

1.6 Factored Demands:

| Applied Loads: | M_{f} | $=$ | 3715 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 969 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| GN | | | | | | | |
| Girder Self Weight: | M_{f} | $=$ | 164 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 38 |
| ULS1: | M_{f} | | 3879 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 1007 |

1.1 Stringer Factored Loads

Includes DLA + Multi-Lane Reduction Factor

[CL 3.8.4.2]
1.2 Stringer Spacing

| | Cumulative | | | |
| ---: | :--- | :--- | :--- | :--- |
| $\mathrm{A}-\mathrm{S} 1$ | $=1.245$ | m | 1.245 | m |
| $\mathrm{~S} 1-\mathrm{S} 2$ | $=1.524$ | m | 2.769 | m |
| $\mathrm{~S} 2-\mathrm{S} 3$ | $=2.057$ | m | 4.826 | m |
| $\mathrm{~S} 3-\mathrm{S} 4$ | $=2.057$ | m | 6.883 | m |
| $\mathrm{~S} 4-\mathrm{S} 5$ | $=1.943$ | m | 8.826 | m |
| $\mathrm{~S} 5-\mathrm{S} 6$ | $=1.943$ | m | 10.769 | m |

| | Cumulative | | | |
| ---: | :--- | :--- | :--- | :--- |
| S6-S7 | $=1.943$ | m | 12.712 | m |
| $\mathrm{~S} 7-\mathrm{S} 8$ | $=1.943$ | m | 14.655 | m |
| $\mathrm{~S} 8-\mathrm{B}$ | $=1.245$ | m | 15.900 | m |

1.3 Support Reactions

$$
\begin{aligned}
\Sigma M_{A}=0->F_{B} & =907 \mathrm{kN} \\
\Rightarrow F_{A} & =933 \mathrm{kN}
\end{aligned}
$$

1.4 Factored Shear (ULS1)

| | $\underline{U L S}$ | | |
| ---: | :--- | ---: | :--- |
| A | $=933$ | kN | |
| S2 | $=$ | 703 | kN |
| S3 | $=$ | 243 | kN |
| S4 | $=$ | 13 | kN |
| S5 | $=-217$ | kN | |
| S6 | $=-447$ | kN | |
| Check: | | | |

| | $\underline{U L S}$ | | |
| ---: | :--- | ---: | :---: |
| S7 | $=-677$ | kN | |
| S8 | $=-907$ | kN | |
| B | $=-907$ | kN | |

1.5 Factored Moments (ULS1)

| | | ULS | | | x / L |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $=$ | 0 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.00 |
| S 1 | $=$ | 1162 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.08 |
| S 2 | $=$ | 2234 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.17 |
| S 3 | $=$ | 3207 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.30 |
| S 4 | $=$ | 3707 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.43 |
| S 5 | $=$ | 3733 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.56 |
| S 6 | $=$ | 3312 | $\mathrm{kN} \cdot \mathrm{m}$ | $@$ | 0.68 |

$\begin{array}{cccc} & & \underline{U L S} \\ \text { S7 } & =2444 & \mathrm{kN} \cdot \mathrm{m} \\ \text { S8 } & =1129 & \mathrm{kN} \cdot \mathrm{m} \\ \text { B } & =0 & \mathrm{kN} \cdot \mathrm{m}\end{array}$

1.6 Factored Demands:

| Applied Loads: | M_{f} | $=$ | 3733 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 933 | kN |
| ---: | :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| Girder Self Weight: | M_{f} | $=$ | 164 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 38 | kN |
| ULS1: | M_{f} | | 3897 | $\mathrm{kN} \cdot \mathrm{m}$ | V_{f} | $=$ | 971 | kN |

APPENDIX D. 3
 LIFTING GIRDER DEMAND CHECK

(1) Parameters
bIb analysis - Luting girder hand Check (Demand)

(2) LOADing (RaIsed Position)

- Due to imbalance, sulghty different loads exist at each of the four corners. For titis check, use maximum factored load Which 15 conservative.
- USE ULSV3 LOAD COMBINATION FOR LIFT SPAN IN RAISED
POSITION TO PRODUCE THE MAXIMUM FACTORED LOAD. (DEAD + WIND + IMPKT)
\rightarrow FROM ANALYSIs: $\quad R_{f}=6376 \mathrm{kN}$ PER "CORNER" (FACTORED)

$$
\triangle \therefore P=R / 2=3188 \mathrm{kN} \text { PER ROPE }
$$

- Assume beam 15 fixed at ends.

Note: Self Weight CALCULATED TO BE

$$
\begin{aligned}
& 0.169943 \mathrm{~m}^{2} \times 77 \mathrm{kN} / \mathrm{m}^{3} \\
& =13 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

* Impact load shall be 20% of lift span dead load.

(3) forces (Raised Position)
$\left.\begin{array}{l}\text { MAX MOMENT }=13779 \mathrm{kN} / \mathrm{m} \\ \text { MAY SHEAR }=6304 \mathrm{kN}\end{array}\right\}$ OUTPUT FROM ANALYSIS SOFTWARE

(4) Closer Position
- OnLY DEAD LOAD FROM COUNTERWEIGHT is ASSUMED TO BE
ACTiNG ON THE LFFTNG GIRDER. [USE US] $\triangle \alpha_{D} \times W=1.1 \times 8547=9402$ KN PER COUNTERWEIGHT. \leftrightarrow FOUR ROPES PER COUNTERWEIGHT $\Rightarrow P=2350 \mathrm{kN}$
- Maximum moment $=10081 \mathrm{kN}$ mm
- Maximum Shear $=4624 \mathrm{kN}$

Support Reactions

NOTE: FIXED AT BOTH ENDS.

MMM Group Ltd. 2655 North Sheridan Way Mississauga, Ontario 905-823-8500

RS-6 3D Modelling and Structural Analyses
Load Case 1: Load Engineer: KY
FORCES - Raised POSition (factored ulsvi)

Note: Self weight applied by software (and factored
per uls vo)

APPENDIX D. 4
 DEFLECTIONS

TRUSS MID-SPAN DEFLECTION APPROXIMATION:
(1) Parameters:

LENGTH OF LIFT SPAN:L=370'-0' $=112776 \mathrm{~mm}$
HEIGHT OF TRUSS (AVERAGE) $d=\frac{45.5+55}{2}=50.25^{\prime}=15.316 \mathrm{~mm}$
TOP Chord: Area \rightarrow She deriection is governed more by mid-span, use average AREA OF INNER CHORD SECTIONS (IE $\mathrm{U}_{3} \mathrm{U}_{5}, \mathrm{U}_{5} \mathrm{U}_{6}$)

$$
A_{\omega \bar{p}}=\frac{1}{2}(104088+108905)=106467 \mathrm{~mm}^{2}
$$

$$
\begin{aligned}
& \text { SEcOND MOMENT OF AREA, sTOP }=\text { ALg OF } U_{3} U_{5}, U_{5} U_{6} \\
& =11.534 \times 10^{9} \mathrm{~mm}^{4}
\end{aligned}
$$

BOTTOM CHORD: AREA (AVG of L2L4, $44 L 6)=79919 \mathrm{~mm}^{2}=A_{\text {BOT }}$
SECOND MOMENT OF AREA, TROT $=5.628 \times 10^{9} \mathrm{~mm}^{4}$ (AVG OF LL LM, Lu LC)
ELASTIC MoDulus, $E=2006 \mathrm{~Pa}$
(2) IDEALIZATION:
\rightarrow Loci. of Neutral AxIs:

$$
\begin{aligned}
A y & =\sum A_{i} y_{i} \\
\Rightarrow d_{2} & =\frac{A_{00 P} \times\left(d_{1}+d_{2}\right)+A_{\text {set } \times 0}}{\left(A_{0 O P}+A_{B O T}\right)} \\
& =8749 \mathrm{~mm} \\
\Rightarrow d_{1} & =6567 \mathrm{~mm}
\end{aligned}
$$

- As a beam:

$$
=\frac{100^{\circ}}{\neq}+4.591 \times 10^{12}+\underset{\$}{1007}+6.117 \times 10^{12}=10.709 \times 10^{12} \mathrm{~mm}^{4}
$$

\qquad BLB - ANALYSIS
w.o. 3213009 DESIGNED \qquad DATE MAY $13 / 44$

CHECKED DATE \qquad Mg/14 PAGE of \qquad 3
(3) LOADING:

$$
\rightarrow \text { DEAD LOAD: TOTAL }=17213.238 \mathrm{kN}
$$

[ROS5 ENG, 2004]
\rightarrow ASSUME DEAD LOAD IS EVENLY SHARED BETWEEN THE TWO TRUSSES

$$
\rightarrow 8606.619 \mathrm{kN}
$$

$\rightarrow \underset{\substack{\text { APPLY M) } \\ \text { (BEAM) }}}{\substack{\text { AS } \\ \text { AL }}}$

$$
\begin{aligned}
\Delta 8606.619 / 112.766 & =76.316 \mathrm{kN} / \mathrm{m} \text { LENGTH }=\mathrm{W} \\
& =76.316 \frac{\mathrm{kN}}{\mathrm{~m}} \times \frac{\mathrm{m}}{1000 \mathrm{~mm}} \times \frac{1000 \mathrm{~N}}{\mathrm{kN}}=76.31 \mathrm{NN} / \mathrm{mm}
\end{aligned}
$$

\qquad
\qquad 3213009 DESIGNED KY DATE MAY $13 / 14$
\qquad DATE \qquad Mf /14 PAGE 2 of 3
(4) Deflections:

$$
\begin{aligned}
& \Delta_{D L}=\frac{5 W L^{4}}{384 E 1}=5 \times 76.31 \operatorname{linx}_{\mathrm{mm})} 112776_{(\mathrm{mm})}^{4} \times \frac{1}{384} \times \frac{1}{200000}\left(\frac{\mathrm{~mm}^{2}}{\mathrm{~N}}\right) \times \frac{1}{10.709 \times 10^{12} \mathrm{~mm}^{4}} \\
& =75 \mathrm{~mm} \text { [ASSUMES NO WEB STIFFENING] } \\
& \Delta_{\triangle} L / \Delta_{D L} \cong 1500
\end{aligned}
$$

(5) Comparison to 5-Frame Results:

- Dead load Deflections:
Δ HIGHLY TRUSS RESULT $=69 \mathrm{~mm} \quad\left(L / \Delta_{D L}=1634\right)$

$$
75 / 69 \sim 1.1 \rightarrow \therefore 10 \% \text { WEB STIFFENING }
$$

\triangle RAIlWAY TRUSS RESULT $=63 \mathrm{~mm} \quad\left(\frac{L}{\Delta_{D L}}=1790\right)$

$$
75 / 63 \simeq 1.2 \rightarrow \therefore \sim 20 \% \text { WEB STIFFENING }
$$

\qquad w.o. 3213009
\qquad dATE MAY $13 / \mathrm{H}$
\qquad DATE \qquad PAGE 3 OF 3

TOWER Deflection Approximation:
(1) Parameters:
\rightarrow HEIGNT OF TOWER: $169^{\prime}-2 \frac{3 / 8 '}{}{ }^{\prime}=51.572 \mathrm{~m}$ (TO TOP OF 'B' LEVEL)
\rightarrow DEPTH (LONGITUDINAL): $32^{\prime} \cdot 0^{\prime \prime}=9.754 / \mathrm{m}$
\rightarrow Front Column:

$$
A_{F C O L}=A V G \text { OF MID }+ \text { TOP SECTIONS }
$$

$$
\begin{aligned}
& =\frac{1}{2}(190460+128534) \\
& =159497 \mathrm{~mm}^{2} \\
I_{\text {FCOL }} & =\text { AVG OF M1D }+ \text { TOP } \\
& =20.730 \times 10^{9} \mathrm{~mm}^{4}
\end{aligned}
$$

\rightarrow REAR COLUMN: $\quad A_{\text {RCOL }}=114125 \mathrm{~mm}^{2}$

$$
I_{\text {RCOL }}=13,516 \times 10^{9} \mathrm{~mm}^{4}
$$

\rightarrow ELASTIC MODULUS: $200000 \mathrm{MPa}=200000 \mathrm{~N} / \mathrm{mm}^{2}$
(2) IDEALIZATION:
REARCOLN:
\rightarrow Loc. of N.A:, $A y=\sum_{i} A_{i} y_{i}$

$$
\begin{aligned}
\Rightarrow d_{1} & =\frac{A_{F c o L} \times\left(d_{1}+d_{2}\right)+A_{R c o L} \times 0}{\left(A_{F C o L}+A_{\text {RcoL }}\right)} \\
& =5686 \mathrm{~mm} \\
\Rightarrow d_{2} & =4068 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
\rightarrow 1 & =I_{\text {FCOL }}+A_{\text {Fcou } d_{2}^{2}+\text { lecol }+A_{\text {RCOL }} d_{1}^{2}} \\
& =1 \text { Ffou }+2.639 \times 10^{12}+1 \text { leou } 10+3.690 \times 10^{12} \\
& =6.329 \times 10^{12} \mathrm{~mm}^{4}
\end{aligned}
$$

(3) LOADING
\rightarrow WIND LOAD: COLUMNS: TAKE AVERAE OF MID AND TOP

$$
\begin{aligned}
W=\frac{1}{2}(2.9 / 6+3.365) & =3.141 \mathrm{kN} / \mathrm{m} \text { PER COL } \\
& =2 \times 3.141=6.282 \mathrm{kN} / \mathrm{m} \text { height }
\end{aligned}
$$

\triangle QUADPVLEE TO ACCOUNT FOR HORIZONTALS AND DIAGONALS $=25.128 \mathrm{kN} / \mathrm{m}$ (Two Faces) [Conservative] 1 (SEe Below)
\triangle POINT LOAD AT TOP OF EACH TRUSS:

- Transverse sheave Girder: $12.654 \mathrm{kN} / \mathrm{m} \times 15.9 \mathrm{~m}=201.204 \mathrm{kN}$
- Cladding: $2.76 \mathrm{kN} / \mathrm{m}^{2} \times 15.9 \mathrm{~m} \times 4.572 \mathrm{~m}=200.638 \mathrm{kN}$

$$
P \Rightarrow 401.842 \mathrm{kN}
$$

NOTES: 1) CALCULATION OF EFFELT OF HORIZONTALS AND DIAGONALS:
Horizontal Length:52'-2" (1590 Om) eA.
Qty Horizontals i 5 ea.
$0.5 \times$ LENGTH $x 2$ FACES (FRONT, BACK)
\triangle SHARED BMW TWO COLUMS
\Rightarrow LENGTH OF HORIZONTALS $=79500 \mathrm{~mm}$
DIAGONAL LENGTH: 11837 mm EA.
Qty $0.5 \times 2 \times 2$ faces 8 EA.

$$
\Rightarrow L E N G T H=94696 \mathrm{~mm}
$$

\Rightarrow TotaL $L=174.196 \mathrm{~m}$ C $6.282 \mathrm{kN} / \mathrm{m}$
$=1094 \mathrm{kN}$ (CONVERT TO TOTAL FORCE)
$\Rightarrow 1094 \mathrm{kN} / 51.5 \mathrm{~m}=21 \mathrm{kN} / \mathrm{m}$ (EquIVALENT. FORCE PERM HE ANTI,
$\Rightarrow 21+6 \simeq 25 \rightarrow$ ASSUMPTION VALID.

(4) Deflections

$$
\begin{aligned}
& \Delta_{\text {WIWDM }}=\frac{W L^{4}}{8 E 1}=17 \mathrm{~mm}^{*} \text { (UDLONLI) } \\
& =32 \mathrm{~mm}\left[N_{0}\right. \text { WEB STIFFENING] (Combined) } \\
& \left.\triangle W W D, P T .=\frac{P L^{3}}{3 E 1}=15 \mathrm{~mm}^{*}\left(P+O_{w} \cdot 2\right)\right) \quad \Delta L / \Delta_{w} \simeq 1600
\end{aligned}
$$

* Combine deflections due to wind UDL and wind point load
(5) Comparison:
\Leftrightarrow S-Frame result: 26 mm vs Calculated 32 mm

$$
\triangle 32 / 26=1.2 \longrightarrow \therefore 20 \% \text { WEB STIFFENING }
$$

\triangle NOTE: SFEAME $L / \Delta \approx 1984$

| Panel Point | Dead Load | | Live Load (2 Lanes) | | D + L | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\boldsymbol{\Delta}(\mathbf{m m})$ | L / $\boldsymbol{\Delta}$ | $\boldsymbol{\Delta}(\mathbf{m m})$ | $\mathrm{L} / \boldsymbol{\Delta}$ | $\boldsymbol{\Delta}(\mathrm{mm})$ | $\mathrm{L} / \boldsymbol{\Delta}$ |
| 0 (S) | 0 | | 0 | | 0 | |
| 1 (S) | -19 | -6050 | -2 | 46712 | -21 | 5356 |
| 2 (S) | -36 | -3167 | -5 | 24975 | -40 | 2811 |
| 3 (S) | -51 | -2204 | -7 | 17292 | -58 | 1954 |
| 4 (S) | -62 | -1805 | -8 | 14258 | -70 | 1602 |
| 5 (S) | -68 | -1659 | -9 | 12669 | -77 | 1467 |
| 6 | -69 | -1634 | -9 | 12384 | -78 | 1444 |
| 5 (N) | -68 | -1659 | -9 | 12670 | -77 | 1467 |
| 4 (N) | -62 | -1807 | -8 | 14263 | -70 | 1604 |
| 3 (N) | -51 | -2207 | -7 | 17303 | -58 | 1957 |
| 2 (N) | -36 | -3170 | -5 | 24999 | -40 | 2814 |
| 1 (N) | -19 | -6058 | -2 | 46823 | -21 | 5364 |
| 0 (N) | 0 | | 0 | | 0 | |

Notes: Lift span deflections are provided along the Z-axis (i.e. vertical direction). Positive is "up" Live loading assumes two outside lanes loaded.

| Level | Closed, \mathbf{x} | | Closed, \mathbf{y} | | Raised, \mathbf{x} | | Raised, \mathbf{y} | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\boldsymbol{\Delta}(\mathbf{m m})$ | $\mathbf{L} / \boldsymbol{\Delta}$ | $\boldsymbol{\Delta}(\mathbf{m m})$ | $\mathrm{L} / \boldsymbol{\Delta}$ | $\boldsymbol{\Delta}(\mathbf{m m})$ | $\mathrm{L} / \boldsymbol{\Delta}$ | $\boldsymbol{\Delta}(\mathbf{m m})$ | $\mathrm{L} / \boldsymbol{\Delta}$ |
| 0 | 0 | | 0 | | 0 | | 0 | |
| 1 | 7 | 7244 | -0.4 | -122412 | 24 | 2158 | 13 | 3878 |
| 2 | 11 | 4661 | -0.4 | -116784 | 37 | 1381 | 14 | 3661 |
| 3 | 16 | 3324 | -0.5 | -104928 | 54 | 959 | 13 | 4100 |
| 4 | 20 | 2582 | -0.4 | -135502 | 70 | 737 | 11 | 4557 |
| 5 | 24 | 2122 | -0.4 | -123142 | 82 | 626 | 11 | 4800 |
| 6 | 26 | 1984 | -0.5 | -105615 | 89 | 580 | 15 | 3499 |

Note: Level 0 is at the bearing elevation, level 6 is at the sheave girder elevation.
Load case considered is longitudinal wind only.
Deflection based on northeast column of south tower
Tower span deflections are provided along the X -axis (north is positive) and the Y -axis (west is positive).

[^0]: * Rear Bracing similar but with "R" instead of "F"

