

Public Works and Government Services Services gouvernementaux Canada

Public Works and Government Services Canada **Ontario Region**

PWGSC Project No.: R.013514.030

BURLINGTON LIFT BRIDGE, TOWERS, AND PIERS - STRUCTURAL MODELLING, ANALYSIS AND SURVEYS

PHASE II RS7: MEMBER CAPACITIES REPORT

FINAL

MMM Group Limited May 2014

TABLE OF CONTENTS

			Page
•	INTI	RODUCTION	1
•	EXIS	STING STRUCTURE	1
	2.1	Structure Description	1
		2.1.1 Lift Span	
		2.1.2 Towers	2
		2.1.3 Approach Spans	3
	BAC	KGROUND FOR EVALUATION	3
	3.1	Member Naming Convention	
	3.2	Local Orientation	
	3.3	Built up Section Properties	
	3.4	Material Properties	4
	EVA	LUATION	4
	4.1	Structural Responses	4
	4.2	Applicable Sections of CHBDC	
	4.3	Effective Length Factor (K) for Members in Compression	5
		4.3.1 K values for Laced Members	5
		4.3.2 K values for Compression Members with Large Gusset Plates	
	4.4	Gross and Net Areas	6
	MEN	ABER CAPACITIES	6
	5.1	Capacity Spreadsheets	6
	5.2	Summary Spreadsheets for Capacity to Demand	6
	RES	ULTS	7
	6.1	Members with Capacity to Demand Ratios Less than 1.15	7
	DISC	CUSSION AND RECOMMENDATIONS	8
	CON	CLUSION	9

APPENDICES

APPENDIX A	KEY PLAN AND GENERAL ARRANGEMENT DRAWING
APPENDIX B	REDUCED K VALUES FOR COMPRESSION MEMBERS
APPENDIX C	CAPACITY TO DEMAND SUMMARY SHEETS
APPENDIX D	LIFT SPAN HIGHWAY TRUSS – CAPACITY SPREADSHEETS
APPENDIX E	LIFT SPAN RAILWAY TRUSS – CAPACITY SPREADSHEETS
APPENDIX F	LIFT SPAN GENERAL MEMBERS – CAPACITY SPREADSHEETS
APPENDIX G	TOWER – CAPACITY SPREADSHEETS

File: https://www.ecollaboration.mmm.ca/livelinkdav/nodes/23728340/3213009 mb RS7 Report.docx

1. INTRODUCTION

MMM Group Ltd. (MMM) was retained by Public Works and Government Services Canada (PWGSC) to undertake a structural analysis including a 3D model, evaluation of member capacities, and a fatigue review for the Burlington Lift Bridge.

This report presents the results for member capacities as per section RS7 of the terms of reference. Member capacities for the lift span and towers are reported and compared to the demands calculated during the structural analysis and 3D modeling. Capacity to demand ratios (C/D) are reported in a tabular format. All members with capacity to demand ratios less than 1.15 are listed and discussed in this report.

This report should be read in conjunction with a separate report by MMM Group titled **RS6 – 3D Modelling and Structural Analysis Report, May 2014**, which presents the structural analysis and 3D model that provides the demands used for comparison with the member capacities.

A Key Plan showing the location of the structure and a General Arrangement drawing have been provided in Appendix A.

2. EXISTING STRUCTURE

Owned and operated by Public Works and Government Services Canada (PWGSC), the Burlington Lift Bridge is located between the cities of Burlington and Hamilton, Ontario on Eastport Drive spanning the Burlington Canal. The Burlington Canal provides the only navigational opening into the Hamilton Harbour. The majority of traffic crosses the canal via the provincially owned Queen Elizabeth Way (QEW) James N. Allan Skyway; however, the lift bridge provides the only alternate vehicle crossing and is the only crossing available to pedestrians and cyclists. For the purposes of this report, the bridge is considered to run in the north-south direction.

2.1 Structure Description

The Burlington Lift Bridge is a tower-drive steel truss vertical lift bridge designed in 1958 by C.C. Parker and Associates of Hamilton, Ontario and constructed between 1959 and 1960 by the Hamilton Bridge Division of the Bridge and Tank Company of Canada Limited. The bridge originally served both rail and highway traffic in a side-by-side configuration. The railway corridor ran along the eastern half of the structure and the highway corridor ran along the western half of the structure. In 1982 the bridge underwent a major rehabilitation to convert it to a highway traffic only structure through the complete removal of the railway corridor and the addition of two new lanes of traffic. Despite the removal of the railway corridor, the following report shall refer to the east truss as the "railway truss" and the west truss as the "highway truss".

The bridge is comprised of two 12.60m (41' - 4") approach spans, two 9.75m (32' - 0") tower spans, and one 112.78m (370' - 0") lift span. There is a 2.07m (6' - 9.5") wide sidewalk with an aluminum pedestrian hand railing cantilevered from the outside of the highway truss. Two 3.375m wide northbound lanes and two 3.375m wide southbound

lanes are provided on the bridge. A steel box beam barrier is located on either side of the roadway. A navigational clearance of approximately 36.58m (120' - 0") is provided at high water level.

The substructure is comprised of two concrete tower piers supporting the towers, and two concrete conventional closed abutments at each end of the approach spans.

2.1.1 Lift Span

The lift span is a steel through truss structure that is 15.54m (51' - 0'') wide from centreline to centreline of the trusses with a vertical lift of 34.12m (111' - 11''). Each truss is comprised of twelve 9.40m (30' - 10'') panels which vary in depth from 13.87m (45' - 6'') at the ends to 16.76m (55' - 0'') at the midspan.

Truss members (i.e. verticals, diagonals, and top and bottom chords) are comprised of built-up steel sections. Transverse floor beams and longitudinal stringers support an open steel grating deck. The sidewalk deck consists of a thin (50mm) concrete half-filled steel grating.

Portal and sway bracings are provided overhead at panel points.

In the fully closed position (i.e. open to highway traffic), support for the lift span is provided at all four corners from below. Articulation is provided by two fixed supports (bearings) at the south end and two expansion rocker-type supports at the north end. One centring shoe is provided at each end of the lift span.

In any open position (i.e. raised to allow marine traffic), support for the lift span is provided at all four corners by wire ropes attached to lifting girders at the ends of the lift span. The wire ropes then pass over sheaves at the top of each tower and are connected to a counterweight. Guide rollers are also provided at the corners of the lift span and run along tracks on the front columns of the towers.

2.1.2 Towers

There are two steel braced towers at either end of the lift span. Each tower is 15.90m (52' - 2'') wide from centreline to centreline of the columns, 9.75m (32' - 0'') long from centreline to centreline of the columns, and is approximately 65m (213' - 0'') tall.

Tower members (i.e. columns, diagonal bracings, horizontals, etc.) are comprised of built-up steel sections. The roadway passing through the towers is referred to as the "tower span" and is comprised of transverse floor beams and longitudinal stringers supporting a 190mm (7.5") concrete deck with a 65mm (2.5") asphalt wearing surface.

There is a 2.47m (8' - 1") wide sidewalk with an aluminum pedestrian hand railing cantilevered from the west side of the tower.

Each tower is supported on a concrete tower pier substructure.

At the top of each tower is a machine room which houses the mechanical and electrical equipment necessary to raise and lower the lift span. Wire ropes connected to each end of the lift span pass over the sheaves and are connected to a counterweight (on each tower) which balances the weight of the lift span.

2.1.3 Approach Spans

There are two approach spans at either end of the bridge. Each is 15.90m (52' - 2'') wide and 12.60m (41' - 4'') in length.

Transverse floor beams and longitudinal stringers support a 190mm (7.5") concrete deck with a 65mm (2.5") asphalt wearing surface. There is a 2.47m (8' - 1") wide sidewalk with an aluminum pedestrian hand railing cantilevered from the west side of the approach spans.

Each approach span is simply supported by the tower piers at one end and a concrete conventional closed abutment at the other. Articulation is provided by fixed bearings at the concrete abutments, and expansion bearings at the tower piers.

3. BACKGROUND FOR EVALUATION

The sections below provide background information regarding the main inputs used for this structural evaluation.

3.1 Member Naming Convention

The member naming convention for evaluation follows the same convention presented in the structural analysis report (RS6-3D Modelling and Structural Analysis Report, May 2014).

3.2 Local Orientation

The orientations for structural members within the spreadsheets correspond with local orientation of the members in the S-Frame model as follows:

- Z corresponds with the vertical plane. For vertical members Z corresponds with the longitudinal direction of the bridge (north-south);
- Y corresponds with the horizontal direction. For vertical members Y corresponds with the transverse direction of the bridge (east-west);
- X always corresponds with the axial direction of the member.

3.3 Built up Section Properties

Section properties calculated for each of the built up members include gross area and moment of inertia in both local z and local y directions. Moments of inertia for all members are calculated based on the gross cross sectional area of the member. Net areas were calculated for the tower members where shop drawings were available.

Section properties for all built up members are calculated about the nodal centre of the member to correspond with the evaluation (S-Frame) computer model. For several members the nodal center corresponds to its geometric centroid (intersection of neutral axes); however, there are some members (truss top chord for example) where the built up member changes section properties by using different plate sizes and/or thicknesses.

At these points of transition the geometric centroid of the member is slightly offset from the nodal centre. Since the S-Frame model uses the nodal centre of the members all of the section properties have been calculated about the nodal centre. It is noted that there is very little difference between the properties calculated about the nodal centre compared to the geometric centroid.

3.4 Material Properties

Gross section properties used in the evaluation for all members were taken from the 1959/1960 fabrication and erection drawings.

Two different grades of steel where used to construct the Burlington Lift Bridge. Regular carbon steel was used commonly throughout the bridge but specific members were constructed using a low alloy high strength steel.

The following table presents the yield and ultimate strengths used in the evaluation for the carbon and low alloy high strength steels.

Table 1: Grade of Steel used for Evaluation

Steel Grade	Yield Strength (Fy)	Ultimate Strength (Fu)	Code Reference
CSA G40.4	230	420	CAN/CSA S6-06 Clause 14.7.4.2
A242	350	480	CAN/CSA S16-09 pp6-5

For the regular carbon steel the historic material properties specified in Clause 14.7.4.2 of the Canadian Highway Bridge Design Code (CHBDC) CSA/CAN S6-06 Supplement No. 3 (March 2013) were used based on the year of construction. Since the CHBDC does not provide historic material properties for low allow steel the values for the A242 steel were obtained from CAN/CSA S16-09.

4. EVALUATION

Capacities of all structural members within the lift span and towers have been evaluated based on the CHBDC; however, the evaluation was limited to the members only and does not include evaluation of the connection and joint capacities. Evaluation of the connection and joint capacities is contemplated to be investigated in Phase III of the project.

4.1 Structural Responses

Evaluation of member capacity was completed for the following structural responses:

- Tension Only
- Compression Only
- Bending Only

For built up members the evaluation for compressive capacity includes a local capacity check for individual components between battens or lattice bars. Bending moments in axial members of the lift span and towers were not included in the evaluation because the

flexural demand for these members is extremely low in comparison to the axial demand. Combined bending and axial load cases were reviewed but found to be a non-governing load combination.

4.2 Applicable Sections of CHBDC

Member capacities were determined in accordance with Section 10, Steel Structures, of the Canadian Highway Bridge Design Code (CHBDC) CSA/CAN S6-06 Supplement No. 3 (March 2013).

Specific sub-sections of the CHBDC used for the structural evaluations include 10.5 Design theory and assumptions, 10.8 Tension members, 10.9 Compression members, and 10.10 Beams and girders.

Individual clauses that correspond with the capacity calculations have been listed on the capacity spreadsheets that are included in Appendix D, E, F and G.

4.3 Effective Length Factor (K) for Members in Compression

For all compression members the length of the member was taken as the nodal length between each end nodes (working point to working point). The K factor for compression members was generally taken as 1.0 with two exceptions: laced members were assigned K values larger than 1.0 to account for shear lag while truss members which frame into very large gusset plates were given K values equal to 0.8. The methodology for modifying each of these two K values is presented in the following sections.

4.3.1 K values for Laced Members

For laced members in compression, KL/r was adjusted using the method presented in Stability Design Criteria for Metal Structures (6^{th} Edition, p.94, Ziemian, 2010). When KL/r is equal to or less than 40 a new factor, K', is taken as 1.1K. When KL/r exceeds 40 the new factor K' is a function of KL/r (1.1 at KL/r = 40 down to 1.01 when KL/r = 100).

4.3.2 K values for Compression Members with Large Gusset Plates

Large gusset plates add rigidity to truss members and their connection points. In reality, this rigidity results in the connection acting as neither fully pinned nor fully fixed.

Clause 4.6.2.5 of AASTHO (US Bridge Code) allows K = 0.75 for compression members when both end conditions are bolted, and 'Design of Steel Structures' by (Gaylord et. al 1992) provides what they refer to as a conservative recommendation of K = 0.85, while the previous edition of AASHTO recommended K = 0.80. The Canadian Highway Bridge Design Code does not provide guidance on reduced K factors.

Since the CHBDC does not provide guidance on K values for compression members with large gusset plates, K= 0.8 was chosen for this evaluation to provide a K value that is slightly more conservative than what is currently specified in AASHTO. Reduced K values where applied to correspond with the direction in which the gusset plates provide rigidity and 1.0 for the other axis.

For a member to be assigned a K value of 0.8 a conservative approach was taken in which both ends of the member needed to have large gusset plates. Members that only had large gusset plates at one end were assigned K values of 1.0.

For the entire lift span and towers the only members with reduced K values are diagonal members within the lift span trusses. Appendix B presents a drawing showing the assignment of all members with reduced K values.

4.4 Gross and Net Areas

Many of the built up members have hand holes; accordingly, for members in which shop drawings exist the gross and net areas have been calculated and are used in the evaluation as follows:

- Tensile capacity is calculated using the gross and net areas according to CHBDC clauses 10.8.2(a) and 10.8.2 (b) respectively;
- Compressive capacity is calculated in accordance with CHBDC section 10.9 using the gross area and the yield strength, Fy.

5. MEMBER CAPACITIES

Excel spreadsheets were developed for calculating member capacities and to provide result summaries for member capacities, member demands, and capacity to demand ratios. The spreadsheet flags members that have capacity to demand ratios less than 1.15 and 1.00 respectively.

5.1 Capacity Spreadsheets

For the capacity spreadsheets the user input cells are shaded grey. Primary inputs include:

- Material Properties
- Individual section properties for the built up members
- Orientation and location of individual sections within built up members
- Member length
- Demands (taken from the modelling task RS6 using S-Frame)

A single capacity spreadsheet was produced for each unique built up member within the Burlington Lift Bridge. Since there are several members that have the same built up section each spreadsheet lists the S-Frame end nodes for all of the individual members that consist of the same built up section.

5.2 Summary Spreadsheets for Capacity to Demand

For ease of reference, summary spreadsheets have been provided which lists each member in a tabular format with specific columns for the member name, factored demand, factored capacity, capacity to demand ratio, and a comment line which flags members that have capacity to demand ratios that are less than 1.15 and 1.00 respectively.

6. **RESULTS**

The results of this evaluation indicate that nearly all of the structural members have capacity to demand ratios that are greater than 1.15.

The lowest capacity to demand ratios for truss members in the lift span are 2.05 and 3.06 for the highway and railway trusses respectively. The lowest capacity to demand ratios for floor beams and stringers within the lift span are 1.77 and 1.15 respectively. For all other members within the lift span, the lowest capacity to demand ratio is 1.31.

Since lift span fabrication drawings are not available to provide the details required to calculate net areas, the results for the lift span members are based on member's gross areas. However, based on the amount of reserve capacity for the lift span members, MMM does not expect that member capacity to demand ratios would drop below 1.15 if net area capacities were calculated based on net areas. Furthermore, a comparison between member capacities calculated in accordance with CHBDC using gross area [Clause 10.8.2(a)] compared to net area [Clause 10.8.2(b)] shows that the net areas must be reduced by more than 35.6% for members with Grade A242 low alloy steel before the net area capacity governs and that the net areas must be reduced by more than 14.2% for members with Grade CSA G40.4 steel before the net area capacity governs.

The lowest capacity to demand ratio for the tower columns is 1.22 corresponding to the lift span in the raised position. The lowest capacity to demand ratio for all built-up girders in the tower, including both floor beams and sheave girders, is 1.25. Tower bracing members have capacity to demand ratios as low as 0.95 as presented and discussed in the following section.

6.1 Members with Capacity to Demand Ratios Less than 1.15

Based on our review of the lift span, towers, and tower span there are two members that have been identified with capacity to demand ratios (C/D) less than 1.15.

Member	Capacity	Demand	C/D	Load Type	Lift Span
TOWR-SBRC-DIAG	-3,717 kN	-3,914 kN	0.95	Compression	Raised
TOWR-FBRC-MDIA	-4,126 kN	-4,001 kN	1.03	Compression	Raised

Table 2: Capacity to Demand Ratios Less than 1.15

The TOWR-SBRC-DIAG C/D ratio of 0.95 is based on the governing case for members in the bottom section of the tower; C/D ratios for the TOWR-SBRC-DIAG members in the middle and upper sections of the towers are 1.43 and 4.07 respectively.

The low capacity to demand ratios reported in Table 2 result from wind loads acting on the Burlington Lift Bridge with the lift span in the raised position. These ultimate limit state demands were calculated using load factors specified in Load Combination ULSV3 as per Clause 13.7.10. of the CHBDC S6-06. As mentioned in the report by MMM Group titled RS6 - 3D Modeling and Structural Analysis, May 2014, the unfactored design wind loading is at least 1.4 times the maximum operating wind velocity of 80 km/h.

The capacity to demand ratios listed in Table 2 are based on demands directly from the 3D model and a capacity calculated using a K value greater than 1.0 as per the equation by Ziemian (2010) that was discussed in Section 4.3.1 of this report. It is MMM's opinion that these two (2) members do not present a concern because the demands to these members would be less than what is predicted by the 3D model and the capacity of these members would be greater than what is determined in our evaluation as discussed below.

In the 3D model each of these diagonal tower braces is receiving superimposed dead loads. While the actual demands to these diagonal braces would include some superimposed dead load, it is noted that the 3D model overestimates the amount of super-imposed dead load to each of the diagonal braces. Determining the actual amount of super-imposed dead load that should be applied to each diagonal brace requires detailed information on the erection sequence and other factors that are not available. Accordingly, a conservative approach was taken and the full magnitude of superimposed dead load is removed from these members the demands decrease to -3,646 kN and -3,370 kN respectively for the TOWR-SBRC-DIAG and TOWR-FBRC-MDIA members.

In the member capacity calculations the gusset plates were not assumed to be adequate to justify using a K value of 0.8 for calculating the flexural buckling (compressive) capacity of the diagonal members reported in Table 2. Furthermore, since these diagonal braces are laced members a K value greater than 1.0 was used in the capacity evaluation. This results in a conservative estimate for the compressive capacity of these members. When a K value of 0.8 is used in the evaluation, member capacities increase to -3,822 kN and -4,465 kN respectively for the TOWR-SBRC-DIAG and TOWR-FBRC-MDIA members.

For the purpose of discussion, capacity to demand ratios based on the decreased demands and increased capacities would be C/D = 1.05 for the TOWR-SBRC-DIAG members and C/D = 1.32 for the TOWR-FBRC-MDIA members.

7. DISCUSSION AND RECOMMENDATIONS

This evaluation identified one member (TOWR-FBRC-MDIA) with a capacity to demand ratio less than 1.15 and one member (TOWR-SBRC-DIAG) with a capacity to demand ratio nominally less than 1.0 (as reported in Section 6.1 of this report).

Since the capacity to demand ratio for member TOWR-FBRC-MDIA is greater than 1.0 this member has capacity to carry un-restricted CHBDC loading.

The capacity to demand ratio reported in Table 2 for TOWR-SBRC-DIAG is 0.95. Based on the discussion in Section 6.1, it is anticipated that the actual capacity to demand ratio

is more likely to be at capacity (C/D = 1.0) or slightly above capacity (C/D > 1.0). The load case for the 0.95 capacity to demand ratio is with the lift span in the raised position combined with full design wind loads in accordance with the CHBDC. It is noted that the CHBDC design wind loads are based on a wind speed that is at least 1.4 times greater than the maximum allowable operating speed of 80 km/h. Based on this information and the current maximum allowable wind speed for raising the lift span, it is MMM's opinion that the tower side diagonal braces do not require strengthening.

In addition, it should be noted that the 2014 Edition of the CHBDC is intended to reduce the wind load factor to 1.4 from the current 1.5 which will also increase the capacity to demand ratio to a value greater than 1.0.

MMM recommends that Public Works and Government Services Canada consider completing a detailed inspection of the tower side diagonal braces in the bottom section of the towers during the next inspection program for the Burlington Lift Bridge and if section loss due to corrosion is noted, re-evaluation of these members with the reduced area should be completed.

If significant section loss is noted an option for strengthening the tower side diagonal braces is to add additional steel plates to the outer vertical faces of the built up members. The vertical faces of the current diagonal braces consist of plates with dimensions 610mm x 9.5mm. Adding steel plates with dimensions 400mm x 9.5mm to the outside vertical faces of the tower side diagonal braces would increase its capacity by 39%. Since these members are laced, access for bolt installation is available.

8. CONCLUSION

An evaluation of all structural members in the towers, tower span, and lift span of the Burlington Lift Bridge has been completed in accordance with the Canadian Highway Bridge Design Code CAN/CSA S6-06. The evaluation was limited to the members only and did not include evaluation of the connection and joint capacities. Evaluation of the connection and joint capacities is intended to be investigated in Phase III of the project. It should be noted that net area was not used in the capacity calculations for the lift span members due to the information not being available.

With the exception of the two (2) Tower members listed in Table 2, all structural members have calculated capacity to demand ratios that are greater than 1.15 which indicates that factored capacities for individual members are at least 15 percent greater than their respective factored demand (calculated at Ultimate Limit States).

As discussed in Section 7, the tower members which currently have capacity to demand ratios of less than 1.15 are not considered by MMM to require any remedial action due to the following:

- The CHBDC design wind loads are based on a wind speed that is at least 1.4 times greater than the maximum wind speed for raising the bridge (80 km/h);
- The slenderness effects for the semi-rigid end connections are not included in the capacity calculations resulting in a conservative lower bound member capacity;

- The 3D model used to calculate member demands overestimates the amount of superimposed dead load that is applied to each of the diagonal braces; and
- The 2014 Edition of the CHBDC is intended to reduce the wind load factor to 1.4 from the current 1.5 (7% reduction).

As long as the maximum operating wind speed of 80 km/h is maintained, all members within the towers, tower span, and lift span of Burlington Lift Bridge have adequate structural capacity to carry unrestricted CHBDC loading based on their undeteriorated and undamaged state.

It is recommended that PWGSC considers completing a detailed inspection of the Burlington Lift Bridge tower side diagonal braces (TOWR-SBRC-DIAG) in the bottom section of the towers during the next inspection program and if section loss due to corrosion is noted, re-evaluation of these members with the reduced area should be completed.

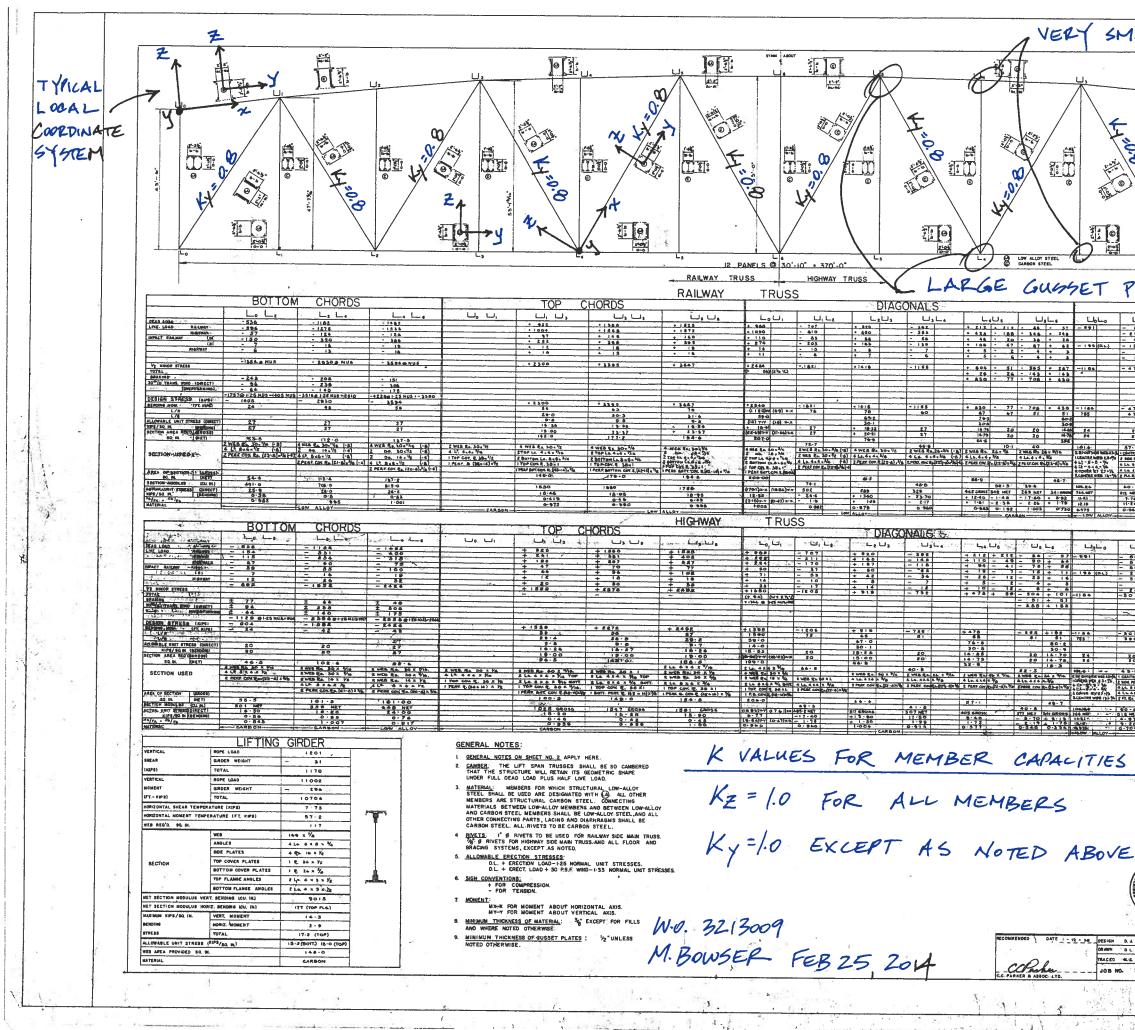
Prepared By:

Matthew Bowser, M.A.Sc., P. Eng. Project Engineer – Bridge Engineering MMM Group Ltd.

Reviewed By:

Doug Dixon, M.A.Sc., P. Eng. Senior Project Manager - Bridge Engineering MMM Group Ltd.

APPENDIX A KEY PLAN AND GENERAL ARRANGEMENT DRAWING


KEY PLAN

Burlington Lift Bridge, Burlington Ontario

Scale: N.T.S.

APPENDIX B REDUCED K VALUES FOR COMPRESSION MEMBERS

VERY	' SMALL	GU	54ET	- PLA	ATES	(TYP.)
	•	34	01			
		U: T		* 1	0	11
	F.	The last	Contraction of the second		N PR.	
	1.0.8 III		00 III	H H		
8) 8) 11 11 11 11 11 11	ALE C		© ©			•
		Y		17 1 (O)		
LOW ALLOY STEEL						L.
GUGGE	T PLATE	=5				
Ացևոց	لله الله الله الله الله الله الله الله			_S _U_4L_4 + _40	UsLa	
88 · 346 · 248 20 · 38 · 28	- 211 - 41 - 55 ((0,L.) - 12 B - 5 - 12 B		- 211 - 41 - 183 - 183 - 18		- 811 - 41 - 183 - 3	
51 - 565 + 267 -11 26 - 143 + 143 + 77 - 706 + 430			- 476		- 461	
77 - 706 + 430 -11 67 51 51 78 605	5 478	35	- 478	+ 40 478	- 461	+ 48 470
30-9 20 20 14-56 2 20 20 14-76 2 354 354 2 161 20 205 161 161 20 205 162 161 20 205 162 161		6-1 7-2 5-52 5-45 5-8	80 80 87-9	13-32 18-45 40-3	20 20 58-0	13-82 16-46 40-4
2 WKE B> 24 × M/s 24 × M/s 16 16 16 16 16 16 16 16 16 16 16 16 16	1740 16523 1 (CATRA 48 23.47) (CATRA 48	ATTRE WEB 23 1 14 6 PORT AD_(73 + 10)=1 6 2 0 10 12 1 10 6 2 10 12 1 10 5 10 12 1 10 5 2 10		A3 U2 L3		
3 3 6 103.1 27 2.6.3 NLT 3.4 amont 7.4.4 9 - 1.7.40 6.9.2 U.R.1 8 - 2.26 1.7.5 i2.10 9 1.7.40 5.9.2 U.R.1 9 - 1.7.40 5.9.2 U.R.1 9 1.003 0.778 6.37	40 - 6 811_MET 666 7-76 0 11-20 10		60.6 512 HST 7-90 11:20 0.955	0-61 10-30 0-60	60.6 812 NET 7.91 11.20 0.956	66-3 5556056 0:64 10:36 0:610
			ZERTICAL	1	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 - 60 + - 56 - 60 8 (0.1) - 27	10 e L 2 38	- 88 - 80 - 87	±40	- 91 - 55 - 80 - 27	<u>↓</u> 9↓6 <u>+ 42</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 52 - 5 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		- 32 - 3 - 30 - 30 - 30 - 30		- 52 - 3 - 26 - 512	
- 5 6 5. + 1 6 g - 11 a 8 1 8 1 785	-301 +	35	-309	+ 49	-812	+ 48
80.8 30.9 20 14.70 7 80 14.78 7 19 8	4 ZO 13- 5 20 - 18-		20	13-32 18-45 55-6	202 20	392 13-32 (8-45) 39-4
4. 2.1456 2.4.24 2.146 2.167 2.4 8.14.4.24 2.146 1.167 1.167 2.16		1982 MEB 23 1/19 1928 9: (23-45) 5 16 1 1/2 4 16 1 1/2 6 16 1 1/2 8 16 1 1/2	43-5 	AB Uz La	43-5 A3 U L	Ay Ur Ls
49-7 49-8 577 ME7 3-4 ditoss 744 st - 2-70 + 3-13 455 - 2-19 4 -78 (3,47 0-345 0-354 (3,47)		adted	01-0	6 6 - 8 5 5 5 40 col C - 6 1 B - 4 6 C - 5 C 5	60-6 BI2 NET 5-18 9-20 0-718	66-3 55548039 0-64 8-50 0-607
CAPACI	TIES	F				
						BY DATE C WORKS
BERS	2	-		OPMENT EN	GINEERING	1
TED AI	BOVE		HAMILTON	CONSULTING	ENGINEE	ONTARIO
			9	<u>STON CA</u> N TRUSSE		T BRIDGE ESS.SHEET
,			PROVED E	DATE 13/11/52	DEP	ARTMENT JECT NO.
				13 KON	5	-4-77
Capacher	TRACED 41.2. 9 D.H. CHKD A.	r	Marker .	inning		OF62
1					a i ing	
1. 1. 1. 1			1. N. P.		5	

APPENDIX C CAPACITY TO DEMAND SUMMARY SHEETS

Member Capacity Summary Lift Span - Highway Truss Raised Position

			Compre	ssion				Tens	ion	
Member ID	C _r	C _f	C_r/C_f	Comments	C*	Tr	Τ _f	T _r /T _f	Comments	Т*
	kN	kN		Comments	kN	kN	kN		comments	kN
LIFT-HWYT-LOL2	-8,888	-2,574	3.45		N/A	9,923		N/A		4,021
LIFT-HWYT-L2L4	-15,713		N/A		N/A	17,514	1,446	12.1		8,682
LIFT-HWYT-L4L6	-22,851		N/A		N/A	26,494	2,952	9.0		10,791
LIFT-HWYT-U0U1	-10,517		N/A		N/A	11,455	3,680	3.11		N/A
LIFT-HWYT-U1U3	-14,951	-1,626	9.19		-6,801	16,288		N/A		N/A
LIFT-HWYT-U3U5	-20,867	-3,947	5.29		-10,106	22,730		N/A		N/A
LIFT-HWYT-U5U6	-21,840	-4,722	4.63		-11,084	23,796		N/A		N/A
LIFT-HWYT-L0U1	-27,472	-5,719	4.80		-6,205	32,117		N/A		N/A
LIFT-HWYT-U1L2	-10,258		N/A		N/A	13,959	3,893	3.59		5,360
LIFT-HWYT-L2U3	-7,324	-2,936	2.49		-4,088	10,281		N/A		N/A
LIFT-HWYT-U3L4	-5,694		N/A		N/A	8,116	2,067	3.93		3,256
LIFT-HWYT-L4U5	-6,248	-1,215	5.14		-2,126	8,985		N/A		N/A
LIFT-HWYT-U5L6	-5,392		N/A		-676	7,853	458	17.1		1,579
LIFT-HWYT-U0L0	-19,938		N/A		N/A	29,884	5,158	5.79		5,275
LIFT-HWYT-U1L1	-7,393		N/A		N/A	12,229	536	22.8		1,339
LIFT-HWYT-U2L2	-6,051	-218	27.8		-156	10,391		N/A		N/A
LIFT-HWYT-U3L3	-6,627		N/A		N/A	12,229	550	22.2		1,374
LIFT-HWYT-U4L4	-5,637	-222	25.4		-156	10,391		N/A		N/A
LIFT-HWYT-U5L5	-6,404		N/A		N/A	12,229	534	22.9		1,388
LIFT-HWYT-U6L6	-5,537	-228	24.3		-187	10,391		N/A		N/A

* Total load listed on the stress sheet from the original design drawings;

Member Capacity Summary Lift Span - Highway Truss Closed Position

			Compre	ssion				Tens	sion	
Member ID	C _r	C _f	C_r/C_f	Comments	C*	Tr	Τ _f	T _r /T _f	Comments	Т*
	kN	kN		Comments	kN	kN	kN		comments	kN
LIFT-HWYT-LOL2	-8,888		N/A		N/A	9,923	4,123	2.41		4,021
LIFT-HWYT-L2L4	-15,713		N/A		N/A	17,514	7,953	2.20		8,682
LIFT-HWYT-L4L6	-22,851		N/A		N/A	26,494	9,753	2.72		10,791
LIFT-HWYT-U0U1	-10,517	-22	N/A		N/A	11,455	414	27.7		N/A
LIFT-HWYT-U1U3	-14,951	-6,239	2.40		-6,801	16,288		N/A		N/A
LIFT-HWYT-U3U5	-20,867	-9,214	2.26		-10,106	22,730		N/A		N/A
LIFT-HWYT-U5U6	-21,840	-10,068	2.17		-11,084	23,796		N/A		N/A
LIFT-HWYT-LOU1	-27,472	-6,920	3.97		-6,205	32,117		N/A		N/A
LIFT-HWYT-U1L2	-10,258		N/A		N/A	13,959	4,787	2.92		5,360
LIFT-HWYT-L2U3	-7,324	-3,567	2.05		-4,088	10,281		N/A		N/A
LIFT-HWYT-U3L4	-5,694		N/A		N/A	8,116	2,667	3.04		3,256
LIFT-HWYT-L4U5	-6,248	-1,506	4.15		-2,126	8 <i>,</i> 985		N/A		N/A
LIFT-HWYT-U5L6	-5,392		N/A		-676	7,853	654	12.0		1,579
LIFT-HWYT-U0L0	-19,938	-376	53.0		N/A	29,884		N/A		5,275
LIFT-HWYT-U1L1	-7,393		N/A		N/A	12,229	720	17.0		1,339
LIFT-HWYT-U2L2	-6,051	-302	20.0		-156	10,391		N/A		N/A
LIFT-HWYT-U3L3	-6,627		N/A		N/A	12,229	1,058	11.6		1,374
LIFT-HWYT-U4L4	-5,637	-195	28.9		-156	10,391	89	N/A		N/A
LIFT-HWYT-U5L5	-6,404		N/A		N/A	12,229	906	13.5		1,388
LIFT-HWYT-U6L6	-5,537	-229	24.2		-187	10,391		N/A		N/A

* Total load listed on the stress sheet from the original design drawings;

Member Capacity Summary Lift Span - Railway Truss Raised Position

			Compre	ssion				Tens	ion	
Member ID	C _r	C _f	C_r/C_f	Comments	C*	Tr	Τ _f	T _r /T _f	Comments	Т*
	kN	kN		Comments	kN	kN	kN		comments	kN
LIFT-RLYT-LOL2	-13,000	-1,962	6.63		N/A	15,100		N/A		6,249
LIFT-RLYT-L2L4	-25,698		N/A		N/A	29,895	1,484	20.1		13,033
LIFT-RLYT-L4L6	-30,864		N/A		N/A	36,172	2,942	12.3		15,986
LIFT-RLYT-U0U1	-10,517		N/A		N/A	11,455	3,747	3.06		N/A
LIFT-RLYT-U1U3	-20,874	-1,977	10.6		-10,230	22,730		N/A		N/A
LIFT-RLYT-U3U5	-36,612	-4,449	8.23		-15,101	41,025		N/A		N/A
LIFT-RLYT-U5U6	-39,425	-5,130	7.69		-16,400	44,398		N/A		N/A
LIFT-RLYT-LOU1	-39,025	-5,755	6.78		-11,298	48,874		N/A		N/A
LIFT-RLYT-U1L2	-13,411		N/A		N/A	20,484	3,974	5.15		8,100
LIFT-RLYT-L2U3	-11,538	-3,032	3.81		-6,298	18,863		N/A		N/A
LIFT-RLYT-U3L4	-8,694		N/A		N/A	14,435	2,136	6.76		5,137
LIFT-RLYT-L4U5	-7,228	-1,251	5.78		-3,692	10,341		N/A		342
LIFT-RLYT-U5L6	-5,392		N/A		-1,913	7,853	472	16.6		3,149
LIFT-RLYT-UOL0	-19,938		N/A		N/A	29,884	5,153	5.80		5,275
LIFT-RLYT-U1L1	-7,393		N/A		N/A	12,229	492	24.9		2,091
LIFT-RLYT-U2L2	-6,051	-261	23.2		-156	10,391		N/A		N/A
LIFT-RLYT-U3L3	-6,627		N/A		N/A	12,229	551	22.2		2,126
LIFT-RLYT-U4L4	-5,637	-263	21.4		-178	10,391		N/A		N/A
LIFT-RLYT-U5L5	-6,404		N/A		N/A	12,229	537	22.8		2,139
LIFT-RLYT-U6L6	-5,537	-269	20.6		-187	10,391		N/A		N/A

* Total load listed on the stress sheet from the original design drawings;

Member Capacity Summary Lift Span - Railway Truss Closed Position

			Compre	ession				Tens	ion	
Member ID	Cr	C _f	C_r/C_f	Comments	C*	Tr	T_{f}	T _r /T _f	Comments	Т*
	kN	kN		comments	kN	kN	kN		comments	kN
LIFT-RLYT-LOL2	-13,000		N/A		N/A	15,100	3,980	3.79		6,249
LIFT-RLYT-L2L4	-25,698		N/A		N/A	29,895	8,049	3.71		13,033
LIFT-RLYT-L4L6	-30,864		N/A		N/A	36,172	9,113	3.97		15,986
LIFT-RLYT-U0U1	-10,517	-449	23.4		N/A	11,455	1,139	10.1		N/A
LIFT-RLYT-U1U3	-20,874	-6,763	3.09		-10,230	22,730		N/A		N/A
LIFT-RLYT-U3U5	-36,612	-10,007	3.66		-15,101	41,025		N/A		N/A
LIFT-RLYT-U5U6	-39,425	-10,891	3.62		-16,400	44,398		N/A		N/A
LIFT-RLYT-LOU1	-39,025	-6,741	5.79		-11,298	48,874		N/A		N/A
LIFT-RLYT-U1L2	-13,411		N/A		N/A	20,484	4,872	4.20		8,100
LIFT-RLYT-L2U3	-11,538	-3,601	3.20		-6,298	18,863		N/A		N/A
LIFT-RLYT-U3L4	-8,694		N/A		N/A	14,435	2,649	5.45		5,137
LIFT-RLYT-L4U5	-7,228	-1,567	4.61		-3,692	10,341		N/A		342
LIFT-RLYT-U5L6	-5,392		N/A		-1,913	7,853	644	12.2		3,149
LIFT-RLYT-UOL0	-19,938	-406	49.1		N/A	29,884		N/A		5,275
LIFT-RLYT-U1L1	-7,393		N/A		N/A	12,229	690	17.7		2,091
LIFT-RLYT-U2L2	-6,051	-308	19.6		-156	10,391		N/A		N/A
LIFT-RLYT-U3L3	-6,627		N/A		N/A	12,229	782	15.6		2,126
LIFT-RLYT-U4L4	-5,637	-315	17.9		-178	10,391		N/A		N/A
LIFT-RLYT-U5L5	-6,404		N/A		N/A	12,229	775	15.8		2,139
LIFT-RLYT-U6L6	-5,537	-340	16.3		-187	10,391		N/A		N/A

* Total load listed on the stress sheet from the original design drawings;

Member Capacity Summary Lift Span - Non-truss Members Raised Position

			Compre	ssion				Tens	ion	
Member ID	C _r	C _f	C _r /C _f	Comments	C*	Tr	T_{f}	T _r /T _f	Comments	Т*
	kN	kN	C_r/C_f	comments	kN	kN	kN	r/ f	comments	kN
LIFT-TLAT	-960	-688	1.40		-600	2,605	694	3.75		600
LIFT-BLAT	-960	-732	1.31		-544	2,605	857	3.04		544
LIFT-PORT-BSTR	-2,910	-17	N/A		-371	4,154	148	28.1		371
LIFT-PORT-LATD	-497	-71	7.00		N/A	1,398	91	15.4		N/A
LIFT-PORT-LATL	-1,202	-99	12.1		N/A	1,398	92	15.2		N/A
LIFT-PORT-LATT	-1,164	-120	9.70		N/A	1,398	113	12.4		N/A
LIFT-PORT-SWBC	N/A		N/A		-463	1,988	118	16.8		463
LIFT-PORT-SWBV	-1,276	0	N/A		-49	1,398	36	38.8		49
LIFT-SWAY-BSTR	-1,449	-22	65.9		N/A	2,063	69	29.9		N/A
LIFT-SWAY-SWBC	N/A		N/A		N/A	1,988	82	24.2		N/A
LIFT-SWAY-SWBV	-726	-20	36.3		N/A	1,988	17	N/A		N/A
LIFT-SWAY-TSTR	-1,819	-323	5.63		-767	2,036	302	6.74		767
C12X20.7	-627	-12	52.2		N/A	857	13	65.9		N/A
C310X37	-800	-11	72.7		N/A	1,031	12	85.9		N/A
2L3-1/2x3-1/2x3/8	-478	-80	5.98		-258	699	83	8.42		N/A
2L4x4x3/8	-378	-138	2.74		-165	808	75	10.8		165
2L5x5x3/8	-498	-70	7.12		-120	1,018	70	14.5		120
2L6x6x1/2	N/A		N/A		-325	1,617	104	15.5		325

Member Capacity Summary - Lift Span - Bending Only Members

			Bendir	ng	Shear					
Member ID	M _r	M_{f}	M _r /M _f	Commente	M*	Vr	V _f	V _r /V _f	Commente	۷*
	kNm	kNm		Comments	kNm	kN	kN		Comments	kN
LIFT-FLBM-END	10,258	315	32.6		N/A	3,172	79	40.2		N/A
LIFT-FLBM-INT	14,295	631	22.7		N/A	3,569	158	22.6		N/A
LIFT-LFGR	25,969	13,779	1.88		N/A	12,046	6,284	1.92		N/A
Lift Span Stringers:										
W24x84	802	30	26.7		N/A	859	13	66.1		N/A
(Original Highway)	802	50	20.7		N/A	039	12	00.1		N/A
W610x125	1,071	30	35.7		N/A	1,397	13	N/A		N/A
(1982 Modification)	1,071	50	55.7		N/A	1,597	12	N/A		N/A
Railway Stringers:										
W36x230	3,158	50	63.2		N/A	2,063	22	93.8		N/A

* Total load listed on the stress sheet from the original design drawings;

Member Capacity Summary Lift Span - Non-truss Members Closed Position

			Compre	ssion				Tens	ion	
Member ID	C _r	C _f	C_r/C_f	Comments	C*	Tr	T_{f}	T _r /T _f	Comments	Т*
	kN	kN		comments	kN	kN	kN		comments	kN
LIFT-TLAT	-960	-536	1.79		-600	2,605	538	4.84		600
LIFT-BLAT	-960	-557	1.72		-544	2,605	948	2.75		544
LIFT-PORT-BSTR	-2,910	-40	72.8		-371	4,154	72	57.7		371
LIFT-PORT-LATD	-497	-77	6.46		N/A	1,398	66	21.2		N/A
LIFT-PORT-LATL	-1,202	-77	15.6		N/A	1,398	66	21.2		N/A
LIFT-PORT-LATT	-1,164	-93	12.5		N/A	1,398	82	17.1		N/A
LIFT-PORT-SWBC	N/A	0	N/A		-463	1,988	98	20.3		463
LIFT-PORT-SWBV	-1,276	0	N/A		-49	1,398	45	31.1		49
LIFT-SWAY-BSTR	-1,449	-36	40.3		N/A	2,063	70	29.5		N/A
LIFT-SWAY-SWBC	N/A	0	N/A		N/A	1,988	87	22.8		N/A
LIFT-SWAY-SWBV	-726	-46	15.8		N/A	1,988	23	86.4		N/A
LIFT-SWAY-TSTR	-1,819	-278	6.54		-767	2,036	212	9.61		767
C12X20.7	-627	-137	4.58		N/A	857	644	1.33		N/A
C310X37	-800	-89	8.99		N/A	1,031	618	1.67		N/A
2L3-1/2x3-1/2x3/8	-478	-220	2.17		-258	699	65	10.8		N/A
2L4x4x3/8	-378	-304	1.24		-165	808	143	5.65		165
2L5x5x3/8	-498	-253	1.97		-120	1,018	252	4.04		120
2L6x6x1/2	N/A	0	N/A		-325	1,617	471	3.43		325

Member Capacity Summary - Lift Span - Bending Only Members

	Bending					Shear					
Member ID	M _r	M_{f}	M _r /M _f	Commente	M*	Vr	V _f	V _r /V _f	Commonto	V*	
	kNm	kNm		Comments	kNm	kN	kN		Comments	kN	
LIFT-FLBM-END	10,258	4,021	2.55		3,002	3,172	1,006	3.15		1,025	
LIFT-FLBM-INT	14,295	8,041	1.78		6,493	3,569	2,012	1.77		2,007	
LIFT-LFGR	25,969	10,081	2.58		N/A	12,046	4,624	2.61		N/A	
Lift Span Stringers:											
W24x84	802	695	1.15		317	859	335	2.57		142	
(Original Highway)	002	095	1.15		517	039	555	2.57		142	
W610x125	1,071	695	1.54		231	1,397	335	4.17		129	
(1982 Modification)	1,071	095	1.54		231	1,397	335	4.17		129	
Railway Stringers:											
W36x230	3,158	68	46.4		1,619	2,063	21	98.3		783	

* Total load listed on the stress sheet from the original design drawings; N/A indicates that the member is not listed in the stress sheets

Member Capacity Summary Tower - Raised Lift Span

			Compr	ression				Tens	ion	
Member ID	C _r	C _f	C _r /C _f	Commente	C*	T _r	Τ _f	T _r /T _f	Commente	Т*
	kN	kN	C_r/C_f	Comments	kN	kN	kN	1 _r /1 _f	Comments	kN
TOWR-BBRC-MDIA	-3,529	-1,223	2.89		-547	4,569	658	6.94		547
TOWR-BBRC-RcRc	-12,120	0	N/A		-498	14,200	143	99.3		498
TOWR-BBRC-RdRd	-3,642	-272	13.4		-125	4,149	374	11.1		125
TOWR-BBRC-ReRe	-3,662	0	N/A		-85	4,149	490	8.47		85
TOWR-BBRC-RfRf	-3,662	-509	7.19		-231	4,149	609	6.81		231
TOWR-BBRC-RgRg	-16,282	0	N/A		-81	18,732	329	56.9		81
TOWR-BBRC-UDIA	-3,529	-803	4.40		-520	4,569	452	10.11		520
TOWR-BLAT-FRTL	-345	0	N/A		N/A	1,722	608	2.83		N/A
TOWR-BLAT-HWYL	-458	0	N/A		N/A	2,255	18	N/A		N/A
TOWR-BLAT-RLYL	-693	0	N/A		N/A	2,762	608	4.54		N/A
TOWR-FBRC-CdCe	-47	0	N/A		N/A	1,407	23	61.2		N/A
TOWR-FBRC-FdFd	-4,046	-20	N/A		-796	4,569	601	7.60		396
TOWR-FBRC-FeFe	-4,018	0	N/A		-934	4,569	1,031	4.43		356
TOWR-FBRC-FfFf	-4,606	-1,330	3.46		-1,228	5,207	1,608	3.24		480
TOWR-FBRC-FgFg	-20,236	0	N/A		-947	22,858	584	39.1		423
TOWR-FBRC-MDIA	-4,126	-4,001	1.03	Cf/Cr < 1.15	-1,766	5,207	2,371	2.20		1,766
TOWR-FBRC-MdMe	-281	-74	3.80	•	N/A	1,407	56	25.1		N/A
TOWR-FBRC-UDIA	-3,526	-2,096	1.68		-1,317	4,569	607	7.53		1,317
TOWR-FCOL-BCOL	-68,627	-32,221	2.13		-19,878	76,189	0	N/A		0
TOWR-FCOL-MCOL	-57,560	-24,267	2.37		-17,027	63,328	0	N/A		0
TOWR-FCOL-UCOL	-39,131	-18,420	2.12		-13,838	42,738	0	N/A		0
TOWR-RCOL-BCOL	-22,570	-18,464	1.22		-7,584	24,936	9,109	2.74		2,273
TOWR-RCOL-MCOL	-22,833	-11,008	2.07		-5,520	24,936	4,550	5.48		503
TOWR-RCOL-UCOL	-22,833	-5,703	4.00		-3,745	24,936	0	N/A		0
TOWR-SBRC-DIAG	-3,717	-3,914	0.95	Cf/Cr < 1.0	-1,432	4,149	3,328	1.25		1,432
TOWR-SBRC-FgRg	-4,474	0	N/A		-356	5,207	564	9.2		818
TOWR-SBRC-FhRh	-26,305	-717	36.7		0	28,613	1,259	22.7		0
TOWR-SBRC-HORZ	-3,912	0	N/A		-565	4,569	1,065	4.29		805
TOWR-SBRC-SbFc	-4,167	-1,190	3.50		-694	4,179	492	8.49		694
2L3.5x3.5x.375	-569	-387	1.47		N/A	699	403	1.73		N/A
2L4x4x.375	-467	-31	15.1		N/A	808	26	31.1		N/A
2L5x3.5x.375	N/A	0	N/A		N/A	861	104	8.28		N/A
2L5x5x.5	N/A	0	N/A		N/A	1,337	5	N/A		N/A
2L6x6x.375	-590	-294	2.01		N/A	1,337	300	4.46		N/A
C15x33.9	-848	-1	N/A		N/A	1,405	4	N/A		N/A
C380x50	-805	-5	N/A		N/A	1,405	1	N/A		N/A
L4x4x.375	-234	0	N/A		N/A	404	0	N/A		N/A
L5x5x.375	-222	-26	8.54		N/A	509	31	16.4		N/A
L5x5x.5	-267	-9	29.6		N/A	669	9	74.3		N/A

* Total load listed on the stress sheet from the original design drawings;

Burlington Lift Bridge Member Capacities - Tower

Member ID	Bending									
	M _r	M_f	M_r/M_f	Comments	M*	V _r	V _f	V_r/V_f	Comments	V*
	kNm	kNm		comments	kNm	kNm	kNm		comments	kN
TOWR-FLBM-FRNT	8,548	1,560	5.48		2,502	2,887	387	7.46		1,681
TOWR-FLBM-REAR	9,116	3,379	2.70		3,417	3,614	844	4.28		1,855
TOWR-SHVG-G1	10,304	2,241	4.60		2,138	5,094	3,492	1.46		2,851
TOWR-SHVG-G2G3	12,187	2,254	5.41		2,252	5,094	3,498	1.46		2,584
TOWR-SHVG-G4	10,304	2,369	4.35		2,604	5,094	3,560	1.43		3,087
TOWR-SHVG-G6	12,865	999	12.9		423	3,396	235	14.5		138
TOWR-SHVG-G7	100,442	42,238	2.38		38,222	19,473	14,236	1.37		12,566
TOWR-SHVG-G8	20,306	4,819	4.21		6,465	5,341	1,567	3.41		1,922
Tower Span Stringers	:									
W27x102	1,093	230	4.75		155	1,136	95	12.0		67
(Original Highway)	1,095	250	4.75		155	1,150	95	12.0		07
W690x152										
(1982 Modification)	1,663	230	7.23		362	1,729	95	18.2		71
Approach Span String	ers:									
W33x130										
(Original Highway)	1,665	388	4.29		243	1,557	123	12.7		77
W840x193										
(1982 Modification)	2,534	388	6.53		362	2,369	123	19.3		116

* Total load listed on the stress sheet from the original design drawings;

Member Capacity Summary Tower - Closed Lift Span

			Compres	ssion				Tens	ion	
Member ID	C _r	Cf	C _r /C _f	Commonte	C*	Tr	Τ _f	T _r /T _f	Commonte	Т*
	kN	kN		Comments	kN	kN	kN		Comments	kN
TOWR-BBRC-MDIA	-3,529	-1,660	2.13		-547	4,569	1,225	3.73		547
TOWR-BBRC-RcRc	-12,120	0	N/A		-498	14,200	99	N/A		498
TOWR-BBRC-RdRd	-3,642	-98	37.2		-125	4,149	16	N/A		125
TOWR-BBRC-ReRe	-3,662	0	N/A		-71	4,149	329	12.6		71
TOWR-BBRC-RfRf	-3,662	0	N/A		-231	4,149	848	4.89		231
TOWR-BBRC-RgRg	-16,282	0	N/A		-81	18,732	226	82.9		81
TOWR-BBRC-UDIA	-3,529	-423	8.3		-520	4,569	72	63.5		520
TOWR-BLAT-FRTL	-345	0	N/A		N/A	1,722	554	3.11		N/A
TOWR-BLAT-HWYL	-458	0	N/A		N/A	2,255	509	4.43		N/A
TOWR-BLAT-RLYL	-693	0	N/A		N/A	2,762	26	N/A		N/A
TOWR-FBRC-CdCe	-47	0	N/A		N/A	1,407	63	22.3		N/A
TOWR-FBRC-FdFd	-4,046	0	N/A		-796	4,569	366	12.5		396
TOWR-FBRC-FeFe	-4,018	0	N/A		-934	4,569	810	5.64		356
TOWR-FBRC-FfFf	-4,606	-1,140	4.04		-1,228	5,207	1,366	3.81		480
TOWR-FBRC-FgFg	-20,236	0	N/A		-947	22,858	459	49.8		423
TOWR-FBRC-MDIA	-4,126	-3,139	1.31		-1,766	5,207	1,777	2.93		1,766
TOWR-FBRC-MdMe	-281	-31	9.06		N/A	1,407	69	20.4		N/A
TOWR-FBRC-UDIA	-3,526	-1,384	2.55		-1,317	4,569	166	27.5		1,317
TOWR-FCOL-BCOL	-68,627	-19,458	3.53		-19,878	76,189	0	N/A		0
TOWR-FCOL-MCOL	-57,560	-16,596	3.47		-17,027	63,328	0	N/A		0
TOWR-FCOL-UCOL	-39,131	-14,547	2.69		-13,838	42,738	0	N/A		0
TOWR-RCOL-BCOL	-22,570	-6,602	3.42		-7,584	24,936	0	N/A		2,289
TOWR-RCOL-MCOL	-22,833	-3,920	5.82		-5,520	24,936	0	N/A		503
TOWR-RCOL-UCOL	-22,833	-2,578	8.9		-3,745	24,936	0	N/A		0
TOWR-SBRC-DIAG	-3,717	-1 <i>,</i> 589	2.34		-1,432	4,149	919	4.52		1,432
TOWR-SBRC-FgRg	-4,474	0	N/A		-356	5,207	485	10.7		818
TOWR-SBRC-FhRh	-26,305	-72	N/A		0	28,613	568	50.4		0
TOWR-SBRC-HORZ	-3,912	0	N/A		-565	4,569	452	10.1		805
TOWR-SBRC-SbFc	-4,167	-534	7.80		-694	4,179	82	51.0		694
2L3.5x3.5x.375	-569	-110	5.17		N/A	699	127	5.51		N/A
2L4x4x.375	-467	-25	18.7		N/A	808	26	31.1		N/A
2L5x3.5x.375	N/A	0	N/A		N/A	861	35	24.6		N/A
2L5x5x.5	N/A	0	N/A		N/A	1,337	7	N/A		N/A
2L6x6x.375	-590	-118	5.00		N/A	1,337	122	11.0		N/A
C15x33.9	-848	-4	N/A		N/A	1,405	3	N/A		N/A
C380x50	-805	-3	N/A		N/A	1,405	4	N/A		N/A
L4x4x.375	-234	0	N/A		N/A	404	0	N/A		N/A
L5x5x.375	-222	-27	8.22		N/A	509	26	19.6		N/A
L5x5x.5	-267	-13	20.5		N/A	669	13	51.4		N/A

* Total load listed on the stress sheet from the original design drawings; N/A indicates that the member is not listed in the stress sheets

Burlington Lift Bridge Member Capacities - Tower

		Bending					Shear			
Member ID	M _r	M_{f}	M_r/M_f	Comments	M*	V _r	V _f	V _r /V _f	Comments	V*
	kNm	kNm		comments	kNm	kN	kN		comments	kN
TOWR-FLBM-FRNT	8,548	3,897	2.19		2,502	2,887	1,007	2.87		1,681
TOWR-FLBM-REAR	9,116	7,307	1.25		3,417	3,614	1,891	1.91		1,855
TOWR-SHVG-G1	10,304	1,775	5.80		2,138	5,094	2,750	1.85		2,851
TOWR-SHVG-G2G3	12,187	1,786	6.82		2,252	5,094	2,755	1.85		2,584
TOWR-SHVG-G4	10,304	1,894	5.44		2,604	5,094	2,812	1.81		3,087
TOWR-SHVG-G6	12,865	618	20.8		423	3,396	146	23.3		138
TOWR-SHVG-G7	100,442	33,498	3.00		38,222	19,473	10,610	1.84		12,566
TOWR-SHVG-G8	20,306	4,000	5.08		6,465	5,341	1,274	4.19		1,922
Tower Span Stringers	:									
W27x102	1,093	921	1.19		541	1,136	423	2.69		276
(Original Highway)	1,093	921	1.19		541	1,150	425	2.09		270
W690x152	1,663	921	1.81		271	1,729	423	4.09		503
(1982 Modification)	1,005	521	1.01		271	1,725	425	4.05		505
Approach Span String	ers:									
W33x130	1,665	1,344	1.24		766	1,557	491	3.17		282
(Original Highway)	1,005	1,544	1.27		700	1,557	4.51	5.17		202
W840x193	2,534	1,344	1.89		860	2,369	491	4.82		307
(1982 Modification)	2,334	1,044	1.00		000	2,305	.51	1.52		207

* Total load listed on the stress sheet from the original design drawings;

APPENDIX D LIFT SPAN *HIGHWAY* TRUSS CAPACITY SPREADSHEETS

Member Capacity Summary Lift Span - Highway Truss Raised Position

			Compre	ssion				Tens	ion	
Member ID	C _r	C _f	C_r/C_f	Comments	C*	Tr	Τ _f	T _r /T _f	Comments	Т*
	kN	kN		Comments	kN	kN	kN		comments	kN
LIFT-HWYT-LOL2	-8,888	-2,574	3.45		N/A	9,923		N/A		4,021
LIFT-HWYT-L2L4	-15,713		N/A		N/A	17,514	1,446	12.1		8,682
LIFT-HWYT-L4L6	-22,851		N/A		N/A	26,494	2,952	9.0		10,791
LIFT-HWYT-U0U1	-10,517		N/A		N/A	11,455	3,680	3.11		N/A
LIFT-HWYT-U1U3	-14,951	-1,626	9.19		-6,801	16,288		N/A		N/A
LIFT-HWYT-U3U5	-20,867	-3,947	5.29		-10,106	22,730		N/A		N/A
LIFT-HWYT-U5U6	-21,840	-4,722	4.63		-11,084	23,796		N/A		N/A
LIFT-HWYT-L0U1	-27,472	-5,719	4.80		-6,205	32,117		N/A		N/A
LIFT-HWYT-U1L2	-10,258		N/A		N/A	13,959	3,893	3.59		5,360
LIFT-HWYT-L2U3	-7,324	-2,936	2.49		-4,088	10,281		N/A		N/A
LIFT-HWYT-U3L4	-5,694		N/A		N/A	8,116	2,067	3.93		3,256
LIFT-HWYT-L4U5	-6,248	-1,215	5.14		-2,126	8,985		N/A		N/A
LIFT-HWYT-U5L6	-5,392		N/A		-676	7,853	458	17.1		1,579
LIFT-HWYT-U0L0	-19,938		N/A		N/A	29,884	5,158	5.79		5,275
LIFT-HWYT-U1L1	-7,393		N/A		N/A	12,229	536	22.8		1,339
LIFT-HWYT-U2L2	-6,051	-218	27.8		-156	10,391		N/A		N/A
LIFT-HWYT-U3L3	-6,627		N/A		N/A	12,229	550	22.2		1,374
LIFT-HWYT-U4L4	-5,637	-222	25.4		-156	10,391		N/A		N/A
LIFT-HWYT-U5L5	-6,404		N/A		N/A	12,229	534	22.9		1,388
LIFT-HWYT-U6L6	-5,537	-228	24.3		-187	10,391		N/A		N/A

* Total load listed on the stress sheet from the original design drawings;

Member Capacity Summary Lift Span - Highway Truss Closed Position

		Compression						Tens	sion	
Member ID	C _r	C _f	C_r/C_f	Comments	C*	Tr	Τ _f	T _r /T _f	Comments	Т*
	kN	kN		Comments	kN	kN	kN		comments	kN
LIFT-HWYT-LOL2	-8,888		N/A		N/A	9,923	4,123	2.41		4,021
LIFT-HWYT-L2L4	-15,713		N/A		N/A	17,514	7,953	2.20		8,682
LIFT-HWYT-L4L6	-22,851		N/A		N/A	26,494	9,753	2.72		10,791
LIFT-HWYT-U0U1	-10,517	-22	N/A		N/A	11,455	414	27.7		N/A
LIFT-HWYT-U1U3	-14,951	-6,239	2.40		-6,801	16,288		N/A		N/A
LIFT-HWYT-U3U5	-20,867	-9,214	2.26		-10,106	22,730		N/A		N/A
LIFT-HWYT-U5U6	-21,840	-10,068	2.17		-11,084	23,796		N/A		N/A
LIFT-HWYT-LOU1	-27,472	-6,920	3.97		-6,205	32,117		N/A		N/A
LIFT-HWYT-U1L2	-10,258		N/A		N/A	13,959	4,787	2.92		5,360
LIFT-HWYT-L2U3	-7,324	-3,567	2.05		-4,088	10,281		N/A		N/A
LIFT-HWYT-U3L4	-5,694		N/A		N/A	8,116	2,667	3.04		3,256
LIFT-HWYT-L4U5	-6,248	-1,506	4.15		-2,126	8 <i>,</i> 985		N/A		N/A
LIFT-HWYT-U5L6	-5,392		N/A		-676	7,853	654	12.0		1,579
LIFT-HWYT-U0L0	-19,938	-376	53.0		N/A	29,884		N/A		5,275
LIFT-HWYT-U1L1	-7,393		N/A		N/A	12,229	720	17.0		1,339
LIFT-HWYT-U2L2	-6,051	-302	20.0		-156	10,391		N/A		N/A
LIFT-HWYT-U3L3	-6,627		N/A		N/A	12,229	1,058	11.6		1,374
LIFT-HWYT-U4L4	-5,637	-195	28.9		-156	10,391	89	N/A		N/A
LIFT-HWYT-U5L5	-6,404		N/A		N/A	12,229	906	13.5		1,388
LIFT-HWYT-U6L6	-5,537	-229	24.2		-187	10,391		N/A		N/A

* Total load listed on the stress sheet from the original design drawings;

Member Location:Lift Span Highway TrussMember Description:Bottom ChordMember ID:LIFT-HWYT-LOL2S-Frame End Nodes:Node 27 to Node 29

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
$F_u =$	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

· · · · · · · · · · · · · · · · · · ·					
	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plates	Plates	Plates	8x6x1/2	8x6x1/2
Qty	1	1	2	2	2
y _{dim} (mm)	584	584	11.1	152	152
z _{dim} (mm)	9.5	9.5	762	203	203
I _{y1} (x10 ⁶ mm ⁴)	0	0	409	18.40	18.40
$I_{z1}(x10^{6}mm^{4})$	158	158	0	8.96	8.96
A _g (mm ²)	5,548	5,548	8,458	4,350	4,350
y _{bar} (mm)	0	0	306	263	263
z _{bar} (mm)	391	391	0	325	325
$I_{y}(x10^{6}mm^{4})$	848	848	819	956	956
$I_{z}(x10^{6}mm^{4})$	158	158	1,584	620	620

 $A_{g} = 45,412 \text{ mm}^{2}$

I _y =	4,426 x10 ⁶ mm ⁴	
l _z =	3,139 x10 ⁶ mm ⁴	
r _y =	312 mm	
r _z =	263 mm	

Moment (demand) from original stress sheets:33 kNmMoment (demand) from S-Frame model:116 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

	MMM GROUP
--	-----------

Burlington Lift Bridge Member Capacities

Compression Res					LIFT-HWYT-LOL2
	L _y =	9,398 mm			
	$L_z =$	9,398 mm			
	K _y =	1.00			
	K _z =	1.00			
	Web	356 mm			
	w	<u>11.1</u> mm 280 mm			
	Flange t	9.5 mm			
	n =	1.34			
	Lift Span Raised: C _f =	-2,574 kN			
	Lift Span Lowered: C _f =	0 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
CI. 10.5.7 (C)	$\varphi_s =$	0.50			
Cl. 10.9.1.3	Slenderness Ratio =	36	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	iits			
	Web h/w =	32	<	44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	29	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda^2)$	$(2^{n})^{-1/n} = 0$	9,070 kN	I	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda^2)$	$(2^n)^{-1/n} = 8$	3,888 kN	l Gove	erns
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	0.325			
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	0.386			
	C _r =	-8,888 kN	Co	ompressive Ca	pacity (Factored)
	$C_r / C_f =$	3.45	Ca	pacity over D	emand Ratio (C/D)
Tension Results					LIFT-HWYT-LOL2
	Lift Span Raised: T _f =	0 kN			
	Lift Span Lowered: T _f =	4,123 kN			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95			
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma} =$	9,923 kN	Gr	oss Section	
	.		т.		

 $T_{r}/T_{f} = 2.41$

 $T_r = 9,923 \text{ kN}$

Tensile Capacity (Factored)

Member Location:Lift Span Highway TrussMember Description:Bottom ChordMember ID:LIFT-HWYT-L2L4S-Frame End Nodes:Node 29 to Node 31

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

Dant op beetion i rop	Services						
	T. Cover	B. Cover	Web	Web	Web	Top Ls	Bot Ls
	Plates	Plates	Plates	Plates	Plates	8x6x1/2	8x6x1/2
Qty	1	1	2	2	2	2	2
y _{dim} (mm)	533	533	17.5	11.1	12.7	152	152
z _{dim} (mm)	9.5	9.5	762	762	356	203	203
$I_{y1}(x10^{6}mm^{4})$	0	0	645	409	48	18.40	18.40
$I_{z1}(x10^{6}mm^{4})$	120	120	0	0	0	8.96	8.96
A _g (mm ²)	5,064	5,064	13,335	8,458	4,521	4,350	4,350
y _{bar} (mm)	0	0	302	288	277	233	233
z _{bar} (mm)	391	391	0	0	0	325	325
l _y (x10 ⁶ mm ⁴)	774	774	1,290	819	95	956	956
$I_z (x10^6 mm^4)$	120	120	2,433	1,403	694	490	490

 $A_g = 80,156 \text{ mm}^2$

$I_y =$	5,664 x10 ⁶ mm ⁴
l _z =	5,751 x10 ⁶ mm ⁴
r _y =	266 mm
r _z =	268 mm

Moment (demand) from original stress sheets:57 kNmMoment (demand) from S-Frame model:77 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

	MMM GROUP	
--	-----------	--

Burlington Lift Bridge Member Capacities

Compression Results

LIFT-HWYT-L2L4

Compression Resu	ults				LIFT-HWYT-L2L4
	Ly	= 9,398	mm		
	Lz	9,398	mm		
	K _y	= 1.00			
	Kz	= 1.00			
	Web	h 356	mm		
	N	v 47.7			
	Flange		mm		
	_		mm		
	n = Lift Span Paisod: C				
	Lift Span Raised: C _f		kN		
	Lift Span Lowered: C _f		kN		
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	35	<	120	Cl. 10.9.1.3 Satisfied
0. 10.3.1.3		55		120	
Cl. 10.9.2.1	Width to Thickness I	_imits			
	Web h/w =	= 7	<	44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	- 24	<	44	Cl. 10.9.2.1 Satisfied
		20 1/0			
Cl. 10.9.3.1	$C_{r(y)} = \phi_s AF_y (1 +$		15,713	kN G	overns
Cl. 10.9.3.1	$C_{r(z)} = \phi_s AF_y (1 +$	$(\lambda^{2n})^{-1/n} =$	15,730	kN	
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E}}$	-			
	$\lambda_y = \frac{1}{r} \sqrt{\frac{\pi^2 E}{\pi^2 E}}$	- = 0.382			
	۷	_			
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E}}$	- = 0.379			
	$r_z r \sqrt{\pi^2 E}$	s 0.375			
	C _r	-15,713	kN	Compressive	Capacity (Factored)
	C _r / C _f			-	r Demand Ratio (C/D)
		.,			
Tension Results					LIFT-HWYT-L2L4
	Lift Span Raised: T _f	= 1,446	kN		
	Lift Span Lowered: T _f	= 7,953	kN		
Cl. 10.5.7 (d)	tension: ϕ_s	_■ 0.95			
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_y$	_■ 17,514	kN	Gross Section	1

T_r = 17,514 kN Tensile Capacity (Factored)

 $T_r/T_f = 2.20$ Capacity over Demand Ratio (C/D)

Member Location:Lift Span Highway TrussMember Description:Bottom ChordMember ID:LIFT-HWYT-L4L6S-Frame End Nodes:Node 31 to Node 39

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

•		
350	MPa	Low Alloy Steel A242
480	MPa	CAN/CSA-S16-09 PP6-5
200,000	MPa	
77,000	MPa	
	480 200,000	480 MPa 200,000 MPa

Built Up Section Properties

Dunt of Section 110	Servics						
	T. Cover	B. Cover	Web	Web	Web	Top Ls	Bot Ls
	Plates	Plates	Plates	Plates	Plates	8x6x1/2	8x6x1/2
Qty	1	1	2	2	2	2	2
y _{dim} (mm)	508	508	17.5	11.1	12.7	152	152
z _{dim} (mm)	9.5	9.5	762	762	356	203	203
$I_{y1}(x10^{6}mm^{4})$	0	0	645	409	48	18.40	18.40
$I_{z1}(x10^{6}mm^{4})$	104	104	0	0	0	8.96	8.96
A _g (mm ²)	4,826	4,826	13,335	8,458	4,521	4,350	4,350
y _{bar} (mm)	0	0	302	288	277	233	233
z _{bar} (mm)	391	391	0	0	0	325	325
$I_{y}(x10^{6}mm^{4})$	738	738	1,290	819	95	956	956
$I_{z}(x10^{6}mm^{4})$	104	104	2,433	1,403	694	490	490

 $A_{g} = 79,681 \text{ mm}^{2}$

$I_y =$	5,592 x10 ⁶ mm ⁴
I _z =	5,718 x10 ⁶ mm ⁴
r _y =	265 mm
r _z =	268 mm

Moment (demand) from original stress sheets:57 kNmMoment (demand) from S-Frame model:94 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

	MMM GROUP	
--	-----------	--

Burlington Lift Bridge Member Capacities

Compression Results

LIFT-HWYT-L4L6

Compression Resu	ults			LIFT-HWYT-L4L6
	L _y =	9,398 mm		
	L _z =	9,398 mm		
	K _y =	1.00		
	K _z =	1.00		
	h Web	356 mm		
	W	60.4 mm		
	Flange b	229 mm		
	t	9.5 mm		
	n =	1.34		
	Lift Span Raised: C _f =	0 kN		
	Lift Span Lowered: C _f =	0 kN		
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90		
Cl. 10.9.1.3	Slenderness Ratio =	35	< 120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	nits		
	Web h/w =	6	< 36	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	24	< 36	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$(2^n)^{-1/n} = 22$	851 kN Gove	ornc
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$) = 22,	911 kN	
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}}$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}}$	= 0.472 = 0.467		
	C -	-22,851 kN	Comprossivo	apacity (Factored)
	$C_r / C_f =$	-22,831 KN	-	
	$C_r / C_f -$	N/A	Capacity over D	emand Ratio (C/D)
Tension Results				LIFT-HWYT-L4L6
	Lift Span Raised: T _f =	2,952 kN		
	Lift Span Lowered: T _f =	9,753 kN		
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95		
	$T_r = \phi_s A_g F_{\gamma} =$	26,494 kN	Gross Section	
Cl. 10.8.2 (a)	$\Gamma_r - \Psi_s \Lambda_g \Gamma_{\gamma} =$	20,474 KIN	GLOSS SECTION	

T_r =

Member Location:Lift Span Highway TrussMember Description:Top ChordMember ID:LIFT-HWYT-U0U1S-Frame End Nodes:Node 33 to Node 34

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
$F_u =$	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plates	Plates	Plates	4x4x7/16	4x4x7/16
Qty	1	1	2	2	2
y _{dim} (mm)	965	965	12.7	102	102
z _{dim} (mm)	12.7	12.7	762	102	102
I _{y1} (x10 ⁶ mm ⁴)	0	0	468	2.09	2.09
$I_{z1}(x10^{6}mm^{4})$	951	951	0	2.09	2.09
A _g (mm ²)	12,256	12,256	9,677	2,140	2,140
y _{bar} (mm)	0	0	336	372	372
z _{bar} (mm)	385	395	8	349	359
$I_y(x10^6 mm^4)$	1,817	1,912	938	527	556
$I_{z}(x10^{6}mm^{4})$	951	951	2,185	596	596

 $A_{g} = 52,426 \text{ mm}^{2}$

I _y =	5,749 x10 ⁶ mm ⁴
I _z =	5,280 x10 ⁶ mm ⁴
r _y =	331 mm
r _z =	317 mm

Moment (demand) from original stress sheets:N/AMoment (demand) from S-Frame model:64 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

	MMM GROUP	
--	-----------	--

Compression Results

LIFT-HWYT-U0U1

Compression Res	ults			LIFT-HWYT-UOU1
	L _y =	9,482 mm		
	L _z =	7,087 mm		
	K _y =	1.00		
	K _z =	1.00		
	h Web	571 mm		
	W	12.7 mm		
	Flange b	660 mm		
	t	<u>12.7</u> mm 1.34		
	Lift Span Raised: $C_f =$	1.54 0 kN		
	Lift Span Lowered: C _f =	-22 kN		
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90		
Cl. 10.9.1.3	Slenderness Ratio =	29	< 120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	nits		
	Web h/w =	45	> 44	Cl. 10.9.2.1 NOT Satisfied
	Flanges b/t =	52	> 44	Cl. 10.9.2.1 NOT Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$(2^{n})^{-1/n} = 10$),517 kN Go	verns
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda^2)$	$(2^{n})^{-1/n} = 10$),677 kN	
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}}$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}}$	= 0.309 = 0.241		
	C _r =	-10,517 kN	Compressive (Capacity (Factored)
	$C_r / C_f =$	478.03	Capacity over	Demand Ratio (C/D)
Tension Results				LIFT-HWYT-U0U1
	Lift Span Raised: T _f =	3,680 kN		
	Lift Span Lowered: T _f =	414 kN		
Cl 10 5 7 (d)	tension: @.	0.95		

	Lift Spall Raiseu. If –	5,000 KN		
	Lift Span Lowered: T _f =	414 kN		
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95		
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	11,455 kN	Gross Section	
	T _r =	11,455 kN	Tensile Capacity (Factored)	
	- /-			
	$T_r/T_f =$	3.11	Capacity over Demand Ratio (C/D)	

Member Location:Lift Span Highway TrussMember Description:Top ChordMember ID:LIFT-HWYT-U1U3S-Frame End Nodes:Node 34 to Node 35

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
$F_u =$	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plates	Plates	Plates	4x4x7/16	8x6x9/16
Qty	1	1	2	2	2
y _{dim} (mm)	965	1,067	17.5	102	152
z _{dim} (mm)	17.5	15.9	762	102	203
I _{y1} (x10 ⁶ mm ⁴)	0	0	645	2.09	20.4
$I_{z1}(x10^{6}mm^{4})$	1,311	1,610	0	2.09	9.9
A _g (mm ²)	16,888	16,965	13,335	2,140	4,870
y _{bar} (mm)	0	0	339	377	385
z _{bar} (mm)	388	403	8	350	332
$I_y(x10^6 mm^4)$	2,543	2,756	1,292	528	1,114
$I_{z}(x10^{6}mm^{4})$	1,311	1,610	3,066	612	1,464

 $A_{g} = 74,543 \text{ mm}^{2}$

I _y =	8,233 x10 ⁶ mm	n ⁴
$I_z =$	8,062 x10 ⁶ mm	n ⁴
r _y =	332 mm	
r _z =	329 mm	

Moment (demand) from original stress sheets:53 kNmMoment (demand) from S-Frame model:76 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

	MMM GROUP
--	-----------

Compression Posults

LIFT-HWYT-U1<u>U3</u>

Compression Resu	ults				LIFT-HWYT-U1U3
	L _y =	9,436 mm			
	L _z =	9,436 mm			
	K _y =	1.00			
	K _z =	1.00			
	h Web	571 mm			
	w	25.4 mm			
	Flange b	660 mm			
	t	22.2 mm			
	n =	1.34			
	Lift Span Raised: C _f =	-1,626 kN			
	Lift Span Lowered: C _f =	-6,239 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	29	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	its			
	Web h/w = 2	22.48031	<	44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	30	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda^2)$		1,963 kN		
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda^2)$	$(n)^{-1/n} = 14$	4,951 kN	Gove	erns
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$ $\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	0.306			
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	0.310			
	C _r =	-14,951 kN	Cor	npressive Ca	pacity (Factored)
	$C_r / C_f =$	2.40	Сар	acity over D	emand Ratio (C/D)
Tension Results					LIFT-HWYT-U1U3
	Lift Span Raised: T _f =	0 kN			
	Lift Span Lowered: T _f =	0 kN			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95			

 $T_r = \phi_s A_g F_{y=}$ 16,288 kN

 $T_r/T_f = N/A$

 $T_r = 16,288 \text{ kN}$

Tensile Capacity (Factored)

Gross Section

Member ID: LIFT-HWYT-U1U3 **Prepared By: Matthew Bowser**

Cl. 10.8.2 (a)

Member Location:Lift Span Highway TrussMember Description:Top ChordMember ID:LIFT-HWYT-U3U5S-Frame End Nodes:Node 35 to Node 36

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plates	Plates	Plates	4x4x7/16	8x6x3/4
Qty	1	1	2	2	2
y _{dim} (mm)	965	1,067	25.4	102	152
z _{dim} (mm)	25.4	22.2	762	102	203
I _{y1} (x10 ⁶ mm ⁴)	1	1	937	2.09	26.4
$I_{z1}(x10^{6}mm^{4})$	1,902	2,247	1	2.09	12.7
A _g (mm ²)	24,511	23,687	19,355	2,140	6,420
y _{bar} (mm)	0	0	343	372	382
z _{bar} (mm)	392	402	8	349	326
l _y (x10 ⁶ mm ⁴)	3,768	3,829	1,876	527	1,417
$I_{z}(x10^{6}mm^{4})$	1,902	2,247	4,556	596	1,899

 $A_g = 104,028 \text{ mm}^2$

$I_y =$	11,416 x10 ⁶ mm ⁴
$I_z =$	11,201 x10 ⁶ mm ⁴
r _y =	331 mm
r _z =	328 mm

Moment (demand) from original stress sheets:75 kNmMoment (demand) from S-Frame model:168 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

	MMM GROUP
--	-----------

Compression Posults

LIFT-HWYT-U3<u>U5</u>

Compression Resu	ults				LIFT-HWYT-U3U5
	L _y =	9,402 mm			
	L _z =	9,402 mm			
	K _y =	1.00			
	K _z =	1.00			
	h Web	571 mm			
	w	38.1 mm			
	Flange b	660 mm			
	t	22.2 mm			
	n =	1.34			
	Lift Span Raised: C _f =	-3,947 kN			
	Lift Span Lowered: C _f =	-9,214 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	29	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	its			
	Web h/w = 2	14.98688	<	44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	30	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda^2)$		20,883 kN		
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda^2)$	$(2^n)^{-1/n} = 2$	20,867 kN	Gove	erns
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$	0.306			
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	0.309			
	C _r =	-20,867 kN	Cor	npressive Ca	pacity (Factored)
	$C_r / C_f =$	2.26	Cap	acity over D	emand Ratio (C/D)
Tension Results					LIFT-HWYT-U3U5
	Lift Span Raised: T _f =	0 kN			
	Lift Span Lowered: T _f =	0 kN			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95			

Cl. 10.8.2 (a)

 $T_r/T_f = N/A$

 $T_{r} = \phi_{s}A_{g}F_{y} = 22,730 \text{ kN}$

 $T_r = 22,730 \text{ kN}$

Gross Section

Tensile Capacity (Factored)

Member Location:Lift Span Highway TrussMember Description:Top ChordMember ID:LIFT-HWYT-U5U6S-Frame End Nodes:Node 36 to Node 52

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
$F_u =$	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

Dunt op Section 110p						
	T. Cover	B. Cover	Web	Web	Top Ls	Bot Ls
	Plates	Plates	Plates	Plates	4x4x7/16	8x6x3/4
Qty	1	1	2	2	2	2
y _{dim} (mm)	965	1,067	12.7	15.9	102	152
z _{dim} (mm)	25.4	22.2	762	762	102	203
I _{y1} (x10 ⁶ mm ⁴)	1	1	468	586	2.09	26.4
$I_{z1}(x10^{6}mm^{4})$	1,902	2,247	0	0	2.09	12.7
A _g (mm ²)	24,511	23,687	9,677	12,116	2,140	6,420
y _{bar} (mm)	0	0	336	351	388	398
z _{bar} (mm)	392	402	8	8	349	326
$I_{y}(x10^{6}mm^{4})$	3,768	3,829	938	1,174	527	1,417
$I_{z}(x10^{6}mm^{4})$	1,902	2,247	2,185	2,986	649	2,059

 $A_{g} = 108,905 \text{ mm}^{2}$

$I_y =$	11,653 x10 ⁶ mm ⁴
I _z =	12,028 x10 ⁶ mm ⁴
r _y =	327 mm
r _z =	332 mm

Moment (demand) from original stress sheets:77 kNmMoment (demand) from S-Frame model:176 kNmDue to the small magnitude of this moment, the moment from
the continuity of the chord member has been neglected in the
assesment of member capacity

	MMM GROUP	
--	-----------	--

Compression Results

LIFT-HWYT-U5U6

Compression Resu	lts					LIFT-HWYT-U5U6
	Ly	= 9,398	mm			
	Lz	= 9,398	mm			
	Ky	= 1.00				
	Kz	= 1.00				
	Web	h 571	mm			
		w 49.0	mm			
	Flange	b 660	mm			
		t 22.2	•			
	n					
	Lift Span Raised: C _f	= -4,722	kN			
	Lift Span Lowered: C _f	= -10,068	kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90				
Cl. 10.9.1.3	Slenderness Ratio =	: 29	<	120	Cl. 10.9.1.3	Satisfied
Cl. 10.9.2.1	Width to Thickness					
	Web h/w				Cl. 10.9.2.1	
	Flanges b/t	= 30	<	44	Cl. 10.9.2.1	Satisfied
	$C_{r(y)} = \phi_s A F_y (1)$	$(1)^{2n} (1/n)^{-1/n} =$	21,840	LN	Coverns	
Cl. 10.9.3.1					Governs	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1)$	+λ ⁻) -/·· =	21,868	kN		
	$KL F_{y}$	-				
	$\lambda_y = \frac{1}{r} \sqrt{\frac{r^2 E_y}{\pi^2 E_y}}$	${s} = 0.310$				
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E}}$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E}}$	- = 0.305				
	C,	= -21,840	kN	Compressiv	ve Capacity (Factored)	
	C _r / C _f	= 2.17		Capacity ov	ver Demand Ratio (C/D))
Tension Results						LIFT-HWYT-U5U6
	Lift Span Raised: T _f	= 0	kN			
	Lift Span Lowered: T _f	= 0	kN			
Cl. 10.5.7 (d)	tension: φ	s = 0.95				
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F$		kN	Gross Secti	on	

Tensile Capacity (Factored)

 $T_r/T_f = N/A$

 $T_r = 23,796 \text{ kN}$

Member ID: LIFT-HWYT-U5U6 Prepared By: Matthew Bowser

Member Location:Lift Span Highway TrussMember Description:DiagonalMember ID:LIFT-HWYT-LOU1S-Frame End Nodes:Node 27 to Node 34

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

C –		N 4 D -	
F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
$F_u =$	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200.000		
∟ _s −	200,000	IVIPd	
G _s =	77,000	MPa	
0	,		

Built Up Section Properties

Dant op Section 110p						
	T. Cover	B. Cover	Web	Web	Top Ls	Bot Ls
	Plate	Plate	Plates	Plates	4x4x3/4	8x6x3/4
Qty	1	1	4	2	2	2
y _{dim} (mm)	965	1,067	19.1	19.1	102	152
z _{dim} (mm)	25.4	25.4	762	457	102	203
I _{y1} (x10 ⁶ mm ⁴)	1	1	702	152	3.24	26.40
$I_{z1}(x10^{6}mm^{4})$	1,902	2,571	0	0	3.24	12.70
A _g (mm ²)	24,511	27,102	14,516	8,706	3,530	6,420
y _{bar} (mm)	0	0	351	379	402	409
z _{bar} (mm)	392	408	8	43	347	330
l _y (x10 ⁶ mm ⁴)	3,768	4,513	2,813	335	857	1,451
$I_{z}(x10^{6}mm^{4})$	1,902	2,571	7,155	2,502	1,147	2,173

 $A_{g} = 146,989 \text{ mm}^{2}$

I _y =	13,737 x10 ⁶ mm ⁴
l _z =	17,451 x10 ⁶ mm ⁴
r _y =	306 mm
r _z =	345 mm

Moment (demand) from original stress sheets:2034 kNm*Moment (demand) from S-Frame model:446 kNmDue to the small magnitude of this moment, the moment from
the continuity of the chord member has been neglected in the
assesment of member capacity

* The original stress sheets report relatively large moments for this member due to loads from portal bracing

	MMM GROUP
--	-----------

Compression Results

LIFT-HWYT-LOU1

Compression Resu	ults				LIFT-HWYT-LOU1
	L _y =	17,297 mm			
	L _z =	11,810 mm			
	K _y =	0.80			
	K_z =	1.00			
	h Web	762 mm			
	Web	57.1 mm			
	Flange b	663 mm			
	t	25.4 mm			
	n =	1.34			
	Lift Span Raised: C _f =	-5,719 kN			
	Lift Span Lowered: C _f =	-6,920 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	57	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lin	nits			
	Web h/w =	13	<	44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	26	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$(2^n)^{-1/n} = 27$	7,472 kN	Gove	rns
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$		3,936 kN		
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$	- 0.489			
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	= 0.370			
	C _r =	-27,472 kN	Co	mpressive Ca	pacity (Factored)
	$C_r / C_f =$	3.97	Ca	pacity over De	emand Ratio (C/D)
Tension Results					LIFT-HWYT-LOU1
	Lift Span Raised: T _f =	0 kN			
	Lift Span Lowered: T _f =	0 kN			

	Lift Span Raised: T _f =	0 kN		
	Lift Span Lowered: T _f =	0 kN		
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95		
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=1}$	32,117 kN	Gross Section	
	T _r =	32,117 kN	Tensile Capacity (Factored)	
	$T_r/T_f =$	N/A		

Member Location:Lift Span Highway TrussMember Description:DiagonalMember ID:LIFT-HWYT-U1L2S-Frame End Nodes:Node 34 to Node 29

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	T. Cover	B. Cover	Web		Top Ls	Bot Ls
	Plate	Plate	Plates		4x4x3/8	4x4x3/8
Qty	1	1	2		2	2
y _{dim} (mm)	559	559	25.4		102	102
z _{dim} (mm)	15.9	15.9	762		102	102
$I_{y1}(x10^{6}mm^{4})$	0	0	937		1.84	1.84
$I_{z1}(x10^{6}mm^{4})$	231	231	1		1.84	1.84
A _g (mm ²)	8,888	8,888	19,355		1,850	1,850
y _{bar} (mm)	0	0	297		255	255
z _{bar} (mm)	391	391	0		358	358
l _y (x10 ⁶ mm ⁴)	1,359	1,359	1,873	0	478	478
$I_{z}(x10^{6}mm^{4})$	231	231	3,417	0	244	244

 $A_{g} = 63,886 \text{ mm}^{2}$

I _y =	5,547 x10 ⁶ mm ⁴
I _z =	4,368 x10 ⁶ mm ⁴
r _y =	295 mm
r _z =	261 mm

Moment (demand) from original stress sheets:98 kNmMoment (demand) from S-Frame model:178 kNmDue to the small magnitude of this moment, the moment from
the continuity of the chord member has been neglected in the
assesment of member capacity

Compression Results

LIFT-HWYT-U1L2

Compression Resu	ults				LIFT-HWYT-U1L2
	L _y =	17,297 mm			
	$L_z =$	17,297 mm			
	K _y =	0.80			
	K _z =	1.00			
	h Web	558 mm			
	W	22.2 mm			
	Flange b	365 mm			
	t	9.5 mm 1.34			
	Lift Span Raised: C _f =	1.34 0 kN			
	Lift Span Lowered: C _f =	0 kN			
Cl. 10.5.7 (c)	Compression: $\varphi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	66	< <u> </u>	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lir	nits			
	Web h/w =	25	<	44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	38	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$(2^{2n})^{-1/n} = 11,$	823 kN		
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$	$(2^{2n})^{-1/n} = 10,$	258 kN	Gover	ns
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} = \lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}}} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}}$	= 0.507 = 0.714			
	C _r =	-10,258 kN	Compr	essive Cap	acity (Factored)
	$C_r / C_f =$	N/A	Capaci	ty over De	mand Ratio (C/D)
Tension Results					LIFT-HWYT-U1L2
	Lift Span Raised: T _f =	3,893 kN			
	Lift Span Lowered: T _f =	4,787 kN			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95			
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma =}$	13,959 kN	Gross S	Section	

T_r = 13,959 kN Tensile Capacity (Factored)

 $T_r/T_f = 2.92$ Capacity over Demand Ratio (C/D)

Member Location:Lift Span Highway TrussMember Description:DiagonalMember ID:LIFT-HWYT-L2U3S-Frame End Nodes:Node 29 to Node 35

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	. 230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plate	Plate	Plates	4x4x3/8	4x4x3/8
Qty	1	1	2	2	2
y _{dim} (mm)	559	559	19.1	102	102
z _{dim} (mm)	9.5	9.5	762	102	102
I _{y1} (x10 ⁶ mm ⁴)	0	0	702	1.84	1.84
$I_{z1}(x10^{6}mm^{4})$	138	138	0	1.84	1.84
A _g (mm ²)	5,311	5,311	14,516	1,850	1,850
y _{bar} (mm)	0	0	300	262	262
z _{bar} (mm)	391	391	0	358	358
l _y (x10 ⁶ mm ⁴)	812	812	1,405	478	478
$I_{z}(x10^{6}mm^{4})$	138	138	2,614	258	258

 $A_{g} = 47,053 \text{ mm}^{2}$

$I_y =$	3,984 x10 ⁶ mm ⁴
$I_z =$	3,406 x10 ⁶ mm ⁴
r _y =	291 mm
r _z =	269 mm

Moment (demand) from original stress sheets:88 kNmMoment (demand) from S-Frame model:158 kNmDue to the small magnitude of this moment, the moment from
the continuity of the chord member has been neglected in the
assesment of member capacity

Compression Resu	lts				LIFT-HWYT-L2U3
	L _y =	18,732 mm			
	L _z =	18,732 mm			
	K _y =	0.80			
	K _z =	1.00			
	Web h	558 mm			
	W	25.4 mm			
	Flange b	365 mm			
	t	9.5 mm 1.34			
	Lift Span Raised: $C_f =$	-2,936 kN			
	Lift Span Lowered: $C_f =$	-3,567 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
CI. 10.3.7 (C)	compression. ψ_s –	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	70	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lin	nits			
	Web h/w =	22	<	44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	38	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$		8,463 kN	l	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$	$^{2n})^{-1/n} =$	7,324 kN	Gove	erns
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$	= 0.556 = 0.752			
	C _r =	-7,324 kN	Co	mpressive Ca	pacity (Factored)
	$C_r / C_f =$				emand Ratio (C/D)
Tension Results					LIFT-HWYT-L2U3
	Lift Span Raised: T _f =	0 kN			
	Lift Span Lowered: T _f =	0 kN			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95			
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	10,281 kN	Gr	oss Section	
	57				

Tensile Capacity (Factored)

 $T_r = 10,281 \text{ kN}$

 $T_r/T_f = N/A$

Member Location:Lift Span Highway TrussMember Description:DiagonalMember ID:LIFT-HWYT-U3L4S-Frame End Nodes:Node 35 to Node 31

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	. 230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plate	Plate	Plates	4x4x3/8	4x4x3/8
Qty	1	1	2	2	2
y _{dim} (mm)	572	572	14.3	102	102
z _{dim} (mm)	9.5	9.5	660	102	102
$I_{y1}(x10^{6}mm^{4})$	0	0	343	1.84	1.84
$I_{z1}(x10^{6}mm^{4})$	148	148	0	1.84	1.84
A _g (mm ²)	5,434	5,434	9,438	1,850	1,850
y _{bar} (mm)	0	0	303	267	267
z _{bar} (mm)	342	342	0	308	308
l _y (x10 ⁶ mm ⁴)	636	636	685	355	355
$I_{z}(x10^{6}mm^{4})$	148	148	1,733	267	267

A _g =	37,144	mm ²
В	0,	

I _y =	2,666 x10 ⁶ mm ⁴
l _z =	2,565 x10 ⁶ mm ⁴
r _y =	268 mm
r _z =	263 mm

Moment (demand) from original stress sheets:69 kNmMoment (demand) from S-Frame model:134 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

LIFT-HWYT-U3<u>L</u>4

Compression Res	ults							LIFT-HWY
	l	L _y = 18,73	2.0 mm	ו				
	l	L _z = 18,7	732 mm	า				
	k	K _y = 0	0.80					
	k	K _z = 1	.00					
	Web		456 mm					
			.9.1 mm					
	Flange		368 mm					
			9.5 mm	1				
			34					
	Lift Span Raised: (•	0 kN					
	Lift Span Lowered: (-	0 kN					
Cl. 10.5.7 (c)	Compression: ϕ_s =	= 0	0.90					
Cl. 10.9.1.3	Slenderness Ratio	=	71	<	120)	Cl. 10.9.1.3 S	atisfied
Cl. 10.9.2.1	Width to Thicknes	s Limits						
	Web h/w		24	<	44	ļ	Cl. 10.9.2.1 S	-
	Flanges b/ ⁻	t =	39	<	44	ļ	Cl. 10.9.2.1 S	atisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y$ (1)			6,476 I	<n< td=""><td></td><td></td><td></td></n<>			
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1)$	$(1 + \lambda^{2n})^{-1/n}$	=	5,694 l	٨N	Governs		
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}L}}$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}L}}$	$\frac{1}{E_s} = 0.6$	504					
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 L}}$	$\frac{1}{E_s} = 0.7$	770					
	C	C _r = -5,6	594 kN	(Compress	ive Capacit	y (Factored)	
	C _r / C	C _f = ♪	N/A	(Capacity o	over Demar	nd Ratio (C/D)	
Tension Results								LIFT-HWY

Tension Results			LIFT-	HWYT-U3L4
	Lift Span Raised: T _f =	2,067 kN		
	Lift Span Lowered: T _f =	2,667 kN		
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95		
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	8,116 kN	Gross Section	
	T _r =	8,116 kN	Tensile Capacity (Factored)	
	$T_r/T_f =$	3.04	Capacity over Demand Ratio (C/D)	

Member Location:Lift Span Highway TrussMember Description:DiagonalMember ID:LIFT-HWYT-L4U5S-Frame End Nodes:Node 31 to Node 36

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	. 230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plate	Plate	Plates	4x4x3/8	4x4x3/8
Qty	1	1	2	2	2
y _{dim} (mm)	559	559	17.5	102	102
z _{dim} (mm)	9.5	9.5	660	102	102
$I_{y1}(x10^{6}mm^{4})$	0	0	419	1.84	1.84
$I_{z1}(x10^{6}mm^{4})$	138	138	0	1.84	1.84
A _g (mm ²)	5,311	5,311	11,550	1,850	1,850
y _{bar} (mm)	0	0	302	265	265
z _{bar} (mm)	342	342	0	308	308
l _y (x10 ⁶ mm ⁴)	621	621	839	355	355
$I_{z}(x10^{6}mm^{4})$	138	138	2,107	264	264

 $A_g = 41,121 \text{ mm}^2$

$I_y =$	2,790 x10 ⁶ mm ⁴
l _z =	2,911 x10 ⁶ mm ⁴
r _y =	260 mm
r _z =	266 mm

Moment (demand) from original stress sheets:77 kNmMoment (demand) from S-Frame model:149 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

Compression Resu					LIFT-HWYT-L4U5
	L _y =	19,219 mm			
	L _z =	19,219 mm			
	K _y =	0.80			
	K _z =	1.00			
	web h	456 mm			
	w	22.2 mm			
	Flange b	355 mm			
	t	9.5 mm			
	n =	1.34			
	Lift Span Raised: C _f =	-1,215 kN			
	Lift Span Lowered: C _f =	-1,506 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	74	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	its			
	Web h/w =	21	<	44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	37	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda^2)$	$(n)^{-1/n} =$	7,003 kN	I	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_v (1 + \lambda^2)$		6,248 kN		orne.
CI. 10.9.3.1	$C_{r(z)} - \psi_s A F_y (I + \Lambda)$) –	0,248 KIN	GOVE	2115
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	0.637			
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	0.780			
	C _r =	-6,248 kN	Co	ompressive Ca	pacity (Factored)
	$C_r / C_f =$	4.15	Ca	pacity over D	emand Ratio (C/D)
Tension Results					LIFT-HWYT-L4U5
	Lift Span Raised: T _f =	0 kN			
	Lift Span Lowered: T _f =	0 kN			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95			
			6		
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=}$	8,985 kN	Gr	oss Section	

T_r = 8,985 kN

 $T_r/T_f = N/A$

Tensile Capacity (Factored)

Member ID: LIFT-HWYT-L4U5 **Prepared By: Matthew Bowser**

Member Location:Lift Span Highway TrussMember Description:DiagonalMember ID:LIFT-HWYT-U5L6S-Frame End Nodes:Node 36 to Node 39

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	. 230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plate	Plate	Plates	4x4x3/8	4x4x3/8
Qty	1	1	2	2	2
y _{dim} (mm)	584	584	14.3	102	102
z _{dim} (mm)	9.5	9.5	610	102	102
I _{y1} (x10 ⁶ mm ⁴)	0	0	270	1.84	1.84
$I_{z1}(x10^{6}mm^{4})$	158	158	0	1.84	1.84
A _g (mm ²)	5,548	5,548	8,723	1,850	1,850
y _{bar} (mm)	0	0	303	267	267
z _{bar} (mm)	316	316	0	282	282
l _y (x10 ⁶ mm ⁴)	554	554	541	298	298
$I_{z}(x10^{6}mm^{4})$	158	158	1,602	267	267

 $A_{g} = 35,942 \text{ mm}^{2}$

I _y =	2,245 x10 ⁶ mm ⁴
l _z =	2,452 x10 ⁶ mm ⁴
r _y =	250 mm
r _z =	261 mm

Moment (demand) from original stress sheets:69 kNmMoment (demand) from S-Frame model:136 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

Compression Resu	ılts		•		LIFT-HWYT-U5L6
	L _y =	19,219 mm			
	$L_z =$	19,219 mm			
	K _y =	0.80			
	K _z =	1.00			
	h Web	406 mm			
	W	14.3 mm			
	Flange b	380 mm			
	t	9.5 mm			
	n =	1.34			
	Lift Span Raised: C _f =	0 kN			
	Lift Span Lowered: C _f =	0 kN			
Cl. 10.5.7 (c)	Compression: ϕ_s =	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	77	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	its			
	Web h/w =	28	<	44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	40	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda^2)$	$(2^n)^{-1/n} =$	6,001 kM	V	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda^2)$	$(n)^{-1/n} =$	5,392 kN	N Gove	erns
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	0.664			
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	0.794			
	C _r =	-5,392 kN	Co	ompressive Ca	pacity (Factored)
	$C_r / C_f =$	N/A	Ca	apacity over D	emand Ratio (C/D)
Tension Results					LIFT-HWYT-U5L6
	Lift Span Raised: T _f =	458 kN			
	Lift Span Lowered: T _f =	654 kN			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95			

 $T_r = \phi_s A_g F_{y=}$ 7,853 kN

 $T_r / T_f = 12.01$

 $T_r = 7,853 \text{ kN}$

Gross Section

Tensile Capacity (Factored)

Capacity over Demand Ratio (C/D)

Cl. 10.8.2 (a)

Member Location:Lift Span Highway TrussMember Description:VerticalMember ID:LIFT-HWYT-U0L0S-Frame End Nodes:Node 33 to Node 27

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
F _y =	350	MPa	Low Alloy Steel A242
F _u =	480	MPa	CAN/CSA-S16-09 PP6-5
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

Danit op occuon riop							
	Cover	Cover	Centre	Centre	Outer	Outer Ls	Inner Ls
	Plate	Plate	Web	Webs	Webs	4x4x3/4	5x5x3/4
Qty	1	1	1	2	2	4	4
y _{dim} (mm)	686	686	22.2	19.1	12.7	102	127
z _{dim} (mm)	12.7	12.7	584	330	584	102	127
I _{y1} (x10 ⁶ mm ⁴)	342	342	1	0	0	3.24	6.6
$I_{z1}(x10^{6}mm^{4})$	0	0	368	57	211	3.24	6.6
A _g (mm ²)	8,712	8,712	12,965	6,287	7,417	3,530	4,490
y _{bar} (mm)	304	304	0	0	0	264	258
z _{bar} (mm)	0	0	0	21	355	317	69
l _y (x10 ⁶ mm ⁴)	342	342	1	6	1,870	1,432	112
$I_{z}(x10^{6}mm^{4})$	805	805	368	114	422	997	1,222

 $A_{g} = 89,876 \text{ mm}^{2}$

$I_y =$	4,103 x10 ⁶ mm ⁴
l _z =	4,734 x10 ⁶ mm ⁴
r _y =	214 mm
r _z =	229 mm

Moment (demand) from original stress sheets:1024 kNm*Moment (demand) from S-Frame model:26 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

* The original stress sheets report relatively large moments for all vertical truss members due to loads from sway bracing

	MMM GROUP
--	-----------

Compression Results

LIFT-HWYT-U<u>OLO</u>

Compression Res	ults						LIFT-HW
		L _y =	13,259 r	nm			
		L _z =	13,259 r	nm			
	$K_y = 1.00$ $K_z = 1.00$						
	Web	h	380 r	nm			
	Web	w	12.7 r	nm			
	Flange	b	380 r				
		t	12.7 r	nm			
		n =	1.34				
	Lift Span Raise	•	0	<n< td=""><td></td><td></td><td></td></n<>			
	Lift Span Lowered	d: C _f =	-376 l	<n< td=""><td></td><td></td><td></td></n<>			
Cl. 10.5.7 (c)	Compression: o	ρ _s =	0.90				
Cl. 10.9.1.3	Slenderness Ra	tio =	62		<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickr	ness Lim	nits				
		n/w =	30		<	36	Cl. 10.9.2.1 Satisfied
	Flanges	b/t =	30		<	36	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s AF_y$, (1 + λ [·]	$(2^{n})^{-1/n} =$	19,93	8 kN	Gover	rns
Cl. 10.9.3.1	$C_{r(z)} = \phi_s AF_y$	$(1 + \lambda^2)$	$(2^{n})^{-1/n} =$	20,96	9 kN		
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{1}{r}}$	$\frac{F_y}{\tau^2 E_s} =$	0.826				
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{1}{r}}$	$\frac{F_y}{\tau^2 E_s} =$	0.769				
		C _r =	-19,938	<n< td=""><td>Com</td><td>pressive Cap</td><td>pacity (Factored)</td></n<>	Com	pressive Cap	pacity (Factored)
	C _r	/ C _f =	53.03		Сара	acity over De	emand Ratio (C/D)

Tension Results			LIFT-HWYT-UOLO
	Lift Span Raised: T _f =	5,158 kN	
	Lift Span Lowered: T _f =	0 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma} =$	29,884 kN	Gross Section
	T _r =	29,884 kN	Tensile Capacity (Factored)
	$T_r / T_f =$	5.79	Capacity over Demand Ratio (C/D)

Member Location:Lift Span Highway TrussMember Description:VerticalMember ID:LIFT-HWYT-U1L1S-Frame End Nodes:Node 34 to Node 28

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

Dant op Section 110	perties					
	Cover	Cover	Centre	Outer	Outer Ls	Inner Ls
	Plate	Plate	Web	Webs	4x4x1/2	5x5x5/8
Qty	1	1	1	2	4	4
y _{dim} (mm)	495	495	12.7	9.5	102	127
z _{dim} (mm)	12.7	12.7	584	584	102	127
$I_{y1}(x10^{6}mm^{4})$	128	128	0	0	2.34	5.7
$I_{z1}(x10^{6}mm^{4})$	0	0	211	158	2.34	5.7
A _g (mm ²)	6,287	6,287	7,417	5,548	2,430	3,790
y _{bar} (mm)	303	303	0	0	267	259
z _{bar} (mm)	0	0	0	263	227	44
$I_{y}(x10^{6}mm^{4})$	128	128	0	768	510	52
$I_{z}(x10^{6}mm^{4})$	577	577	211	315	702	1,040

 $A_{g} = 55,966 \text{ mm}^{2}$

$I_y =$	1,587 x10 ⁶ mm ⁴
l _z =	3,423 x10 ⁶ mm ⁴
r _y =	168 mm
r _z =	247 mm

Moment (demand) from original stress sheets:535 kNm*Moment (demand) from S-Frame model:56 kNmDue to the small magnitude of this moment, the moment from
the continuity of the chord member has been neglected in the
assesment of member capacity

* The original stress sheets report relatively large moments for all vertical truss members due to loads from sway bracing

Compression Resu	ılts				LIFT-HWYT-U1L1
	L _y =	14,521	mm		
	L _z =	9,566	mm		
	K _y =	1.00			
	K _z =	1.00			
	h Web	380			
	w		mm		
	Flange b	380			
	t	<u>9.5</u> 1.34	mm		
	Lift Span Raised: C _f =		kN		
	Lift Span Lowered: $C_f =$		kN		
			KIN		
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	86	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lir	nits			
	Web h/w =	40	<	44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	40	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1 Cl. 10.9.3.1	$C_{r(y)} = \phi_{s} A F_{y} (1 + \lambda)$ $C_{r(z)} = \phi_{s} A F_{y} (1 + \lambda)$ $\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2} E_{s}}} = KL \overline{E_{y}}$	$(2^{n})^{-1/n} =$ = 0.931	7,393 10,817		erns
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} = C_r = C_r / C_f =$	-7,393	kN		apacity (Factored) Jemand Ratio (C/D)
				. ,	
Tension Results					LIFT-HWYT-U1L1
	Lift Span Raised: T _f =	536	kN		
	Lift Span Lowered: T _f =	720	kN		
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95			
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma} =$	12,229	kN	Gross Section	

 $T_r = 12,229 \text{ kN}$ Tensile Capacity (Factored)

 $T_r / T_f = 16.98$ Capacity over Demand Ratio (C/D)

Member Location:Lift Span Highway TrussMember Description:VerticalMember ID:LIFT-HWYT-U2L2S-Frame End Nodes:Node 37 to Node 29

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

Dant op beetion i rop						
	Cover	Cover	Centre	Outer	Outer Ls	Inner Ls
	Plate	Plate	Web	Webs	4x4x3/8	5x5x1/2
Qty	1	1	1	2	4	4
y _{dim} (mm)	495	495	12.7	9.5	102	127
z _{dim} (mm)	9.5	9.5	584	584	102	127
$I_{y1}(x10^{6}mm^{4})$	96	96	0	0	1.84	4.7
$I_{z1}(x10^{6}mm^{4})$	0	0	211	158	1.84	4.7
A _g (mm ²)	4,703	4,703	7,417	5,548	1,850	3,060
y _{bar} (mm)	305	305	0	0	271	264
z _{bar} (mm)	0	0	0	263	228	42
$I_{y}(x10^{6}mm^{4})$	96	96	0	768	392	40
$I_{z}(x10^{6}mm^{4})$	437	437	211	315	551	872

 $A_{g} = 47,558 \text{ mm}^{2}$

I _y =	1,392 x10 ⁶ mm ⁴
l _z =	2,824 x10 ⁶ mm ⁴
r _y =	171 mm
r _z =	244 mm

Moment (demand) from original stress sheets:535 kNm*Moment (demand) from S-Frame model:75 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

* The original stress sheets report relatively large moments for all vertical truss members due to loads from sway bracing

LIFT-HWYT-U2L2

Compression Resu	ılts				LIFT-HWY
	L _y =	15,362 mn	n		
	$L_z =$	9,566 mn	n		
	K _y =	1.00			
	K _z =	1.00			
	Web h	380 mn			
	W	9.5 mn			
	Flange b	380 mn			
	<u>t</u>	9.5 mn	n		
	n = Lift Span Raised: C _f =	1.34			
		-218 kN			
	Lift Span Lowered: C _f =	-302 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	90	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	its			
	Web h/w =	40	<	44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	40	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda^2)$	$(2^{n})^{-1/n} =$	6,051 kN	Gove	erns
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda^2)$		9,168 kN		
	$\lambda_y = rac{KL}{r} \sqrt{rac{F_y}{\pi^2 E_s}} =$	0.969			
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	0.424			
	C _r =	-6,051 kN	Con	npressive Ca	pacity (Factored)
	$C_r / C_f =$	20.04	Сар	acity over D	emand Ratio (C/D)
Tension Results					LIFT-HWY
	Lift Span Raised: $T_f =$	0 kN			
	Lift Span Lowered: T _f =	0 kN			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95			
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=1}$	10,391 kN	Gro	ss Section	

YT-U2L2

Tension Results			
	Lift Span Raised: T _f =	0 kN	
	Lift Span Lowered: T _f =	0 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma} =$	10,391 kN	Gross Section
	T _r =	10,391 kN	Tensile Capacity (Factored)
	$T_r/T_f =$	N/A	

Member Location:Lift Span Highway TrussMember Description:VerticalMember ID:LIFT-HWYT-U3L3S-Frame End Nodes:Node 35 to Node 30

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

Dant op Section 110	perties					
	Cover	Cover	Centre	Outer	Outer Ls	Inner Ls
	Plate	Plate	Web	Webs	4x4x1/2	5x5x5/8
Qty	1	1	1	2	4	4
y _{dim} (mm)	495	495	12.7	9.5	102	127
z _{dim} (mm)	12.7	12.7	584	584	102	127
$I_{y1}(x10^{6}mm^{4})$	128	128	0	0	2.34	5.7
$I_{z1}(x10^{6}mm^{4})$	0	0	211	158	2.34	5.7
A _g (mm ²)	6,287	6,287	7,417	5,548	2,430	3,790
y _{bar} (mm)	303	303	0	0	267	259
z _{bar} (mm)	0	0	0	263	227	44
$I_{y}(x10^{6}mm^{4})$	128	128	0	768	510	52
$I_{z}(x10^{6}mm^{4})$	577	577	211	315	702	1,040

 $A_{g} = 55,966 \text{ mm}^{2}$

I _y =	1,587 x10 ⁶ mm ⁴
I _z =	3,423 x10 ⁶ mm ⁴
r _y =	168 mm
r _z =	247 mm

Moment (demand) from original stress sheets:535 kNm*Moment (demand) from S-Frame model:86 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

* The original stress sheets report relatively large moments for all vertical truss members due to loads from sway bracing

Compression Resu	ılts				LIFT-HWYT-U3L3
	L _y =	16,239 mm			
	L _z =	9,566 mm			
	K _y =	1.00			
	K _z =	1.00			
	h Web	380 mm			
	webw	9.5 mm			
	Flange b	380 mm			
	t	9.5 mm			
	n =	1.34			
	Lift Span Raised: C _f =	0 kN			
	Lift Span Lowered: C _f =	0 kN			
Cl. 10.5.7 (c)	Compression: $\varphi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	96	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	nits			
	Web h/w =	40	<	44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	40	<	44	Cl. 10.9.2.1 Satisfied
		2n _ 1/n			
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$,627 kN	Gove	erns
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda^2)$	$(2^{n})^{-1/n} = 10$,817 kN		
	KI F				
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	1.041			
	$\sqrt{n} L_s$				
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$				
	$\lambda_z = \frac{1}{r} \left \frac{y}{\pi^2 E_c} \right =$	0.418			
	$\sqrt{1-3}$				
	C -	C C 27 LN	Com		ve sity (Fe staved)
	C _r =	-6,627 kN		•	pacity (Factored)
	$C_r / C_f =$	N/A	Сара	acity over D	emand Ratio (C/D)
Tension Results					
rension Results	Lift Span Raised: T _f =	550 kN			LIFT-HWYT-U3L3
	,				
	Lift Span Lowered: T _f =	1,058 kN			
	toncion: m				

	Lift Span Lowered: T _f =	1,058 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=1}$	12,229 kN	Gross Section
	T _r =	12,229 kN	Tensile Capacity (Factored)
	$T_r / T_f =$	11.56	Capacity over Demand Ratio (C/D)

Member Location:Lift Span Highway TrussMember Description:VerticalMember ID:LIFT-HWYT-U4L4S-Frame End Nodes:Node 38 to Node 31

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

_	•		
F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

Dant op beetion i rop						
	Cover	Cover	Centre	Outer	Outer Ls	Inner Ls
	Plate	Plate	Web	Webs	4x4x3/8	5x5x1/2
Qty	1	1	1	2	4	4
y _{dim} (mm)	495	495	12.7	9.5	102	127
z _{dim} (mm)	9.5	9.5	584	584	102	127
$I_{y1}(x10^{6}mm^{4})$	96	96	0	0	1.84	4.7
$I_{z1}(x10^{6}mm^{4})$	0	0	211	158	1.84	4.7
A _g (mm ²)	4,703	4,703	7,417	5,548	1,850	3,060
y _{bar} (mm)	305	305	0	0	271	264
z _{bar} (mm)	0	0	0	263	228	42
$I_{y}(x10^{6}mm^{4})$	96	96	0	768	392	40
$I_{z}(x10^{6}mm^{4})$	437	437	211	315	551	872

 $A_{g} = 47,558 \text{ mm}^{2}$

I _y =	1,392 x10 ⁶ mm ⁴
l _z =	2,824 x10 ⁶ mm ⁴
r _y =	171 mm
r _z =	244 mm

Moment (demand) from original stress sheets:535 kNm*Moment (demand) from S-Frame model:90 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

* The original stress sheets report relatively large moments for all vertical truss members due to loads from sway bracing

Compression Res	ults			LIFT-HWYT-U4L4
	L _y =	16,484 mm		
	L _z =	9,566 mm		
	K _y =	1.00		
	K _z =	1.00		
	Web	380 mm		
	w	9.5 mm		
	Flange	380 mm		
	t	9.5 mm 1.34		
	Lift Span Raised: $C_f =$	-222 kN		
	Lift Span Lowered: $C_f =$			
		-195 kN		
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90		
Cl. 10.9.1.3	Slenderness Ratio =	96	< 120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	its		
••• ••••	Web h/w =	40	< 44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	40	< 44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda^2)$	²ⁿ) ^{-1/n} – Eu	537 kN Ga	overns
				iverns
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda^2)$) ' = 9,2	168 kN	
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$			
	$\lambda_z = rac{KL}{r} \sqrt{rac{F_y}{\pi^2 E_s}} =$	0.424		
	C _r =	-5,637 kN	Compressive	Capacity (Factored)
	$C_r / C_f =$		-	Demand Ratio (C/D)
Tension Results	Lift Coop Doing du T	0.1.1		LIFT-HWYT-U4L4
	Lift Span Raised: $T_f =$	0 kN		
	Lift Span Lowered: T _f =	89 kN		
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95		
Cl. 10.8.2 (a)	$T_{r} = \phi_{s}A_{g}F_{y} =$	10,391 kN	Gross Section	
	T _r =	10,391 kN	Tensile Capac	ity (Factored)

 $T_r / T_f = 116.76$

Member Location:Lift Span Highway TrussMember Description:VerticalMember ID:LIFT-HWYT-U5L5S-Frame End Nodes:Node 36 to Node 32

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

Dant op Section 110p						
	Cover	Cover	Centre	Outer	Outer Ls	Inner Ls
	Plate	Plate	Web	Webs	4x4x1/2	5x5x5/8
Qty	1	1	1	2	4	4
y _{dim} (mm)	495	495	12.7	9.5	102	127
z _{dim} (mm)	12.7	12.7	584	584	102	127
$I_{y1}(x10^{6}mm^{4})$	128	128	0	0	2.34	5.7
$I_{z1}(x10^{6}mm^{4})$	0	0	211	158	2.34	5.7
A _g (mm ²)	6,287	6,287	7,417	5,548	2,430	3,790
y _{bar} (mm)	303	303	0	0	267	259
z _{bar} (mm)	0	0	0	263	227	44
$I_{y}(x10^{6}mm^{4})$	128	128	0	768	510	52
$I_{z}(x10^{6}mm^{4})$	577	577	211	315	702	1,040

 $A_{g} = 55,966 \text{ mm}^{2}$

I _y =	1,587 x10 ⁶ mm ⁴
I _z =	3,423 x10 ⁶ mm ⁴
r _y =	168 mm
r _z =	247 mm

Moment (demand) from original stress sheets:535 kNm*Moment (demand) from S-Frame model:94 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

* The original stress sheets report relatively large moments for all vertical truss members due to loads from sway bracing

LIFT-HWYT-U5<u>L5</u>

Compression Res	ults					LIFT-HWYT-U5L5
		L _y =	16,764 mm			
		$L_z =$	9,566 mm			
		K _y =	1.00			
		K _z =	1.00			
	Web	h	380 mm			
		w	9.5 mm			
	Flange	b	380 mm			
		n =	9.5 mm 1.34			
	Lift Span Rai		1.54 0 kN			
	Lift Span Lowe					
	-		0 kN			
Cl. 10.5.7 (c)	Compressior	n: φ _s =	0.90			
Cl. 10.9.1.3	Slenderness	Ratio =	100	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thi	ckness Lim	its			
	Web	h/w =	40	<	44	Cl. 10.9.2.1 Satisfied
	Flanges	b/t =	40	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s$	$\Delta F (1 + \lambda^2)$	$(2^{n})^{-1/n} = 6$	5,404 kN	l Gove	orne
	$C_{r(y)} = \phi_s r$ $C_{r(z)} = \phi_s r$					
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A$	$AF_{y}(I + \Lambda)$) = 10),817 kN		
	$\lambda_y = \frac{KL}{r}$ $\lambda_z = \frac{KL}{r}$	$\sqrt{\frac{F_y}{\pi^2 E_s}} =$	1.075			
	$\lambda_z = \frac{KL}{r}$	$\sqrt{\frac{F_y}{\pi^2 E_s}} =$	0.418			
		C _r =	-6,404 kN	Co	ompressive Ca	pacity (Factored)
		$C_r / C_f =$	N/A	Ca	pacity over D	emand Ratio (C/D)
Tension Results						LIFT-HWYT-U5L5
	Lift Span Ra	ised: T _f =	534 kN			
	Lift Span Lowe	ered: T _f =	906 kN			
Cl. 10.5.7 (d)	tens	ion: $\phi_{s=}$	0.95			
Cl. 10.8.2 (a)	T _r =	$= \phi_s A_g F_{y=}$	12,229 kN	Gr	oss Section	

 $T_r = 12,229 \text{ kN}$ Tensile Capacity (Factored)

 $T_r / T_f = 13.50$ Capacity over Demand Ratio (C/D)

Member Location:Lift Span Highway TrussMember Description:VerticalMember ID:LIFT-HWYT-U6L6S-Frame End Nodes:Node 52 to Node 39

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

Bant op Section 110						
	Cover	Cover	Centre	Outer	Outer Ls	Inner Ls
	Plate	Plate	Web	Webs	4x4x3/8	5x5x1/2
Qty	1	1	1	2	4	4
y _{dim} (mm)	495	495	12.7	9.5	102	127
z _{dim} (mm)	9.5	9.5	584	584	102	127
$I_{y1}(x10^{6}mm^{4})$	96	96	0	0	1.84	4.7
$I_{z1}(x10^{6}mm^{4})$	0	0	211	158	1.84	4.7
A _g (mm ²)	4,703	4,703	7,417	5,548	1,850	3,060
y _{bar} (mm)	305	305	0	0	271	264
z _{bar} (mm)	0	0	0	263	228	42
$I_{y}(x10^{6}mm^{4})$	96	96	0	768	392	40
$I_z(x10^6 mm^4)$	437	437	211	315	551	872

 $A_{g} = 47,558 \text{ mm}^{2}$

I _y =	1,392 x10 ⁶ mm ⁴
l _z =	2,824 x10 ⁶ mm ⁴
r _y =	171 mm
r _z =	244 mm

Moment (demand) from original stress sheets:535 kNm*Moment (demand) from S-Frame model:94 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

* The original stress sheets report relatively large moments for all vertical truss members due to loads from sway bracing

Compression Results

LIFT-HWYT-U6L6

Compression Resu	ilts			LIFT-HWYT-U6L6
	L _y =	16,764 mm		
	$L_z =$	9,566 mm		
	K _y =	1.00		
	K _z =	1.00		
	Web h	380 mm		
	W	9.5 mm		
	Flange b t	380 mm 9.5 mm		
	n =	1.34		
	Lift Span Raised: C _f =	-228 kN		
	Lift Span Lowered: C _f =	-229 kN		
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90		
Cl. 10.9.1.3	Slenderness Ratio =	98	< 120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	its		
	Web h/w =	40	< 44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	40	< 44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda^2)$	$(n)^{-1/n} = 5$	537 kN Gove	prns
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_v (1 + \lambda^2)$		168 kN	
CI. 10.9.5.1	$c_{r(z)} = \phi_s Ar_y (1 r A)$) – 9,.	LOO KIN	
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$			
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	0.424		
	C _r =	-5,537 kN	Compressive Ca	pacity (Factored)
	$C_r / C_f =$	24.18	Capacity over D	emand Ratio (C/D)
Tauaian Daauka				
Tension Results	Lift Span Raised: T _f =	0 kN		LIFT-HWYT-U6L6
	Lift Span Lowered: T _f =	0 kN		
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95		
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=}$	10,391 kN	Gross Section	
	_			

 $T_r/T_f = N/A$

Member ID: LIFT-HWYT-U6L6 Prepared By: Matthew Bowser

APPENDIX E LIFT SPAN *RAILWAY* TRUSS CAPACITY SPREADSHEETS

Member Capacity Summary Lift Span - Railway Truss Raised Position

		Compression				Tension				
Member ID	C _r	C _f	C_r/C_f	Comments	C*	Tr	Τ _f	T _r /T _f	Comments	Т*
	kN	kN		Comments	kN	kN	kN		comments	kN
LIFT-RLYT-LOL2	-13,000	-1,962	6.63		N/A	15,100		N/A		6,249
LIFT-RLYT-L2L4	-25,698		N/A		N/A	29,895	1,484	20.1		13,033
LIFT-RLYT-L4L6	-30,864		N/A		N/A	36,172	2,942	12.3		15,986
LIFT-RLYT-U0U1	-10,517		N/A		N/A	11,455	3,747	3.06		N/A
LIFT-RLYT-U1U3	-20,874	-1,977	10.6		-10,230	22,730		N/A		N/A
LIFT-RLYT-U3U5	-36,612	-4,449	8.23		-15,101	41,025		N/A		N/A
LIFT-RLYT-U5U6	-39,425	-5,130	7.69		-16,400	44,398		N/A		N/A
LIFT-RLYT-LOU1	-39,025	-5,755	6.78		-11,298	48,874		N/A		N/A
LIFT-RLYT-U1L2	-13,411		N/A		N/A	20,484	3,974	5.15		8,100
LIFT-RLYT-L2U3	-11,538	-3,032	3.81		-6,298	18,863		N/A		N/A
LIFT-RLYT-U3L4	-8,694		N/A		N/A	14,435	2,136	6.76		5,137
LIFT-RLYT-L4U5	-7,228	-1,251	5.78		-3,692	10,341		N/A		342
LIFT-RLYT-U5L6	-5,392		N/A		-1,913	7,853	472	16.6		3,149
LIFT-RLYT-UOL0	-19,938		N/A		N/A	29,884	5,153	5.80		5,275
LIFT-RLYT-U1L1	-7,393		N/A		N/A	12,229	492	24.9		2,091
LIFT-RLYT-U2L2	-6,051	-261	23.2		-156	10,391		N/A		N/A
LIFT-RLYT-U3L3	-6,627		N/A		N/A	12,229	551	22.2		2,126
LIFT-RLYT-U4L4	-5,637	-263	21.4		-178	10,391		N/A		N/A
LIFT-RLYT-U5L5	-6,404		N/A		N/A	12,229	537	22.8		2,139
LIFT-RLYT-U6L6	-5,537	-269	20.6		-187	10,391		N/A		N/A

* Total load listed on the stress sheet from the original design drawings;

N/A indicates that the member is not listed in the stress sheets

Member Capacity Summary Lift Span - Railway Truss Closed Position

		Compression					Tens	ion		
Member ID	Cr	C _f	C_r/C_f	C _r /C _f Comments		Tr	T_{f}	T _r /T _f	Comments	Т*
	kN	kN		comments	kN	kN	kN		comments	kN
LIFT-RLYT-LOL2	-13,000		N/A		N/A	15,100	3,980	3.79		6,249
LIFT-RLYT-L2L4	-25,698		N/A		N/A	29,895	8,049	3.71		13,033
LIFT-RLYT-L4L6	-30,864		N/A		N/A	36,172	9,113	3.97		15,986
LIFT-RLYT-U0U1	-10,517	-449	23.4		N/A	11,455	1,139	10.1		N/A
LIFT-RLYT-U1U3	-20,874	-6,763	3.09		-10,230	22,730		N/A		N/A
LIFT-RLYT-U3U5	-36,612	-10,007	3.66		-15,101	41,025		N/A		N/A
LIFT-RLYT-U5U6	-39,425	-10,891	3.62		-16,400	44,398		N/A		N/A
LIFT-RLYT-LOU1	-39,025	-6,741	5.79		-11,298	48,874		N/A		N/A
LIFT-RLYT-U1L2	-13,411		N/A		N/A	20,484	4,872	4.20		8,100
LIFT-RLYT-L2U3	-11,538	-3,601	3.20		-6,298	18,863		N/A		N/A
LIFT-RLYT-U3L4	-8,694		N/A		N/A	14,435	2,649	5.45		5,137
LIFT-RLYT-L4U5	-7,228	-1,567	4.61		-3,692	10,341		N/A		342
LIFT-RLYT-U5L6	-5,392		N/A		-1,913	7,853	644	12.2		3,149
LIFT-RLYT-UOL0	-19,938	-406	49.1		N/A	29,884		N/A		5,275
LIFT-RLYT-U1L1	-7,393		N/A		N/A	12,229	690	17.7		2,091
LIFT-RLYT-U2L2	-6,051	-308	19.6		-156	10,391		N/A		N/A
LIFT-RLYT-U3L3	-6,627		N/A		N/A	12,229	782	15.6		2,126
LIFT-RLYT-U4L4	-5,637	-315	17.9		-178	10,391		N/A		N/A
LIFT-RLYT-U5L5	-6,404		N/A		N/A	12,229	775	15.8		2,139
LIFT-RLYT-U6L6	-5,537	-340	16.3		-187	10,391		N/A		N/A

* Total load listed on the stress sheet from the original design drawings;

N/A indicates that the member is not listed in the stress sheets

Member Location:Lift Span Railway TrussMember Description:Bottom ChordMember ID:LIFT-RLYT-LOL2S-Frame End Nodes:Node 1 to Node 3

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
F _y =	350	MPa	Low Alloy Steel A242
F _u =	480	MPa	CAN/CSA-S16-09 PP6-5
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plates	Plates	Plates	8x6x1/2	8x6x1/2
Qty	1	1	2	2	2
y _{dim} (mm)	584	584	11.1	152	152
z _{dim} (mm)	9.5	9.5	762	203	203
$I_{y1}(x10^{6}mm^{4})$	0	0	409	18.40	18.40
$I_{z1}(x10^{6}mm^{4})$	158	158	0	8.96	8.96
A _g (mm ²)	5,548	5,548	8,458	4,350	4,350
y _{bar} (mm)	0	0	306	263	263
z _{bar} (mm)	391	391	0	325	325
$I_{y}(x10^{6}mm^{4})$	848	848	819	956	956
$I_{z}(x10^{6}mm^{4})$	158	158	1,584	620	620

 $A_g = 45,412 \text{ mm}^2$

$I_y =$	4,426 x10 ⁶ mm ⁴
I _z =	3,139 x10 ⁶ mm ⁴
r _y =	312 mm
r _z =	263 mm

Moment (demand) from original stress sheets:33 kNmMoment (demand) from S-Frame model:112 kNmDue to the small magnitude of this moment, the moment from
the continuity of the chord member has been neglected in the
assesment of member capacity

	MMM GROUP
--	-----------

Compression Results

LIFT-RLYT-LOL2

Compression Res	ults				LIFT-RLYT-LOL2
	L _y =	9,398 mm			
	$L_z =$	9,398 mm			
	K _y =	1.00			
	K _z =	1.00			
	h Web	356 mm			
	W	11.1 mm			
	Flange b	280 mm			
	t	9.5 mm			
	n = Lift Span Raised: C _f =	1.34 -1,962 kN			
	Lift Span Lowered: C _f =	0 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	36	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	nits			
	Web h/w =	32	<	36	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	29	<	36	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$(2^{n})^{-1/n} = 13$,448 kN		
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$	$^{2n})^{-1/n} = 13$,000 kN	Gove	prns
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	0.401			
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	0.476			
	C _r =	-13,000 kN	Со	mpressive Ca	pacity (Factored)
	$C_r / C_f =$	6.63	Ca	pacity over D	emand Ratio (C/D)
Tension Results					LIFT-RLYT-LOL2
	Lift Span Raised: T _f =	0 kN			
	Lift Span Lowered: T _f =	3,980 kN			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95			

 $T_r = \phi_s A_g F_{y=}$ 15,100 kN

 $T_{r}/T_{f} = 3.79$

 $T_r = 15,100 \text{ kN}$

Gross Section

Tensile Capacity (Factored)

Member ID: LIFT-RLYT-LOL2 Prepared By: Matthew Bowser

Cl. 10.8.2 (a)

Member Location:Lift Span Railway TrussMember Description:Bottom ChordMember ID:LIFT-RLYT-L2L4S-Frame End Nodes:Node 3 to Node 5

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
$F_y =$	350	MPa	Low Alloy Steel A242
F _u =	480	MPa	CAN/CSA-S16-09 PP6-5
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	T. Cover	B. Cover	Web	Web	Top Ls	Bot Ls
	Plates	Plates	Plates	Plates	8x6x1/2	8x6x1/2
Qty	1	1	4	2	2	2
y _{dim} (mm)	533	533	17.5	12.7	152	152
z _{dim} (mm)	9.5	9.5	762	356	203	203
I _{y1} (x10 ⁶ mm ⁴)	0	0	645	48	18.40	18.40
$I_{z1}(x10^{6}mm^{4})$	120	120	0	0	8.96	8.96
A _g (mm ²)	5,064	5,064	13,335	4,521	4,350	4,350
y _{bar} (mm)	0	0	294	270	239	239
z _{bar} (mm)	391	391	0	0	325	325
$I_{y}(x10^{6}mm^{4})$	774	774	2,581	95	956	956
$I_{z}(x10^{6}mm^{4})$	120	120	4,612	659	515	515

 $A_g = 89,909 \text{ mm}^2$

I _y =	6,136 x10 ⁶ mm ⁴
I _z =	6,541 x10 ⁶ mm ⁴
r _y =	261 mm
r _z =	270 mm

Moment (demand) from original stress sheets:62 kNmMoment (demand) from S-Frame model:82 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

	MMM GROUP	
--	-----------	--

Compression Resu	ılts			LIFT-RLYT-L2L4
	L _y =	9,398 mm		
	L _z =	9,398 mm		
	K _y =	1.00		
	K _z =	1.00		
		356 mm		
	w	47.7 mm		
	Flange b	229 mm		
	t	9.5 mm		
	n =	1.34		
	Lift Span Raised: C _f =	0 kN		
	Lift Span Lowered: C _f =	0 kN		
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90		
Cl. 10.9.1.3	Slenderness Ratio =	36	< 120	Cl. 10.9.1.3 Satisfied
Cl. 10.5.1.5	Sienderness Ratio -	50	< 120	Cl. 10.9.1.9 Subspec
Cl. 10.9.2.1	Width to Thickness Lin	nits		
	Web h/w =	7	< 36	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	24	< 36	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$(2^{n})^{-1/n} = 25,6$	598 kN Goi	<i>lerns</i>
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_v (1 + \lambda)$		392 kN	
0.1 20101012	- 1 (2) + S y t	,,		
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}}$			
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 0.464		
	C _r =	-25,698 kN	Compressive C	Capacity (Factored)
	$C_r / C_f =$	N/A	Capacity over	Demand Ratio (C/D)
Tension Results				LIFT-RLYT-L2L4
	Lift Span Raised: T _f =	1,484 kN		
	Lift Span Lowered: T _f =	8,049 kN		
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95		
Cl. 10.8.2 (a)	$T_r = \varphi_s A_g F_{v}$	29,895 kN	Gross Section	
Ci. 10.0.2 (d)	'r ∀ s' 'g' y =	23,033 KW		

 $T_r = 29,895 \text{ kN}$

 $T_r / T_f = 3.71$

Tensile Capacity (Factored)

Capacity over Demand Ratio (C/D)

Member Location:Lift Span Railway TrussMember Description:Bottom ChordMember ID:LIFT-RLYT-L4L6S-Frame End Nodes:Node 5 to Node 13

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
$F_y =$	350	MPa	Low Alloy Steel A242
$F_u =$	480	MPa	CAN/CSA-S16-09 PP6-5
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	T. Cover	B. Cover	Web	Web	Web	Top Ls	Bot Ls
	Plates	Plates	Plates	Plates	Plates	8x6x1/2	8x6x1/2
Qty	1	1	4	2	2	2	2
y _{dim} (mm)	508	508	17.5	12.7	12.7	152	152
z _{dim} (mm)	9.5	9.5	762	762	356	203	203
I _{y1} (x10 ⁶ mm ⁴)	0	0	645	468	48	18.40	18.40
$I_{z1}(x10^{6}mm^{4})$	104	104	0	0	0	8.96	8.96
A _g (mm ²)	4,826	4,826	13,335	9,677	4,521	4,350	4,350
y _{bar} (mm)	0	0	294	270	257	226	226
z _{bar} (mm)	391	391	0	0	0	325	325
$I_y(x10^6 mm^4)$	738	738	2,581	937	95	956	956
$I_{z}(x10^{6}mm^{4})$	104	104	4,612	1,411	597	462	462

 $A_g = 108,789 \text{ mm}^2$

I _y =	7,000 x10 ⁶ mm ⁴
I _z =	7,753 x10 ⁶ mm ⁴
r _y =	254 mm
r _z =	267 mm

Moment (demand) from original stress sheets:76 kNmMoment (demand) from S-Frame model:115 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

	MMM GROUP	
--	-----------	--

			apacifics		
Compression Res	ults			LIFT-RLYT-L	.4L6
	L _y =	9,398 mm			
	L _z =	9,398 mm			
	K _y =	1.00			
	K _z =	1.00			
	Web h	356 mm			
	W	60.4 mm			
	Flange b t	229 mm 9.5 mm			
	n =	1.34			
	Lift Span Raised: C _f =	0 kN			
	Lift Span Lowered: C _f =	0 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	37	< 120	Cl. 10.9.1.3 Satisfied	
Cl. 10.9.2.1	Width to Thickness Lim	its			
	Web h/w =	6	< 36	Cl. 10.9.2.1 Satisfied	
	Flanges b/t =	24	< 36	Cl. 10.9.2.1 Satisfied	
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda^2)$	$(2^n)^{-1/n} = 30,$	864 kN <i>Gov</i>	erns	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_v (1 + \lambda^2)$		255 kN		
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} = \lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} = C_{r} = C_{r} / C_{f} = C_{r} / C_{f}$	= 0.469 -30,864 kN		apacity (Factored) Demand Ratio (C/D)	
Tension Results		2.042.1.1		LIFT-RLYT-L	.4L6
	Lift Span Raised: T _c =	2 942 kN			

	Lift Span Raised: T _f =	2,942 kN	
	Lift Span Lowered: T _f =	9,113 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma} =$	36,172 kN	Gross Section
	T _r =	36,172 kN	Tensile Capacity (Factored)
	$T_r/T_f =$	3.97	Capacity over Demand Ratio (C/D)

Member Location:Lift Span Railway TrussMember Description:Top ChordMember ID:LIFT-RLYT-U0U1S-Frame End Nodes:Node 7 to Node 8

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plates	Plates	Plates	4x4x7/16	4x4x7/16
Qty	1	1	2	2	2
y _{dim} (mm)	965	965	12.7	102	102
z _{dim} (mm)	12.7	12.7	762	102	102
$I_{y1}(x10^{6}mm^{4})$	0	0	468	2.09	2.09
$I_{z1}(x10^{6}mm^{4})$	951	951	0	2.09	2.09
A _g (mm ²)	12,256	12,256	9,677	2,140	2,140
y _{bar} (mm)	0	0	336	372	372
z _{bar} (mm)	385	395	8	349	359
l _y (x10 ⁶ mm ⁴)	1,817	1,912	938	527	556
$I_{z}(x10^{6}mm^{4})$	951	951	2,185	596	596

 $A_{g} = 52,426 \text{ mm}^{2}$

I _y =	5,749 x10 ⁶ mm ⁴
I _z =	5,280 x10 ⁶ mm ⁴
r _y =	331 mm
r _z =	317 mm

Moment (demand) from original stress sheets:N/AMoment (demand) from S-Frame model:64 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

	MMM GROUP	
--	-----------	--

Compression Results

LIFT-RLYT-UOU1

Compression Resu	ılts						LIFT-RLYT-	-U0U1
		L _y =	9,482 r	nm				
		L _z =	7,087 r	nm				
		K _y =	1.00					
		K _z =	1.00					
	Web	h	571 r					
		w	12.7 r					
	Flange	b	660 r					
		t	12.7 r	nm				
		n =	1.34					
	Lift Span Rais	•	0					
	Lift Span Lower	-	-449	٨N				
Cl. 10.5.7 (c)	Compression:	$\phi_s =$	0.90					
Cl. 10.9.1.3	Slenderness F	Ratio =	29	<	120		Cl. 10.9.1.3 Satisfied	
Cl. 10.9.2.1	Width to Thic	kness Lim	nits					
	Web	h/w =	45	>	44		Cl. 10.9.2.1 NOT Satisfied	
	Flanges	b/t =	52	>	44		Cl. 10.9.2.1 NOT Satisfied	
Cl. 10.9.3.1 Cl. 10.9.3.1	$C_{r(y)} = \phi_s A$ $C_{r(z)} = \phi_s A$			10,517 10,677		Governs		
	$\lambda_y = \frac{KI}{r}$	$\frac{L}{\sqrt{\frac{F_y}{\pi^2 E_s}}}$	= 0.309 = 0.241					
	$\lambda_z = \frac{KI}{r}$	$\frac{E}{\sqrt{\frac{F_y}{\pi^2 E_s}}}$	= 0.241					
		C _r =	-10,517	٨N	Compressiv	ve Capacity	/ (Factored)	
	($C_r / C_f =$	23.42		Capacity ov	ver Deman	d Ratio (C/D)	
Tension Results							LIFT-RLYT-	-U0U1
	Lift Span Rais	ed: T _f =	3,747	٨N				
	Lift Span Lower	-	1,139					
Cl. 10.5.7 (d)		on: φ _{s=}	0.95					
Cl. 10.8.2 (a)		$\varphi_{s}A_{g}F_{y}$	11,455 k	< NI	Gross Secti	ion		
Ci. 10.0.2 (d)	'r [–]	Ψs' 'g' y =	11,4551	X1 ¥	JI USS SECL			

T_r = 11,455 kN Tensile Capacity (Factored)

 $T_r/T_f = 3.06$ Capacity over Demand Ratio (C/D)

Member Location:Lift Span Railway TrussMember Description:Top ChordMember ID:LIFT-RLYT-U1U3S-Frame End Nodes:Node 8 to Node 9

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	-				
	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plates	Plates	Plates	4x4x7/16	8x6x3/4
Qty	1	1	4	2	2
y _{dim} (mm)	965	1,067	12.7	102	152
z _{dim} (mm)	25.4	22.2	762	102	203
I _{y1} (x10 ⁶ mm ⁴)	1	1	468	2.09	26.4
$I_{z1}(x10^{6}mm^{4})$	1,902	2,247	0	2.09	12.7
A _g (mm ²)	24,511	23,687	9,677	2,140	6,420
y _{bar} (mm)	0	0	343	386	396
z _{bar} (mm)	392	402	8	349	330
$I_y(x10^6 mm^4)$	3,768	3,829	1,876	527	1,450
$I_{z}(x10^{6}mm^{4})$	1,902	2,247	4,555	641	2,035

 $A_g = 104,028 \text{ mm}^2$

I _y =	11,449 x10 ⁶ mm ⁴
l _z =	11,380 x10 ⁶ mm ⁴
r _y =	332 mm
r _z =	331 mm

Moment (demand) from original stress sheets:73 kNmMoment (demand) from S-Frame model:102 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

	MMM GROUP	
--	-----------	--

Compression Posults

LIFT-RLYT-U1U3

Compression Resu	ults				LIFT-RLYT-U1U3
	L _y =	9,436 mm			
	$L_z =$	9,436 mm			
	K _y =	1.00			
	K _z =	1.00			
	Web	571 mm			
	w	25.4 mm			
	Flange b	660 mm			
	t	22.2 mm			
	n = Lift Span Raised: C _f =	1.34 -1,977 kN			
	Lift Span Lowered: C _f =	-6,763 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	29	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	its			
	Web h/w =	22.48031	<	44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	30	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda^2)$	$(2^{n})^{-1/n} = 20$),879 kN		
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda^2)$),874 kN	Gove	rns
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$	0.307			
	C _r =	-20,874 kN	Compr	essive Ca	pacity (Factored)
	$C_r / C_f =$	3.09	•		emand Ratio (C/D)
Tension Results					LIFT-RLYT-U1U3
	Lift Span Raised: T _f =	0 kN			
	Lift Span Lowered: T _f =	0 kN			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95			
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=}$	22,730 kN	Gross	Section	

 $T_r = 22,730 \text{ kN}$

 $T_r/T_f = N/A$

Member Location:Lift Span Railway TrussMember Description:Top ChordMember ID:LIFT-RLYT-U3U5S-Frame End Nodes:Node 9 to Node 10

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
$F_y =$	350	MPa	Low Alloy Steel A242
$F_u =$	480	MPa	CAN/CSA-S16-09 PP6-5
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

•	•				
	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plates	Plates	Plates	4x4x7/16	8x6x3/4
Qty	1	1	4	2	2
y _{dim} (mm)	965	1,067	19.1	102	152
z _{dim} (mm)	25.4	22.2	762	102	203
$I_{y1}(x10^{6}mm^{4})$	1	1	702	2.09	26.4
$I_{z1}(x10^{6}mm^{4})$	1,902	2,247	0	2.09	12.7
A _g (mm ²)	24,511	23,687	14,516	2,140	6,420
y _{bar} (mm)	0	0	349	398	408
z _{bar} (mm)	392	402	8	349	326
$I_{y}(x10^{6}mm^{4})$	3,768	3,829	2,813	527	1,417
$I_{z}(x10^{6}mm^{4})$	1,902	2,247	7,074	682	2,162

 $A_g = 123,383 \text{ mm}^2$

I _y =	12,354 x10 ⁶ mm ⁴
l _z =	14,067 x10 ⁶ mm ⁴
r _y =	316 mm
r _z =	338 mm

Moment (demand) from original stress sheets:85 kNmMoment (demand) from S-Frame model:183 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

	MMM GROUP
--	-----------

Compression Results

LIFT-RLYT-U3U5

compression nes	uits						-
		L _y =	9,402	mm			
		L _z =	9,402	mm			
		K _y =	1.00				
		K _z =	1.00				
	Web	h	571	mm			
	Web	w	38.1	mm			
	Flange	b	660	mm			
		t	22.2	mm			
		n =	1.34				
	Lift Span Raise	d: C _f =	-4,449	kN			
	Lift Span Lowere	d: C _f =	-10,007	kN			
Cl. 10.5.7 (c)	Compression:	φ _s =	0.90				
Cl. 10.9.1.3	Slenderness Ra	tio =	30	<	120	Cl. 10.9.1.3 Satisfied	
Cl. 10.9.2.1	Width to Thick	ness Lir	nits				
			14.98688	<	36	Cl. 10.9.2.1 Satisfied	
		b/t =	30	<	36	Cl. 10.9.2.1 Satisfied	
Cl. 10.9.3.1	$C_{r(y)} = \phi_s AF$	$_{v}(1+\lambda$	$(2^{2n})^{-1/n} =$	36,612 kN	l Gove	rns	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s AF$, _y (1 + λ	$(2^{2n})^{-1/n} =$	36,951 kN	I		
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{KL}{r}}$	$\frac{F_y}{\pi^2 E_s} = \frac{1}{F_y}$	= 0.396				

C _r =	-36,612 kN	Compressive Capacity (Factored)
$C_r / C_f =$	3.66	Capacity over Demand Ratio (C/D)

Tension Results

LIFT-RLYT-U3U5

	Lift Span Raised: T _f =	0 kN	
	Lift Span Lowered: T _f =	0 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=}$	41,025 kN	Gross Section
	T _r =	41,025 kN	Tensile Capacity (Factored)
	$T_r/T_f =$	N/A	

Member Location:Lift Span Railway TrussMember Description:Top ChordMember ID:LIFT-RLYT-U5U6S-Frame End Nodes:Node 10 to Node 26

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
$F_y =$	350	MPa	Low Alloy Steel A242
$F_u =$	480	MPa	CAN/CSA-S16-09 PP6-5
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	T. Cover	B. Cover	Web	Web	Top Ls	Bot Ls
	Plates	Plates	Plates	Plates	4x4x7/16	8x6x3/4
Qty	1	1	4	2	2	2
y _{dim} (mm)	965	1,067	19.1	11.1	102	152
z _{dim} (mm)	25.4	22.2	762	457	102	203
$I_{y1}(x10^{6}mm^{4})$	1	1	702	88	2.09	26.4
$I_{z1}(x10^{6}mm^{4})$	1,902	2,247	0	0	2.09	12.7
A _g (mm ²)	24,511	23,687	14,516	5,073	2,140	6,420
y _{bar} (mm)	0	0	349	374	398	408
z _{bar} (mm)	392	402	8	42	349	326
$I_{y}(x10^{6}mm^{4})$	3,768	3,829	2,813	194	527	1,417
$I_{z}(x10^{6}mm^{4})$	1,902	2,247	7,074	1,419	682	2,163

 $A_g = 133,528 \text{ mm}^2$

I _y =	12,549 x10 ⁶ mm ⁴
I _z =	15,488 x10 ⁶ mm ⁴
r _y =	307 mm
r _z =	341 mm

Moment (demand) from original stress sheets:95 kNmMoment (demand) from S-Frame model:201 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

	MMM GROUP
--	-----------

Compression Results

LIFT-RLYT-U5U6

Compression Resu	ults				LIFT-RLYT-U5U6
	L _y =	9,398 mm			
	$L_z =$	9,398 mm			
	K _y =	1.00			
	K _z =	1.00			
	h Web	571 mm			
	w	49.0 mm			
	Flange b	660 mm			
	t	22.2 mm			
	n =	1.34			
	Lift Span Raised: C _f =	-5,130 kN			
	Lift Span Lowered: C _f =	-10,891 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	31	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lin	nits			
	Web h/w =	12	<	36	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	30	<	36	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$,425 kN	Gove	erns
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$	$(2^{n})^{-1/n} = 40$,036 kN		
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$	= 0.408			
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	= 0.367			
	C _r =	-39,425 kN	Com	npressive Ca	pacity (Factored)
	$C_r / C_f =$	3.62	Сар	acity over D	emand Ratio (C/D)
Tension Results					LIFT-RLYT-U5U6
	Lift Span Raised: T _f =	0 kN			
	Lift Span Lowered: T _f =	0 kN			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95			

 $T_r = \phi_s A_g F_{\gamma} = 44,398 \text{ kN}$

 $T_r/T_f = N/A$

 $T_r = 44,398 \text{ kN}$

Gross Section

Cl. 10.8.2 (a)

Member Location:Lift Span Railway TrussMember Description:DiagonalMember ID:LIFT-RLYT-LOU1S-Frame End Nodes:Node 1 to Node 8

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) *y* always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
F _y =	350	MPa	Low Alloy Steel A242
F _u =	480	MPa	(CAN/CSA-S16-09 PP6-5)
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	T. Cover	B. Cover	Web	Web	Top Ls	Bot Ls
	Plate	Plate	Plates	Plates	4x4x3/4	8x6x3/4
Qty	1	1	4	2	2	2
y _{dim} (mm)	965	1,067	19.1	19.1	102	152
z _{dim} (mm)	25.4	25.4	762	457	102	203
$I_{y1}(x10^{6}mm^{4})$	1	1	702	152	3.24	26.40
$I_{z1}(x10^{6}mm^{4})$	1,902	2,571	0	0	3.24	12.70
A _g (mm ²)	24,511	27,102	14,516	8,706	3,530	6,420
y _{bar} (mm)	0	0	351	379	402	409
z _{bar} (mm)	392	408	8	43	347	330
$I_{y}(x10^{6}mm^{4})$	3,768	4,513	2,813	335	857	1,451
$I_{z}(x10^{6}mm^{4})$	1,902	2,571	7,155	2,502	1,147	2,173

 $A_g = 146,989 \text{ mm}^2$

I _y =	13,737 x10 ⁶ mm ⁴
۱ _z =	17,451 x10 ⁶ mm ⁴
r _y =	306 mm
r _z =	345 mm

Moment (demand) from original stress sheets:152 kNmMoment (demand) from S-Frame model:446 kNmDue to the small magnitude of this moment, the moment from
the continuity of the chord member has been neglected in the
assesment of member capacity

	MMM GROUP
--	-----------

LIFT-RLYT-LOU1

			Capacitics		
Compression Resu	ults				LIFT-R
	L _y =	17,297 mm			
	$L_z =$	11,810 mm			
	K _y =	0.80			
	K _z =	1.00			
	h Web	n 762 mm			
	w				
	b Flange				
	t				
	n =	1.34			
	Lift Span Raised: C _f =				
	Lift Span Lowered: C _f =	-6,741 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	57	< 120	Cl. 10	9.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Li	imits			
	Web h/w =	13	< 36		9.9.2.1 Satisfied
	Flanges b/t =	26	< 36	Cl. 10	.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + x)$	$\lambda^{2n})^{-1/n} = 39$	9,025 kN	Governs	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + z)$	$\lambda^{2n})^{-1/n} = 42$	2,484 kN		
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 0.603			
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 0.456			
	C _r =	-39,025 kN	Compressi	ive Capacity (Fact	ored)
	$C_r / C_f =$	5.79	Capacity o	ver Demand Ratio	o (C/D)
man and a second second					
Tension Results					LIFT-R

Tension Results				LIFT-RLYT-LOU1
	Lift Span Raised: T _f =	0 kN		
	Lift Span Lowered: T _f =	0 kN		
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95		
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=}$	48,874 kN	Gross Section	
	T _r =	48,874 kN	Tensile Capacity (Factored)	
	$T_r/T_f =$	N/A		

Member Location:Lift Span Railway TrussMember Description:DiagonalMember ID:LIFT-RLYT-U1L2S-Frame End Nodes:Node 8 to Node 3

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

 -			
$F_y =$	350	MPa	Low Alloy Steel A242
$F_u =$	480	MPa	CAN/CSA-S16-09 PP6-5
$E_s =$	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	T. Cover	B. Cover	Web	Web	Top Ls	Bot Ls
	Plate	Plate	Plates	Plates	4x4x3/8	4x4x3/8
Qty	1	1	2	2	2	2
y _{dim} (mm)	559	559	15.9	12.7	102	102
z _{dim} (mm)	9.5	9.5	762	762	102	102
$I_{y1}(x10^{6}mm^{4})$	0	0	586	468	1.84	1.84
$I_{z1}(x10^{6}mm^{4})$	138	138	0	0	1.84	1.84
A _g (mm ²)	5,311	5,311	12,116	9,677	1,850	1,850
y _{bar} (mm)	0	0	289	303	252	252
z _{bar} (mm)	391	391	0	0	358	358
$I_{y}(x10^{6}mm^{4})$	812	812	1,172	937	478	478
$I_z(x10^6 mm^4)$	138	138	2,024	1,777	239	239

 $A_g = 61,607 \text{ mm}^2$

I _y =	4,689 x10 ⁶ mm ⁴
I _z =	4,555 x10 ⁶ mm ⁴
r _y =	276 mm
r _z =	272 mm

Moment (demand) from original stress sheets:106 kNmMoment (demand) from S-Frame model:173 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

		IVIEITIDEI	Capacitio	-5	
Compression Resu	ults				LIFT-RLYT-U1L2
	L _y =	17,297 mm			
	L _z =	17,297 mm			
	K _y =	0.80			
	K _z =	1.00			
	Web	558 mm			
	w	22.2 mm			
	Flange b	365 mm			
	t	9.5 mm			
	n =	1.34			
	Lift Span Raised: C _f =	0 kN			
	Lift Span Lowered: C _f =	0 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	64	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	nits			
	Web h/w =	25	<	36	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	38	>	36	Cl. 10.9.2.1 NOT Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$(2^{n})^{-1/n} = 15$	5,607 kN		
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$	$(2^{n})^{-1/n} = 13$	8,411 kN	Gove	erns
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$	= 0.668 = 0.847			
			Co	marassiva Ca	pacity (Factored)
		-13,411 kN		•	
	$C_r / C_f =$	N/A	Cap	bacity over D	emand Ratio (C/D)
Tension Results					LIFT-RLYT-U1L2
	Lift Span Raised: T _f =	3,974 kN			
	Lift Span Lowered: T _f =	4,872 kN			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95			

 $T_r = \phi_s A_g F_{y=1}$ 20,484 kN **Gross Section**

T_r =

20,484 kN Tensile Capacity (Factored)

 $T_{r}/T_{f} = 4.20$ Capacity over Demand Ratio (C/D)

Cl. 10.8.2 (a)

Member Location:Lift Span Railway TrussMember Description:DiagonalMember ID:LIFT-RLYT-L2U3S-Frame End Nodes:Node 3 to Node 9

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

•		
350	MPa	Low Alloy Steel A242
480	MPa	CAN/CSA-S16-09 PP6-5
200,000	MPa	
77,000	MPa	
	480 200,000	480 MPa 200,000 MPa

Built Up Section Properties

	-					
	T. Cover	B. Cover	Web		Top Ls	Bot Ls
	Plate	Plate	Plates		4x4x3/8	4x4x3/8
Qty	1	1	4		2	2
y _{dim} (mm)	559	559	12.7		102	102
z _{dim} (mm)	9.5	9.5	762		102	102
I _{y1} (x10 ⁶ mm ⁴)	0	0	468		1.84	1.84
$I_{z1}(x10^{6}mm^{4})$	138	138	0		1.84	1.84
A _g (mm ²)	5,311	5,311	9,677		1,850	1,850
y _{bar} (mm)	0	0	297		255	255
z _{bar} (mm)	391	391	0		358	358
$I_{y}(x10^{6}mm^{4})$	812	812	1,873	0	478	478
$I_{z}(x10^{6}mm^{4})$	138	138	3,415	0	244	244

 $A_g = 56,731 \text{ mm}^2$

I _y =	4,453 x10 ⁶ mm ⁴
l _z =	4,180 x10 ⁶ mm ⁴
r _y =	280 mm
r _z =	271 mm

Moment (demand) from original stress sheets:106 kNmMoment (demand) from S-Frame model:181 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

	MMM GROUP
--	-----------

Compression Resu	llts			LIFT-RLYT-L2U3
	L _y =	18,732 mm		
	L _z =	18,732 mm		
	K _y =	0.80		
	K _z =	1.00		
	Web h	558 mm		
	w	25.4 mm 365 mm		
	Flange t	9.5 mm		
	n =	1.34		
	Lift Span Raised: C _f =	-3,032 kN		
	Lift Span Lowered: C _f =	-3,601 kN		
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90		
Cl. 10.9.1.3	Slenderness Ratio =	69	< 120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	iits		
	Web h/w =	22	< 36	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	38	> 36	Cl. 10.9.2.1 NOT Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda^2)$	$(2^{n})^{-1/n} = 13,8$	81 kN	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_v (1 + \lambda^2)$	$(2^n)^{-1/n} = 11,5$	38 kN Gove	erns
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$ $\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	0.712		
	C _r =	-11,538 kN	Compressive Ca	apacity (Factored)
	$C_r / C_f =$	3.20	Capacity over D	emand Ratio (C/D)
Tension Results				LIFT-RLYT-L2U3
	Lift Span Raised: T _f =	0 kN		
	Lift Span Lowered: T _f =	0 kN		
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95		
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=1}$	18,863 kN	Gross Section	
	T _r =	18,863 kN	Tensile Capacity	y (Factored)

 $T_r/T_f = N/A$

Member Location:Lift Span Railway TrussMember Description:DiagonalMember ID:LIFT-RLYT-U3L4S-Frame End Nodes:Node 9 to Node 5

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

•		
350	MPa	Low Alloy Steel A242
480	MPa	CAN/CSA-S16-09 PP6-5
200,000	MPa	
77,000	MPa	
	480 200,000	480 MPa 200,000 MPa

Built Up Section Properties

· · · · · · · · · · · · · · · · · · ·	-					
	T. Cover	B. Cover	Web		Top Ls	Bot Ls
	Plate	Plate	Plates	2	4x4x3/8	4x4x3/8
Qty	1	1	2		2	2
y _{dim} (mm)	572	572	19.1		102	102
z _{dim} (mm)	9.5	9.5	660		102	102
$I_{y1}(x10^{6}mm^{4})$	0	0	456		1.84	1.84
$I_{z1}(x10^{6}mm^{4})$	148	148	0		1.84	1.84
A _g (mm ²)	5,434	5,434	12,573		1,850	1,850
y _{bar} (mm)	0	0	301		262	262
z _{bar} (mm)	342	342	0		308	308
$I_{y}(x10^{6}mm^{4})$	636	636	913		355	355
$I_{z}(x10^{6}mm^{4})$	148	148	2,279		258	258

 $A_{g} = 43,414 \text{ mm}^{2}$

I _y =	2,893 x10 ⁶ mm ⁴
I _z =	3,091 x10 ⁶ mm ⁴
r _y =	258 mm
r _z =	267 mm

Moment (demand) from original stress sheets:81 kNmMoment (demand) from S-Frame model:149 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

Compression Resu	ults				LIFT-RLYT-U3L4
	L _y =	18,732.0 mm			
	L _z =	18,732 mm			
	K _y =	0.80			
	K _z =	1.00			
	Web	456 mm			
	w	<u>19.1</u> mm			
	Flange b	368 mm			
	t	9.5 mm 1.34			
	Lift Span Raised: C _f =	0 kN			
	Lift Span Lowered: $C_f =$	0 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	73	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lin	nits			
	Web h/w =	24	<	36	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	39	>	36	Cl. 10.9.2.1 NOT Satisfied
Cl. 10.9.3.1 Cl. 10.9.3.1	$C_{r(y)} = \phi_{s} A F_{y} (1 + \lambda)$ $C_{r(z)} = \phi_{s} A F_{y} (1 + \lambda)$ $\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2} E_{s}}} =$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2} E_{s}}} =$	²ⁿ) ^{-1/n} = 8,6 = 0.773	997 kN 594 kN	Gove	rns
	C _r =	-8,694 kN	Co	mpressive Ca	pacity (Factored)
	$C_r / C_f =$	N/A	Ca	bacity over D	emand Ratio (C/D)
Tension Results					LIFT-RLYT-U3L4
	Lift Span Raised: T _f =	2,136 kN			
	Lift Span Lowered: $T_f =$	2,649 kN			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95			
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=}$	14,435 kN	Gro	oss Section	
	T _r =	14,435 kN	Ter	nsile Capacity	(Factored)

 $T_{r}/T_{f} = 5.45$ Capacity over Demand Ratio (C/D)

Member Location:Lift Span Railway TrussMember Description:DiagonalMember ID:LIFT-RLYT-L4U5S-Frame End Nodes:Node 5 to Node 10

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

•		
230	MPa	CSA S6-06 Cl. 14.7.4.2
420	MPa	CSA S6-06 Cl. 14.7.4.2
200,000	MPa	
77,000	MPa	
	420 200,000	420 MPa 200,000 MPa

Built Up Section Properties

· · · •	-				
	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plate	Plate	Plates	4x4x3/8	4x4x3/8
Qty	1	1	2	2	2
y _{dim} (mm)	559	559	22.2	102	102
z _{dim} (mm)	9.5	9.5	660	102	102
$I_{y1}(x10^{6}mm^{4})$	0	0	532	1.84	1.84
$I_{z1}(x10^{6}mm^{4})$	138	138	1	1.84	1.84
A _g (mm ²)	5,311	5,311	14,652	1,850	1,850
y _{bar} (mm)	0	0	299	259	259
z _{bar} (mm)	342	342	0	308	308
l _y (x10 ⁶ mm ⁴)	621	621	1,064	355	355
$I_{z}(x10^{6}mm^{4})$	138	138	2,621	252	252

 $A_{g} = 47,325 \text{ mm}^{2}$

I _y =	3,015 x10 ⁶ mm ⁴
I _z =	3,401 x10 ⁶ mm ⁴
r _y =	252 mm
r _z =	268 mm

Moment (demand) from original stress sheets:91 kNmMoment (demand) from S-Frame model:164 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

		WICHINC	Capaciti	C3	
Compression Res	ults				LIFT-RLYT-L4U5
	L _y =	19,219 mm			
	$L_z =$	19,219 mm			
	K _y =	0.80			
	K _z =	1.00			
	h Web	456 mm			
	w	22.2 mm			
	Flange b	355 mm			
	t	9.5 mm			
	n =	1.34			
	Lift Span Raised: C _f =	-1,251 kN			
	Lift Span Lowered: C _f =	-1,567 kN			
Cl. 10.5.7 (c)	Compression: ϕ_s =	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	76	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lin				
	Web h/w =	21	<	44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	37	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s AF_y (1 + \lambda)$	$(2^{n})^{-1/n} =$	7,940 kN		
	$C_{r(y)} = \phi_s AF_y (1 + \lambda)$ $C_{r(z)} = \phi_s AF_y (1 + \lambda)$				
Cl. 10.9.3.1	$C_{r(z)} = \varphi_s A F_y (1 + \lambda)$) =	7,228 kN	Gove	rns
	$\lambda_y = rac{KL}{r} \sqrt{rac{F_y}{\pi^2 E_s}} =$ $\lambda_z = rac{KL}{r} \sqrt{rac{F_y}{\pi^2 E_s}} =$	= 0.657			
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	- 0.774			
	C _r =	-7,228 kN	Со	mpressive Ca	pacity (Factored)
	$C_r / C_f =$	4.61	Ca	pacity over D	emand Ratio (C/D)
Tension Results					LIFT-RLYT-L4U5
	Lift Span Raised: T _f =	0 kN			
	Lift Span Lowered: T _f =	0 kN			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95			

 $T_r = \phi_s A_g F_{y=}$ 10,341 kN

 $T_r / T_f = N / A$

 $T_r = 10,341 \text{ kN}$

Gross Section

Tensile Capacity (Factored)

Member ID: LIFT-RLYT-L4U5

Cl. 10.8.2 (a)

Prepared By: Matthew Bowser

Member Location:Lift Span Railway TrussMember Description:DiagonalMember ID:LIFT-RLYT-U5L6S-Frame End Nodes:Node 10 to Node 13

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

· · · •					
	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plate	Plate	Plates	4x4x3/8	4x4x3/8
Qty	1	1	2	2	2
y _{dim} (mm)	584	584	14.3	102	102
z _{dim} (mm)	9.5	9.5	610	102	102
$I_{y1}(x10^{6}mm^{4})$	0	0	270	1.84	1.84
$I_{z1}(x10^{6}mm^{4})$	158	158	0	1.84	1.84
A _g (mm ²)	5,548	5,548	8,723	1,850	1,850
y _{bar} (mm)	0	0	303	267	267
z _{bar} (mm)	316	316	0	282	282
$I_{y}(x10^{6}mm^{4})$	554	554	541	298	298
$I_{z}(x10^{6}mm^{4})$	158	158	1,602	267	267

 $A_g = 35,942 \text{ mm}^2$

I _y =	2,245 x10 ⁶ mm ⁴
I _z =	2,452 x10 ⁶ mm ⁴
r _y =	250 mm
r _z =	261 mm

Moment (demand) from original stress sheets:69 kNmMoment (demand) from S-Frame model:136 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

		wiembe	r Capaciti	es	
Compression Res	ults				LIFT-RLYT-U5L6
	L _y =	19,219 mm			
	$L_z =$	19,219 mm			
	K _y =	0.80			
	K _z =	1.00			
	Web	406 mm			
	Web	14.3 mm			
	b Flange	380 mm			
	t	9.5 mm			
	n =				
	Lift Span Raised: C _f =	0 kN			
	Lift Span Lowered: C _f =	0 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	77	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Li	mits			
	Web h/w =	28	<	44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	40	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s AF_y (1+x)$	$\lambda^{2n})^{-1/n} =$	6,001 kN		
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$	λ^{2n}) ^{-1/n} =	5,392 kN	Gove	rns
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}}$ $\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 0.664			
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 0.794			
	C _r =	-5,392 kN	Co	mpressive Ca	pacity (Factored)
	$C_r / C_f =$	N/A	Ca	pacity over D	emand Ratio (C/D)
Tension Results					LIFT-RLYT-U5L6
rension Results	Lift Span Raised: T _f =	472 kN			LIF I-RLI I-USLO
	•				
	Lift Span Lowered: T _f =	644 kN			

Cl. 10.5.7 (d)

Cl. 10.8.2 (a)

tension: $\phi_{s=}$

0.95

7,853 kN

Gross Section

Tensile Capacity (Factored)

Capacity over Demand Ratio (C/D)

 $T_r = \phi_s A_g F_{y=}$ 7,853 kN

T_r =

 $T_r / T_f = 12.19$

Member Location:Lift Span Railway TrussMember Description:VerticalMember ID:LIFT-RLYT-UOLOS-Frame End Nodes:Node 1 to Node 7

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
$F_y =$	350	MPa	Low Alloy Steel A242
$F_u =$	480	MPa	CAN/CSA-S16-09 PP6-5
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$I_{z1}(x10^6 \text{mm}^4)$ 0 0 368 57 211 3.24 6.6
2
Ag (mm ²) 8,712 12,965 6,287 7,417 3,530 4,490
y _{bar} (mm) 304 304 0 0 0 264 258
z _{bar} (mm) 0 0 0 21 355 317 69
$I_y(x10^6 \text{mm}^4)$ 342 342 1 6 1,870 1,432 112
Iz (x10 ⁶ mm ⁴) 805 805 368 114 422 997 1,222

 $A_{g} = 89,876 \text{ mm}^{2}$

$I_y =$	4,103 x10 ⁶ mm ⁴
l _z =	4,734 x10 ⁶ mm ⁴
r _y =	214 mm
r _z =	229 mm

Moment (demand) from original stress sheets:1024 kNm*Moment (demand) from S-Frame model:26 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

* The original stress sheets report relatively large moments for all vertical truss members due to loads from sway bracing

	MMM GROUP
--	-----------

Compression Results

LIFT-RLYT-UOLO

Compression Res	ults			LIFT-RLYT-UOLO
	L _y =	13,259 mm		
	$L_z =$	13,259 mm		
	K _y =	1.00		
	K _z =	1.00		
	h Web	380 mm		
	W	12.7 mm		
	Flange b	380 mm		
	t	12.7 mm		
	n =	1.34		
	Lift Span Raised: $C_f =$	0 kN		
	Lift Span Lowered: C _f =	-406 kN		
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90		
Cl. 10.9.1.3	Slenderness Ratio =	62	< 120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Li	mits		
	Web h/w =	30	< 36	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	30	< 36	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$(2^{n})^{-1/n} = 19,9$	938 kN Goi	verns
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$	$(2^{2n})^{-1/n} = 20,9$	969 kN	
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} = \lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 $	= 0.826 = 0.769		
	C _r =	-19,938 kN	Compressive C	Capacity (Factored)
	$C_r / C_f =$	49.11	Capacity over	Demand Ratio (C/D)
Tension Results				LIFT-RLYT-UOLO
	Lift Span Raised: T _f =	5,153 kN		
	Lift Span Lowered: T _f =	0 kN		
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95		
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=}$	29,884 kN	Gross Section	

T_r =

Member Location:Lift Span Railway TrussMember Description:VerticalMember ID:LIFT-RLYT-U1L1S-Frame End Nodes:Node 2 to Node 8

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

0.000					
Cover	Cover	Centre	Outer	Outer Ls	Inner Ls
Plate	Plate	Web	Webs	4x4x1/2	5x5x5/8
1	1	1	2	4	4
495	495	12.7	9.5	102	127
12.7	12.7	584	584	102	127
128	128	0	0	2.34	5.7
0	0	211	158	2.34	5.7
6,287	6,287	7,417	5,548	2,430	3,790
303	303	0	0	267	259
0	0	0	263	227	44
128	128	0	768	510	52
577	577	211	315	702	1,040
	Cover Plate 1 495 12.7 128 0 6,287 303 0 128	Cover Cover Plate Plate 1 1 495 495 12.7 12.7 128 128 0 0 6,287 6,287 303 303 0 0 128 128	Cover Plate Cover Plate Centre Web 1 1 1 495 495 12.7 12.7 12.7 584 128 128 0 0 0 211 6,287 6,287 7,417 303 303 0 0 0 0 128 128 0	Cover Plate Cover Plate Centre Web Outer Webs 1 1 2 495 495 12.7 9.5 12.7 12.7 584 584 128 128 0 0 0 0 211 158 6,287 6,287 7,417 5,548 303 303 0 0 128 128 0 0	Cover Centre Outer Outer Ls Plate Plate Web Webs 4x4x1/2 1 1 1 2 4 495 495 12.7 9.5 102 12.7 12.7 584 584 102 128 128 0 0 2.34 0 0 211 158 2.34 6,287 6,287 7,417 5,548 2,430 0 0 211 158 2,430 1 9 0 2.34 102 128 0 0 2,430 102 128 128 0 0 267 0 0 0 263 227 128 128 0 768 510

 $A_g = 55,966 \text{ mm}^2$

$I_y =$	1,587 x10 ⁶ mm ⁴
l _z =	3,423 x10 ⁶ mm ⁴
r _y =	168 mm
r _z =	247 mm

Moment (demand) from original stress sheets:648 kNm*Moment (demand) from S-Frame model:56 kNmDue to the small magnitude of this moment, the moment from
the continuity of the chord member has been neglected in the
assesment of member capacity

* The original stress sheets report relatively large moments for all vertical truss members due to loads from sway bracing

Compression Resu	ılts			LIFT-RLYT-U1L1
	L _y =	14,521 mm		
	L _z =	9,566 mm		
	K _y =	1.00		
	K _z =	1.00		
	Web h	380 mm		
	W	9.5 mm		
	Flange b	380 mm 9.5 mm		
	n =	1.34		
	Lift Span Raised: C _f =	0 kN		
	Lift Span Lowered: C _f =	0 kN		
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90		
Cl. 10.9.1.3	Slenderness Ratio =	86	< 120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	nits		
	Web h/w =	40	< 44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	40	< 44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$(2^{n})^{-1/n} = 7$	393 kN Gove	prns
Cl. 10.9.3.1	$C_{r(z)} = \phi_s AF_v (1 + \lambda^2)$		817 kN	
Ci. 10.5.5.1	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$ $\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	0.931 0.418 -7,393 kN	Compressive Ca	pacity (Factored) emand Ratio (C/D)
Tanalan Daa k				
Tension Results	Lift Span Raised: T	102 KN		LIFT-RLYT-U1L1

Tension Results			
	Lift Span Raised: T _f =	492 kN	
	Lift Span Lowered: T _f =	690 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma} =$	12,229 kN	Gross Section
	T _r =	12,229 kN	Tensile Capacity (Factored)
	$T_r / T_f =$	17.72	Capacity over Demand Ratio (C/D)

Member Location:Lift Span Railway TrussMember Description:VerticalMember ID:LIFT-RLYT-U2L2S-Frame End Nodes:Node 3 to Node 11

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	Cover	Cover	Centre	Outer	Outer Ls	Inner Ls
	Plate	Plate	Web	Webs	4x4x3/8	5x5x1/2
Qty	1	1	1	2	4	4
y _{dim} (mm)	495	495	12.7	9.5	102	127
z _{dim} (mm)	9.5	9.5	584	584	102	127
$I_{y1}(x10^{6}mm^{4})$	96	96	0	0	1.84	4.7
$I_{z1}(x10^{6}mm^{4})$	0	0	211	158	1.84	4.7
A _g (mm ²)	4,703	4,703	7,417	5,548	1,850	3,060
y _{bar} (mm)	305	305	0	0	271	264
z _{bar} (mm)	0	0	0	263	228	42
$I_{y}(x10^{6}mm^{4})$	96	96	0	768	392	40
$I_{z}(x10^{6}mm^{4})$	437	437	211	315	551	872

 $A_{g} = 47,558 \text{ mm}^{2}$

$I_y =$	1,392 x10 ⁶ mm ⁴
l _z =	2,824 x10 ⁶ mm ⁴
r _y =	171 mm
r _z =	244 mm

Moment (demand) from original stress sheets:648 kNm*Moment (demand) from S-Frame model:75 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

* The original stress sheets report relatively large moments for all vertical truss members due to loads from sway bracing

Compression Res	ults				LIFT-RLYT-U2L2
	L _y =	15,362 mm			
	L _z =	9,566 mm			
	K _y =	1.00			
	K _z =	1.00			
	Web h	380 mm			
	W	9.5 mm 380 mm			
	Flange t	9.5 mm			
	n =	1.34			
	Lift Span Raised: C _f =	-261 kN			
	Lift Span Lowered: C _f =	-308 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	90	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	iits			
	Web h/w =	40	<	44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	40	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda^2)$		6,051 kN	Gove	erns
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda^2)$	$(2^{n})^{-1/n} =$	9,168 kN		
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$	0.969			
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	0.424			
	C _r =	-6,051 kN	Со	mpressive Ca	pacity (Factored)
	$C_r / C_f =$	19.65	Ca	pacity over D	emand Ratio (C/D)
Tension Results					LIFT-RLYT-U2L2
rension Results	Lift Span Raised: T _f =	0 kN			LIFI-RLTI-U2L2
	Lift Span Lowered: $T_f =$	0 kN			
	tension: $\varphi_{s=}$				
Cl. 10.5.7 (d)		0.95	~		
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=1}$	10,391 kN	Gro	oss Section	

 $T_r = 10,391 \text{ kN}$

 $T_r/T_f = N/A$

Member ID: LIFT-RLYT-U2L2

Tensile Capacity (Factored)

Member Location:Lift Span Railway TrussMember Description:VerticalMember ID:LIFT-RLYT-U3L3S-Frame End Nodes:Node 4 to Node 9

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pant of occurring	0.000					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Cover	Cover	Centre	Outer	Outer Ls	Inner Ls
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Plate	Plate	Web	Webs	4x4x1/2	5x5x5/8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Qty	1	1	1	2	4	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	y _{dim} (mm)	495	495	12.7	9.5	102	127
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	z _{dim} (mm)	12.7	12.7	584	584	102	127
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{y1} (x10 ⁶ mm ⁴)	128	128	0	0	2.34	5.7
y_{bar} (mm)30330300267259 z_{bar} (mm)00026322744 I_y (x10 ⁶ mm ⁴)128128076851052	$I_{z1}(x10^{6}mm^{4})$	0	0	211	158	2.34	5.7
z_{bar} (mm)00026322744 I_y (x10 ⁶ mm ⁴)128128076851052	A _g (mm ²)	6,287	6,287	7,417	5,548	2,430	3,790
z_{bar} (mm)00026322744 I_y (x10 ⁶ mm ⁴)128128076851052							
l _y (x10 ⁶ mm ⁴) 128 128 0 768 510 52	y _{bar} (mm)	303	303	0	0	267	259
	z _{bar} (mm)	0	0	0	263	227	44
I _z (x10 ⁶ mm ⁴) 577 577 211 315 702 1,040	$I_{y}(x10^{6}mm^{4})$	128	128	0	768	510	52
	$I_{z}(x10^{6}mm^{4})$	577	577	211	315	702	1,040

 $A_g = 55,966 \text{ mm}^2$

$I_y =$	1,587 x10 ⁶ mm ⁴
l _z =	3,423 x10 ⁶ mm ⁴
r _y =	168 mm
r _z =	247 mm

Moment (demand) from original stress sheets:648 kNm*Moment (demand) from S-Frame model:86 kNmDue to the small magnitude of this moment, the moment from
the continuity of the chord member has been neglected in the
assesment of member capacity

* The original stress sheets report relatively large moments for all vertical truss members due to loads from sway bracing

LIFT-RLYT-U3L3

Compression Results

Compression Rest	lits			LIFT-RLYT-U3L3
	L _y =	16,239 mm		
	L _z =	9,566 mm		
	K _y =	1.00		
	K _z =	1.00		
	Web h	380 mm		
	W	9.5 mm		
	Flange	380 mm		
	t	9.5 mm 1.34		
	Lift Span Raised: $C_f =$	0 kN		
	Lift Span Lowered: $C_f =$	0 kN		
Cl. 10.5.7 (c)	Compression: $\varphi_s =$	0.90		
Cl. 10.5.7 (c)		0.50		
Cl. 10.9.1.3	Slenderness Ratio =	96	< 120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	its		
	Web h/w =	40	< 44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	40	< 44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1 Cl. 10.9.3.1	$C_{r(y)} = \phi_{s} AF_{y} (1 + \lambda^{2})$ $C_{r(z)} = \phi_{s} AF_{y} (1 + \lambda^{2})$ $\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$ $C_{r} =$ $C_{r} =$ $C_{r} / C_{f} =$	ⁿ) ^{-1/n} = 10,8 1.041 0.418 -6,627 kN	-	erns Ipacity (Factored) emand Ratio (C/D)
Tension Results	Lift Span Raised: T _f = Lift Span Lowered: T _f =	551 kN 782 kN		LIFT-RLYT-U3L3
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95		
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=1}$	12,229 kN	Gross Section	
	T _r =	12,229 kN	Tensile Capacity	/ (Factored)

 $T_r/T_f = 15.64$ Capacity over Demand Ratio (C/D)

Member Location:Lift Span Railway TrussMember Description:VerticalMember ID:LIFT-RLYT-U4L4S-Frame End Nodes:Node 5 to Node 12

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	Cover	Cover	Centre	Outer	Outer Ls	Inner Ls
	Plate	Plate	Web	Webs	4x4x3/8	5x5x1/2
Qty	1	1	1	2	4	4
y _{dim} (mm)	495	495	12.7	9.5	102	127
z _{dim} (mm)	9.5	9.5	584	584	102	127
I _{y1} (x10 ⁶ mm ⁴)	96	96	0	0	1.84	4.7
$I_{z1}(x10^{6}mm^{4})$	0	0	211	158	1.84	4.7
A _g (mm ²)	4,703	4,703	7,417	5,548	1,850	3,060
y _{bar} (mm)	305	305	0	0	271	264
z _{bar} (mm)	0	0	0	263	228	42
$I_{y}(x10^{6}mm^{4})$	96	96	0	768	392	40
$I_{z}(x10^{6}mm^{4})$	437	437	211	315	551	872

 $A_{g} = 47,558 \text{ mm}^{2}$

$I_y =$	1,392 x10 ⁶ mm ⁴
I _z =	2,824 x10 ⁶ mm ⁴
r _y =	171 mm
r _z =	244 mm

Moment (demand) from original stress sheets:648 kNm*Moment (demand) from S-Frame model:90 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

* The original stress sheets report relatively large moments for all vertical truss members due to loads from sway bracing

Compression Res	ults				LIFT-RLYT-U4L4
	L _y =	16,484 mm			
	L _z =	9,566 mm			
	K _y =	1.00			
	K _z =	1.00			
	Web h	380 mm			
	w	9.5 mm 380 mm			
	Flange t	9.5 mm			
	n =	1.34			
	Lift Span Raised: C _f =	-263 kN			
	Lift Span Lowered: C _f =	-315 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	96	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	its			
	Web h/w =	40	<	44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	40	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda^2)$	$(2^{n})^{-1/n} = 5,$	637 kN	Gove	erns
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_v (1 + \lambda^2)$	$(2^n)^{-1/n} = 9,$	168 kN		
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$	1.040 0.424			
	C _r =	-5,637 kN	Cor	npressive Ca	apacity (Factored)
		17.90		•	emand Ratio (C/D)
Tension Results					LIFT-RLYT-U4L4
	Lift Span Raised: T _f =	0 kN			
	Lift Span Lowered: T _f =	0 kN			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95			
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma} =$	10,391 kN	Gro	oss Section	
	T _r =	10,391 kN	Ter	sile Capacit	y (Factored)

 $T_r/T_f = N/A$

Member ID: LIFT-RLYT-U4L4 **Prepared By: Matthew Bowser**

Member Location:Lift Span Railway TrussMember Description:VerticalMember ID:LIFT-RLYT-U5L5S-Frame End Nodes:Node 6 to Node 10

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	Cover	Cover	Centre	Outer	Outer Ls	Inner Ls
	Plate	Plate	Web	Webs	4x4x1/2	5x5x5/8
Qty	1	1	1	2	4	4
y _{dim} (mm)	495	495	12.7	9.5	102	127
z _{dim} (mm)	12.7	12.7	584	584	102	127
$I_{y1}(x10^{6}mm^{4})$	128	128	0	0	2.34	5.7
$I_{z1}(x10^{6}mm^{4})$	0	0	211	158	2.34	5.7
A _g (mm ²)	6,287	6,287	7,417	5,548	2,430	3,790
y _{bar} (mm)	303	303	0	0	267	259
z _{bar} (mm)	0	0	0	263	227	44
$I_{y}(x10^{6}mm^{4})$	128	128	0	768	510	52
$I_{z}(x10^{6}mm^{4})$	577	577	211	315	702	1,040

 $A_{g} = 55,966 \text{ mm}^{2}$

I _y =	1,587 x10 ⁶ mm ⁴
I _z =	3,423 x10 ⁶ mm ⁴
r _y =	168 mm
r _z =	247 mm

Moment (demand) from original stress sheets:648 kNm*Moment (demand) from S-Frame model:94 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

* The original stress sheets report relatively large moments for all vertical truss members due to loads from sway bracing

LIFT-RLYT-U5L5

Compression Resul	ts				LIFT-F
	L _y =	16,764	mm		
	L _z =	9,566	mm		
	K _y =	1.00			
	K _z =	1.00			
	Web h	380	mm		
	Web	9.5	mm		
	Flange b				
	t		mm		
	n =	1.34			
	Lift Span Raised: C _f =		kN		
	Lift Span Lowered: C _f =	-340	κN		
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	100	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Li	mits			
	Web h/w =	40	<	44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	40	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	λ^{2n}) ^{-1/n} =	6,404 k	N Gove	erns
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$	$\lambda^{2n})^{-1/n} =$	10,817 k	(N	
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}}$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}}$				
		-6,404 18.83		-	pacity (Factored) emand Ratio (C/D)

Tension Results			LIFT-RLYT-U5L5
	Lift Span Raised: T _f =	537 kN	
	Lift Span Lowered: T _f =	775 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	12,229 kN	Gross Section
	T _r =	12,229 kN	Tensile Capacity (Factored)
	$T_r/T_f =$	15.78	Capacity over Demand Ratio (C/D)

Member Location:Lift Span Railway TrussMember Description:VerticalMember ID:LIFT-RLYT-U6L6S-Frame End Nodes:Node 13 to Node 26

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge (centreline of truss) y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	Perties					
	Cover	Cover	Centre	Outer	Outer Ls	Inner Ls
	Plate	Plate	Web	Webs	4x4x3/8	5x5x1/2
Qty	1	1	1	2	4	4
y _{dim} (mm)	495	495	12.7	9.5	102	127
z _{dim} (mm)	9.5	9.5	584	584	102	127
$I_{y1}(x10^{6}mm^{4})$	96	96	0	0	1.84	4.7
$I_{z1}(x10^{6}mm^{4})$	0	0	211	158	1.84	4.7
A _g (mm ²)	4,703	4,703	7,417	5,548	1,850	3,060
y _{bar} (mm)	305	305	0	0	271	264
z _{bar} (mm)	0	0	0	263	228	42
$I_{y}(x10^{6}mm^{4})$	96	96	0	768	392	40
$I_{z}(x10^{6}mm^{4})$	437	437	211	315	551	872

 $A_{g} = 47,558 \text{ mm}^{2}$

$I_y =$	1,392 x10 ⁶ mm ⁴
I _z =	2,824 x10 ⁶ mm ⁴
r _y =	171 mm
r _z =	244 mm

Moment (demand) from original stress sheets:648 kNm*Moment (demand) from S-Frame model:94 kNmDue to the small magnitude of this moment, the moment fromthe continuity of the chord member has been neglected in theassesment of member capacity

* The original stress sheets report relatively large moments for all vertical truss members due to loads from sway bracing

	MMM GROUP
--	-----------

Compression Resul	ts		•		LIFT-RLYT	-U6L6
	Ly	= 16,764 n	nm			
	Lz	= 9,566 n	nm			
	K _y	= 1.00				
	Kz	= 1.00				
	Web	h 380 n	nm			
		v 9.5 n	nm			
	Flange	b 380 n	nm			
		t 9.5 n	nm			
	n =					
	Lift Span Raised: C _f	= -269 k	(N			
	Lift Span Lowered: C_f	= 0 k	(N			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90				
Cl. 10.9.1.3	Slenderness Ratio =	98	<	120	Cl. 10.9.1.3 Satisfied	
Cl. 10.9.2.1	Width to Thickness I	imits				
	Web h/w =	40	<	44	Cl. 10.9.2.1 Satisfied	
	Flanges b/t =	40	<	44	Cl. 10.9.2.1 Satisfied	
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 +$	$(\lambda^{2n})^{-1/n} =$	5,537	kN <i>Gove</i>	rns	
	$C_{r(z)} = \phi_s AF_v (1 + t)$					
Cl. 10.9.3.1	$C_{r(z)} - \psi_s A F_y (I +$	Λ) –	9,168	KIN		
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 1.058				
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 0.424				
	Cr	= -5,537 k	(N	Compressive Ca	pacity (Factored)	
	C _r / C _f	= 20.58		Capacity over D	emand Ratio (C/D)	
				. ,		
Tension Results					LIFT-RLYT	-U6L6
	Lift Span Raised: T _f	= 0 k	(N			
	Lift Span Lowered: T _f	= 0 k	N			
Cl. 10.5.7 (d)	tension: φ _s	₌ 0.95				
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_y$		'N	Gross Section		
Ci. 10.0.2 (a)	νr — Ψς~gνγ	= 10,331 K		Gross Section		

T_r = 10,391 kN Tensile Capacity (Factored)

 $T_r/T_f = N/A$

APPENDIX F LIFT SPAN GENERAL MEMBERS CAPACITY SPREADSHEETS

Member Capacity Summary Lift Span - Non-truss Members Raised Position

	Compression					Tension				
Member ID	C _r	C _f	C _r /C _f	Comments	C*	Tr	T_{f}	T _r /T _f	Comments	Т*
	kN	kN	C_r/C_f	comments	kN	kN	kN	r/ f	comments	kN
LIFT-TLAT	-960	-688	1.40		-600	2,605	694	3.75		600
LIFT-BLAT	-960	-732	1.31		-544	2,605	857	3.04		544
LIFT-PORT-BSTR	-2,910	-17	N/A		-371	4,154	148	28.1		371
LIFT-PORT-LATD	-497	-71	7.00		N/A	1,398	91	15.4		N/A
LIFT-PORT-LATL	-1,202	-99	12.1		N/A	1,398	92	15.2		N/A
LIFT-PORT-LATT	-1,164	-120	9.70		N/A	1,398	113	12.4		N/A
LIFT-PORT-SWBC	N/A		N/A		-463	1,988	118	16.8		463
LIFT-PORT-SWBV	-1,276	0	N/A		-49	1,398	36	38.8		49
LIFT-SWAY-BSTR	-1,449	-22	65.9		N/A	2,063	69	29.9		N/A
LIFT-SWAY-SWBC	N/A		N/A		N/A	1,988	82	24.2		N/A
LIFT-SWAY-SWBV	-726	-20	36.3		N/A	1,988	17	N/A		N/A
LIFT-SWAY-TSTR	-1,819	-323	5.63		-767	2,036	302	6.74		767
C12X20.7	-627	-12	52.2		N/A	857	13	65.9		N/A
C310X37	-800	-11	72.7		N/A	1,031	12	85.9		N/A
2L3-1/2x3-1/2x3/8	-478	-80	5.98		-258	699	83	8.42		N/A
2L4x4x3/8	-378	-138	2.74		-165	808	75	10.8		165
2L5x5x3/8	-498	-70	7.12		-120	1,018	70	14.5		120
2L6x6x1/2	N/A		N/A		-325	1,617	104	15.5		325

Member Capacity Summary - Lift Span - Bending Only Members

			Bendir	ng				She	ar	
Member ID	M _r	M_{f}	M _r /M _f	Commente	M*	Vr	V _f	V _r /V _f	Commente	۷*
	kNm	kNm		Comments	kNm	kN	kN		Comments	kN
LIFT-FLBM-END	10,258	315	32.6		N/A	3,172	79	40.2		N/A
LIFT-FLBM-INT	14,295	631	22.7		N/A	3,569	158	22.6		N/A
LIFT-LFGR	25,969	13,779	1.88		N/A	12,046	6,284	1.92		N/A
Lift Span Stringers:										
W24x84	802	30	26.7		N/A	859	13	66.1		N/A
(Original Highway)	802	50	20.7		N/A	659	15	00.1		N/A
W610x125	1,071	30	35.7		N/A	1,397	13	N/A		N/A
(1982 Modification)	1,071	50	55.7		N/A	1,597	12	N/A		N/A
Railway Stringers:										
W36x230	3,158	50	63.2		N/A	2,063	22	93.8		N/A

* Total load listed on the stress sheet from the original design drawings;

N/A indicates that the member is not listed in the stress sheets

Member Capacity Summary Lift Span - Non-truss Members Closed Position

			Compre	ssion				Tens	ion	
Member ID	C _r	C _f	C_r/C_f	Comments	C*	Tr	T _f	T _r /T _f	Comments	Т*
	kN	kN		comments	kN	kN	kN		comments	kN
LIFT-TLAT	-960	-536	1.79		-600	2,605	538	4.84		600
LIFT-BLAT	-960	-557	1.72		-544	2,605	948	2.75		544
LIFT-PORT-BSTR	-2,910	-40	72.8		-371	4,154	72	57.7		371
LIFT-PORT-LATD	-497	-77	6.46		N/A	1,398	66	21.2		N/A
LIFT-PORT-LATL	-1,202	-77	15.6		N/A	1,398	66	21.2		N/A
LIFT-PORT-LATT	-1,164	-93	12.5		N/A	1,398	82	17.1		N/A
LIFT-PORT-SWBC	N/A	0	N/A		-463	1,988	98	20.3		463
LIFT-PORT-SWBV	-1,276	0	N/A		-49	1,398	45	31.1		49
LIFT-SWAY-BSTR	-1,449	-36	40.3		N/A	2,063	70	29.5		N/A
LIFT-SWAY-SWBC	N/A	0	N/A		N/A	1,988	87	22.8		N/A
LIFT-SWAY-SWBV	-726	-46	15.8		N/A	1,988	23	86.4		N/A
LIFT-SWAY-TSTR	-1,819	-278	6.54		-767	2,036	212	9.61		767
C12X20.7	-627	-137	4.58		N/A	857	644	1.33		N/A
C310X37	-800	-89	8.99		N/A	1,031	618	1.67		N/A
2L3-1/2x3-1/2x3/8	-478	-220	2.17		-258	699	65	10.8		N/A
2L4x4x3/8	-378	-304	1.24		-165	808	143	5.65		165
2L5x5x3/8	-498	-253	1.97		-120	1,018	252	4.04		120
2L6x6x1/2	N/A	0	N/A		-325	1,617	471	3.43		325

Member Capacity Summary - Lift Span - Bending Only Members

	Bending					Shear				
Member ID	M _r	M_{f}	M _r /M _f	Commente	M*	Vr	V _f	V _r /V _f	Commonto	V*
	kNm	kNm		Comments	kNm	kN	kN		Comments	kN
LIFT-FLBM-END	10,258	4,021	2.55		3,002	3,172	1,006	3.15		1,025
LIFT-FLBM-INT	14,295	8,041	1.78		6,493	3,569	2,012	1.77		2,007
LIFT-LFGR	25,969	10,081	2.58		N/A	12,046	4,624	2.61		N/A
Lift Span Stringers:										
W24x84	802	695	1.15		317	859	335	2.57		142
(Original Highway)	002	095	1.15		517	039	555	2.57		142
W610x125	1,071	695	1.54		231	1,397	335	4.17		129
(1982 Modification)	1,071	095	1.54		231	1,397	335	4.17		129
Railway Stringers:										
W36x230	3,158	68	46.4		1,619	2,063	21	98.3		783

* Total load listed on the stress sheet from the original design drawings; N/A indicates that the member is not listed in the stress sheets

Member Location:Lift SpanMember Description:End FloorbeamMember ID:LIFT-FLBM-ENDS-Frame End Nodes:Node 1 to Node 27, Node 14 to Node 40

Member orientation (local axis):

z always corresponds with the vertical plane

y always corresponds to the horizontal plane

Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
$F_u =$	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

· · · · ·	-				
	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plates	Plates	Plate	8x8x3/4	8x8x3/4
Qty	1	1	1	2	2
y _{dim} (mm)	508	508	12.7	203	203
z _{dim} (mm)	12.7	12.7	1,981	203	203
I _{y1} (x10 ⁶ mm ⁴)	0	0	8,228	29.0	29.0
$I_{z1}(x10^{6}mm^{4})$	139	139	0	29.0	29.0
A _g (mm ²)	6,452	6,452	25,159	7,390	7,390
y _{bar} (mm)	0	0	0	64	64
z _{bar} (mm)	1,003	1,003	0	939	939
$I_{y}(x10^{6}mm^{4})$	6,490	6,490	8,228	13,090	13,090
$I_{z}(x10^{6}mm^{4})$	139	139	0	119	119

A _g =	67,622 _{mm²}	$Z_y =$	53.159 x10 ⁶ mm ³
		$Z_z =$	3.531 x10 ⁶ mm ³
$I_y =$	47,388 x10 ⁶ mm ⁴	S _y =	46.949 x10 ⁶ mm ³
$I_z =$	$515 \text{ x10}^{6} \text{ mm}^{4}$	S _z =	$2.027 \text{x10}^{6} \text{ mm}^{3}$
r _y =	837 mm	J =	1,032 x10 ³ mm ⁴
r ₇ =	87 mm		

	MMM GROUP		: Bridge acities	MMM Project No. 321300
Bending Results				LIFT-FLBM-END
Cl. 10.5.7 (a)	Flexure: $\phi_s =$	0.95	Enstant Adams at	M _{max} = 3,454 kNm
	h Web	1,588 mm	Factored Moments for Calculating	M _a = 509 kNm
	w	12.7 mm	Capacity of Laterally	M = 1.474 k Mm
	b Flange	229 mm	Unbraced Members	M _c = 531 kNm
	t	32.0 mm		L = 1,295 mm
	Lift Span Raised: M _f =	475 kNm		
	Lift Span Closed: M _f =	-3,454 kNm		
Cl. 10.9.2.1	Determining Class of Se	ction		
	Web h/w =		< 125.3	Class 3
	Flanges b/t =	7 •	< 35	Class 2 or better
	==> Overall Class: 3			
Cl. 10.10.2.2	Class 1 and Class 2 Secti	ons - Laterally Sup	ported	
	$M_r = \phi_s Z_y F_y =$	11,615 kNm	Moment resistance fo Class 1 or Class 2 sect	
Cl. 10.10.2.3	Class 1 and Class 2 Secti	ons - Laterally Unb	raced Members	
	(a) $M_r=1.15 arphi_s M_p$	$\left[1 - \frac{0.28M_p}{M_u}\right] \le q$	$ ho_{s}M_{p}$ = N/A	kNm
	(b) $M_r = \phi$	$b_s M_u = N/A$	kNm	
	$M_u = \frac{\omega_2 \pi}{L} \sqrt{E_s I_z}$	$G_s J + \left[\frac{\pi E_s}{L}\right]^2 I_z C_w$, = N/A	kNm
	M _p =	$Z_{y}F_{y} = 12,226$	6 kNm	
	$\omega_2 = \frac{1}{\sqrt{M_{max}^2}}$	$\frac{4M_{max}}{+4M_a^2+7M_b^2+4M_c^2}$	$s \le 2.5 = 2.50$	
Cl. 10.10.3.2	Class 3 Sections - Latera	lly Supported		
	$M_r = \phi_s S_v F_v =$	10,258 kNm	Moment resistance fo	or laterally supported

Cl. 10.10.3.3	Cl. 10.10.3.3 Class 3 Sections - Laterally Unbraced Members							
(a) $M_r = 1.15 \varphi_s M_y \left[1 - \frac{0.28 M_y}{M_u} \right] \le \varphi_s M_y = N/A$ kNm								
	(b) $M_r = \phi_s M_u =$	N/A kNm						
	$M_y = S_y F_y =$	10,798 kNm						
	M _r = 10,258 k	Nm Moment Capacity (Factored)						
==> Result:	Lift Span Closed: $M_r / M_f = 2.97$	Capacity over Demand Ratio (C/D)						
	Lift Span Raised: $M_r / M_f = 21.60$	Capacity over Demand Ratio (C/D)						
Shear Results			LIFT-FLBM-END					
Cl. 10.5.7 (b)	Flexure: $\phi_s = 0.95$							
		g of transverse stiffeners)						
		lepth of web between flanges)						
	a/h = 0.65 < 1	L						
Cl 10.10.5.1	$k_{\nu} = 4 + \frac{5.34}{(\frac{a}{h})^2} = 16.5$	$k_v = 5.34 + \frac{4}{(\frac{a}{h})^2} = N/A$						
	k _v = 16.5							
	F _{cr} = 132.7 MPa							
	F _t = 0 MPa							
Cl 10.10.5.1	$F_{s} = F_{cr} + F_{t} = 132.7 \text{ MPa}$							
Cl 10.10.5.1	$V_r = \phi_s A_w F_s = 3,172$ k	N Shear Capacity (Factored)						
==> Result:	Lift Span Closed: $V_r / V_f =$ 3.15Lift Span Raised: $V_r / V_f =$ 40.15	Capacity over Demand Ratio (C/D)						
Cl 10.10.5.2	$0.727 \frac{M_f}{M_r} + 0.455 \frac{V_f}{V_r} < 1.0$ $= 0.39 < 1.0 ==>$							

Member ID: LIFT-FLBM-End Prepared By: Matthew Bowser

Member Location:Lift SpanMember Description:Intermediate FloorbeamMember ID:LIFT-FLBM-INTS-Frame End Nodes:Node 2 to Node 28, Node 3 to Node 29, Node 4 to Node 30, Node 5 to Node 31,
Node 6 to Node 32, Node 13 to Node 39, Node 19 to Node 45, Node 18 to Node 44,
Node 17 to Node 43, Node 16 to Node 42, Node 15 to Node 41

Member orientation (local axis):

z always corresponds with the vertical plane

y always corresponds to the horizontal plane

Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
$F_u =$	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

•	•				
	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plates	Plates	Plate	8x8x7/8	8x8x7/8
Qty	1	1	1	2	2
y _{dim} (mm)	508	508	14.3	203	203
z _{dim} (mm)	19.1	19.1	1,981	203	203
I _{y1} (x10 ⁶ mm ⁴)	0	0	9,259	33.0	33.0
I _{z1} (x10 ⁶ mm ⁴)	208	209	0	33.0	33.0
A _g (mm ²)	9,677	9,703	28,306	8,520	8,520
y _{bar} (mm)	0	0	0	65	65
z _{bar} (mm)	1,003	1,003	0	938	938
$I_{y}(x10^{6}mm^{4})$	9,736	9,761	9,259	15,059	15,059
$I_{z}(x10^{6}mm^{4})$	208	209	0	138	138

A _g =	81,767 _{mm²}	$Z_y =$	65.426 x10 ⁶ mm ³
		$Z_z =$	4.673 x10 ⁶ mm ³
$I_y =$	58,873 x10 ⁶ mm ⁴	S _y =	58.144 x10 ⁶ mm ³
$I_z =$	693 x10 ⁶ mm ⁴	$S_z =$	2.728 x10 ⁶ mm ³
r _y =	849 mm	J =	2,832 x10 ³ mm ⁴
r _z =	92 mm		

Bending Results				LIFT-FLBM-INT
Cl. 10.5.7 (a)	Flexure: $\phi_s =$	0.95	Factored Moments	M _{max} = 8,041 kNm
	h Web	1,588 mm	Factored Moments for Calculating	$W_{1_{2}} = 4.583 \text{ kNm}$
	w	14.3 mm	Capacity of Laterally	
	Flange b	229 mm	Unbraced Members	
	t	32.0 mm		L = 1,295 mm
	Lift Span Raised: M _f =	1,133 kNm		
	Lift Span Closed: M _f =	8,041 kNm		
Cl. 10.9.2.1	Determining Class of Se	ection		
	Web h/w =	111.0 <	\$ 112.1	Class 2 or better
	Flanges b/t =	7 <	35	Class 2 or better
	==> Overall Class: 2			
Cl. 10.10.2.2	Class 1 and Class 2 Sect	ions - Laterally Supp	ported	
	$M_r = \phi_s Z_y F_y =$	14,295 kNm	Moment resistance f Class 1 or Class 2 sec	or laterally supported tions
Cl. 10.10.2.3	Class 1 and Class 2 Sect	ions - Laterally Unb	raced Members	
	(a) $M_r = 1.15 \varphi_s M_p$	$\left[1 - \frac{0.28M_p}{M_u}\right] \le \varphi$	$p_s M_p = N/A$	kNm
	(b) $M_r = q$	$\phi_s M_u = N/A$	kNm	
	$M_u = \frac{\omega_2 \pi}{L} \sqrt{E_s I_z}$	$G_s J + \left[\frac{\pi E_s}{L}\right]^2 I_z C_w$	= N/A	kNm
	M _p =	$Z_{y}F_{y} = 15,048$	8 kNm	
	$\omega_2 = \frac{1}{\sqrt{M_{max}^2}}$	$\frac{4M_{max}}{2^{2}+4M_{a}^{2}+7M_{b}^{2}+4M_{c}^{2}}$	$\leq 2.5 = 1.50$)
Cl. 10.10.3.2	Class 3 Sections - Latera	ally Supported		
	$M_r = \phi_s S_y F_y =$	12,704 kNm	Moment resistance f Class 3 sections	or laterally supported

Member ID: LIFT-FLBM-Int Prepared By: Matthew Bowser

Cl. 10.10.3.3

Burlington Lift Bridge Member Capacities

LIFT-FLBM-INT

	(a) $M_r = 1.15 \varphi_s M_y \left[1 - \frac{0.28 M_y}{M_u} \right] \le q$	$\rho_s M_y = N/A$ kNm
	(b) $M_r = \phi_s M_u = N/A$	kNm
	$M_y = S_y F_y = 13,373$	3 kNm
	M _r = 14,295 kNm	Moment Capacity (Factored)
==> Result:	Lift Span Closed: $M_r / M_f = 1.78$ Lift Span Raised: $M_r / M_f = 12.62$	Capacity over Demand Ratio (C/D) Capacity over Demand Ratio (C/D)
Shear Results		
Cl. 10.5.7 (b)	Flexure: $\phi_s = 0.95$	
	a = 1,295 mm (spacing of trans	sverse stiffeners)
	h = 1,981 mm (clear depth of v	web between flanges)
	a/h = 0.65 < 1	
Cl 10.10.5.1	$k_v = 4 + \frac{5.34}{(\frac{a}{h})^2} = 16.5$	$k_v = 5.34 + \frac{4}{(\frac{a}{h})^2} = N/A$
	k _v = 16.5	
	F _{cr} = 132.7 MPa	
	F _t = 0 MPa	

Class 3 Sections - Laterally Unbraced Members

Cl 10.10.5.1 $F_s = F_{cr} + F_t =$ 132.7 MPa

Cl 10.10.5.1 $V_r = \phi_s A_w F_s =$ 3,569 kNShear Capacity (Factored)==> Result:Lift Span Closed: $V_r / V_f =$ 1.77Capacity over Demand Ratio (C/D)Lift Span Raised: $V_r / V_f =$ 22.59

Cl 10.10.5.2
$$0.727 \frac{M_f}{M_r} + 0.455 \frac{V_f}{V_r} < 1.0$$
 Check shear/moment interaction
= 0.67 < 1.0 ==> Satisfied

Member ID: LIFT-FLBM-Int Prepared By: Matthew Bowser

Member Location:Lift SpanMember Description:Lifting GirderMember ID:LIFT-LFGRS-Frame End Nodes:Node 7 to Node 33, Node 20 to Node 46

Member orientation (local axis):

z always corresponds with the vertical plane

y always corresponds to the horizontal plane

Section properties for the lift girder have been calculated about the neutral axis of the built up plate girder

Material Properties

$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	T. Cover	B. Cover	Web	Top Ls	Bot Ls	Top Web	Bot Web	Top Ls	Bot Ls
	Plate	Plate	Plate	8x8x3/4	8x8x3/4	Plates	Plates	4x3x1/2	4x3x1/2
Qty	1	1	1	2	2	2	2	2	2
y _{dim} (mm)	914	660	22.2	203	203	12.7	12.7	102	102
z _{dim} (mm)	12.7	19.1	4,299	203	203	406	406	76	76
$I_{y1}(x10^{6}mm^{4})$	0	0	147,146	29.0	29.0	71	71	1.0	1.0
$I_{z1}(x10^{6}mm^{4})$	809	457	4	29.0	29.0	0	0	2.1	2.1
A _g (mm ²)	11,613	12,581	95,544	7,390	7,390	5,161	5,161	2,100	2,100
y _{bar} (mm)	0	0	0	82	82	17	17	413	286
z _{bar} (mm)	2,168	2,145	13	2,104	2,079	1,959	1,934	2,141	2,145
$I_{y}(x10^{6}mm^{4})$	54,583	57,884	147,162	65,486	63,941	39,757	38,752	19,254	19,326
$I_{z}(x10^{6}mm^{4})$	809	457	4	156	156	3	3	721	348
A _g = 178,34	3 mm²	Z _y =	274.859	$x10^{6} \text{ mm}^{3}$		d ₁ =	4,315		

A _g =	178,343 mm²	Z _y –	274.859 x10° mm ³	u ₁ =	4,315 mm
		$Z_z =$	10.441 x10 ⁶ mm ³	I _{zc} =	457,230 x10 ³ mm ⁴
$I_y =$	506,146 x10 ⁶ mm ⁴	S _y =	232.780 x10 ⁶ mm ³	β _y =	-2,547
Ι _z =	2,658 x10 ⁶ mm ⁴	$S_z =$	5.814 x10 ⁶ mm ³	B ₁ =	-10.12
r _y =	1,685 mm	J =	17,878 x10 ³ mm ⁴	B ₂ =	129.1
r _z =	122 mm	c _w =	5,439 x10 ¹² mm ⁶		

Bending Results				LIFT-LFGR
Cl. 10.5.7 (a)	Flexure: $\varphi_s =$	0.95	Factored Moments	M _{max} = 13,779 kNm
	h Web	3,487 mm	for Calculating	$IVI_a = 2,398$ KNM
	W	22.2 mm	Capacity of Laterally	$M_{b} = 3,602 \text{ kNm}$
	Flange b	254 mm	Unbraced Members	
	t the former products and	<u>19.1</u> mm		L = 7,773 mm
	Lift Span Raised: $M_f =$	13,779 kNm		
	Lift Span Closed: M _f =	10,081 kNm		
Cl. 10.9.2.1	Determining Class of S	Section		
	Web h/w =	156.9	> 125.3	Exceeds Class 3 Limits
	Flanges b/t =	13	< 35	Class 2 or better
	==> Overall Class:	4		
Cl. 10.10.2.2	Class 1 and Class 2 Sec	ctions - Laterally Sup	oported	
	$M_r = \phi_s Z_y F_y =$	60,057 kNm	Moment resistance f Class 1 or Class 2 sec	or laterally supported tions
Cl. 10.10.2.3	Class 1 and Class 2 Sec	tions - Laterally Unl	braced Members	
	(a) $M_r = 1.15 \varphi_s M_r$	$p\left[1-\frac{0.28M_p}{M_u}\right] \le$	$\varphi_s M_p = N/A$	kNm
	(b) <i>M</i> _r =	$\phi_s M_u = N/A$	kNm	
	$M_u = \frac{\omega_2 \pi}{L} \Big[\sqrt{E_s I_z} \Big]$	$\overline{G_s J} \left[B_1 + \sqrt{1 + B_2} \right]$	$\left[+ B_1^2 \right] = 27,336$	5 kNm
	<i>M</i> _p =	$= Z_y F_y = 63,21$.8 kNm	
	$\omega_2 = \frac{1}{\sqrt{M_{max}}}$	$4M_{max}$ $x^{2}+4M_{a}^{2}+7M_{b}^{2}+4M_{c}$	$\frac{1}{2} \le 2.5 = 2.50$)
Cl. 10.10.3.2	Class 3 Sections - Late	rally Supported		
	$M_r = \phi_s S_y F_y =$	50,863 kNm	Moment resistance f Class 3 sections	or laterally supported

Member ID: LIFT-LFGR Prepared By: Matthew Bowser

Cl. 10.10.3.3

Burlington Lift Bridge Member Capacities

Class 3 Sections - Laterally Unbraced Members

	(a) $M_r = 1.15 \varphi_s M_y \left[1 - \frac{0.28 M_y}{M_u} \right] \le \varphi_s M_y = 26,415 \text{ kNm}$	
	(b) $M_r = \phi_s M_u = 25,969$ kNm <== Governs	
	$M_y = S_y F_y = 53,539$ kNm	
==> Result:	$M_r = 25,969 \text{ kNm}$ Moment Capacity (Factored) Lift Span Closed: $M_r / M_f = 2.58$ Capacity over Demand Ratio (C/D)	
	Lift Span Raised: $M_r / M_f = 1.88$ Capacity over Demand Ratio (C/D)	
Shear Results		LIFT-LFGR
Cl. 10.5.7 (b)	Flexure: $\varphi_s = 0.95$	
	a = 2,184 mm (spacing of transverse stiffeners) h = 4,299 mm (clear depth of web between flanges)	
	a/h = 0.51 < 1	
Cl 10.10.5.1	$k_v = 4 + \frac{5.34}{(\frac{a}{h})^2} = 24.7$ $k_v = 5.34 + \frac{4}{(\frac{a}{h})^2} = N/A$	
	k _v = 24.7	
	F _{cr} = 132.7 MPa	
	F _t = 0 MPa	
Cl 10.10.5.1	$F_{s} = F_{cr} + F_{t} = 132.7 \text{ MPa}$	
Cl 10.10.5.1	$V_r = \phi_s A_w F_s =$ 12,046 kN Shear Capacity (Factored)	
==> Result:	Lift Span Closed: $V_r / V_f =$ 2.61Capacity over Demand Ratio (C/D)Lift Span Raised: $V_r / V_f =$ 1.92	
Cl 10.10.5.2	$0.727 \frac{M_f}{M_r} + 0.455 \frac{V_f}{V_r} < 1.0$ Check shear/moment interaction = 0.62 < 1.0 ==> Satisfied	

Member Location: Lift Span Member Description: Stringers

Member ID: W24x84

S-Frame End Nodes: 143-227, 227-167, 167-239, 239-179, 179-251, 251-191, 191-263, 263-203, 203-275, 275-215, 215-287, 287-144, 145-228, 228-168, 168-240, 240-180, 180-252, 252-192, 192-264, 264-204, 204-276, 276-216, 216-288 288-146, 147-229, 229-169, 169-241, 241-181, 181-253, 253-193, 193-265, 265-205, 205-277, 277-217, 217-289, 289-148 149-230, 230-170, 170-242, 242-182, 182-254, 254-194, 194-266, 266-206, 206-278, 278-218, 218-290, 290-150, 151-231 231-171, 171-243, 243-183, 183-255, 255-195, 195-267, 267-207, 207-279, 279-219, 219-291, 291-152, 153-232, 232-172 172-244, 244-184, 184-256, 256-196, 196-268, 268-208, 208-280, 280-220, 220-292, 292-154, 155-233, 233-173, 173-245 245-185, 185-257, 257-197, 197-269, 269-209, 209-281, 281-221, 221-293, 293-156, 157-234, 234-174, 174-246, 246-186 186-258, 258-198, 198-270, 270-210, 210-282, 282-222, 222-294, 294-158, 159-235, 235-175, 175-247, 247-187, 187-255 259-199, 199-271, 271-211, 211-283, 283-223, 223-295, 295-160, 161-236, 236-176, 176-248, 248-188, 188-260, 260-200 200-272, 272-212, 212-284, 284-224, 224-296, 296-162, 163-237, 237-177, 177-249, 249-189, 189-261, 261-201, 201-275 273-213, 213-285, 285-225, 225-297, 297-164, 165-238, 238-178, 178-250, 250-190, 190-262, 262-202, 202-274, 274-214 214-286, 286-226, 226-298, 298-166

Member orientation (local axis): z always corresponds with the vertical plane

y always corresponds to the horizontal plane

Material Properties

$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	0		
Qty	1		
y _{dim} (mm)	229		
z _{dim} (mm)	612.0		
$I_{y1}(x10^{6}mm^{4})$			
$I_{z1}(x10^{6}mm^{4})$	39		
A _g (mm ²)	15,900		
y _{bar} (mm)	0		
z _{bar} (mm)	0		
$I_y(x10^6 mm^4)$	985		
$I_{z}(x10^{6}mm^{4})$	39		
A _g =	15,900 mm²	Z _y = Z _z =	
$I_y =$	985 x10 ⁶ mm ⁴	S _y =	
I_ =	$39 \times 10^6 \text{ mm}^4$	S ₇ =	$0.343 \times 10^6 \text{ mm}^3$

l _z =	39 x10 ⁶ mm ⁴	$S_z =$	0.343	x10 ⁶ mm ³
r _y =	249 mm	J =	1,540	$x10^3 \text{ mm}^4$
r _z =	50 mm	C _w =	3450	x10 ⁹ mm ⁶

	IMM GROUP	Burlington Lift Member Cap	-	MMM Project No. 3213009
Bending Results				W24x84
Cl. 10.5.7 (a)	Flexure: $\phi_s =$	0.95		M _{max} = 695 kNm
	h Web	573 mm	Factored Moments for Calculating	$M_{2} = 500 \text{ km}$
	web	11.9 mm	Capacity of Laterally	$M_{\rm h} = 671 \rm kMm$
	Flange b	229 mm	Unbraced Members	
	t	19.6 mm		L = 3,150 mm
	Lift Span Raised: M _f =	41 kNm		
	Lift Span Closed: M _f =	695 kNm		
Cl. 10.9.2.1	Determining Class of Sec	tion		
	Web h/w =	48.1 <	< 112.1	Class 2 or better
	Flanges b/t =	12 •	< 35	Class 2 or better
	==> Overall Class: 2			
Cl. 10.10.2.2	Class 1 and Class 2 Section	ons - Laterally Sup	ported	
	$M_r = \phi_s Z_y F_y =$	802 kNm	Moment resistance f Class 1 or Class 2 sec	or laterally supported tions
Cl. 10.10.2.3	Class 1 and Class 2 Section	ons - Laterally Unb	raced Members	
	(a) $M_r = 1.15 \varphi_s M_p \left[\right.$	$1 - \frac{0.28M_p}{M_u} \right] \le q$	$\rho_s M_p = 802$	kNm <== Governs
	(b) $M_r = \phi$	$_{s}M_{u} = 2,760$) kNm	
	$M_u = \frac{\omega_2 \pi}{L} \sqrt{E_s I_z G}$	$G_{s}J + \left[\frac{\pi E_{s}}{L}\right]^{2} I_{z}C_{w}$	2,906	i kNm
	$M_p = 2$	$Z_y F_y = 844$	4 kNm	
	$\omega_2 = \frac{1}{\sqrt{M_{max}^2 + 1}}$	$\frac{4M_{max}}{4M_a^2 + 7M_b^2 + 4M_c^2}$	$s \le 2.5 = 1.16$	i
Cl. 10.10.3.2	Class 3 Sections - Lateral	ly Supported		
	$M_r = \phi_s S_y F_y =$	703 kNm	Moment resistance f Class 3 sections	or laterally supported

Cl. 10.10.3.3	Class 3 Sections - Laterall	y Unbraced Men	nbers	
	(a) $M_r = 1.15 \varphi_s M_y \left[f_s \right]$	$1 - \frac{0.28M_y}{M_u} \Big] \le$	$\varphi_s M_y$ = 703 kNm	
	(b) $M_r = \phi_s$	_s M _u = 2,76	0 kNm	
	$M_y = S$	$S_y F_y = 74$	40 kNm	
==>	Result: M _r =	802 kNm	Moment Capacity (Factored)	
	Lift Span Closed: $M_r / M_f =$	1.15	Capacity over Demand Ratio (C/D)	
	Lift Span Raised: $M_r / M_f =$	19.6	Capacity over Demand Ratio (C/D)	
Shear Results				W24x84
Cl 10.10.5.1	k _v = 5.34	Assume	web is unstiffened (i.e. a=0)	
	F _{cr} = 133 MF	Pa a		
	$F_t = 0 MF$	Pa		
	$F_s = F_{cr} + F_t =$ 133 MF	Pa		
	$V_r = \phi_s A_w F_s =$	859 kN	Shear Capacity (Factored)	
==> Result:	Lift Span Closed: V _r / V _f =	2.57	Capacity over Demand Ratio (C/D)	
	Lift Span Raised: $V_r / V_f =$	66.10		
Cl 10.10.5.2	$0.727 \frac{M_f}{M_r} + 0.455$	$\frac{V_f}{V_r} < 1.0$	Check shear/moment interaction	
	= 0.81 < 1	.0 ==> Satisfie	ed	

Member Location:Lift SpanMember Description:Railway StringersMember ID:W36x230S-Frame End Nodes:Node 894 to Node 817, Node 896 to Node 825, Node 841 to Node 900, Node 849 to Node 899,
Node 809 to Node 894, Node 803 to Node 895, Node 895 to Node 811, Node 817 to Node 896,
Node 825 to Node 897, Node 897 to Node 849, Node 849, Node 844, Node 835

Member orientation (local axis): z always corresponds with the vertical plane y always corresponds to the horizontal plane

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	W36x230	
Qty	1	
y _{dim} (mm)	419	
z _{dim} (mm)	911.9	
I _{y1} (x10 ⁶ mm ⁴)	6,243	
$\frac{I_{y1}(x10^{6}mm^{4})}{I_{y1}(x10^{6}mm^{4})}$ $\frac{I_{z1}(x10^{6}mm^{4})}{A_{g}(mm^{2})}$	391	
$A_g (mm^2)$	43,613	

y _{bar} (mm)	0	
z _{bar} (mm)	0	
$I_y(x10^6 mm^4)$	6,243	
$I_{z}(x10^{6}mm^{4})$	391	

A _g =	43,613 mm²	Z _y =	$15.453 \text{ x} 10^6 \text{ mm}^3$
		$Z_z =$	$2.884 \text{ x}10^6 \text{ mm}^3$
$I_y =$	6,243 x10 ⁶ mm ⁴	$S_y =$	13.694 x10 ⁶ mm ³
$I_z =$	391 x10 ⁶ mm ⁴	$S_z =$	$1.867 \text{ x} 10^6 \text{ mm}^3$
r _y =	378 mm	J =	11,904 x10 ³ mm ⁴
r _z =	95 mm	C _w =	75727.11 x10 ⁹ mm ⁶

MMM GROUP		Burlington Lit Member Ca	-	MMM Project No. 3213009				
Bending Results				W36x230				
Cl. 10.5.7 (a)	Flexure: $\phi_s =$	0.95	Franka vad Marsant	M _{max} = 50 kNm				
	h Web	848 mm	Factored Moments for Calculating	$IVI_a = 40 \text{ kNm}$				
	W	19.3 mm	Capacity of Laterally	M = 50 k Mm				
	bFlange	419 mm	Unbraced Members					
	t	32.0 mm		L = 9,398 mm				
	Lift Span Raised: M _f =	50 kNm						
	Lift Span Closed: M _f =	68 kNm						
Cl. 10.9.2.1	Determining Class of Sec	tion						
	Web h/w =	43.9	< 112.1	Class 2 or better				
	Flanges b/t =	13	< 35	Class 2 or better				
	==> Overall Class: 2							
Cl. 10.10.2.2	Class 1 and Class 2 Section	ons - Laterally Sup	oported					
	$M_r = \phi_s Z_y F_y =$	3,376 kNm	Moment resistance ; Class 1 or Class 2 sec	for laterally supported ctions				
Cl. 10.10.2.3	Class 1 and Class 2 Sections - Laterally Unbraced Members							
	(a) $M_r = 1.15 \varphi_s M_p \left[1 - \frac{0.28 M_p}{M_u} \right] \le \varphi_s M_p = 3,158 \text{ kNm}$ <== Governs							
	(b) $M_r = \phi$	$_{s}M_{u} = 5,06$	51 kNm					
	$M_u = \frac{\omega_2 \pi}{L} \sqrt{E_s I_z C}$	$G_s J + \left[\frac{\pi E_s}{L}\right]^2 I_z C_s$	$_{w}^{-} = 5,32$	7 kNm				
	$M_p = $	$Z_y F_y = 3,55$	54 kNm					
	$\omega_2 = \frac{1}{\sqrt{M_{max}^2 + 1}}$	$\frac{4M_{max}}{+4M_a^2+7M_b^2+4M_c}$	$\frac{1}{2} \le 2.5 = 1.1$	2				
Cl. 10.10.3.2	Class 3 Sections - Lateral	lly Supported						
	$M_r = \phi_s S_y F_y =$	2,992 kNm	Moment resistance ; Class 3 sections	for laterally supported				

Class 3 sections

Cl. 10.10.3.3	Class 3 Sections - Laterally Unbraced Members					
	(a) $M_r = 1.15 \varphi_s M_y \left[1 - \frac{0.28 M_y}{M_u} \right] \le \varphi_s M_y = 2871 \text{ kNm}$					
	(b) $M_r = \phi$	$D_s M_u = 5,061$	L kNm			
	M _y =	$S_{y}F_{y} = 3,15$	0 kNm			
==>	Result: M _r =	3,158 kNm	Moment Capacity (Factored)			
	Lift Span Closed: M_r / M_f =	46.43	Capacity over Demand Ratio (C/D)			
	Lift Span Raised: M_r / M_f =	62.59	Capacity over Demand Ratio (C/D)			
Shear Results				W36x230		
Cl 10.10.5.1	k _v = 5.34	Assume v	web is unstiffened (i.e. a=0)			
	F _{cr} = 133 M	IPa				
	$F_t = 0 M$	IPa				
	$F_s = F_{cr} + F_t = 133 \text{ M}$	IPa				
	$V_r = \phi_s A_w F_s =$	2063 kN	Shear Capacity (Factored)			
==> Result:	Lift Span Closed: V _r / V _f =	98.26	Capacity over Demand Ratio (C/D)			
	Lift Span Raised: $V_r / V_f =$	93.79				
Cl 10.10.5.2	$0.727 \frac{M_f}{M_r} + 0.455$	$5\frac{V_f}{V_r} < 1.0$	Check shear/moment interaction			
	= 0.02 <	1.0 ==> Satisfie	d			

Member Location: Lift Span Member Description: Top Lateral

Member ID: LIFT-TLAT

S-Frame End Nodes: Node 33 to Node 122, Node 122 to Node 7, Node 34 to Node 101, Node 101 to Node 8, Node 37 to Node 103, Node 103 to Node 11, Node 35 to Node 105, Node 105 to Node 9, Node 38 to Node 107, Node 107 to Node 12, Node 36 to Node 109, Node 109 to Node 10, Node 49 to Node 109, Node 109 to Node 23, Node 51 to Node 111, Node 111 to Node 25, Node 48 to Node 113, Node 113 to Node 22, Node 50 to Node 115, Node 115 to Node 24, Node 47 to Node 117, Node 117 to Node 21, Node 46 to Node 126, Node 126 to Node 20 *Member orientation (local axis):*

z always corresponds with the vertical plane

y always corresponds to the horizontal plane

Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Т

·	Angles	
	Angles 7x4x7/16	
Qty	4	
y _{dim} (mm)	178	
z _{dim} (mm)	102	
$I_{y1}(x10^{6}mm^{4})$	2.45	
z _{dim} (mm) I _{y1} (x10 ⁶ mm ⁴) I _{z1} (x10 ⁶ mm ⁴)	9.88	
A _g (mm ²)	2,980	

y _{bar} (mm)	74			
z _{bar} (mm)	365			
$I_y(x10^6 mm^4)$	1,598			
$I_{z}(x10^{6}mm^{4})$	105			

A _g =	11,920 mm²	Local Check for Capacity of Single Angle Between Battens
	1,598 x10 ⁶ mm ⁴	
I _z =	$105 \text{ x10}^{6} \text{ mm}^{4}$	$A_{g} = 2,980 \text{ mm}^{2}$ $r \sqrt{\pi^{2} E_{s}}$
r _y =	366 mm	Cl. 10.9.3.1 $C_r = \phi_s A F_y (1 + \lambda^{2n})^{-1/n}$: -585 kN
r _z =	94 mm	
		Capacity of single angle does not govern built up member capacity

Compress	ion Re	esult
----------	--------	-------

LIF	T -1	TLA	١T
-----	-------------	-----	----

Compression Res	ults					LIFT-TLAT
	L _y =	12,196 m	m			
	L _z =	12,196 m	m			
	K _y =	1.00		K' _y =	1.10	
	K _z =	1.00		K' _z =	1.01	
	Web	N/A				
	Flange	167 m				
	t	<u>11.1</u> m	m			
	n = Lift Span Raised: C _f =	1.34 -688 kN	J			
	Lift Span Lowered: $C_f =$					
		-536 kN	N			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90				
Cl. 10.9.1.3	Slenderness Ratio =	130	<	160	Cl. 10.9.1.3 Satisfi	ed
Cl. 10.9.2.1	Width to Thickness Lir	nits				
	Flanges b/t =	15	<	44	Cl. 10.9.2.1 Satisfi	ed
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$\binom{2n}{2^{n}}^{-1/n} =$	2,324	kN		
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_v (1 + \lambda)$		960		overns	
	$\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}} =$					
	$\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	= 1.416				
	C _r =	-960 kN	N (Compressive	Capacity (Factored)	
	$C_r / C_f =$	1.40	(Capacity ove	r Demand Ratio (C/D)	
Tension Results						LIFT-TLAT
	Lift Span Raised: T _f =	694 kN	١			
	Lift Span Lowered: T _f =	538 kN	N			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95				
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=1}$	2,605 kM	N (Gross Sectior	ı	
	T _r =	2,605 kN	N -	Tensile Capa	city (Factored)	
	$T_r/T_f =$, 3.75		-	r Demand Ratio (C/D)	
	'r/'f -	5.75				

Member Location:Lift SpanMember Description:Bottom LateralMember ID:LIFT-BLATS-Frame End Nodes:Node 127 to Node 27, Node 1 to Node 127, Node 129 to Node 31, Node 5 to Node 129,Node 131 to Node 42, Node 16 to Node 131, Node 29 to Node 128, Node 3 to Node 128, Node 39 to Node 130,Node 13 to Node 130, Node 130 to Node 44, Node 130 to Node 18, Node 132 to Node 40, Node 132 to Node 14,Node 127 to Node 29, Node 128 to Node 5, Node 129 to Node 39, Node 131 to Node 18, Node 42 to Node 132,Node 132 to Node 16, Node 131 to Node 44, Node 13 to Node 129, Node 31 to Node 128, Node 3 to Node 127

Member orientation (local axis):

z always corresponds with the vertical plane

y always corresponds to the horizontal plane

Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
$F_u =$	420	MPa	CSA S6-06 Cl. 14.7.4.2
$E_s =$	200,000	MPa	
G _s =	77,000	MPa	

Built Up Sect	tion Properties	
	Angles	
	7x4x7/16	
Qty	4	
y _{dim} (mm)	178	
z _{dim} (mm)	102	
$I_{y1}(x10^{6}mm^{4})$		
$I_{z1}(x10^{6}mm^{4})$	9.88	
A _g (mm ²)	2,980	
y _{bar} (mm)	74	
z _{bar} (mm)	374	
$I_{y}(x10^{6}mm^{4})$	1,677	
$I_{z}(x10^{6}mm^{4})$	105	
A _g =	11,920 _{mm²}	Local Check for Capacity of Single Angle Between Battens
		r = 22.3 mm KL
$I_y =$	1,677 x10 ⁶ mm ⁴	L = 775 mm $\lambda = \frac{\pi L}{r} \left \frac{Ty}{\pi^2 F} \right = 0.376$
I _z =	$105 \text{x10}^{6} \text{ mm}^{4}$	$A_{g} = 2,980 \text{ mm}^{2} \sqrt{\sqrt{n^{2}L_{s}}}$
r _y =	375 mm	$ \begin{array}{ccccc} r &= & 22.3 \text{ mm} \\ L &= & 775 \text{ mm} \\ A_{g} &= & 2,980 \text{ mm}^{2} \end{array} \qquad \lambda = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} = & 0.376 \\ \hline Cl. 10.9.3.1 \qquad C_{r} &= \phi_{s} AF_{y} \left(1 + \lambda^{2n}\right)^{-1/n} : & -585 \text{ kN} \end{array} $
r _z =	94 mm	
-		Capacity of single angle does not govern built up member capacity

LIFT-BLAT

Compression Resu	ults					LIFT-BLAT
	L _y =	12,196 mm	ו			
	$L_z =$	12,196 mm	ו			
	K _y =	1.00		K' _y =	1.10	
	K _z =	1.00		K' _z =	1.01	
	Web	N/A				
	Flange b	167 mm				
	t	<u>11.1</u> mm 1.34	1			
	Lift Span Raised: $C_f =$	-732 kN				
	Lift Span Lowered: C _f =	-557 kN				
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90				
Cl. 10.9.1.3	Slenderness Ratio =	130	<	160	Cl. 10.9.1.3 Satisfie	d
Cl. 10.9.2.1	Width to Thickness Lin	nits				
	Flanges b/t =	15	<	44	Cl. 10.9.2.1 Satisfie	d
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$(2^{n})^{-1/n} =$	2,333 kN			
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_v (1 + \lambda)$		960 kN		verns	
Cl. 10.9.3.1	$\varphi_{r(z)} = \varphi_{s} \pi_{y} (1 - \pi)$	/	500 KN	00		
	$\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 0.386				
	$\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 1.416				
	C _r =	-960 kN	Co	mpressive	Capacity (Factored)	
	$C_r / C_f =$	1.31			Demand Ratio (C/D)	
Tension Results						LIFT-BLAT
	Lift Span Raised: T _f =	857 kN				
	Lift Span Lowered: T _f =	948 kN				
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95				
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=}$	2,605 kN	Gr	oss Section		
	- /					
	T _r =	2,605 kN	Те	nsile Capac	ity (Factored)	
	$T_r/T_f =$	2.75	Ca	pacity over	Demand Ratio (C/D)	

Member Location:Lift SpanMember Description:Portal Frame Bottom StrutMember ID:LIFT-PORT-BSTRS-Frame End Nodes:Node 134 to Node 133, Node 137 to Node 136

Member orientation (local axis):

z always corresponds with the vertical plane

y always corresponds to the horizontal plane

Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	Angles	Web	
	4x4x3/8	Plates	
Qty	4	2	
y _{dim} (mm)	102	10	
z _{dim} (mm)	102	609.6	
l _{y1} (x10 ⁶ mm ⁴)	1.84	180	
l _{z1} (x10 ⁶ mm ⁴)	1.84	0	
A _g (mm ²)	1,850	5,806	
		5,806	
r _{bar} (mm)	358	392	
z _{bar} (mm)	282	0	
l _y (x10 ⁶ mm ⁴)	596	360	
_z (x10 ⁶ mm ⁴)	958	1,786	

A _g =	19,013 _{mm²}	Local Check for Capacity of Single Angle Between Battens
		r = 20.0 mm
$I_y =$	956 x10 ⁶ mm ⁴	$L = \begin{array}{c} 622 \text{ mm} \\ \lambda = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} = 0.336 \end{array}$
I _z =	$2,743 \text{ x10}^{6} \text{ mm}^{4}$	$A_g = 4,753 \text{ mm}^2$ $V_{N-E_S}^{N-E_S}$
r _y =	224 mm	Cl. 10.9.3.1 $C_r = \phi_s A F_y (1 + \lambda^{2n})^{-1/n}$ -946 kN
r _z =	380 mm	
		Capacity of single angle does not govern built up member capacity

	MMM GROUP	
--	-----------	--

Compression Results

LIFT-PORT-BSTR

Compression Resu	ults			LIFT-POR	T-BSTR
	L _y =	15,545 mm			
	L _z =	7,772 mm			
	K _y =	1.00	K' _y =	1.03	
	K _z =	1.00	K' _z =	1.10	
	Web h	406 mm			
	b	<u>10</u> mm 102 mm			
	Flange t	9.5 mm			
	n =	1.34			
	Lift Span Raised: C _f =	-17 kN			
	Lift Span Lowered: C _f =	-40 kN			
Cl. 10.5.7 (c)	Compression: ϕ_s =	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	69	< 160	Cl. 10.9.1.3 Satisfied	
Cl. 10.9.2.1	Width to Thickness Lim	its			
	Web h/w =	42.6	< 44	Cl. 10.9.2.1 Satisfied	
	Flanges b/t =	11	< 44	Cl. 10.9.2.1 Satisfied	
Cl. 10.9.3.1 Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda^2)$ $C_{r(z)} = \phi_s A F_y (1 + \lambda^2)$		910 kN (871 kN	Governs	
	$\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}}$				
	$\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 0.243			
	C _r =	-2,910 kN	Compressiv	e Capacity (Factored)	
	$C_r / C_f =$	72.75	Capacity ov	er Demand Ratio (C/D)	
Tension Results				LIFT-POR	T-BSTR
	Lift Span Raised: T _f =	148 kN		2	
	Lift Span Lowered: $T_f =$	72 kN			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95			
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma} =$	4,154 kN	Gross Section	ЛТ	

T_r = 4,154 kN Tensile Capacity (Factored)

 $T_r/T_f = 28.07$ Capacity over Demand Ratio (C/D)

Member Location:Lift SpanMember Description:Portal Frame Top Lateral DiagonalMember ID:LIFT-PORT-LATDS-Frame End Nodes:Node 855 to Node 858, Node 859 to Node 855

Member orientation (local axis):

z always corresponds with the vertical plane

y always corresponds to the horizontal plane

Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	-		
F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	Angles	
	Angles 3.5x3.5x3/8	3
Qty	4	
y _{dim} (mm)	89	
z _{dim} (mm)	89	
$I_{y1} (x10^6 mm^4)$ $I_{z1} (x10^6 mm^4)$	1.19	
$I_{z1}(x10^{6}mm^{4})$	1.19	
$A_g (mm^2)$	1,600	

y _{bar} (mm)	38	
z _{bar} (mm)	362	
l _y (x10 ⁶ mm ⁴)	842	
$I_{z}(x10^{6}mm^{4})$	14	

$A_g =$	6,400 mm ²	Local Check for Capacity of Single Angle Between Battens
I _y = I _z =	842 $x10^{6}$ mm ⁴ 14 $x10^{6}$ mm ⁴	$m = 1 - 2\Gamma$
r _y =	363 mm	Cl. 10.9.3.1 $C_r = \phi_s A F_y (1 + \lambda^{2n})^{-1/n}$: -300 kN
r _z =	47 mm	Capacity of single angle does not govern built up member capacity

	MMM GROUP
--	-----------

Compression Results

Compression Res	ults				LIFT-PORT-LATD
	L _y =	6,283 mm			
	L _z =	6,283 mm			
	K _y =	1.00		K' _y =	1.10
	K _z =	1.00		K' _z =	1.01
	Web	N/A			
	Flange b	89 mm 9.5 mm			
	n =	1.34			
	Lift Span Raised: C _f =	-71 kN			
	Lift Span Lowered: C _f =	-77 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	133	<	160	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	nits			
	Flanges b/t =	9	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$(2^{n})^{-1/n} = 1$	L,311 kN		
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$	$(2^{n})^{-1/n} =$	497 kN	Go	overns
	$\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}}$				
	$\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 1.452			
	C _r =	-497 kN	Con	npressive	Capacity (Factored)
	$C_r / C_f =$	6.46	Сар	acity over	Demand Ratio (C/D)
Tension Results	Lift Span Raised: T _f =	91 kN			LIFT-PORT-LATD
	Lift Span Lowered: $T_f =$				
		66 kN			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	-	c	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=}$	1,398 kN	Gro	ss Section	
	T _r =	1,398 kN	Ten	sile Capac	ity (Factored)

 $T_r / T_f = 15.37$ Capacity over Demand Ratio (C/D)

Member Location:Lift SpanMember Description:Portal Frame Top Longitudinal MemberMember ID:LIFT-PORT-LATLS-Frame End Nodes:Node 122 to Node 850, Node 853 to Node 850, Node 850 to Node 854, Node 855 to Node 126

Member orientation (local axis):

z always corresponds with the vertical plane

y always corresponds to the horizontal plane

Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	Angles 3.5x3.5x3/8		
	3.5x3.5x3/8	3	
Qty	4		
y _{dim} (mm)	89		
z _{dim} (mm)	89		
$I_{y1} (x10^6 mm^4)$ $I_{z1} (x10^6 mm^4)$	1.19		
$I_{z1}(x10^{6}mm^{4})$	1.19		
A _g (mm ²)	1,600		

y _{bar} (mm)	279		
z _{bar} (mm)	362		
l _y (x10 ⁶ mm ⁴)	842		
$I_{z}(x10^{6}mm^{4})$	503		

A _g =	6,400 mm ²	Local Check for Capacity of Single Angle Between Battens
I _y = I _z =	842 x10 ⁶ mm ⁴ 503 x10 ⁶ mm ⁴	$A_{g} = 1,600 \text{ mm}^{2} \qquad r \sqrt{\pi^{2} E_{s}}$
r _y =	363 mm	Cl. 10.9.3.1 $C_r = \phi_s A F_y (1 + \lambda^{2n})^{-1/n}$: -300 kN
r _z =	280 mm	Capacity of single angle governs built up member capacity

	MMM GROUP	
--	-----------	--

MMM GROUP		Member Capacities					
Compression Re	sults		•		LIFT-PORT-LATL		
	L _y = L _z = K _y =	9,482 mm 9,482 mm 1.00		K' _y = K' _z =	1.10		
	K _z =	1.00 N/A		κ _z –	1.10		
	Flange b t	89 mm 9.5 mm					
	n = Lift Span Raised: C _f =	1.34 -99 kN					
Cl. 10.5.7 (c)	Lift Span Lowered: $C_f =$ Compression: $\varphi_s =$	-77 kN 0.90					
Cl. 10.9.1.3	Slenderness Ratio =	34	<	160	Cl. 10.9.1.3 Satisfied		
Cl. 10.9.2.1	Width to Thickness Lin	nits					
	Flanges b/t =	9	<	44	Cl. 10.9.2.1 Satisfied		
Cl. 10.9.3.1 Cl. 10.9.3.1	$C_{r(y)} = \phi_s AF_y (1 + \lambda)$ $C_{r(z)} = \phi_s AF_y (1 + \lambda)$	$\binom{2^n}{}^{-1/n} = 1$ $\binom{2^n}{}^{-1/n} = 1$.,283 kN .,245 kN	Ga	verns		
	$\lambda_{y} = \frac{K'_{y}L_{y}}{r_{y}} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}}$	= 0.310					
	$\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 0.401					
		-1,202 kN	-		Capacity (Factored)		
	$C_r / C_f =$	12.14	Сарас	city over	Demand Ratio (C/D)		
Tension Results					LIFT-PORT-LATL		
	Lift Span Raised: T _f =	92 kN					
	Lift Coop Lowerod, T -						

	Lift Span Raised: T _f =	92 kN	
	Lift Span Lowered: T _f =	66 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma} =$	1,398 kN	Gross Section
	T _r =	1,398 kN	Tensile Capacity (Factored)
	$T_r/T_f =$	15.20	Capacity over Demand Ratio (C/D)

Member Location:Lift SpanMember Description:Portal Frame Top Transverse MemberMember ID:LIFT-PORT-LATTS-Frame End Nodes:Node 851 to Node 853, Node 854 to Node 852, Node 858 to Node 856, Node 857 to Node 859

Member orientation (local axis):

z always corresponds with the vertical plane

y always corresponds to the horizontal plane

Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	Angles 3.5x3.5x3/٤		
	3.5x3.5x3/8		
Qty	4		
y _{dim} (mm)	89		
z _{dim} (mm)	89		
I _{y1} (x10 ⁶ mm ⁴)	1.19		
$I_{y1} (x10^6 mm^4)$ $I_{z1} (x10^6 mm^4)$	1.19		
$A_g (mm^2)$	1,600		

y _{bar} (mm)	32	
z _{bar} (mm)	362	
l _y (x10 ⁶ mm ⁴)	842	
$I_{z}(x10^{6}mm^{4})$	11	

A _g =	6,400 mm ²	Local Check for Capacity of Single Angle Between Battens
I _y = I _z =	842 $x10^{6}$ mm ⁴ 11 $x10^{6}$ mm ⁴	$r \pi^2 F$
r _y =	363 mm	Cl. 10.9.3.1 $C_r = \phi_s A F_y (1 + \lambda^{2n})^{-1/n} : -300 \text{ kN}$
r _z =	42 mm	
		Capacity of single angle does not govern built up member capacity

	ммм	GROUP
--	-----	-------

Compression Resu	llts		•			LIFT-PORT-LATT
	L _y =	1,964 mm	า			
	L _z =	1,964 mm	ı			
	K _y =	1.00		К' _у =	1.10	
	K _z =	1.00		K' _z =	1.07	
	Web	N/A				
	Flange b t	89 mm 9.5 mm				
	n =	1.34				
	Lift Span Raised: C _f =	-120 kN				
	Lift Span Lowered: C _f =	-93 kN				
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90				
Cl. 10.9.1.3	Slenderness Ratio =	47	<	160	Cl. 10.9.1.3 Sc	atisfied
Cl. 10.9.2.1	Width to Thickness Lin	nits				
	Flanges b/t =	9	<	44	Cl. 10.9.2.1 Sc	atisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s AF_y (1 + \lambda)$	$(2n)^{-1/n} =$	1,324 ki	J		
	$C_{r(z)} = \phi_s AF_v (1 + \lambda)$		1,164 kľ			
Cl. 10.9.3.1	$C_{r(z)} = \psi_s A r_y (1 + \lambda)$) –	1,104 KI	N G0	verns	
	$\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}}$					
	$\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 0.537				
	C _r =	-1,164 kN	C	ompressive (Capacity (Factored)	
	$C_r / C_f =$				Demand Ratio (C/D)	
		5.70				
Tension Results						LIFT-PORT-LATT
	Lift Span Raised: T _f =	113 kN				
	Lift Span Lowered: T _f =	82 kN				
Cl. 10.5.7 (d)	tension: φ _{s=}	0.95				
Cl. 10.8.2 (a)	$T_r = \varphi_s A_g F_{\gamma} =$	1,398 kN	G	ross Section		
0.1 10.0.2 (0)	·ι + ν· ϗ· γ =	1,000 KN	0			
	T _r =	1,398 kN	Te	ensile Capaci	ty (Factored)	
	$T_r/T_f =$	12.38	Ca	apacity over	Demand Ratio (C/D)	

Member Location:Lift SpanMember Description:Portal Frame Sway BracingMember ID:LIFT-PORT-SWBCS-Frame End Nodes:Node 34 to Node 135, Node 135 to Node 8, Node 21 to Node 138, Node 138 to Node 47,Node 133 to Node 139, Node 139 to Node 122, Node 122 to Node 140, Node 140 to Node 134, Node 141 to Node 136,Node 126 to Node 141, Node 142 to Node 126, Node 137 to Node 142

Member orientation (local axis):

z always corresponds with the vertical plane

y always corresponds to the horizontal plane

Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	Tee Section	า		
	WT4x24			
Qty	2			
y _{dim} (mm)	206			
z _{dim} (mm)	108			
$\frac{I_{y1}(x10^{6}mm^{4})}{I_{z1}(x10^{6}mm^{4})}$	2.85			
$I_{z1}(x10^{6}mm^{4})$	12.70			
A _g (mm ²)	4,548			

y _{bar} (mm)	0				
z _{bar} (mm)	368				
$I_y(x10^6 mm^4)$	1,235				
$I_{z}(x10^{6}mm^{4})$	25				

A _g =	9,097 _{mm²}	Local Check for Capacity of Tee Between Battens
	1,235 x10 ⁶ mm ⁴ 25 x10 ⁶ mm ⁴ 368 mm	
$r_z =$	53 mm	Capacity of single tee does not govern built up member capacity

	MMM GROUP
--	-----------

		iviember (apaciti	les	
Compression Res	ults				LIFT-PORT-SWBC
	L _y =	4,757 mm			
	L _z =	9,514 mm			
	K _y =	1.00		K' _y =	1.10
	K _z =	1.00		K' _z =	1.00
	h Web	108 mm			
	W	<u>10</u> mm			
	Flange b t	89 mm 9.5 mm			
	n =	1.34			
	Lift Span Raised: C _f =	0 kN			
	Lift Span Lowered: C _f =	0 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	180	>	160	Cl. 10.9.1.3 NOT Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	its			
	Web h/w =	10.6	<	44	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	9	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda^2)$	$^{n})^{-1/n} = N/A$	kN	l	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda^2)$		kN	l	
	$\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 0.153			
	$\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	= 1.953			
	C _r =	N/A kN	Co	ompressive	Capacity (Factored)
	$C_r / C_f =$	N/A	Ca	pacity over	Demand Ratio (C/D)
Tension Results					LIFT-PORT-SWBC

Tension Results			LIFT-PORT-SWBC
	Lift Span Raised: T _f =	118 kN	
	Lift Span Lowered: T _f =	98 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=}$	1,988 kN	Gross Section
	T _r =	1,988 kN	Tensile Capacity (Factored)
	$T_r/T_f =$	16.84	Capacity over Demand Ratio (C/D)

Member Location:Lift SpanMember Description:Portal Frame Vertical BracingMember ID:LIFT-PORT-SWBVS-Frame End Nodes:Node 122 to Node 135, Node 138 to Node 126

Member orientation (local axis):

z always corresponds with the vertical plane

y always corresponds to the horizontal plane

Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	-		
F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

·	Angles				
	Angles 3.5x3.5x3/8	/8			
Qty	4				
y _{dim} (mm)	89				
z _{dim} (mm)	89				
I _{y1} (x10 ⁶ mm ⁴)	1.19				
$I_{y1} (x10^{6} mm^{4})$ $I_{z1} (x10^{6} mm^{4})$	1.19				
A _g (mm ²)	1,600				

y _{bar} (mm)	279	
z _{bar} (mm)	362	
I _y (x10 ⁶ mm ⁴)	842	
$I_{z}(x10^{6}mm^{4})$	503	

A _g =	6,400 mm²	Local Check for Capacity of Single Angle Between Battens
$I_y =$ $I_z =$ $r_y =$	363 mm	$ \begin{array}{c} r = & 17.4 \text{ mm} \\ L = & 533 \text{ mm} \\ A_g = & 1,600 \text{ mm}^2 \end{array} \qquad \lambda = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} = & 0.330 \\ \hline Cl. 10.9.3.1 \qquad C_r = \phi_s AF_y (1 + \lambda^{2n})^{-1/n} : & -319 \text{ kN} \end{array} $
r _z =	280 mm	Capacity of single angle governs built up member capacity

	MMM GROUP	
--	-----------	--

Compression Res	ults				LIFT-PORT-SWBV
	L _y =	5,487 mm			
	L _z =	5,487 mm			
	K _y =	1.00		K' _y =	1.10
	K _z =	1.00		K' _z =	1.10
	Web	N/A			
	Flange b	89 mm 9.5 mm			
	n =	1.34			
	Lift Span Raised: C _f =	0 kN			
	Lift Span Lowered: C _f =	0 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	20	<	160	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lin	nits			
	Flanges b/t =	9	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$^{2n})^{-1/n} =$	1,315 kN		
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$	$^{2n})^{-1/n} =$	1,305 kN	Go	verns
	$\lambda_{y} = \frac{K'_{y}L_{y}}{r_{y}} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}}$ $\lambda_{z} = \frac{K'_{z}L_{z}}{r_{z}} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}}$				
	C _r =	-1,276 kN	Co	mpressive	Capacity (Factored)
		N/A		-	Demand Ratio (C/D)
Tension Results					LIFT-PORT-SWBV
	Lift Span Raised: T _f =	36 kN			
	Lift Span Lowered: T _f =	45 kN			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95			
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=1}$	1,398 kN	Gr	oss Section	
	T _r =	1,398 kN	Te	nsile Capac	ity (Factored)

Member Location:Lift SpanMember Description:Sway Frame Bottom StrutMember ID:LIFT-SWAY-BSTRS-Frame End Nodes:Node 119 to Node 120, Node 53 to Node 54, Node 80 to Node 81, Node 82 to Node 83,Node 84 to Node 85, Node 86 to Node 87, Node 88 to Node 89, Node 90 to Node 91, Node 92 to Node 93,Node 77 to Node 78, Node 123 to Node 124,

Member orientation (local axis):

z always corresponds with the vertical plane

y always corresponds to the horizontal plane

Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
$F_u =$	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	•		
	Channels		
	12x25		
Qty	2		
y _{dim} (mm)	77		
z _{dim} (mm)	305		
l _{y1} (x10 ⁶ mm ⁴)	59.90		
$\frac{I_{y1}(x10^{6}mm^{4})}{I_{z1}(x10^{6}mm^{4})}$ $A_{g}(mm^{2})$	1.85		
$A_{g} (mm^{2})$	4,720		

y _{bar} (mm)	250	
z _{bar} (mm)	0	
I _y (x10 ⁶ mm ⁴)	120	
$I_{z}(x10^{6}mm^{4})$	592	

A _g =	9,440 mm ²	Local Check for Capacity of Single Channel Between Battens		
		r = 19.8 mm		
$I_y =$	$120 \text{x10}^{6} \text{ mm}^{4}$	$L = 533 \text{ mm} \qquad \lambda = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} = 0.291$		
I _z =	592 x10 ⁶ mm⁴	$A_{g} = 4,720 \text{ mm}^{2}$ $r \sqrt{\pi^{2}E_{s}}$		
r _y =	113 mm	Cl. 10.9.3.1 $C_r = \phi_s A F_y (1 + \lambda^{2n})^{-1/n}$: -951 kN		
r _z =	250 mm			
		Capacity of single channel does not govern built up member capacity		

	MMM GROUP
--	-----------

Burlington Lift Bridge

Member Capacities Compression Results LIFT-SWAY-BSTR $L_y =$ 7,772 mm $L_z =$ 15,545 mm K'_v = $K_v =$ 1.00 1.03 K'₇ = 1.00 1.04 $K_z =$ h 280 mm Web 10 mm w 67 mm b Flange 12.7 mm t 1.34 n = Lift Span Raised: C_f = -22 kN Lift Span Lowered: C_f = -36 kN Compression: $\phi_s =$ Cl. 10.5.7 (c) 0.90 Cl. 10.9.1.3 Slenderness Ratio = 69 < 160 Cl. 10.9.1.3 Satisfied Width to Thickness Limits Cl. 10.9.2.1 Web h/w =28.5 Cl. 10.9.2.1 Satisfied < 44 b/t = 5 Cl. 10.9.2.1 Satisfied Flanges < 44 $C_{r(y)} = \phi_s A F_y (1 + \lambda^{2n})^{-1/n} =$ Cl. 10.9.3.1 1,449 kN Governs $C_{r(z)} = \phi_{s} A F_{y} (1 + \lambda^{2n})^{-1/n} =$ Cl. 10.9.3.1 1,538 kN $\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}} = 0.768$ $\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}} = 0.696$

C _r =	-1,449 kN	Compressive Capacity (Factored)
$C_r / C_f =$	40.25	Capacity over Demand Ratio (C/D)

Tension Results

I IFT-SW/AY-BSTR

rension results			LIFT-SWAT-BSTR
	Lift Span Raised: T _f =	69 kN	
	Lift Span Lowered: T _f =	70 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma} =$	2,063 kN	Gross Section
	T _r =	2,063 kN	Tensile Capacity (Factored)
	$T_r/T_f =$	29.47	Capacity over Demand Ratio (C/D)

Member Location: Lift Span Member Description: Sway Frame Cross Sway Bracing Member ID: LIFT-SWAY-SWBC

S-Frame End Nodes: Node 54 to Node 101, Node 101 to Node 53, Node 81 to Node 103, Node 103 to Node 80, Node 83 to Node 105, Node 105 to Node 82, Node 85 to Node 107, Node 107 to Node 84, Node 87 to Node 109, Node 109 to Node 86, Node 89 to Node 111, Node 111 to Node 88, Node 91 to Node 113, Node 113 to Node 90, Node 93 to Node 115, Node 115 to Node 92, Node 78 to Node 117, Node 117 to Node 77, Node 37 to Node 876, Node 876 to Node 102, Node 102 to Node 877, Node 877 to Node 11, Node 11, Node 35 to Node 878, Node 878 to Node 104, Node 104 to Node 879, Node 879 to Node 9, Node 38 to Node 880, Node 880 to Node 106, Node 106 to Node 881, Node 881 to Node 12, Node 36 to Node 882, Node 882 to Node 108, Node 108 to Node 883, Node 883 to Node 10, Node 52 to Node 884, Node 884 to Node 110, Node 110 to Node 885, Node 885 to Node 26, Node 49 to Node 886, Node 886 to Node 112, Node 112 to Node 887, Node 887 to Node 23, Node 51 to Node 888, Node 888 to Node 114, Node 114 to Node 889, Node 889 to Node 25, Node 48 to Node 890, Node 890 to Node 116, Node 116 to Node 891, Node 891 to Node 22, Node 50 to Node 892, Node 892 to Node 118, Node 118 to Node 893, Node 893 to Node 24 *Member orientation (local axis): z always corresponds with the vertical plane*

y always corresponds to the horizontal plane

Material Properties

$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2	Section properties for all built up members
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2	are calculated about the nodal centre of
E _s =	200,000	MPa		the member (refer to Section 3.3 of the
G _s =	77,000	MPa		report for a full description)

Built Up Section Properties				
	Tee Sectior	1		
	WT4x24			
Qty	2			
y _{dim} (mm)	206			
z _{dim} (mm)	108			
$I_{y1}(x10^{6}mm^{4})$	2.85			
$I_{z1}(x10^{6}mm^{4})$	12.70			
A _g (mm ²)	4,548			
y _{bar} (mm)	0			
z _{bar} (mm)	247			
$I_y(x10^6 mm^4)$	560			
$I_{z}(x10^{6}mm^{4})$	25			
A _g =	9,097 mm²	Local Check for Capacity of Single Tee Between Battens		
I _y = I _z =	$\frac{560 \text{ x10}^{6} \text{ mm}^{4}}{25 \text{ x10}^{6} \text{ mm}^{4}}$	r = 25.0 mm L = 533 mm A _g = 4,548 mm ² $\lambda = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} = 0.230$		
r _y = r _z =	248 mm 53 mm	Cl. 10.9.3.1 $C_r = \phi_s A F_y (1 + \lambda^{2n})^{-1/n}$ -928 kN		
I _Z –	55 11111	Capacity of single angle does not govern built up member capacity		

	MMM GROUP
--	-----------

Burlington Lift Bridge

Member Capacities Compression Results LIFT-SWAY-SWBC $L_y =$ 5,203 mm $L_z =$ 10,405 mm K'_v = $K_v =$ 1.00 1.10 K'₇ = $K_z =$ 1.00 1.00 h 108 mm Web 10 mm w b 89 mm Flange 9.5 mm t 1.34 n = Lift Span Raised: C_f = 0 kN Lift Span Lowered: C_f = 0 kN Compression: $\phi_s =$ Cl. 10.5.7 (c) 0.90 Cl. 10.9.1.3 Slenderness Ratio = 197 > 160 Cl. 10.9.1.3 NOT Satisfied Width to Thickness Limits Cl. 10.9.2.1 Web h/w =10.6 Cl. 10.9.2.1 Satisfied 44 < b/t = Flanges 9 < 44 Cl. 10.9.2.1 Satisfied $C_{r(v)} = \phi_s A F_v (1 + \lambda^{2n})^{-1/n} =$ Cl. 10.9.3.1 N/A kΝ $C_{r(z)} = \phi_{s} A F_{v} (1 + \lambda^{2n})^{-1/n} =$ N/A Cl. 10.9.3.1 kΝ $\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}} = 0.249$ $\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}} = 2.134$ C_r = N/A kΝ Compressive Capacity (Factored) $C_r / C_f =$ N/A Capacity over Demand Ratio (C/D)

Tension Results

LIFT-SWAY-SWBC

1 choin hesuits			
	Lift Span Raised: T _f =	82 kN	
	Lift Span Lowered: T _f =	87 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma} =$	1,988 kN	Gross Section
	T _r =	1,988 kN	Tensile Capacity (Factored)
	$T_r/T_f =$	22.85	Capacity over Demand Ratio (C/D)

Member Location:Lift SpanMember Description:Sway Frame Vertical BracingMember ID:LIFT-SWAY-SWBVS-Frame End Nodes:Node 121 to Node 122, Node 125 to Node 126, Node 101 to Node 102, Node 103 to Node 104,Node 105 to Node 106, Node 107 to Node 108, Node 109 to Node 110, Node 111 to Node 112, Node 113 to Node 114,Node 115 to Node 116, Node 117 to Node 118

Member orientation (local axis):

z always corresponds with the vertical plane

y always corresponds to the horizontal plane

Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

·	Tee Section	
	WT4x24	
Qty	2	
y _{dim} (mm)	206	
z _{dim} (mm)	108	
I _{y1} (x10 ⁶ mm ⁴)	2.85	
$\frac{I_{y1} (x10^{6} mm^{4})}{I_{z1} (x10^{6} mm^{4})}$ $A_{g} (mm^{2})$	12.70	
A _g (mm ²)	4,548	

y _{bar} (mm)	0	
z _{bar} (mm)	247	
$I_y(x10^6 mm^4)$	561	
$I_{z}(x10^{6}mm^{4})$	25	

$A_g =$	9,097 _{mm²}	Local Check for Capacity of Single Tee Between Battens
I _y = I _z =	561 $_{x10}^{6} \mathrm{mm}^{4}$ 25 $x10^{6} \mathrm{mm}^{4}$	$ \begin{array}{ccc} r = & 25.0 \text{ mm} \\ L = & 533 \text{ mm} \\ A_{g} = & 4,548 \text{ mm}^{2} \end{array} \qquad \lambda = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} = & 0.230 \end{array} $
r _y =	248 mm	Cl. 10.9.3.1 $C_r = \phi_s A F_y (1 + \lambda^{2n})^{-1/n}$: -928 kN
r _z =	53 mm	Capacity of single angle does not govern built up member capacity

	MMM GROUP
--	-----------

Burlington Lift Bridge

MMM GROUP		Member Capacities			WIWIW Project No. 521500		
Compression Re	esults		-		LIFT-SWAY-SW	'BV	
	L _y =	6,918 mm					
	$L_z =$	6,918 mm					
	K _y =	1.00		K' _y =	1.10		
	K _z =	1.00		K' _z =	1.01		
	Web h	108 mm					
	W	10 mm					
	Flange b	89 mm 9.5 mm					
	n =	<u> </u>					
	Lift Span Raised: C _f =	-20 kN					
	Lift Span Lowered: C _f =	-46 kN					
Cl. 10.5.7 (c)	Compression: ϕ_s =	0.90					
Cl. 10.9.1.3	Slenderness Ratio =	131	<	160	Cl. 10.9.1.3 Satisfied		
Cl. 10.9.2.1	Width to Thickness Lim	nits					
	Web h/w =	10.6	<	44	Cl. 10.9.2.1 Satisfied		
	Flanges b/t =	9	<	44	Cl. 10.9.2.1 Satisfied		
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda^2)$	$(2^{n})^{-1/n} =$	1,814 kN				
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda^2)$	$(2^{n})^{-1/n} =$	726 kN	Go	overns		
	$\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 0.331					
	$\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 1.426					
	C _r =	-726 kN	Con	npressive	Capacity (Factored)		
	$C_r / C_f =$		Сар	acity over	Demand Ratio (C/D)		

Tension Results			LIFT-SWAY-SWBV
	Lift Span Raised: T _f =	17 kN	
	Lift Span Lowered: T _f =	23 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	1,988 kN	Gross Section
	T _r =	1,988 kN	Tensile Capacity (Factored)
	$T_r/T_f =$	86.42	Capacity over Demand Ratio (C/D)

Member Location:Lift SpanMember Description:Sway Frame Top StrutMember ID:LIFT-SWAY-TSTRS-Frame End Nodes:Node 8 to Node 34, Node 11 to Node 37, Node 9 to Node 35, Node 12 to Node 38,Node 10 to Node 36, Node 26 to Node 52, Node 23 to Node 49, Node 25 to Node 51, Node 22 to Node 48,Node 24 to Node 50, Node 21 to Node 47

Member orientation (local axis):

z always corresponds with the vertical plane

y always corresponds to the horizontal plane

Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
	F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
	E _s =	200,000	MPa	
(G _s =	77,000	MPa	

	Angles 5x5x3/8	
	5x5x3/8	
Qty	4	
y _{dim} (mm)	127	
z _{dim} (mm)	127	
$I_{y1}(x10^{6}mm^{4})$	3.64	
z _{dim} (mm) I _{y1} (x10 ⁶ mm ⁴) I _{z1} (x10 ⁶ mm ⁴)	3.64	
$A_g (mm^2)$	2,330	

y _{bar} (mm)	231	
z _{bar} (mm)	352	
z _{bar} (mm) I _y (x10 ⁶ mm ⁴)	1,170	
$I_{z}(x10^{6}mm^{4})$	514	

A _g =	9,320 _{mm} ²	Local Check for Capacity of Single Angle Between Battens
_		$r = 25.1 \text{ mm}$ KL E_{1}
$I_y =$	1,170 x10 ⁶ mm ⁴	
I _z =	514 x10 ⁶ mm ⁴	$A_g = 2,330 \text{ mm}^2$ $r \sqrt{\pi^2 E_s}$
r _y =	354 mm	Cl. 10.9.3.1 $C_r = \phi_s A F_y (1 + \lambda^{2n})^{-1/n}$: -464 kN
r _z =	235 mm	
		Capacity of single angle does not govern built up member capacity

11	FT-	SИ	IA'	Y-7	57	٢R

Compression Resu	ılts					LIFT-SWAY-TS	TR
		L _y =	7,773 mn	n			
		L _z =	7,773 mn	n			
		K _y =	1.00		K' _y =	1.10	
		K _z =	1.00		K' _z =	1.10	
	Web	_	N/A				
	Flange	b t	127 mn 9.5 mn				
		n =	1.34				
	Lift Span Rais	ed: C _f =	-323 kN				
	Lift Span Lower	ed: C _f =	-278 kN				
Cl. 10.5.7 (c)	Compression	: φ _s =	0.90				
Cl. 10.9.1.3	Slenderness F	Ratio =	33	<	160	Cl. 10.9.1.3 Satisfied	
Cl. 10.9.2.1	Width to Thic	kness Lim	nits				
	Flanges	b/t =	13	<	44	Cl. 10.9.2.1 Satisfied	
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A$			1,891	kN		
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A$	$F_y (1 + \lambda^2)$	$(2^{n})^{-1/n} =$	1,819	kN G	overns	
	$\lambda_y = \frac{K'_y L}{r_y}$ $\lambda_z = \frac{K'_z L}{r_z}$	•					
		C _r =	-1,819 kN		Compressive	Capacity (Factored)	
			5.63		-	r Demand Ratio (C/D)	
Tension Results						LIFT-SWAY-TS	TR
	Lift Span Rais	-	302 kN				
	Lift Span Lowe	-	212 kN				
Cl. 10.5.7 (d)		on: ϕ_{s}	0.95				
Cl. 10.8.2 (a)	T _r =	$\phi_s A_g F_{y=}$	2,036 kN		Gross Sectio	n	
		T _r =	2,036 kN		Tensile Capa	city (Factored)	

 $T_{r}/T_{f} = 6.74$ Capacity over Demand Ratio (C/D)

Member Location: Lift Span

Member Description: Diaphragms (Original on highway side) Member ID: C12X20.7

S-Frame End Nodes: 311-313, 313-315, 315-317, 317-319, 319-321, 321-300, 312-314, 314-316, 316-318, 318-320, 320-322, 322-302, 335-337, 337-339, 339-341, 341-343, 343-345, 345-324, 336-338, 338-340, 340-342, 342-344, 344-346, 346-326, 359-361, 361-363, 363-365, 365-367, 367-369, 369-348, 360-362, 362-364, 364-366, 366-368, 368-370, 370-350, 383-385, 385-387, 387-389, 389-391, 391-393, 393-372, 384-386, 386-388, 388-390, 390-392, 392-394, 394-374, 407-402, 409-411, 411-413, 413-415, 415-417, 417-396, 408-410, 410-412, 412-414, 414-416, 416-418, 418-398, 431-433, 433-435, 435-437, 437-439, 439-441, 441-420, 432-434, 434-436, 436-438, 438-440, 440-442, 442-422, 455-457, 457-459, 459-461, 461-463, 463-465, 465-444, 456-458, 458-460, 460-462, 462-464, 464-466, 466-446, 479-481, 481-483, 483-485, 485-487, 487-489, 489-468, 480-482, 482-484, 484-486, 486-488, 488-490, 490-470, 503-505, 505-507, 507-509, 509-511, 511-515, 513-492, 504-506, 506-508, 508-510, 510-512, 512-514, 514-494, 527-529, 529-531, 531-533, 533-535, 535-537, 537-516, 528-530, 530-532, 532-534, 534-536, 536-538, 538-518, 551-553, 553-557, 557-557, 557-559, 559-561, 561-540, 552-554, 556-558, 558-560, 560-562, 562-542, 575-577, 577-579, 579-581, 581-583, 583-585, 585-564, 576-578, 578-580, 580-582, 582-584, 584-586, 586-566

Member orientation (local axis): z always corresponds with the vertical plane y always corresponds to the horizontal plane

Material Properties

$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
$F_u =$	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description).

Built Up Section Properties

	Channel
	12x20.7
Qty	1
y _{dim} (mm)	74
z _{dim} (mm)	305
$\frac{z_{dim} (mm)}{I_{y1} (x10^6 mm^4)}$ $\frac{1}{I_{z1} (x10^6 mm^4)}$	53.50
$I_{z1}(x10^{6}mm^{4})$	1.59
A _g (mm ²)	3,920
y _{bar} (mm)	0
z. (mm)	0

z _{bar} (mm)	0	
I_y (x10 ⁶ mm ⁴)	54	
$I_{z}(x10^{6}mm^{4})$	2	

 $A_{g} = 3,920 \text{ mm}^{2}$

 $I_v = 54 \text{ x}10^6 \text{ mm}^4$

 $I_z = 2 \times 10^6 \text{ mm}^4$

r_v = 117 mm

r_z = 20.1 mm

Burlington Lift Bridge

MMM GROUP		Member Capacities			MMM Project No. 32130		
Compression Re	sults					C12X20.7	
.	L _y = L _z = K _y = K _z =	1,295 mm 1,295 mm 1.00 1.00		K' _y = K' _z =	1.10 1.04		
	Web	N/A		K _Z =	1.04		
	Flange b t	74 mm 12.7 mm					
	n = Lift Span Raised: C _f =	1.34 -12 kN					
	Lift Span Lowered: C _f =	-137 kN					
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90					
Cl. 10.9.1.3	Slenderness Ratio =	64	<	120	Cl. 10.9.1.3 Satisfied	1	
Cl. 10.9.2.1	Width to Thickness Lim	nits					
	Flanges b/t =	6	<	44	Cl. 10.9.2.1 Satisfied	1	
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$		809 kN				
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$	$^{2n})^{-1/n} =$	627 kN	Go	overns		
	$\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}}$ $\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 0.132 = 0.719					
	C _r =	-627 kN	Com	pressive	Capacity (Factored)		
	$C_r / C_f =$	4.58	Сара	acity over	Demand Ratio (C/D)		
Tension Results						C12X20.7	
	Lift Span Raised: T _f =	13 kN					
	Lift Span Lowered: T _f =	644 kN					
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95					
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma =}$	857 kN	Gros	s Section	I		

T_r = 857 kN **Tensile Capacity (Factored)**

 $T_{r}/T_{f} = 1.33$ Capacity over Demand Ratio (C/D)

MMM GROUP

Burlington Lift Bridge Member Capacities

Member Location:Approach and Tower SpansMember Description:Diaphragms (Original on highway side)Member ID:C310X37

S-Frame End Nodes: 299-303, 303-305, 305-307, 307-309, 309-311, 301-304, 304-306, 306-308, 308-310, 310-312, 323-327, 327-329, 329-331, 331-333, 333-335, 325-328, 328-330, 330-332, 332-334, 334-336, 347-351, 351-353, 353-355, 355-357, 357-359, 349-352, 352-354, 354-356, 356-358, 358-360, 371-375, 375-377, 377-379, 379-381, 381-383, 373-376, 376-378, 378-380, 380-382, 382-384, 395-399, 399-401, 401-403, 403-405, 405-407, 397-400, 400-402, 402-404, 404-406, 406-408, 419-423, 423-425, 425-427, 427-429, 429-431, 421-424, 424-426, 426-428, 428-430, 430-432, 443-447, 447-449, 449-451, 451-453, 453-455, 445-448, 448-450, 450-452, 452-454, 454-456, 467-471, 471-473, 473-475, 475-477, 477-479, 469-472, 472-474, 474-476, 476-478, 478-480, 491-495, 495-497, 497-499, 499-501, 501-503, 493-496, 496-498, 498-500, 500-502, 502-504, 515-519, 519-521, 521-523, 523-525, 525-527, 517-520, 520-522, 522-524, 524-526, 526-528, 539-543, 543-545, 545-547, 547-549, 549-551, 541-544, 544-546, 546-548, 548-550, 550-552, 563-567, 567-569, 569-571, 571-573, 573-575, 565-568, 568-570, 570-572, 572-574, 574-576,

Member orientation (local axis): z always corresponds with the vertical plane

y always corresponds to the horizontal plane

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2	Section properties for all built up members
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2	are calculated about the nodal centre of
E _s =	200,000	MPa		the member (refer to Section 3.3 of the
G _s =	77,000	MPa		report for a full description)

Built Up Section Properties

	Channel		
	310x37		
Qty	1		
y _{dim} (mm)	77		
z _{dim} (mm)	305		
I _{y1} (x10 ⁶ mm ⁴) I _{z1} (x10 ⁶ mm ⁴)	59.90		
	1.85		
A _g (mm ²)	4,720		
y _{bar} (mm)	0		
z _{bar} (mm)	0		

$I_y(x10^6 \text{mm}^4)$ 60	ı)	z _{bar} (mm)
L (40 ⁶ 4) 2	າm ⁴)	l _y (x10 ⁶ mm ⁴
$I_z(X10 \text{ mm})$ 2	וm ⁴)	$I_z (x10^6 mm^4)$

 $A_{g} = 4,720 \text{ mm}^{2}$

 $I_y = 60 \text{ x10}^6 \text{ mm}^4$

 $I_z = 2 \times 10^6 \text{ mm}^4$

- r_y = 113 mm
- r_z = 19.8 mm

	MMM GROUP
--	-----------

	ININ GROUP	Member	Capacities			
Compression Resu	lts					C310X37
	Ly					
	L _z					
	К _у			K' _y =	1.10	
	Kz	= 1.00		K' _z =	1.05	
	Web	N/A				
	Flange	b 77 mm t 12.7 mm				
	n :					
	Lift Span Raised: C _f					
	Lift Span Lowered: C _f					
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90				
Cl. 10.9.1.3	Slenderness Ratio =	57	<	120	Cl. 10.9.1.3 Satisfied	1
Cl. 10.9.2.1	Width to Thickness	Limits				
	Flanges b/t =	= 6	<	44	Cl. 10.9.2.1 Satisfied	1
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 - $	$+\lambda^{2n})^{-1/n} =$	975 kN			
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + $	$+\lambda^{2n})^{-1/n} =$	800 kN	Go	overns	
	$\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2}}$	$\frac{1}{E_s} = 0.119$				
	$\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 L_z}}$	$\frac{1}{E_s} = 0.644$				
	C _r	= -800 kN	Com	pressive	Capacity (Factored)	
	C _r / C _f		Capa	acity over	Demand Ratio (C/D)	
Tension Results						C310X37
	Lift Span Raised: T _f					
	Lift Span Lowered: T _f					
Cl. 10.5.7 (d)	tension: φ					
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_y$,₌ 1,031 kN	Gros	ss Section		
	T,	= 1,031 kN	Tens	sile Capac	ity (Factored)	

 $T_r/T_f = 1.67$ Capacity over Demand Ratio (C/D)

Member Location:Lift SpanMember Description:Traction Bracing EndsMember ID:2L3-1/2x3-1/2x3/8S-Frame End Nodes:Node 798 to Node 799, Node 794 to Node 800, Node 806 to Node 807, Node 802 to Node 808,Node 814 to Node 815, Node 810 to Node 816, Node 822 to Node 823, Node 818 to Node 824, Node 830 to Node 831,Node 826 to Node 832, Node 838 to Node 839, Node 834 to Node 840, Node 846 to Node 847, Node 842 to Node 848

Member orientation (local axis):

z always corresponds with the vertical plane

y always corresponds to the horizontal plane

Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Г

	Angles	
	Angles 3-1/2x3-1/2x3	3/8
Qty	2	
y _{dim} (mm)	89	
z _{dim} (mm)	89	
$I_{y1}(x10^{6}mm^{4})$	1.19	
z_{dim} (mm) I _{y1} (x10 ⁶ mm ⁴) I _{z1} (x10 ⁶ mm ⁴)	1.19	
A _g (mm ²)	1,600	

y _{bar} (mm)	38	
z _{bar} (mm)	0	
l _y (x10 ⁶ mm ⁴)	2	
$I_{z}(x10^{6}mm^{4})$	7	

A _g =	3,200 _{mm²}	Local Check for Capacity of Single Angle
I _y = I _z =	2.380 $_{\rm X10^{6}}$ mm ⁴ 7.099 $_{\rm X10^{6}}$ mm ⁴	$ \begin{array}{ccc} r = & 17.4 \text{ mm} \\ L = & 600 \text{ mm} \\ A_{g} = & 1,600 \text{ mm}^{2} \end{array} \qquad \lambda = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} = & 0.371 \end{array} $
r _y =	27 mm	Cl. 10.9.3.1 $C_r = \phi_s A F_y (1 + \lambda^{2n})^{-1/n}$ -315 kN
r _z =	47 mm	Capacity of single angle does not govern built up member capacity

	MMM GROUP
--	-----------

2L3-1/2x3-1/2x3/8

.	In .				212.4	
Compression Resu	L _y =	1,961 mm	1		2L3-1/	2x3-1/2x3/8
	$L_y = L_z =$	1,961 mm				
		1.00	•	K' _y =	1.03	
	, K _z =	1.00		к' _z =	1.08	
	Web	N/A				
	Flange b	89 mm				
	t	<u>9.5</u> mm 1.34	I			
	Lift Span Raised: C _f =	-80 kN				
	Lift Span Lowered: $C_f =$	-220 kN				
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90				
Cl. 10.9.1.3	Slenderness Ratio =	72	<	120	Cl. 10.9.1.3 Satisfie	d
Cl. 10.9.2.1	Width to Thickness Lim	nits				
	Flanges b/t =	9	<	44	Cl. 10.9.2.1 Satisfie	d
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$(2^{n})^{-1/n} =$	478 kN	Go	verns	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$	$^{2n})^{-1/n} =$	599 kN			
	$\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}}$ $\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}}$					
	C _r =	-478 kN	Со	mpressive	Capacity (Factored)	
	$C_r / C_f =$	2.17		•	Demand Ratio (C/D)	
Tension Results					2L3-1/	′2x3-1/2x3/8
	Lift Span Raised: T _f =	83 kN				
	Lift Span Lowered: T _f =	65 kN				
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95				
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	699 kN	Gro	oss Section		
	T _r =	699 kN	Ter	nsile Capac	ity (Factored)	
	$T_r/T_f =$	8.42	Car	oacity over	Demand Ratio (C/D)	

Member Location:Lift SpanMember Description:Traction Bracing End Diagonals and End Longitudinal MemberMember ID:2L4x4x3/8S-Frame End Nodes:Node 794 to Node 795, Node 797 to Node 798, Node 794 to Node 801, Node 802 to Node 803,
Node 805 to Node 806, Node 802 to Node 809, Node 810 to Node 811, Node 813 to Node 814, Node 810 to Node 817,
Node 818 to Node 819, Node 821 to Node 822, Node 818 to Node 825, Node 826 to Node 827, Node 829 to Node 830,
Node 826 to Node 833, Node 834 to Node 835, Node 837 to Node 838, Node 834 to Node 842, Node 845,
Node 845 to Node 846, Node 842

Member orientation (local axis): z always corresponds with the vertical plane y always corresponds to the horizontal plane Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Dant op beetien		
	Angles	
	4x4x3/8	
Qty	2	
y _{dim} (mm)	102	
z _{dim} (mm)	102	
$I_{y1}(x10^{6}mm^{4})$	1.84	
$I_{z1}(x10^{6}mm^{4})$	1.84	
A _g (mm ²)	1,850	
y _{bar} (mm)	42	
z _{bar} (mm)	0	
$I_y(x10^6 mm^4)$	4	
$I_{z}(x10^{6}mm^{4})$	10	
A _g =	3,700 _{mm²}	Local Check for Capacity of Single Angle r = 20.0 mm
$I_y =$	3.680 x10 ⁶ mm ⁴	L = 1,000 mm $\lambda = \frac{KL}{2\pi} = 0.539$
	$0.114 \text{ x}10^6 \text{ mm}^4$	$ \begin{array}{ccc} r = & 20.0 \text{ mm} \\ L = & 1,000 \text{ mm} \\ A_{g} = & 1,850 \text{ mm}^{2} \end{array} \qquad \lambda = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} = & 0.539 \end{array} $
r _y =	32 mm	Cl. 10.9.3.1 $C_r = \phi_s A F_y (1 + \lambda^{2n})^{-1/n}$: -336 kN
r _z =	52 mm	Capacity of single angle does not govern built up member capacity

	MMM GROUP	
--	-----------	--

Compression Basult

Compression Resu	lts		2	2L4x4x3/8
	L _y =	3,418 mm		
	L _z =	3,418 mm		
	K _y =	1.00	K' _y = 1.01	
	K _z =	1.00	K' _z = 1.03	
	Web	N/A		
	Flange b	102 mm		
	t	9.5 mm		
	n =	1.34		
	Lift Span Raised: C _f =	-138 kN		
	Lift Span Lowered: C _f =	-304 kN		
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90		
Cl. 10.9.1.3	Slenderness Ratio =	108	< 120 Cl. 10.9.1.3 Satisfied	
Cl. 10.9.2.1	Width to Thickness Lim	nits		
	Flanges b/t =	11	< 44 Cl. 10.9.2.1 Satisfied	
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$(2^{n})^{-1/n} =$	378 kN Governs	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_v (1 + \lambda^2)$		586 kN	
CI. 10.9.9.1	$\varphi_{r(z)} = \varphi_{s} \cdot \cdot$	/		
	$\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}}$			
	$\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 0.730		
	C _r =	-378 kN	Compressive Capacity (Factored)	
	$C_r / C_f =$		Capacity over Demand Ratio (C/D)	
	$\mathbf{c}_{\mathbf{r}}$ / $\mathbf{c}_{\mathbf{f}}$	1.24		
Tension Results			2	2L4x4x3/8
	Lift Span Raised: T _f =	75 kN		<u> </u>
	Lift Span Lowered: T _f =	143 kN		
Cl. 10.5.7 (d)	tension: $\varphi_{s=}$	0.95		
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{v}$	808 kN	Gross Section	
CI. 10.0.2 (a)	'r Ψs' 'g' y =	OUO KIN		
	T _r =	808 kN	Tensile Capacity (Factored)	
	$T_r/T_f =$	5.65	Capacity over Demand Ratio (C/D)	

Member Location:Lift SpanMember Description:Traction Bracing Interior DiagonalsMember ID:2L5x5x3/8S-Frame End Nodes:Node 795 to Node 796, Node 796 to Node 797, Node 803 to Node 804, Node 804 to Node 805,
Node 811 to Node 812, Node 812 to Node 813, Node 819 to Node 820, Node 820 to Node 821, Node 827 to Node 828,
Node 828 to Node 829, Node 835 to Node 836, Node 836 Node 837, Node 843 to Node 844, Node 844 to Node 845

Member orientation (local axis):

z always corresponds with the vertical plane

y always corresponds to the horizontal plane

Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Г

•	Angles	
	Angles 5x5x3/8	
Qty	2	
y _{dim} (mm)	127	
z _{dim} (mm)	127	
$I_{y1}(x10^{6}mm^{4})$	3.64	
$\frac{I_{y1} (x10^{6} mm^{4})}{I_{z1} (x10^{6} mm^{4})}$ $A_{g} (mm^{2})$	3.64	
$A_g (mm^2)$	2,330	

y _{bar} (mm)	48	
z _{bar} (mm)	0	
l _y (x10 ⁶ mm ⁴)	7	
$I_{z}(x10^{6}mm^{4})$	18	

A _g =	4,660 mm ²	Local Check for Capacity of Single Angle
$I_z =$	7.280 x10 ⁶ mm ⁴ 18.017 x10 ⁶ mm ⁴	$A_{g} = 2,330 \text{ mm}^{2} \qquad r \sqrt{\pi^{2}E_{s}}$
r _y = r _z =	40 mm 62 mm	Cl. 10.9.3.1 $C_r = \phi_s A F_y (1 + \lambda^{2n})^{-1/n}$: -448 kN Capacity of single angle does not govern built up member capacity

proceion Doculto

2L5x5x3/8

Compression Resu	ults					2L5x5x3/8
	L _y =	4,121 mm				
	L _z =	4,121 mm				
	K _y =	1.00		K' _y =	1.01	
	K _z =	1.00		K' _z =	1.03	
	Web	N/A				
	Flange b	127 mm				
	t	<u>9.5</u> mm 1.34				
	Lift Span Raised: C _f =	-70 kN				
	Lift Span Lowered: C _f =	-253 kN				
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90				
Cl. 10.9.1.3	Slenderness Ratio =	104	<	120	Cl. 10.9.1.3 Satisfied	
Cl. 10.9.2.1	Width to Thickness Lin	nits				
	Flanges b/t =	13	<	44	Cl. 10.9.2.1 Satisfied	
Cl. 10.9.3.1	$C_{r(y)} = \phi_s AF_y (1 + \lambda)$	$^{2n})^{-1/n} =$	498 kN	Go	verns	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$	$^{2n})^{-1/n} =$	733 kN			
	$\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}}$ $\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 1.141 = 0.739				
	C _r =	-498 kN	Co	mpressive	Capacity (Factored)	
	$C_r / C_f =$	1.97	Ca	pacity over	Demand Ratio (C/D)	
Tension Results						2L5x5x3/8
	Lift Span Raised: T _f =	70 kN				
	Lift Span Lowered: T _f =	252 kN				
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95				
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma} =$	1,018 kN	Gr	oss Section		
	T _r =	1,018 kN	Те	nsile Capac	ity (Factored)	

 $T_{r}/T_{f} = 4.04$

Capacity over Demand Ratio (C/D)

Member Location:Lift SpanMember Description:Lift Span Traction Bracing Transverse MemberMember ID:2L6x6x1/2S-Frame End Nodes:Node 798 to Node 794, Node 806 to Node 802, Node 814 to Node 810, Node 822 to Node 818,Node 846 to Node 842, Node 838 to Node 834, Node 830 to Node 826

Member orientation (local axis):

z always corresponds with the vertical plane

y always corresponds to the horizontal plane

Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	Angles L6x6x1/2
	L6x6x1/2
Qty	2
y _{dim} (mm)	152
z _{dim} (mm)	152
$I_{y1}(x10^{6}mm^{4})$	8.22
$\frac{z_{dim} (mm)}{I_{y1} (x10^6 mm^4)}$ $\frac{I_{z1} (x10^6 mm^4)}{I_{z1} (x10^6 mm^4)}$	8.22
A _g (mm ²)	3,700
v. (mm)	55

y _{bar} (mm)	55	
z _{bar} (mm)	0	
$I_y(x10^6 mm^4)$	16	
$I_{z}(x10^{6}mm^{4})$	39	

A _g =	7,400 mm ²	Local Check for Capacity of Single Angle								
		r = 30.0 mm L = 5.791 mm $\lambda - \frac{KL}{F_y} = 2.086$								
I _y –	16.440 x10 ⁶ mm ⁴	3,7,51 $n=1,2.000$								
$I_z =$	39.152 x10 ⁶ mm ⁴	$A_{g} = 3,700 \text{ mm}^{2} r \sqrt{\pi^{2}E_{s}}$								
r _y =	47 mm	Cl. 10.9.3.1 $C_r = \phi_s A F_y (1 + \lambda^{2n})^{-1/n}$: -160 kN								
r _z =	73 mm									
		Capacity of single angle does not govern built up member capacity								

Compression Res	ults						2L6x6x1/2
		L _y =	5,791	mm			
		$L_z =$	11,582	mm			
		K _y =	1.00			К' _у =	1.01
		K _z =	1.00	_		K' _z =	1.01
	Web		N/A				
	Flange	b t		mm mm			
		n =	1.34				
	Lift Span Raise	ed: C _f =	0	kN			
	Lift Span Lowere	ed: C _f =	0	kN			
Cl. 10.5.7 (c)	Compression:	$\phi_s =$	0.90				
Cl. 10.9.1.3	Slenderness Ra	atio =	159		>	120	Cl. 10.9.1.3 NOT Satisfied
Cl. 10.9.2.1	Width to Thick	ness Lim	nits				
	Flanges	b/t =	12		<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s AF$	$y (1 + \lambda^2)$	$^{2n})^{-1/n} =$	N/A	. kN		
Cl. 10.9.3.1	$C_{r(z)} = \phi_s AF$				k N		
	$\lambda_y = \frac{K'_y L_y}{r_y}$ $\lambda_z = \frac{K'_z L_z}{r_z}$						
		C _r =	N/A	kN	Cor	npressive	Capacity (Factored)
	C,	$/C_{\rm f} =$				-	Demand Ratio (C/D)
Tension Results							2L6x6x1/2
	Lift Span Raise	ed: T _f =	104	kN			
	Lift Span Lowere	ed: T _f =	471	kN			
Cl. 10.5.7 (d)	tensio	n: φ _{s=}	0.95				
Cl. 10.8.2 (a)		$p_s A_g F_{y=}$	1,617		Gro	oss Section	
		T _r =	1,617	kN	Ter	nsile Capac	ity (Factored)

 $T_{r}/T_{f} = 3.43$ Capacity over Demand Ratio (C/D)

APPENDIX G TOWER CAPACITY SPREADSHEETS

Member Capacity Summary Tower - Raised Lift Span

	Compression					Tension					
Member ID	C _r	C _f		Commente	C*	T _r	Τ _f	т /т	Commente	Т*	
	kN	kN	C_r/C_f	Comments	kN	kN	kN	T _r /T _f	Comments	kN	
TOWR-BBRC-MDIA	-3,529	-1,223	2.89		-547	4,569	658	6.94		547	
TOWR-BBRC-RcRc	-12,120	0	N/A		-498	14,200	143	99.3		498	
TOWR-BBRC-RdRd	-3,642	-272	13.4		-125	4,149	374	11.1		125	
TOWR-BBRC-ReRe	-3,662	0	N/A		-85	4,149	490	8.47		85	
TOWR-BBRC-RfRf	-3,662	-509	7.19		-231	4,149	609	6.81		231	
TOWR-BBRC-RgRg	-16,282	0	N/A		-81	18,732	329	56.9		81	
TOWR-BBRC-UDIA	-3,529	-803	4.40		-520	4,569	452	10.11		520	
TOWR-BLAT-FRTL	-345	0	N/A		N/A	1,722	608	2.83		N/A	
TOWR-BLAT-HWYL	-458	0	N/A		N/A	2,255	18	N/A		N/A	
TOWR-BLAT-RLYL	-693	0	N/A		N/A	2,762	608	4.54		N/A	
TOWR-FBRC-CdCe	-47	0	N/A		N/A	1,407	23	61.2		N/A	
TOWR-FBRC-FdFd	-4,046	-20	N/A		-796	4,569	601	7.60		396	
TOWR-FBRC-FeFe	-4,018	0	N/A		-934	4,569	1,031	4.43		356	
TOWR-FBRC-FfFf	-4,606	-1,330	3.46		-1,228	5,207	1,608	3.24		480	
TOWR-FBRC-FgFg	-20,236	0	N/A		-947	22,858	584	39.1		423	
TOWR-FBRC-MDIA	-4,126	-4,001	1.03	Cf/Cr < 1.15	-1,766	5,207	2,371	2.20		1,766	
TOWR-FBRC-MdMe	-281	-74	3.80		N/A	1,407	56	25.1		N/A	
TOWR-FBRC-UDIA	-3,526	-2,096	1.68		-1,317	4,569	607	7.53		1,317	
TOWR-FCOL-BCOL	-68,627	-32,221	2.13		-19,878	76,189	0	N/A		0	
TOWR-FCOL-MCOL	-57,560	-24,267	2.37		-17,027	63,328	0	N/A		0	
TOWR-FCOL-UCOL	-39,131	-18,420	2.12		-13,838	42,738	0	N/A		0	
TOWR-RCOL-BCOL	-22,570	-18,464	1.22		-7,584	24,936	9,109	2.74		2,273	
TOWR-RCOL-MCOL	-22,833	-11,008	2.07		-5,520	24,936	4,550	5.48		503	
TOWR-RCOL-UCOL	-22,833	-5,703	4.00		-3,745	24,936	0	N/A		0	
TOWR-SBRC-DIAG	-3,717	-3,914	0.95	Cf/Cr < 1.0	-1,432	4,149	3,328	1.25		1,432	
TOWR-SBRC-FgRg	-4,474	0	N/A		-356	5,207	564	9.2		818	
TOWR-SBRC-FhRh	-26,305	-717	36.7		0	28,613	1,259	22.7		0	
TOWR-SBRC-HORZ	-3,912	0	N/A		-565	4,569	1,065	4.29		805	
TOWR-SBRC-SbFc	-4,167	-1,190	3.50		-694	4,179	492	8.49		694	
2L3.5x3.5x.375	-569	-387	1.47		N/A	699	403	1.73		N/A	
2L4x4x.375	-467	-31	15.1		N/A	808	26	31.1		N/A	
2L5x3.5x.375	N/A	0	N/A		N/A	861	104	8.28		N/A	
2L5x5x.5	N/A	0	N/A		N/A	1,337	5	N/A		N/A	
2L6x6x.375	-590	-294	2.01		N/A	1,337	300	4.46		N/A	
C15x33.9	-848	-1	N/A		N/A	1,405	4	N/A		N/A	
C380x50	-805	-5	N/A		N/A	1,405	1	N/A		N/A	
L4x4x.375	-234	0	N/A		N/A	404	0	N/A		N/A	
L5x5x.375	-222	-26	8.54		N/A	509	31	16.4		N/A	
L5x5x.5	-267	-9	29.6		N/A	669	9	74.3		N/A	

* Total load listed on the stress sheet from the original design drawings;

N/A indicates that the member is not listed in the stress sheets

Member ID	Bending									
	M _r	M_f	M _r /M _f Comments		M*	V _r	V _f	V_r/V_f	Comments	V*
	kNm	kNm		comments	kNm	kNm	kNm		comments	kN
TOWR-FLBM-FRNT	8,548	1,560	5.48		2,502	2,887	387	7.46		1,681
TOWR-FLBM-REAR	9,116	3,379	2.70		3,417	3,614	844	4.28		1,855
TOWR-SHVG-G1	10,304	2,241	4.60		2,138	5,094	3,492	1.46		2,851
TOWR-SHVG-G2G3	12,187	2,254	5.41		2,252	5,094	3,498	1.46		2,584
TOWR-SHVG-G4	10,304	2,369	4.35		2,604	5,094	3,560	1.43		3,087
TOWR-SHVG-G6	12,865	999	12.9		423	3,396	235	14.5		138
TOWR-SHVG-G7	100,442	42,238	2.38		38,222	19,473	14,236	1.37		12,566
TOWR-SHVG-G8	20,306	4,819	4.21		6,465	5,341	1,567	3.41		1,922
Tower Span Stringers	:									
W27x102	1,093	230	4.75		155	1,136	95	12.0		67
(Original Highway)	1,095	250	4.75		155	1,150	95	12.0		07
W690x152										
(1982 Modification)	1,663	230	7.23		362	1,729	95	18.2		71
Approach Span String	ers:									
W33x130										
(Original Highway)	1,665	388	4.29		243	1,557	123	12.7		77
W840x193										
(1982 Modification)	2,534	388	6.53		362	2,369	123	19.3		116

* Total load listed on the stress sheet from the original design drawings;

N/A indicates that the member is not listed in the stress sheets

Member Capacity Summary Tower - Closed Lift Span

(ssion	Tension					
Member ID	C _r	C _f	C _r /C _f	Comments	C*	T _r	Τ _f	T _r /T _f	Commonte	Т*
	kN	kN		Comments	kN	kN	kN		Comments	kN
TOWR-BBRC-MDIA	-3,529	-1,660	2.13		-547	4,569	1,225	3.73		547
TOWR-BBRC-RcRc	-12,120	0	N/A		-498	14,200	99	N/A		498
TOWR-BBRC-RdRd	-3,642	-98	37.2		-125	4,149	16	N/A		125
TOWR-BBRC-ReRe	-3,662	0	N/A		-71	4,149	329	12.6		71
TOWR-BBRC-RfRf	-3,662	0	N/A		-231	4,149	848	4.89		231
TOWR-BBRC-RgRg	-16,282	0	N/A		-81	18,732	226	82.9		81
TOWR-BBRC-UDIA	-3,529	-423	8.3		-520	4,569	72	63.5		520
TOWR-BLAT-FRTL	-345	0	N/A		N/A	1,722	554	3.11		N/A
TOWR-BLAT-HWYL	-458	0	N/A		N/A	2,255	509	4.43		N/A
TOWR-BLAT-RLYL	-693	0	N/A		N/A	2,762	26	N/A		N/A
TOWR-FBRC-CdCe	-47	0	N/A		N/A	1,407	63	22.3		N/A
TOWR-FBRC-FdFd	-4,046	0	N/A		-796	4,569	366	12.5		396
TOWR-FBRC-FeFe	-4,018	0	N/A		-934	4,569	810	5.64		356
TOWR-FBRC-FfFf	-4,606	-1,140	4.04		-1,228	5,207	1,366	3.81		480
TOWR-FBRC-FgFg	-20,236	0	N/A		-947	22,858	459	49.8		423
TOWR-FBRC-MDIA	-4,126	-3,139	1.31		-1,766	5,207	1,777	2.93		1,766
TOWR-FBRC-MdMe	-281	-31	9.06		N/A	1,407	69	20.4		N/A
TOWR-FBRC-UDIA	-3,526	-1,384	2.55		-1,317	4,569	166	27.5		1,317
TOWR-FCOL-BCOL	-68,627	-19,458	3.53		-19,878	76,189	0	N/A		0
TOWR-FCOL-MCOL	-57,560	-16,596	3.47		-17,027	63,328	0	N/A		0
TOWR-FCOL-UCOL	-39,131	-14,547	2.69		-13,838	42,738	0	N/A		0
TOWR-RCOL-BCOL	-22,570	-6,602	3.42		-7,584	24,936	0	N/A		2,289
TOWR-RCOL-MCOL	-22,833	-3,920	5.82		-5,520	24,936	0	N/A		503
TOWR-RCOL-UCOL	-22,833	-2,578	8.9		-3,745	24,936	0	N/A		0
TOWR-SBRC-DIAG	-3,717	-1,589	2.34		-1,432	4,149	919	4.52		1,432
TOWR-SBRC-FgRg	-4,474	0	N/A		-356	5,207	485	10.7		818
TOWR-SBRC-FhRh	-26,305	-72	N/A		0	28,613	568	50.4		0
TOWR-SBRC-HORZ	-3,912	0	N/A		-565	4,569	452	10.1		805
TOWR-SBRC-SbFc	-4,167	-534	7.80		-694	4,179	82	51.0		694
2L3.5x3.5x.375	-569	-110	5.17		N/A	699	127	5.51		N/A
2L4x4x.375	-467	-25	18.7		N/A	808	26	31.1		N/A
2L5x3.5x.375	N/A	0	N/A		N/A	861	35	24.6		N/A
2L5x5x.5	N/A	0	N/A		N/A	1,337	7	N/A		N/A
2L6x6x.375	-590	-118	5.00		N/A	1,337	122	11.0		N/A
C15x33.9	-848	-4	N/A		N/A	1,405	3	N/A		N/A
C380x50	-805	-3	N/A		N/A	1,405	4	N/A		N/A
L4x4x.375	-234	0	N/A		N/A	404	0	N/A		N/A
L5x5x.375	-222	-27	8.22		N/A	509	26	19.6		N/A
L5x5x.5	-267	-13	20.5		N/A	669	13	51.4		N/A

* Total load listed on the stress sheet from the original design drawings; N/A indicates that the member is not listed in the stress sheets

	Bending					Shear				
Member ID	M _r	M_f	M_r/M_f	Comments	M*	V _r	V _f	V _r /V _f	Comments	V*
	kNm	kNm		comments	kNm	kN	kN		comments	kN
TOWR-FLBM-FRNT	8,548	3,897	2.19		2,502	2,887	1,007	2.87		1,681
TOWR-FLBM-REAR	9,116	7,307	1.25		3,417	3,614	1,891	1.91		1,855
TOWR-SHVG-G1	10,304	1,775	5.80		2,138	5,094	2,750	1.85		2,851
TOWR-SHVG-G2G3	12,187	1,786	6.82		2,252	5,094	2,755	1.85		2,584
TOWR-SHVG-G4	10,304	1,894	5.44		2,604	5,094	2,812	1.81		3,087
TOWR-SHVG-G6	12,865	618	20.8		423	3,396	146	23.3		138
TOWR-SHVG-G7	100,442	33,498	3.00		38,222	19,473	10,610	1.84		12,566
TOWR-SHVG-G8	20,306	4,000	5.08		6,465	5,341	1,274	4.19		1,922
Tower Span Stringers	Tower Span Stringers:									
W27x102	1,093	921	1.19		541	1,136	423	2.69		276
(Original Highway)	1,095	921	1.19		541	1,150	425	2.09		270
W690x152	1,663	921	1.81		271	1,729	423	4.09		503
(1982 Modification)	1,005	921	1.01		2/1	1,729	423	4.09		202
Approach Span String	ers:									
W33x130	1,665	1,344	1.24		766	1,557	491	3.17		282
(Original Highway)	1,005	1,344	1.24		,00	1,557	431	5.17		202
W840x193	2,534	1,344	1.89		860	2,369	491	4.82		307
(1982 Modification)	2,334	1,344	1.05		000	2,505	471	7.02		507

* Total load listed on the stress sheet from the original design drawings;

N/A indicates that the member is not listed in the stress sheets

Member Location:TowerMember Description:Rear Diagonal Brace in Mid SectionMember ID:TOWR-BBRC-MDIAS-Frame End Nodes:Node 619 to Node 598, Node 605 to Node 619, Node 619 to Node 606, Node 597 to Node 619Node 964 to Node 955, Node 946 to Node 964, Node 964 to Node 947, Node 954 to Node 964

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge *y* always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	Тор	Bottom	Web	Top Ls	Bot Ls
	Lattice	Lattice	Plates	6x4x3/8	6x4x3/8
Qty			2	2	2
y _{dim} (mm)			9.5	102	102
z _{dim} (mm)			610	152	152
I _{y1} (x10 ⁶ mm ⁴)	0	0	180	2.06	2.06
$I_{z1}(x10^{6}mm^{4})$	0	0	0	5.58	5.58
A _g (mm ²)	0	0	5,795	2,330	2,330
y _{bar} (mm)			421	367	367
z _{bar} (mm)			0	287	287
l _y (x10 ⁶ mm ⁴)	0	0	359	388	388
$I_{z}(x10^{6}mm^{4})$	0	0	2,054	639	639

- $A_g = 20,910 \text{ mm}^2$
- $A_n = 19,703 \text{ mm}^2$
- $I_v = 1,135 \text{ x}10^6 \text{ mm}^4$
- $I_z = 3,332 \text{ x}10^6 \text{ mm}^4$
- r_v = 233 mm
- r_z = 399 mm

	MMM GROUP	
--	-----------	--

	MMM GROUP	Member	Capacities		
Compression Re	esults				TOWR-BBRC-MDIA
	L _y =	11,837 mm			
	L _z =	23,674 mm			
	K _y =	1.00		K' _y =	1.10
	K _z =	1.00		K' _z =	1.01
	h Web	404 mm			
	W	9.5 mm			
	Flange b	N/A mm			
	t	N/A mm			
	n =	1.34			
	Lift Span Closed: C _f =	-1,660 kN			
	Lift Span Raised: C _f =	-1,223 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	59		120	CL 10.0.1.2 Satisfied
CI. 10.9.1.5	Sienuemess Ratio -	59	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Limi	ts			
	Web h/w =	43	<	44	Cl. 10.9.2.1 Satisfied
	2	- 1/-			
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda^{2})$	$(n)^{-1/n} = 3$	3,647 kN		
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda^{2t})$	$(n)^{-1/n} = 3$	3,529 kN	Go	overns
	$KL F_{y}$				
	$\lambda_y = rac{KL}{r} \sqrt{rac{F_y}{\pi^2 E_s}} =$	0.603			
	V 3				
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	0.649			
	$\lambda_z = \frac{1}{r} \sqrt{\pi^2 E_s} =$	0.649			
	N				
	C _r =	-3,529 kN	Com	pressive	Capacity (Factored)
	$C_r / C_f =$	2.13	Сара	icity over	Demand Ratio (C/D)
Tension Results					TOWR-BBRC-MDIA
	Lift Span Closed: T _f =	1,225 kN			

Tension Results			TOWR-BBRC-MDIA
	Lift Span Closed: T _f =	1,225 kN	
	Lift Span Raised: T _f =	658 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	4,569 kN	Gross Section
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u}$	6,682 kN	Net Section
	T _r =	4,569 kN	Tensile Capacity (Factored)
	$T_r/T_f =$	3.73	Capacity over Demand Ratio (C/D)

Member Location:TowerMember Description:Rear Horizontal Brace, Top of Top SectionMember ID:TOWR-BBRC-RcRcS-Frame End Nodes:Node 613 to Node 614, Node 962 to Node 963

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

- $A_g = 64,991 \text{ mm}^2$
- $A_n = 60,486 \text{ mm}^2$
- $I_y = 9,216 \text{ x}10^6 \text{ mm}^4$
- $I_z = 7,887 \text{ x}10^6 \text{ mm}^4$

r_y = 377 mm

r_z = 348 mm

	MMM GROUP
--	-----------

TOWR-BBRC-RcRc

Compression Resul	ts							TOWR-BBRC-Rcl
		L _y =	15,904	mm				
		L _z =	15,904	mm				
		K _y =	1.00					
		K _z =	1.00	-				
	Web	h		mm				
		W		mm				
	Flange	b t		mm mm				
		n =	1.34	-				
	Lift Span Clos			kN				
	Lift Span Rais	ed: C _f =	0	kN				
Cl. 10.5.7 (c)	Compression	φ _s =	0.90					
Cl. 10.9.1.3	Slenderness F	Ratio =	46	<	<	120	Cl. 10.9.1.3	Satisfied
Cl. 10.9.2.1	Width to Thic	kness Lin	nits					
	Web	h/w =	46	>	>	44	Cl. 10.9.2.1	NOT Satisfied
	Flanges	b/t =	40	<	<	44	Cl. 10.9.2.1	Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A$	F. (1 + λ	$(2n)^{-1/n} =$	12,347	7 kN			
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A$			12,12(Governs		
CI. 10.9.3.1	$c_{r(z)} - \psi_s A$, _y (1 , 1) –	12,120		Governs		
	$\lambda_y = \frac{KL}{r}$							
	$\lambda_z = \frac{KL}{r}$	$\sqrt{\frac{F_y}{\pi^2 E_s}}$	= 0.493					
		C _r =	-12,120	kN	Compi	ressive Capaci	ity (Factored)	
	($C_r / C_f =$	N/A		Capac	ity over Dema	nd Ratio (C/D)	١
Tension Results								TOWR-BBRC-Rc
	Lift Span Clos	sed: T ₄ =	90	kN				

Tension Results			TOWR-BBRC-RcRc
	Lift Span Closed: T _f =	99 kN	
	Lift Span Raised: T _f =	143 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=1}$	14,200 kN	Gross Section
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u=}$	20,514 kN	Net Section
	T _r =	14,200 kN	Tensile Capacity (Factored)
	$T_r/T_f =$	99.30	Capacity over Demand Ratio (C/D)

Member Location: Tower

Member Description:Rear Horizontal Brace, Middle of Top SectionMember ID:TOWR-BBRC-RdRdS-Frame End Nodes:Node 609 to Node 610, Node 958 to Node 959

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
$F_u =$	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	Тор	Bottom	Web	Top Ls	Bot Ls
	Lattice	Lattice	Plates	4x4x3/8	4x4x3/8
Qty			2	2	2
y _{dim} (mm)			9.5	102	102
z _{dim} (mm)			610	102	102
I _{y1} (x10 ⁶ mm ⁴)	0	0	180	1.84	1.84
$I_{z1}(x10^{6}mm^{4})$	0	0	0	1.84	1.84
A _g (mm ²)	0	0	5,795	1,850	1,850
y _{bar} (mm)			418	384	384
z _{bar} (mm)			0	282	282
l _y (x10 ⁶ mm ⁴)	0	0	359	298	298
$I_{z}(x10^{6}mm^{4})$	0	0	2,025	549	549

- $A_g = 18,990 \text{ mm}^2$
- $A_n = 15,213 \text{ mm}^2$
- $I_y = 955 \text{ x}10^6 \text{ mm}^4$

 $I_z = 3,124 \text{ x}10^6 \text{ mm}^4$

- r_v = 224 mm
- r_z = 406 mm

	MMM GROUP	
--	-----------	--

Compression Result	S				TOWR-BBRC-RdRd
	L _y =	7,950 mm	ı		
	L _z =	15,900 mm	ı		
	K _y =	1.00		K' _y =	1.10
	K _z =	1.00		K' _z =	1.03
	Web h	404 mm	ı		
	W	9.5 mm			
	Flange b	N/A mm			
	t	N/A mm	ו		
	n =	1.34			
	Lift Span Closed: C _f =	-98 kN			
	Lift Span Raised: C _f =	-272 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	39	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	nits			
	Web h/w =	43	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$		3,665 kN		
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$	$^{2n})^{-1/n} =$	3,642 kN	Go	overns
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2} E_{s}}}$	= 0.421			
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 0.436			
	C _r =	-3,642 kN	Со	mpressive	Capacity (Factored)
	$C_r / C_f =$	13.39	Сар	oacity over	Demand Ratio (C/D)
Tension Results					TOWR-BBRC-RdRd
	Lift Span Closed: T _f =	16 kN			
	Lift Span Raised: T _f =	374 kN			

	Lift Span Closed: T _f =	16 kN		
	Lift Span Raised: T _f =	374 kN		
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95		
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=}$	4,149 kN	Gross Section	
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u=}$	5,159 kN	Net Section	
	T _r =	4,149 kN	Tensile Capacity (Factored)	
	$T_r/T_f =$	11.09	Capacity over Demand Ratio (C/D)	

Member Location: Tower

Member Description:Rear Horizontal Brace, Top of Middle SectionMember ID:TOWR-BBRC-ReReS-Frame End Nodes:Node 605 to Node 606, Node 954 to Node 955

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

Top LatticeBottom LatticeWeb PlatesTop Ls 4x4x3/8Bot Ls 4x4x3/8Qty222y _{dim} (mm)9.5102102z _{dim} (mm)610102102
Qty 2 2 2 y _{dim} (mm) 9.5 102 102
y _{dim} (mm) 9.5 102 102
Z _{dim} (mm) 610 102 102
I _{y1} (x10 ⁶ mm ⁴) 0 0 180 1.84 1.84
$I_{z1}(x10^6 \text{mm}^4)$ 0 0 0 1.84 1.84
Ag (mm²) 0 0 5,795 1,850 1,850
y _{bar} (mm) 418 384 384
z _{bar} (mm) 0 282 282
$I_y(x10^6 \text{mm}^4)$ 0 0 359 298 298
$I_z(x10^6 \text{mm}^4)$ 0 0 2,025 549 549

 $A_{g} = 18,990 \text{ mm}^{2}$ $A_{n} = 15,213 \text{ mm}^{2}$ $I_{y} = 955 \text{ x10}^{6} \text{ mm}^{4}$ $I_{z} = 3,124 \text{ x10}^{6} \text{ mm}^{4}$ $r_{y} = 224 \text{ mm}$

Compression Results

TOWR-BBRC-ReRe

Compression Resu	lts				TOWR-BBRC-	ReRe
	L _y =	7,950 mm				
	L _z =	15,900 mm				
	K _y =	1.00				
	K _z =	1.00				
	Web h	406 mm				
	W	9.5 mm				
	Flange b	N/A mm				
	<u>t</u>	N/A mm				
	n = Lift Span Closed: C _f =	1.34 0 kN				
	Lift Span Raised: C _f =	0 kN				
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90				
Cl. 10.9.1.3	Slenderness Ratio =	39	<	120	Cl. 10.9.1.3 Satisfied	
Cl. 10.9.2.1	Width to Thickness Lim	nits				
	Web h/w =	43	<	44	Cl. 10.9.2.1 Satisfied	
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$^{2n})^{-1/n} =$	3,721 kN			
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$	$(2^{n})^{-1/n} =$	3,662 kN	Gove	rns	
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}}$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}}$	= 0.383 = 0.423				
	C _r =	-3,662 kN	Сог	mpressive Ca	pacity (Factored)	
	$C_r / C_f =$	N/A	Cap	bacity over De	emand Ratio (C/D)	
Tension Results					TOWR-BBRC-	ReRe
	Lift Span Closed: T _f =	329 kN				
	Lift Span Raised: T _f =	490 kN				
CL 10 5 7 (d)	tension: w	0.95				

	Lift Span Raised: T _f =	490 kN		
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95		
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=}$	4,149 kN	Gross Section	
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u}$	5,159 kN	Net Section	
	T _r =	4,149 kN	Tensile Capacity (Factored)	
	$T_r/T_f =$	8.47	Capacity over Demand Ratio (C/D)	

Member Location: Tower

Member Description:Rear Horizontal Brace, Middle of Middle SectionMember ID:TOWR-BBRC-RfRfS-Frame End Nodes:Node 601 to Node 602, Node 950 to Node 951

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
$F_u =$	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

Top LatticeBottom LatticeWeb PlatesTop Ls 4x4x3/8Bot Ls 4x4x3/8Qty222y _{dim} (mm)9.5102102z _{dim} (mm)610102102
Qty 2 2 2 y _{dim} (mm) 9.5 102 102
y _{dim} (mm) 9.5 102 102
z _{dim} (mm) 610 102 102
I _{y1} (x10 ⁶ mm ⁴) 0 0 180 1.84 1.84
$I_{z1}(x10^6 \text{mm}^4)$ 0 0 0 1.84 1.84
Ag (mm²) 0 0 5,795 1,850 1,850
y _{bar} (mm) 418 384 384
z _{bar} (mm) 0 282 282
$I_y(x10^6 \text{mm}^4)$ 0 0 359 298 298
$I_z(x10^6 \text{mm}^4)$ 0 0 2,025 549 549

 $A_{g} = 18,990 \text{ mm}^{2}$ $A_{n} = 15,213 \text{ mm}^{2}$ $I_{y} = 955 \text{ x}10^{6} \text{ mm}^{4}$ $I_{z} = 3,124 \text{ x}10^{6} \text{ mm}^{4}$ $r_{y} = 224 \text{ mm}$ $r_{z} = 406 \text{ mm}$

Compression Results

TOWR-BBRC-RfRf

Compression Result	.5		IOWR-DDRC-RJRJ
	L _y =	7,950 mm	
	$L_z =$	15,900 mm	
	K _y =	1.00	
	K _z =	1.00	
	Web h	406 mm 9.5 mm	
	w	N/A mm	
	Flange t	N/A mm	
	n =	1.34	
	Lift Span Closed: C _f =	0 kN	
	Lift Span Raised: C _f =	-509 kN	
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90	
Cl. 10.9.1.3	Slenderness Ratio =	39	< 120 Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	its	
	Web h/w =	43	< 44 Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1 Cl. 10.9.3.1	$C_{r(y)} = \phi_{s}AF_{y}(1+\lambda^{2})$ $C_{r(z)} = \phi_{s}AF_{y}(1+\lambda^{2})$ $\lambda_{y} = \frac{KL}{r}\sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$ $\lambda_{z} = \frac{KL}{r}\sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$ $C_{r} =$ $C_{r} =$	ⁿ) ^{-1/n} = 3,6 0.383 0.423 -3,662 kN	721 kN 562 kN <i>Governs</i> Compressive Capacity (Factored)
	$C_r / C_f =$	N/A	Capacity over Demand Ratio (C/D)
Tension Results	Lift Span Closed: T -	949 kN	TOWR-BBRC-RfRf
	Lift Span Closed: T _f =	848 kN	
	Lift Span Raised: T _f =	609 kN	
Cl. 10.5.7 (d)	tension: $\varphi_{s=}$	0.95	Create Castian
Cl. 10.8.2 (a)	$T_r = \varphi_s A_g F_{y=}$	4,149 kN	Gross Section
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u} =$	5,159 kN	Net Section
	T _r =	4,149 kN	Tensile Capacity (Factored)

 $T_r / T_f = 4.89$

Capacity over Demand Ratio (C/D)

Member Location:TowerMember Description:Rear Horizontal Brace, Top of Lower SectionMember ID:TOWR-BBRC-RgRgS-Frame End Nodes:Node 597 to Node 598, Node 946 to Node 947

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	T. Cover	B. Cover	Web	Top Ls	Bot Ls
Qty	Plates 1	Plates 1	Plates 2	7x4x3/4 2	7x4x3/4 2
y _{dim} (mm)	813	813	12.7	102	102
z _{dim} (mm)	12.7	12.7	1,778	178	178
I _{y1} (x10 ⁶ mm ⁴)	0	0	5,949	3.82	3.82
$I_{z1}(x10^{6}mm^{4})$	569	569	0	15.80	15.80
A _g (mm ²)	10,325	10,325	22,581	4,980	4,980
y _{bar} (mm)	0	0	419	387	387
z _{bar} (mm)	901	901	0	832	832
l _y (x10 ⁶ mm ⁴)	8,382	8,382	11,897	6,902	6,902
$I_{z}(x10^{6}mm^{4})$	569	569	7,929	1,523	1,523

- $A_g = 85,731 \text{ mm}^2$
- $A_n = 72,176 \text{ mm}^2$
- $I_y = 42,466 \text{ x10}^6 \text{ mm}^4$
- $I_z = 12,113 \text{ x}10^6 \text{ mm}^4$
- r_y = 704 mm
- r_z = 376 mm

	MMM GROUP
--	-----------

Compression Results

TOWR-BBRC-RgRg

Compression Results								TOWR-BBRC-Rg
		L _y =	7,950	mm				
		L _z =	15,900	mm				
		K _y =	1.00					
		K _z =	1.00					
	Web	h	1,422	mm				
	web	w	12.7	mm				
	Flange	b	609	mm				
		t	12.7	mm				
		n =	1.34					
	Lift Span Close	ed: C _f =	0	kN				
	Lift Span Raise	ed: C _f =	0	kN				
Cl. 10.5.7 (c)	Compression:	$\phi_s =$	0.90					
Cl. 10.9.1.3	Slenderness Ra	atio =	42	<	120		Cl. 10.9.1.3	Satisfied
Cl. 10.9.2.1	Width to Thick							
	Web	h/w =	112	>				NOT Satisfied
	Flanges	b/t =	48	>	44		Cl. 10.9.2.1	NOT Satisfied
		- (4 .) -	2n ,-1/n					
Cl. 10.9.3.1	$C_{r(y)} = \phi_s AF$			17,699				
Cl. 10.9.3.1	$C_{r(z)} = \phi_s AF$	$F_y (1 + \lambda^2)$	=======================================	16,282	kN	Governs		
	KL	F_{ν}						
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{kL}{r}}$	$\frac{J}{\pi^2 E_s} =$	0.122					
	$\lambda = \frac{KL}{KL}$	F_y	0.457					
	$\lambda_z = \frac{KL}{r} \sqrt{1}$	$\pi^2 E_s$	0.437					
	•							
		C _r =	-16,282	kN	Compressi	ive Capacit	y (Factored)	
	C		N/A		-	-	nd Ratio (C/D)	
	-	1 * -1			24240109 0			
Tension Results								TOWR-BBRC-Rg

Tension Results			TOWR-BBRC-RgRg
	Lift Span Closed: T _f =	226 kN	
	Lift Span Raised: T _f =	329 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=1}$	18,732 kN	Gross Section
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u}$	24,478 kN	Net Section
	T _r =	18,732 kN	Tensile Capacity (Factored)
	$T_r/T_f =$	56.94	Capacity over Demand Ratio (C/D)

Member Location:TowerMember Description:Rear Diagonal Braces in Upper SectionMember ID:TOWR-BBRC-UDIAS-Frame End Nodes:Node 605 to Node 620, Node 620 to Node 614, Node 613 to Node 620, Node 620 to Node 606,Node 965 to Node 963, Node 962 to Node 965, Node 965 to Node 955, Node 954 to Node 965

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	Тор	Bottom	Web	Top Ls	Bot Ls
	Lattice	Lattice	Plates	6x4x3/8	6x4x3/8
Qty			2	2	2
y _{dim} (mm)			9.5	102	102
z _{dim} (mm)			610	152	152
$I_{y1}(x10^{6}mm^{4})$	0	0	180	2.06	2.06
$I_{z1}(x10^{6}mm^{4})$	0	0	0	5.58	5.58
A _g (mm ²)	0	0	5,795	2,330	2,330
y _{bar} (mm)			421	367	367
z _{bar} (mm)			0	287	287
$I_{y}(x10^{6}mm^{4})$	0	0	359	388	388
$I_{z}(x10^{6}mm^{4})$	0	0	2,054	639	639

 $A_g = 20,910 \text{ mm}^2$

- $A_n = 17,133 \text{ mm}^2$
- $I_y = 1,135 \text{ x10}^6 \text{ mm}^4$
- $I_z = 3,332 \text{ x}10^6 \text{ mm}^4$

r_v = 233 mm

r_z = 399 mm

	MMM GROUP	
--	-----------	--

TOWR-BBRC-U	DIA
-------------	-----

Commencian Decul	4.4				-				
Compression Resul	ts	1 -	11 0 7	00.000					TOWR-B
		L _y =	11,837						
		L _z =	23,674					0	
		K _y =	1.00				= 1.1		
		K _z =	1.00			K' _z =	= 1.0	1	
	Web	h	404						
		W		mm					
	Flange	b	N/A						
		t n-	N/A						
	Lift Span Closed	n =	1.34						
	-		-423						
	Lift Span Raised		-803	kN					
Cl. 10.5.7 (c)	Compression: q	ρ _s =	0.90						
Cl. 10.9.1.3	Slenderness Rat	tio =	59		<	120)	Cl. 10.9.1.3	Satisfied
									,
Cl. 10.9.2.1	Width to Thickn	iess Limi	its						
	Web h	n/w =	43		<	44	1	Cl. 10.9.2.1	Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y$, (1 + λ^{2}	$(n)^{-1/n} =$		3,647 k	N			
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y$	$(1 + \lambda^2)$	$(n)^{-1/n} =$		3,529 k	N	Governs		
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{1}{r}}$	$\frac{F_{y}}{\tau^{2}E_{s}} =$	0.603						
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{1}{r}}$	$\frac{F_y}{\tau^2 E_s} =$	0.649						
		C _r =	-3,529	kN	С	ompress	sive Capaci	ity (Factored)	
	C _r ,	/ C _f =	4.40		С	apacity of	over Dema	nd Ratio (C/D))
Tension Results									TOWR-B
	Lift Span Closed	d: T _f =	72	kN					

Tension Results			TOWR-BBRC-UDIA
	Lift Span Closed: T _f =	72 kN	
	Lift Span Raised: T _f =	452 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	4,569 kN	Gross Section
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u=}$	5,811 kN	Net Section
	T _r =	4,569 kN	Tensile Capacity (Factored)
	T _r /T _f =	10.11	Capacity over Demand Ratio (C/D)

Member Location: Tower

Member Description: Front lateral bracing under deck level within the tower spanMember ID:TOWR-BLAT-FRTLS-Frame End Nodes:Node 744 to Node 591, Node 744 to Node 592, Node 1071 to Node 940, Node 1071 to Node 941

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	Top Ls	Bot Ls
	5x3.5x3/8	5x3.5x3/8
Qty	2	2
y _{dim} (mm)	89	89
z _{dim} (mm)	127	127
I _{y1} (x10 ⁶ mm ⁴)	1.33	1.33
$I_{z1}(x10^{6}mm^{4})$	3.24	3.24
$A_{g} (mm^{2})$	1,970	1,970
y _{bar} (mm)	35	35
z _{bar} (mm)	356	356
I _y (x10 ⁶ mm ⁴)	502	502
$I_{z}(x10^{6}mm^{4})$	11	11

A _g =	7,880 _{mm²}
A _n =	6,927 _{mm²}
$I_y =$	1,004 x10 ⁶ mm ⁴
۱ _z =	23 x10 ⁶ mm ⁴
r _y =	357 mm
r _z =	54 mm

	MMM GROUP
--	-----------

		Weinber	Lapacities	
Compression Resu	lts			TOWR-BLAT-FR1
	L _y =	9,327 mm		
	L _z =	9,327 mm		
	K _y =	1.00	K' _y =	1.00
	K _z =	1.00	K' _z =	1.10
	Web h	mm		
	w	mm		
	Flange	mm		
	t	mm		
	n =	1.34		
	Lift Span Closed: C _f =	0 kN		
	Lift Span Raised: C _f =	0 kN		
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90		
			100	
Cl. 10.9.1.3	Slenderness Ratio =	174	> 120	Cl. 10.9.1.3 NOT Satisfied
Cl. 10.9.2.1	Width to Thickness Limi	ts		
011 10.9.2.1	Web $h/w = N_{c}$			
	Flanges b/t = N			
	-			
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda^{2r})$	$()^{-1/n} = 1,$,591 kN	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda^{2r})$	$()^{-1/n} =$		verns
	(2) i 3 y i			
	$\lambda_{y} = \frac{KL}{2\pi} \left \frac{F_{y}}{2\pi} \right =$	0.282		
	$r \sqrt{\pi^2 E_s}$			
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$			
	$\lambda_z = \frac{\pi L}{r} \left \frac{T_y}{\pi^2 F} \right =$	2.067		
	$\sqrt{n^2}$			
	<u>_</u>		Commenciation	
	$C_r =$			apacity (Factored)
	$C_r / C_f =$	N/A	Capacity over	Demand Ratio (C/D)
Tension Results				TOWR-BLAT-FR1
	Lift Span Closed: T _f =	554 kN		
	Lift Span Raised: T _f =	608 kN		
	• •	-		

Cl. 10.5.7 (d)

Cl. 10.8.2 (a)

Cl. 10.8.2 (b)

tension: $\phi_{s=}$

 $T_r = \phi_s A_g F_{y=1}$

T_r =

 $T_r / T_f = 2.83$

 $T_r = 0.85 \varphi_s A_n F_{u} =$

0.95

1,722 kN

2,349 kN

1,722 kN

Gross Section

Tensile Capacity (Factored)

Capacity over Demand Ratio (C/D)

Net Section

Member Location: Tower

Member Description:Rear lateral bracing on the highway side under deck level within the tower spanMember ID:TOWR-BLAT-HWYLS-Frame End Nodes:Node 593 to Node 744, Node 942 to Node 1071

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

-	-	-		
	F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
	F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
	E _s =	200,000	MPa	
(G _s =	77,000	MPa	

	Top Ls	Bot Ls
	5x3.5x1/2	5x3.5x1/2
Qty	2	2
y _{dim} (mm)	89	89
z _{dim} (mm)	127	127
$\frac{I_{y1}(x10^6 mm^4)}{I_{z1}(x10^6 mm^4)}$	1.68	1.68
$I_{z1}(x10^{6}mm^{4})$	4.16	4.16
A _g (mm ²)	2,580	2,580
y _{bar} (mm)	36	36
z _{bar} (mm)	357	357
l _y (x10 ⁶ mm ⁴)	661	661
$I_{z}(x10^{6}mm^{4})$	15	15

A _g =	10,320 mm²
A _n =	9,050 _{mm²}
$I_y =$	1,322 x10 ⁶ mm ⁴
l _z =	30 x10 ⁶ mm ⁴
r _y =	358 mm
r _z =	54 mm

	MMM GROUP
--	-----------

		Weinber C	apacities	
Compression Resu	lts			TOWR-BLAT-HWYL
	L _y =	9,327 mm		
	L _z =	9,327 mm		
	K _y =	1.00	K' _y =	1.00
	K _z =	1.00	K' _z =	1.10
	Web h	mm mm		
	Flange b t	mm mm		
	n =	1.34		
	Lift Span Closed: C _f =	0 kN		
	Lift Span Raised: C _f =	0 kN		
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90		
Cl. 10.9.1.3	Slenderness Ratio =	173	> 120	Cl. 10.9.1.3 NOT Satisfied
Cl. 10.9.2.1	Width to Thickness Limi Web h/w = N Flanges b/t = N	/A		
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda^{2t})$	$(n)^{-1/n} = 2,0$	084 kN	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda^{2r})$	$(1)^{-1/n} = 2$		verns
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$	0.282		
	$\lambda_z = rac{KL}{r} \sqrt{rac{F_y}{\pi^2 E_s}} =$	2.054		
	C _r =	-458 kN	Compressive C	Capacity (Factored)
	$C_r / C_f =$	N/A	Capacity over	Demand Ratio (C/D)
Tension Results				TOWR-BLAT-HWYL
	Lift Span Closed: T _f =	509 kN		

	Lift Span Closed: T _f =	509 kN	
	Lift Span Raised: T _f =	18 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=1}$	2,255 kN	Gross Section
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u}$	3,069 kN	Net Section
	T _r =	2,255 kN	Tensile Capacity (Factored)
	$T_r/T_f =$	4.43	Capacity over Demand Ratio (C/D)

Member Location: Tower

Member Description:Rear lateral bracing on the railway side under deck level within the tower spanMember ID:TOWR-BLAT-RLYLS-Frame End Nodes:Node 594 to Node 744, Node 943 to Node 1071

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

Dant of Section 1.0		
	Top Ls	Bot Ls
	8x6x1/2	5x3.5x3/8
Qty	2	2
y _{dim} (mm)	152	89
z _{dim} (mm)	203	127
I _{y1} (x10 ⁶ mm ⁴)	18.40	3.24
$I_{z1}(x10^{6}mm^{4})$	8.96	1.33
A _g (mm ²)	4,350	1,970
y _{bar} (mm)	50	35
z _{bar} (mm)	334	356

bar (·····)	50	55	
z _{bar} (mm)	334	356	
l _y (x10 ⁶ mm ⁴)	1,007	506	
$I_{z}(x10^{6}mm^{4})$	40	7	

 $\begin{array}{rcl} A_{g} = & 12,640 \ mm^{2} \\ A_{n} = & 11,529 \ mm^{2} \\ I_{y} = & 1,513 \ x10^{6} \ mm^{4} \\ I_{z} = & 47 \ x10^{6} \ mm^{4} \\ r_{y} = & 346 \ mm \\ r_{z} = & 61 \ mm \end{array}$

	MMM GROUP
--	-----------

		Wielinber C	apacities		
Compression Resu	lts			TOWR	-BLAT-RLYL
	L _y =	9,327 mm			
	$L_z =$	9,327 mm			
	K _y =	1.00	K' _y =	1.00	
	K _z =	1.00	K' _z =	1.10	
	Web h	mm mm			
	Flange b	mm m			
	n =	1.34			
	Lift Span Closed: C _f =	0 kN			
	Lift Span Raised: C _f =	0 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	153	> 120	Cl. 10.9.1.3 NOT Sat	sfied
Cl. 10.9.2.1	Width to Thickness Lim Web h/w = N Flanges b/t = N	I/A			
Cl. 10.9.3.1 Cl. 10.9.3.1	$C_{r(y)} = \phi_{s} AF_{y} (1 + \lambda^{2})$ $C_{r(z)} = \phi_{s} AF_{y} (1 + \lambda^{2})$			verns	
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	0.292			
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	1.813			
	C _r =	-693 kN	Compressive (Capacity (Factored)	
	$C_r / C_f =$	N/A	Capacity over	Demand Ratio (C/D)	
Tension Results				TOWR	-BLAT-RLYL
	Lift Span Closed: T _f =	26 kN			

608 kN

0.95

2,762 kN

3,910 kN

2,762 kN

Gross Section

Tensile Capacity (Factored)

Capacity over Demand Ratio (C/D)

Net Section

Member ID: TOWR-BLAT-RLYL
Prepared By: Matthew Bowser

Cl. 10.5.7 (d)

Cl. 10.8.2 (a)

Cl. 10.8.2 (b)

Lift Span Raised: T_f =

tension: $\phi_{s=}$

 $T_r = \phi_s A_g F_{y=1}$

T_r =

 $T_r / T_f = 4.54$

 $T_r = 0.85 \varphi_s A_n F_{u} =$

Member Location: Tower

Member Description: Front and rear vertical member in lower sectionMember ID:TOWR-FBRC-CdCeS-Frame End Nodes:Node 623 to Node 625, Node 624 to Node 626, Node 968 to Node 970, Node 969 to Node 971

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

-	-			
	F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
	$F_u =$	420	MPa	CSA S6-06 Cl. 14.7.4.2
	$E_s =$	200,000	MPa	
	G _s =	77,000	MPa	

	All Ls
	4x3x3/8
Qty	4
y _{dim} (mm)	102
z _{dim} (mm)	76
$\frac{I_{y1}(x10^6 mm^4)}{I_{z1}(x10^6 mm^4)}$	1.67
$I_{z1}(x10^{6}mm^{4})$	0.80
A _g (mm ²)	1,610

y _{bar} (mm)	45
z _{bar} (mm)	406
$I_{y}(x10^{6}mm^{4})$	1,068
$I_{z}(x10^{6}mm^{4})$	16

A _g =	6,440 mm ²
A _n =	5,490 mm²
$I_y =$	1,068 x10 ⁶ mm ⁴
I _z =	16 x10 ⁶ mm ⁴
r _y =	407 mm
r _z =	50 mm

	MMM GROUP	
--	-----------	--

Compression Results

TOWR-FBRC-CdCe

Compression Result	S		TOWR-FBRC-	-CdCe
	L _y =	11,837 mm		
	L _z =	23,674 mm		
	K _y =	1.00	K' _y = 1.00	
	K _z =	1.00	K' _z = 1.04	
	Web h	404 mm		
	w	9.5 mm		
	Flange t	N/A mm N/A mm		
	n =	1.34		
	Lift Span Closed: C _f =	0 kN		
	Lift Span Raised: C _f =	0 kN		
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90		
Cl. 10.9.1.3	Slenderness Ratio =	471	> 120 Cl. 10.9.1.3 NOT Satisfied	
Cl. 10.9.2.1	Width to Thickness Lim	its		
	Web h/w =	43	< 44 Cl. 10.9.2.1 Satisfied	
Cl. 10.9.3.1 Cl. 10.9.3.1	$C_{r(y)} = \phi_{s}AF_{y}(1+\lambda^{2})$ $C_{r(z)} = \phi_{s}AF_{y}(1+\lambda^{2})$ $\lambda_{y} = \frac{KL}{r}\sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$ $\lambda_{z} = \frac{KL}{r}\sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$ $C_{r} =$ $C_{r} =$ $C_{r} / C_{f} =$	²ⁿ) ^{-1/n} = 0.314 5.310 -47 kN	290 kN 47 kN <i>Governs</i> Compressive Capacity (Factored) Capacity over Demand Ratio (C/D)	
Tension Results	Lift Span Closed: T _f =	63 kN	TOWR-FBRC-	-CdCe
	Lift Span Raised: $T_f =$	23 kN		
Cl. 10.5.7 (d)	tension: $\varphi_{s=}$	0.95		
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=1}$	1,407 kN	Gross Section	
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u}$	1,862 kN	Net Section	
	T _r =	1,407 kN	Tensile Capacity (Factored)	

 $T_r / T_f = 22.34$

Tensile Capacity (Factored) Capacity over Demand Ratio (C/D)

Member Location:TowerMember Description:Front Horizontal Brace, Middle of Top SectionMember ID:TOWR-FBRC-FdFdS-Frame End Nodes:Node 608 to Node 607, Node 957 to Node 956

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	Тор	Bottom	Web	Top Ls	Bot Ls
	Lattice	Lattice	Plates	6x4x3/8	6x4x3/8
Qty			2	2	2
y _{dim} (mm)			9.5	152	152
z _{dim} (mm)			610	102	102
$I_{y1}(x10^{6}mm^{4})$	0	0	180	5.58	5.58
$I_{z1}(x10^{6}mm^{4})$	0	0	0	2.06	2.06
A _g (mm ²)	0	0	5,795	2,330	2,330
y _{bar} (mm)			450	396	396
z _{bar} (mm)			0	287	287
$I_y(x10^6 mm^4)$	0	0	359	395	395
$I_{z}(x10^{6}mm^{4})$	0	0	2,347	735	735

 $\begin{array}{rcl} A_{g} = & 20,910 \ \text{mm}^{2} \\ A_{n} = & 17,133 \ \text{mm}^{2} \\ I_{y} = & 1,149 \ \text{x}10^{6} \ \text{mm}^{4} \\ I_{z} = & 3,817 \ \text{x}10^{6} \ \text{mm}^{4} \\ r_{y} = & 234 \ \text{mm} \end{array}$

r_z = 427 mm

	MMM GROUP
--	-----------

TOWR-FBRC-FdFd

Compression Results	S									TOWR-F
		L _y =	7,950	mm						
		L _z =	15,900	mm						
		K _y =	1.00				=	1.10		
		K _z =	1.00			K'z	=	1.03		
	Web	h	404	mm						
		W		mm						
	Flange	b		mm						
	80	t		mm						
		n =	1.34							
	Lift Span Closed:	C _f =	0	kN						
	Lift Span Raised:	C _f =	-20	kN						
Cl. 10.5.7 (c)	Compression: ϕ_s	;=	0.90							
			27			4.2	0			Contra Circul
Cl. 10.9.1.3	Slenderness Ratio) =	37		<	12	0		Cl. 10.9.1.3	Satisfiea
Cl. 10.9.2.1	Width to Thickne	ss Limit	S							
	Web h/	w =	43		<	4	4		Cl. 10.9.2.1	Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y$	$(1 + \lambda^{2n})$) ^{-1/n} =		4,066 k	N				
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y$				4,046 k	N.	Gove	rns		
	7 (2) 7 S y C				,			-		
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{L}{\pi^2}}$	$\frac{F_y}{^2E_s} =$	0.403							
	,									
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{H}{\pi^2}}$	$\frac{E_y}{2E_s} =$	0.415							
		c -	-4,046	۲N	~	Compros		nacity	(Factored)	
						-				N
	ι, /	C _f =	N/A		C	apacity	over D	eman	d Ratio (C/D)

Tension Results

TOWR-FBRC-FdFd

rension Results			TOWN-I BRE-I UI U
	Lift Span Closed: T _f =	366 kN	
	Lift Span Raised: T _f =	601 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	4,569 kN	Gross Section
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u}$	5,811 kN	Net Section
	T _r =	4,569 kN	Tensile Capacity (Factored)
	$T_r/T_f =$	7.60	Capacity over Demand Ratio (C/D)

Member Location:TowerMember Description:Front Horizontal Brace, Top of middle SectionMember ID:TOWR-FBRC-FeFeS-Frame End Nodes:Node 604 to Node 603, Node 953 to Node 952

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
$F_u =$	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

· · · · · · · · · · · · · · · · · · ·	-				
	Тор	Bottom	Web	Top Ls	Bot Ls
	Lattice	Lattice	Plates	6x4x3/8	6x4x3/8
Qty			2	2	2
y _{dim} (mm)			9.5	152	152
z _{dim} (mm)			610	102	102
I _{y1} (x10 ⁶ mm ⁴)	0	0	180	5.58	5.58
$I_{z1}(x10^{6}mm^{4})$	0	0	0	2.06	2.06
A _g (mm ²)	0	0	5,795	2,330	2,330
y _{bar} (mm)			421	397	397
z _{bar} (mm)			0	286	286
$I_y(x10^6 mm^4)$	0	0	359	392	392
$I_{z}(x10^{6}mm^{4})$	0	0	2,054	739	739

 $\begin{array}{rll} A_{g} = & 20,910 \ \text{mm}^{2} \\ A_{n} = & 17,133 \ \text{mm}^{2} \\ I_{y} = & 1,144 \ \text{x}10^{6} \ \text{mm}^{4} \\ I_{z} = & 3,531 \ \text{x}10^{6} \ \text{mm}^{4} \end{array}$

r_y = 234 mm

r_z = 411 mm

	MMM GROUP
--	-----------

TOWR-FBRC-FeFe

Compression Resu	lts								TOWR-I
		L _y =	7,950	mm					
		$L_z =$	15,900	mm					
		K _y =	1.00			K' _y =			
		K _z =	1.00			K' _z =	1.03		
	Web	h		mm					
		w		mm					
	Flange	b		mm					
		t		mm					
		n =	1.34						
	Lift Span Close	-		kN					
	Lift Span Raise	d: C _f =	0	kN					
Cl. 10.5.7 (c)	Compression:	$\varphi_s =$	0.90						
Cl. 10.9.1.3	Slenderness Ra	itio =	39		<	120		Cl. 10.9.1.3	Satisfied
Cl. 10.9.2.1	Width to Thick	ness Lim	its						
	Web	h/w =	43		<	44		Cl. 10.9.2.1	Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s AF$	$(1 + \lambda^2)$	$(n)^{-1/n} =$		4,065 kl	N			
Cl. 10.9.3.1	$C_{r(y)} = \phi_s AF$	$y (1 + \lambda^2)$	$(n)^{-1/n} =$		4,018 kl		Governs		
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{KL}{r}}$								
	$\lambda_z = rac{KL}{r} $	$\frac{1y}{\pi^2 E_s} =$	0.431						
		C _r =	-4,018	kN	C	ompressi	ve Capacity	y (Factored)	
	Cr	/ C _f =	N/A		C	apacity o	ver Deman	d Ratio (C/D)
Tension Results									TOWR-
	Lift Span Close	d: T _f =	810	kN					
	Lift Coop Daisa	а. т	4 024						

Tension Results			TOWR-FBRC-FeFe
	Lift Span Closed: T _f =	810 kN	
	Lift Span Raised: T _f =	1,031 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	4,569 kN	Gross Section
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u}$	5,811 kN	Net Section
	T _r =	4,569 kN	Tensile Capacity (Factored)
	$T_r/T_f =$	4.43	Capacity over Demand Ratio (C/D)

Member Location: Tower

Member Description:Front Horizontal Brace, Middle of Middle SectionMember ID:TOWR-FBRC-FfFfS-Frame End Nodes:Node 600 to Node 599, Node 949 to Node 948

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	Тор	Bottom	Web	Top Ls	Bot Ls
	Lattice	Lattice	Plates	6x4x1/2	6x4x1/2
Qty			2	2	2
y _{dim} (mm)			9.5	152	152
z _{dim} (mm)			610	102	102
$I_{y1}(x10^{6}mm^{4})$	0	0	180	7.20	7.20
$I_{z1}(x10^{6}mm^{4})$	0	0	0	2.64	2.64
A _g (mm ²)	0	0	5,795	3,060	3,060
y _{bar} (mm)			450	399	399
z _{bar} (mm)			0	286	286
$I_y(x10^6 mm^4)$	0	0	359	515	515
$I_{z}(x10^{6}mm^{4})$	0	0	2,347	980	980

 $A_g = 23,830 \text{ mm}^2$ $A_n = 19,703 \text{ mm}^2$ $I_v = 1,389 \text{ x10}^6 \text{ mm}^4$

 $I_z = 4,306 \text{ x}10^6 \text{ mm}^4$

r_y = 241 mm

r_z = 425 mm

	MMM GROUP	
--	-----------	--

TOWR-FBRC-FfFf	

Compression Results	S							TOWR-
		L _y =	7,950	mm				
		L _z =	15,900	mm				
		K _y =	1.00			K' _y =	1.10	
		K _z =	1.00			K' _z =	1.03	
	Web	h	406	mm				
		W	9.5					
	Flange	b	N/A I					
		t	N/A	mm				
		n =	1.34					
	Lift Span Closed:	-	-1,140					
	Lift Span Raised:	: C _f =	-1,330	kN				
Cl. 10.5.7 (c)	Compression: φ	s =	0.90					
Cl. 10.9.1.3	Slenderness Rati	0 =	37		<	120		Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickne	ess Limit	ts					
	Web h/	/w =	43		<	44		Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y$	$(1 + \lambda^{2n})$	$()^{-1/n} =$		4,655 kN			
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y$	(1 + Λ) ′ =		4,606 kN	Gov	verns	
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{1}{\pi^{2}}}$							
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{1}{\pi^2}}$	$\frac{F_y}{^2E_s} =$	0.417					
		C _r =	-4,606	kN	Con	npressive C	apacity	y (Factored)

 $C_r = -4,606 \text{ kN}$ Compressive Capacity (Factored) $C_r / C_f = 3.46$ Capacity over Demand Ratio (C/D)

Tension Results

TOWR-FBRC-FfFf

Tension Results			IOWR-FBRC-FJFJ
	Lift Span Closed: T _f =	1,366 kN	
	Lift Span Raised: T _f =	1,608 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=}$	5,207 kN	Gross Section
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u=}$	6,682 kN	Net Section
	T _r =	5,207 kN	Tensile Capacity (Factored)
	$T_r/T_f =$	3.24	Capacity over Demand Ratio (C/D)

Member Location:TowerMember Description:Front Horizontal Brace, Top of Lower SectionMember ID:TOWR-FBRC-FgFgS-Frame End Nodes:Node 596 to Node 595, Node 945 to Node 944

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	. 230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plates	Plates	Plates	8x8x3/4	8x8x3/4
Qty	1	1	2	2	2
y _{dim} (mm)	940	940	12.7	203	203
z _{dim} (mm)	15.9	15.9	1,778	203	203
I _{y1} (x10 ⁶ mm ⁴)	0	0	5,949	29.00	29.00
$I_{z1}(x10^{6}mm^{4})$	1,101	1,101	0	29.00	29.00
A _g (mm ²)	14,946	14,946	22,581	7,390	7,390
y _{bar} (mm)	0	0	480	416	416
z _{bar} (mm)	903	903	0	837	837
I _y (x10 ⁶ mm ⁴)	12,187	12,187	11,897	10,412	10,412
$I_{z}(x10^{6}mm^{4})$	1,101	1,101	10,406	2,616	2,616

- $A_g = 104,613 \text{ mm}^2$
- $A_n = 98,760 \text{ mm}^2$
- $I_y = 57,097 \text{ x}10^6 \text{ mm}^4$
- $I_z = 17,838 \text{ x}10^6 \text{ mm}^4$
- r_y = 739 mm
- r_z = 413 mm

	MMM GROUP
--	-----------

Compression Results

TOWR-FBRC-FgFg

Compression Resul	ts					TOWR-FBRC-FgFg
	L _y =	7,950 mm				
	$L_z =$	15,900 mm				
	K _y =	1.00				
	K _z =	1.00				
		1,372 mm				
	Web	12.7 mm				
	Flange b	534 mm				
	t	15.9 mm				
	n =	1.34				
	Lift Span Closed: C _f =	0 kN				
	Lift Span Raised: C _f =	0 kN				
Cl. 10.5.7 (c)	Compression: $\varphi_s =$	0.90				
Cl. 10.9.1.3	Slenderness Ratio =	39	<	120	Cl. 10.9.1.3 S	atisfied
Cl. 10.9.2.1	Width to Thickness Lin	nits				
	Web h/w =	108	>	44	Cl. 10.9.2.1 N	
	Flanges b/t =	34	<	44	Cl. 10.9.2.1 S	atisfied
		20 1/0				
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$,605 kN			
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$	$(2^{n})^{-1/n} = 20$,236 kN	Gove	rns	
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} =$ $C_{r} =$ $C_{r} / C_{f} =$	= 0.116 = 0.416 -20,236 kN N/A		-	pacity (Factored) emand Ratio (C/D)	
Tension Results						TOWR-FBRC-FgFg
	Lift Span Closed: T _f =	459 kN				

			i e tritt i Brie i gi g
	Lift Span Closed: T _f =	459 kN	
	Lift Span Raised: T _f =	584 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	22,858 kN	Gross Section
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u}$	33,494 kN	Net Section
	T _r =	22,858 kN	Tensile Capacity (Factored)
	$T_r/T_f =$	39.14	Capacity over Demand Ratio (C/D)

Member Location:TowerMember Description:Front Diagonal Brace in Mid SectionMember ID:TOWR-FBRC-MDIAS-Frame End Nodes:Node 623 to Node 595, Node 604 to Node 623, Node 623 to Node 603, Node 596 to Node 623Node 968 to Node 944, Node 953 to Node 968, Node 968 to Node 952, Node 945 to Node 968

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	Тор	Bottom	Web	Top Ls	Bot Ls
	Lattice	Lattice	Plates	6x4x1/2	6x4x1/2
Qty			2	2	2
y _{dim} (mm)			9.5	152	152
z _{dim} (mm)			610	102	102
$I_{y1}(x10^{6}mm^{4})$	0	0	180	7.20	7.20
$I_{z1}(x10^{6}mm^{4})$	0	0	0	2.64	2.64
A _g (mm ²)	0	0	5,795	3,060	3,060
y _{bar} (mm)			450	394	394
z _{bar} (mm)			0	286	286
$I_{y}(x10^{6}mm^{4})$	0	0	359	515	515
$I_{z}(x10^{6}mm^{4})$	0	0	2,347	955	955

 $\begin{array}{rcl} A_{g} = & 23,830 \ mm^{2} \\ A_{n} = & 19,703 \ mm^{2} \\ I_{y} = & 1,389 \ x10^{6} \ mm^{4} \\ I_{z} = & 4,258 \ x10^{6} \ mm^{4} \\ r_{y} = & 241 \ mm \end{array}$

r_z = 423 mm

	MMM GROUP	
--	-----------	--

	MM GROUP	Member C	Capacities		
Compression Result	S				TOWR-FBRC-MDIA
	L _y =	11,837 mm			
	L _z =	23,674 mm			
	K _y =	1.00		К' _у =	1.10
	K _z =	1.00		K' _z =	1.02
	Web h	406 mm 9.5 mm			
	w	N/A mm			
	Flange t	N/A mm			
	n =	1.34			
	Lift Span Closed: C _f =	-3,139 kN			
	Lift Span Raised: C _f =	-4,001 kN			
Cl. 10.5.7 (c)	Compression: ϕ_s =	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	56	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Limi				
	Web h/w =	43	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1 Cl. 10.9.3.1		ⁿ) ^{-1/n} = 4, 0.582 0.614 -4,126 kN	215 kN 126 kN		Capacity (Factored)
	$C_r / C_f =$	1.03 *	Сара	city over	Demand Ratio (C/D)
			* C/L	D is less th	nan 1.15
Tension Results					TOWR-FBRC-MDIA
	Lift Span Closed: T _f =	1,777 kN			
	Lift Span Raised: T _f =	2,371 kN			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95			
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	5,207 kN	Gros	s Section	
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u=}$	6,682 kN	Net S	Section	
	T _r =	5,207 kN	Tens	ile Capaci	ty (Factored)

 $T_r / T_f = 2.20$

Member ID: TOWR-FBRC-MDIA Prepared By: Matthew Bowser Capacity over Demand Ratio (C/D)

Member Location: Tower

Member Description:Front and rear vertical member in middle sectionMember ID:TOWR-FBRC-MdMeS-Frame End Nodes:Node 619 to Node 621, Node 620 to Node 622, Node 964 to Node 966, Node 965 to Node 967

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	All Ls	
	4x3x3/8	
Qty	4	
y _{dim} (mm)	102	
z _{dim} (mm)	76	
$I_{y1}(x10^{6}mm^{4})$	1.67	
$I_{y1}(x10^{6}mm^{4})$ $I_{z1}(x10^{6}mm^{4})$	0.80	
A _g (mm ²)	1,610	

y _{bar} (mm)	45
z _{bar} (mm)	406
$I_y(x10^6 mm^4)$	1,068
$I_z(x10^6 mm^4)$	16

A _g =	6,440	mm ²
A _n =	5,490	mm ²
$I_y =$	1,068	$x10^{6} \text{ mm}^{4}$
I _z =	16	$x10^6 \text{ mm}^4$
r _y =	407	mm
r _z =	50	mm

	MMM GROUP	
--	-----------	--

		er Capacitie		
				TOWR-FBRC-MdMe
L _y =	8,770 mi	n		
$L_z =$	8,770 mi	n		
	1.00		K' _y =	1.00
K _z =	1.00		K' _z =	1.10
Web				
Flange b				
n =	1.34			
Lift Span Closed: C _f =	-31 kN			
Lift Span Raised: C _f =	-74 kN			
Compression: $\phi_s =$	0.90			
Slenderness Ratio =	175	>	120	Cl. 10.9.1.3 NOT Satisfied
Web h/w = M	N/A			
$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$^{2n})^{-1/n} =$	1,313 kN		
		281 kN	Go	overns
$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	2.074			
C _r =	-281 kN	Con	npressive	Capacity (Factored)
$C_r / C_f =$	3.80	Сар	acity over	r Demand Ratio (C/D)
				TOWR-FBRC-MdMe
	$L_{z} = K_{y} = K_{z} = K_{z$	$L_{z} = 8,770 \text{ mm}$ $K_{y} = 1.00$ $K_{z} = 1.00$ $Web \qquad h \qquad mm$ $Flange \qquad b \qquad mm$ $r \qquad mr$ $Flange \qquad t \qquad mm$ $r \qquad mr$ $r \qquad n = 1.34$ Lift Span Closed: $C_{f} = -31 \text{ kN}$ Lift Span Raised: $C_{f} = -74 \text{ kN}$ Compression: $\varphi_{s} = 0.90$ Slenderness Ratio = 175 Width to Thickness Limits $Web \qquad h/w = N/A$ Flanges $b/t = N/A$ $C_{r(y)} = \varphi_{s} AF_{y} (1 + \lambda^{2n})^{-1/n} =$ $C_{r(z)} = \varphi_{s} AF_{y} (1 + \lambda^{2n})^{-1/n} =$ $\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} = 0.233$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} = 2.074$ $C_{r} = -281 \text{ kN}$	$L_{z} = 8,770 \text{ mm}$ $K_{y} = 1.00$ $K_{z} = 1.00$ $Web \qquad h \qquad mm$ mm $Flange \qquad b \qquad mm$ mm $r = 1.34$ Lift Span Closed: C_{f} = -31 kN Lift Span Raised: C_{f} = -74 kN Compression: $\varphi_{s} = 0.90$ Slenderness Ratio = 175 > Width to Thickness Limits Web $h/w = N/A$ Flanges $b/t = N/A$ $C_{r(y)} = \phi_{s}AF_{y}(1 + \lambda^{2n})^{-1/n} = 1,313 kN$ $C_{r(z)} = \phi_{s}AF_{y}(1 + \lambda^{2n})^{-1/n} = 281 kN$ $\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} = 0.233$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} = 2.074$ $C_{r} = -281 kN$ Constant C	$L_{z} = 8,770 \text{ mm}$ $K_{y} = 1.00 \qquad K'_{y} = K'_{z} = 1.00 \qquad K'_{z} = 1.00 \qquad K'_{z} = 1.00$ $\frac{K_{z} = 1.00}{K_{z} = 1.00} \qquad K'_{z} = 1.00 \qquad K'_{z} = 1.00$ $\frac{K_{z} = 1.00}{M} \qquad Mm \qquad $

Tension Results			TOWR-FBRC-MdMe
	Lift Span Closed: T _f =	69 kN	
	Lift Span Raised: T _f =	56 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	1,407 kN	Gross Section
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u=}$	1,862 kN	Net Section
	T _r =	1,407 kN	Tensile Capacity (Factored)
	T _r /T _f =	20.39	Capacity over Demand Ratio (C/D)

Member Location:TowerMember Description:Front Diagonal Brace in Upper SectionMember ID:TOWR-FBRC-UDIAS-Frame End Nodes:Node 604 to Node 624, Node 624 to Node 611, Node 612 to Node 624, Node 624 to Node 603Node 953 to Node 969, Node 969 to Node 960, Node 961 to Node 969, Node 969 to Node 952

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

	Тор	Bottom	Web	Top Ls	Bot Ls
	Lattice	Lattice	Plates	6x4x3/8	6x4x3/8
Qty			2	2	2
y _{dim} (mm)			9.5	152	152
z _{dim} (mm)			610	102	102
I _{y1} (x10 ⁶ mm ⁴)	0	0	180	5.58	5.58
$I_{z1}(x10^{6}mm^{4})$	0	0	0	2.06	2.06
A _g (mm ²)	0	0	5,795	2,330	2,330
y _{bar} (mm)			421	367	367
z _{bar} (mm)			0	286	286
l _y (x10 ⁶ mm ⁴)	0	0	359	392	392
$I_{z}(x10^{6}mm^{4})$	0	0	2,054	632	632

 $A_{g} = 20,910 \text{ mm}^{2}$ $A_{n} = 17,133 \text{ mm}^{2}$ $I_{y} = 1,144 \text{ x10}^{6} \text{ mm}^{4}$ $I_{z} = 3,318 \text{ x10}^{6} \text{ mm}^{4}$

r_y = 234 mm

r_z = 398 mm

	MMM GROUP	
--	-----------	--

	MMM GROUP	Mem	ber Capaciti	es	······	
Compression Re	esults				TOWR-FBR	C-UDIA
	L _y =	11,837 m	ım			
	$L_z =$		ım			
	K _y =			K' _y =	1.10	
	K _z =	1.00		K' _z =	1.01	
	Web h					
	W					
	Flange b	•				
	t	,	ım			
	n =	1.34				
	Lift Span Closed: $C_f =$	-				
	Lift Span Raised: C _f =	•	N			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90				
Cl. 10.9.1.3	Slenderness Ratio =	59	<	120	Cl. 10.9.1.3 Satisfied	
Cl. 10.9.2.1	Width to Thickness Li	mits				
	Web h/w =	43	<	44	Cl. 10.9.2.1 Satisfied	
Cl. 10.9.3.1	$C_{r(y)} = \phi_{s} A F_{y} (1 + x)$	λ^{2n}) ^{-1/n} =	3,653 kN			
	$C_{r(z)} = \phi_s AF_y (1 + z)$ $C_{r(z)} = \phi_s AF_y (1 + z)$	$2n_{1}-1/n$				
Cl. 10.9.3.1	$C_{r(z)} = \varphi_s A F_y (1 + z)$	n) =	3,526 kN	GC	verns	
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}}$ $\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 0.601 = 0.651				

C _r =	-3,526 kN	Compressive Capacity (Factored)
$C_r / C_f =$	1.68	Capacity over Demand Ratio (C/D)

Tension Results

TOWR-FBRC-UDIA

rension results			IOWA-FBAC-ODIA
	Lift Span Closed: T _f =	166 kN	
	Lift Span Raised: T _f =	607 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	4,569 kN	Gross Section
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u}$	5,811 kN	Net Section
	T _r =	4,569 kN	Tensile Capacity (Factored)
	$T_r/T_f =$	7.53	Capacity over Demand Ratio (C/D)

Member Location:TowerMember Description:Bottom section of front columnMember ID:TOWR-FCOL-BCOLS-Frame End Nodes:Node 588 to Node 789, Node 587 to Node 788, Node 937 to Node 1091, Node 936 to Node 1090

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	350	MPa	Low Alloy Steel A242
$F_u =$	480	MPa	CAN/CSA-S16-09 PP6-5
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	Cover	Cover	Web	Web	Web	Inner L's	Outer L's
	Plate	Plate	Plates	Plates	Plates	8x8x1	8x8x1
Qty	1	1	2	2	2	4	4
y _{dim} (mm)	1,219	737	25.4	25.4	25.4	203	203
z _{dim} (mm)	22.2	22.2	914	711	508	203	203
I _{y1} (x10 ⁶ mm ⁴)	1	1	1,616	761	277	36.90	36.90
$I_{z1}(x10^{6}mm^{4})$	3,351	741	1	1	1	36.90	36.90
A _g (mm ²)	27,062	16,361	23,216	18,059	12,903	9,670	9,670
y _{bar} (mm)	0	0	362	388	413	315	473
z _{bar} (mm)	475	475	0	105	0	404	404
l _y (x10 ⁶ mm ⁴)	6,107	3,692	3,232	1,920	555	6,461	6,461
$I_{z}(x10^{6}mm^{4})$	3,351	741	6,087	5,439	4,403	3,986	8,801

- $A_g = 229,140 \text{ mm}^2$
- $A_n = 215,667 \text{ mm}^2$
- $I_y = 28,428 \text{ x}10^6 \text{ mm}^4$
- $I_z = 32,808 \text{ x}10^6 \text{ mm}^4$
- r_y = 352 mm
- r_z = 378 mm

	MMM GROUP	
--	-----------	--

Compression Results

TOWR-FCOL-BCOL

Compression Results						TOWR-FCC
	L _y =	9,804	mm			
	$L_z =$	9,804	mm			
	K _y =	1.00				
	K _z =	1.00				
	Web h	914	mm			
	Web W	76.0	mm			
	Flange	331	mm			
	t	22.2	mm			
	n =	1.34				
	Lift Span Closed: C _f =	-19,458	kN			
	Lift Span Raised: C _f =	-32,221	kN			
Cl. 10.5.7 (c)	Compression: ϕ_s =	0.90				
Cl. 10.9.1.3	Slenderness Ratio =	28	<	120)	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Li	mits				
	Web h/w =	12	<	36	j	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	15	<	36	i	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$\binom{2n}{2^{n-1/n}} =$	68,627	kN	Governs	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$		69,218			
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}}$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}}$					
	C _r =	-68,627	kN	Compress	ive Capacit	y (Factored)
	$C_r / C_f =$	2.13		Capacity o	over Deman	nd Ratio (C/D)

TOWR-FCOL-BCOL

	Lift Span Closed: T _f =	0 kN	
	Lift Span Raised: T _f =	0 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	76,189 kN	Gross Section
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u}$	83,593 kN	Net Section
	T _r =	76,189 kN	Tensile Capacity (Factored)
	$T_r/T_f =$	N/A	

Member Location:TowerMember Description:Middle section of front columnMember ID:TOWR-FCOL-MCOLS-Frame End Nodes:Node 789 to Node 793, Node 788 to Node 792, Node 1091 to Node 1095, Node 1090 to Node 1094

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	-		
F _y =	350	MPa	Low Alloy Steel A242
F _u =	480	MPa	CAN/CSA-S16-09 PP6-5
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

Built op Section 110p	ertico						
	Cover	Cover	Web	Web	Web	Inner L's	Outer L's
	Plate	Plate	Plates	Plates	Plates	8x8x1	8x8x1
Qty	1	1	2	2	2	2	2
y _{dim} (mm)	1,219	737	25.4	25.4	25.4	203	203
z _{dim} (mm)	22.2	22.2	914	711	508	203	203
I _{y1} (x10 ⁶ mm ⁴)	1	1	1,616	761	277	36.90	36.90
$I_{z1}(x10^{6}mm^{4})$	3,351	741	1	1	1	36.90	36.90
A _g (mm ²)	27,062	16,361	23,216	18,059	12,903	9,670	9,670
y _{bar} (mm)	0	0	362	388	413	315	460
z _{bar} (mm)	475	475	0	105	0	404	404
I _y (x10 ⁶ mm ⁴)	6,107	3,692	3,232	1,920	555	3,230	3,230
$I_z (x10^6 mm^4)$	3,351	741	6,087	5,439	4,403	1,993	4,166

 $A_g = 190,460 \text{ mm}^2$

 $A_n = 176,984 \text{ mm}^2$

 $I_y = 21,967 \text{ x}10^6 \text{ mm}^4$

 $I_z = 26,180 \text{ x}10^6 \text{ mm}^4$

r_y = 340 mm

r_z = 371 mm

	MMM GROUP
--	-----------

Compression Result	s		-			TOWR-FCOL-MCOL
	L _y =	8,763	mm			
	$L_z =$	8,763	mm			
	K _y =	1.00				
	K _z =	1.00				
	Web h	914				
	W	76.0				
	Flange b	1,117				
	t	22.2	mm			
	n = Lift Span Closed: C _f =	1.34	LNI			
		-				
	Lift Span Raised: C _f =	-	kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90				
Cl. 10.9.1.3	Slenderness Ratio =	26	<	120	Cl. 10.9.1.3	Satisfied
Cl. 10.9.2.1	Width to Thickness Lin	nits				
	Web h/w =	12	<	36	Cl. 10.9.2.1	Satisfied
	Flanges b/t =	50	>	36	Cl. 10.9.2.1	NOT Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$(2n)^{-1/n} =$	57,560		overns	
Cl. 10.9.3.1	$C_{r(y)} = \phi_s AF_y (1 + \lambda)$ $C_{r(z)} = \phi_s AF_y (1 + \lambda)$		58,051		JVEIIIS	
Ci. 10.5.5.1	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} = \lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} = 0$	= 0.344 = 0.315 -57,560		Compressive	Capacity (Factored) r Demand Ratio (C/D)
Tension Results						TOWR-FCOL-MCOL
	Lift Chan Classed, T -	0				

Tension Results				JL-IVICOL
	Lift Span Closed: T _f =	0 kN		
	Lift Span Raised: T _f =	0 kN		
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95		
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma} =$	63,328 kN	Gross Section	
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u}$	68,599 kN	Net Section	
	T _r =	63,328 kN	Tensile Capacity (Factored)	
	$T_r / T_f =$	N/A		

Member Location:TowerMember Description:Upper section of front columnMember ID:TOWR-FCOL-UCOLS-Frame End Nodes:Node 638 to Node 642, Node 637 to Node 641, Node 983 to Node 987, Node 982 to Node 986,Node 793 to Node 638, Node 792 to Node 637, Node 1095 to Node 983, Node 1094 to Node 982

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
F _y =	350	MPa	Low Alloy Steel A242
F _u =	480	MPa	CAN/CSA-S16-09 PP6-5
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	Cover	Cover	Web	Inner L's	Outer L's
	Plate	Plate	Plates	8x8x1	8x8x1
Qty	1	1	2	2	2
y _{dim} (mm)	1,219	737	25.4	203	203
z _{dim} (mm)	22.2	22.2	914	203	203
I _{y1} (x10 ⁶ mm ⁴)	1	1	1,616	36.90	36.90
$I_{z1}(x10^{6}mm^{4})$	3,351	741	1	36.90	36.90
A _g (mm ²)	27,062	16,361	23,216	9,670	9,670
y _{bar} (mm)	0	0	387	315	460
z _{bar} (mm)	475	475	0	404	404
$I_{y}(x10^{6}mm^{4})$	6,107	3,692	3,232	3,230	3,230
$I_{z}(x10^{6}mm^{4})$	3,351	741	6,956	1,993	4,166

- $A_g = 128,534 \text{ mm}^2$
- $A_n = 115,052 \text{ mm}^2$
- $I_y = 19,492 \text{ x}10^6 \text{ mm}^4$
- $I_z = 17,207 \text{ x}10^6 \text{ mm}^4$
- r_y = 389 mm
- r_z = 366 mm

	MMM GROUP	
--	-----------	--

Compression Resul	ts		-		TOWR-FCOL-UCOL
	L _y =	8,763 mn	n		
	$L_z =$	8,763 mn	n		
	K _y =	1.00			
	K _z =	1.00			
	h Web	mn	n		
	Web	25.4 mn	n		
	Flange b	1,117 mn			
	t	22.2 mn	n		
	n =	1.34			
	Lift Span Closed: C _f =	-14,547 kN			
	Lift Span Raised: C _f =	-18,420 kN			
Cl. 10.5.7 (c)	Compression: $\varphi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	24	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lin	nits			
	Web h/w =	0	<	36	Cl. 10.9.2.1 Satisfied
	Flanges b/t =	50	>	36	Cl. 10.9.2.1 NOT Satisfied
		2n = 1/n			
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$		39,333 k	N	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$	$(2^{n})^{-1/n} =$	39,131 k	N Gove	rns
	$KL F_{2}$				
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	= 0.300			
	1				
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	0.040			
	$\lambda_z = \frac{1}{r} \left(\frac{1}{\pi^2 E_s} \right)^2$	= 0.319			
	N S				
	C _r =	-39,131 kN	C	ompressive Ca	pacity (Factored)
				-	
	$C_r / C_f =$	2.12	C	apacity over De	emand Ratio (C/D)
Tension Results					TOWR-FCOL-UCOL
	Lift Span Closed: T _f =	0 kN			
	Lift Span Raised: T _f =	0 kN			
		0 KIV			

	Lift Span Raised: T _f =	0 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	42,738 kN	Gross Section
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u}$	44,594 kN	Net Section
	T _r =	42,738 kN	Tensile Capacity (Factored)

 $T_r/T_f = N/A$

Member Location:TowerMember Description:Bottom section of rear columnMember ID:TOWR-RCOL-BCOLS-Frame End Nodes:Node 589 to Node 786, Node 590 to Node 787, Node 938 to Node 1088, Node 939 to Node 1089

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

•	•				
	Cover	Cover	Inner	Web	All L's
	Plate	Plate	Cover	Plates	8x6x1
Qty	1	1	2	2	4
y _{dim} (mm)	25.4	25.4	737	406	203
z _{dim} (mm)	813	813	12.7	25.4	153
I _{y1} (x10 ⁶ mm ⁴)	1,137	1,137	0	1	16.00
$I_{z1}(x10^{6}mm^{4})$	1	1	424	142	33.50
A _g (mm ²)	20,650	20,650	9,360	10,312	8,370
y _{bar} (mm)	387	387	368	0	333
z _{bar} (mm)	0	0	0	425	345
l _y (x10 ⁶ mm ⁴)	1,137	1,137	0	3,726	4,049
$I_{z}(x10^{6}mm^{4})$	3,094	3,094	3,382	283	3,847

- $A_g = 114,125 \text{ mm}^2$
- $A_n = 96,061 \text{ mm}^2$
- $I_y = 10,051 \text{ x}10^6 \text{ mm}^4$
- $I_z = 13,700 \text{ x}10^6 \text{ mm}^4$
- r_v = 297 mm
- r_z = 346 mm

	MMM GROUP	
--	-----------	--

Compression Results

TOWR-RCOL-BCOL

Compression Results						TOWR-RCC
	L _y =	9,804	mm			
	L _z =	9,804	mm			
	K _y =	1.00				
	K _z =	1.00				
	h Web	737	mm			
	W	50.0	mm			
	Flange b	509	mm			
	t					
	n =	1.34				
	Lift Span Closed: C _f =	-6,602	kN			
	Lift Span Raised: C _f =	-18,464	kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90				
Cl. 10.9.1.3	Slenderness Ratio =	33	<	120	C	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Li	mits				
	Web h/w =	15	<	44		Cl. 10.9.2.1 Satisfied
	Flanges b/t =	20	<	44		Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$\binom{2n}{2^{n-1/n}} =$	22,570	kN	Governs	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$		22,915			
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}}$ $\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}}$					
	C _r =	-22,570	kN	Compress	ive Capacity ((Factored)
	$C_r / C_f =$	1.22		Capacity c	over Demand	Ratio (C/D)

Tension Results

TOWR-RCOL-BCOL

	Lift Span Closed: T _f =	0 kN	
	Lift Span Raised: T _f =	9,109 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	24,936 kN	Gross Section
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u}$	32,579 kN	Net Section
	T _r =	24,936 kN	Tensile Capacity (Factored)
	$T_r/T_f =$	N/A	

Member Location:TowerMember Description:Middle section of rear columnMember ID:TOWR-RCOL-MCOLS-Frame End Nodes:Node 786 to Node 790, Node 787 to Node 791, Node 1088 to Node 1092, Node 1089 to Node 1093

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

•		
	MPa	CSA S6-06 Cl. 14.7.4.2
420	MPa	CSA S6-06 Cl. 14.7.4.2
200,000	MPa	
77,000	MPa	
	420 200,000	420 MPa 200,000 MPa

Built Up Section Properties

Bant op beetion i rop	Jerties				
	Cover	Cover	Inner	Web	All L's
	Plate	Plate	Cover	Plates	8x6x1
Qty	1	1	2	2	4
y _{dim} (mm)	25.4	25.4	737	406	203
z _{dim} (mm)	813	813	12.7	25.4	153
I _{y1} (x10 ⁶ mm ⁴)	1,137	1,137	0	1	16.00
$I_{z1}(x10^{6}mm^{4})$	1	1	424	142	33.50
A _g (mm ²)	20,650	20,650	9,360	10,312	8,370
y _{bar} (mm)	387	387	368	0	333
z _{bar} (mm)	0	0	0	425	345
$I_{y}(x10^{6}mm^{4})$	1,137	1,137	0	3,726	4,049
$I_{z}(x10^{6}mm^{4})$	3,094	3,094	3,382	283	3,847

 $A_g = 114,125 \text{ mm}^2$

- $A_n = 96,061 \text{ mm}^2$
- $I_y = 10,051 \text{ x}10^6 \text{ mm}^4$

 $I_z = 13,700 \text{ x10}^6 \text{ mm}^4$

r_y = 297 mm

r_z = 346 mm

	MMM GROUP	
--	-----------	--

Compression Results

TOWR-RCOL-MCOL

Compression Result	ts					TOWR-RCO
	l	_ _y = 8,763	3 mm			
	l	- _z = 8,763	3 mm			
	k	K _y = 1.00)			
	k	K _z = 1.00)			
	Web	h 331	l mm			
	Web	w 12.7	7 mm			
	Flange	b 509) mm			
	Tidlige	t 25.4	1 mm			
	r	n = 1.34	l			
	Lift Span Closed: (C _f = -3,920) kN			
	Lift Span Raised: (C _f = -11,008	3 kN			
Cl. 10.5.7 (c)	Compression: ϕ_s =	= 0.90)			
Cl. 10.9.1.3	Slenderness Ratio	= 30) <	120	Cl.	10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thicknes	s Limits				
	Web h/w			44		10.9.2.1 Satisfied
	Flanges b/	t = 20) <	44	Cl.	10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y$ (1)	$(1 + \lambda^{2n})^{-1/n} =$	22,833	kN	Governs	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1)$			kN		
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F}{\pi^{2}}}$ $\lambda_{z} = \frac{KL}{r} \sqrt{\frac{F}{\pi^{2}}}$	$\frac{\overline{v}}{E_s} = 0.319$ $\frac{\overline{v}}{E_s} = 0.273$) }			
	(C _r = -22,833	3 kN	Compressi	ve Capacity (F	actored)
	C _r / C	c _f = 2.07	7	Capacity o	ver Demand R	atio (C/D)
Tension Results						TOWR-RCO
						101111100

Tension Results				TOWR-RCOL-MCOL
	Lift Span Closed: T _f =	0 kN		
	Lift Span Raised: T _f =	4,550 kN		
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95		
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	24,936 kN	Gross Section	
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u}$	32,579 kN	Net Section	
	T _r =	24,936 kN	Tensile Capacity (Factored)	
	$T_r / T_f =$	N/A		

Member Location:TowerMember Description:Upper section of rear columnMember ID:TOWR-RCOL-UCOLS-Frame End Nodes:Node 639 to Node 643, Node 640 to Node 644, Node 984 to Node 988, Node 985 to Node 989,Node 790 to Node 639, Node 791 to Node 640, Node 1092 to Node 984, Node 1093 to Node 985

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	Cover	Cover	Inner	Web	All L's
	Plate	Plate	Cover	Plates	8x6x1
Qty	1	1	2	2	4
y _{dim} (mm)	25.4	25.4	737	406	203
z _{dim} (mm)	813	813	12.7	25.4	153
$I_{y1}(x10^{6}mm^{4})$	1,137	1,137	0	1	16.00
$I_{z1}(x10^{6}mm^{4})$	1	1	424	142	33.50
A _g (mm ²)	20,650	20,650	9,360	10,312	8,370
y _{bar} (mm)	387	387	368	0	333
z _{bar} (mm)	0	0	0	425	345
$I_{y}(x10^{6}mm^{4})$	1,137	1,137	0	3,726	4,049
$I_{z}(x10^{6}mm^{4})$	3,094	3,094	3,382	283	3,847

- $A_g = 114,125 \text{ mm}^2$
- $A_n = 96,061 \text{ mm}^2$
- $I_y = 10,051 \text{ x}10^6 \text{ mm}^4$
- $I_z = 13,700 \text{ x}10^6 \text{ mm}^4$
- r_y = 297 mm
- r_z = 346 mm

	MMM GROUP	
--	-----------	--

TOWR-RCOL-UCOL

Compression Results							TOWR-RCC
		L _y =	8,763	mm			
		L _z =	8,763	mm			
		K _y =	1.00				
		K _z =	1.00				
	Mah	h	331	mm			
	Web	w	12.7	mm			
	Elango	b	509	mm			
	Flange	t	25.4	mm			
		n =	1.34				
	Lift Span Close	d: C _f =	-2,578	kN			
	Lift Span Raise	d: C _f =	-5,703	kN			
Cl. 10.5.7 (c)	Compression:	φ _s =	0.90				
Cl. 10.9.1.3	Slenderness Ra	tio =	30		<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thick	ness Lim	its				
	Web	h/w =	26		<	44	Cl. 10.9.2.1 Satisfied
	Flanges	b/t =	20		<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1 Cl. 10.9.3.1	$C_{r(y)} = \phi_s AF$ $C_{r(z)} = \phi_s AF$				33 kN 95 kN	G	overns
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{KL}{r}}$						
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{kL}{r}}$	$\frac{F_{y}}{\pi^{2}E_{s}} =$	0.273				
		C _r =	-22,833	kN	Со	mpressive	Capacity (Factored)
	C _r	/ C _f =	4.00		Ca	pacity ove	r Demand Ratio (C/D)

Tension Results			TOWR-RCOL-UCOL
	Lift Span Closed: T _f =	0 kN	
	Lift Span Raised: T _f =	0 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=1}$	24,936 kN	Gross Section
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u=}$	32,579 kN	Net Section
	T _r =	24,936 kN	Tensile Capacity (Factored)

T_r /T_f = #DIV/0! **#DIV/0!**

#DIV/0!

Member Location: Tower

Member Description: Side bracing diagonals

Member ID: TOWR-SBRC-DIAG

S-Frame End Nodes: 609-612, 605-608, 601-604, 597-600, 593-596, 610-611, 606-607, 602-603, 598-599, 594-595, 961-958, 957-954, 953-950, 949-946, 945-942, 960-959, 956-955, 952-951, 948-947, 944-943, 598-627, 627-591, 629-599 606-629, 631-607, 614-631, 628-595, 602-628, 630-603, 610-630, 597-632, 632-592, 634-600, 605-634, 636-608, 613-636 633-596, 601-633, 635-604, 609-635, 972-947, 940-972, 948-974, 974-955, 956-976, 976-963, 944-973, 973-951, 952-975 975-959, 977-946, 941-977, 949-979, 979-954, 957-981, 981-962, 945-978, 978-950, 953-980, 980-958

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge *y* always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	Тор	Bottom	Web	Top Ls	Bot Ls
	Lattice	Lattice	Plates	4x4x3/8	4x4x3/8
Qty			2	2	2
y _{dim} (mm)			9.5	102	102
z _{dim} (mm)			610	102	102
I _{y1} (x10 ⁶ mm ⁴)	0	0	180	1.84	1.84
I _{z1} (x10 ⁶ mm ⁴)	0	0	0	1.84	1.84
A _g (mm ²)	0	0	5,795	1,850	1,850
y _{bar} (mm)			395	362	362

y _{bar} (mm)			395	362	362	
z _{bar} (mm)			0	282	282	
$I_{y}(x10^{6}mm^{4})$	0	0	359	298	298	
$I_{z}(x10^{6}mm^{4})$	0	0	1,808	489	489	

- $A_{g} = 18,990 \text{ mm}^{2}$
- $A_n = 15,213 \text{ mm}^2$
- $I_v = 955 \times 10^6 \text{ mm}^4$
- $I_{7} = 2,786 \text{ x}10^{6} \text{ mm}^{4}$
- r_v = 224 mm
- $r_z = 383 \text{ mm}$

	MMM GROUP	
--	-----------	--

Compression Results

TOWR-	CRRC	DIAG
I UVVN-	JUNC	UAG

Compression Result	ts			TOWR-SBRC-DIAG
	L _y =	6,558 mm		
	L _z =	13,116 mm		
	K _y =	1.00	K' _y =	1.10
	K _z =	1.00	K' _z =	1.04
	Web h	406 mm		
	w	9.5 mm N/A mm		
	Flange t	N/A mm		
	n =	1.34		
	Lift Span Closed: C _f =	-1,589 kN		
	Lift Span Raised: C _f =	-3,914 kN		
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90		
Cl. 10.9.1.3	Slenderness Ratio =	34	< 120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	its		
	Web h/w =	43	< 44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1 Cl. 10.9.3.1		$(2n)^{-1/n} = 3,7$ = 0.347	Compressive C	verns Capacity (Factored) Demand Ratio (C/D)
			C/D is less tha	
Tension Results				TOWR-SBRC-DIAG
	Lift Span Closed: T _f =	919 kN		
	Lift Span Raised: T _f =	3,328 kN		
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95		
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=}$	4,149 kN	Gross Section	
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u}$	5,159 kN	Net Section	
	T _r =	4,149 kN	Tensile Capacit	ty (Factored)

 $T_r/T_f = 1.25$ Capacity over Demand Ratio (C/D)

Member Location:TowerMember Description:Side brace - horizontal bottom sectionMember ID:TOWR-SBRC-FgRgS-Frame End Nodes:Node 597 to Node 596, Node 598 to Node 595, Node 945 to Node 946, Node 944 to Node 947

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

•	•				
	Тор	Bottom	Web	Top Ls	Bot Ls
	Lattice	Lattice	Plates	6x4x1/2	6x4x1/2
Qty			2	2	2
y _{dim} (mm)			9.5	152	152
z _{dim} (mm)			610	102	102
I _{y1} (x10 ⁶ mm ⁴)	0	0	180	7.20	7.20
$I_{z1}(x10^{6}mm^{4})$	0	0	0	2.64	2.64
A _g (mm ²)	0	0	5,795	3,060	3,060
y _{bar} (mm)			395	341	341
z _{bar} (mm)			0	286	286
$I_y(x10^6 mm^4)$	0	0	359	515	515
$I_{z}(x10^{6}mm^{4})$	0	0	1,808	717	717

- $A_g = 23,830 \text{ mm}^2$
- $A_n = 21,003 \text{ mm}^2$
- $I_y = 1,389 \text{ x}10^6 \text{ mm}^4$
- $I_z = 3,242 \text{ x}10^6 \text{ mm}^4$
- r_y = 241 mm
- r_z = 369 mm

	MMM GROUP
--	-----------

accion Pocult c.

TOWR-SBRC-FgRg

Compression Resu	llts			TOWR
	L _y =	9,754 mm		
	L _z =	9,754 mm		
	K _y =	1.00	K' _y =	1.10
	K _z =	1.00	K' _z =	1.09
	Web	406 mm		
	w	9.5 mm N/A mm		
	Flange t	N/A mm		
	n =	1.34		
	Lift Span Closed: C _f =	0 kN		
	Lift Span Raised: C _f =	0 kN		
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90		
Cl. 10.9.1.3	Slenderness Ratio =	40	< 120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.2.1	Width to Thickness Lim	nits		
	Web h/w =	43	< 44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1 Cl. 10.9.3.1	$C_{r(y)} = \phi_{s}AF_{y}(1 + \lambda)$ $C_{r(z)} = \phi_{s}AF_{y}(1 + \lambda)$		4,474 kN Ga 4,778 kN	overns
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$			
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	= 0.311		
	C _r =	-4,474 kN	Compressive	Capacity (Factored)
	$C_r / C_f =$	N/A	Capacity over	r Demand Ratio (C/D)
Tausian Daarda				701//0
Tension Results	Lift Span Closed: T _f =	485 kN		TOWR-
	Lift Span Raised: $T_f =$			
		564 kN		
Cl. 10.5.7 (d)	tension: $\varphi_{s=}$	0.95		
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	5,207 kN	Gross Sectior	1

CI.

-SBRC-FgRg

	Ent Span Closed. If -	405 KN		
	Lift Span Raised: T _f =	564 kN		
il. 10.5.7 (d)	tension: $\phi_{s=}$	0.95		
l. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=}$	5,207 kN	Gross Section	
l. 10.8.2 (b)	$T_r = 0.85 \varphi_s A_n F_{u=}$	7,123 kN	Net Section	
	T _r =	5,207 kN	Tensile Capacity (Factored)	
	$T_r/T_f =$	9.23	Capacity over Demand Ratio (C/D)	

Member Location:TowerMember Description:Side bracing - lower horizontalMember ID:TOWR-SBRC-FhRhS-Frame End Nodes:Node 593 to Node 592, Node 594 to Node 591, Node 941 to Node 942, Node 940 to Node 943

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

	•		
F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	Cover	Cover	Web	All L's
	Plate	Plate	Plates	8x6x1
Qty	1	1	2	4
y _{dim} (mm)	762	762	19.0	152
z _{dim} (mm)	19.0	19.0	1,803	203
$I_{y1}(x10^{6}mm^{4})$	0	0	9,280	33.50
$I_{z1}(x10^{6}mm^{4})$	701	701	1	16.00
A _g (mm ²)	14,478	14,478	34,257	8,370
y _{bar} (mm)	0	0	390	339
z _{bar} (mm)	911	911	0	835
$I_y(x10^6 mm^4)$	12,016	12,016	18,560	23,477
$I_{z}(x10^{6}mm^{4})$	701	701	10,423	3,912

- $A_g = 130,950 \text{ mm}^2$
- $A_n = 107,222 \text{ mm}^2$
- $I_y = 66,070 \text{ x}10^6 \text{ mm}^4$
- $I_z = 15,736 \text{ x}10^6 \text{ mm}^4$
- r_y = 710 mm
- r_z = 347 mm

	MMM GROUP	
--	-----------	--

Compression Results

Burlington Lift Bridge Member Capacities

TOWR-SBRC-FhRh

Compression Resul	ts					IOWR-SBRC-FNRN
	L _y =	9,754 mm				
	L _z =	9,754 mm				
	K _y =	1.00				
	K _z =	1.00				
	h Web	1,599 mm				
	web	<u>19.0</u> mm				
	Flange b	558 mm				
	t	<u>19.0</u> mm				
	n =	1.34				
	Lift Span Closed: C _f =	-72 kN				
	Lift Span Raised: C _f =	-717 kN				
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90				
Cl. 10.9.1.3	Slenderness Ratio =	28	<	120	Cl. 10.9.1.3	Satisfied
Cl. 10.9.2.1	Width to Thickness Lin	nits				
	Web h/w =	84	>	44	Cl. 10.9.2.1	NOT Satisfied
	Flanges b/t =	29	<	44	Cl. 10.9.2.1	Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$(2^{n})^{-1/n} = 26.$	986 kN			
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$		305 kN	Gove	rns	
	$\lambda_{y} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} = \lambda_{z} = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} = 0$					
	C _r =	-26,305 kN	Con	npressive Ca	pacity (Factored)	
	$C_r / C_f =$	36.69	Сар	acity over D	emand Ratio (C/D))
Tension Results						TOWR-SBRC-FhRh
	Lift Span Closed: T _f =	568 kN				
	Lift Span Raised: T _f =	1,259 kN				
		1,200 111				

	$T_r/T_f =$	22.73	
Member ID: TOWR-SBRC-FhRh			
Prepared By: Matthew Bowser			

Cl. 10.5.7 (d)

Cl. 10.8.2 (a)

Cl. 10.8.2 (b)

tension: $\phi_{s=}$

 $T_r = \phi_s A_g F_{y=1}$

T_r =

 $T_r = 0.85 \varphi_s A_n F_{u} =$

0.95

28,613 kN

36,364 kN

28,613 kN

Gross Section

Tensile Capacity (Factored)

Capacity over Demand Ratio (C/D)

Net Section

Member Location:TowerMember Description:Side bracing - typical horizontal memberMember ID:TOWR-SBRC-HORZS-Frame End Nodes:Node 601 to Node 600, Node 602 to Node 599, Node 605 to Node 604, Node 606 to Node 603,Node 609 to Node 608, Node 610 to Node 607, Node 613 to Node 612, Node 614 to Node 611, Node 949 to Node 950,Node 948 to Node 951, Node 953 to Node 954, Node 952 to node 955, Node 957 to Node 958, Node 956 to Node 959,Node 961 to Node 962, Node 960 to Node 963

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge *y* always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

-	Тор	Bottom	Web	Top Ls	Bot Ls
	Lattice	Lattice	Plates	6x4x3/8	6x4x3/8
Qty			2	2	2
y _{dim} (mm)			9.5	102	102
z _{dim} (mm)			610	152	152
l _{y1} (x10 ⁶ mm ⁴)	0	0	180	2.06	2.06
$I_{z1}(x10^{6}mm^{4})$	0	0	0	5.58	5.58
A _g (mm ²)	0	0	5,795	2,330	2,330
y _{bar} (mm)			451	422	422
z _{bar} (mm)			0	256	256
$I_y(x10^6 mm^4)$	0	0	359	310	310
$I_{z}(x10^{6}mm^{4})$	0	0	2,358	841	841

 $A_g = 20,910 \text{ mm}^2$

$$A_n = 17,132 \text{ mm}^2$$

 $I_v = 978 \text{ x}10^6 \text{ mm}^4$

 $I_z = 4,040 \text{ x}10^6 \text{ mm}^4$

r_v = 216 mm

r_z = 440 mm

	MMM GROUP
--	-----------

TOWR-SBRC-HORZ

Compression Resu	lts				TOWR	-SBRC-HORZ
	L _y =	9,754 mm				
	$L_z =$	9,754 mm				
	K _y =	1.00		K' _y =	1.10	
	K _z =	1.00		K' _z =	1.07	
	h Web	406 mm				
	WebW	9.5 mm				
	Flange b	380 mm				
	t	9.5 mm				
	n =	1.34				
	Lift Span Closed: C _f =	0 kN				
	Lift Span Raised: C _f =	0 kN				
Cl. 10.5.7 (c)	Compression: ϕ_s =	0.90				
Cl. 10.9.1.3	Slenderness Ratio =	45	<	120	Cl. 10.9.1.3 Satisfied	1
Cl. 10.9.2.1	Width to Thickness Lim	its				
	Web h/w =	43	<	44	Cl. 10.9.2.1 Satisfied	
	Flanges b/t =	40	<	44	Cl. 10.9.2.1 Satisfied	1
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda^2)$	$(2^n)^{-1/n} = 3$	3,912 kN	Go	verns	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda^2)$		1,260 kN			
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	0.487				
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	0.240				
	C _r =	-3,912 kN	Со	mpressive	Capacity (Factored)	
	$C_r / C_f =$	N/A	Car	bacity over	Demand Ratio (C/D)	
Tension Results					TOWR	-SBRC-HORZ
	Lift Span Closed: T _f =	452 kN				
	Lift Span Raised: T _f =	1,065 kN				
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95				
Ci. 10.3.7 (u)	$\psi_{s} =$	0.55				

 $T_r = \phi_s A_g F_{y=}$ 4,569 kN

 $T_r / T_f = 4.29$

 $T_r = 4,569 \text{ kN}$

 $T_r = 0.85 \phi_s A_n F_{u=}$ 5,810 kN

Gross Section

Tensile Capacity (Factored)

Capacity over Demand Ratio (C/D)

Net Section

Member ID: TOWR-SBRC-HORZ **Prepared By: Matthew Bowser**

Cl. 10.8.2 (a)

Cl. 10.8.2 (b)

Member Location: Tower

Member Description: Side bracing - top diagonal bracing that frames into girderMember ID:TOWR-SBRC-SbFcS-Frame End Nodes:Node 614 to Node 645, Node 645 to Node 611, Node 613 to Node 646, Node 646 to Node 612Node 990 to Node 963, Node 960 to Node 990, Node 991 to Node 962, Node 961 to Node 991

Member orientation (local axis):

z always corresponds with the vertical plane or longitudinal direction of the bridge y always corresponds to the horizontal plane or transverse direction of the bridge Section properties for all built up members are calculated about the nodal centre of the member (refer to Section 3.3 of the report for a full description)

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

· · · •					
	Тор	Bottom	Web	Top Ls	Bot Ls
	Lattice	Lattice	Plates	4x4x1/2	4x4x1/2
Qty			2	2	2
y _{dim} (mm)			9.5	102	102
z _{dim} (mm)			610	102	102
I _{y1} (x10 ⁶ mm ⁴)	0	0	180	2.34	2.34
$I_{z1}(x10^{6}mm^{4})$	0	0	0	2.34	2.34
A _g (mm ²)	0	0	5,795	2,430	2,430
y _{bar} (mm)			395	362	362
z _{bar} (mm)			0	282	282
$I_y(x10^6 mm^4)$	0	0	359	391	391
$I_z(x10^6 mm^4)$	0	0	1,808	642	642

 $A_g = 21,310 \text{ mm}^2$

 $A_n = 12,323 \text{ mm}^2$

 $I_y = 1,142 \text{ x}10^6 \text{ mm}^4$

 $I_z = 3,092 \text{ x}10^6 \text{ mm}^4$

r_y = 231 mm

r_z = 381 mm

	MMM GROUP	
--	-----------	--

Compression Results

TOWR-SBRC-SbFc

Compression Result	ts			TOWR-SBRC-SDFC
	L _y =	6,558 mm		
	L _z =	13,116 mm		
	K _y =	1.00	K' _y =	1.10
	K _z =	1.00	K' _z =	1.05
	Web h	406 mm		
	w	9.5 mm		
	Flange b	N/A mm		
	n =	<u>N/A</u> mm 1.34		
	Lift Span Closed: C _f =	-534 kN		
	Lift Span Raised: C _f =	-1,190 kN		
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90		
Cl. 10.9.1.3	Slenderness Ratio =	34	< 120	Cl. 10.9.1.3 Satisfied
CI. 10.9.1.5	Siendemess Natio -	54	< 120	Cl. 10.9.1.5 Sulisfied
Cl. 10.9.2.1	Width to Thickness Lim	iits		
	Web h/w =	43	< 44	Cl. 10.9.2.1 Satisfied
		2n = 1/n		
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda^2)$		42 kN	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda^2)$	$(2^n)^{-1/n} = 4,1$.67 kN Gov	erns
	$KL F_{y}$			
	$\lambda_y = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	= 0.336		
	•			
	$\lambda_z = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} =$	- 0.280		
	$\lambda_z = \frac{1}{r} \sqrt{\pi^2 E_s}$	- 0.389		
	,			
	C _r =	-4,167 kN	Compressive C	apacity (Factored)
	$C_r / C_f =$	3.50	Capacity over [Demand Ratio (C/D)
				• • •
Tension Results				TOWR-SBRC-SbFc
	Lift Span Closed: T _f =	82 kN		
	Lift Span Raised: T _f =	492 kN		
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95		
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=1}$	4,656 kN	Gross Section	
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u=}$	4,179 kN	Net Section	
	T _r =	4,179 kN	Tensile Capacit	y (Factored)

 $T_r/T_f = 8.49$ Capacity over Demand Ratio (C/D)

Member Location:TowerMember Description:Tower span front floor beamMember ID:TOWR-FLBM-FRNTS-Frame End Nodes:Node 591 to Node 592, Node 940 to Node 941

Member orientation (local axis): z always corresponds with the vertical plane y always corresponds to the horizontal plane

Material P	roperties		
$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

-	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plates	Plates	Plate	8x8x1/2	8x8x1/2
Qty	1	1	1	2	2
y _{dim} (mm)	508	508	12.7	203	203
z _{dim} (mm)	12.7	12.7	1,803	203	203
I _{y1} (x10 ⁶ mm ⁴)	0	0	6,203	20.2	20.2
$I_{z1}(x10^{6}mm^{4})$	139	139	0	20.2	20.2
A _g (mm ²)	6,452	6,452	22,898	4,990	4,990
A _n (mm ²)	6,452	6,452	22,898	4,990	4,990
y _{bar} (mm)	0	0	0	62	62
z _{bar} (mm)	914	914	0	852	852
l _y (x10 ⁶ mm ⁴)	5,390	5,390	6,203	7,285	7,285
$I_{z}(x10^{6}mm^{4})$	139	139	0	79	79

A _g =	55,761 _{mm²}	Z _y =	39.121 x10 ⁶ mm ³
A _n =	55,761 _{mm²}	Z _z =	2.876 x10 ⁶ mm ³
$I_y =$	31,552 x10 ⁶ mm ⁴	S _y =	34.283 x10 ⁶ mm ³
۱ _z =	435 x10 ⁶ mm ⁴	$S_z =$	1.714 x10 ⁶ mm ³
r _y =	752 mm	J =	1,001 x10 ³ mm ⁴
r _z =	88 mm		

MMM GROUP		Burlington Lift Member Capa	•	MMM Project No. 3213009		
Bending Results				TOWR-FLBM-FRNT		
Cl. 10.5.7 (a)	Flexure: φ _s = h Web w	0.95 1,397 mm 12.7 mm	Factored Moments for Calculating	$M_{max} = kNm$ $M_{a} = kNm$ $M_{b} = N/A kNm$		
	Flange b t	235 mm 25.4 mm	Capacity of Laterally Unbraced Members	M _c = kNm L = mm		
	Lift Span Closed: M _f = Lift Span Raised: M _f =	3,897 kNm 1,560 kNm	V _f = 1,007 V _f = 387			
Cl. 10.9.2.1	Determining Class of Sec Web h/w = Flanges b/t =	tion 110.0 < 9 <		Class 2 or better Class 2 or better		
	==> Overall Class: 2					
Cl. 10.10.2.2	Class 1 and Class 2 Section	ons - Laterally Supp	oorted			
	$M_r = \phi_s Z_y F_y =$	8,548 kNm	Moment resistance for Class 1 or Class 2 secti			
Cl. 10.10.2.3	Class 1 and Class 2 Section					
	(a) $M_r = 1.15 \varphi_s M_p$	$\left[1 - \frac{0.28M_p}{M_u}\right] \le \varphi$	$p_s M_p = N/A$	kNm		
	(b) $M_r = \phi$	$_{s}M_{u} = N/A$	kNm			
	$M_u = \frac{\omega_2 \pi}{L} \sqrt{E_s I_z C}$	$G_{s}J + \left[\frac{\pi E_{s}}{L}\right]^{2} I_{z}C_{w}$	= N/A	kNm		
	$M_p = .$	$Z_{y}F_{y} = 8,998$	kNm			
	$\omega_2 = \frac{1}{\sqrt{M_{max}^2 + 1}}$	$\frac{4M_{max}}{-4M_{a}^{2}+7M_{b}^{2}+4M_{c}^{2}}$	$\leq 2.5 = N/A$			
Cl. 10.10.3.2	Class 3 Sections - Lateral	ly Supported				
	$M_r = \phi_s S_y F_y =$	7,491 kNm	Moment resistance for	r laterally supported		

Class 3 sections

Cl. 10.10.3.3	Class 3 Sections - Laterally Unbraced Members								
(a) $M_r = 1.15 \varphi_s M_y \left[1 - \frac{0.28 M_y}{M_u} \right] \le \varphi_s M_y = N/A$ kNm									
	(b) $M_r = \phi_s M_u = N/A$ kNm								
	M _y =	$S_y F_y = 7,88$	85 kNm						
	M _r =	8,548 kNm	Moment Capacity (Factored)						
==> Result:	Lift Span Closed: M_r / M_f =	2.19	Capacity over Demand Ratio (C/D)						
	Lift Span Raised: $M_r / M_f =$	5.48	Capacity over Demand Ratio (C/D)						
Shear Results				TOWR-FLBM-FRNT					
Cl. 10.5.7 (b)	Flexure: $\varphi_s = 0.95$								
			nsverse stiffeners)						
			web between flanges)						
	a/h = 0.68	< 1							
Cl 10.10.5.1	$k_{\nu} = 4 + \frac{5.34}{(\frac{a}{h})^2}$	= 15.7	$k_v = 5.34 + \frac{4}{(\frac{a}{h})^2} = N/A$						
	k _v = 15.7								
	F _{cr} = 132.7 M	Ра							
	$F_t = 0 M$	Ра							
Cl 10.10.5.1	$F_{s} = F_{cr} + F_{t} = 132.7 \text{ M}$	Ра							
Cl 10.10.5.1	$V_r = \phi_s A_w F_s =$	2,887 kN	Shear Capacity (Factored)						
==> Result:	Lift Span Closed: V _r / V _f =	2.87	Capacity over Demand Ratio (C/D)						
	Lift Span Raised: $V_r / V_f =$	7.46	· , · · · ,						
Cl 10.10.5.2	$0.727 \frac{M_f}{M_r} + 0.455$		Check shear/moment interaction						

Member ID: TOWR-FLBM-FRNT Prepared By: Matthew Bowser

Member Location:TowerMember Description:Tower span rear floor beamMember ID:TOWR-FLBM-REARS-Frame End Nodes:Node 594 to Node 593, Node 943 to Node 942

Member orientation (local axis): z always corresponds with the vertical plane y always corresponds to the horizontal plane

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plates	Plates	Plate	8x8x1/2	8x8x1/2
Qty	1	1	1	2	2
y _{dim} (mm)	508	508	15.9	203	203
z _{dim} (mm)	12.7	12.7	1,803	203	203
I _{y1} (x10 ⁶ mm ⁴)	0	0	7,766	20.2	20.2
$I_{z1}(x10^{6}mm^{4})$	139	139	1	20.2	20.2
A _g (mm ²)	6,452	6,452	28,668	4,990	4,990
A _n (mm ²)	6,452	6,452	28,668	4,990	4,990
y _{bar} (mm)	0	0	0	64	64
z _{bar} (mm)	914	914	0	852	852
l _y (x10 ⁶ mm ⁴)	5,390	5,390	7,766	7,285	7,285
$I_{z}(x10^{6}mm^{4})$	139	139	1	81	81

A _g =	61,531 mm²	Z _y =	41.721 x10 ⁶ mm ³
A _n =	61,531 mm²	$Z_z =$	2.916 x10 ⁶ mm ³
$I_y =$	33,115 x10 ⁶ mm ⁴	$S_y =$	35.981 x10 ⁶ mm ³
I _z =	441 x10 ⁶ mm ⁴	$S_z =$	1.735 x10 ⁶ mm ³
r _y =	734 mm	J =	1,298 x10 ³ mm ⁴
r _z =	85 mm		

	MM GROUP	Burlington Lift Member Cap	•	MMM Project N	MMM Project No. 3213009	
Bending Results				TOWR-FLE	3M-REAR	
Cl. 10.5.7 (a)	Flexure: φ _s = h Web w	0.95 1,397 mm 15.9 mm	Factored Moments for Calculating	$M_{max} = k$ $M_a = k$ $M_a = N/A$	KNM KNM KNM	
	Flange b t	235 mm 25.4 mm	Capacity of Laterally Unbraced Members	M _c = k L = r	:Nm nm	
	Lift Span Closed: M _f = Lift Span Raised: M _f =	7,307 kNm 3,379 kNm	V _f = 1,891 V _f = 844			
Cl. 10.9.2.1	Determining Class of Sec Web h/w = Flanges b/t = ==> Overall Class: 2	87.9	< 112.1 < 35	Class 2 or better Class 2 or better		
Cl. 10.10.2.2	Class 1 and Class 2 Section $M_r = \phi_s Z_y F_y =$	ons - Laterally Sup 9,116 kNm		or laterally supported		
Cl. 10.10.2.3	Class 1 and Class 2 Section (a) $M_r = 1.15 \varphi_s M_p \left[M_r = \phi \right]$		raced Members	kNm		
	,	$Z_y F_y = 9,596$	5 kNm	kNm		
Cl. 10.10.3.2	V Class 3 Sections - Lateral	$\frac{4M_{max}}{c^{4}M_{a}^{2}+7M_{b}^{2}+4M_{c}^{2}}$ ly Supported 7,862 kNm	Moment resistance fo	or laterally supported		

Member ID: TOWR-FLBM-REAR Prepared By: Matthew Bowser

Cl. 10.10.3.3	Class 3 Sections - Laterally Un	nbraced Mem	bers					
	(a) $M_r = 1.15 \varphi_s M_y \left[1 - \frac{0.28 M_y}{M_u} \right] \le \varphi_s M_y = N/A$ kNm							
	(b) $M_r = \phi_s M_u$, = N/A	kNm					
	$M_y = S_y F_y$, = 8,276	5 kNm					
==>	Result: M _r = 9,1	116 kNm	Moment Capacity (Factored)					
	Lift Span Closed: $M_r / M_f = 1$.	.25	Capacity over Demand Ratio (C/D)	1				
	Lift Span Raised: $M_r / M_f = 2$.	.70	Capacity over Demand Ratio (C/D)					
Shear Results				TOWR-FLBM-REAR				
Cl. 10.5.7 (b)	Flexure: $\phi_s = 0.95$							
		-	sverse stiffeners)					
			veb between flanges)					
	a/h = 0.68 <							
Cl 10.10.5.1	$k_v = 4 + \frac{5.34}{(\frac{a}{h})^2} = 19$	5.7	$k_v = 5.34 + \frac{4}{(\frac{a}{h})^2} = N/A$					
	k _v = 15.7							
	F _{cr} = 132.7 MPa							
	F _t = 0 MPa							
Cl 10.10.5.1	$F_{s} = F_{cr} + F_{t} = 132.7 \text{ MPa}$							
Cl 10.10.5.1	$V_r = \phi_s A_w F_s = 3.62$	14 kN	Shear Capacity (Factored)					
==> Result:	Lift Span Closed: $V_r / V_f = 1$.	.91	Capacity over Demand Ratio (C/D)					
	Lift Span Raised: $V_r / V_f = 4$.	.28						
Cl 10.10.5.2	$0.727 \frac{M_f}{M_r} + 0.455 \frac{V_f}{V_r} <$ = 0.82 < 1.0	< 1.0 ==> Satisfied	Check shear/moment interaction					
	0.02 1.0	- cationea						

Member ID: TOWR-FLBM-REAR Prepared By: Matthew Bowser

Member Location:TowerMember Description:Top of Tower - Outer Longitudinal Sheave GirderMember ID:TOWR-SHVG-G1S-Frame End Nodes:Node 647 to Node 648, Node 901 to Node 902, Node 992 to Node 993, Node 1108 to Node 1109

Member orientation (local axis): z always corresponds with the vertical plane y always corresponds to the horizontal plane

Material Properties

230	MPa	CSA S6-06 Cl. 14.7.4.2
420	MPa	CSA S6-06 Cl. 14.7.4.2
200,000	MPa	
77,000	MPa	
	420 200,000	420 MPa 200,000 MPa

•					
	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plates	Plates	Plate	8x6x3/4	8x6x3/4
Qty			1	2	2
y _{dim} (mm)			19.1	152	152
z _{dim} (mm)			2,121	203	203
$I_{y1}(x10^{6}mm^{4})$	0	0	15,147	26.4	26.4
$I_{z1}(x10^{6}mm^{4})$	0	0	1	12.7	12.7
A _g (mm ²)	0	0	40,405	6,420	6,420
A _n (mm ²)	0	0	40,405	6,420	6,420
y _{bar} (mm)			0	50	50
z _{bar} (mm)			0	1,002	1,002
$I_y(x10^6 mm^4)$	0	0	15,147	12,944	12,944
$I_{z}(x10^{6}mm^{4})$	0	0	1	58	58

A _g =	66,085 _{mm²}	Z _y =	47.156 x10 ⁶ mm ³
A _n =	66,085 _{mm²}	Z _z =	1.284 x10 ⁶ mm ³
$I_y =$	41,036 x10 ⁶ mm ⁴	S _y =	38.477 x10 ⁶ mm ³
I _z =	116 x10 ⁶ mm ⁴	$S_z =$	0.720 x10 ⁶ mm ³
r _y =	788 mm	J =	1,222 x10 ³ mm ⁴
r _z =	42 mm		

MMM GROUP		Burlington Lift Member Cap	-	MMM Project No	MMM Project No. 3213009		
Bending Results				TOWR-S	HVG-G1		
Cl. 10.5.7 (a)	Flexure: ϕ_s	= 0.95 n 1,715 mm	Factored Moments	, inclusion of the second seco	Nm Nm		
	Web		for Calculating Capacity of Laterally	M - k	Nm		
	Flange	o 152 mm t 19.1 mm	Unbraced Members	M _c = k	Nm 1m		
	Lift Span Closed: M _f		V _f = 2,750				
	Lift Span Raised: M _f		V _f = 3,492				
Cl. 10.9.2.1	Determining Class o						
	Web h/w		< 112.1	Class 2 or better			
	Flanges b/t	= 8 <	\$\$35	Class 2 or better			
	==> Overall Class	2					
Cl. 10.10.2.2	Class 1 and Class 2 S	ections - Laterally Supp	ported				
	$M_r = \phi_s Z_y F_y =$	10,304 kNm	Moment resistance fo Class 1 or Class 2 sect				
Cl. 10.10.2.3	Class 1 and Class 2 S	ections - Laterally Unb	raced Members				
	(a) $M_r = 1.15 \varphi_s$	$M_p \left[1 - \frac{0.28M_p}{M_u} \right] \le q$	$p_s M_p = N/A$	kNm			
	(b) <i>M</i> _r	$\phi_s M_u = N/A$	kNm N/A				
	$M_u = \frac{\omega_2 \pi}{L} \sqrt{E}$	$_{S}I_{Z}G_{S}J + \left[\frac{\pi E_{S}}{L}\right]^{2}I_{Z}C_{W}$	= N/A	kNm			
	M	$= Z_y F_y = 10,846$	5 kNm				
	$\omega_2 = \frac{1}{\sqrt{M_m}}$	$\frac{4M_{max}}{ax^2+4M_a^2+7M_b^2+4M_c^2}$	$\leq 2.5 = N/A$				
Cl. 10.10.3.2	Class 3 Sections - La	erally Supported					
	$M_r = \phi_s S_y F_y =$	8,407 kNm	Moment resistance fo	or laterally supported			

F_y = 8,407 KNm *Moment resistance for laterally supp Class 3 sections*

Cl. 10.10.3.3	Class 3 Sections - Latera	lly Unbraced Mem	nbers	
	(a) $M_r = 1.15 \varphi_s M_y$	$\left[1 - \frac{0.28M_y}{M_u}\right] \le 0$	$arphi_{s}M_{\mathcal{Y}}$ = N/A kNm	
	(b) $M_r = \phi$	$s_s M_u = N/A$	kNm	
	M_y =	S _y F _y = 8,85	0 kNm	
	M _r =	10,304 kNm	Moment Capacity (Factored)	
==> Result:	Lift Span Closed: $M_r / M_f =$	5.80	Capacity over Demand Ratio (C/D)	
	Lift Span Raised: $M_r / M_f =$	4.60	Capacity over Demand Ratio (C/D)	
Shear Results	Flexure: $\varphi_s = 0.95$			TOWR-SHVG-G1
Cl. 10.5.7 (b)		m (spacing of tran	vovorco stiffonors)	
			web between flanges)	
	a/h = 0.81	< 1		
Cl 10.10.5.1	$k_v = 4 + \frac{5.34}{(\frac{a}{h})^2}$	= 12.1	$k_v = 5.34 + \frac{4}{(\frac{a}{h})^2} = N/A$	
	k _v = 12.1			
	F _{cr} = 132.7 M	Ра		
	F _t = 0 M	Pa		
Cl 10.10.5.1	$F_{s} = F_{cr} + F_{t} = 132.7 \text{ M}$	Pa		
Cl 10.10.5.1	$V_r = \phi_s A_w F_s =$	5,094 kN	Shear Capacity (Factored)	
==> Result:	Lift Span Closed: V _r / V _f =	1.85	Capacity over Demand Ratio (C/D)	
	Lift Span Raised: $V_r / V_f =$	1.46		
Cl 10.10.5.2	$0.727 \frac{M_f}{M_r} + 0.455$		Check shear/moment interaction	

Member ID: TOWR-SHVG-G1 Prepared By: Matthew Bowser

Member Location:TowerMember Description:Top of Tower - Longitudinal Sheave GirdersMember ID:TOWR-SHVG-G2G3S-Frame End Nodes:Node 649 to Node 650, Node 951 Node 952, Node 905 to Node 906, Node 903 to Node 904,Node 994 to Node 995, Node 996 to Node 997, Node 1112 to Node 1113, Node 1110 to Node 1111

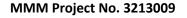
Member orientation (local axis): z always corresponds with the vertical plane y always corresponds to the horizontal plane

Material Properties

$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

•	•				
	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plates	Plates	Plate	8x8x7/8	8x8x7/8
Qty			1	2	2
y _{dim} (mm)			19.1	203	203
z _{dim} (mm)			2,121	203	203
I _{y1} (x10 ⁶ mm ⁴)	0	0	15,147	33.0	33.0
$I_{z1}(x10^{6}mm^{4})$	0	0	1	33.0	33.0
A _g (mm ²)	0	0	40,405	8,520	8,520
A _n (mm ²)	0	0	40,405	8,520	8,520
y _{bar} (mm)			0	69	69
z _{bar} (mm)			0	1,008	1,008
$I_y(x10^6 mm^4)$	0	0	15,147	17,380	17,380
$I_{z}(x10^{6}mm^{4})$	0	0	1	147	147

A _g =	74,485 mm ²	Z _y =	55.777 x10 ⁶ mm ³
A _n =	74,485 mm ²	$Z_z =$	2.352 x10 ⁶ mm ³
I _y =	49,907 x10 ⁶ mm ⁴	S _y =	46.795 x10 ⁶ mm ³
l _z =	295 x10 ⁶ mm ⁴	$S_z =$	1.390 x10 ⁶ mm ³
r _y =	819 mm	J =	1,222 x10 ³ mm ⁴
r _z =	63 mm		


м	MM GROUP	Burlington Lift Member Capa	-	MMM Project No. 3213009
Bending Results				TOWR-SHVG-G2G3
Cl. 10.5.7 (a)	Flexure: $\varphi_s =$	0.95		M _{max} = kNm
	h	1,715 mm	Factored Moments	M _a = kNm
	Web	19.1 mm	for Calculating	$M_b = N/A kNm$
			Capacity of Laterally	
	b Flange	152 mm	Unbraced Members	M _c = kNm
	t	22.2 mm		L = mm
	Lift Span Closed: M _f =	1,786 kNm	V _f = 2,755	kN
	Lift Span Raised: M _f =	2,254 kNm	V _f = 3,498	kN
Cl. 10.9.2.1	Determining Class of Se	ction		
01. 10.9.2.1	Web h/w =	90.0 <	112.1	Class 2 or better
	Flanges b/t =	7 <		Class 2 or better
	==> Overall Class: 2			
Cl. 10.10.2.2	Class 1 and Class 2 Sect	ions - Laterally Supp	oorted	
	$M_r = \phi_s Z_y F_y =$	12,187 kNm	Moment resistance fo Class 1 or Class 2 sect	
Cl. 10.10.2.3	Class 1 and Class 2 Sect	ions - Laterally Unbr	raced Members	
	(a) $M_r = 1.15 \varphi_s M_p$	$\left[1 - \frac{0.28M_p}{M_u}\right] \le \varphi$	$p_s M_p = N/A$	kNm
	(b) <i>M</i> _r = q	$b_s M_u = N/A$	kNm	
	$M_u = \frac{\omega_2 \pi}{L} \sqrt{E_s I_z}$	$G_{s}J + \left[\frac{\pi E_{s}}{L}\right]^{2} I_{z}C_{w}$	= N/A	kNm
	M_p =	$Z_{y}F_{y} = 12,829$	kNm	
	$\omega_2 = \frac{1}{\sqrt{M_{max}^2}}$	$\frac{4M_{max}}{+4M_{a}^{2}+7M_{b}^{2}+4M_{c}^{2}}$	$\leq 2.5 = N/A$	
Cl. 10.10.3.2	Class 3 Sections - Latera	Illy Supported		
	$M_r = \phi_s S_y F_y =$	10,225 kNm	Moment resistance fo	or laterally supported

Class 3 sections

Cl. 10.10.3.3	Class 3 Sections - Laterally	Class 3 Sections - Laterally Unbraced Members			
	(a) $M_r = 1.15 \varphi_s M_y \left[1 + 1.15 \varphi_s M_y \right] $	$-\frac{0.28M_y}{M_u}\Big] \le \varphi$	$P_s M_y = N/A$ kNm		
	(b) $M_r = \phi_s N$	$M_u = N/A$	kNm		
	$M_y = S_y$	F _y = 10,763	kNm		
==> Result:	Lift Span Closed: M_r / M_f =	2,187 kNm 6.82	Moment Capacity (Factored) Capacity over Demand Ratio (C/D		
	Lift Span Raised: M _r / M _f =	5.41	Capacity over Demand Ratio (C/D		
Shear Results				TOWR-SHVG-G2G3	
Cl. 10.5.7 (b)	Flexure: $\varphi_s = 0.95$				
	a = 1,727 mm (h = 2,121 mm (verse stiffeners) veb between flanges)		
Cl 10.10.5.1	$k_v = 4 + \frac{5.34}{(\frac{a}{h})^2} =$	12.1	$k_v = 5.34 + \frac{4}{(\frac{a}{h})^2} = N/A$		
	k _v = 12.1				
	F _{cr} = 132.7 MPa				
	F _t = 0 MPa				
Cl 10.10.5.1	$F_{s} = F_{cr} + F_{t} =$ 132.7 MPa				
Cl 10.10.5.1	$V_r = \phi_s A_w F_s = 5$,094 kN	Shear Capacity (Factored)		
==> Result:	Lift Span Closed: $V_r / V_f =$ Lift Span Raised: $V_r / V_f =$	1.81 1.43	Capacity over Demand Ratio (C/D)	
Cl 10.10.5.2	$0.727 \frac{M_f}{M_r} + 0.455 \frac{V_f}{V_r}$ = 0.36 < 1.0	f < 1.0 ==> Satisfied	Check shear/moment interaction		

Member ID: TOWR-SHVG-G2G3 Prepared By: Matthew Bowser

Member Location:TowerMember Description:Top of Tower - Longitudinal Sheave GirderMember ID:TOWR-SHVG-G4S-Frame End Nodes:Node 653 to Node 654, Node 907 to Node 908, Node 998 to Node 999, Node 1114 to Node 1115

Member orientation (local axis): z always corresponds with the vertical plane y always corresponds to the horizontal plane

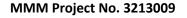
Material Properties

230	MPa	CSA S6-06 Cl. 14.7.4.2
420	MPa	CSA S6-06 Cl. 14.7.4.2
200,000	MPa	
77,000	MPa	
	420 200,000	420 MPa 200,000 MPa

•	•				
	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plates	Plates	Plate	8x6x3/4	8x6x3/4
Qty			1	2	2
y _{dim} (mm)			19.1	152	152
z _{dim} (mm)			2,121	203	203
$I_{y1}(x10^{6}mm^{4})$	0	0	15,147	26.4	26.4
$I_{z1}(x10^{6}mm^{4})$	0	0	1	12.7	12.7
A _g (mm ²)	0	0	40,405	6,420	6,420
$A_n (mm^2)$	0	0	40,405	6,420	6,420
y _{bar} (mm)			0	50	50
z _{bar} (mm)			0	1,002	1,002
$I_{y}(x10^{6}mm^{4})$	0	0	15,147	12,944	12,944
$I_{z}(x10^{6}mm^{4})$	0	0	1	58	58

A _g =	66,085 _{mm²}	Z _y =	47.156 x10 ⁶ mm ³
A _n =	66,085 _{mm²}	Z _z =	1.284 x10 ⁶ mm ³
$I_y =$	41,036 x10 ⁶ mm ⁴	S _y =	38.477 x10 ⁶ mm ³
I _z =	116 x10 ⁶ mm ⁴	$S_z =$	0.720 x10 ⁶ mm ³
r _y =	788 mm	J =	1,222 x10 ³ mm ⁴
r _z =	42 mm		

м	MM GROUP	Burlington Lift Member Cap	-	MMM Project No. 3213009
Bending Results				TOWR-SHVG-G4
Cl. 10.5.7 (a)	Flexure: $\varphi_s =$	0.95		M _{max} = N/A kNm
	h	1,715 mm	Factored Moments	M _a = kNm
	Webw	, 19.1 mm	for Calculating	M – kNm
	b	152 mm	Capacity of Laterally Unbraced Members	M _c = kNm
	Flange t	19.1 mm		L = 9,754 mm
	Lift Span Closed: M _f =	1,894 kNm	V _f = 2,812	kN
	Lift Span Raised: M _f =	2,369 kNm	V _f = 3,560	kN
Cl. 10.9.2.1	Determining Class of Se	ection		
	Web h/w =	90.0 <	< 112.1	Class 2 or better
	Flanges b/t =	8 <	< 35	Class 2 or better
	==> Overall Class: 2	2		
Cl. 10.10.2.2	Class 1 and Class 2 Sect	ions - Laterally Sup	ported	
	$M_r = \phi_s Z_y F_y =$	10,304 kNm	Moment resistance fo Class 1 or Class 2 sect	
Cl. 10.10.2.3	Class 1 and Class 2 Sect	ions - Laterally Unb	raced Members	
	(a) $M_r = 1.15 \varphi_s M_p$	$\left[1 - \frac{0.28M_p}{M_u}\right] \le q$	$p_s M_p = N/A$	kNm
	(b) <i>M</i> _r =	$\phi_s M_u = N/A$	kNm N/A	
	$M_u = \frac{\omega_2 \pi}{L} \sqrt{E_s I_z}$	$G_s J + \left[\frac{\pi E_s}{L}\right]^2 I_z C_w$	= N/A	kNm
	M_p =	$Z_{y}F_{y} = 10,846$	5 kNm	
	$\omega_2 = \frac{1}{\sqrt{M_{max}^2}}$	$\frac{4M_{max}}{^{2}+4M_{a}^{2}+7M_{b}^{2}+4M_{c}^{2}}$	$\leq 2.5 = N/A$	
Cl. 10.10.3.2	Class 3 Sections - Later	ally Supported		
	$M_r = \phi_s S_y F_y =$	8,407 kNm	Moment resistance fo	or laterally supported


Class 3 sections

Member ID: TOWR-SHVG-G4 Prepared By: Matthew Bowser

Cl. 10.10.3.3	Class 3 Sections - Laterally			
	(a) $M_r = 1.15 \varphi_s M_y \left[1 \right]$	$\left -\frac{0.28M_y}{M_u}\right \le \varphi$	$p_s M_y$ = N/A kNm	
	(b) $M_r = \phi_s$	$M_u = N/A$	kNm	
	$M_y = S$	_y F _y = 8,850) kNm	
	M _r =	10,304 kNm	Moment Capacity (Factored)	
==> Result:	Lift Span Closed: $M_r / M_f =$	5.44	Capacity over Demand Ratio (C/D)	
	Lift Span Raised: $M_r / M_f =$	4.35	Capacity over Demand Ratio (C/D)	
Shear Results Cl. 10.5.7 (b)	Flexure: $\varphi_s = 0.95$			TOWR-SHVG-G4
CI. 10.3.7 (b)		n (spacing of trans	sverse stiffeners)	
			veb between flanges)	
	a/h = 0.81	< 1		
Cl 10.10.5.1	$k_v = 4 + \frac{5.34}{(\frac{a}{h})^2} =$	= 12.1	$k_v = 5.34 + \frac{4}{(\frac{a}{h})^2} = N/A$	
	k _v = 12.1			
	F _{cr} = 132.7 MP	а		
	F _t = 0 MP	а		
Cl 10.10.5.1	$F_{s} = F_{cr} + F_{t} = 132.7 \text{ MP}$	a		
Cl 10.10.5.1	$V_r = \phi_s A_w F_s =$	5,094 kN	Shear Capacity (Factored)	
==> Result:	Lift Span Closed: $V_r / V_f =$	1.81	Capacity over Demand Ratio (C/D)	
	Lift Span Raised: V_r / V_f =	1.43		
Cl 10.10.5.2	$0.727 \frac{M_f}{M_r} + 0.455 \frac{1}{M_r}$ = 0.38 < 1.	V _f V _r < 1.0 .0 ==> Satisfied	Check shear/moment interaction	

Member ID: TOWR-SHVG-G4 Prepared By: Matthew Bowser

Member Location:TowerMember Description:Top of Tower - Longitudinal Fascia GirdersMember ID:TOWR-SHVG-G6S-Frame End Nodes:Node 638 to Node 639, Node 637 to Node 640, Node 983 to Node 984, Node 982 to Node 985

Member orientation (local axis): z always corresponds with the vertical plane y always corresponds to the horizontal plane

Material Properties

230	MPa	CSA S6-06 Cl. 14.7.4.2
420	MPa	CSA S6-06 Cl. 14.7.4.2
200,000	MPa	
77,000	MPa	
	420 200,000	420 MPa 200,000 MPa

•	•				
	T. Cover	B. Cover	Web	Top Ls	Bot Ls
	Plates	Plates	Plate	6x6x1/2	6x6x1/2
Qty			2	4	4
y _{dim} (mm)			12.7	152	152
z _{dim} (mm)			2,121	152	152
$I_{y1}(x10^{6}mm^{4})$	0	0	10,098	8.2	8.2
$I_{z1}(x10^{6}mm^{4})$	0	0	0	8.2	8.2
A _g (mm ²)	0	0	26,937	3,700	3,700
A _n (mm ²)	0	0	26,937	3,700	3,700
y _{bar} (mm)			0	49	49
z _{bar} (mm)			0	1,024	1,024
$I_{y}(x10^{6}mm^{4})$	0	0	20,196	15,552	15,552
$I_{z}(x10^{6}mm^{4})$	0	0	1	68	68

A _g =	83,473 _{mm²}	Z _y =	58.877 x10 ⁶ mm ³
A _n =	83,473 _{mm} ²	$Z_z =$	1.450 x10 ⁶ mm ³
$I_y =$	51,300 x10 ⁶ mm ⁴	S _y =	48.101 x10 ⁶ mm ³
$I_z =$	138 x10 ⁶ mm ⁴	$S_z =$	0.869 x10 ⁶ mm ³
r _y =	784 mm	J =	2,896 x10 ³ mm ⁴
r _z =	41 mm		

MMM GROUP		Burlington Lift Member Capa	-	MMM Project	MMM Project No. 3213009		
Bending Results				TOW	R-SHVG-G6		
Cl. 10.5.7 (a)	Flexure: $\phi_s =$	0.95	Factored Moments	M _{max} = N/A	kNm		
	h Web	1,715 mm	for Calculating	M _a =	kNm		
	W	19.1 mm	Capacity of Laterally	M _b =	kNm		
	Flange b	152 mm	Unbraced Members	M _c =	kNm		
	t	19.1 mm		L = 9,754	mm		
	Lift Span Closed: M _f =	618 kNm	V _f = 146				
	Lift Span Raised: M _f =	999 kNm	V _f = 235	kN			
Cl. 10.9.2.1	Determining Class of Sect	ion					
	Web h/w =	90.0 <	112.1	Class 2 or better			
	Flanges b/t =	8 <	35	Class 2 or better			
	==> Overall Class: 2						
Cl. 10.10.2.2	Class 1 and Class 2 Section	ns - Laterally Supp	orted				
	$M_r = \phi_s Z_y F_y =$	12,865 kNm	Moment resistance for Class 1 or Class 2 secti				
Cl. 10.10.2.3	Class 1 and Class 2 Section	ns - Laterally Unbr	aced Members				
	(a) $M_r = 1.15 \varphi_s M_p \left[1 \right]$	$1 - \frac{0.28M_p}{M_u} \le \varphi_1$	$_{s}M_{p}$ = N/A	kNm			
	$(b) \qquad M_r = \phi_s$	$M_u = N/A$	kNm N/A				
	$M_u = \frac{\omega_2 \pi}{L} \sqrt{E_s I_z G_s}$	$_{S}J + \left[\frac{\pi E_{S}}{L}\right]^{2} I_{Z}C_{W}$	= N/A	kNm			
	$M_p = Z$	$F_{y}F_{y} = 13,542$	kNm				
	$\omega_2 = \frac{1}{\sqrt{M_{max}^2 + 4}}$	$\frac{4M_{max}}{4M_{a}^{2}+7M_{b}^{2}+4M_{c}^{2}}$	$\leq 2.5 = N/A$				
Cl. 10.10.3.2	Class 3 Sections - Laterally	y Supported					
	$M_r = \phi_s S_y F_y = 1$.0,510 kNm	Moment resistance for Class 3 sections	r laterally supported			

Member ID: TOWR-SHVG-G6 Prepared By: Matthew Bowser

Cl. 10.10.3.3	Cl. 10.10.3.3 Class 3 Sections - Laterally Unbraced Members					
(a) $M_r = 1.15 \varphi_s M_y \left[1 - \frac{0.28 M_y}{M_u} \right] \le \varphi_s M_y = N/A$ kNm						
	(b) $M_r = \phi_s M_u =$	N/A kNm				
	$M_y = S_y F_y =$	= 11,063 kNm				
==>	Result: M _r = 12,865		ent Capacity (Factored)			
	Lift Span Closed: $M_r / M_f = 20.82$ Lift Span Raised: $M_r / M_f = 12.88$	•	city over Demand Ratio (C/D city over Demand Ratio (C/D	-		
	$\operatorname{Litt}\operatorname{Span}\operatorname{Kaised}\operatorname{Min}_r/\operatorname{Min}_f = 12.86$	s Capa)		
Shear Results				TOWR-SHVG-G6		
Cl. 10.5.7 (b)		ting of transverse s r depth of web be 1				
Cl 10.10.5.1	$k_v = 4 + \frac{5.34}{(\frac{a}{h})^2} = 11.2$	2 /	$k_v = 5.34 + \frac{4}{(\frac{a}{h})^2} = N/A$			
	k _v = 11.2					
	F _{cr} = 132.7 MPa					
	F _t = 0 MPa					
Cl 10.10.5.1	$F_{s} = F_{cr} + F_{t} = 132.7 \text{ MPa}$					
Cl 10.10.5.1	$V_r = \phi_s A_w F_s = 3,396$	kN Shear	r Capacity (Factored)			
==> Result:	Lift Span Closed: $V_r / V_f =$ 23.26 Lift Span Raised: $V_r / V_f =$ 14.45	-	city over Demand Ratio (C/D)		
Cl 10.10.5.2	$0.727 \frac{M_f}{M_r} + 0.455 \frac{V_f}{V_r} < 1$	0 Checl	k shear/moment interaction			

= 0.05 < 1.0 ==> Satisfied

Member ID: TOWR-SHVG-G6 Prepared By: Matthew Bowser

Member Location:TowerMember Description:Top of Tower - Front Transverse Sheave GirderMember ID:TOWR-SHVG-G7S-Frame End Nodes:Node 637 to Node 638, Node 982 to Node 983

Member orientation (local axis):

z always corresponds with the vertical plane *y* always corresponds to the horizontal plane

Material Properties

F _y =	350	MPa	Low Alloy Steel A242
F _u =	480	MPa	CAN/CSA-S16-09 PP6-5
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	T. Cover	B. Cover	B. Cover	Web	Top Ls	Bot Ls	Bot Fl. Ls	B. Flange	Filler
	Plates	Plates	Plates	Plate	8x8x1	8x8x1	7x4x1/2	Plates	Plates
Qty	2	1	1	1	2	2	4	2	4
y _{dim} (mm)	660	873	483	22.2	203	203	102	12.7	9.5
z _{dim} (mm)	22.2	15.9	15.9	4,572	203	203	178	381	305
$I_{y1}(x10^{6}mm^{4})$	1	0	0	176,803	36.9	36.9	11.1	59	22
$I_{z1}(x10^{6}mm^{4})$	532	882	149	4	36.9	36.9	2.8	0	0
A _g (mm ²)	14,652	13,881	7,680	101,498	9,670	9,670	3,390	4,839	2,898
$A_n (mm^2)$	14,652	13,881	7,680	101,498	9,670	9,670	3,390	4,839	2,898
y _{bar} (mm)	0	74	0	0	80	80	413	443	16
z _{bar} (mm)	2,314	2,300	2,316	0	2,232	2,232	2,316	2,316	2,139
$I_y (x10^6 mm^4)$	156,912	73,429	41,193	176,803	96,422	96,422	72,778	52,025	53,118
$I_{z}(x10^{6}mm^{4})$	1,064	958	149	4	198	198	2,324	1,899	3

A _g =	225,870 _{mm²}	Z _y =	302.081 x10 ⁶ mm ³
A _n =	225,870 _{mm²}	Z _z =	10.959 x10 ⁶ mm ³
$I_y =$	819,104 x10 ⁶ mm ⁴	S _y =	357.375 x10 ⁶ mm ³
$I_z =$	6,796 x10 ⁶ mm ⁴	$S_z =$	31.743 x10 ⁶ mm ³
r _y =	1,904 mm	J =	7,745 x10 ³ mm ⁴
r _z =	173 mm		

MMM GROUP		Burlington Lift Member Cap	-	MMM Project No. 3213009
Bending Results				TOWR-SHVG-G7
Cl. 10.5.7 (a)	Flexure: $\phi_s =$	0.95		M _{max} = N/A kNm
	h	4,044 mm	Factored Moments	M _a = kNm
	Web	22.2 mm	for Calculating	M _b = kNm
	h	330 mm	Capacity of Laterally Unbraced Members	M _c = kNm
	Flange [~] t	25.4 mm	Unbruced Wembers	L = 9,754 mm
	Lift Span Closed: M _f =	33,498 kNm	V _f = 10,610	
	Lift Span Raised: M _f =	42,238 kNm	V _f = 14,236	
Cl. 10.9.2.1	Determining Class of Se	ction		
	Web h/w =	182	> 102	Exceeds Class 3 Limits
	Flanges b/t =	13	< 28	Class 2 or better
	==> Overall Class: 4			
Cl. 10.10.2.2	Class 1 and Class 2 Secti	ions - Laterally Su	pported	
	$M_r = \phi_s Z_y F_y =$	100,442 kNm	Moment resistance fo Class 1 or Class 2 sect	
Cl. 10.10.2.3	Class 1 and Class 2 Secti	ions - Laterally Un	braced Members	
	(a) $M_r = 1.15 \varphi_s M_p$	$\left[1 - \frac{0.28M_p}{M_u}\right] \leq$	$\varphi_s M_p = N/A$	kNm
	(b) $M_r = \phi$	$b_s M_u = N/A$	kNm N/A	
	$M_u = \frac{\omega_2 \pi}{L} \sqrt{E_s I_z}$	$G_{s}J + \left[\frac{\pi E_{s}}{L}\right]^{2} I_{z}C_{s}$		kNm
	M_p =	$Z_{y}F_{y} = 105,72$	29 kNm	
	$\omega_2 = \frac{1}{\sqrt{M_{max}^2}}$	$\frac{4M_{max}}{+4M_a^2+7M_b^2+4M_c}$	$\frac{1}{2} \le 2.5 = N/A$	
Cl. 10.10.3.2	Class 3 Sections - Latera	Illy Supported		
	$M_r = \phi_s S_y F_y = 2$	118,827 kNm	Moment resistance fo Class 3 sections	or laterally supported

Cl. 10.10.3.3	Class 3 Sections - Laterally Unbraced Mer	nbers				
(a) $M_r = 1.15 \varphi_s M_y \left[1 - \frac{0.28 M_y}{M_u} \right] \le \varphi_s M_y = N/A$ kNm						
	(b) $M_r = \phi_s M_u = N/A$	kNm				
	$M_y = S_y F_y = 125,08$	31 kNm				
==> Res	sult: M _r = 100,442 kNm	Moment Capacity (Factored)				
Li	ift Span Closed: $M_r / M_f = 3.00$	Capacity over Demand Ratio (C/D)				
Li	ift Span Raised: $M_r / M_f = 2.38$	Capacity over Demand Ratio (C/D)				
Shear Results			TOWR-SHVG-G7			
Cl. 10.5.7 (b)	Flexure: $\varphi_s = 0.95$					
	a = 1,359 mm (spacing of training of train					
	h = 4,572 mm (clear depth of a/h = 0.30 < 1	web between hanges)				
	·	4				
Cl 10.10.5.1	$k_v = 4 + \frac{5.34}{(\frac{a}{h})^2} = 64.4$	$k_v = 5.34 + \frac{4}{(\frac{a}{h})^2} = N/A$				
	k _v = 64.4					
	F _{cr} = 202.0 MPa					
	F _t = 0 MPa					
Cl 10.10.5.1 F	$F_{s} = F_{cr} + F_{t} = 202.0 \text{ MPa}$					
Cl 10.10.5.1	$V_r = \phi_s A_w F_s =$ 19,473 kN	Shear Capacity (Factored)				
==> Result:	Lift Span Closed: $V_r / V_f = 1.84$	Capacity over Demand Ratio (C/D)				
	Lift Span Raised: $V_r / V_f = 1.37$					
Cl 10.10.5.2	$0.727 \frac{M_f}{M_r} + 0.455 \frac{V_f}{V_r} < 1.0$	Check shear/moment interaction				
	= 0.49 < 1.0 ==> Satisfie	ed				

Member ID: TOWR-SHVG-G7 Prepared By: Matthew Bowser

Member Location:TowerMember Description:Top of Tower - Rear Transverse Sheave GirderMember ID:TOWR-SHVG-G8S-Frame End Nodes:Node 640 to Node 639, Node 985 to Node 984

Member orientation (local axis):

z always corresponds with the vertical plane *y* always corresponds to the horizontal plane

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	T. Cover	B. Cover	Web	Top Ls	Bot Ls
				•	
	Plates	Plates	Plate	8x6x5/8	8x6x5/8
Qty	1	1	1	2	2
y _{dim} (mm)	508	508	12.7	203	203
z _{dim} (mm)	12.7	12.7	3,353	152	152
I _{y1} (x10 ⁶ mm ⁴)	0	0	39,895	22.5	22.5
$I_{z1}(x10^{6}mm^{4})$	139	139	1	10.9	10.9
A _g (mm ²)	6,452	6,452	42,583	5,390	5,390
A _n (mm ²)	6,452	6,452	42,583	5,390	5,390
y _{bar} (mm)	0	0	0	71	71
z _{bar} (mm)	1,689	1,689	0	1,644	1,644
$I_{y}(x10^{6}mm^{4})$	18,405	18,405	39,895	29,180	29,180
$I_{z}(x10^{6}mm^{4})$	139	139	1	76	76

A _g =	77,046 mm ²	Z _y =	92.933 x10 ⁶ mm ³
A _n =	77,046 _{mm²}	$Z_z =$	3.169 x10 ⁶ mm ³
$I_y =$	135,066 x10 ⁶ mm ⁴	S _y =	80.277 x10 ⁶ mm ³
$I_z =$	430 x10 ⁶ mm ⁴	$S_z =$	2.056 x10 ⁶ mm ³
r _y =	1,324 mm	J =	1,266 x10 ³ mm ⁴
r _z =	75 mm		

	MMGROUP	Burlington Lift Member Capa	-	MMM Project No. 3213009
Bending Results Cl. 10.5.7 (a)	$Flexure: \varphi_s = \frac{h}{Web} \frac{h}{Wb} \frac{h}{Web} \frac{h}{Wb} $	0.95 2,350 mm 12.7 mm 254 mm 28.6 mm 4,000 kNm	Factored Moments for Calculating Capacity of Laterally Unbraced Members V _f = 1,274	$M_{a} = KNM$ $M_{b} = KNM$ $M_{c} = KNM$ $L = 9,754 mm$
Cl. 10.9.2.1	Lift Span Raised: M _f = Determining Class of Sect Web h/w = Flanges b/t = ==> Overall Class: 4	185	V _f = 1,567 > 125 < 35	' kN Exceeds Class 3 Limits Class 2 or better
Cl. 10.10.2.2	Class 1 and Class 2 Section $M_r = \phi_s Z_y F_y =$			or laterally supported tions
Cl. 10.10.2.3	Class 1 and Class 2 Section (a) $M_r = 1.15 \varphi_s M_p \left[\frac{1}{2} \right]$			kNm
	(b) $M_r = \phi_s$ $M_u = \frac{\omega_2 \pi}{L} \sqrt{E_s I_z G}$	$_{s}M_{u} = N/A$ $\overline{S}_{s}J + \left[\frac{\pi E_{s}}{L}\right]^{2} I_{z}C_{w}$	kNm N/A - , = N/A	kNm
	$M_p = 2$ $\omega_2 = \frac{1}{\sqrt{M_{max}^2 + 1}}$	$Z_{y}F_{y} = 21,37$ $\frac{4M_{max}}{4M_{a}^{2}+7M_{b}^{2}+4M_{c}^{2}}$		
Cl. 10.10.3.2	Class 3 Sections - Laterall $M_r = \phi_s S_y F_y = 2$		Moment resistance f Class 3 sections	or laterally supported

Member ID: TOWR-SHVG-G8 Prepared By: Matthew Bowser

Cl. 10.10.3.3	Class 3 Sections - Laterally Unbraced Members	
	(a) $M_r = 1.15 \varphi_s M_y \left[1 - \frac{0.28 M_y}{M_u} \right] \le \varphi_s M_y = N/A$ kNm	
	(b) $M_r = \phi_s M_u = N/A$ kNm	
	$M_y = S_y F_y = 18,464$ kNm	
==>	Result: M _r = 20,306 kNm Moment Capacity (Factored)	
	Lift Span Closed: $M_r / M_f = 5.08$ Capacity over Demand Ratio (C	:/D)
	Lift Span Raised: $M_r / M_f = 4.21$ Capacity over Demand Ratio (C	:/D)
Shear Results		TOWR-SHVG-G8
Cl. 10.5.7 (b)	Flexure: $\varphi_s = 0.95$	
	a = 1,562 mm (spacing of transverse stiffeners)	
	h = 3,353 mm (clear depth of web between flanges)	
	a/h = 0.47 < 1	
Cl 10.10.5.1	$k_v = 4 + \frac{5.34}{(\frac{a}{h})^2} = 28.6$ $k_v = 5.34 + \frac{4}{(\frac{a}{h})^2} = N/2$	A
	k _v = 28.6	
	F _{cr} = 127.1 MPa	
	F _t = 4.9 MPa	
Cl 10.10.5.1	$F_{s} = F_{cr} + F_{t} = 132.0 \text{ MPa}$	
Cl 10.10.5.1	$V_r = \phi_s A_w F_s = 5,341$ kN Shear Capacity (Factored)	
==> Result:	Lift Span Closed: $V_r / V_f =$ 4.19Capacity over Demand Ratio (CLift Span Raised: $V_r / V_f =$ 3.41	:/D)
Cl 10.10.5.2	$0.727 \frac{M_f}{M_r} + 0.455 \frac{V_f}{V_r} < 1.0$ Check shear/moment interaction	on
	= 0.25 < 1.0 ==> Satisfied	

Member ID: TOWR-SHVG-G8 Prepared By: Matthew Bowser

Tower

Burlington Lift Bridge Member Capacities

Member Description: Sheave Girder Bracing

Member ID: 2L3.5x3.5x.375

S-Frame End Nodes: Node 756 to Node 639, Node 775 to Node 776, Node 775 to Node 638, Node 779 to Node 780, Node 751 to Node 779, Node 785 to Node 653, Node 780 to Node 785, Node 917 to Node 918, Node 918 to Node 923, Node 923 to Node 907, Node 913 to Node 922, Node 909 to Node 917, Node 924 to Node 925, Node 925 to Node 914, Node 913 to Node 926, Node 909 to Node 925, Node 924 to Node 640, Node 1185 to Node 1186 to Node 914, Node 1190 to Node 1191, Node 1190 to Node 923, Node 1194 to Node 1195, Node 1185 to Node 1190 to Node 998, Node 1195 to Node 1200, Node 1209 to Node 1210, Node 1210 to Node 1215, Node 1215 to Node 1114, Node 1205 to Node 1214, Node 1201 to Node 1209, Node 1216 to Node 1217, Node 1216 to Node 1206, Node 1205 to Node 1206, Node 1217 to Node 1218, Node 1201 to Node 1217, Node 1216 to Node 985, Node 751 to Node 756 *Member orientation (local axis):*

z always corresponds with the vertical plane

y always corresponds to the horizontal plane

Material Properties

Member Location:

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

Duit Op Seeth	on roperties	
	Angles	
	3.5x3.5x3/8	3
Qty	2	
y _{dim} (mm)	89	
z _{dim} (mm)	89	
$I_{y1}(x10^{6}mm^{4})$	1.19	
$I_{z1}(x10^{6}mm^{4})$	1.19	
A _g (mm²)	1,600	
A _n (mm ²)	1,600	
y _{bar} (mm)	38	
z _{bar} (mm)	0	
$I_y(x10^6 mm^4)$	2	
$I_{z}(x10^{6}mm^{4})$	7	
A _g =	3,200 _{mm²}	Local Check for Capacity of Single Angle
A _n =	3,200 mm ²	r = 27.3 mm
$I_y =$	2.380 x10 ⁶ mm ⁴	L = 1,372 mm $\lambda = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} = 0.542$
I _z =	7.099 x10 ⁶ mm⁴	$A_{g} = 1,600 \text{ mm}^{2} r \sqrt{\pi^{2} E_{S}}$
r _y =	27 mm	Cl. 10.9.3.1 $C_r = \phi_s A F_y (1 + \lambda^{2n})^{-1/n}$: -290 kN

Capacity of single angle does not govern built up member capacity

47 mm

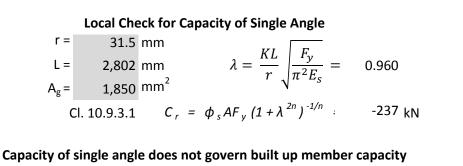
r_z =

	MMM GROUP
--	-----------

2L3.5x3.5x.<u>375</u>

		Wichibel	cupacific	5		
Compression Result					2L3.5x3.5	5x.375
	L _y =	1,372 mm				
	$L_z = \kappa - \kappa$	1,372 mm		V' –	1.06	
	K _y = K _z =	1.00 1.00		K' _y = K' _z =	1.00	
	Web	N/A		Νz	1.10	
	Flange b	89 mm 9.5 mm				
	n =	1.34				
	Lift Span Closed: C _f =	-110 kN				
	Lift Span Raised: C _f =	-387 kN				
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90				
Cl. 10.9.1.3	Slenderness Ratio =	50	<	120	Cl. 10.9.1.3 Satisfied	
Cl. 10.9.2.1	Width to Thickness Lin	nits				
	Flanges b/t =	9	<	44	Cl. 10.9.2.1 Satisfied	
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$(2^{n})^{-1/n} =$	569 kN	Go	verns	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_v (1 + \lambda)$		635 kN			
	$\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}}$ $\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}}$					
	C _r =	-569 kN	Com	pressive (Capacity (Factored)	
	$C_r / C_f =$	1.47	Cap	acity over	Demand Ratio (C/D)	
Tension Results					2L3.5x3.5	5x.375
	Lift Span Closed: T _f =	127 kN				
	Lift Span Raised: T _f =	403 kN				
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95				
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	699 kN	Gros	ss Section		
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u}$	1,085 kN	Net	Section		
	T _r =	699 kN	Ten	sile Capac	ty (Factored)	
	$T_r/T_f =$	1.73	Capa	acity over	Demand Ratio (C/D)	

Member Location:TowerMember Description:Tower Traction BracingMember ID:2L4x4x.375S-Frame End Nodes:Node 860 to Node 865, Node 868 to Node 864, Node 862 to Node 866, Node 869 to Node 867,Node 1099 to Node 1096, Node 1098 to Node 1102, Node 1100 to Node 1097, Node 1101 to Node 1103,


Member orientation (local axis): z always corresponds with the vertical plane y always corresponds to the horizontal plane

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Dant op Section 110	perties
	Angles
	4x4x3/8
Qty	2
y _{dim} (mm)	102
z _{dim} (mm)	102
I _{y1} (x10 ⁶ mm ⁴)	1.84
$I_{z1}(x10^{6}mm^{4})$	1.84
A _g (mm ²)	1,850
A _n (mm ²)	1,850
y _{bar} (mm)	42
z _{bar} (mm)	0
I _y (x10 ⁶ mm ⁴)	4
$I_z(x10^6 mm^4)$	10
· · ·	

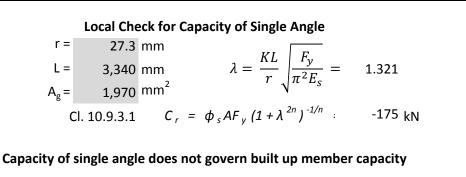
A _g =	3,700 _{mm} ²
A _n =	3,700 mm²
$I_y =$	3.680 x10 ⁶ mm ⁴
$I_z =$	10.114 x10 ⁶ mm ⁴
r _y =	32 mm
r _z =	52 mm

	MMM GROUP
--	-----------

Compression Resu	lts				2L4x4x.375
	L _y =	2,802 mm			
	L _z =	2,802 mm			
	K _y =	1.00		K' _y =	1.02
	K _z =	1.00		K' _z =	1.05
	Web	N/A			
	Flange b	102 mm			
	t	9.5 mm 1.34			
	n = Lift Span Closed: C _f =	-25 kN			
	Lift Span Raised: $C_f =$	-31 kN			
Cl. 10.5.7 (c)	Compression: $\varphi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	89	<	120	Cl. 10.9.1.3 Satisfied
Cl. 10.9.1.5	Sienderness Ratio -	05		120	Cl. 10.9.1.5 Sullsfied
Cl. 10.9.2.1	Width to Thickness Lin	nits			
	Flanges b/t =	11	<	44	Cl. 10.9.2.1 Satisfied
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$^{2n})^{-1/n} =$	467 kN	Go	overns
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$	$^{2n})^{-1/n} =$	643 kN		
	$\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}}$ $\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}}$				
	C _r =	-467 kN	Con	npressive	Capacity (Factored)
	$C_r / C_f =$				Demand Ratio (C/D)
Tension Results		26 1 1			2L4x4x.375
	Lift Span Closed: T _f =	26 kN			
	Lift Span Raised: T _f =	26 kN			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	-		
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=1}$	808 kN		ss Section	l l
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u}$	1,255 kN		Section	
	T _r =	808 kN	Ten	sile Capac	ity (Factored)

 $T_r / T_f = 31.09$ Capacity over Demand Ratio (C/D)

Member Location:TowerMember Description:Sheave Girder BracingMember ID:2L5x3.5x.375S-Frame End Nodes:Node 1216 to Node 1227, Node 1227 to Node 1185, Node 1201 to Node 1227,Node 924 to Node 935, Node 935 to Node 751, Node 909 to Node 935


Member orientation (local axis): z always corresponds with the vertical plane y always corresponds to the horizontal plane

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	Angles
	5x3.5x3/8
Qty	2
y _{dim} (mm)	127
z _{dim} (mm)	89
$I_{y1}(x10^{6}mm^{4})$	1.33
$I_{z1}(x10^{6}mm^{4})$	3.24
A _g (mm ²)	1,970
$A_n (mm^2)$	1,970
y _{bar} (mm)	53
z _{bar} (mm)	0
$I_{y}(x10^{6}mm^{4})$	3
$I_z(x10^6 mm^4)$	18

A _g = A _n =	3,940 mm ² 3,940 mm ²
$I_y =$	2.660 x10 ⁶ mm ⁴
I _z =	17.547 x10 ⁶ mm ⁴
r _y =	26 mm
r _z =	67 mm

	MMM GROUP	
--	-----------	--

.375

Compression Resu	lts			-			2L5x3.5x.3
		L _y =	3,340 mm				
		L _z =	3,340 mm				
		K _y =	1.00		K' _y =		
		K _z =	1.00		K' _z =	1.06	
	Web		N/A				
	Flange	b t	127 mm 9.5 mm				
		n =	1.34				
	Lift Span Clo		0 kN				
	Lift Span Rai	ised: C _f =	0 kN				
Cl. 10.5.7 (c)	Compressior	n: φ _s =	0.90				
Cl. 10.9.1.3	Slenderness	Ratio =	129	>	120	Cl. 10.9.1.3 I	NOT Satisfied
Cl. 10.9.2.1	Width to Thi	ckness Limit	S				
	Flanges	b/t =	13	<	44	Cl. 10.9.2.1 S	Satisfied
Cl. 10.9.3.1) ^{-1/n} = N/A	kN			
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A$	$AF_{y}(1+\lambda^{2n})$	$)^{-1/n} = N/A$	kN			
	$\lambda_y = \frac{K'_y I}{r_y}$	$\frac{L_y}{\sqrt{\frac{F_y}{\pi^2 E_s}}} =$	= 1.400				
	$\lambda_z = \frac{K'_z I}{r_z}$	$\frac{L_z}{\sqrt{\frac{F_y}{\pi^2 E_s}}} =$	- 0.572				
		C _r = N/	′A kN	Co	mpressive	Capacity (Factored)	
		$C_r / C_f = N/$	Ά	Ca	pacity over	Demand Ratio (C/D)	
Tension Results	116.0 5						2L5x3.5x.3
	Lift Span Clo	-	35 kN				
	Lift Span Ra	-	104 kN				
Cl. 10.5.7 (d)	tens	sion: $\phi_{s=}$	0.95				
Cl. 10.8.2 (a)	T _r =	$= \phi_s A_g F_{\gamma} =$	861 kN	Gro	oss Sectior	I	

		00		
	Lift Span Raised: T _f =	104 kN		
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95		
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=}$	861 kN	Gross Section	
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u=}$	1,336 kN	Net Section	
	T _r =	861 kN	Tensile Capacity (Factored)	
	$T_r/T_f =$	8.28	Capacity over Demand Ratio (C/D)	

Member Location:TowerMember Description:Tower Traction BracingMember ID:2L5x5x.5S-Frame End Nodes:Node 866 to Node 867, Node 1101 to Node 1100

Member orientation (local axis): z always corresponds with the vertical plane y always corresponds to the horizontal plane

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	-
	Angles
	5x5x1/2
Qty	2
y _{dim} (mm)	127
z _{dim} (mm)	127
$I_{y1} (x10^6 mm^4)$ $I_{z1} (x10^6 mm^4)$	4.68
$I_{z1}(x10^{6}mm^{4})$	4.68
A _g (mm²)	3,060
A _n (mm ²)	3,060
y _{bar} (mm)	50
z _{bar} (mm)	0
$\frac{I_y (x10^6 mm^4)}{I_z (x10^6 mm^4)}$	9
$I_{z}(x10^{6}mm^{4})$	25

A _g = A _n =	6,120 _{mm} ² 6,120 _{mm²}
$I_y =$	9.360 x10 ⁶ mm ⁴
I _z =	24.660 x10 ⁶ mm ⁴
r _y =	39 mm
r _z =	63 mm

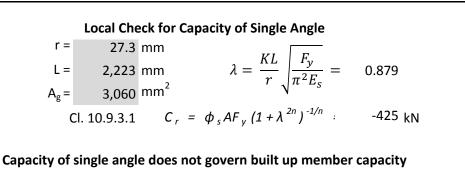
r =	Local Che 27.3	mm			
L = A _g =	3,383 3,060				
C	Cl. 10.9.3.1	$C_r = \phi_s A F_y (1 + \lambda^{2n})^{-1/n} :$ -267 kN			
Capacity of single angle does not govern built up member capacity					

	MMM GROUP
--	-----------

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			iviember	Capaciti	es	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Compression Resu	lts				2L5x5x.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		L _y =	= 6,765 mm			
$\frac{K_{z}}{\text{Hange}} = 1.00 \qquad \text{K}'_{z} = 1.05$ $\frac{K_{z}}{\text{Hange}} = 1.07 \qquad \text{K}'_{z} = 1.05$ $\frac{K_{z}}{\text{Hange}} = 0.90$ $\frac{K_{z}}{\text{Hange}} = 0.90$ $\frac{K_{z}}{\text{Hange}} = 1.00$ $\frac{K_{z}}{\text{Hange}} = 1.05$ $\frac{K_{z}}{\text{Hange}} = 1.05$ $\frac{K_{z}}{\text{Hange}} = 0.90$ $\frac{K_{z}}{\text{Hange}} = 1.05$ $\frac{K_{z}}{\text{Hange}}$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		K _y =	= 1.00			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		K _z =	= 1.00		K' _z =	1.05
$\frac{\text{Hange}}{n} = \frac{1.34}{1.34}$ Lift Span Closed: $C_{f} = 0 \text{ kN}$ Lift Span Raised: $C_{f} = 0 \text{ kN}$ Cl. 10.5.7 (c) Compression: $\varphi_{s} = 0.90$ Cl. 10.9.1.3 Slenderness Ratio = 173 > 120 Cl. 10.9.1.3 NOT Satisfied Cl. 10.9.2.1 Width to Thickness Limits Flanges $b/t = 13 < 44$ Cl. 10.9.2.1 Satisfied Cl. 10.9.3.1 $C_{r(y)} = \phi_{s} AF_{y} (1 + \lambda^{2n})^{-1/n} = \text{N/A} \text{ kN}$ Cl. 10.9.3.1 $C_{r(z)} = \phi_{s} AF_{y} (1 + \lambda^{2n})^{-1/n} = \text{N/A} \text{ kN}$ $\lambda_{y} = \frac{K'_{y} L_{y}}{r_{y}} \sqrt{\frac{F_{y}}{\pi^{2} E_{s}}} = 1.877$ $\lambda_{z} = \frac{K'_{z} L_{z}}{r_{z}} \sqrt{\frac{F_{y}}{\pi^{2} E_{s}}} = 0.605$ $C_{r} = \text{N/A} \text{ kN}$ Compressive Capacity (Factored)		Web	N/A			
Lift Span Closed: $C_r = 0$ kN Lift Span Raised: $C_r = 0$ kN Cl. 10.5.7 (c) Compression: $\varphi_s = 0.90$ Cl. 10.9.1.3 Slenderness Ratio = 173 > 120 <i>Cl. 10.9.1.3 NOT Satisfied</i> Cl. 10.9.2.1 Width to Thickness Limits Flanges b/t = 13 < 44 <i>Cl. 10.9.2.1 Satisfied</i> Cl. 10.9.3.1 $C_{r(y)} = \phi_s AF_y (1 + \lambda^{2n})^{-1/n} = N/A$ kN Cl. 10.9.3.1 $C_{r(z)} = \phi_s AF_y (1 + \lambda^{2n})^{-1/n} = N/A$ kN $\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}} = 1.877$ $\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}} = 0.605$ $C_r = N/A$ kN Compressive Capacity (Factored)		Flange				
Cl. 10.5.7 (c) Compression: $\varphi_s = 0.90$ Cl. 10.9.1.3 Slenderness Ratio = 173 > 120 Cl. 10.9.1.3 NOT Satisfied Cl. 10.9.2.1 Width to Thickness Limits Flanges b/t = 13 < 44 Cl. 10.9.2.1 Satisfied Cl. 10.9.3.1 C _{r(z)} = $\phi_s AF_y (1 + \lambda^{2n})^{-1/n} = N/A$ kN Cl. 10.9.3.1 C _{r(z)} = $\phi_s AF_y (1 + \lambda^{2n})^{-1/n} = N/A$ kN $\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}} = 1.877$ $\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}} = 0.605$ C _r = N/A kN Compressive Capacity (Factored)		n =	1.34			
Cl. 10.5.7 (c) Compression: $\varphi_{s} = 0.90$ Cl. 10.9.1.3 Slenderness Ratio = 173 > 120 Cl. 10.9.1.3 NOT Satisfied Cl. 10.9.2.1 Width to Thickness Limits Flanges b/t = 13 < 44 Cl. 10.9.2.1 Satisfied Cl. 10.9.3.1 $C_{r(y)} = \phi_{s} AF_{y} (1 + \lambda^{2n})^{-1/n} = N/A$ kN Cl. 10.9.3.1 $C_{r(z)} = \phi_{s} AF_{y} (1 + \lambda^{2n})^{-1/n} = N/A$ kN $\lambda_{y} = \frac{K'_{y}L_{y}}{r_{y}} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} = 1.877$ $\lambda_{z} = \frac{K'_{z}L_{z}}{r_{z}} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} = 0.605$ $C_{r} = N/A$ kN Compressive Capacity (Factored)		Lift Span Closed: C _f =	= 0 kN			
Cl. 10.9.1.3 Slenderness Ratio = 173 > 120 Cl. 10.9.1.3 NOT Satisfied Cl. 10.9.2.1 Width to Thickness Limits Flanges $b/t = 13 < 44$ Cl. 10.9.2.1 Satisfied Cl. 10.9.3.1 $C_{r(y)} = \phi_s AF_y (1 + \lambda^{2n})^{-1/n} = N/A$ kN Cl. 10.9.3.1 $C_{r(z)} = \phi_s AF_y (1 + \lambda^{2n})^{-1/n} = N/A$ kN $\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}} = 1.877$ $\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}} = 0.605$ $C_r = N/A$ kN Compressive Capacity (Factored)		Lift Span Raised: C _f =	= 0 kN			
Cl. 10.9.2.1 Width to Thickness Limits Flanges $b/t = 13 < 44$ Cl. 10.9.2.1 Satisfied Cl. 10.9.3.1 $C_{r(y)} = \phi_s AF_y (1 + \lambda^{2n})^{-1/n} = N/A$ kN Cl. 10.9.3.1 $C_{r(z)} = \phi_s AF_y (1 + \lambda^{2n})^{-1/n} = N/A$ kN $\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}} = 1.877$ $\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}} = 0.605$ $C_r = N/A$ kN Compressive Capacity (Factored)	Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Flanges $b/t = 13 < 44$ <i>Cl. 10.9.2.1 Satisfied</i> Cl. 10.9.3.1 $C_{r(y)} = \phi_s AF_y (1 + \lambda^{2n})^{-1/n} = N/A$ kN Cl. 10.9.3.1 $C_{r(z)} = \phi_s AF_y (1 + \lambda^{2n})^{-1/n} = N/A$ kN $\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}} = 1.877$ $\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}} = 0.605$ $C_r = N/A$ kN Compressive Capacity (Factored)	Cl. 10.9.1.3	Slenderness Ratio =	173	>	120	Cl. 10.9.1.3 NOT Satisfied
Cl. 10.9.3.1 Cl. 10.9.3.1 C	Cl. 10.9.2.1	Width to Thickness L	imits			
Cl. 10.9.3.1 $C_{r(z)} = \phi_{s} AF_{y} (1 + \lambda^{2n})^{-1/n} = N/A \qquad kN$ $\lambda_{y} = \frac{K'_{y} L_{y}}{r_{y}} \sqrt{\frac{F_{y}}{\pi^{2} E_{s}}} = 1.877$ $\lambda_{z} = \frac{K'_{z} L_{z}}{r_{z}} \sqrt{\frac{F_{y}}{\pi^{2} E_{s}}} = 0.605$ $C_{r} = N/A \qquad kN \qquad \text{Compressive Capacity (Factored)}$		Flanges b/t =	13	<	44	Cl. 10.9.2.1 Satisfied
$\lambda_{y} = \frac{K'_{y}L_{y}}{r_{y}} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} = 1.877$ $\lambda_{z} = \frac{K'_{z}L_{z}}{r_{z}} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}} = 0.605$ $C_{r} = N/A \qquad \text{kN} \qquad \text{Compressive Capacity (Factored)}$	Cl. 10.9.3.1			kN		
$\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}} = 0.605$ $C_r = N/A \qquad \text{kN} \qquad \text{Compressive Capacity (Factored)}$	Cl. 10.9.3.1	$C_{r(z)} = \phi_{s} A F_{y} (1 +$	λ^{2n}) ^{-1/n} = N/A	kN		
C _r = N/A kN Compressive Capacity (Factored)		$\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E}}$	$-\frac{1}{G_s} = 1.877$			
		$\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E}}$	$\frac{1}{s_s} = 0.605$			
$C_r / C_f = N/A$ Capacity over Demand Ratio (C/D)		C _r =	Compressive Capacity (Factored)			
		C _r / C _f =	= N/A	Ca	pacity over	r Demand Ratio (C/D)
Tension Results 2L5x5x	Tension Results					2L5x5x.5

Tension Results			2L5x5x.5
	Lift Span Closed: T _f =	7 kN	
	Lift Span Raised: T _f =	5 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	1,337 kN	Gross Section
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u}$	2,076 kN	Net Section
	T _r =	1,337 kN	Tensile Capacity (Factored)
	$T_r/T_f =$	191.03	Capacity over Demand Ratio (C/D)

Member Location:TowerMember Description:Sheave Girder BracingMember ID:2L6x6x.375S-Frame End Nodes:Node 655 to Node 656, Node 1189 to Node 1185, Node 1189 to Node 998,Node 1189 o Node 1201, Node 1189 to Node 1114, Node 1183 to Node 1184, Node 774 to Node 751,Node 774 to Node 653, Node 774 to Node 909, Node 774 to Node 907


Member orientation (local axis): z always corresponds with the vertical plane y always corresponds to the horizontal plane

Material Properties

	•		
F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	Angles
	6x6x3/8
Qty	2
y _{dim} (mm)	152
z _{dim} (mm)	152
I _{y1} (x10 ⁶ mm ⁴)	4.68
$I_{z1}(x10^{6}mm^{4})$	4.68
A _g (mm ²)	3,060
A _n (mm ²)	3,060
y _{bar} (mm)	50
z _{bar} (mm)	0
$I_{y}(x10^{6}mm^{4})$	9
$I_y (x10^6 mm^4)$ $I_z (x10^6 mm^4)$	25

A _g =	6,120 _{mm²}
A _n =	6,120 mm ²
$I_y =$	9.360 x10 ⁶ mm ⁴
l _z =	24.660 x10 ⁶ mm ⁴
r _y =	39 mm
r _z =	63 mm

MMM GROUP

Burlington Lift Bridge Member Capacities

Compression Results

2L6x6x.375

Compression Result	S				2L6x6x.375
	L _y =	4,447 mm			
	L _z =	4,447 mm			
	K _y =	1.00	K' _y =		
	K _z =	1.00	K' _z =	1.03	
	Web	N/A			
	Flange b	127 mm			
	t	9.5 mm			
	n =	1.34			
	Lift Span Closed: C _f =	-118 kN			
	Lift Span Raised: C _f =	-294 kN			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90			
Cl. 10.9.1.3	Slenderness Ratio =	114	< 120	Cl. 10.9.1.3 Satisfie	d
Cl. 10.9.2.1	Width to Thickness Lin	nits			
	Flanges b/t =	13	< 44	Cl. 10.9.2.1 Satisfie	d
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$(2^{n})^{-1/n} =$	590 kN	Governs	
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_v (1 + \lambda)$		931 kN		
	$\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}}$ $\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}}$				
	C _r =	-590 kN	Compressiv	ve Capacity (Factored)	
	$C_r / C_f =$	2.01	Capacity ov	ver Demand Ratio (C/D)	
Tension Results					2L6x6x.375
	Lift Span Closed: T _f =	122 kN			
	Lift Span Raised: T _f =	300 kN			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95			
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{y=}$	1,337 kN	Gross Secti	ion	
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u}$	2,076 kN	Net Sectior	n	
	T _r =	1,337 kN	Tensile Cap	pacity (Factored)	

 $T_r / T_f = 4.46$

Capacity over Demand Ratio (C/D)

Member Location:TowerMember Description:Tower Traction BracingMember ID:L4x4x.375S-Frame End Nodes:Node 871 to Node 873, Node 1107 to Node 1105

Member orientation (local axis): z always corresponds with the vertical plane y always corresponds to the horizontal plane

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	Angles
	4x4x3/8
Qty	1
y _{dim} (mm)	102
z _{dim} (mm)	102
$\frac{I_{y1}(x10^{6}mm^{4})}{I_{z1}(x10^{6}mm^{4})}$	1.84
$I_{z1}(x10^{6}mm^{4})$	1.84
A _g (mm²)	1,850
A _n (mm ²)	1,850
y _{bar} (mm)	0
z _{bar} (mm)	0
l _y (x10 ⁶ mm ⁴)	2
$I_{z}(x10^{6}mm^{4})$	2

A _g = A _n =	1,850 _{mm} ² 1,850 _{mm²}
I _y =	1.840 x10 ⁶ mm ⁴
l _z =	1.840 x10 ⁶ mm ⁴
r _y =	32 mm
r _z =	32 mm

Local Check for Capacity of Single Angle							
r =	31.5	mm _{KI}					
L =	2,802						
$A_g =$	1,850	mm^2 $\sqrt{N^2 - 2s}$					
(Cl. 10.9.3.1	$C_r = \phi_s AF_y (1 + \lambda^{2n})^{-1/n} : -237 \text{ kN}$					
Capacity of single angle does not govern built up member capacity							

	MMM GROUP	
--	-----------	--

Compression Results	5					L4x4x.375
	L _y =	2,802 mm				
	$L_z =$	2,802 mm		_		
	К _у =	1.00		K' _y =	1.02	
	K _z =	1.00		K' _z =	1.02	
	Web	N/A				
	Flange b	102 mm 9.5 mm				
	n =	1.34				
	Lift Span Closed: C _f =	0 kN				
	Lift Span Raised: C _f =	0 kN				
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90				
Cl. 10.9.1.3	Slenderness Ratio =	89	<	120	Cl. 10.9.1.3 Satisfied	
Cl. 10.9.2.1	Width to Thickness Lin	nits				
	Flanges b/t =	11	<	44	Cl. 10.9.2.1 Satisfied	
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$		234 kN			
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$	$^{2n})^{-1/n} =$	234 kN			
	$\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}}$ $\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}}$					
	C _r =	-234 kN	Co	mnressive	Capacity (Factored)	
		N/A			Demand Ratio (C/D)	
Tension Results		<u> </u>				L4x4x.375
	Lift Span Closed: $T_f =$	0 kN				
	Lift Span Raised: T _f =	0 kN				
Cl. 10.5.7 (d)	tension: $\varphi_{s=}$	0.95				
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma} =$	404 kN		oss Section		
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u}$	627 kN	Ne	t Section		
	T _r =	404 kN	Те	nsile Capac	ity (Factored)	

 $T_r/T_f =$ N/A

Member ID: L4x4x.375 **Prepared By: Matthew Bowser**

Member Location:TowerMember Description:Tower Traction BracingMember ID:L5x5x3/8S-Frame End Nodes:Node 865 to Node 862, Node 868 to Node 869, Node 866 to Node 870, Node 872 to Node 867,Node 1097 to Node 1099, Node 1103 to Node 1102, Node 1104 to Node 1100, Node 1101 to Node 1106

Member orientation (local axis): z always corresponds with the vertical plane y always corresponds to the horizontal plane

Material Properties

$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

Built Op Seeth	on roperties	
	Angles	
	5x5x3/8	
Qty	1	
y _{dim} (mm)	127	
z _{dim} (mm)	127	
I _{y1} (x10 ⁶ mm ⁴)	3.64	
$I_{z1}(x10^6 mm^4)$	3.64	
A _g (mm ²)	2,330	
A _n (mm ²)	2,330	
y _{bar} (mm)	0	
z _{bar} (mm)	0	
$I_y(x10^6 mm^4)$	4	
$I_{z}(x10^{6}mm^{4})$	4	
A _g =	2,330 _{mm²}	Local Check for Capacity of Single Angle
A _n =	2,330 mm ²	r = 27.3 mm
		$KL \mid E_{i}$
$I_y =$	3.640 x10 ⁶ mm ⁴	L = 3,168 mm $\lambda = \frac{\pi T}{r} \sqrt{\frac{\pi Y}{\pi^2 E_s}} = 1.253$
$I_z =$	3.640 x10 ⁶ mm ⁴	$A_{g} = 2,330 \text{ mm}$
r _y =	40 mm	Cl. 10.9.3.1 $C_r = \phi_s A F_y (1 + \lambda^{2n})^{-1/n}$ -222 kN
r _z =	40 mm	
		Capacity of single angle does not govern built up member capacity

	MMM GROUP	
--	-----------	--

Compression Resu	lts					L5x5x3/8
	$L_y =$	3,168 mr				
	$L_z =$	3,168 mr	n			
	K _y =	1.00		K' _y =	1.02	
	K _z =	1.00		K' _z =	1.02	
	Web	N/A				
	Flange b t	127 mr 9.5 mr				
	n =	1.34				
	Lift Span Closed: C _f =	-27 kN				
	Lift Span Raised: C _f =	-26 kN				
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90				
Cl. 10.9.1.3	Slenderness Ratio =	80	<	120	Cl. 10.9.1.3 Satisfied	
Cl. 10.9.2.1	Width to Thickness Li	nits				
	Flanges b/t =	13	<	44	Cl. 10.9.2.1 Satisfied	
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$(2^{n})^{-1/n} =$	322	٨N		
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$	$(2^{2n})^{-1/n} =$	322	٨N		
	$\lambda_{y} = \frac{K'_{y}L_{y}}{r_{y}} \sqrt{\frac{F_{y}}{\pi^{2}E_{s}}}$ $K'_{z}L_{z} = F_{y}$					
	$\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 0.885				
	C _r =	-222 kN		Compressive	Capacity (Factored)	
	$C_r / C_f =$	8.22		Capacity ove	r Demand Ratio (C/D)	
Tension Results						L5x5x3/8
	Lift Span Closed: T _f =	26 kN				
	Lift Span Raised: T _f =	31 kN				
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95				
Cl. 10.8.2 (a)	$T_r = \varphi_s A_g F_{y=1}$	509 kN		Gross Sectior	1	
Cl. 10.8.2 (b)	$T_r = 0.85 \varphi_s A_n F_{u} =$	790 kN		Net Section		
	T _r =	509 kN		I ensile Capa	city (Factored)	

 $T_r / T_f = 16.42$

Capacity over Demand Ratio (C/D)

Member Location:TowerMember Description:Tower Traction BracingMember ID:L5x5x1/2S-Frame End Nodes:Node 871 to Node 872, Node 871 to Node 870, Node 1106 to Node 1105,Node 1104 to 1105

Member orientation (local axis): z always corresponds with the vertical plane y always corresponds to the horizontal plane

Material Properties

$F_y =$	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
E _s =	200,000	MPa	
G _s =	77,000	MPa	

	-	
	Angles	
	5x5x1/2	
Qty	1	
y _{dim} (mm)	127	
z _{dim} (mm)	127	
	4.68	
$I_{z1}(x10^{6}mm^{4})$	4.68	
A _g (mm²)	3,060	
A _n (mm²)	3,060	
y _{bar} (mm)	0	
z _{bar} (mm)	0	
I _y (x10 ⁶ mm ⁴)	5	
$I_{z}(x10^{6}mm^{4})$	5	
Α _α =	3.060 mm ²	Local Check for Capacity of Single Angle

A _g =	3,060 _{mm²}
A _n =	3,060 mm²
I _y =	4.680 x10 ⁶ mm ⁴
l _z =	4.680 x10 ⁶ mm ⁴
r _y =	39 mm
r _z =	39 mm

Local Ch	eck for Capacity of Single Angle					
r = 27.3	mm KI F					
L = 3,388	$ \begin{array}{ccc} \text{mm} & \lambda = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E_s}} = & 1.340 \end{array} $					
A _g = 3,060	mm^2 $N^{32} = s$					
Cl. 10.9.3.1	$C_r = \phi_s A F_y (1 + \lambda^{2n})^{-1/n} : -267 \text{ kN}$					
Capacity of single angle does not govern built up member capacity						

	MMM GROUP
--	-----------

Burlington Lift Bridge

MMM GROUP		Member Capacities				
Compression Resu	lts		-			L5x5x1/2
•	L _y =	3,388 mm				·
	L _z =	3,388 mm				
	K _y =	1.00		K' _y =	1.02	
	K _z =	1.00		K' _z =	1.02	
	Web	N/A				
	Flange b	127 mm				
	t 	<u>9.5</u> mm 1.34				
	Lift Span Closed: C _f =	-27 kN				
	Lift Span Raised: $C_f =$	-26 kN				
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90				
Cl. 10.9.1.3	Slenderness Ratio =	87	<	120	Cl. 10.9.1.3 Satisfied	
Cl. 10.9.2.1	Width to Thickness Lir	nits				
	Flanges b/t =	13	<	44	Cl. 10.9.2.1 Satisfied	
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$^{2n})^{-1/n} =$	395 kN			
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$	$^{2n})^{-1/n} =$	395 kN			
	$\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}}$					
	$\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 0.954				
	C _r =	-267 kN	Co	mpressive	Capacity (Factored)	
	$C_r / C_f =$	9.87	Ca	pacity ove	r Demand Ratio (C/D)	
Tension Results						L5x5x1/2
	Lift Span Closed: Tr =	26 KN				

Tension Results			L5x5x1/2
	Lift Span Closed: T _f =	26 kN	
	Lift Span Raised: T _f =	31 kN	
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95	
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	669 kN	Gross Section
Cl. 10.8.2 (b)	$T_r = 0.85 \phi_s A_n F_{u=}$	1,038 kN	Net Section
	T _r =	669 kN	Tensile Capacity (Factored)
	$T_r/T_f =$	21.57	Capacity over Demand Ratio (C/D)

 Member Location:
 Tower

 Member Description:
 Tower and Approach Span Diaphragms (Original Hwy Side)

 Member ID:
 C15x33.9

 S-Frame End Nodes:
 704-706, 705-707, 706-708, 707-709, 708-710, 709-711, 710-712, 711-713, 1031-1033, 1032-1034, 1033-1035, 1034-1036, 1035-1037, 1036-1038, 1037-1039, 1038-1040, 675-677, 677-679, 679-681, 681-683, 720-726, 722-727, 724-728, 726-729, 727-730, 728-731, 729-732, 730-733, 731-734, 732-735, 733-736, 734-737, 1004-1002, 1006-1004, 1008-1006, 1010-1008, 1053-1047, 1054-1049, 1055-1051, 1056-1053, 1057-1054, 1058-1055, 1059-1056, 1060-1057, 1061-1058, 1062-1059, 1063-1060, 1064-1061

 Member orientation (local axis):
 z always corresponds with the vertical plane

y always corresponds to the horizontal plane

Material Properties

•		
230	MPa	CSA S6-06 Cl. 14.7.4.2
420	MPa	CSA S6-06 Cl. 14.7.4.2
200,000	MPa	
77,000	MPa	
	420 200,000	

	Channel
	C15x33.9
Qty	1
y _{dim} (mm)	86
z _{dim} (mm)	381
I _{y1} (x10 ⁶ mm ⁴)	131
$\frac{I_{y1}(x10^{6}mm^{4})}{I_{z1}(x10^{6}mm^{4})}$	3.39
A _g (mm ²)	6,430
A _n (mm ²)	6,430
y _{bar} (mm)	0
z _{bar} (mm)	0
$\frac{I_y (x10^6 mm^4)}{I_z (x10^6 mm^4)}$	131
$I_{z}(x10^{6}mm^{4})$	3

A _g =	6,430 _{mm²}
A _n =	6,430 _{mm²}
$I_y =$	$131 \text{ x} 10^6 \text{ mm}^4$
$I_z =$	3.4 x10 ⁶ mm ⁴
r _y =	143 mm
r _z =	23 mm

MMM GROUP

Burlington Lift Bridge Member Capacities

	Member Capacities						
Compression Resu	lts						C15x33.9
	L _y =	1,943	mm				
	L _z =	1,943	mm				
	K _y =	1.00			K' _y =	1.10	
	K _z =	1.00			K' _z =	1.02	
	Web	N/A					
	Flange	N/A					
	n =	1.34					
	Lift Span Closed: C _f =	-4	kN				
	Lift Span Raised: C _f =	-1	kN				
Cl. 10.5.7 (c)	Compression: ϕ_s =	0.90					
Cl. 10.9.1.3	Slenderness Ratio =	85		<	120	Cl. 10.9.1.3 Satisfied	
Cl. 10.9.2.1	Width to Thickness Lin	nits					
	I	N/A					
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda)$	$^{2n})^{-1/n} =$	1,324	4 kN			
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda)$	$^{2n})^{-1/n} =$	848	8 kN	Go	verns	
	$\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}}$						
	$\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 0.932					
	C _r =	-848	kN	Comp	ressive	Capacity (Factored)	
	$C_r / C_f =$	212.06		Сарас	ity over	Demand Ratio (C/D)	
Tension Results							C15x33.9
	Lift Span Closed: T _f =	3	kN				
	Lift Span Raised: T _f =	4	kN				
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95					
				-			

Gross Section

Tensile Capacity (Factored)

Capacity over Demand Ratio (C/D)

Net Section

 $T_r = \phi_s A_g F_{\gamma} =$ 1,405 kN

 $T_r/T_f = 351.24$

T_r = 1,405 kN

 $T_r = 0.85 \phi_s A_n F_{u=}$ 2,181 kN

Member ID: C15x33.9 Prepared By: Matthew Bowser

Cl. 10.8.2 (a)

Cl. 10.8.2 (b)

 Member Location:
 Tower

 Member Description:
 Tower and Approach Span Diaphragms (1982 Rly Side)

 Member ID:
 C380x50

 S-Frame End Nodes:
 712-714, 713-715, 714-716, 715-717, 716-718, 717-719, 1039-1041, 1040-1042, 1041-1043, 1042-1044, 1043-1045, 1044-1046, 683-685, 685-687, 687-698, 735-738, 736-739, 737-740, 738-741, 741-721, 739-742, 742-723, 740-743, 743-725, 1012-1010, 1014-1012, 1025-1014, 1065-1062, 1066-1063, 1067-1064, 1068-1065, 1048-1068, 1069-1066, 1050-1069, 1070-1067, 1052-1070

Member orientation (local axis): z always corresponds with the vertical plane y always corresponds to the horizontal plane

Material Properties

F _y =	230	MPa	CSA S6-06 Cl. 14.7.4.2
F _u =	420	MPa	CSA S6-06 Cl. 14.7.4.2
$E_s =$	200,000	MPa	
G _s =	77,000	MPa	

Built Up Section Properties

Built op beetion i it	operties
	Channel
	C380x50
Qty	1
y _{dim} (mm)	86
z _{dim} (mm)	381
I _{y1} (x10 ⁶ mm ⁴)	131
$I_{z1}(x10^{6}mm^{4})$	3.39
A _g (mm ²)	6,430
A _n (mm ²)	6,430
y _{bar} (mm)	0
z _{bar} (mm)	0
$I_{y}(x10^{6}mm^{4})$	131
$I_y (x10^6 mm^4)$ $I_z (x10^6 mm^4)$	3

 $\begin{array}{rrrr} A_{g} = & 6,430 \ \text{mm}^{2} \\ A_{n} = & 6,430 \ \text{mm}^{2} \\ I_{y} = & 131.000 \ \text{x}10^{6} \ \text{mm}^{4} \\ I_{z} = & 3.390 \ \text{x}10^{6} \ \text{mm}^{4} \\ r_{y} = & 143 \ \text{mm} \\ r_{z} = & 23 \ \text{mm} \end{array}$

MMM GROUP

Burlington Lift Bridge Mambar Ca -----

	IMM GROUP	Men	ber Capacities	5		
Compression Resul	ts					C380x50
	L _y =	2,057 r	nm			
	$L_z =$	2,057 r	nm			
	K _y =	1.00		K' _y =	1.10	
	K _z =	1.00		K' _z =	1.02	
	Web	N/A				
	Flange	N/A				
	n =	1.34				
	Lift Span Closed: C _f =	-3 k	N			
	Lift Span Raised: C _f =	-5 k	N			
Cl. 10.5.7 (c)	Compression: $\phi_s =$	0.90				
Cl. 10.9.1.3	Slenderness Ratio =	90	<	120	Cl. 10.9.1.3 Satisfied	
Cl. 10.9.2.1	Width to Thickness Lim	nits				
	٢	N/A				
Cl. 10.9.3.1	$C_{r(y)} = \phi_s A F_y (1 + \lambda^2)$		1,322 kN			
Cl. 10.9.3.1	$C_{r(z)} = \phi_s A F_y (1 + \lambda^2)$	$(2^{n})^{-1/n} =$	805 kN	Go	verns	
	$\lambda_y = \frac{K'_y L_y}{r_y} \sqrt{\frac{F_y}{\pi^2 E_s}}$					
	$\lambda_z = \frac{K'_z L_z}{r_z} \sqrt{\frac{F_y}{\pi^2 E_s}}$	= 0.985				
	C _r =	-805 k	N Com	pressive (Capacity (Factored)	
	$C_r / C_f =$	161.10		•	Demand Ratio (C/D)	
			·	,		
Tension Results						C380x50
	Lift Span Closed: T _f =	4 k	N			
	Lift Span Raised: T _f =	1 k	N			
Cl. 10.5.7 (d)	tension: $\phi_{s=}$	0.95				
Cl. 10.8.2 (a)	$T_r = \phi_s A_g F_{\gamma}$	1,405 k	N Gros	s Section		

Cl. 10.8.2 (b)

 $T_r/T_f = 351.24$

 $T_r = 1,405 \text{ kN}$

 $T_r = 0.85 \phi_s A_n F_{u} = 2,181 \text{ kN}$

Net Section Tensile Capacity (Factored)

Capacity over Demand Ratio (C/D)