29 Jun 2022

Page 1

Specifications and drawings for

Daniel J. MacDonald Modernization

are amended as follows:

SPECIFICATIONS

1.1 **REVISED SPECIFICATIONS**

- .1 The following revised specifications issued with this addendum supersede previously issued specifications of the same title and number
 - .1 Section No. 00 01 10_R2, Table of Contents
 - .2 Section No. 03 54 16_R1 Self Levelling Floor Underlayment
 - .3 Section No. 23 36 00_R1, Air Terminal Units
 - .4 Section No. 25 90 01_CS601_R1, Heat Recovery Chillers Control Points List
 - .5 Section No. 25 90 01_CS611_R1, Chilled Water Distribution System Control Points List
 - .6 Section No. 25 90 01_CS621_R1, Heating Water Distribution System Control Points List.
 - .7 Section No. 25 90 01_CS701_R1 Make-Up Air Dedicated Outdoor Air System with Energy Recovery System – Control Points List.
 - .8 Section No. 25 90 01_CS731_R1 Wallfin Convectors Hydronic Control Points List.
 - .9 Section No. 25 90 01_CS732_R1 Forced Flow Heaters Hydronic Control Points List.
 - .10 Section No. 25 90 01_CS737_R1 Fan Coil Units Control Points List.
 - .11 Section No. 25 90 01_CS809_R1 Parking Garage Ventilation Control Points List
 - .12 Section No. 25 90 01_CS810_R1 Mechanical Room Ventilation Control Points List
 - .13 Section No. 25 90 01_CS821_R1 Fan Powered VAV Dedicated Outdoor Air System – Control Points List
 - .14 Section No. 25 90 01_CS824_R1 Demand Control Ventilation VAV with Active Chilled Beams Control Points List
 - .15 Section No. 25 90 01_CS825_R1 Demand Control Ventilation VAV with Fan Coil Units– Control Points List
 - .16 Section No. 25 90 01_CS831_R1 Humidification System Control Points List

29 Jun 2022

DRAWINGS

1.2 **REVISED DRAWINGS**

- .1 The following Drawings are revised and re-issued with this addendum. Revisions are shown in bubbled areas on drawings. The following descriptions of revisions are for convenience only and do not define or limit the extent of actual revisions indicated on drawings:
 - .1 Drawing M40-00 Fire Protection Parking Level New Work
 - .1 Clarified note regarding heat tracing.
 - .2 Drawing M73-04 Airflow Schematic
 - .1 Deleted airflow station.
 - .3 Drawing E04-02 Single Line Diagram Emergency Power
 - .1 Revise two (2) breakers at the panel DP-EM and DP-2AE to LSI breakers as shown on the drawing.
 - .4 Drawing E10-00 Power Plan Parking Level
 - .1 Pump location revised as shown on the drawing.
 - .5 Drawing E30-00 Fire Alarm Plan Parking Level
 - .1 Heat detectors layout revised as shown on the drawing.
 - .2 Fire alarm speakers replaced with combination speaker/strobes as shown on the drawing.
 - .6 Drawing E30-01 Fire Alarm Plan Main Floor
 - .1 All fire alarm speakers, except in staircases, replaced with combination speaker/strobes devices.
 - .7 Drawing E30-02 Fire Alarm Plan Second Floor
 - .1 All fire alarm speakers, except in staircases, replaced with combination speaker/strobes devices.
 - .8 Drawing E30-03 Fire Alarm Plan Third Floor
 - .1 All fire alarm speakers, except in staircases, replaced with combination speaker/strobes devices.
 - .9 E30-04 Fire Alarm Plan Fourth Floor
 - .1 All fire alarm speakers, except in staircases, replaced with combination speaker/strobes devices.
 - .10 E30-05 Fire Alarm Plan Fifth Floor
 - .1 All fire alarm speakers, except in staircases, replaced with combination speaker/strobes devices.

End of NORR Addendum No.2

I

DIVISION	SECTION	<u>DOCUMENT</u> <u>RESPONSIBILITY</u>	DATE	PAGES
	VOLUME 1 OF 3			
	Specifications Cover Page	А	27 May 2022	1
	00 01 07 Seals Page	А	27 May 2022	1
	00 01 10_R ¹² Table of Contents	А	28-29 Jun 2022	16
	00 01 15_R1 List of Drawings	А	28 Jun 2022	7
DIVISION 01	GENERAL REQUIREMENTS			
	01 14 00 – Work Restrictions	А	27 May 2022	2
	01 29 83 Payment Procedures - Testing Laboratory Services	А	27 May 2022	2
	01 31 19 - Project Meetings	А	27 May 2022	3
	01 32 16.16 Construction Progress schedule - Critical Path Method (CPM)	А	27 May 2022	11
	01 33 00 - Submittal Procedures	А	27 May 2022	7
	01 35 01 Delegated Design	А	27 May 2022	4
	01 35 24 - Special Procedures on Fire Safety Requirements	HS	27 May 2022	5
	01 35 25 - Special Procedures on Lockout Requirements	HS	27 May 2022	4
	01 35 29 - Health and Safety Requirements	HS	27 May 2022	9
	01 35 54 - Site Security Requirements	А	27 May 2022	2
	01 41 00 Regulatory Requirements	А	27 May 2022	2
	01 45 00 Quality Control	А	27 May 2022	3
	01 47 15 Sustainable Requirements: Construction	SC	27 May 2022	6
	01 51 00 Temporary Utilities	А	27 May 2022	3
	01 52 00 Construction Facilities	А	27 May 2022	6
	01 56 00 Temporary Barriers and Enclosures	А	27 May 2022	3
	01 57 16 Indoor Air Quality (IAQ) Management: Construction	SC	27 May 2022	7
	01 61 00 Common Product Requirements	А	27 May 2022	6
	01 61 10 List of Materials	А	27 May 2022	53

DIVISION	<u>SECTION</u>	<u>DOCUMENT</u> <u>RESPONSIBILITY</u>	DATE	PAGES
	01 71 00 Examination and Preparation	А	27 May 2022	3
	01 73 00 Execution	А	27 May 2022	2
	01 74 00 Cleaning	А	27 May 2022	3
	01 74 19 Construction Waste Management and Disposal	SC	27 May 2022	12
	01 77 00 Closeout Procedures	А	27 May 2022	2
	01 78 00 Closeout Submittals	А	27 May 2022	6
	01 79 00.13 Demonstration and Training for Building Commissioning	Сх	27 May 2022	12
	01 91 13 General Commissioning Requirements	Cx	27 May 2022	15
	01 91 13.16 Commissioning Forms	Сх	27 May 2022	13
DIVISION 02	EXISTING CONDITIONS			
	02 41 19.13 - Selective Building Demolition	S	27 May 2022	11
	02 41 19.16 - Selective Interior Demolition	А	27 May 2022	10
	02 66 00 – Fuel Storage System Removal	Env	27 May 2022	6
	PSPC Storage Tank Withdrawal and Removal Form	Env	2019	4
	02 82 00.01 - Asbestos Abatement – Minimum Precautions	Env	20 Sep 2021	7
	02 82 00.02 – Asbestos Abatement – Intermediate Precautions	Env	20 Sep 2021	8
	02 85 10.01 Bird Excrement Abatement	Env	27 May 2022	4
DIVISION 03	CONCRETE			
	03 01 37 - Concrete Restoration	S	27 May 2022	9
	03 10 00 – Concrete Forming and Accessories	S	27 May 2022	5
	03 20 00 - Concrete Reinforcing	S	27 May 2022	5
	03 30 00 - Cast-in-place Concrete	S	27 May 2022	10
	03 35 00 – Concrete Finishing	А	27 May 2022	5
	03 53 10 - Polished Concrete Topping	А	27 May 2022	13

Project No. R.056687.005

28-**29** Jun 2022

l

DIVISION	<u>SECTION</u>	<u>DOCUMENT</u> <u>RESPONSIBILITY</u>	DATE	PAGES
	03 54 16 _R1 – Self Levelling Floor Underlayment	А	27 May29 Jun 2022	8
DIVISION 04	MASONRY			
	04 03 07 - Masonry Repointing	А	27 May 2022	5
	04 05 00 – Common Work Results for Masonry	А	27 May 2022	8
	04 05 13 - Masonry Mortaring and Grouting	А	27 May 2022	7
	04 05 19 – Masonry Anchorage and Reinforcing	А	27 May 2022	7
	04 05 23 - Masonry Accessories	А	27 May 2022	5
	04 21 13 - Brick Masonry	А	27 May 2022	5
	04 22 00 – Concrete Unit Masonry	А	27 May 2022	7
DIVISION 05	METALS			
	05 12 10 – Structural Steel Insulated Connections	S	27 May 2022	7
	05 12 23 Structural Steel for Buildings	S	27 May 2022	7
	05 12 25 - Elastomeric Bearing Pads	S	27 May 2022	3
	05 12 48 Coatings for Architecturally Exposed Structural Steel	А	27 May 2022	10
	05 12 48_01 AESS Category Table	А		2
	05 31 00 Steel Decking	S	27 May 2022	5
	05 41 00 Structural Metal Stud Framing	А	27 May 2022	7
	05 50 00 Metal Fabrications	А	27 May 2022	17
	05 51 00 Metal Stairs and Ladders	А	27 May 2022	4
	05 75 10 Decorative Zinc Panels	А	27 May 2022	8
DIVISION 06	WOOD, PLASTICS, AND COMPOSITES			
	06 05 73 Wood Treatment	А	27 May 2022	5
	06 10 53 Miscellaneous Rough Carpentry	А	27 May 2022	6
	06 20 00 Finish Carpentry	А	27 May 2022	10
	06 40 00 Architectural Woodwork	А	27 May 2022	12

I

DIVISION	SECTION	<u>DOCUMENT</u> RESPONSIBILITY	DATE	PAGES
	06 61 16 Solid Surfacing Fabrications	А	27 May 2022	4
DIVISION 07	THERMAL AND MOISTURE PROTECTION			
	07 01 57 Existing Roofing Modifications	А	27 May 2022	6
	07 14 16.11 Liquid Applied Waterproofing	А	27 May 2022	6
	07 16 16 Crystalline Waterproofing	А	27 May 2022	4
	07 19 00 Water Repellents	А	27 May 2022	4
	07 21 13 Board Insulation	А	27 May 2022	6
	07 21 16 Blanket Insulation	А	27 May 2022	4
	07 26 17 Below-Grade Vapour Retarder	А	27 May 2022	5
	07 27 00.01 Air Barriers - Descriptive or Proprietary	А	27 May 2022	6
	07 27 29 Sprayed Insulation – Polyurethane Foam	А	27 May 2022	8
	07 42 10 Aluminum Panel Cladding System	А	27 May 2022	13
	07 55 52 Modified Bituminous Membrane Roofing	А	27 May 2022	16
	07 62 00 Sheet Metal Flashing and Trim	А	27 May 2022	6
	07 72 73 Membrane Leak Detection Systems	А	27 May 2022	5
	07 81 00 Applied Fireproofing	А	27 May 2022	5
	07 84 00 Fire Stopping	А	27 May 2022	18
	07 92 00 Joint Sealants	А	27 May 2022	9
DIVISION 08	OPENINGS			
	08 11 00 Metal Doors and Frames	А	27 May 2022	8
	08 11 17 Fire-Rated Aluminum Full Vision Doors and Frames	А	27 May 2022	5
	08 14 16 Flush Wood Doors	А	27 May 2022	7
	08 33 23 Overhead Coiling Doors	А	27 May 2022	7
	08 34 73 Sound Control Door Assemblies	А	27 May 2022	9

Project No. R.056687.005

28-**29** Jun 2022

l

DIVISION	<u>SECTION</u>	<u>DOCUMENT</u> <u>RESPONSIBILITY</u>	DATE	PAGES
	08 42 33 Revolving Doors	А	27 May 2022	12
	08 44 13 Glazed Aluminum Curtain Walls	А	27 May 2022	38
	08 71 00 Door Hardware	А	27 May 2022	9
	08 71 10 Door Hardware Schedule	Н	27 May 2022	92
	08 80 00 Glazing	А	27 May 2022	11
	08 80 15 Glass Balustrades	А	27 May 2022	6
DIVISION 09	FINISHES			
	09 21 16 Gypsum Board Assemblies	А	27 May 2022	15
	09 22 16 Non-structural Metal Framing	А	27 May 2022	5
	09 25 13 Direct Applied Finish	А	27 May 2022	7
	09 30 13 Ceramic Tiling	А	27 May 2022	14
	09 51 13 Acoustical Panel Ceilings	А	27 May 2022	6
	09 51 27 Wood Grille Ceilings	А	27 May 2022	6
	09 65 00.08 Resilient Flooring For Minor Works	А	27 May 2022	11
	09 67 15 Epoxy Floor Coating	А	27 May 2022	9
	09 68 13 Tile Carpeting	А	27 May 2022	10
	09 72 17 Digitally Printed Vinyl Wallcovering Murals	А	27 May 2022	5
	09 80 00 Acoustic Treatment	А	27 May 2022	5
	09 91 13 Exterior Painting	А	27 May 2022	12
	09 91 23 Interior Painting	А	27 May 2022	16
	09 96 00 High Performance Coatings	А	27 May 2022	6
DIVISION 10	SPECIALTIES			
	10 00 00 Manufactured Specialties	А	27 May 2022	5
	10 14 00 Signage	А	27 May 2022	7
	10 21 13.19 Plastic Toilet Compartments	А	27 May 2022	6
	10 22 13 Wire Mesh Partitions	А	27 May 2022	5
	10 22 39 Folding Panel Partitions	А	27 May 2022	5
	10 23 26 Glass Partition System	А	27 May 2022	6

Project No. R.056687.005

28-**29** Jun 2022

l

DIVISION	SECTION	<u>DOCUMENT</u> <u>RESPONSIBILITY</u>	DATE	PAGES
	10 26 41 Ballistic Resistant Fiberglass Composite Panels	А	27 May 2022	3
	10 28 10 Toilet and Bath Accessories	А	27 May 2022	5
	10 44 00 Fire Protection Specialties	М	27 May 2022	2
	10 51 13 Metal Lockers	А	27 May 2022	5
	10 90 00 Tactile Warning Surfacing	А	27 May 2022	3
DIVISION 11	EQUIPMENT			
	11 12 00 Parking Control Equipment	А	27 May 2022	5
	11 14 14 Optical Turnstiles	А	27 May 2022	5
	11 52 00 AV General Conditions	AV	27 May 2022	21
	11 52 01 Audio Visual Systems	AV	27 May 2022	26
	11 81 29 Facility Fall Protection	А	27 May 2022	6
DIVISION 12	FURNISHINGS			
	12 05 10 Upholstery Fabric	А	27 May 2022	3
	12 24 13 Motorized Roller Window Shades	А	27 May 2022	5
	12 24 14 Manual Window Shades	А	27 May 2022	4
	12 48 16 Entrance Floor Grilles	А	27 May 2022	4
	VOLUME 2 OF 3			
DIVISION 21	FIRE SUPPRESSION			
	21 05 00 Common Work Results for Fire Suppression	М	27 May 2022	13
	21 12 00 – Fire-Suppression Standpipes and Hose Assemblies	М	27 May 2022	7
	21 13 13 Wet Pipe Sprinkler Systems	Μ	27 May 2022	13
	21 13 16 Dry Pipe Sprinkler Systems	Μ	27 May 2022	7
	21 30 00 Fire Pumps	М	27 May 2022	7
DIVISION 22	PLUMBING			
	22 05 00 Common Work Results for Plumbing	М	27 May 2022	11

l

DIVISION	<u>SECTION</u>	<u>DOCUMENT</u> <u>RESPONSIBILITY</u>	DATE	PAGES
	22 05 05 Selective Demolition for Plumbing	М	27 May 2022	4
	22 05 15 Plumbing Specialties and Accessories	Μ	27 May 2022	12
	22 10 10 Plumbing Pumps	Μ	27 May 2022	7
	22 11 16 Domestic Water Piping	Μ	27 May 2022	8
	22 13 16.13 Sanitary Waste and Vent Piping - Cast Iron and Copper	Μ	27 May 2022	6
	22 13 16.16 – Sanitary Waste and Vent Piping – Plastic	М	27 May 2022	5
	22 33 00 Electrical Domestic Water Heaters	Μ	27 May 2022	3
	22 42 13 Commercial Water Closets, Urinals, and Bidets	М	27 May 2022	6
	22 42 16 Commercial Lavatories and Sinks	Μ	27 May 2022	7
	22 42 19 Commercial Bathtubs and Showers	Μ	27 May 2022	6
	22 47 00 Drinking Fountains and Water Coolers	М	27 May 2022	4
DIVISION 23	HEATING, VENTILATING, AIR CONDITIONING (HVAC)			
	23 01 05 Operation and Maintenance of HVAC Systems During Construction	М	27 May 2022	2
	23 05 00 Common Work Results for HVAC	М	27 May 2022	17
	23 05 05 Selective Demolition for Heating, Ventilating, and Air Conditioning (HVAC)	М	27 May 2022	4
	23 05 13 Common Motor Requirements for HVAC Equipment	М	27 May 2022	7
	23 05 14 Variable Frequency Drives	Μ	27 May 2022	9
	23 05 15 Common Installation Requirements for HVAC Pipework	М	27 May 2022	6
	23 05 16 Expansion Fittings and Loops for HVAC Piping	М	27 May 2022	6
	23 05 17 Pipe Welding	М	27 May 2022	4

I

DIVISION	<u>SECTION</u>	<u>DOCUMENT</u> <u>RESPONSIBILITY</u>	DATE	PAGES
	23 05 19 Meters and Gauges for HVAC Piping	М	27 May 2022	7
	23 05 19.13 Thermometers and Pressure Gauges – Piping Systems	Μ	27 May 2022	7
	23 05 23.01 Valves - Bronze	М	27 May 2022	8
	23 05 23.02 Valves - Cast Iron	Μ	27 May 2022	9
	23 05 23.03 Valves - Cast Steel	Μ	27 May 2022	8
	23 05 23.05 Butterfly Valves	М	27 May 2022	5
	23 05 29 Hangers and Supports for HVAC Piping and Equipment	М	27 May 2022	21
	23 05 33 Heat Tracing for HVAC Piping	Μ	27 May 2022	4
	23 05 48 Vibration and Seismic Controls for HVAC	М	27 May 2022	9
	23 05 53 Identification for HVAC Piping and Equipment	М	27 May 2022	7
	23 05 91 Geothermal Systems	Μ	27 May 2022	8
	23 05 93 Testing - Adjusting and Balancing for HVAC	М	27 May 2022	8
	23 05 94 Pressure Testing of Ducted Air Systems	М	27 May 2022	4
	23 07 13 Duct Insulation	Μ	27 May 2022	6
	23 07 16 HVAC Equipment Insulation	М	27 May 2022	10
	23 07 19 HVAC Piping Insulation	М	27 May 2022	10
	23 08 13 Performance Verification HVAC Systems	М	27 May 2022	4
	23 08 16 Cleaning and Start-Up of HVAC Piping Systems	М	27 May 2022	4
	23 09 33 Electric and Electronic Control System for HVAC	М	27 May 2022	3
	23 21 13.01 Hydronic Systems: Copper	М	27 May 2022	7
	23 21 13.02 Hydronic Systems: Steel	М	27 May 2022	7
	23 21 13.03 Press Joint Piping Systems Hydronic Systems	М	27 May 2022	5
	23 21 16 Hydronic Piping Specialties	М	27 May 2022	6
	23 21 23 Hydronic Pumps	М	27 May 2022	6
	23 25 00 HVAC Water Treatment	М	27 May 2022	6

I

DIVISION	<u>SECTION</u>	<u>DOCUMENT</u> <u>RESPONSIBILITY</u>	DATE	PAGES
	23 31 13.01 Metal Ducts - Low Pressure To 500 Pa	М	27 May 2022	11
	23 31 13.02 Metal Ducts - High Pressure To 2500 Pa	Μ	27 May 2022	9
	23 33 00 Air Duct Accessories	Μ	27 May 2022	5
	23 33 14 Dampers - Balancing	М	27 May 2022	4
	23 33 15 Dampers - Operating	М	27 May 2022	3
	23 33 16 Dampers - Fire and Smoke	М	27 May 2022	7
	23 33 46 Flexible Ducts	Μ	27 May 2022	5
	23 33 53 Duct Liners	Μ	27 May 2022	6
	23 34 00 HVAC Fans	М	27 May 2022	7
	23 34 13 Ceiling Mounted High Volume Low Speed Circulation Fans	Μ	27 May 2022	7
	23 34 23.13 Roof and Wall Exhausters	Μ	27 May 2022	4
	23 36 00_ R1 Air Terminal Units	Μ	27 May29 Jun 2022	12
	23 37 13 Diffusers, Registers and Grilles	Μ	27 May 2022	5
	23 37 20 Louvres, Intakes and Vents	Μ	27 May 2022	3
	23 40 00 HVAC Cleaning Devices	Μ	27 May 2022	5
	23 52 00 Heating Boilers	Μ	27 May 2022	6
	23 57 00 Heat Exchangers for HVAC	Μ	27 May 2022	5
	23 64 22 Heat Recovery Water Chillers	Μ	27 May 2022	7
	23 72 00 Air-To-Air Energy Recovery Equipment	Μ	27 May 2022	8
	23 73 10 Dry Coolers	Μ	27 May 2022	6
	23 81 40 Water Source Unitary Heat Pumps	Μ	27 May 2022	6
	23 82 19 Fan Coil Units	Μ	27 May 2022	4
	23 82 36 Finned Tube Radiation Heaters	Μ	27 May 2022	6
	23 82 39 Unit Heaters	Μ	27 May 2022	4
	23 84 13 Humidifiers	М	27 May 2022	6

l

DIVISION	SECTION	<u>DOCUMENT</u> <u>RESPONSIBILITY</u>	DATE	<u>PAGES</u>
DIVISION 25	INTEGRATED AUTOMATION			
	25 01 11 EMCS: Start-up, Verification and Commissioning	М	27 May 2022	7
	25 01 12 EMCS: Training	Μ	27 May 2022	3
	25 05 01 EMCS: General Requirements	Μ	27 May 2022	8
	25 05 02 – EMCS: Submittals and Review Process	М	27 May 2022	4
	25 05 03 – EMCS: Project Record Documents	М	27 May 2022	3
	25 05 54 EMCS: Identification	М	27 May 2022	2
	25 05 60 EMCS: Field Installation	Μ	27 May 2022	10
	25 08 20 EMCS: Warranty and Maintenance	Μ	27 May 2022	4
	25 10 01 EMCS: Local Area Network (LAN)	М	27 May 2022	2
	25 10 02 EMCS: Operator Work Station (OWS)	М	27 May 2022	11
	25 30 01 EMCS: Building Controllers	Μ	27 May 2022	10
	25 30 02 EMCS: Field Control Devices	Μ	27 May 2022	16
	25 90 01 EMCS: Site Requirements, Applications And Systems Sequences Of Operation	М	27 May 2022	3
	25 90 01_CS401 Domestic Cold Water System	М	27 May 2022	1
	25 90 01_CS401 Domestic Cold Water System – Control Points List	М	27 May 2022	1
	25 90 01_CS402 Domestic Hot Water System	М	27 May 2022	1
	25 90 01_CS402 Domestic Hot Water System – Control Points List	М	27 May 2022	1
	25 90 01_CS411 Sanitary, Storm and Elevator Sump Pumps	М	27 May 2022	1
	25 90 01_CS411 Sanitary, Storm and Elevator Sump Pumps – Control Points List	М	27 May 2022	1
	25 90 01_CS601 Heat Recovery Chillers	М	27 May 2022	3
	25 90 01_CS601 _R1 Heat Recovery Chillers – Control Points List	М	27 May 29 Jun 2022	1

DIVISION	<u>SECTION</u>	<u>DOCUMENT</u> <u>RESPONSIBILITY</u>	DATE	PAGES
	25 90 01_CS611 Chilled Water Distribution System	М	27 May 2022	2
	25 90 01_CS611 _R1 Chilled Water Distribution System – Control Points List	М	27 May29 Jun 2022	1
	25 90 01_CS621 Heating Water Distribution System	М	27 May 2022	2
	25 90 01_CS621 _R1 Heating Water Distribution System – Control Points List	Μ	27 May29 Jun 2022	1
	25 90 01_CS701 Make-Up Air Dedicated Outdoor Air System with Energy Recovery	Μ	27 May 2022	3
	25 90 01_CS701_ R1 Make-Up Air Dedicated Outdoor Air System with Energy Recovery System – Control Points List	М	27 May29 Jun 2022	1
	25 90 01_CS722 Unit Heaters Hydronic	М	27 May 2022	1
	25 90 01_CS722 Unit Heaters Hydronic – Control Points List	М	27 May 2022	1
	25 90 01_CS731 Wallfin Convectors Hydronic	Μ	27 May 2022	1
	25 90 01_CS731 _R1 Wallfin Convectors Hydronic – Control Points List	Μ	27 May29 Jun 2022	1
	25 90 01_CS732 Forced Flow Heaters Hydronic	Μ	27 May 2022	1
	25 90 01_CS732 _R1 Forced Flow Heaters Hydronic – Control Points List	М	27 May29 Jun 2022	1
	25 90 01_CS737 Fan Coil Units	М	27 May 2022	1
	25 90 01_CS737 _R1 Fan Coil Units – Control Points List	Μ	27 May29 Jun 2022	1
	25 90 01_CS801 Washroom Exhaust	Μ	27 May 2022	1
	25 90 01_CS801 Washroom Exhaust – Control Points List	Μ	27 May 2022	1
	25 90 01_CS805 Elevator Room Ventilation	Μ	27 May 2022	1
	25 90 01_CS805 Elevator Room Ventilation – Control Points List	М	27 May 2022	1
	25 90 01_CS809 Parking Garage Ventilation	М	27 May 2022	1
	25 90 01_CS809 _R1 Parking Garage Ventilation – Control Points List	М	27 May29 Jun 2022	1

DIVISION	SECTION	<u>DOCUMENT</u> <u>RESPONSIBILITY</u>	DATE	<u>PAGES</u>
	25 90 01_CS810 Mechanical Room Ventilation	М	27 May 2022	2
	25 90 01_CS810_ R1 Mechanical Room Ventilation – Control Points List	Μ	27 May29 Jun 2022	1
	25 90 01_CS812 Destratification Fans System	Μ	27 May 2022	1
	25 90 01_CS812 Destratification Fans System – Control Points List	М	27 May 2022	1
	25 90 01_CS821 Fan Powered VAV Dedicated Outdoor Air System	М	27 May 2022	2
	25 90 01_CS821_ R1 Fan Powered VAV Dedicated Outdoor Air System – Control Points List	М	27 May29 Jun 2022	1
	25 90 01_CS824 Demand Control Ventilation VAV with Active Chilled Beams	М	27 May 2022	2
	25 90 01_CS824_ R1 Demand Control Ventilation VAV with Active Chilled Beams – Control Points List	М	27 May29 Jun 2022	1
	25 90 01_CS825 Demand Control Ventilation VAV with Fan Coil Units	Μ	27 May 2022	2
	25 90 01_CS825_ R1 Demand Control Ventilation VAV with Fan Coil Units– Control Points List	М	27 May29 Jun 2022	1
	25 90 01_CS831 Humidification System	Μ	27 May 2022	1
	25 90 01_CS831_ R1 Humidification System – Control Points List	М	27 May29 Jun 2022	1
	25 90 01_CS832 Glycol Make-up System	Μ	27 May 2022	1
	25 90 01_CS832 Glycol Make-up System – Control Points List	М	27 May 2022	1
	25 90 01_CS901 Geothermal Field Management System	М	27 May 2022	2
	25 90 01_CS901 Geothermal Field Management System – Control Points List	М	27 May 2022	1
DIVISION 26	ELECTRICAL			

26 05 00 Common Work Results for	Е	27 May 2022	12
Electrical			

I

DIVISION	<u>SECTION</u>	<u>DOCUMENT</u> <u>RESPONSIBILITY</u>	DATE	PAGES
	26 05 04 Existing Building – Modifications	Е	27 May 2022	3
	26 05 05 Selective Demolition for Electrical	Е	27 May 2022	5
	26 05 20 Wire and Box Connectors (0-1000 V)	E	27 May 2022	2
	26 05 21 Wires and Cables (0-1000 V)	Е	27 May 2022	5
	26 05 22 Connectors and Terminations	Е	27 May 2022	2
	26 05 28 Grounding – Secondary	Е	27 May 2022	4
	26 05 29 Hangers and Supports for Electrical Systems	E	27 May 2022	2
	26 05 31 Splitters, Junction, Pull Boxes and Cabinets	E	27 May 2022	2
	26 05 32 Outlet Boxes, Conduit Boxes and Fittings	E	27 May 2022	2
	26 05 34 Conduits, Conduit Fastenings and Conduit Fittings	E	27 May 2022	4
	26 05 36 Cable Trays for Electrical Systems	Е	27 May 2022	2
	26 05 37 Wireways and Auxiliary Gutters	Е	27 May 2022	2
	26 05 48 Vibration and Seismic Controls	Е	27 May 2022	6
	26 08 02 Field Testing and Commissioning – Low Voltage Installations	E	27 May 2022	7
	26 09 43 Network Lighting Controls	Е	27 May 2022	16
	26 12 16.01 Dry Type Transformers Up To 600 V Primary	E	27 May 2022	3
	26 22 19 Control and Signal Transformers	Е	27 May 2022	2
	26 24 13 Switchboards	Е	27 May 2022	5
	26 24 16.01 Panelboards Breaker Type	Е	27 May 2022	3
	26 27 26 Wiring Devices	E	27 May 2022	3
	26 28 13.01 Fuses – Low Voltage	Е	27 May 2022	2
	26 28 16.02 Moulded Case Circuit Breakers	Е	27 May 2022	2
	26 28 18 Ground Fault Equipment Protection	E	27 May 2022	3
	26 28 20 Ground Fault Circuit Interrupters - Class A	E	27 May 2022	2
	26 28 23 Disconnect Switches - Fused and Non-Fused	Е	27 May 2022	2

Project No. R.056687.005

28-**29** Jun 2022

DIVISION	<u>SECTION</u>	<u>DOCUMENT</u> <u>RESPONSIBILITY</u>	DATE	PAGES
	26 29 01 Contactors	E	27 May 2022	3
	26 29 03 Control Devices	E	27 May 2022	4
	26 29 10 Motor Starters to 600 V	E	27 May 2022	5
	26 32 13.01 Power Generation Diesel	E	27 May 2022	14
	26 36 23 Automatic Transfer Switches	E	27 May 2022	7
	26 50 00 Lighting	E	27 May 2022	3
	26 52 13.13 Emergency Lighting	E	27 May 2022	3
	26 52 13.16 Exit Signs	Ε	27 May 2022	2
DIVISION 27	COMMUNICATIONS			
	27 05 00 Common Work Results for Communications	E	27 May 2022	9
	27 51 19 Sound Masking System	Е	27 May 2022	8
DIVISION 28	ELECTRONIC SAFETY AND SECURITY			
	28 10 00 Access Control, Intrusion Detection and Video Surveillance Systems	E	27 May 2022	32
	28 31 00.02 Multiplex Fire Alarm and Voice Communication Systems	E	27 May 2022	14
DIVISION 31	EARTHWORK			
	31 00 00 Earthwork	С	27 May 2022	8
DIVISION 32	EXTERIOR IMPROVEMENTS			
	32 01 90.23 – Pruning	L	27 May 2022	4
	32 01 90.33 - Tree and Shrub Preservation	L	27 May 2022	4
	32 12 16 Asphalt Paving	С	27 May 2022	4

28-29 Jun 2022

DIVISION	SECTION	<u>DOCUMENT</u> <u>RESPONSIBILITY</u>	DATE	PAGES
	VOLUME 3 OF 3			
APPENDIX 1	DESIGNATED SUBSTANCES AND HAZARDOUS BUILDING MATERIALS			
	Hazardous Materials Assessment Report, prepared by All-Tech Environmental Services Limited	Info	04 Jan 2021	68
	Data Gap Analysis & Intrusive Asbestos Survey, prepared by Englobe	Info	28 Jun 2019	37
	DRAFT - Identification, Quantification and Abatement Estimates for Asbestos- Containing Materials - Letter, prepared by Englobe	Info	22 Mar 2019	4
	Halocarbon Standard Operating Procedure, prepared by MCW Maricor	Info	Oct 2012	50
APPENDIX 2	BUILDING CONDITION REPORTS			
	Building Condition Report 2017	Info	26 Apr 2017	103
APPENDIX 3	GEOTECHNICAL INVESTIGATION			
	EastTech Geotechnical Report - Daniel J. MacDonald Building Charlottetown, PEI, prepared by EastTech Engineering Consultants Inc.	Info	21 May 2020	18
	Charlottetown - DJM Building Phase II Soil Investigation, prepared by Jacques, Whitford	Info	15 Aug 1980	25

& Associated Ltd.

LEGEND TO DOCUMENTS RESPONSIBILITY

- .1 A Denotes documents prepared by Architect.
- .2 HS Denotes documents prepared by Health & Safety Advisor, PSPC Human Resources Branch, Construction & Maintenance.
- .3 SC Denotes documents prepared by Sustainability Consultant.
- .4 Cx Denotes documents prepared by Commissioning Agent.
- .5 Env Denotes documents prepared by PSPC Environmental Group.
- .6 S Denotes documents prepared by Structural Engineer.

28-29 Jun 2022

- .7 H Denotes documents prepared by Architectural Hardware Consultant.
- .8 AV Denotes documents prepared by Audio Visual Consultant
- .9 M Denotes documents prepared by Mechanical Engineer.
- .10 E Denotes documents prepared by Electrical Engineer.
- .11 C Denotes documents prepared by Civil Engineer
- .12 L Landscape documents prepared by PSPC
- .13 Info Denotes Information Documents prepared by various entities.

END OF SECTION

Part 1 General

1.1 RELATED REQUIREMENTS

- .1 Section 03 01 37 Concrete Restoration.
- .2 Section 03 53 10 Polished Concrete Topping.

1.2 REFERENCE STANDARDS

- .1 ASTM International (ASTM):
 - .1 ASTM C109/C109M-21, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. (50-mm) Cube Specimens).
 - .2 ASTM C348-21, Standard Test Method for Flexural Strength of Hydraulic Cement Mortars.
 - .3 ASTM C881/C881M-15, Standard Specification for Epoxy-Resin-Base Bonding Systems for Concrete.
 - .4 ASTM C882/C882M-20, Standard Test Method for Bond Strength of Epoxy-Resin Systems Used with Concrete by Slant Shear.
 - .5 ASTM C1583/C1583M-20, Standard Test Method for Tensile Strength of Concrete Surfaces and the Bond Strength or Tensile Strength of Concrete Repair and Overlay Materials by Direct Tension (Pull-off Method).
 - .6 ASTM D638-14, Standard Test Method for Tensile Properties of Plastics.
 - .7 ASTM D695-15, Standard Test Method for Compressive Properties of Rigid Plastics.
 - .8 ASTM D732-17, Standard Test Method for Shear Strength of Plastics by Punch Tool.
 - .9 ASTM D790-17, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials
 - .10 ASTM E1155M-14, Standard Test Method for Determining FF Floor Flatness and FL Floor Levelness Numbers (Metric).
 - .11 ASTM F710-21, Standard Practice for Preparing Concrete Floors to Receive Resilient Flooring.
 - .12 ASTM F1869-16a, Standard Test Method for Measuring Moisture Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride.
 - .13 ASTM F2873-13, Standard Practice for the Installation of Self-Leveling Underlayment and the Preparation of Surface to Receive Resilient Flooring.
- .2 CSA Group:
 - .1 CAN/CSA A23.1-19/A23.2-19, Concrete Materials and Methods of Concrete Construction/Methods of Tests for Concrete.
- .3 Green Building Initiative (GBI) Canada:
 - .1 Green Globes Canada Design for New Construction and Major Retrofits v.2 http://www.greenglobes.com

- .4 Health Canada / Workplace Hazardous Materials Information System 2015 (WHMIS):
 - .1 Safety Data Sheets (SDS).
- .5 International Concrete Repair Institute (ICRI):
 - .1 ICRI Guideline No. 310.2R-2013, Selecting and Specifying Concrete Surface Preparation for Sealers, Coatings and Polymer Overlays.
- .6 South Coast Air Quality Management District (SCAQMD), California State, Regulation XI. Source Specific Standards
 - .1 SCAQMD Rule 1113, Architectural Coatings.
 - .2 SCAQMD Rule 1168, Adhesive and Sealant Applications.

1.3 SECTION INCLUDES

- .1 This Section includes floor elevation survey of the existing slabs using a survey grade, 3D laser scanner.
- **.1.2** This Section includes supply and installation of self-levelling underlayment, as specified, on every floor of the entire building, with the exception of the Atrium where Polished Concrete Topping system is specified.
- **.2.3** This Section does not include supply and placement of self-leveling underlayment for fully bonded Polished Concrete Topping System (C-TOP-1) in the Atrium, specified in Section 03 53 10.

1.4 UNIT PRICES AND PAYMENT PROCEDURES

- .1 Include in the Contract Price 15,000 m2 of self-levelling underlayment with nominal thickness of 25 mm, for a resultant theoretical volume of placed product of 375 m3.
- .2 The above quantity of self-levelling underlayment is estimated. Actual quantity will vary in different areas depending on the site condition and structural capacity of existing slabs.
- .3 Measurement:
 - .1 The work of this Section will be measured on site using cubic metre as a unit of measurement, based on volume of product placed at the project site.
 - .2 The volume will be tallied using Contractor's submitted receipt for bags of materials purchased and used on the project for the actual floor area covered. The installed volume will be cross-checked using the coverage numbers shown on the manufacturer's product datasheets.
- .4 Payment:
 - .1 The work of this Section will be paid based on the actual volume of underlayment installed, and the unit prices stated in the Bid and Acceptance Form.
- .5 The Contract Price will be adjusted according to the actual final quantities.
- .6 Special Documentation
 - .1 Retain proof of purchase along with proof of delivery of materials to the site.

.2 Submit to Departmental Representative with every application for payment copies of receipts to verify quantity and type of materials purchased and installed on the project.

1.5 STRUCTURAL CAPACITY OF EXISTING SLABS

- .1 Before proceeding with the work of this Section, confirm with Departmental Representative structural capacity and loading information of all existing slabs.
- .2 Refer to Structural Drawings for maximum allowable overlay depth.

1.6 ACTION AND INFORMATIONAL SUBMITTALS

- .1 Submit submittals in accordance with Section 01 33 00 Submittal Procedures.
- .2 Shortly after Contract Award, submit proposed Work Plan for approval by Departmental Representative. Work Plan to include the following information:
 - .1 Methodology and sequence of construction;
 - .2 List of products and materials.
- .3 Provide Work Plan together with Shop Drawings and Product Datasheets as a complete package for Departmental Representative's review. Do not proceed with material ordering until review is completed.
- .4 Submit Shop Drawings indicating the following information:
 - .1 Areas where work of this Section is required, for each floor.
 - .2 Refer to structural drawings for maximum height of self-levelling underlayment.
- .5 Submit Product Data:
 - .1 Provide manufacturer's printed product literature and data sheets and include product characteristics, and compliance with minimum Product Performance Properties, coverage rate, performance criteria and limitations.
 - .2 Include storage and handling requirements.
 - .3 Include substrate preparation instructions.
- .6 Installation Instructions: Manufacturer's printed instructions for each product.
- .7 Test results: provide to Departmental Representative
 - .1 Copies of concrete substrate tests.
 - .2 Copies of adhesion tests.
- .8 Floor elevation survey results: provide to Departmental Representative
 - .1 Copies of a final Report.
 - .2 Digital "point cloud" data.

1.7 SUSTAINABLE DESIGN SUBMITTALS

.1 Adhere to the requirements of the Construction Waste Management plan as per Section 01 74 19 Construction Waste Management and Disposal.

- .2 Provide the following documentation in accordance with Section 01 47 15 Sustainable Requirements: Construction:
 - .1 Low-emitting materials: Interior site-applied Paints and Coatings
 - .1 Submit product data/SDS sheets for VOC emitting materials that clearly identifies the VOC content for compliance.
 - .2 Provide certificates for VOC compliance to the following regulations:
 - .1 SCAQMD Rule 1113 or SCAQMD Rule 1168, and
 - .2 Canadian VOC Concentration Limits for Architectural Coatings, Regulation SOR/2009 -264.

1.8 QUALITY ASSURANCE

- .1 Single Source Responsibility: to ensure compatibility of products, obtain underlayments, additives, primers, and accessories from the same manufacturer.
- .2 Manufacturer's site inspection: Have the manufacturer's technical representative inspect the Work at suitable intervals during application and at conclusion of the work of this Section, to ensure the Work is correctly installed. Submit manufacturer's inspection reports and verification that the work of this Section is correctly installed.
- .3 Testing of concrete floors:
 - .1 Test concrete substrate to ensure relative humidity or water vapour emission rates are in accordance with manufacturer's recommendations
 - .2 Moisture vapor transmission cannot exceed 1.3 kg per 90 m2 per 24 hours using calcium chloride test, reference ASTM F1869.
- .4 Floor Elevation Survey:
 - .1 Immediately after completion of demolition work, perform an accurate floor elevation survey of the existing slabs, using a survey grade, 3D laser scanner, to determine the elevation differences with a tolerance of 25 mm absolute accuracy and 3mm relative accuracy.
 - .2 Perform floor elevation survey of the entire building, all floor levels, with the exception of the Basement floor and the Penthouse floor.
 - .3 Produce a floor flatness and floor levelness plan and record measured readings on the Floor Plans.
 - .4 Provide to Departmental Representative digital "point cloud" data in the proprietary data format and .e57 format.
 - .5 Include Comprehensive Report in PDF format, with summary of equipment and methodology used, and final results.
 - .6 **Provide copies to Departmental Representative.**

1.9 PRE-INSTALLATION MEETING

- .1 Convene minimum 2 weeks prior to commencing work of this section.
- .2 Require attendance of material's manufacturer, the installer of the work of this Section and the installers of related work. Invite Departmental Representative to attend the preinstallation meeting.
- .3 Meeting agenda includes but is not limited to:

- .1 Structural capacity of the existing slabs.
- .2 Allowable maximum heights of material placement based on reviewed Work Plan and Shop drawings.
- .3 Surface Preparation.
- .4 Materials compatibility.
- .5 Installation procedures.
- .6 Protection of work during and after installation.
- .7 Review coordination with other affected sections.

1.10 DELIVERY, STORAGE AND HANDLING

- .1 Deliver, store and handle materials in accordance with Section 01 61 00 Common Product Requirements.
- .2 Deliver and store materials on site at least 24 hours before work begins.
- .3 Deliver and store packaged materials in original containers with seals unbroken and labels intact until time of use. Prevent damage or contamination to materials by water, freezing, foreign matter or other causes.
- .4 Protect setting materials from freezing or overheating in accordance with manufacturer's instructions.
- .5 Store materials on elevated platforms, under cover and in a dry location and protect from contamination, dampness, freezing or overheating.
- .6 Do not use frozen materials.

1.11 ENVIRONMENTAL REQUIREMENTS

- .1 Comply with requirements of referenced standards and recommendations of material manufacturers for environmental conditions before, during, and after installation.
- .2 Maintain environmental conditions (temperature, humidity, and ventilation) within limits recommended by manufacturer for optimum results. Do not install products under environmental conditions outside manufacturer's recommended limits.
- .3 Protect work during and after installation to comply with referenced standards and manufacturer's printed recommendations.

Part 2 PRODUCTS

2.1 MATERIALS

- .1 Epoxy Primer: ASTM C881/C881M, high-performance, two-component, high-modulus epoxy bonding agent, non-shrink, 100 percent solids, VOC content less than 50 g/L. Primer shall be compatible with self-levelling underlayment.
- .2 Self-Leveling Underlayment: Standard Performance, polymer-modified, calciumaluminate-based, self-curing underlayment, mixed with water at a ratio prescribed by the manufacturer.
 - .1 Industry Standards and Approvals:

- .1 Meeting compression requirements of ASTM F710 and ASTM F2873.
- .2 Green Certification: CRI Green Label Plus.
- .2 Product Performance Properties, minimum, at 23 deg. C and 50% RH:
 - .1 Cured density 128 lbs. per cu. ft. (2.06 kg per L)
 - .2 Compressive strength ASTM C109 Modified
 - .1 7 days > 2,500 psi (17.2 MPa)
 - .2 28 days > 3,500 psi (25 MPa)
 - .3 VOCs Rule #1168 of California's SCAQMD: 0 g per L
 - .4 Flexural strength ASTM C348 (CAN/CSA-A23.2-8C)
 - .1 28 days > 870 psi (6 MPa)
 - .5 Application Properties
 - .1 Minimum thickness over highest point in floor: 3 mm.
 - .2 Single-lift application range: 3 mm to 25mm.
 - .3 Waiting time for secondary applications: 24 hours.
 - .4 Drying time before installation of non-moisture-sensitive floor coverings at 21°C at 25 mm thickness: 24 hours.
 - .5 Drying time before installation of moisture-sensitive floor coverings at 21°C at 25 mm thickness: 72 hours.
- .3 For self leveling polymer-modified underlayment, forming part of the fully bonded System C-TOP-1, refer to Section 03 53 10 - Polished Concrete Topping.
- .4 Aggregate: Well-graded, washed gravel, 3 to 6 mm; or coarse sand as recommended by underlayment manufacturer.
 - .1 Provide aggregate when recommended in writing by underlayment manufacturer for underlayment thickness required.
- .5 Mix water: Potable, free from impurities.
- .6 Materials for concrete repair and crack filling: as specified in Section 03 01 37 Concrete Restoration.

2.2 EQUIPMENT

.1 Mixer and pumps: designed for cement materials and in good working condition. Pressure-test the equipment before mixing. Use a mesh screen "sock" at the end of the hose to catch any foreign material that may have fallen into the hopper during mixing.

Part 3 EXECUTION

3.1 EXAMINATION

- .1 Examine substrates for compliance with requirements for conditions affecting performance of the work.
- .2 Ensure that concrete slabs, including concrete repair patching, have been properly cured and dry for minimum of 28 days.

- .3 Report concrete floor test results to Departmental Representative, indicating that relative humidity and water vapour emission rates are in accordance with manufacturer's recommendations.
- .4 Verify that required environmental conditions are maintained during application as well as for 72 hours before and after application. Be familiar with manufacturer's product literature and Safety Data Sheets and comply with precautions, handling procedures and equipment requirements.
- .5 Do not start work until unsatisfactory conditions have been corrected. Commencement of work indicates acceptance of all surfaces and conditions.

3.2 PREPARATION

- .1 Clean surfaces thoroughly prior to installation.
- .2 Prepare surfaces using the methods recommended by the manufacturer for achieving the best result for the substrate under the project conditions.
- .3 Subfloor shall be structurally sound. Shot blast or scarify steel trowel concrete, concrete with sealer or curing compound, slick or smooth concrete. Clean subfloor to remove mud, oil, grease, old adhesives, and other contaminating factors before application of work.
- .4 Mechanically profile concrete surfaces in accordance with ICRI Guideline No. 310-2R, to concrete surface profile (CSP) #3.
- .5 Concrete surface repair and crack filling: as specified in Section 03 01 37 Concrete Restoration.
- .6 Expansion Joints: Allow joints to continue through the underlayment at the same width.
- .7 Fill substrate voids to prevent underlayment from leaking.
- .8 Adhesion Tests: After substrate preparation, test substrate for adhesion with underlayment according to manufacturer's written instructions.

3.3 INSTALLATION

- .1 Do not commence work until the building is enclosed, including roof, windows, doors, and other fenestration.
- .2 Perform work of this Section in strict accordance with the reviewed Work Plan and the Shop drawings.
- .3 Read manufacturer's installation instructions thoroughly before installation.
- .4 To ensure a suitable mix and flow, test the mixed material from the pump hose's end in a small test area before general application.
- .5 Mix and apply underlayment components according to product manufacturer written instructions.
- .6 Apply primer over prepared substrate at manufacturer's recommended spreading rate. Apply primer as bonding agent, working the material into the profiled substrate. Completely cover all areas of substrate that will receive the underlayment.
- .7 Place underlayment onto primer while it is tacky to ensure a successful installation.

- .8 Apply enough material to adequately cover all high spots, and fill low spots.
- .9 Spread and screed underlayment onto the properly prepared and primed surface, maintaining a wet edge throughout placement.
- .10 Except at authorized joints, place underlayment as continuously as possible, until application is complete so that no underlayment slurry is placed against underlayment product that has obtained its initial set, to avoid trapping air or creating a cold joint.
- .11 Produce smooth, uniform, level surface meeting specified minimum flatness and levelness tolerances in accordance with ASTM E1155M.
 - .1 Apply a final layer without aggregate to product surface.
 - .2 Install in proper relationship with adjacent construction. Feather edges to match adjacent floor elevations.
- .12 Provide continuous ventilation and adequate heat to rapidly remove moisture from the area until the underlayment has set and cured.
- .13 Cure underlayment according to manufacturer's written instructions. Prevent contamination during application and curing processes.
- .14 Do not install floor coverings over underlayment until after time period recommended in writing by underlayment manufacturer.
- .15 Remove and replace underlayment areas that evidence lack of bond with substrate, including areas that emit a "hollow" sound when tapped.

3.4 TOLERANCES

- .1 Finished floors to meet following minimum tolerances in accordance with ASTM E1155M, F-number method:
 - .1 Minimum values shall not be less than $F_F = 35$; $F_L = 25$.
- .2 Correct defect and deficiencies to achieve specified tolerances. No additional costs will be allowed for additional labour or materials required to provide specified level of flatness and levelness.

3.5 FIELD QUALITY CONTROL

- .1 Slump Test: Test underlayment as it is being pumped using a 50 mm x 100 mm cylinder resulting in a patty size of 225 mm plus or minus 25 mm diameter.
- .2 Take at least one set of 3 molded cube samples from each day's application. Test cubes in accordance with modified ASTM C109.
- .3 Provide test results to Departmental Representative.

3.6 **PROTECTION**

- .1 Protect installation areas from direct sunlight.
- .2 Floors: Protect from all traffic for at least 72 hours after installation.
- .3 Do not step on floor for at least 24 hours; if traffic is unavoidable after that, use plywood stepping boards.
- .4 Protect from heavy traffic for at least 7 days after installation.

3.7 CLEANING

- .1 Leave work area clean at end of each working day.
- .2 Dispose of waste in accordance with applicable Federal, Provincial, and municipal regulations.
- .3 Final Cleaning: upon completion remove surplus materials, rubbish, tools and equipment in accordance with Section 01 74 00 Cleaning.
- .4 Waste Management: Adhere to the requirements of the Construction Waste Management plan as per Section 01 74 19 Construction Waste Management and Disposal.

END OF SECTION

Part 1 General

1.1 **REFERENCE STANDARDS**

- .1 American National Standards Institute/Air Movement and Control Association (ANSI/AMCA)
 - .1 ANSI/ASHRAE 51-07 (ANSI/AMCA 210-07), Laboratory Methods of Testing Fans for Aerodynamic Performance Rating.
- .2 GB Initiative Canada:
 - .1 GREEN GLOBES Canada Design for New Construction and Major Retrofits v.2, http://www.greenglobes.com
- .3 International Organization of Standardization (ISO)
 - .1 ISO 3741-2010, Acoustics-Determination of Sound Power Levels of Noise Sources Using Sound Pressure - Precision Methods for Reverberation Rooms.
- .4 National Fire Protection Association (NFPA)
 - .1 NFPA 90A-21, Standard for the Installation of Air Conditioning and Ventilating Systems.
- .5 Underwriter's Laboratories (UL)
 - .1 UL 181-Edition 11, Factory-Made Air Ducts and Air Connectors.

1.2 ACTION AND INFORMATIONAL SUBMITTALS

- .1 Submit in accordance with Section 01 33 00 Submittal Procedures.
- .2 Product Data:
 - .1 Submit manufacturer's instructions, printed product literature and data sheets for air terminal units and include product characteristics, performance criteria, physical size, finish and limitations.
- .3 Shop Drawings:
 - .1 Submit drawings stamped and signed by professional engineer registered or licensed in the Province of P.E.I., Canada.
 - .2 Indicate the following:
 - .1 Capacity.
 - .2 Pressure drop.
 - .3 Noise rating.
 - .4 Leakage.
- .4 Certificates: submit certificates signed by manufacturer certifying that materials comply with specified performance characteristics and physical properties.

- .5 Test and Evaluation Reports:
 - .1 Test data: to ANSI/AMCA Standard 210.
 - .1 Submit published test data on DIN (Direct Internal Noise), in accordance with ISO 3741 made by independent testing agency for 0, 2.5 and 6 m/s branch velocity or inlet velocity.
 - .2 Sound power level with minimum inlet pressure of 0.25 0.5 1 1.5 kPa in accordance with ISO 3741 for 2nd through 7th octave band, also made by independent testing agency.
 - .3 Pressure loss through silencer shall not exceed 60% of inlet velocity pressure maximum.
- .6 Sustainable Design Submittals: in accordance with Section 01 47 15 Sustainable Requirements: Construction.

1.3 CLOSEOUT SUBMITTALS

- .1 Submit in accordance with Section 01 78 00 Closeout Submittals.
- .2 Operation and Maintenance Data: submit operation and maintenance data for air terminal units for incorporation into manual.

1.4 DELIVERY, STORAGE AND HANDLING

- .1 Deliver, store and handle materials in accordance with Section 01 61 00 Common Product Requirements and with manufacturer's written instructions.
- .2 Delivery and Acceptance Requirements: deliver materials to site in original factory packaging, labelled with manufacturer's name and address.
- .3 Storage and Handling Requirements:
 - .1 Store materials off ground indoors in dry location and in accordance with manufacturer's recommendations in clean, dry, well-ventilated area.
 - .2 Store and protect air terminal units from nicks, scratches, and blemishes.
 - .3 Replace defective or damaged materials with new.
- .4 Develop Construction Waste Management Plan Waste Reduction Workplan related to Work of this Section and in accordance with Section 01 57 16 IAQ Management: Construction.
- .5 Packaging Waste Management: Adhere to the requirements of the Construction Waste Management plan as per Section 01 74 19 Construction Waste Management and Disposal.

1.5 WARRANTY

- .1 Provide manufacturer's warranty certificate for all installed units.
- .2 Warranty shall include but not limited to labor and materials.
- .3 Manufacturer shall warrant the product for a period of 18 months after project substantial completion. The warranty shall cover all internal components of the product.

Part 2 Products

2.1 SYSTEM DESCRIPTION

- .1 Performance Requirements:
 - .1 Catalogued or published ratings for manufactured items: obtained from tests carried out by manufacturer or those ordered by manufacturer from certified ADC (Air Diffusion Council) testing agency signifying adherence to codes and standards.

2.2 MANUFACTURED UNITS

.1 Terminal units of the same type to be product of one manufacturer.

2.3 LOW PRESSURE TERMINAL UNITS – TO 750 PA

- .1 General
 - .1 Type, model and size as shown on Drawings
 - .2 Operating Pressure
 - .1 Maximum inlet air pressure: 750 Pa.
 - .2 Minimum inlet air pressure: 75 Pa.
 - .3 Maximum pressure drop across unit including attenuator, at 10 m/s inlet velocity: 40 Pa.
 - .4 Air leakage, close damper position: maximum 2% of nominal catalogue rating at an air inlet pressure of 750 Pa
 - .3 Acoustic Ratings
 - .1 Maximum room NC sound pressure level (2 x 10-4 microbar reference) at maximum inlet pressure: less than 40 at discharge and 42 radiated for box with attenuator mounted exposed (without ceiling).
 - .4 Performance Ratings
 - .1 ARI 880 certified
 - .2 Maintain air quantity within $\pm 5\%$ of set value, between zero and specified rating, and sound level below specified values when operating from minimum to maximum inlet static pressure as given above.
 - .5 Materials
 - .1 Stainless steel: 20 gauge type 316L stainless steel
 - .2 Fibreglass insulation: 20 mm thick (unless otherwise specified), dual density fibreglass. Exposed/cut edges sealed with NFPA-90A approved sealant, or metal caps as specified.
- .2 Single Duct Terminal Units Demand Control Ventilation (DCV)
 - .1 Variable Volume or Constant Volume as per equipment schedules

- .2 Casing Construction
 - .1 Casing : 22 gauge galvanized steel
 - .2 Insulation Type 1: fibreglass encapsulated in woven fabric liner, and wrapped edges
 - .3 Insulation Type 2: fibreglass with aluminum foil liner and sealed edges
 - .4 Insulation Type 3: fibreglass encapsulated in woven fabric liner, and galvanized steel perforated liner, and metal cap edges
 - .5 Insulation Type 4: fibreglass with galvanized steel solid liner, and metal edge caps
 - .6 Insulation Type 5: fibreglass with galvanized steel perforated liner, with metal edge caps
- .3 Control Elements
 - .1 Pressure independent type
 - .2 Pneumatic velocity sensor, cross tree type, with an accuracy within 5% with a 90° elbow connected at the inlet to the assembly
 - .3 Damper: heavy gauge metal, with edge gasket, self-lubricating bearings, and adjustable minimum stop
 - .4 Damper arranged "normally open" for morning warm-up
 - .5 Controls and damper actuator as specified below.
- .4 Discharge Section
 - .1 Open end or multiple outlet attenuator on box discharge acoustically treated with insulation as described above for the unit casing.
 - .2 Reheat coils where scheduled, complete with access door in bottom of attenuator on inlet side of coil.
- .3 Fan Powered Variable Air Volume Terminal Units Dedicated Outdoor Air System (FPB)
 - .1 Type
 - .1 Variable volume primary air flow and constant volume supply air through fan operation.
 - .2 The FPB incorporates cooling induction coil and heating to use in conjunction with DOAS.
 - .3 Refer to equipment schedule for capacity and additional information.
 - .2 Casing Construction
 - .1 Casing: 22 gauge galvanized steel up to 900 mm wide; 20 gauge minimum galvanized steel over 900 mm wide
 - .2 Internal sound reduction baffle
 - .3 Bottom access door with cam-lock fittings, for fan removal
 - .4 Insulation Type 1: fibreglass encapsulated in woven fabric liner, and wrapped edges

- .5 Insulation Type 2: fibreglass with aluminum foil liner, galvanized steel perforated liner and metal cap edges
- .6 Insulation Type 3: fibreglass encapsulated in woven fabric liner, and galvanized steel perforated liner, and metal cap edges
- .7 Insulation Type 4: fibreglass with galvanized steel solid liner, and metal edge caps
- .8 Insulation Type 5: fibreglass with galvanized steel perforated liner, with metal edge caps
- .3 Control Elements
 - .1 Pressure independent type primary air regulator
 - .2 Pneumatic velocity sensor, cross tree type, with an accuracy within 5% with a 90° elbow connected at the inlet to the assembly
 - .3 Damper: heavy gauge metal, with edge gasket, and self-lubricating bearings and adjustable minimum stop
 - .4 Single point electrical and control connection, in a single control box with access panel, sealed from the primary air section
 - .5 Controls and damper actuator as specified below.
- .4 Fan and Motor Assembly
 - .1 Forward curved, direct drive, statically and dynamically balanced centrifugal fan suspended on rubber in shear isolators
 - .2 Electrically Commutated Motor, brushless DC design, with built-in inverter and microprocessor based motor controller, to maintain supply air volume independent of system static pressure, permanently lubricated ball bearings.
 - .3 Field manual adjustment of fan speed
 - .4 4-20 mA or 0-10 VDC input for remote BMS fan speed reset
 - .5 115 V, 1 phase, 60 Hz
- .5 Discharge Section
 - .1 Open end or multiple outlet attenuator on box discharge acoustically treated with rigid acoustic insulation held in place with adhesive and pins
 - .2 Open end secondary air inlet silencer acoustically treated with rigid acoustic insulation held in place with adhesive and pins
 - .3 Reheat coils where scheduled, complete with access door in bottom of attenuator on inlet side of coil.
- .6 Performance
 - .1 Maintain primary air quantity within $\pm 5\%$ of set value, between zero and specified rating.

- .2 Radiated and discharge sound levels below values specified above when operating with maximum primary air, an inlet static pressure of 375 Pa and fan running on medium speed.
- .4 Controls
 - .1 Direct Digital Control (DDC)
 - .1 Provided by the Terminal Unit manufacturer
 - .2 Dedicated microprocessor based controller, with integral damper actuator
 - .3 Electronic flow transducer
 - .4 Standalone operation, capable of interfacing with a Building Management System, and hand-held portable operator interface device
 - .5 Actuator: 24 VDC bi-directional, direct coupled to the damper shaft
 - .6 Factory wired, calibrated and pre-tested, for maximum and minimum air flows
 - .7 Zone temperature sensor: temperature setpoint adjustment, and access for connection of a hand-held operator terminal.
 - .2 Direct Digital Control (Supplied under Section 25 30 01 EMCS Building Controllers)
 - .1 DDC controller with integral damper actuator supplied under Section25 30 01, and factory installed by the Terminal Unit manufacturer.
 - .2 Electronic flow transducer provided by Terminal Unit manufacturer
 - .3 Factory wired, calibrated and pre-tested, for maximum and minimum air flows
 - .3 Electronic Control
 - .1 Provided by the Terminal Unit manufacturer
 - .2 Electronic controller
 - .3 Electronic flow transducer
 - .4 Electric actuator
 - .5 Electronic thermostat, with setpoint and velocity adjustments
 - .6 Control elements mounted inside of metal enclosure on side of terminal unit
 - .7 Factory wired, calibrated and pre-tested, for maximum and minimum air flows
 - .8 Zone temperature sensor: temperature setpoint adjustment, and access for connection of a hand-held operator terminal.
- .5 Single Point Power Supply
 - .1 Provide single point power wiring for terminal units, at highest voltage and phases as shown on equipment schedules.

- .2 Main control panel with power distribution:
 - .1 Fused primary / 24 VAC secondary transformers for controls power, with internal disconnect switch.
 - .2 Fused primary / 120 VAC secondary transformers for fan power, for fan powered terminal units, with internal disconnect switch.
 - .3 Fused disconnect switch for electric reheat coil
 - .4 Clear Lexan plastic cover over live terminals on line-side of main disconnect switch.
 - .5 Note : electric heating coil control panel may be used as the Main control panel.
- .3 Separate, externally mounted un-fused disconnect switch to isolate all power to main control panel; no power inside of control panel when access door is open. Provide wiring between disconnect switch and control panel.
- .4 Provide power wiring to fan motor and DDC control unit.

2.4 ACTIVE CHILLED BEAMS

- .1 General:
 - .1 The active beams shall utilize induction of room air across a water coil mounted within the unit to provide sensible cooling or heating as required.
 - .2 The induced air shall mix with primary air and shall be supplied into the space via integrated discharge slot(s).
 - .3 The induced air shall mix with primary air and be supplied into the space at low velocity to produce a displacement system to provide sensible cooling or heating as required.
- .2 Performance:
 - .1 Active beam capacity shall be tested and certified by the manufacturer in accordance with ASHRAE Standard 200 to meet the performance listed on the schedule.
 - .2 Testing of performance shall be conducted in a validated, ISO certified facility with demonstrated capability of testing in accordance with the ASHRAE Standard 200 standard for a minimum of three years with documentation demonstrating repeatability of a standard beam within five percent year over year.
 - .3 Should any performance rating, including supply air volume, chilled water supply temperature, or plenum static pressure, deviate from the schedule, the manufacturer shall submit updated capacity, throw and noise data as well as computational fluid dynamic modeling demonstrating that any changes shall not impact the air distribution in a room that would cause a detriment to the PMV and ADPI rating from the design conditions.

- .4 Manufacturer shall have a factory testing facility available to perform performance tests of units in accordance with ASHRAE Standard 200 as required.
 - .1 Upon request, up to one percent of units (with a minimum of one for each beam model type) for the project can be tested in accordance with the standard. A request for such testing shall be made with the order and prior to shipment of the active beams.
 - .2 Engineer will have the option of witnessing this test.
- .5 Manufacturer shall also provide performance including the de-rate associated with the discharge grille when applicable to recessed chilled beams.
- .3 Construction:
 - .1 Active beams shall consist of an air inlet, pressurization cavity, metal formed induction nozzles, and enclosed water coil with 2-pipe water connections as indicated on the drawings, linear bar grille, perforated panel, or slot diffuser where applicable, and shall have 2-way discharge as per contract schedule.
 - .2 Air plenum and body casing shall be constructed of minimum 20 gauge galvanneal, consisting of at least one air inlet. Manufacturer shall present data indicating that the pressurized section has a maximum leakage of five percent of the supplied airflow at 1.0 inch water gauge.
 - .3 Exposed active beam casing shall be constructed of minimum 16 gauge powder coated heavy duty steel, consisting of at least one air inlet. Manufacturer shall present data indicating that the pressurized section has a maximum leakage of five percent of the supplied airflow at 1.0 inch water gauge. The casing construction shall allow maintenance personnel to stand on the top of the unit.
- .4 Water Coil:
 - .1 The water coil shall consist of copper tubing mechanically expanded into aluminum plate fins.
 - .2 Coils shall be leak tested by manufacturer to 390 pounds per square inch, to within plus or minus 10 pounds per square inch, shall have a working pressure of 300 pounds per square inch, and shall be AHRI 410 certified.
 - .3 Water connections shall be half inch diameter connections on one end only, and shall be suitable for solder, compression fittings, push on fittings or threaded connection.
 - .4 Fin spacing shall be no greater than 12 fins per inch to prevent dust bridging.
 - .5 Tube thickness shall be at least .016 inches.
 - .6 The coil shall be removable from the room side without requiring the removal of the beam casing from the ceiling.
 - .7 The coil pipe connections shall be upturned 90 degrees to avoid issues with coordination of ceiling installation. Casing shall have connection ports on each side to allow the location of piping connections to be reversed.
- .5 Fastening:
 - .1 Mounting brackets shall be factory installed along the length of the air plenum on the unit.

- .2 Each beam shall be individually supported by the building structure with a minimum of 4 laterally adjustable fixing points, or as recommended by the manufacturer.
- .3 Installation hardware shall be in accordance with the manufacturer's recommendations and any local codes that dictate hanging requirements.
- .6 Nozzles:
 - .1 Nozzles shall be of a fixed size, selected with respect to cooling and heating requirement, and constructed of formed sheet metal.
- .7 Face:
 - .1 The coil shall be accessible from the room side for inspection and cleaning without the need for tools through a hinged face supported by the beam casing where applicable. For recessed type beams, the coil can be accessed via the ceiling plenum.
 - .1 Room side accessible controls enclosure shall be furnished where indicated.
 - .2 Integrated return section shall be furnished where indicated.
 - .3 Integrated supply air section shall be furnished where indicated.
 - .2 The face shall be completely removable without the use of tools and allow for reversed orientation.
 - .3 The coil shall be accessible from the room side or ceiling plenum for inspection and cleaning.
 - .4 The coil shall be accessible from the room side for inspection and cleaning through a removable face panel.
 - .1 Room side accessible controls enclosure shall be furnished where indicated.
- .8 Paint Finish:
 - .1 The internal casing components and exterior shall be galvanneal or painted white.
 - .2 Exposed casing, face, and frame component finish shall be:
 - .1 Painted with B12 White baked-on powder coat finish.
 - .1 The paint finish must demonstrate no degradation when tested in accordance with ASTM D1308 (covered and spot immersion) and ASTM D4752 (MEK double rub) paint durability tests.
 - .2 The paint film thickness shall be a minimum of 2.0 mils.
 - .3 The finish shall have a hardness of 2H.
 - .4 The finish shall withstand a minimum salt spray exposure of 500 hours.
 - .5 The finish shall have an impact resistance of 80 inch-pounds.
- .9 Balancing:
 - .1 Integrated pressure port shall be included with k-factor to read the plenum pressure and corresponding supply air volume. Each active beam shall be supplied with a chart indicating a plenum pressure-primary supply air volume

relationship to facilitate the reading and adjustment of the primary air volume to match the values indicated on the drawings.

- .10 Water and air break-out connections:
 - .1 The beams shall be shipped sealed to limit the introduction of dust and dirt during shipping and construction.
- .11 Insulation:
 - .1 The exterior shall be insulated with half inch fiberglass insulation;
 - .2 The interior shall be insulated with 1/8 inch fiber-free insulation where indicated in the drawings.
- .12 Integrated Return:
 - .1 The return section shall be located at the end of the beam and shall have a minimum length of one foot.
 - .2 The beam face shall cover both the coil and the return section and shall be seamless.
- .13.12 Accessories:
 - .1 Flow Regulators:
 - .1 Manufacturer shall supply UL2043 listed and UL94 rated plastic volume flow regulators (VFR) to fit within rigid round ducting and maintain an air tight seal by utilizing an integrated gasket. The actual airflows shall be within ten percent (fifteen percent for 50 cubic feet per minute or less) for one of the following rated airflows as selected by the engineer:
 - .1 10, 20, 25, 30, 35, 45, 50, or 60 cubic feet per minute for a four inch duct
 - .2 35, 50, 60, 75, 90, or 105 cubic feet per minute for a five inch duct
 - .3 75, 90, 105, 125, 140, 160, or 175 cubic feet per minute for a six inch duct
 - .4 125, 140, 160, 175, 205, 235, 265, or 295 cubic feet per minute for an eight inch duct
 - .2.1 Coanda Wings:
 - .1 Manufacturer shall supply six inch wide custom made coanda wings to have the chilled beams fit the width of the ceiling grid without further adjustments. Wings shall be constructed of 20 gauge painted steel or 0.060 inch thick aluminum extrusion and installed with no fasteners or hardware visible from the room side.
 - .3.2 Slimline Coupling:
 - .1 The manufacturer shall provide a means for installing several beams together, end-to-end, such that they appear as a single unit.
 - .2 The discharge slot shall appear as a continuous open channel with no obstructions or visual cues of the multiple beam installation.

- .3 Blank Sections
 - .1 The manufacturer shall provide blank sections of lengths as indicated on the drawings.
 - .2 Blank sections shall be one-piece construction and shall connect seamlessly to the active chilled beams, such that they appear as a single unit.
 - .3 The manufacturer shall supply blank sections painted to match active unit.

Part 3 Execution

3.1 EXAMINATION

- .1 Verification of Conditions: verify that conditions of substrate previously installed under other Sections or Contracts are acceptable for air terminal units installation in accordance with manufacturer's written instructions.
 - .1 Visually inspect substrate in presence of Departmental Representative.
 - .2 Inform Departmental Representative of unacceptable conditions immediately upon discovery.
 - .3 Proceed with installation only after unacceptable conditions have been remedied and after receipt of written approval to proceed from Departmental Representative.

3.2 INSTALLATION

- .1 General
 - .1 Install air terminal units with at least 4 duct diameters of straight duct upstream of inlet.
 - .2 Support terminal boxes from building structure with angles, hangers and supplementary steel before installation of piping and connecting ductwork.
 - .3 Connect supply and return piping to reheat coils with swing joints to allow for pipe expansion and contraction.
 - .4 Install isolating valve on supply and lock shield globe valve and automatic control valve on return of each reheat coil.
 - .5 Provide manual air vent with isolating cock at high point of piping to each coil.
 - .6 Install unit as per manufacturer's requirements.
 - .7 Install chilled beams level and plumb. Maintain sufficient clearance for normal services, maintenance, or in accordance with construction drawings.
 - .8 Complete chilled beams installation and startup checks according to manufacturer's written instructions and perform the following:
 - .1 Verify inlet duct connections are as recommended by manufacture to achieve proper performance.
 - .2 Verify controls and control enclosures are accessible.

- .3 Verify control connections are complete to control valves as needed.
- .4 Verify that any identification tags are visible.
- .5 Verify controls respond to inputs as specified.
- .9 Install piping adjacent to beams to allow service and maintenance.
- .10 Tighten electrical connectors and terminals according to manufacturer's published torque-tightening
- .2 Electric and DDC Controls
 - .1 Provide 120 VAC and 24 VDC wiring, as required, from junction box provided under Division 26, near each terminal unit, and wire to terminal box fan and controls.
- .3 Testing and Adjustment
 - .1 Adjust fan speed on fan powered terminal boxes to obtain final flow volumes, to minimize use of balancing dampers on downstream ductwork and diffusers.
 - .2 Perform the following chilled beams field tests and inspections and prepare test reports:
 - .1 After installing the chilled beam and after electrical circuitry has been energized, test for compliance with requirements.
 - .2 Leak Test: After installation, fill water coils and test for leaks. Repair leaks and retest until no leaks exist.
 - .3 Operational Test: After electrical circuitry has been energized, start units to conform to proper unit operation.
 - .4 Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - .3 Chilled beams manufacturer's field service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report any findings in writing

3.3 CLEANING

- .1 Progress Cleaning: clean in accordance with Section 01 74 00 Cleaning.
 - .1 Leave Work area clean at end of each day.
- .2 Final Cleaning: upon completion remove surplus materials, rubbish, tools and equipment in accordance with Section 01 74 00 Cleaning.
- .3 Waste Management: Adhere to the requirements of the Construction Waste Management plan as per Section 01 74 19 Construction Waste Management and Disposal.

3.4 DEMONSTRATION

.1 Training: provide training in accordance with Section 01 79 00.13, Commissioning - Operation & Maintenance Personnel Training: Training of O&M Personnel.

END OF SECTION

	Project Number	R.056687.005			Consultant	1	NORR A	Archited	cts and Engi	ineers	System Re	ference						Heat Re	covery Ch	nillers	,
	Identifier	DJM			MCU Number		By I	EMCS	subcontract	or	EMCS Syst	tem Identifie	r					HR	CH-01,02	<u>:</u>	
	Descriptor	DJM Building			Location of MCU		E	3-20, M	EP Room 2		EMCS Sys	tem Descript	or				He	at Recove	ery Chiller	s#01,02	2
																			-		
		POINT IDENTIFICATION			AUXILLIARY DEV	ICES			TYPE	AI	A	I/DI		ALA	RMS		AI	AO/DO		DI/DO	
Point Number	Point Identifier	Point descriptor	Type	Eng Units	Auxilliary device or sensing signal	Supplied	Installed	Wired	Sensor or Output Device Signal	Active Sensor Range	Primary Point	CR CA MA	10	Analog	Limits	42	Set Point	Contact	Action	Heavy Motor	Applicable programs or notes
1	HRCH_01/02 ST	Heat recovery chiller status	DI	on/off	BACnet Chiller Plant controller	25	25	25	Y	Y	N		V V	V V	Y	HZ V	×	V	Y	V	
2	HRCH-01/02 CLG S/S	Heat recovery chiller status	DO	on/off	BACnet Chiller Plant controller	25	25	25	X	X	N	X	X	X	X	X	X	NO	X		P4
3	HRCH-01/02 HTG S/S	Heat recovery chiller beating command	DO	on/off	BACnet Chiller Plant controller	25	25	25	X	X	N	X	X	X	X	X	X	NO	X	Y	P4
4	P-01/04 ST	Chilled water nump status	DI	on/off	BACnet Chiller Plant controller	25	25	25	X	X	N	CR/MA	X	X	X	X	X	X	X	X	P2
5	P-02/05 ST	Condenser water nump status	DI	on/off	BACnet Chiller Plant controller	25	25	25	X	X	N	CR/MA	X	X	X	X	X	X	X	X	P2
6	P-03/06 ST	Geothermal pump status	DI	on/off	BACnet Chiller Plant controller	25	25	25	X	X	N	CR/MA	X	X	X	X	X	X	X	X	P2
7	P-03/06 SPD	Geothermal pump speed	AI	%	BACnet Chiller Plant controller	25	25	25	X	X	N	X	X	X	X	X	X	X	X	X	
8	P-14A/B/C S/S	Dry cooler pump start/stop	DO	on/off	Relay contact	25 23	25	25	Output Device	Х	Y	Х	Х	х	х	Х	х	NO	Х	х	
9	P-14A/B/C ST	Dry cooler pump status	DI	on/off	VFD Contact	25 23	25	25	Output Device	Х	Y	Х	Х	Х	Х	Х	Х	Х	Х	х	P2
10	P-14A/B/C MOD	Dry cooler pump VFD control	AO	%	VFD Contact	25 23	25	25	Output Device	Х	Y	х	х	Х	х	Х	*	х	х	х	
11	P-14A/B/C SPD	Dry cooler pump VFD position	AI	%	VFD Contact	25 23	25	25	Output Device	Х	Y	х	х	Х	Х	Х	Х	х	х	х	
12	DC-1 FAN S/S	Dry cooler fans start/stop	DO	on/off	Relay contact	25 23	25	25	Output Device	Х	Y	х	х	Х	Х	Х	Х	NO	х	Y	P4
13	DC-1 FAN ST	Dry cooler fans status	DI	on/off	VFD Contact	25 23	25	25	Output Device	Х	Y	х	х	Х	Х	Х	Х	х	х	Х	P2
14	DC-1 FAN MOD	Dry cooler fans VFD control	AO	%	VFD Contact	25 23	25	25	Output Device	Х	Y	х	х	Х	Х	х	Х	х	х	Х	
15	DC-1 FAN SPD	Dry cooler fans VFD position	AI	%	VFD Contact	25 23	25	25	Output Device	Х	Y	х	х	Х	Х	Х	Х	х	Х	Х	
16	P-12A/B/C S/S	Ground loop pump start/stop	DO	on/off	Relay contact	25 23	25	25	Output Device	Х	Y	х	х	Х	Х	х	Х	NO	х	Х	
17	P-12A/B/C ST	Ground loop pump status	DI	on/off	VFD Contact	25 23	25	25	Output Device	Х	Y	х	х	Х	Х	Х	Х	х	х	Х	P2
18	P-12A/B/C MOD	Ground loop pump VFD set point	AO	%	VFD Contact	25 23	25	25	Output Device	Х	Y	х	х	Х	Х	Х	*	х	х	х	
19	P-12A/B/C SPD	Ground loop pump VFD position	AI	%	VFD Contact	25 23	25	25	Output Device	Х	Y	х	х	Х	Х	Х	Х	х	х	Х	
20	CHWS T1	Plant chilled water supply temperature	Al	°C	Temperature sensor	25	25	25	Sensor	-40 to 100	Y	CR CA	3	5	11	Х	7	Х	Х	Х	
21	CHWR T1	Plant chilled water return temperature	AI	°C	Temperature sensor	25	25	25	Sensor	-40 to 100	Y	CA	Х	Х	Х	Х	Х	Х	Х	Х	
22	CWS T1	Plant hot water supply temperature	AI	°C	Temperature sensor	25	25	25	Sensor	-40 to 100	Y	CA	48	50	Х	Х	53	Х	Х	Х	
23	CWR T1	Plant hot water return temperature	AI	°C	Temperature sensor	25	25	25	Sensor	-40 to 100	Y	Х	Х	Х	Х	Х	Х	Х	Х	Х	
24	HWS T1	Heating water supply temperature	AI	°C	Temperature sensor	25	25	25	Sensor	-40 to 100	Y	CR CA	48	50	Х	Х	53	Х	Х	Х	
25	HWR T1	Heating water return temperature	AI	°C	Temperature sensor	25	25	25	Sensor	-40 to 100	Y	Х	Х	Х	Х	Х	Х	Х	Х	Х	
26	GTS T	Geothermal supply temperature (summer/winter)	AI	°C	Temperature sensor	25	25	25	Sensor	-40 to 100	Y	CR CA	15/-4	18/-2	35/X	38/X	30/1.1	Х	Х	X	
27	GTR T	Geothermal return temperature (summer/ winter)	AI	°C	Temperature sensor	25	25	25	Sensor	-40 to 100	Y	Х	Х	Х	Х	38	Х	Х	Х	X	\vdash
28	GISHET	Geothermal supply temperature from HE (summer/winter)	AI	°C	l'emperature sensor	25	25	25	Sensor	-40 to 100	Y	CR CA	15/-4	18/-2	35/X	38/X	30/1.1	Х	Х	<u>X</u>	ļ
29	GISDCI	Geothermal supply temperature from dry cooler (summer)	AI	°C	I emperature sensor	25	25	25	Sensor	-40 to 100	Y	CR CA	15	18	35	38	30	Х	Х	X	
Remarks:	*	Provide equipment failure alarm, if status doesn't match com Setpoint will be determined at startup and balancing	mand,	on all eq	uipment status points.																

	Project Number	R.056687.005			Consultant	N	ORR	Arch	itects and E	ngineers	Syster	n Referen	ce			D 404	Chill	ed Water	Distrib	ution S	System
	Identifier						ВУ		S subcontra	actor	ENICS	System Ic	ientifie	r		P-10/	λ, Β,	P-12, P-	11,A, B	, P-14	
	Descriptor	D'IM Building			Location of MCU			B-20	, MEP ROOM	2	EMICS	System D	escrip	or		Chille	a vva	ater Distr	idution		
1	2	2	4	5	6		7		0	0	10	11		1	n		12	14	15	16	17
1	2		4	5)FS			9 Al	10				2 PMS		13		15		1/
					AUXILLIANT					~							~	70,00	-		
oint Number	Point Identifier	Point descriptor	Type	Eng Units	Auxilliary device or sensing signal	Supplied	Installed	Wired	Sensor or Output Device Signal	Active Sensor Range	rimary Point	CR CA MA		Analog	Limits		Set Point	Contact	Action	Heavy Moto	Applicable programs or notes
с.						C	ivisio	n	-		а.		L2	L1	H1	H2		NO NC	CR OR	Delay	
1	P-10A/B/C S/S	MAU loop pump start/stop	DO	on/off	Relay contact	25 23	25	25	Output Device	Х	Y	Х	Х	х	Х	Х	Х	NO	Х	Х	
2	P-10A/B/C ST	MAU loop pump status	DI	on/off	VFD Contact	25 23	25	25	Output Device	Х	Y	CR/ MA	Х	Х	Х	Х	Х	Х	Х	Х	P2
3	P-10A/B/C MOD	MAU loop pump VFD set point	AO	%	VFD Contact	25 23	25	25	Output Device	Х	Y	Х	Х	х	Х	Х	*	Х	Х	Х	
4	P-10A/B/C SPD	MAU loop pump VFD position	AI	%	VFD Contact	25 <mark>23</mark>	25	25	Output Device	Х	Y	Х	Х	Х	Х	Х	Х	Х	Х	Х	
5	P-11A/B/C S/S	ACB loop pump start/stop	DO	on/off	Relay contact	25	25	25	Output Device	Х	Y	Х	Х	Х	Х	Х	Х	NO	Х	Х	
6	P-11A/B/C ST	ACB loop pump status	DI	on/off	VFD Contact	25 23	25	25	Output Device	х	Y	CR/ MA	Х	Х	Х	Х	Х	Х	Х	Х	P2
7	P-11A/B/C MOD	ACB loop pump VFD set point	AO	%	VFD Contact	25 23	25	25	Output Device	Х	Y	Х	Х	Х	Х	Х	*	х	Х	Х	
8	P-11A/B/C SPD	ACB loop pump VFD position	AI	%	VFD Contact	25 23	25	25	Output Device	Х	Y	Х	Х	Х	Х	Х	Х	х	Х	Х	
9	V-1 POS	V-1 position command	AO	%	Valve Actuator	25	23	25	Output Device	Х	Y	Х	Х	Х	Х	Х	Х	NO	Х	Х	
10	CHW ACB DP	Differential Pressure in ACB loop	Al	kPa	Diff Press Sensor	25	23	25	Sensor	0-700	Y	Х	Х	Х	Х	Х	*	Х	Х	Х	
11	CHW MAU DP	Differential Pressure in MAUloop	Al	kPa	Diff Press Sensor	25	23	25	Sensor	0-700	Y	Х	Х	Х	Х	Х	*	Х	Х	Х	
12	CHWS T2	Chilled water supply temperature to MAU and ACB loops	AI	°C	Temperature sensor	25	23	25	Sensor	-40 to 100	Y	CR	Х	Х	8	Х	7	Х	Х	Х	P9
13	CHWR T2	Chilled water return temperature from MAU and ACB loops	AI	°C	Temperature sensor	25	23	25	Sensor	-40 to 100	Y	Х	Х	Х	Х	Х	Х	Х	Х	Х	
14	CHWS ACB T	Chilled water supply temperature to ACB loop	AI	°C	Temperature sensor	25	23	25	Sensor	-40 to 100	Y	CR	13	13.5	16	Х	###	Х	Х	Х	P9
15	CHWR ACB T	Chilled water return temperature from ACB loop	AI	°C	Temperature sensor	25	23	25	Sensor	-40 to 100	Y	Х	Х	Х	Х	Х	Х	Х	Х	Х	
16	CHWS MAU T	Chilled water supply temperature to MAU loop	AI	°C	Temperature sensor	25	23	25	Sensor	-40 to 100	Y	CR	Х	Х	8	Х	7	Х	Х	Х	
17	CHWR MAU T	Chilled water return temperature from MAU loop	AI	°C	Temperature sensor	25	23	25	Sensor	-40 to 100	Y	Х	Х	х	Х	Х	Х	Х	Х	Х	
Rem	arks: *	Provide equipment failure alarm, if s Setpoint will be determined at startu	tatus p and	doesn't balanci	match command, on	all ec	uipn	nent	status points	6.				-	-	-					

	Project Number	R.056687.005			Consultant	N	ORR .	Archit	ects and Er	ngineers	Syster	m Reference	;				Heatin	g Water	Distrib	ution Sys	stem
	Identifier	DJM			MCU Number		By	EMCS	S subcontra	ictor	EMCS	System Ide	ntifier				P-(07, P-08	, P-09A	, B, P-1(<u>ე</u>
	Descriptor	DJM Building			Location of MCU		[3-20, I	MEP Room	2	EMCS	System De	scripto	r		He	ating V	Vater Ba	ack-up a	and Distr	ibution
			1	r		1			1			r	1								
1	2		4	5	6		7		8	9	10	11		1	3		14	15	17	- DI/D/	18
		POINT IDENTIFICATION				EVICE	-5	-	TYPE	AI		AI/DI		ALA	RMS		AI	AO/DC		DI/DC)
² oint Number	Point Identifier	Point descriptor	Type	Eng Units	Auxilliary device or sensing signal	Supplied	Installed	Wired	Sensor or Output Device Signal	Active Sensor Range	^p rimary Point	CR CA MA		Analog	g Limits	3	Set Point	Contact	Action	Heavy Motor	Applicabl e programs or notes
						E	Divisio	1 I	- · · ·		-		L2	L1	H1	H2		NO NC	CR OR	Delay	
1	P-07/08 S/S	Electric boiler pump command	DO	on/off	Relay contact	25 23	25	25	Output Device	Х	Y	Х	Х	Х	Х	Х	Х	NO	Х	Х	
2	P-07/08 ST	Electric boiler pump status	DI	on/off	Relay contact	25 23	25	25	Output Device	Х	Y	CR/ MA	Х	Х	Х	Х	Х	Х	Х	х	P2
3	P-07/08 MOD	Electric boiler pump control	AO	%	VFD Contact	25 23	25	25	Output Device	Х	Y	Х	Х	Х	Х	Х	*	Х	Х	Х	
4	P-07/08 SPD	Electric boiler pump speed	AI	%	VFD Contact	25 23	25	25	Output	Х	Y	Х	х	Х	Х	Х	Х	Х	Х	Х	
5	P-09A/B/10 S/S	Heating water pump command	DO	on/off	Relay contact	25 23	25	25	Output	Х	Y	х	Х	Х	Х	Х	Х	NO	Х	Х	
6	P-09A/B/10 ST	Heating water pump status	DI	on/off	Relay contact	25 23	25	25	Output	Х	Y	CR/ MA	Х	Х	Х	х	х	Х	Х	Х	P2
7	P-09A/B/C MOD	Heating waterpump control	AO	%	VFD Contact	25 23	25	25	Output	х	Y	Х	х	х	х	х	*	Х	Х	Х	
8	P-09A/B/C SPD	Heating water pump speed	AI	%	VFD Contact	25 23	25	25	Output	Х	Y	Х	х	Х	х	х	х	Х	Х	Х	
9	EB-01/02 S/S	Electric boiler enable	DO	on/off		25 23	25	25	Output	х	N	Х	Х	Х	Х	Х	х	Х	Х	Y	P4
10	EB-01/02 ST	Electric boiler status	DI	on/off	BAChet EB controller	25 23	25	25	Output	х	N	CR/ MA	х	х	х	х	х	Х	Х	Х	P2
11	ST	Electric holler supply temperature	Δι	°C	BACnet EB controller	25 23	25	25	Device Output	x	N	x	x	x	x	×	x	×	×	×	
10	51 57			0	BACnet EB controller	20 20	20	20	Device Output	~		~	~	~	~	~	~	~	~	~	
12	RI	Electric boller retun temperature	AI	°C	BACnet EB controller	25 23	25	25	Device	X	N	X	X	X	X	X	Х	X	X	X	
13	V2 2-POS	V2 position command	DO	on/off	Relay contact	25	22	25	Device	Х	Y	Х	Х	Х	Х	Х	Х	Х	Х	Х	ļ
14	V2 POS	V2 position status	DI	on/off	Relay contact	25	22	25	Output Device	Х	Y	CR/ MA	Х	Х	Х	Х	Х	NC	Х	Х	
15	HW DP	Differential pressure heating loop	Al	kPa	Diff Press Sensor	25	25	25	Sensor	0-700	Y	Х	Х	Х	Х	Х	*	Х	Х	Х	
16	HWS T2	Heating water supply temperature to the loop	AI	°C	Temp Sensor	25	25	25	Sensor	-40 to 100	Y	CR/ CA	48	50	Х	Х	53	Х	Х	х	
17	HWR T2	Heating water return temperature to the loop	AI	°C	Temp Sensor	25	25	25	Sensor	-40 to 100	Y	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Remarks:	*	Provide equipment failure alarm, if status doesn't Setpoint will be determined at startup and balance	match	comman	d, on all equipment state	us poir	nts.														

P	roject Number	R.056687.005	Consultant	1	NORR A	rchited	cts and Eng	neers	Syster	n Reference	9			Mak	eup A	ir Dedi	cated C	Dutdo	or Air System with Energy Recovery									
	Identifier	DJM DJM Building			MCU Number		By E	MCS :	Subcontract	or	EMCS	System De	entifier						MU/	4-1, M	UA-2 and MUA-3							
	Descriptor	Dow Balang			Location of Mico		D.	20, 111	LF KUUIII Z		LIVIUS	System De	Scriptor						Ivia	Ke-up	aii units #1,2,3							
1	2	3	4	5	6		7		8	9	10	11		12			13	14	15	16	17							
		POINT IDENTIFICATION		r	AUXILLIA	RY DE	VICES		TYPE	AI		AI/DI		ALAR	MS		AI	AO/DO			DVDO							
Point Number	Point Identifier	Point descriptor	Type	Eng Units	Auxilliary device or sensing signal	Supplied	Division	Wired	Sensor or Output Device Signal	Active Sensor Range	Primary Point	CR CA MA	L2	Analog L	imits H1	H2	Set Point	ontact Dontact	3 2 Action	kelad Heavy Motor	Applicable programs or notes							
1	SA T1	Cooling Coil Leaving Air Temp	AI	°C	Averaging Sensor	25	25	25	Sensor	-40 to 100	Y	CR/CA	Х	Х	11	12	10	х	X	Х								
2	CCV	Cooling Coil Valve Control	AO	%	Valve Actuator	25	23	25	Output Device	х	Υ	х	х	х	х	х	х	х	х	х								
3	CCV- P	Cooling Coil Valve Position	AI	%	Valve Actuator	25	23	25	Output Device	х	Υ	CR/MA	х	х	х	х	х	NC	х	х								
4	EA/OA T1/T2	Exhaust / Outdoor Air Temperature	AI	°C	Averaging Sensor	25	25	25	Sensor	-40 to 100	Υ	х	х	х	х	х	х	х	х	х								
5	RA FLOW	Exhaust Air Flow	AO	L/s	AFS DP	25	23	25	Output Device	0-10000	Υ	CR	1793	1888	х	х	х	х	х	х								
6	EFVFD	Exhaust Fan VFD Control	AO	%	VFD output	25 23	25	25	Output Device	х	Υ	х	х	х	х	х	х	х	х	х								
7	EFVFD-P	Exhaust Fan VFD Postion	AI	%	VFD output	25 23	25	25	Output Device	х	Υ	CA	35	38	х	х	х	х	х	х								
8	ERV ST	ERV Status	DI	on/off	Relay	25	25	25	Output Device	х	Y	CR	х	х	х	х	х	NO	х	х								
9	ERV-SS	ERV Enable	DO	on/off	Relay	25	25	25	Output Device	х	Υ	х	х	х	х	х	х	NO	х	Y	P1, P2, P4							
10	ECON S/S	Free cooling mode enable	DO	on/off	Relay	25	25	25	Output Device	х	Υ	х	х	х	х	х	х	NC	х	x								
11	RECIRC S/S	Recirculation mode enable	DO	on/off	Relay	25	25	25	Output Device	х	Υ	х	х	х	х	х	х	NO	х	х	x							
12	L VAV	Low volume fan operation enable	DO	on/off	Relay	25	25	25	Output Device	х	Υ	х	х	х	х	х	х	NO	х	х	x							
13	M VAV	Medium volume fan operation enable	DO	on/off	Relay	25	25	25	Output Device	х	Υ	х	х	х	х	х	х	NO	х	х								
14	FPD	Final filter Pressure Drop	AI	Pa	Magnehelic DP	25	23	25	Output Device	0-250	Υ	х	х	х	х	х	х	х	х	х								
15	FIRE	Firestat	HW	X	X	25	25	25	X	X	Y	X	X	X	X	X	X	X	X	X								
16	FREEZ SA T2	Freezestat Heating Coil Leaving Air Temp	ΔI	× °C	X Averaging Sensor	25	25	25	X	X	Y	X CR/CA	X 10	X 12	X 40	X	13	X	X	X								
18	HCV	Heating Coil Valve Control	AO	%	Valve Actuator	25	23	25	Output	x	Ŷ	X	x	x	x	x	х	x	x	x								
19	HCV-P	Heating Coil Valve Position	AI	%	Valve Actuator	25	23	25	Output	х	Υ	CR/MA	х	х	х	х	х	NO	х	х								
20	OAD	Outside Air Damper Control	DO	%	Damper Actuator	25	23	25	Output Device	х	Υ	х	х	х	х	х	х	х	х	х								
21	OAD-P	Outside Air Damper Position	DI	%	Damper Actuator	25	23	25	Output Device	х	Υ	CR/MA	х	х	х	х	х	NC	х	х								
22	EAD	Exhaust Air Damper Control	DO	%	Damper Actuator	25	23	25	Output Device	х	Υ	х	х	х	х	х	х	х	х	х								
23	EAD-P	Exhaust Air Damper Position	DI	%	Damper Actuator	25	23	25	Output Device	х	Υ	CR/MA	х	х	х	х	х	NC	х	х								
24	RAH	Return Air Humidity	AI	%	Humidity Sensor	25	25	25	Sensor	0-100	Y	Х	Х	Х	Х	х	Х	Х	Х	Х								
25	RAT	Return Air Temperature	AI	°C	Averaging Sensor	25	25	25	Sensor	100	Y	х	х	х	х	х	х	х	Х	Х								
26	SAH	Supply Air Humidity	AI	RH	Humidity Sensor	25	25	25	Sensor	0-100	Y	Х	Х	Х	Х	Х	Х	Х	Х	Х								
27	SASP	Supply Air Static Pressure	AI	Ра	Magnehelic DP	25	25	25	Output Device	0-1250	Y	х	х	х	х	х	•	х	х	х	ļ							
28	T1/T2	Energy CoreLeaving Air Temperature	AI	°C	Averaging Sensor	25	25	25	Sensor	-40 to 100	Y	х	х	х	х	х	х	х	х	х								
29	SA FLOW	Supply Air Flow	AI	L/s	AFS DP	25	23	25	Output Device	10000	Y	х	х	х	х	х	х	х	х	х								
30	SF-S	Supply Fan Status	DI	on/off	VFD Contact	25 23	25	25	Output Device	х	Y	х	х	х	х	х	х	х	х	х								
31	SFVFD	Supply Fan VFD Control	AO	%	VFD output	25 23	25	25	Output Device	х	Υ	х	х	х	х	х	х	х	х	х	ļ							
32	SFVFD-P	Supply Fan VFD Position	AI	%	VFD output	25 23	25	25	Output Device	X	Y	х	х	х	х	х	х	х	х	х	ļ							
33	OA T	Outdoor Air Temperature	AI	°C	emperature Senso	25	25	25	Sensor	-4U to 100	Y	x	x	Х	х	х	х	Х	X	Х	ļ							
34 10 35	SMK AL	Smoke detected in the SA/ RA duct	AI Di	% on/off	Relay contact	25	25	25	Output	U-100 X	Y	x	x	X	x	x	X	X NC	x	X								
11 36	FAS AL	Alarm to FAS	DO	on/off	Relay contact	26	23	25	Output	x	Y	x	x	х	x	x	х	NC	x	х	<u> </u>							
35 37	FAS	Fire Alarm System	DI	on/off	Relay contact	25	25	25	Device Output	x	Y	CR	x	x	x	x	x	NC	x	x	<u> </u>							
36 38	BLDG SP1/2	Building static pressure	AI	Pa	biff. pressure sense	25	25	25	Device Sensor	0-50	Y	CR	-5	-10	10	15	3	x	x	x	*							
Remarks:		Provide equipment failure alarm, if state	esn't mat	ch command, on a	II equip	ment s	tatus p	ooints.																				
	*	Setpoint is 3Pa in the summer and 0Pa	refer to control sch	nematic	1/M74	-01																						

	Project Number	R.056687.005			Consultant	1	NORR /	Archite	ects and Eng	ineers	Syster	n Refer	ence				W	allfin Con	vectors	Hydron	С
	Identifier	DJM			MCU Number		By B	EMCS	subcontrac	tor	EMCS	Systen	n Identi	fier				RAD	-1, 2, 3	, 4	
	Descriptor	DJM Building			Location of MCU		В	-20, M	1EP Room 2		EMCS	System	n Descr	iptor				Radiiators	s type 1	, 2, 3, 4	
1	2	3	4	5	6		7		8	9	10	11			12		13	14	15	16	17
		POINT IDENTIFICATION			AUXILLIAR	Y DEVI	CES		TYPE	Al	A	/DI		ALA	RMS		AI	AO/DO		DI/D	0
Point Number	Point Identifier	oint Identifier Point descriptor Point descriptor Auxilliary device					uoisivid uoisivid	Wired	Sensor or Output Device Signal	Active Sensor Range	Primary Point	CR CA MA	L2	Analog L1	g Limits H1	H2	Set Point	od Contact	Action Action	keled Motor	Applicable programs or notes
1	WF-xx HCV	Wallfin heating control valve command	AO	%	Valve actuator	23 25	23	25	Output Device	х	Y	х	х	х	х	х	х	NC	х	х	P1
2	RM T	Space temperature sensor	AI	°C	Temperature sensor	25	25	25	Sensor	-40 to 100	Y	CA	16	18	Х	Х	22	Х	Х	Х	
Rem	harks:																				

	Project Number	R.056687.005			Consultant	1	NORR A	rchite	cts and Engi	neers	System Re	ference					Fo	ce Flow	Heaters	Hydroni	С
	Identifier	DJM			MCU Number		By E	EMCS	subcontract	or	EMCS Syst	tem Identifie	er					FFH-0	1 throug	Jh 06	
	Descriptor	DJM Building			Location of MCU		B	-20, M	IEP Room 2		EMCS Syst	tem Descrip	tor				Force	ed fow he	eaters 0	1 through	1 06
1	2	3	4	5	6		7		8	9	10	11		1	13		14	15	17		18
		POINT IDENTIFICATION			AUXILLIAR	Y DEVI	CES		TYPE	Al	A	I/DI		ALA	RMS		AI	AO/DO		DI/D(ว
oint Number	Point Identifier	Point descriptor	Type	Eng Units	Auxilliary device or sensing signal	Supplied	Installed	Wired	Sensor or Output Device Signal	Active Sensor Range	rimary Point	CR CA MA		Analog	g Limit:	S	Set Point	Contact	Action	Heavy Motor	Applicable programs or notes
Å							Division		Ŭ		ā		L2	L1	H1	H2		NO NC	CR OR	Delay	
1	FFH-xx S/S	Force flow heater fan stop start	DI	on/off	VSD Contact Relay	23 25	23 25	25	Output Device	Х	Y	х	х	х	х	х	х	NO	х	Ν	P1
2	FFH-xx ST	Force flow heater fan status	VSD Contact Relay	23 25	23 25	25	Output Device	Х	Y	CR/ MA	х	х	х	х	х	х	х	х	P2		
3	FFH-xx HCV	Force flow heater valve open/close	Valve actuator	23 25	23 25	25	Output Device	х	Y	х	х	х	х	х	х	NC	х	х			
4	RM T	Space temperature sensor	AI	°C	Temperature sensor	25	25	25	Sensor	-40 to 100	Y	CR/ CA	3	7	Х	Х	10	Х	Х	Х	
Rema	arks:	Provide equipment failure alarm, if st	atus o	doesn't	match command, on a	all equ	ipment	status	points.												

F	^o roject Number	R.056687.005	1		Consultant	N	ORR A	rchite	ects and Eng	ineers	Systen	n Referenc	e					Fan	Coil Unit:	s	
	Identifier	DJM			MCU Number		By E	MCS	subcontrac	tor	EMCS	System Id	entifier					FCU-1	trhough	31	
	Descriptor	DJM Building			Location of MCU		B-	·20, N	1EP Room 2		EMCS	System De	escripto	or			F	an coil un	it # 1 thro	ough 31	
1	2	3	4	5	6		7		8	9	10	11		1	3		14	15	17	. <u> </u>	18
		POINT IDENTIFICATION			AUXILLIARY	DEVI	CES		TYPE	AI	A (l/DI		ALA	RMS		AI	AO/DO		DI/DC)
oint Number	Point Identifier	Point descriptor	Type	Eng Units	Auxilliary device or sensing signal	Supplied	Installed	Wired	Sensor or Output Device Signal	Active Sensor Range	rimary Point	CR CA MA		Analog	ı Limits		Set Point	Contact	Action	Heavy Motor	Applicable programs or notes
д.		1					Division	1			д.		L2	L1	H1	H2		NO NC	CR OR	Delay	
1	FCU-xx S/S	Fan Coil fan stop start	DI	on/off	VSD Contact Relay	23	23 25	25	Output Device	х	Y	х	х	х	х	х	х	NO	х	Ν	P1
2	FCU-xx ST	Fan coil fan status	DI	on/off	VSD Contact Relay	23	23 25	25	Output Device	х	Y	CR/ MA	х	х	х	х	х	х	х	х	P2
3	FCU-xx CCV	Fan Cooling Coil Valve Command	AO	%	Valve actuator	23 25	23 25	25	Output Device	х	Y	х	х	х	х	х	х	NC	х	х	
4	FCU-xx HCV	Fan Heating Coil Valve Command	Valve actuator	23 25	23 25	25	Output Device	х	Y	х	х	х	х	х	х	NC	х	х			
5	RM T	Space temperature sensor	Temperature sensor	25	25	25	Sensor	-40 to 100	Y	CA	16	18	26	28	24	х	х	х			
6	OCC -OV	Occupancy over-ride	DI	on/off	Switch	25	25	25	Dovico	Х	Y	Х	Х	Х	Х	Х	Х	Х	Х	Х	
7	RM RH	Space humidity sensor	AI	%	Humidity Sensor	25	25	25	Sensor	0-100	Y	CA	Х	Х	55	60	50	Х	Х	Х	
Rema	arks:	Provide equipment failure alarm, if s	tatus	doesn't	match command, on a	ll equ	ipmen	t statı	us points.												

F	Project Number	R.056687.005			Consultant	Ν	IORR	Archit	ects and En	gineers	Syste	em Referenc	ce				P	arking G	Garage	Ventilatio	on
	Identifier	DJM			MCU Number		Ву	EMCS	S subcontra	ctor	EMC	S System Ic	lentifie	er					EF-2		
	Descriptor	DJM Building			Location of MCU		E	3-20, I	MEP Room	2	EMC	S System D	escrip	tor				Exh	aust Fa	an #2	
				-													1 10			10	
1	2		4	5						9	10			1	2 DMC		13	14	15	16	1/
		POINT IDENTIFICATION	1	1	AUXILLIART		LES		TTPE	AI		AI/DI		ALA	RIVIS		AI	AU/DU			5
oint Number	Point Identifier	Point descriptor	Type	Eng Units	Auxilliary device or sensing signal	Supplied	Installed	Wired	Sensor or Output Device Signal	Active Sensor Range	rimary Point	CR CA MA	,	Analog	Limit	6	Set Point	Contact	Action	Heavy Moto	Applicable programs or notes
đ							Divisio	n	Ŭ		٩		L2	L1	H1	H2		NO NC	CR OR	Delay	
1	OAD 2POS	Outdoor air damper command	DO	on/off	Relay contact	25	25	25	Output Device	х	Y	х	х	х	х	х	х	х	х	Х	
2	OAD ES	Outdoor air damper position	DI	on/off	Limit switch	25	25	25	Output Device	х	Y	CR/ MA	х	х	х	х	х	NC	х	Х	
3	EF-S/S	Exhaust Fan Start Stop	DI	on/off	VSD Contact	25 <mark>23</mark>	25	25	Output Device	х	Y	х	х	х	х	х	х	NO	х	Ν	
4	EF-ST	Exhaust Fan Status	DI	on/off	VSD Contact	25 <mark>23</mark>	25	25	Output Device	х	Y	CR/ MA	х	х	х	х	х	х	х	Х	P2
5	EFVSD	Exhaust Fan VSD Control	AO	%	VSD output	25 <mark>23</mark>	25	25	Output Device	х	Y	х	х	х	х	х	х	х	х	Х	
6	EFVSD-P	Exhaust Fan VSD Position	AI	%	VSD output	25 23	25	25	Output Device	х	Y	х	х	х	х	х	х	Х	х	Х	
7	EAD 2POS	Exhaust air damper command	DO	on/off	Relay contact	25	25	25	Output Device	х	Y	х	х	х	х	х	х	х	х	Х	
8	EAD ES	Exhaust air damper position	DI	on/off	Limit switch	25	25	25	Output Device	х	Y	CR/ MA	х	х	х	х	х	х	х	Х	
9	RM T	Space temperature	AI	°C	Temperature sensor	25	25	25	Sensor	-40 to 100	Y	х	х	х	х	х	26	х	х	Х	
10	CO ST	Carbon monoxide system status	DI	on/off	CO Controller	25	25	25	Output Device	x		CR/ MA	х	х	х	х	х	NC	х	Х	
11	EF-S/S	Exhaust Fan Start Stop	DI	on/off	CO Controller	25	25	25	Output Device	х	Y	х	х	х	х	х	х	NO	х	Ν	
12	RF-1,2,3 S/S	Recirculation Fan Start Stop	DO	on/off	CO Controller	25	25	25	Output Device	х	х	х	х	х	х	х	х	NO	х	Ν	
13	RF-1,2,3 ST	Recirculation Fan Status	DI	on/off	Relay contact	25	25	25	Output Device	х		CR/ MA	х	х	х	х	х	х	х	Х	P2
14	CO ALARM	Carbon monoxide system alarm	DI	on/off	CO Controller	25	25	25	Output Device	х	х	х	х	х	х	х	х	NC	х	Х	
15	NO2 ALARM	Nitrogen dioxide system alarm	DI	on/off	CO Controller	25	25	25	Output Device	х	х	х	х	х	х	х	х	NC	х	Х	
16	CO	Carbon monoxide sensor	Al	ppm	CO Controller	25	25	25	Sensor	0-250	Х	CR	Х	Х	25	100	25	NC	Х	Х	
17	NO2	Nitrogen dioxide sensor	AI	ppm	CO Controller	25	25	25	Sensor	0-10	Х	CR	Х	Х	0.7	2	0.7	NC	Х	Х	
Remar	ks:	Provide equipment failure alarm, if	statu	s doesn't	match command, on	all equ	iipme	nt stat	tus points.												

Pro	oject Number	R.056687.005	Consultant NORR Architects and Engineers							System Reference					Mechanical Room Ventilation							
	Identifier	DJM			MCU Number		By I	EMCS	S subcontra	ctor	EMCS	System Ider	ntifier					E	F-1, SF	-1		
	Descriptor	DJM Building			Location of MCU		В	-20, N	IEP Room	2	EMCS	System Des	criptor			N	lecha	nical room	n supply	and exhaus	st fans	
		1																	1			
1	2	3	4	5	6		7		8	9	10	11			2		13	14	5	6	17	
	I				AUXILLIARY	DEVI	CES		TYPE	AI		AI/DI		ALA	RMS		AI	AO/DO		DI/DO		
Point Number	Point Identifier	Point descriptor	Type	Eng Units	Auxilliary device or sensing signal	Supplied	unitiality	Wired	Sensor or Output Device Signal	Active Sensor Range	Primary Point	CR CA MA	L2	Analoo) Limits H1	S H2	Set Point	Contact	Action	Motor	Applicable programs or notes	
1	SF-S/S	Supply Fan Start Stop	DI	on/off	VSD Contact	25 23	25	25	Output Device	х	Y	х	х	х	х	х	х	х	Х	N		
2	SF-S	Supply Fan Status	DI	on/off	VSD Contact	25 23	25	25	Output Device	х	Y	CR/ MA	х	х	х	х	х	х	Х	х		
3	SFVSD	Supply Fan VSD Control	AO	%	VSD output	25 23	25	25	Output Device	х	Y	х	х	х	х	х	х	х	Х	Х		
4	SFVSD-P	Supply Fan VSD Position	AI	%	VSD output	25 23	25	25	Output Device	х	Y	х	х	х	х	х	х	х	Х	х		
5	OAD 2POS	Outdoor air damper command	DO	on/off	Relay contact	25	25	25	Output Device	х	Y	х	х	х	х	х	х	х	Х	х		
6	OAD ES	Outdoor air damper position	DI	on/off	Limit switch	25	25	25	Output Device	х	Y	х	х	х	х	х	х	х	Х	х		
7	EAD 2POS	Exhaust air damper command	DO	on/off	Relay contact	25	25	25	Output Device	х	Y	х	Х	х	х	Х	х	х	Х	Х		
8	EAD ES	Exhaust air damper position	DI	on/off	Limit switch	25	25	25	Output Device	х	Y	х	Х	х	х	х	х	NC	Х	Х		
9	EF-S/S	Exhaust Fan Start Stop	DI	on/off	VSD Contact	25 23	25	25	Output Device	х	Y	х	Х	х	х	х	х	х	Х	Ν		
10	EF-S	Exhaust Fan Status	DI	on/off	VSD Contact	25 23	25	25	Output Device	х	Y	CR/ MA	х	х	х	х	х	х	Х	х		
11	EFVSD	Exhaust Fan VSD Control	AO	%	VSD output	25 23	25	25	Output Device	х	Y	х	х	х	х	х	х	х	Х	Х		
12	EFVSD-P	Exhaust Fan VSD Position	AI	%	VSD output	25 23	25	25	Output Device	х	Y	х	х	х	х	х	х	х	Х	Х		
13	RM T	Space temperature	Al	°C	Temperature sensor	25	25	25	Sensor	-40 to 100	Y	CA	Х	Х	30	35	26	Х	Х	Х		
14	REF ST	Refrigerant concentration status	AI	ppm	Refrigerant detector	25	25	25	Sensor	0 to 1000	N	CA CR	Х	Х	500	900	Х	NC	OR	X		
15	EFD 2POS	EF-1 intake damper command	DO	on/off	Relay contact	25	25	25	Output Device	х	Y	х	х	х	х	х	х	х	Х	Х		
16	EFD ES	EF-1 intake damper position	DI	on/off	Limit switch	25	25	25	Output Device	х	Y	х	х	х	х	х	х	NC	Х	х		
17	PB S	Push button START	DO	on/off	Relay contact	25	25	25	Output Device	х	Y	х	х	х	х	х	х	х	Х	х		
18	PB ST	Push button STOP	DO	on/off	Relay contact	25	25	25	Output Device	х	Y	х	х	х	х	х	х	х	Х	х		
19	OS	Occupancy Sensor	DI	on/off	Relay contact	25	25	25	Output Device	х	Y	х	х	х	х	х	х	NO	Х	х		
Remarks:		Interlock supply and exhaust fans	and a	ssociate	d dampers.																	
		Provide equipment failure alarm, i	f statu	s doesn'	t match command, on	all equ	lipmen	nt stati	us points.													

Project Number R.056687.005 Consultant							NORR A	Architect	s and Engin	System Reference						Fan Powered DOAS VAV boxes									
	Identifier	DJM			MCU Number		By E	EMCS s	ubcontracto	r	EMCS S	System Ide	ntifier					FPB-01	throug	h 28					
	Descriptor	DJM Building			Location of MCU		B	-20, ME	P Room 2		EMCS S	System Des	scriptor			Fan p	owere	d DOAS '	VAV bo	xes #1 tl	nrough 28				
		• • •						·					•												
1	2	3	4	5	6		7		8	9	10	11			12		13	14	15	16	17				
	P	OINT IDENTIFICATION			AUXILLIAF	RY DEVI	CES		TYPE	AI	A	I/DI		ALA	ARMS		AI	AO/DO		DI/D	0				
Point Number	Point Identifier	Point descriptor	Type	Eng Units	Auxilliary device or sensing signal	Supplied	Installed	Wired	Sensor or Output Device Signal	Active Sensor Range	Primary Point	CR CA MA	12	Analo	g Limits	H2	Set Point	Contact	Action	Heavy Motor	Applicable programs or notes				
1	SF	Supply Fan Start Stop	DI	on/off	Relay contact	25	25	25	Output Device	х	Y	х	Х	х	х	х	х	NO	х	N	P1				
2	SF-S	Supply Fan Status	DI	on/off	Relay contact	25	25	25	Output Device	х	Y	CR/ MA	Х	х	х	х	х	х	х	х	P2				
3	FPB FLOW	Fresh Air Flow	AI	l/s	AFS DP	25	23	25	Output Device	0-3000	Y	х	Х	х	х	Х	х	х	х	х					
4	FPBAD-P	Fresh Air Damper Position	AI	%	Valve Damper actuato	23 25	23	25	Output Device	х	Y	х	Х	х	х	Х	х	NC	х	х					
5	FPBAD	Fresh Air Damper Control	AO	%	Damper Actuator	25	23	25	Output Device	х	Y	х	Х	х	х	х	х	х	х	х					
6	HCV	Heating Coil Valve Control	AO	%	Valve actuator	23 25	23	25	Output Device	х	Y	х	Х	х	х	х	х	NC	х	х					
7	LAT	Leaving Air Temp	AI	°C	Averaging Sensor	25	25	25	Sensor	-40 to 100	Y	CA	Х	Х	40	50	Х	Х	Х	Х					
8	CCV	Cooling Coil Valve Control	AO	%	Valve actuator	23 25	23	25	Output Device	х	Y	х	Х	х	х	х	х	NC	х	х					
9	0CC -0V	Occupancy over-ride	DI	on/off	Switch	25	25	25	Output Device	х	Y	х	Х	х	х	х	х	х	х	х					
10	SMK AL	Smoke Alarm	Di	on/off	Relay contact	26	23	25	Output Device	х	Y	х	Х	х	х	х	х	NC	х	х					
11	FAS AL	Alarm to FAS	DO	on/off	Relay contact	26	23	25	Output Device	х	Y	х	Х	х	х	х	х	NC	х	х					
12	ZCO2	Zone CO ₂ level	DI	ppm	Zone CO ₂ sensor	25	25	25	Sensor	0-3000	Y	Х	Х	Х	1200	1500	Х	Х	Х	Х	1				
13	RM T	Space Temperature	Al	°C	Temperature Sensor	25	25	25	Sensor	-40 to 100	Y	CA	Х	Х	26	28	24	Х	Х	Х					
Rema	arks:	Provide equipment failure a	larm,	if status	doesn't match comma	ind, on a	all equip	oment st	atus points.																

Pr	oject Number	056687.005 Consu				Ν	IORR A	rchitec	ts and Engi	ineers	Syster	n Refer	ence			DCV with Active Chilled Beams System									
	Identifier	DJM			MCU Number		By E	MCS s	subcontract	or	EMCS	System	n Identif	ier					D	CV, CB					
	Descriptor	DJM Building			Location of MCU		B	20, ME	P Room 2		EMCS	System	n Descri	ptor		Dema	nd cont	trol ventila	ation VA	AV boxe	es with active chilled beams				
			_								-		_						_						
1	2	3	4	5	6		7		8	9	10	11			12		13	14	15	16	17				
		POINT IDENTIFICATION		-	AUXILLIAR	Y DEVI	CES		TYPE	AI	A	I/DI		ALA	ARMS		AI	AO/DO			DI/DO				
oint Number	Point Identifier	Point descriptor	Type	Eng Units	Auxilliary device or sensing signal	Supplied	Installed	Wired	Sensor or Output Device Signal	Active Sensor Range	rimary Point	CR CA MA		Analo	g Limits		Set Point	Contact	Action	Heavy Motor	Applicable programs or notes				
д.							Division				а.		L2	L1	H1	H2		NO NC	CR OR	Delay					
1	VAVFLOW	Fresh Air Flow	AI	l/s	AFS DP	25	23	25	Output Device	0-3000	Y	х	х	х	х	х	х	х	х	х					
2	VAVD-P	Fresh Air Damper Position	AI	%	Valve actuator	23 25	23	25	Output Device	х	Υ	х	х	х	х	х	х	NC	х	х					
3	VAVD	Fresh Air Damper Control	AO	%	Damper Actuator	25	23	25	Output Device	х	Y	х	х	х	х	х	х	х	х	х	P1				
4	WF-xx HCV	Wallfin heating control valve command	AO	%	Valve actuator	23 25	23	25	Output Device	х	Y	х	х	х	х	х	х	NC	х	х	P1				
7 <mark>5</mark>	CCV	Cooling Coil Valve Control	AO	%	Valve actuator	23 25	23	25	Output Device	х	Υ	х	х	х	х	х	х	NC	х	х	P1				
8 6	0CC -0V	Occupancy over-ride	DI	on/off	Switch	25	25	25	Output Device	х	Y	х	х	х	х	х	х	х	х	х					
97	ZCO2	Zone CO ₂ level	DI	ppm	Zone CO ₂ sensor	25	25	25	Sensor	0-3000	Y	Х	Х	Х	1200	1500	Х	Х	Х	Х					
10-8	RM T	Space Temperature	AI	°C	Temperature Sensor	25	25	25	Sensor	-40 to 100	Y	CA	16	18	26	28	24	х	х	х					
Rema	rks:	Provide equipment failure alarm, if status	doesn	t match c	ommand, on all equipm	ent stat	us poir	nts.		•	•	•	•		•	•	•	•	•	•	•				

Pr	oject Number	R.056687.005			Consultant	Ν	IORR A	rchitec	ts and Engi	neers	Syster	n Refer	ence					D	CV with	Fan Co	oil Unit
	Identifier	DJM			MCU Number		By E	MCS s	subcontract	or	EMCS	System	n Identif	fier					DC\	√ w FCl	J
	Descriptor	DJM Building			Location of MCU		B	20, ME	P Room 2		EMCS	System	n Descri	iptor		D	emand	control v	entilatio	n VAV I	boxes with fan coil unit
		•																			
1	2	3	4	5	6		7 8				10	11			12		13	14	15	16	17
		POINT IDENTIFICATION			AUXILLIAR	Y DEVIO	CES		TYPE	Al	A	I/DI	ALARMS				AI	AO/DO			DI/DO
oint Number	Point Identifier	Point descriptor	Type	Eng Units	Auxilliary device or sensing signal	Supplied	Installed	Wired	Sensor or Output Device Signal	Active Sensor Range	rimary Point	CR CA MA		Analo	g Limits		Set Point	Contact	Action	Heavy Motor	Applicable programs or notes
д.							Division				д.		L2	L1	H1	H2		NO NC	CR OR	Delay	1
1	VAVFLOW	Fresh Air Flow	AI	l/s	AFS DP	25	23	25	Output Device	0-3000	Y	х	х	х	Х	х	х	х	х	х	
2	VAVD-P	Fresh Air Damper Position	AI	%	Valve actuator	23 25	23	25	Output Device	х	Y	х	х	х	х	х	х	NC	х	х	
3	VAVD	Fresh Air Damper Control	AO	%	Damper Actuator	25	23	25	Output Device	х	Y	х	х	х	х	х	х	х	х	х	P1
9 4	ZCO2	Zone CO ₂ level	DI	ppm	Zone CO ₂ sensor	25	25	25	Sensor	0-3000	Y	Х	Х	Х	1200	1500	Х	Х	Х	Х	
Rema	rks:	Provide equipment failure alarm, if statu	s doesn	t match co	ommand, on all equipm	ient stat	us poir	nts.													

Р	roiect Number	R.056687.005			Consultant	N	IORR A	rchite	cts and End	ineers	System Reference						Humidification System								
	Identifier	DJM			MCU Number		By EMCS subcontractor EMCS System Identifier											F	HUM-01						
	Descriptor DJM Building Location of MC						, B-	20, N	IEP Room 2	2	EMCS	System De	escripto	or				Hum	idifier #	01					
1	2	3	4	5	6		7		8	9	10	11			12		13	14	15	16	17				
POINT IDENTIFICATION AUXILLIA					AUXILLIARY	DEVICES		TYPE	AI	AI/DI		ALARMS				AI	AO/DO	AO/DO DI/D)					
oint Number	Point Identifier	Point descriptor	Type	Eng Units	Auxilliary device or sensing signal	Supplied	Installed	Wired	Sensor or Output Device Signal	Active Sensor Range	rimary Point	CR CAMA		Analo	g Limit:	5	Set Point	Contact	Action	Heavy Motor	Applicabl e programs or notes				
ď.							Division				۵.		L2	L1	H1	H2		NO NC	CR OR	Delay					
1	HUM-S/S	Humidifier enable	AI	l/s	Humidifier controller	25	23	25	Output Device	0-3000	Υ	х	х	х	х	х	х	х	х	х					
2	HUM-ST	Humidifier status	AI	%	Humidifier controller	23 25	23	25	Output Device	х	Y	х	х	х	х	х	х	NC	х	х					
3	FCU-24 S/S	Fan Coil fan stop start	DI	on/off	VSD Contact Relay	23 25	23	25	Output Device	х	Y	х	х	х	х	х	х	NO	х	Ν	P1				
4	FCU-24 ST	Fan coil fan status	DI	on/off	VSD Contact Relay	23 25	23	25	Output Device	х	Y	CR/ MA	х	х	х	х	х	х	х	х	P2				
7 <mark>5</mark>	FCU-24 CCV	Fan Cooling Coil Valve Command	AO	%	Valve actuator	23 25	23	25	Output Device	х	Y	х	х	х	х	х	х	NC	х	х					
8 6	FCU-24 HCV	Fan Heating Coil Valve Command	AO	%	Valve actuator	23 25	23	25	Output Device	х	Υ	х	х	х	х	х	х	NC	х	х					
97	RM RH	Space humidity sensor	AI	%	Humidity Sensor	25	25	25	Sensor	0-100	Y	CA	Х	45	55	Х	50	Х	Х	Х					
10 8	RM T	Space Temperature	AI	۰C	Temperature Sensor	25	25	25	Sensor	-40 to 100	Υ	CA	х	18	22	х	20	х	х	х					
Ren	narks:	Provide equipment failure alarm, if	statu	s doesn't	match command, on a	ill equip	oment	status	points.	•	•	•	-	•	•	-	•	•	•	-					

E-DRM/GDD-E: 553185 v1

PWGSC A0 (2004)

		Public Works and Travaux Publics et Government Services Services gouvernementaux Canada Canada
		NORR
		NORR Architects & Engineers Limite An Ingenium Group Company 175 Bloor St. East North Tower, 15th Floor Toronto, ON Canada M4W 3R8 norr.com
		Rey plan
		project and true North
		project legend
	ROOF LEVEL	
- SE/A ► S/A		
- SE/A	3RD FLOOR	
		1 ADDENDUM # 2 2022-06-0
		1 ADJENDOM # 2 2022-00-2 0 ISSUED FOR TENDER 2022-05-2 revisions date project proj
- SE/A	2ND FLOOR	DANIEL J MACDONALD MODERNIZATION
		161 GRAFTON STREET CHARLOTTETOWN, PEI, C1A 1L1 drawing dess
	GROUND FLOOR	AIRFLOW SCHEMATIC
		designed Designer conç date 2020-11-6
WAL WITH	L OPENING I SCREEN	urawnAuthordessindate2020-11-6approved Checkerapprouv
		date 2022-06-29 Tender Soumission PWGSC Project Manager Administrateur de projets TPSC
	AIK WELL	project number no. du proj R.056687.005
		drawing no. no. du dess

PWGSC A0 (2004)

	Public Works and Travaux Publics et Government Services Services gouvernementaux
	Canada Canada
NOTES	
LEVATOR TO REMAIN. RECONNECT EXISTING DISCONNECT SWITCH TO NEW ON SYSTEM. PROVIDE 15A, 120V SINGLE VER CIRCUIT AND RECONNECT DISCONNECT R CAB POWER AND LIGHTING TO NEW ROVIDE TRANSFER, PRE-TRANSFER, POST AND INHIBIT SIGNALS FROM THE ATS TO CONTROLLER, MAKE OPERATIONAL. ET AND TURN OVER TO THE DEPARTMENT TATIVE EXISTING OUTDOOR DIESEL R SET. COORDINATE WITH DEPARTMENT TATIVE ALL WORK RELATED TO EXISTING MOLITION. WO (2) JUNCTION BOXES IN THE FIRE PUMP RANSITION MI CABLES TO WIRING IN D AVOID MI CABLE DIRECT CONNECTION TO CONTROLLER FOR NOT TO CUT HOLE IN THE ER. EXACT LOCATION OF JUNCTION BOXES	NORR Architects & Engineers Limited An Ingenium Group Company 175 Bloor St. East North Tower, 15th Floor Toronto, ON Canada M4W 3R8 Norr.com
ERMINED ON SITE AND TO DEPARTMENT TATIVE APPROVAL.	key plan
ENCY POWER CONNECTED LOAD: 267.6 kVA: =ETY): 31.6 kVA RS: 73.9 kVA E SAFETY): CAL EQUIPMENT: 40.5 kVA 5 HP MAND LOAD: 260.2 kVA_250 Amp	GAFTON STREET
	project and true North
LP-3CE 225A, 120/208V, 3PH, 4W ELECT. RM 3-61	project legend
3RD FLOOR	
58	
2ND FLOOR	
LP-1CE 225A, 120/208V, 3PH, 4W ELECT. RM 1-79	
GROUND FLOOR	
	1 ISSUED FOR ADDENDUM 02 2022-06-29 0 ISSUED FOR TENDER 2022-05-27
	project projet DANIEL J MACDONALD
	WODERNIZATION
	161 GRAFTON STREET CHARLOTTETOWN, PEI, C1A 1L1 drawing dessin
	- EMERGENCY POWER
	designed NORR
	date19/12/18drawnNORRdate19/12/18
	approved SR approuvé date 2022-06-29
	PWGSC Project Manager Administrateur de projets TPSGC project number no. du projet
	K.U50687.U05 drawing no. no. du dessin F೧ム-೧୨
	LUオ-U E-DRM/GDD-E: 553185 v1

\bigcirc	DRAWING KEYNOTES
P11	PROVIDE NEW POWER FROM CIRCUIT INDICATED FOR RE-CONNECTION OF EXISTING ELEVATOR DISCONNECT SWITCH

O DRAWING KEYNOTES

O DRAWING KEYNOTES

O DRAWING KEYNOTES

ALARM ZONE ANNUNICIATOR SCHEDULE.

URAWING RETINUTES

7 7'	8		10
O			
			SCALE Om 1m

6'	7 7'	8	9	
FA ZO ATRIL				

		Public Works and Travaux Publics et Government Services Services gouvernementaux
10)	(11)	Canada Canada
		NORR Architects & Engineers Limited An Ingenium Group Company 175 Bloor St. East North Tower, 15th Floor
		Toronto, ON Canada M4W 3R8 norr.com
		key plan
		GRAFTON STREET
		project and true North
	 	project legend
 		1 ISSUED FOR ADDENDUM 02 2022-06-29 0 ISSUED FOR TENDER 2022-05-27 revisions date
		project projet DANIEL J MACDONALD MODERNIZATION
SCALE : 1:100 0m 1m 2m 3	3m 4m 5m 6m 7m 8m	161 GRAFTON STREET 9m 10m CHARLOTTETOWN, PEI, C1A 1L1
		drawing dessin FIRE ALARM PLAN - FIFTH FLOOR
		designed NORR conçu date 01/02/19
		urawn NORK dessiné date 01/02/19 approved SR approuvé
		date 2022-06-29 Tender Soumission PWGSC Project Manager Administrateur de projets TPSGC
		project number no. du projet R.056687.005
		E30-05